
UML 2.0 Superstructure Specification

This OMG document replaces the submission document (ad/03-04-01) and the Draft Adopted
specification (ptc/03-07-06). It is an OMG Final Adopted Specification and is currently in the
finalization phase. Comments on the content of this document are welcomed, and should be
directed to issues@omg.org by September 8, 2003.

You may view the pending issues for this specification from the OMG revision issues web page
http://www.omg.org/issues/; however, at the time of this writing there were no pending issues.

The FTF Recommendation and Report for this specification will be published on April 30, 2004. If
you are reading this after that date, please download the available specification from the OMG
Specifications Catalog.

OMG Adopted Specification
ptc/03-08-02

Date: August 2003

Unified Modeling Language: Superstructure

version 2.0

Final Adopted Specification

ptc/03-08-02

Copyright © 2001-2003 Adaptive Ltd.
Copyright © 2001-2003 Alcatel
Copyright © 2001-2003 Borland Software Corporation
Copyright © 2001-2003 Computer Associates International, Inc.
Copyright © 2001-2003 Telefonaktiebolaget LM Ericsson
Copyright © 2001-2003 Fujitsu
Copyright © 2001-2003 Hewlett-Packard Company
Copyright © 2001-2003 I-Logix Inc.
Copyright © 2001-2003 International Business Machines Corporation
Copyright © 2001-2003 IONA Technologies
Copyright © 2001-2003 Kabira Technologies, Inc.
Copyright © 2001-2003 MEGA International
Copyright © 2001-2003 Motorola, Inc.
Copyright © 1997-2001 Object Management Group.
Copyright © 2001-2003 Oracle Corporation
Copyright © 2001-2003 SOFTEAM
Copyright © 2001-2003 Telelogic AB
Copyright © 2001-2003 Unisys
Copyright © 2001-2003 X-Change Technologies Group, LLC

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change without
notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of
the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have
infringed the copyright in the included material of any such copyright holder by reason of having used the
specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use
this specification to create and distribute software and special purpose specifications that are based upon this
specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:
(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;
(2) the use of the specifications is for informational purposes and will not be copied or posted on any network
computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this specification. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective

users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved.
No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,
IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR
PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED
ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS,
REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH
THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)
(ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph
(c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as
specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R.
12.212 of the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners
are as indicated above and may be contacted through the Object Management Group, 250 First Avenue, Needham,
MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®,
XMI® and IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management
Group™, CORBA logos™, OMG Interface Definition Language (IDL)™, The Architecture of Choice for a
Changing World™, CORBAservices™, CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™,
Middleware That's Everywhere™, UML™, Unified Modeling Language™, The UML Cube logo™, MOF™,
CWM™, The CWM Logo™, Model Driven Architecture™, Model Driven Architecture Logos™, MDA™, OMG
Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are trademarks of the Object Management Group.
All other products or company names mentioned are used for identification purposes only, and may be trademarks of
their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if
and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using
this specification may claim compliance or conformance with the specification only if the software satisfactorily
completes the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

Table of Contents

1 Scope .. 1
2 Conformance ... 1
3 Normative references .. 3
4 Terms and definitions .. 4
5 Symbols ... 18
6 Additional information .. 18

6.1 Changes to Adopted OMG Specifications .. 18
6.2 Architectural Alignment and MDA Support ... 18
6.3 How to Read this Specification ... 18
6.4 Acknowledgements... 19

Part I - Structure .. 23
7 Classes .. 25

7.1 Overview... 25
7.2 Kernel – the Root Diagram ... 27

7.2.1 Comment (from Kernel) ... 28
7.2.2 DirectedRelationship (from Kernel) ... 28
7.2.3 Element (from Kernel) ... 29
7.2.4 Relationship (from Kernel) .. 30

7.3 Kernel – the Namespaces Diagram.. 31
7.3.1 ElementImport (from Kernel) ... 31
7.3.2 NamedElement (from Kernel, Dependencies) .. 33
7.3.3 Namespace (from Kernel) ... 35
7.3.4 PackageableElement (from Kernel) .. 37
7.3.5 PackageImport (from Kernel) .. 38
7.3.6 VisibilityKind (from Kernel) .. 39

7.4 Kernel – the Multiplicities Diagram ... 40
7.4.1 MultiplicityElement (from Kernel) .. 40
7.4.2 Type (from Kernel) .. 43
7.4.3 TypedElement (from Kernel) ... 44

7.5 Kernel – the Expressions Diagram ... 45
7.5.1 Expression (from Kernel) .. 45
7.5.2 OpaqueExpression (from Kernel) .. 46
7.5.3 InstanceValue (from Kernel) ... 47
7.5.4 LiteralBoolean (from Kernel) ... 48
7.5.5 LiteralInteger (from Kernel) ... 49
7.5.6 LiteralNull (from Kernel) .. 49
7.5.7 LiteralSpecification (from Kernel) .. 50
7.5.8 LiteralString (from Kernel) ... 51
7.5.9 LiteralUnlimitedNatural (from Kernel) .. 51
7.5.10 ValueSpecification (from Kernel) ... 52

7.6 Kernel – the Constraints Diagram... 53
7.6.1 Constraint (from Kernel) .. 54

7.7 Kernel – the Instances Diagram ... 57
7.7.1 InstanceSpecification (from Kernel) .. 57
7.7.2 Slot (from Kernel) .. 60

7.8 Kernel – the Classifiers Diagram .. 61
7.8.1 Classifier (from Kernel, Dependencies, PowerTypes) .. 61
UML Superstructure 2.0 Draft Adopted Specification i

7.8.2 Generalization (from Kernel, PowerTypes) ... 66
7.8.3 RedefinableElement (from Kernel) .. 70

7.9 Kernel – the Features Diagram... 71
7.9.1 BehavioralFeature (from Kernel) ... 72
7.9.2 Feature (from Kernel) .. 73
7.9.3 Parameter (from Kernel) ... 73
7.9.4 ParameterDirectionKind (from Kernel) .. 74
7.9.5 StructuralFeature (from Kernel) .. 75

7.10 Kernel – the Operations Diagram ... 76
7.10.1 Operation (from Kernel) .. 76

7.11 Kernel – the Classes Diagram .. 80
7.11.1 AggregationKind (from Kernel) .. 80
7.11.2 Association (from Kernel) .. 81
7.11.3 Class (from Kernel) ... 86
7.11.4 Property (from Kernel, AssociationClasses) .. 89

7.12 Kernel – the DataTypes Diagram.. 94
7.12.1 DataType (from Kernel) ... 95
7.12.2 Enumeration (from Kernel) .. 96
7.12.3 EnumerationLiteral (from Kernel) .. 97
7.12.4 PrimitiveType (from Kernel) .. 98

7.13 Kernel – the Packages Diagram ... 99
7.13.1 Package (from Kernel) .. 99
7.13.2 PackageMerge (from Kernel) .. 101

7.14 Dependencies... 105
7.14.1 Abstraction (from Dependencies) .. 107
7.14.2 Classifier (from Dependencies) ... 107
7.14.3 Dependency (from Dependencies) ... 108
7.14.4 NamedElement (from Dependencies) ... 109
7.14.5 Permission (from Dependencies) .. 109
7.14.6 Realization (from Dependencies) .. 110
7.14.7 Substitution (from Dependencies) ... 110
7.14.8 Usage (from Dependencies) ... 111

7.15 Interfaces .. 112
7.15.1 BehavioredClassifier (from Interfaces) .. 113
7.15.2 Implementation (from Interfaces) .. 113
7.15.3 Interface (from Interfaces) ... 114

7.16 AssociationClasses... 117
7.16.1 AssociationClass (from AssociationClasses) .. 118

7.17 PowerTypes.. 120
7.17.1 Classifier (from PowerTypes) .. 121
7.17.2 Generalization (from PowerTypes) ... 121
7.17.3 GeneralizationSet (from PowerTypes) .. 121

7.18 Diagrams... 128
8 Components .. 133

8.1 Overview... 133
8.2 Abstract syntax ... 134
8.3 Class Descriptions .. 136

8.3.1 Component .. 136
8.3.2 Connector (from InternalStructures, as specialized) ... 143
8.3.3 Realization (from Dependencies, as specialized) ... 146

8.4 Diagrams .. 147
ii UML Superstructure 2.0 Draft Adopted Specification

9 Composite Structures .. 151
9.1 Overview... 151
9.2 Abstract syntax ... 151
9.3 Class Descriptions .. 156

9.3.1 Class (from StructuredClasses, as specialized) .. 156
9.3.2 Classifier (from Collaborations, as specialized) .. 157
9.3.3 Collaboration (from Collaborations) .. 157
9.3.4 CollaborationOccurrence (from Collaborations) .. 160
9.3.5 ConnectableElement (from InternalStructures) ... 163
9.3.6 Connector (from InternalStructures) .. 163
9.3.7 ConnectorEnd (from InternalStructures, Ports) ... 165
9.3.8 EncapsulatedClassifier (from Ports) .. 166
9.3.9 InvocationAction (from Actions, as specialized) .. 167
9.3.10 Parameter (Collaboration, as specialized) .. 167
9.3.11 Port (from Ports) .. 167
9.3.12 Property (from InternalStructures, as specialized) .. 171
9.3.13 StructuredClassifier (from InternalStructures) ... 173
9.3.14 Trigger (from InvocationActions, as specialized) .. 177
9.3.15 Variable (from StructuredActivities, as specialized) .. 178

9.4 Diagrams .. 178
10 Deployments ... 181

10.1 Overview... 181
10.2 Abstract syntax ... 181
10.3 Class Descriptions .. 184

10.3.1 Artifact ... 184
10.3.2 CommunicationPath .. 186
10.3.3 DeployedArtifact .. 187
10.3.4 Deployment ... 187
10.3.5 DeploymentTarget ... 189
10.3.6 DeploymentSpecification ... 190
10.3.7 Device ... 191
10.3.8 ExecutionEnvironment .. 192
10.3.9 InstanceSpecification (from Kernel, as specialized) .. 194
10.3.10 Manifestation ... 194
10.3.11 Node .. 195
10.3.12 Property (from InternalStructures, as specialized) .. 197

10.4 Diagrams .. 198
10.5 Graphical paths... 199

Part II - Behavior ... 201
11 Actions ... 203

11.1 Overview... 203
11.2 Abstract Syntax... 205
11.3 Class Descriptions .. 216

11.3.1 AcceptCallAction ... 216
11.3.2 AcceptEventAction .. 217
11.3.3 AddStructuralFeatureValueAction ... 219
11.3.4 AddVariableValueAction ... 220
11.3.5 ApplyFunctionAction ... 222
11.3.6 BroadcastSignalAction .. 223
11.3.7 CallAction .. 224
11.3.8 CallBehaviorAction .. 224
UML Superstructure 2.0 Draft Adopted Specification iii

11.3.9 CallOperationAction .. 227
11.3.10 ClearAssociationAction ... 228
11.3.11 ClearStructuralFeatureAction .. 229
11.3.12 ClearVariableAction .. 230
11.3.13 CreateLinkAction ... 231
11.3.14 CreateLinkObjectAction .. 232
11.3.15 CreateObjectAction ... 233
11.3.16 DestroyLinkAction ... 234
11.3.17 DestroyObjectAction ... 235
11.3.18 InvocationAction .. 236
11.3.19 LinkAction .. 236
11.3.20 LinkEndCreationData .. 237
11.3.21 LinkEndData .. 239
11.3.22 MultiplicityElement (as specialized) .. 240
11.3.23 PrimitiveFunction ... 240
11.3.24 QualifierValue .. 241
11.3.25 RaiseExceptionAction ... 242
11.3.26 ReadExtentAction ... 243
11.3.27 ReadIsClassifiedObjectAction ... 243
11.3.28 ReadLinkAction ... 244
11.3.29 ReadLinkObjectEndAction .. 246
11.3.30 ReadLinkObjectEndQualifierAction ... 247
11.3.31 ReadSelfAction ... 248
11.3.32 ReadStructuralFeatureAction .. 249
11.3.33 ReadVariableAction .. 250
11.3.34 ReclassifyObjectAction ... 251
11.3.35 RemoveStructuralFeatureValueAction .. 252
11.3.36 RemoveVariableValueAction .. 253
11.3.37 ReplyAction ... 254
11.3.38 SendObjectAction ... 254
11.3.39 SendSignalAction .. 255
11.3.40 StartOwnedBehaviorAction ... 257
11.3.41 StructuralFeatureAction .. 258
11.3.42 TestIdentityAction .. 259
11.3.43 VariableAction ... 260
11.3.44 WriteStructuralFeatureAction .. 260
11.3.45 WriteLinkAction ... 261
11.3.46 WriteVariableAction ... 262

11.4 Diagrams... 263
12 Activities .. 265

12.1 Overview... 265
12.2 Abstract Syntax... 267
12.3 Class Descriptions .. 280

12.3.1 Action .. 280
12.3.2 Activity ... 283
12.3.3 ActivityEdge .. 293
12.3.4 ActivityFinalNode .. 298
12.3.5 ActivityGroup ... 301
12.3.6 ActivityNode .. 302
12.3.7 ActivityParameterNode ... 304
12.3.8 ActivityPartition .. 307
iv UML Superstructure 2.0 Draft Adopted Specification

12.3.9 CentralBufferNode .. 311
12.3.10 Clause ... 313
12.3.11 ConditionalNode .. 313
12.3.12 ControlFlow ... 315
12.3.13 ControlNode .. 316
12.3.14 DataStoreNode ... 318
12.3.15 DecisionNode .. 319
12.3.16 ExceptionHandler .. 322
12.3.17 ExecutableNode .. 324
12.3.18 ExpansionKind .. 324
12.3.19 ExpansionNode ... 325
12.3.20 ExpansionRegion .. 325
12.3.21 FinalNode .. 331
12.3.22 FlowFinalNode .. 333
12.3.23 ForkNode .. 334
12.3.24 InitialNode ... 335
12.3.25 InputPin ... 336
12.3.26 InterruptibleActivityRegion .. 336
12.3.27 JoinNode ... 338
12.3.28 LoopNode .. 341
12.3.29 MergeNode ... 343
12.3.30 ObjectFlow .. 344
12.3.31 ObjectFlowEffectKind .. 349
12.3.32 ObjectNode ... 349
12.3.33 ObjectNodeOrderingKind .. 352
12.3.34 OutputPin .. 352
12.3.35 Parameter (as specialized) ... 352
12.3.36 ParameterSet .. 354
12.3.37 Pin ... 355
12.3.38 StructuredActivityNode .. 361
12.3.39 ValuePin .. 363
12.3.40 Variable ... 363

12.4 Diagrams .. 364
13 Common Behaviors ... 369

13.1 Overview... 369
13.2 Abstract syntax ... 374
13.3 Class Descriptions .. 378

13.3.1 Activity (from BasicBehaviors) .. 378
13.3.2 AnyTrigger (from Communications) .. 379
13.3.3 Behavior (from BasicBehaviors) .. 379
13.3.4 BehavioralFeature (from BasicBehaviors, Communications, specialized) 382
13.3.5 BehavioredClassifier (from BasicBehaviors) ... 383
13.3.6 CallConcurrencyKind (from Communications) .. 384
13.3.7 CallTrigger (from Communications) .. 385
13.3.8 ChangeTrigger (from Communications) .. 385
13.3.9 Class (from Communications, specialized) ... 386
13.3.10 Duration (from Time) ... 387
13.3.11 DurationConstraint (from Time) ... 388
13.3.12 DurationInterval (from Time) ... 389
13.3.13 DurationObservationAction (from Time) .. 390
13.3.14 Interface (from Communications, specialized) .. 391
UML Superstructure 2.0 Draft Adopted Specification v

13.3.15 Interval (from Time) ... 391
13.3.16 IntervalConstraint (from Time) .. 391
13.3.17 MessageTrigger (from Communications) .. 392
13.3.18 OpaqueExpression (from BasicBehaviors, specialized) .. 393
13.3.19 Operation (from Communications, as specialized) .. 393
13.3.20 Reception (from Communications) .. 394
13.3.21 Signal (from Communications) .. 395
13.3.22 SignalTrigger (from Communications) ... 396
13.3.23 TimeConstraint (from Time) .. 396
13.3.24 TimeExpression (from Time) ... 397
13.3.25 TimeInterval (from Time) ... 398
13.3.26 TimeObservationAction (from Time) ... 399
13.3.27 TimeTrigger (from Communications) ... 399
13.3.28 Trigger (from Communications) .. 400

14 Interactions .. 403
14.1 Overview... 403
14.2 Abstract syntax ... 404
14.3 Class Descriptions .. 409

14.3.1 CombinedFragment (from Fragments) .. 409
14.3.2 Continuation (from Fragments) ... 414
14.3.3 EventOccurrence (from BasicInteractions) ... 416
14.3.4 ExecutionOccurrence (from BasicInteractions) ... 417
14.3.5 Gate (from Fragments) .. 418
14.3.6 GeneralOrdering (from BasicInteractions) .. 418
14.3.7 Interaction (from BasicInteraction, Fragments) ... 419
14.3.8 InteractionConstraint (from Fragments) .. 421
14.3.9 InteractionFragment (from Fragments) ... 422
14.3.10 InteractionOccurrence (from Fragments) .. 423
14.3.11 InteractionOperand (from Fragments) ... 425
14.3.12 InteractionOperator (from Fragments) .. 426
14.3.13 Lifeline (from BasicInteractions, Fragments) ... 427
14.3.14 Message (from BasicInteractions) ... 428
14.3.15 MessageEnd (from BasicInteractions) .. 431
14.3.16 PartDecomposition (from Fragments) ... 431
14.3.17 StateInvariant (from BasicInteractions) ... 433
14.3.18 Stop (from BasicInteractions) .. 434

14.4 Diagrams... 435
15 State Machines .. 455

15.1 Overview... 455
15.2 Abstract Syntax... 456
15.3 Class Descriptions .. 459

15.3.1 ConnectionPointReference (from BehaviorStatemachines) .. 459
15.3.2 Interface (from ProtocolStatemachines, as specialized) ... 461
15.3.3 FinalState (from BehaviorStatemachines) .. 462
15.3.4 Port ((from ProtocolStatemachines, as specialized) .. 463
15.3.5 ProtocolConformance (from ProtocolStatemachines) ... 463
15.3.6 ProtocolStateMachine (from ProtocolStatemachines) ... 464
15.3.7 ProtocolTransition (from ProtocolStateMachines) ... 466
15.3.8 PseudoState (from BehaviorStatemachines) .. 469
15.3.9 PseudoStateKind (from BehaviorStatemachines) ... 475
15.3.10 Region (from BehaviorStatemachines) ... 476
vi UML Superstructure 2.0 Draft Adopted Specification

15.3.11 State (from BehaviorStatemachines) .. 477
15.3.12 StateMachine (from BehaviorStatemachines) ... 489
15.3.13 TimeTrigger (from BehaviorStatemachines, as specialized) 498
15.3.14 Transition (from BehaviorStatemachines) ... 498
15.3.15 Vertex (from BehaviorStatemachines) .. 505
15.3.16 TransitionKind ... 506

15.4 Diagrams .. 507
16 Use Cases ... 511

16.1 Overview... 511
16.2 Abstract syntax ... 511
16.3 Class Descriptions .. 512

16.3.1 Actor (from UseCases) .. 512
16.3.2 Classifier (from UseCases, as specialized) ... 514
16.3.3 Extend (from UseCases) ... 515
16.3.4 ExtensionPoint (from UseCases) .. 516
16.3.5 Include (from UseCases) .. 517
16.3.6 UseCase (from UseCases) ... 519

16.4 Diagrams .. 523
Part III - Supplement ... 529
17 Auxiliary Constructs ... 531

17.1 Overview... 531
17.2 InformationFlows .. 531

17.2.1 InformationFlow (from InformationFlows) .. 532
17.2.2 InformationItem (from InformationFlows) .. 533

17.3 Models .. 535
17.3.1 Model (from Models) ... 535

17.4 PrimitiveTypes .. 537
17.4.1 Boolean (from PrimitiveTypes) .. 538
17.4.2 Integer (from PrimitiveTypes) .. 538
17.4.3 String (from PrimitiveTypes) .. 539
17.4.4 UnlimitedNatural (from PrimitiveTypes) .. 540

17.5 Templates ... 541
17.5.1 ParameterableElement ... 543
17.5.2 TemplateableElement ... 545
17.5.3 TemplateBinding ... 547
17.5.4 TemplateParameter .. 548
17.5.5 TemplateParameterSubstitution .. 549
17.5.6 TemplateSignature .. 550
17.5.7 Classifier (as specialized) ... 552
17.5.8 ClassifierTemplateParameter .. 556
17.5.9 RedefinableTemplateSignature ... 557
17.5.10 Package (as specialized) .. 558
17.5.11 NamedElement (as specialized) ... 560
17.5.12 Operation (as specialized) .. 563
17.5.13 Operation (as specialized) .. 563
17.5.14 OperationTemplateParameter ... 564
17.5.15 ConnectableElement (as specialized) ... 565
17.5.16 ConnectableElementTemplateParameter ... 566
17.5.17 Property (as specialized) ... 567
17.5.18 ValueSpecification (as specialized) ... 568

18 Profiles .. 569
UML Superstructure 2.0 Draft Adopted Specification vii

18.1 Overview... 569
18.2 Abstract syntax ... 570
18.3 Class descriptions... 570

18.3.1 Extension (from Profiles) ... 570
18.3.2 ExtensionEnd (from Profiles) .. 573
18.3.3 Class (from Constructs, Profiles) .. 574
18.3.4 Package (from Constructs, Profiles) ... 575
18.3.5 Profile (from Profiles) .. 575
18.3.6 ProfileApplication (from Profiles) ... 578
18.3.7 Stereotype (from Profiles) ... 580

18.4 Diagrams... 583
Part IV - Appendices ... 585
Appendix A. Diagrams ... 587
Appendix B. Standard Stereotypes.. 593

B.1 Basic... 593
B.2 Intermediate.. 596
B.3 Complete .. 597

Appendix C. Component Profile Examples... 599
C.1 J2EE/EJB Component Profile Example ... 599
C.2 COM Component Profile Example ... 600
C.3 .NET Component Profile Example ... 600
C.4 CCM Component Profile Example ... 601

Appendix D. Tabular Notations ... 603
D.1 Tabular Notation for Sequence Diagrams.. 603
D.2 Tabular Notation for Other Behavioral Diagrams ... 605

Appendix E. Classifiers Taxonomy ... 607
Appendix F. XMI Serialization and Schema... 609
Index .. 611
viii UML Superstructure 2.0 Draft Adopted Specification

1 Scope

This UML 2.0: Superstructure is the second of two complementary specifications that represent a major revision to the Object
Management Group’s Unified Modeling Language (UML), for which the most current version is UML v1.4. The first
specification, which serves as the architectural foundation for this specification, is the UML 2.0: Infrastructure.

This UML 2.0: Superstructure defines the user level constructs required for UML 2.0. It is complemented by UML 2.0:
Infrastructure which defines the foundational language constructs required for UML 2.0. The two complementary
specifications constitute a complete specification for the UML 2.0 modeling language.

Editorial Comment: The FTF needs to review and complete this section -- this version was derived by a literal
copying of the “Introduction” section of the Preface in the Draft Adopted Specification

2 Conformance

Editorial Comment: The FTF needs to review and complete this section -- this version was derived by literal
copying the “Compliance Points” section of the Preface in the Draft Adopted Specification

The basic units of compliance for UML are the packages which define the UML metamodel. Unless otherwise qualified,
complying with a package requires complying with its abstract syntax, well-formedness rules, semantics, notation and XMI
schema. Complying with a particular package requires complying with any packages on which the particular package depends
via a package merge or import relationship

In the case of the UML Superstructure, the metamodel is organized into medium-grain packages (compare the
InfrastructureLibrary’s fine-grained packages) that support flexible compliance points. All UML 2.0 compliant
implementations are required to implement the UML::Classes::Kernel package. All other UML Superstructure packages are
optional compliance points.

The following table summarizes the compliance points of the UML 2.0: Superstructure, where the following compliance
options are valid:

• no compliance: Implementation does not comply with the abstract syntax, well-formedness rules, semantics and nota-
tion of the package.

• partial compliance: Implementation partially complies with the abstract syntax, well-formedness rules, semantics and
notation of the package.

• compliant compliance: Implementation fully complies with the abstract syntax, well-formedness rules, semantics and
notation of the package

• interchange compliance: Implementation fully complies with the abstract syntax, well-formedness rules, semantics,
notation and XMI schema of the package.
UML Superstructure 2.0 Draft Adopted Specification 1

Table 1 Summary of Compliance Points

Compliance Level Compliance Point Valid Options

Basic (Level 1) Classes::Kernel complete, interchange

Basic (Level 1) Activities::BasicActivities no, partial, complete, interchange

Basic (Level 1) AuxiliaryConstructs::Primitives no, partial, complete, interchange

Basic (Level 1) Classes::Dependencies no, partial, complete, interchange

Basic (Level 1) Classes::Interfaces no, partial, complete, interchange

Basic (Level 1) CommonBehaviors::
BasicBehaviors

no, partial, complete, interchange

Basic (Level 1) CompositeStructures::
InternalStructures

no, partial, complete, interchange

Basic (Level 1) Interactions::BasicInteractions no, partial, complete, interchange

Basic (Level 1) AuxiliaryConstructs::
PrimitiveTypes

no, partial, complete, interchange

Basic (Level 1) UseCases no, partial, complete, interchange

Intermediate (Level 2) Actions::IntermediateActions no, partial, complete, interchange

Intermediate (Level 2) Activities::
IntermediateActivities

no, partial, complete, interchange

Intermediate (Level 2) Activities::
StructuredActivities

no, partial, complete, interchange

Intermediate (Level 2) CommonBehaviors::
Communications

no, partial, complete, interchange

Intermediate (Level 2) CommonBehaviors::Time no, partial, complete, interchange

Intermediate (Level 2) Components::BasicComponents no, partial, complete, interchange

Intermediate (Level 2) CompositeStructures::Actions no, partial, complete, interchange

Intermediate (Level 2) CompositeStructures::Ports no, partial, complete, interchange

Intermediate (Level 2) CompositeStructures::
StructuredClasses

no, partial, complete, interchange

Intermediate (Level 2) Deployments::Artifacts no, partial, complete, interchange

Intermediate (Level 2) Deployments::Nodes no, partial, complete, interchange

Intermediate (Level 2) Interactions::Fragments no, partial, complete, interchange

Intermediate (Level 2) Profiles no, partial, complete, interchange

Intermediate (Level 2) StateMachines::
BehaviorStateMachines

no, partial, complete, interchange
2 UML Superstructure 2.0 Draft Adopted Specification

3 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

• UML 2.0 Superstructure RFP

• UML 2. Infrastructure Specification

• MOF 2.0 Specification

•

Editorial Comment: The FTF needs to review and complete this section

Intermediate (Level 2) StateMachines::
MaximumOneRegion

no, partial, complete, interchange

Complete (Level 3) Actions::CompleteActions no, partial, complete, interchange

Complete (Level 3) Activities::CompleteActivities no, partial, complete, interchange

Complete (Level 3) Activities::
CompleteStructuredActivities

no, partial, complete, interchange

Complete (Level 3) Activities::
ExtraStructuredActivities

no, partial, complete, interchange

Complete (Level 3) AuxiliaryConstructs::
InformationFlows

no, partial, complete, interchange

Complete (Level 3) AuxiliaryConstructs::
Models

no, partial, complete, interchange

Complete (Level 3) AuxiliaryConstructs::Templates no, partial, complete, interchange

Complete (Level 3) Classes::
AssociationClasses

no, partial, complete, interchange

Complete (Level 3) Classes::
PowerTypes

no, partial, complete, interchange

Complete (Level 3) CompositeStructures::
Collaborations

no, partial, complete, interchange

Complete (Level 3) Components::
PackagingComponents

no, partial, complete, interchange

Complete (Level 3) Deployments::
ComponentDeployments

no, partial, complete, interchange

Complete (Level 3) StateMachines::ProtocolStateMachines no, partial, complete, interchange

Table 1 Summary of Compliance Points
UML Superstructure 2.0 Draft Adopted Specification 3

4 Terms and definitions

Editorial Comment: The FTF needs to review and complete this section -- the version in this document was
produced by literal copying of the contents of the Glossary from the Draft Adopted Spec (Appendix G) into this
section.

For the purposes of this specification, the terms and definitions given in the normative references and the following apply.

(Note: The following conventions are used in the term definitions below:

• The entries usually begin with a lowercase letter. An initial uppercase letter is used when a word is usually capitalized
in standard practice. Acronyms are all capitalized, unless they traditionally appear in all lowercase.

• When one or more words in a multi-word term is enclosed in brackets, it indicates that those words are optional when
referring to the term. For example, use case [class] may be referred to as simply use case.

• A phrase of the form “Contrast: <term>” refers to a term that has an opposed or substantively different meaning.

• A phrase of the form “See: <term>” refers to a related term that has a similar, but not synonymous meaning.

• A phrase of the form “Synonym: <term>” indicates that the term has the same meaning as another term, which is ref-
erenced.

• A phrase of the form “Acronym: <term>” indicates that the term is an acronym. The reader is usually referred to the
spelled-out term for the definition, unless the spelled-out term is rarely used.)

abstract class
A class that cannot be directly instantiated. Contrast: concrete class.
abstraction
The result of empasizing certain features of a thing while de-emphasizing other features that are not relative. An
abstraction is definedrelative to the perspective of the viewer.
action
A fundamental unit of behavior specification that represents some transformation or processing in the modeled
system, be it a computer system or a real-world system. Actions are contained in activities, which provide their
context. See: activity.
action sequence
An expression that resolves to a sequence of actions.
action state
A state that represents the execution of an atomic action, typically the invocation of an operation.
activation
The initiation of an action execution.
active class
A class whose instances are active objects. See: active object.
active object
An object that may execute its own behavior without requiring method invocation. This is sometimes referred to as
“the object having its own thread of control.” The points at which an active object responds to communications from
other objects are determined solely by the behavior of the active object and not by the invoking object. This implies
that an active object is both autonomous and interactive to some degree. See: active class, thread.
activity
A specification of parameterized behavior that is expressed as a flow of execution via a sequencing of subordinate
units (whose primitive elements are individual actions). See actions.
activity diagram
4 UML Superstructure 2.0 Draft Adopted Specification

A diagram that depicts behavior using a control and data-flow model.
actor
A construct that is employed in use cases that define a role that a user or any other system plays when interacting
with the system under consideration. It is a type of entity that interacts, but which is itself external to the subject.
Actors may represent human users, external hardware, or other subjects. An actor does not necessarily represent
a specific physical entity. For instance, a single physical entity may play the role of several different actors and,
conversely, a given actor may be played by multiple physical entities.
actual parameter
Synonym: argument.
aggregate
A class that represents the “whole” in an aggregation (whole-part) relationship. See: aggregation.
aggregation
A special form of association that specifies a whole-part relationship between the aggregate (whole) and a
component part. See: composition.
analysis
The phase of the system development process whose primary purpose is to formulate a model of the problem
domain that is independent of implementation considerations. Analysis focuses on what to do; design focuses on
how to do it. Contrast: design.
analysis time
Refers to something that occurs during an analysis phase of the software development process. See: design time,
modeling time.
argument
A binding for a parameter that is resolved later. An independent variable.
artifact
A physical piece of information that is used or produced by a development process. Examples of Artifacts include
models, source files, scripts, and binary executable files. An artifact may constitute the implementation of a
deployable component. Synonym: product. Contrast: component.
association
A relationship that may occur between instances of classifiers.
association class
A model element that has both association and class properties. An association class can be seen as an
association that also has class properties, or as a class that also has association properties.
association end
The endpoint of an association, which connects the association to a classifier.
attribute
A structural feature of a classifier that characterizes instances of the classifier. An attribute relates an instance of a
classifier to a value or values through a named relationship.
auxiliary class
A stereotyped class that supports another more central or fundamental class, typically by implementing secondary
logic or control flow. Auxiliary classes are typically used together with focus classes, and are particularly useful for
specifying the secondary business logic or control flow of components during design. See also: focus.
behavior
The observable effects of an operation or event, including its results. It specifies the computation that generates the
effects of the behavioral feature. The description of a behavior can take a number of forms: interaction,
statemachine, activity, or procedure (a set of actions).
behavior diagram
A form of diagram that depict behavioral features.
behavioral feature
A dynamic feature of a model element, such as an operation or method.
behavioral model aspect
A model aspect that emphasizes the behavior of the instances in a system, including their methods, collaborations,
UML Superstructure 2.0 Draft Adopted Specification 5

and state histories.
binary association
An association between two classes. A special case of an n-ary association.
binding
The creation of a model element from a template by supplying arguments for the parameters of the template.
boolean
An enumeration whose values are true and false.
boolean expression
An expression that evaluates to a boolean value.
cardinality
The number of elements in a set. Contrast: multiplicity.
child
In a generalization relationship, the specialization of another element, the parent. See: subclass, subtype.
Contrast: parent.
call
An action state that invokes an operation on a classifier.
class
A classifier that desctibes of a set of objects that share the same specifications of features, constraints, and
semantics.
classifier
A collection of instances that have something in common. A classifier can have features that characterize its
instances. Classifiers include interfaces, classes, datatypes, and components.
classification
The assignment of an instance to a classifier. See dynamic classification, multiple classification and static
classification.
class diagram
A diagram that shows a collection of declarative (static) model elements, such as classes, types, and their contents
and relationships.
client
A classifier that requests a service from another classifier. Contrast: supplier.
collaboration
The specification of how an operation or classifier, such as a use case, is realized by a set of classifiers and
associations playing specific roles used in a specific way. The collaboration defines an interaction. See: interaction.
collaboration occurrence
A particular use of a collaboration to explain the relationships between the parts of a classifier or the properties of
an operation. It may also be used to indicate how a collaboration represents a classifier or an operation. A
collaboration occurrence indicates a set of roles and connectors that cooperate within the classifier or operation
according to a given collaboration, indicated by the type of the collaboration occurrence. There may be multiple
occurrences of a given collaboration within a classifier or operation, each involving a different set of roles and
connectors. A given role or connector may be involved in multiple occurrences of the same or different
collaborations. See: collaboration.
communication diagram
A diagram that focuses on the interaction between lifelines where the architecture of the internal structure and how
this corresponds with the message passing is central. The sequencing of messages is given through a sequence
numberering scheme. Sequence diagrams and communication diagrams express similar information, but show it in
different ways. See: sequence diagram.
compile time
Refers to something that occurs during the compilation of a software module. See: modeling time, run time.
component
A modular part of a system that encapsulates its contents and whose manifestation is replaceable within its
environment. A component defines its behavior in terms of provided and required interfaces. As such, a component
6 UML Superstructure 2.0 Draft Adopted Specification

serves as a type, whose conformance is defined by these provided and required interfaces (encompassing both
their static as well as dynamic semantics).
component diagram
A diagram that shows the organizations and dependencies among components.
composite
A class that is related to one or more classes by a composition relationship. See: composition.
composite aggregation
Synonym: composition.
composite state
A state that consists of either concurrent (orthogonal) substates or sequential (disjoint) substates. See: substate.
composite structure diagram
A diagram that depicts the internal structure of a classifier, including the interaction points of the classifier to other
parts of the system. It shows the configuration of parts that jointly perform the behavior of the containing classifier.
The architecture diagram specifies a set of instances playing parts (roles), as well as their required relationships
given in a particular context.
composition
A form of aggregation which requires that a part instance be included in at most one composite at a time, and that
the composite object is responsible for the creation and destruction of the parts. Composition may be recursive.
Synonym: composite aggregation.
concrete class
A class that can be directly instantiated. Contrast: abstract class.
concurrency
The occurrence of two or more activities during the same time interval. Concurrency can be achieved by
interleaving or simultaneously executing two or more threads. See: thread.
concurrent substate
A substate that can be held simultaneously with other substates contained in the same composite state. See:
composite state. Contrast: disjoint substate.
connectable element
An abstract metaclass representing model elements which may be linked via connector. See: connector.
connector
A link that enables communication between two or more instances. The link may be realized by something as
simple as a pointer or by something as complex as a network connection.
constraint
A semantic condition or restriction. It can be expressed in natural language text, mathematically formal notation, or
in a machine-readable language for the purpose of declaring some of the semantics of a model element.
container
1. An instance that exists to contain other instances, and that provides operations to access or iterate over its
contents. (for example, arrays, lists, sets).
2. A component that exists to contain other components.
containment hierarchy
A namespace hierarchy consisting of model elements, and the containment relationships that exist between them.
A containment hierarchy forms a graph.
context
A view of a set of related modeling elements for a particular purpose, such as specifying an operation.
data type
A type whose values have no identity (i.e., they are pure values). Data types include primitive built-in types (such
as integer and string) as well as enumeration types.
delegation
The ability of an object to issue a message to another object in response to a message. Delegation can be used as
an alternative to inheritance. Contrast: inheritance.
dependency
UML Superstructure 2.0 Draft Adopted Specification 7

A relationship between two modeling elements, in which a change to one modeling element (the independent
element) will affect the other modeling element (the dependent element).
deployment diagram
A diagram that depicts the execution architecture of systems. It represents system artifacts as nodes, which are
connected through communication paths to create network systems of arbitrary complexity. Nodes are typically
defined in a nested manner, and represent either hardware devices or software execution environments. See:
component diagrams.
derived element
A model element that can be computed from another element, but that is shown for clarity or that is included for
design purposes even though it adds no semantic information.
design
The phase of the system development process whose primary purpose is to decide how the system will be
implemented. During design strategic and tactical decisions are made to meet the required functional and quality
requirements of a system.
design time
Refers to something that occurs during a design phase of the system development process. See: modeling time.
Contrast: analysis time.
development process
A set of partially ordered steps performed for a given purpose during system development, such as constructing
models or implementing models.
diagram
A graphical presentation of a collection of model elements, most often rendered as a connected graph of arcs
(relationships) and vertices (other model elements). UML supports the diagrams listed in Appendix A.
disjoint substate
A substate that cannot be held simultaneously with other substates contained in the same composite state. See:
composite state. Contrast: concurrent substate.
distribution unit
A set of objects or components that are allocated to a process or a processor as a group. A distribution unit can be
represented by a run-time composite or an aggregate.
domain
An area of knowledge or activity characterized by a set of concepts and terminology understood by practitioners in
that area.
dynamic classification
The assignment of an instance from one classifier to another. Contrast: multiple classification, static classification.
element
A constituent of a model.
entry action
An action that a method executes when an object enters a state in a state machine regardless of the transition
taken to reach that state.
enumeration
A data type whose instances a list of named values. For example, RGBColor = {red, green, blue}. Boolean is a
predefined enumeration with values from the set {false, true}.
event
The specification of a significant occurrence that has a location in time and space and can cause the execution of
an associated behavior. In the context of state diagrams, an event is an occurrence that can trigger a transition.
exception
A special kind of signal, typically used to signal fault situations. The sender of the exception aborts execution and
execution resumes with the receiver of the exception, which may be the sender itself. The receiver of an exception
is determined implicitly by the interaction sequence during execution; it is not explicitly specified.
execution occurrence
A unit of behavior within the lifeline as represented on an interaction diagram.
8 UML Superstructure 2.0 Draft Adopted Specification

exit action
An action that a method executes when an object exits a state in a state machine regardless of the transition taken
to exit that state.
export
In the context of packages, to make an element visible outside its enclosing namespace. See: visibility. Contrast:
export [OMA], import.
expression
A string that evaluates to a value of a particular type. For example, the expression “(7 + 5 * 3)” evaluates to a value
of type number.
extend
A relationship from an extension use case to a base use case, specifying how the behavior defined for the
extension use case augments (subject to conditions specified in the extension) the behavior defined for the base
use case. The behavior is inserted at the location defined by the extension point in the base use case. The base
use case does not depend on performing the behavior of the extension use case. See extension point, include.
extension
An aggregation that is used to indicate that the properties of a metaclass are extended through a stereotype, and
that gives the ability to flexibly add and remove stereotypes from classes.
facade
A stereotyped package containing only references to model elements owned by another package. It is used to
provide a ‘public view’ of some of the contents of a package.
feature
A property, such as an operation or attribute, that characterizes the instances of a classifier.
final state
A special kind of state signifying that the enclosing
composite state or the entire state machine is completed.
fire
To execute a state transition. See: transition.
focus class
A stereotyped class that defines the core logic or control flow for one or more auxiliary classes that support it.
Focus classes are typically used together with one or more auxiliary classes, and are particularly useful for
specifying the core business logic or control flow of components during design. See also: auxiliary class.
focus of control
A symbol on a sequence diagram that shows the period of time during which an object is performing an action,
either directly or through a subordinate procedure.
formal parameter
Synonym: parameter.
framework
A stereotyped package that contains model elements which specify a reusable architecture for all or part of a
system. Frameworks typically include classes, patterns or templates. When frameworks are specialized for an
application domain, they are sometimes referred to as application frameworks. See: pattern.
generalizable element
A model element that may participate in a generalization relationship. See: generalization.
generalization
A taxonomic relationship between a more general classifier and a more specific classifier. Each instance of the
specific classifier is also an indirect instance of the general classifier. Thus, the specific classifier indirectly has
features of the more general classifier. See: inheritance.
guard condition
A condition that must be satisfied in order to enable an associated transition to fire.
implementation
A definition of how something is constructed or computed. For example, a class is an implementation of a type, a
method is an implementation of an operation.
UML Superstructure 2.0 Draft Adopted Specification 9

implementation class
A stereotyped class that specifies the implementation of a class in some programming language (e.g., C++,
Smalltalk, Java) in which an instance may not have more than one class. An Implementation class is said to realize
a type if it provides all of the operations defined for the type with the same behavior as specified for the type's
operations. See also: type.
implementation inheritance
The inheritance of the implementation of a more general element. Includes inheritance of the interface. Contrast:
interface inheritance.
import
In the context of packages, a dependency that shows the packages whose classes may be referenced within a
given package (including packages recursively embedded within it). Contrast: export.
include
A relationship from a base use case to an inclusion use case, specifying how the behavior for the base use case
contains the behavior of the inclusion use case. The behavior is included at the location which is defined in the
base use case. The base use case depends on performing the behavior of the inclusion use case, but not on its
structure (i.e., attributes or operations). See extend.
inheritance
The mechanism by which more specific elements incorporate structure and behavior of more general elements.
See generalization.
initial state
A special kind of state signifying the source for a single transition to the default state of the composite state.
instance
An entity that has unique identity, a set of operations that can be applied to it, and state that stores the effects of the
operations. See: object.
interaction
A specification of how stimuli are sent between instances to perform a specific task. The interaction is defined in
the context of a collaboration. See collaboration.
interaction diagram
A generic term that applies to several types of diagrams that emphasize object interactions. These include
communication diagrams, sequence diagrams, and the interaction overview diagram.
interaction overview diagram
A disgram that depicts interactions through a variant of
activity diagrams in a way that promotes overview of
the control flow. It focuses on the overview of the flow of control where each node can be an interaction diagram.
interface
A named set of operations that characterize the behavior of an element.
interface inheritance
The inheritance of the interface of a more general element. Does not include inheritance of the implementation.
Contrast: implementation inheritance.
internal transition
A transition signifying a response to an event without changing the state of an object.
layer
The organization of classifiers or packages at the same level of abstraction. A layer may represent a horizontal
slice through an architecture, whereas a partition represents a vertical slice. Contrast: partition.
lifeline
A modeling element that represents an individual participant in an interaction. A lifeline represents only one
interacting entity.
link
A semantic connection among a tuple of objects. An instance of an association. See: association.
link end
An instance of an association end. See: association end.
10 UML Superstructure 2.0 Draft Adopted Specification

message
A specification of the conveyance of information from one instance to another, with the expectation that activity will
ensue. A message may specify the raising of a signal or the call of an operation.
metaclass
A class whose instances are classes. Metaclasses are typically used to construct metamodels.
meta-metamodel
A model that defines the language for expressing a metamodel. The relationship between a meta-metamodel and
a metamodel is analogous to the relationship between a metamodel and a model.
metamodel
A model that defines the language for expressing a model.
metaobject
A generic term for all metaentities in a metamodeling language. For example, metatypes, metaclasses,
metaattributes, and metaassociations.
method
The implementation of an operation. It specifies the algorithm or procedure associated with an operation.
model aspect
A dimension of modeling that emphasizes particular qualities of the metamodel. For example, the structural model
aspect emphasizes the structural qualities of the metamodel.
model elaboration
The process of generating a repository type from a published model. Includes the generation of interfaces and
implementations which allows repositories to be instantiated and populated based on, and in compliance with, the
model elaborated.
model element
An element that is an abstraction drawn from the system being modeled. Contrast: view element.
model library
A stereotyped package that contains model elements that are intended to be reused by other packages. A model
library differs from a profile in that a model library does not extend the metamodel using stereotypes and tagged
definitions. A model library is analogous to a class library in some programming languages.
modeling time
Refers to something that occurs during a modeling phase of the system development process. It includes analysis
time and design time. Usage note: When discussing object systems, it is often important to distinguish between
modeling-time and run-time concerns. See: analysis time, design time. Contrast: run time.
multiple classification
The assignment of an instance directly to more than one classifier at the same time. See: static classification,
dynamic classification.
multiple inheritance
A semantic variation of generalization in which a type may have more than one supertype. Contrast: single
inheritance.
multiplicity
A specification of the range of allowable cardinalities that a set may assume. Multiplicity specifications may be
given for association ends, parts within composites, repetitions, and other purposes. Essentially a multiplicity is a
(possibly infinite) subset of the non-negative integers. Contrast: cardinality.
n-ary association
An association among three or more classes. Each instance of the association is an n-tuple of values from the
respective classes. Contrast: binary association.
name
A string used to identify a model element.
namespace
A part of the model in which the names may be defined and used. Within a namespace, each name has a unique
meaning. See: name.
node
UML Superstructure 2.0 Draft Adopted Specification 11

A classifier that represents a run-time computational resource, which generally has at least memory and often
processing capability. Run-time objects and components may reside on nodes.
note
An annotation attached to an element or a collection of elements. A note has no semantics. Contrast: constraint.
object
An instance of a class. See: class, instance.
object diagram
A diagram that encompasses objects and their relationships at a point in time. An object diagram may be
considered a special case of a class diagram or a communication diagram. See: class diagram, communication
diagram.
object flow state
A state in an activity diagram that represents the passing of an object from the output of actions in one state to the
input of actions in another state.
object lifeline
A line in a sequence diagram that represents the existence of an object over a period of time. See: sequence
diagram.
operation
A feature which declares a service that can be performed by instances of the classifier of which they are instances.
package
A general purpose mechanism for organizing elements into groups. Packages may be nested within other
packages.
package diagram
A diagram that depicts how model elements are organized into packages and the dependencies among them,
including package imports and package extensions.
parameter
An argument of a behavioral feature. A parameter specifies arguments that are passed into or out of an invocation
of a behavioral element like an operation. A parameter’s type restricts what values can be passed. Synonyms:
formal parameter. Contrast: argument.
parameterized element
The descriptor for a class with one or more unbound parameters. Synonym: template.
parent
In a generalization relationship, the generalization of another element, the child. See: subclass, subtype. Contrast:
child.
part
An element representing a set of instances that are owned by a containing classifier instance or role of a classifier.
(See role.) Parts may be joined by attached connectors and specify configurations of linked instances to be created
within an instance of the containing classifier.
participate
The connection of a model element to a relationship or to a reified relationship. For example, a class participates in
an association, an actor participates in a use case.
partition
A grouping of any set of model elements based on a set of criteria.
1. activity diagram: A grouping of activity nodes and edges. Partitions divide the nodes and edges to constrain and
show a view of the contained nodes. Partitions can share contents. They often correspond to organizational units in
a business model. They may be used to allocate characteristics or resources among the nodes of an activity.
2. architecture: A set of related classifiers or packages at the same level of abstraction or across layers in a layered
architecture. A partition represents a vertical slice through an architecture, whereas a layer represents a horizontal
slice. Contrast: layer.
pattern
A template collaboration that describes the structure of
a design pattern. UML patterns are more limited than those used by the design pattern community. In general,
12 UML Superstructure 2.0 Draft Adopted Specification

design patterns involve many non-structural aspects, such as heuristics for their use and usage trade-offs.
persistent object
An object that exists after the process or thread that created it has ceased to exist.
pin
A model element that represents the data values passed into a behavior upon its invocation as well as the data
values returned from a behavior upon completion of its execution.
port
A feature of a classifier that specifies a distinct interaction point between that classifier and its environment or
between the (behavior of the) classifier and its internal parts. Ports are connected to other ports through connectors
through which requests can be made to invoke the behavioral features of a classifier.
postcondition
A constraint expresses a condition that must be true at the completion of an operation.
powertype
A classifier whose instances are also subclasses of another classifier. Power types, then, are metaclasses with an
extra twist: the instances are also subclasses.
precondition
A constraint expresses a condition that must be true when an operation is invoked.
primitive type
A pre-defined data type without any relevant substructure (i.e., is not decomposable) such as an integer or a string.
It may have an algebra and operations defined outside of UML, for example, mathematically.
procedure
A set of actions that may be attached as a unit to other parts of a model, for example, as the body of a method.
Conceptually a procedure, when executed, takes a set of values as arguments and produces a set of values as
results, as specified by the parameters of the procedure.
process
1. A heavyweight unit of concurrency and execution in an operating system. Contrast: thread, which includes
heavyweight and lightweight processes. If necessary, an implementation distinction can be made using
stereotypes.
2. A software development process—the steps and guidelines by which to develop a system.
3. To execute an algorithm or otherwise handle something dynamically.
profile
A stereotyped package that contains model elements that have been customized for a specific domain or purpose
using extension mechanisms, such as stereotypes, tagged definitions and constraints. A profile may also specify
model libraries on which it depends and the metamodel subset that it extends.
projection
A mapping from a set to a subset of it.
property
A named value denoting a characteristic of an element. A property has semantic impact. Certain properties are
predefined in the UML; others may be user defined. See: tagged value.
pseudo-state
A vertex in a state machine that has the form of a state, but doesn’t behave as a state. Pseudo-states include initial
and history vertices.
physical system
1. The subject of a model.
2. A collection of connected physical units, which can include software, hardware and people, that are organized to
accomplish a specific purpose. A physical system can be described by one or more models, possibly from different
viewpoints. Contrast: system.
qualifier
An association attribute or tuple of attributes whose values partition the set of objects related to an object across an
association.
realization
UML Superstructure 2.0 Draft Adopted Specification 13

A specialized abstraction relationship between two sets of model elements, one representing a specification (the
supplier) and the other representing an implementation of the latter (the client). Realization can be used to model
stepwise refinement, optimizations, transformations, templates, model synthesis, framework composition, etc.
receive [a message]
The handling of a stimulus passed from a sender instance. See: sender, receiver.
receiver
The object handling a stimulus passed from a sender object. Contrast: sender.
reception
A declaration that a classifier is prepared to react to the receipt of a signal.
reference
1. A denotation of a model element.
2. A named slot within a classifier that facilitates navigation to other classifiers. Synonym: pointer.
refinement
A relationship that represents a fuller specification of something that has already been specified at a certain level of
detail. For example, a design class is a refinement of an analysis class.
relationship
An abstract concept that specifies some kind of connection between elements. Examples of relationships include
associations and generalizations.
repository
A facility for storing object models, interfaces, and implementations.
requirement
A desired feature, property, or behavior of a system.
responsibility
A contract or obligation of a classifier.
reuse
The use of a pre-existing artifact.
role
The named set of features defined over a collection of entities participating in a particlar context.
Collaboration: The named set of behaviors possessed by a class or part participating in a particular context.
Part: a subset of a particular class which exhibits a subset of features possessed by the class
Associations: A synonym for association end often referring to a subset of classifier instances that are participating
in the association.
run time
The period of time during which a computer program or a systemexecutes. Contrast: modeling time.
scenario
A specific sequence of actions that illustrates behaviors. A scenario may be used to illustrate an interaction or the
execution of a use case instance. See: interaction.
semantic variation point
A point of variation in the semantics of a metamodel. It provides an intentional degree of freedom for the
interpretation of the metamodel semantics.
send [a message]
The passing of a stimulus from a sender instance to a receiver instance. See: sender, receiver.
sender
The object passing a stimulus to a receiver instance. Contrast: receiver.
sequence diagram
A diagram that depicts an interaction by focusing on the sequence of messages that are exchanged, along with
their corresponding event occurrences on the lifelines.
Unlike a communication diagram, a sequence diagram includes time sequences but does not include object
relationships. A sequence diagram can exist in a generic form (describes all possible scenarios) and in an instance
form (describes one actual scenario). Sequence diagrams and communication diagrams express similar
information, but show it in different ways. See: communication diagram.
14 UML Superstructure 2.0 Draft Adopted Specification

signal
The specification of an asynchronous stimulus that triggers a reaction in the receiver in an asynchronous way and
without a reply. The receiving object handles the signal as specified by its receptions. The data carried by a send
request and passed to it by the occurrence of the send invocation event that caused the request is represented as
attributes of the signal instance. A signal is defined independently of the classifiers handling the signal.
signature
The name and parameters of a behavioral feature. A signature may include an optional returned parameter.
single inheritance
A semantic variation of generalization in which a type may have only one supertype. Synonym: multiple inheritance
[OMA]. Contrast: multiple inheritance.
slot
A specification that an entity modeled by an instance specification has a value or values for a specific structural
feature.
software module
A unit of software storage and manipulation. Software modules include source code modules, binary code
modules, and executable code modules.
specification
A set of requirements for a system or other classifier. Contrast: implementation.
state
A condition or situation during the life of an object during which it satisfies some condition, performs some activity,
or waits for some event. Contrast: state [OMA].
state machine diagram
A diagram that depicts discrete behavior modeled through finite state-transition systems. In particular, it specifies
the sequences of states that an object or an interaction goes through during its life in response to events, together
with its responses and actions. See: state machine.
state machine
A behavior that specifies the sequences of states that an object or an interaction goes through during its life in
response to events, together with its responses and actions.
static classification
The assignment of an instance to a classifier where the assignment may not change to any other classifier.
Contrast: dynamic classification.
stereotype
A class that defines how an existing metaclass (or stereotype) may be extended, and enables the use of platform
or domain specific terminology or notation in addition to the ones used for the extended metaclass.
Certain stereotypes are predefined in the UML, others may be user defined. Stereotypes are one of the
extensibility mechanisms in UML. See: constraint, tagged value.
stimulus
The passing of information from one instance to another, such as raising a signal or invoking an operation. The
receipt of a signal is normally considered an event. See: message.
string
A sequence of text characters. The details of string representation depend on implementation, and may include
character sets that support international characters and graphics.
structural feature
A static feature of a model element, such as an attribute.
structural model aspect
A model aspect that emphasizes the structure of the objects in a system, including their types, classes,
relationships, attributes, and operations.
structure diagram
A form of diagram that depicts the elements in a specification that are irrespective of time. Class diagrams and
component diagrams are examples of structure diagrams.
subactivity state
UML Superstructure 2.0 Draft Adopted Specification 15

A state in an activity diagram that represents the execution of a non-atomic sequence of steps that has some
duration.
subclass
In a generalization relationship, the specialization of another class, the superclass. See: generalization. Contrast:
superclass.
submachine state
A state in a state machine that is equivalent to a
composite state but whose contents are described by another state machine.
substate
A state that is part of a composite state. See: concurrent state, disjoint state.
subpackage
A package that is contained in another package.
subsystem
A unit of hierarchical decomposition for large systems. A subsystem is commonly instantiated indirectly. Definitions
of subsystems vary widely among domains and methods, and it is expected that domain and method profiles will
specialize this construct. A subsystem may be defined to have specification and realization elements.
subtype
In a generalization relationship, the specialization of another type, the supertype. See: generalization. Contrast:
supertype.
superclass
In a generalization relationship, the generalization of another class, the subclass. See: generalization. Contrast:
subclass.
supertype
In a generalization relationship, the generalization of another type, the subtype. See: generalization. Contrast:
subtype.
supplier
A classifier that provides services that can be invoked by others. Contrast: client.
synch state
A vertex in a state machine used for synchronizing the
concurrent regions of a state machine.
system
An organized array of elements functioning as a unit
Also, a top-level subsystem in a model.
tagged value
The explicit definition of a property as a name-value pair. In a tagged value, the name is referred as the tag. Certain
tags are predefined in the UML; others may be user defined. Tagged values are one of three extensibility
mechanisms in UML. See: constraint, stereotype.
template
Synonym: parameterized element.
thread [of control]
A single path of execution through a program, a dynamic model, or some other representation of control flow. Also,
a stereotype for the implementation of an active object as lightweight process. See process.
time event
An event that denotes the time elapsed since the current state was entered. See: event.
time expression
An expression that resolves to an absolute or relative value of time.
timing diagram
An interaction diagram that shows the change in state or condition of a lifeline (representing a Classifier Instance or
Classifier Role) over linear time. The most common usage is to show the change in state of an object over time in
response to accepted events or stimuli.
top level
16 UML Superstructure 2.0 Draft Adopted Specification

A stereotype denoting the top-most package in a containment hierarchy. The topLevel stereotype defines the outer
limit for looking up names, as namespaces “see” outwards. For example, opLevel subsystem represents the top of
the subsystem containment hierarchy.
trace
A dependency that indicates a historical or process relationship between two elements that represent the same
concept without specific rules for deriving one from the other.
transient object
An object that exists only during the execution of the process or thread that created it.
transition
A relationship between two states indicating that an object in the first state will perform certain specified actions
and enter the second state when a specified event occurs and specified conditions are satisfied. On such a change
of state, the transition is said to fire.
type
A stereotyped class that specifies a domain of objects together with the operations applicable to the objects,
without defining the physical implementation of those objects. A type may not contain any methods, maintain its
own thread of control, or be nested. However, it may have attributes and associations. Although an object may
have at most one implementation class, it may conform to multiple different types. See also: implementation class
Contrast: interface.
type expression
An expression that evaluates to a reference to one or more types.
uninterpreted
A placeholder for a type or types whose implementation is not specified by the UML. Every uninterpreted value has
a corresponding string representation. See: any [CORBA].
usage
A dependency in which one element (the client) requires the presence of another element (the supplier) for its
correct functioning or implementation.
use case
The specification of a sequence of actions, including variants, that a system (or other entity) can perform,
interacting with actors of the system. See: use case instances.
use case diagram
A diagram that shows the relationships among actors and the subject (system), and use cases.
use case instance
The performance of a sequence of actions being specified in a use case. An instance of a use case. See: use case
class.
use case model
A model that describes a system’s functional requirements in terms of use cases.
utility
A stereotype that groups global variables and procedures in the form of a class declaration. The utility attributes
and operations become global variables and global procedures, respectively. A utility is not a fundamental
modeling construct, but a programming convenience.
value
An element of a type domain.
vertex
A source or a target for a transition in a state machine. A vertex can be either a state or a pseudo-state. See: state,
pseudo-state.
view
A projection of a model that is seen from a given perspective or vantage point and omits entities that are not
relevant to this perspective.
view element
A textual and/or graphical projection of a collection of model elements.
view projection
UML Superstructure 2.0 Draft Adopted Specification 17

A projection of model elements onto view elements. A view projection provides a location and a style for each view
element.
visibility
An enumeration whose value (public, protected, or private) denotes how the model element to which it refers may
be seen outside its enclosing namespace.

5 Symbols

Editorial Comment: The FTF needs to complete this section (or possibly eliminate it)

6 Additional information

6.1 Changes to Adopted OMG Specifications

This specification, in conjunction with the specification that complements it, the UML 2.0: Infrastructure, completely
replaces the UML 1.4.1 and UML 1.5 with Action Semantics specifications, except for the “Model Interchange Using
CORBA IDL” (see Chapter 5, Section 5.3 of the OMG UML Specification v1.4, OMG document ad/01-02-17). It is
recommended that “Model Interchange Using CORBA IDL” is retired as an adopted technology because of lack of vendor and
user interest.

6.2 Architectural Alignment and MDA Support

Chapter 1, “Language Architecture” of the UML 2.0: Infrastructure explains how the UML 2.0: Infrastructure is
architecturally aligned with the UML 2.0: Superstructure that complements it. It also explains how the InfrastructureLibrary
defined in the UML 2.0: Infrastructure can be strictly reused by MOF 2.0 specifications.

It is the intent that the unified MOF 2.0 Core specification must be architecturally aligned with the UML 2.0: Infrastructure
part of this specification. Similarly, the unified UML 2.0 Diagram Interchange specification must be architecturally aligned
with the UML 2.0: Superstructure part of this specification.

The OMG’s Model Driven Architecture (MDA) initiative is an evolving conceptual architecture for a set of industry-wide
technology specifications that will support a model-driven approach to software development. Although MDA is not itself a
technology specification, it represents an important approach and a plan to achieve a cohesive set of model-driven technology
specifications. This specification’s support for MDA is discussed in the UML 2.0: Infrastructure Appendix B, “Support for
Model Driven Architecture”.

6.3 How to Read this Specification

The rest of this document contains the technical content of this specification. As background for this specification, readers are
encouraged to first read the UML: Infrastructure specification that complements this. Part I, “Introduction” of UML:
Infrastructure explains the language architecture structure and the formal approach used for its specification. Afterwards the
reader may choose to either explore the InfrastructureLibrary, described in Part II, “Infrastructure Library”, or the
Classes::Kernel package which reuses it, described in Chapter 1, “Classes”. The former specifies the flexible metamodel
library that is reused by the latter; the latter defines the basic constructs used to define the UML metamodel.

With that background the reader should be well prepared to explore the user level constructs defined in this UML:
18 UML Superstructure 2.0 Draft Adopted Specification

Superstructure specification. These concepts are organized into three parts: Part I - “Structure”, Part II - “Behavior”, and Part
III - “Supplement”. Part I - “Structure” defines the static, structural constructs (e.g., classes, components, nodes artifacts) used
in various structural diagrams, such as class diagrams, component diagrams and deployment diagrams. Part II - “Behavior”
specifies the dynamic, behavioral constructs (e.g., activities, interactions, state machines) used in various behavioral diagrams,
such as activity diagrams, sequence diagrams, and state machine diagrams. Part I - “Structure” defines auxiliary constructs
(e.g., information flows, models, templates, primitive types) and the profiles used to customize UML for various domains,
platforms and methods.

Although the chapters are organized in a logical manner and can be read sequentially, this is a reference specification is
intended to be read in a non-sequential manner. Consequently, extensive cross-references are provided to facilitate browsing
and search.

6.4 Acknowledgements

The following companies submitted and/or supported parts of this specification:

• Adaptive

• Advanced Concepts Center LLC

• Alcatel

• Artisan

• Borland

• Ceira Technologies

• Commissariat à L'Energie Atomique

• Computer Associates

• Compuware

• DaimlerChrysler

• Domain Architects

• Embarcadero Technologies

• Enea Business Software

• Ericsson

• France Telecom

• Fraunhofer FOKUS

• Fujitsu

• Gentleware

• Intellicorp

• Hewlett-Packard

• I-Logix

• International Business Machines
UML Superstructure 2.0 Draft Adopted Specification 19

• IONA

• Jaczone

• Kabira Technologies

• Kennedy Carter

• Klasse Objecten

• KLOCwork

• Lockheed Martin

• MEGA International

• Mercury Computer

• Motorola

• MSC.Software

• Northeastern University

• Oracle

• Popkin Software

• Proforma

• Project Technology

• Sims Associates

• SOFTEAM

• Sun Microsystems

• Syntropy Ltd.

• Telelogic

• Thales Group

• TNI-Valiosys

• Unisys

• University of Kaiserslautern

• University of Kent

• VERIMAG

• WebGain

• X-Change Technologies

• 7irene

• 88solutions
20 UML Superstructure 2.0 Draft Adopted Specification

The following persons were members of the core team that designed and wrote this specification: Don Baisley, Morgan
Björkander, Conrad Bock, Steve Cook, Philippe Desfray, Nathan Dykman, Anders Ek, David Frankel, Eran Gery, Øystein
Haugen, Sridhar Iyengar, Cris Kobryn, Birger Møller-Pedersen, James Odell, Gunnar Övergaard, Karin Palmkvist, Guus
Ramackers, Jim Rumbaugh, Bran Selic, Thomas Weigert and Larry Williams.

In addition, the following persons contributed valuable ideas and feedback that significantly improved the content and the
quality of this specification: Colin Atkinson, Ken Baclawski, Mariano Belaunde, Steve Brodsky, Roger Burkhart, Bruce
Douglass, Karl Frank, William Frank, Sandy Friedenthal, Sébastien Gerard, Dwayne Hardy, Mario Jeckle, Larry Johnson,
Allan Kennedy, Mitch Kokar, Thomas Kuehne, Michael Latta, Antoine Lonjon, Dave Mellor, Stephen Mellor, Joaquin Miller,
Jeff Mischkinksky, Hiroshi Miyazaki, Jishnu Mukerji, Ileana Ober, Barbara Price, Tom Rutt, Kendall Scott, Oliver Sims,
Cameron Skinner, Jeff Smith, Doug Tolbert, and Ian Wilkie.
UML Superstructure 2.0 Draft Adopted Specification 21

22 UML Superstructure 2.0 Draft Adopted Specification

Part I - Structure
This part defines the static, structural constructs (e.g., classes, components, nodes artifacts) used in various structural
diagrams, such as class diagrams, component diagrams and deployment diagrams. The UML packages that support
structural modeling are shown in Figure 1.

The function and contents of these packages are described in following chapters, which are organized by major subject areas.

Figure 1 - UML packages that support structural modeling

Classes

Components

CompositeStructures

Deployments
UML Superstructure 2.0 Draft Adopted Specification 23

24 UML Infrastructure 2.0 Draft Adopted Specification

7 Classes

7.1 Overview

The Classes package contains subpackages that deal with the basic modeling concepts of UML, and in particular classes and
their relationships.

Package Structure

Figure 2 describes the dependencies (i.e., package merges) between the subpackages of the package Classes.

Due to the size of the Kernel package, this chapter has been divided according to diagrams, where each diagram of Kernel is
turned into a separate section.

• “Kernel – the Root Diagram” on page 27

• “Kernel – the Namespaces Diagram” on page 31

• “Kernel – the Multiplicities Diagram” on page 40

• “Kernel – the Expressions Diagram” on page 45

• “Kernel – the Constraints Diagram” on page 53

• “Kernel – the Instances Diagram” on page 57

• “Kernel – the Classifiers Diagram” on page 61

• “Kernel – the Features Diagram” on page 71

• “Kernel – the Operations Diagram” on page 76

Figure 2 - The subpackages of the Classes package and their dependencies

Kernel

DependenciesAssociationClasses

Interfaces

PowerTypes

«merge» «merge» «merge»

«merge»
UML Superstructure 2.0 Draft Adopted Specification 25

• “Kernel – the Classes Diagram” on page 80

• “Kernel – the DataTypes Diagram” on page 94

• “Kernel – the Packages Diagram” on page 99

The packages AssociationClasses and PowerTypes are closely related to the Kernel diagrams, but are described in separate
sections (See “AssociationClasses” on page 117 and “PowerTypes” on page 120, respectively). The packages Dependencies
and Interfaces are described in separate sections (See “Dependencies” on page 105 and “Interfaces” on page 112,
respectively).

In those cases where any of the latter four packages add to the definitions of classes originally defined in Kernel, the
description of the additions is found under the original class.

Reusing packages from UML 2.0 Infrastructure

The Kernel package represents the core modeling concepts of the UML, including classes, associations, and packages. This
part is mostly reused from the infrastructure library, since many of these concepts are the same as those that are used in for
example MOF. The Kernel package is the central part of the UML, and primarily reuses the Constructs and Abstractions
packages of the InfrastructureLibrary.

The reuse is accomplished by merging Constructs with the relevant subpackages of Abstractions. In many cases, the reused
classes are extended in the Kernel with additional features, associations, or superclasses. In subsequent diagrams showing
abstract syntax, the subclassing of elements from the infrastructure library is always elided since this information only adds to
the complexity without increasing understandability. Each metaclass is completely described as part of this chapter; the text
from the infrastructure library is repeated here.

It should also be noted that while Abstractions contained several subpackages, Kernel is a flat structure that like Constructs
only contains metaclasses. The reason for this distinction is that parts of the infrastructure library have been designed for
flexibility and reuse, while the Kernel in reusing the infrastructure library has to bring together the different aspects of the
reused metaclasses. In order to organize this chapter, we therefore use diagrams rather than packages as the main grouping
mechanism.

The packages that are explicitly merged from the InfrastructureLibrary::Core are the following:

• Abstractions::Instances

• Abstractions::MultiplicityExpressions

• Abstractions::Literals

• Abstractions::Generalizations

• Constructs
26 UML Superstructure 2.0 Draft Adopted Specification

All other packages of the InfrastructureLibrary::Core are implicitly merged through the ones that are explicitly merged.

7.2 Kernel – the Root Diagram

The Root diagram of the Kernel package is shown in Figure 4.

Figure 3 - The InfrastructureLibrary packages that are merged by Kernel; all
dependencies in the picuture represent package merges

Figure 4 - The Root diagram of the Kernel package

Kernel

Core::
Abstractions::

Generalizations

Core::Constructs
Core::

Abstractions::
Instances«merge»

«merge»

«merge»
«merge»

Core::
Abstractions::

Literals

Core::
Abstractions::

MultiplicityExpressions

«merge»

E le men t

*

0 .. 1

+ /o wn ed E lem e n t

* {un io n }

+/o wne r

0 .. 1 {un io n }

C om m ent

0 .. 1 *0 .. 1

+owne dCo m m e n t

*{subse ts own ed E lem en t}

Di re cte dRe la ti onsh ip

Co m m en t

b od y : S tri ng

Re la ti on sh ip
E le me nt

1 ..*

+/ta rge t

1 ..*{un ion ,
su bse ts re la ted E lem e n t}

1 .. *

+/sou rce

1 .. *{un io n ,
subse ts re la te dE le m en t}

*

+a nno ta ted E lem e n t

1 ..

+ /re la ted E lem e n t

1 ..*{un io n }
UML Superstructure 2.0 Draft Adopted Specification 27

7.2.1 Comment (from Kernel)

A comment is a textual annotation that can be attached to a set of elements.

Description

A comment gives the ability to attach various remarks to elements. A comment carries no semantic force, but may contain
information that is useful to a modeler.

A comment can be owned by any element.

Attributes

• body: String Specifies a string that is the comment.

Associations

• annotatedElement: Element[*] References the Element(s) being commented.

Constraints

No additional constraints.

Semantics

A Comment adds no semantics to the annotated elements, but may represent information useful to the reader of the model.

Notation

A Comment is shown as a rectangle with the upper right corner bent (this is also known as a “note symbol”). The rectangle
contains the body of the Comment. The connection to each annotated element is shown by a separate dashed line.

Presentation Options

The dashed line connecting the note to the annotated element(s) may be suppressed if it is clear from the context, or not
important in this diagram.

Examples

7.2.2 DirectedRelationship (from Kernel)

A directed relationship represents a relationship between a collection of source model elements and a collection of target
model elements.

Figure 5 - Comment notation

Account

This class was added
by Alan Wright after
meeting with the
mission planning team.
28 UML Superstructure 2.0 Draft Adopted Specification

Description

A directed relationship references one or more source elements and one or more target elements. Directed relationship is an
abstract metaclass.

Attributes

No additional attributes.

Associations

• / source: Element [1..*] Specifies the sources of the DirectedRelationship. Subsets Relationship::relatedEle-
ment. This is a derived union.

• / target: Element [1..*] Specifies the targets of the DirectedRelationship. Subsets Relationship::relatedElement.
This is a derived union.

Constraints

No additional constraints.

Semantics

DirectedRelationship has no specific semantics. The various subclasses of DirectedRelationship will add semantics
appropriate to the concept they represent.

Notation

There is no general notation for a DirectedRelationship. The specific subclasses of DirectedRelationship will define their own
notation. In most cases the notation is a variation on a line drawn from the source(s) to the target(s).

7.2.3 Element (from Kernel)

An element is a constituent of a model. As such, it has the capability of owning other elements.

Description

Element is an abstract metaclass with no superclass. It is used as the common superclass for all metaclasses in the
infrastructure library. Element has a derived composition association to itself to support the general capability for elements
to own other elements.

Attributes

No additional attributes.

Associations

• ownedComment: Comment[*] The Comments owned by this element. Subsets Element::ownedElement.

• / ownedElement: Element[*] The Elements owned by this element. This is a derived union.

• / owner: Element [0..1] The Element that owns this element. This is a derived union.
UML Superstructure 2.0 Draft Adopted Specification 29

Constraints

[1] An element may not directly or indirectly own itself.

not self.allOwnedElements()->includes(self)

[2] Elements that must be owned must have an owner.

self.mustBeOwned() implies owner->notEmpty()

Additional Operations

[1] The query allOwnedElements() gives all of the direct and indirect owned elements of an element.

Element::allOwnedElements(): Set(Element);
allOwnedElements = ownedElement->union(ownedElement->collect(e | e.allOwnedElements()))

[2] The query mustBeOwned() indicates whether elements of this type must have an owner. Subclasses of Element that do
not require an owner must override this operation.

Element::mustBeOwned() : Boolean;
mustBeOwned = true

Semantics

Subclasses of Element provide semantics appropriate to the concept they represent. The comments for an Element add no
semantics but may represent information useful to the reader of the model.

Notation

There is no general notation for an Element. The specific subclasses of Element define their own notation.

7.2.4 Relationship (from Kernel)

Relationship is an abstract concept that specifies some kind of relationship between elements.

Description

A relationship references one or more related elements. Relationship is an abstract metaclass.

Attributes

No additional attributes.

Associations

• / relatedElement: Element [1..*]Specifies the elements related by the Relationship. This is a derived union.

Constraints

No additional constraints.

Semantics

Relationship has no specific semantics. The various subclasses of Relationship will add semantics appropriate to the concept
they represent.

Notation

There is no general notation for a Relationship. The specific subclasses of Relationship will define their own notation. In most
cases the notation is a variation on a line drawn between the related elements.
30 UML Superstructure 2.0 Draft Adopted Specification

7.3 Kernel – the Namespaces Diagram

The Namespaces diagram of the Kernel package is shown in Figure 6.

In order to locate the metaclasses that are referenced from this diagram,

• See “DirectedRelationship (from Kernel)” on page 28.

• See “Element (from Kernel)” on page 29.

• See “Package (from Kernel)” on page 99.

7.3.1 ElementImport (from Kernel)

An element import identifies an element in another package, and allows the element to be referenced using its name without a
qualifier.

Description

An element import is defined as a directed relationship between an importing namespace and a packageable element. The
name of the packageable element or its alias is to be added to the namespace of the importing namespace. It is also possible to
control whether the imported element can be further imported.

Attributes

• visibility: VisibilityKind Specifies the visibility of the imported PackageableElement within the importing Package.
The default visibility is the same as that of the imported element. If the imported element
does not have a visibility, it is possible to add visibility to the element import.

• alias: String [0..1] Specifies the name that should be added to the namespace of the importing Pack-age in
lieu of the name of the imported PackagableElement. The aliased name must not clash
with any other member name in the importing Package. By default, no alias is used.

Figure 6 - The Namespaces diagram of the Kernel package

N a me d E l e me n t

n a m e : S tri n g
v i si b i l i ty : V i si b i l i tyK i n d
/ q u a l i f i e d Na m e : S tri n g

[0 ..1]
[0 ..1]
[0 ..1]

V isi b i l i tyK i n d

p u b l ic
p ri va te
p ro te cte d
p a cka g e

<< e n u m e ra t io n > >

E l e me n t

D ir ec te d Re l a t io n shi p

[0 ..1]

Di r ecte d Re la ti o n s hi p

P a cka g e a b le E l e me n t

Na me d E l e me n t

E l e m e n tIm p o rt

v i si b i l i ty : V i si b i l i tyK i n d
a l i a s : S tri n g

1

+ i m p o rte d E l e m e n t

1{su b se ts ta rg e t}

P a cka g e a b l e E l e me n t

v i sib i l i ty : V i si b i l i tyK i n d

Na me sp a ce

0 ..1 *

+ /n a m e sp a ce

0 ..1 {u n i o n ,
sub set s own e r}

+ /o wn e d M e m b e r

*{u n i o n ,
su b se ts m e m b e r,

su b se ts o wn e d E le m e n t}

*

+ /m e m b e r

*{u n i o n }

1 *

+ i m p o rt i n g N a m e sp a ce

1
{su bs e ts so u rce ,
su b se ts o w n e r}

+ e l e m e n tIm p o rt

*
{su bse ts o w ne d E l e m e nt }

*

+ / i m p o rte d M e m b e r

* {su b se ts m e m b e r}

P a cka g e Im p o rt

v i si b i l i ty : V i si b i l i tyK in d
1 *

+ i m p o rt i n gN a m e sp a ce

1 {su b se ts so u rce ,
su b se ts o wn e r}

+p a cka g e Im p o rt

*{su b se ts o w n e d E l e m e n t}
P a cka g e

1

+ i m p o rte d P a cka g e

1{su b se ts ta rg e t}

[0 ..1]
UML Superstructure 2.0 Draft Adopted Specification 31

Associations

• importedElement: PackageableElement [1]Specifies the PackageableElement whose name is to be added to a Namespace.
Subsets DirectedRelationship::target.

• importingNamespace: Namespace [1]Specifies the Namespace that imports a PackageableElement from another Package.
Subsets DirectedRelationship::source and Element::owner.

Constraints

[1] The visibility of an ElementImport is either public or private.

self.visibility = #public or self.visibility = #private

[2] An importedElement has either public visibility or no visibility at all.

self.importedElement.visibility.notEmpty() implies self.importedElement.visibility = #public

Additional Operations

[1] The query getName() returns the name under which the imported PackageableElement will be known in the importing
namespace.

ElementImport::getName(): String;
getName =

if self.alias->notEmpty() then
self.alias

else
self.importedElement.name

endif

Semantics

An element import adds the name of a packageable element from a package to the importing namespace. It works by
reference, which means that it is not possible to add features to the element import itself, but it is possible to modify the
referenced element in the namespace from which it was imported. An element import is used to selectively import individual
elements without relying on a package import.

In case of a nameclash with an outer name (an element that is defined in an enclosing namespace is available using its
unqualified name in enclosed namespaces) in the importing namespace, the outer name is hidden by an ele-ment import, and
the unqualified name refers to the imported element. The outer name can be accessed using its qual-ified name.

If more than one element with the same name would be imported to a namespace as a consequence of element imports or
package imports, the names of the imported elements must be qualified in order to be used and the ele-ments are not added to
the importing namespace. If the name of an imported element is the same as the name of an element owned by the importing
namespace, the name of the imported element must be qualified in order to be used and is not added to the importing
namespace.

An imported element can be further imported by other namespaces using either element or member imports.

The visibility of the ElementImport may be either the same or more restricted than that of the imported element.

Notation

An element import is shown using a dashed arrow with an open arrowhead from the importing namespace to the imported
element. The keyword «import» is shown near the dashed arrow if the visibility is public, otherwise the key-word «access» is
shown.

If an element import has an alias, this is used in lieu of the name of the imported element. The aliased name may be shown
after or below the keyword «import».
32 UML Superstructure 2.0 Draft Adopted Specification

Presentation options

If the imported element is a package, the keyword may optionally be preceded by element, i.e., «element import».

As an alternative to the dashed arrow, it is possible to show an element import by having a text that uniquely identifies the
imported element within curly brackets either below or after the name of the namespace. The textual syntax is then:

{element import <qualifiedName>} or {element access <qualifiedName>}

Optionally, the aliased name may be show as well:

{element import <qualifiedName> as <alias>} or {element access <qualifiedName> as <alias>}

Examples

The element import that is shown in Figure 7 allows elements in the package Program to refer to the type Time in Types
without qualification. However, they still need to refer explicitly to Types::Integer, since this element is not imported.

In Figure 8, the element import is combined with aliasing, meaning that the type Types::Real will be referred to as Double in
the package Shapes.

7.3.2 NamedElement (from Kernel, Dependencies)

A named element is an element in a model that may have a name.

Figure 7 - Example of element import

Figure 8 - Example of element import with aliasing

Types

«datatype»

Integer

«datatype»

Time

«import»

Program

Types
Shapes

«datatype»
Real Circle

radius: Double

«import»
Double
UML Superstructure 2.0 Draft Adopted Specification 33

Description

A named element represents elements that may have a name. The name is used for identification of the named element within
the namespace in which it is defined. A named element also has a qualified name that allows it to be unambiguously identified
within a hierarchy of nested namespaces. NamedElement is an abstract metaclass.

Attributes

• name: String [0..1] The name of the NamedElement.

• / qualifiedName: String [0..1] A name which allows the NamedElement to be identified within a hierarchy of nested
Namespaces. It is constructed from the names of the containing namespaces starting at the
root of the hierarchy and ending with the name of the NamedElement itself. This is a
derived attribute.

• visibility: VisibilityKind [0..1] Determines the visibility of the NamedElement within different Namespaces within the
overall model.

Package Dependencies (“Dependencies” on page 105)

• supplierDependency: Dependency [*]Indicates the dependencies that reference the supplier.

• clientDependency: Dependency[*]Indicates the dependencies that reference the client.

Associations

• / namespace: Namespace [0..1] Specifies the namespace that owns the NamedElement. Subsets Element::owner. This is a
derived union.

Constraints

[1] If there is no name, or one of the containing namespaces has no name, there is no qualified name.

(self.name->isEmpty() or self.allNamespaces()->select(ns | ns.name->isEmpty())->notEmpty())
implies self.qualifiedName->isEmpty()

[2] When there is a name, and all of the containing namespaces have a name, the qualified name is constructed from the
names of the containing namespaces.

(self.name->notEmpty() and self.allNamespaces()->select(ns | ns.name->isEmpty())->isEmpty()) implies
self.qualifiedName = self.allNamespaces()->iterate(ns : Namespace; result: String = self.name |

ns.name->union(self.separator())->union(result))

[3] If a NamedElement is not owned by a Namespace, it does not have a visibility.

namespace->isEmpty() implies visibility->isEmpty()

Additional Operations

[1] The query allNamespaces() gives the sequence of namespaces in which the NamedElement is nested, working outwards.

NamedElement::allNamespaces(): Sequence(Namespace);
allNamespaces =

if self.namespace->isEmpty()
then Sequence{}
else self.name.allNamespaces()->prepend(self.namespace)
endif
34 UML Superstructure 2.0 Draft Adopted Specification

[2] The query isDistinguishableFrom() determines whether two NamedElements may logically co-exist within a Namespace.
By default, two named elements are distinguishable if (a) they have unrelated types or (b) they have related types but dif-
ferent names.

NamedElement::isDistinguishableFrom(n:NamedElement, ns: Namespace): Boolean;
isDistinguishable =

if self.oclIsKindOf(n.oclType) or n.oclIsKindOf(self.oclType)
then ns.getNamesOfMember(self)->intersection(ns.getNamesOfMember(n))->isEmpty()
else true
endif

[3] The query separator() gives the string that is used to separate names when constructing a qualified name.

NamedElement::separator(): String;
separator = ‘::’

Semantics

The name attribute is used for identification of the named element within namespaces where its name is accessible. Note that
the attribute has a multiplicity of [0..1] which provides for the possibility of the absence of a name (which is different from
the empty name).

The visibility attribute provides the means to constrain the usage of a named element in different namespaces within a model.
It is intended for use in conjunction with import and generalization mechanisms.

Notation

No additional notation.

7.3.3 Namespace (from Kernel)

A namespace is an element in a model that contains a set of named elements that can be identified by name.

Description

A namespace is a named element that can own other named elements. Each named element may be owned by at most one
namespace. A namespace provides a means for identifying named elements by name. Named elements can be identified by
name in a namespace either by being directly owned by the namespace or by being introduced into the namespace by other
means e.g. importing or inheriting. Namespace is an abstract metaclass.

A namespace can own constraints. The constraint does not necessarily apply to the namespace itself, but may also apply to
elements in the namespace.

A namespace has the ability to import either individial members or all members of a package, thereby making it possible to
refer to those named elements without qualification in the importing namespace. In the case of conflicts, it is necessary to use
qualified names or aliases to disambiguate the referenced elements.

Attributes

No additional attributes.
UML Superstructure 2.0 Draft Adopted Specification 35

Associations

• elementImport: ElementImport [*]References the ElementImports owned by the Namespace. Subsets Ele-
ment::ownedElement.

• / importedMember: PackageableElement [*] References the PackageableElements that are members of this Namespace as
a result of either PackageImports or ElementImports. Subsets Namespace::member.

• / member: NamedElement [*] A collection of NamedElements identifiable within the Namespace, either by being owned
or by being introduced by importing or inheritance. This is a derived union.

• / ownedMember: NamedElement [*]A collection of NamedElements owned by the Namespace. Subsets Ele-
ment::ownedElement and Namespace::member. This is a derived union.

• ownedRule: Constraint[*] Specifies a set of Constraints owned by this Namespace. Subsets Namespace::owned-
Member.

• packageImport: PackageImport [*] References the PackageImports owned by the Namespace. Subsets Ele-
ment::ownedElement.

Constraints

[1] All the members of a Namespace are distinguishable within it.
membersAreDistinguishable()

[2] The importedMember property is derived from the ElementImports and the PackageImports.
self.importedMember->includesAll(self.importedMembers(self.elementImport.importedElement.asSet()-
>union(self.packageImport.importedPackage->collect(p | p.visibleMembers()))))

Additional Operations

[1] The query getNamesOfMember() gives a set of all of the names that a member would have in a Namespace. In general a
member can have multiple names in a Namespace if it is imported more than once with different aliases. The query takes
account of importing. It gives back the set of names that an element would have in an importing namespace, either
because it is owned, or if not owned then imported individually, or if not individually then from a package.

Namespace::getNamesOfMember(element: NamedElement): Set(String);
getNamesOfMember =

if self.ownedMember ->includes(element)
then Set{}->include(element.name)

else let elementImports: ElementImport = self.elementImport->select(ei | ei.importedElement = element) in
if elementImports->notEmpty()

then elementImports->collect(el | el.getName())
else

self.packageImport->select(pi | pi.importedPackage.visibleMembers()->includes(element))->
collect(pi | pi.importedPackage.getNamesOfMember(element))

endif
endif

[2] The Boolean query membersAreDistinguishable() determines whether all of the namespace’s members are distinguisha-
ble within it.

Namespace::membersAreDistinguishable() : Boolean;
membersAreDistinguishable =
self.member->forAll(memb |

self.member->excluding(memb)->forAll(other |
memb.isDistinguishableFrom(other, self)))
36 UML Superstructure 2.0 Draft Adopted Specification

[3] The query importMembers() defines which of a set of PackageableElements are actually imported into the namespace.
This excludes hidden ones, i.e., those which have names that conflict with names of owned members, and also excludes
elements which would have the same name when imported.

Namespace::importMembers(imps: Set(PackageableElement)): Set(PackageableElement);
importMembers = self.excludeCollisions(imps)->select(imp | self.ownedMember->forAll(mem |
mem.imp.isDistinguishableFrom(mem, self)))

[4] The query excludeCollisions() excludes from a set of PackageableElements any that would not be distinguishable from
each other in this namespace.

Namespace::excludeCollisions(imps: Set(PackageableElements)): Set(PackageableElements);
excludeCollisions = imps->reject(imp1 | imps.exists(imp2 | not imp1.isDistinguishableFrom(imp2, self)))

Semantics

A namespace provides a container for named elements. It provides a means for resolving composite names, such as
name1::name2::name3. The member association identifies all named elements in a namespace called N that can be referred to
by a composite name of the form N::<x>. Note that this is different from all of the names that can be referred to unqualified
within N, because that set also includes all unhidden members of enclosing namespaces.

Named elements may appear within a namespace according to rules that specify how one named element is distinguishable
from another. The default rule is that two elements are distinguishable if they have unrelated types, or related types but
different names. This rule may be overridden for particular cases, such as operations which are distinguished by their
signature.

