

Enterprise Architect

User Guide Series

Parametric Simulation using OpenModelica

Author: Sparx Systems Date: 6/06/2016 Version: 1.0

Table of Contents

Parametric Simulation using OpenModelica		3
Creating a Parametric Model		4
SysML Simulation Configuration Window		9
Model Analysis using Datasets		12
SysML Simulation Example		14
Troubleshooting OpenModelica Simulation	2	20

Parametric Simulation using OpenModelica

SysML Parametric models support the engineering analysis of critical system parameters, including the evaluation of key metrics such as performance, reliability and other physical characteristics. These models unite requirements models with system design models by capturing executable constraints based on complex mathematical relationships. Parametric diagrams are specialized Internal Block diagrams that help you, the modeler, to combine behavior and structure models with engineering analysis models such as performance, reliability, and mass property models. Enterprise Architect helps you to develop and simulate SysML Parametric models quickly and simply.

This text is derived from the SysML entry in the online Wikipedia.

The advantages of SysML over UML for systems engineering become obvious if you consider a concrete example, such as modeling an automotive system. With SysML you can use Parametric diagrams to precisely define performance and mechanical constraints such as maximum acceleration, curb weight, air conditioning capacity, and interior cabin noise management.

For further information on the concepts of SysML Parametric models, refer to the official OMG SysML website and its linked sources.

Enterprise Architect allows you to extend the utility of your SysML parametric models by annotating them with extra information that allows the model to be simulated. The resulting model is then generated to as a Modelica model and can be solved using OpenModelica.

SysMLSimConfiguration Artifact

The simulation properties for your model are stored against a simulation artifact. This preserves your original model and allows multiple simulations to be configured against a single SysML model. The simulation artifact can be found on the Artifacts toolbox page.

User Interface Reference

The user interface for the SysML simulation is described in the following topic.

SysML Simulation Configuration Window

OpenModelica Example

The following topic demonstrates how to create and simulate a model of a simple electrical circuit using the integration with OpenModelica.

SysML Simulation Example

Creating a Parametric Model

Constraint Equations

Inline constraint equations on a Block	Define constraints directly in the block is straightforward and is the easiest way to define constraint equations. As the following figure shows, constraint " f = m * a " is defined in a block element.
	<pre>«block» FMA_Test constraints {f=m*a} properties a = 9.81 f m = 10</pre>
	Tips: You can define multiple constraints in one block.
	 Create a SysMLSimConfiguration element "Force=Mass*Acceleration(1)", point it to the Package of "FMA_Test"; Set "FMA_Test" to be SysMLSimModel; Set part "a" and "m" to be "SimConstant"; optionally set part "f" to be SimVariable
	Plot for "f" and simulate. Configure SysML Simulation ×
	<sysmlsimconfiguration>Force=Mass*Acceleration(1)</sysmlsimconfiguration>
	Attfact: Force=Mass*Acceleration(1) Package: Force=Mass*Acceleration(1) Model: FMA Test V Data Set:
	Name Value Stat: 0 Stop: 20 Format: plt + Parametric Plot
	block FMA Test SysMLSimModel Ponentiers (Classes to Generate) Pronenties to Plot
	∠ Part Part Propriet to Fold f: Real SimConstant a: Real SimConstant f=m*a Final SimConstant f=m*a
	A chart should be plotted with f = 98.1 (which comes from 10 * 9.81)
Reuseable Constraint Blocks	If one equation is commonly used in many blocks, a constraint block can be created and used as constraint property in each blocks. Here is the changes we made based on the previous example:
	 Create a Constraint Block element "F_Formular" with 3 parameters a, m, f and a constraint "f = m * a";

Flows in Physical Interactions

Default Value and Initial Values

Simulation Functions

Value Allocation

SysML Simulation Configuration Window

Access

Ribbon	Simulate > SysMLSim > Manage > SysMLSim Configuration Manager
Element	Double click on an artifact with the SysMLSimConfiguration stereotype.