The ownedRule constraints for a Namespace represent well formedness rules for the constrained elements. These constraints
are evaluated when determining if the model elements are well formed.

Notation

No additional notation. Concrete subclasses will define their own specific notation.

7.3.4 PackageableElement (from Kernel)

A packageable element indicates a named element that may be owned directly by a package.

Description

A packageable element indicates a named element that may be owned directly by a package.

Attributes

• visibility: VisibilityKind [1] Indicates that packageable elements must always have a visibility, i.e., visibility is not
optional. Redefines NamedElement::visibility.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

No additional semantics.
UML Superstructure 2.0 Draft Adopted Specification 37

Notation

No additional notation.

7.3.5 PackageImport (from Kernel)

A package import is a relationship that allows the use of unqualified names to refer to package members from other
namespaces.

Description

A package import is defined as a directed relationship that identifies a package whose members are to be imported by a
namespace.

Attributes

• visibility: VisibilityKind Specifies the visibility of the imported PackageableElements within the import-ing
Namespace, i.e., whether imported elements will in turn be visible to other packages that
use that importingPackage as an importedPackage. If the PackageImport is public, the
imported elements will be visible outside the package, while if it is private they will not.
By default, the value of visibility is public.

Associations

• importedPackage: Package [1] Specifies the Package whose members are imported into a Namespace. Subsets Directe-
dRelationship::target.

• importingNamespace: Namespace [1]Specifies the Namespace that imports the members from a Package. Subsets Direct-
edRelationship::source and Element::owner.

Constraints

[1] The visibility of a PackageImport is either public or private.

self.visibility = #public or self.visibility = #private

Semantics

A package import is a relationship between an importing namespace and a package, indicating that the importing namespace
adds the names of the members of the package to its own namespace. Conceptually, a package import is equivalent to having
an element import to each individual member of the imported namespace, unless there is already a separately-defined element
import.

Notation

A package import is shown using a dashed arrow with an open arrowhead from the importing namespace to the imported
package. A keyword is shown near the dashed arrow to identify which kind of package import that is intended. The predefined
keywords are «import» for a public package import , and «access» for a private package import.

Presentation options

As an alternative to the dashed arrow, it is possible to show an element import by having a text that uniquely identi-fies the
imported element within curly brackets either below or after the name of the namespace. The textual syntax is then:

{import <qualifiedName>} or {access <qualifiedName>}
38 UML Superstructure 2.0 Draft Adopted Specification

Examples

In Figure 9, a number of package imports are shown. The elements in Types are imported to ShoppingCart, and then further
imported WebShop. However, the elements of Auxiliary are only accessed from ShoppingCart, and cannot be referenced
using unqualified names from WebShop.

7.3.6 VisibilityKind (from Kernel)

VisibilityKind is an enumeration type that defines literals to determine the visibility of elements in a model.

Description

VisibilityKind is an enumeration of the following literal values:

• public

• private

• protected

• package

Additional Operations

[1] The query bestVisibility() examines a set of VisibilityKinds that includes only public and private, and returns public as the
preferred visibility.

VisibilityKind::bestVisibility(vis: Set(VisibilityKind)) : VisibilityKind;
pre: not vis->includes(#protected) and not vis->includes(#package)
bestVisibility = if vis->includes(#public) then #public else #private endif

Semantics

VisibilityKind is intended for use in the specification of visibility in conjunction with, for example, the Imports,
Generalizations and Packages packages. Detailed semantics are specified with those mechanisms. If the Visibility package is
used without those packages, these literals will have different meanings, or no meanings.

• A public element is visible to all elements that can access the contents of the namespace that owns it.

• A private element is only visible inside the namespace that owns it.

• A protected element is visible to elements that have a generalization relationship to the namespace that owns it.

• A package element is owned by a namespace that is not a package, and is visible to elements that are in the same pack-

Figure 9 - Examples of public and private package imports

Auxiliary

Types

ShoppingCart

WebShop«import»
«import»

«access»
UML Superstructure 2.0 Draft Adopted Specification 39

age as its owning namespace. Only named elements that are not owned by packages can be marked as having package
visibility. Any element marked as having package element is visible to all elements within the nearest enclosing pack-
age (given that other owning elements have proper visibility). Outside the nearest enclosing package, an element
marked as having package visibility is not visible.

In circumstances where a named element ends up with multiple visibilities, for example by being imported multiple times,
public visibility overrides private visibility, i.e., if an element is imported twice into the same namespace, once using a
public import and once using a private import, it will be public.

7.4 Kernel – the Multiplicities Diagram

The Multiplicities diagram of the Kernel package is shown in Figure 10.

In order to locate the metaclasses that are referenced from this diagram,

• See “Classifier (from Kernel, Dependencies, PowerTypes)” on page 61.

• See “Element (from Kernel)” on page 29.

• See “ValueSpecification (from Kernel)” on page 52.

7.4.1 MultiplicityElement (from Kernel)

A multiplicity is a definition of an inclusive interval of non-negative integers beginning with a lower bound and ending
with a (possibly infinite) upper bound. A multiplicity element embeds this information to specify the allowable
cardinalities for an instantiation of this element.

Figure 10 - The Multiplicities diagram of the Kernel package.

Element

ValueSpecification
MultiplicityElement

isOrdered : Boolean = false
isUnique : Boolean = true
/ upper : UnlimitedNatural
/ lower : Integer

0..10..1

+upperValue

0..1{subsets ownedElement}

+ownerUpper

0..1

{subsets owner}

0..10..1

+lowerValue

0..1{subsets ownedElement}

+ownerLower

0..1

{subsets owner}[0..1]
[0..1]

NamedElement

TypedElement Type
0..1

+type

0..1

PackageableElement
40 UML Superstructure 2.0 Draft Adopted Specification

Description

A MultiplicityElement is an abstract metaclass which includes optional attributes for defining the bounds of a multiplicity.
A MultiplicityElement also includes specifications of whether the values in an instantiation of this element must be
unique or ordered.

Attributes

• isOrdered: Boolean For a multivalued multiplicity, this attribute specifies whether the values in an instantia-
tion of this element are sequentially ordered. Default is false.

• isUnique : Boolean For a multivalued multiplicity, this attributes specifies whether the values in an instantia-
tion of this element are unique. Default is true.

• / lower : Integer [0..1] Specifies the lower bound of the multiplicity interval, if it is expressed as an integer.

• / upper : UnlimitedNatural [0..1]Specifies the upper bound of the multiplicity interval, if it is expressed as an unlimited
natural.

Associations

• lowerValue: ValueSpecification [0..1]The specification of the lower bound for this multiplicity. Subsets Ele-
ment::ownedElement.

• upperValue: ValueSpecification [0..1]The specification of the upper bound for this multiplicity. Subsets Ele-
ment::ownedElement.

Constraints

These constraint must handle situations where the upper bound may be specified by an expression not computable in the
model.

[1] A multiplicity must define at least one valid cardinality that is greater than zero.

upperBound()->notEmpty() implies upperBound() > 0

[2] The lower bound must be a non-negative integer literal.

lowerBound()->notEmpty() implies lowerBound() >= 0

[3] The upper bound must be greater than or equal to the lower bound.

(upperBound()->notEmpty() and lowerBound()->notEmpty()) implies upperBound() >= lowerBound()

[4] If a non-literal ValueSpecification is used for the lower or upper bound, then evaluating that specification must not have
side effects.

Cannot be expressed in OCL.

[5] If a non-literal ValueSpecification is used for the lower or upper bound, then that specification must be a constant expres-
sion.

Cannot be expressed in OCL.

[6] The derived lower attribute must equal the lowerBound.

lower = lowerBound()

[7] The derived upper attribute must equal the upperBound.

upper = upperBound()

Additional Operations

[1] The query isMultivalued() checks whether this multiplicity has an upper bound greater than one.
UML Superstructure 2.0 Draft Adopted Specification 41

MultiplicityElement::isMultivalued() : Boolean;
pre: upperBound()->notEmpty()
isMultivalued = (upperBound() > 1)

[2] The query includesCardinality() checks whether the specified cardinality is valid for this multiplicity.

MultiplicityElement::includesCardinality(C : Integer) : Boolean;
pre: upperBound()->notEmpty() and lowerBound()->notEmpty()
includesCardinality = (lowerBound() <= C) and (upperBound() >= C)

[3] The query includesMultiplicity() checks whether this multiplicity includes all the cardinalities allowed by the specified
multiplicity.

MultiplicityElement::includesMultiplicity(M : MultiplicityElement) : Boolean;
pre: self.upperBound()->notEmpty() and self.lowerBound()->notEmpty()

and M.upperBound()->notEmpty() and M.lowerBound()->notEmpty()
includesMultiplicity = (self.lowerBound() <= M.lowerBound()) and (self.upperBound() >= M.upperBound())

[4] The query lowerBound() returns the lower bound of the multiplicity as an integer.

MultiplicityElement::lowerBound() : [Integer];
lowerBound = if lowerValue->isEmpty() then 1 else lowerValue.integerValue() endif

[5] The query upperBound() returns the upper bound of the multiplicity for a bounded multiplicity as an unlimited natural.

MultiplicityElement::upperBound() : [UnlimitedNatural];
upperBound = if upperValue->isEmpty() then 1 else upperValue.unlimitedValue() endif

Semantics

A multiplicity defines a set of integers that define valid cardinalities. Specifically, cardinality C is valid for multiplicity M if
M.includesCardinality(C).

A multiplicity is specified as an interval of integers starting with the lower bound and ending with the (possibly infinite) upper
bound.

If a MultiplicityElement specifies a multivalued multiplicity, then an instantiation of this element has a set of values. The
multiplicity is a constraint on the number of values that may validly occur in that set.

If the MultiplicityElement is specified as ordered (i.e. isOrdered is true), then the set of values in an instantiation of this
element is ordered. This ordering implies that there is a mapping from positive integers to the elements of the set of values. If
a MultiplicityElement is not multivalued, then the value for isOrdered has no semantic effect.

If the MultiplicityElement is specified as unordered (i.e. isOrdered is false), then no assumptions can be made about the order
of the values in an instantiation of this element.

If the MultiplicityElement is specified as unique (i.e. isUnique is true), then the set of values in an instantiation of this element
must be unique. If a MultiplicityElement is not multivalued, then the value for isUnique has no semantic effect.

The lower and upper bounds for the multiplicity of a MultiplicityElement may be specified by value specifications, such as
(side-effect free, constant) expressions.

Notation

The specific notation for a MultiplicityElement is defined by the concrete subclasses. In general, the notation will include a
multiplicity specification is shown as a text string containing the bounds of the interval, and a notation for showing the
optional ordering and uniqueness specifications.

The multiplicity bounds are typically shown in the format:
lower-bound..upper-bound

where lower-bound is an integer and upper-bound is an unlimited natural number. The star character (*) is used as part of a
multiplicity specification to represent the unlimited (or infinite) upper bound.
42 UML Superstructure 2.0 Draft Adopted Specification

If the Multiplicity is associated with an element whose notation is a text string (such as an attribute, etc.), the multiplicity
string will be placed within square brackets ([]) as part of that text string. Figure 11 shows two multiplicity strings as part of
attribute specifications within a class symbol.

If the Multiplicity is associated with an element that appears as a symbol (such as an association end), the multiplicity string is
displayed without square brackets and may be placed near the symbol for the element. Figure 12 shows two multiplicity
strings as part of the specification of two association ends.

The specific notation for the ordering and uniqueness specifications may vary depending on the specific subclass of
MultiplicityElement. A general notation is to use a property string containing ordered or unordered to define the ordering, and
unique or nonunique to define the uniqueness.

Presentation Options

If the lower bound is equal to the upper bound, then an alternate notation is to use the string containing just the upper bound.
For example, “1” is semantically equivalent to “1..1”.

A multiplicity with zero as the lower bound and an unspecified upper bound may use the alternative notation containing a
single star “*” instead of “0..*”.

The following BNF defines the syntax for a multiplicity string, including support for the presentation options.
multiplicity ::= <multiplicity_range> [‘{‘ <order_designator> ‘}’]
multiplicity_range ::= [lower ‘..’] upper
lower ::= integer | value_specification
upper ::= unlimited_natural | ‘*’ | value_specification
<order_designator> ::= ordered | unordered
<uniqueness_designator> ::= unique | nonunique

Examples

7.4.2 Type (from Kernel)

A type constrains the values represented by a typed element.

Figure 11 - Multiplicity within a textual specification

Figure 12 - Multiplicity as an adornment to a symbol

Customer

purchase : Purchase [*] {ordered, unique}
account: Account [0..5] {unique}

Customer AccountPurchase
purchase account

0..5*
{ordered
unique}

{unique}
UML Superstructure 2.0 Draft Adopted Specification 43

Description

A type serves as a constraint on the range of values represented by a typed element. Type is an abstract metaclass.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

No additional constraints.

Additional Operations

[1] The query conformsTo() gives true for a type that conforms to another. By default, two types do not conform to each other.
This query is intended to be redefined for specific conformance situations.

conformsTo(other: Type): Boolean;
conformsTo = false

Semantics

A type represents a set of values. A typed element that has this type is constrained to represent values within this set.

Notation

No general notation.

7.4.3 TypedElement (from Kernel)

A typed element has a type.

Description

A typed element is an element that has a type that serves as a constraint on the range of values the element can represent.
Typed element is an abstract metaclass.

Attributes

No additional attributes.

Associations

• type: Type [0..1] The type of the TypedElement.

Constraints

No additional constraints.

Semantics

Values represented by the element are constrained to be instances of the type. A typed element with no associated type may
represent values of any type.
44 UML Superstructure 2.0 Draft Adopted Specification

Notation

No general notation.

7.5 Kernel – the Expressions Diagram

The Expressions diagram of the Kernel package is shown in Figure 13.

In order to locate the metaclasses that are referenced from this diagram,

• See “Element (from Kernel)” on page 29.

• See “InstanceSpecification (from Kernel)” on page 57.

• See “MultiplicityElement (from Kernel)” on page 40.

7.5.1 Expression (from Kernel)

An expression is a structured tree of symbols that denotes a (possibly empty) set of values when evaluated in a context.

Description

An expression represents a node in an expression tree, which may be non-terminal or terminal. It defines a symbol, and has a
possibly empty sequence of operands which are value specifications.

Attributes

• symbol: String [1] The symbol associated with the node in the expression tree.

Figure 13 - The Expressions diagram of the Kernel package.

OpaqueExpression

body : String
language : String [0..1]

LiteralSpecification

L iteral Bool ean

value : Boolean

LiteralInteger

val ue : Integer

LiteralString

value : String

LiteralUnl imitedNatural

val ue : Un li mited Natura l

LiteralNull

InstanceValue
In stanceSpec if icat ion

1

+instance

1

Expression

symbol : String

Va lu eSpecifi cati on

*

0..1

+o perand

*{ordered, subsets ownedElement}

+expression

0..1

{subsets owner}

TypedElement
UML Superstructure 2.0 Draft Adopted Specification 45

Associations

• operand: ValueSpecification[*] Specifies a sequence of operands. Subsets Element::ownedElement.

Constraints

No additional constraints.

Semantics

An expression represents a node in an expression tree. If there are no operands it represents a terminal node. If there are
operands it represents an operator applied to those operands. In either case there is a symbol associated with the node. The
interpretation of this symbol depends on the context of the expression.

Notation

By default an expression with no operands is notated simply by its symbol, with no quotes. An expression with operands is
notated by its symbol, followed by round parentheses containing its operands in order. In particular contexts special notations
may be permitted, including infix operators.

Examples

xor
else
plus(x,1)
x+1

7.5.2 OpaqueExpression (from Kernel)

An opaque expression is an uninterpreted textual statement that denotes a (possibly empty) set of values when evaluated in a
context.

Description

An expression contains a language-specific text string used to describe a value or values, and an optional specification of the
language.

One predefined language for specifying expressions is OCL. Natural language or programming languages may also be used.

Attributes

• body: String [1] The text of the expression.

• language: String [0..1] Specifies the language in which the expression is stated. The interpretation of the expres-
sion body depends on the language. If language is unspecified, it might be implicit from
the expression body or the context.

Associations

No additional associations.

Constraints

No additional constraints.
46 UML Superstructure 2.0 Draft Adopted Specification

Additional Operations

These operations are not defined within the specification of UML. They should be defined within an implementation that
implements constraints so that constraints that use these operations can be evaluated.

[1] The query value() gives an integer value for an expression intended to produce one.

Expression::value(): Integer;
pre: self.isIntegral()

[2] The query isIntegral() tells whether an expression is intended to produce an integer.

Expression::isIntegral(): Boolean;

[3] The query isPositive() tells whether an integer expression has a positive value.

Expression::isPositive(): Boolean;
pre: self.isIntegral()

[4] The query isNonNegative() tells whether an integer expression has a non-negative value.

Expression::isNonNegative(): Boolean;
pre: self.isIntegral()

Semantics

The interpretation of the expression body depends on the language. If the language is unspecified, it might be implicit from the
expression body or the context.

It is assumed that a linguistic analyzer for the specified language will evaluate the body. The time at which the body will be
evaluated is not specified.

Notation

An opaque expression is displayed as a text string in a particular language. The syntax of the string is the responsibility of a
tool and a linguistic analyzer for the language.

An opaque expression is displayed as a part of the notation for its containing element.

The language of an opaque expression, if specified, is often not shown on a diagram. Some modeling tools may impose a
particular language or assume a particular default language. The language is often implicit under the assumption that the form
of the expression makes its purpose clear. If the language name is shown, it should be displayed in braces ({}) before the
expression string.

Style Guidelines

A language name should be spelled and capitalized exactly as it appears in the document defining the language. For example,
use OCL, not ocl.

Examples

a > 0
{OCL} i > j and self.size > i
average hours worked per week

7.5.3 InstanceValue (from Kernel)

An instance value is a value specification that identifies an instance.
UML Superstructure 2.0 Draft Adopted Specification 47

Description

An instance value specifies the value modeled by an instance specification.

Attributes

No additional attributes.

Associations

• instance: InstanceSpecification [1]The instance that is the specified value.

Constraints

No additional constraints.

Semantics

The instance specification is the specified value.

Notation

An instance value can appear using textual or graphical notation. When textual, as can appear for the value of an attribute slot,
the name of the instance is shown. When graphical, a reference value is shown by connecting to the instance. See
“InstanceSpecification”.

7.5.4 LiteralBoolean (from Kernel)

A literal boolean is a specification of a boolean value.

Description

A literal boolean contains a Boolean-valued attribute.

Attributes

• value: Boolean The specified Boolean value.

Associations

No additional associations.

Constraints

No additional constraints.

Additional Operations

[1] The query isComputable() is redefined to be true.

LiteralBoolean::isComputable(): Boolean;
isComputable = true

[2] The query booleanValue() gives the value.
LiteralBoolean::booleanValue() : [Boolean];
booleanValue = value
48 UML Superstructure 2.0 Draft Adopted Specification

Semantics

A LiteralBoolean specifies a constant Boolean value.

Notation

A LiteralBoolean is shown as either the word ‘true’ or the word ‘false’, corresponding to its value.

7.5.5 LiteralInteger (from Kernel)

A literal integer is a specification of an integer value.

Description

A literal integer contains an Integer-valued attribute.

Attributes

• value: Integer The specified Integer value.

Associations

No additional associations.

Constraints

No additional constraints.

Additional Operations

[1] The query isComputable() is redefined to be true.

LiteralInteger::isComputable(): Boolean;
isComputable = true

[2] The query integerValue() gives the value.

LiteralInteger::integerValue() : [Integer];
integerValue = value

Semantics

A LiteralInteger specifies a constant Integer value.

Notation

A LiteralInteger is shown as a sequence of digits.

7.5.6 LiteralNull (from Kernel)

A literal null specifies the lack of a value.

Description

A literal null is used to represent null, i.e., the absence of a value.
UML Superstructure 2.0 Draft Adopted Specification 49

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

No additional constraints.

[1] The query isComputable() is redefined to be true.

LiteralNull::isComputable(): Boolean;
isComputable = true

[2] The query isNull() returns true.

LiteralNull::isNull() : Boolean;
isNull = true

Semantics

LiteralNull is intended to be used to explicitly model the lack of a value.

Notation

Notation for LiteralNull varies depending on where it is used. It often appears as the word ‘null’. Other notations are described
for specific uses.

7.5.7 LiteralSpecification (from Kernel)

A literal specification identifies a literal constant being modeled.

Description

A literal specification is an abstract specialization of ValueSpecification that identifies a literal constant being modeled.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

No additional semantics. Subclasses of LiteralSpecification are defined to specify literal values of different types.

Notation

No specific notation.
50 UML Superstructure 2.0 Draft Adopted Specification

7.5.8 LiteralString (from Kernel)

A literal string is a specification of a string value.

Description

A literal string contains a String-valued attribute.

Attributes

• value: String The specified String value.

Associations

No additional associations.

Constraints

No additional constraints.

Additional Operations

[1] The query isComputable() is redefined to be true.

LiteralString::isComputable(): Boolean;
isComputable = true

[2] The query stringValue() gives the value.

LiteralString::stringValue() : [String];
stringValue = value

Semantics

A LiteralString specifies a constant String value.

Notation

A LiteralString is shown as a sequence of characters within double quotes.

The character set used is unspecified.

7.5.9 LiteralUnlimitedNatural (from Kernel)

A literal unlimited natural is a specification of an unlimited natural number.

Description

A literal unlimited natural contains a UnlimitedNatural-valued attribute.

Attributes

• value: UnlimitedNatural The specified UnlimitedNatural value.

Associations

No additional associations.
UML Superstructure 2.0 Draft Adopted Specification 51

Constraints

No additional constraints.

Additional Operations

[1] The query isComputable() is redefined to be true.

LiteralUnlimitedNatural::isComputable(): Boolean;
isComputable = true

[2] The query unlimitedValue() gives the value.

LiteralUnlimitedNatural::unlimitedValue() : [UnlimitedNatural];
unlimitedValue = value

Semantics

A LiteralUnlimitedNatural specifies a constant UnlimitedNatural value.

Notation

A LiteralUnlimitedNatural is shown either as a sequence of digits or as an asterisk (*), where an asterisk denotes unlimited
(and not infinity).

7.5.10 ValueSpecification (from Kernel)

A value specification is the specification of a (possibly empty) set of instances, including both objects and data values.

Description

ValueSpecification is an abstract metaclass used to identify a value or values in a model. It may reference an instance or it may
be an expression denoting an instance or instances when evaluated.

Attributes

• expression: Expression[0..1] If this value specification is an operand, the owning expression. Subsets Element::owner.

Associations

No additional associations.

Constraints

No additional constraints.

Additional Operations

These operations are introduced here. They are expected to be redefined in subclasses. Conforming implementations may be
able to compute values for more expressions that are specified by the constraints that involve these operations.

[1] The query isComputable() determines whether a value specification can be computed in a model. This operation cannot be
fully defined in OCL. A conforming implementation is expected to deliver true for this operation for all value specifica-
tions that it can compute, and to compute all of those for which the operation is true. A conforming implementation is
expected to be able to compute the value of all literals.

ValueSpecification::isComputable(): Boolean;
isComputable = false
52 UML Superstructure 2.0 Draft Adopted Specification

[2] The query integerValue() gives a single Integer value when one can be computed.

ValueSpecification::integerValue() : [Integer];
integerValue = Set{}

[3] The query booleanValue() gives a single Boolean value when one can be computed.
ValueSpecification::booleanValue() : [Boolean];
booleanValue = Set{}

[4] The query stringValue() gives a single String value when one can be computed.

ValueSpecification::stringValue() : [String];
stringValue = Set{}

[5] The query unlimitedValue() gives a single UnlimitedNatural value when one can be computed.

ValueSpecification::unlimitedValue() : [UnlimitedNatural];
unlimitedValue = Set{}

[6] The query isNull() returns true when it can be computed that the value is null.

ValueSpecification::isNull() : Boolean;
isNull = false

Semantics

A value specification yields zero or more values. It is required that the type and number of values is suitable for the context
where the value specification is used.

Notation

No specific notation.

7.6 Kernel – the Constraints Diagram

The Constraints diagram of the Kernel package is shown in Figure 14.

In order to locate the metaclasses that are referenced from this diagram,

• See “Element (from Kernel)” on page 29.

• See “Namespace (from Kernel)” on page 35.

• See “PackageableElement (from Kernel)” on page 37.

• See “ValueSpecification (from Kernel)” on page 52.

Figure 14 - The Constraints diagram of the Kernel package

PackageableElement

Namesp ace

ValueSpecification

Constraint

*0..1 *

+/co ntext

0..1 {un io n}

0..1 *

+namespace

0..1 {subsets context}

+owne dRul e

*{su bse ts o wnedMe mb er} 0..1 10..1

+sp eci fi ca ti on

1{su bse ts o wnedElemen t}

Element

*

+constrainedElement

*{ordered}
UML Superstructure 2.0 Draft Adopted Specification 53

7.6.1 Constraint (from Kernel)

A constraint is a condition or restriction expressed in natural language text or in a machine readable language for the purpose
of declaring some of the semantics of an element.

Description

Constraint contains a ValueSpecification that specifies additional semantics for one or more elements. Certain kinds of
constraints (such as an association “xor” constraint) are predefined in UML, others may be user-defined. A user-defined
Constraint is described using a specified language, whose syntax and interpretation is a tool responsibility. One predefined
language for writing constraints is OCL. In some situations, a programming language such as Java may be appropriate for
expressing a constraint. In other situations natural language may be used.

Constraint is a condition (a Boolean expression) that restricts the extension of the associated element beyond what is imposed
by the other language constructs applied to that element.

Constraint contains an optional name, although they are commonly unnamed.

Attributes

No additional attributes.

Associations

• constrainedElement: Element[*]The ordered set of Elements referenced by this Constraint.

• / context: Namespace [0..1] Specifies the Namespace that is the context for evaluating this constraint. This is a
derived union.

• specification: ValueSpecification[0..1]
A condition that must be true when evaluated in order for the constraint to be satisfied.
Subsets Element::ownedElement.

Constraints

[1] The value specification for a constraint must evaluate to a boolean value.

Cannot be expressed in OCL.

[2] Evaluating the value specification for a constraint must not have side effects.

Cannot be expressed in OCL.

[3] A constraint cannot be applied to itself.

not constrainedElement->includes(self)

Semantics

A Constraint represents additional semantic information attached to the constrained elements. A constraint is an assertion that
indicates a restriction that must be satisfied by a correct design of the system. The constrained elements are those elements
required to evaluate the constraint specification. In addition, the context of the Constraint may be accessed, and may be used as
the namespace for interpreting names used in the specification. For example, in OCL ‘self’ is used to refer to the context
element.

Constraints are often expressed as a text string in some language. If a formal language such as OCL is used, then tools may be
able to verify some aspects of the constraints.

In general there are many possible kinds of owners for a Constraint. The only restriction is that the owning element must have
54 UML Superstructure 2.0 Draft Adopted Specification

access to the constrainedElements.

The owner of the Constraint will determine when the constraint specification is evaluated. For example, this allows an
Operation to specify if a Constraint represents a precondition or a postcondition.

Notation

A Constraint is shown as a text string in braces ({}) according to the following BNF:
constraint ::= ‘{‘ [<name> ‘:’] <boolean expression>’ }’

For an element whose notation is a text string (such as an attribute, etc.), the constraint string may follow the element text
string in braces. Figure 15 shows a constraint string that follows an attribute within a class symbol.

For a Constraint that applies to a single element (such as a class or an association path), the constraint string may be placed
near the symbol for the element, preferably near the name, if any. A tool must make it possible to determine the constrained
element.

For a Constraint that applies to two elements (such as two classes or two associations), the constraint may be shown as a
dashed line between the elements labeled by the constraint string (in braces). Figure 16 shows an {xor} constraint between two
associations.

Presentation Options

The constraint string may be placed in a note symbol and attached to each of the symbols for the constrained elements by a
dashed line. Figure 17 shows an example of a constraint in a note symbol.

If the constraint is shown as a dashed line between two elements, then an arrowhead may be placed on one end. The direction
of the arrow is relevant information within the constraint. The element at the tail of the arrow is mapped to the first position
and the element at the head of the arrow is mapped to the second position in the constrainedElements collection.

For three or more paths of the same kind (such as generalization paths or association paths), the constraint may be attached to
a dashed line crossing all of the paths.
UML Superstructure 2.0 Draft Adopted Specification 55

Examples

Figure 15 - Constraint attached to an attribute

Figure 16 - {xor} constraint

Stack

size: Integer {size >= 0}

push()
pop()

Account

Person

Corporation

{xor}
56 UML Superstructure 2.0 Draft Adopted Specification

7.7 Kernel – the Instances Diagram

The Instances diagram of the Kernel package is shown in Figure 18.

In order to locate the metaclasses that are referenced from this diagram,

• See “Classifier (from Kernel, Dependencies, PowerTypes)” on page 61.

• See “Element (from Kernel)” on page 29.

• See “PackageableElement (from Kernel)” on page 37.

• See “StructuralFeature (from Kernel)” on page 75.

• See “ValueSpecification (from Kernel)” on page 52.

7.7.1 InstanceSpecification (from Kernel)

An instance specification is a model element that represents an instance in a modeled system.

Figure 17 - Constraint in a note symbol

Figure 18 - The Instances diagram of the Kernel package.

Person Company
employee employer

* 0..1

boss0..1

{self.boss->isEmpty() or
self.employer = self.boss.employer}

PackageableElement Element

ValueSpecification

Classifier

InstanceSpecification

0..1 0..1

+owningInstanceSpec

0..1

{subsets owner} +specification

0..1{subsets ownedElement}

0..*

+cl assifi er

0..*

ValueSpecificationSlot

1 *

+owningInstance

1 {subsets owner}

+slot

*{subsets ownedElement}

0..1
*

+own ingSlo t

0..1

{subsets owner} +value

*
{ordered,

subsets ownedElement}

StructuralFeature

1

+definingFe ature

1

UML Superstructure 2.0 Draft Adopted Specification 57

Description

An instance specification specifies existence of an entity in a modeled system and completely or partially describes the entity.
The description may include:

• Classification of the entity by one or more classifiers of which the entity is an instance. If the only classifier specified
is abstract, then the instance specification only partially describes the entity.

• The kind of instance, based on its classifier or classifiers — for example, an instance specification whose classifier is a
class describes an object of that class, while an instance specification whose classifier is an association describes a link
of that association.

• Specification of values of structural features of the entity. Not all structural features of all classifiers of the instance
specification need be represented by slots, in which case the instance specification is a partial description.

• Specification of how to compute, derive or construct the instance (optional).

InstanceSpecification is a concrete class.

Attributes

No additional attributes.

Associations

• classifier : Classifier [0..*] The classifier or classifiers of the represented instance. If multiple classifiers are specified,
the instance is classified by all of them.

• slot : Slot [*] A slot giving the value or values of a structural feature of the instance. An instance speci-
fication can have one slot per structural feature of its classifiers, including inherited fea-
tures. It is not necessary to model a slot for each structural feature, in which case the
instance specification is a partial description. Subsets Element::ownedElement.

• specification : ValueSpecification [0..1]A specification of how to compute, derive, or construct the instance. Subsets Ele-
ment::ownedElement.

Constraints

[1] The defining feature of each slot is a structural feature (directly or inherited) of a classifier of the instance specification.

slot->forAll(s |
classifier->exists(c | c.allFeatures()->includes(s.definingFeature)
)

[2] One structural feature (including the same feature inherited from multiple classifiers) is the defining feature of at most
one slot in an instance specification.

classifier->forAll(c |
(c.allFeatures()->forAll(f | slot->select(s | s.definingFeature = f)->size() <= 1)
)

Semantics

An instance specification may specify the existence of an entity in a modeled system. An instance specification may provide
an illustration or example of a possible entity in a modeled system. An instance specification describes the entity. These details
can be incomplete. The purpose of an instance specification is to show what is of interest about an entity in the modeled
system. The entity conforms to the specification of each classifier of the instance specification, and has features with values
indicated by each slot of the instance specification. Having no slot in an instance specification for some feature does not mean
that the represented entity does not have the feature, but merely that the feature is not of interest in the model.
58 UML Superstructure 2.0 Draft Adopted Specification

An instance specification can represent an entity at a point in time (a snapshot). Changes to the entity can be modeled using
multiple instance specifications, one for each snapshot.

Note – When used to provide an illustration or example of an entity in a modeled system, an InstanceSpecification class does
not depict a precise run-time structure. Instead, it describes information about such structures. No conclusions can be drawn
about the implementation detail of run-time structure. When used to specify the existence of an entity in a modeled system, an
instance specification represents part of that system. Instance specifications can be modeled incompletely — required struc-
tural features can be omitted, and classifiers of an instance specification can be abstract, even though an actual entity would
have a concrete classification.

Notation

An instance specification is depicted using the same notation as its classifier, but in place of the classifier name appears an
underlined concatenation of the instance name (if any), a colon (‘:’) and the classifier name or names. If there are multiple
classifiers, the names are all shown separated by commas. Classifier names can be omitted from a diagram.

If an instance specification has a value specification as its specification, the value specification is shown either after an equal
sign (“=”) following the name, or without an equal sign below the name. If the instance specification is shown using an
enclosing shape (such as a rectangle) that contains the name, the value specification is shown within the enclosing shape.

Slots are shown using similar notation to that of the corresponding structural features. Where a feature would be shown
textually in a compartment, a slot for that feature can be shown textually as a feature name followed by an equal sign (‘=’) and
a value specification. Other properties of the feature, such as its type, can optionally be shown.

An instance specification whose classifier is an association represents a link and is shown using the same notation as for an
association, but the solid path or paths connect instance specifications rather than classifiers. It is not necessary to show an
underlined name where it is clear from its connection to instance specifications that it represents a link and not an association.
End names can adorn the ends. Navigation arrows can be shown, but if shown, they must agree with the navigation of the

Figure 19 - Specification of an instance of String

Figure 20 - Slots with values

streetName: String

"S. Crown Ct."

streetName = "S. Crown Ct."
streetNumber : Integer = 381

myAddress: Address
UML Superstructure 2.0 Draft Adopted Specification 59

association ends.

Presentation Options

A slot value for an attribute can be shown using a notation similar to that for a link. A solid path runs from the owning
instance specification to the target instance specification representing the slot value, and the name of the attribute adorns
the target end of the path. Navigability, if shown, must be only in the direction of the target.

7.7.2 Slot (from Kernel)

A slot specifies that an entity modeled by an instance specification has a value or values for a specific structural feature.

Description

A slot is owned by an instance specification. It specifies the value or values for its defining feature, which must be a structural
feature of a classifier of the instance specification owning the slot.

Attributes

No additional attributes.

Associations

• definingFeature : StructuralFeature [1]
The structural feature that specifies the values that may be held by the slot.

• owningInstance : InstanceSpecification [1]
The instance specification that owns this slot. Subsets Element::owner.

• value : InstanceSpecification [*]
The value or values corresponding to the defining feature for the owning instance specifi-
cation. This is an ordered association. Subsets Element::ownedElement.

Constraints

No additional constraints.

Semantics

A slot relates an instance specification, a structural feature, and a value or values. It represents that an entity modeled by the
instance specification has a structural feature with the specified value or values. The values in a slot must conform to the
defining feature of the slot (in type, multiplicity, etc.).

Notation

See “InstanceSpecification (from Kernel)”.

Figure 21 - Instance specifications representing two objects connected by a link

Don : Person Josh : Personfather son
60 UML Superstructure 2.0 Draft Adopted Specification

7.8 Kernel – the Classifiers Diagram

The Classifiers diagram of the Kernel package is shown in Figure 22.

In order to locate the metaclasses that are referenced from this diagram,

• See “DirectedRelationship (from Kernel)” on page 28.

• See “NamedElement (from Kernel, Dependencies)” on page 33.

• See “Namespace (from Kernel)” on page 35.

• See “PackageableElement (from Kernel)” on page 37.

7.8.1 Classifier (from Kernel, Dependencies, PowerTypes)

A classifier is a classification of instances — it describes a set of instances that have features in common.

Description

A classifier is a namespace whose members can include features. Classifier is an abstract metaclass.

A classifier is a type and can own generalizations, thereby making it possible to define generalization relationships to other
classifiers. A classifier can specify a generalization hierarchy by referencing its general classifiers.

A classifier is a redefinable element, meaning that it is possible to redefine nested classifiers.

Attributes

• isAbstract: Boolean If true, the Classifier does not provide a complete declaration and can typically not be
instantiated. An abstract classifier is intended to be used by other classifiers e.g. as the tar-
get of general metarelationships or generalization relationships. Default value is false.

Figure 22 - The Classifiers diagram of the Kernel package

DirectedRelationshipNamedElement Namespace

RedefinableElement

isLeaf : Boolean = false

*

+/redefi nedElement

*
{union}

Generalization

isSubstitutable : Boolean

Classifier

isAbstract : Boolean = false

*

+redefinedClassifier

* {subsets redefinedElement}

*

+/rede fi ni ti onContext

*{union}

1 *

+specific

1
{subsets source,
subsets owner}

+generalization

*{subsets o wnedElement}

1

+general

1 {subsets target}

*+/general *

NamedElement

*

+/i nheri tedMem ber

*
{subsets member}

Redefina bleElement Type
UML Superstructure 2.0 Draft Adopted Specification 61

Associations

• attribute: Property [*] Refers to all of the Properties that are direct (i.e. not inherited or imported) attributes of
the classifier. Subsets Classifier::feature and is a derived union.

• / feature : Feature [*] Specifies each feature defined in the classifier. Subsets Namespace::member. This is a
derived union.

• / general : Classifier[*] Specifies the general Classifiers for this Classifier. This is derived.

• generalization: Generalization[*]Specifies the Generalization relationships for this Classifier. These Generalizations navi-
gate to more general classifiers in the generalization hierarchy. Subsets Ele-
ment::ownedElement.

• / inheritedMember: NamedElement[*]Specifies all elements inherited by this classifier from the general classifiers. Sub-
sets Namespace::member. This is derived.

• package: Package [0..1] Specifies the owning package of this classifier, if any. Subsets NamedEle-
ment::namespace.

• redefinedClassifier: Classifier [*]References the Classifiers that are redefined by this Classifier. Subsets RedefinableEle-
ment::redefinedElement.

Package Dependencies (“Dependencies” on page 105)

• substitution : Substitution References the substitutions that are owned by this Classifier. Subsets Ele-
ment::ownedElement and NamedElement::clientDependency.)

Package PowerTypes (“PowerTypes” on page 120)

• powertypeExtent : GeneralizationSet
Designates the GeneralizationSet of which the associated Classifier is a power type.

Constraints

[1] The general classifiers are the classifiers referenced by the generalization relationships.

general = self.parents()

[2] Generalization hierarchies must be directed and acyclical. A classifier can not be both a transitively general and transi-
tively specific classifier of the same classifier.

not self.allParents()->includes(self)

[3] A classifier may only specialize classifiers of a valid type.

self.parents()->forAll(c | self.maySpecializeType(c))

[4] The inheritedMember association is derived by inheriting the inheritable members of the parents.

self.inheritedMember->includesAll(self.inherit(self.parents()->collect(p | p.inheritableMembers(self)))

Package PowerTypes (“PowerTypes” on page 120)

[5] The Classifier that maps to a GeneralizationSet may neither be a specific nor a general Classifier in any of the Generaliza-
tion relationships defined for that GeneralizationSet. In other words, a power type may not be an instance of itself nor may
its instances also be its subclasses.

Additional Operations

[1] The query allFeatures() gives all of the features in the namespace of the classifier. In general, through mechanisms such as
inheritance, this will be a larger set than feature.
62 UML Superstructure 2.0 Draft Adopted Specification

Classifier::allFeatures(): Set(Feature);
allFeatures = member->select(oclIsKindOf(Feature))

[2] The query parents() gives all of the immediate ancestors of a generalized Classifier.

Classifier::parents(): Set(Classifier);
parents = generalization.general

[3] The query allParents() gives all of the direct and indirect ancestors of a generalized Classifier.

Classifier::allParents(): Set(Classifier);
allParents = self.parents()->union(self.parents()->collect(p | p.allParents())

[4] The query inheritableMembers() gives all of the members of a classifier that may be inherited in one of its descendants,
subject to whatever visibility restrictions apply.

Classifier::inheritableMembers(c: Classifier): Set(NamedElement);
pre: c.allParents()->includes(self)
inheritableMembers = member->select(m | c.hasVisibilityOf(m))

[5] The query hasVisibilityOf() determines whether a named element is visible in the classifier. By default all are visible. It is
only called when the argument is something owned by a parent.

Classifier::hasVisibilityOf(n: NamedElement) : Boolean;
pre: self.allParents()->collect(c | c.member)->includes(n)
hasVisibilityOf =true

[6] The query conformsTo() gives true for a classifier that defines a type that conforms to another. This is used, for example,
in the specification of signature conformance for operations.

Classifier::conformsTo(other: Classifier): Boolean;
conformsTo = (self=other) or (self.allParents()->includes(other))

[7] The query inherit() defines how to inherit a set of elements. Here the operation is defined to inherit them all. It is intended
to be redefined in circumstances where inheritance is affected by redefinition.

Classifier::inherit(inhs: Set(NamedElement)): Set(NamedElement);
inherit = inhs

[8] The query maySpecializeType() determines whether this classifier may have a generalization relationship to classifiers of
the specified type. By default a classifier may specialize classifiers of the same or a more general type. It is intended to be
redefined by classifiers that have different specialization constraints.

Classifier::maySpecializeType(c : Classifier) : Boolean;
maySpecializeType = self.oclIsKindOf(c.oclType)

Semantics

A classifier is a classification of instances according to their features.

A Classifier may participate in generalization relationships with other Classifiers. An instance of a specific Classifier is also an
(indirect) instance of each of the general Classifiers. Therefore, features specified for instances of the general classifier are
implicitly specified for instances of the specific classifier. Any constraint applying to instances of the general classifier also
applies to instances of the specific classifier.

The specific semantics of how generalization affects each concrete subtype of Classifier varies. All instances of a classifier
have values corresponding to the classifier’s attributes.

A Classifier defines a type. Type conformance between generalizable Classifiers is defined so that a Classifier conforms to
itself and to all of its ancestors in the generalization hierarchy.

Package PowerTypes (“PowerTypes” on page 120)

The notion of power type was inspired by the notion of power set. A power set is defined as a set whose instances are subsets.
In essence, then, a power type is a class whose instances are subclasses. The powertypeExtent association relates a Classifier
UML Superstructure 2.0 Draft Adopted Specification 63

with a set of generalizations which a) have a common specific Classifier, and b) represent a subclass partitioning of that class.

Semantic Variation Points

The precise lifecycle semantics of aggregation is a semantic variation point.

Notation

The default notation for a classifier is a solid-outline rectangle containing the classifier’s name, and optionally with
compartments separated by horizontal lines containing features or other members of the classifier. The specific type of
classifier can be shown in guillemets above the name. Some specializations of Classifier have their own distinct notations.

The name of an abstract Classifier is shown in italics.

An attribute can be shown as a text string that can be parsed into the various properties of an attribute. The basic syntax is
(with optional parts shown in braces):

[visibility] [/] name [: type] [multiplicity] [= default] [{ property-string }]

In the following bullets, each of these parts is described:

• visibility is a visibility symbol such as +, -, #, or ~. See VisibilityKind (from Kernel) on page -39.

• / means the attribute is derived.

• name is the name of the attribute.

• type identifies a classifier that is the attribute’s type.

• multiplicity shows the attribute’s multiplicity in square brackets. The term may be omitted when a multiplicity of 1
(exactly one) is to be assumed. See MultiplicityElement (from Kernel) on page -40

• default is an expression for the default value or values of the attribute.

• property-string indicates property values that apply to the attribute. The property string is optional (the braces are
omitted if no properties are specified).

The following property strings can be applied to an attribute: {readOnly}, {union}, {subsets <property-name>}, {redefines
<property-name>}, {ordered}, {bag}, {seq} or {sequence}, and {composite}.

An attribute with the same name as an attribute that would have been inherited is interpreted to be a redefinition, without the
need for a {redefines <x>} property string. Note that a redefined attribute is not inherited into a namespace where it is
redefined, so its name can be reused in the featuring classifier, either for the redefining attribute, or alternately for some other
attribute.

Presentation Options

Any compartment may be suppressed. A separator line is not drawn for a suppressed compartment. If a compartment is
suppressed, no inference can be drawn about the presence or absence of elements in it. Compartment names can be used to
remove ambiguity, if necessary.

An abstract Classifier can be shown using the keyword {abstract} after or below the name of the Classifier.

The type, visibility, default, multiplicity, property string may be suppressed from being displayed, even if there are values in
the model.

The individual properties of an attribute can be shown in columns rather than as a continuous string.
64 UML Superstructure 2.0 Draft Adopted Specification

Style Guidelines

Attribute names typically begin with a lowercase letter. Multiword names are often formed by concatenating the words and
using lowercase for all letter except for upcasing the first letter of each word but the first.

Examples

The attributes in Figure 23 are explained below.

• ClassA::name is an attribute with type String.

• ClassA::shape is an attribute with type Rectangle.

• ClassA::size is a public attribute of type Integer with multiplicity 0..1.

• ClassA::area is a derived attribute with type Integer. It is marked as read-only.

• ClassA::height is an attribute of type Integer with a default initial value of 5.

• ClassA::width is an attribute of type Integer

• ClassB::id is an attribute that redefines ClassA::name.

• ClassB::shape is an attribute that redefines ClassA::shape. It has type Square, a specialization of Rectangle.

• ClassB::height is an attribute that redefines ClassA::height. It has a default of 7 for ClassB instances which overrides
the ClassA default of 5.

• ClassB::width is a derived attribute that redefines ClassA::width, which is not derived.

Figure 23 - Examples of attributes

ClassB

id {redefines name}
shape: Square
height = 7
/ width

ClassA

name: String
shape: Rectangle
+ size: Integer [0..1]
/ area: Integer {readOnly}
height: Integer= 5
width: Integer
UML Superstructure 2.0 Draft Adopted Specification 65

An attribute may also be shown using association notation, with no adornments at the tail of the arrow as shown in Figure 24.

Package PowerTypes (“PowerTypes” on page 120)

For example, a Bank Account Type classifier could have a powertype association with a GeneralizationSet. This
GeneralizationSet could then associate with two Generalizations where the class (i.e., general Classifier) Bank Account has
two specific subclasses (i.e., Classifiers): Checking Account and Savings Account. Checking Account and Savings Account,
then, are instances of the power type: Bank Account Type. In other words, Checking Account and Savings Account are both:
instances of Bank Account Type, as well as subclasses of Bank Account. (For more explanation and examples, see Examples
in the GeneralizationSet section, below.)

7.8.2 Generalization (from Kernel, PowerTypes)

A generalization is a taxonomic relationship between a more general classifier and a more specific classifier. Each instance of
the specific classifier is also an indirect instance of the general classifier. Thus, the specific classifier inherits the features of
the more general classifier.

Description

A generalization relates a specific classifier to a more general classifier, and is owned by the specific classifier.

Package PowerTypes (“PowerTypes” on page 120)

A generalization can be designated as being a member of a particular generalization set.

Attributes

• isSubstitutable: Boolean [0..1] Indicates whether the specific classifier can be used whereever the general classifier can
be used. If true, the execution traces of the specific classifier will be a superset of the exe-
cution traces of the general classifier.

Associations

• general: Classifier [1] References the general classifier in the Generalization relationship.
Subsets DirectedRelationship::target.

• specific: Classifier [1] References the specializing classifier in the Generalization relationship.
Subsets DirectedRelationship::source and Element::owner.

Package PowerTypes (“PowerTypes” on page 120)

• generalizationSet Designates a set in which instances of Generalization is considered members.

Constraints

No additional constraints.

Figure 24 - Association-like notation for attribute

AreaWindow
size

1

66 UML Superstructure 2.0 Draft Adopted Specification

Package PowerTypes (“PowerTypes” on page 120)

[1] Every Generalization associated with a given GeneralizationSet must have the same general Classifier. That is, all Gener-
alizations for a particular GeneralizationSet must have the same superclass.

Semantics

Where a generalization relates a specific classifier to a general classifier, each instance of the specific classifier is also an
instance of the general classifier. Therefore, features specified for instances of the general classifier are implicitly specified for
instances of the specific classifier. Any constraint applying to instances of the general classifier also applies to instances of the
specific classifier.

Package PowerTypes (“PowerTypes” on page 120)

Each Generalization is a binary relationship that relates a specific Classifier to a more general Classifier (i.e., a subclass). Each
GeneralizationSet contains a particular set of Generalization relationships that collectively describe the way in which a specific
Classifier (or class) may be partitioned. The generalizationSet associates those instances of a Generalization with a particular
GeneralizationSet.

For example, one Generalization could relate Person as a general Classifier with a Female Person as the specific Classifier.
Another Generalization could also relate Person as a general Classifier, but have Male Person as the specific Classifier. These
two Generalizations could be associated with the same GeneralizationSet, because they specify one way of partitioning the
Person class.

Notation

A Generalization is shown as a line with an hollow triangle as an arrowhead between the symbols representing the involved
classifiers. The arrowhead points to the symbol representing the general classifier. This notation is referred to as the “separate
target style”. See the example section below.

Package PowerTypes (“PowerTypes” on page 120)

A generalization is shown as a line with an hollow triangle as an arrowhead between the symbols representing the involved
classifiers. The arrowhead points to the symbol representing the general classifier. When these relationships are named, that
name designates the GeneralizationSet to which the Generalization belongs. Each GeneralizationSet has a name (which it
inherits since it is a subclass of PackableElement). Therefore, all Generalization relationships with the same GeneralizationSet
name are part of the same GeneralizationSet. This notation form is depicted in a), below.

When two or more lines are drawn to the same arrowhead, as illustrated in b) below, the specific Classifiers are part of the
same GeneralizationSet. When diagrammed in the way, the lines do not need to be labeled separately; instead the
generalization set need only be labeled once. The labels are optional because the GeneralizationSet is clearly designated.

Lastly in c) below, a GeneralizationSet can be designated by drawing a dashed line across those lines with separate arrowheads
that are meant to be part of the same set, as illustrated at the bottom of the figure below. Here, as with b), the GeneralizationSet
may be labeled with a single name, instead of each line labeled separately. However, such labels are optional because the
UML Superstructure 2.0 Draft Adopted Specification 67

GeneralizationSet is clearly designated.

Presentation Options

Multiple Generalization relationships that reference the same general classifier can be connected together in the “shared target
style”. See the example section below.

Figure 25 - GeneralizationSet designation notations

b) GeneralizationSet designation by subtypes sharing a common generalization arrowhead.

c) GeneralizationSet sharing same general Classifier using the dashed-line notation.

one

another

one Generalization Set

Generalization Set

another

Generalization Set

another

Generalization Set

Generalization
Set

a) GeneralizationSet sharing same general Classifier using the same generalization relationship names.

one Generalization Set

another

Generalization Set

generalization
set name-2

generalization
set name-1

generalization
set name-1

generalization
set name-1 generalization

set name-2

generalization
set name-2

generalization
set name-2

generalization
set name-1

generalization
set name-1

one
Generalization

Set
68 UML Superstructure 2.0 Draft Adopted Specification

Examples

Package PowerTypes (“PowerTypes” on page 120)

In the illustration below, the Person class can be specialized as either a Female Person or a Male Person. Furthermore,
Person’s can be specialized as an Employee. Here, Female Person or a Male Person of Person constitute one GeneralizationSet
and Manager another. This illustration employs the notation forms depicted in the diagram above.

Figure 26 - Examples of generalizations between classes

Figure 27 - Multiple subtype partitions (GeneralizationSets) example

Shape

Polygon Ellipse Spline

Shape

Polygon Ellipse Spline

Separate target style

Shared target style

Female
Person

Male
Person

Employee

Person

gender

Female
Person

Male
Person

Employee

Person

employment
statusgender

Female
Person

Male
Person

Employee

Person

gender

gender
employment

status

employment
status

Female
Person

Male
Person

Employee

Person
UML Superstructure 2.0 Draft Adopted Specification 69

7.8.3 RedefinableElement (from Kernel)

A redefinable element is an element that, when defined in the context of a classifier, can be redefined more specifically or
differently in the context of another classifier that specializes (directly or indirectly) the context classifier.

Description

A redefinable element is a named element that can be redefined in the context of a generalization. RedefinableElement is an
abstract metaclass.

Attributes

• isLeaf: Boolean Indicates whether it is possible to further specialize a RedefinableElement. If the value is
true, then it is not possible to further specialize the RedefinableElement. Default value is
false.

Associations

• / redefinedElement: RedefinableElement[*]The redefinable element that is being redefined by this element. This is a
derived union.

• / redefinitionContext: Classifier[*]References the contexts that this element may be redefined from. This is a derived
union.

Constraints

[1] At least one of the redefinition contexts of the redefining element must be a specialization of at least one of the redefinition
contexts for each redefined element.

self.redefinedElement->forAll(e | self.isRedefinitionContextValid(e))

[2] A redefining element must be consistent with each redefined element.

self.redefinedElement->forAll(re | re.isConsistentWith(self))

Additional Operations

[1] The query isConsistentWith() specifies, for any two RedefinableElements in a context in which redefinition is possible,
whether redefinition would be logically consistent. By default, this is false; this operation must be overridden for sub-
classes of RedefinableElement to define the consistency conditions.

RedefinableElement::isConsistentWith(redefinee: RedefinableElement): Boolean;
pre: redefinee.isRedefinitionContextValid(self)
isConsistentWith = false

[2] The query isRedefinitionContextValid() specifies whether the redefinition contexts of this RedefinableElement are prop-
erly related to the redefinition contexts of the specified RedefinableElement to allow this element to redefine the other. By
default at least one of the redefinition contexts of this element must be a specialization of at least one of the redefinition
contexts of the specified element.

RedefinableElement::isRedefinitionContexValid(redefinable: RedefinableElement): Boolean;
isRedefinitionContextValid = self.redefinitionContext->exists(c |

redefinable.redefinitionContext->exists(c | c.allParents()->includes(r))
)

Semantics

A RedefinableElement represents the general ability to be redefined in the context of a generalization relationship. The
detailed semantics of redefinition varies for each specialization of RedefinableElement.
70 UML Superstructure 2.0 Draft Adopted Specification

A redefinable element is a specification concerning instances of a classifier that is one of the element’s redefinition contexts.
For a classifier that specializes that more general classifier (directly or indirectly), another element can redefine the element
from the general classifier in order to augment, constrain, or override the specification as it applies more specifically to
instances of the specializing classifier.

A redefining element must be consistent with the element it redefines, but it can add specific constraints or other details that
are particular to instances of the specializing redefinition context that do not contradict invariant constraints in the general
context.

A redefinable element may be redefined multiple times. Furthermore, one redefining element may redefine multiple inherited
redefinable elements.

Semantic Variation Points

There are various degrees of compatibility between the redefined element and the redefining element, such as name
compatibility (the redefining element has the same name as the redefined element), structural compatibility (the client visible
properties of the redefined element are also properties of the redefining element), or behavioral compatibility (the redefining
element is substitutable for the redefined element). Any kind of compatibility involves a constraint on redefinitions. The
particular constraint chosen is a semantic variation point.

Notation

No general notation. See the subclasses of RedefinableElement for the specific notation used.

7.9 Kernel – the Features Diagram

The Features diagram of the Kernel package is shown in Figure 28.

In order to locate the metaclasses that are referenced from this diagram,

• See “Classifier (from Kernel, Dependencies, PowerTypes)” on page 61.

• See “NamedElement (from Kernel, Dependencies)” on page 33.

• See “Namespace (from Kernel)” on page 35.

Figure 28 - The Features diagram of the Kernel package

RedefinableElement

StructuralFeature

isReadOnly : Boolean = fa lse

TypedElement

P ara m ete rDirect ionKi nd

in
inout
out
return

<<enumeration>>

BehavioralFeature Param eter

d irecti on : Param eterDi re ct ion Kin d = in
/ def aul t : Str in g

0..1 *0..1

+/param eter

*
{union,

subsets mem ber,
ordered}

0..1 *

+ownerReturnParam

0..1

{subsets nam espace} +returnResul t

*{ordered,
subsets parameter,

subsets ownedMember}

0..1 *

+ownerFormalParam

0..1

{subsets namespace} +formalParam eter

*
{ordered,

subsets parameter,
subsets ownedMember}

Feature

isStatic : Boolean = fa lse
Classi fier

1..

+/feature

*{u nion}

+ /f eatur in gCl assifi er

1..* {union}

Namespace

[0. .1]

V alu eSpe ci fi cati on

0..1 0..1

+owningParameter

0..1 {subsets owner}

+defaul tValue

0..1{subsets ownedElem ent}

Multipl icityElement
Mul tipl icityElement

T yped Ele ment

T ype

*+raisedException *
UML Superstructure 2.0 Draft Adopted Specification 71

• See “RedefinableElement (from Kernel)” on page 70.

• See “TypedElement (from Kernel)” on page 44.

• See “ValueSpecification (from Kernel)” on page 52.

7.9.1 BehavioralFeature (from Kernel)

A behavioral feature is a feature of a classifier that specifies an aspect of the behavior of its instances.

Description

A behavioral feature specifies that an instance of a classifier will respond to a designated request by invoking a behavior.
BehavioralFeature is an abstract metaclass specializing Feature and Namespace. Kinds of behavioral aspects are modeled by
subclasses of BehavioralFeature.

Attributes

No additional attributes.

Associations

• formalParameter: Parameter[*] Specifies the ordered set of formal parameters of this BehavioralFeature. Subsets
BehavioralFeature::parameter and Namespace::ownedMember.

• raisedException: Type[*] References the Types representing exceptions that may be raised during an invocation of
this operation.

• / parameter: Parameter[*] Specifies the parameters of the BehavioralFeature. Subsets Namespace::member. This is a
derived union and is ordered.

• returnResult: Parameter[*] Specifies the ordered set of return results of this BehavioralFeature. Subsets Behavioral-
Feature::parameter and Namespace::ownedMember.

Constraints

No additional constraints.

Additional Operations

[1] The query isDistinguishableFrom() determines whether two BehavioralFeatures may coexist in the same Namespace. It
specifies that they have to have different signatures.

BehavioralFeature::isDistinguishableFrom(n: NamedElement, ns: Namespace): Boolean;
isDistinguishableFrom =

if n.oclIsKindOf(BehavioralFeature)
then

if ns.getNamesOfMember(self)->intersection(ns.getNamesOfMember(n))->notEmpty()
then Set{}->including(self)->including(n)->isUnique(bf | bf.parameter->collect(type))
else true
endif

else true
endif

Semantics

The list of parameters describes the order and type of arguments that can be given when the BehavioralFeature is invoked.
72 UML Superstructure 2.0 Draft Adopted Specification

The formal parameters define the type, and number, of arguments that must be provided when invoking the BehavioralFeature.
The return results define the type, and number, of arguments that will be returned from a successful invocation. A
BehavioralFeature may raise an exception during its invocation.

Notation

No additional notation.

7.9.2 Feature (from Kernel)

A feature declares a behavioral or structural characteristic of instances of classifiers.

Description

A feature declares a behavioral or structural characteristic of instances of classifiers. Feature is an abstract metaclass.

Attributes

• isStatic: Boolean Specifies whether the feature is applied at the classifier-level (true) or the instance-level
(false). Default value is false.

Associations

• / featuringClassifier: Classifier [1..*]
The Classifiers that have this Feature as a feature. This is a derived union.

Constraints

No additional constraints.

Semantics

A Feature represents some characteristic for its featuring classifiers. A Feature can be a feature of multiple classifiers.

Notation

No general notation. Subclasses define their specific notation.

Static features are underlined.

Presentation Options

Only the names of static features are underlined.

7.9.3 Parameter (from Kernel)

A parameter is a specification of an argument used to pass information into or out of an invocation of a behavioral feature.

Description

A parameter is a specification of an argument used to pass information into or out of an invocation of a behavioral feature. It
has a type, and may have a multiplicity and an optional default value.
UML Superstructure 2.0 Draft Adopted Specification 73

Attributes

• / default: String [0..1] Specifies a String that represents a value to be used when no argument is supplied for the
Parameter. This is a derived value.

• direction: ParameterDirectionKind [1] Indicates whether a parameter is being sent into or out of a behavioral element. The
default value is in.

Associations

• /operation: Operation[0..1] References the Operation for which this is a formal parameter. Subsets NamedEle-
ment::namespace.

• defaultValue: ValueSpecification [0..1]Specifies a ValueSpecification that represents a value to be used when no argument
is supplied for the Parameter. Subsets Element::ownedElement.

Constraints

No additional constraints.

Semantics

A parameter specifies how arguments are passed into or out of an invocation of a behavioral feature like an operation. The type
and multiplicity of a parameter restrict what values can be passed, how many, and whether the values are ordered.

If a default is specified for a parameter, then it is evaluated at invocation time and used as the argument for this parameter if
and only if no argument is supplied at invocation of the behavioral feature.

A parameter may be given a name, which then identifies the parameter uniquely within the parameters of the same behavioral
feature. If it is unnamed, it is distinguished only by its position in the ordered list of parameters.

Notation

No general notation. Specific subclasses of BehavioralFeature will define the notation for their parameters.

Style Guidelines

A parameter name typically starts with a lowercase letter.

7.9.4 ParameterDirectionKind (from Kernel)

Parameter direction kind is an enumeration type that defines literals used to specify direction of parameters.

Description

ParameterDirectionKind is an enumeration of the following literal values:

• in Indicates that parameter values are passed into the behavioral element by the caller.

• inout Indicates that parameter values are passed into a behavioral element by the caller and then
back out to the caller from the behavioral element.

• out Indicates that parameter values are passed from a behavioral element out to the caller.

• return Indicates that parameter values are passed as return values from a behavioral element back
to the caller.
74 UML Superstructure 2.0 Draft Adopted Specification

7.9.5 StructuralFeature (from Kernel)

A structural feature is a typed feature of a classifier that specify the structure of instances of the classifier.

Description

A structural feature is a typed feature of a classifier that specify the structure of instances of the classifier. Structural feature is
an abstract metaclass.

By specializing multiplicity element, it supports a multiplicity that specifies valid cardinalities for the set of values associated
with an instantiation of the structural feature.

Attributes

• isReadOnly: Boolean States whether the feature’s value may be modified by a client. Default is false.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

A structural feature specifies that instances of the featuring classifier have a slot whose value or values are of a specified type.

Notation

A read only structural feature is shown using {readOnly} as part of the notation for the structural feature. A modifiable
structural feature is shown using {unrestricted} as part of the notation for the structural feature. This annotation may be
suppressed, in which case it is not possible to determine its value from the diagram.

Presentation Option

It is possible to only allow suppression of this annotation when isReadOnly=false. In this case it is possible to assume this
value in all cases where {readOnly} is not shown.
UML Superstructure 2.0 Draft Adopted Specification 75

7.10 Kernel – the Operations Diagram

The Operations diagram of the Kernel package is shown in Figure 29.

In order to locate the metaclasses that are referenced from this diagram,

• See “BehavioralFeature (from Kernel)” on page 72.

• See “Constraint (from Kernel)” on page 54.

• See “Classifier (from Kernel, Dependencies, PowerTypes)” on page 61.

• See “Parameter (from Kernel)” on page 73.

7.10.1 Operation (from Kernel)

An operation is a behavioral feature of a classifier that specifies the name, type, parameters, and constraints for invoking an
associated behavior.

Description

An operation is a behavioral feature of a classifier that specifies the name, type, parameters, and constraints for invoking an
associated behavior.

Figure 29 - The Operations diagram of the Kernel package.

BehavioralFeature

[0..1]
[0..1]

Constraint

ParameterOperation

isQuery : Boo lea n = fal se
/ isOrd ered : Boo lea n
/ isUni que : Bool ean
/ lo wer : Intege r
/ uppe r : Un li mitedNatu ral

*

+redefinedOperation

* {subsets redefinedElement}

0..1 *

+p reContext

0..1
{subsets context,

subsets namespace}

+precondition

*{subsets ownedMember}

0..1 *

+postContext

0..1
{subse ts context,

subsets namespace}

+postcondition

*{subsets ownedMember}

0..10..1

+bodyCondition

0..1{subsets ownedMember}

+bodyContext

0..1
{subsets context,

subsets namesp ace}

*0..1

+formalParameter

*{re defines formalParameter}

+operat io n

0..1
{subsets namespace}

Type
0..1

+/type

0..1

*

+raisedException

*

76 UML Superstructure 2.0 Draft Adopted Specification

Attributes

• class : Class [0..1] The class that owns this operation. Subsets RedefinableElement::redefinitionContext,
NamedElement::namespace and Feature::featuringClassifier.

• /isOrdered : Boolean Specifies whether the return parameter is ordered or not, if present. This is derived.

• isQuery : Boolean Specifies whether an execution of the BehavioralFeature leaves the state of the system
unchanged (isQuery=true) or whether side effects may occur (isQuery=false). The default
value is false.

• /isUnique : Boolean Specifies whether the return parameter is unique or not, if present. This is derived.

• /lower : Integer[0..1] Specifies the lower multiplicity of the return parameter, if present. This is derived.

• /upper : UnlimitedNatural[0..1]Specifies the upper multiplicity of the return parameter, if present.This is derived.

Associations

• bodyCondition: Constraint[0..1]An optional Constraint on the result values of an invocation of this Operation. Subsets
Namespace::ownedMember.

• formalParameter: Parameter[*] Specifies the formal parameters for this Operation. Redefines BehavioralFeature::formal-
Parameter.

• postcondition: Constraint[*] An optional set of Constraints specifying the state of the system when the Operation is
completed. Subsets Namespace::ownedMember.

• precondition: Constraint[*] An optional set of Constraints on the state of the system when the Operation is invoked.
Subsets Namespace::ownedMember.

• raisedException: Type[*] References the Types representing exceptions that may be raised during an invocation of
this operation. Redefines Basic::Operation.raisedException and BehavioralFea-
ture.raisedException.

• redefinedOperation: Operation[*]References the Operations that are redefined by this Operation. Subsets RedefinableEle-
ment.redefinedElement.

• /type: Type[0..1] Specifies the return result of the operation, if present. This is a derived value.

Constraints

[1] If this operation has a single return result, isOrdered equals the value of isOrdered for that parameter. Otherwise isOrdered
is false.

isOrdered = if returnResult->size() = 1 then returnResult->any().isOrdered else false endif

[2] If this operation has a single return result, isUnique equals the value of isUnique for that parameter. Otherwise isUnique is
true.

isUnique = if returnResult->size() = 1 then returnResult->any().isUnique else true endif

[3] If this operation has a single return result, lower equals the value of lower for that parameter. Otherwise lower is not
defined.

lower = if returnResult->size() = 1 then returnResult->any().lower else Set{} endif

[4] If this operation has a single return result, upper equals the value of upper for that parameter. Otherwise upper is not
defined.

upper = if returnResult->size() = 1 then returnResult->any().upper else Set{} endif

[5] If this operation has a single return result, type equals the value of type for that parameter. Otherwise type is not defined.
UML Superstructure 2.0 Draft Adopted Specification 77

type = if returnResult->size() = 1 then returnResult->any().type else Set{} endif

[6] A bodyCondition can only be specified for a query operation.

bodyCondition->notEmpty() implies isQuery

Additional Operations

[1] The query isConsistentWith() specifies, for any two Operations in a context in which redefinition is possible, whether
redefinition would be logically consistent. A redefining operation is consistent with a redefined operation if it has the
same number of formal parameters, the same number of return results, and the type of each formal parameter and return
result conforms to the type of the corresponding redefined parameter or return result.

Operation::isConsistentWith(redefinee: RedefinableElement): Boolean;
pre: redefinee.isRedefinitionContextValid(self)
isConsistentWith = (redefinee.oclIsKindOf(Operation) and

let op: Operation = redefinee.oclAsType(Operation) in
self.formalParameter.size() = op.formalParameter.size() and
self.returnResult.size() = op.returnResult.size() and
forAll(i | op.formalParameter[i].type.conformsTo(self.formalParameter[i].type)) and
forAll(i | op.returnResult[i].type.conformsTo(self.returnResult[i].type))
)

Semantics

An operation is invoked on an instance of the classifier for which the operation is a feature.

The preconditions for an operation define conditions that must be true when the operation is invoked. These preconditions may
be assumed by an implementation of this operation.

The postconditions for an operation define conditions that will be true when the invocation of the operation is completes
successfully, assuming the preconditions were satisfied. These postconditions must be satisfied by any implementation of the
operation.

The bodyCondition for an operation constrains the return result. The bodyCondition differs from postconditions in that the
bodyCondition may be overridden when an operation is redefined, whereas postconditions can only be added during
redefinition.

An operation may raise an exception during its invocation. When an exception is raised, it should not be assumed that the
postconditions or bodyCondition of the operation are satisfied.

An operation may be redefined in a specialization of the featured classifier. This redefinition may specialize the types of the
formal parameters or return results, add new preconditions or postconditions, add new raised exceptions, or otherwise refine
the specification of the operation.

Each operation states whether or not its application will modify the state of the instance or any other element in the model
(isQuery).

An operation may be owned by and in the namespace of a class that provides the context for its possible redefinition.

Semantic Variation Points

The behavior of an invocation of an operation when a precondition is not satisfied is a semantic variation point.

Notation

An operation is shown as a text string of the form:
visibility name (parameter-list) : property-string

• Where visibility is the operation’s visibility -- visibility may be suppressed.
78 UML Superstructure 2.0 Draft Adopted Specification

• Where name is the operation’s name.

• Where parameter-list is a comma-separated list of formal parameters, each specified using the syntax:
direction name : type-expression [multiplicity] = default-value [{ property-string }]

• Where direction is the parameter’s direction, with the default of in if absent.

• Where name is the parameter’s name.

• Where type-expression identifies the type of the parameter.

• Where multiplicity is the parameter’s multiplicity in square brackets -- multiplicity may be suppressed in which
case [1] is assumed.

• Where default-value is a value specification for the default value of the parameter. The default value is optional
(the equal sign is also omitted if the default value is omitted).

• Where property-string indicates property values that apply to the parameter. The property string is optional (the
braces are omitted if no properties are specified).

• Where property-string optionally shows other properties of the operation enclosed in braces.

Presentation Options

The parameter list can be suppressed.

Style Guidelines

An operation name typically begins with a lowercase letter.

Examples

display ()

-hide ()

+createWindow (location: Coordinates, container: Container [0..1]): Window

+toString (): String
UML Superstructure 2.0 Draft Adopted Specification 79

7.11 Kernel – the Classes Diagram

The Classes diagram of the Kernel package is shown in Figure 30.

In order to locate the metaclasses that are referenced from this diagram,

• See “Classifier (from Kernel, Dependencies, PowerTypes)” on page 61.

• See “Operation (from Kernel)” on page 76.

• See “Relationship (from Kernel)” on page 30.

• See “StructuralFeature (from Kernel)” on page 75.

• See “ValueSpecification (from Kernel)” on page 52.

7.11.1 AggregationKind (from Kernel)

AggregationKind is an enumeration type that specifies the literals for defining the kind of aggregation of a property.

Description

AggregationKind is an enumeration of the following literal values:

• none Indicates that the property has no aggregation.

• shared Indicates that the property has a shared aggregation.

• composite Indicates that the property is aggregated compositely, i.e., the composite object has
responsibility for the existence and storage of the composed objects (parts).

Semantic Variation Points

Precise semantics of shared aggregation varies by application area and modeler.

Figure 30 - The Classes diagram of the Kernel package

[0..1]

StructuralFeature
Classifier

C lassi fier

ValueSpecification

Association

isDe rive d : Boolean = fal se

Property

isDerived : Boolean = false
isReadOnly : Boolean = false
isDerivedUnion : Boolean = false
/ default : String
aggregation : AggregationKind = none
/ isComposite : Boolean

*

+redefinedProperty

*{subsets redefinedElement}

0..1

+/opposite

0..1

*

+su bse tt edPrope rty

*

0..1
*

+cl assifi er

0..1 {subsets redefini tionContext}

+/attribute

*{union,
subsets feature}

0 .. 1 0..1

+owningProperty

0 .. 1 {su bse ts o wner}

+def aul tValue

0..1{su bse ts o wnedElemen t}

0..1*

+owningAssociation

0..1{subsets association,
subsets namespace,

subsets featuringClassifier}

+ownedEnd

* {ordered,
subsets mem berEnd,

subsets feature,
subsets ownedMember}

0..12..*

+association

0..1

+memberEnd

2..* {o rdere d,
subsets member}

Cla ssi fie r

Cla ss
0..1 *

+class

0..1 {subsets classifier,
subsets namespace,

subsets featuringClassifier}

+ownedAttribute

*{ordered,
subsets attribute,

subsets owne dM em ber}

0.. 1 *

+cla ss

0.. 1 {subsets namespace,
subsets redefini ti onContext}

+nestedClassifier

*{ordered,
subsets ownedMember}

*

+/superClass

*{redefi nes g eneral }

AggregationKind

none
shared
composite

<<en umeration >>

Relati on shi p

[0..1]

Operation
0..1 *

+class

0..1 {su bse ts rede finitionCont ext,
subsets namespace,

subsets featuringClassifier}

+ownedOperation

*{ordered,
subsets feature,

subsets
ownedMember}

Type

1..*

+/endType

1..*
80 UML Superstructure 2.0 Draft Adopted Specification

The order and way in which part instances are created is not defined.

7.11.2 Association (from Kernel)

An association describes a set of tuples whose values refers to typed instances. An instance of an association is called a link.

Description

An association specifies a semantic relationship that can occur between typed instances. It has at least two ends represented by
properties, each of which is connected to the type of the end. More than one end of the association may have the same type.

When a property is owned by an association it represents a non-navigable end of the association. In this case the property does
not appear in the namespace of any of the associated classifiers. When a property at an end of an association is owned by one
of the associated classifiers it represents a navigable end of the association. In this case the property is also an attribute of the
associated classifier. Only binary associations may have navigable ends.

Attributes

• isDerived : Boolean Specifies whether the association is derived from other model elements such as other asso-
ciations or constraints. The default value is false.

Associations

• memberEnd : Property [2..*] Each end represents participation of instances of the classifier connected to the end in
links of the association. This is an ordered association. Subsets Namespace::member.

• ownedEnd : Property [*] The non-navigable ends that are owned by the association itself. This is an ordered associ-
ation. Subsets Association::memberEnd, Classifier::feature, and Namespace::owned-
Member.

• / endType: Type [1..*] References the classifiers that are used as types of the ends of the association.

Constraints

[1] An association specializing another association has the same number of ends as the other association.

self.parents()->forAll(p | p.memberEnd.size() = self.memberEnd.size())

[2] When an association specializes another association, every end of the specific association corresponds to an end of the
general association, and the specific end reaches the same type or a subtype of the more general end.

[3] endType is derived from the types of the member ends.

self.endType = self.memberEnd->collect(e | e.type)

Semantics

An association declares that there can be links between instances of the associated types. A link is a tuple with one value for
each end of the assocaition, where each value is an instance of the type of the end.

When one or more ends of the association have isUnique=false, it is possible to have several links associating the same set of
instances. In such a case, links carry an additional identifier apart from their end values.

When one or more ends of the association are ordered, links carry ordering information in addition to their end values.

For an association with N ends, choose any N-1 ends and associate specific instances with those ends. Then the collection of
links of the association that refer to these specific instances will identify a collection of instances at the other end. The
multiplicity of the association end constrains the size of this collection. If the end is marked as ordered, this collection will be
UML Superstructure 2.0 Draft Adopted Specification 81

ordered. If the end is marked as unique, this collection is a set; otherwise it allows duplicate elements.

An end of one association may be marked as a subset of an end of another in circumstances where (a) both have the same
number of ends, and (b) each of the set of types connected by the subsetting association conforms to a corresponding type
connected by the subsetted association. In this case, given a set of specific instances for the other ends of both associations, the
collection denoted by the subsetting end is fully included in the collection denoted by the subsetted end.

An end of one association may be marked as redefining an end of another in circumstances where (a) both have the same
number of ends, and (b) each of the set of types connected by the redefing association conforms to a corresponding type
connected by the redefined association. In this case, given a set of specific instances for the other ends of both associations, the
collections denoted by the redefining and redefined ends are the same.

Associations may be specialized. The existence of a link of a specializing association implies the existence of a link relating
the same set of instances in a specialized association.

The semantics of navigable association ends are the same as for attributes.

Note – For n-ary associations, the lower multiplicity of an end is typically 0. If the lower multiplicity for an end of an n-ary
association of 1 (or more) implies that one link (or more) must exist for every possible combination of values for the other
ends.

An association may represent a composite aggregation (i.e., a whole/part relationship). Only binary associations can be
aggregations. Composite aggregation is a strong form of aggregation that requires a part instance be included in at most one
composite at a time. If a composite is deleted, all of its parts are normally deleted with it. Note that a part can (where allowed)
be removed from a composite before the composite is deleted, and thus not be deleted as part of the composite. Compositions
define transitive asymmetric relationships—their links form a directed, acyclic graph. Composition is represented by the
isComposite attribute on the part end of the association being set to true.

Semantic Variation Points

The order and way in which part instances in a composite are created is not defined.

The logical relationship between the derivation of an association and the derivation of its ends is not defined.

The interaction of association specialization with association end redefinition and subsetting is not defined.

Notation

Any association may be drawn as a diamond (larger than a terminator on a line) with a solid line for each association end
connecting the diamond to the classifier that is the end’s type. An association with more than two ends can only be drawn this
way.

A binary assocation is normally drawn as a solid line connecting two classifiers, or a solid line connecting a single classifier to
itself (the two ends are distinct). A line may consist of one or more connected segments. The individual segments of the line
itself have no semantic significance, but they may be graphically meaningful to a tool in dragging or resizing an association
symbol.

An association symbol may be adorned as follows:

• The association’s name can be shown as a name string near the association symbol, but not near enough to an end to be
confused with the end’s name.

• A slash appearing in front of the name of an association, or in place of the name if no name is shown, marks the asso-
ciation as being derived.

• A property string may be placed near the association symbol, but far enough from any end to not be confused with a
82 UML Superstructure 2.0 Draft Adopted Specification

property string on an end.

On a binary association drawn as a solid line, a solid triangular arrowhead next to or in place of the name of the
association and pointing along the line in the direction of one end indicates that end to be the last in the order of the ends
of the association. The arrow indicates that the association is to be read as associating the end away from the direction of
the arrow with the end to which the arrow is pointing (see Figure 31).

• Generalizations between associations can be shown using a generalization arrow between the association symbols.

An association end is the connection between the line depicting an association and the icon (often a box) depicting the
connected classifier. A name string may be placed near the end of the line to show the name of the association end. The name
is optional and suppressible.

Various other notations can be placed near the end of the line as follows:

• A multiplicity.

• A property string enclosed in curly braces. The following property strings can be applied to an association end:

• {subsets <property-name>} to show that the end is a subset of the property called <property-name>.

• {redefined <end-name>} to show that the end redefines the one named <end-name>.

• {union} to show that the end is derived by being the union of its subsets.

• {ordered} to show that the end represents an ordered set.

• {bag} to show that the end represents a collection that permits the same element to appear more than once.

• {sequence} or {seq} to show that the end represents a sequence (an ordered bag).

• if the end is navigable, any property strings that apply to an attribute.

Note that by default an association end represents a set.

A stick arrowhead on the end of an association indicates the end is navigable. A small x on the end of an association indicates
the end is not navigable. A visibility symbol can be added as an adornment on a navigable end to show the end’s visibility as
an attribute of the featuring classifier.

If the association end is derived, this may be shown by putting a slash in front of the name, or in place of the name if no name
is shown.

The notation for an attribute can be applied to a navigable assocation end name.

A composite aggregation is shown using the same notation as a binary association, but with a solid, filled diamond at the
aggregate end.

Presentation Options

When two lines cross, the crossing may optionally be shown with a small semicircular jog to indicate that the lines do not
intersect (as in electrical circuit diagrams).

Various options may be chosen for showing navigation arrows on a diagram. In practice, it is often convenient to suppress
some of the arrows and crosses and just show exceptional situations:

• Show all arrows and xs. Navigation and its absence are made completely explicit.

• Suppress all arrows and xs. No inference can be drawn about navigation. This is similar to any situation in which infor-
mation is suppressed from a view.

• Suppress arrows for associations with navigability in both directions, and show arrows only for associations with one-
UML Superstructure 2.0 Draft Adopted Specification 83

way navigability. In this case, the two-way navigability cannot be distinguished from situations where there is no nav-
igation at all; however, the latter case occurs rarely in practice.

If there are two or more aggregations to the same aggregate, they may be drawn as a tree by merging the aggregation ends into
a single segment. Any adornments on that single segment apply to all of the aggregation ends.

Style Guidelines

Lines may be drawn using various styles, including orthogonal segments, oblique segments, and curved segments. The choice
of a particular set of line styles is a user choice.

Generalizations between associations are best drawn using a different color or line width than what is used for the associations.

Examples

Figure 31 shows a binary association from Player to Year named PlayedInYear. The solid triangle indicates the order of

reading: Player PlayedInYear Year. The figure further shows a ternary association between Team, Year, and Player with ends
named team, season, and goalie respectively.

The following example shows association ends with various adornments.

The following adornments are shown on the four association ends in Figure 32.

• Names a, b, and d on three of the ends.

Figure 31 - Binary and ternary associations

Figure 32 - Association ends with various adornments

Team

Year

Player

PlayedInYear

year

*

*season

* *

goalieteam

�

BA

C D

b

{ordered}
*

a

0..1

d

{subsets b}

0..11
84 UML Superstructure 2.0 Draft Adopted Specification

• Multiplicities 0..1 on a, * on b, 1 on the unnamed end, and 0..1 on d.

• Specification of ordering on b.

• Subsetting on d. For an instance of class C, the collection d is a subset of the collection b. This is equivalent to the OCL
constraint:

context C inv: b->includesAll(d)

The following examples show notation for navigable ends.

In Figure 33:

• The top pair AB shows a binary association with two navigable ends.

• The second pair CD shows a binary association with two non-navigable ends.

• The third pair EF shows a binary association with unspecified navigability.

• The fourth pair GH shows a binary association with one end navigable and the other non-navigable.

• The fifth pair IJ shows a binary association with one end navigable and the other having unspecified navigability.

Figure 34 shows a navigable end using attribute notation. A navigable end is an attribute, so it can be shown using attribute
notation. Normally this notation would be used in conjunction with the line-arrow notation to make it perfectly clear that the

Figure 33 - Examples of navigable ends

b
A B

2..51..4

a

E F
2..5

f

1..4

e

C D
2..5

d

1..4

c

h
G H

2..51..4

g

I J
2..5

j

1..4

i

b
A B

2..51..4

a

E F
2..5

f

1..4

e

C D
2..5

d

1..4

c

h
G H

2..51..4

g

I J
2..5

j

1..4

i

UML Superstructure 2.0 Draft Adopted Specification 85

navigable ends are also attributes.

Figure 35 shows the notation for a derived union. The attribute A::b is derived by being the strict union of all of the attributes

that subset it. In this case there is just one of these, A1::b1. So for an instance of the class A1, b1 is a subset of b, and b is
derived from b1.

Figure 36 shows the black diamond notation for composite aggregation.

7.11.3 Class (from Kernel)

A class describes a set of objects that share the same specifications of features, constraints, and semantics.

Figure 34 - Example of navigable end shown with attribute notation

Figure 35 - Derived supersets (union)

Figure 36 - Composite aggregation is depicted as a black diamond

A

b: B[*]

A B
0..*

/b {union}

0..1

a

A1 B1
0..*

b1

0..1

a

{subsets b}

Window

Slider
Header Panel

+scrollbar
+title +body

1
1

1

2
1 1
86 UML Superstructure 2.0 Draft Adopted Specification

Description

Class is a kind of classifier whose features are attributes and operations. Attributes of a class are represented by instances of
Property that are owned by the class. Some of these attributes may represent the navigable ends of binary associations.

Attributes

No additional attributes.

Associations

• nestedClassifier: Classifier [*] References all the Classifiers that are defined (nested) within the Class. Subsets Ele-
ment::ownedMember.

• ownedAttribute : Property [*]
The attributes (i.e. the properties) owned by the class. The association is ordered. Subsets
Classifier::attribute and Namespace::ownedMember.

• ownedOperation : Operation [*]
The operations owned by the class. The association is ordered. Subsets Classifier::feature
and Namespace::ownedMember.

• / superClass : Class [*] This gives the superclasses of a class. It redefines Classifier::general. This is derived.

Constraints

No additional constraints.

Additional Operations

[1] The inherit operation is overridden to exclude redefined properties.

Class::inherit(inhs: Set(NamedElement)) : Set(NamedElement);
inherit = inhs->excluding(inh |

ownedMember->select(oclIsKindOf(RedefinableElement))->select(redefinedElement->includes(inh)))

Semantics

The purpose of a class is to specify a classification of objects and to specify the features that characterize the structure and
behavior of those objects.

Objects of a class must contain values for each attribute that is a member of that class, in accordance with the characteristics of
the attribute, for example its type and multiplicity.

When an object is instantiated in a class, for every attribute of the class that has a specified default, if an initial value of the
attribute is not specified explicitly for the instantiation, then the default value specification is evaluated to set the initial value
of the attribute for the object.

Operations of a class can be invoked on an object, given a particular set of substitutions for the parameters of the operation. An
operation invocation may cause changes to the values of the attributes of that object. It may also return a value as a result,
where a result type for the operation has been defined. Operation invocations may also cause changes in value to the attributes
of other objects that can be navigated to, directly or indirectly, from the object on which the operation is invoked, to its output
parameters, to objects navigable from its parameters, or to other objects in the scope of the operation’s execution. Operation
invocations may also cause the creation and deletion of objects.

Notation

A class is shown using the classifier symbol. As class is the most widely used classifier, the keyword “class” need not be
UML Superstructure 2.0 Draft Adopted Specification 87

shown in guillemets above the name. A classifier symbol without a metaclass shown in guillemets indicates a class.

Presentation Options

A class is often shown with three compartments. The middle compartment holds a list of attributes while the bottom
compartment holds a list of operations.

Attributes or operations may be presented grouped by visibility. A visibility keyword or symbol can then be given once for
multiple features with the same visibility.

Additional compartments may be supplied to show other details, such as constraints, or to divide features.

Style Guidelines

• Center class name in boldface.

• Capitalize the first letter of class names (if the character set supports uppercase).

• Left justify attributes and operations in plain face.

• Begin attribute and operation names with a lowercase letter.

• Put the class name in italics if the class is abstract.

• Show full attributes and operations when needed and suppress them in other contexts or when merely referring to a class.

Examples

Figure 37 - Class notation: details suppressed, analysis-level details, implemen-
tation-level details

Window

Window

size: Area
visibility: Boolean

display()
hide()

Window

+ size: Area = (100, 100)
visibility: Boolean = true
+ defaultSize: Rectangle
- xWin: XWindow

display()
hide()
- attachX(xWin: XWindow)
88 UML Superstructure 2.0 Draft Adopted Specification

7.11.4 Property (from Kernel, AssociationClasses)

A property is a structural feature.

When a property is owned by a class it represents an attribute. In this case it relates an instance of the class to a value or set of
values of the type of the attribute.

When a property is owned by an association it represents a non-navigable end of the association. In this case the type of the
property is the type of the end of the association.

Description

Property represents a declared state of one or more instances in terms of a named relationship to a value or values. When a
property is an attribute of a classifier, the value or values are related to the instance of the classifier by being held in slots of the
instance. When a property is an association end, the value or values are related to the instance or instances at the other end(s)
of the association (see semantics of Association).

Property is indirectly a subclass of Constructs::TypedElement. The range of valid values represented by the property can be
controlled by setting the property’s type.

Package AssociationClasses (“AssociationClasses” on page 117)

A property may have other properties (attributes) that serve as qualifiers.

Attributes

• aggregation: AggregationKind [1]Specifies the kind of aggregation that applies to the Property. The default value is none.

• / default: String [0..1] A String that is evaluated to give a default value for the Property when an object of the
owning Classifier is instantiated. This is a derived value.

• / isComposite: Boolean [1] This is a derived value, indicating whether the aggregation of the Property is composite or
not.

• isDerived: Boolean [1] Specifies whether the Property is derived, i.e., whether its value or values can be com-
puted from other information. The default value is false.

Figure 38 - Class notation: attributes and operations grouped according to visi-
bility

Window

public
 size: Area = (100, 100)
 defaultSize: Rectangle
protected
 visibility: Boolean = true
private
 xWin: XWindow
public
 display()
 hide()
private
 attachX(xWin: XWindow)
UML Superstructure 2.0 Draft Adopted Specification 89

• isDerivedUnion : Boolean Specifies whether the property is derived as the union of all of the properties that are con-
strained to subset it. The default value is false.

• isReadOnly : Boolean If true, the attribute may only be read, and not written. The default value is false.

Associations

• association: Association [0..1] References the association of which this property is a member, if any.

• owningAssociation: Association [0..1]
References the owning association of this property. Subsets Property::association,
NamedElement::namespace, Feature::featuringClassifier, and RedefinableEle-
ment::redefinitionContext.

• datatype : DataType [0..1] The DataType that owns this Property. Subsets NamedElement::namespace, Feature::fea-
turingClassifier, and Property::classifier.

• defaultValue: ValueSpecification [0..1]A ValueSpecification that is evaluated to give a default value for the Property
when an object of the owning Classifier is is instantiated. Subsets Element::ownedEle-
ment.

• redefinedProperty : Property [*]
References the properties that are redefined by this property. Subsets RedefinableEle-
ment::redefinedElement.

• subsettedProperty : Property [*]
References the properties of which this property is constrained to be a subset.

• / opposite : Property [0..1] In the case where the property is one navigable end of a binary association with both ends
navigable, this gives the other end.

Package AssociationClasses (“AssociationClasses” on page 117)

• associationEnd : Property [0..1]
Designates the optional association end that owns a qualifier attribute. Subsets Element::owner.

• qualifier : Property [*] An optional list of ordered qualifier attributes for the end. If the list is empty, then the Association is
not qualified. Subsets Element::ownedElement.

Constraints

[1] If this property is owned by a class, associated with a binary association, and the other end of the association is also owned
by a class, then opposite gives the other end.

opposite =
if owningAssociation->notEmpty() and association.memberEnd->size() = 2 then

let otherEnd = (association.memberEnd - self)->any() in
if otherEnd.owningAssociation->notEmpty() then otherEnd else Set{} endif

else Set {}
endif

[2] A multiplicity on an aggregate end of a composite aggregation must not have an upper bound greater than 1.

isComposite implies (upperBound()->isEmpty() or upperBound() <= 1)

[3] Subsetting may only occur when the context of the subsetting property conforms to the context of the subsetted property.

subsettedProperty->notEmpty() implies
(subsettingContext()->notEmpty() and subsettingContext()->forAll (sc |

subsettedProperty->forAll(sp |
sp.subsettingContext()->exists(c | sc.conformsTo(c)))))
90 UML Superstructure 2.0 Draft Adopted Specification

[4] A navigable property (one that is owned by a class) can only be redefined or subsetted by a navigable property.

(subsettedProperty->exists(sp | sp.class->notEmpty())
implies class->notEmpty())

and
(redefinedProperty->exists(rp | rp.class->notEmpty())

implies class->notEmpty())

[5] A subsetting property may strengthen the type of the subsetted property, and its upper bound may be less.

subsettedProperty->forAll(sp |
type.conformsTo(sp.type) and

((upperBound()->notEmpty() and sp.upperBound()->notEmpty()) implies
upperBound()<=sp.upperBound()))

[6] Only a navigable property can be marked as readOnly.

isReadOnly implies class->notEmpty()

[7] A derived union is derived.

isDerivedUnion implies isDerived

[8] A derived union is read only.

isDerivedUnion implies isReadOnly

[9] The value of isComposite is true only if aggregation is composite.

isComposite = (self.aggregation = #composite)

Additional Operations

[1] The query isConsistentWith() specifies, for any two Properties in a context in which redefinition is possible, whether
redefinition would be logically consistent. A redefining property is consistent with a redefined property if the type of the
redefining property conforms to the type of the redefined property, the multiplicity of the redefining property (if.specified)
is contained in the multiplicity of the redefined property, and the redefining property is derived if the redefined attribute is
property.

Property::isConsistentWith(redefinee : RedefinableElement) : Boolean
pre: redefinee.isRedefinitionContextValid(self)
isConsistentWith = (redefinee.oclIsKindOf(Property) and

let prop: Property = redefinee.oclAsType(Property) in
type.conformsTo(prop.type) and
(lowerBound()->notEmpty and prop.lowerBound()->notEmpty() implies

lowerBound() >= prop.lowerBound()) and
(upperBound()->notEmpty and prop.upperBound()->notEmpty() implies

upperBound() <= prop.upperBound()) and
(prop.isDerived implies isDerived)

)

[2] The query subsettingContext() gives the context for subsetting a property. It consists, in the case of an attribute, of the
corresponding classifier, and in the case of an association end, all of the classifiers at the other ends.

Property::subsettingContext() : Set(Type)
subsettingContext =

if association->notEmpty()
then association.endType-type
else if classifier->notEmpty() then Set{classifier} else Set{} endif
endif

Semantics

When a property is owned by a class or data type via ownedAttribute, then it represents an attribute of the class or data type.
When owned by an association via ownedEnd, it represents a non-navigable end of the association. In either case, when
instantiated a property represents a value or collection of values associated with an instance of one (or in the case of a ternary
UML Superstructure 2.0 Draft Adopted Specification 91

or higher-order association, more than one) type. This set of classifiers is called the context for the property; in the case of an
attribute the context is the owning classifier, and in the case of an association end the context is the set of types at the other end
or ends of the association.

The value or collection of values instantiated for a property in an instance of its context conforms to the property’s type.
Property inherits from MultiplicityElement and thus allows multiplicity bounds to be specified. These bounds constrain the
size of the collection. Typically and by default the maximum bound is 1.

Property also inherits the isUnique and isOrdered meta-attributes. When isUnique is true (the default) the collection of values
may not contain duplicates. When isOrdered is true (false being the default) the collection of values is ordered. In combination
these two allow the type of a property to represent a collection in the following way:

If there is a default specified for a property, this default is evaluated when an instance of the property is created in the absence
of a specific setting for the property or a constraint in the model that requires the property to have a specific value. The
evaluated default then becomes the initial value (or values) of the property.

If a property is derived, then its value or values can be computed from other information. Actions involving a derived property
behave the same as for a nonderived property. Derived properties are often specified to be read-only (i.e. clients cannot
directly change values). But where a derived property is changeable, an implementation is expected to appropriately change
the source information of the derivation. The derivation for a derived property may be specified by a constraint.

The name and visibility of a property are not required to match those of any property it redefines.

A derived property can redefine one which is not derived. An implementation must ensure that the constraints implied by the
derivation are maintained if the property is updated.

If a property has a specified default, and the property redefines another property with a specified default, then the redefining
property’s default is used in place of the more general default from the redefined property.

If a navigable property (attribute) is marked as readOnly then it cannot be updated, once it has been assigned an initial value.

A property may be marked as the subset of another, as long as every element in the context of subsetting property conforms to
the corresponding element in the context of the subsetted property. In this case, the collection associated with an instance of
the subsetting property must be included in (or the same as) the collection associated with the corresponding instance of the
subsetted property.

A property may be marked as being a derived union. This means that the collection of values denoted by the property in some
context is derived by being the strict union of all of the values denoted, in the same context, by properties defined to subset it.
If the property has a multiplicity upper bound of 1, then this means that the values of all the subsets must be null or the same.

A property may be owned by and in the namespace of a datatype.

Table 2 - Collection types for properties

isOrdered isUnique Collection type

false true Set

true true OrderedSet

false false Bag

true false Sequence
92 UML Superstructure 2.0 Draft Adopted Specification

Package AssociationClasses (“AssociationClasses” on page 117)

A qualifier declares a partition of the set of associated instances with respect to an instance at the qualified end (the qualified
instance is at the end to which the qualifier is attached). A qualifier instance comprises one value for each qualifier attribute.
Given a qualified object and a qualifier instance, the number of objects at the other end of the association is constrained by the
declared multiplicity. In the common case in which the multiplicity is 0..1, the qualifier value is unique with respect to the
qualified object, and designates at most one associated object. In the general case of multiplicity 0..*, the set of associated
instances is partitioned into subsets, each selected by a given qualifier instance. In the case of multiplicity 1 or 0..1, the
qualifier has both semantic and implementation consequences. In the case of multiplicity 0..*, it has no real semantic
consequences but suggests an implementation that facilitates easy access of sets of associated instances linked by a given
qualifier value.

Note – The multiplicity of a qualifier is given assuming that the qualifier value is supplied. The “raw” multiplicity without the
qualifier is assumed to be 0..*. This is not fully general but it is almost always adequate, as a situation in which the raw multi-
plicity is 1 would best be modeled without a qualifier.

Note – A qualified multiplicity whose lower bound is zero indicates that a given qualifier value may be absent, while a lower
bound of 1 indicates that any possible qualifier value must be present. The latter is reasonable only for qualifiers with a finite
number of values (such as enumerated values or integer ranges) that represent full tables indexed by some finite range of val-
ues.

Notation

Notation for properties is defined separately for their use as attributes and association ends. Examples of subsetting and
derived union are shown for associations. See “Classifier (from Kernel, Dependencies, PowerTypes)” on page 61. See
“Association (from Kernel)” on page 81.

Package AssociationClasses (“AssociationClasses” on page 117)

A qualifier is shown as a small rectangle attached to the end of an association path between the final path segment and the
symbol of the classifier that it connects to. The qualifier rectangle is part of the association path, not part of the classifier. The
qualifier is attached to the source end of the association.

The multiplicity attached to the target end denotes the possible cardinalities of the set of target instances selected by the
pairing of a source instance and a qualifier value.

The qualifier attributes are drawn within the qualifier box. There may be one or more attributes shown one to a line. Qualifier
attributes have the same notation as classifier attributes, except that initial value expressions are not meaningful.

It is permissible (although somewhat rare), to have a qualifier on each end of a single association.

A qualifier may not be suppressed.

Style Guidelines

Package AssociationClasses (“AssociationClasses” on page 117)

The qualifier rectangle should be smaller than the attached class rectangle, although this is not always practical.
UML Superstructure 2.0 Draft Adopted Specification 93

Examples

Package AssociationClasses (“AssociationClasses” on page 117)

7.12 Kernel – the DataTypes Diagram

The DataTypes diagram of the Kernel package is shown in Figure 40.

In order to locate the metaclasses that are referenced from this diagram,

• See “Classifier (from Kernel, Dependencies, PowerTypes)” on page 61.

• See “InstanceSpecification (from Kernel)” on page 57.

Figure 39 - Qualified associations

Figure 40 - The DataTypes diagram of the Kernel package

Bank

Person

accountNo

*

0..1

Chessboard

Square

rank : Rank

1
1

file : File

PropertyDataType

0..1 *

+datatype

0..1 {subsets namespace,
subsets featuringClassifier,

subsets classifier}

+owne dAttribute

*{ordered,
subsets at trib ute,

subsets ownedMember}

Op era tion

0..1 *

+datatype

0..1
{subsets namespace,

subsets redefinitionContext ,
sub sets featurin gCla ssif ier}

+o wnedOperation

*{ordered,
subsets feature,

sub sets ownedM emb er}

PrimitiveType Enumeration EnumerationLiteral

0..1 *

+enu me ra ti on

0..1 {su bse ts n am esp ace}

+literal

*{ordered,
subsets ownedM emb er}

Insta nceSp ecif ication

Classifier
94 UML Superstructure 2.0 Draft Adopted Specification

• See “Property (from Kernel, AssociationClasses)” on page 89.

• See “Operation (from Kernel)” on page 76.

7.12.1 DataType (from Kernel)

A data type is a type whose values have no identity (i.e., they are pure values). Data types include primitive built-in types
(such as integer and string) as well as enumeration types.

Description

DataType defines a kind of classifier in which operations are all pure functions (i.e., they can return data values but they
cannot change data values, because they have no identity). For example, an “add” operation on a number with another number
as an argument yields a third number as a result; the target and argument are unchanged.

A DataType may also contain attributes to support the modeling of structured data types.

Attributes

No additional attributes.

Associations

• ownedAttribute: Attribute[*] The Attributes owned by the DataType. Subsets Classifier::attribute and Ele-
ment::ownedMember.

• ownedOperation: Operation[*] The Operations owned by the DataType. Subsets Classifier::feature and Ele-
ment::ownedMember.

Constraints

No additional constraints.

Semantics

A data type is a special kind of classifier, similar to a class, whose instances are values (not objects). For example, the integers
and strings are usually treated as values. A value does not have an identity, so two occurrences of the same value cannot be
differentiated. Usually, a data type is used for specification of the type of an attribute. An enumeration type is a user-definable
type comprising a finite number of values.

If a data type has attributes, then instances of that data type will contain attribute values matching the attributes.

Semantic Variation Points

Any restrictions on the capabilities of data types, such as constraining the types of their attributes, is a semantic variation point.

Notation

A data type is denotated using the rectangle symbol with keyword «dataType» or, when it is referenced by e.g. an attribute,
denoted by a string containing the name of the data type.

Presentation Options

The attribute compartment is often suppressed, especially when a data type does not contain attributes. The operation
compartment may be suppressed. A separator line is not drawn for a missing compartment. If a compartment is suppressed, no
inference can be drawn about the presence or absence of elements in it. Compartment names can be used to remove ambiguity,
UML Superstructure 2.0 Draft Adopted Specification 95

if necessary.

Additional compartments may be supplied to show other predefined or user-defined model properties (for example, to show
business rules, responsibilities, variations, events handled, exceptions raised, and so on). Most compartments are simply lists
of strings, although more complicated formats are also possible. Appearance of each compartment should preferably be
implicit based on its contents. Compartment names may be used, if needed.

A data-type symbol with a stereotype icon may be “collapsed” to show just the stereotype icon, with the name of the data type
either inside the rectangle or below the icon. Other contents of the data type are suppressed.

Style Guidelines

• Center the name of the data type in boldface.

• Center keyword (including stereotype names) in plain face within guillemets above data-type name.

• For those languages that distinguish between uppercase and lowercase characters, capitalize names (i.e, begin them
with an uppercase character).

• Left justify attributes and operations in plain face.

• Begin attribute and operation names with a lowercase letter.

• Show full attributes and operations when needed and suppress them in other contexts or references

Examples

7.12.2 Enumeration (from Kernel)

An enumeration is a data type whose values are enumerated in the model as enumeration literals.

Description

Enumeration is a kind of data type, whose instances may be any of a number of user-defined enumeration literals.

It is possible to extend the set of applicable enumeration literals in other packages or profiles.

Attributes

No additional attributes.

Associations

• ownedLiteral: EnumerationLiteral[*]The ordered set of literals for this Enumeration. Subsets Element::ownedMember.

Figure 41 - Notation of data type: to the left is an icon denoting a data type and
to the right is a reference to a data type which is used in an attribute.

«dataType»
Integer

size: Integer
96 UML Superstructure 2.0 Draft Adopted Specification

Constraints

No additional constraints.

Semantics

The run-time instances of an Enumeration are data values. Each such value corresponds to exactly one EnumerationLiteral.

Notation

An enumeration may be shown using the classifier notation (a rectangle) with the keyword «enumeration». The name of the
enumeration is placed in the upper compartment. A compartment listing the attributes for the enumeration is placed below the
name compartment. A compartment listing the operations for the enumeration is placed below the attribute compartment. A
list of enumeration literals may be placed, one to a line, in the bottom compartment. The attributes and operations
compartments may be suppressed, and typically are suppressed if they would be empty.

Examples

7.12.3 EnumerationLiteral (from Kernel)

An enumeration literal is a user-defined data value for an enumeration.

Description

An enumeration literal is a user-defined data value for an enumeration.

Attributes

No additional attributes.

Associations

• enumeration: Enumeration[0..1]The Enumeration that this EnumerationLiteral is a member of. Subsets NamedEle-
ment::namespace.

Constraints

No additional constraints.

Semantics

An EnumerationLiteral defines an element of the run-time extension of an enumeration data type.

An EnumerationLiteral has a name that can be used to identify it within its enumeration datatype. The enumeration literal

Figure 42 - Example of an enumeration

«enumeration»
VisibilityKind

public
private
UML Superstructure 2.0 Draft Adopted Specification 97

name is scoped within and must be unique within its enumeration. Enumeration literal names are not global and must be
qualified for general use.

The run-time values corresponding to enumeration literals can be compared for equality.

Notation

An EnumerationLiteral is typically shown as a name, one to a line, in the a compartment of the enumeration notation.

7.12.4 PrimitiveType (from Kernel)

A primitive type defines a predefined data type, without any relevant substructure (i.e. it has no parts). A primitive datatype
may have an algebra and operations defined outside of UML, for example, mathematically.

Description

The instances of primitive type used in UML itself include Boolean, Integer, UnlimitedNatural, and String.

Attributes

No addtional attributes.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

The run-time instances of a primitive type are data values. The values are in many-to-one correspondence to mathematical
elements defined outside of UML (for example, the various integers).

Instances of primitive types do not have identity. If two instances have the same representation, then they are
indistinguishable.

Notation

A primitive type has the keyword «primitive» above or before the name of the primitive type.

Instances of the predefined primitive types may be denoted with the same notation as provided for references to such instances
(see the subtypes of “ValueSpecification (from Kernel)”).
98 UML Superstructure 2.0 Draft Adopted Specification

7.13 Kernel – the Packages Diagram

The Packages diagram of the Kernel package is shown in Figure 43.

In order to locate the metaclasses that are referenced from this diagram,

• See “Classifier (from Kernel, Dependencies, PowerTypes)” on page 61.

• See “DirectedRelationship (from Kernel)” on page 28.

• See “Namespace (from Kernel)” on page 35.

• See “PackageableElement (from Kernel)” on page 37.

7.13.1 Package (from Kernel)

A package is used to group elements, and provides a namespace for the grouped elements.

Description

A package is a namespace for its members, and may contain other packages. Only packageable elements can be owned
members of a package. By virtue of being a namespace, a package can import either individual members of other packages, or
all the members of other packages.

In addition a package can be merged with other packages.

Attributes

No additional attributes.

Figure 43 - The Packages diagram of the Kernel package

PackageableElementNamespace

DirectedRelationship

Packagea ble Ele ment

Pa cka geMerge

Package

0..1 *

+o wni ngPackage

0..1

{subsets nam espace } +ownedMember

*{redefines ownedMember}

1 *

+me rging Package

1
{subsets sou rce,
subsets owner}

+p ackageExtension

*{subsets ownedElement}

1

+me rg edPackag e

1 {subsets target}

*

0..1

+nestedPackage *
{subsets ownedMember}

+nestingPackage

0..1 {su bse ts nam esp ace}

Type

*0..1

+/ownedClassifier

*{su bse ts o wnedMe mb er}

+package

0..1 {subsets namespace}
UML Superstructure 2.0 Draft Adopted Specification 99

Associations

• nestedPackage: Package [*] References the owned members that are Packages. Subsets Package::ownedMember.

• ownedMember: PackageableElement [*]Specifies the members that are owned by this Package. Redefines
Namespace::ownedMember.

• ownedType: Type [*] References the owned members that are Types. Subsets Package::ownedMember.

• package: Package [0..1] References the owning package of a package. Subsets NamedElement::namespace.

• packageMerge: Package [*] References the PackageMerges that are owned by this Package. Subsets Ele-
ment::ownedElement.

Constraints

[1] If an element that is owned by a package has visibility, it is public or private.

self.ownedElements->forAll(e | e.visibility->notEmpty() implies e.visbility = #public or e.visibility = #private)

Additional Operations

[1] The query mustBeOwned() indicates whether elements of this type must have an owner.

Package::mustBeOwned() : Boolean
mustBeOwned = false

[2] The query visibleMembers() defines which members of a Package can be accessed outside it.

Package::visibleMembers() : Set(PackageableElement);
visibleMembers = member->select(m | self.makesVisible(m))

[3] The query makesVisible() defines whether a Package makes an element visible outside itself. Elements with no visibility
and elements with public visibility are made visible.

Package::makesVisible(el: Namespaces::NamedElement) : Boolean;
pre: self.member->includes(el)
makesVisible = el.visibility->isEmpty() or el.visibility = #public

Semantics

A package is a namespace and is also an packageable element that can be contained in other packages.

The elements that can be referred to using non-qualified names within a package are owned elements, imported elements, and
elements in enclosing (outer) namespaces. Owned and imported elements may each have a visibility that determines whether
they are available outside the package.

A package owns its owned members, with the implication that if a package is removed from a model, so are the elements
owned by the package.

The public contents of a package is always accessible outside the package through the use of qualified names.

Notation

A package is shown as a large rectangle with a small rectangle (a “tab”) attached to the left side of the top of the large
rectangle. The members of the package may be shown within the large rectangle. Members may also be shown by branching
lines to member elements, drawn outside the package. A plus sign (+) within a circle is drawn at the end attached to the
namespace (package).

• If the members of the package are not shown within the large rectangle, then the name of the package should be placed
within the large rectangle.
100 UML Superstructure 2.0 Draft Adopted Specification

• If the members of the package are shown within the large rectangle, then the name of the package should be placed
within the tab.

The visibility of a package element may be indicated by preceding the name of the element by a visibility symbol (‘+’ for
public and ‘-’ for private).

Presentation Options

A tool may show visibility by a graphic marker, such as color or font. A tool may also show visibility by selectively displaying
those elements that meet a given visibility level, e.g., only public elements. A diagram showing a package with contents must
not necessarily show all its contents; it may show a subset of the contained elements according to some criterion.

Elements that become available for use in a importing package through a package import or an element import may have a
distinct color or be dimmed to indicate that they cannot be modified.

Examples

There are three representations of the same package Types in Figure 44. The one on the left just shows the package without
revealing any of its members. The middle one shows some of the members within the borders of the package, and the one to
the right shows some of the members using the alternative membership notation.

7.13.2 PackageMerge (from Kernel)

A package merge defines how one package extends another package by merging their contents.

Description

A package merge is a relationship between two packages, where the contents of the target package (the one pointed at) is
merged with the contents of the source package through specialization and redefinition, where applicable.

This is a mechanism that should be used when elements of the same name are intended to represent the same concept,
regardless of the package in which they are defined. A merging package will take elements of the same kind with the same
name from one or more packages and merge them together into a single element using generalization and redefinitions.

It should be noted that a package merge can be viewed as a short-hand way of explicitly defining those generalizations and
redefinitions. The merged packages are still available, and the elements in those packages can be separately qualified.

From an XMI point of view, it is either possible to exchange a model with all PackageMerges retained or a model where all
PackageMerges have been transformed away (in which case package imports, generalizations, and redefinitions are used
instead).

Figure 44 - Examples of a package with members

Types
Types

Integer

Time

PointShape

Types
UML Superstructure 2.0 Draft Adopted Specification 101

Attributes

No additional attributes.

Associations

• mergedPackage: Package [1] References the Package that is to be merged with the source of the PackageMerge. Subsets
DirectedRelationship;;target.

• mergingPackage: Package [1] References the Package that is being extended with the contents of the target of the Pack-
ageMerge. Subsets Element::owner and DirectedRelationship::source.

Constraints

No additional constraints.

Semantics

A package merge between two packages implies a set of transformations, where the contents of the merged package is
expanded in the merging package. Each element has its own specific expansion rules. The package merge is transformed to a
package import having the same source and target packages as the package merge.

An element with private visibility in the merged package is not expanded in the merging package. This applies recursively to
all owned elements of the merged package.

A classifier from the target (merged) package is transformed into a classifier with the same name in the source (merging)
package, unless the source package already contains a classifier of the same kind with the same name. In the former case, the
new classifier gets a generalization to the classifier from the target package. In the latter case, the already existing classifier
gets a generalization to the classifier from the target package. In either case, every feature of the general classifier is redefined
in the specific classifier in such a way that all types refer to the transformed classifiers. In addition, the classifier in the source
package gets generalizations to each transformed superclassifier of the classifier from the target package. This is because the
superclassifiers may have merged in additional properties in the source package that need to be propagated properly to the
classifier. Classifiers of the same kind with the same name from multiple target packages are transformed into a single
classifier in the source package, with generalizations to each target classifier. Nested classifiers are recursively transformed the
same way. If features from multiple classifiers are somehow conflicting, the same rules that apply for multiple inheritance are
used to resolve conflicts.

Note that having an explicit generalization from a classifier in a source package to a classifier of the same kind with the same
name in a target package is redundant, since it will be created as part of the transformation.

A subpackage from the target (merged) package is transformed into a subpackage with the same name in the source (merging)
package, unless the source package already contains a subpackage with the same name. In the former case, the new
subpackage gets a package merge to the subpackage from the target package. In the latter case, the already existing package
gets a package merge to the subpackage from the target package. Subpackages with the same name from multiple target
packages are transformed into a single subpackage in the source package, with package merges to each target subpackage.
Nested subpackages are recursively transformed the same way.

A package import owned by the target package is transformed into a corresponding new package import in the source package.
Elements from imported packages are not merged (unless there is also a package merge to the imported package). The names
of merged elements take precedence over the names of imported elements, meaning that names of imported elements are
hidden in case of name conflicts and need to be referred to using qualifiers. An element import owned by the target package is
transformed into a corresponding new element import in the source package. Imported elements are not merged (unless there
is also a package merge to the package owning the imported element or its alias).

A non-generalizable packageable element owned by the target package is copied down to the source package. Any classifiers
102 UML Superstructure 2.0 Draft Adopted Specification

referenced as part of the packageable element are redirected at transformed classifiers, if any.

Notation

A PackageMerge is shown using a dashed line with a stick arrowhead pointing from the merging package (the source) to the
merged package (the target). In addition, the keyword «merge» is shown near the dashed line.

Examples

In Figure 46, packages P and Q are being merged by package R, while package S merges only package Q.

The transformed packages R and Q are shown in Figure 47. While not shown, the package merges have been transformed into

Figure 45 - Notation for package merge

Figure 46 - Simple example of package merges

Source

Target
«merge»

P Q

R

S

A

B

A C

A

«merge»

«merge»

«merge»

A B

D

UML Superstructure 2.0 Draft Adopted Specification 103

package imports.

In Figure 48, additional package merges are introduced by having the package T merge the packages R and S that were
previously defined. Aside from the package merges, the package T is completely empty.

In Figure 49, the transformed version of the package T is depicted. In this package, the partial definitions of A, B, C, and D
have all been brought together. Again, the package merges have been transformed to package imports. Note that the types of
the ends of the associations that were originally in the packages Q and S have all been updated to refer to the appropriate types

Figure 47 - Simple example of transformed packages

Figure 48 - Introducing additional package merges

R

B

P::B A C

P::A Q::A Q::C

S

B

A

C

D Q::A Q::C

R

S

T

«merge»

«merge»
104 UML Superstructure 2.0 Draft Adopted Specification

in package T.

It is possible to elide all but the most specific of each classifier, which gives a clearer picture of the end result of the package
merge transformations, as is shown in Figure 50.

7.14 Dependencies

The contents of the Dependencies package is shown in Figure 51. The Dependencies package is one of the packages of the
Classes package.

Figure 49 - The result of the additional package merges

Figure 50 - The result of the additional package merges: elided view

T

R::A

A C

R::CS::A S::CD

B

R::B S::B

S::D

T

A C

D

B

UML Superstructure 2.0 Draft Adopted Specification 105

In order to locate the metaclasses that are referenced from this package,

• See “Classifier (from Kernel, Dependencies, PowerTypes)” on page 61.

• See “DirectedRelationship (from Kernel)” on page 28.

• See “OpaqueExpression (from Kernel)” on page 46.

• See “NamedElement (from Kernel, Dependencies)” on page 33.

• See “PackageableElement (from Kernel)” on page 37.

Figure 51 - The contents of Dependencies package

Usage Permission

Realization

Substitution
Classifier

1*

+contract

1

{subsets supplier, subsets target}

*

*

1+substitution

*

{subsets ownedElement, subsets clientDependency}

+substitutingClassifier

1

{subsets client, subsets source}

Classifier
(from Kernel)

Expression
(from Kernel)

Abstraction1 0..1

+mapping

1

{subsets ownedElement}

0..1

DependencyNamedElement

1..

+clientDependency

*

+client

1..*

1..

+supplierDependency

*

+supplier

1..*

NamedElement
(from Kernel)

DirectedRelationship
(from Kernel)

PackageableElement
(from Kernel)
106 UML Superstructure 2.0 Draft Adopted Specification

7.14.1 Abstraction (from Dependencies)

Description

An abstraction is a relationship that relates two elements or sets of elements that represent the same concept at different levels
of abstraction or from different viewpoints. (See also, the definition of abstration in the Glossary.) In the metamodel, an
Abstraction is a Dependency in which there is a mapping between the supplier and the client.

Attributes

No additional attributes.

Associations

• mapping: Expression An composition of an Expression that states the abstraction relationship between the sup-
plier and the client. In some cases, such as Derivation, it is usually formal and unidirec-
tional; in other cases, such as Trace, it is usually informal and bidirectional. The mapping
expression is optional and may be omitted if the precise relationship between the elements
is not specified.

Constraints

No additional constraints.

Semantics

Depending on the specific stereotype of Abstraction, the mapping may be formal or informal, and it may be unidirectional or
bidirectional. Abstraction has predefined stereotypes (such as «derive», «refine», and «trace») which are defined in the
Standard Profiles chapter. If an Abstraction element has more than one client element, the supplier element maps into the set
of client elements as a group. For example, an analysis-level class might be split into several design-level classes. The
situation is similar if there is more than one supplier element.

Notation

An abstraction relationship is shown as a dependency with an «abstraction» keyword attached to it or the specific predefined
stereotype name.

Examples

In the example below, the Employee class indentified in analysis (i.e., the «type») maps to the same concept in the design
model called Employee Record.

7.14.2 Classifier (from Dependencies)

• See “Classifier (from Kernel, Dependencies, PowerTypes)” on page 61.

Figure 52 - An example of a refine abstraction

«type»

Employee

«implementation

Employee Record
class»

«refine»
UML Superstructure 2.0 Draft Adopted Specification 107

7.14.3 Dependency (from Dependencies)

Description

A dependency is a relationship that signifies that a single or a set of model elements requires other model elements for their
specification or implementation. This means that the complete semantics of the depending elements is either semantically or
structurally dependent on the definition of the supplier element(s).

Attributes

No additional attributes.

Associations

• client: NamedElement [1..*] The element that is affected by the supplier element. In some cases (such as a Trace
Abstraction) the direction is unimportant and serves only to distinguish the two elements.

• supplier: NamedElement [1..*] Designates the element that is unaffected by a change. In a two-way relationship (such as
some Refinement Abstractions) this would be the more general element. In an undirected
situation, such as a Trace Abstraction, the choice of client and supplier is not relevant.

Constraints

No additional constraints.

Semantics

A dependency signifies a supplier/client relationship between model elements where the modification of the supplier may
impact the client model elements. A dependency implies the semantics of the client is not complete without the supplier. The
presence of dependency relationships in a model does not have any runtime semantics implications, it is all given in terms of
the model-elements that participate in the relationship, not in terms of their instances.

Notation

A dependency is shown as a dashed arrow between two model elements. The model element at the tail of the arrow (the client)
depends on the model element at the arrowhead (the supplier). The arrow may be labeled with an optional stereotype and an
optional name. It is possible to have a set of elements for the client or supplier. In this case, one or more arrows with their tails
on the clients are connected the tails of one or more arrows with their heads on the suppliers. A small dot can be placed on the
junction if desired. A note on the dependency should be attached at the junction point.

Examples

In the example below, the Car class has a dependency on the Vehicle Type class. In this case, the dependency is an instantiate

Figure 53 - Notation for a dependency between two elements

NamedElement-1 NamedElement-2

«dependecyName»
108 UML Superstructure 2.0 Draft Adopted Specification

dependency, where the Car class is an instance of the Vehicle Type class.

7.14.4 NamedElement (from Dependencies)

See “NamedElement (from Kernel, Dependencies)” on page 33.

7.14.5 Permission (from Dependencies)

Description

A Permission signifies granting of access rights from the supplier model element to a client model element. Or to put it another
way, it signifies that the client requires access to some or all of the constituent elements of the supplier. The supplier element
gives the client permission to access some or all of its constituents elements.

Attributes

No additional attributes.

Constraints

[1] The supplier must be a namespace

Notation

A permission dependency is shown as a dependency with a «permit» keyword attached to it.

Examples

In the example below, the Employee class grants access rights to Executive objects. This means that executive objects may
access the private properties of salary and homePhoneNumber.

Figure 54 - An example of a instantiatedependency

Figure 55 - An example of a permit dependency

Car
Vehicle«instantiate»

Type

Employee Executive
«permit»

+ phoneExtension

- salary
+employeeID

- homePhoneNumber
UML Superstructure 2.0 Draft Adopted Specification 109

7.14.6 Realization (from Dependencies)

Description

Realization is a specialized abstraction relationship between two sets of model elements, one representing a specification (the
supplier) and the other represents an implementation of the latter (the client). Realization can be used to model stepwise
refinement, optimizations, transformations, templates, model synthesis, framework composition, etc.

Realization is a specialized abstraction relationship between two sets of model elements. Onespecifies the source (the
supplier); the other implements the targer (the client). Realization can be used to model stepwise refinement, optimizations,
transformations, templates, model synthesis, framework composition, etc.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

A Realization signifies that the client set of elements are an implementation of the supplier set, which serves as the
specification. The meaning of ‘implementation’ is not strictly defined, but rather implies a more refined or elaborate form in
respect to a certain modeling context. It is possible to specify a mapping between the specification and implementation
elements, although it is not necessarily computable.

Notation

A Realization dependency is shown as a dependency with the keyword «realize» attached to it.

7.14.7 Substitution (from Dependencies)

Description

A substitution is a relationship between two classifiers signifies that the substitutingClassifier complies with the contract
specified by the contract classifier. This implies that instances of the substitutingClassifier are runtime substitutable where
instances of the contract classifier are expected.

Associations

• contract: Classifier [1] (Specializes Dependency.target.)

• substitutingClassifier: Classifier [1]
(Specializes Dependency.client.)

Attributes

None.
110 UML Superstructure 2.0 Draft Adopted Specification

Constraints

No additional constraints.

Semantics

The substitution relationship denotes runtime substitutability which is not based on specialization. Substitution, unlike
specialization, does not imply inheritance of structure, but only compliance of publicly available contracts. A substitution like
relationship is instrumental to specify runtime substitutability for domains that do not support specilization such as certain
component technologies. It requires that (1) interfaces implemented by the contract classifier are also implemented by the
sunstituting classifier, or else the substituting classifier implements a more specilized interface type. And, (2) the any port
owned by the contract classifier has a matching port (see ports) owned by the substituting classifier.

Notation

A Substitution dependency is shown as a dependency with the keyword «substitute» attached to it.

Examples

In the example below, a generic Window class is substituted in a particular environment by the Resizable Window class.

7.14.8 Usage (from Dependencies)

Description

A usage is a relationship in which one element requires another element (or set of elements) for its full implementation or
operation. In the metamodel, a Usage is a Dependency in which the client requires the presence of the supplier.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

The usage dependency does not specify how the client uses the supplier other than the fact that the supplier is used by of the
definition or implementation of the client.

Figure 56 - An example of a substitute dependency

Window
Resizable«substitute»

Window
UML Superstructure 2.0 Draft Adopted Specification 111

Notation

A usage dependency is shown as a dependency with a «use» keyword attached to it.

Examples

In the example below, a Order class requires the Line Item class for its full implementation.

7.15 Interfaces

The contents of the Interfaces package is shown in Figure 51. The Interfaces package is one of the packages of the Classes
package.

Figure 57 - An example of a use dependency

Figure 58 - The contents of Interfaces package

Order
Line«use»

Item

Realization
(from Dependencies)

Property
(from Kernel)

Operation
(from Kernel)

Interface

*

0..1

+nestedInterface

*
{ordered, subsets ownedMember}

0..1

{subsets namespace,
subsets redefinitionContext}

*

*

*

+redefinedInterface*
{subsets redefinedElement}

*

0..1+ownedAttribute

*

{ordered, subsets attribute, subsets ownedMember}
0..1

{subsets classifier, subsets namespace,
subsets featuringClassifie}

0..1

*

0..1

{subsets redefinitionContext}

+ownedOperation

*

{ordered, subsets feature, subsets ownedMember}

Implementation

1

*

+contract 1
{subsets supplier, subsets target}

*

BehavioredClassifier

*

1 +implementation

*

{subsets ownedElement,
subsets clientDependency}

+implementatingClassifier

1

{subsets client, subsets source}

Classifier
(from Kernel)
112 UML Superstructure 2.0 Draft Adopted Specification

In order to locate the metaclasses that are referenced from this package,

• See “BehavioredClassifier (from Interfaces)” on page 113.

• See “Classifier (from Kernel, Dependencies, PowerTypes)” on page 61.

• See “Operation (from Kernel)” on page 76.

• See “Property (from Kernel, AssociationClasses)” on page 89.

• See “Realization (from Dependencies)” on page 110.

7.15.1 BehavioredClassifier (from Interfaces)

Description

A BehavioredClassifier may have implementations.

Associations

• implementation: Implementation [*](Specializes Element.ownedElement and Realization.clientDependency.)

7.15.2 Implementation (from Interfaces)

Description

An Implementation is a specialized Realization relationship between a Classifier and an Interface. The implementation
relationship signifies that the realizing classifier conforms to the contract specified by the interface.

Attributes

No additional attributes.

Associations

• contract: Interface [1] References the Interface specifying the conformance contract. (Specializes Depen-
dency.supplier and Relationship.target)

• implementingClassifier: Classifier [1]
References the operations owned by the Interface. (Specializes Dependency.client and
Relationship.source)

Constraints

No additional constraints.

Semantics

A classifier that implements an interface specifies instances that are conforming to the interface and to any of its ancestors. A
classifier may implement a number of interfaces. The set of interfaces implemented by the classifier are its provided interfaces
and signify the set of services the classifier offers to its clients. A classifier implementing an interface supports the set of
features owned by the interface. In addition to supporting the features, a classifier must comply with the constraints owned by
the interface.

An implementation relationship between a classifier and an interface implies that the classifier supports the set of features
owned by the interface, and any of its parent interfaces. For behavioral features, the implementing classifier will have an
UML Superstructure 2.0 Draft Adopted Specification 113

operations or reception for every operation or reception, respectively, owned by the interface. For properties, the implementing
classifier will provide functionality that maintains the state represented by the property. While such may be done by direct
mapping to a propertyof the implementing classifier, it may also be supported by the state machine of the classifier or by a pair
of operations that support the retrieval of the state information and an operation that changes the state information.

Notation

See “Interface (from Interfaces)”.

7.15.3 Interface (from Interfaces)

Description

An interface is a kind of classifier that represents a declaration of a set of coherent public features and obligations. In a sense,
an interface specifies a kind of contract which must be fulfilled by any instance of a classifier that realizes the interface. The
obligations that may be associated with an interface are in the form of various kinds of constraints (such as pre- and post-
conditions) or protocol specifications, which may impose ordering restrictions on interactions through the interface.

Since interfaces are declarations, they are not directly instantiable. Instead, an interface specification is realized by an instance
of a classifier, such as a class, which means that it presents a public facade that conforms to the interface specification. Note
that a given classifier may realize more than one interface and that an interface may be realized by a number of different
classifiers.

Attributes

No additional attributes.

Associations

• ownedAttribute: Proprety References the properties owned by the Interface. (Subsets Namespace.ownedMember
and Classifier.feature.)

• ownedOperation: Operation References the operations owned by the Interface. (Subsets Namespace.ownedMember
and Classifier.feature.)

• nestedInterface: Interface (Subsets Namespace.ownedMember.)

• redefinedInterface: Interface (Subsets Element.redefinedElement.)

Constraints

[1] The visibility of all features owned by an interface must be public.

self.feature->forAll(f | f.visibility = #public)

Semantics

An interface declares a set of public features and obligations that constitute a coherent service offered by a classifier.
Interfaces provide a way to partition and characterize groups of properties that realizing classifier instances must possess. An
interface does not specify how it is to be implemented, but merely what needs to be supported by realizing instances. That is,
such instances must provide a a public facade (attributes, operations, externally observable behavior) that conforms to the
interface. Thus, if an interface declares an attribute, this does not necessarily mean that the realizing instance will necessarily
have such an attribute in its implementation, only that it will appear so to external observers.

Because an interface is merely a declaration it is not an instantiable model element; that is, there are no instances of interfaces
114 UML Superstructure 2.0 Draft Adopted Specification

at run time.

The set of interfaces realized by a classifier are its provided interfaces, which represent the obligations that instances of that
classifier have to their clients. They describe the services that the instances of that classifier offer to their clients. Interfaces
may also be used to specify required interfaces, which are specified by a usage dependency between the classifier and the
corresponding interfaces. Required interfaces specify services that a classifier needs in order to perform its function and fulfill
its own obligations to its clients.

Properties owned by interfaces are abstract and imply that the conforming instance should maintain information corresponding
to the type and multiplicity of the property and facilitate retrieval and modification of that information. There will not
necessarily be a property implementing the classifier corresponding to the property of the interface. Interfaces may also own
constraints which impose constraints on the features of the implementing classifier.

An association between an interface and any other classifier implies that a conforming association must exist between any
implementation of that interface and that other classifier. In particular, an association between interfaces implies that a
conforming association must exist between implementations of the interfaces.

An interface cannot be directly instantiated. Instantiable classifiers, such as classes, must implement an interface (see
“Implementation (from Interfaces)”).

Notation

As a classifier, an interface may be shown using a rectangle symbol with the keyword «interface» preceding the name.

The implementation dependency from a classifier to an interface is shown by representing the interface by a circle or ball,
labelled with the name of the interface, attached by a solid line to the classifier that implements this interface (see Figure 59).

The usage dependency from a classifer to an interface is shown by representing the interface by a half-circle or socket, labeled
with the name of the interface, attached by a solid line to the classifier that implements this interface (see Figure 60).

Where two classifiers provide and require the same interface, respectively, these two notations may be combined as shown in
Figure 61. The ball-and-socket notation hints at that the interface in question serves to mediate interactions between the two

Figure 59 - Isensor is the provided interface of ProximitySensor

Figure 60 - Isensor is the required interface of TheftAlarm

ISensor

ProximitySensor

ISensor

TheftAlarm
UML Superstructure 2.0 Draft Adopted Specification 115

classifiers.

Presentation Option

Alternatively, if an interface is shown using the rectangle symbol, their implementation and usage dependencies to provided
and required interfaces, respectively, may be shown using dependency arrows (see Figure 62). The classifier at the tail of the
arrow implements the interface at the head of the arrow or uses that interface, respectively.

A set of interfaces constituting a protocol may be depicted as interfaces with associations between them (see Figure 63).

Examples

The following example shows a set of associated interfaces that specify an alarm system. (These interfaces may be defined
independently or as part of a collaboration.) Figure 64 shows the specification of three interfaces, IAlarm, ISensor, and
IBuzzer. IAlarm and Isensor are shown as engaged in a bidirectional protocol; IBuzzer describes the required interface for

Figure 61 - Isensor is the required interface of TheftAlarm as well as the pro-
vided interface of ProximitySensor

Figure 62 - Alternative notation for the situation depict in Figure 61

Figure 63 - IAlarm is the required interface for any classifier implementing Isen-
sor; conversely, Isensor is the required interface for any classifier implementing
IAlarm.

ISensor

TheftAlarm ProximitySensor

TheftAlarm ProximitySensor

activate()
read()

ISensor

sensor

+ activate()
+ read()

IAlarm

+ notify() 1 1

+theSensor +theAlarm
Interface»

«Interface»
116 UML Superstructure 2.0 Draft Adopted Specification

instances of classifiers implementing IAlarm, as depicted by their respective associations.

Three classes: DoorSensor, DoorAlarm, and DoorBell, implement the above interfaces (see Figure 65 below). These
classifiers are completely decoupled. Nevertheless, instances of these classifiers are able to interact by virtue of the
conforming associations declared by the associations between the interfaces that they realize.

7.16 AssociationClasses

The contents of the AssociationClasses package is shown in Figure 66. The AssociationClasses package is one of the packages
of the Classes package.

Figure 64 - A set of collaborating interfaces

Figure 65 - Classifiers implementing the above interfaces

IBuzzer

Volume

Start()
Reset()

ISensor

Activate()

«Interface»
IAlarm

Detect()

+theAlarm

+theSensor

+theBuzzer
«Interface»

«Interface»

 Alarm ISensor IBuzzer

DoorSensor DoorAlarm oorBell
UML Superstructure 2.0 Draft Adopted Specification 117

In order to locate the metaclasses that are referenced from this package,

• See “Property (from Kernel, AssociationClasses)” on page 89.

• See “Class (from Kernel)” on page 86.

• See “Association (from Kernel)” on page 81.

7.16.1 AssociationClass (from AssociationClasses)

A model element that has both association and class properties. An AssociationClass can be seen as an association that also
has class properties, or as a class that also has association properties. It not only connects a set of classifiers but also defines
a set of features that belong to the relationship itself and not to any of the classifiers.

Description

In the metamodel, an AssociationClass is a declaration of a semantic relationship between Classifiers, which has a set of
features of its own. AssociationClass is both an Association and a Class.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

[1] An AssociationClass cannot be defined between itself and something else.

self.allConnections->forAll (ar |
ar.type <> self

Figure 66 - The contents of AssociationClasses package

Associat ionClass

Class
(from Kernel)

Association
(from Kernel)

PropertyProperty

0..1*

+associationEnd

0..1

+qualifier

*
{ordered, subsets ownedElement} {subsets owner}
118 UML Superstructure 2.0 Draft Adopted Specification

and
ar.type.allParents ()-> excludes (self)
and
ar.type.allChildren () -> excludes (self))

Additional Operations

[1] The operation allConnections results in the set of all AssociationEnds of the Association.

allConnections : Set (AssociationEnd);
allConnections = self.end->union (self.allParents ().end)

Semantics

An association may be refined to have its own set of features; that is, features that do not belong to any of the connected
classifiers but rather to the association itself. Such an association is called an association class. It will be both an association,
connecting a set of classifiers and a class, and as such have features and be included in other associations. The semantics of an
association class is a combination of the semantics of an ordinary association and of a class.

An association class is both a kind of association and kind of a class. Both of these constructs are classifiers and hence have a
set of common properties, like being able to have features, having a name etc. As these properties are inherited from the same
construct (Classifier), they will not be duplicated. Therefore, an association class has only one name, and has the set of
features that are defined for classes and for associations. The constraints defined for class and for association also are
applicable for association class, which implies for example that the attributes of the association class, the ends of the
association class, and the opposite ends of associations connected to the association class must all have distinct names.
Moreover, the specialization and refinement rules defined for class and association are also applicable to association class.

Note – It should be noted that in an instance of an association class, there is only one instance of the associated classifiers at
each end , i.e. from the instance point of view, the multiplicity of the associations ends are ‘1’.

Notation

An association class is shown as a class symbol attached to the association path by a dashed line. The association path and the
association class symbol represent the same underlying model element, which has a single name. The name may be placed on
the path, in the class symbol, or on both, but they must be the same name.

Logically, the association class and the association are the same semantic entity; however, they are graphically distinct. The
association class symbol can be dragged away from the line, but the dashed line must remain attached to both the path and the
class symbol.
UML Superstructure 2.0 Draft Adopted Specification 119

7.17 PowerTypes

The contents of the PowerTypes package is shown below. The PowerTypes package is one of the packages of the Classes
package.

Figure 67 - An AssociationClass is depicted by an association symbol (a line)
and a class symbol (a box) connected with a dashed line. The diagram shows
the association class Job which is defined between the two classes Person and
Company.

Figure 68 - The contents of PowerTypes package

CompanyPerson
Job* 1..*

Job
salary

person company

Classifier

GeneralizationSet

isCovering : Boolean
isDisjoint : Boolean

0..*

0..1

+powertypeExtent

0..*

+powertype0..1

Generalization

*

*

+generalizationSet

*

+generalizatio*

Classifier

(from Kernel)

Generalization

(from Kernel)
*1 +generalization *

{subsets ownedElement}

+specific1

{subsets source,
subsets owner}

1 +general1

{subsets target}

PackageableElement

(from Kernel)
120 UML Superstructure 2.0 Draft Adopted Specification

In order to locate the metaclasses that are referenced from this package,

• See “Classifier (from Kernel, Dependencies, PowerTypes)” on page 61.

• See “Generalization (from Kernel, PowerTypes)” on page 66.

• See “PackageableElement (from Kernel)” on page 37.

7.17.1 Classifier (from PowerTypes)

See “Classifier (from Kernel, Dependencies, PowerTypes)” on page 61.

7.17.2 Generalization (from PowerTypes)

See “Generalization (from Kernel, PowerTypes)” on page 66.

7.17.3 GeneralizationSet (from PowerTypes)

A GeneralizationSet is an AutonomousElement (from Foundation :: Kernel :: PackagingNamespaces) whose instances define
partitioned sets of Generalization relationships.

Description

Each Generalization is a binary relationship that relates a specific Classifier to a more general Classifier (i.e., a subclass). Each
GeneralizationSet defines a particular set of Generalization relationships that describe the way in which a specific Classifier
(or superclass) may be partitioned. For example, a GeneralizationSet could define a partitioning of the class Person into two
subclasses: Male Person and Female Person. Here, the GeneralizationSet would associate two instances of Generalization.
Both instances would have Person as the specific classifier, however one Generalization would involve Male Person as the
general Classifier and the other would involve Female Person as the general classifier. In other words, the class Person can
here be said to be partitioned into two subclasses: Male Person and Female Person. Person could also be partitioned into North
American Person, Asian Person, European Person, or something else. This partitioning would define a different
GeneralizationSet that would associate with three other Generalization relationships. All three would have Person as the
specific Classifier; only the general classifiers would differ: i.e., North AmericanPerson, Asian Person, and European Person.

Attributes

• isCovering : Boolean Indicates (via the associated Generalizations) whether or not the set of specific Classifiers
are covering for a particular general classifier. When isCovering is true, every instance of
a particular general Classifier is also an instance of at least one of its specific Classifiers
for the GeneralizationSet. When isCovering is false, there are one or more instances of the
particular general Classifier that are not instances of at least one of its specific Classifiers
defined for the GeneralizationSet. For example, Person could have two Generalization
relationships each with a different specific Classifier: Male Person and Female Person.
This GeneralizationSet would be covering because every instance of Person would be an
instance of Male Person or Female Person. In contrast, Person could have a three General-
ization relationships involving three specific Classifiers: North AmericanPerson, Asian
Person, and European Person. This GeneralizationSet would not be covering because
there are instances of Person for which these three specific Classifiers do not apply. The
first example, then, could be read: any Person would be specialized as either being a Male
Person or a Female Person—and nothing else; the second could be read: any Person would
be specialized as being North American Person, Asian Person, European Person, or some-
thing else.
UML Superstructure 2.0 Draft Adopted Specification 121

• isDisjoint : Boolean Indicates whether or not the set of specific Classifiers in a Generalization relationship
have instance in common. If isDisjoint is true, the specific Classifiers for a particular Gen-
eralizationSet have no members in common; that is, their intersection is empty. If isDis-
joint is false, the specific Classifiers in a particular GeneralizationSet have one or more
members in common; that is, their intersection is not empty. For example, Person could
have two Generalization relationships, each with the different specific Classifier: Manager
or Staff. This would be disjoint because every instance of Person must either be a Manager
or Staff. In contrast, Person could have two Generalization relationships involving two
specific (and non-covering) Classifiers: Sales Person and Manager. This Generalization-
Set would not be disjoint because there are instances of Person which can be a Sales Per-
son and a Manager.

Associations

• generalization [1] Designates the instances of Generalization which are members of a given Generalization-
Set.

• powertype [2] Designates the Classifier that is defined as the power type for the associated Generaliza-
tionSet.

Constraints

[1] Every Generalization associated with a particular GeneralizationSet must have the same general Classifier.

[2] The Classifier that maps to a GeneralizationSet may neither be a specific nor a general Classifier in any of the Generaliza-
tion relationships defined for that GeneralizationSet. In other words, a power type may not be an instance of itself nor may
its instances be its subclasses.

Semantics

The generalizationSet association designates the partition to which the Generalization link belongs. All of the Generalization
links that share a given general Classifier are divided into disjoint sets (that is, partitions) using the generalizationSet
association. Each partition represents an orthogonal dimension of specialization of the general Classifier.

As mentioned above, in essence, a power type is a class whose instances are subclasses of another class. Power types, then, are
metaclasses with an extra twist: the instances are also be subclasses. The powertype association relates a classifier to the
instances of that classifier—which are the specific classifiers identified for a GeneralizationSet. For example, the Bank
Account Type classifier could associate with a Generalization relationship that has specific classifiers of Checking Account
and Savings Account. Here, then, Checking Account and Savings Account are instances of Bank Account Type. Furthermore,
if the Generalization relationship has a general classifier of Bank Account, then Checking Account and Savings Account are
also subclasses of Bank Account. Therefore, Checking Account and Savings Account are both instances of Bank Account
Type and subclasses of Bank Account. (For more explanation and examples, see Examples in the Generalization section,
below.)

Notation

The notation to express the grouping of Generalizations into GeneralizationSets were presented in the Notation section of
Generalization, above. To indicate whether or not a generalization set is covering and disjoint, each set should be labeled with
122 UML Superstructure 2.0 Draft Adopted Specification

one of the constraints indicated below.

Graphically, the GeneralizationSet constraints are placed next to the sets, whether the common arrowhead notation is
employed of the dashed line, as illustrated below.

Power type specification is indicated by placing the name of the powertype Classifier—preceded by a colon—next the
GeneralizationSet graphically containing the specific classifiers that are the instances of the power type. The illustration below

Figure 69 - Generalization set constraint notation

Figure 70 - GeneralizationSet constraint notation

{complete, disjoint} - Indicates the generalization set is covering and

its specific Classifiers have no common instances

{incomplete, disjoint} - Indicates the generalization set is not covering and

its specific Classifiers have no common instances*

{complete, overlapping} - Indicates the generalization set is covering and

its specific Classifiers do share common instances

{incomplete, overlapping} - Indicates the generalization set is not covering and

its specific Classifiers do share common instances

*Default is {incomplete, disjoint}

(a) GeneralizationSet constraint when sharing common generalization arrowhead.

(b) GeneralizationSet constraint using dashed-line notation.

{Generalization
Set constraint-1}

{Generalization
Set constraint-2}

{Generalization
Set constraint-3}

{Generalization
Set constraint-4}
UML Superstructure 2.0 Draft Adopted Specification 123

indicates how this would appear for both the “shared arrowhead” and the “dashed-line” notation. for GeneralizationSets.

Examples

In the illustration below, the Person class can be specialized as either a Female Person or a Male Person. Because this
partitioning, or GeneralizationSet, is constrained to be complete and disjoint, each instance of Person must either be a Female
Person or a Male Person; that is, it must be one or the other and not both. (Therefore, Person is an abstract class because a
Person object may not exist without being either a Female Person or a Male Person.) Furthermore, Person’s can be specialized
as an Employee. The generalization set here is expressed as {incomplete, disjoint}, which means that instances of Persons can
be partitioned as Employees or some other unnamed collection that consists of all non-Employee instances. In other words,
Persons can either be an Employee or in the complement of Employee, and not both. Taken together, the diagram indicates
that a Person may be 1) either a Male Person or Female Person, and 2) an Employee or not. When expressed in this manner, it

Figure 71 - Power type notation

General

Specific
Classifier-1

PowerType
Classifier-2

: powertype classifier-1

Specific
Classifier-2

Specific
Classifier-3

Classifier
PowerType
Classifier-1

: powertype classifier-2

General PowerType
Classifier-2

: powertype classifier-1

Specific
Classifier-3

Classifier
PowerType
Classifier-1

: powertype classifier-2

(a) Power type specification when sharing common generalization arrowhead

(b) Power type specification using dashed-line notation

Specific
Classifier-1

Specific
Classifier-2
124 UML Superstructure 2.0 Draft Adopted Specification

is possible to partition the instances of a classifier using a disjunctive normal form (DNF).

Grouping the objects in our world by categories, or classes, is an important technique for organizations. For instance, one of
the ways botanists organize trees is by species. In this way, each tree we see can be classified as an American elm, sugar
maple, apricot, saguaro—or some other species of tree. The class diagram below expresses that each Tree Species classifies
zero or more instances of Tree, and each Tree is classified as exactly one Tree Species. For example, one of the instances of
Tree could be the tree in your front yard, the tree in your neighbor’s backyard, or trees at your local nursery. Instances of Tree
Species, such as sugar maple and apricot. Furthermore, this figure indicates the relationships that exist between these two sets
of objects. For instance, the tree in your front yard might be classified as a sugar maple, your neighbor’s tree as an apricot, and
so on. This class diagram expresses that each Tree Species classifies zero or more instances of Tree, and each Tree is classified
as exactly one Tree Species. It also indicates that each Tree Species is identified with a Leaf Pattern and has a general location
in any number of Geographic Locations. For example, the saguaro cactus has leaves reduced to large spines and is generally
found in southern Arizona and northern Sonora. Additionally, this figure indicates each Tree has an actual location at a
particular Geographic Location. In this way, a particular tree could be classified as a saguaro and be located in Phoenix,
Arizona.

Lastly, this diagrams illustrates that Tree is subtyped as American Elm, Sugar Maple, Apricot, or Saguaro—or something else.
Each subtype, then, can have its own specialized properties. For instance, each Sugar Maple could have a yearly maple sugar
yield of some given quantity, each Saguaro could be inhabited by zero or more instances of a Gila Woodpecker, and so on. At
first glance, it would seem that a modeler should only use either the Tree Species class or the subclasses of Tree—since the
instances of Tree Species are the same as the subclasses of tree. In other words, it seems redundant to represent both on the
same diagram. Furthermore, having both would seem to cause potential diagram maintenance issues. For instance, if botanists
got together and decided that the American elm should no longer be a species of tree, the American Elm object would then be
removed as an instance of Tree Species. To maintain the integrity of our model in such a situation, the American Elm subtype
of Tree must also be removed. Additionally, if a new species were added as a subtype of Tree, that new species would have to
be added as an instance of Tree Species. The same kind of situation exists if the name of a tree species were changed—both the
subtype of Tree and the instance of Tree Species would have to be modified accordingly.

As it turns out, this seemis redunadancy is not a redundancy semantically (although it may be implemented that way). different
modeling approaches depicted above are not really all that different. In reality, the subtypes of Tree and the instances of Tree
Species are the same objects. In other words, the subtypes of Tree are instances of Tree Species. Furthermore, the instances of
Tree Species are the subtypes of Tree. The fact that an instance of Tree Species is called sugar maple and a subtype of Tree is
called Sugar Maple is no coincidence. The sugar maple instance and Sugar Maple subtype are the same object. The instances
of Tree Species are—as the name implies—types of trees. The subtypes of Tree are—by definition—types of trees. While Tree
may be partitioned in various ways (based on size or age, for example), in this example it is partitioned on the basis of species.
Therefore, the integrity issue mentioned above is not really an issue here. Deleting the American Elm subtype from the Tree

Figure 72 - Multiple subtype partitions (generalization sets) and constraint
examples

An incomplete partition
indicating that a Person
can also be an Employee
or not .

Female
Person

Male
Person

Employee

Person

{complete,
disjoint}

{incomplete,
disjoint}

A complete partition
indicating that a Person
may be subtyped as
either a Female Person
or a Male Person.
UML Superstructure 2.0 Draft Adopted Specification 125

partition does not require also deleting the corresponding Tree Species instance, because the American Elm subtype and the
corresponding Tree Species instance are the same object. Figures 23.4 and 23.5 depict another way of thinking about this. .

As established above, the instances of Classifiers can also be Classifiers. (This is the stuff that metamodels are made of.) These
same instances, however, can also be specific classifiers (i.e. subclasses) of another classifier. When this occurs, we have what
is called a power type. Formally, a power type is a classifier whose instances are also subclasses of another classifier

In the examples above, Tree Species is a power type on the Tree type. Therefore, the instances of Tree Species are subtypes of
Tree. This concept applies to many situations within many lines of business. The figure below depicts other examples of
power types. The name on the generalization set beginning with a colon indicates the power type. In other words, this name is
the name of the type of which the subtypes are instances.

Diagram (a) in the figure below, then, can be interpreted as: each instance of Account is classified with exactly one instance of
Account Type. It can also be interpreted as: the subtypes of Account are instances of Account Type. This means that each
instance of Checking Account can have its own attributes (based on those defined for Checking Account and those inherited
from Account), such as account number and balance. Additionally, it means that Checking Account as an object in its own
right can have attributes, such as interest rate and maximum delay for withdrawal. (Such attributes are sometime referred to as
class variables, rather than instance variables.) The example (b) depicts a vehicle-modeling example. Here, each Vehicle can
be subclassed as either a Truck or a Car or something else. Furthermore, Truck and Car are instances of Vehicle Type. In (c),
Disease Occurrence classifies each occurrence of disease, e.g. my chicken pox and your measles. Disease Classification is the

Figure 73 - Power type example and notation

Tree

{disjoint,
incomplete}

American
Elm

Saguaro

Sugar
Maple

Apricot

tree species

general
locations

leaf
pattern

Geographic
Location

Leaf
Pattern

actual
location

*

1

tree

* *

*

1

1

1

Tree
Species

: Tree Species
126 UML Superstructure 2.0 Draft Adopted Specification

power type whose instances are classes such as Chicken Pox and Measles.

Labeling partitions with the power type becomes increasingly important when a type has more than one power type. The figure
below is one such example. Without knowing which partition contains Policy Coverage Types and which Insurance Lines,
clarity is compromised. This figure depicts an even more complex situation. Here, a power type is expressed with multiple
partitions. For instance, a Policy can be subtyped as either a Life, Health, Property/Casualty, or some other Insurance Line.
Furthermore, a Property/Casualty policy can be further subtyped as Automobile, Equipment, Inland Marine, or some other
Property/Casualty line of insurance. In other words, the subtypes in the partitions labeled Insurance Line are all instances of

Figure 74 - Other power type examples

vehicle category

classified vehicle

Vehicle
TypeVehicle

1

*

{disjoint, incomplete}

Checking
Account

Savings
Account

account classifier

account

1

*Account
Account

Type

{disjoint, incomplete}

Call
Waiting

service category

installed service

Telephone
Service
Category

Installed
Telephone

Service

{disjoint, incomplete}

1

*

Chicken
Pox

Measles

disease classifier

classified disease

Disease
Classification

Disease
Occurrence

1
*

{disjoint, incomplete}

Truck

Car

(a) Bank account/account type example (b) Vehicle/vehicle type example

(c) Disease Occurrence/Disease Classification example (d) Telephone service example

:Account Type :Vehicle Type

: Disease Classification : Telephone Service Category

Call
Transferring
UML Superstructure 2.0 Draft Adopted Specification 127

the Insurance Line power type.

Power types are a conceptual, or analysis, notion. They express a real-world situation. Implementing, however, them may
not be easy and efficient. To implement power types with a relational database would mean that the instances of a relation
could also be relations in their own right. In object-oriented implementations, the instances of a class could also be
classes. However, if the software implementation can not directly support classes being objects and vice versa, redundant
structures must be defined. In other words, unless you’re programming in Smalltalk or CLOS, the designer must be aware
of the integrity problem of keeping the list of power type instances in sync with the existing subclasses. Without the
power type designation, implementors would not be aware that they need to consider keeping the subclasses in sync with
the instances of the power type; with the power type indication, the implementor knows that a) an data integrity situation
exists, and b) how to manage the integrity situation. For example, if the Life Policy instance of Insurance Line were
deleted, the subclass called Life Policy can no longer exist. Or, is a new subclass of Policy were added, a new instance
must also be added to the appropriate power type.

7.18 Diagrams

Structure diagram

This section outlines the graphic elements that may be shown in structure diagrams, and provides cross references where
detailed information about the semantics and concrete notation for each element can be found. It also furnishes examples that
illustrate how the graphic elements can be assembled into diagrams.

Figure 75 - Other power type examples

Group
Policy

Individual
Policy

insurance line

issued policy
Policy

coverage type

issued policy

Life
Policy

Property/
Casualty

Policy

Type 1
* 1

*

{disjoint, complete}{disjoint, complete}
:Insurance Line:Policy Coverage Type

Health
Policy

Insurance
Line

Coverage

Policy
128 UML Superstructure 2.0 Draft Adopted Specification

Graphical nodes

The graphic nodes that can be included in structure diagrams are shown in Table 3.

Table 3 Graphic nodes included in structure diagrams

NODE TYPE NOTATION REFERENCE

Class See “Class (from Kernel)” on page 86.

Interface See “Interface (from Interfaces)” on page 114.

InstanceSpecification See “InstanceSpecification (from Kernel)” on
page 57. (Note that instances of any classifier can
be shown by prefixing the classifier name by the
instance name followed by a colon and underlining
the complete name string.)

Package See “Package (from Kernel)” on page 99.

ClassName

InterfaceName

<<interface>>
InterfaceName

Instancename :
ClassName

PackageName
UML Superstructure 2.0 Draft Adopted Specification 129

Graphical paths

The graphic paths that can be included in structure diagrams are shown in Table 4.

Table 4 - Graphic nodes included in structure diagrams

PATH TYPE NOTATION REFERENCE

Aggregation See “AggregationKind (from Kernel)” on page 80.

Association See “Association (from Kernel)” on page 81.

Composition See “AggregationKind (from Kernel)” on page 80.

Dependency See “Dependency (from Dependencies)” on
page 108.

Generalization See “Generalization (from Kernel, PowerTypes)”
on page 66.

Realization See “Realization (from Dependencies)” on
page 110.

Package Merge See “PackageMerge (from Kernel)” on page 101.

PackageImport
(private)

See “PackageImport (from Kernel)” on page 38.

<<merge>>

<<use>>
130 UML Superstructure 2.0 Draft Adopted Specification

Variations

Variations of structure diagrams often focus on particular structural aspects, such as relationships between packages, showing
instance specifications, or relationships between classes. There are no strict boundaries between different variations; it is
possible to display any element you normally display in a structure diagram in any variation.

Class diagram

The following nodes and edges are typically drawn in a class diagram:

• Association

• Aggregation

• Class

• Composition

• Dependency

• Generalization

• Interface

• Realization

Package diagram

The following nodes and edges are typically drawn in a package diagram:

• Dependency

• Package

• PackageExtension

• PackageImport

Object diagram

The following nodes and edges are typically drawn in an object diagram:

• InstanceSpecification

• Link (i.e., Association)

PackageImport
(public)

See “PackageImport (from Kernel)” on page 38.

Table 4 - Graphic nodes included in structure diagrams

PATH TYPE NOTATION REFERENCE

<<import>>
UML Superstructure 2.0 Draft Adopted Specification 131

132 UML Superstructure 2.0 Draft Adopted Specification

8 Components

8.1 Overview

The Components package specifies a set of constructs that can be used to define software systems of arbitrary size and
complexity. In particular, the package specifies a component as a modular unit with well-defined interfaces that is replaceable
within its environment. The component concept addresses the area of component-based development and component-based
system structuring, where a component is modeled throughout the development life cycle and successively refined into
deployment and run-time.

An important aspect of component-based development is the reuse of previously constructed components. A component can
always be considered an autonomous unit within a system or subsystem. It has one or more provided and required interfaces
(potentially exposed via ports), and its internals are hidden and inaccessible other than as provided by its interfaces. Although
it may be dependent on other elements in terms of interfaces that are required, a component is encapsulated and its
dependencies are designed such that it can be treated as independently as possible. As a result, components and subsystems
can be flexibly reused and replaced by connecting (“wiring”) them together via their provided and required interfaces. The
aspects of autonomy and reuse also extend to components at deployment time. The artifacts that implement component are
intended to be capable of being deployed and re-deployed independently, for instance to update an existing system.

The Components package supports the specification of both logical components (e.g. business components, process
components) and physical components (e.g. EJB components, CORBA components, COM+ and .NET components, WSDL
components, etc.), along with the artifacts that implement them and the nodes on which they are deployed and executed. It is
anticipated that profiles based around components will be developed for specific component technologies and associated
hardware and software environments.

Basic Components

The BasicComponents package focuses on defining a component as an executable element in a system. It defines the concept
of a component as a specialized class that has an external specification in the form of one or more provided and required
interfaces, and an internal implementation consisting of one or more classifiers that realize its behavior. In addition, the
BasicComponents package defines specialized connectors for ‘wiring’ components together based on interface compatibility.

Packaging Components

The PackagingComponents package focuses on defining a component as a coherent group of elements as part of the
development process. It extends the concept of a basic component to formalize the aspects of a component as a ‘building
block’ that may own and import a (potentially large) set of model elements.
UML Superstructure 2.0 Draft Adopted Specification 133

8.2 Abstract syntax

Figure 76 shows the dependencies of the Component packages.

Figure 76 - Dependencies between packages described in this chapter
 (transitive dependencies to Kernel and Interfaces packages are not shown).

BasicComponents

StructuredClasses

(from CompositeStructures)

PackagingComponents

<<merge>>

Dependencies

(from Cla sses)

<<merge>>
134 UML Superstructure 2.0 Draft Adopted Specification

Package BasicComponents

Figure 77 - The metaclasses that define the basic Component construct.

Figure 78 - The metaclasses that define the component wiring constructs

Class
(from StructuredClasses)

Interface
(from Interfaces)

Component

isIndirectlyInstantiated : Boolean

*

+/required

*

*

+/provided

*

Classi fier
(from Kernel)

Realization
*

0..1 +realization

*

{subsets ownedElement,
subsets clientDependency}

+abstraction

0..1

{subsets sou rce,
subsets owner,
subsets client}

1

+realizingClassifier

1
{subsets supplier,

subsets target}

ConnectorKind
<<enumerati on>>

asse mbly
de legat ion

Behavior
(from BasicBehaviors)

Connector

kind : Con nectorKi nd *

* +con tract

*

*

UML Superstructure 2.0 Draft Adopted Specification 135

Package PackagingComponents

8.3 Class Descriptions

8.3.1 Component

A component represents a modular part of a system that encapsulates its contents and whose manifestation is replaceable
within its environment.

A component defines its behavior in terms of provided and required interfaces. As such, a component serves as a type, whose
conformance is defined by these provided and required interfaces (encompassing both their static as well as dynamic
semantics). One component may therefore be substituted by another only if the two are type conformant. Larger pieces of a
system's functionality may be assembled by reusing components as parts in an encompassing component or assembly of
components, and wiring together their required and provided interfaces.

A component is modeled throughout the development life cycle and successively refined into deployment and run-time. A
component may be manifest by one or more artifacts, and in turn, that artifact may be deployed to its execution environment.
A deployment specification may define values that parameterize the component’s execution. (See Deployment chapter).

Description

BasicComponents

A component is a subtype of Class which provides for a Component having attributes and operations, and being able to
participate in Associations and Generalizations. A Component may form the abstraction for a set of realizingClassifiers that
realize its behavior. In addition, because a itself Class is a subtype of an EncapsulatedClassifier, a Component may optionally
have an internal structure and own a set of Ports that formalize its interaction points.

A component has a number of provided and required Interfaces, that form the basis for wiring components together, either
using Dependencies, or by using Connectors. A provided Interface is one that is either implemented directly by the component
or one of its realizingClassifiers, or it is the type of a provided Port of the Component. A required interface is designated by a
Usage Dependency from the Component or one of its realizingClassifiers, or it is the type of a required Port.

PackagingComponents

A component is extended to define the grouping aspects of packaging components. This defines the Namespace aspects of a
Component through its inherited ownedMember and elementImport associations. In the namespace of a component, all model
elements that are involved in or related to its definition are either owned or imported explicitly. This may include e.g. Use
Cases and Dependencies (e.g. mappings), Packages, Components, and Artifacts.

Figure 79 - The packaging capabilities of Components

Component PackageableElement
(from Kernel)

0..1 *0..1

+ownedMember

*{redefines ownedMember}
136 UML Superstructure 2.0 Draft Adopted Specification

Attributes

BasicComponents

• isIndirectlyInstantiated : Boolean {default = true}
The kind of instantiation that applies to a Component. If false, the component is instanti-
ated as an addressable object. If true, the Component is defined at design-time, but at run-
time (or execution-time) an object specified by the Component does not exist, that is, the
component is instantiated indirectly, through the instantiation of its realizing classifiers or
parts. Several standard stereotypes use this meta attribute, e.g. «specification, «focus», «sub-
system».

Associations

BasicComponents

• provided: Interface The interfaces that the component exposes to its environment. These interfaces may be
Implemented or Realized by the Component or any of its realizingClassifiers, or they may
be the types of its required Ports.
The provided interfaces association is a derived association (OCL version of the deriva-
tion above to be added).

• required: Interface The interfaces that the component requires from other components in its environment in
order to be able to offer its full set of provided functionality. These interfaces may be Used
by the Component or any of its realizingClassifiers, or they may be the types of its
required Ports.
The required interfaces association is a derived association (OCL version of the derivation
above to be added).

• realization: Realization References the Classifiers of which the Component is an abstraction, i.e. that realize its
behavior.

PackagingComponents

• ownedMember: PackageableElement
The set of PackageableElements that a Components owns. In the namespace of a compo-
nent, all model elements that are involved in or related to its definition may be owned or
imported explicitly. These may include e.g. Classes, Interfaces, Components, Packages,
Use cases, Dependencies (e.g. mappings), and Artifacts.

Constraints

No further constraints.

Semantics

A component is a self contained unit that encapsulates the state and behavior of a number of classifiers. A component specifies
a formal contract of the services that it provides to its clients and those that it requires from other components or services in the
system in terms of its provided and required interfaces.

A component is a substitutable unit that can be replaced at design time or run-time by a component that offers that offers
equivalent functionality based on compatibility of its interfaces. As long as the environment obeys the constraints expressed
by the provided and required interfaces of a component, it will be able to interact with this environment. Similarly, a system
can be extended by adding new component types that add new functionality.
UML Superstructure 2.0 Draft Adopted Specification 137

The required and provided interfaces of a component allow for the specification of structural features such as attributes and
association ends, as well as behavioral features such as operations and events. A component may implement a provided
interface directly, or, its realizing classifiers may do so. The required and provided interfaces may optionally be organized
through ports, these enable the definition of named sets of provided and required interfaces that are typically (but not always)
addressed at run-time.

A component has an external view (or. “black-box” view) by means of its publicly visible properties and operations.
Optionally, a behavior such as a protocol state machine may be attached to an interface, port and to the component itself, to
define the external view more precisely by making dynamic constraints in the sequence of operation calls explicit. Other
behaviors may also be associated with interfaces or connectors to define the ‘contract’ between participants in a collaboration
e.g. in terms of use case, activity or interaction specifications.

The wiring between components in a system or other context can be structurally defined by using dependencies between
component interfaces (typically on structure diagrams). Optionally, a more detailed specification of the structural
collaboration can be made using parts and connectors in of composite structures, to specify the role or instance level
collaboration between components (See Chapter Composite Structures).

A component also has an internal view (or “white-box” view) by means of its private properties and realizing classifiers. This
view shows how the external behavior is realized internally. The mapping between external and internal view is by means of
dependencies (on structure diagrams), or delegation connectors to internal parts (on composite structure diagrams). Again,
more detailed behavior specifications such as for example interactions and activities may be used to detail the mapping from
external to internal behavior.

A number of UML standard stereotypes exist that apply to component, e.g. «subsystem» to model large-scale components, and
«specification» and «realization» to model components with distinct specification and realization definitions, where one
specification may have multiple realizations - see the UML Standard Elements Appendix.

Notation

A component is shown as a Classifier rectangle with the keyword «component». Optionally, in the right hand corner a
component icon can be displayed. This is a classifier rectangle with two smaller rectangles protruding from its left hand side.

Figure 80 - A Component with one provided interface

Figure 81 - A Component with two provided and three required interfaces

«component»

QuoteService

QuoteInf

Order

OrderableItem

«component» Person

Invoice
138 UML Superstructure 2.0 Draft Adopted Specification

An external view of a Component is by means of Interface symbols sticking out of the Component box (external, or black-box
view). Alternatively, the interfaces and/or individual operations and attributes can be listed in the compartments of a
component box (for scalability, tools may offer way of listing and abbreviating component properties and behavior).

For displaying the full signature of an interface of a component, the interfaces can also be displayed as typical classifier
rectangles that can be expanded to show details of operations and events.

An internal, or white box view of a Component is where the realizing classifiers are listed in an additional compartment.
Compartments may also be used to display a listing of any parts and connectors, or any implementing artifacts.

Figure 82 - Black box notation showing a listing of the properties
 of a component.

Figure 83 - Explicit representation of the provided and required
 interfaces, allowing interface details such as operation
 to be displayed (when desired).

Figure 84 - A white-box representation of a component

Order

«component»

«provided interfaces»
 OrderEntry
 Billing
«required interfaces»
 Invoice
 create (...)
 registerPayment (...)

PersonOrder

FindbyName()
Create()
GetDetails()

«use» «Interface»

OrderEntry

Create()
ValidateDetails()
AddOrderline()

«Interface»

Order

«component»

«provided interfaces»
 OrderEntry
 AccountPayable
«required interfaces»
 Person

«realizations»
 OrderHeader
 LineItem

«artifacts»
 Order.jar
UML Superstructure 2.0 Draft Adopted Specification 139

The internal classifiers that realize the behavior of a component may be displayed by means of general dependencies.
Alternatively, they may be nested within the component shape.

Alternatively, the internal classifiers that realize the behavior of a component may be displayed nested within the component
shape.

If more detail is required of the role or instance level containment of a component, then an internal structure consisting of parts
and connectors can be defined for that component. This allows e.g. explicit part names or connector names to be shown in
situations where the same Classifier (Association) is the type of more than one Part (Connector). That is, the Classifier is
instantiated more than once inside the component, playing different roles in its realization. Optionally, specific instances
(InstanceSpecifications) can also be referred to as in this notation.

Figure 85 - A representation of the realization of a complex component

Figure 86 - An alternative nested representation of a complex component

Customer

CustomerImpl CustomerColl CustomerDef

Order

OrderHeader

LineItem

Perso
n

OrderEntry

*

order

item

1

140 UML Superstructure 2.0 Draft Adopted Specification

Artifacts that implement components can be connected to them by physical containment or by an «implement» relationship,
which is an instance of the meta association between Component and Artifact.

Examples

Figure 87 - An internal or white-box view of the internal structure
 of a component that contains other components as parts of
 its internal assembly.

Figure 88 - Example of an overview diagram showing
 components and their general dependencies.

Store

:Order

:Product

:Customer
Person

Person

OrderableItem

OrderableItem

OrderEntry

OrderEntry

Account

Account

«delegate»

«delegate»

Order
«component»

Account
«component»

Product
«component»
UML Superstructure 2.0 Draft Adopted Specification 141

 The wiring of components can be represented on structure diagrams by means of classifiers and dependencies between them

(Note: the ball-and-socket notation from Figure 90 may used as a notation option for dependency based wiring). On composite
structure diagrams, detailed wiring can be performed at the role or instance level by defining parts and connectors.

Figure 89 - Example of a platform independent model of a component,
 its provided and required interfaces, and wiring through
 dependencies on a structure diagram.

Figure 90 - Example of a composite structure of components, with
 connector wiring between provided and required interfaces
 of parts (Note: “Client” interface is a subtype of “Person”).

Order

«component»

LineItem

OrderHeader
«focus»

*

1

concerns

Account

«component»

Product

«component»

OrderableItem

/orderedItem

/account

1

AccountPayable

:BackOrder

:Order

:Product

:Customer
Person

Person

:Organization:Service

Person

Client

OrderableItem

OrderableItem

OrderableItem

OrderEntry

:ShoppingCart
OrderEntry
142 UML Superstructure 2.0 Draft Adopted Specification

Changes from previous UML

The following changes from UML 1.x have been made:

The component model has made a number of implicit concepts from the UML 1.x model explicit, and made the concept more
applicable throughout the modeling life cycle (rather than the implementation focus of UML 1.x). In particular, the “resides”
relationship from 1.x relied on namespace aspects to define both namespace aspects as well as ‘residence’ aspects. These two
aspects have been separately modeled in the UML metamodel in 2.0. The basic residence relationship in 1.x maps to the
realizingClassifiers relationship in 2.0. The namespace aspects are defined through the basic namespace aspects of Classifiers
in UML 2.0, and extended in the PackagingComponents metamodel for optional namespace relationships to elements other
than classifiers.

In addition, the Component construct gains the capabilities from the general improvements in CompositeStructures (around
Parts, Ports and Connectors).

In UML 2.0, a Component is notated by a classifier symbol that no longer has two protruding rectangles. These were
cumbersome to draw and did not scale well in all circumstances. Also, they interfered with any interface symbols on the edge
of the Component. Instead, a «component» keyword notation is used in UML 2.0. Optionally, a component icon that is similar
to the UML 1.4 icon can still be used in the upper right-hand corner of the component symbol. For backward compatibility
reasons, the UML 1.4 notation with protruding rectangles can still be used.

8.3.2 Connector (from InternalStructures, as specialized)

The connector concept is extended in the Components package to include interface based constraints and notation.

A delegation connector is a connector that links the external contract of a component (as specified by its ports) to the internal
realization of that behavior by the component’s parts. It represents the forwarding of signals (operation requests and events) : a
signal that arrives at a port that has a delegation connector to a part or to another port will be passed on to that target for
handling.

An assembly connector is a connector between two components that defines that one component provides the services that
another component requires. An assembly connector is a connector that is defined from a required interface or port to a
provided interface or port.

Description

In the metamodel, a connector kind attribute is added to the Connector metaclass. Its value is an enumeration type with valid
values “assembly” or “delegation”.

Attributes

BasicComponents

• kind : ConnectorKind = {assembly, delegation} Indicates the kind of connector.

Associations

No additional associations.

Constraints

[1] A delegation connector must only be defined between used Interfaces or Ports of the same kind, e.g. between two pro-
vided Ports or between two required Ports.

[2] If a delegation connector is defined between a used Interface or Port and an internal Part Classifier, then that Classifier
must have an “implements” relationship to the Interface type of that Port.
UML Superstructure 2.0 Draft Adopted Specification 143

[3] If a delegation connector is defined between a source Interface or Port and a target Interface or Port, then the target Inter-
face must support a signature compatible subset of Operations of the source Interface or Port.

[4] In a complete model, if a source Port has delegation connectors to a set of delegated target Ports, then the union of the
Interfaces of these target Ports must be signature compatible with the Interface that types the source Port.

[5] An assembly connector must only be defined from a required Interface or Ports to a provided Interface or Port.

Semantics

A delegation connector is a declaration that behavior that is available on a component instance is not actually realized by that
component itself, but by another instance that has “compatible” capabilities. This may be another Component or a (simple)
Class. The latter situation is modeled through a delegation connector from a Component Interface or Port to a contained Class
that functions as a Part. In that case, the Class must have an implements relationship to the Interface of the Port.

Delegation connectors are used to model the hierarchical decomposition of behavior, where services provided by a component
may ultimately be realized by one that is nested multiple levels deep within it. The word delegation suggests that concrete
message and signal flow will occur between the connected ports, possibly over multiple levels. It should be noted that such
signal flow is not always realized in all system environments or implementations (i.e. it may be design time only).

A port may delegate to a set of ports on subordinate components. In that case, these subordinate ports must collectively offer
the delegated functionality of the delegating port. At execution time, signals will be delivered to the appropriate port. In the
cases where multiple target ports support the handling of the same signal, the signal will be delivered to all these subordinate
ports.

The execution time semantics for an assembly connector are that signals travel along an instance of a connector, originating in
a required port and delivered to a provided port. Multiple connectors directed from a single required interface or port to
provided interfaces on different components indicates that the instance that will handle the signal will be determined at
execution time. Similarly, multiple required ports that are connected to a single provided port indicates that the request may
originate from instances of different component types.

The interface compatibility between provided and required ports that are connected enables an existing component in a system
to be replaced by one that (minimally) offers the same set of services. Also, in contexts where components are used to extend
a system by offering existing services, but also adding new functionality, assembly connectors can be used to link in the new
component definition. That is, by adding the new component type that offers the same set of services as existing types, and
defining new assembly connectors to link up its provided and required ports to existing ports in an assembly.

Notation

A delegation connector is notated as a Connector from the delegating source Port to the handling target Part, and vice versa for
144 UML Superstructure 2.0 Draft Adopted Specification

required Interfaces or Ports.

An assembly connector is notated by a “ball-and-socket” connection between a provided interface and a required interface.
This notation allows for succinct graphical wiring of components, a requirement for scaling in complex systems.

When this notation is used to connect “complex” ports that are typed by multiple provided and/or required interfaces, the
various interfaces are listed as an ordered set, designated with {provided} or {required} if needed.

In a system context where there are multiple components that provide or require a particular interface, a notation abstraction
can be used that combines by joining the multiple connectors. This abstraction is similar to the one defined for aggregation and

Figure 91 - Delegation connectors connect the externally provided
 interfaces of a component to the parts that realize or require them.

Figure 92 - An assembly connector maps a required interface of a
 component to a provided interface of another component in a
 certain context (definition of components e.g. in a library on the
 left, an assembly of those components on the right).

Order

:LineItem

Person

OrderEntry

:OrderHeader

Product
«component»

Order

OrderEntry

OrderableItem

«component»

OrderableItem

:Order

:Product

OrderableItem

OrderableItem

«component»

«component»
UML Superstructure 2.0 Draft Adopted Specification 145

subtyping relationships.

Changes from previous UML

The following changes from UML 1.x have been made: Connector is not defined in UML 1.4.

8.3.3 Realization (from Dependencies, as specialized)

The Realization concept is specialized in the Components package to (optionally) define the Classifiers that realize the
contract offered by a component in terms of its provided and required interfaces. The component forms an abstraction from
these various Classifiers.

Description

In the metamodel, a Realization is a subtype of Dependencies::Realization.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

No additional associations.

Semantics

A component’s behavior may typically be realized (or implemented) by a number of Classifiers. In effect, it forms an
abstraction for a collection of model elements. In that case, a component owns a set of Realization Dependencies to these

Figure 93 - As a notation abstraction, multiple wiring relationships
 can be visually grouped together in a component assembly.

:Order :Customer
OrderEntry

Person

Person

«component» «component»

:Organization

«component»

Note: Client interface is a subtype of Person interface

:BackOrder
«component»

Person

OrderEntry
146 UML Superstructure 2.0 Draft Adopted Specification

Classifiers.

It should be noted that for the purpose of applications that require multiple different sets of realizations for a single component
specification, a set of standard stereotypes are defined in the UML Standard Profile. In particular, «specification» and
«realization» are defined there for this purpose.

Notation

A component realization is notated in the same way as the realization dependency, i.e. as a general dashed line with an open
arrow-head.

Changes from previous UML

The following changes from UML 1.x have been made: Realization is defined in UML 1.4 as a ‘free standing’ general
dependency - it is not extended to cover component realization specifically. These semantics have been made explicit in UML
2.0.

8.4 Diagrams

Structure diagram

Graphical nodes

The graphic nodes that can be included in structure diagrams are shown in Table 4.

Table 4 - Graphic nodes included in structure diagrams

NODE TYPE NOTATION REFERENCE

Component See “Component”.

Component implements
Interface

See “Interface”.

<<component>>
ComponentName

ComponentName

Name
«component»
UML Superstructure 2.0 Draft Adopted Specification 147

Graphical paths

The graphic paths that can be included in structure diagrams are shown in Table 5.