Toolbar

Toolbar Button	Action		
Select Artfiact	Select and load an existing configuration from an artifact with the SysMLSimConfiguration.		
Create Artifact	Create a new SysMLSimConfiguration or select and load an existing configuration artifact.		
Select Package	Select a Package to scan for SysML elements to configure for simulation.		
Reload	Reload configuration window with changes to the current package.		
Configure Modelica Solver	Specify the path to the Modelica solver to use.		
	Modelica Solver Path × Modelica Solver (E.g. omc.exe for OpenModelica) C:\OpenModelica 1.9.2\bin \omc.exe QK		
Save	Save the configuration to the current artifact.		
Run	Generate, Compile, Run and display the results of the current configuration.		
Export to CSV			
Generate Modelica Code	Generate the Modelica code without compiling or running.		
Open Modelica Simulation Directory	Open the directory that Modelica code will be generated to.		
Edit Modelica Templates	Open the Code Template Editor to allow customization of the code		

generated for Modelica.

Simulation Context

Field	Meaning
Artifact	Create a new SysMLSimConfiguration or select and load an existing configuration artifact.
Package	Select a Package to scan for SysML elements to configure for simulation.

Package Element List

Element Type	Behavior
ValueType	ValueType elements can be mapped to a corresponding simulation type.
Block	Block elements can be mapped to SysMLSimClass or SysMLSimModel. A SysMLSimModel is a possible top level element for a simulation, and allows creation of data sets against it.
Block Properties	Properties within a block can be configured to be either a SimConstant or SimVariable.
Constraint Block	

Simulation Panel

Field	Meaning
Model	Allows selection of the top level type for the simulation. This is pre-populated with the blocks marked as a SysMLSimModel.
Data Set	Allows selection of a dataset for the selected model.
Start	Specify the initial time where the simulation is started.
Stop	Specify the time where the simulation ends.
Format	
Parametric Plot	
Parametric Plot	

Dependencies	Shows a list of the types that need to be generated to simulate this model.
Properties to Plot	Provides a list of properties that are involved with the simulation, and allows selection of which you want to plot.

Model Analysis using Datasets

Every SysML block used in a Parametric model can have multiple datasets defined against them. This allows for repeatable simulation variations using the same SysML model. When running a simulation, a user is able to select from the datasets specified against the model before starting.

Dataset Management

Create	New Datasets can be created by right clicking on a block selecting 'Create Simulation Dataset'.
Duplicate	To duplicate an existing dataset as a base for creating a new dataset, right click on the dataset and select 'Duplicate'.
Delete	To remove a dataset that is no longer required, right click on the dataset and select 'Delete Dataset'.
Set Default	The default dataset used by a SysMLSimClass when used as a property type or inherited can be set by right clicking on the dataset and selecting 'Set as Default'. The properties used by a model will use this default configuration unless the model overrides them explicitly.

Configure Simulation Data

Attribute	Stereotype	Туре	Default Value	Value
> pendulum1	SimVariable	Pendulum		
pendulum2	SimVariable	Pendulum		
PI	SimConstant	Real	3.1415926	
m	SimConstant	Real	1	
g	SimConstant	Real	9.81	1.6
L	SimConstant	Real	0.5	0.8
F	SimVariable	Real		
х	SimVariable	Real	0.5	0.8
У	SimVariable	Real	0	
VX	SimVariable	Real		
vy	SimVariable	Real		
			Import	Export OK
ribute	The Attribute co	lumn provides	a tree view of all the	e properties in the Bloc
libute	heing edited			

Stereotype	The stereotype column specifies for each property if it has been configured to be a constant for the duration of the simulation or variable so that the value is expected to change over time.
Туре	The Type column describes the type used for simulation of this property. It can be either a primitive type (eg. Real) or a reference to a Block contained in the model. Properties referencing blocks will show the child properties specified by the referenced block below them.
Default Value	The default value column shows the value that will be used in the simulation if no override is provided. This can come from the Initial Value field in the SysML model or from the default dataset of the parent type.
Value	The value column allows the user to override the default value for each primitive value.
Export / Import	The export and import buttons allow the user to modify the values in the current dataset using an external application such as a spreadsheet before re-importing them.

SysML Simulation Example

In this section, we will walk through the creation of a SysML parametric model for a simple electrical circuit, and then use a parametric simulation to predict and chart the behavior of that circuit.

Circuit Diagram

The electrical circuit we are going to model is shown below using a standard electrical circuit notation.

The circuit includes an AC power source, a ground and a resistor. Each of these being connected via wires.