Variations

Variations of structure diagrams often focus on particular structural aspects, such as relationships between packages, showing
instance specifications, or relationships between classes. There are no strict boundaries between different variations; it is
possible to display any element you normally display in a structure diagram in any variation.

Component has provided
Port (typed by Interface)

See “Port”.

Component uses Inter-
face

See “Interface”.

Component has required
Port (typed by Interface)

See “Port”.

Component has complex
Port (typed by provided
and required Interfaces)

See “Port”.

Table 5 Graphic nodes included in structure diagrams

PATH TYPE NOTATION REFERENCE

Assembly connector See “assembly connector”. Also used as notation
option for wiring between interfaces using Depen-
dencies.

Table 4 - Graphic nodes included in structure diagrams

NODE TYPE NOTATION REFERENCE

Name
«component»

Name
«component»

Name
«component»

Name

«component»
148 UML Superstructure 2.0 Draft Adopted Specification

Component diagram

The following nodes and edges are typically drawn in a component diagram:

• Component

• Interface

• Realization, Implementation, Usage Dependencies

• Class

• Artifact

• Port
UML Superstructure 2.0 Draft Adopted Specification 149

150 UML Superstructure 2.0 Draft Adopted Specification

9 Composite Structures

9.1 Overview

The term “structure” in this chapter refers to a composition of interconnected elements, representing run-time instances
collaborating over communications links to achieve some common objectives.

Internal Structures

The InternalStructure subpackage provides mechanisms for specifying structures of interconnected elements that are created
within an instance of a containing classifier. A structure of this type represents a decomposition of that classifier. and is
referred to as its “internal structure”.

Ports

The Ports subpackage provides mechanisms for isolating a classifier from its environment. This is achieved by providing a
point for conducting interactions between the internals of the classifier and its environment. This interaction point is referred
to as a “port.” Multiple ports can be defined for a classifier, enabling different interactions to be distinguished based on the
port through which they occur. By decoupling the internals of the classifier from its environment, ports allow a classifier to be
defined independently of its environment, making that classifier reusable in any environment that conforms to the interaction
constraints imposed by its ports.

Collaborations

Objects in a system typically cooperate with each other to produce the behavior of a system. The behavior is the functionality
that the system is required to implement.

A behavior of a collaboration will eventually be exhibited by a set of cooperating instances (specified by classifiers) that
communicate with each other by sending signals or invoking operations. However, to understand the mechanisms used in a
design, it may be important to describe only those aspects of these classifiers and their interactions that are involved in
accomplishing a task or a related set of tasks, projected from these classifiers. Collaborations allow us to describe only the
relevant aspects of the cooperation of a set of instances by identifying the specific roles that the instances will play. Interfaces
allow the externally observable properties of an instance to be specified without determining the classifier that will eventually
be used to specify this instance. Consequentially, the roles in a collaboration will often be typed by interfaces and will then
prescribe properties that the participating instances must exhibit, but will not determine what class will specify the
participating instances.

StructuredClasses

The StructuredClasses subpackage supports the representation of classes that may have ports as well as internal structure.

Actions

The Actions subpackage adds actions that are specific to the features introduced by composite structures, e.g., the sending of
messages via ports.

9.2 Abstract syntax

Figure 94 shows the dependencies of the CompositeStructures packages.
UML Superstructure 2.0 Draft Adopted Specification 151

Figure 94 - Dependencies between packages described in this chapter

Communications

(from CommonBehaviors)

InternalStructures

Ports

Interfaces

(from Classes)

<<merge>>

<<merge>>

<<merge>>

Collaborations

<<merge>>

IntermediateActions

(from Actions)
InvocationActions

<<merge>>

<<merge>>

<<merge>>

Structu red Cla sses

<<merge>>

<<merge>>

StructuredActivit ies

(from Activities)

<<merge>>

Structu red Activ it ies

<<merge>>

<<merge>>
152 UML Superstructure 2.0 Draft Adopted Specification

Package InternalStructures

Figure 95 - Structured classifier

Figure 96 - Connectors

NamedElement
(from Kernel)

Property

Connectab leElementStructuredClassifier

0..1

*

0..1

{subsets classifier}

+ownedAtt ribute

*

{subsets role, subsets attribute,
subs ets ownedMember}

*

0..1 +/part

*

0..1

**

+/role

*

{union, subsets member}

*

Connector

*0..1

+ownedConnector

*

{subsets feat ure, subsets ownedMember}

0..1
{subsets redefin it ionContext} *

*

+redefinedConnector
*

{subsets redefinedElement}

*

Classifie r
(from Kernel)

Feature
(from Kernel)

MultiplicityElement
(from Kernel)

Associat ion
(from Kernel)

Connector

0..1

*

+type0..1

*

Property

ConnectorEnd 2..*

1+end

2..*

{ordered, subsets ownedElement}
1

0..1

*

+/definingEnd 0..1

*

ConnectableElement

*0..1

+end

*

+role

0..1
UML Superstructure 2.0 Draft Adopted Specification 153

Package Ports

Package StructuredClasses

Figure 97 - The Port metaclass

Figure 98 - Classes with internal structure

ConnectableElement
(from InternalStructures)

StructuredClassifier
(f rom In ternalStructures)

Property
(from InternalStructures)

ConnectorEnd

0..1 +partWithPort0..1

EncapsulatedClassifier

Interface
(from Interfaces)

Port

isBehavior : Boolean = false
isService : Boolean = true*

0..1 +ownedPort

*

{subsets feature,
subsets ownedMember}

0..1

{subsets redefinitionContext}

*

*

+redefinedPort

*

{subsets redefinedElement}

*

**

+/ required

**

**

+/provided

**

StructuralFeature
(from Kernel)

Class
(from Communications)

Class

EncapsulatedClassifier
(from Ports)
154 UML Superstructure 2.0 Draft Adopted Specification

Package Collaborations

Package Actions

Figure 99 - Collaboration

Figure 100 - Collaboration.occurrence and role binding

Figure 101 - Actions specific to composite structures

ConnectableElement
(from InternalStructures)

Collaboration* *

+collaborationRole

* *

Parameter

StructuredClassifier
(from InternalStructures)

BehavioredClassifier
(from BasicBehaviors)

{subsets role}

NamedElement
(f ro m Ke rne l)

Classifier
Dependency

(from Dependencies)

Collaboration

CollaborationOccurrence

0..10..1 0..1

+representation

0..1

{subsets occurrence}

* 0..1

+occurrence

*

{subsets ownedElement}

0..1

*

1+roleBinding

*

{subsets ownedElement}
1

1

*

+type1

*

InvocationAction TriggerPort
(from Ports)* 0..1*

+onPort

0..1

** *

+port

*

UML Superstructure 2.0 Draft Adopted Specification 155

Package StructuredActivities

9.3 Class Descriptions

9.3.1 Class (from StructuredClasses, as specialized)

Description

Extends the metaclass Class with the capability to have an internal structure and ports.

Semantics

See “Property” on page 167, “Connector” on page 163, and “Port” on page 167 for the semantics of the features of Class.
Initialization of the internal structure of a class is discussed in section “StructuredClassifier” on page 171.

A class acts as the namespace for various kinds of classifiers defined within its scope, including classes. Nesting of classifiers
limits the visibility of the classifier to within the scope of the namespace of the containing class and is used for reasons of
information hiding. Nested classifiers are used like any other classifier in the containing class.

Notation

See “Class (from Kernel)” on page 86, “StructuredClassifier” on page 171, and “Port” on page 167.

Presentation Option

A dashed arrow with a stick arrowhead, optionally labelled with the keyword «create», may be used to relate an instance value
to a constructor for a class, describing the single value returned by the constructor which must have the class as its classifier.
The arrowhead points at the operation defining the constructor. The constructor may reference parameters declared by the
operation. The instance value at the base of the arrow represents the default for the return value of the constructor.

Figure 102 - Extension to Variable

Figure 103 - Instance specification describes the return value of an operation

Variable

ConnectableElement
(f rom Internal Structu re s)

make (...)

Window

«create»
theW:Window
156 UML Superstructure 2.0 Draft Adopted Specification

Changes from UML 1.x

Class has been extended with internal structure and ports.

9.3.2 Classifier (from Collaborations, as specialized)

Description

Classifier is extended with the capability to own collaboration occurrences. These collaboration occurrences link a
collaboration with the classifier to give a description of the workings of the classifier.

Associations

• occurrence: CollaborationOccurrence
References the collaboration occurrences owned by the classifier. (Subsets Ele-
ment.ownedElement.)

• representation: CollaborationOccurrence [0..1]
References a collaboration occurrence which indicates the collaboration that represents
this classifier. (Subsets Classifier.occurrence.)

Semantics

A classifier can own collaboration occurrences which relate (aspects of) this classifier to a collaboration. The collaboration
describes those aspects of this classifier.

One of the collaboration occurrences owned by a classifier may be singled out as representing the behavior of the classifier as
a whole. The collaboration that is related to the classifier by this collaboration occurrence shows how the instances
corresponding to the structural features of this classifier (e.g., its attributes and parts) interact to generate the overall behavior
of the classifier. The representing collaboration may be used to provide a description of the behavior of the classifier at a
different level of abstraction than is offered by the internal structure of the classifier. The properties of the classifier are
mapped to roles in the collaboration by the role bindings of the collaboration occurrence.

Notation

See “CollaborationOccurrence” on page 160.

Changes from UML 1.x

Replaces and widens the applicability of Collaboration.usedCollaboration. Together with the newly introduced concept of
internal structure replaces Collaboration.representedClassifier.

9.3.3 Collaboration (from Collaborations)

A collaboration describes a structure of collaborating elements (roles), each performing a specialized function, which
collectively accomplish some desired functionality. Its primary purpose is to explain how a system works and, therefore, it
typically only incorporates those aspects of reality that are deemed relevant to the explanation. Thus, details, such as the
identity or precise class of the actual participating instances are suppressed.

Description

A collaboration is represented as a kind of classifier and defines a set of cooperating entities to be played by instances (its
roles), as well as a set of connectors that define communication paths between the participating instances. The cooperating
entities are the properties of the collaboration (see “Property” on page 167).
UML Superstructure 2.0 Draft Adopted Specification 157

A collaboration specifies a view (or projection) of a set of cooperating classifiers. It describes the required links between
instances that play the roles of the collaboration, as well as the features required of the classifiers that specify the participating
instances. Several collaborations may describe different projections of the same set of classifiers.

Attributes

No additional attributes.

Associations

• collaborationRole: ConnectableElement
References connectable elements (possibly owned by other classifiers) which represent
roles that instances may play in this collaboration. (Subsets StructuredClassifier.role.)

Constraints

No additional constraints.

Semantics

Collaborations are generally used to explain how a collection of cooperating instances achieve a joint task or set of tasks.
Therefore, a collaboration typically incorporates only those aspects that are necessary for its explanation and suppresses
everything else. Thus, a given object may be simultaneously playing roles in multiple different collaborations, but each
collaboration would only represent those aspects of that object that are relevant to its purpose.

A collaboration defines a set of cooperating participants that are needed for a given task. The roles of a collaboration will be
played by instances when interacting with each other. Their relationships relevant for the given task are shown as connectors
between the roles. Roles of collaborations define a usage of instances, while the classifiers typing these roles specify all
required properties of these instances. Thus, a collaboration specifies what properties instances must have to be able to
participate in the collaboration: A role specifies (through its type) the required set of features a participating instance must
have. The connectors between the roles specify what communication paths must exist between the participating instances.

Neither all features nor all contents of the participating instances nor all links between these instances are always required in a
particular collaboration. Therefore, a collaboration is often defined in terms of roles typed by interfaces (see “Interface (from
Interfaces)” on page 114). An interface is a description of a set of properties (externally observable features) required or
provided by an instance. An interface can be viewed as a projection of the externally observable features of a classifier
realizing the interface. Instances of different classifiers can play a role defined by a given interface, as long as these classifiers
realize the interface, i.e., have all the required properties. Several interfaces may be realized by the same classifier, even in the
same context, but their features may be different subsets of the features of the realizing classifier.

Collaborations may be specialized from other collaborations. If a role is extended in the specialization, the type of a role in the
specialized collaboration must be conform to the type of the role in the general collaboration. The specialization of the types of
the roles does not imply corresponding specialization of the classifiers that realize those roles. It is sufficient that they conform
to the constraints defined by those roles.

A collaboration may be attached to an operation or a classifier through a CollaborationOccurrence. A collaboration used in this
way describes how this operation or this classifier is realized by a set of cooperating instances. The connectors defined within
the collaboration specify links between the instances when they perform the behavior specified in the classifier. The
collaboration specifies the context in which behavior is performed. Such a collaboration may constrain the set of valid
interactions that may occur between the instances that are connected by a link.

A collaboration is not directly instantiable. Instead, the cooperation defined by the collaboration comes about as a consequence
of the actual cooperation between the instances that play the roles defined in the collaboration (the collaboration is a selective
view of that situation).
158 UML Superstructure 2.0 Draft Adopted Specification

Notation

A collaboration is shown as a dashed ellipse icon containing the name of the collaboration. The internal structure of a
collaboration as comprised by roles and connectors may be shown in a compartment within the dashed ellipse icon.
Alternatively, a composite structure diagram can be used.

Using an alternative notation for properties, a line may be drawn from the collaboration icon to each of the symbols denoting
classifiers that are the types of properties of the collaboration. Each line is labeled by the name of the property. In this manner,
a collaboration icon can show the use of a collaboration together with the actual classifiers that occur in that particular use of
the collaboration (see Figure 105).

Figure 105 - In the Observer collaboration two roles, a Subject and an
 Observer, collaborate to produce the desired behavior. Any
 instance playing the Subject role must possess the properties
 specified by CallQueue, and similarly for the Observer role.

Rationale

The primary purpose of collaborations is to explain how a system of communicating entities collectively accomplish a specific
task or set of tasks without necessarily having to incorporate detail that is irrelevant to the explanation. It is particularly useful
as a means for capturing standard design patterns.

Changes from UML 1.x

The contents of a collaboration is specified as its internal structure relying on roles and connectors; the concepts of

Figure 104 - The internal structure of the Observer collaboration shown
 inside the collaboration icon (a connection is shown between
 the Subject and the Observer role).

Observer

Observer : SlidingBarIconSubject : CallQueue

Observer

SlidingBarIcon
Observer

CallQueue Subject

queue: List of Call
source: Object
waitAlarm: Alarm

reading: Real
color: Color
range: Interval

Observer.reading = length (Subject.queue)

capacity: Integer

Observer.range = (0 .. Subject.capacity)
UML Superstructure 2.0 Draft Adopted Specification 159

ClassifierRole, AssociationRole, and AssociationEndRole have been superseded. A collaboration in UML 2.0 is a kind of
classifier, and can have any kind of behavioral descriptions associated. There is no loss in modeling capabilities.

9.3.4 CollaborationOccurrence (from Collaborations)

A collaboration occurrence represents the application of the pattern described by a collaboration to a specific situation
involving specific classes or instances playing the roles of the collaboration.

Description

A collaboration occurrence represents one particular use of a collaboration to explain the relationships between the properties
of a classifier. A collaboration occurrence indicates a set of roles and connectors that cooperate within the classifier according
to a given collaboration, indicated by the type of the collaboration occurrence. There may be multiple occurrences of a given
collaboration within a classifier, each involving a different set of roles and connectors. A given role or connector may be
involved in multiple occurrences of the same or different collaborations.

Associated dependencies map features of the collaboration type to features in the classifier. These dependencies indicate
which role in the classifier plays which role in the collaboration.

Attributes

No additional attributes.

Associations

• type: Collaboration [1] The collaboration which is used in this occurrence. The collaboration defines the coopera-
tion between its roles which are mapped to properties of the classifier owning the collabo-
ration occurrence.

• roleBinding: Dependency A mapping between features of the collaboration type and features of the classifier or
operation. This mapping indicates which connectable element of the classifier or operation
plays which role(s) in the collaboration. A connectable element may be bound to multiple
roles in the same collaboration occurrence (that is, it may play multiple roles).

Constraints

[1] All the client elements of a roleBinding are in one classifier and all supplier elements of a roleBinding are in one collabo-
ration and they are compatible.

[2] Every role in the collaboration is bound within the collaboration occurrence to a connectable element within the classifier
or operation.

[3] The connectors in the classifier connect according to the connectors in the collaboration

Semantics

A collaboration occurrence relates a feature in its collaboration type to connectable a element in the classifier or operation that
owns the collaboration occurrence.

Any behavior attached to the collaboration type applies to the set of roles and connectors bound within a given collaboration
occurrence. For example, an interaction among parts of a collaboration applies to the classifier parts bound to a single
collaboration occurrence. If the same connectable element is used in both the collaboration and the represented element, no
role binding is required.
160 UML Superstructure 2.0 Draft Adopted Specification

Semantic Variation Points

It is a semantic variation when client and supplier elements in role bindings are compatible.

Notation

A collaboration occurrence is shown by a dashed ellipse containing the name of the occurrence, a colon, and the name of the
collaboration type. For every role binding, there is a dashed line from the ellipse to the client element; the dashed line is
labeled on the client end with the name of the supplier element.

Presentation Option

A dashed arrow with a stick arrowhead may be used to show that a collaboration is used in a classifier, optionally labelled with
the keyword «represents». A dashed arrow with a stick arrowhead may also be used to show that a collaboration represents a
classifier, optionally labelled with the keyword «occurrence». The arrowhead points at the owning classifier. When using this
presentation option, the role bindings are shown explicitly as dependencies.

Examples

This example shows the definition of two collaborations, Sale (Figure 107) and BrokeredSale (Figure 108). Sale is used twice
as part of the definition of BrokeredSale. Sale is a collaboration among two roles, a seller and a buyer. An interaction, or other
behavior specification, could be attached to Sale to specify the steps involved in making a Sale.

BrokeredSale is a collaboration among three roles, a producer, a broker, and a consumer. The specification of BrokeredSale
shows that it consists of two occurrences of the Sale collaboration, indicated be the dashed ellipses. The occurrence wholesale
indicates a Sale in which the producer is the seller and the broker is the buyer. The occurrence retail indicates a Sale in which
the broker is the seller and the consumer is the buyer. The connectors between sellers and buyers are not shown in the two
occurrences; these connectors are implicit in the BrokeredSale collaboration in virtue of them being comprised of Sales. The
BrokeredSale collaboration could itself be used as part of a larger collaboration.

Figure 106 - Collaboration occurrence relates a classifier to a collaboration

Figure 107 - The Sale collaboration

display (...)

Window
:RealizeDisplay

Behavior
«represents»

buyer seller

Sale
UML Superstructure 2.0 Draft Adopted Specification 161

Figure 109 shows part of the BrokeredSale collaboration in a presentation option.

Rationale

A collaboration occurrence is used to specify the application of a pattern specified by a collaboration to a specific situation. In
that regard, it acts as the invocation of a macro with specific values used for the parameters (roles).

Changes from UML 1.x

This metaclass has been added.

Figure 108 - The BrokeredSale collaboration

Figure 109 - A subset of the BrokeredSale collaboration

broker

producer

BrokeredSale

consumer

wholesale:
Sale

retail:
Sale

buyer seller

seller

buyer

broker

producer

BrokeredSale
Sale

sellerbuyer

«occurrence»
162 UML Superstructure 2.0 Draft Adopted Specification

9.3.5 ConnectableElement (from InternalStructures)

Description

A ConnectableElement is an abstract metaclass representing a set of instances that are owned by a containing classifier
instance. Connectable elements may be joined by attached connectors and specify configurations of linked instances to be
created within an instance of the containing classifier.

Attributes

No additional attributes.

Associations

• end: ConnectorEnd Denotes a connector that attaches to this connectable element.

Constraints

No additional constraints.

Semantics

The semantics of ConnectableElement is given by its concrete subtypes.

Notation

None.

Examples

None.

Rationale

This metaclass supports factoring out the ability of a model element to be linked by a connector.

Changes from UML 1.x

This metaclass generalizes the concept of classifier role from 1.x

9.3.6 Connector (from InternalStructures)

Specifies a link that enables communication between two or more instances. This link may be an instance of an association, or
it may represent the possibility of the instances being able to communicate because their identities are known by virtue of
being passed in as parameters, held in variables, created during the execution of a behavior, or because the communicating
instances are the same instance. The link may be realized by something as simple as a pointer or by something as complex as a
network connection. In contrast to associations, which specify links between any instance of the associated classifiers,
connectors specify links between instances playing the connected parts only.

Description

Each connector may be attached to two or more connectable elements, each representing a set of instances. Each connector end
is distinct in the sense that it plays a distinct role in the communication realized over a connector. The communications
realized over a connector may be constrained by various constraints (including type constraints) that apply to the attached
connectable elements.
UML Superstructure 2.0 Draft Adopted Specification 163

Constraints

No additional constraints.

Attributes

No additional attributes.

Associations

• end: ConnectorEnd [2..*] A connector consists of at two connector ends, each of which represents the participation
of instances of the classifiers typing the connectable elements attached to this end. The set
of connector ends is ordered. (Subsets Element.ownedElement.)

• type: Association An optional association that specifies the link corresponding to this connector.

• redefinedConnector: ConnectorA connector may be redefined when its containing classifier is specialized. The redefining
connector may have a type that specializes the type of the redefined connector. The types
of the connector ends of the redefining connector may specialize the types of the connec-
tor ends of the redefined connector. The properties of the connector ends of the redefining
connector may be replaced. (Subsets Element.redefinedElement.)

Constraints

[1] The types of the connectable elements that the ends of a connector are attached to must conform to the types of the associ-
ation ends of the association that types the connector, if any.

[2] If a connector is attached to a connectable element which has required interfaces, then the connectable elements attached
to the other ends must realize interfaces that are compatible with these required interfaces.

[3] If a connector is attached to a connectable element which has required interfaces, then either ports attached on the other
ends must provide interfaces that are compatible with these required interfaces, or other connectable elements must realize
interfaces that are compatible with these required interfaces.

Semantics

If a connector between two roles of a classifier is a feature of an instantiable classifier, it declares that a link may exist within
an instance of that classifier. If a connector between two roles of a classifier is a feature of an uninstantiable classifier, it
declares that links may exist within an instance of the classifier that realizes the original classifier. These links will connect
instances corresponding to the parts joined by the connector.

Links corresponding to connectors may be created upon the creation of the instance of the containing classifier (see
“StructuredClassifier” on page 171). The set of links is a subset of the total set of links specified by the association typing the
connector. All links are destroyed when the containing classifier instance is destroyed.

If the type of the connector is omitted, the type is inferred based on the connector, as follows: If the type of a role (i.e, the
connectable element attached to a connector end) realizes an interface that has a unique association to another interface which
is realized by the type of another role (or an interface compatible to that interface is realized by the type of another role), then
that association is the type of the connector between these parts. If the connector realizes a collaboration (that is, a
collaboration occurrence maps the connector to a connector in an associated collaboration through role bindings), then the type
of the connector is an anonymous association with association ends corresponding to each connector end. The type of each
association end is the classifier that realizes the parts connected to the matching connector in the collaboration. Any
adornments on the connector ends (either the original connector or the connector in the collaboration) specify adornments of
the ends of the inferred association. Otherwise, the type of the connector is an anonymously named association with
association ends corresponding to each connector end. The type of each association end is the type of the part that each
corresponding connector end is attached to. Any adornments on the connector ends specify adornments of the ends of the
164 UML Superstructure 2.0 Draft Adopted Specification

inferred association. Any inferred associations are always bidirectionally navigable and are owned by the containing classifier.

Semantic Variation Points

What makes interfaces compatible is a semantic variation point. At a minimum, the provided interfaces must support a
superset of the operations and signals specified in the required interfaces.

Notation

A connector is drawn using the notation for association (see “Association (from Kernel)” on page 81). The optional name
string of the connector obeys the following syntax:

{{ [name] ‘:’ classname } | name }

where name is the name of the connector, and classname is the name of the association that is its type. A stereotype keyword
within guillemets may be placed above or in front of the connector name. A property string may be placed after or below the
connector name.Examples

Examples are shown in section “StructuredClassifier” on page 171.

Changes from UML 1.x

Connector has been added in UML 2.0. The UML 1.4 concept of association roles is subsumed by connectors.

9.3.7 ConnectorEnd (from InternalStructures, Ports)

Description

A connector end is an endpoint of a connector, which attaches the connector to a connectable element. Each connector end is
part of one connector.

Attributes

No additional attributes.

Associations

InternalStructures

• role: ConnectableElement [1] The connectable element attached at this connector end. When an instance of the contain-
ing classifier is created, a link may (depending on the multiplicities) be created to an
instance of the classifier that types this connectable element.

• definingEnd: Property [0..1] A derived association referencing the corresponding association end on the association
which types the connector owing this connector end. This association is derived by select-
ing the association end at the same place in the ordering of association ends as this con-
nector end.

Ports

• partWithPort: Property [0..1] Indicates the role of the internal structure of a classifier with the port to which the connec-
tor end is attached.

Constraints

[1] If a connector end is attached to a port of the containing classifier, partWithPort will be empty.
UML Superstructure 2.0 Draft Adopted Specification 165

[2] If a connector end references both a role and a partWithPort, then the role must be a port that is defined by the type of the
partWithPort.

Semantics

InternalStructures

A connector end describes which connectable element is attached to the connector owning that end. Its multiplicity indicates
the number of instances that may be linked to each instance of the property connected on the other end.

Notation

InternalStructures

Adornments may be shown on the connector end corresponding to adornments on association ends (see “Association (from
Kernel)” on page 81). These adornments specify properties of the association typing the connector. The multiplicity indicates
the number of instances that may be connected to each instance of the role on the other end. If no multiplicity is specified, the
multiplicity matches the multiplicity of the role the end is attached to.

Ports

If the end is attached to a port on a part of the internal structure and no multiplicity is specified, the multiplicity matches the
multiplicity of the port multiplied by the multiplicity of the part (if any).

Changes from UML 1.x

Connector end has been added in UML 2.0. The UML 1.4 concept of association end roles is subsumed by connector ends.

9.3.8 EncapsulatedClassifier (from Ports)

Description

Extends a classifier with the ability to own ports as specific and type checked interaction points.

Attributes

No additional attributes.

Associations

• ownedPort: Port References a set of ports that an encapsulated classifier owns. (Subsets Classifier.feature
and Namespace.ownedMember.)

Constraints

No additional constraints.

Semantics

See “Port” on page 167.

Notation

See “Port” on page 167.
166 UML Superstructure 2.0 Draft Adopted Specification

Changes from UML 1.x

This metaclass has been added to UML.

9.3.9 InvocationAction (from Actions, as specialized)

Description

In addition to targeting an object, invocation actions can also invoke behavioral features on ports from where the invocation
requests are routed onwards on links deriving from attached connectors. Invocation actions may also be sent to a target via a
given port, either on the sending object or on another object.

Associations

• onPort: Port [0..1] A optional port of the receiver object on which the behavioral feature is invoked.

Constraints

[1] The onPort must be a port on the receiver object.

Semantics

The target value of an invocation action may also be a port. In this case, the invocation request is sent to the object owning this
port as identified by the port identity, and is, upon arrival, handled as described in “Port” on page 167.

Notation

The optional port is identified by the phrase “via <port>” in the name string of the icon denoting the particular invocation
action (for example, see “CallOperationAction” on page 227).

9.3.10 Parameter (Collaboration, as specialized)

Description

Parameters are allowed to be treated as connectable elements.

Constraints

[1] A parameter may only be associated with a connector end within the context of a collaboration.

9.3.11 Port (from Ports)

A port is a structural feature of a classifier that specifies a distinct interaction point between that classifier and its environment
or between the (behavior of the) classifier and its internal parts. Ports are connected to properties of the classifier by
connectors through which requests can be made to invoke the behavioral features of a classifier. A Port may specify the
services a classifier provides (offers) to its environment as well as the services that a classifier expects (requires) of its
environment.

Description

Ports represent interaction points between a classifier and its environment. The interfaces associated with a port specify the
nature of the interactions that may occur over a port. The required interfaces of a port characterize the requests which may be
made from the classifier to its environment through this port. The provided interfaces of a port characterize requests to the
classifier that its environment may make through this port.
UML Superstructure 2.0 Draft Adopted Specification 167

A port has the ability to specify that any requests arriving at this port are handled by the behavior of the instance of the owning
classifier, rather than being forwarded to any contained instances, if any.

Attributes

• isService: Boolean If true indicates that this port is used to provide the published functionality of a classifier;
if false, this port is used to implement the classifier but is not part of the essential exter-
nally-visible functionality of the classifier and can, therefore, be altered or deleted along
with the internal implementation of the classifier and other properties that are considered
part of its implementation. The default value for this attribute is true.

• isBehavior: Boolean Specifies whether requests arriving at this port are sent to the classifier behavior of this
classifier (see “BehavioredClassifier (from BasicBehaviors)” on page 383). Such ports are
referred to as behavior port. Any invocation of a behavioral feature targeted at a behavior
port will be handled by the instance of the owning classifier itself, rather than by any
instances that this classifier may contain. The default value is false.

Associations

• required: Interface References the interfaces specifying the set of operations and receptions which the classi-
fier expects its environment to handle. This association is derived as the set of interfaces
required by the type of the port or its supertypes.

• provided: Interface References the interfaces specifying the set of operations and receptions which the classi-
fier offers to its environment, and which it will handle either directly or by forwarding it to
a part of its internal structure. This association is derived from the interfaces realized by
the type of the port or by the type of the port, if the port was typed by an interface.

• redefinedPort: Port A port may be redefined when its containing classifier is specialized. The redefining port
may have additional interfaces to those that are associated with the redefined port or it
may replace an interface by one of its subtypes. (Subsets Element.redefinedElement.)

Constraints

[1] A port cannot be created or destroyed except as part of the creation or destruction of the owning classifier.

[2] The required interfaces of a port must be provided by elements to which the port is connected.

Semantics

A port represents an interaction point between a classifier instance and its environment or between a classifier instance and
instances it may contain. A port by default has public visibility. However, a behavior port may be hidden but does not have to
be.

The required interfaces characterize services that the owning classifier expects from its environment and that it may access
through this interaction point: Instances of this classifier expects that the features owned by its required interfaces will be
offered by one or more instances in its environment. The provided interfaces characterize the behavioral features that the
owning classifier offers to its environment at this interaction point: The owning classifier must offer the features owned by the
provided interfaces.

The provided and required interfaces completely characterize any interaction that may occur between a classifier and its
environment at a port. When an instance of a classifier is created, instances corresponding to each of its ports are created and
held in the slots specified by the ports, in accordancy with its multiplicity. These instances are referred to as “interaction
points” and provide unique references. A link from that instance to the instance of the owning classifier is created through
which communication is forwarded to the instance of the owning classifier or through which the owning classifier
communicates with its environment. It is, therefore, possible for an instance to differentiate between requests for the
168 UML Superstructure 2.0 Draft Adopted Specification

invocation of a behavioral feature targeted at its different ports. Similarly, it is possible to direct such requests at a port, and the
requests will be routed as specified by the links corresponding to connectors attached to this port. (In the following, “requests
arriving at a port” shall mean “request occurrences arriving at the interaction point of this instance corresponding to this port”.)

The interaction point object must be an instance of a classifier that realizes the provided interfaces of the port. If the port was
typed by an interface, the classifier typing the interaction point object realizes that interface. If the port was typed by a class,
the interaction point object will be an instance of that class. The latter case allows elaborate specification of the
communication over a port. For example, it may describe that communication is filtered, modified in some way, or routed to
other parts depending on its contents as specified by the classifier that types the port.

If connectors are attached to both the port when used on a property within the internal structure of a classifier and the port on
the container of an internal structure, the instance of the owning classifier will forward any requests arriving at this port along
the link specified by those connectors. If there is a connector attached to only one side of a port, any requests arriving at this
port will terminate at this port.

For a behavior port, the instance of the owning classifier will handle requests arriving at this port (as specified in the behavior
of the classifier, see Chapter 13, “Common Behaviors”), if this classifier has any behavior. If there is no behavior defined for
this classifier, any communication arriving at a behavior port is lost.

Semantic Variation Points

If several connectors are attached on one side of a port, then any request arriving at this port on a link derived from a connector
on the other side of the port will be forwarded on links corresponding to these connectors. It is a semantic variation point
whether these request will be forwarded on all links, or on only one of those links. In the latter case, one possibility is that the
link at which this request will be forwarded will be arbitrarily selected among those links leading to an instance that had been
specified as being able to handle this request (i.e., this request is specified in a provided interface of the part corresponding to
this instance).

Notation

A port of a classifier is shown as a small square symbol. The name of the port is placed near the square symbol. If the port
symbol is placed overlapping the boundary of the rectangle symbol denoting that classifier this port is exposed (i.e., its
visibility is public). If the port is shown inside the rectangle symbol, then the port is hidden and its visibility is as specified (it
is protected by default).

A port of a classifier may also be shown as a small square symbol overlapping the boundary of the rectangle symbol denoting
a part typed by that classifier (see Figure 110). The name of the port is shown near the port; the multiplicity follows the name
surrounded by brackets. Name and multiplicity may be elided.

The type of a port may be shown following the port name, separated by colon (“:”). A provided interface may be shown using
the “lollipop” notation (see “Interface (from Interfaces)” on page 114) attached to the port. A required interface may be shown
by the “socket” notation attached to the port. The presentation options shown there are also applicable to interfaces of ports.
Figure 110 shows the notation for ports: p is a port on the Engine class. The provided interface (also its type) of port p is
powertrain. The multiplicity of p is “1”. In addition, a required interface, power, is shown also. The figure on the left shows
UML Superstructure 2.0 Draft Adopted Specification 169

the provided interface using the “lollipop” notation, while the figure onj the right shows the interface as the type of the port.

A behavior port is indicated by a port being connected through a line to a small state symbol drawn inside the symbol
representing the containing classifier. (The small state symbol indicates the behavior of the containing classifier.) Figure 111
shows the behavior port p, as indicated by its connection to the state symbol representing the behavior of the Engine class. Its
provided interface is powertrain. In addition, a required interface, power, is shown also.

Presentation Option

The name of a port may be suppressed. Every depiction of an unnamed port denotes a different port from any other port.

If there are multiple interfaces associated with a port, these interfaces may be listed with the interface icon, separated by
commas. Figure 112 below shows a port OnlineServices on the OrderProcess class with two provided interfaces, OrderEntry
and Tracking, as well as a required interface Payment.

Figure 110 - Port notation

Figure 111 - Behavior port notation

Figure 112 - Port notation showing multiple provided interfaces

Engine

power

powertrain
p [1]

Engine

power

p: powertrain [1]

Engine

power

powertrain
p

OrderProcess

OrderEntry,
Tracking

Payment

Online
Services
170 UML Superstructure 2.0 Draft Adopted Specification

Examples

Figure 113 shows a class Engine with a port p with a provided interface powertrain. This interface specifies the services that
the engine offers at this port (i.e., the operations and receptions that are accessible by communication arriving at this port). The
interface power is the required interface of the engine. The required interface specifies the services that the engine expects its
environment to provide. At port p, the Engine class is completely encapsulated; it can be specified without any knowledge of
the environment the engine will be embedded in. As long as the environment obeys the constraints expressed by the provided
and required interfaces of the engine, the engine will function properly.

Two uses of the Engine class are depicted: Both a boat and a car contain a part that is an engine. The Car class connects port
p of the engine to a set of wheels via the axle. The Boat class connects port p of the engine to a propeller via the shaft. As long
as the interaction between the Engine and the part linked to its port p obeys the constraints specified by the provided and
required interfaces, the engine will function as specified, whether it is an engine of a car or an engine of a boat. (This example
also shows that connectors need not necessarily attach to parts via ports (as shown in the Car class.)

Rationale

The required and provided interfaces of a port specify everything that is necessary for interactions through that interaction
point. If all interactions of a classifier with its environment are achieved through ports, then the internals of the classifier are
fully isolated from the environment. This allows such a classifier to be used in any context that satisfies the constraints
specified by its ports.

Changes from UML 1.x

This metaclass has been added to UML.

9.3.12 Property (from InternalStructures, as specialized)

Description

A property represents a set of instances that are owned by a containing classifier instance.

Figure 113 - Port examples

Car

rear : Wheel [2] e : Engine
axle

Engine

p

p

Boat

: Propeller e : Engine
shaft p

<<interface>>
powertrain

<<interface>>
power

powertrain

power
UML Superstructure 2.0 Draft Adopted Specification 171

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

When an instance of the containing classifier is created, a set of instances corresponding to its properties may be created either
immediately or at some later time (see “StructuredClassifier” on page 171). These instances are instances of the classifier
typing the property. A property specifies that a set of instances may exist; this set of instances is a subset of the total set of
instances specified by the classifier typing the property.

A part (see “StructuredClassifier” on page 171) declares that an instance of this classifier may contain a set of instances by
composition. All such instances are destroyed when the containing classifier instance is destroyed. Figure 114 shows two
possible views of the Car class. In subfigure (i), Car is shown as having a composition associations with role name rear to a
class Wheel and an association with role name e to a class Engine. In subfigure (ii), the same is specified. However, in
addition, in subfigure (ii) it is specified that rear and e belong to the internal structure of the class Car. This allows
specification of detail that holds only for instances of the Wheel and Engine classes within the context of the class Car, but
which will not hold for wheels and engines in general. For example, subfigure (i) specifies that any instance of class Engine
can be linked to an arbitrary number of instances of class Wheel. Subfigure (ii), however, specifies that within the context of
class Car, the instance playing the role of e may only be connected to two instances playing the role of rear. In addition, the
instances playing the e and rear roles may only be linked if they are roles of the same instance of class Car.

In other words, subfigure (ii) asserts additional constraints on the instances of the classes Wheel and Engine, when they are
playing the respective roles within an instance of class Car. These constraints are not true for instances of Wheel and Engine in
general. Other wheels and engines may be arbitrarily linked as specified in subfigure (i).

Notation

A part is shown by graphical nesting of a box symbol with a solid outline representing the part within the symbol representing

Figure 114 - Properties

Car

rear : Wheel [2] e : Engine
a: Axle

Car

Wheel Engine

rear 2 e1

Axle

(i)
(ii)

* *

2 1
172 UML Superstructure 2.0 Draft Adopted Specification

the containing classifier in a separate compartment. A property specifying an instance that is not owned by composition by the
instance of the containing classifier is shown by graphical nesting of a box symbol with a dashed outline.

The contained box symbol has only a name compartment, which contains a string according to the syntax defined in Chapter 1,
“Classes”. Detail may be shown within the box symbol indicating specific values for properties of the type classifier when
instances corresponding to the property symbol are created.

Presentation Options

The multiplicity for a property may also be shown as a multiplicity mark in the top right corner of the part box.

A property symbol may be shown containing just a single name (without the colon) in its name string. This implies the
definition of an anonymously named class nested within the namespace of the containing class. The part has this anonymous
class as its type. Every occurrence of an anonymous class is different from any other occurrence. The anonymously defined
class has the properties specified with the part symbol. It is allowed to show compartments defining attributes and operations
of the anonymously named class.

Examples

Figure 115 shows examples of properties. On the left, the property denotes that the containing instance will own four instances
of the Wheel class by composition. The multiplicity is shown using the presentation option discussed above. The property on
the right denotes that the containing instance will reference one or two instances of the Engine class. For additional examples,
see “StructuredClassifier” on page 171.

Changes from UML 1.x

A connectable element used in a collaboration subsumes the concept of ClassifierRole.

9.3.13 StructuredClassifier (from InternalStructures)

Description

A structured classifier is an abstract metaclass that represents any classifier whose behavior can be fully or partly described by
the collaboration of owned or referenced instances.

Attributes

No additional attributes.

Associations

• role: ConnectableElement References the roles that instances may play in this classifier. (Abstract union; subsets
Classifier.feature.)

• ownedAttribute: Property References the properties owned by the classifier. (Subsets StructuredClassifier.role, Clas-
sifier.attribute,and Namespace.ownedMember)

Figure 115 - Property examples

w: Wheel
4

e: Engine [1..2]
UML Superstructure 2.0 Draft Adopted Specification 173

• part: Property References the properties specifying instances that the classifier owns by composition.
This association is derived, selecting those owned properties where isComposite is true.

• ownedConnector: Connector References the connectors owned by the classifier. (Subsets Classifier.feature and
Namespace.ownedMember)

Constraints

[1] The multiplicities on connected elements must be consistent.

Semantics

The multiplicities on the structural features and connector ends indicate the number of instances (objects and links) that may
be created within an instance of the containing classifier, either when the instance of the containing classifier is created, or at a
later time. The lower bound of the multiplicity range indicates the number of instances that are created (unless indicated
differently by an associated instance specification or an invoked constructor function); the upper bound of the multiplicity
range indicates the maximum number of instances that may be created. The slots corresponding to the structural features are
initialized with these instances.

For each instance playing a role in an internal structure, there will initially be as many links as indicated by the multiplicity of
the opposite ends of connectors attached to that role (see “ConnectorEnd” on page 165 for the semantics where no
multiplicities are given for an end). If the multiplicities of the ends match the multiplicities of the roles they are attached to
(see Figure 116 i), the initial configuration that will be created when an instance of the containing classifier is created consists
of the set of instances corresponding to the roles (as specified by the multiplicities on the roles) fully connected by links (see
the resultant instance, Figure 116 ii).

Multiplicities on connector ends serve to restrict the number of initial links created. Links will be created for each instance
playing the connected roles according to their ordering until the minimum connector end multiplicity is reached for both ends
of the connector (see the resultant instance, Figure 117 ii). In this example, only two links are created, resulting in an array

Figure 116 - “Star” connector pattern

/ a: / b:

/ a: / b:

a: b:
2 2

2 2

(i)

(ii)
174 UML Superstructure 2.0 Draft Adopted Specification

pattern.

The manner of creation of the containing classifier may override the default instantiation. When an instance specification is
used to specify the initial instance to be created for a classifiers (see “Class” on page 156), the multiplicities of its parts
determine the number of initial instances that will be created within that classifier. Initially, there will be as many instances
held in slots as indicated by the corresponding multiplicity. Multiplicity ranges on such instance specifications may not
contain upper bounds.

All instances corresponding to parts of a structured classifier are destroyed recursively, when an instance of that structured
classifier is deleted. The instance is removed from the extent of its classifier, and is itself destroyed.

Notation

The namestring of a role in an instance specification obeys the following syntax:

{{ {[name [‘/’ rolename]] | ‘/’ rolename} ‘:’ classifiername [{‘,’ classifiername}*]} | { name [‘/’ rolename] | ‘/’ rolename}}

The name of the instance specification may be followed by the name of the part which the instance plays. The name of the part
may only be present if the instance plays a role.

Examples

The following example shows two classes, Car and Wheel. The Car class has four parts, all of type Wheel, representing the
four wheels of the car. The front wheels and the rear wheels are linked via a connector representing the front and rear axle,
respectively. An implicit association is defined as the type of each axle with each end typed by the Wheel class. Figure 118
specifies that whenever an instance of the Car class is created, four instances of the Wheel class are created and held by
composition within the car instance. In addition, one link each is created between the front wheel instances and the rear wheel

Figure 117 - “Array” connector pattern

/ a: / b:

/ a: / b:

a: b:
2 2

1 1

(ii)

(i)
UML Superstructure 2.0 Draft Adopted Specification 175

instances.

Figure 119 specifies an equivalent system, but relies on multiplicities to show the replication of the wheel and axle
arrangement: This diagram specifies that there will be two instances of the left wheel and two instances of the right wheel,
with each matching instance connected by a link deriving from the connector representing the axle. As specified by the
multiplicities, no additional instances of the Wheel class can be added as left or right parts for a Car instance.

Figure 120 shows an instance of the Car class (as specified in Figure 118). It describes the internal structure of the Car that it
creates and how the four contained instances of Wheel will be initialized. In this case, every instance of Wheel will have the
predefined size and use the brand of tire as specified. The left wheel instances are given names, and all wheel instances are

Figure 118 - Connectors and parts in a structure diagram

Figure 119 - Connectors and parts in a structure diagram using multiplicities

Car

leftFront :
Wheel

rightFront :
Wheel

frontaxle

tire: String
size: String

Wheel

leftRear :
Wheel

rightRear :
Wheel

rearaxle

tire: String
size: String

WheelCar

left: Wheel [2] right: Wheel [2]
axle

1

176 UML Superstructure 2.0 Draft Adopted Specification

shown as playing the respective roles. The types of the wheel instances have been suppressed.

Finally, Figure 121 shows a constructor for the Car class (see “Class” on page 156). This constructor takes a parameter brand
of type String. It describes the internal structure of the Car that it creates and how the four contained instances of Wheel will be
initialized. In this case, every instance of Wheel will have the predefined size and use the brand of tire passed as parameter.
The left wheel instances are given names, and all wheel instances are shown as playing the parts. The types of the wheel
instances have been suppressed.

9.3.14 Trigger (from InvocationActions, as specialized)

Description

A trigger specification may be qualified by the port on which the event occurred.

Associations

• port: Port [*] Specifies the ports at which a communication that caused an event may have arrived.

Figure 120 - A instance of the Car class

Figure 121 - A constructor for the Car class

: Car

tire = "Michelin"
size = "215x95"

l1 / leftfront frontaxle

tire: String
size: String

Wheel

rearaxle

tire = "Michelin"
size = "215x95"

/ rightfront

tire = "Firestone"
size = "215x95"

l2 / leftrear

tire = "Firestone"
size = "215x95"

/ rightrear
Car

: Car

tire = brand
size = "215x95"

l1 / leftfront frontaxle

rearaxle

tire = brand
size = "215x95"

/ rightfront

tire = brand
size = "215x95"

l2 / leftrear

tire = brand
size = "215x95"

/ rightrear

Car

make(brand:String)
«create»
UML Superstructure 2.0 Draft Adopted Specification 177

Semantics

Specifying one or more ports for an event implies that the event triggers the execution of an associated behavior only if the
event was received via one of the specified ports.

Notation

The ports of a trigger are specified following a trigger signature by a list of port names separated by comma, preceded by the
keyword «from»:

«from» {port \ ‘,’}+

9.3.15 Variable (from StructuredActivities, as specialized)

Description

A variable is considered a connectable element.

Semantics

Extends variable to specialize connectable element.

9.4 Diagrams

Composite structure diagram

A composite structure diagram depicts the internal structure of a classifier, , as well as the use of a collaboration in a
collaboration occurrence.

Graphical nodes

Additional graphical nodes that can be included in composite structure diagrams are shown in Table 6.

Table 6 - Graphic nodes included in composite structure diagrams

NODE TYPE NOTATION REFERENCE

Part See “Property” on page 167.

Port See “Ports” on page 167. A port may appear either
on a contained part representing a port on that part,
or on the boundary of the class diagram, represent-
ing a port on the represented classifier itself. The
optional ClassifierName is only used for Complex-
Ports.

partName :
ClassName

portName:
ClassifierName
178 UML Superstructure 2.0 Draft Adopted Specification

Graphical paths

Additional graphical paths that can be included in composite structure diagrams are shown in Table 7.

Structure diagram

All graphical nodes and paths shown on composite structure diagrams can also be shown on other structure diagrams.

Collaboration See “Collaboration” on page 157.

Collaboration
Occurrence

See “CollaborationOccurrence” on page 160.

Table 7 - Graphic nodes included in composite structure diagrams

PATH TYPE NOTATION REFERENCE

Connector See “Connector” on page 163.

Role binding See “CollaborationOccurrence” on page 160.

Table 6 - Graphic nodes included in composite structure diagrams

NODE TYPE NOTATION REFERENCE

CollaborationName

occurrenceName :
CollaborationName
UML Superstructure 2.0 Draft Adopted Specification 179

180 UML Superstructure 2.0 Draft Adopted Specification

10 Deployments

10.1 Overview

The Deployments package specifies a set of constructs that can be used to define the execution architecture of systems that
represent the assignment of software artifacts to nodes. Nodes are connected through communication paths to create network
systems of arbitrary complexity. Nodes are typically defined in a nested manner, and represent either hardware devices or
software execution environments. Artifacts represent concrete elements in the physical world that are the result of a
development process.

The Deployment package supports a streamlined model of deployment that is deemed sufficient for the majority of
modern applications. Where more elaborate deployment models are required, it can be extended through profiles or meta
models to model specific hardware and software environments.

Artifacts

The Artifacts package defines the basic Artifact construct as a special kind of Classifier.

Nodes

The Nodes package defines the concept of Node, as well as the basic deployment relationship between Artifacts and Nodes.

Component Deployments

The ComponentDeployments package extends the basic deployment model with capabilities to support deployment
mechanisms found in several common component technologies.

10.2 Abstract syntax

Figure 123 shows the dependencies of the Deployments packages.
UML Superstructure 2.0 Draft Adopted Specification 181

Package Artifacts

Figure 123 - Dependencies between packages described in this chapter

Figure 124 - The elements defined in the Artifacts package

Nodes

Artifac ts

Dependencies
(from Classes)

StructuredClasses

(from CompositeStructures)

ComponentDeployments

BasicComponents

(from Components)

<<m erge>>

Kernel

(from Classes)

< <m erge>> <<m erge>> <<m erge>>

Abstraction
(from Dependencies)

Classifier
(from Kernel)

PackageableElement
(from Kernel)

Manisfestation

1*

+uti l izedElement

1
{subsets suppli er,

subsets target}

*

Operation
(from Kernel)

Property
(from Kernel)

Artifact

fi leName : String

*
+n estedArtifact

*

{re defines neste dCl assifi er}

*1

+mani festatio n

*

{subsets ownedElement,
subsets clientDependency}

1

*

0..1

+o wnedOp era tion *

{ordered, subsets feature,
subsets ownedMember}

0..1
{subsets redefinitionContext,

subsets namespace,
subsets featuringClassifier}

*

0..1

+o wnedProperty*

0..1 {subsets namespace,
subsets featuri ngClassi fier,

sub sets cl assi fi er}
182 UML Superstructure 2.0 Draft Adopted Specification

Package Nodes

Figure 125 - The definition of the Node concept

Figure 126 - The definition of the Deployment relationship
 between DeploymentTargets and DeployedArtifacts.

Class
(from StructuredClass...

Dev ice ExecutionEnv ironment

Node

*

+nestedNode

*

{redef ines nestedClassif ier}

CommunicationPath

{ All ends of a C ommunic ationPath
 are ty ped by Nodes }

Association
(from Kernel)

Dependency
(from Dependencies)

Named Ele ment
(from Dependencies)

No de

NamedElement
(f rom D ependenci es)

De plo yed Arti fac tDeployment

**

+deployedArti fact

*

{subsets supplier,
subsets ta rg et}

*

Package ableElement DeploymentTarget

*1

+deployment

*

{subsets ownedElement,
subsets cl ientDepen dency}

+location

1 {subsets source,
subsets client}*

*
+/d epl oyed Ele me nt

*

*

Property Insta nceSpecif ication Arti fa ct
UML Superstructure 2.0 Draft Adopted Specification 183

Package ComponentDeployments

10.3 Class Descriptions

10.3.1 Artifact

An artifact is the specification of a physical piece of information that is used or produced by a software development process,
or by deployment and operation of a system. Examples of artifacts include model files, source files, scripts, and binary
executable files, a table in a database system, a development deliverable, or a word-processing document, a mail message.

Description

Artifacts

In the metamodel, an Artifact is a Classifier that represents a physical entity. Artifacts may have Properties that represent
features of the Artifact, and Operations that can be performed on its instances. Artifacts can be involved in Associations to
other Artifacts, e.g. composition associations. Artifacts can be instantiated to represent detailed copy semantics, where
different instances of the same Artifact may be deployed to various Node instances (and each may have separate property
values, e.g. for a ‘time-stamp’ property.

Node

As part of the Nodes package, an Artifact is extended to become the source of a deployment to a Node. This is achieved by
specializing the abstract superclass DeployedArtifact defined in the Nodes package.

Attributes

Artifacts

• filename : String [0..1] A concrete name that is used to refer to the Artifact in a physical context. Example: file
system name, universal resource locator.

Figure 127 - The metaclasses that define component Deployment

Arti fact
(from Artifacts)

Deployment
(from Nodes)

DeploymentSpeci fication

deploymentLocation : String
executionLocation : String

Deployment

*0..1

+configuration

*{subsets ownedMember}0..1

{ the deployment target of a
Deploym entSpeci fication is of type
ExecutionEnvironment }

{ the uti l ized elements of a
Deploym entSpeci fication are of type
Component }
184 UML Superstructure 2.0 Draft Adopted Specification

Associations

Artifacts

• nestedArtifact: Artifact [*] The Artifacts that are defined (nested) within the Artifact.
The association is a specialization of the nestedClassifier association from Class to Classi-
fier.

• ownedProperty : Property [*] The attributes or association ends defined for the Artifact.
The association is a specialization of the ownedMember association.

• ownedOperation : Operation [*]The Operations defined for the Artifact.
The association is a specialization of the ownedMember association.

• manifestation : Manifestation [*] The set of model elements that are manifested in the Artifact. That is, these model ele-
ments are utilized in the construction (or generation) or the artifact.
This association is a specialization of the clientDependency association.

Constraints

No additional constraints.

Semantics

An Artifact defined by the user represents a concrete element in the physical world. A particular instance (or ‘copy’) of an
artifact is deployed to a node instance. Artifacts may have composition associations to other artifacts that are nested within it.
For instance, a deployment descriptor artifact for a component may be contained within the artifact that implements that
component. In that way, the component and its descriptor are deployed to a node instance as one artifact instance.

Specific profiles are expected to stereotype artifact to model sets of files (e.g. as characterized by a ‘file extension’ on a file
system). The UML Standard Profile defines several standard stereotypes that apply to Artifacts, e.g. «source», or «executable»
(See the Appendix). These stereotypes can be further specialized into implementation and platform specific stereotypes in
profiles. For example, an EJB profile might define «jar» as a subclass of «executable» for executable Java archives.

Notation

An artifact is presented using an ordinary class rectangle with the key-word «artifact». Alternatively, it may be depicted by a
icon.

Optionally, the underlining of the name of an artifact instance may be omitted, as the context is assumed to be known to users.

Figure 128 - An Artifact instance

Order.jar
«artifact»
UML Superstructure 2.0 Draft Adopted Specification 185

Changes from previous UML

The following changes from UML 1.x have been made: Artifacts can now manifest any PackageableElement (not just
Components, as in UML 1.x). In UML 1.x,

10.3.2 CommunicationPath

A communication path is an association between two Nodes, through which Nodes are able to exchange signals and messages.

Description

In the metamodel, CommunicationPath is a subclass of Association.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

• The association ends of a CommunicationPath are typed by Nodes.

Semantics

A communication path is an association that can only be defined between nodes, to model the exchange of signals and
messages between them.

Notation

No additional notation.

Figure 129 - A visual representation of the manifestation relationship
 between artifacts and components.

Order

«component»

Order.jar
«artifact»

«manifest»
186 UML Superstructure 2.0 Draft Adopted Specification

Changes from previous UML

The following changes from UML 1.x have been made: CommunicationPath was implicit in UML 1.x. It has been made
explicit to formalize the modeling of networks of complex Nodes.

10.3.3 DeployedArtifact

A deployed artifact is an artifact or artifact instance that has been deployed to a deployment target.

Description

In the metamodel, DeployedArtifact is an abstract metaclass that is a specialization of NamedElement. A DeployedArtifact is
involved in one or more Deployments to a DeploymentTarget.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

Deployed artifacts are deployed to a deployment target.

Notation

No additional notation.

Changes from previous UML

The following changes from UML 1.x have been made: the capability to deploy artifacts and artifact instances to nodes has
been made explicit based on UML 2.0 instance modeling through the addition of this abstract metaclass.

10.3.4 Deployment

Nodes

A deployment is the allocation of an artifact or artifact instance to a deployment target.

ComponentDeployments

A component deployment is the deployment of one or more executable artifacts or artifact instances to a deployment target,
optionally parameterized by a deployment specification.

Description

In the metamodel, Deployment is a subtype of Dependency.
UML Superstructure 2.0 Draft Adopted Specification 187

Attribute

No additional attributes.

Associations

Nodes

• deployedArtifact : Artifact [*] The Artifacts that are deployed onto a Node.
This association specializes the supplier association.

• location : Node [1] The Node which is the target of a Deployment.
This association specializes the client association.

ComponentDeployments

• configuration : deploymentSpecification [*]
The specification of properties that parameterize the deployment and execution of one or
more Artifacts.
This association is specialized from the ownedMember association.

Constraints

No additional constraints.

Semantics

The deployment relationship between a DeployedArtifact and a DeploymentTarget can be defined at the “type” level and at
the “instance level”. For example, a ‘type level’ deployment relationship can be defined between an “application server” Node
and a “order entry request handler” executable Artifact. At the ‘instance level’, 3 specific instances “app-server1” ... “app-
server3” may be the deployment target for six “request handler*” instances. Finally, for modeling complex deployment target
models consisting of nodes with an composite structure defined through ‘parts’, a Property (that functions as a part) may also
be the target of a deployment.

Notation

Deployment diagrams show the allocation of Artifacts to Nodes according to the Deployments defined between them.

Figure 130 - A visual representation of the deployment location
 of artifacts (including a dependency between the artifacts).

:AppServer1

ShoppinCart.jar
«artifact»

Order.jar
«artifact»
188 UML Superstructure 2.0 Draft Adopted Specification

Changes from previous UML

The following changes from UML 1.x have been made: An association to DeploymentSpecification has been added.

10.3.5 DeploymentTarget

A deployment target is the location for a deployed artifact.

Description

In the metamodel, DeploymentTarget is an abstract metaclass that is a specialization of NamedElement. A DeploymentTarget
owns a set of Deployments.

Attributes

No additional attributes.

Associations

Nodes

• deployment : Deployment [*] The set of Deployments for a DeploymentTarget.
This association specializes the clientDependency association.

• / deployedElement : PackageableElement [*]
The set of elements that are manifested in an Artifact that is involved in Deployment to a
DeploymentTarget.
The association is a derived association (OCL for informal derivation above to be pro-
vided).

Constraints

No additional constraints.

Semantics

Artifacts are deployed to a deployment target. The deployment target owns the a set of deployments that target it.

Figure 131 - A textual list based representation of the deployment location of artifacts.

:AppServer1

Order.jar

ShoppingCart.jar

Account.jar

Product.jar

BackOrder.jar

Service.jar
UML Superstructure 2.0 Draft Adopted Specification 189

Notation

No additional notation.

Changes from previous UML

The following changes from UML 1.x have been made: the capability to deploy artifacts and artifact instances to nodes has
been made explicit based on UML 2.0 instance modeling.

10.3.6 DeploymentSpecification

A deployment specification specifies a set of properties which determine execution parameters of a component artifact that is
deployed on a node. A deployment specification can be aimed at a specific type of container. An artifact that reifies or
implements deployment specification properties is a deployment descriptor.

Description

In the metamodel, a DeploymentSpecification is a subtype of Artifact. It defines a set of deployment properties that are
specific to a certain Container type. An instance of a DeploymentSpecification with specific values for these properties may be
contained in a complex Artifact.

Attributes

ComponentDeployments

• deploymentLocation : String The location where an Artifact is deployed onto a Node. This is typically a 'directory' or
'memory address'.

• executionLocation : String The location where a component Artifact executes. This may be a local or remote location.

Associations

ComponentDeployments

• deployment : Deployment [0..1]The deployment with which the DeploymentSpecification is associated.

Constraints

[1] The DeploymentTarget of a DeploymentSpecification is a kind of ExecutionEnvironment.

[2] The deployedElements of a DeploymentTarget that are involved in a Deployment that has an associated Deployment-
Specification is a kind of Component (i.e. the configured components).

Semantics

A Deployment specification is a general mechanism to parameterize a Deployment relationship, as is common in various
hardware and software technologies. The deployment specification element is expected to be extended in specific component
profiles. Non-normative examples of standard tagged values that a profile might add to deployment specification are e.g.
«concurrencyMode» with tagged values {thread, process, none}, or «transactionMode» with tagged values {transaction,
nestedTransaction, none}.

Notation

A DeploymentSpecification is graphically displayed as a classifier rectangle that is attached to a component artifact that is
deployed on a container using a regular dependency notation is used. If the deployment relationship is made explicit (as in
Figure 132), the Dependency may be attached to that relationship.
190 UML Superstructure 2.0 Draft Adopted Specification

Changes from previous UML

The following changes from UML 1.x have been made: DeploymentSpecification does not exist in UML 1.x.

10.3.7 Device

A Device is a physical computational resource with processing capability upon which artifacts may be deployed for execution.

Figure 132 - A DeploymentSpecification for an artifact (specification and instance levels)

Figure 133 - DeploymentSpecifications related to the artifacts that they parameterize

Figure 134 - A DeploymentSpecification for an artifact

Name

«deployment spec»

execution: execKind
transaction : Boolean

Name

«deployment spec»

execution: thread
transaction : true

:AppServer1

ShoppinCart.jar
«artifact»

Order.jar
«artifact»

ShoppingApp.ear
«artifact»

Orderdesc.xml
«deployment spec»

ShoppingAppdesc.xml
«deployment spec»

:AppServer

Order.jar
«artifact»
UML Superstructure 2.0 Draft Adopted Specification 191

Devices may be complex, i.e. they may consist of other devices.

Description

In the metamodel, a Device is a subclass of Node.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

A device may be a nested element, where a physical machine is decomposed into its elements, either through namespace
ownership or through attributes that are typed by Devices.

Notation

A Device is notated by a Node annotated with the stereotype «device».

Figure 135 - Notation for a Device

Changes from previous UML

The following changes from UML 1.x have been made: Device is not defined in UML 1.x.

10.3.8 ExecutionEnvironment

A ExecutionEnvironment is a node that offers an execution environment for specific types of components that are deployed on

«device»
:AppServer

:J2EEServer

Order.jar

ShoppingCart.jar

Account.jar

Product.jar

BackOrder.jar

Service.jar

:DBServer

OrderSchema.ddl

ItemSchema.ddl

«container»
«device»
:DBServer
192 UML Superstructure 2.0 Draft Adopted Specification

it in the form of executable artifacts.

Description

In the metamodel, a ExecutionEnvironment is a subclass of Node. It is usually part of a general Node, representing the
physical hardware environment on which the ExecutionEnvironment resides. In that environment, the ExecutionEnvironment
implements a standard set of services that Components require at execution time (at the modeling level these services are
usually implicit). For each component Deployment, aspects of these services may be determined by properties in a
DeploymentSpecification for a particular kind of ExecutionEnvironment.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

ExecutionEnvironment instances are assigned to node instances by using composite associations between nodes and
ExecutionEnvironments, where the ExecutionEnvironment plays the role of the part. ExecutionEnvironments can be nested,
e.g. a database ExecutionEnvironment may be nested in an operating system ExecutionEnvironment. Components of the
appropriate type are then deployed to specific ExecutionEnvironment nodes.

Typical examples of standard ExecutionEnvironments that specific profiles might define stereotypes for are «OS», «workflow
engine», «database system»and «J2EE container.

An ExecutionEnvironment can optionally have an explicit interface of system level services that can be called by the deployed
elements, in those cases where the modeler wants to make the ExecutionEnvironment software execution environment
services explicit.

Notation

A ExecutionEnvironment is notated by a Node annotated with the stereotype «ExecutionEnvironment».

Figure 136 - Notation for a ExecutionEnvironment (example of an
 instance of a J2EEServer ExecutionEnvironment)

:J2EEServer

Order.jar

ShoppingCart.jar

Account.jar

Product.jar

BackOrder.jar

Service.jar

«container»
UML Superstructure 2.0 Draft Adopted Specification 193

Changes from previous UML

The following changes from UML 1.x have been made: ExecutionEnvironment is not defined in UML 1.x.

10.3.9 InstanceSpecification (from Kernel, as specialized)

An instance specification is extended with the capability of being a deployment target in a deployment relationship, in the case
that it is an instance of a node. It is also extended with the capability of being a deployed artifact, if it is an instance of an
artifact.

Description

In the metamodel, InstanceSpecification is a specialization of DeploymentTarget and DeployedArtifact.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

[1] An InstanceSpecification can be a DeploymentTarget if it is the instance specification of a Node and functions as a part in
the internal structure of an encompassing Node.

[2] An InstanceSpecification can be a DeployedArtifact if it is the instance specification of an Artifact.

Semantics

No additional semantics.

Notation

An instance can be attached to a node using a deployment dependency, or it may be visually nested inside the node.

Changes from previous UML

The following changes from UML 1.x have been made: the capability to deploy artifact instances to node instances existed in
UML 1.x, and has been made explicit based on UML 2.0 instance modeling.

10.3.10 Manifestation

A manifestation is the concrete physical of one or more model elements by an artifact.

Description

In the metamodel, a Manifestation is a subtype of Abstraction. A Manifestation is owned by an Artifact.

Attributes

No additional attributes.
194 UML Superstructure 2.0 Draft Adopted Specification

Associations

Artifacts

• utilizedElement : PackageableElement [1]
The model element that is utilized in the manifestation in an Artifact.
This association specializes the supplier association.

Constraints

No additional associations.

Semantics

An artifact embodies or manifests a number of model elements. The artifact owns the manifestations, each representing the
utilization of a packageable element.

Specific profiles are expected to stereotype the manifestation relationship to indicate particular forms of manifestation, e.g.
<<tool generated>> and <<custom code>> might be two manifestations for different classes embodied in an artifact.

Notation

A manifestation is notated in the same way as an abstraction dependency, i.e. as a general dashed line with an open arrow-head
labeled with the keyword <<manifest>>.

Changes from previous UML

The following changes from UML 1.x have been made: Manifestation is defined as a meta association in UML 1.x,
prohibiting stereotyping of manifestations. In UML 1.x, the concept of Manifestation was referred to as ‘implementation’ and
annotated in the notation as <<implement>>. Since this was one of the many uses of the word ‘implementation’ this has been
replaced by <<manifest>>.

10.3.11 Node

A node is computational resource upon which artifacts may be deployed for execution.

Nodes can be interconnected through communication paths to define network structures.

Description

In the metamodel, a Node is a subclass of Class. It is associated with a Deployment of an Artifact. It is also associated with a
set of Elements that are deployed on it. This is a derived association in that these PackageableElements are involved in a
Manifestation of an Artifact that is deployed on the Node. Nodes may have an internal structure defined in terms of parts and
connectors associated with them for advanced modeling applications.

Attributes

No additional attributes.

Associations

Nodes

• nestedNode : Node [*] The Nodes that are defined (nested) within the Node.
The association is a specialization of the ownedMember association from Namespace to
NamedElement.
UML Superstructure 2.0 Draft Adopted Specification 195

Constraints

[1] The internal structure of a Node (if defined) consists solely of parts of type Node.

Semantics

Nodes can be connected to represent a network topology by using communication paths. Communication paths can be defined
between nodes such as “application server” and “client workstation” to define the possible communication paths between
nodes. Specific network topologies can then be defined through links between node instances.

Hierarchical nodes (i.e. nodes within nodes) can be modeled using composition associations, or by defining an internal
structure for advanced modeling applications.

Non-normative examples of nodes are «application server», «client workstation», «mobile device», «embedded device».

Notation

A node is shown as a figure that looks like a 3-dimensional view of a cube.

Dashed arrows with the keyword «deploy» show the capability of a node type to support a component type. Alternatively, this
may be shown by nesting component symbols inside the node symbol.

Nodes may be connected by associations to other nodes. A link between node instances indicates a communication path
between the nodes.

Figure 137 - An instance of a Node

Figure 138 - A communication path between two Node types, with deployed Artifacts

:AppServer

AppServer DBServer

*

1

RequestHandler.jarOrder.jar

«deploy»
«deploy»
196 UML Superstructure 2.0 Draft Adopted Specification

Artifacts may be contained within node instance symbols. This indicates that the items are deployed on the node instances.

Examples

Changes from previous UML

The following changes from UML 1.x have been made: to be written.

10.3.12 Property (from InternalStructures, as specialized)

A Property is extended with the capability of being a DeploymentTarget in a Deployment relationship. This enables modeling
the deployment to hierarchical Nodes that have Properties functioning as internal parts.

Description

In the metamodel, Property is a specialization of DeploymentTarget.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

[1] A Property can be a DeploymentTarget if it is a kind of Node and functions as a part in the internal structure of an encom-
passing Node.

Semantics

No additional semantics.

Notation

No additional notation.

Changes from previous UML

The following changes from UML 1.x have been made: the capability to deploy to Nodes with an internal structure has been
added to UML 2.0.

Figure 139 - A set of deployed component artifacts on a Node

:AppS erv er1

S hoppinC art.ja r
«artifac t»

O rder.ja r
«artifac t»
UML Superstructure 2.0 Draft Adopted Specification 197

10.4 Diagrams

Deployment diagram

Graphical nodes

The graphic nodes that can be included in deployment diagrams are shown in Table 8.

Table 8 - Graphic nodes included in deployment diagrams

NODE TYPE NOTATION REFERENCE

Artifact See “Artifact”

Node See “Node”. Has keyword options «device» and
«execution environment».

Artifact deployed on Node See “Deployment”

Node with deployed Artifacts See “Deployment”

Node with deployed Artifacts See “Deployment” (alternative, textual notation)

Deployment specification See “Deployment Specification”.

A rtifa c tN a m e
« a rt ifa c t»

N o d e N a m e

ArtifactN am e
«artifact»

Node

ArtifactName
«artifact»

NodeName

artifact1

artifact2

artifact3

«execution env»

N am e

«deploym ent spec»
198 UML Superstructure 2.0 Draft Adopted Specification

10.5 Graphical paths

The graphic paths that can be included in deployment diagrams are shown in Table 9.

Deployment specification - with
properties

See “Deployment Specification”.

Deployment specification - with
property values

See “Deployment Specification”.

Artifact with annotated deploy-
ment properties

See “Artifact”.

Table 9 - Graphic nodes included in deployment diagrams

PATH TYPE NOTATION REFERENCE

Association See “Association” on page 10-50. Used to model communication paths
between Nodes.

Dependency See “Dependency” on page 26-201. Used to model general dependencies. In
Deployment diagrams, this notation is used to depict the following metamodel
associations: (i) the relationship between an Artifact and the model element(s)
that it implements, and (ii) the deployment of an Artifact (instance) on a Node
(instance).

Generalization See “Generalization” on page 6-30.

Deployment The Deployment relationship

Table 8 - Graphic nodes included in deployment diagrams

NODE TYPE NOTATION REFERENCE

Name

«deployment spec»

execution: execKind
transaction : Boolean

Name

«deployment spec»

execution: thread
transaction : true

ArtifactNam e
«artifact»

{execution=thread,
 transaction =true}

«deploy»
UML Superstructure 2.0 Draft Adopted Specification 199

Manifestation The Manifestation relationship

Table 9 - Graphic nodes included in deployment diagrams

PATH TYPE NOTATION REFERENCE

«manifest»
200 UML Superstructure 2.0 Draft Adopted Specification

Part II - Behavior
This part specifies the dynamic, behavioral constructs (e.g., activities, interactions, state machines) used in various
behavioral diagrams, such as activity diagrams, sequence diagrams, and state machine diagrams.. The UML packages that
support behavioral modeling, along with the structure packages they depend upon (CompositeStructures and Classes) are
shown in Figure 140.

The function and contents of these packages are described in following chapters, which are organized by major subject
areas.

Figure 140 - UML packages that support behavioral modeling

Interactions UseCasesS tateMachines
Activities

CommonBehaviors

Classes

Actions
UML Infrastructure 2.0 Draft Adopted Specification 201

202 UML Infrastructure 2.0 Draft Adopted Specification

11 Actions

11.1 Overview

Basic Concepts

The abstract concept of an action is found in the Activities chapter. This chapter covers its specific actions.

An action is the fundamental unit of behavior specification. An action takes a set of inputs and converts them into a set of
outputs, though either or both sets may be empty. In addition, some actions modify the state of the system in which the action
executes. The values that are the inputs to an action may be obtained from the results of other actions using the activity flow
model, or they may be described by value specifications. The outputs of the action may be provided as inputs to other actions
using the activity flow model.

Actions are contained in activities, which provide their context. Activities provide control and data sequencing constraints
among actions as well as nested structuring mechanisms for control and scope. See the Activities chapter for details. The
Actions chapter is concerned with the semantics of individual, primitive actions.

Intermediate Concepts

The intermediate level describes the various action primitives that may be executed within UML activity models. These
primitive actions are defined in such a way as to enable the maximum range of mappings. Specifically, primitive actions are
defined so that they either carry out a computation or access object memory, and never both. This approach enables clean
mappings to a physical model, even those with data organizations different from that suggested by the specification. In
addition, any re-organization of the data structure will leave the specification of the computation unaffected.

A surface action language would encompass both primitive actions and the control mechanisms provided by activities. In
addition, a surface language may map higher-level constructs to the actions. For example, in a composition association where
the deletion of an instance implies the deletion of all its components, the specification defines the delete action to remove only
the single instance, and the specification requires further deletions for each of the component instances. A surface language
could choose to define a delete-composition operation as a single unit as a shorthand for several deletions that cascade across
other associations.

A particular surface language could implement each semantic construct one-to-one, or it could define higher-level, composite
constructs to offer the modeler both power and convenience. This specification, then, expresses the fundamental semantics in
terms of primitive behavioral concepts that are conceptually simple to implement. Modelers can work in terms of higher-level
constructs as provided by their chosen surface language or notation.

The semantic primitives are defined to enable the construction of different execution engines, each of which may have
different performance characteristics. A model compiler builder can optimize the structure of the software to meet specific
performance requirements, so long as the semantic behavior of the specification and the implementation remain the same. For
example, one engine might be fully sequential within a single task, while another may separate the classes into different
processors based on potential overlapping of processing, and yet others may separate the classes in a client-server, or even a
three-tier model

The modeler can provide “hints” to the execution engine when the modeler has special knowledge of the domain solution that
could be of value in optimizing the execution engine. For example, instances could—by design—be partitioned to match the
distribution selected, so tests based on this partitioning can be optimized on each processor. The execution engines are not
required to check or enforce such hints. An execution engine can either assume that the modeler is correct, or just ignore it. An
execution engine is not required to verify that the modeler’s assertion is true.

When an action violates aspects of static UML modeling that constrain runtime behavior, the semantics is left undefined. For
example, attempting to create an instance of an abstract class is undefined: some languages may make this action illegal,
UML Superstructure 2.0 Draft Adopted Specification 203

others may create a partial instance for testing purposes. The semantics are also left undefined in situations that require classes
as values at runtime. However, in the execution of actions the lower multiplicity bound ignored and no error or undefined
semantics is implied. (Otherwise it is impossible to use actions to pass through the intermediate configurations necessary to
construct object configurations that satisfy multiplicity constraints.) The modeler must determine when minimum multiplicity
should be enforced, and these points cannot be everywhere or the configuration cannot change.

Invocation Actions

The actions defined in this package perform operation calls and signal sends (including both transmissions to specific targets
and broadcasts to the available “universe”). Operations are specified in the model and can be dynamically selected only
through polymorphism. Signals are specified by a signal object, whose type represents the kind of message transmitted
between objects, and can be dynamically created. Note that operations may be bound to activities (procedures), state machine
transitions, or other behaviors. The receipt of signals may be bound to activities, state machine transitions, or other behaviors.
There is also an action to directly invoke behavior.

Read Write Actions

Objects, structural features, links, and variables have values that are available to actions. Objects can be created and destroyed;
structural features and variables have values; links can be created and destroyed, and can reference values through their ends;
all of which are available to actions. Read actions get values, while write actions modify values and create and destroy objects
and links. Read and write actions share the structures for identifying the structural features, links, and variables they access.
The use of qualifiers on associations is supported in CompleteActions. Read actions do not modify the values they access,
while write actions have only limited effect. The semantics of actions that read and write associations that have a static end
is undefined.

Object actions create and destroy objects. Structural feature actions support the reading and writing of structural features. The
abstract metaclass StructuralFeatureAction statically specifies the structural feature being accessed. The object to access is
specified dynamically, by referring to an input pin on which the object will be placed at runtime. The semantics for static
features is undefined. Association actions operate on associations and links. In the description of these actions, the term
“associations” does not include those modeled with association classes, unless specifically indicated. Similarly, a “link” is
not a link object unless specifically indicated. The semantics of actions that read and write associations that have a static
end is undefined. Variable actions support the reading and writing of variables. The abstract metaclass VariableAction
statically specifies the variable being accessed. Variable actions can only access variables within the activity of which the
action is a part.

Computation Actions

Computation actions transform a set of input values to a set of output values by invoking a function. Primitive functions
represent functions from a set of input values to a set of output values. The execution of a primitive function depends only on
the input values and has no other effect than to compute output values. A primitive function does not read or write structural
feature or link values, nor otherwise interact with object memory or other objects. Its behavior is completely self-contained.
Specific primitive functions are not defined in the UML, but would be defined in domain-specific extensions. Typical
primitive functions would include arithmetic, Boolean, and string functions.

Complete Concepts

The major constructs associated with complete actions are outlined below.

Read Write Actions

Additional actions deal with the relation between object and class and link objects. These read the instances of a given classi-
fier, check which classifier an instance is classified by, and change the classifier of an instance. Link object actions operate on
instances of association classes. Also the reading and writing actions of associations are extended to support qualifiers. Other
204 UML Superstructure 2.0 Draft Adopted Specification

Actions

Actions are defined for raising exceptions and accepting events, including operation calls. The StartOwnedBehaviorAction
provides a way to indicate when the behavior of a newly created object should begin to execute.

11.2 Abstract Syntax

The package dependencies of the Actions chapter are shown in Figure 141.

Figure 141 Dependencies of the Action packages

Co m p le te Actio n s

In term edi at e Ac ti o ns Associa ti on Classe s

(fro m Cla sse s)

<<m e rg e>>
<<m e rg e>>

Beha vio rS ta teM ach ine s

(from S ta teM ach ines)

<<m erge >>

Co m m u n ica tio ns

(fro m Com m on Behavio rs)

S truc tu redA ctiv it ie s

(fro m Activi ti e s)

< <m erg e>>
<<m e rg e >>
UML Superstructure 2.0 Draft Adopted Specification 205

Class Diagrams (IntermediateActions)

Note that class Action is defined in the Activities chapter.

Figure 142 - Invocation actions

OutputPin
(from BasicActivities)

CallAction

isSynchronous : Boolean = true

*
+result

*
{ordered,

subsets output}

Behavior
(from BasicBehaviors)

CallBehavi orAct ion

1

*

+behavior 1

*

Action
(from BasicActivities)

InvocationAction

BroadcastSignalAct ion

Signal
(from Communications)

1

*

+signal

1

*

Operation
(from Kernel)

SendObjectActi onSendSignalActi on

1

*

+signal
1

*

CallOperat ionAction

*

1

*

+operation 1

InputPin
(from BasicActivities)

0..1

1

0..1

+target
1{subsets input}

1

+target

1

{subsets input}

1

0..1

+target
1 {subsets input}

0..1

InputPin
(from BasicActi vities)*

+argument

*

{ordered,
subsets input}

1+request 1
{redefines argument}
206 UML Superstructure 2.0 Draft Adopted Specification

Figure 143 - Apply actions

Figure 144 - Object actions

Primit iveFunction

body : String
language : Stri ng

OutputPin
(from BasicActivities)

ApplyFunctionAction

1*

+function

1*

*

+result

*
{ordered,

subsets output}

Element
(from Kernel)

Action
(from BasicActivities)

[0..1]

InputPin
(from BasicActivities)

*
+argument

* {subsets input}

DestroyObjectAction

OutputPin
(from BasicActi viti es)

ReadSelfAction

1

0..1

+resul t

1
{subsets output}

0..1

OutputPin
(from BasicActivities)

TestIdentityAction

1

0..1

+result
1 {subsets output}

0..1

OutputPin
(from BasicActi viti es)

Classifier
(from Kernel)

CreateObjectAction

1

0..1

+result
1 {subsets output}

0..1

1

*

+classifier1

*

Action
(from BasicActivities)

InputPin
(from BasicActi vities)

1

0..1

+target1
{subsets input}

0..1

InputPin
(from BasicActivities)

1

0..1

+first 1
{subsets input}

0..1

1

0..1

+second1
{subsets input}

0..1
UML Superstructure 2.0 Draft Adopted Specification 207

Figure 145 - Structural Feature Actions

RemoveStructuralFeatureValueAction

ClearStructural FeatureAction

OutputPin
(from BasicActivities)

ReadStructural FeatureAction

1

0..1

+result
1 {subsets output}

0..1

AddStructuralFeatureVal ueAction

isReplaceAll : Boolean = false

WriteStructuralFeatureAction

Action
(from BasicActivities)

StructuralFeatureActionStructuralFeature
(from Kernel)

*1 *

+structuralFeature

1
InputPin

(from BasicActivities)

10..1

+obj ect

1

{subsets input}

0..1

InputPin
(from BasicActivities)

0..1

0..1

+insertAt

0..1

{subsets input}

0..1

1

0..1

+value

1
{subsets input}

0..1
208 UML Superstructure 2.0 Draft Adopted Specification

Figure 146 - Link identification

Figure 147 - Read link actions

Action
(from BasicActi vit ies)

Property
(from Kernel)

LinkEndData

1

*

+end1

*

LinkAction
2..*

1 +endData

2..*

1

Element
(from Kernel)

{ Property must be
an association
end.} InputPin

(from Basi cActivities)

0..1

0..1

0..1

+value

0..1

OutputPin
(from BasicActivities)

ReadLinkAction
10..1

+result

1

{subse ts o utput}

0..1

LinkAction
UML Superstructure 2.0 Draft Adopted Specification 209

Figure 148 - Write link actions

DestroyLinkAction

WriteLinkAction

LinkEndData

LinkAction

CreateLinkAction

LinkEndCreationData

isReplaceAll : Boolean = false

2..*

1

+endData

2..* {redefines endData}

1

Associ ation
(from Kernel)

ClearAssociationAction

1

0..1

+associati on 1

0..1

Action
(from BasicActiviti es)

InputPin
(from BasicActivities)

0..1

0..1 +insertAt

0..1

0..1

InputPin
(from BasicActivities)

1

0..1

+object
1{subsets input}

0..1
210 UML Superstructure 2.0 Draft Adopted Specification

Figure 149 - Variable actions

RemoveVariableValueActi on

ClearVariableAction

OutputPin
(from BasicActi vities)

ReadVari ableAction

1

0..1

+resul t
1 {subsets output}

0..1

Variable
(from StructuredActiviti es)

VariableAction 1*

+variable

1*

WriteVariableAction

AddVari abl eValueAction

isReplaceAll : Boolean = false

Action

(from BasicActivities)

InputPin
(from BasicActivities)

1

0..1

+value
1

{subsets input}

0..1

0..1

0..1

+insertAt

0..1

{subsets input}

0..1
UML Superstructure 2.0 Draft Adopted Specification 211

Class Diagrams (CompleteActions)

)

Figure 150 - Accept event actions

Action
(from BasicActivities)

Trigger
(from Communications)

OutputPin
(from BasicActi viti es)

AcceptEventAction
1

+trigger

1

0..*

+result

0.. *

{subsets output}

OutputPin
(from BasicActivities)

AcceptCallAction

1 +returnInformation1
{subsets output}

InputPin
(from BasicActivities)

CallTrigger
(from Communications)

+trigger

{redefines trigger}

ReplyAction

0..*
+replyValue

0..*

{subsets input}

1

+returnInformation

1

{subsets input}

1 +replyToCall1
212 UML Superstructure 2.0 Draft Adopted Specification

Figure 151 - Object actions (CompleteActions)

OutputPin
(from BasicActivities)

ReadIsClassifiedObjectAction

isDirect : Boolean = fa lse

1

0..1

+resul t

1 {subsets output}

0..1

Recl assifyObjectAct ion

isReplaceAll : Boolean = false

Classifier
(from Kernel)

1

+classifier

1

*

*

+oldClassifier *

*

*

*

+newClassifier*

*

OutputPin
(from BasicActivities)

ReadExtentAction

1

0..1

+cl assifier

1

0..1

1

0..1

+result
1

{subsets output}

0..1

Action
(from BasicActivities)

StartOwnedBehaviorAction

InputPin
(from BasicActivities)

1

+object

1
{subsets input}

InputPin
(from BasicActivities)

1

0..1

+obj ect

1{subsets input}

0..1

InputPin
(from BasicActi vities)

1

0..1

+object

1 {subsets input}

0..1
UML Superstructure 2.0 Draft Adopted Specification 213

Figure 152 - Link identification (CompleteActions)

LinkEndData
(from IntermediateActions)

Property
(from Associati onClasses)

LinkEndData

QualifierValue * 1*

+qual ifier

1

1

*

1

+qual ifier*

{Property must
be a qual ifier
attribute.}

Element
(from Kernel)

InputPin
(from BasicActivities)

0..1

1

0..1

+value1
214 UML Superstructure 2.0 Draft Adopted Specification

Figure 153 - Read link actions (CompleteActions)

Figure 154 - Write link actions (CompleteActions)

Action
(from BasicActivit ies)

Property
(from Associati onClasses)

ReadLinkObjectEndQualifierAction

0..1

1

0..1

+qualifier 1

Property
(from Kernel)

OutputPin
(from BasicActivities)

1

0..1

+result

1

{subsets output}

0..1

ReadLinkObjectEndAction

1

0..1

+end 1

0..1

1

0..1

+result

1

{subsets output}

0..1

{ Property must
be an
association
end.}

{Property must
be an qualifier
attribute.}

InputPin
(from BasicActivities)

1

0..1

+object

1

{subsets input}

0..1

1

0..1

+object

1

{subsets input}

0..1

LinkEndCreationData
(from IntermediateActions)

CreateLinkAction
(from IntermediateActions)

QualifierValue
OutputPin

(from BasicActivities)

LinkEndCreationData

1 .. * +qualifier1 .. *
{ordered}

CreateLinkObjectAction

1

0 ..1

+re sul t
1

{su bse ts o utp ut }

0 ..1
2..*

+endData

2..*

{re defin es en dData}
UML Superstructure 2.0 Draft Adopted Specification 215

11.3 Class Descriptions

11.3.1 AcceptCallAction

(CompleteActions) AcceptCallAction is an accept event action representing the receipt of a synchronous call request. In
addition to the normal operation parameters, the action produces a output token that is needed later to supply the information
to the ReplyAction necessary to return control to the caller.

This action is for synchronous calls. If it is used to handle an asynchronous call, execution of the subsequent reply action will
complete immediately with no effects.

Attributes

None.

Associations

• trigger: CallTrigger The operation call trigger accepted by the action.

• returnInformation: OutputPin [1..1]
Pin where a token is placed containing sufficient information to perform a subsequent
reply and return control to the caller. The value in this token is opaque. It can be passed
and copied but it cannot be manipulated by the model.

Constraints

[1] The result pins must match the in and inout parameters of the call trigger operation in number, type, and order.

Semantics

This action accepts events representing the receipt of calls on the operation specified by the call trigger. If an ongoing activity
has executed an accept call action that has not completed and the owning object has an event representing a call of the
specified activity, the accept call action claims the event and removes it from the owning object. If several accept call actions
concurrently request a call on the same operation, it is unspecified which one claims the event, but one and only one action
will claim the event. The argument values of the call are placed on the result output pins of the action. Information sufficient to
perform a subsequent reply action is placed in a token on the returnInformation output pin. The execution of the accept call
action is then complete. This return information token flows like any other data token, but the information in it is opaque and

Figure 155 - Raise exception action

InputPin
(from BasicActivities)

RaiseExceptionAction

1

+exception

1

{subsets input}

Action
(from BasicActivities)
216 UML Superstructure 2.0 Draft Adopted Specification

may not be manipulated by any actions. It only has meaning to ReplyAction.

Note that the target class must not define a method for the operation being received. Otherwise, the operation call will be
dispatched to that method instead of being put in the event buffer to be handled by AcceptCallAction. In general, classes
determine how operation calls are handled, namely by a method, by a behavior owned directly by the class, by a state machine
transition, and so on. The class must ensure that the operation call is handled in a way that AcceptCallAction has access to the
call event.

11.3.2 AcceptEventAction

(CompleteActions) AcceptEventAction is an action that waits for the occurrence of an event meeting specified conditions.

Attributes

none

Associations

• trigger : Trigger [1] The type of event accepted by the action, as specified by a trigger. If it is a signal trigger, a
signal of any subtype of the specified signal type is accepted.

• result: OutputPin [1] Pin holding the event object that has been received. Event objects may be copied in trans-
mission, so identity might not be preserved.

Constraints

[1] Only control edges may target an AcceptEventAction.

[2] If the trigger is a ChangeTrigger, there are no output pins. Same is true for CallTrigger if this class is AcceptCallAction
and not one of its children.

[3] If the trigger is a SignalTrigger or a TimeTrigger, there is exactly one output pin.

Semantics

Accept event actions handle events detected by the object owning the activity. Events are detected by objects independently of
actions and the events are stored by the object. The arrangement of detected events is not defined, but it is expected that
extensions or profiles will specify such arrangements. If the accept event action is executed and the object detected an event
matching the specification on the action and the event has not been accepted by another action or otherwise consumed by
another behavior, then the accept signal action completes and outputs a token describing the event. If such a matching event is
not available, the action waits until such an event becomes available, at which point the action may accept it. In a system with
concurrency, several actions or other behaviors might contend for an available event. Unless otherwise specified by an
extension or profile, only one action accepts a given event, even if the event would satisfy multiple concurrently executing
actions.

If the event is a SignalEvent, the result token contains a signal object whose reception by the owning object caused the event.
Signal objects may be copied in transmission and storage by the owning object, so identity might not be preserved. An action
whose event is a signal event is informally called an accept signal action. If the event is a TimeEvent, the result token contains
the time at which the event occurred. Such an action is informally called a wait time action. If the event is a ChangeEvent ot a
CallEvent, the result is a control token, there are no output pins. See CommonBehavior for a description of Event
specifications.

If an AcceptEventAction has no incoming edges, then the action starts when the containing activity or structured node does. In
addition, an AcceptEventAction with no incoming edges is always enabled to accept events, no matter how many it accepts. It
does not terminate after accepting an event and outputing a value, but continues to wait for other events. This semantic is an
UML Superstructure 2.0 Draft Adopted Specification 217

exception to the normal execution rules in Activities.

This action handles asynchronous messages, including asynchronous calls. If it is used for a synchronous call with no return
parameters, an immediate reply is sent with no parameters. If it is used for a synchronous call with return parameters, it is an
error and the system behavior is unspecified.

Notation

An accept event action is notated with a concave pentagon. A wait time action is notated with an hour glass.

Examples

Figure 157 is an example of the acceptance of a signal indicating the cancellation of an order. The acceptance of the signal
causes an invocation of a cancellation behavior. This action is enabled on entry to the activity containing it, therefore no input
arrow is shown. In many cases, the arrow from such a signal will be an interrupting edge (CompleteActions).

In Figure 158, a request payment signal is sent after an order is processed. The activity then waits to receive a payment
confirmed signal. Acceptance of the payment confirmed signal is enabled only after the request for payment is sent; no
confirmation is accepted until then. When the confirmation is received, the order is shipped.

In Figure 159, the end-of-month accept time event action generates an output at the end of the month. Since there are no
incoming edges to the time event action, it is enabled as long as its containing activity or structured node is. It will generate an

Figure 156 - Accept event notations.

Figure 157 - Accept signal, top level in scope.

Figure 158 - Accept signal, explicit enable

Accept event action Accept time event action

Cancel
order Cancel

Orderrequest

Payment
confirmed

Ship
Order

Process
Order

Request
Payment
218 UML Superstructure 2.0 Draft Adopted Specification

output at the end of every month.

Rationale

Accept event actions are introduced to handle processing of events during the execution of an activity.

Changes from previous UML

AcceptEventAction is new in UML 2.0.

11.3.3 AddStructuralFeatureValueAction

AddStructuralFeatureValueAction is a write structural feature action for adding values to a structural feature.

Description

Structural Features are potentially multi-valued and ordered, so the action supports specification of insertion points for new
values. It also supports the removal of existing values of the structural feature before the new value is added.

The object to access is specified dynamically, by referring to an input pin on which the object will be placed at runtime. The
type of the value of this pin is the classifier that owns the specified structural feature, and the value’s multiplicity is 1..1.

Attributes

• isReplaceAll : Boolean [1..1] = falseSpecifies whether existing values of the structural feature of the object should be
removed before adding the new value.

Associations

• insertAt : InputPin [0..1] (Specialized from Action:input) Gives the position at which to insert a new value or move
an existing value in ordered structural features. The type of the pin is UnlimitedNatural,
but the value cannot be zero. This pin is omitted for unordered structural features.

Constraints

[1] Actions adding a value to ordered structural features must have a single input pin for the insertion point with type Unlim-
itedNatural and multiplicity of 1..1, otherwise the action has no input pin for the insertion point.

let insertAtPins : Collection = self.insertAt in
if self.structuralFeature.isOrdered = #false
then insertAtPins->size() = 0
else let insertAtPin : InputPin= insertAt->asSequence()->first() in

insertAtPins->size() = 1
and insertAtPin.type = UnlimitedNatural
and insertAtPin.multiplicity.is(1,1))

endif

Figure 159 - Repetitive time event

Report
Meter

Reading

End of
month
occurred
UML Superstructure 2.0 Draft Adopted Specification 219

Semantics

If isReplaceAll is true, then the existing values of the structural feature are removed before the new one added, except if the
new value already exists, then it is not removed under this option. If isReplaceAll is false, then adding an existing value has no
effect.

Values of a structural feature may be ordered or unordered, even if the multiplicity maximum is 1.Adding values to ordered
structural features requires an insertion point for a new value using the insertAt input pin. The insertion point is a positive
integer giving the position to insert the value, or infinity, to insert at the end.. A positive integer less than or equal to the
current number of values means to insert the new value at that position in the sequence of existing values, with the integer one
meaning the new value will be first in the sequence. A value of infinity for insertAt means to insert the new value at the end of
the sequence. The semantics is undefined for a value of zero or an integer greater than the number of existing values. The
insertion point is required for ordered structural features and omitted for unordered structural features. Reinserting an existing
value at a new position moves the value to that position (this works because structural feature values are sets).

The semantics is undefined for adding a value that violates the upper multiplicity of the structural feature. Removing a value
succeeds even when that violates the minimum multiplicity—the same as if the minimum were zero. The modeler must
determine when minimum multiplicity of structural features should be enforced.

The semantics is undefined for adding a new value for a structural feature with settability readOnly or removeOnly after
initialization of the owning object.

Notation

None.

Examples

Rationale

AddStructuralFeatureValueAction is introduced to add structural feature values. isReplaceAll is introduced to replace and add
in a single action, with no intermediate states of the object where only some of the existing values are present.

Changes from previous UML

AddStructuralFeatureValueAction is new in UML 2.0. It generalizes AddAttributeAction in UML 1.5.

11.3.4 AddVariableValueAction

AddVariableValueAction is a write variable action for adding values to a variable.

Description

Variables are potentially multi-valued and ordered, so the action supports specification of insertion points for new values. It
also supports the removal of existing values of the variable before the new value is added.

Attributes

• isReplaceAll : Boolean [1..1] = falseSpecifies whether existing values of the variable should be removed before adding
the new value.
220 UML Superstructure 2.0 Draft Adopted Specification

Associations

• insertAt : InputPin [0..1] (Specialized from Action:input) Gives the position at which to insert a new value or move
an existing value in ordered variables. The types is UnlimitedINatural, but the value can-
not be zero. This pin is omitted for unordered variables.

Constraints

[1] Actions adding values to ordered variables must have a single input pin for the insertion point with type UnlimtedNatural
and multiplicity of 1..1, otherwise the action has no input pin for the insertion point.

let insertAtPins : Collection = self.insertAt in
if self.variable.ordering = #unordered
then insertAtPins->size() = 0
else let insertAtPin : InputPin = insertAt->asSequence()->first() in

insertAtPins->size() = 1
and insertAtPin.type = UnlimitedNatural
and insertAtPin.multiplicity.is(1,1))

endif

Semantics

If isReplaceAll is true, then the existing values of the variable are removed before the new one added, except if the new value
already exists, then it is not removed under this option. If isReplaceAll is false, then adding an existing value has no effect.

Values of an variable may be ordered or unordered, even if the multiplicity maximum is 1.Adding values to ordered variables
requires an insertion point for a new value using the insertAt input pin. The insertion point is a positive integer giving the
position to insert the value, or infinity, to insert at the end.. A positive integer less than or equal to the current number of values
means to insert the new value at that position in the sequence of existing values, with the integer one meaning the new value
will be first in the sequence. A value of infinity for insertAt means to insert the new value at the end of the sequence. The
semantics is undefined for a value of zero or an integer greater than the number of existing values. The insertion point is
required for ordered variables and omitted for unordered variables. Reinserting an existing value at a new position moves the
value to that position (this works because variable values are sets).

The semantics is undefined for adding a value that violates the upper multiplicity of the variable. Removing a value succeeds
even when that violates the minimum multiplicity—the same as if the minimum were zero. The modeler must determine when
minimum multiplicity of variables should be enforced.

Notation

None.

Examples

Rationale

AddVariableValueAction is introduced to add variable values. isReplaceAll is introduced to replace and add in a single action,
with no intermediate states of the variable where only some of the existing values are present.

Changes from previous UML

AddVariableValueAction is unchanged from UML 1.5.
UML Superstructure 2.0 Draft Adopted Specification 221

11.3.5 ApplyFunctionAction

Description

ApplyFunctionAction is an action that invokes a primitive predefined function that computes output values based only on the
input values and the function. The execution does not have access to object memory or to any objects. The execution of a
primitive function has no side effects on any other object.

Attributes

None.

Associations

• argument : InputPin [*] The pins that provide inputs to the function. (Specializes Action.input.)

• function : PrimitiveFunction [1]The primitive function to be invoked.

• result : OutputPin [*] The pins on which the results of invoking the function are returned. (Specializes
Action.output.)

Stereotypes

None.

Tagged Values

None.

Constraints

[1] The number and types of the input arguments and output result pins are derived from the parameters of the function.

self.argument->size() = self.function.formalParameter->size()
and Sequence {1..self.argument->size()}

-> forAll (i:Integer |
let argumenti = self.argument->at(i) in
let inparameteri = self.function.formalParameter->at(i) in

argumenti.type = inparameteri.type)
and self.result->size() = self.function.returnedResult->size()
and Sequence {1..self.result->size()}

-> forAll (i:Integer |
let resulti = self.result->at(i) in
let outparameteri = self.function.returnedResult>at(i) in

resulti.type = outparameteri.type)

Semantics

The result values are computed from the input values according to the given function. During the execution of the
computation, no communication or interaction with the rest of the system is possible. The amount of time to compute the
results is undefined.

The result values are placed on the output pins of the action execution and the execution of the apply function action is
complete. Primitive functions may raise exceptions for certain input values, in which case the computation is abandoned.

Notation

None.
222 UML Superstructure 2.0 Draft Adopted Specification

Presentation Option

None.

Examples

None.

Rationale

ApplyFunctionAction is introduced to invoke behaviors that are external to the modeled system.

Changes from previous UML

Same as UML 1.5.

11.3.6 BroadcastSignalAction

Description

BroadcastSignalAction is an action that transmits a signal instance to all the potential target objects in the system, which may
cause the firing of a state machine transitions or the execution of associated activities of a target object. The argument values
are available to the execution of associated behaviors. The requestor continues execution immediately. Any reply messages are
ignored and are not transmitted to the requestor.

Attributes

None

Associations

• signal: Signal [1] The specification of signal object transmitted to the target objects.

Constraints

[1] The number and order of argument pins must be the same as the number and order of attributes in the signal.

[2] The type, ordering, and multiplicity of an argument pin must be the same as the corresponding attribute of the signal.

Semantics

When all the control and data flow prerequisites of the action execution are satisfied, a signal object is generated from the
argument values according to signal and this signal object is transmitted concurrently to each of the implicit broadcast target
objects in the system. The manner of identifying the set of objects that are broadcast targets is a semantic variation point and
may be limited to some subset of all the objects that exist. There is no restriction on the location of target objects. The manner
of transmitting the signal object, the amount of time required to transmit it, the order in which the transmissions reach the
various target objects, and the path for reaching the target objects are undefined.

[1] When a transmission arrives at a target object, it may invoke a behavior in the target object. The effect of receiving such
transmission is specified in Chapter 13, “Common Behaviors”. Such effects include executing activities and firing state
machine transitions.

[2] A broadcast signal action receives no reply from the invoked behavior; any attempted reply is simply ignored, and no
transmission is performed to the requestor.
UML Superstructure 2.0 Draft Adopted Specification 223

Semantic Variation Point

The determination of the set of broadcast target objects is a semantic variation point.Notation

None.

Examples

None

Rationale

Sends a signal to a set of system defined target objects.

Changes from previous UML

Same as UML 1.5.

11.3.7 CallAction

CallAction is an abstract class for actions that invoke behavior and receive return values.

Attributes

• isSynchronous: Boolean If true, the call is synchronous and the caller waits for completion of the invoked behavior.
If false, the call is asynchronous and the caller proceeds immediately and does not expect
a return values.

Associations

• result: OutputPin [0..*] A list of output pins where the results of performing the invocation are placed.

Constraints

[1] Only synchronous call actions can have result pins.

Semantics

See children of CallAction.

11.3.8 CallBehaviorAction

Description

CallBehaviorAction is a call action that invokes a behavior directly rather than invoking a behavioral feature that, in turn,
results in the invocation of that behavior. The argument values of the action are available to the execution of the invoked
behavior. The execution of the call behavior action waits until the execution of the invoked behavior completes and a result is
returned on its output pin. In particular, the invoked behavior may be an activity.

Attributes

None.
224 UML Superstructure 2.0 Draft Adopted Specification

Associations

• behavior : Behavior [1..1] The invoked behavior. It must be capable of accepting and returning control.

Constraints

[1] The number of argument pins and the number of parameters of the behavior of type in and in-out must be equal.

[2] The number of result pins and the number of parameters of the behavior of type return, out, and in-out must be equal.

[3] The type, ordering, and multiplicity of an argument or result pin is derived from the corresponding parameter of the
behavior.

Semantics

[1] When all the control and data flow prerequisites of the action execution are satisfied, CallBehaviorAction consumes its
input tokens and invokes its specified behavior. The values in the input tokens are made available to the invoked behavior
as argument values. When the behavior is finished, tokens are offered on all outgoing control edges, with a copy made for
each control edge. Object and data tokens are offered on the outgoing object flow edges as determined by the output pins.
Each parameter of the behavior of the action provides input to a pin or takes output from one. See Pin. The inputs to the
action determine the actual arguments of the call.

[2] If the call is asynchronous, a control token is offered to each outgoing control edge of the action and execution of the
action is complete. Execution of the invoked behavior proceeds without any further dependency on the execution of the
activity containing the invoking action. Once the invocation of the behavior has been initiated, execution of the asynchro-
nous action is complete.

[3] An asynchronous invocation completes when its behavior is started, or is at least ensured to be started at some point.
When an asynchronous invocation is done, the flow continues regardless of the status of the invoked behavior. For exam-
ple, the containing activity may complete even though the invoked behavior is not finished. This is why asynchronous
invocation is not the same as using a fork to invoke the behavior followed by a flow final. A forked behavior still needs to
finish for the containing activity to finish. If it is desired to complete the invocation, but have some outputs provided later
when they are needed, then use a fork to give the invocation its own flow line, and rejoin the outputs of the invocation to
the original flow when they are needed.

[4] If the call is synchronous, execution of the calling action is blocked until it receives a reply token from the invoked
behavior. The reply token includes values for any return, out, or inout parameters.

[5] If the call is synchronous, when the execution of the invoked behavior completes, the result values are placed as object
tokens on the result pins of the call behavior action, a control token is offered on each outgoing control edge of the call
behavior action, and the execution of the action is complete. (CompleteActions, ExtraActivities) If the execution of the
invoked behavior yields an exception, the exception is transmitted to the call behavior action where it is presented on a
declared exception pin as an exception token, and the action delivers no normal object or control tokens. If no exception
pin is declared, the exception is propagated to an enclosing scope.

Notation

The name of the behavior, or other description of it, that is performed by the action is placed inside the rectangle. If the node
UML Superstructure 2.0 Draft Adopted Specification 225

name is different than the behavior name, then it appears in the symbol instead.

Presentation Option

The call of an activity is indicated by placing a rake-style symbol within the symbol. The rake resembles a miniature
hierarchy, indicating that this invocation starts another activity that represents a further decomposition. An alternative notation
in the case of an invoked activity is to show the contents of the invoked activity inside a large round-cornered rectangle. Edges
flowing into the invocation connect to the parameter object nodes in the invoked activity. The parameter object nodes are
shown on the border of the invoked activity. The model is the same regardless of the choice of notation. This assumes the
UML 2.0 Diagram Interchange RFP supports the interchange of diagram elements and their mapping to model elements..

Below is an example of invoking an activity called FillOrder.

Examples

Rationale

Invokes a behavior directly without the need for a behavioral feature.

Changes from previous UML

Same as UML 1.5.

Figure 160 CallBehaviorAction

Figure 161 - Invoking Activities that have nodes and edges

Figure 162 - Example of invoking an activity

behavior name

Activity name

...

...

...

Activity
name

(Note: the border and name are the notation; the
other symbols are present to provide clarity, only.)

Parameter name: type

Fill
Order
226 UML Superstructure 2.0 Draft Adopted Specification

11.3.9 CallOperationAction

Description

CallOperationAction is an action that transmits an operation call request to the target object, where it may cause the invocation
of associated behavior. The argument values of the action are available to the execution of the invoked behavior. If the action
is marked synchronous, the execution of the call operation action waits until the execution of the invoked behavior completes
and a reply transmission is returned to the caller; otherwise execution of the action is complete when the invocation of the
operation is established and the execution of the invoked operation proceeds concurrently with the execution of the calling
activity. Any values returned as part of the reply transmission are put on the result output pins of the call operation action.
Upon receipt of the reply transmission, execution of the call operation action is complete.

Attributes

None.

Associations

• operation: Operation [1] The operation to be invoked by the action execution

• target: InputPin [1] The target object to which the request is sent. The classifier of the target object is used to
dynamically determine a behavior to invoke. This object constitutes the context of the exe-
cution of the operation.

Constraints

[1] The number of argument pins and the number of formal parameters of the operation of type in and in-out must be equal.

[2] The number of result pins and the number of formal parameters of the operation of type return, out, and in-out must be
equal.

[3] The type, ordering, and multiplicity of an argument or result pin is derived from the corresponding formal parameter of
the operation.

[4] The type of the target pin must be the same as the type that owns the operation.

Semantics

The inputs to the action determine the target object and additional actual arguments of the call.

[1] When all the control and data flow prerequisites of the action execution are satisfied, information comprising the operation
and the argument pin values of the action execution is created and transmitted to the target object. The target objects may
be local or remote. The manner of transmitting the call, the amount of time required to transmit it, the order in which the
transmissions reach the various target objects, and the path for reaching the target objects are undefined.

[2] When a call arrives at a target object, it may invoke a behavior in the target object. The effect of receiving such call is
specified in Chapter 13, “Common Behaviors”. Such effects include executing activities and firing state machine transi-
tions.

[3] If the call is synchronous, when the execution of the invoked behavior completes, its return results are transmitted back as
a reply to the calling action execution. The manner of transmitting the reply, the time required for transmission, the repre-
sentation of the reply transmission, and the transmission path are unspecified. If the execution of the invoked behavior
yields an exception, the exception is transmitted to the caller where it is reraised as an exception in the execution of the
calling action. Possible exception types may be specified by attaching them to the called Operation using the raisedEx-
ception association.
UML Superstructure 2.0 Draft Adopted Specification 227

[4] If the call is asynchronous, the caller proceeds immediately and the execution of the call operation action is complete. If
the call is synchronous, the caller is blocked from further execution until it receives a reply from the invoked behavior.

[5] When the reply transmission arrives at the invoking action execution, the return result values are placed on the result pins
of the call operation action, and the execution of the action is complete.

Semantic Variation Points

The mechanism for determining the method to be invoked as a result of a call operation is unspecified.

Notation

The name of the operation, or other description of it, is displayed in the symbol.

Presentation Option

If the node has a different name than the operation, then this is used in the symbol instead. The name of the class may
optionally appear below the name of the operation, in parentheses postfixed by a double colon. If the node name is different
than the operaiton name, then the behavioral feature name may be shown after the double colon.

Examples

None

Rationale

Calls an operation on a specified target object.

Changes from previous UML

Same as UML 1.5.

11.3.10 ClearAssociationAction

ClearAssociationAction is an action that destroys all links of an association in which a particular object participates.

Description

This action destroys all links of an association that have a particular object at one end.

Figure 163 - Calling an operation

Figure 164 - Invoking behavioral feature notations

operation name

name
(ClassName::)

name
(ClassName::OperationName)
228 UML Superstructure 2.0 Draft Adopted Specification

Attributes

None.

Associations

• association : Association [1..1] Association to be cleared.

• object : InputPin [1..1] (Specialized from Action:input) Gives the input pin from which is obtained the object
whose participation in the association is to be cleared.

Constraints

[1] The type of the input pin must be the same as the type of at least one of the association ends of the association.

self.association->exists(end.type = self.object.type)

[2] The multiplicity of the input pin is 1..1.

self.object.multiplicity.is(1,1)

Semantics

This action has a statically-specified association. It has an input pin for a runtime object that must be of the same type as at
least one of the association ends of the association. All links of the association in which the object participates are destroyed
even when that violates the minimum multiplicity of any of the association ends. If the association is a class, then link object
identities are destroyed.

Notation

None.

Examples

Rationale

ClearAssociationAction is introduced to remove all links from an association in which an object participates in a single action,
with no intermediate states where only some of the existing links are present.

Changes from previous UML

ClearAssociationAction is unchanged from UML 1.5.

11.3.11 ClearStructuralFeatureAction

ClearStructuralFeatureAction is a structural feature action that removes all values of a structural feature.

Description

This action removes all values of a structural feature.

Attributes

None.

Associations

None.
UML Superstructure 2.0 Draft Adopted Specification 229

Constraints

None.

Semantics

All values are removed even when that violates the minimum multiplicity of the structural feature—the same as if the
minimum were zero. The semantics is undefined if the settability of the structural feature is addOnly, or the settability is
readOnly after initialization of the object owning the structural feature, unless the structural feature has no values. The action
has no effect if the structural feature has no values.

Notation

None.

Examples

Rationale

ClearStructuralFeatureAction is introduced to remove all values from a structural feature in a single action, with no
intermediate states where only some of the existing values are present.

Changes from previous UML

ClearStructuralFeatureAction is new in UML 2.0. It generalizes ClearAttributeAction from UML 1.5.

11.3.12 ClearVariableAction

ClearVariableAction is a variable action that removes all values of an variable.

Description

This action removes all values of an variable.

Attributes

None.

Associations

None.

Constraints

None.

Semantics

All values are removed even when that violates the minimum multiplicity of the variable—the same as if the minimum were
zero.

Notation

None.
230 UML Superstructure 2.0 Draft Adopted Specification

Examples

Rationale

ClearVariableAction is introduced to remove all values from an variable in a single action, with no intermediate states where
only some of the existing values are present.

Changes from previous UML

ClearVariableAction is unchanged from UML 1.5.

11.3.13 CreateLinkAction

CreateLinkAction is a write link action for creating links.

Description

This action can be used to create links and link objects. There is no return value in either case. This is so that no change of the
action is required if the association is changed to an association class or vice versa. CreateLinkAction uses a specialization of
LinkEndData called LinkEndCreationData, to support ordered associations. The insertion point is specified at runtime by an
additional input pin, which is required for ordered association ends and omitted for unordered ends. The insertion point is a
positive integer giving the position to insert the link, or infinity, to insert at the end. Reinserting an existing end at a new
position moves the end to that position.

CreateLinkAction also uses LinkEndCreationData to support the destruction of existing links of the association that connect
any of the objects of the new link. When the link is created, this option is available on an end-by-end basis, and causes all links
of the association emanating from the specified ends to be destroyed before the new link is created.

Attributes

None.

Associations

• endData : LinkEndCreationData [2..*] (Redefined from LinkAction:endData) Specifies ends of association and inputs.

Constraints

[1] The association cannot be an abstract classifier.

self.association().isAbstract = #false

Semantics

CreateLinkAction creates a link or link object for an association or association class. It has no output pin, because links are not
necessarily values that can be passed to and from actions. When the action creates a link object, the object could be returned on
output pin, but it is not for consistency with links. This allows actions to remain unchanged when an association is changed to
an association class or vice versa. The semantics of CreateLinkObjectAction applies to creating link objects with
CreateLinkAction.

This action also supports the destruction of existing links of the association that connect any of the objects of the new link.
This option is available on an end-by-end basis, and causes all links of the association emanating from the specified ends to be
destroyed before the new link is created. If the link already exists, then it is not destroyed under this option. Otherwise,
recreating an existing link has no effect.

The semantics is undefined for creating a link for an association class that is abstract. The semantics is undefined for creating
UML Superstructure 2.0 Draft Adopted Specification 231

a link that violates the upper multiplicity of one of its association ends. A new link violates the upper multiplicity of an end if
the cardinality of that end after the link is created would be greater than the upper multiplicity of that end. The cardinality of an
end is equal to the number of links with objects participating in the other ends that are the same as those participating in those
other ends in the new link, and with qualifier values on all ends the same as the new link, if any.

The semantics is undefined for creating a link that has an association end with settability readOnly or removeOnly after
initialization of the other end objects, unless the link being created already exists. Objects participating in the association
across from an addable end can have links created as long as the objects across from all readOnly or removeOnly ends are still
being initialized. This means that objects participating in links with two or more readOnly or removeOnly ends cannot have
links created unless all the linked objects are being initialized.

Creating ordered association ends requires an insertion point for a new link using the insertAt input pin of
LinkEndCreationData. The pin is of type UnlimitedNatural with multiplicity of 1..1. A pin value that is a positive integer less
than or equal to the current number of links means to insert the new link at that position in the sequence of existing links, with
the integer one meaning the new link will be first in the sequence. A value of infinity for insertAt means to insert the new link
at the end of the sequence. The semantics is undefined for value of zero or an integer greater than the number of existing links.
The insertAt input pin does not exist for unordered association ends. Reinserting an existing end at a new position moves the
end so that it is in the position specified after the action is complete.

Notation

None.

Examples

Rationale

CreateLinkAction is introduced to create links.

Changes from previous UML

CreateLinkAction is unchanged from UML 1.5.

11.3.14 CreateLinkObjectAction

(CompleteActions) CreateLinkObjectAction creates a link object.

Description

This action is exclusively for creating links of association classes. It returns the created link object.

Attributes

None.

Associations

• result [1..1] : OutputPin [1..1] (Specialized from Action:output) Gives the output pin on which the result is put.

Constraints

[1] The association must be an association class.

self.association().oclIsKindOf(Class)

[2] The type of the result pin must be the same as the association of the action.
232 UML Superstructure 2.0 Draft Adopted Specification

self.result.type = self.association()

[3] The multiplicity of the output pin is 1..1.

self.result.multiplicity.is(1,1)

Semantics

CreateLinkObjectAction inherits the semantics of CreateLinkAction, except that it operates on association classes to create a
link object. The additional semantics over CreateLinkAction is that the new or found link object is put on the output pin. If the
link already exists, then the found link object is put on the output pin. The semantics of CreateObjectAction applies to creating
link objects with CreateLinkObjectAction.

Notation

None.

Examples

Rationale

CreateLinkObjectAction is introduced to create link objects in a way that returns the link object. Compare CreateLinkAction.

Changes from previous UML

CreateLinkObjectAction is unchanged from UML 1.5.

11.3.15 CreateObjectAction

CreateObjectAction is an action that creates an object that conforms to a statically specified classifier and puts it on an output
pin at runtime.

Description

This action instantiates a classifier. The semantics is undefined for creating objects from abstract classifiers or from
association classes.

Attributes

None.

Associations

• classifier : Classifier [1..1] Classifier to be instantiated.

• result : OutputPin [1..1] (Specialized from Action:output) Gives the output pin on which the result is put.

Constraints

[1] The classifier cannot be abstract.

not (self.classifier.isAbstract = #true)

[2] The classifier cannot be an association class

not self.classifier.oclIsKindOf(AssociationClass)

[3] The type of the result pin must be the same as the classifier of the action.
UML Superstructure 2.0 Draft Adopted Specification 233

self.result.type = self.classifier

[4] The multiplicity of the output pin is 1..1.

self.result.multiplicity.is(1,1)

Semantics

The new object is created, and the classifier of the object is set to the given classifier. The new object is returned as the value
of the action. The action has no other effect. In particular, no behaviors are executed, no initial expressions are evaluated, and
no state machines transitions are triggered. The new object has no structural feature values and participates in no links.

Notation

None.

Examples

Rationale

CreateObjectAction is introduced for creating new objects.

Changes from previous UML

Same as UML 1.5.

11.3.16 DestroyLinkAction

DestroyLinkAction is a write link action that destroys links and link objects.

Description

This action destroys a link or a link object. Link objects can also be destroyed with DestroyObjectAction. The link is specified
in the same way as link creation, even for link objects. This allows actions to remain unchanged when their associations are
transformed from ordinary ones to association classes and vice versa.

Attributes

None.

Associations

None.

Constraints

None.

Semantics

Destroying a link that does not exist has no effect. The semantics of DestroyObjectAction applies to destroying a link that has
a link object with DestroyLinkAction.

The semantics is undefined for destroying a link that has an association end with settability addOnly, or readOnly after
initialization of the other end objects, unless the link being destroyed does not exist. Objects participating in the association
across from a removable end can have links destroyed as long as the objects across from all readOnly ends are still being
234 UML Superstructure 2.0 Draft Adopted Specification

initialized. This means that objects participating in links with two or more addOnly ends cannot have links destroyed. Same
for objects participating in two or more readOnly ends, unless all the linked objects are being initialized.

Notation

None.

Examples

Rationale

DestroyLinkAction is introduced for destroying links.

Changes from previous UML

DestroyLinkAction is unchanged from UML 1.5.

11.3.17 DestroyObjectAction

DestroyObjectAction is an action that destroys objects.

Description

This action destroys the object on its input pin at runtime. The object may be a link object, in which case the semantics of
DestroyLinkAction also applies.

Attributes

None.

Associations

• target : InputPin [1..1] (Specialized from Action:input) The input pin providing the object to be destroyed.

Constraints

[1] The multiplicity of the input pin is 1..1.

self.input.multiplicity.is(1,1)

[2] The input pin has no type.

self.input.type->size() = 0

Semantics

The classifiers of the object are removed as its classifiers, and the object is destroyed. The action has no other effect. In
particular, no behaviors are executed, no state machines transitions are triggered, and references to the destroyed objects are
unchanged.

Destroying an object that is already destroyed has no effect.

Notation

None.
UML Superstructure 2.0 Draft Adopted Specification 235

Examples

Rationale

DestroyObjectAction is introduced for destroying objects.

Changes from previous UML

Same as UML 1.5.

11.3.18 InvocationAction

Invocation is an abstract class for the various actions that invoke behavior.

Attributes

none

Associations

• argument : InputPin [0..*] Specification of an argument value that appears during execution.

Constraints

Semantics

See children of InvocationAction.

11.3.19 LinkAction

LinkAction is an abstract class for all link actions that identify their links by the objects at the ends of the links and by the
qualifiers at ends of the links.

Description

A link action creates, destroys, or reads links, identifying a link by its end objects and qualifier values, if any.

Attributes

None.

Associations

• endData : LinkEndData [2..*] Data identifying one end of a link by the objects on its ends and qualifiers.

• input : InputPin [1..*] (Specialized from Action:input) Pins taking end objects and qualifier values as input.

Constraints

[1] The association ends of the link end data must all be from the same association and include all and only the association
ends of that association.

self.endData->collect(end) = self.association()->collect(connection))

[2] The association ends of the link end data must not be static.

self.endData->forall(end.oclisKindOf(NavigableEnd) implies end.isStatic = #false)
236 UML Superstructure 2.0 Draft Adopted Specification

[3] The input pins of the action are the same as the pins of the link end data and insertion pins.

self.input->asSet() =
let ledpins : Set = self.endData->collect(value) in

if self.oclIsKindOf(LinkEndCreationData)
then ledpins->union(self.endData.oclAsType(LinkEndCreationData).insertAt)
else ledpins

Additional operations:

[1] association operates on LinkAction. It returns the association of the action.

association();
association = self.endData->asSequence().first().end.association

Constraints

[1] The input pins of the action are the same as the pins of the link end data, qualifier values, and insertion pins.

self.input->asSet() =
let ledpins : Set =
if self.endData.oclIsKindOf(CompleteActions::LinkEndData)
then self.endData->collect(value)->union(self.endData.qualifier.value)
else self.endData->collect(value) in

if self.oclIsKindOf(LinkEndCreationData)
then ledpins->union(self.endData.oclAsType(LinkEndCreationData).insertAt)
else ledpins

Semantics

For actions that write links, all association ends must have a corresponding input pin so that all end objects are specified when
creating or deleting a link. An input pin identifies the end object by being given a value at runtime. It has the type of the
association end and multiplicity of 1..1, since a link always have exactly one object at its ends.

The behavior is undefined for links of associations that are static on any end.

For the semantics of link actions see the children of LinkAction.

Notation

None.

Examples

Rationale

LinkAction is introduced to abstract aspects of link actions that identify links by the objects on their ends.

In CompleteActions, LinkAction is extended for qualifiers.

Changes from previous UML

LinkAction is unchanged from UML 1.5.

11.3.20 LinkEndCreationData

LinkEndCreationData is not an action. It is an element that identifies links. It identifies one end of a link to be created by
CreateLinkAction.
UML Superstructure 2.0 Draft Adopted Specification 237

Description

This class is required when using CreateLinkAction, to specify insertion points for ordered ends and for replacing all links at
end. A link cannot be passed as a runtime value to or from an action. Instead, a link is identified by its end objects and qualifier
values, as required. This requires more than one piece of data, namely, the statically-specified end in the user model, the object
on the end, and the qualifier values for that end. These pieces are brought together around LinkEndData. Each association end
is identified separately with an instance of the LinkEndData class.

Qualifier values are used in CompleteActions.

Attributes

• isReplaceAll : Boolean [1..1] = falseSpecifies whether the existing links emanating from the object on this end should be
destroyed before creating a new link.

Associations

• insertAt : InputPin [0..1] Specifies where the new link should be inserted for ordered association ends, or where an
existing link should be moved to. The type of the input is UnlimitedNatural, but the input
cannot be zero. This pin is omitted for association ends that are not ordered.

Associations (CompleteActions)

• qualifier : QualifierValue [0..*] Specifies qualifier attribute/value pairs of the given end.

Constraints

[1] LinkEndCreationData can only be end data for CreateLinkAction or one of its specializations.

self.LinkAction.oclIsKindOf(CreateLinkAction)

[2] Link end creation data for ordered association ends must have a single input pin for the insertion point with type Unlimit-
edNatural and multiplicity of 1..1, otherwise the action has no input pin for the insertion point..

let insertAtPins : Collection = self.insertAt in
if self.end.ordering = #unordered
then insertAtPins->size() = 0
else let insertAtPin : InputPin = insertAts->asSequence()->first() in

insertAtPins->size() = 1
and insertAtPin.type = UnlimitedNatural
and insertAtPin.multiplicity.is(1,1))

endif

Constraints (CompleteActions)

[1] The qualifiers include all and only the qualifiers of the association end.

self.qualifier->collect(qualifier) = self.end.qualifier

[2] The end object input pin is not also a qualifier value input pin.

self.value->excludesAll(self.qualifier.value)

Semantics

See CreateLinkAction, also see LinkAction and all its children.

Notation

None.
238 UML Superstructure 2.0 Draft Adopted Specification

Examples

Rationale

LinkEndCreationData is introduced to indicate which inputs are for which link end objects and qualifiers.

Changes from previous UML

LinkEndCreationData is unchanged from UML 1.5.

11.3.21 LinkEndData

LinkEndData is not an action. It is an element that identifies links. It identifies one end of a link to be read or written by the
children of LinkAction. A link cannot be passed as a runtime value to or from an action. Instead, a link is identified by its end
objects and qualifier values, if any. This requires more than one piece of data, namely, the statically-specified end in the user
model, the object on the end, and the qualifier values for that end, if any. These pieces are brought together around
LinkEndData. Each association end is identified separately with an instance of the LinkEndData class.

Attributes

None.

Associations

• end : Property [1..1] Association end for which this link-end data specifies values.

• value : InputPin [0..1] Input pin that provides the specified object for the given end. This pin is omitted if the
link-end data specifies an “open” end for reading.

Associations (CompleteActions)

• qualifier : QualifierValue [*] List of qualifier values

Constraints

[1] The property must be an association end.

self.end.association->size = 1

[2] The type of the end object input pin is the same as the type of the association end.

self.value.type = self.end.type

[3] The multiplicity of the end object input pin must be “1..1”.

self.value.multiplicity.is(1,1)

Additional operations:

[1] association operates on LinkAction. It returns the association of the action.

association();
association = self.endData->asSequence().first().end.association

Semantics

See LinkAction and its children.
UML Superstructure 2.0 Draft Adopted Specification 239

Notation

None.

Examples

Rationale

LinkEndData is introduced to indicate which inputs are for which link end objects and qualifiers.

Changes from previous UML

LinkEndData is unchanged from UML 1.5.

11.3.22 MultiplicityElement (as specialized)

Operations

[1] The operation compatibleWith takes another multiplicity as input. It checks if one multiplicity is compatible with another.

compatibleWith(other : Multiplicity) : Boolean;
compatibleWith(other) = Integer.allInstances()->

forAll(i : Integer | self.includesCardinality(i) implies other.includesCardinality(i))

[2] The operation is determines if the upper and lower bound of the ranges are the ones given.

is(lowerbound : integer, upperbound : integer) : Boolean
is(lowerbound, upperbound) = (lowerbound = self.lowerbound and upperbound = self.upperbound)

11.3.23 PrimitiveFunction

Description

PrimitiveFunction is not an action. It is the signature of a function that produces output values from input values for use with
ApplyFunctionAction. The behavior is described using the body and language attributes. The specification of the detailed
behavior is expressed in an external language and is not further specified within UML.

Attributes

• body: String A textual representation of the function in the named surface language.

• language: String [0..1] Specifies the language in which the body of the primitive function is stated. The interpre-
tation of the body depends on the language. If the language is unspecified, it might be
implicit from the body or the context.

Associations

None.

Constraints

None.

Semantics

The interpretation of the function body depends on the specified language. If formal parameters are specified, these provide
values to the function during its execution. The result parameters specify the values to be returned by the function.
240 UML Superstructure 2.0 Draft Adopted Specification

The execution of a primitive function has no effect on the execution environment other than the production of output values
that depend only on the supplied input values.

Notation

None.

Examples

None.

Rationale

PrimitiveFunction models external functions that only take inputs and product outputs and have no effect on the specified
system.

Changes from previous UML

Same as UML 1.5.

11.3.24 QualifierValue

(CompleteActions) QualifierValue is not an action. It is an element that identifies links. It gives a single qualifier within a link
end data specification. See LinkEndData.

Description

A link cannot be passed as a runtime value to or from an action. Instead, a link is identified by its end objects and qualifier
values, as required. This requires more than one piece of data, namely, the end in the user model, the object on the end, and the
qualifier values for that end. These pieces are brought together around LinkEndData. Each association end is identified
separately with an instance of the LinkEndData class.

Attributes

None.

Associations

• qualifier : Property [1..1] Attribute representing the qualifier for which the value is to be specified.

• value : InputPin [1..1] Input pin from which the specified value for the qualifier is taken.

Constraints

[1] The qualifier attribute must be a qualifier of the association end of the link-end data.

self.LinkEndData.end->collect(qualifier)->includes(self.qualifier)

[2] The type of the qualifier value input pin are the same as the type of the qualifier attribute.

self.value.type = self.qualifier.type

[3] The multiplicity of the qualifier value input pin is “1..1”.

self.value.multiplicity.is(1,1)

Semantics

See LinkAction and its children.
UML Superstructure 2.0 Draft Adopted Specification 241

Notation

None.

Examples

Rationale

QualifierValue is introduced to indicate which inputs are for which link end qualifiers.

Changes from previous UML

QualifierValue is unchanged from UML 1.5

11.3.25 RaiseExceptionAction

Description

(CompleteActions) RaiseExceptionAction is an action that causes an exception to occur. The input value becomes the
exception object.

Attributes

None.

Associations

• exception : InputPin [1..1] An input pin whose value becomes an exception object.

Semantics

When a raise exception action is executed, the value on the input pin is raised as an exception. The value may be copied in this
process, so identity may not be preserved. Raising the exception terminates the immediately containing structured node or
activity and begins a search of enclosing nested scopes for an exception handler that matches the type of the exception object.
See “ExceptionHandler” on page 322 for details of handling exceptions.

Notation

See Action.

Examples

Rationale

Raise exception action allows models to generate exceptions. Otherwise the only exception types would be predefined built-in
exception types, which would be too restrictive.

Changes from previous UML

RaiseExceptionAction replaces JumpAction from UML 1.5. Their behavior is essentially the same, except that it is no longer
needed for performing simple control constructs such as break and continue.
242 UML Superstructure 2.0 Draft Adopted Specification

11.3.26 ReadExtentAction

Description

(CompleteActions) ReadExtentAction is an action that retrieves the current instances of a classifier.

Attributes

None.

Associations

• classifier : Classifier [1..1] The classifier whose instances are to be retrieved.

• result : OutputPin [1..1] The runtime instances of the classifier.

Constraints

[1] The type of the result output pin is the classifier.

[2] The multiplicity of the result output pin is “0..*”.

self.result.multiplicity.is(0,#null)

Semantics

The extent of a classifier is the set of all instances of a classifier that exist at any one time.

Semantic Variation Point

It is not generally practical to require that reading the extent produce all the instances of the classifier that exist in the entire
universe. Rather, an execution engine typically manages only a limited subset of the total set of instances of any classifier and
may manage multiple distributed extents for any one classifier. It is not formally specified which managed extent is actually
read by a ReadExtentAction.

Notation

None.

Examples

None.

Rationale

ReadExtentAction is introduced to provide access to the runtime instances of a classifier.

Changes from previous UML

ReadExtentAction is unchanged from UML 1.5.

11.3.27 ReadIsClassifiedObjectAction

(CompleteActions) ReadIsClassifiedObjectAction is an action that determines whether a runtime object is classified by a
given classifier.
UML Superstructure 2.0 Draft Adopted Specification 243

Description

This action tests the classification of an object against a given class. It can be restricted to testing direct instances.

Attributes

• isDirect : Boolean [1..1] Indicates whether the classifier must directly classify the input object. The default value is
false.

Associations

• classifier : Classifier [1..1] The classifier against which the classification of the input object is tested.

• object : InputPin [1..1] Holds the object whose classification is to be tested. (Specializes Action.input.)

• result : OutputPin [1..1] After termination of the action, will hold the result of the test. (Specializes Action.output.)

Constraints

[1] The multiplicity of the input pin is 1..1.

self.argument.multiplicity.is(1,1)

[2] The input pin has no type.

self.argument.type->size() = 0

[3] The multiplicity of the output pin is 1..1.

self.result.multiplicity.is(1,1)

[4] The type of the output pin is Boolean

self.result.type = Boolean

Semantics

The action returns true if the input object is classified by the specified classifier. It returns true if the isDirect attribute is false
and the input object is classified by the specified classifier, or by one of its (direct or indirect) descendents. Otherwise, the
action returns false.

Notation

None.

Examples

None.

Rationale

ReadisClassifiedObjectAction is introduced for run-time type identification.

Changes from previous UML

ReadisClassifiedObjectAction is unchanged from UML 1.5.

11.3.28 ReadLinkAction

ReadLinkAction is a link action that navigates across associations to retrieve objects on one end.
244 UML Superstructure 2.0 Draft Adopted Specification

Description

This action navigates an association towards one end, which is the end that does not have an input pin to take its object (the
“open” end). The objects put on the result output pin are the ones participating in the association at the open end, conforming
to the specified qualifiers, in order if the end is ordered. The semantics is undefined for reading a link that violates the
navigability or visibility of the open end.

Attributes

None.

Associations

• result : OutputPin [0..*] (Specialized from Action:output) The pin on which are put the objects participating in the
association at the end not specified by the inputs.

Constraints

[1] Exactly one link-end data specification (the “open” end) must not have an end object input pin.

self.endData->select(ed | ed.value->size() = 0)->size() = 1

[2] The type and ordering of the result output pin are same as the type and ordering of the open association end.

let openend : AssociationEnd = self.endData->select(ed | ed.value->size() = 0)->asSequence()->first().end in
self.result.type = openend.type
and self.result.ordering = openend.ordering

[3] The multiplicity of the open association end must be compatible with the multiplicity of the result output pin.

let openend : AssociationEnd = self.endData->select(ed | ed.value->size() = 0)->asSequence()->first().end in
openend.multiplicity.compatibleWith(self.result.multiplicity)

[4] The open end must be navigable.

let openend : AssociationEnd = self.endData->select(ed | ed.value->size() = 0)->asSequence()->first().end in
openend.isNavigable = #true

[5] Visibility of the open end must allow access to the object performing the action.

let host : Classifier = self.activity().hostClassifier() in
let openend : AssociationEnd = self.endData->select(ed | ed.value->size() = 0)->asSequence()->first().end in

openend.visibility = #public
or self.endData->exists(oed | not oed.end = openend

and (host = oed.end.participant
 or (openend.visibility = #protected

and host.allSupertypes->includes(oed.end.participant))))

Semantics

Navigation of a binary association requires the specification of the source end of the link.The target end of the link is not
specified. When qualifiers are present, one navigates to a specific end by giving objects for the source end of the association
and qualifier values for all the ends. These inputs identify a subset of all the existing links of the association that match the end
objects and qualifier values. The result is the collection of objects for the end being navigated towards, one object from each
identified link.

In a ReadLinkAction, generalized for n-ary associations, one of the link-end data must have an unspecified object (the “open”
end). The result of the action is a collection of objects on the open end of links of the association, such that the links have the
given objects and qualifier values for the other ends and the given qualifier values for the open end. This result is placed on the
output pin of the action, which has a type and ordering given by the open end. The multiplicity of the open end must be
compatible with the multiplicity of the output pin. For example, the modeler can set the multiplicity of this pin to support
multiple values even when the open end only allows a single value. This way the action model will be unaffected by changes
UML Superstructure 2.0 Draft Adopted Specification 245

in the multiplicity of the open end. The semantics are defined only when the open end is navigable, and visible to the host
object of the action.

Notation

None.

Examples

Rationale

ReadLinkAction is introduced to navigate across links.

Changes from previous UML

ReadLinkAction is unchanged from UML 1.5.

11.3.29 ReadLinkObjectEndAction

(CompleteActions) ReadLinkObjectEndAction is an action that retrieves an end object from a link object.

Description

This action reads the object on an end of a link object. The association end to retrieve the object from is specified statically,
and the link object to read is provided on the input pin at run time.

Attributes

None.

Associations

• end : Property [1..1] Link end to be read.

• object : InputPin [1..1] (Specialized from Action:input) Gives the input pin from which the link object is
obtained.

• result : OutputPin [1..1] Pin where the result value is placed

Constraints

[1] The property must be an association end.

self.end.association->size = 1

[2] The association of the association end must be an association class.

self.end.Association.oclIsKindOf(AssociationClass)

[3] The ends of the association must not be static.

self.end.association.end->forall(oclIsKindOf(NavigableEnd) implies isStatic = #false)

[4] The type of the object input pin is the association class that owns the association end.

self.object.type = self.end.association

[5] The multiplicity of the object input pin is “1..1”.

self.object.multiplicity.is(1,1)

[6] The type of the result output pin is the same as the type of the association end.
246 UML Superstructure 2.0 Draft Adopted Specification

self.result.type = self.end.type

[7] The multiplicity of the result output pin is 1..1.

self.result.multiplicity.is(1,1)

Semantics

Notation

None.

Examples

Rationale

ReadLinkObjectEndAction is introduced to navigate from a link object to its end objects.

Changes from previous UML

ReadLinkObjectEndAction is unchanged from UML 1.5.

11.3.30 ReadLinkObjectEndQualifierAction

(CompleteActions) ReadLinkObjectEndAction is an action that retrieves a qualifier end value from a link object.

Description

This action reads a qualifier value or values on an end of a link object. The association end to retrieve the qualifier from is
specified statically, and the link object to read is provided on the input pin at run time.

Attributes

None.

Associations

• qualifier : Property [1..1] The attribute representing the qualifier to be read.

• object : InputPin [1..1] (Specialized from Action:input) Gives the input pin from which the link object is
obtained.

• result : OutputPin [1..1] Pin where the result value is placed

Constraints

[1] The qualifier attribute must be a qualifier attribute of an association end.

self.qualifier.associationEnd->size() = 1

[2] The association of the association end of the qualifier attribute must be an association class.

self.qualifier.associationEnd.association.oclIsKindOf(AssociationClass)

[3] The ends of the association must not be static.

self.qualifier.associationEnd.association.end->forall(oclIsKindOf(NavigableEnd) implies isStatic = #false)

[4] The type of the object input pin is the association class that owns the association end that has the given qualifier attribute.

self.object.type = self.qualifier.associationEnd.association
UML Superstructure 2.0 Draft Adopted Specification 247

[5] The multiplicity of the qualifier attribute is 1..1.

self.qualifier.multiplicity.is(1,1)

[6] The multiplicity of the object input pin is “1..1”.

self.object.multiplicity.is(1,1)

[7] The type of the result output pin is the same as the type of the qualifier attribute.

self.result.type = self.qualifier.type

[8] The multiplicity of the result output pin is “1..1”.

self.result.multiplicity.is(1,1)

Semantics

Notation

None.

Examples

Rationale

ReadLinkObjectEndQualifierAction is introduced to navigate from a link object to its end objects.

Changes from previous UML

ReadLinkObjectEndQualifierAction is unchanged from UML 1.5, except the name was corrected from
ReadLinkObjectQualifierAction.

11.3.31 ReadSelfAction

ReadSelfAction is an action that retrieves the host object of an action.

Description

Every action is ultimately a part of some activity, which is in turn is optionally attached in some way to the specification of a
classifier—for example as the body of a method or as part of a state machine. When the activity executes, it does so in the
context of some specific host instance of that classifier. This action produces this host instance, if any, on its output pin. The
type of the output pin is the classifier to which the activity is associated in the user model.

Attributes

None.

Associations

• result : OutputPin [1..1] (Specialized from Action:output) Gives the output pin on which the hosting object is
placed.

Constraints

[1] The action must be contained in an activity that has a host classifier.

self.activity().hostClassifier()->size() = 1
248 UML Superstructure 2.0 Draft Adopted Specification

[2] If the action is contained in an activity that is acting as the body of a method, then the operation of the method must not be
static.

let hostelement : Element = self.activity().hostElement() in
not hostelement.oclIsKindOf(Method)
or hostelement.oclAsType(Method).specification.isStatic = #false

[3] The type of the result output pin is the host classifier.

self.result.type = self.activity().hostClassifier()

[4] The multiplicity of the result output pin is “1..1”.

self.result.multiplicity.is(1,1)

Semantics

The semantics is undefined for activities that have no context object.

Notation

None.

Examples

Rationale

ReadSelfAction is introduced to provide access to the context object when it is not available as a parameter.

Changes from previous UML

ReadSelfAction is unchanged from UML 1.5.

11.3.32 ReadStructuralFeatureAction

ReadStructuralFeatureAction is a structural feature action that retrieves the values of a structural feature.

Description

This action reads the values of a structural feature, in order if the structural feature is ordered.

Attributes

None.

Associations

• result : OutputPin [1..1] (Specialized from Action:output) Gives the output pin on which the result is put.

Constraints

[1] The type and ordering of the result output pin are the same as the type and ordering of the structural feature.

self.result.type = self.structuralFeature.type
and self.result.ordering = self.structuralFeature.ordering

[2] The multiplicity of the structural feature must be compatible with the multiplicity of the output pin.

self.structuralFeature.multiplicity.compatibleWith(self.result.multiplicity)
UML Superstructure 2.0 Draft Adopted Specification 249

Semantics

The values of the structural feature of the input object are placed on the output pin of the action. The type and ordering of the
output pin are the same as the specified structural feature. The multiplicity of the structural feature must be compatible with
the multiplicity of the output pin. For example, the modeler can set the multiplicity of this pin to support multiple values even
when the structural feature only allows a single value. This way the action model will be unaffected by changes in the
multiplicity of the structural feature.

Notation

None.

Examples

Rationale

ReadStructuralFeatureAction is introduced to retrieve the values of a structural feature.

Changes from previous UML

ReadStructuralFeatureAction is new in UML 2.0. It generalizes ReadAttributeAction from UML 1.5.

11.3.33 ReadVariableAction

ReadVariableAction is a variable action that retrieves the values of an variable.

Description

This action reads the values of a variables, in order if the variable is ordered.

Attributes

None.

Associations

• result : OutputPin [1..1] (Specialized from Action:output) Gives the output pin on which the result is put.

Constraints

[1] The type and ordering of the result output pin of a read-variable action are the same as the type and ordering of the vari-
able.

self.result.type =self.variable.type
and self.result.ordering = self.variable.ordering

[2] The multiplicity of the variable must be compatible with the multiplicity of the output pin.

self.variable.multiplicity.compatibleWith(self.result.multiplicity)

Semantics

The values of the variable are placed on the output pin of the action. The type and ordering of the output pin are the same as the
specified variable. The multiplicity of the variable must be compatible with the multiplicity of the output pin. For example, the
modeler can set the multiplicity of this pin to support multiple values even when the variable only allows a single value. This
way the action model will be unaffected by changes in the multiplicity of the variable.
250 UML Superstructure 2.0 Draft Adopted Specification

Notation

None.

Examples

Rationale

ReadVariableAction is introduced to retrieve the values of a variables.

Changes from previous UML

ReadVariableAction is unchanged from UML 1.5.

11.3.34 ReclassifyObjectAction

(CompleteActions) ReclassifyObjectAction is an action that changes which classifiers classify an object.

Description

ReclassifyObjectAction adds given classifier to an object and removes given classifiers from that object. Multiple classifiers
may be added and removed at a time.

Attributes

• isReplaceAll : Boolean [1..1] Specifies whether existing classifiers should be removed before adding the new classifi-
ers. The default value is false.

Associations

• object : InputPin [1..1] Holds the object to be reclassified. (Specializes Action.input.)

• newClassifier : Classifier [0..*] A set of classifiers to be added to the classifiers of the object.

• oldClassifier : Classifier [0..*] A set of classifiers to be removed from the classifiers of the object.

Constraints

[1] None of the new classifiers may be abstract.

not self.newClassifier->exists(isAbstract = true)

[2] The multiplicity of the input pin is 1..1.

self.argument.multiplicity.is(1,1)

[3] The input pin has no type.

self.argument.type->size() = 0

Semantics

After the action completes, the input object is classified by its existing classifiers and the “new” classifiers given to the action;
however, the “old” classifiers given to the actions do not any longer classify the input object. The identity of the object is
preserved, no behaviors are executed, and no initial expressions are evaluated. “New” classifiers replace existing classifiers in
an atomic step, so that structural feature values and links are not lost during the reclassification, when the “old” and “new”
classifiers have structural features and associations in common.

Neither adding a classifier that duplicates an already existing classifier, nor removing a classifier that is not classifying the
UML Superstructure 2.0 Draft Adopted Specification 251

input object, has any effect. Adding and removing the same classifiers has no effect.

If isReplaceAll is true, then the existing classifiers are removed before the “new” classifiers are added, except if the “new”
classifier already classifies the input object, in which case this classifier it is not removed. If isReplaceAll is false, then adding
an existing value has no effect.

It is an error, if any of the “new” classifiers is abstract or if all classifiers are removed from the input object.

Notation

None.

Examples

None.

Rationale

ReclassifyObjectAction is introduced to change the classifiers of an object.

Changes from previous UML

ReclassifyObjectAction is unchanged from UML 1.5.

11.3.35 RemoveStructuralFeatureValueAction

RemoveStructuralFeatureValueAction is a write structural feature action that removes values from structural features.

Description

The object to access is specified dynamically, by referring to an input pin on which the object will be placed at runtime. The
type of the value of this pin is the classifier that owns the specified structural feature, and the value’s multiplicity is 1..1.

Attributes

None.

Associations

None.

Constraints

None.

Semantics

Structural features are potentially multi-valued. Removing a value succeeds even when it violates the minimum multiplicity.
Removing a value that does not exist has no effect.

The semantics is undefined for removing an existing value for a structural feature with settability addOnly. The semantics is
undefined for removing an existing value of a structural feature with settability readOnly after initialization of the owning
object.
252 UML Superstructure 2.0 Draft Adopted Specification

Notation

None.

Examples

Rationale

RemoveStructuralFeatureValueAction is introduced to remove structural feature values.

Changes from previous UML

RemoveStructuralFeatureValueAction is new in UML 2.0. It generalizes RemoveAttributeValueAction in UML 2.0.

11.3.36 RemoveVariableValueAction

RemoveVaraibleValueAction is a write variable action that removes values from variables.

Description

One value is removed from the set of possible variable values.

Attributes

None.

Associations

None.

Constraints

None.

Semantics

Variables are potentially multi-valued. Removing a value succeeds even when it violates the minimum multiplicity. Removing
a value that does not exist has no effect.

Notation

None.

Examples

Rationale

RemoveVariableValueAction is introduced to remove variable values.

Changes from previous UML

RemoveVariableValueAction is unchanged from UML 1.5.
UML Superstructure 2.0 Draft Adopted Specification 253

11.3.37 ReplyAction

(CompleteActions) ReplyAction is an action that accepts a set of return values and a token containing return information
produced by a previous accept call action. The reply action returns the values to the caller of the previous call, completing
execution of the call.

Attributes

none

Associations

• replyToCall : CallTrigger [1..1]The operation call trigger being replied to.

• replyValue : OutputPin [0..*] A list of pins containing the reply values of the operation. These values are returned to the
caller.

• returnInformation : InputPin [1..1]
A pin containing the return information token produced by an earlier AcceptCallAction.

Constraints

[1] The reply value pins must match the return, out, and inout parameters of the call trigger operation in number, type, and
order.

Semantics

The execution of a reply action completes the execution of a call that was initiated by a previous AcceptCallAction. The two
are connected by the returnInformation token, which is produced by the AcceptCallAction and consumed by the ReplyAction.
The information in this token is used by the execution engine to return the reply values to the caller and to complete execution
of the original call. The details of transmitting call requests, encoding return information, and transmitting replies are opaque
and unavailable to models, therefore they need not be and are not specified in this document.

Return information may be copied, stored in objects, and passed around, but it may only be used in a reply action once. If the
same return information token is supplied to a second ReplyAction, the execution is in error and the behavior of the system is
unspecified. It is not intended that any profile give any other meaning the the return information. The operation specified by
the call trigger must be consistent with the information returned at runtime.

If the return information is lost to the execution or if a reply is never made, the caller will never receive a reply and therefore
will never complete execution. This is not inherently illegal but it represents an unusual situation at the very least.

11.3.38 SendObjectAction

SendObjectAction is an action that transmits an object to the target object, where it may invoke behavior such as the firing of
state machine transitions or the execution of an activity. The value of the object is available to the execution of invoked
behaviors. The requestor continues execution immediately. Any reply message is ignored and is not transmitted to the
requestor.

Attributes

None
254 UML Superstructure 2.0 Draft Adopted Specification

Associations

• request: InputPin [1] The signal request object, which is transmitted to the target object as a signal. The signal
object may be copied in transmission, so identity might not be preserved. (Specialized
from InvocationActon.argument)

• target: InputPin [1] The target object to which the signal is sent.

Constraints

None.

Semantics

[1] When all the control and data flow prerequisites of the action execution are satisfied, the object on the input pin is trans-
mitted to the target object. The target object may be local or remote. The object on the input pin may be copied during
transmission, so identity might not be preserved. The manner of transmitting the object, the amount of time required to
transmit it, the order in which the transmissions reach the various target objects, and the path for reaching the target
objects are undefined.

[2] When a transmission arrives at a target object, it may invoke behavior in the target object. The effect of receiving a object
is specified in Chapter 13, “Common Behaviors”. Such effects include executing activities and firing state machine tran-
sitions.

[3] A send object action receives no reply from the invoked behavior; any attempted reply is simply ignored, and no trans-
mission is performed to the requestor.

Notation

See Action.

Presentation Option

If the activity in which a send object action is used will always send a signal, then the SendSignalAction notation can be used.

Examples

None

Rationale

Sends a signal to a specified target object.

Changes from previous UML

SendObjectAction is new in UML 2.0.

11.3.39 SendSignalAction

SendSignalAction is an action that creates a signal instance from its inputs, and transmits it to the target object, where it
may cause the firing of a state machine transition or the execution of an activity. The argument values are available to the
execution of associated behaviors. The requestor continues execution immediately. Any reply message is ignored and is
not transmitted to the requestor. If the input is already a signal instance, use SendObjectAction.
UML Superstructure 2.0 Draft Adopted Specification 255

Attributes

None

Associations

• signal: Signal [1] The type of signal transmitted to the target object.

• target: InputPin [1] The target object to which the signal is sent.

Constraints

[1] The number and order of argument pins must be the same as the number and order of attributes in the signal.

The type, ordering, and multiplicity of an argument pin must be the same as the corresponding attribute of the signal.

Semantics

[1] When all the control and data flow prerequisites of the action execution are satisfied, a signal instance of the type specified
by signal is generated from the argument values and his signal instance is transmitted to the identified target object. The
target object may be local or remote. The signal instance may be copied during transmission, so identity might not be pre-
served.The manner of transmitting the signal object, the amount of time required to transmit it, the order in which the
transmissions reach the various target objects, and the path for reaching the target objects are undefined.

[2] When a transmission arrives at a target object, it may invoke behavior in the target object. The effect of receiving a signal
object is specified in Chapter 13, “Common Behaviors”. Such effects include executing activities and firing state machine
transitions.

[3] A send signal action receives no reply from the invoked behavior; any attempted reply is simply ignored, and no trans-
mission is performed to the requestor.

Notation

A send signal action is notated with a convex pentagon. The symbol may optionally have a input pin for the target object but
this is often omitted. The symbol has a control output only.

Examples

Figure 166 shows part of an order-processing workflow in which two signals are sent. An order is created (in response to some
previous request that is not shown in the example). A signal is sent to the warehouse to fill and ship the order. Then an invoice

Figure 165 - Send signal notation

Receive signal action

Signal
Type
256 UML Superstructure 2.0 Draft Adopted Specification

is created and sent to the customer.

Rationale

Sends a signal to a specified target object.

Changes from previous UML

Same as UML 1.5.

11.3.40 StartOwnedBehaviorAction

Description

(CompleteActions) StartOwnedBehaviorAction is an action that starts the owned behavior of the input.

Attributes

None.

Associations

• object : InputPin [1..1] Holds the object on which to start the owned behavior. (Specializes Action.input.)

Constraints

[1] The input pin has no type.

self.argument.type->size() = 0

Semantics

When a StartOwnedBehaviorAction is invoked, it initiates the owned behavior of the classifier of the input object. If the
behavior has already been initiated, this action has no effect.

Notation

None.

Examples

None.

Rationale

This action is provided to permit the explicit initiation of owned behaviors, such as state machines and code, in a detailed, low-

Figure 166 - Signal node notations

Create
Order Fill order request

Create
invoice

Notify customer
UML Superstructure 2.0 Draft Adopted Specification 257

level “raw” specification of behavior.

Changes from previous UML

StartOwnedBehaviorAction is unchanged from UML 1.5.

11.3.41 StructuralFeatureAction

StructuralFeatureAction is an abstract class for all structural feature actions.

Description

This abstract action class statically specifies the structural feature being accessed.

The object to access is specified dynamically, by referring to an input pin on which the object will be placed at runtime. The
type of the value of this pin is the classifier that owns the specified structural feature, and the value’s multiplicity is 1..1.

Attributes

None.

Associations

• structuralFeature : StructuralFeature [1..1]Structural feature to be read.

• object : InputPin [1..1] (Specialized from Action:input) Gives the input pin from which the object whose struc-
tural feature is to be read or written is obtained.

Constraints

[1] The structural feature must have not be static.

self.structuralFeature.isStatic = #false

[2] The type of the object input pin is the same as the classifier of the object passed on this pin.

[3] The multiplicity of the input pin must be 1..1.

self.object.multiplicity.is(1,1)

[4] Visibility of structural feature must allow access to the object performing the action.

let host : Classifier = self.activity().hostClassifier() in
self.structuralFeature.visibility = #public
or host = self.structuralFeature.featuringClassifier.type
or (self.structuralFeature.visibility = #protected and host.allSupertypes

->includes(self.structuralFeature.featuringClassifier.type)))

Semantics

A structural feature action operates on a statically specified structural feature of some classifier. The action requires an object
on which to act, provided at runtime through an input pin. The semantics is undefined for accessing a structural feature that
violates its visibility. The semantics for static features is undefined.

The structural features of an object may change over time due to dynamic classification. However, the structural feature
specified in a structural feature action is inherited from a single classifier, and it is assumed that the object passed to a
structural feature action is classified by that classifier directly or indirectly. The structural feature is referred to as a user model
element, so it is uniquely identified, even if there are other structural features of the same name on other classifiers.
258 UML Superstructure 2.0 Draft Adopted Specification

Notation

None.

Examples

Rationale

StructuralFeatureAction is introduced for the abstract aspects of structural feature actions.

Changes from previous UML

StructuralFeatureAction is new in UML 2.0. It generalizes AttributeAction in UML 1.5.

11.3.42 TestIdentityAction

TestIdentifyAction is an action that tests if two values are identical objects.t

Description

This action returns true if the two input values are the same identity, false if they are not.

Attributes

None.

Associations

• first: InputPin [1..1]. (Specialized from Action:input) Gives the pin on which an object is placed.

• result: OutputPin [1..1] (Specialized from Action:output) Tells whether the two input objects are identical.

• second: InputPin [1..1] (Specialized from Action:input) Gives the pin on which an object is placed.

Constraints

[1] The input pins have no type.

self.first.type->size() = 0
and self.second.type->size() = 0

[2] The multiplicity of the input pins is 1..1.

self.first.multiplicity.is(1,1)
and self.second.multiplicity.is(1,1)

Semantics

When all control and data flow prerequisites of the action have been satisfied, the input values are obtained from the input pins
and made available to the computation. If the two input values represent the same object (regardless of any implementation-
level encoding), the value true is placed on the output pin of the action execution, otherwise the value false is placed on the
output pin. The execution of the action is complete and satisfies appropriate control and data flow prerequisites.

Notation

None.
UML Superstructure 2.0 Draft Adopted Specification 259

Examples

Rationale

TestIdentityAction is introduced to tell when two values refer to the same object.

Changes from previous UML

TestIdentityAction is unchanged from UML 1.5.

11.3.43 VariableAction

Description

VariableAction is an abstract class for actions that operate on a statically specified variable.

Attributes

None.

Associations

• variable : Variable [1..1] Variable to be read.

Constraints

[1] The action must be in the scope of the variable.

self.variable.isAccessibleBy(self)

Semantics

Variable action is an abstract metaclass. For semantics see its concrete subtypes.

Notation

None.

Examples

Rationale

VariableAction is introduced for the abstract aspects of variable actions.

Changes from previous UML

VariableAction is unchanged from UML 1.5.

11.3.44 WriteStructuralFeatureAction

WriteStructuralFeatureAction is an abstract class for structural feature actions that change structural feature values.

Description

A write structural feature action operates on a structural feature of an object to modify its values. It has an input pin on which
the value that will be added or removed is put. Other aspects of write structural feature actions are inherited from
260 UML Superstructure 2.0 Draft Adopted Specification

StructuralFeatureAction.

Attributes

None.

Associations

• value : InputPin [1..1] (Specialized from Action:input) Value to be added or removed from the structural feature.

Constraints

[1] The type input pin is the same as the classifier of the structural feature.

self.value.type = self.structuralFeature.featuringClassifier

[2] The multiplicity of the input pin is 1..1.

self.value.multiplicity.is(1,1)

Semantics

None.Notation

None.

Examples

Rationale

WriteStructuralFeatureAction is introduced to abstract aspects of structural feature actions that change structural feature
values.

Changes from previous UML

WriteStructuralFeatureAction is new in UML 2.0. It generalizes WriteAttributeAction in UML 1.5.

11.3.45 WriteLinkAction

WriteLinkAction is an abstract class for link actions that create and destroy links.

Description

A write link action takes a complete identification of a link and creates or destroys it.

Attributes

None.

Associations

None.

Constraints

[1] All end data must have exactly one input object pin.

self.endData.forall(value->size() = 1)
UML Superstructure 2.0 Draft Adopted Specification 261

Semantics

See children of WriteLinkAction.

Notation

None.

Examples

Rationale

WriteLinkAction is introduced to navigate across links.

Changes from previous UML

WriteLinkAction is unchanged from UML 1.5.

11.3.46 WriteVariableAction

WriteVariableAction is an abstract class for variable actions that change variable values.

Description

A write variable action operates on a variable to modify its values. It has an input pin on which the value that will be added or
removed is put. Other aspects of write variable actions are inherited from VariableAction.

Attributes

None.

Associations

• value : InputPin [1..1] (Specialized from Action:input) Value to be added or removed from the variable.

Constraints

[1] The type input pin is the same as the type of the variable.

self.value.type = self.variable.type

[2] The multiplicity of the input pin is 1..1.

self.value.multiplicity.is(1,1)

Semantics

See children of WriteVariableAction.

Notation

None.

Examples

Rationale

WriteVariableAction is introduced to abstract aspects of structural feature actions that change variable values.
262 UML Superstructure 2.0 Draft Adopted Specification

Changes from previous UML

WriteVariableAction is unchanged from UML 1.5.

11.4 Diagrams

The following sections describe the graphic nodes for actions. The notation for actions is optional. A textual notation may be
used instead.

Graphic Nodes

The graphic nodes for actions are shown in Table 10.

Table 10 - Graphic nodes included in activity diagrams

NODE TYPE NOTATION REFERENCE

AcceptEventAction See “AcceptEventAction” on page 217

SendSignalAction See “SendSignalAction” on page 255.
UML Superstructure 2.0 Draft Adopted Specification 263

264 UML Superstructure 2.0 Draft Adopted Specification

12 Activities

12.1 Overview

Activity modeling emphasizes the sequence and conditions for coordinating lower-level behaviors, rather than which
classifiers own those behaviors. These are commonly called control flow and object flow models. The actions coordinated by
activity models can be initiated because other actions finish executing, because objects and data become available, or because
events occur external to the flow.

Actions and activities

An action execution corresponds to the execution of a particular action within an activity. Similarly, an activity execution is
the execution of an activity, ultimately including the executions of actions within it. Each action in an activity may execute
zero, one, or more times for each activity execution. Execution is not instantaneous, but takes place over a period of time.
The UML does not provide for the specification of a time metric, but only describes sequences of executions. Activities and
other groupings of actions must be executed in a number of steps, including control of the execution of nested actions.

At the minimum, actions need access to data, they need to transform and test data, and actions may require sequencing. The
activities specification (at the higher compliance levels) allows for several (logical) threads of control executing at once and
synchronization mechanisms to ensure that activities execute in a specified order. Semantics based on concurrent execution
can then be mapped easily into a distributed implementation. However, the fact that the UML allows for concurrently
executing objects does not necessarily imply a distributed software structure. Some implementations may group together
objects into a single task and execute sequentially—so long as the behavior of the implementation conforms to the sequencing
constraints of the specification.

There are potentially many ways of implementing the same specification, and any implementation that preserves the
information content and behavior of the specification is acceptable. Because the implementation can have a different structure
from that of the specification, there is a mapping between the specification and its implementation. This mapping need not be
one-to-one: an implementation need not even use object-orientation, or it might choose a different set of classes from the
original specification.

The mapping may be carried out by hand by overlaying physical models of computers and tasks for implementation purposes,
or the mapping could be carried out automatically. This specification neither provides the overlays, nor does it provide for
code generation explicitly, but the specification makes both approaches possible.

See the “Activity” and “Action” metaclasses for more introduction and semantic framework.

BasicActivities

The basic level supports modeling of traditional sequential flow charts. It includes control sequencing, but explicit forks and
joins of control are not supported at this level. Decisions and merges are supported at this level and need not be well
structured.

IntermediateActivities

The intermediate level supports modeling of activity diagrams that include concurrent control and data flow. It supports
modeling similar to traditional Petri nets with queuing. It requires the basic level.

The intermediate and structured levels are orthogonal. Either can be used without the other or both can be used to support
modeling that includes both concurrency and structured control constructs.
UML Superstructure 2.0 Draft Adopted Specification 265

CompleteActivities

The complete level adds constructs that enhance the lower level models, such as edge weights and streaming.

StructuredActivities

The structured level supports modeling of traditional structured programming constructs, such as loops and conditionals, as an
addition the basic nonstructured activity sequencing. It requires the basic level. It is compatible with the intermediate and
complete levels.

CompleteStructuredActivities

This level adds support for data flow output pins of conditionals and loops. It is intended to be used in conjunction with the
intermediate layer, which supports explicit concurrency, but there is no actual dependency between the levels.

ExtraStructuredActivities

The extra structure level supports exception handling as found in traditional programming languages and invocation of
behaviors on sets of values. It requires the structured level.
266 UML Superstructure 2.0 Draft Adopted Specification

12.2 Abstract Syntax

Figure 175 shows the dependencies of the activity packages.

Figure 175 - Dependencies of the Activity packages

CompleteActivitiesExtraStructuredActi v
it ies

Intermedi ateAct iv iti es

<<merge>>

CompleteStructuredActivities

Kernel

(from Classes)

StructuredActivities

<<merge>>

<<merge>>

BasicActivities

<<merge>>

<<merge>>

BasicBehaviors

(from CommonBehaviors)

<<merge>>

<<merge>>

BehaviorStateMachines

(from StateMachines)

<<merge>>
UML Superstructure 2.0 Draft Adopted Specification 267

Class Diagrams (BasicActivities)

Figure 176 - Nodes

ControlNodeExecutableNode

Pin

Parameter
(from Kernel)

ActivityParameterNode

1 +parameter1

Activity
(from BasicBehavi or s)

RedefinableElement

(from Kernel)

Activity

isReadOnly : Boolean = false

ObjectNode

Action
0..*

0..1

+action

0..*

{ordered,
subsets node}

0..1

Classifier
(from Kernel)

0..1
+/context
0..1

TypedElement
(from Kernel)

ActivityNode

*

0..1
+node

*

{subsets ownedElement}

+activity

0..1

{subsets owner}

*
+redef inedEl ement

{redefines redefinedElement} *
268 UML Superstructure 2.0 Draft Adopted Specification

Figure 177 - Flows

ControlFl ow ObjectFlow

RedefinableElement

(from Kernel)

{default value is true}

ActivityNode
Activity

ValueSpecification
(from Kernel)

ActivityEdge

*

1 +outgoing

*

+source1

1

*

+target1 +incomi ng

*

*

0..1
+edge

*

{subsets ownedElement}

+activity

0..1

{subsets owner}

1

+guard

1

{subsets ownedElement}

*

+redefinedElement

*

{redefines redefinedElement}
UML Superstructure 2.0 Draft Adopted Specification 269

Figure 178 - Actions

Figure 179 - Control nodes

Pin

OutputPin InputPin

Action

effect : String

1

*

1

+/output*

{ordered, union,
subsets

ownedElement}

*

1

+/input *
{ordered, union,

subsets
ownedElement}

1
ValueSpecification

(from Kernel)

ValuePin

1

0..1

+val ue 1

0..1

ControlNode

InitialNode FinalNode

ActivityFinalNode

MergeNode

Behavior
(from BasicBehaviors)

DecisionNode

0..1

*

+decisionInput
0..1

*

270 UML Superstructure 2.0 Draft Adopted Specification

Class Diagrams (IntermediateActivities)

Figure 180 - Groups

Figure 181 - Object nodes (IntermediateActivities)

Element

(from Kernel)

ActivityEdge ActivityNode

ActivityGroup

*
0..1

+/subgroup

*

{union, subsets ownedElement}

+/superGroup

0..1

{union, subsets owner}

*

*

+edgeContents

*

+inGroup
*

*

*

+nodeContents

*

+inGroup
*

Activity

*

0..1

+group

*
{subsets ownedElement}

+activity

0..1

{subsets owner}

ObjectNode
(from BasicActivities)

CentralBufferNode
UML Superstructure 2.0 Draft Adopted Specification 271

Figure 182 - Controls (IntermediateActivities)

ForkNode JoinNode

ControlNode
(from BasicActivities)

FlowFinalNode

FinalNode
(from BasicActivities)
272 UML Superstructure 2.0 Draft Adopted Specification

Class Diagrams (CompleteActivities)

Figure 183 - Partitions

Figure 184 - Elements (CompleteActivities)

ActivityEdge ActivityNode

Activit yPart it ion

isDimension : Boolean = false
isExternal : Boolean = false 0..1*

+represents

0..1*

*

0..1

+subgroup

*
{redefines subgroup}

+superPartition

0..1

{subsets superGroup}

*

+edgeContents

{redefines edgeContents}

+inPartiti on
*

{subsets inGroup}

*

+nodeContents

{redefines nodeContents}

+inPartition
*

{subsets inGroup}

NamedElement
(from Kernel)

Elemen t
(from Kernel)

ActivityGroup
(from BasicActivities)

Activity
(from BasicActivities)

Activity

isSingleExecution : Boolean
UML Superstructure 2.0 Draft Adopted Specification 273

Figure 185 - Constraints (CompleteActivities)

Figure 186 - Flows (CompleteActivities)

Constrain t
(from Kernel)

Action

*0..1

+localPostcondition

*

{su bse ts ownedEleme nt }

0..1

*
0..1

+localPrecondition

*

{subsets ownedElement}

0..1

Action
(from BasicActiviti es)

ActivityE dge
(from BasicActi vit ies)

Ob jectFlowEffectKi nd
<<enumeratio n>>

create
read
update
delete

ObjectFlow
(from BasicActivities)

{ default value is 1 }

Va lue Specif icat ion
(from Kernel)

ActivityEdge

10 ..1

+wei ght

1

{subsets ownedElement}

0 ..1

Behavior
(from BasicBehaviors)

ObjectFlow

effect : ObjectFlowEffectKind
isMulticast : Boolean = false
isMultireceive : Boolean = false

0..1
*

+transformation

0..1
*

0..1*

+sele ction

0..1*
274 UML Superstructure 2.0 Draft Adopted Specification

Figure 187 - Object nodes (CompleteActivities)

Figure 188 - Data stores

Figure 189 - Parameter sets

ObjectNode
(from BasicActivities)

{ default value is null,
which means unlimited
}

ObjectNodeOrderingKind

unordered
ordered
LIFO
FIFO

<<enumeration>>State
(from BehaviorStateMachines)

ValueSpecif ication
(from Kernel)

Behavior
(from BasicBehaviors)

ObjectNode

ordering : ObjectNodeOrderingKind = FIFO

*

*

*

+inState *

10..1

+upperBound

1

{subsets ownedElement}

0..1

0..1

*

+selection
0..1

*

DataStoreNode

CentralBufferNode
(from Activi ties-int)

NamedElement
(from Kernel)

ParameterSetParameter

isException : Boolean = false
isStream : Boolean = false *1..*

+param eterInSet

*

+parameterSet

1..*

Parameter
(from Kernel)
UML Superstructure 2.0 Draft Adopted Specification 275

Figure 190 - Control nodes (CompleteActivities)

Figure 191 - Interruptible regions

JoinNode
(from IntermediateActivities)

{default value is "and"}

ValueSpecification
(from Kernel)

Joi nNode 1

+joinSpec

1

{subsets ownedElement}

ActivityGroup
(from BasicActivities)

ActivityNode
(from BasicActivities)

ActivityNodeActivityEdge

InterruptibleActivityRegion

+interruptibleRegion
{subsets inGroup}

+nodeContents

0

+inGroup

+edgeContents

0

{redefines edgeContents}

*

0..1

+interruptingEdge
*

+interruptib leRegi on

0..1

{subsets
inGroup}

{redefines nodeContents}
276 UML Superstructure 2.0 Draft Adopted Specification

Class Diagrams (StructuredActivities)

Figure 192 - Structured nodes

Activi tyGroup
(from BasicActivities)

TypedElement
(from Kernel)

Namespace
(from Kernel)

ActivityNode
(f rom Basic Activities)

ConditionalNode

isDeterminate : Boolean
isAssured : Boolean

Clause

0..1

*

0..1

+bod y *

*

*

+predecessorClause

*

+successorClause

*
0..1

*

0..1

+test *

1..*

1

+clause

1..*{subsets ownedElement}

1

OutputPin
(from BasicActivities)

1

0..1

+decider 1

0..1

ActivityNode
(from BasicActivities)

LoopNode

isTestedFirst : Boolean

1

0..1

+dec id er1

0..1

0..1

*

0..1

+setupPa rt

*

0..1

*

0..1

+bodyPart

*

*

0..1

+test

*

0..1

Executab leNode
(f rom Basic Acti vit ies)

Element
(from Kernel)

Variable

Act ivity

Activi tyNode

Activi tyEdge

StructuredActivi tyNode
1

* +scope

1

{subsets owner}

+variable

*

{subsets ownedMember}

0.. 1

*

+activity

0.. 1

{redefines activi ty,
redefines activi ty}

+structuredNode

*

{subsets node,
subsets group}

0..1 +nodeContents

{redefines nodeContents}

+inStructuredNode

0..1

{subsets inGroup}

0..1 +edg eContents
{redefines edgeContents}

+inStructuredNod e

0..1

{subsets inGroup}
UML Superstructure 2.0 Draft Adopted Specification 277

Class Diagrams (CompleteStructuredActivities)

Figure 193 - Structured nodes (CompleteStructuredActivities)

LoopNode
(from StructuredActivities)

Clause
(from StructuredActivities)Condi tionalNode

(from StructuredActivities)

StructuredActivityNode
(from StructuredActivities)

StructuredActivityNode

mustIsolate : Boolean

Condi tionalNode Clause

OutputPin
(from BasicActiviti es)

*

0..1

+result *

{ordered,
subsets output}

0..1

OutputPin
(from BasicActivities)

*

*

+bodyOutput

*

*

LoopNode

*

0..1

+result *

{ordered,
subsets
output}

0..1

*

0..1

+loopVari abl e*

{ordered,
subsets

ownedElement}

0..1

*

*

+bodyOutput

*

*

Action
(from BasicActivities)

InputPin
(from BasicActi vities)

*

0..1

+loopVari abl eInput*
{ordered,

subsets input}0..1
278 UML Superstructure 2.0 Draft Adopted Specification

Class Diagrams (ExtraStructuredActivities)

Figure 194 - Exceptions

Figure 195 - Expansion regions

ExecutableNode
(from BasicActivities)

ObjectNode
(from BasicActiviti es)

Classifier
(from Kernel)

ExecutableNode ExceptionHandler

1

+exceptionInput

1

1..*

+exceptionType

1..*

*

1
+handler

*

{subsets ownedElement}

+protectedNode

1

{subsets owner}

1

+handlerBody

1

Element
(from Kernel)

Structu redActivityNode
(from Str uc turedActi vit ies)

ObjectNode
(from BasicActiviti...

ExpansionKind
<<enumeration>>

parallel
iterative
stream

ExpansionNodeExpa nsi onRe gion

mode : ExpansionKind

1 .. *

0..1

+inputElement

1 .. *+regionAsInput

0..1

0.. *0..1

+outputElement

0.. *

+reg ion AsOutpu t

0..1
UML Superstructure 2.0 Draft Adopted Specification 279

12.3 Class Descriptions

12.3.1 Action

Description

An action is an executable activity node that is the fundamental unit of executable functionality in an activity, as opposed to
control and data flow among actions. The execution of an action represents some transformation or processing in the modeled
system, be it a computer system or otherwise.

An action may have sets of incoming and outgoing activity edges that specify control flow and data flow from and to other
nodes. An action will not begin execution until all of its input conditions are satisfied. The completion of the execution of an
action may enable the execution of a set of successor nodes and actions that take their inputs from the outputs of the action.

In CompleteActivities, action is extended to have pre- and postconditions.

Attributes

• /context : Classifier [1] The classifier that owns the behavior of which this action is a part.

• effect : String [0..1] An optional text specification of the effect of the action. This may be used to indicate the
behavior of an action without specialization into a subclass, or it may represent a text
description of an action that is specialized, either for human understanding or to help code
generation.

Associations (BasicActivities)

• /input : InputPin [*] The ordered set of input pins connected to the Action. These are among the total set of
inputs (other inputs represent constant values).

• /output : OutputPin [*] The ordered set of output pins connected to the Action. The action places its results onto
pins in this set.

Associations (CompleteActivities)

• localPrecondition : Constraint [0..*] Constraint that must be satisfied when execution is started.

• localPostcondition : Constraint [0..*] Constraint that must be satisfied when executed is completed.

Constraints

none

Operations

[3] activity operates on Action. It returns the activity containing the action.
activity() : Activity;
activity = if self.Activity->size() > 0 then self.Activity else self.group.activity() endif

Semantics

An action execution represents the run-time behavior of executing an action within a specific activity execution. As Action is
an abstract class, all action executions will be executions of specific kinds of actions.

The sequencing of actions are controlled by control edges and object flow edges within activities, which carry control and
object tokens respectively (see Activity). Except where noted, an action can only begin execution when all incoming control
280 UML Superstructure 2.0 Draft Adopted Specification

edges have tokens, and all input pins have object tokens. The action begins execution by taking tokens from its incoming
control edges and input pins. When the execution of an action is complete, it offers tokens in its outgoing control edges and
output pins, where they are accessible to other actions.

The steps of executing an action are as follows:

[1] An action execution is created when all its object flow and control flow prerequisites have been satisfied (implicit join).
Exceptions to this are listed below. The flow prerequisite is satisfied when all of the input pins are offered tokens and
accept them all at once, precluding them from being consumed by any other actions. This ensures that multiple action exe-
cutions competing for tokens do not accept only some of the tokens they need to begin, causing deadlock as each execu-
tion waits for tokens that are already taken by others.

[2] An action execution consumes the input control and object tokens and removes them from the sources of control edges
and from input pins. The action execution is now enabled and may begin execution.

[3] An action continues executing until it has completed. Most actions operate only on their inputs. Some give access to a
wider context, such as variables in the a containing structured activity node, or the self object, which is the object owning
the activity containing the executing action. The detailed semantic of execution an action and definition of completion
depends on the particular subclass of action.

[4] When completed, an action execution offers object tokens on all its output pins and control tokens on all its outgoing con-
trol edges (implicit fork), and it terminates. Exceptions to this are listed below. The output tokens are now available to
satisfy the control or object flow prerequisites for other action executions.

[5] After an action execution has terminated, its resources may be reclaimed by an implementation, but the details of resource
management are not part of this specification and are properly part of an implementation profile.

See ValuePin for exception to rule for starting action execution.

If a behavior is not reentrant, then no more than one execution of it wil exist at any given time. An invocation of a non-
reentrant behavior does not start the behavior when the behavior is already executing. In this case, tokens collect at the input
pins of the invocation action, if their upper bound is greater than one, or upstream otherwise. An invocation of a reentrant
behavior will start a new execution of the behavior with newly arrived tokens, even if the behavior is already executing from
tokens arriving at the invocation earlier.