Create SysML Model

The following table shows how we can build up a complete SysML model to represent the circuit. Starting at the lowest level types and building up the model one step at a time.

Types	Define Value Types for each of Voltage, Current and Resistance. Unit and quantity kind are not important for the purpose of simulation but would be set if defining a complete SysML model. These types will be generalized from the primitive type 'Real'. In other models, you can choose to map a value type to a corresponding simulation type separate from the model.						
	«valueType» Voltage«valueType» Current«valueType» ResistancequantityKind = unit =quantityKind = unit =quantityKind = unit =						
	Additionally, we define a composite type called ChargePort, which includes properties for both Current and Voltage. This type allows us to represent the electrical energy at the connectors between components.						

	«block» ChargePort flow properties none i : Current none v : Voltage						
Blocks	In SysML, the circuit and each of the components will be represented as Blocks. Create a Circuit block in a Block Definition Diagram (BDD). The circuit has three parts: a source, a ground, and a resistor. These parts are of different types, with different behaviors. Create a block for each of these part types. The three parts of the Circuit block are connected through ports, which represent electrical pins. The source and resistor have a positive and a negative pin. The ground has only one pin, which is positive. Electricity (electric charges) is transmitted through the pins. Create an abstract block TwoPinComponent with two ports (pins). The two ports are named p and n, and they are of type ChargePort.						
	Circuit, Ground, TwoPinComponent, Source and Resistor.						
	«block» «block» Source ports p : ChargePort ports n : ChargePort n : ChargePort values i : Current v: Voltage values constraints constraints sc : SourceConstraint constraint						
Internal Structure	Create an Internal Block Diagram (IBD) for Circuit. Add properties for the source, resistor, and ground, typed by the corresponding blocks. Connect the ports with connectors. The positive pin of the source is connected to the negative pin of the resistor. The positive pin of the resistor is connected to the negative pin of the source. The ground is also connected to the negative pin of the source.						

Configure Simulation Behavior

Configure SysML Simul	ation					□ ×
🖹 - 📑 🕨 🖬 📑 - 🞯)					
Artifact: ElectricalCi	rcuit	Simula	tion]
Package: ElectricalCi	rcuit	Mode	Model: Circuit - Data Set: DataSet_			▼ Solve
Name	Value	Start	0 Stop: 20	Format: plt 💌	Parametric Plot	
⊿ ValueType						
Current	Current SysMLSimReal		ndencies (Classes to Ger	nerate)	Properties to Plot	
Resistance	SysMLSimReal	Curre	nt		ground.p.i	
Voltage	SysMLSimReal	Resis	tance		ground.p.v	
∡ block			ge		resistor.i	
TwoPinComponent		Charg	ePort		resistor.n.i	
▷ Grcuit	SysMLSimModel	Resist	tor Constraint		✓ resistor.n.v	
▷ Resistor		Resis	tor		resistor.p.i	
⊿ ChargePort		Sourc	eConstraint		✓ resistor.p.v	
✓ RowProperty		Sourc	e		resistor.v	
⊿ i: Current	SimVariable	Grour	GroundConstraint		source.i	
⊿ SysMLSim Configura	tion Click button to configure	Grour	Ground		source.n.i	
is Continuous	true	Grcui	t		source.n.v	
is Conserved	true				source.p.i	
v : Voltage					source.p.v	
Source					source.v	
⊳ Ground						
▷ constraintBlock						

Run Simulation

Troubleshooting OpenModelica Simulation

Common Simulation Issues

The following table describes some of the common issues that can prevent a model being simulated.

Check the output at "System Output | Build" window, the messages were dumped from OpenModelica compiler (omc.exe), it normally points you to the lines of the modelica source code. This will help you pick up most of the errors.

The number of equations are fewer than the number of variables: You might forgot to set some of the properties to be SimConstant, which means the value doesn't change during simulation. You might need to provide the SimConstant properties value before the simulation started. (Set the values through Simulation Data Set)

The blocks that are typing to ports may contain conserved properties. For example, a block ChargePort may contain two parts: "v : Voltage" and "i: Current", the property "i : Current" should be defined with SimVariable with attribute "isConserved = true".

SimConstants should be provided default values.

A SimVariable may need an initial value to start with.

The properties may typed by elements (blocks or value type) outside of the configured package; Use a package import connector to fix this.