(ExtraStructuredActivities) If an exception occurs during the execution of an action, the execution of the action is abandoned
and no regular output is generated by this action. If the action has an exception handler, it receives the exception object as a
token. If the action has no exception handler, the exception propagates to the enclosing node and so on until it is caught by one
of them. If an exception propagates out of a nested node (action, structured activity node, or activity), all tokens in the nested
node are terminated. The data describing an exception is represented as an object of any class.

(CompleteActivities) Streaming allows an action execution to take inputs and provide outputs while it is executing. During
one execution, the action may consume multiple tokens on each streaming input and produce multiple tokens on each
streaming output. See Parameter.

(CompleteActivities) Local preconditions and postconditions are constraints that must hold when the execution starts and
completes, respectively. They hold only at the point in the flow that they are specified, not globally for other invocations of the
behavior at other places in the flow or on other diagrams. Compare to pre- and postconditions on Behavior (in Activities). See
semantic variations below for their effect on flow.

Semantic Variation Points

(CompleteActivities) How local pre- and postconditions are enforced is determined by the implementation. For example,
violations may detected at compile time or runtime. The effect may be an error that stops the execution or just a warning, and
so on. Since local pre and postconditions are modeler-defined constraints, violations do not mean that the semantics of the
invocation is undefined as far as UML goes. They only mean the model or execution trace does not conform to the modeler’s
UML Superstructure 2.0 Draft Adopted Specification 281

intention (although in most cases this indicates a serious modeling error that calls into question the validity of the model).

See variations in ActivityEdge and ObjectNode.

Notation

Use of action and activity notation is optional. A textual notation may be used instead.

Actions are notated as round-cornered rectangles. The name of the action or other description of it may appear in the symbol.
See children of action for refinements.

(CompleteActivities) Local pre- and postconditions are shown as notes attached to the invocation with the keywords
«localPrecondition» and «localPostcondition», respectively.

Examples

Examples of actions are illustrated below. These perform behaviors called Send Payment and Accept Payment.

Figure 196 - Action

Figure 197 - Local pre- and postconditions

Figure 198 - Examples of actions.

name

«localPrecondition»
constraint

name

«localPostcondition»
constraint

Accept
Payment

Send
Payment
282 UML Superstructure 2.0 Draft Adopted Specification

Below is an example of an action expressed in an application-dependent action language:

(CompleteActivities) The example below illustrates local pre and postcondition for the action of a drink dispensing machine.

Rationale

An action represents a single step within an activity, that is, one that is not further decomposed within the activity. An activity
represents a behavior which is composed of individual elements that are actions. Note, however, that a call behavior action
may reference an activity definition, in which case the execution of the call action involves the execution of the referenced
activity and its actions. Similarly for all the invocation actions. An action is therefore simple from the point of view of the
activity containing it, but may be complex in its effect and not be atomic. As a piece of structure within an activity model, it is
a single discrete element; as a specification of behavior to be performed, it may invoke referenced behavior that is arbitrarily
complex. As a consequence, an activity defines a behavior that can be reused in many places, whereas an instance of an action
is only used once at a particular point in an activity.

Changes from previous UML

Explicitly modeled actions as part of activities are new in UML 2.0, and replace ActionState, CallState, and SubactivityState
in UML 1.5. They represent a merger of activity graphs from UML 1.5 and actions from UML 1.5.

Local pre and postconditions are new to UML 2.0.

12.3.2 Activity

An activity is the specification of parameterized behavior as the coordinated sequencing of subordinate units whose individual
elements are actions. There are actions that invoke activities (directly by “CallBehaviorAction” on page 224 or indirectly as

Figure 199 - Example of action with tool-dependent action language..

Figure 200 - Example of an action with local pre/postconditions.

FOR every Employee
calculate salary
print check
ENDFOR

«locaPrecondition»
A drink is selected that

Dispense

«localPostcondition»
The vending machine dispensed

the vending machine contains.

the drink that is selected.

Drink
UML Superstructure 2.0 Draft Adopted Specification 283

methods by “CallOperationAction” on page 227).

Description

An activity specifies the coordination of executions of subordinate behaviors, using a control and data flow model. The
subordinate behaviors coordinated by these models may be initiated because other behaviors in the model finish executing,
because objects and data become available, or because events occur external to the flow. The flow of execution is modeled as
activity nodes connected by activity edges. A node can be the execution of a subordinate behavior, such as an arithmetic
computation, a call to an operation, or manipulation of object contents. Activity nodes also include flow-of-control constructs,
such as synchronization, decision, and concurrency control. Activities may form invocation hierarchies invoking other
activities, ultimately resolving to individual actions. In an object-oriented model, activities are usually invoked indirectly as
methods bound to operations that are directly invoked.

Activities may describe procedural computation. In this context, they are the methods corresponding to operations on classes.
Activities may be applied to organizational modeling for business process engineering and workflow. In this context, events
often originate from inside the system, such as the finishing of a task, but also from outside the system, such as a customer call.
Activities can also be used for information system modeling to specify system level processes.

Activities may contain actions of various kinds:

• occurrences of primitive functions, such as arithmetic functions.

• invocations of behavior, such as activities.

• communication actions, such as sending of signals.

• manipulations of objects, such as reading or writing attributes or associations.

Actions have no further decomposition in the activity containing them. However, the execution of a single action may induce
the execution of many other actions. For example, a call action invokes an operation which is implemented by an activity
containing actions that execute before the call action completes.

Most of the constructs in the activity chapter deal with various mechanisms for sequencing the flow of control and data among
the actions:

• object flows for sequencing data produced by one node that is used by other nodes.

• control flows for sequencing the execution of nodes.

• control nodes to structure control and object flow. These include decisions and merges to model contingency. These
also include initial and final nodes for starting and ending flows. In IntermediateActivities, they include forks and joins
for creating and synchronizing concurrent subexecutions.

• activity generalization to replace nodes and edges.

• (StructuredActivities) composite nodes to represent structured flow-of-control constructs, such as loops and condition-
als.

• object nodes to represent objects and data as they flow in and out of invoked behaviors, or to represent collections of
tokens waiting to move downstream.

• (IntermediateActivities) partitions to organize lower-level activities according to various criteria, such as the real-world
organization responsible for their performance.

• (CompleteActivities) interruptible regions and exceptions to represent deviations from the normal, mainline flow of
control.
284 UML Superstructure 2.0 Draft Adopted Specification

Attributes (CompleteActivities)

• isReadOnly : Boolean = false If true, this activity must not make any changes to variables outside the activity or to
objects. (This is an assertion, not an executable property. It may be used by an execution
engine to optimize model execution. If the assertion is violated by the action, then the
model is ill-formed.) The default is false (an activity may make nonlocal changes).

• isSingleExecution : Boolean = false If true, tokens from separate invocations of the activity may interact.

Associations (BasicActivities)

• edge : ActivityEdge [0..*] Edges expressing flow between nodes of the activity.

• group : ActivityGroup [0..*] Top-level groups in the activity.

• node : ActivityNode [0..*] Nodes coordinated by the activity.

Associations (IntermediateActivities)

• partition : ActivityPartition [0..*] Top-level partitions in the activity.

Associations (StructuredActivities)

• structuredNode : StructuredActivityNode [0..*] Top-level structured nodes in the activity.

Stereotypes

None.

Tagged Values

None.

Constraints

[1] The nodes of the activity must include one ActivityParameterNode for each parameter.

[2] An activity cannot be autonomous and have a classifier or behavioral feature context at the same time.

Operations

[1] hostElement operates on Activity. It returns the “innermost” element in the user model that is hosting the activity. This will
be either a Method, State, Transition, Message, or Stimulus.
hostElement() : ModelElement;
hostElement = if self.Method->size() > 0

 then self.Method
 else if self.State->size() > 0

 then self.State
 else if self.Transition->size() > 0

 then self.Transition
else if self.Message->size()>0

then self.Message
else if self.Stimulus->size>0

then self.Stimulus
endif

endif
 endif

 endi
]

UML Superstructure 2.0 Draft Adopted Specification 285

[2] hostClassifier operates on Activity. It returns the classifier hosting the activity. This is the classifier on which the activity
is defined as a method, action in a state machine, sender of a message in a collaboration, or sender of a stimulus in a Col-
laborationInstance.
hostClassifier() : Classifier;
hostClassifier = if self.Method->size() > 0

then self.Method.owner
else if self.State->size() > 0

then self.oclAsType(StateVertex).hostClassifier()
else if self.Transition->size() > 0

then self.Transition.source.hostClassifier()
else if self.Message->size()>0

then self.Message.sender.base
else if self.Stimulus->size>0

then self.Stimulus.sender.classifier
endif

endif
endif

endif

Semantics

The semantics of activities is based on token flow. By flow, we mean that the execution of one node affects and is affected by
the execution of other nodes, and such dependencies are represented by edges in the activity diagram. A token contains an
object, datum, or locus of control, and is present in the activity diagram at a particular node. Each token is distinct from any
other, even if it contains the same value as another. A node may begin execution when specified conditions on its input tokens
are satisfied; the conditions depend on the kind of node. When a node begins execution, tokens are accepted from some or all
of its input edges and a token is placed on the node. When a node completes execution, a token is removed from the node and
tokens are offered to some or all of its output edges. See later in this section for more about how tokens are managed.

All restrictions on the relative execution order of two or more actions are explicitly constrained by flow relationships. If two
actions are not directly or indirectly ordered by flow relationships, they may execute concurrently. This does not require
parallel execution; a specific execution engine may choose to perform the executions sequentially or in parallel, as long as any
explicit ordering constraints are satisfied. In most cases, there are some flow relationships that constrain execution order.
Concurrency is supported IntermediateActivities, but not in BasicActivities.

Activities can be parameterized, which is a capability inherited from Behavior. See “ActivityParameterNode”. Functionality
inherited from Behavior also supports the use of activities on classifiers and as methods for behavioral features. The classifier,
if any, is referred to as the context of the activity. At runtime, the activity has access to the attributes and operations of its
context object and any objects linked to the context object, transitively. An activity that is also a method of a behavioral
feature has access to the parameters of the behavioral feature. In workflow terminology, the scope of information an activity
uses is called the process-relevant data. Implementations that have access to metadata can define parameters that accept entire
activities or other parts of the user model.

An activity with a a classifier context, but that is not a method of a behavioral feature, is invoked when the classifier is
instantiated. An activity that is a method of a behavioral feature is invoked when the behavioral feature is invoked. The
Behavior metaclass also provides parameters, which must be compatible with the behavioral feature it is a method of, if any.
Behavior also supports overriding of activities used as inherited methods. See the Behavior metaclass for more information.

Activities can also be invoked directly by other activities rather than through the call of a behavioral feature that has an activity
as a method. This functional or monomorphic style of invocation is useful at the stage of development where focus is on the
activities to be completed and goals to be achieved. Classifiers responsible for each activity can be assigned at a later stage by
declaring behavioral features on classifiers and assigning activities as methods for these features. For example, in business
reengineering, an activity flow can be optimized independently of which departments or positions are later assigned to handle
each step. This is why activities are autonomous when they are not assigned to a classifier.

Regardless of whether an activity is invoked through a behavioral feature or directly, inputs to the invoked activity are
286 UML Superstructure 2.0 Draft Adopted Specification

supplied by an invocation action in the calling activity, which gets its inputs from incoming edges. Likewise an activity
invoked from another activity produces outputs that are delivered to an invocation action, which passes them onto its outgoing
edges.

An activity execution represents an execution of the activity. An activity execution, as a reflective object, can support
operations for managing execution, such as starting, stopping, aborting, and so on; attributes, such as how long the process has
been executing or how much it costs; and links to objects, such as the performer of the execution, who to report completion to,
or resources being used, and states of execution such as started, suspended, and so on. Used this way activity is the modeling
basis for the WfProcess interface in the OMG Workflow Management Facility, www.omg.org/cgi-bin/doc?formal/00-05-02. It
is expected that profiles will include class libraries with standard classes that are used as root classes for activities in the user
model. Vendors may define their own libraries, or support user-defined features on activity classes.

Nodes and edges have token flow rules. Nodes control when tokens enter or leave them. Edges have rules about when a token
may be taken from the source node and moved to the target node. A token traverses an edge when it satisfies the rules for
target node, edge, and source node all at once. This means a source node can only offer tokens to the outgoing edges, rather
than force them along the edge, because the tokens may be rejected by the edge or the target node on the other side. Since
multiple edges can leave the same node, token flow semantics is highly distributed and subject to timing issues and race
conditions, as is any distributed system. There is no specification of the order in which rules are applied on the various nodes
and edges in an activity. It is the responsibility of the modeler to ensure that timing issues do not affect system goals, or that
they are eliminated from the model. Execution profiles may tighten the rules to enforce various kinds of execution semantics.
Start at ActivityEdge and ActivityNode to see the token management rules.

Tokens cannot “rest” at control nodes, such as decisions and merges, waiting to moving downstream. Control nodes act as
traffic switches managing tokens as they make their way between object nodes and actions, which are the nodes where tokens
can rest for a period of time. Initial nodes are excepted from this rule.

A data token with no value in is called the null token. It can be passed along and used like any other token. For example, an
action can output a null token and a downstream decision point can test for it and branch accordingly. Null tokens satisfy the
type of all object nodes.

The semantics of activities is specified in terms of these token rules, but only for the purpose of describing the expected
runtime behavior. Token semantics is not intended to dictate the way activities are implemented, despite the use of the term
“execution”. They only define the sequence and conditions for behaviors to start and stop. Token rules may be optimized in
particular cases as long as the effect is the same.

(IntermediateActivities) Activities can have multiple tokens flowing in them at any one time, if required. Special nodes called
object nodes provide and accept objects and data as they flow in and out of invoked behaviors, and may act as buffers,
collecting tokens as they wait to move downstream.

(CompleteActivities) Each time an activity is invoked, the isSingleExecution attribute indicates whether the same execution of
the activity handles tokens for all invocations, or a separate execution of the activity is created for each invocation. For
example, an activity that models a manufacturing plant might have a parameter for an order to fill. Each time the activity is
invoked, a new order enters the flow. Since there is only one plant, one execution of the activity handles all orders. If a single
execution of the activity is used for all invocations, the modeler must consider the interactions between the multiple streams of
tokens moving through the nodes and edges. Tokens may reach bottlenecks waiting for other tokens ahead of them to move
downstream, they may overtake each other due to variations in the execution time of invoked behaviors, and most importantly,
may abort each other with constructs such as activity final.

If a separate execution of the activity is used for each invocation, tokens from the various invocations do not interact. For
example, an activity with a context classifier, but that is not a method, is invoked when the classifier is instantiated, and the
modeler will usually want a separate execution of the activity for each instance of the classifier. A new activity execution for
each invocation reduces token interaction, but might not eliminate it. For example, an activity may have a loop creating tokens
to be handled by the rest of the activity, or an unsynchronized flow that is aborted by an activity final. In these cases, modelers
must consider the same token interaction issues as using a single activity execution for all invocations. Also see the effect of
UML Superstructure 2.0 Draft Adopted Specification 287

non-reentrant behaviors described at “Action”. Except in CompleteActivities, each invocation of an activity is executed
separately; tokens from different invocations do not interact.

Nodes and edges inherited from more general activities can be replaced. See RedefinableElement for more information on
overriding inherited elements.

(IntermediateActivities) If a single execution of the activity is used for all invocations, the modeler must consider additional
interactions between tokens. Tokens may reach bottlenecks waiting for tokens ahead of them to move downstream, they may
overtake each other due to the ordering algorithm used in object node buffers, or due to variations in the execution time of
invoked behaviors, and most importantly, may abort each other with constructs such as activity final, exception outputs, and
interruptible regions.

(CompleteActivities) Complete activities add functionality that also increases interaction. For example, streaming outputs
create tokens to be handled by the rest of the activity. In these cases, modelers must consider the same token interaction issues
even when using a separate execution of activity execution for all invocations.

(CompleteActivities) Interruptible activity regions are groups of nodes within which all execution can be terminated if an
interruptible activity edge is traversed leaving the region.

See “ActivityNode” and “ActivityEdge” for more information on the way activities function. An activity with no nodes and
edges is well-formed, but unspecified. It may be used as an alternative to a generic behavior in activity modeling. See
“ActivityPartition” for more information on grouping mechanisms in activities.

Semantic Variation Points

No specific variations in token management are defined, but extensions may add new types of tokens that have their own flow
rules. For example, a BPEL extension might define a failure token that flows along edges that reject other tokens. Or an
extension for systems engineering might define a new control token that terminates executing actions.

Notation

Use of action and activity notation is optional. A textual notation may be used instead.

The notation for an activity is a combination of the notations of the nodes and edges it contains, plus a border and name
displayed in the upper left corner. Activity parameter nodes are displayed on the border. Actions and flows that are contained
in the activity are also depicted.

Pre- and postcondition constraints, inherited from Behavior, are shown as with the keywords «precondition» and
«postcondition», respectively. These apply globally to all uses of the activity. See Figure 201 and Behavior in Common
Behavior. Compare to local pre- and postconditions on Action.

(CompleteActivities) The keyword «singleExecution» is used for activities that execute as a single shared execution.
Otherwise, each invocation executes in its space. See the notation sections of the various kinds of nodes and edges for more
information.
288 UML Superstructure 2.0 Draft Adopted Specification

The notation for classes can be used for diagramming the features of a reflective activity as shown below, with the keyword
“activity” to indicate it is an activity class. Association and state machine notation can also be used as necessary.

Presentation OptionExamples

The definition of Process Order below uses the border notation to indicate that it is an activity. It has pre and post conditions

Figure 201 - Activity notation

Figure 202 - Activity class notation

activity name

...
...

...

parameter name: Type
«precondition» constraint
«postcondition» constraint

«activity»
Activity Name

attribute : type
attribute : type

operation (parameters)
operation (parameters)
UML Superstructure 2.0 Draft Adopted Specification 289

on the order (see Behavior). All invocations of it use the same execution.

The diagram below is based on a standard part selection workflow within an airline design process in section 6.1.1.2 of the
Workflow Process Definition RFP, bom/2000-12-11. Notice that the Standards Engineer insures that the substeps in Provide
Required Part are performed in the order specified and under the conditions specified, but doesn't necessarily perform the
steps. Some of them are performed by the Design Engineer even though the Standards Engineer is managing the process. The
Expert Part Search behavior can result in a part found or not. When a part is not found, it is assigned to the Assign Standards
Engineer activity. Lastly, Specify Part Mod Workflow invocation produces entire activities and they are passed to subsequent
invocations for scheduling and execution (i.e. Schedule Pat Mod Workflow, Execute Part Mod Workflow, and Research
Production Possibility). In other words, behaviors can produce tokens that are activities that can in turn be executed; in short,

Figure 203 - Example of an activity with input parameter

Receive Fill
Order

Ship
OrderOrder

Close
Order

Send
Invoice

Make
Payment

Accept
Payment

[order
accepted]

[order
rejected]

Invoice

Process Order
Requested Order: Order

Requested
Order

«precondition» Order complete
«postcondition» Order closed «singleCopy»
290 UML Superstructure 2.0 Draft Adopted Specification

runtime activity generation and execution.

The diagram below is based on a trouble-ticket activity defined in section 6.1.1.3 of the Workflow Process Definition RFP,

Figure 204 - Workflow based on example from the Workflow Process Definition RFP

ID Part Standard
Part Search

Use
PartRequirement

Provide
Required

Part

[part

Review
Requirements

Review
Schedule

Clarify
Requirements

[accept]

[stream]

found]

[part not
found]

Provide Required Part

Design Part

Design
Engineer

Standards
Engineer

Provide
addt’l part
 mod info

Execute
Part Mod

 Workflow

Research
Production
 Possibility

Specify
Part Mod

 Workflow

Schedule
Part Mod

 Workflow

[reject]

Expert
Part

 Search

[part
found]

[part not
found]

Assign
Standards
 Engineer

[stream]

[stream] [stream]

Design
Engineer

Standards
Engineer

[part provided]

[else]

[cancel][reschedule]

[OK]
UML Superstructure 2.0 Draft Adopted Specification 291

bom/2000-12-11.

Below is an example of using class notation to show the class features of an activity. Associations and state machines can also
be shown.

Rationale

Activities are introduced to flow models that coordinate other behaviors, including other flow models. It supports class
features to model control and monitoring of executing processes, and relating them to other objects, for example in an
organization model.

Changes from previous UML

Activity replaces ActivityGraph in UML 1.5. Activities are redesigned to use a Petri-like semantics instead of state machines.
Among other benefits, this widens the number of flows that can be modeled, especially those that have parallel flows. Activity
also replaces procedures in UML 1.5, as well as the other control and sequencing aspects, including composite and collection
actions.

Figure 205 - Workflow based on example from the Workflow Process Definition RFP.

Figure 206 - Activity class with attributes and operations

Record Reproduce
Problem

Correct
ProblemProblem

Audit and
Record

Verify
Resolution

Communicate
Results

[else]

[recorded]

Trouble Ticket

ID Problem
and

 Resolution

[cannot
reproduce
problem]

[problem not solved]

[else]

[can
reproduce
problem]

[duplication
of another
problem]

[known
problem
and solution]

[not recorded]

[problem statement rectified]

«activity»
Fill Order

costSoFar : USD
timeToComplete : Integer

suspend ()
resume ()
292 UML Superstructure 2.0 Draft Adopted Specification

12.3.3 ActivityEdge

An activity edge is an abstract class for directed connections between two activity nodes.

Description

ActivityEdge is an abstract class for the connections along which tokens flow between activity nodes. It covers control and
data flow edges.

Description (CompleteActivities)

Edges support controlling token flow and be contained in interruptible regions.

Associations (BasicActivities)

• activity : Activity[0..1] Activity containing the edge.

• inGroup : ActivityGroup[0..*] Groups containing the edge. Multiplicity specialized to [0..1] for StructuredActivity-
Group.

• guard : ValueSpecification [1..1] = trueSpecification evaluated at runtime to determine if the edge can be traversed.

• redefinedElement: ActivityEdge [0..*]Inherited edges replaced by this edge in a specialization of the activity.

• source ActivityNode [1..1] Node from which tokens are taken when they traverse the edge.

• target : ActivityNode [1..1] Node to which tokens are put when they traverse the edge.

Associations (IntermediateActivities)

• inPartition : Partition [0..*] Partitions containing the edge.

Associations (StructuredActivities)

• inStructuredNode : StructuredActivityNode [0..1]Structured activity node containing the edge.

Associations (CompleteActivities)

• interruptibleRegion : InterruptibleActivityRegion [0..1]Region that the edge can interrupt.

• weight : ValueSpecification [1..1] = 1Number of objects consumed from the source node on each traversal.

Constraints

[1] The source and target of an edge must be in the same activity as the edge.

[2] Activity edges may be owned only by activities or groups.

Semantics

Activity edges are directed connections, that is, they have a source and a target, along which tokens may flow.

Other rules for when tokens may be passed along the edge depend the kind of edge and characteristics of its source and target.
See the children of ActivityEdge and ActivityNode. The rules may be optimized to a different algorithm as long as the effect is
the same.

Semantics (IntermediateActivities)

The guard must evaluate to true for every token that is offered to pass along the edge. Tokens in the intermediate level of
UML Superstructure 2.0 Draft Adopted Specification 293

activities can only pass along the edge individually at different times. See application of guards at DecisionNode.

Semantics (CompleteActivities)

Any number of tokens can pass along the edge, in groups at one time, or individually at different times. The weight attribute
dictates the minimum number of tokens that must traverse the edge at the same time. It is a value specification evaluated every
time a new token becomes available at the source. It must evaluate to a positive integer or null, and may be a constant, that is,
a LiteralInteger or a LiteralNull. When the minimum number of tokens are offered, all the tokens at the source are offered to
the target all at once. The guard must evaluate to true for each token. If the guard fails for any of the tokens, and this reduces
the number of tokens that can be offered to the target to less than the weight, then all the tokens fail to be offered. A null
weight means that all the tokens at the source are offerred to the target. This can be combined with a join to take all of the
tokens at the source when certain conditions hold. See examples in Figure 210. A weaker but simpler alternative to weight is
grouping information into larger objects so that a single token carries all necessary data. See additional functionality for guards
at DecisionNode.

Other rules for when tokens may be passed along the edge depend the kind of edge and characteristics of its source and target.
See the children of ActivityEdge and ActivityNode. The rules may be optimized to a different algorithm as long as the effect is
the same. For example, if the target is an object node that has reached its upper bound, no token can be passed. The
implementation can omit unnecessary weight evaluations until the downstream object node can accept tokens.

Edges can be named, by inheritance from RedefinableElement, which is a NamedElement. However, edges are not required to
have unique names within an activity. The fact that Activity is a Namespace, inherited through Behavior, does not affect this,
because the containment of edges is through ownedElement, the general ownership metaassociation for Element that does not
imply unique names, rather than ownedMember.

Edges inherited from more general activities can be replaced. See RedefinableElement for more information on overriding
inherited elements.

Semantic Variation Points

See variations at children of ActivityEdge and ActivityNode.

Notation

An activity edge is notated by a stick-arrowhead line connecting two activity nodes. If the edge has a name it is notated near
the arrow.

An activity edge can also be notated using a connector, which is a small circle with the name of the edge in it. The circles and
lines involved map to a single activity edge in the model. Every connector with a given label must be paired with exactly one
other with the same label on the same activity diagram. One connector must have exactly one incoming edge and the other
exactly one outgoing edge, each with the same type of flow, object or control. This assumes the UML 2.0 Diagram

Figure 207 - Activity edge notation

Regular activity edge Activity edge with name

name
294 UML Superstructure 2.0 Draft Adopted Specification

Interchange RFP supports the interchange of diagram elements and their mapping to model elements.

Notation (CompleteActivities)

The weight of the edge many be shown in curly braces that contain the weight. The weight is a value specification that is a
positive integer, which may be a constant. When regions have interruptions, a lightning-bolt style activity edge expresses this
interruption, see InterruptibleActivityRegion. See Pin for filled arrowhead notation.

Examples (BasicActivities)

In the example illustrated below, the arrowed line connecting Fill Order to Ship Order is a control flow edge. This means that
when the Fill Order behavior is completed, control is passed to the Ship Order. Below it, the same control flow is shown with
an edge name. The one at the bottom left employs connectors, instead of a continuous line. On the upper right, the arrowed
lines starting from Send Invoice and ending at Make Payment (via the Invoice object node) are object flow edges. This
indicates that the flow of Invoice objects goes from Send Invoice to Make Payment.

Figure 208 - Activity edge connector notation

Figure 209 - Activity edge notation

(where, n is connector name)n n

Activity edge for interruptible regions

With edge weight

{weight=n}

{weight=null}

(where n is a value specification)
UML Superstructure 2.0 Draft Adopted Specification 295

In the example below, a connector is used to avoid drawing a long edge around one tine of the fork. If a problem is not priority
one, the token going to the connector is sent to the merge instead of the one that would arrive from Revise Plan for priority one
problems. This is equivalent to the activity shown in Figure 212, which is how Figure 211 is stored in the model.

Figure 210 - Activity edge examples

Figure 211 - Connector example

Fill
Order

Ship
Order

Send
Invoice

Make
Payment

Invoice

A A
Fill

Order
Ship

Order

Fill
Order

Ship
Order

Filled

Fill
Order

Ship
Order

is equivalent to

Register
Problem

[priority=1]

Evaluate
Impact

Fix
Problem

Revise
Plan

Test
Fix

Release
Fix

[else]

A

A

296 UML Superstructure 2.0 Draft Adopted Specification

Examples (CompleteActivities)

The figure below illustrates three examples of using the weight attribute. The Cricket example uses a constant weight to
indicate that a cricket team cannot be formed until eleven players are present. The Task example uses a non-constant weight to
indicate that an invoice for a particular job can only be sent when all of its tasks have been completed. The proposal example
depicts an activity for placing bids for a proposal, where many such bids can be placed. Then, when the bidding period is over,
the Award Proposal Bid activity reads all the bids as a single set and determines which vendor to award the bid.

Rationale

Activity edges are introduced to provide a general class for connections between activity nodes.

Figure 212 - Equivalent model to Figure 211

Figure 213 - Activity edge examples

Register
Problem

[priority=1]

Evaluate
Impact

Fix
Problem

Revise
Plan

Test
Fix

Release
Fix

[else]

Form
CricketCricket

{weight=11}

Player Team

Send
JobTask

{weight=no_of_job_tasks}

[completed] Invoice

{weight=all}
Bids for
Proposal

Award
Bid

Ready
to award
bid

Bid
arrives
UML Superstructure 2.0 Draft Adopted Specification 297

Changes from previous UML

ActivityEdge replaces the use of (state) Transition in UML 1.5 activity modeling. It also replaces data flow and control flow
links in UML 1.5 action model.

12.3.4 ActivityFinalNode

An activity final node is a final node that stops all flows in an activity.

Description

An activity may have more than one activity final node. The first one reached stops all flows in the activity.

Attributes

None.

Associations

None.

Stereotypes

None.

Tagged Values

None.

Constraints

None.

Semantics

A token reaching an activity final node aborts all flows in the containing activity, that is the activity is terminated, and the
token is destroyed. All tokens offered on the incoming edges are accepted. Any object nodes declared as outputs are passed
out of the containing activity. If there is more than one final node in an activity, the first one reached terminates the activity,
including the flow going towards the other activity final.

If it is not desired to abort all flows in the activity, use flow final instead. For example, if the same execution of an activity is
being used for all its invocations, then multiple streams of tokens will be flowing through the same activity. In this case, it is
probably not desired to abort all tokens just because one reaches an activity final. Using a flow final will simply consume the
tokens reaching it without aborting other flows. Or arrange for separate invocations of the activity to use separate executions
of the activity, so tokens from separate invocations will not affect each other.

Semantic Variation Points

None.

Notation

Activity final nodes are notated as a solid circle with a hollow circle, as indicated in the figure below. It can be thought of as a
298 UML Superstructure 2.0 Draft Adopted Specification

goal notated as “bull’s eye,” or target.

Presentation Option

Style Guidelines

Examples

The first example below depicts that when the Close Order behavior is completed, all tokens in the activity are terminated.
This is indicated by passing control to an activity final node.

The next figure is based on an example for an employee expense reimbursement process in section 6.1.1.1 of the Workflow
Process Definition RFP, bom/2000-12-11. It uses an activity diagram that illustrates two parallel flows racing to complete. The
first one to reach the activity final aborts the others. The two flows appear in the same activity so they can share data, for

Figure 214 - Activity final notation

Figure 215 - Activity final example

Close
Order
UML Superstructure 2.0 Draft Adopted Specification 299

example who to notify in the case of no action.

The last figure is based on the second example in section 6.1.1.4 of the Workflow Process Definition RFP, bom/2000-12-11.
Here, two ways to reach an activity final exist; but it is result of exclusive “or” branching, not a “race” situation like the
previous example. This example uses two activity final nodes, which has the same semantics as using one with two edges
targeting it. The Notify of Modification behavior must not take long or the activity finals might kill it.

Rationale

Activity final nodes are introduced to model non-local termination of all flows in an activity.

Figure 216 - Activity final example based on example from the
 Workflow Process Definition RFP.

Figure 217 - Activity final example based on an example from the
 Workflow Process Definition RFP.

No action

Submit for
Approval

timer

[amount >= 200]

Auto
Approve

[amount < 200]

Reject

[decision = accept]

Service
Approval

[decision = reject] Notify
Reject

Notify
No Action

Cancel
Service

Cancel
Transaction

Modify
Proposal

Review
Proposal

[decision = accept]

Publish
Proposal

[decision = reject]

Notify of
Modification

Notify of
Rejection

[decision = modify]
300 UML Superstructure 2.0 Draft Adopted Specification

Changes from previous UML

ActivityFinal is new in UML 2.0.

12.3.5 ActivityGroup

(IntermediateActivities) An activity group is an abstract class that for defining sets of nodes and edges in an activity.

Description

Activity groups are a generic grouping construct for nodes and edges. Nodes and edges can belong to more than group. They
have no inherent semantics and can be used for various purposes. Subclasses of ActivityGroup may add semantics.

Attributes

None.

Associations

• activity : Activity [0..1] Activity containing the group.

• edgeContents : ActivityEdge [0..*] Edges immediately contained in the group.

• nodeContents : ActivityNode [0..*] Nodes immediately contained in the group.

• /superGroup : ActivityGroup [0..1] Group immediately containing the group.

• /subgroup : ActivityGroup [0..*] Groups immediately contained in the group.

Constraints

[1] All nodes and edges of the group must be in the same activity as the group.

[2] No node or edge in a group may be contained by its subgroups or its containing groups, transitively.

[3] Groups may only be owned by activities or groups.

Semantics

None.

Notation

None.

Examples

None.

Rationale

Activity groups provide a generic grouping mechanism that can be used for various purposes, as defined in the subclasses of
ActivityGroup, and in extensions and profiles.

Changes from previous UML

ActivityGroups are new in UML 2.0.
UML Superstructure 2.0 Draft Adopted Specification 301

12.3.6 ActivityNode

An activity node is an abstract class for points in the flow of an activity connected by edges.

Description

An activity node is an abstract class for the steps of an activity. It covers invocation nodes, control nodes, and object nodes.

Nodes can be replaced in generalization and (CompleteActivities) be contained in interruptible regions.

Attributes (CompleteStructuredActivities)

• mustIsolate : Boolean If true, then the actions in the node execute in isolation from actions outside the node.

Associations (BasicActivities)

• activity : Activity[0..1] Activity containing the node.

• inGroup : Group [0..*] Groups containing the node. Multiplicity specialized to [0..1] for StructuredActivity-
Group.

• incoming : ActivityEdge [0..*] Edges that have the node as target.

• outgoing ActivityEdge [0..*] Edges that have the node as source.

• redefinedElement : ActivityNode [0..*]Inherited nodes replaced by this node in a specialization of the activity.

Associations (IntermediateActivities)

• inPartition : Partition [0..*] Partitions containing the node.

Associations (StructuredActivities)

• inStructuredNode : StructuredActivityNode [0..1]Structured activity node containing the node.

Associations

• interruptibleRegion : InterruptibleActivityRegion [0..*] Interruptible regions containing the node.

Constraints

[1] Activity nodes can only be owned by activities or groups.

Semantics

Nodes can be named, however, nodes are not required to have unique names within an activity to support multiple invocations
of the same behavior or multiple uses of the same action. See Action, which is a kind of node. The fact that Activity is a
Namespace, inherited through Behavior, does not affect this, because the containment of nodes is through ownedElement, the
general ownership metaassociation for Element that does not imply unique names, rather than ownedMember. Other than
naming, and functionality added by the complete version of activities, an activity node is only a point in an activity at this level
of abstraction. See the children of ActivityNode for additional semantics.

Nodes inherited from more general activities can be replaced. See RedefinableElement for more information on overriding
inherited elements, and Activity for more information on activity generalization. See children of ActivityNode for additional
semantics.

(CompleteStructuredActivities) If the mustIsolate flag is true for an activity node, then any access to an object by an action
within the node must not conflict with access to the object by an action outside the node. A conflict is defined as an attempt to
302 UML Superstructure 2.0 Draft Adopted Specification

write to the object by one or both of the actions. If such a conflict potentially exists, then no such access by an action outside
the node may be interleaved with the execution of any action inside the node. This specification does not constrain the ways in
which this rule may be enforced. If it is impossible to execute a model in accordance with these rules, then it is ill formed.

Notation

The notations for activity nodes are illustrated below. There are a three kinds of nodes: action node, object node, and control
node. See these classes for more information.

Examples

This figure illustrates the following kinds of activity node: action nodes (e.g., Receive Order, Fill Order), object nodes
(Invoice), and control nodes (the initial node before Receive Order, the decision node after Receive Order, and the fork
node and Join node around Ship Order, merge node before Close Order, and activity final after Close Order).

Rationale

Activity nodes are introduced to provide a general class for nodes connected by activity edges.

Figure 218 - Activity node notation

Figure 219 - Activity node example (where the arrowed lines are only the non-activity node
symbols)

Action node Object node Control nodes

Receive Fill
Order

Ship
OrderOrder

Close
Order

Send
Invoice

Make
Payment

Accept
Payment

[order
accepted]

[order
rejected]

Invoice
UML Superstructure 2.0 Draft Adopted Specification 303

Changes from previous UML

ActivityNode replaces the use of StateVertex and its children for activity modeling in UML 1.5.

12.3.7 ActivityParameterNode

An activity parameter node is an object node for inputs and outputs to activities.

Description

Activity parameters are object nodes at the beginning and end of flows, to accept inputs to an activity and provide outputs from
it.

(CompleteActivities) Activity parameters inherit support for streaming and exceptions from Parameter.

Attributes

None.

Associations

• parameter : Parameter The parameter the object node will be accepting and providing values for.

Constraints

[1] Activity parameter nodes must have parameters from the containing activity.

[2] The type of an activity parameter node is the same as the type of its parameter.

[3] Activity parameter nodes must have either no incoming edges or no outgoing edges.

[4] Activity parameter object nodes with no incoming edges and one or more outgoing edges must have a parameter with in
or inout direction.

[5] Activity parameter object nodes with no outgoing edges and one or more incoming edges must have a parameter with in,
inout, or return direction.

See Activity.

Semantics

When an activity in invoked, the inputs values are placed as tokens on the input activity parameter nodes, those with no
incoming edges. Outputs of the activity must flow to output activity parameter nodes, those with no outgoing edges. See
semantics at ObjectNode, Action, and ActivityParameterNode.
304 UML Superstructure 2.0 Draft Adopted Specification

Notation

Also see notation at Activity.

(CompleteActivities) The figure below shows annotations for streaming and exception activity parameters, which are same as
for pins. See Parameter for semantics of stream and exception parameters.

Presentation Option

(CompleteActivities) See presentation option for Pin when parameter is streaming. This can be used for activity parameters
also.

Examples

In the example below, production materials are fed into printed circuit board. At the end of the activity, computers are quality

Figure 220 - Activity notation

Figure 221 - Activity notation

Activity name

...
...

...

Parameter name: type

Activity name

...
...

...

Parameter name: type{stream}
UML Superstructure 2.0 Draft Adopted Specification 305

checked.

(CompleteActivities) In the example below, production materials are streaming in to feed the ongoing printed circuit board
fabrication. At the end of the activity, computers are quality checked. Computers that do not pass the test are exceptions. See
Parameter for semantics of streaming and exception parameters.

Rationale

Activity parameter nodes are introduced to model parameters of activities in way that integrates easily with the rest of the flow
model.

Changes from previous UML

ActivityParameterNode is new in UML 2.0.

Figure 222 - Example of activity parameters.nodes

Figure 223 - Example of activity parameter nodes for streaming and exceptions

Produce
Printed-Circuit

Boards

Printed-
Circuit
Boards

Production
Materials

Assemble
Computers

Assembled
Computers

Test
Computers

Accepted
Computers

Rejected
Computers

{stream}

Produce
Printed-Circuit

Boards

Printed-
Circuit
Boards

Production
Materials

Assemble
Computers

Assembled
Computers

Test
Computers

Accepted
Computers

Rejected
Computers
306 UML Superstructure 2.0 Draft Adopted Specification

12.3.8 ActivityPartition

(IntermediateActivities) An activity partition is a kind of activity group for identifying actions that have some characteristic in
common.

Description

Partitions divide the nodes and edges to constrain and show a view of the contained nodes. Partitions can share contents. They
often correspond to organizational units in a business model. They may be used to allocate characteristics or resources among
the nodes of an activity.

Attributes

• isDimension : Boolean [1..1] = falseTells whether the partition groups other partitions along a dimension.

• isExternal : Boolean [1..1] = falseTells whether the partition represents an entity to which the partitioning structure does
not apply.

Associations

• partition : ActivityPartition [0..1] Partition immediately containing the partition. Specialized from Activity-
Group::group.

• represents : Element [0..1] An element constraining behaviors invoked by nodes in the partition.

• superPartition : ActivityPartition [0..1] Partitions immediately containing the partition. Specialized from Activity-
Group::subgroup.

• activity : Activity [0..1] The activity containing the partition. Specialized from ActivityGroup.

Constraints

[1] A partition with isDimension = true may not be contained by another partition.

[2] No node or edge of a partition may be in another partition in the same dimension.

[3] If a partition represents a part, then all the non-external partitions in the same dimension and at the same level of nesting
in that dimension must represent parts directly contained in the internal structure of the same classifier.

[4] If a non-external partition represents a classifier and is contained in another partition, then the containing partition must
represent a classifier, and the classifier of the subpartition must be nested in the classifier represented by the containing
partition, or be at the contained end of a strong composition association with the classifier represented by the containing
partition.

[5] If a partition represents a part and is contained by another partition, then the part must be of a classifier represented by the
containing partition, or of a classifier that is the type of a part representing the containing partition.

Semantics

Partitions do not affect the token flow of the model. They constrain and provide a view on the behaviors invoked in activities.
Constraints vary according to the type of element that the partition represents. The following constraints are normative:

1) Classifier

Behaviors of invocations contained by the partition are the responsibility of instances of the classifier represented by the
partition. This means the context of invoked behaviors is the classifier. Invoked procedures containing a call to an operation or
sending a signal must target objects at runtime that are instances of the classifier.
UML Superstructure 2.0 Draft Adopted Specification 307

2) Instance

This imposes the same constraints as classifier, but restricted to a particular instance of the classifier.

3) Part

Behaviors of invocations contained by the partition are the responsibility of instances playing the part represented by the
partition. This imposes the constraints for classifiers above according to the type of the part. In addition, invoked procedures
containing a call to an operation or sending a signal must target objects at runtime that play the part at the time the message is
sent. Just as partitions in the same dimension and nesting must be represented by parts of the same classifier’s internal
structure, all the runtime target objects of operation and signal passing invoked by the same execution of the activity must play
parts of the same instance of the structured classifier. In particular, if an activity is executed in the context of a particular object
at runtime, the parts of that object will be used as targets. If a part has more than one object playing it at runtime, the
invocations are treated as if they were multiple, that is, the calls are sent in parallel, and the invocation does not complete until
all the operations return.

4) Attribute and Value

A partition may be represented by an attribute and its subpartitions by values of that attribute. Behaviors of invocations
contained by the subpartition have this attribute and the value represented by the subpartition. For example, a partition may
represent the location at which a behavior is carried out, and the subpartitions would represent specific values for that attribute,
such as Chicago. The location attribute could be on the process class associated with an activity, or added in a profile to extend
behaviors with these attributes.

A partition may be marked as being a dimension for its subpartitions. For example, an activity may be have one dimension of
partitions for location at which the contained behaviors are carried out, and another for the cost of performing them.
Dimension partitions cannot be contained in any other partition.

Partitions may be used in a way that provides enough information for review by high-level modelers, though not enough for
execution. For example, if a partition represents a classifier, then behaviors in that partition are the responsibility of instances
of the classifier, but the model may or may not say which instance in particular. In particular, a behavior in the partition calling
an operation would be limited to an operation on that classifier, but an input object flow to the invocation might not be
specified to tell which instance should be the target at runtime. The object flow could be specified in a later stage of
development to support execution. Another option would be to use partitions that represent parts. Then when the activity
executes in the context of a particular object, the parts of that object at runtime will be used as targets for the operation calls, as
described above.

External partitions are intentional exceptions to the rules for partition structure. For example, a dimension may have partitions
showing parts of a structured classifier. It can have an external partition that does not represent one of the parts, but a
completely separate classifier. In business modeling, external partitions can be used to model entities outside a business.

Notation

Activity partition may be indicated with two, usually parallel lines, either horizontal or vertical, and a name labeling the
partition in a box at one end. Any activity nodes and edges placed between these lines are considered to be contained within
the partition. Swimlanes can express hierarchical partitioning by representing the children in the hierarchy as further
partitioning of the parent partition, as illustrated in b), below. Diagrams can also be partitioned multidimensionally, as
depicted in c), below, where, each swim cell is an intersection of multiple partitions. The specification for each dimension
308 UML Superstructure 2.0 Draft Adopted Specification

(e.g., part, attribute) is expressed in next to the appropriate partition set.

In some diagramming situations, using parallel lines to delineate partitions is not practical. An alternate is to place the partition
name in parenthesis above the activity name, as illustrated for actions in a), below. A comma-delimited list of partition names
means that the node is contained in more than one partition. A double colon within a partition name indicates that the partition
is nested, with the larger partitions coming earlier in the name. When activities are considered to occur outside the domain of a
particular model, the partition can be label with the keyword «external», as illustrated in b) below. Whenever an activity in a
swimlane is marked «external», this overrides the swimlane and dimension designation.

Presentation Option

When partitions are combined with the frame notation for Activity, the outside edges of the top level partition can be merged
with the activity frame.

Examples

The figures below illustrate an example of partitioning the order processing activity diagram into “swim lanes.” The top

Figure 224 - Activity partition notations

Figure 225 - Activity partition notations

Pa
rti

tio
n

N
am

e

b) Partition using a hierarchical swimlane notation

P
ar

ti
ti

o
n

 N
am

e

a) Partition using a swimlane notation

S
ub

-p
ar

ti
ti

on
 N

am
e

S
ub

-p
ar

ti
ti

on
 N

am
e

P
ar

ti
ti

on
 N

am
e-

1
P

ar
ti

ti
on

 N
am

e-
2

Partition
 Name-3

Partition
 Name-4

c) Partition using a multidimensional
hierarchical swimlane notation

Dimension name

D
im

en
si

o
n

 n
am

e

D
im

en
si

o
n

 n
am

e

a) Partition notated on a specific activity

action
(Partition Name) «external»

b) Partition notated to occur outside

«external»

the primary concern of the model.

Partition Name

action
(PartitionName)

action
(Name1, Name2)

action
(Name::Subname)
UML Superstructure 2.0 Draft Adopted Specification 309

partition contains the portion of an activity for which the Order Department is responsible; the middle partition, the
Accounting Department, and the bottom the Customer. These are attributes of the behavior invoked in the partitions, except
for Customer, which is external to the domain. The flow of the invoice is not a behavior, so it does not need to appear in a
partition.

Figure 226 - Activity partition using swimlane example

Figure 227 - Activity partition using annotation example

O
rd

er
 D

ep
ar

tm
en

t
A

cc
tg

 D
ep

ar
tm

en
t

Receive Fill
Order

Ship
OrderOrder

Send
Invoice

Accept
Payment

Invoice

Close
Order

Make Payment

[order
accepted]

C
us

to
m

er

«a
ttr

ib
ut

e»
 p

er
fo

rm
in

gD
ep

t:
D

ep
ar

tm
en

t
«e

xt
er

na
l»

(Accounting
Department)

(Accounting
Department)

(Order
Department)

(Order
Department)

(Order
Department) (Order

Department)

[order
accepted]

Invoice

«external»

Receive
Order

Fill Order Ship Order
Close Order

Send Invoice Make
Payment

Accept
Payment

(Customer)
310 UML Superstructure 2.0 Draft Adopted Specification

The example below depicts multidimensional swim lanes. The Receive Order and Fill Order behaviors are performed by an
instance of the Order Processor class, situated in Seattle, but not necessarily the same instance for both behaviors. Even though
the Make Payment is contain with in the Seattle/Accounting Clerk swim cell, it’s performer and location are not specified by
the containing partition, because it has an overriding partition.

Rationale

Activity partitions are introduced to support the assignment of domain-specific information to nodes and edges.

Changes from previous UML

Edges can be contained in partitions in UML 2.0. Additional notation is provided for cases when swimlanes are too
cumbersome. Partitions can be hierarchical and multidimensional. The relation to classifier, parts, and attributes is formalized,
including external partitions as exceptions to these rules.

12.3.9 CentralBufferNode

A central buffer node is a object node for managing flows from multiple sources and destinations.

Description

A central buffer node accepts tokens from upstream objects nodes and passes them along to downstream object nodes. They
act as a buffer for multiple in flows and out flows from other object nodes. They do not connect directly to actions.

Attributes

None.

Figure 228 - Activity partition using multidimensional swimlane example

O
rd

er
 P

ro
ce

ss
or

A
cc

ou
nt

in
g

C
le

rk

Receive Fill
Order

Ship
OrderOrder

Send
Invoice

Accept
Payment

Invoice

Close
Order

Make Payment

[order
accepted]

Seattle Reno

«attribute» performingLocation:Location

«external»
(Customer)

«c
la

ss
»

«c
la

ss
»

UML Superstructure 2.0 Draft Adopted Specification 311

Associations

None.

Semantics

See semantics at ObjectNode. All object nodes have buffer functionality, but central buffers differ in that they are not tied to
an action as pins are, or to an activity as activity parameter nodes are. See example below.

Notation

See notation at ObjectNode. A central buffer may also have the keyword «centralBuffer» as shown below. This is useful when
it needs to be distinguished from the standalone notation for pins shown on the left of Figure 280 and the top left of Figure 286.

Examples

In the example below, the behaviors for making parts at two factories produce finished parts. The central buffer node collects
the parts, and behaviors after it in the flow use them as needed. All the parts that are not used will be packed as spares, because
each token can only be drawn from the object node by one outgoing edge.

Rationale

Central buffer nodes give additional support for queuing and competition between flowing objects.

Changes from previous UML

CentralBufferNode is new in UML 2.0.

Figure 229 - Optional central buffer notation

Figure 230 - Central buffer node example

«centralBuffer»

Pack
Parts

Make Parts
at Factory 1

Part
[Finished]

Use
Parts

Part
[Finished]

Part
[Finished]

Part
[Finished]

Make Parts
at Factory2 Part

[Finished]

«centralBuffer»
312 UML Superstructure 2.0 Draft Adopted Specification

12.3.10 Clause

A clause is an element that represents a single branch of a conditional construct, including a test and a body section. The body
section is executed only if (but not necessarily if) the test section evaluates true.

Attributes

none

Associations (StructuredActivities)

• test : ActivityNode [0..*] A nested activity fragment with a designated output pin that specifies the result of the test.

• body : ActivityNode [0..*] A nested activity fragment that is executed if the test evaluates to true and the clause is
chosen over any concurrent clauses that also evaluate to true.

• predecessorClause : Clause [*] A set of clauses whose tests must all evaluate false before the current clause can be tested.

• successorClause : Clause [*] A set of clauses which may not be tested unless the current clause tests false.

• decider : OutputPin [1] An output pin within the test fragment the value of which is examined after execution of
the test to determine whether the body shoud be executed.

Associations ((CompleteStructuredActivities))

• bodyOutput : OutputPin [0..*] A list of output pins within the body fragment whose values are copied to the result pins of
the containing conditional node or conditional node after execution of the clause body.

Semantics

The semantics are explained under “ConditionalNode”.

12.3.11 ConditionalNode

A conditional node is a structured activity node that represents an exclusive choice among some number of alternatives.

Description

A conditional node consists of one or more clauses. Each clause consists of a test section and a body section. When the
conditional node begins execution, the test sections of the clauses are executed. If one or more test sections yield a true value,
one of the corresponding body sections will be executed. If more than one test section yields a true value, only one body
section will be executed. The choice is nondeterministic unless the test sequence of clauses is specified. If no test section
yields a true value, then no body section is executed; this may be a semantic error if output values are expected from the
conditional node.

In general, test section may be executed in any order, including simultaneously (if the underlying execution architecture
supports it). The result may therefore be nondeterministic if more than one test section can be true concurrently. To enforce
ordering of evaluation, sequencing constraints may be specified among clauses. One frequent case is a total ordering of
clauses, in which case the result is determinate. If it is impossible for more than one test section to evaluate true
simultaneously, the result is deterministic and it is unnecessary to order the clauses, as ordering may impose undesirable and
unnecessary restrictions on implementation.Note that, although evaluation of test sections may be specified as concurrent, this
does not require that the implementation evaluate them in parallel; it merely means that the model does not impose any order
on evaluation.

An “else” clause is a clause that is a successor to all other clauses in the conditional and whose test part always returns true. A
UML Superstructure 2.0 Draft Adopted Specification 313

notational gloss is provided for this frequent situation.

Output values created in the test or body section of a clause are potentially available for use outside the conditional. However,
any value used outside the conditional must be created in every clause, otherwise an undefined value would be accessed if a
clause not defining the value were executed.

Attributes (StructuredActivities)

• isAssured : Boolean If true, the modeler asserts that at least one test will succeed.

• isDeterminate: Boolean If true, the modeler asserts that at most one test will succeed concurrently and therefore
the choice of clause is deterministic.

Associations (StructuredActivities)

• clause : Clause[1..*] Set of clauses composing the conditional.

Associations (CompleteStructuredActivities)

• result : OutputPin [0..*] A list of output pins that constitute the data flow outputs of the conditional.

Constraints

None.

Semantics

No part of a conditional node is executed until all control-flow or data-flow predecessors of the conditional node have
completed execution. When all such predecessors have completed execution and made tokens available to inputs of the
conditional node, the conditional node captures the input tokens and begins execution.

The test section of any clause without a predecessorClause is eligible for execution immediately. If a test section yields a false
value, a control token is delivered to all of its successorClauses. Any test section with a predecessorClause is eligible for
execution when it receives control tokens from each of its predecessor clauses.

If a test section yields a true value, then the corresponding body section is executed provided another test section does not also
yield a true value. If more than one test section yields a true value, exactly one body section will be executed, but it is
indeterminate which one will be executed. When a body section is chosen for execution, the evaluation of all other test parts is
terminated (just like an interrupting edge). If some of the test parts have external effects, terminating them may be another
source of indeterminacy. Although test parts are permitted to produce side effects, avoiding side effects in tests will greatly
reduce the chance of logical errors and race conditions in a model and in any code generated from it.

If no test section yields a true value, the execution of the conditional node terminates with no outputs. This may be a semantic
error if a subsequent node requires an output from the conditional. It is safe if none of the clauses create outputs. If the
isAssured attribute of the conditional node has a true value, the modeler asserts that at least one true section will yield a true
value. If the isDeterminate attribute has a true value, the modeler asserts that at most one true section will concurrently yield a
true value (the predecessor relationship may be used to enforce this assertion). Note that it is, in general, impossible for a
computer system to verify these assertions, so they may provide useful information to a code generator, but if the assertions
are incorrect then incorrect code may be generated.

When a body section is chosen for execution, all of its nodes without predecessor flows within the conditional receive control
tokens and are enabled for execution. When execution of all nodes within the body section has completed, execution of the
conditional node is complete and its successors are enabled.

Within the body section, variables defined in the loop node or in some higher-level enclosing node may be accessed and
updated with new values. Values that are used in a data flow manner must be created or updated in all clauses of the
314 UML Superstructure 2.0 Draft Adopted Specification

conditional, otherwise undefined values would be accessed.

Notation

Presentation Option

Style Guidelines

Mixing sequential and concurrent tests in one conditional may be confusing, although it is permitted.

Examples

Rationale

Conditional nodes are introduced to provide a structured way to represent decisions.

Changes from previous UML

Conditional nodes replace ConditionalAction from the UML 1.5 action model.

12.3.12 ControlFlow

A control flow is an edge starts an activity node after the previous one is finished.

Description

Objects and data cannot pass along a control flow edge.

Attributes

None.

Associations

None.

Constraints

[1] Control flows may not have object nodes at either end.

Semantics

See semantics inherited from ActivityEdge. A control flow is an activity edge that only passes control tokens. Tokens offered
by the source node are all offered to the target node.
UML Superstructure 2.0 Draft Adopted Specification 315

Notation

A control flow is notated by an arrowed line connecting two actions.

Examples

The figure below depicts an example of the Fill Order action passing control to the Ship Order action. The activity edge
between the two is a control flow which indicates that when Fill Order is completed, Ship Order is invoked.

Rationale

Control flow is introduced to model the sequencing of behaviors that does not involve the flow of objects.

Changes from previous UML

Explicitly modeled control flows are new to activity modeling in UML 2.0. They replace the use of (state) Transition in UML
1.5 activity modeling. They replace control flows in UML 1.5 action model.

12.3.13 ControlNode

A control node is an abstract activity node that coordinates flows in an activity.

Description

A control node is an activity node used to coordinate the flows between other nodes. It covers initial node, final node and its
children, fork node, join node, decision node, and merge node.

Attributes

None.

Associations

None.

Figure 231 - Control flow notation

Figure 232 - Control flow example

Control flow
(without actions)

Control flow edge linking
two actions

Fill
Order

Ship
Order
316 UML Superstructure 2.0 Draft Adopted Specification

Stereotypes

None.

Tagged Values

None.

Constraints

[1] The edges coming into and out of a control node must be either all object flows or all control flows.

Semantics

See semantics at Activity. See subclasses for the semantics of each kind of control node.

Semantic Variation Points

None.

Notation

The notations for control nodes are illustrated below: decision node, initial node, activity final, and flow final.

(IntermediateActivities) Fork node and join node are the same symbol, they have different semantics and are distinguished
notationally by the way edges are used with them. For more information, see ForkNode and JoinNode below.

Examples

The figure below contains examples of various kinds of control nodes. An initial node is depicted in the upper left as triggering
the Receive Order action. A decision node after Received Order illustrates branching based on order rejected or order accepted
conditions. Fill Order is followed by a fork node which passes control both to Send Invoice and Ship Order. The join node
indicates that control will be passed to the merge when both Ship Order and Accept Payment are completed. Since a merge
will just pass the token along, Close Order activity will be invoked. (Control is also passed to Close Order whenever an order

Figure 233 - Control node notations

Decision node Fork node, join node Initial node Activity final Flow final
 Final nodesor Merge node
UML Superstructure 2.0 Draft Adopted Specification 317

is rejected.) When Close Order is completed, control passes to an activity final.

Rationale

Control nodes are introduced to provide a general class for nodes that coordinate flows in an activity.

Changes from previous UML

ControlNode replaces the use of PseudoState in UML 1.5 activity modeling.

12.3.14 DataStoreNode

A data store node is a central buffer node for non-transient information.

Description

A data store keeps all tokens that enter it, copying them when they are chosen to move downstream. Incoming tokens
containing a particular object replace any tokens in the object node containing that object.

Attributes

None.

Associations

None

Constraints

None.

Semantics

Tokens chosen to move downstream are copied so that tokens appear to never leave the data store. If a token containing an

Figure 234 - Control node examples (with accompanying actions and control flows)

Receive Fill
Order

Ship
OrderOrder

Send
Invoice

Make
Payment

Accept
Payment

[order
accepted]

[order
rejected]

Invoice

Close
Order
318 UML Superstructure 2.0 Draft Adopted Specification

object is chosen to move into a data store, and there is a token containing that object already in the data store, then the chosen
token replaces existing one. Selection and transformation behavior on outgoing edges can be designed to get information out
of the data store, as if a query were being performed. For example, the selection behavior can identify an object to retrieve and
the transformation behavior can get the value of an attribute on that object. Selection can also be designed to only succeed
when a downstream action has control passed to it, thereby implementing the pull semantics of earlier forms of data flow.

Notation

The data store notation is a special case of the object node notation, using the label «datastore».

Presentation Option

Style Guidelines

Examples

The figure below is an example of using a data store node.

Rationale

Data stores are introduced to support earlier forms of data flow modeling in which data is persistent and used as needed, rather
than transient and used when available.

Changes from previous UML

Data stores are new in UML 2.0.

12.3.15 DecisionNode

A decision node is a control node that chooses between outgoing flows.

Figure 235 - Data store node notation.

Figure 236 - Data store node example

name
[state]

«datastore»

Personnel
database

«datastore»
Hire

Employee

Assign
Employee

Review
Employee

{weight=all}

Once a year

«selection»
employee.

assignment = null
UML Superstructure 2.0 Draft Adopted Specification 319

Description

A decision node has one incoming edge and multiple outgoing activity edges.

Attributes

None.

Associations

• decisionInput : Behavior [0..1] Provides input to guard specifications on edges outgoing from the decision node.

Stereotypes

None.

Tagged Values

None.

Constraints

[1] A decision node has one incoming edge.

[2] A decision input behavior has one input parameter and one output parameter. The input parameter must be the same as or
a supertype the type of object token coming along the incoming edge. The behavior cannot have side effects.

Semantics

Each token arriving at a decision node can traverse only one outgoing edge. Tokens are not duplicated. Each token offered by
the incoming edge is offered to the outgoing edges.

Most commonly, guards of the outgoing edges are evaluated to determine which edge should be traversed. The order in which
guards are evaluated is not defined, because edges in general are not required to determine which tokens they accept in any
particular order. The modeler should arrange that each token only be chosen to traverse one outgoing edge, otherwise there
will be race conditions among the outgoing edges. For decision points, a predefined guard “else” may be defined for at most
one outgoing edge. This guard succeeds for a token only if the token is not acepted by all the other edges outgoing from the
decision point.

Notice that the semantics only requires that the token traverse one edge, rather than be offered to only one edge. Multiple
edges may be offered the token, but if only one of them has a target that accepts the token, then that edge is traversed. If
multiple edges accept the token and have approval from their targets for traversal at the same time, then the semantics is not
defined.

If a decision input behavior is specified, then each token is passed to the behavior before guards are evaluated on the outgoing
edges. The output of the behavior is available to the guard. Because the behavior is used during the process of offering tokens
to outgoing edges, it may be run many times on the same token before the token is accepted by those edges. This means the
behavior cannot have side effects. It may not modify objects, but it may for example, navigate from one object to another or
get an attribute value from an object.

Semantic Variation Points

None.
320 UML Superstructure 2.0 Draft Adopted Specification

Notation

The notation for a decision node is a diamond-shaped symbol, as illustrated on the left side of the figure below. Decision input
behavior is specified by the keyword «decisionInput» placed in a note symbol, and attached to the appropriate decision node
symbol as illustrated in the figure below.

A decision node must have a single activity edge entering it, and one or more edges leaving it. The functionality of decision
node and merge node can be combined by using the same node symbol, as illustrated at the right side of the figure below. This
case maps to a model containing a a merge node with all the incoming edges shown in the diagram and one outgoing edge to a
decision node that has all the outgoing edges shown in the diagram. It assumes the UML 2.0 Diagram Interchange RFP
supports the interchange of diagram elements and their mapping to model elements.

Presentation Option

Style Guidelines

Examples

The figure below contains a decision node that follows the Received Order behavior. The branching is based on whether order
was rejected or accepted. An order accepted condition results in passing control to Fill Order and rejected orders to Close
Order.

The example in the figure below illustrates an order process example. Here, an order item is pulled from stock and prepared
for delivery. Since the item has been remove from inventory, the reorder level should also be checked; and if the actual level

Figure 237 - Decision node notation

Figure 238 - Decision node example.

Decision node
Decision node

(with control flows)
...

Decision node and merge node used
together, sharing the same symbol

... ...

Decision node

«decisionInput»
decision condition

with behavior

Receive Fill
OrderOrder

Close
Order

[order
accepted]

[order
rejected]
UML Superstructure 2.0 Draft Adopted Specification 321

falls below a prespecified reorder point, more of the same type of item should be reordered.

Rationale

Decision nodes are introduced to support conditionals in activities. Decision input behaviors are introduced to avoid redudant
recalculations in guards.

Changes from previous UML

Decision nodes replace the use of PseudoState with junction kind in UML 1.5 activity modeling.

12.3.16 ExceptionHandler

(ExtraStructuredActivities) An exception handler is an element that specifies a body to execute in case the specified exception
occurs during the execution of the protected node.

Associations

• protectedNode : ExecutableNode [1..1]
The node protected by the handler. The handler is examined if an exception propagates to
the outside of the node.

• handlerBody : ExecutableNode [1..1]A node that is executed if the handler satisfies an uncaught exception.

• exceptionType : Classsifier [1..*]The kind of instances that the handler catches. If an exception occurs whose type is any
of the classifiers in the set, the handler catches the exception and executes its body.

• exceptionInput : ObjectNode An object node within the handler body. When the handler catches an exception, the
exception token is placed in this node, causing the body to execute.

Constraints

The exception body may not have any explicit input or output edges.

(str-adv) The result pins of the exception handler body must correspond in number and types to the result pins of the protected
node.

Semantics

If an exception occurs during the execution of an action, the set of execution handlers on the action is examined for a handler
that matches the exception. A handler matches if the type of the exception is the same as or a descendant of one of the

Figure 239 - Decision node example

Pull
Order Item

Prepare Item
for Delivery

«decisionInput»

inventoryLevel

Reorder
Goods

[true]

< reorderPoint

Ship
Order

from Stock

[false]
322 UML Superstructure 2.0 Draft Adopted Specification

exception classifiers specified in the handler. If there is a match, the handler “catches” the exception. The exception object is
placed in the exceptionInput node as a token to start execution of the handler body.

If the exception is not caught by any of the handlers on the node, all the tokens in the node are terminated and the exception
propagates to the enclosing executable node or activity. If the exception propagates to the topmost level of the system and is
not caught, the behavior of the system is unspecified. Profiles may specify what happens in such cases.

The exception body has no explicit input or output edges. It has the same access to its surrounding context as the protected
node. The result tokens of the exception body become the result tokens of the protected node. Any control edges leaving the
protected node receive control tokens on completion of execution of the exception body. When the execution body completes
execution, it is as if the protected node had completed execution.

Semantic Variation Points

None.

Notation

The notation for exception handlers is illustrated in Figure 240. An exception handler for a protected node is shown by
drawing a “lightning bolt” symbol from the boundary of the protected node to a small square on the boundary of the exception
handler. The name of the exception type is placed next to the lightning bolt. The small square is the exception input node, and
it must be owned by the handler body. Its type is the given exception type. Both the protected node and the exception handler
must be at the same nesting level. (Otherwise the notation could be misinterpreted as an interrupting edge, which crosses a
boundary.) Multiple exception handlers may may attached to the same protected node, each by its own lightning bolt.

Presentation Option

Style Guidelines

Examples

Figure 241 shows a matrix calculation. First a matrix is inverted, then it is multiplied by a vector to produce a vector. If the
matrix is singular, the inversion will fail and a SingularMatrix exception occurs. This exception is handled by the exception
handler labeled SingularMatrix, which executes the region containing the SubstituteVector1 action. If an overflow exception
occurs during either the matirx inversion or the vector multiplication, the region containing the SubstituteVector2 action is
executed.

The successors to an exception handler body are the same as the successors to the protected node. It is unnecessary to show
control flow from the hander body. Regardless of whether the matrix operations complete without exception or whether one of

Figure 240 - Exception Handler Notation

Protected
Node HandlerBody

Node
ExceptionType
UML Superstructure 2.0 Draft Adopted Specification 323

the exception handlers is triggered, the action PrintResults is executed next.

Rationale

Changes from previous UML

ExceptionHandler replaces JumpHandler in UML 1.5.

Modeling of traditional break and continue statements can be accomplished using direct control flow from the statement to the
control target.UML 1.5 combined the modeling of breaks and continues with exceptions, but that is no longer necessary and it
is not recommended in this specification.

12.3.17 ExecutableNode

An executable node is an abstract class for activity nodes that may be executed. It is used as an attachment point for exception
handlers.

Associations (StructuredActivities)

• handler : ExceptionHandler [0..*]
A set of exception handlers that are examined if an uncaught exception propagates to the
outer level of the executable node.

12.3.18 ExpansionKind

(ExtraStructuredActivities) ExpansionKind is an enumeration type used to specify how multiple executions of an expansion
region interact. See “ExpansionRegion”.

Figure 241 - Exception Handler example

SingularMatrix
Invert
Matrix

Multiply
Vector

Substitute
Vector1

Substitute
Vector2

Overflow

Print
Results
324 UML Superstructure 2.0 Draft Adopted Specification

Enumeration Literals

• parallel The executions are independent. They may be executed concurrently.

• iterative The executions are dependent and must be executed one at a time, in order of the collec-
tion elements.

• stream A stream of collection elements flows into a single execution, in oprder of the collection
elements.

12.3.19 ExpansionNode

(ExtraStructuredActivities) An expansion node is an object node used to indicate a flow across the boundary of an expansion
region. A flow into a region contains a collection that is broken into its individual elements inside the region, which is
executed once per element. A flow out of a region combines individual elements into a collection for use outside the region.

Associations

• regionAsInput : ExpansionRegion[0..1]The expansion region for which the node is an input.

• regionAsOutput : ExpansionRegion[0..1]The expansion region for which the node is an output.

Semantics

See “ExpansionRegion”.

Notation

See “ExpansionRegion”.

12.3.20 ExpansionRegion

(ExtraStructuredActivities) An expansion region is a structured activity region that executes multiple times corresponding to
elements of an input collection.

Description

An expansion region is a strictly nested region of an activity with explicit input and outputs (modeled as ExpansionNodes).
Each input is a collection of values. If there are multiple input pins, each of them must hold the same kind of collection,
although the types of the elements in the different collections may vary. The expansion region is executed once for each
element (or position) in the input collection.

If an expansion region has outputs, they must be collections of the same kind and must contain elements of the same type as
the corresponding inputs. The number of output collections at runtime can differ from the number of input collections. On
each execution of the region, an output value from the region is inserted into an output collection at the same position as the
input elements. If the region execution ends with no output, then nothing is added to the output collection. When this happens
the output collection will not have the same number of elements as the input collections, the region acts as a .

[Reviewer: text is missing]

If all the executions provide an output to the collection, then the output collections will have the same number of elements as
the input collections.

The inputs and outputs to an expansion region are modeled as ExpansionNodes. From “outside” of the region, the values on
these nodes appear as collections. From “inside” the region the values appear as elements of the collections. Object flow edges
connect pins outside the region to input and output expansion nodes as collections. Object flow edges connect pins inside the
UML Superstructure 2.0 Draft Adopted Specification 325

region to input and output expansion nodes as individual elements. From the inside of the region, these nodes are visible as
individual values. If an expansion node has a name, it is the name of the individual element within the region.

Any object flow edges that cross the boundary of the region, without passing through expansion nodes, provide values that are
fixed within the different executions of the region.

Attributes

• mode : ExpansionKind The way in which the executions interact:
parallel — all interactions are independent
iterative — the interactions occur in order of the elements
stream — a stream of values flows into a single execution

Associations

• inputElement : ExpansionNode[1..*]
An object node that holds a separate element of the input collection during each of the
multiple executions of the region.

• outputElement : ExpansionNode[0..*]
An object node that accepts a separate element of the output collection during each of the
multiple executions of the region. The values are formed into a collection that is available
when the execution of the region is complete.

Constraints

[1] An ExpansionRegion must have one or more argument ExpansionNodes and zero or more result ExpansionNodes.

Semantics

When an execution of an activity makes a token available to the input of an expansion region, the expansion region
consumes the token and begins execution. The expansion region is executed once for each element in the collection (or
once per element position, if there are multiple collections). The concurrency attribute controls how the multiple
executions proceed:

If the value is parallel, the execution may happen in parallel, or overlapping in time, but they are not required to.

If the value is iterative, the executions of the region must happen in sequence, with one finishing before another can
begin. The first iteration begins immediately. Subsequent iterations start when the previous iteration is completed. During
each of these cases, one element of the collection is made available to the execution of the region as a token during each
execution of the region. If the collection is ordered, the elements will be presented to the region in order; if the collection
in unordered, the order of presenting elements is undefined and not necessarily repeatable. On each execution of the
region, an output value from the region is inserted into an output collection at the same position as the input elements.

If the value is stream, there is a single execution of the region, but its input place receives a stream of elements from the
collection. The values in the input collection are extracted and placed into the execution of the expansion region as a
stream, in order if the collection is ordered. Such a region must handle streams properly or it is ill defined. When the
execution of the entire stream is complete, any output streams are assembled into collections of the same kinds as the
inputs.

Notation

An expansion region is shown as a dashed rounded box with one of the keywords concurrent, iterative, or streaming in
the upper left corner.
326 UML Superstructure 2.0 Draft Adopted Specification

Input and output expansion nodes are drawn as small rectangles divided by vertical bars into small compartments. (The
symbol in meant to suggest a list of elements.) The expansion node symbols are placed on the boundary of the dashed
box. Usually arrows inside and outside the expansion region will distinguish input and output expansion nodes. If not,
then a small arrow can be used as with Pins (see Figure 284 on page 358).

As a shorthand notation, the “list box pin” notation may be placed directly on an action symbol, replacing the pins of the
action (Figure 243). This indicates an expansion region containing a single action. The equivalent full form is shown in
Figure 244.

Figure 242 - Expansion region

Figure 243 - Shorthand notation for expansion region containing single node

keyword

keyword

identifier: behaviorDescription
UML Superstructure 2.0 Draft Adopted Specification 327

Presentation Option

The UML 1.5 notation for unlimited dynamicMultiplicity maps to an expansion region in parallel mode, with one behavior
invoked in the region, as shown below.

Examples

Figure 246 shows an expansion region with two inputs and one output that is executed concurrently. Execution of the
region does not begin until both input collections are available. Both collections must have the same number of elements.
The interior activity fragment is executed once for each position in the input collections. During each execution of the
region, a pair of values, one from each collection, is available to the region on the expansion nodes. Each execution of the

Figure 244 - Full form of previous shorthand notation

Figure 245 - UML 1.5 notation for expansion region with one behavior invocation

keyword

identifier: behaviorDescription

*
name
328 UML Superstructure 2.0 Draft Adopted Specification

region produces a result value on the output expansion node. All of the result values are formed into a collection of the
same size as the input collections. This output collection is available outside the region on the result node after all the
concurrent executions of the region have completed.

Figure 246 shows a fragment of an FFT (Fast Fourier Transform) computation containing an expansion region. Outside the
region, there are operations on arrays of complex numbers. S, Slower, Supper, and V are arrays. Cut and shuffle are operations
on arrays. Inside the region, two arithmetic operations are performed on elements of the 3 input arrays, yielding 2 output

Figure 246 - Expansion region with 2 inputs and 1 output

parallel
UML Superstructure 2.0 Draft Adopted Specification 329

arrays. Different positions in the arrays do not interact, therefore the region can be executed concurrently on all positions.

The following example shows a use of the shorthand notation for an expansion region with a single action. In this example, the
trip route outputs sets of flights and sets of hotels to book. The hotels may be booked independently and concurrently with

Figure 247 - Expansion region

nxteven = lower+upper nxtodd = (lower-upper)*root

lower:Complex upper:Complex

nxteven:Complex nxtodd:Complex

root:Complex

Slower, Supper = cut(S)

concurrent

S = shuffle(Sneven,Snodd)

Sneven: Array<Complex> Snodd: Array<Complex>

S’: Array<Complex>

S: Array<Complex>

Slower: Array<Complex>
Supper: Array<Complex>

V: Array<Complex>
330 UML Superstructure 2.0 Draft Adopted Specification

each other and with booking the flight.

Using the UML 1.5 notation, specify Trip Route below can result in multiple flight segments, each of which must be booked
separately. The Book Flight action will invoke the Book Flight behavior multiple times, once for each flight segment in the set
passed to BookFlight.

Rationale

Expansion regions are introduced to support applying behaviors to elements of a set without constraining the order of
application.

Changes from previous UML

ExpansionRegion replaces MapAction, FilterAction, and dynamicConcurrency and dynamicMultiplicity attributes on
ActionState. Dynamic multiplicities less than unlimited are not supported in UML 2.0.

12.3.21 FinalNode

A final node is an abstract control node at which a flow in an activity stops.

Description

See descriptions at children of final node.

Attributes

None.

Figure 248 -Examples of expansion region shorthand

Figure 249 - Shortand notation for expansion region

Book
Flight

Specify
Trip

Route
Book
Hotel

Print
Itinerary

*
Book
Flight

Specify
Trip

Route
UML Superstructure 2.0 Draft Adopted Specification 331

Associations

None.

Constraints

[1] A final node has no outgoing edges.

Semantics

All tokens offered on incoming edges are accepted. See children of final node for other semantics.

Notation

The notations for final node are illustrated below. There are a two kinds of final node: activity final and
(IntermediateActivities) flow final. For more detail on each of these specializations, see ActivityFinal and FlowFinal.

Examples

The figure below illustrates two kinds of final node: flow final and activity final. In this example, it is assumed that many
components can be built and installed before finally delivering the resulting application. Here, the Build Component behavior
occurs iteratively for each component. When the last component is built, the end of the building iteration is indicated with a
flow final. However, even though all component building has come to an end, other behaviors are still executing. When the
last component has been installed, the application is delivered. When Deliver Application has completed, control is passed to
an activity final node—indicating that all processing in the activity is terminated.

Rationale

Final nodes are introduced to model where flows end in an activity.

Changes from previous UML

FinalNode replaces the use of FinalState in UML 1.5 activity modeling, but its concrete classes have different semantics than
FinalState.

Figure 250 - Final node notation

Figure 251 - Final node example.

Activity final Flow final

Build
Component

[more components
to be built]

[no more
components

Install
Component

[more components
to be installed]

[no more
components

Deliver
Application

to be built]

to be installed]
332 UML Superstructure 2.0 Draft Adopted Specification

12.3.22 FlowFinalNode

A flow final node is a final node that terminates a flow.

Description

A flow final destroys all tokens that arrive at it. It has no effect on other flows in the activity.

Attributes

None.

Associations

None.

Constraints

None.

Semantics

Flow final destroys tokens flowing into it.

Notation

The notation for flow final is illustrated below.

Examples

In the example below, it is assumed that many components can be built and installed. Here, the Build Component behavior
occurs iteratively for each component. When the last component is built, the end of the building iteration is indicated with a
flow final. However, even though all component building has come to an end, other behaviors are still executing (such as
Install Component).

Figure 252 - Flow final notation

Figure 253 - Flow final example without merge edge

Build
Component

[more components
to be built]

[no more
components

Install
Component

to be built]
UML Superstructure 2.0 Draft Adopted Specification 333

Rationale

Flow final nodes are introduced to model termination or merging of a flow in an activity.

Changes from previous UML

Flow final is new in UML 2.0.

12.3.23 ForkNode

A fork node is a control node that splits a flow into multiple concurrent flows.

Description

A fork node has one incoming edge and multiple outgoing edges.

Attributes

None.

Associations

None.

Constraints

[1] A fork node has one incoming edge.

Semantics

Tokens arriving at a fork are duplicated across the outgoing edges. Tokens offered by the incoming edge are all offered to the
outgoing edges. When an offered token is accepted on all the outgoing edges, duplicates of the token are made and one copy
traverses each edges. No duplication is necessary if there is only one outgoing edge, but it is not a useful case.

If guards are used on edges outgoing from forks, the modelers should ensure that no downstream joins depend on the arrival of
tokens passing through the guarded edge. If that cannot be avoided, then a decision node should be introduced to have the
guard, and shunt the token to the downstream join if the guard fails. See example in Figure 212 on page 297.

Notation

The notation for a fork node is simply a line segment, as illustrated on the left side of the figure below. In usage, however, the
fork node must have a single activity edge entering it, and two or more edges leaving it. The functionality of join node and fork
node can be combined by using the same node symbol, as illustrated at the right side of the figure below. This case maps to a
model containing a a join node with all the incoming edges shown the diagram and one outgoing edge to a fork node that has
all the outgoing edges shown in the diagram. It assumes the UML 2.0 Diagram Interchange RFP supports the interchange of
diagram elements and their mapping to model elements.

Figure 254 - Fork node notation

...

Fork node
(without flows)

Fork node
(with flows)

... ...

Join node and fork node used
together, sharing the same symbol
334 UML Superstructure 2.0 Draft Adopted Specification

Examples

In the example below, the fork node passes control to both the Ship Order and Send Invoice behaviors when Fill Order is
completed.

Rationale

Fork nodes are introduced to support parallelism in activities.

Changes from previous UML

Fork nodes replace the use of PseudoState with fork kind in UML 1.5 activity modeling. State machine forks in UML 1.5
required synchronization between parallel flows through the state machine RTC step. UML 2.0 activity forks model
unrestricted parallelism.

12.3.24 InitialNode

An initial node is a control node at which flow starts when the activity is invoked.

Description

An activity may have more than one initial node.

Attributes

None.

Associations

None.

Constraints

[1] An initial node has no incoming edges.

Semantics

An initial node is a starting point for invoking an activity. A control token is placed at the initial node when the activity starts.
Tokens in an initial node are offered to all outgoing edges. If an activity has more than one initial node, then invoking the
activity starts multiple flows, one at each initial node. For convenience, initial nodes are an exception to the rule that control
nodes cannot hold tokens if they are blocked from moving downstream (see Activity). This is equivalent interposing a
CentralBufferNode between the initial node and its outgoing edges.

Note that flows can also start at other nodes, see ActivityParameterNode and AcceptEventAction, so initial nodes are not

Figure 255 - Fork node example.

Fill
Order

Send
Invoice

Fill
Order
UML Superstructure 2.0 Draft Adopted Specification 335

required for an activity to start execution.

Notation

Initial nodes are notated as a solid circle, as indicated in the figure below.

Examples

In the example below, the initial node passes control to the Receive Order behavior at the start of an activity.

Rationale

Initial nodes are introduced to model where flows start in an activity.

Changes from previous UML

InitialNode replaces the use of PseudoState with kind initial in UML 1.5 activity modeling.

12.3.25 InputPin

An input pin is a pin that holds input values to be consumed by an action. They are object nodes and receive values from other
actions through object edges. See Pin, Action, and ObjectNode for more details.

Attributes

None.

Associations

None.

Constraints

[1] Input pins have incoming edges only.

12.3.26 InterruptibleActivityRegion

An interruptible activity region is an activity group that supports termination of tokens flowing in the portions of an activity.

Figure 256 - Initial node notation

Figure 257 - Initial node example

Receive
Order
336 UML Superstructure 2.0 Draft Adopted Specification

Description

An interruptible region contains activity nodes. When a token leaves an interruptible region via edges designated by the region
as interrupting edges, all tokens and behaviors in the region are terminated.

Attributes

None.

Associations (CompleteActivities)

• interruptingEdge : ActivityEdge [0..*].The edges leaving the region that will abort other tokens flowing in the region.

Constraints

[1] Interrupting edges of a region must have their source node in the region and their target node outside the region in the
same activity containing the region.

Semantics

The region is interrupted when a token traverses an interrupting edge. At this point the interrupting token has left the region
and is not terminated.

Token transfer is still atomic, even when using interrupting regions. If a non-interrupting edge is passing a token from a source
node in the region to target node outside the region, then the transfer is completed and the token arrives at the target even if in
interruption occurs during the traversal. In other words, a token transition is never partial; it is either complete or it does not
happen at all.

Do not use an interrupting region if it is not desired to abort all flows in the region in some cases. For example, if the same
execution of an activity is being used for all its invocations, then multiple streams of tokens will be flowing through the same
activity. In this case, it is probably not desired to abort all tokens just because one leaves the region. Arrange for separate
invocations of the activity to use separate executions of the activity when employing interruptible regions, so tokens from each
invocation will not affect each other.

Notation

An interruptible activity region is notated by a dashed, round-cornered rectangle drawn around the nodes contained by the
region. An interrupting edge is notation with a lightning-bolt activity edge.

Figure 258 - InterruptibleActivityRegion notation with interrupting edge
UML Superstructure 2.0 Draft Adopted Specification 337

Presentation Option

An option for notating an interrupting edge is an zig zag adornment on a straight line.

Examples

The first figure below illustrates that when an order cancellation request is made—only while receiving, filling, or shipping)
orders—the Cancel Order behavior is invoked.

Rationale

Interruptible regions are introduced to support more flexible non-local termination of flow.

Changes from previous UML

Interruptible regions in activity modeling are new to UML 2.0.

12.3.27 JoinNode

A join node is a control node that synchronizes multiple flows.

Figure 259 - InterruptibleActivityRegion notation with interrupting edge

Figure 260 - InterruptibleActivityRegion example

Receive Fill
Order

Ship
OrderOrder

Close
Order

Send
Invoice

Make
Payment

Accept
Payment

[order
accepted]

[order
rejected]

Invoice

Cancel
OrderOrder

cancel
request
338 UML Superstructure 2.0 Draft Adopted Specification

Description

A join node has multiple incoming edges and one outgoing edge.

(CompleteActivities) Join nodes have a boolean value specification using the names of the incoming edges to specify the
conditions under which the join will emit a token.

Attributes

None.

Associations

None.

Associations (CompleteActivities)

• joinSpec : ValueSpecification [1..1] A specification giving the conditions under which the join will emit a token. Default
is “and”.

Constraints

[1] A join node has one outgoing edge.

Semantics

If there is a token offered on all incoming edges, then tokens are offered on the outgoing edge according to the following join
rules:

1. If all the tokens offered on the incoming edges are control tokens, then one control token is offered on the outgoing
edge.

2. If some of the tokens offered on the incoming edges are control tokens and other are data tokens, then only the data
tokens are offered on the outgoing edge.

No joining of tokens is necessary if there is only one incoming edge, but it is not a useful case.

(CompleteActivities) The reserved string “and” used as a join specification is equivalent to a specification that requires at least
one token offered on each incoming edge. It is the default. The join specification is evaluated whenever a new token is offered
on any incoming edge. The evaluation is not interrupted by any new tokens offered during the evaluation, nor are concurrent
evaluations started when new tokens are offered during an evaluation.

If any tokens are offered to the outgoing edge, they must be accepted or rejected for traversal before any more tokens are
offered to the outgoing edge. If tokens are rejected for traversal, they are no longer offered to the outgoing edge. The join
specification may contain the names of the incoming edges to refer to whether a token was offered on that edge at the time the
evaluation started.

Other rules for when tokens may be passed along the outgoing edge depend the characteristics of the edge and its target. For
example, if the outgoing edge targets an object node that has reached its upper bound, no token can be passed. The rules may
be optimized to a different algorithm as long as the effect is the same. In the full object node example, the implementation can
omit the unnecessary join evaluations until the down stream object node can accept tokens.

Notation

The notation for a join node is a line segment, as illustrated on the left side of the figure below. The join node must have one or
more activity edges entering it, and only one edge leaving it. The functionality of join node and fork node can be combined by
UML Superstructure 2.0 Draft Adopted Specification 339

using the same node symbol, as illustrated at the right side of the figure below. This case maps to a model containing a a join
node with all the incoming edges shown in the diagram and one outgoing edge to a fork node that has all the outgoing edges
shown in the diagram. It assumes the UML 2.0 Diagram Interchange RFP supports the interchange of diagram elements and
their mapping to model elements.

(CompleteActivities) Join specifications are shown near the join node, as shown below.

Examples

The example at the left of the figure indicates that a Join is used to synchronize the processing of the Ship Order and Accept
Order behaviors. Here, when both have been completed, control is passed to Close Order.

(CompleteActivities) The example below illustrates how a join specification can be used to ensure that both a drink is selected
and the correct amount of money has been inserted before the drink is dispensed. Names of the incoming edges are used in the

Figure 261 - Join node notations

Figure 262 - Join node notations

Figure 263 - Join node example

...

Join node
(without flows)

Join node
(with flows)

...

Join node and fork node used
together, sharing the same symbol

...

...

Join node (with flows

 {joinSpec = ...}

and a join specification)

Ship
Order

Close
Order

Accept
Order
340 UML Superstructure 2.0 Draft Adopted Specification

join specification to refer to whether tokens are available on the edges.

Rationale

Join nodes are introduced to support parallelism in activities.

Changes from previous UML

Join nodes replace the use of PseudoState with join kind in UML 1.5 activity modeling.

12.3.28 LoopNode

(StructuredActivities) A loop node is a costructured activity node that represents a loop with setup, test, and body sections.

Description

Each section is a well-nested subregion of the activity whose nodes follow any predecessors of the loop and precede any
successors of the loop. The test section may precede or follow the body section. The setup section is executed once on entry to
the loop, and the test and body sections are executed repeatedly until the test produces a false value. The results of the final
execution of the test or body are available after completion of execution of the loop.

Attributes

• isTestedFirst : Boolean [1] If true, the test is performed before the first execution of the body.
If false, the body is executed once before the test is performed.

Associations (StructuredActivities)

• setupPart : ActivityNode[0..*] The set of nodes and edges that initialize values or perform other setup computations for
the loop.

• bodyPart : ActivityNode[0..*] The set of nodes and edges that perform the repetitive computations of the loop. The body
section is executed as long as the test section produces a true value.

• test : ActivityNode[0..*] The set of nodes, edges, and designated value that compute a Boolean value to determine
if another execution of the body will be performed.

• decider : OutputPin [1] An output pin within the test fragment the value of which is examined after execution of
the test to determine whether to execute the loop body.

Figure 264 - Join node example

Select
Drink

Dispense
Drink

Insert
Coin

A and B
and the total coin value
inserted is >= drink price}

{joinSpec =

A

B

UML Superstructure 2.0 Draft Adopted Specification 341

Associations ((CompleteStructuredActivities)

• result : OutputPin [0..*] A list of output pins that constitute the data flow output of the entire loop.

• loopVariable : OutputPin [0..*] A list of output pins owned by the loop that hold the values of the loop variables during an
execution of the loop. When the test fails, the values are copied to the result pins of the
loop.

• bodyOutput : OutputPin [0..*] A list of output pins within the body fragment the values of which are copied to the loop
variable pins after completion of execution of the body, before the next iteration of the
loop begins or before the loop exits.

• loopVariableInput : InputPin[0..*]
A list of values that are copied into the loop variable pins before the first iteration of the
loop.

Constraints

None.

Semantics

No part of a loop node is executed until all control-flow or data-flow predecessors of the loop node have completed execution.
When all such predecessors have completed execution and made tokens available to inputs of the loop node, the loop node
captures the input tokens and begins execution.

First the setup section of the loop node is executed. A front end node is a node within a nested section (such as the setup
section, test section, or body section) that has no predecessor dependencies within the same section. A control token is offered
to each front end node within the setup section. Nodes in the setup section may also have individual dependencies (typically
data flow dependencies) on nodes external to the loop node. To begin execution, such nodes must receive their individual
tokens in addition to the control token from the overall loop.

A back end node is a node within a nested section that has no successor dependencies within the same section. When all the
back end nodes have completed execution, the overall section is considered to have completed execution. (It may be thought
of as delivering a control token to the next section within the loop.)

When the setup section has completed execution, the iterative execution of the loop begins. The test section may precede or
follow the body section (test-first loop or test-last loop). The following description assumes that the test section comes first. If
the body section comes first, it is always executed at least once, after which this description applies to subsequent iterations.

When the setup section has completed execution (if the test comes first) or when the body sections has completed execution of
an iteration, the test section is executed. A control token is offered to each front end node within the test section. When all back
end nodes in the test section have completed execution, execution of the test section is complete. Typically there will only be
one back end node and it will have a Boolean value, but for generality it is permitted to perform arbitrary computation in the
test section.

When the test section has completed execution, the Boolean value on the designated decider pin within the test section is
examined. If the value is true, the body section is executed again. If the value is false, execution of the loop node is complete.

When the setup section has completed execution (if the body comes first) or when the iteration section has completed
execution and produced a true value, execution of the body section begins. Each front end node in the body section is offered a
control token. When all back end nodes in the body section have completed execution, execution of the body section is
complete.

Within the body section, variables defined in the loop node or in some higher-level enclosing node are updated with any new
values produced during the iteration and any temporary values are discarded.
342 UML Superstructure 2.0 Draft Adopted Specification

Notation

Examples

Rationale

Loop nodes are introduced to provide a structured way to represent iteration.

Changes from previous UML

Loop nodes are new in UML 2.0.

12.3.29 MergeNode

A merge node is a control node that brings together multiple alternate flows. It is not used to synchronize concurrent flows but
to accept one among several alternate flows.

Description

A merge node has multiple incoming edges and a single outgoing edge.

Attributes

None.

Associations

Constraints

[1] A merge node has one outgoing edge.

Semantics

All tokens offered on incoming edges are offered to the outgoing edge. There is no synchronization of flows or joining of
tokens.

Notation

The notation for a merge node is a diamond-shaped symbol, as illustrated on the left side of the figure below. In usage,
however, the merge node must have two or more edges entering it and a single activity edge leaving it. The functionality of
merge node and decision node can be combined by using the same node symbol, as illustrated at the right side of the figure
below. This case maps to a model containing a a merge node with all the incoming edges shown the diagram and one outgoing
edge to a decision node that has all the outgoing edges shown in the diagram. It assumes the UML 2.0 Diagram Interchange
UML Superstructure 2.0 Draft Adopted Specification 343

RFP supports the interchange of diagram elements and their mapping to model elements.

Examples

In the example below, either one or both of the behaviors, Buy Item or Make Item could have been invoked. As each
completes, control is passed to Ship Item. That is, if only one of Buy Item or Make Item complete, then Ship Item is invoked
only once; if both complete, Ship Item is invoked twice.

Rationale

Merge nodes are introduced to support bringing multiple flows together in activities. For example, if a decision is used after a
fork, the two flows coming out of the decision need to be merged into one before going to a join. Otherwise the join will wait
for both flows, only one of which will arrive.

Changes from previous UML

Merge nodes replace the use of PseudoState with junction kind in UML 1.5 activity modeling.

12.3.30 ObjectFlow

An object flow is an activity edge that can have objects or data passing along it.

Description

An object flow models the flow of values to or from object nodes.

(CompleteActivities) Object flows add support for modeling the effects of behaviors, multicast/receive, and token selection
from object nodes and transformation of tokens.

Figure 265 - Merge node notation

Figure 266 - Merge node example

Merge node Merge node
(with flows)

...

Merge node and decision node used
together, sharing the same symbol

... ...

Buy

Ship
Item

Item

Make
Item
344 UML Superstructure 2.0 Draft Adopted Specification

Attributes (CompleteActivities)

• effect : ObjectFlowEffectKind [0..*]Specifies the effect that the immediately upstream or downstream action has on the
objects flowing along the edge.

• isMulticast : Boolean [1..1] = falseTells whether the objects in the flow are passed by multicasting.

• isMultireceive : Boolean [1..1] = falseTells whether the objects in the flow are gathered from respondents to multicasting.

Associations (CompleteActivities)

• selection : Behavior [0..1] Selects tokens from a source object node.

• transformation : Behavior [0..1]Changes or replaces data tokens flowing along edge.

Constraints (BasicActivities)

[1] Object flows may have an action on at most one end.

[2] Object nodes connected by an object flow, with optionally intervening control nodes, must have compatible types. In par-
ticular, the downstream object node type must be the same or a supertype of the upstream object node type.

[3] Object nodes connected by an object flow, with optionally intervening control nodes, must have the same upper bounds.

Constraints (CompleteActivities)

[1] An edge with constant weight may not target an object node, or lead to an object node downstream with no intervening
actions, that has an upper bound less than the weight.

[2] A transformation behavior has one input parameter and one output parameter. The input parameter must be the same as or
a supertype the type of object token coming from the source end. The output parameter must be the same or a subtype of
the type of object token expected downstream. The behavior cannot have side effects.

[3] An object flow may have a selection behavior only if has an object node as a source.

[4] A selection behavior has one input parameter and one output parameter. The input parameter must be a bag of elements of
the same as or a supertype the type of source object node. The output parameter must be the same or a subtype of the type
of source object node. The behavior cannot have side effects.

[5] isMulticast and isMultireceive cannot both be true.

[6] Only object flows with actions at one end or the other may have effects. Only object flows with actions on the target end
may have a delete effect. Only object flows with actions on the source end may have create effect.

Semantics (BasicActivities)

See semantics inherited from ActivityEdge. An object flow is an activity edge that only passes object and data tokens.
Tokens offered by the source node are all offered to the target node, subject to the restrictions inherited from ActivityEdge.

Two object flows may have the same object node as source. In this case the edges will compete for objects. Once an edge takes
an object from an object node, the other edges do not have access to it. Use a fork to duplicate tokens for multiple uses.

Semantics (CompleteActivities)

If a transformation behavior is specified, then each token offered to the edge is passed to the behavior, and the output of the
behavior is given to the target node for consideration. Because the behavior is used while offering tokens to the target node, it
may be run many times on the same token before the token is accepted by the target node. This means the behavior cannot
have side effects. It may not modify objects, but it may for example, navigate from one object to another, get an attribute value
from an object, or replace a data value with another.
UML Superstructure 2.0 Draft Adopted Specification 345

If a selection behavior is specified, then it is used to offer a token from the source object node to the edge, rather than using
object node’s ordering. It has the same semantics as selection behavior on object nodes. See ObjectNode. See application at
DataStoreNode.

Multicasting and receiving is used in conjunction with partitions to model flows between behaviors that are the responsibility
of objects determined by a publish and subscribe facility. To support execution the model must be refined to specify the
particular publish/subscribe facility employed. This is illustrated in the Figure 274.

Notation

An object flow is notated by an arrowed line.

(CompleteActivities) Selection behavior is specified with the keyword «selection» placed in a note symbol, and attached to the
appropriate objectFlow symbol as illustrated in the figure below.

(CompleteActivities) Specifying the effect that the behavior of the actions have on the objects flowing on the edge can be
represented by placing the effect in braces near the edge leading to the affected object node. Since flows from actions to pins
are elided, the effect is shown next to the pin.

Figure 267 - Object flow notations

Figure 268 - Specifying selection behavior on an Object flow

Figure 269 - Specifying effect that actions have on objects

Object flow
(without activity nodes)

Two object flow edges linking
object nodes and actions

An object flow edge linking
two object node pins.

«selection»
selection

specification

«selection»
selection

specification

{input
effect}

{output
effect}

{input
effect}

{output
effect}
346 UML Superstructure 2.0 Draft Adopted Specification

Presentation Option

To reduce clutter in complex diagrams, object nodes may be elided. The names of the invoked behaviors can suggest their
parameters. Tools may support hyperlinking from the edge lines to show the data flowing along them, and show a small square
above the line to indicate that pins are elided, as illustrated in the figure below. Any adornments that would normally be near
the pin, like effect, can be displayed at the ends of the flow lines.

Examples

In the example on the left below, the two arrowed lines are both object flow edges. This indicates that order objects flow from
Fill Order to Ship Order. In the example on the right, the one arrowed line starts from the Fill Order object node pin and ends
at Ship Order object node pin. This also indicates that order objects flow from Fill Order to Ship Order.

On the left, the example below shows the Pick Materials activity provide an order along with its associated materials for
assembly. On the right, the object flow has been simplified through eliding the object flow details.

(CompleteActivities) In the figure below, two examples of selection behavior are illustrated. The example on the left indicates
that the orders are to be shipped based or order priority—and those with the same priority should be filled on a first-in/first-out
(FIFO) basis. The example on the right indicates that the result of a Close Order activity produces closed order objects, but the
Send Customer Notice activity requires a customer object. The selection, then, specifies that a query operation that takes an
Order evaluates the customer object via the Order.customer:Party association. At the bottom of the figure, an example depicts
a Place Order activity which creates orders and Fill Order activity which reads these placed orders for the purpose of filling
them.

Figure 270 - Eliding objects flowing on the edge

Figure 271 - Object flow example

Figure 272 - Eliding objects flowing on the edge

With explicit pins With pins elided

Fill
Order

Ship
Order

Order Ship
Order

Fill
Order

Order Order

With explicit pins With elided pins

Pick
Materials
for Order

Assemble
Order

Pick
Materials
for Order

Assemble
Order

Order Order

Materials Materials
UML Superstructure 2.0 Draft Adopted Specification 347

(CompleteActivities) In the example below, the Requests for Quote (RFQs) are sent to multiple specific sellers (i.e. is
multicast) for a quote response by each of the sellers. Some number of sellers then respond by returning their quote response.
Since multiple responses can be received, the edge is labeled for the multiple-receipt option. Publish/subscribe and other
brokered mechanisms can be handled using the multicast and multireceive mechanisms. Note that the swimlanes are an
important feature for indicating the subject and source of this.

Rationale

Object flow is introduced to model the flow of data and objects in an activity.

Changes from previous UML

Explicitly modeled object flows are new in UML 2.0. They replace the use of (state) Transition in UML 1.5 activity modeling.
They also replace data flow dependencies from UML 1.5 action model.

Figure 273 - Specifying selection behavior on an Object flow

Figure 274 - Specifying multicast and multireceive on the edge

Ship
Order

Fill
Order

Order
[Filled]

Order
[Filled]

«selection»
FIFO within
Order Priority

Send
Customer

«transformation»
Order.customer

Notice

Close
Order

Order
[Closed] Customer

{create} {read}

Fill
Order

Place
Order

Order
[Placed]

Order
[Placed]

«multicast»

Request
for Quote

Place
Quote

RFQs

Quote
Responses

«multireceive»Award
Quote

Buyer Seller
348 UML Superstructure 2.0 Draft Adopted Specification

12.3.31 ObjectFlowEffectKind

The datatype ObjectFlowEffectKind is an enumeration that indicates the data base effect of an action.

Enumeration Values

• create

• read

• update

• delete

12.3.32 ObjectNode

An object node is an abstract activity node that is part of defining object flow in an activity.

Description

An object node is an activity node that indicates an instance of a particular classifier, possibly in a particular state, may be
available at a particular point in the activity. Object nodes can be used in a variety of ways, depending on where objects are
flowing from and to, as described in the semantics section.

(CompleteActivities) Complete object nodes add support for token selection, limitation on the number of tokens, and
specifying the state required for tokens.

Attributes (CompleteActivities)

• ordering : ObjectNodeOrderingKind [1..1] = FIFO
Tells whether and how the tokens in the object node are ordered for selection to traverse
edges outgoing from the object node.

Associations (BasicActivities)

None.

Associations (CompleteActivities)

• inState : State [0..*] The required states of the object available at this point in the activity.

• selection : Behavior [0..1] Selects tokens for outgoing edges.

• upperBound : ValueSpecification [1..1] = Null
The maximum number of tokens allowed in the node. Objects cannot flow into the node if
the upper bound is reached.

Constraints (BasicActivities)

[1] All edges coming into or going out of object nodes must be object flow edges.

Constraints (CompleteActivities)

[1] The upper bound must be equal to the upper bound of nearest upstream and downstream object nodes that do not have
intervening action nodes.
UML Superstructure 2.0 Draft Adopted Specification 349

[2] If an object node has a selection behavior, then the ordering of the object node is ordered, and vice versa.

[3] A selection behavior has one input parameter and one output parameter. The input parameter must be a bag of elements of
the same type as the object node or a supertype of the type of object node. The output parameter must be the same or a
subtype of the type of object node. The behavior cannot have side effects.

Semantics

Object nodes may only contain values at runtime that conform to the type of the object node, in the state or states specified, if
any. If no type is specified, then the values may be of any type. Multiple tokens containing the same value may reside in the
object node at the same time. This includes data values.

Semantics (CompleteActivities)

An object node may not contain more tokens than its upper bound. The upper bound must be a positive LiteralInteger or a
LiteralNull. An upper bound that is a LiteralNull means the upper bound is unlimited. See ObjectFlow for additional rules
regarding when objects may traverse the edges incoming and outgoing from an object node.

The ordering of an object node specifies the order in which tokens in the node are offered to the outgoing edges. This can be
set to require that tokens do not overtake each other as they pass through the node (FIFO), or that they do (LIFO or modeler-
defined ordering). Modeler-defined ordering is indicated by an ordering value of ordered, and a selection behavior that
determines what token to offer to the edges. The selection behavior takes all the tokens in the object node as input and chooses
a single token from those. It is executed whenever a token is to be offered to an edge. Because the behavior is used while
offering tokens to outgoing edges, it may be run many times on the same token before the token is accepted by those edges.
This means the behavior cannot have side effects. The selection behavior of an object node is overridden by any selection
behaviors on its outgoing edges. See ObjectFlow. Overtaking due to ordering is distinguished from the case where the each
invocation of the activity is handled by a separate execution of the activity. In this case, the tokens have no interaction with
each other, because they flow through separate executions of the activity. See Activity.

Notation

Object nodes are notated as rectangles. A name labeling the node is placed inside the symbol, where the name indicates the
type of the object node. Object nodes whose instances are sets of the “name” type are labeled as such. Object nodes with a
signal as type are shown with the symbol on the right.

(CompleteActivities) A name labeling the node indicates the type of the object node. The name can also be qualified by a state
or states, which is to be written within brackets below the name of the type. Upper bounds and ordering other than the defaults

Figure 275 - Object node notations

Set of namename

Object node
for tokens
containing sets

Object node

name

Object node
for tokens with
signal as type
350 UML Superstructure 2.0 Draft Adopted Specification

are notated in braces underneath the object node.

(CompleteActivities) Selection behavior is specified with the keyword «selection» placed in a note symbol, and attached to an
ObjectNode symbol as illustrated in the figure below.

Presentation Option

It is expected that the UML 2.0 Diagram Interchange RFP will define a metaassociation between model elements and view
elements, like diagrams. It can be used to link an object node to an object diagram showing the classifier that is the type of the
object and its relations to other elements. Tools can use this information in various ways to integrate the activity and class
diagrams, such as a hyperlink from the object node to the diagram, or insertion of the class diagram in the activity diagram as
desired. See example in Figure 287.

Style Guidelines

Examples

See examples at ObjectFlow and children of ObjectNode.

Rationale

Object nodes are introduced to model the flow of objects in an activity.

Changes from previous UML

ObjectNode replaces and extends ObjectFlowState in UML 1.5. In particular, it and its children support collection of tokens at
runtime, single sending and receipt, and the new “pin” style of activity model.

Figure 276 - Object node notations

Figure 277 - Specifying selection behavior on an Object node

name
[state, state...]

Object node for
tokens containing
objects in specific
states

Object node
with a limited
upper bound

{ordering = LIFO}

name

{upperBound = 2}

name

Object node
with ordering
other than FIFO

name

«selection»
selection

specification
UML Superstructure 2.0 Draft Adopted Specification 351

12.3.33 ObjectNodeOrderingKind

ObjectNodeOrderingKind is an enumeration indicating queuing order within a node.

Enumeration Values

• unordered

• ordered

• LIFO

• FIFO

12.3.34 OutputPin

An output pin is a pin that holds output values produced by an action. Output pins are object nodes and deliver values to other
actions through object edges. See Pin, Action, and ObjectNode for more details.

Attributes

None.

Associations

None.

Constraints

[1] Output pins have outgoing edges only.

12.3.35 Parameter (as specialized)

(CompleteActivities) Parameter is specialized when used with complete activities.

Description

Parameters are extended in complete activities to add support for streaming, exceptions, and parameter sets.

Attributes

• isException : Boolean [1..1] =falseTells whether an output parameter may emit a value to the exclusion of the other out-
puts.

• isStream : Boolean [1..1] = falseTells whether an input parameter may accept values while its behavior is executing, or
whether an output parameter post values while the behavior is executing.

• parameterSet : ParameterSet [0..*] The parameter sets containing the parameter. See ParameterSet.

Associations

None.

Constraints

[1] A parameter cannot be a stream and exception at the same time.
352 UML Superstructure 2.0 Draft Adopted Specification

[2] An input parameter cannot be an exception.

[3] Reentrant behaviors cannot have stream parameters.

Semantics

isException applies to output parameters. An output posted to an exception excludes outputs from being posted to other data
and control outputs of the behavior. A token arriving at an exception output parameter of an activity aborts all flows in the
activity. Any objects previously posted to non-stream outputs never leave the activity. Streaming outputs posted before any
exception are not affected. Use exception parameters on activities only if it is desired to abort all flows in the activity. For
example, if the same execution of an activity is being used for all its invocations, then multiple streams of tokens will be
flowing through the same activity. In this case, it is probably not desired to abort all tokens just because one reaches an
exception. Arrange for separate executions of the activity to use separate executions of the activity when employing
exceptions, so tokens from separate executions will not affect each other.

Streaming parameters give an action access to tokens passed from its invoker while the action is executing. Values for
streaming parameters may arrive anytime during the execution of the action, not just at the beginning. Multiple value may
arrive on a streaming parameter during a single action execution and be consumed by the action. In effect, streaming
parameters give an action access to token flows outside of the action while it is executing. In addition to the execution rules
given at Action, these rules also apply to invoking a behavior with streaming parameters:

• All non-stream inputs must arrive for the behavior to be invoked. If there are only stream inputs, then at least one must
arrive for the behavior to be invoked.

• All inputs must arrive for the behavior to finish, that is, for all inputs must arrive for non-stream outputs to be posted
and control edges traversed out of the invocation of the behavior.

• Either all non-stream outputs must be posted when an activity is finished, or one of the exception outputs must be.

The execution rules above provide for the arrival of inputs after a behavior is started and the posting of outputs before a
behavior is finished. These are stream inputs and outputs. Multiple stream input and output tokens may be consumed and
posted while a behavior is running. Since an activity is a kind of behavior, the above rules apply to invoking an activity, even
if the invocation is not from another activity. A reentrant behavior cannot have streaming parameters because there are
potentially multiple executions of the behavior going at the same time, and it is ambiguous which execution should receive
streaming tokens.

See semantics of Action and ActivityParameterNode.

Notation

See notation at Pin and ActivityParameterNode. The notation in class diagrams for exceptions and streaming parameters
on operations has the keywords “exception” or “stream” in the property string. See notation for Operation.

Examples

See examples at Pin and ActivityParameterNode.

Rationale

Parameter (in Activities) is extended to support invocation of behaviors by activities.

Changes from previous UML

Parameter (in Activities) is new in UML 2.0.
UML Superstructure 2.0 Draft Adopted Specification 353

12.3.36 ParameterSet

A parameter set is an element that provides alternative sets of inputs and outputs that a behavior may use.

Description

An parameter set acts as a complete set of inputs and outputs to a behavior, exclusive of other parameter sets on the behavior.

Attributes

None.

Associations (CompleteActivities)

• parameterInSet : ParameterPin [1..*] Parameters in the parameter set.

Constraints

[1] The parameters in a parameter set must all be inputs or all be outputs of the same parameterized entity, and the parameter
set is owned by that entity.

[2] If a behavior has input parameters that are in a parameter set, then any inputs that are not in a parameter set must be
streaming. Same for output parameters.

Semantics

A behavior with input parameter sets can only accept inputs from parameters in one of the sets per execution. A behavior with
output parameter sets can only post outputs to the parameters in one of the sets per execution. The semantics described at
Action and ActivityParameter apply to each set separately.

Notation

Multiple object flows entering or leaving a behavior invocation are typically treated as “and” conditions. However, sometimes
one group of flows are permitted to the exclusion of another. This is modeled as parameter set and notated with rectangles
surrounding one or more pins. The notation in the figure below expresses a disjunctive normal form where one group of “and”
flows are separated by “or” groupings. For input, when one group or another has a complete set of input flows, the activity
may begin. For output, based on the internal processing of the behavior, one group or other of output flows may occur.

Figure 278 - Alternative input/outputs using parameter sets notation
354 UML Superstructure 2.0 Draft Adopted Specification

Examples

In the figure below, the Ship Item activity begins whenever it receives a bought item or a made item. The diagram on the left
uses a decision diamond; the one on the left uses parameter sets to express the same notion. The example at the bottom of the
figure is a similar simplification of the Trouble Ticket example earlier.

Rationale

Parameter sets provide a way for behaviors to direct token flow in the activity which invokes those behaviors.

Changes from previous UML

ParameterSet is new in UML 2.0.

12.3.37 Pin

A pin is an object node for inputs and outputs to actions.

Description

Pins are connected as inputs and outputs to actions. They provide values to actions and accept result values from them.

Figure 279 - Example of alternative input/outputs using parameter sets

Buy
Item

Make
Item

Using parameter sets to express “or” invocation

Record Reproduce
Problem

Correct
ProblemProblem

Audit and
Record

Communicate
Results

[else]

[recorded]

[cannot
reproduce
problem]

[problem not solved]

[else]

[can
reproduce
problem]

[duplication
of another
problem]

[known
problem
and solution]

[not recorded]

[problem statement rectified]

Trouble Ticket example using parameter sets.

Ship
Item

ID Problem
and

 Resolution
Verify

Resolution
UML Superstructure 2.0 Draft Adopted Specification 355

Attributes

None.

Associations

None.

Constraints

[1] If the action is an invocation action, the number and types of pins must be the same as the number of parameters and
 types of the invoked behavior or behavioral feature. Pins are matched to parameters by order.

See constraints on ObjectFlow.

Semantics

A pin represents an input to an action or an output from an action. The definition on an action assumes that pins are ordered
(although names are usually sufficient in the notation to disambiguate pins, so the ordering is rarely shown in the notation).

Notation

Pin rectangles may be notated as small rectangles that are attached to action rectangles. See figure below and examples. The
name of the pin can be displayed near the pin. The name is not restricted, but it is often just shows the type of object or data
that flows through the pin. It can also be a full specification of the corresponding behavior parameter for invocation actions,
using the same notation as parameters for behavioral features on classes. The pins may be elided in the notation even though
they are present in the model.

The situation in which the output pin of one action is connected to the input pin of the same name in another action may be
shown by the optional notations of Figure 281. The standalone pin in the notation maps to an output pin and an input pin in the
underlying model. This form should be avoided if the pins are not of the same type. These variations in notation assume the
UML 2.0 Diagram Interchange RFP supports the interchange of diagram elements and their mapping to model elements, so
that the chosen variation is preserved on interchange.

Figure 280 - Pin notations

name

Input pin

name

Output pin
356 UML Superstructure 2.0 Draft Adopted Specification

See ObjectNode for other notations applying to pins, with examples for pins below.

(CompleteActivities) To show streaming, a text annotation is placed near the pin symbol: {stream} or {nonstream}. See figure
below. The notation is the same for a standalone object node. Nonstream is the default where the notation is omitted.

(CompleteActivities) Pins for exception parameters are indicated with a small triangle annotating the source end of the edge
that comes out of the exception pin. The notation is the same even if the notation uses a standalone notation. See figure below.

Figure 281 - Standalone pin notations

Figure 282 - Stream pin notations

name

name

Output pin,
streaming

name
[state]

{stream}
name

{stream} {stream}

Standalone object node,,
streaming on both end

name
[state]

Input pin,
streaming

{stream}
UML Superstructure 2.0 Draft Adopted Specification 357

See ObjectNode for other notations applying to pins, with examples for pins below.

Presentation Option

When edges are not present to distinguish input and output pins, an optional arrow may be placed inside the pin rectangle, as
shown below. Input pins have the arrow pointing toward the action and output pins have the arrow pointing away from the
action.

(CompleteActivities) Additional emphasis may be added to streaming parameters by using a graphical notation instead of the
textual adornment. Object nodes can be connected with solid arrows contained filled arrowheads to indicate streaming. Pins
can be shown as filled rectangles. When combined with the option above, the arrows are shown as normal arrowheads.

Figure 283 - Exception pin notations

Figure 284 - Pin notations, with arrows

Output pin, pin style, exception

Input and output pin, standalone style, exception

Input pin,
pin-style, with arrow

Output pin,
pin-style, with arrow
358 UML Superstructure 2.0 Draft Adopted Specification

Examples

In the example below, the pin named “Order” represents Order objects. In this example at the upper left, the Fill Order
behavior produces filled orders and Ship Order consumes them and an invocation of Fill Order must complete for Ship Order
to begin. The pin symbols have been elided from the actions symbols; both pins are represented by the single box on the arrow.
The example on the upper right shows the same thing with explicit pin symbols on actions. The example at the bottom of the
figure illustrates the use of multiple pins.

In the figure below, the object node rectangle Order is linked to a class diagram that further defines the node. The class
diagram shows that filling an order requires order, line item, and the customer’s trim-and-finish requirements. An Order token
is the object flowing between the Accept and Fill activities, but linked to other objects. The activity without the class diagram

Figure 285 - Stream pin notations, with filled arrows and rectangles

Figure 286 - Pin examples

Output pin,
pin-style, streaming

name
[state]

name
[state]

Input and output pin,
stand-alone style, streaming on both ends

name
[state]

Input pin,
pin-style, streaming

Fill
Order

Ship
Order

Order

Order Order

Ship
Order

Fill
Order

Order

Order
[accepted]

Accept
Order

Materials
[picked]Pick

Materials
for Order

PC designs
Produce
Designs

{stream}

Materials
[picked]

PC designs

Order
[assembled]

Assemble
Order
UML Superstructure 2.0 Draft Adopted Specification 359

provides a simplified view of the process. The link to an associated class diagram is used to show more detail.

(CompleteActivities) In the example below Order Filling is a continuous behavior that periodically emits (streams out) filled-
order objects, without necessarily concluding as an activity. The Order Shipping behavior is also a continuous behavior that
periodically receives filled-order objects as they are produced. Order Shipping is invoked when the first order arrives and does
not terminate, processing orders as they arrive.

(CompleteActivities) Examples of exception notation is shown at the top of the figure below. Accept Payment normally
completes with a payment as being accepted and the account is then credited. However, when something goes wrong in the
acceptance process, an exception can be raised that the payment is not valid, and the payment is rejected.

Figure 287 - Linking a class diagram to an object node

Figure 288 - Pin examples

Accept
Order Order

Fill
Order

Order

Line
Item

Trim &
Finish

Object node
rectangle linked
with a class diagram

Order
[Filled]

Order
[Filled]

Order
Shipping

Order
Filling

{stream} {stream}Order
[Filled]

Order
Filling

Order
Shipping

{stream}
{stream}
360 UML Superstructure 2.0 Draft Adopted Specification

(CompleteActivities) The figure below shows two examples of selection behavior. Both examples indicate that orders are to be
shipped based or order priority—and those with the same priority should be filled on a first-in/first-out (FIFO) basis.

Rationale

Pins are introduced to model inputs and outputs of actions.

Changes from previous UML

Pin is new to activity modeling in UML 2.0. It replaces pins from UML 1.5 action model.

12.3.38 StructuredActivityNode

(StructuredActivities) A structured activity node is an executable activity node that may have an expansion into subordinate
nodes as an ActivityGroup. The subordinate nodes must belong to only one structured activity node, although they may be
nested.

Description

A structured activity node represents a structured portion of the activity that is not shared with any other structured node,
except for nesting. It may have control edges connected to it, and pins in CompleteStructuredActivities. The execution of any
embedded actions may not begin until the structured activity node has received its object and control tokens. The availability
of output tokens from the structured activity node does not occur until all embedded actions have completed execution.

(CompleteStructuredActivities) Because of the concurrent nature of the execution of actions within and across activities, it can

Figure 289 - Exception pin examples

Figure 290 - Specifying selection behavior on an Object flow

Accept
Payment

Accept
Payment

Send
Rejection

Credit
Account

Send
Rejection

Credit
Account

Rejected
Payment

Accepted
Payment

Ship
Order

Fill
Order

Order
[Filled]

«selection»
FIFO within
Order Priority

Fill
Order

Ship
Order

Order
[Filled]

«selection»
FIFO within
Order Priority

Order
[Filled]
UML Superstructure 2.0 Draft Adopted Specification 361

be difficult to guarantee the consistent access and modification of object memory. In order to avoid race conditions or other
concurrency-related problems, it is sometimes necessary to isolate the effects of a group of actions from the effects of actions
outside the group. This may be indicated by setting the mustIsolate attribute to true on a structured activity node. If a
structured activity node is “isolated,” then any object used by an action within the node cannot be accessed by any action
outside the node until the structured activity node as a whole completes. Any concurrent actions that would result in accessing
such objects are required to have their execution deferred until the completion of the node.

Note – Any required isolation may be achieved using a locking mechanisms, or it may simply sequentialize execution to
avoid concurrency conflicts. Isolation is different from the property of “atomicity”, which is the guarantee that a group of
actions either all complete successfully or have no effect at all. Atomicity generally requires a rollback mechanism to prevent
committing partial results.

Attributes

None.

Associations

• variable: Variable [0..*] A variable defined in the scope of the structured activity node. It has no value and may not
be accessed outside the node.

Constraints

[1] The edges owned by a structured node must have source and target nodes in the structured node.

Semantics

Nodes and edges contained by a structured node cannot be contained by any other structured node. This constraint is modeled
as a specialized multiplicity from ActivityNode and ActivityEdge to StructuredActivityNode. See children of
StructuredActivityNode.

No subnode in the structured node may begin execution until the node itself has consumed a control token. A control flow
from a structured activity node implies that a token is produced on the flow only after no tokens are left in the node or its
contained nodes recursively.

(CompleteStructuredActivities) An object node attached to a structured activity node is accessible within the node. The same
rules apply as for control flow. An input pin on a structured activity node implies that no action in the node may begin
execution until all input pins have received tokens. An output pin on a structured activity node will make tokens available
outside the node only after no tokens left in the node or its contained nodes recursively.

Notation

A structured activity node is notated with a dashed round cornered rectangle enclosed its nodes and edges, with the keyword
«structured» at the top. Also see children of StructuredActivityNode.

Examples

See children of StructuredActivityNode.

Rationale

StructuredActivityNode is for applications that require well-nested nodes. It provides well-nested nodes that were enforced by
strict nesting rules in UML 1.5.
362 UML Superstructure 2.0 Draft Adopted Specification

Changes from previous UML

StructuredActivityNode is new in UML 2.0.

12.3.39 ValuePin

A value pin is an input pin that provides a value to an action that does not come from an incoming object flow edge.

Attributes

None.

Associations

• value : ValueSpecification [1..1]Value that the pin will provide.

Constraints

[1] Value pins have no incoming edges.

[2] The type of value specification must be compatible with the type of the value pin.

Semantics

ValuePins provide values to their actions, but only when the actions are otherwise enabled. If an action has no incoming edges
or other way to start execution, a value pin will not start the execution by itself or collect tokens waiting for execution to start.
When the action is enabled by these other means, the value specification of the value pin is evaluated and the result provided
as input to the action, which begins execution. This is an exception to the normal token flow semantics of activities.

Notation

A value pin is notated as an input pin with the value specification written beside it.

Examples

Rationale

ValuePin is introduced to reduce the size of activity models that use constant values.

Changes from UML 1.5

ValuePin replaces LiteralValueAction from UML 1.5.

12.3.40 Variable

(StructuredActivities) Variables are elements for passing data between actions indirectly. A local variable stores values shared
by the actions within a structured activity group but not accessible outside it. The output of an action may be written to a
variable and read for the input to a subsequent action, which is effectively an indirect data flow path. Because there is no
predefined relationship between actions that read and write variables, these actions must be sequenced by control flows to
prevent race conditions that may occur between actions that read or write the same variable.

Description

A variable specifies data storage shared by the actions within a group. There are actions to write and read variables. These
actions are treated as side effecting actions, similar to the actions to write and read object attributes and associations. There are
UML Superstructure 2.0 Draft Adopted Specification 363

no sequencing constraints among actions that access the same variable. Such actions must be explicitly coordinated by control
flows or other constraints.

Any values contained by a variable must conform to the type of the variable and have cardinalities allowed by the multiplicity
of the variable.

Associations

None.

Attributes

• scope : StructuredActivityGroup [1]The structured activity group that owns the variable.

Constraints

None.

Semantics

A variable specifies a slot able to hold a value or a sequence of values, consistent with the multiplicity of the variable. The
values held in this slot may be accessed from any action contained directly or indirectly within the group action that is the
scope of the variable.

Notation

None.

Examples

None.

Rationale

Variables are introduced to simplify translation of common programming languages into activity models for those applications
that do not require object flow information to be readily accessible. However, source programs that set variables only once can
be easily translated to use object flows from the action that determines the values to the actions that use them. Source programs
that set variables more than once can be translated to object flows by introducing a local object containing attributes for the
variables, or one object per variable combined with data store nodes.

Changes from UML 1.5

Variable is unchanged from UML 1.5, except that it is used on StructuredActivityNode instead of GroupNode.

12.4 Diagrams

The focus of activity modeling is the sequence and conditions for coordinating lower-level behaviors, rather than which
classifiers own those behaviors. These are commonly called control flow and object flow models. The behaviors coordinated
by these models can be initiated because other behaviors finish executing, because objects and data become available, or
because events occur external to the flow. See the Activity on page -283 metaclass for more introduction and semantic
framework.

The notation for activities is optional. A textual notation may be used instead.

The following sections describe the graphic nodes and paths that may be shown in activity diagrams.
364 UML Superstructure 2.0 Draft Adopted Specification

Graphic Nodes

The graphic nodes that can be included in structural diagrams are shown in Table 11.

Table 11 - Graphic nodes included in activity diagrams

NODE TYPE NOTATION REFERENCE

Action See Action on page -280.

ActivityFinal See ActivityFinalNode on page -298.

ActivityNode See ExecutableNode, ControlN-
ode, and ObjectNode.

See ActivityNode on page -302.

ControlNode See DecisionNode, FinalNode,
ForkNode, InitialNode, Join-
Node, and MergeNode.

See ControlNode on page -316.

DataStore See DataStoreNode on page -318 .

DecisionNode See DecisionNode on page -319.

FinalNode See ActivityFinal and FlowFinal. See FinalNode on page -331.

FlowFinal See FlowFinalNode on page -333.

ForkNode See ForkNode on page -334.

InitialNode See InitialNode on page -335.

<<datastore>>

...

...
UML Superstructure 2.0 Draft Adopted Specification 365

Graphic Paths

The graphic paths that can be included in structural diagrams are shown in Table 12.

JoinNode See “JoinNode” on page 338.

MergeNode See “MergeNode” on page 343.

ObjectNode See “ObjectNode” on page 349 and its children.

Table 12 - Graphic nodes included in activity diagrams

PATH TYPE REFERENCE

ActivityEdge See ControlFlow and Object-
Flow.

See “ActivityEdge” on page 293.

ControlFlow See “ControlFlow” on page 315.

ObjectFlow See “ObjectFlow” on page 344 and its children.

Table 11 - Graphic nodes included in activity diagrams

NODE TYPE NOTATION REFERENCE

...
...
366 UML Superstructure 2.0 Draft Adopted Specification

Other Graphical Elements

Activity diagrams have graphical elements for containment. These are included in Table 13.

Table 13 - Graphic nodes included in activity diagrams

TYPE NOTATION REFERENCE

Activity See “Activity” on page 283.

ActivityPartition See “ActivityPartition” on
page 307.

InterruptibleActivityRegion See “InterruptibleActivityRegion”
on page 336.

ExceptionHandler See “ExceptionHandler” on
page 322.

ExpansionRegion “ExpansionRegion” on page 325

Activity name

...
...

...

Parameter name: type

P
ar

ti
ti

on
 N

am
e

invocation
(Partition Name)
UML Superstructure 2.0 Draft Adopted Specification 367

Local pre- and postconditions. See “Action” on page 280.

ParameterSet See “ParameterSet” on page 354.

Table 13 - Graphic nodes included in activity diagrams

TYPE NOTATION REFERENCE

«localPrecondition»
constraint

name

«localPostcondition»
constraint
368 UML Superstructure 2.0 Draft Adopted Specification

13 Common Behaviors

13.1 Overview

The Common Behaviors packages specify the core concepts required for dynamic elements and provides the
infrastructure to support more detailed definitions of behavior. Figure 306 shows a domain model explaining the
relationship between occurrences of behaviors.

Note – The models shown in Figure 306 through Figure 310 are not metamodels but show objects in the semantic domain and
relationships between these objects. These models are used to give an informal explication of the dynamic semantics of the
classes of the UML metamodel.

Any behavior is the direct consequence of the action of at least one object. A behavior describes how the states of these
objects, as reflected by their structural features, change over time. Behaviors, as such, do not exist on their own, and they
do not communicate. If a behavior operates on data, that data is obtained from the host object. (Note that an executing
behavior may itself be an object, however.)

There are two kinds of behaviors, emergent behavior and executing behavior. An executing behavior is performed by an
object (its host) and is the description of the behavior of this object. An executing behavior is directly caused by the
invocation of a behavioral feature of that object or by its creation. In either case, it is a consequence of the execution of
an action by some related object. A behavior has access to the structural features of its host object. Objects that may host
behaviors are specified by the concrete subtypes of the BehavioredClassifier metaclass.

Emergent behavior results from the interaction of one or more participant objects. If the participating objects are parts of
a larger composite object, an emerging behavior can be seen as indirectly describing the behavior of the container object
also. Nevertheless, an emergent behavior is simply the sum of the executing behaviors of the participant objects.

Occurring behaviors are specified by the concrete subtypes of the abstract Behavior metaclass. Behavior specifications
can be used to define the behavior of an object, or they can be used to describe or illustrate the behavior of an object. The
latter may only focus on a relevant subset of the behavior an object may exhibit (allowed behavior), or it may focus on
behavior an object must not exhibit (forbidden behavior).

Albeit behavior is ultimately related to an object, emergent behavior may also be specified for non-instantiable classifiers,
such as interfaces or collaborations. Such behaviors describe the interaction of the objects that realize the interfaces or the
parts of the collaboration (see “Collaboration (from Collaborations)” on page 157).

Figure 306 - Common Behaviors Domain Model

BehaviorOccurrence

BehaviorExecution BehaviorEmergenceObjec t

*

1

*+invoker

1
*

1 +execution

*
+host

1

1.. *+participant 1..*
UML Superstructure 2.0 Draft Adopted Specification 369

BasicBehaviors

The BasicBehaviors subpackage of the Common Behavior package introduces the framework that will be used to specify
behaviors. The concrete subtypes of Behavior will provide different mechanisms to specify behaviors. A variety of
specification mechanisms are supported by the UML, such as automata (“StateMachine (from BehaviorStatemachines)”
on page 489), Petri-net like graphs (“Activity (from BasicBehaviors)” on page 378), informal descriptions (“UseCase
(from UseCases)” on page 519), or partially-ordered sequences of events (“Interaction (from BasicInteraction,
Fragments)” on page 419). Profiles may introduce additional styles of behavioral specification. The styles of behavioral
specification differ in their expressive power and domain of applicability. Further, they may specify behaviors either
explicitly, by describing the observable events resulting from the occurrence of the behavior, or implicitly, by describing
a machine that would induce these events. The relationship between a specified behavior and its hosting or participating
instances is independent of the specification mechanism chosen and described in the common behavior package. The
choice of specification mechanism is one of convenience and purpose; typically, the same kind of behavior could be
described by any of the different mechanisms. Note that not all behaviors can be described by each of the different
specification mechanisms, as these do not all have the same expressive power. However, for many behaviors, the choice
of specification mechanism is one of convenience.

As shown in the domain model of Figure 307, the execution of a behavior may be caused by a call behavior event
(representing the direct invocation of a behavior through an action) or a trigger event (representing an indirect invocation
of a behavior, such as through an operation call). A start event marks the beginning of a behavior execution, while its
completion is accompanied by a termination event.

Communications

The Communications subpackage of the Common Behavior package adds the infrastructure to communicate between
objects in the system and to invoke behaviors. The domain model shown in Figure 308 explains how communication
takes place. Note that this domain model specifies the semantics of communication between objects in a system. Not all
aspects of the domain model are explicitly represented in the specification of the system but may be implied by the
dynamic semantics of the constructs used in a specification.

An action representing the invocation of a behavioral feature is executed by a sender object resulting in an invocation
event occurring. The invocation event may represent the sending of a signal or the call to an operation. As a result of the
invocation event, a request is generated. A request is an object capturing the data that was passed to the action causing the
invocation event (the arguments which must match the parameters of the invoked behavioral feature), information about

Figure 307 - Invocation Domain Model

Trigger Event

Termination Event

Object

Start Event

Event
BehaviorExecution

1 1
+finish

1 1
*

1

+execution *

+host 1

11 1

+start

1 10..1

+cause

1

+effect

0..1

CallBehaviorEvent
370 UML Superstructure 2.0 Draft Adopted Specification

the nature of the request (i.e., the behavioral feature that was invoked), the identities of the sender and receiver objects, as
well as sufficient information about the behavior execution to enable the return of a reply from the invoked behavior,
where appropriate. (In profiles, the request object may include additional information, for example, a time stamp.)

While each request is targeted at exactly one receiver object and caused by exactly one sending object, an invocation
event may result in a number of requests being generated (as in a signal broadcast). The receiver may be the same object
that is the sender, it may be local (i.e., an object held in a slot of the currently executing object, or the currently executing
object itself, or the object owning the currently executing object), or it may be remote. The manner of transmitting the
request object, the amount of time required to transmit it, the order in which the transmissions reach their receiver objects,
and the path for reaching the receiver objects are undefined. Once the generated request arrives at the receiver object, a
receiving event will occur.

Several kinds of requests exist between instances, for example, sending a signal or invoking an operation. The kind of
request is determined by the kind of invocation event that caused it, as shown in Figure 309. The former is used to trigger
a reaction in the receiver in an asynchronous way and without a reply, while the latter applies an operation to an instance,
which may be either synchronously or asynchronously and may require a reply from the receiver to the sender. A send
invocation event creates a send request and causes a signal event in the receiver. A call invocation event creates a call
request and causes a call event in the receiver.

Figure 308 - Communication Domain Model

Object

Receiving EventRequest

11

+receiveEvent

1

+message

1

Object

*

1

*

+sender 1 1

*

+receiver1

*

1

*

+receiver

1

*

BehaviorExecution
1* +host 1+execution*

Invocation Event

1..*1

+message

1..*

+sendEvent

1

1

*

+sender

1

*

1

*

+execution 1

+event *
UML Superstructure 2.0 Draft Adopted Specification 371

Invocation events are specified by various kinds of actions (see Chapter 5, “Actions”). A send request is specified by a
Signal (see “Signal” on page 395). A call request is derived from the operation associated with the specification of the
call invocation event. Signal events and call events are specified by the corresponding metaclasses (see “SignalTrigger”
on page 396 and “CallTrigger” on page 385).

As shown in Figure 308, the invocation event that eventually will lead to a behavior invocation which itself occurs within
the context of a behavior execution, is in turn hosted by an object. In case of an operation invocation, the invoked
behavior will be able to reply to the action in virtue of having knowledge of this behavior execution.

Receiving events may cause a behavioral response. For example, a statemachine may transition to a new state upon
detection of a trigger event or an activity may be enabled upon detection of a receiving event. The specific mechanism by
which the data passed with the request (the attributes of the request object) are made available as arguments to the
invoked behavior (e.g., whether the data or copies are passed with the request) is a semantic variation point. The behavior
will be executed in the context of the receiving object (i.e., the receiving object will host the behavior execution). The
details of identifying the behavior to be invoked in response to the occurrence of an event is a semantic variation point.

The occurrence of spontaneous events may also trigger behaviors: The occurrence of a change event (see
“ChangeTrigger” on page 385) is based on some expression becoming true. A time event occurs when a predetermined
deadline expires (see “TimeTrigger” on page 399). No data is passed by the occurrence of a spontaneous event. Figure
310 shows the hierarchy of such trigger events. The occurrence of trigger events, may also cause the invocation of a
behavior in the context of the containing object. When a trigger event is recognized by an object, it may have an
immediate effect or the event may be saved in an event pool and have a later effect when it is matched by a trigger
specified for a behavior.

Figure 309 - Domain Model Showing Request Kinds

SendInvocation
Event

Signal EventSendRequest

CallInvocat ion Event Call EventCallRequest

Invocation Event Receiving EventRequest1..*

1 +message

1..*+sendEvent

1

1

1 +receiveEvent

1+message

1

372 UML Superstructure 2.0 Draft Adopted Specification

SimpleTime

The SimpleTime subpackage of the Common Behavior package adds metaclasses to represent time and durations, as well
as actions to observe the passing of time.

The simple model of time described here is intended as an approximation for situations where the more complex aspects
of time and time measurement can safely be ignored. For example, this model does not account for the relativistic effects
that occur in many distributed systems, or the effects resulting from imperfect clocks with finite resolution, overflows,
drift, skew, etc. It is assumed that applications for which such characteristics are relevant will use a more sophisticated
model of time provided by an appropriate profile.

Figure 310 - Domain Model Showing Event Kinds

Spontaneous Event

Trigger Event

Change Event Time Event

Receiving Event
UML Superstructure 2.0 Draft Adopted Specification 373

13.2 Abstract syntax

Figure 311 shows the dependencies of the CommonBehaviors packages.

Figure 311 - Dependencies of the CommonBehaviors packages

Communicat ions

Basi cBehaviors

Kernel

(from Classes)

IntermediateActions

(from Actions)<<merge>>

Time

Interfaces

(from Classes)

<<merge>>
<<merge>>

<<merge>>

<<merg e>>
374 UML Superstructure 2.0 Draft Adopted Specification

BasicBehaviors

Figure 312 - Common Behavior

Figure 313 - Expression

Figure 314 - Precondition and postcondition constraints for behavior

Classifier
(from Kernel)

Class
(from Kernel)

BehavioralFeature

isAbstract : Boolean

BehavioredClassifier
Parameter
(from Kernel)

Behavior

isReentrant : Boolean

*

*

+redefinedBehavior

*

{subsets redefinedElement}

*

*0..1

+method

*

+specification

0..1

0..1

*+context

0..1
+ownedBehavior

*

{subsets ownedMember}

0..1

0..1
+classifierBehavior

0..1

{subsets ownedBehavior}0..1

*

0..1 +parameter

*

{ordered, subsets ownedMember}
0..1

*0..1

+/formalParameter

*{ordered}0..1

*0..1

+/returnResult

*{ordered}0..1

Activity

body : String
language : String

Parameter
(from Kernel)

Behavior

OpaqueExpression 0..1*

+/result

0..1*

0..1*

+behavior

0..1*

Constraint
(from Kernel)

Behavior

*0..1

+precondition

*{subsets ownedRule}0..1

{subsets namespace, subsets context}

*0..1

+postcondition

*{subsets ownedRule}0..1

{subsets namespace, subsets context}
UML Superstructure 2.0 Draft Adopted Specification 375

Communications

Figure 315 - Reception

Figure 316 - Extensions to behavioral features and signal

BehavioralFeature

concurrency : CallConcurrencyKind

BehavioredClassifier
(from BasicBeha vi ors)

Class

isActive : Boolean

Interface

Reception
* 0..1

+ownedReception

*

{subsets feature,
subsets ownedMember}

0..1

* 0..1

+ownedReception

*

{subsets feature,
subsets ownedMember}

0..1

Signal

*

0..1

*+signal

0..1

CallConcurrencyKind

sequent ial
guarded
concurrent

<<enumeration>>

BehavioralFeature

concurrency : CallConcurrencyKind

Property
(from Kernel)

Signal
*

*+raisedException

*

{redefines raisedException}
*

*

0..1

+ownedAtt ribute
* {ordered, subsets attribute, subsets ownedMember}

+owningSignal0..1
{subsets namespace, subsets classifier, subsets featuringClassifier}

Classifier
(from Kernel)
376 UML Superstructure 2.0 Draft Adopted Specification

Figure 317 - Triggers

SignalTrigger

Signal

**

+signal 1

Element
(from Kernel)

Operation
(f rom Kernel)

CallTrigger

1

*

+operation 1

*

ValueSpecification
(from Kernel)

ChangeTrigger

1+changeExpression 1

{subsets ownedElement}

TriggerTrigger

MessageTrigger

AnyTrigger

ValueSpecification
(from Kernel)

TimeTrigger

isRelative : Boolean

1+when 1

{subsets ownedElement}
UML Superstructure 2.0 Draft Adopted Specification 377

SimpleTime

13.3 Class Descriptions

13.3.1 Activity (from BasicBehaviors)

An activity specifies behavior by its body string.

Description

An activity contains a language-specific text string used to describe a computation, and an optional specification of the
language. OCL, natural language, or programming languages may be used to specify an activity.

Attributes

• body: String [0..1] A textual representation of the computation in the surface language determined by the lan-
guage attribute.

• language: String [0..1] Specifies the language in which the body of the activity is stated. The interpretation of the
expression body depends on the language.

Associations

No additional associations.

Figure 318 - SimpleTime

Constraint
(from Kernel)

IntervalConstraint

WriteStructuralFeatureAction
(from IntermediateActions)

TimeConstraint

DurationObservationAction

DurationConstraintDuration

firstTime : Boolean = True

+duration{redefines value}

DurationInterval +speci fi ca ti on

{redefines specification}

+min
{redefi nes mi n}

+max
{redefi nes max}

ValueSpecification
(from Kernel)

Interval +specification

{redefines specification}

1

+max

1

1

+min

1

TimeObservationAction

TimeInterval +specification

{rede fi nes specificat ion}
NamedElement

(f rom Kernel)

0..2 +event0..2

TimeExpression

firstTime : Boolean = True

+now
{redefin es va lue}

+min
{redefines min}

+max
{redefines max}

0..1

+event

0..1

TimeTrigger

1+when 1

{redefines when}
378 UML Superstructure 2.0 Draft Adopted Specification

Constraints

No additional constraints.

Semantics

The interpretation of the activity body depends on the specified language.

Notation

See “OpaqueExpression (from Kernel)” on page 46.

Changes from UML 1.x

In UML 1.4, the function of the Activity metaclass, as defined in this package, was subsumed by Expression.

13.3.2 AnyTrigger (from Communications)

Description

An AnyTrigger for a given state specifies that the transition is triggered for all applicable message triggers except for
those specified explicitly on other transitions for this state.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

An AnyTrigger for a given state specifies that the transition is triggered for all applicable message triggers except for
those specified explicitly on other transitions for this state.

Notation

Any AnyTrigger is denoted by the string “all” used as the trigger.

Changes from UML 1.x

This construct has been added.

13.3.3 Behavior (from BasicBehaviors)

Description

Behavior is a specification of how its context classifier changes state over time. This specification may be either a
definition of possible behavior execution or emergent behavior, or a selective illustration of an interesting subset of
possible executions. The latter form is typically used for capturing examples, such as a trace of a particular execution.
UML Superstructure 2.0 Draft Adopted Specification 379

A classifier behavior is always a definition of behavior and not an illustration. It describes the sequence of state changes an
instance of a classifier may undergo in the course of its lifetime. Its precise semantics depends on the kind of classifier. For
example, the classifier behavior of a collaboration represents emergent behavior of all the parts, whereas the classifier
behavior of a class is just the behavior of instances of the class separated from the behaviors of any of its parts.

When a behavior is associated as the method of a behavioral feature, it defines the implementation of that feature; i.e., the
computation that generates the effects of the behavioral feature.

As a classifier, a behavior can be specialized. Instantiating a behavior is referred to as “invocating” the behavior, an
instantiated behavior is also called a behavior “execution.” A behavior may be invoked directly or its invocation may be
the result of invoking the behavioral feature that specifies this behavior. A behavior can also be instantiated as an object
in virtue of it being a class.

The specification of a behavior can take a number of forms, as described in the subclasses of Behavior. Behavior is an
abstract metaclass factoring out the commonalities of these different specification mechanisms.

When a behavior is invoked, its execution receives a set of input values that are used to affect the course of execution and
as a result of its execution it produces a set of output values which are returned, as specified by its parameters. The
observable effects of a behavior execution may include changes of values of various objects involved in the execution, the
creation and destruction of objects, generation of communications between objects, as well as an explicit set of output
values.

Attributes

• isReentrant: Boolean [1] Tells whether the behavior can be invoked while it is still executing from a previous invo-
cation.

Associations

• specification: BehavioralFeature [0..1]
Designates a behavioral feature that the behavior implements. The behavioral feature
must be owned by the classifier that owns the behavior or be inherited by it. The param-
eters of the behavioral feature and the implementing behavior must match. If a behavior
does not have a specification, it is directly associated with a classifier (i.e., it is the
behavior of the classifier as a whole).

• context: BehavioredClassifier [0..1]
The classifier owning the behavior. The features of the context classifier as well as the ele-
ments visible to the context classifier are visible to the behavior.

• parameter: Parameter References a list of parameters to the behavior which describes the order and type of
arguments that can be given when the behavior is invoked and of the values which will
be returned when the behavior completes its execution. (Specializes Namespace.owned-
Member.)

• /formalParameter: Parameter References a list of parameters to the behavior which describes the order and type of
arguments that can be given when the behavior is invoked. Derived from Behav-
ior.parameter by omitting those parameters who have direction=return.

• /returnedResult: ReturnResult References a sequence of parameters to the behavior which describes the order and type
of values that will be returned when the behavior terminates. Derived from Behav-
ior.parameter by selecting those parameters who have direction=return.

• redefinedBehavior: Behavior References a behavior that this behavior redefines. A subtype of Behavior may redefine
any other subtype of Behavior. If the behavior implements a behavioral feature, it replaces
380 UML Superstructure 2.0 Draft Adopted Specification

the redefined behavior. If the behavior is a classifier behavior, it extends the redefined
behavior.

• precondition: Constraint An optional set of Constraints specifying what must be fulfilled when the behavior is
invoked. (Specializes Namespace.constraint and Constraint.context.)

• postcondition: Constraint An optional set of Constraints specifying what is fulfilled after the execution of the behav-
ior is completed, if its precondition was fulfilled before its invocation. (Specializes
Namespace.constraint and Constraint.context.)

Constraints

[1] The parameters of the behavior must match the parameters of the implemented behavioral feature.

[2] The implemented behavioral feature must be a feature (possibly inherited) of the context classifier of the behavior.

[3] If the implemented behavioral feature has been redefined in the ancestors of the owner of the behavior, then the behavior
must realize the latest redefining behavioral feature.

[4] There may be at most one behavior for a given pairing of classifier (as owner of the behavior) and behavioral feature (as
specification of the behavior).

Semantics

The detailed semantics of behavior is determined by its subtypes. The features of the context classifier and elements that
are visible to the context classifier are also visible to the behavior, provided that is allowed by the visibility rules.

When a behavior is invoked, its attributes and parameters (if any) are created and appropriately initialized. Upon
invocation, the arguments of the original invocation action are made available to the new behavior execution
corresponding to its formal parameters, if any. When a behavior completes its execution, a value or set of values is
returned corresponding to each return result parameter, if any. If such a parameter has a default value associated and the
behavior does not explicitly generate a value for this parameter, the default value describes the value that will be returned
corresponding to this parameter. If the invocation was synchronous, any return values from the behavior execution are
returned to the original caller, which is unblocked and allowed to continue execution

The behavior executes within its context object, independently of and concurrently with any existing behavior executions.
The object which is the context of the behavior manages the input pool holding the events to which a behavior may
respond (see BehavioredClassifier on page 383). As an object may have a number of behaviors associated, all these
behaviors may access the same input pool. The object ensures that each event on the input pool is consumed by only one
behavior.

When a behavior is instantiated as an object, it is its own context.

Semantic Variation Points

The means by which requests are transported to their target depend on the type of requesting action, the target, the
properties of the communication medium, and numerous other factors. In some cases, this is instantaneous and completely
reliable while in others it may involve transmission delays of variable duration, loss of requests, reordering, or
duplication. (See also the discussion on page 371.)

How the parameters of behavioral features or a behavior match the parameters of a behavioral feature is a semantic
variation point (see BehavioralFeature on page 382).

Notation

None.
UML Superstructure 2.0 Draft Adopted Specification 381

Changes from UML 1.x

This metaclass has been added. It abstracts the commonalities between the various ways that behavior can be
implemented in the UML. It allows the various ways of implementing behavior (as expressed by the subtypes of
Behavior) to be used interchangeably.

13.3.4 BehavioralFeature (from BasicBehaviors, Communications, specialized)

Description

A behavioral feature is implemented (realized) by a behavior. A behavioral feature specifies that a classifier will respond
to a designated request by invoking its implementing method.

Attributes

BasicBehaviors

• isAbstract: Boolean If true, then the behavioral feature does not have an implementation, and one must be
supplied by a more specific element. If false, the behavioral feature must have an imple-
mentation in the classifier or one must be inherited from a more general element.

Communications

• concurrency: CallConcurrencyKind
Specifies the semantics of concurrent calls to the same passive instance (i.e., an instance
originating from a class with isActive being false). Active instances control access to
their own behavioral features.

Associations

BasicBehaviors

• method: Behavior A behavioral description that implements the behavioral feature. There may be at most
one behavior for a particular pairing of a classifier (as owner of the behavior) and a behav-
ioral feature (as specification of the behavior).

Communications

• raisedException: Signal The signals that the behavioral feature raises as exceptions. (Specializes BehavioralFea-
ture.raisedException.)

Constraints

No additional constraints.

Semantics

The invocation of a method is caused by receiving a request invoking the behavioral feature specifying that behavior. The
details of invoking the behavioral feature are defined by the subclasses of BehavioralFeature.
382 UML Superstructure 2.0 Draft Adopted Specification

Semantic Variation Points

How the parameters of behavioral features or a behavior match the parameters of a behavioral feature is a semantic
variation point. Different languages and methods rely on exact match (i.e., the type of the parameters must be the same),
co-variant match (the type of a parameter of the behavior may be a subtype of the type of the parameter of the behavioral
feature), contra-variant match (the type of a parameter of the behavior may be a supertype of the type of the parameter of
the behavioral feature), or a combination thereof.

Changes from UML 1.x

The metaattributes isLeaf and isRoot have been replaced by properties inherited from RedefinableElement.

13.3.5 BehavioredClassifier (from BasicBehaviors)

Description

A classifier can have behavior specifications defined in its namespace. One of these may specify the behavior of the
classifier itself.

Attributes

No additional attributes.

Associations

• ownedBehavior: Behavior References behavior specifications owned by a classifier. (Specializes Namespace.owned-
Member.)

• classifierBehavior: Behavior [0..1]
A behavior specification that specifies the behavior of the classifier itself. (Specializes
BehavioredClassifier.ownedBehavior.)

Constraints

If a behavior is classifier behavior, it does not have a specification.

Semantics

The behavior specifications owned by a classifier are defined in the context of the classifier. Consequently, the behavior
specifications may reference features of the classifier. Any invoked behavior may, in turn, invoke other behaviors visible
to its context classifier. When an instance of a behaviored classifier is created, its classifier behavior is invoked.

When an event is recognized by an object that is an instance of a behaviored classifier, it may have an immediate effect
or the event may be saved for later triggered effect. An immediate effect is manifested by the invocation of a behavior as
determined by the event. A triggered effect is manifested by the storage of the event in the input event pool of the object
and the later consumption of the event by the execution of an ongoing behavior that reaches a point in its execution at
which a trigger matches the event in the pool. At this point, a behavior may be invoked as determined by the event.

When an executing behavior owned by an object comes to a point where it needs a trigger to continue its execution, the
input pool is examined for an event that satisfies the outstanding trigger or triggers. If an event satisfies one of the
triggers, the event is removed from the input pool and the behavior continues its execution, as specified. Any data
associated with the event are made available to the triggered behavior.
UML Superstructure 2.0 Draft Adopted Specification 383

Semantic Variation Points

It is a semantic variation whether one or more behaviors are triggered when an event satisfies multiple outstanding triggers.

If an event in the pool satisfies no triggers at a wait point, it is a semantic variation point what to do with it.

The ordering of the events in the input pool is a semantic variation.

Notation

See “Classifier (from Kernel, Dependencies, PowerTypes)” on page 61.

Changes from UML 1.x

In UML 1.4, there was no separate metaclass for classifiers with behavior.

13.3.6 CallConcurrencyKind (from Communications)

Description

CallConcurrencyKind is an enumeration with the following literals:

• sequential No concurrency management mechanism is associated with the operation and, therefore,
concurrency conflicts may occur. Instances that invoke a behavioral feature need to coor-
dinate so that only one invocation to a target on any behavioral feature occurs at once.

• guarded Multiple invocations of a behavioral feature may occur simultaneously to one instance,
but only one is allowed to commence. The others are blocked until the performance of
the first behavioral feature is complete. It is the responsibility of the system designer to
ensure that deadlocks do not occur due to simultaneous blocks.

• concurrent Multiple invocations of a behavioral feature may occur simultaneously to one instance
and all of them may proceed concurrently.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

Not applicable.

Notation

None.

Changes from UML 1.x

None.
384 UML Superstructure 2.0 Draft Adopted Specification

13.3.7 CallTrigger (from Communications)

A call trigger specifies that a given behavior execution may be triggered by a call event.

Description

A call trigger represents the reception of a request to invoke a specific operation and specifies a call event. A call event
is distinct from the call action that caused it. A call event may cause the invocation of a behavior that is the method of the
operation referenced by the call request, if that operation is owned or inherited by the classifier that specified the receiver
object.

Attributes

No additional attributes.

Associations

• operation: Operation [1] Designates the operation whose invocation raised the call event that is specified by the
call trigger.

Constraints

No additional constraints.

Semantics

A call trigger specifies that a behavior will be triggered by a call event as caused by the object receiving a call request
from some other object or from itself. The call event may result in the execution of the behavior that implements the
called operation. A call event may, in addition, cause other responses, such as a state machine transition, as specified in
the classifier behavior of the classifier that specified the receiver object. In that case, the additional behavior is invoked
after the completion of the operation referenced by the call trigger.

A call event makes available any argument values carried by the received call request to all behaviors caused by this
event (such as transition actions or entry actions).

Notation

None.

Changes from UML 1.x

This metaclass replaces CallEvent.

13.3.8 ChangeTrigger (from Communications)

A change trigger specifies that a behavior execution may trigger as the result of a change event.

Description

A change trigger specifies an event that occurs when a Boolean-valued expression becomes true as a result of a change in
value of one or more attributes or associations. A change event is raised implicitly and is not the result of an explicit
action.
UML Superstructure 2.0 Draft Adopted Specification 385

Attributes

No additional attributes.

Associations

• changeExpression: Expression [1]
A Boolean-valued expression that will result in a change event whenever its value
changes from false to true.

Constraints

No additional constraints.

Semantics

Each time the value of the change expression changes from false to true, a change event is generated.

Semantic Variation Points

It is a semantic variation when the change expression is evaluated. For example, the change expression may be
continuously evaluated until it becomes true. It is further a semantic variation whether a change event remains until it is
consumed, even if the change expression changes to false after a change event.

Notation

A change trigger is denoted by a Boolean expression.

Changes from UML 1.x

This metaclass replaces change event.

13.3.9 Class (from Communications, specialized)

Description

A class may be designated as active, i.e., each of its instance having its own thread of control, or passive, i.e., each of its
instance executing within the context of some other object.

A class may also specify which signals the instances of this class handle.

Attributes

• isActive: Boolean Determines whether an object specified by this class is active or not. If true, then the
owning class is referred to as an active class. If false, then such a class is referred to as a
passive class.

Associations

• ownedReception: Reception Receptions that objects of this class are willing to accept. (Specializes Namespace.owned-
Member and Classifier.feature.)
386 UML Superstructure 2.0 Draft Adopted Specification

Semantics

An active object is an object that, as a direct consequence of its creation, commences to execute its classifier behavior,
and does not cease until either the complete behavior is executed or the object is terminated by some external object.
(This is sometimes referred to as “the object having its own thread of control”.) The points at which an active object
responds to communications from other objects is determined solely by the behavior of the active object and not by the
invoking object. If the classifier behavior of an active object completes, the object is terminated.

Notation

Presentation options

A class with the property isActive = true can be shown by a class box with an additional vertical bar on either side, as
depicted in Figure 319.

13.3.10 Duration (from Time)

Description

A duration defines a value specification that specifies the temporal distance between two time expressions that specify
time instants.

Attributes

• firstTime:Boolean [0..2] If the duration is between times of two NamedElements, there are two Boolean attributes,
one for the start of the duration and one for the end of the duration. For each of these it
holds that firstTime is true if the time information is associated with the first point in time
of the NamedElement referenced by event, and false if it represents the last point in time
of the NamedElement. If there is only one NamedElement referenced by event, then this
attribute is irrelevant. The default value is true.

Associations

• event: NamedElement [0..2] Refers to the specification(s) that describes the starting TimeExpression and the ending
TimeExpression of the Duration. If only one NamedElement is referenced, the duration is
from the first point in time of that NamedElement until the last point in time of that
NamedElement.

Constraints

No additional constraints.

Semantics

A Duration defines a ValueSpecification that denotes some duration in time. The duration is given by the difference in
time between a starting point in time and an ending point in time.

Figure 319 - Active class

EngineControl
UML Superstructure 2.0 Draft Adopted Specification 387

If the ending point in time precedes the starting point in time the duration will still be positive assuming the starting point
and ending points to swap.

Notation

A Duration is a value of relative time given in an implementaion specific textual format. Often a Duration is a non-
negative integer expression representing the number of "time ticks" which may elapse during this duration.

Changes from UML 1.x

This metaclass has been added.

13.3.11 DurationConstraint (from Time)

Description

A DurationConstraint defines a Constraint that refers to a DurationInterval.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

The semantics of a DurationConstraint is inherited from Constraints.

Notation

A DurationConstraint is shown as some graphical association between a DurationInterval and the constructs that it
constrains. The notation is specific to the diagram type.

Examples

See example in Figure 320 where the TimeConstraint is associated with the duration of a Message and the duration
between two EventOccurrences.
388 UML Superstructure 2.0 Draft Adopted Specification

Changes from UML 1.x

This metaclass has been added.

13.3.12 DurationInterval (from Time)

Description

A DurationInterval defines the range between two Durations.

Attributes

No additional attributes.

Associations

• min: Duration [1] Refers to the Duration denoting the minimum value of the range.

• max: Duration [1] Refers to the Duration denoting the maximum value of the range.

Constraints

No additional constraints.

Semantics

None.

Figure 320 - DurationConstraint. and other time-related concepts

sd UserAccepted

:User :ACSystem

Code d=duration

CardOut {0..13}

OK
Unlock

{d..3*d}

t=now

{t..t+3}

DurationConstraint

DurationConstraint
UML Superstructure 2.0 Draft Adopted Specification 389

Notation

A DurationInterval is shown using the notation of Interval where each value specification element is a
DurationExpression.

13.3.13 DurationObservationAction (from Time)

Description

A DurationObservationAction defines an action that observes duration in time.

Attributes

No additional attributes.

Associations

• duration: Duration[1] represent the measured Duration

Constraints

No additional constraints.

Semantics

A DurationObservationAction measures a duration during a trace at runtime.

Notation

A Duration is depicted by text in the expression language used to denote a time value. It may be possible that a duration
contains arithmetic operators.

A duration observation is when a duration is assigned to a write-once variable. The duration observation is associated
with two NamedElements with lines.

durationobservation ::= write-once-attribute=duration

Examples

See example in Figure 321 where the duration observation records the duration of a message, i.e., the time between the
sending and the reception of that message.

Changes from UML 1.x

This metaclass has been added.

Figure 321 - Duration observation

Code d=duration

Duration
in a duration observation
of a Message
390 UML Superstructure 2.0 Draft Adopted Specification

13.3.14 Interface (from Communications, specialized)

Description

Adds the capability for interfaces to include receptions (in addition to operations).

Associations

• ownedReception: Reception Receptions that objects providing this interface are willing to accept. (Subsets
Namespace.ownedMember and Classifier.feature.)

13.3.15 Interval (from Time)

Description

An Interval defines the range between two value specifications.

Attributes

No additional attributes.

Associations

• min: ValueSpecification[1] Refers to the ValueSpecification denoting the minimum value of the range.

• max: ValueSpecification[1] Refers to the ValueSpecification denoting the maximum value of the range.

Constraints

No additional constraints.

Semantics

The semantics of an Interval is always related to Constraints in which it takes part.

Notation

An Interval is denoted textually by two ValueSpecifications separated by “..”:
interval ::= valuespecification-min .. valuespecification-max

Changes from UML 1.x

This metaclass has been added.

13.3.16 IntervalConstraint (from Time)

Description

A IntervalConstraint defines a Constraint that refers to an Interval.

Attributes

No additional attributes.
UML Superstructure 2.0 Draft Adopted Specification 391

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

The semantics of an IntervalConstraint is inherited from Constraint. All traces where the constraints are violated are
negative traces, i.e., if they occur in practice the system has failed.

Notation

An IntervalConstraint is shown as a graphical association between an Interval and the constructs that this Interval
constrains. The concrete form is given in its subclasses.

Changes from UML 1.x

This metaclass has been added.

13.3.17 MessageTrigger (from Communications)

Description

A message trigger specifies the an observable event caused by a either a call or a signal. MessageTrigger is an abstract
metaclass.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

No additional semantics.

Notation

None.

Changes from UML 1.x

The metaclass has been added.
392 UML Superstructure 2.0 Draft Adopted Specification

13.3.18 OpaqueExpression (from BasicBehaviors, specialized)

Description

Provides a mechanism for precisely defining the behavior of an opaque expression. An opaque expression is defined by a
behavior restricted to return one result.

Attributes

No additional attributes.

Associations

• behavior: Behavior [0..1] Specifies the behavior of the opaque expression.

• result: Parameter [0..1] Restricts an opaque expression to return exactly one return result. When the invocation of
the opaque expression completes, a single set of values is returned to its owner. This asso-
ciation is derived from the single return result parameter of the associated behavior.

Constraints

[1] The behavior must not have formal parameters.

[2] The behavior must have exactly one return result parameter.

Semantics

An opaque expression is invoked by the execution of its owning element. Anopaque expression does not have formal
parameters and thus cannot be passed data upon invocation. It accesses its input data through elements of its behavioral
description. Upon completion of its execution, a single value or a single set of values is returned to its owner.

13.3.19 Operation (from Communications, as specialized)

Description

On operation may invoke both the execution of method behaviors as well as other behavioral responses.

Semantics

If an operation is not mentioned in a trigger of a behavior owned or inherited by the behaviored classifier owning the
operation, then upon occurrence of a call event (representing the receipt of a request for the invocation of this operation)
a resolution process is performed which determines the method behavior to be invoked, based on the operation and the
data values corresponding to the parameters of the operation transmitted by the request. Otherwise, the call event is
placed into the input pool of the object (see BehavioredClassifier on page 383). If a behavior is triggered by this event, it
begins with performing the resolution process and invoking the so determined method. Then the behavior continues its
execution as specified.

Operations specify immediate or triggered effects (see “BehavioredClassifier” on page 383).

Semantic Variation Points

Resolution specifies how a particular behavior is identified to be executed in response to the invocation of an operation,
using mechanisms such as inheritance. The mechanism by which the behavior to be invoked is determined from an
operation and the transmitted argument data is a semantic variation point. In general, this mechanism may be complicated
UML Superstructure 2.0 Draft Adopted Specification 393

to include languages with features such as before-after methods, delegation, etc. In some of these variations, multiple
behaviors may be executed as a result of a single call. The following defines a simple object-oriented process for this
semantic variation point.

• Object-oriented resolution When a call request is received, the class of the target object is examined for an owned
operation with matching parameters (see “BehavioralFeature” on page 382). If such oper-
ation is found, the behavior associated as method is the result of the resolution. Otherwise
the parent classifier is examined for a matching operation, and so on up the generalization
hierarchy until a method is found or the root of the hierarchy is reached. If a class has mul-
tiple parents, all of them are examined for a method. If a method is found in exactly one
ancestor class, then that method is the result of the resolution. If a method is found in more
than one ancestor class along different paths, then the model is ill-formed under this
semantic variation.

If no method by the resolution process, then it is a semantic variation point what is to happen.

13.3.20 Reception (from Communications)

Description

A reception is a declaration stating that a classifier is prepared to react to the receipt of a signal. A reception designates a
signal and specifies the expected behavioral response. The details of handling a signal are specified by the behavior
associated with the reception or the classifier itself.

Attributes

No additional attributes.

Associations

• signal: Signal [0..1] The signal that this reception handles.

Constraints

[1] A Reception can not be a query.

not self.isQuery

[2] A passive class cannot have receptions.

Semantics

The receipt of a signal instance by the instance of the classifier owning a matching reception will cause the asynchronous
invocation of the behavior specified as the method of the reception. A reception matches a signal if the received signal is
a subtype of the signal referenced by the reception. The details of how the behavior responds to the received signal
depends on the kind of behavior associated with the reception. (For example, if the reception is implemented by a state
machine, the signal event will trigger a transition and subsequent effects as specified by that state machine.)

Receptions specify triggered effects (see “BehavioredClassifier” on page 383).
394 UML Superstructure 2.0 Draft Adopted Specification

Notation

Receptions are shown using the same notation as for operations with the keyword «signal», as shown in Figure 322.

Changes from UML 1.x

None.

13.3.21 Signal (from Communications)

Description

A signal is a specification of type of send request instances communicated between objects. The receiving object handles
the signal instance as specified by its receptions. The data carried by a send request and passed to it by the occurrence of
the send invocation event that caused the request is represented as attributes of the signal instance. A signal is defined
independently of the classifiers handling the signal.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

A signal triggers a reaction in the receiver in an asynchronous way and without a reply. The sender of a signal will not
block waiting for a reply but continue execution immediately. By declaring a reception associated to a given signal, a
classifier specifies that its instances will be able to receive that signal, or a subtype thereof, and will respond to it with the
designated behavior. An exception is also represented as signal and is typically used to indicate fault situations.

Notation

A signal is depicted by a classifier symbol with the keyword «signal».

Changes from UML 1.x

None.

Figure 322 - Showing signal receptions in classifiers

«signal» Notify
«signal» Activate

«interface»
IAlarm
UML Superstructure 2.0 Draft Adopted Specification 395

13.3.22 SignalTrigger (from Communications)

A signal trigger represents the fact that a behavior may trigger based upon the receipt of an asynchronous signal instance.
A signal event may e.g. cause a state machine to trigger a transition.

Description

A signal event represents the receipt of an asynchronous signal. A signal event may cause a response, such as a state
machine transition as specified in the classifier behavior of the classifier that specified the receiver object, if the signal
referenced by the send request is mentioned in a reception owned or inherited by the classifier that specified the receiver
object.

Attributes

• signal: Signal [1] The specific signal that is associated with this event.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

A signal trigger specifies a signal event as caused by an object receiving a send request from some other object or from
itself. A signal event may result in the execution of the behavior that implements the reception matching the received
signal.

A signal event makes available any argument values carried by the received send request to all behaviors caused by this
event (such as transition actions or entry actions).

Semantic Variation Points

The means by which requests are transported to their target depend on the type of requesting action, the target, the
properties of the communication medium, and numerous other factors. In some cases, this is instantaneous and completely
reliable while in others it may involve transmission delays of variable duration, loss of requests, reordering, or
duplication. (See also the discussion on page 371.)

Notation

See Trigger on page 400.

Changes from UML 1.x

This metaclass replaces SignalEvent.

13.3.23 TimeConstraint (from Time)

Description

A TimeConstraint defines a Constraint that refers to a TimeInterval.
396 UML Superstructure 2.0 Draft Adopted Specification

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

The semantics of a TimeConstraint is inherited from Constraints. All traces where the constraints are violated are negative
traces i.e. if they occur in practice the system has failed.

Notation

A TimeConstraint is shown as graphical association between a TimeInterval and the construct that it constrains. Typically
this graphical association is a small line, e.g., between an EventOccurrence and a TimeInterval.

Examples

See example in Figure 323 where the TimeConstraint is associated with the reception of a Message.

Changes from UML 1.x

This metaclass has been added.

13.3.24 TimeExpression (from Time)

Description

A Time Expression defines a value specification that represent a time value.

Attributes

• firstTime:Boolean True if the TimeExpression describes the first point in time of the NamedElement refer-
enced by event, in cases where the NamedElement describes something which extends in

Figure 323 - TimeConstraint

TimeConstraint

:User

CardOut {0..13}

{t..t+3}
UML Superstructure 2.0 Draft Adopted Specification 397

time. False if the TimeExpression describes the last point in time for the referenced
NamedElement.

Associations

• event: NamedElement [0..1] Refers to the specification of the event occurrence that the TimeExpression describes

Constraints

No additional constraints.

Semantics

A TimeExpression denotes a time value.

Notation

A TimeExpression is a value of absolute time given in an implementation specific textual format. Often a TimeExpression
is a non-negative integer expression representing the number of "time ticks" after some given starting point.

Changes from UML 1.x

This metaclass has been added.

13.3.25 TimeInterval (from Time)

Description

A TimeInterval defines the range between two TimeExpressions.

Attributes

No additional attributes.

Associations

• min: TimeExpression [1] Refers to the TimeExpression denoting the minimum value of the range

• max: TimeExpression [1] Refers to the TimeExpression denoting the maximum value of the range

Constraints

No additional constraints.

Semantics

None.

Notation

A TimeInterval is shown with the notation of Interval where each value specification element is a TimeExpression.

Changes from UML 1.x

This metaclass has been added.
398 UML Superstructure 2.0 Draft Adopted Specification

13.3.26 TimeObservationAction (from Time)

Description

A TimeObservationAction defines an action that observes the current point in time.

Attributes

No additional attributes.

Associations

• now: TimeExpression [1] Represents the current point in time.

Constraints

No additional constraints.

Semantics

A TimeObservationAction is an action that, when executed, returns the current value of time in the context in which it is
executing.

Notation

A TimeExpression is depicted by text in the expression language used to denote a time value. It may be possible that a
time value contains arithmetic operators. The time expression is associated with a NamedElement with a line. A time
observation action assigns a time expression to a write-once attribute.

timeobservation ::= write-once-attribute=now

Changes from UML 1.x

This metaclass has been added.

13.3.27 TimeTrigger (from Communications)

A TimeTrigger is a trigger that specifies when a time event will be generated. The time event occurs at the instant when
a specified point in time has transpired.

Figure 324 - Time observation

:ACSystem

OK
t=now

TimeObservationAction
UML Superstructure 2.0 Draft Adopted Specification 399

Description

A time trigger specifies a time event, which models the expiration of a specific deadline.

Attributes

• isRelative: Boolean Specifies whether it is relative or absolute time.

Associations

• when: TimeExpression [1] Specifies the corresponding time deadline.

Constraints

No additional constraints.

Semantics

The expression specifying the deadline may be relative or absolute. If the time trigger is relative, a starting time must be
defined.

Semantic Variation Points

There may be a variable delay between the time of reception and the time of dispatching of the TimeEvent (e.g., due to
queueing delays).

Notation

A relative time trigger is specified with the keyword ‘after’ followed by an expression that evaluates to a time value, such
as “after (5 seconds)”. An absolute time trigger is specified as an expression that evaluates to a time value, such as “Jan.
1, 2000, Noon”.

Changes from UML 1.x

This metaclass replaces TimeEvent. The attribute isRelative has been added for clarity.

13.3.28 Trigger (from Communications)

A trigger specifies the an event that may cause the execution of an associated behavior.

Description

A trigger specifies the an event that may cause the execution of an associated behavior. An event is often ultimately
caused by the execution of an action, but need not be. Trigger is an abstract metaclass.

Attributes

No additional attributes.

Associations

• port: Port [*] Optionally specifies the ports at which a communication that caused an event may have
arrived.
400 UML Superstructure 2.0 Draft Adopted Specification

Constraints

No additional constraints.

Semantics

Events may cause execution of behavior, e.g the execution of the effect activity of a transition in a state machine. A
triggers specifies the event that may trigger a behavior execution as well as any constraints on the event to filter out
events not of interest. Based upon the different kinds of events that may trigger behavior execution, triggers are classified
into signal trigger, call trigger, change trigger and time trigger, specifying that a behavior might be triggered by a signal
event, call event, change event, or time event, respectively.

Events are often generated as a result of some action either within the system or in the environment surrounding the
system. Upon their occurrence, events are placed into the input pool of the object where they occurred (see
BehavioredClassifier on page 383). An event is dispatched when it is taken from the input pool and either directly cause
the occurrence of a behavior or are delivered to the classifier behavior of the receiving object for processing. At this
point, the event is considered consumed and referred to as the current event. A consumed event is no longer available for
processing.

Semantic Variation Points

No assumptions are made about the time intervals between event occurrence, event dispatching, and consumption. This
leaves open the possibility of different semantic variations such as zero-time semantics.

It is a semantic variation whether an event is discarded if there is no appropriate trigger defined for them.

Notation

A trigger is denoted by a list of names of the triggering events, followed by an assignment specification:
event-name-list [‘(’ assignment-specification ‘)’]

where the assignment-specification is a comma separated list of items, where each item may be of the form

• attr-name: this implies an implicit assignment of the corresponding parameter of the event to an attribute (with this
name) of the of the context object owning the triggered behavior.

Changes from UML 1.x

The corresponding metaclass in 1.x was Event. In 1.x, events were specified with Parameters. Instead, the data that may
be communicated by an event is accessed via the properties of the specification element defining the event. In UML 2.0,
the term “event” means an occurrence of an event of a particular type, whereas in UML 1.x, that same term indicated the
event type.
UML Superstructure 2.0 Draft Adopted Specification 401

402 UML Superstructure 2.0 Draft Adopted Specification

14 Interactions

14.1 Overview

Interactions are used in a number of different situations. They are used to get a better grip of an interaction situation for
an individual designer or for a group that need to achieve a common understanding of the situation. Interactions are also
used during the more detailed design phase where the precise inter-process communication must be set up according to
formal protocols. When testing is performed, the traces of the system can be described as interactions and compared with
those of the earlier phases.

The Interaction package describes the concepts needed to express Interactions.Depending on their purpose, an interaction
can be displayed in several different types of diagrams: Sequence Diagrams, Interaction Overview Diagrams and
Communication Diagrams. Optional diagram types such as Timing Diagrams and Interaction Tables come in addition.
Each type of diagram provides slightly different capabilities that makes it more appropriate for certain situations.

Interactions are a common mechanism for describing systems that can be understood and produced, at varying levels of
detail, by both professionals of computer systems design, as well as potential end users and stakeholders of (future)
systems.

Typically when interactions are produced by designers or by running systems, the case is that the interactions do not tell
the complete story. There are normally other legal and possible traces that are not contained within the described
interactions. Some projects do, however, request that all possible traces of a system shall be documented through
interactions in the form of e.g. sequence diagrams or similar notations.

The most visible aspects of an Interaction are the messages between the lifelines. The sequence of the messages is
considered important for the understanding of the situation. The data that the messages convey and the lifelines store may
also be very important, but the Interactions do not focus on the manipulation of data even though data can be used to
decorate the diagrams.

In this chapter we use the term trace to mean “sequence of eventoccurrences” which corresponds well with common use
in the area of trace-semantics which is a preferred way to describe the semantics of Interactions. We may denote this by
<eventoccurrence1, eventoccurrence2, ...,eventoccurrence-n>. We are aware that other parts of the UML languatge
definition the term “trace” is used also for other purposes.

By interleaving we mean the merging of two or more traces such that the events from different traces may come in any
order in the resulting trace, while events within the same trace retain their order. Interleaving semantics is different from
a semantics where it is perceived that two events may occur at exactly the same time. To explain Interactions we apply an
Interleaving Semantics.
UML Superstructure 2.0 Draft Adopted Specification 403

14.2 Abstract syntax

Package structure

Figure 325 - Dependencies of the Interactions packages

BasicInteractions

Fragments

Ba si cBeh aviors

(from CommonBehaviors)

<<merge>>

Kernel

(from Classes)

<<merge>>

InternalStructures

(from CompositeStructures)

<<merg e>>

<<merge>>

BasicActivities

(from Activities)

<<merge>>
404 UML Superstructure 2.0 Draft Adopted Specification

BasicInteractions

Figure 326 - Interaction. (from BasicInteractions)

ExecutionOccurrence EventOccurrence

Behavior
(f rom BasicBehav iors)

NamedElement
(from Kernel)

Constraint
(f rom Kernel)

StateInvariant

1
+invariant

1

InteractionFragment

Interaction

*

0 ..1

+fragment

*

+enclosingInteraction

0 ..1

Stop

{ordered
s ubsets ownedMember}

{s ubsets ownedMember}
UML Superstructure 2.0 Draft Adopted Specification 405

Figure 327 - Lifeline (from BasicInteractions)

NamedElement
(from Kernel)

InteractionFragment

ConnectableElement
(from InternalStructures)

Expression
(from Kernel)

EventOccurrence

StateInvariant

Lifeline

*

*

+covered *

+coveredBy *

*

1

*

+represents
1 0..1

0..1

+discriminator
0..1

0..1

*

1

*

+covered

1

*

1

*

+covered
1

Interact ion

*

1

+lifeline

*

+interaction
1

{redefines covered}

{redefines covered}{subsets ownedMember}

{subsets ownedElement}

{subsets namespace}
406 UML Superstructure 2.0 Draft Adopted Specification

Figure 328 - Messages (from BasicInteractions)

++
++

MessageKind

complete
lost
found
unknown

<<enumeration>>

NamedElement
(from Kernel)

NamedElement
(from Kernel)

MessageSort

synchCall
synchSignal
asynchCall
asynchSignal

<<enumeration>>

Connector
(from InternalStructures)

MessageEnd

Interaction

NamedElement
(from Dependencies)

ValueSpecification
(from Kernel)

Message

/ messageKind : MessageKind
messageSort : MessageSort

0..1

*

+connector 0..1

*

0..1 0..1
+sendMessage

0..1

+sendEvent

0..1

0..1 0..1

+receiveMessage

0..1

+receiveEvent

0..1

*

1

+message
*

+interaction1

0..1+signature 0..1

* 0..1

+argument

* 0..1

InteractionFragment

GeneralOrdering

*+generalOrdering *
EventOccurrence

1 *

+before

1

+toAfter

*
*1

+toBefore
*

+after
1

Behavior
(from BasicBehaviors)

ExecutionOccurrence

*

1

+startExec*

+start1

*

1

+finishExec*

+finish1

+behavior

{subsets ownedElement}

{subsets ownedMember}

{subsets namespace}

{subsets ownedElement}
UML Superstructure 2.0 Draft Adopted Specification 407

Fragments

Figure 329 - CombinedFragments (from Fragments)

Figure 330 - Gates (from Fragments)

Constraint
(from Kernel)

ValueSpecification
(from Kernel)

InteractionFragment
(from BasicInteractions)

InteractionConstraint

0..1+minint 0..1

0..1+maxint 0..1

InteractionOperand

*

0..1

+fragment

*

+enclosingOperand

0..1

{ordered}

0..1

1

+guard
0..1

1

CombinedFragment

interactionOperator : Interact ionOperat...1..* 0..1

+operand

1..* 0..1

InteractionOperator

seq
alt
opt
break
par
strict
loop
region
neg
assert
ignore
consider

<<enumeration>>

Continuation

setting : Boolean = True

{subsets namespace}

{subsets ownedMember}

{subsets ownedElement}

{subsets ownedElement}

{subsets ownedElement}

MessageEnd
(f ro m Basi cInteract io ns)

CombinedFragment

InteractionOccurrence

Gate

*0..1

+cfragmentGate

*0..1

0..1 *0..1

+actualGate

*

Interaction
*

0..1

+formalGate

*
0..1

{subsets ownedMember}

{subsets ownedMember}

{subsets ownedMember}
408 UML Superstructure 2.0 Draft Adopted Specification

14.3 Class Descriptions

14.3.1 CombinedFragment (from Fragments)

A combined fragment defines an expression of interaction fragments. A combined fragment is defined by an interaction
operator and corresponding interaction operands. Through the use of CombinedFragments the user will be able to describe
a number of traces in a compact and concise manner.

CombinedFragment is a specialization of InteractionFragment.

Attributes

• interactionOperator : InteractionOperator Specifies the operation which defines the semantics of this combination of
InteractionFragments.

Associations

• cfragmentGate : Gate[*] Specifies the gates that form the interface between this CombinedFragment and its sur-
roundings

• operand: InteractionOperand[1..*]The set of operands of the combined fragment.

Constraints

[1] If the interactionOperator is opt, loop or neg there must be exactly one operand

[2] The InteractionConstraint with minint and maxint only apply when attached to an InteractionOperand where the interac-
tionOperator is loop.

Figure 331 - InteractionOccurrence (from Fragments)

InputPin
(from BasicActivities)

InteractionInteractionOccurrence

* 0..1

+argument

* 0..1
1

* +refersTo

1

*

InteractionFragment
(from BasicInteractions)

PartDecompos it ion Lifel ine1

+decomposedAs

1

UML Superstructure 2.0 Draft Adopted Specification 409

Semantics

The semantics of a CombinedFragment is dependent upon the interactionOperator as explained below.

Alternatives

The interactionOperator alt designates that the CombinedFragment represents a choice of behavior. At most one of the
operands will execute. The operand that executes must have an explicit or implicit guard expression that evaluates to true
at this point in the interaction. An implicit true guard is implied if the operand has no guard.

The set of traces that defines a choice is the union of the (guarded) traces of the operands.

An operand guarded by else designates a guard that is the negation of the disjunction of all other guards in the enclosing
CombinedFragment.

Option

The interactionOperator opt designates that the CombinedFragment represents a choice of behavior where either the (sole)
operand happens or nothing happens. An option is semantically equivalent to an alternative CombinedFragment where
there is one operand with non-empty content and the second operand is empty.

Break

The interactionOperator break designates that the CombinedFragment represents a breaking scenario in the sense that the
operand is a scenario that is performed instead of the remainder of the enclosing InteractionFragment. Thus the break
operator is a shorthand for an Alternative operator where one operand is given and the other assumed to be the rest of the
enclosing InteractionFragment.

Break CombinedFragments must be global relative to the enclosing InteractionFragment.

Parallel

The interactionOperator par designates that the CombinedFragment represents a parallel merge between the behaviors of
the operands. The eventoccurrences of the different operands can be interleaved in any way as long as the ordering
imposed by each operand as such is preserved.

A parallel merge defines a set of traces that describes all the ways that eventoccurrences of the operands may be
interleaved without obstructing the order of the eventoccurrences within the operand.

Weak Sequencing

The interactionOperator seq designates that the CombinedFragment represents a weak sequencing between the behaviors
of the operands.

Weak sequencing is defined by the set of traces with these properties:

1. The ordering of eventoccurrences within each of the operands are maintained in the result

2. Eventoccurrences on different lifelines from different operands may come in any order.

3. Eventoccurrences on the same lifeline from different operands are ordered such that an eventoccurrence of the first
operand comes before that of the second operand.

Thus weak sequencing reduces to a parallel merge when the operands are on disjunct sets of participants. Weak
sequencing reduces to strict sequencing when the operands work on only one participant.
410 UML Superstructure 2.0 Draft Adopted Specification

Strict Sequencing

The interactionOperator strict designates that the CombinedFragment represents a strict sequencing between the behaviors
of the operands. The semantics of the strict operation defines a strict ordering of the operands on the first level within the
CombinedInteraction with operator strict. Therefore eventoccurrences within contained CombinedInteractions will not
directly be compared with other eventoccurrences of the enclosing CombinedInteraction.

Negative

The interactionOperator neg designates that the CombinedFragment represents traces that are defined to be invalid.

The set of traces that defined a negative CombinedFragment is equal to the set of traces given by its (sole) operand, only
that this set is a set of invalid rather than valid traces. All InteractionFragments that are different from Negative are
considered positive meaning that they describe traces that are valid and should be possible.

Critical Region

The interactionOperator critical designates that the CombinedFragment represents a critical region. A critical region
means that the traces of the region cannot be interleaved by other Eventoccurrences (on those Lifelines covered by the
region). This means that the region is treated atomically by the enclosing fragment when determining the set of valid
traces. Even though enclosing CombinedFragments may imply that some Eventoccurrences may interleave into the
region, such as e.g. with par-operator, this is prevented by defining a region.

Thus the set of traces of enclosing constructs are restricted by critical regions.

Figure 332 - Critical Region

sd CriticalRegion

:Operator :Caller:Emergency :Callee

call(100)

call(100)

par

call(101)

call(101)

critical call(911)

call(911)
UML Superstructure 2.0 Draft Adopted Specification 411

The example in Figure 332 shows that the handling of a 911-call must be contiguously handled. For the operator he must
make sure to forward the 911-call before doing anything else. The normal calls, however, can be freely interleaved.

Ignore / Consider

The interactionOperator ignore designates that there are some message types that are not shown within this combined
fragment. These message types can be considered insignificant and are intuitively ignored if they appear in a
corresponding execution. Alternatively one can understand ignore to mean that the messages that are ignored can appear
anywhere in the traces.

Conversely the interactionOperator consider designates which messages should be considered within this
CombinedFragment. This is equivalent to defining every other message to be ignored.

Assertion

The interactionOperator assert designates that the CombinedFragment represents an assertion. The sequences of the
operand of the assertion are the only valid continuations. All other continuations result in an invalid trace.

Assertions are often combined with Ignore or Consider as shown in Figure 345.

Loop

The interactionOperator loop designates that the CombinedFragment represents a loop. The loop operand will be repeated
a number of times.

The Guard may include a lower and an upper number of iterations of the loop as well as a Boolean expression. The
semantics is such that a loop will iterate minimum the ‘minint’ number of times (given by the iteration expression in the
guard) and at most the ‘maxint’ number of times. After the minimum number of iterations have executed, and the boolean
expression is false the loop will terminate. The loop construct represent a recursive application of the seq operator where
the loop operand is sequenced after the result of earlier iterations.

The Semantics of Gates (see also “Gate (from Fragments)” on page 418)

The gates of a CombinedFragment represent the syntactic interface between the CombinedFragment and its surroundings,
which means the interface towards other InteractionFragments.

The only purpose of gates is to define the source and the target of Messages or General Order relations.

Notation

The notation for a CombinedFragment in a Sequence Diagram is a solid-outline rectangle. The operator is shown in a
pentagon in the upper left corner of the rectangle.

More than one operator may be shown in the pentagon descriptor. This is a shorthand for nesting CombinedFragments.
This means that sd strict in the pentagon descriptor is the same as two CombinedFragments nested, the outermost with sd
and the inner with strict.

The operands of a CombinedFragment are shown by tiling the graph region of the CombinedFragment using dashed
horizontal lines to divide it into regions corresponding to the operands.
412 UML Superstructure 2.0 Draft Adopted Specification

Strict

Notationally this means that the vertical coordinate of the contained fragments is significant throughout the whole scope
of the CombinedFragment and not only on one Lifeline. The vertical position of an EventOccurrence is given by the
vertical position of the corresponding point. The vertical position of other InteractionFragments is given by the topmost
vertical position of its bounding rectangle.

Ignore / Consider

Textual syntax: (ignore | consider){ <message name>{,<message name>}* }

Examples: consider {m, s}: showing that only m and s messages are considered significant

ignore {q,r}: showing that q and r messages are considered insignificant

Ignore and consider operations are typically combined with other operations such as “assert consider {m, s}”

See example in Figure 345.

Loop

Textual syntax of the loop operand: loop [‘(‘ <minint> [, <maxint>] ‘)’]

<minint> ::= non-negative natural

<maxint> ::= non-negative natural (greater than or equal to <minint> | ‘*’

‘*’ means infinity.

If only <minint> is present, this means that minint=maxint=integer.

If only loop then this means a loop with infinity upper bound and with 0 as lower bound.

Presentation Option for “coregion area”

A notational shorthand for parallel combined fragments are available for the common situation where the order of event
occurrences (or other nested fragments) on one Lifeline is insignificant. This means that in a given “coregion” area of a
Lifeline all the directly contained fragments are considered separate operands of a parallel combined fragment. See
example in Figure 333.
UML Superstructure 2.0 Draft Adopted Specification 413

Examples

Rationale

Not applicable.

Changes from UML 1.x

This concept was not included in UML 1.x.

14.3.2 Continuation (from Fragments)

A Continuation is a syntactic way to define continuations of different branches of an Alternative CombinedFragment.
Continuations is intuitively similar to labels representing intermediate points in a flow of control.

Attributes

• setting : Boolean True: when the Continuation is at the end of the enclosing InteractionFragment and False
when it is in the beginning.

Figure 333 - CombinedFragment

sd example

ob1:C1 ob3:C3 ob4:C4

opti

alt
[x>0]

ob2:C2
create

foo(foo_par=x)

foo(_)

doit(z)

doit(_)

[else]
doit(z)

doit(_)

bar(x)

x=bar(_):15

InteractionConstraint

CombinedFragment
(Alternative)

InteractionOperator

InteractionOperand separator
414 UML Superstructure 2.0 Draft Adopted Specification

Constraints

[1] Continuations with the same name may only cover the same set of Lifelines (within one Classifier).

[2] Continuations are always global in the enclosing InteractionFragment e.g. it always covers all Lifelines covered by the
enclosing InteractionFragment.

[3] Continuations always occur as the very first InteractionFragment or the very last InteractionFragment of the enclosing
InteractionFragment.

Semantics

Continuations have semantics only in connection with Alternative CombinedFragments and (weak) sequencing.

If an InteractionOperand of an Alternative CombinedFragment ends in a Continuation with name (say) X, only
InteractionFragments starting with the Continuation X (or no continuation at all) can be appended.

Notation

Continuations are shown with the same symbol as States, but they may cover more than one Lifeline.

Continuations may also appear on flowlines of Interaction Overview Diagrams.

Continuations that are alone in an InteractionFragment is considered to be at the end of the enclosing
InteractionFragment.

Figure 334 - Continuation

sd Continue

:A :B :C

ref
Question

alt
ok

notOK

yes

no

sd Question

:A :B

alt

ok

notOK

ask

DoSth

nonono

Continuation (setting==False) Continuation (setting==True)
UML Superstructure 2.0 Draft Adopted Specification 415

The two diagrams in Figure 334 are together equivalent to the diagram in Figure 335.

14.3.3 EventOccurrence (from BasicInteractions)

EventOccurrences represents moments in time to which Actions are associated. An EventOccurrence is the basic semantic
unit of Interactions. The sequences of Eventoccurrences are the meanings of Interactions. Messages are sent through
either asynchronous signal sending or operation calls. Likewise they are recieved by Receptions or actions of
consumption.

EventOccurrence is a specialization of InteractionFragment and of MessageEnd.

EventOccurrences are ordered along a Lifeline.

The namespace of an EventOccurrence is the Interaction in which it is contained.

Associations

• startExec: ExecutionOccurrence[0..1]References the ExecutionOccurrence of start (of action)

• finishExec:ExecutionOccurrence[0..1]References the ExecutionOccurrence of finish (of action)

• covered: Lifeline[1] References the Lifeline on which the Eventoccurrence appears. Redefines Interaction-
Fragment.covered.

• toBefore:GeneralOrdering[*] References the GeneralOrderings that specify EventOcurrences that must occur before this
EventOccurrence

• toAfter: GeneralOrdering[*] References the GeneralOrderings that specify EventOcurrences that must occur after this
EventOccurrence

Figure 335 - Continuation interpretation

sd Continue

:A :B :C

alt

no

ask

DoSth

yes

nonono
416 UML Superstructure 2.0 Draft Adopted Specification

Semantics

The semantics of an EventOccurrence is just the trace of that single EventOccurrence.

The understanding and deeper meaning of the Eventoccurrence is dependent upon the associated Message and the
information that it conveys.

Notation

Eventoccurrences are merely syntactic points at the ends of Messages or at the beginning/end of an ExecutionOccurrence.

Examples

14.3.4 ExecutionOccurrence (from BasicInteractions)

An ExecutionOccurrence is an instantiation of a unit of behavior within the Lifeline. Since the ExecutionOccurrence will
have some duration, it is represented by two Eventoccurrences, the start EventOccurrence and the finish
EventOccurrence.

An ExecutionOccurrence is an InteractionFragment.

Associations

• start : Eventoccurrence[1] References the Eventoccurrence that designates the start of the Action

• finish: Eventoccurrence[1] References the Eventoccurrence that designates the finish of the Action.

• behavior:Behavior[0..1] References the associated behavior

Constraints

[1] The startEvent and the finishEvent must be on the same Lifeline
start.lifeline = finish.lifeline

Semantics

The trace semantics of Interactions merely see an ExecutionOccurrence as the trace <start, finish>. There may be
Eventoccurrences between these. Typically the start Eventoccurrence and the finish Eventoccurrence will refer to
Eventoccurrences such as a receive Eventoccurrence (of a Message) and the send Eventoccurrence (of a return Message).

Figure 336 - EventOccurrence

sd EventOccurrence

:Lifeline

msg

EventOccurrence

Message

(formal)
Gate

(msg.sendEvent)
UML Superstructure 2.0 Draft Adopted Specification 417

Notation

ExecutionOccurences are represented as thin rectangles (grey or white) on the lifeline (see “Lifeline (from
BasicInteractions, Fragments)” on page 427).

We may also represent an ExecutionOccurrence as Actions are represented in Activity diagrams.

ExecutionOccurrences that refer to atomic actions such as reading attributes of a Signal (conveyed by the Message), the
Action symbol may be associated with the reception EventOccurrence with a line in order to emphasize that the whole
Action is associated with only one EventOccurrence (and start and finish associations refer the very same
EventOccurrence)

14.3.5 Gate (from Fragments)

A Gate is a connection point for relating a Message outside an InteractionFragment with a Message inside the
InteractionFragment.

Gate is a specialization of MessageEnd.

Gates are connected through Messages. A Gate is actually a representative of an EventOccurrence that is not in the same
scope as the Gate.

Gates play different roles: we have formal gates on Interactions, actual gates on InteractionOccurrences, expression gates
on CombinedFragments.

Constraints

[1] The message leading to/from an actualGate of an InteractionOccurrence must correspond to the message leading from/to
the formalGate with the same name of the Interaction referenced by the InteractionOccurrence.

[2] The message leading to/from an (expression) Gate within a CombinedFragment must correspond to the message leading
from/to the CombinedFragment on its outside.

Semantics

The gates are named either explicitly or implicitly. Gates may be identified either by name (if specified), or by a
constructed identifier formed by concatenating the direction of the message and the message name (e.g. out_CardOut).
The gates and the messages between gates have one purpose, namely to establish the concrete sender and receiver for
every message.

Notation

Gates are just points on the frame, the ends of the messages. They may have an explicit name. See Figure 336.

The same gate may appear several times in the same or different diagrams.

14.3.6 GeneralOrdering (from BasicInteractions)

A GeneralOrdering represents a binary relation between two Eventoccurrences, to describe that one Eventoccurrence must
occur before the other in a valid trace. This mechanism provides the ability to define partial orders of EventOccurrences
that may otherwise not have a specified order.

A GeneralOrdering is a specialization of NamedElement.

A GeneralOrdering may appear anywhere in an Interaction, but only between Eventoccurrences.
418 UML Superstructure 2.0 Draft Adopted Specification

Associations

• before: EventOccurrence[1] The Eventoccurrence referred comes before the Eventoccurrence referred by after

• after:EventOccurrence[1] The Eventoccurrence referred comes after the Eventoccurrence referred by before

Semantics

A GeneralOrdering is introduced to restrict the set of possible sequences. A partial order of Eventoccurrences is defined
by a set of GeneralOrdering.

Notation

A GeneralOrdering is shown by a dotted line connected the two Eventoccurrences. The direction of the relation from the
before to the after is given by an arrowhead placed somewhere in the middle of the dotted line (i.e. not at the endpoint).

14.3.7 Interaction (from BasicInteraction, Fragments)

An interaction is a unit of behavior that focuses on the observable exchange of information between
ConnectableElements.

An Interaction is a specialization of InteractionFragment and of Behavior.

Associations

• formalGate: Gate[*] Specifies the gates that form the message interface between this Interaction and any Inter-
actionOccurrences which reference it.

• lifeline: LifeLine[0..*] Specifies the participants in this Interaction

• event:MessageEnd[*] MessageEnds (e.g. EventOccurrences or Gates) owned by this Interaction

• message:Message[*] The Messages contained in this Interaction.

• fragment:InteractionFragment[*]The ordered set of fragments in the Interaction

Semantics

Interactions are units of behavior of an enclosing Classifier. Interactions focus on the passing of information with
Messages between the ConnectableElements of the Classifier.

The semantics of an Interaction is given as a pair of sets of traces. The two trace sets represent valid traces and invalid
traces. The union of these two sets need not necessarily cover the whole universe of traces. The traces that are not
included are not described by this Interaction at all, and we cannot know whether they are valid or invalid.

A trace is a sequence of Eventoccurrences. The semantics of Interactions are compositional in the sense that the semantics
of an Interaction is mechanically built from the semantics of its constituent InteractionFragments. The constituent
InteractionFragments are ordered and combined by the seq operation (weak sequencing) as explained in “Weak
Sequencing” on page 410.

The invalid set of traces are associated only with the use of a Negative CombinedInteraction. For simplicity we describe
only valid traces for all other constructs.

As Behavior an Interaction is generalizable and redefineable. Specializing an Interaction is simply to add more traces to
those of the original. The traces defined by the specialization is combined with those of the inherited Interaction with a
union.
UML Superstructure 2.0 Draft Adopted Specification 419

The classifier owning an Interaction may be specialized, and in the specialization the Interaction may be redefined.
Redefining an Interaction simply means to exchange the redefining Interaction for the redefined one, and this exchange
takes effect also for InteractionOccurrences within the supertype of the owner. This is similar to redefinition of other
kinds of Behavior.

Basic trace model: The semantics of an Interaction is given by a pair [P, I] where P is the set of valid traces and I is the
set of invalid traces. needs not be the whole universe of traces.

A trace is a sequence of event occurrences denoted <e1, e2, ... , en>.

An event occurrence will also include information about the values of all relevant objects at this point in time.

Each construct of Interactions (such as CombinedFragments of different kinds) are expressed in terms of how it relates to
a pair of sets of traces. For simplicity we normally refer only to the set of valid traces as these traces are those mostly
modeled.

Two Interactions are equivalent if their pair of trace-sets are equal.

Relation of trace model to execution model: In Chapter 13, “Common Behaviors” we find an Execution model, and this
is how the Interactions Trace Model relates to the Execution model.

An Interaction is an Emergent Behavior.

An Invocation Event in the Execution model corresponds with an EventOccurrence in Interactions. Normally in
Interaction the action leading to the invocation as such is not described (such as the sending action). However, if it is
desirable to go into details, a Behavior (such as an Activity) may be associated with an Eventoccurrence. An
Eventoccurrence in Interactions are normally interpreted to take zero time. Duration is always between Eventoccurrences.

Likewise a Receiving Event in the Execution model corresponds with an Eventoccurrence in Interactions. Similarly the
detailed actions following immediately from this reception is often omitted in Interactions, but may also be described
explicitly with a Behavior associated with that Eventoccurrence.

A Request in the Execution model corresponds to the Message in Interactions.

A BehaviorExecution in the Execution model corresponds directly to an Execution Occurrence in Interactions. An
ExecutionOccurrence is defined in the trace by two EventOccurrences, one at the start and one at the end. This
corresponds to the Start Event and the Termination Event of the Execution model

Notation

The notation for an Interaction in a Sequence Diagram is a solid-outline rectangle. The keyword sd followed by the
Interaction name and parameters is in a pentagon in the upper left corner of the rectangle. The notation within this
rectangular frame comes in several forms: Sequence Diagrams, Communication Diagrams, Interaction Overview
Diagrams and Timing Diagrams.

The notation within the pentagon descriptor follows the general notation for the name of Behaviors. In addition the
Interaction Overview Diagrams may include a list of Lifelines through a lifeline-clause as shown in Figure 349. The list
of lifelines is simply a listing of the Lifelines involved in the Interaction. An Interaction Overview Diagram does not in
itself show the involved lifelines even though the lifelines may occur explicitly within inline Interactions in the graph
nodes.

An Interaction diagram may also include definitions of local attributes with the same syntax as attributes in general are
shown within class symbol compartments. These attribute definitions may appear near the top of the diagram frame or
within note symbols other places in the diagram.

P I∪
420 UML Superstructure 2.0 Draft Adopted Specification

Please refer to Section 14.4 to see examples of notation for Interactions.

Examples

The example in Figure 337 shows three messages communicated between two (anonymous) lifelines of types User and
ACSystem. The message CardOut overtakes the message OK in the way that the receiving event occurrences are in the
opposite order of the sending eventoccurrences. Such communication may occur when the messages are asynchronous.
Finally a fourth message is sent from the ACSystem to the environment through a gate with implicit name out_Unlock.
The local attriburte PIN of UserAccepted is declared near the diagram top. It could have been declared in a Note
somewhere else in the diagram.

Rationale

Not applicable.

Changes from UML 1.x

Interactions are now contained within Classifiers and not only within Collaborations. Their participants are modeled by
Lifelines instead of ClassifierRoles.

14.3.8 InteractionConstraint (from Fragments)

An InteractionConstraint is a boolean expression that guards an operand in a CombinedFragment.

InteractionConstraint is a specialization of Constraint.

Furthermore the InteractionConstraint contains two expressions designating the minimum and maximum number of times
a loop CombinedFragment should execute.

Figure 337 - An example of an Interaction in the form of a Sequence Diagram

sd UserAccepted

:User :ACSystem

Code(PIN)

CardOut

OK
Unlock

+PIN:Integer {readonly 0<=PIN <=9999}

Name of Interaction

Lifeline

Message

Local Attribute
UML Superstructure 2.0 Draft Adopted Specification 421

Associations

• minint: ValueSpecification[0..1]The minimum number of iterations of a loop

• maxint: ValueSpecification[0..1]The maximum number of iterations of a loop

Constraints

[1] The dynamic variables that take part in the constraint must be owned by the ConnectableElement corresponding to the
covered Lifeline.

[2] The constraint may contain references to global data or write-once data.

[3] Minint/maxint can only be present if the InteractionConstraint is associated with the operand of a loop CombinedFrag-
ment.

[4] If minint is specified, then the expression must evaluate to a non-negative integer.

[5] If maxint is specified, then the expression must evaluate to a positive integer.

[6] If maxint is specified, then minint must be specified and the evaluation of maxint must be >= the evaluation of minint

Semantics

InteractionConstraints are always used in connection with CombinedFragments, see “CombinedFragment (from
Fragments)” on page 409.

Notation

An InteractionConstraint is shown in square brackets covering the lifeline where the first event occurrence will occur,
positioned above that event, in the containing Interaction or InteractionOperand.

interactionconstraint ::= [‘[‘ Boolean Expression | else‘]’]

When the InteractionConstraint is omitted, true is assumed.

Please refer to an example of InteractionConstraints in Figure 333.

14.3.9 InteractionFragment (from Fragments)

InteractionFragment is an abstract notion of the most general interaction unit. An interaction fragment is a piece of an
interaction. Each interaction fragment is conceptually like an interaction by itself.

InteractionFragment is an abstract class and a specialization of NamedElement.

Associations

• enclosingOperand: InteractionOperand[0..1]The operand enclosing this InteractionFragment (they may nest recursively)

• covered : Lifeline[*] References the Lifelines that the InteractionFragment involves

• generalOrdering:GeneralOrdering[*]The general ordering relationships contained in this fragment

• enclosingInteraction: Interaction[0..1]The Interaction enclosing this InteractionFragment.

Semantics

The semantics of an InteractionFragment is a pair of set of traces. See “Interaction (from BasicInteraction, Fragments)”
for explanation of how to calculate the traces.
422 UML Superstructure 2.0 Draft Adopted Specification

Notation

There is no general notation for an InteractionFragment. The specific subclasses of InteractionFragment will define their
own notation.

Rationale

Not applicable.

Changes from UML 1.x

This concept did not appear in UML 1.x.

14.3.10 InteractionOccurrence (from Fragments)

An InteractionOccurrence refers to an Interaction. The InteractionOccurrence is a shorthand for copying the contents of
the referred Interaction where the InteractionOccurrence is. To be accurate the copying must take into account substituting
parameters with arguments and connect the formal gates with the actual ones.

It is common to want to share portions of an interaction between several other interactions. An InteractionOccurrence
allows multiple interactions to reference an interaction that represents a common portion of their specification.

Description

InteractionOccurrence is a specialization of InteractionFragment.

An InteractionOccurrence has a set of actual gates that must match the formal gates of the referenced Interaction.

Associations

• refersTo: Interaction[1] Refers to the Interaction that defines its meaning

• argument:InputPin[*] The actual arguments of the Interaction

• actualGate:Gate[*] The actual gates of the InteractionOccurrence

Constraints

[1] Actual Gates of the InteractionOccurrence must match Formal Gates of the referred Interaction. Gates match when their
names are equal.
TBD

[2] The InteractionOccurrence must cover all Lifelines of the enclosing Interaction which appear within the referred Interac-
tion.

[3] The arguments of the InteractionOccurrence must correspond to parameters of the referred Interaction

[4] The arguments must only be constants, parameters of the enclosing Interaction or attributes of the classifier owning the
enclosing Interaction.

Semantics

The semantics of the InteractionOccurrence is the set of traces of the semantics of the referred Interaction where the gates
have been resolved as well as all generic parts having been bound such as the arguments substituting the parameters.
UML Superstructure 2.0 Draft Adopted Specification 423

Notation

The InteractionOccurrence is shown as a CombinedFragment symbol where the operator is called ref. The complete
syntax of the name (situated in the InteractionOccurrence area) is:

name ::=[attribute-name =][collaborationoccurrence.] interactionname[‘(‘arguments’)’] [: return-value]
argument ::= in-argument [out out-argument]

The attribute-name refers to an attribute of one of the lifelines in the Interaction.

The collaborationoccurence is an identification of a collaboration occurrence that binds lifelines of a collaboration. The
interaction name is in that case within that collaboration. See example of the usage of collaboration occurrences in Figure
346.

The arguments are most often arguments of IN-parameters. If there are OUT- or INOUT-parameters and the output value
is to be described, this can be done following an out keyword.

For general syntax of arguments we use the same syntax as for Messages (“Message (from BasicInteractions)” on
page 428).

If the InteractionOccurrence returns a value, this may be described following a colon at the end of the clause.

Examples

In Figure 338 we show an InteractionOccurrence referring the Interaction EstablishAccess with (input) argument “Illegal
PIN”. Within the optional CombinedFragment there is another InteractionOccurrence without arguments referring
OpenDoor.

Figure 338 - InteractionOccurrence

:User

sd UserAccess

:ACSystem

ref
EstablishAccess("Illegal PIN")

CardOut

opt Msg("Please Enter")

ref
OpenDoor

InteractionOccurrence
424 UML Superstructure 2.0 Draft Adopted Specification

In Figure 339 we have a more advanced Interaction that models a behavior returning a Verdict value. The return value
from the Interaction is shown as a separate Lifeline a_op_b. Inside the Interaction there is an InteractionOccurrence
referring a_util_b with value return to the attribute xc of :xx with the value 9, and with inout parameter where the
argument is w with returning out-value 12.

Rationale

Not applicable.

Changes from UML 1.x

InteractionOccurrence was not a concept in UML 1.x

14.3.11 InteractionOperand (from Fragments)

An InteractionOperand is contained in a CombinedFragment. An InteractionOperand represent one operand of the
expression given by the enclosing CombinedFragment.

An InteractionOperand is an InteractionFragment with an optional guard expression. An InteractionOperand may be
guarded by a InteractionConstraint. Only InteractionOperands with a guard that evaluates to true at this point in the
interaction will be considered for the production of the traces for the enclosing CombinedFragment.

InteractionOperand contains an ordered set of InteractionFragments.

Figure 339 - InteractionOccurrence with value return

sd a_op_b(int x, inout int w):Verdict

:xx :yy

s1(x)

put(fail)

alt

put(pass)

w a_op_b

put(xc)[xc>8]

[xc<8]

ref

:xx.xc=a_util_b(31,w:12):9
InteractionOccurrence
with valuereturn

return parameter as
Lifeline

inout parameter as
Lifeline

argument with output
UML Superstructure 2.0 Draft Adopted Specification 425

In Sequence Diagrams these InteractionFragments are ordered according to their geometrical position vertically. The
geometrical position of the InteractionFragment is given by the topmost vertical coordinate of its contained
eventoccurrences or symbols.

Associations

• fragment: InteractionFragment[*]The fragments of the operand.

• guard: InteractionConstraint[0..1]Constraint of the operand

Constraints

[1] The guard must be placed directly prior to (above) the eventoccurrence that will become the first eventoccurrence
within this InteractionOperand

[2] The guard must contain only references to values local to the Lifeline on which it resides, or values global to the whole
Interaction (See “InteractionConstraint (from Fragments)” on page 421).

Semantics

Only InteractionOperands with true guards are included in the calculation of the semantics. If no guard is present, this is
taken to mean a true guard.

The semantics of an InteractionOperand is given by its constituent InteractionFragments combined by the implicit seq
operation. The seq operator is described in “CombinedFragment (from Fragments)” on page 409

Notation

InteractionOperands are separated by a dashed horizontal line. The InteractionOperands together make up the framed
CombinedFragment.

Within an InteractionOperand of a Sequence Diagram the order of the InteractionFragments are given simply by the
topmost vertical position.

See Figure 333 for examples of InteractionOperand.

14.3.12 InteractionOperator (from Fragments)

Interaction Operator is an enumeration designating the different kinds of operators of CombinedFragments.

The InteractionOperand defines the type of operator of a CombinedFragment.

Literals

• alt, opt, par, loop, critical, neg, assert, strict, seq, ignore, consider

Semantics

The value of the InteractionOperator is significant for the semantics of “CombinedFragment (from Fragments)” on
page 409.

Notation

The value of the InteractionOperand is given as text in a small compartment in the upper left corner of the
CombinedFragment frame.
426 UML Superstructure 2.0 Draft Adopted Specification

See Figure 333 for examples of InteractionOperator.

14.3.13 Lifeline (from BasicInteractions, Fragments)

A lifeline represents an individual participant in the Interaction. While Parts and StructuralFeatures may have multiplicity
greater than 1, Lifelines represent only one interacting entity.

Lifeline is a specialization of NamedElement.

If the referenced ConnectableElement is multivalued (i.e. has a multiplicity > 1), then the Lifeline may have an
expression (the ‘selector’) that specifies which particular part is represented by this Lifeline. If the selector is omitted this
means that an arbitrary representative of the multivalued ConnectableElement is chosen.

Associations

• selector : Expression[0..1] If the referenced ConnectableElement is multivalued, then this specifies the specific indi-
vidual part within that set.

• interaction: Interaction[1] References the Interaction enclosing this Lifeline.

• represents: ConnectableElement[1]References the ConnectableElement within the classifier that contains the enclosing
interaction.

• decomposedAs : PartDecomposition[1]References the Interaction that represents the decomposition.

Constraints

[1] If two (or more) InteractionOccurrences within one Interaction, refer to Interactions with common Lifelines, those Life-
lines must also appear in the Interaction with the InteractionOccurrences. By ‘common Lifelines’ we mean Lifelines with
the same selector and represents associations.
TBD

[2] The selector for a Lifeline must only be specified if the referenced Part is multivalued.

(self.selector->isEmpty implies not self.represents.isMultivalued()) or
(not self.selector->isEmpty implies self.represents.isMultivalued())

[3] The classifier containing the referenced ConnectableElement must be the same classifier, or an ancestor, of the classifier
that contains the interaction enclosing this lifeline.

Semantics

The order of Eventoccurrences along a Lifeline is significant denoting the order in which these Eventoccurrence will
occur. The absolute distances between the Eventoccurrences on the Lifeline are, however, irrelevant for the semantics.

The semantics of the Lifeline (within an Interaction) is the semantics of the Interaction selecting only Eventoccurrences
of this Lifeline.

Notation

A Lifeline is shown using a symbol that consists of a rectangle forming its “head” followed by a vertical line (which may
be dashed) that represents the lifetime of the participant. Information identifying the lifeline is displayed inside the
rectangle in the following format:

lifelineident ::= [connectable_element_name [‘[‘ selector ‘]’]] [: class_name] [decomposition] | self
selector ::= expression
decomposition ::= ref interactionident
UML Superstructure 2.0 Draft Adopted Specification 427

class_name is the type referenced by the represented ConnectableElement.
Even though the syntax in principle allows it, a lifelineident cannot be empty.

The Lifeline head has a shape which is based on the classifier for the part that this lifeline represents. Often the head is a
white rectangle containing the name.

If the name is the keyword self, then the lifeline represents the object of the classifier that encloses the Interaction that
owns the Lifeline. Ports of the encloser may be shown separately even when self is included.

To depict method activations we apply a thin grey or white rectangle that covers the Lifeline line.

Examples

See Figure 337 where the Lifelines are pointed to.

See Figure 333 to see method activations.

Rationale

Not applicable.

Changes from UML 1.x

Lifelines are basically the same concept as before in UML 1.x.

14.3.14 Message (from BasicInteractions)

A Message defines a particular communication between Lifelines of an Interaction.

A Message is a NamedElement that defines one specific kind of communication in an Interaction. A communication can
be e.g. raising a signal, invoking an Operation, creating or destroying an Instance. The Message specifies not only the
kind of communication given by the dispatching ExecutionOccurrence, but also the sender and the receiver.

A Message associates normally two EventOccurrences - one sending EventOccurrence and one receiving
EventOccurrence.

Attributes

• messageKind:MessageKind The derived kind of the Message (complete, lost, found or unknown)
complete = sendEvent and receiveEvent are present
lost = sendEvent present and receiveEvent absent
found = sendEvent absent and receiveEvent present
unknown = sendEvent and receiveEvent absent (should not appear)

• messageSort:MessageSort The sort of communication reflected by the Message (synchCall, synchSignal, asynchCall,
asynchSignal)

Associations

• interaction:Interaction[1] The enclosing Interaction owning the Message

• sendEvent : MessageEnd[0..1] References the Sending of the Message.

• receiveEvent: MessageEnd[0..1]References the Receiving of the Message

• connector: Connector[0..1] The Connector on which this Message is sent.
428 UML Superstructure 2.0 Draft Adopted Specification

• argument:ValueSpecification[*]The arguments of the Message

• signature:NamedElement[0..1] The definition of the type or signature of the Message (depending on its kind)

Constraints

[1] If the sendEvent and the receiveEvent of the same Message are on the same Lifeline, the sendEvent must be ordered
before the receiveEvent.

[2] The signature must either refer an Operation (in which case messageSort is either synchCall or asynchCall) or a Signal (in
which case messageSort is either synchSignal or asynchSignal). The name of the NamedElement referenced by signature
must be the same as that of the Message.

[3] In the case when the Message signature is an Operation, the arguments of the Message must correspond to the parameters
of the Operation. A Parameter corresponds to an Argument if the Argument is of the same Class or a specialization of that
of the Parameter.

[4] In the case when the Message signature is a Signal, the arguments of the Message must correspond to the attributes of the
Signal. A Message Argument corresponds to a Signal Attribute if the Arguement is of the same Class or a specialization
of that of the Attribute.

[5] Relations sendEvent and receiveEvent are mutually exclusive.

[6] Arguments of a Message must only be:
i) attributes of the sending lifeline
ii) constants
iii) symbolic values (which are wildcard values representing any legal value)
iv) explicit parameters of the enclosing Interaction
v) attributes of the class owning the Interaction

[7] Messages cannot cross bounderies of CombinedFragments or their operands.

[8] If the MessageEnds are both EventOccurrences then the connector must go between the Parts represented by the Lifelines
of the two MessageEnds.

Semantics

The semantics of a complete Message is simply the trace <sendEvent, receiveEvent>.

A lost message is a message where the sending event occurrence is known, but there is no receiving event occurrence. We
interpret this to be because the message never reached its destination. The semantics is simply the trace <sendEvent>.

A found message is a message where the receiving event occurrence is known, but there is no (known) sending event
occurrence. We interpret this to be because the origin of the message is outside the scope of the description. This may for
example be noise or other activity that we do not want to describe in detail. The semantics is simply the trace
<receiveEvent>.

A Message reflects either an Operation call and start of execution - or a sending and reception of a Signal.

When a Message represents an Operation the arguments of the Message are the arguments of the CallAction on the
sending Lifeline and the arguments of the CallEvent on the receiving Lifeline.

When a Message represents a Signal, the arguments of the Message are the arguments of the SendAction on the sending
Lifeline and on the receiving Lifeline the arguments are available in the SignalEvent.

If the Message represents a CallAction, There will normally be a return message from the called lifeline back to the
calling lifeline before the calling Lifeline will proceed.
UML Superstructure 2.0 Draft Adopted Specification 429

Notation

A message is shown as a line from the sender message end to the receiver message end. The form of the line or arrowhead
reflect properties of the message:

Asynchronous Messages have an open arrow head.

Synchronous Messages typically represent method calls and are shown with a filled arrow head. The reply message from
a method has a dashed line.

Object creation Message has a dashed line with an open arrow.

Lost Messages are described as a small black circle at the arrow end of the Message.

Found Messages are described as a small black circle at the starting end of the Message.

On Communication Diagrams, the Messages are decorated by a small arrow along the connector close to the Message
name and sequence number in the direction of the Message.

Syntax for the Message name is the following:
messageident ::= [attribute =] signal-or-operation-name [(arguments)][: return-value] | ‘*’
arguments ::= argument [, arguments]
argument ::= [parameter-name=]argument-value | attribute= out-parameter-name [:argument-value]| -

Messageident equalling ‘*’ is a shorthand for more complex alternative CombinedInteraction to represent a message of
any type. This is to match asterisk triggers in State Machines.

Return-value and attribute assignment are used only for reply messages. Attribute assignment is a shorthand for including
the Action that assigns the return-value to that attribute. This holds both for the possible return value of the message (the
return value of the associated operation), and the out values of (in)out parameters.

When the argument list contains only argument-values, all the parameters must be matched either by a value or by a dash
(-). If parameter-names are used to identify the argument-value, then arguments may freely be omitted. Omitted
parameters get an unknown argument-value.

Examples

In Figure 337 we see only asynchronous Messages. Such Messages may overtake each other.

In Figure 333 we see method calls that are synchronous accompanied by replies. We also see a Message that represents
the creation of an object.

In Figure 348 we see how Messages are denoted in Communication Diagrams.

Examples of syntax:
mymessage(14, - , 3.14, “hello”) // second argument is undefined
v=mymsg(16, variab):96 // this is a reply message carrying the return value 96 assigning it to v
mymsg(myint=16) // the input parameter ‘myint’ is given the argument value 16

See Figure 333 for a number of different applications of the textual syntax of message identification.

Rationale

Not applicable.
430 UML Superstructure 2.0 Draft Adopted Specification

Changes from UML 1.x

We notice that Messages may have Gates on either end.

14.3.15 MessageEnd (from BasicInteractions)

A MessageEnd is an abstract NamedElement that represents what can occur at the end of a Message.

Associations

• sendMessage : Message[0..1] References the Message that contains the information of a sendEvent

• receiveMessage : Message[0..1]References the Message that contains the information of a receiveEvent

• interaction:Interaction[1] The enclosing Interaction owning the MessageEnd

Semantics

Subclasses of MessageEnd define the specific semantics appropriate to the concept they represent.

14.3.16 PartDecomposition (from Fragments)

PartDecomposition is a description of the internal interactions of one Lifeline relative to an Interaction.

A Lifeline has a class associated as the type of the ConnectableElement that the Lifeline represents. That class may have
an internal structure and the PartDecomposition is an Interaction that describes the behavior of that internal structure
relative to the Interaction where the decomposition is referenced.

A PartDecomposition is a specialization of InteractionOccurrence. It associates with the ConnectableElement that it
decomposes.

Constraints

[1] PartDecompositions apply only to Parts that are Parts of Internal Structures not to Parts of Collaborations.

[2] Assume that within Interaction X, Lifeline L is of class C and decomposed to D. Within X there is a sequence of con-
structs along L (such constructs are CombinedFragments, InteractionOccurrence and (plain) Eventoccurrences). Then a
corresponding sequence of constructs must appear within D, matched one-to-one in the same order.
i) CombinedFragment covering L are matched with an extra-global CombinedFragment in D
ii) An InteractionOccurrence covering L are matched with a global (i.e. covering all Lifelines) InteractionOccurrence in
D.
iii) A plain EventOccurrence on L is considered an actualGate that must be matched by a formalGate of D

[3] Assume that within Interaction X, Lifeline L is of class C and decomposed to D. Assume also that there is within X an
InteractionOccurrence (say) U that covers L. According to the constraint above U will have a counterpart CU within D.
Within the Interaction referenced by U, L should also be decomposed, and the decomposition should reference CU. (This
rule is called commutativity of decomposition)

Semantics

Decomposition of a lifeline within one Interaction by an Interaction (owned by the type of the Lifeline’s associated
ConnectableElement), is interpreted exactly as an InteractionOccurrence. The messages that go into (or go out from) the
decomposed lifeline are interpreted as actual gates that are matched by corresponding formal gates on the decomposition.
UML Superstructure 2.0 Draft Adopted Specification 431

Since the decomposed Lifeline is interpreted as an InteractionOccurrence, the semantics of a PartDecomposition is the
semantics of the Interaction referenced by the decomposition where the gates and parameters have been matched.

That a CombinedFragment is extra-global depicts that there is a CombinedFragment with the same operator covering the
decomposed Lifeline in its Interaction. The full understanding of that (higher level) CombinedFragment must be acquired
through combining the operands of the decompositions operand by operand.

Notation

PartDecomposition is designated by a referencing clause in the head of the Lifeline as can be seen in the notation section
of “Lifeline (from BasicInteractions, Fragments)” on page 427. See also Figure 340.

Extraglobal CombinedFragments have their rectangular frame go outside the bounderies of the decomposition Interaction.

Style Guidelines

The name of an Interaction that are involved in decomposition would benefit from including in the name, the name of the
type of the Part being decomposed and the name of the Interaction originating the decomposition. This is shown in Figure
340 where the decomposition is called AC_UserAccess where ‘AC’ refers to ACSystem which is the type of the Lifeline
and UserAccess is the name of the Interaction where the decomposed lifeline is contained.

Examples

In Figure 340 we see how ACSystem within UserAccess is to be decomposed to AC_UserAccess which is an Interaction
owned by class ACSystem.

Figure 340 - Part Decomposition - the decomposed part

sd UserAccess

:User
:ACSystem

ref AC_UserAccess

ref
EstablishAccess("Illegal PIN")

CardOut

opt Msg("Please Enter")

ref
OpenDoor

[pin ok]

Part decomposition
432 UML Superstructure 2.0 Draft Adopted Specification

In Figure 341 we see that AC_UserAccess has global constructs that match the constructs of UserAccess covering
ACSystem.

In particular we notice the “extra global interaction group” that goes beyond the frame of the Interaction. This construct
corresponds to a CombinedFragment of UserAccess. However, we want to indicate that the operands of extra global
interaction groups are combined one-to-one with similar extra global interaction groups of other decompositions of the
same original CombinedFragment.

As a notational shorthand, decompositions can also be shown “inline”. In Figure 341 we see that the inner
ConnectableElements of :AccessPoint (p1 and p2) are represented by Lifelines already on this level.

Rationale

Not applicable.

Changes from UML 1.x

PartDecomposition did not appear in UML 1.x.

14.3.17 StateInvariant (from BasicInteractions)

A StateInvariant is a constraint on the state of a Lifeline. In this case we mean by “state” also the values of eventual
attributes of the Lifeline.

A StateInvariant is an InteractionFragment and it is placed on a Lifeline.

Figure 341 - Part Decomposition - the decomposition

:AccessPoint

sd AC_UserAccess

p1 p2

:Authorizer :Console

ref
AC_EstablishAccess("Illegal PIN")

CardOut

opt

Msg("Please Enter")

ref
AC_OpenDoor

[pin ok]

Inner

extra global
CombinedFragment

Connectable
Elements
UML Superstructure 2.0 Draft Adopted Specification 433

Associations

• invariant: Constraint[1] A Constraint that should hold at runtime for this StateInvariant

• lifeline: Lifeline[1] References the Lifeline on which the StateInvariant appears. Specializes InteractionFrag-
ment.covered

Semantics

The Constraint is assumed to be evaluated during runtime. The Constraint is evaluated immediately prior to the execution
of the next EventOccurrence such that all actions that are not explicitly modeled have been executed. If the Constraint is
true the trace is a valid trace; if the Constraint is false the trace is an invalid trace. In other words all traces that has a
StateInvariant with a false Constraint is considered invalid.

Notation

The possible associated Constraint is shown as text in curly brackets on the lifeline.

See example in Figure 345.

Presentation Options

A StateInvariant can optionally be shown as a Note associated with an EventOccurrence.

State symbols may also be used to describe a Constraint. The State symbol represents the equivalent of a constraint that
checks the state of the classifierBehavior of the enclosing Classifier. Since States may be hierarchical and orthogonal, the
following syntax can be used for the state name:

<state-info>::= <region} {,<region> }*
<region>::= <trivial region> | <region-name> {::<state>}?
<trivial region>::= <state>
<state>::= <state-name> {::<region-list>}?
<region-list>::= <region> | (<state-info>)

The regions represent the orthogonal regions of states. The identifier need only define the state partially. The value of the
constraint is true if the specified state information is true.

The example in Figure 345 also shows this presentation option.

14.3.18 Stop (from BasicInteractions)

A Stop is an EventOccurrence that defines the termination of the instance specified by the Lifeline on which the Stop
occurs.

Associations

No more associations

Constraints

[1] No other EventOccurrences may appear below a Stop on a given Lifeline in an InteractionOperand.

Semantics

It is assumed that a Stop implies that the instance described by this Lifeline will terminate.
434 UML Superstructure 2.0 Draft Adopted Specification

The trace representing its semantics only contains a “stop” EventOccurrence.

Notation

The Stop is depicted by a cross in the form of an X at the bottom of a Lifeline.

See example in Figure 333.

14.4 Diagrams

Interaction diagrams come in different variants. The most common variant is the Sequence Diagram (“Sequence
Diagrams” on page 435) that focuses on the Message interchange between a number of Lifelines. Communication
Diagrams (“Communication Diagrams” on page 444) show interactions through an architectural view where the arcs
between the communicating Lifelines are decorated with description of the passed Messages and their sequencing.
Interaction Overview Diagrams (“Interaction Overview Diagrams” on page 447) are a variant of Activity Diagrams that
define interactions in a way that promotes overview of the control flow. In the Appendices one may also find optional
diagram notations such as Timing Diagrams and Interaction Tables.

Sequence Diagrams

The most common kind of Interaction Diagram is the Sequence Diagram, which focuses on the Message interchange
between a number of Lifelines.

A sequence diagram describes an Interaction by focusing on the sequence of Messages that are exchanged, along with
their corresponding EventOccurrences on the Lifelines. The Interactions that are described by Sequence Diagrams are
described in this chapter.

Figure 342 - Stop symbol
UML Superstructure 2.0 Draft Adopted Specification 435

Graphic Nodes

The graphic nodes that can be included in structural diagrams are shown in Table 14.

Table 14 - Graphic nodes included in sequence diagrams

NODE TYPE NOTATION REFERENCE

Frame The notation shows a rectangular frame around
the diagram with a name in a compartment in the
upper left corner. See “Interaction (from Basi-
cInteraction, Fragments)” on page 419.

Lifeline See “Lifeline (from BasicInteractions, Frag-
ments)” on page 427

ExecutionOccurrence See “CombinedFragment (from Fragments)” on
page 409. See also “Lifeline (from BasicInterac-
tions, Fragments)” on page 427 and “Execution-
Occurrence (from BasicInteractions)” on
page 417

InteractionOccurrence See “InteractionOccurrence (from Fragments)”
on page 423.

sd EventOccurrence

:Lifeline

ob2:C2

Nref
436 UML Superstructure 2.0 Draft Adopted Specification

CombinedFragment See “CombinedFragment (from Fragments)” on
page 409

StateInvariant /
Continuations

See “Continuation (from Fragments)” on
page 414 and “StateInvariant (from BasicInter-
actions)” on page 433

Coregion See explanation under parallel in “Combined-
Fragment (from Fragments)” on page 409

Stop See Figure 333

Table 14 - Graphic nodes included in sequence diagrams

NODE TYPE NOTATION REFERENCE

alt

:Y

p==15

s[u]:B

m3

m2
UML Superstructure 2.0 Draft Adopted Specification 437

Graphic Paths

The graphic paths between the graphic nodes are given in Table 15

Duration Constraint
Duration Observation

See Figure 347

Time Constraint
Time Observation

See Figure 347

Table 15 - Graphic paths included in sequence diagrams

NODE TYPE NOTATION REFERENCE

Message Messages come in different variants depending on
what kind of Message they convey. Here we show
an asynchronous message, a call and a reply. These
are all complete messages. See “Message (from
BasicInteractions)” on page 428.

Lost Message Lost messages are messages with known sender,
but the reception of the message does not happen.
See “Message (from BasicInteractions)” on
page 428

Table 14 - Graphic nodes included in sequence diagrams

NODE TYPE NOTATION REFERENCE

:User

Code d=duration

CardOut {0..13}

OK

{d..3*d}

CardOut {0..13}

OK
t=now

{t..t+3}

Code

doit(z)

lost
438 UML Superstructure 2.0 Draft Adopted Specification

Examples

Found Message Found messages are messages with known
receiver, but the sending of the message is not
described within the specification. See “Message
(from BasicInteractions)” on page 428

GeneralOrdering See “GeneralOrdering (from BasicInteractions)”
on page 418

Figure 343 - Sequence Diagrams where two Lifelines refer to the same set of Parts (and Inter-
nal Structure)

Table 15 - Graphic paths included in sequence diagrams

NODE TYPE NOTATION REFERENCE

found

sd N

s[u]:B s[k]:B

m3 m3

m3

m2

{x==2}

C

:r

sd M sd N

s:B[*]

sd M

:r s[k]:B s[u]:B

m1

m2

ref
N

m3

Part

Interactions

Lifeline Class

Internal structure

Coregion

State
Invariant
UML Superstructure 2.0 Draft Adopted Specification 439

The sequence diagrams shown in Figure 343 shows a scenario where r sends m1 to s[k] (which is of type B), and s[k]
sends m2 to s[u]. In the meantime independent of s[k] and s[u], r may have sent m3 towards the InteractionOccurrence N
through a gate. Following the m3 message into N we see that s[u] then sends another m3 message to s[k]. s[k] then sends
m3 and then m2 towards s[u]. s[u] receives the two latter messages in any order (coregion). Having received these
messages, we state an invariant on a variable x (most certainly owned by s[u]).

In order to explain the mapping of the notation onto the metamodel we have pointed out areas and their corresponding
metamodel concept in Figure 344. Let us go through the simple diagram and explain how the metamodel is built up. The
whole diagram is an Interaction (named N). There is a formal gate (with implicit name in_m3) and two Lifelines (named
s[u] and s[k]) that are contained in the Interaction. Furthermore the two Messages (occurrences) both of the same type
m3, implicitly named m3_1 and m3_2 here, are also owned by the Interaction. Finally there are the three
EventOccurrences.

We have omitted in this metamodel the objects that are more peripheral to the Interaction model, such as the Part s and
the class B and the connector referred by the Message.
440 UML Superstructure 2.0 Draft Adopted Specification

Figure 344 - Metamodel elements of a sequence diagram

sd N

s[u]:B s[k]:B

m3

m3

Interaction

Lifeline

(formal) Gate

Message

(receiving)EventOccurrence

EventOccurrence

N:Interaction

in_m3:Gate s[u]:Lifeline

s[k]:Lifeline

rec_m3_on_su:
EventOccurrence

send_m3_on_su:
EventOccurrence

rec_m3_on_sk:
EventOccurrence

m3_1:Message

m3_2:Message
UML Superstructure 2.0 Draft Adopted Specification 441

In Figure 345 we have an Interaction M which considers message types other than t and r. This means that if this
Interaction is used to specify a test of an existing system and when running that system a t or an r occurs, these messages
will be ignored by this specification. t and r will of course be handled in some manner by the running system, but how
they are handled is irrelevant for our Interaction shown here.

The State invariant given as a state “mystate” will be evaluated at runtime directly prior to whatever event occurs on Y
after “mystate”. This may be the reception of q as specified within the assert-fragment, or it may be an event that is
specified to be insignificant by the filters.

The assert fragment is nested in a consider fragment to mean that we expect a q message to occur once a v has occurred
here. Any occurrences of messages other than v,w and q will be ignored in a test situation. Thus the appearance of a w
message after the v is an invalid trace.

The state invariant given in curly brackets will be evaluated prior to the next event occurrence after that on Y.

Figure 345 - Ignore, Consider, assert with State Invariants

sd M ignore {t,r}

:X :Y :Z
s

mystate

assert q

{Y.p == 15}

v

consider {q,v,w}
v

442 UML Superstructure 2.0 Draft Adopted Specification

Internal Structure and corresponding Collaboration Occurrence

The example in Figure 346 shows how collaboration occurrences are used to make Interactions of a Collaboration
available in another classifier.

The collaboration W has two parts x and y that are of types (classes) superA and superB respectively. Classes A and B are
specializations of superA and superB respectively. The Sequence Diagram Q shows a simple Interaction that we will
reuse in another environment. The class E represents this other environment. There are two anonymous parts :A and :B
and the CollaborationOccurrence w1 of Collaboration W binds x and y to :A and :B respectively. This binding is legal
since :A and :B are parts of types that are specializations of the types of x and y.

In the Sequence Diagram P (owned by class E) we use the Interaction Q made available via the Collaboration Occurrence
w1.

Figure 346 - Describing collaborations and their binding

<<collaboration>>
 W

sd Q

x:superA y:superB

sd Q

x:superA ysuperB

m1

m2

E

sd P

w1:W

:A :B

x
y

CollaborationOccurrence

binding Parts
sd P

:A :B

ref
w1.Q
UML Superstructure 2.0 Draft Adopted Specification 443

The Sequence Diagram in Figure 347 shows how time and timing notation may be applied to describe time observation
and timing constraints. The :User sends a message Code and its duration is measured. The :ACSystem will send two
messages back to the :User. CardOut is constrained to last between 0 and 13 time units. Furthermore the interval between
the sending of Code and the reception of OK is constrained to last between d and 3*d where d is the measured duration
of the Code signal. We also notice the observation of the time point t at the sending of OK and how this is used to
constrain the time point of the reception of CardOut.

Communication Diagrams

Communication Diagrams focus on the interaction between Lifelines where the architecture of the internal structure and
how this corresponds with the message passing is central. The sequencing of Messages is given through a sequence
numbering scheme.

Communication Diagrams correspond to simple Sequence Diagrams that use none of the structuring mechanisms such as
InteractionOccurrences and CombinedFragments. It is also assumed that message overtaking (i.e. the order of the
receptions are different from the order of sending of a given set of messages) will not take place or is irrelevant.

Figure 347 - Sequence Diagram with time and timing concepts

sd UserAccepted

:User :ACSystem

Code d=duration

CardOut {0..13}

OK
Unlock

{d..3*d}

t=now

{t..t+3}

DurationConstraint

TimeObservation

TimeConstraint

DurationObservation
444 UML Superstructure 2.0 Draft Adopted Specification

Graphical Nodes

Communication diagram nodes are shown in Table 16.

Graphic Paths

Graphic paths of communication diagrams are given in Table 17

Table 16 - Graphic nodes included in communication diagrams

NODE TYPE NOTATION REFERENCE

Frame The notation shows a rectangular frame around the dia-
gram with a name in a compartment in the upper left
corner. See “Interaction (from BasicInteraction, Frag-
ments)” on page 419.

Lifeline See “Lifeline (from BasicInteractions, Fragments)” on
page 427

Table 17 - Graphic paths included in communication diagrams

NODE TYPE NOTATION REFERENCE

Message See “Message (from BasicInteractions)” on page 428. and
“Sequence expression” on page 446
The arrow shown here indicates the communication direc-
tion.

sd EventOccurrence

s[k]:B

1a m1()
UML Superstructure 2.0 Draft Adopted Specification 445

Examples

The Interaction described by a Communication Diagram in Figure 348 shows messages m1 and m3 being sent
concurrently from :r towards two instances of the part s. The sequence numbers shows how the other messages are
sequenced. 1b.1 follows after 1b and 1b.1.1 thereafter etc. 2 follows after 1a and 1b.

Sequence expression

The sequence-expression is a dot-separated list of sequence-terms followed by a colon (‘:’).
sequence-term ‘.’ . . . ‘:’

Each term represents a level of procedural nesting within the overall interaction. If all the control is concurrent, then
nesting does not occur. Each sequence-term has the following syntax:

[integer | name] [recurrence]

The integer represents the sequential order of the Message within the next higher level of procedural calling. Messages
that differ in one integer term are sequentially related at that level of nesting. Example: Message 3.1.4 follows Message
3.1.3 within activation 3.1. The name represents a concurrent thread of control. Messages that differ in the final name are
concurrent at that level of nesting. Example: Message 3.1a and Message 3.1b are concurrent within activation 3.1. All
threads of control are equal within the nesting depth.

The recurrence represents conditional or iterative execution. This represents zero or more Messages that are executed
depending on the conditions involved. The choices are:

‘*’ ‘[’ iteration-clause ‘]’an iteration
‘[’ guard ‘]’a branch

Figure 348 - Communication diagram

sd M

:r s[k]:B

s[u]:B

1a:m1

2:m21b:m3

1b.1:m3 1b.1.1:m3,
1b.1.1.1:m2

Lifeline

Message
with
Sequence
number

Messages
446 UML Superstructure 2.0 Draft Adopted Specification

An iteration represents a sequence of Messages at the given nesting depth. The iteration clause may be omitted (in which
case the iteration conditions are unspecified). The iteration-clause is meant to be expressed in pseudocode or an actual
programming language, UML does not prescribe its format. An example would be: *[i := 1..n].

A guard represents a Message whose execution is contingent on the truth of the condition clause. The guard is meant to
be expressed in pseudocode or an actual programming language; UML does not prescribe its format. An example would
be: [x > y].

Note that a branch is notated the same as an iteration without a star. One might think of it as an iteration restricted to a
single occurrence.

The iteration notation assumes that the Messages in the iteration will be executed sequentially. There is also the
possibility of executing them concurrently. The notation for this is to follow the star by a double vertical line (for
parallelism): *||.

Note that in a nested control structure, the recurrence is not repeated at inner levels. Each level of structure specifies its
own iteration within the enclosing context.

Interaction Overview Diagrams

Interaction Overview Diagrams define Interactions (described in Chapter 14, “Interactions”) through a variant of Activity
Diagrams (described in Chapter 6, “Activities”) in a way that promotes overview of the control flow.

Interaction Overview Diagrams focus on the overview of the flow of control where the nodes are Interactions or
InteractionOccurrences. The Lifelines and the Messages do not appear at this overview level.

Graphic Nodes

Interaction Overview Diagrams are specialization of Activity Diagrams that represent Interactions

Interaction Overview Diagrams differ from Activity Diagrams in some respects.

1. In place of ObjectNodes of Activity Diagrams, Interaction Overview Diagrams can only have either (inline) Interac-
tions or InteractionOccurrences. Inline Interaction diagrams and InteractionOccurrences are considered special forms
of ActivityInvocations.

2. Alternative Combined Fragments are represented by a Decision Node and a corresponding Merge Node.

3. Parallel Combined Fragments are represented by a Fork Node and a corresponding Join Node.

4. Loop Combined Fragments are represented by simple cycles.

5. Branching and joining of branches must in Interaction Overview Diagrams be properly nested. This is more restric-
tive than in Activity Diagrams.

6. Interaction Overview Diagrams are framed by the same kind of frame that encloses other forms of Interaction Dia-
grams. The heading text may also include a list of the contained Lifelines (that do not appear graphically)
UML Superstructure 2.0 Draft Adopted Specification 447

.

Table 18 - Graphic nodes included in Interaction Overview Diagrams in addition to those borrowed from Activity
Diagrams

NODE TYPE NOTATION REFERENCE

Frame The notation shows a rectangular frame around the
diagram with a name in a compartment in the
upper left corner. See “Interaction (from Basi-
cInteraction, Fragments)” on page 419.

Interaction An Interaction diagram of any kind may appear
inline as an ActivityInvocation. See “Interaction
(from BasicInteraction, Fragments)” on page 419.
The inline Interaction diagrams may be either
anonymous (as here) or named.

InteractionOccurrence ActivityInvocation in the form of InteractionOc-
currence. See “InteractionOccurrence (from Frag-
ments)” on page 423. The tools may choose to
“explode” the view of an InteractionOccurrence
into an inline Interaction with the name of the
Interaction referred by the occurrence. The inline
Interaction will then replace the occurrence by a
replica of the definition Interaction where eventual
arguments have replaced parameters.

sd EventOccurrence

sd
User AC System

CardOut

Nref
448 UML Superstructure 2.0 Draft Adopted Specification

Examples

Figure 349 Interaction Overview Diagram representing a High Level Interaction diagram

sd OverviewDiagram lifelines :User, :ACSystem

ref
EstablishAccess("Illegal PIN")

sd

:User :ACSystem

CardOut

sd

:User :ACSystem

Msg("Please Enter")

ref
OpenDoor

[pin ok]

{0..25}

{1..14}

InteractionOccurrence

(inline) Interaction

decision

interaction constraint

Duration Constraint
UML Superstructure 2.0 Draft Adopted Specification 449

Interaction Overview Diagrams use Activity diagram notation where the nodes are either Interactions or
InteractionOccurrences. Interaction Overview Diagrams are a way to describe Interactions where Messages and Lifelines
are abstracted away. In the purest form all Activities are InteractionOccurrences and then there are no Messages or
Lifelines shown in the diagram at all.

The Figure 349 is another way to describe the behavior shown in Figure 338, with some added timing constraints. The
Interaction EstablishAccess occurs first (with argument “Illegal PIN”) followed by weak sequencing with the message
CardOut which is shown in an inline Interaction. Then there is an alternative as we find a decision node with an
InteractionConstraint on one of the branches. Along that control flow we find another inline Interaction and an
InteractionOccurrence in (weak) sequence.

Timing Diagram

Timing Diagrams are used to show interactions when a primary purpose of the diagram is to reason about time. Timing
diagrams focus on conditions changing within and among Lifelines along a linear time axis.

Timing diagrams describe behavior of both individual classifiers and interactions of classifiers, focusing attention on time
of occurrence of events causing changes in the modeled conditions of the Lifelines.

Graphic Nodes

The graphic nodes that can be included in structural diagrams are shown in Table 14 on page 436.

Table 19 - Graphic nodes and paths included in sequence diagrams

NODE TYPE NOTATION REFERENCE

Frame The notation shows a rectangular frame around the
diagram with a name in a compartment in the upper
left corner. See “Interaction (from BasicInteraction,
Fragments)” on page 419.

Message Messages come in different variants depending on
what kind of Message they convey. Here we show an
asynchronous message, a call and a reply. See “Mes-
sage (from BasicInteractions)” on page 428.

sd EventOccurrence

VSense

do
It(

w
:in

t)

ev
A

cq
ui

re
(

vo
id

):
 lo

ng
450 UML Superstructure 2.0 Draft Adopted Specification

Message label Labels are only notational shorthands used to prevent
cluttering of the diagrams with a number of mes-
sages crisscrossing the diagram between Lifelines
that are far apart.
The labels denote that a Message may be disrupted
by introducing labels with the same name.

State or condition
timeline

This is the state of the classifier or attribute, or some
testable condition, such as an discrete enumerable
value. See also “StateInvariant (from BasicInterac-
tions)” on page 433.
It is also permissable to let the state-dimension be
continuous as well as discrete. This is illustrative for
scenarios where certain entities undergo continuous
state changes, such as temperature or density.

General value
lifeline

Shows the value of the connectable element as a
function of time. Value is explicitly denoted as text.
Crossing reflects the event where the value changed.

Lifeline See “Lifeline (from BasicInteractions, Fragments)”
on page 427

GeneralOrdering See “GeneralOrdering (from BasicInteractions)” on
page 418

Table 19 - Graphic nodes and paths included in sequence diagrams

NODE TYPE NOTATION REFERENCE

mymsglab

mymsglab

Initializing

Acquiring

Reporting

Idle

x"00x"FFFF"

instance 1

Instance 2
UML Superstructure 2.0 Draft Adopted Specification 451

Examples

Timing diagrams show change in state or other condition of a structural element over time. There are a few forms in use.
We shall give examples of the simplest forms.

Sequence Diagrams as the primary form of Interactions may also depict time observation and timing constraints. We show
in Figure 347 an example in Sequence Diagram that we will also give in Timing Diagrams.

The :User of the Sequence Diagram in Figure 347 is depicted with a simple Timing Diagram in Figure 350.

Stop See “Stop (from BasicInteractions)” on page 434

Figure 350 - A Lifeline for a discrete object

Table 19 - Graphic nodes and paths included in sequence diagrams

NODE TYPE NOTATION REFERENCE

sd UserAcc_User

Idle

WaitCard

WaitAccess

Code

CardOut

OK {t..t+3}

{d..3*d}

:U
se

r

0 1 2 t

event or stimulus tick mark values

State or conditionLifeline

timing ruler

time constraint

DurationConstraint
452 UML Superstructure 2.0 Draft Adopted Specification

The primary purpose of the timing diagram is to show the change in state or condition of a lifeline (representing a
Classifier Instance or Classifier Role) over linear time. The most common usage is to show the change in state of an
object over time in response to accepted events or stimuli. The received events are annotated as shown when it is
desireable to show the event causing the change in condition or state.

Sometimes it is more economical and compact to show the state or condition on the vertical Lifeline as shown in Figure
351.

Finally we may have an elaborate form of TimingDiagrams where more than one Lifeline is shown and where the
messages are also depicted. We show such a Timing Diagram in Figure 352 corresponding to the Sequence Diagram in
Figure 347.

Figure 351 - Compact Lifeline with States

sd UserAcc_User

Idle WaitCard WaitAccess Idle

{d..3*d}

:User

State or conditionLifeline DurationConstraint
UML Superstructure 2.0 Draft Adopted Specification 453

Changes from UML 1.x

The Timing Diagrams were not available in UML 1.4.

Figure 352 - Timing Diagram with more than one Lifeline and with Messages

sd UserAccepted

Idle

WaitCard

WaitAccess

{t..t+3}

{d..3*d}

:U
se

r

0 1 2 t

HasCard

NoCard

:A
C

S
ys

te
m

Code

CardOut
{0..13}

OK

Unlock

d
t=now

State or conditionLifelines

Duration Observation

Duration Constraints

Time Observation

Time Constraint

Message
454 UML Superstructure 2.0 Draft Adopted Specification

15 State Machines

15.1 Overview

The StateMachine package defines a set of concepts that can be used for modeling discrete behavior through finite state-
transition systems. In addition to expressing the behavior of a part of the system, state machines can also be used to
express the usage protocol of part of a system. These two kinds of state machines are referred here as behavioral state
machines and protocol state machines.

Behavioral state machines

State machines can be used to specify behavior of various model elements. For example, they can be used to model the
behavior of individual entities (e.g., class instances). The state machine formalism described in this section is an object-
based variant of Harel statecharts.

Protocol State machines

Protocol state machines are used to express usage protocols. Protocol state machines express the legal transitions that a
classifier can trigger. The state machine notation is a convenient way to define a lifecycle for objects, or an order of the
invocation of its operation. Because protocol state machines do not preclude any specific behavioral implementation, and
inforces legal usage scenarios of classifiers, interfaces and ports can be associated to this kind of state machines.
UML Superstructure 2.0 Draft Adopted Specification 455

15.2 Abstract Syntax

Figure 353 - Package Dependencies

BehaviorStateMachines

ProtocolStateMachines MaximumOneRegion

<<merge>>

Kernel

(f rom Cl asses)
BasicBehaviors

(from CommonBehavio...)

Interfaces

(f ro m Cl asses)

Ports

(from Composi teS truc...)

<<merge>>

<<merge>>
<<merge>>
456 UML Superstructure 2.0 Draft Adopted Specification

Package BehaviorStatemachines

Figure 354 - State Machines

PseudostateKind

init ial
deepH istory
shallowHis tory
join
f ork
junction

choice
entryPoint
ex itPoint
terminate

<<enumeration>>
Behav ior

(from BasicBehaviors)

F inalSt ate

NamedElement
(from Kernel)

NamedElement
(fr om Kernel)

Pseudostate

kind : PseudostateKind

ConnectionPointRef erence

*

0..1

+entry*

0..1

*

0..1

+exit
*

0..1

StateMachine

*

0..1

+connectionPoint

*

{subsets ownedMember}

0..1

State

/ isComposite : Boolean = f alse
/ isOrthogonal : Boolean = f alse
/ isSimple : Boolean = f alse
/ isSubmachineState : Boolean = f alse

0. .1

*

0. .1

+connection*
{subsets ownedElement}

*

0..1

+submachineState

*

+submachine

0..1

Vertex

Region

*

0..1+subv ertex

* {subsets ownedElement}

+container

0..1

{redef ines owner}

1. .*

0..1

+region
1. .* {subsets ownedMember}

0..1

*

0..1

+region*

0..1

Tr igger
(fr om Communications)

*

*

+def errableTrigger *

*

Constraint
(fr om Kernel)

0..1

0..1

+stateInv ariant
0..1{subsets ownedElement}

0..1

Activ ity
(from BasicBehaviors)

0..10..1

+doActiv ity

0..1

{s ubs ets ownedElement}

0..1

0..10..1

+exit

0..1

{subsets ownedElement}

0..1

0..10..1

+entry

0..1

{subsets ownedElement}

0..1

Transition

kind : TransitionKind1 *

+source

1

+outgoing

*

1 *

+target

1

+incoming

*

*

0..1 +transitions

* {subsets ownedElement}

+container

0..1

{redef ines owner}

*

0..*

*

+trigger0..*

0..1

0..1

+guard

0..1

{subsets ownedElement}

0..1

0..1

0..1

+ef f ect

0..1
{subsets ownedElement}

0..1

TransitionKind

int ernal
loc al
ex ternal

<<enumeration>>
UML Superstructure 2.0 Draft Adopted Specification 457

Package Redefinitions

Package ProtocolStatemachines

Figure 355 - State Machine Redefinitions

Figure 356 - Protocol state machines

RedefinableElement

(from Kernel)

Region

0..1

0..1

0..1

+extendedRegion

0..1

{redef ines redef inedElement}

State

0..1

0..1

+redef inedState

0..1
{redef ines redef inedElement}

0..1
Transition 0..1

0..1

+redefinedTrans ition

0..1

{redef ines redef inedElement}

0..1

Classifier
(from Kernel) 1 *

+/redef initionContext

1
{subsets redef initionContext}

*

*

1
*

+/redef initionContext

1

{s ubs ets redefinitionC ontext}

*
1

*

+/redef initionContext

1

{subsets redef ini tionContext}

StateMachine

0..10..1 0..1

+extendedStateMachine

0..1

{redef ines redef inedElement}

BehavioredClassifier

*

0..1

+ownedStateMachine

*
{redef ines ownedBehav ior}

0..1{subsets redef initionContext}

Port

Interface

ProtocolConformanceProtocolStateMachine
0..1*

+protocol

0..1*

0..10..1

+protocol

0..1

{subsets feature,
subsets ownedMember}

+interface

0..1

{subsets namespace}

1 *

+generalMachine

1

{subsets target}

*

*

1

+conformance
*{subsets ownedElement}

+specificMachine

1

{subsets source, subsets owner}

DirectedRelationship
(from Kernel)

StateMachine
(from BehaviorStateMachines)
458 UML Superstructure 2.0 Draft Adopted Specification

Package MaximumOneRegion

15.3 Class Descriptions

15.3.1 ConnectionPointReference (from BehaviorStatemachines)

A connection point reference represents a usage (as part of a submachine state) of an entry/exit point defined in the
statemachine reference by the submachine state.

Description

Connection point references of a submachine state can be used as sources/targets of transitions. They represent entries
into or exits out of the submachine state machine referenced by the submachine state.

Attributes

No additional attributes.

Figure 357 - Constraints

Figure 358 - Statemachines and States with maximum one region

Operation ProtocolTransition
* *

+/referred

* *

State

Constraint
(from Kernel)

0..1

0..1 +postCondition
0..1

{subsets ownedElement}
0..1

0..1

0..1 +preCondition

0..1

{subsets guard}0..1

0..1

0..1

+stateInvariant0..1
{subsets ownedElement}

0..1

Transition
(from BehaviorStateMachines)

StateMachine

Region
(from BehaviorStateMachines)

10..1

+region

1

{redefines region}

0..1

State
0..10..1

+region

0..1

{redefines region}

0..1
UML Superstructure 2.0 Draft Adopted Specification 459

Associations

• entry: Pseudostate[1..*] The entryPoint kind pseudo states corresponding to this connection point.

• exit: Pseudostate[1..*] The exitPoints kind pseudo states corresponding to this connection point.

Constraints

[1] The entry Pseudostates must be Pseudostates with kind entryPoint.

entry->notEmpty() implies entry.kind = #entryPoint

[2] The exit Pseudostates must be Pseudostates with kind exitPoint

exit->notEmpty() implies exit.kind = #exitPoint

Semantics

Connection point references are sources/targets of transitions implying exits out of/entries into the submachine state
machine referenced by a submachine state.

An entry point connection point reference as the target of a transition implies that the target of the transition is the entry
point pseudostate as defined in the submachine of the submachine state. As a result, the regions of the submachine state
machine are entered at the corresponding entry point pseudo states.

An exit point connection point reference as the source of a transition implies that the source of the transition is the exit
point pseudostate as defined in the submachine of the submachine state that has the exit point connection point defined.
When a region of the submachine state machine has reached the corresponding exit points, the submachine state exits at
this exit point.

Notation

A connection point reference to an entry point has the same notation as an entry point pseudostate. The circle is placed on
the border of the state symbol of a submachine state.

Figure 359 - Entry Point

ReadAmount :
ReadAmountSM

again

ReadAmount :
ReadAmountSM

again
460 UML Superstructure 2.0 Draft Adopted Specification

A connection point reference to an entry point can also be visualized using a rectangular symbol as shown in Figure 362.
The text inside the symbol shall contain the keyword ‘via’ followed by the name of the connection point. This notation
may only be used if the transition ending with the connection point is defined using the transition-oriented control icon
notation as defined in “Transition (from BehaviorStatemachines)” on page 498.

Figure 360 - Alternative Entry Point notation

A connection point reference to an exit point has the same notation as an exit point pseudostate. The encircled cross is
placed on the border of the state symbol of a submachine state.

A connection point reference to an exit point can also be visualized using a rectangular symbol as shown in Figure 362.
The text inside the symbol shall contain the keyword ‘via’ followed by the name of the connection point. This notation
may only be used if the transition associated with the connection point is defined using the transition-oriented control icon
notation as defined in “Transition (from BehaviorStatemachines)” on page 498.

Figure 362 - Alternative Exit Point notation

15.3.2 Interface (from ProtocolStatemachines, as specialized)

Interface is defined as a specialization of the general Interface, adding an association to a protocol state machine.

Figure 361 - Exit Point

ReadAmount:
ReadAmountSM

via aborted

ReadAmount :
ReadAmountSM abortedaborted

ReadAmount :
ReadAmountSM abortedaborted

ReadAmount:
ReadAmountSM

via aborted
UML Superstructure 2.0 Draft Adopted Specification 461

Description

Since an interface specifies conformance characteristics, it does not own detailed behavior specifications. Instead,
interfaces may own a protocol state machine that specifies event sequences and pre/post conditions for the operations and
receptions described by the interface.

Attributes

No additional attributes.

Associations

• protocol: ProtocolStateMachine [0..1]
References a protocol state machine specifying the legal sequences of the invocation of
the behavioral features described in the interface.

Semantics

Interfaces can specify behavioral constraints on the features using a protocol state machine. A classifier realizing an
interface must comply with the protocol state machine owned by the interface.

Changes from UML 1.x

Interfaces can own a protocol state machine.

15.3.3 FinalState (from BehaviorStatemachines)

A special kind of state signifying that the enclosing region is completed. If the enclosing region is directly contained in a
state machine and all other regions in the state machine also are completed, then it means that the entire state machine is
completed.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

[1] A final state cannot have any outgoing transitions

self.outgoing->size() = 0

[2] A final state cannot have regions

[3] A final state cannot reference a submachine

[4] A final state has no entry activity

[5] A final state has no exit activity

[6] A final state has no state (doActivity) activity
462 UML Superstructure 2.0 Draft Adopted Specification

Semantics

When the final state is entered, its containing region is completed, which means that it satisfies the completion condition.
The containing state for this region is considered completed when all contained regions are completed. If the region is
contained in a state machine and all other regions in the state machine also are completed, the entire state machine
terminates, implying the termination of the context object of the state machine.

Notation

A final state is shown as a circle surrounding a small solid filled circle (see Figure 363). The corresponding completion
transition on the enclosing state has as notation an unlabeled transition.

Example

Figure 384 has an example of a final state (the rightmost of the states within the composite state).

15.3.4 Port ((from ProtocolStatemachines, as specialized)

Port is defined as a specialization of the general Port, adding an association to a protocol state machine.

Attributes

No additional attributes.

Associations

• protocol: ProtocolStateMachine [0..1]
References an optional protocol state machine which describes valid interactions at this
interaction point.

Semantics

The protocol references a protocol state machine (see “ProtocolStateMachine (from ProtocolStatemachines)” on page 464)
that describes valid sequences of operation and reception invocations that may occur at this port.

15.3.5 ProtocolConformance (from ProtocolStatemachines)

Description

Protocol state machines can be redefined into more specific protocol state machines, or into behavioral state machines.
Protocol conformance declares that the specific protocol state machine specifies a protocol that conforms to the general
state machine one, or that the specific behavioral state machine abide by the protocol of the general protocol state
machine.

A protocol state machine is owned by a classifier. The classifiers owning a general state machine and an associated
specific state machine are generally also connected by a generalization or a realization link.

Figure 363 - Final State
UML Superstructure 2.0 Draft Adopted Specification 463

Attributes

No additional attributes.

Associations

• specificMachine: StateMachine [1] :
Specifies the state machine which conforms to the general state machine.

• generalMachine: ProtocolStateMachine [1] :
Specifies the protocol state machine to which the specific state machine conforms.

Constraints

No additional constraints

Semantics

Protocol conformance means that every rule and constraint specified for the general protocol state machine (state
invariants, pre and post conditions for the operations referred by the protocol state machine) apply to the specific protocol
or behavioral state machine.

In most cases, there are relationships between the classifier being the context of the specific state machine and the
classifier being the context of the general protocol state machine. Generally, the former specializes or realizes the later. It
is also possible that the specific state machine is a behavioral state machine that implements the general protocol state
machine, both state machines having the same class as a context.

15.3.6 ProtocolStateMachine (from ProtocolStatemachines)

Description

A protocol state machine is always defined in the context of a classifier. It specifies which operations of the classifier can
be called in which state and under which condition, thus specifying the allowed call sequences on the classifier's
operations. A protocol state machine presents the possible and permitted transitions on the instances of its context
classifier, together with the operations which carry the transitions. In this manner, an instance lifecycle can be created for
a classifier, by specifying the order in which the operations can be activated and the states through which an instance
progresses during its existence.

Attributes

No additional attributes.

Associations

• conformance: ProtocolConformance[*] : Conformance between protocol state machines.

Constraints

[1] A protocol state machine must only have a classifier context, not a behavioral feature context

[2] All transitions of a protocol state machine must be protocol transitions. (transitions as extended by the ProtocolStateMa-
chines package)

[3] If two ports are connected, then the protocol state machine of the required interface (if defined) must be conformant to the
protocol state machine of the provided interface (if defined).
464 UML Superstructure 2.0 Draft Adopted Specification

Semantics

Protocol state machines help defining the usage mode of the operations and receptions of a classifier by specifying:

• ·in which context (under which states and pre conditions) they can be used

• ·if there is a protocol order between them

• ·what result is expected from their use

Using pre and post conditions on operations is a technique well suited for expressing such specifications. However, pre
and post conditions are expressed at the operation level, and therefore do not provide a synthetic overview at the classifier
level. Protocol state machines provide a global overview of the classifier protocol usage, in a simple formal
representation. Protocol state machines may not express all the pre- and postconditions of operations. In that case,
additional pre- or postconditions can be added at the operation level. Formally, the pre condition of an operation will be
the addition (logical "and") of the constraint defined as pre condition of the operation, if any, to the constraint deduced
from the protocol state machine if any. The same applies to the post condition of an operation.

The protocol state machine defines all allowed transitions for each operation. The protocol state machine must represent
all operations that can generate a given change of state for a class. Those operations that do not generate a transition are
not represented in the protocol state machine.

Protocol state machines constitute a means to formalize the interface of classes, and do not express anything except
consistency rules for the implementation or dynamics of classes.

Protocol state machine interpretation can vary from:

1. Declarative protocol state machines that specify the legal transitions for each operation. The exact triggering condi-
tion for the operations is not specified. This specification only defines the contract for the user of the context classi-
fier.

2. Executable protocol state machines, that specify all events that an object may receive and handle, together with the
transitions that are implied. In this case, the legal transitions for operations will exactly be the triggered transitions.
The call trigger specifies the effect action, which is the call of the associated operation.

The representation for both interpretations is the same, the only difference being the direct dynamic implication that the
interpretation 2 provides.

Elaborated forms of state machine modeling such as compound transitions, sub-statemeachines, composite states and
concurrent regions can also be used for protocol state machines. For example, concurrent regions make it possible to
express protocol where an instance can have several active states simultaneously. Sub-state machines and compound
transitions are used as in behavioral state machines for factorizing complex protocol state machines.

A classifier may have several protocol state machines. This happens frequently, for example, when a class inherits several
parent classes having protocol state machine, when the protocols are orthogonal. An alternative to multiple protocol state
machines can always be found by having one protocol state machine, with sub-state machines in concurrent regions.
UML Superstructure 2.0 Draft Adopted Specification 465

Notation

The notation for protocol state machine is very similar to the one of behavioral state machines. The keyword {protocol}
placed close to the name of the state machine differentiates graphicaly protocol state machine diagrams.

15.3.7 ProtocolTransition (from ProtocolStateMachines)

Description

A protocol transition (transition as specialized in the ProtocolStateMachines package) specifies a legal transition for an
operation. Transitions of protocol state machines have the following information: a pre condition (guard), on trigger, and
a post condition. Every protocol transition is associated to zero or one operation (referred BehavioralFeature) that belongs
to the context classifier of the protocol state machine.

The protocol transition specifies that the associated (referred) operation can be called for an instance in the origin state
under the initial condition (guard), and that at the end of the transition, the destination state will be reached under the final
condition (post).

Attributes

No additional attributes.

Associations

• \referred: Operation[0..*] This association refers to the associated operation. It is derived from the operation of the
call trigger when applicable.

• postCondition: Constraint[0..1] Specifies the post condition of the transition which is the condition that should be
obtained once the transition is triggered. This post condition is part of the post condition of
the operation connected to the transition.

• preCondition: Constraint[0..1] Specifies the precondition of the transition. It specifies the condition that should be veri-
fied before triggering the transition. This guard condition added to the source state will be
evaluated as part of the precondition of the operation refered by the transition if any.

Figure 364 - Protocol state machine

opened closed

[doorWay -> isEmpty] Close/

locked

lock/

unlock/

open/

create/

Door {protocol}

opened closed

[doorWay -> isEmpty] Close/

locked

lock/

unlock/

open/

create/

Door {protocol}
466 UML Superstructure 2.0 Draft Adopted Specification

Constraints

[1] A protocol transition always belongs to a protocol state machine.
container.belongsToPSM()

[2] A protocol transition never has associated actions.
effect->isEmpty()

[3] If a protocol transition refers to an operation (i. e. has a call trigger corresponding to an operation), then that operation
should apply to the context classifier of the state machine of the protocol transition.

Additional Operations

[1] The operation belongsToPSM () checks if the region belongs to a protocol state machine

context Region::belongsToPSM () : Boolean
result = if not stateMachine->isEmpty() then

oclIsTypeOf(ProtocolStateMachine)
else if not state->isEmpty() then

state.container.belongsToPSM ()
else false

Semantics

No "effect" action

The effect action is never specified. It is implicit, when the transition has a call trigger: the effect action will be the
operation specified by the call trigger. It is unspecified in the other cases, where the transition only defines that a given
event can be received under a specific state and pre-condition, and that a transition will lead to another state under a
specific post condition, whatever action will be made through this transition.

Unexpected event reception

The interpretation of the reception of an event in an unexpected situation (current state, state invariant, and pre-condition)
is a semantic variation point: the event can be ignored, rejected or deferred, an exception can be raised, or the application
can stop on an error. It corresponds semantically to a pre-condition violation, for which no predefined behavior is defined
in UML.

Unexpected behavior

The interpretation of an unexpected behavior, that is an unexpected result of a transition (wrong final state or final state
invariant, or post condition) is also a semantic variation point. However, this should be interpreted as an error of the
implementation of the protocol state machine.

Equivalences to pre and post conditions of operations

The protocol transition can always be translated into pre and post conditions of the associated operation.

For example, the transition in Figure 365 specifies that:

1. the operation "m1" can be called on an instance when it is in the state S1 under the condition C1,

2. when m1 is called in the state S1 under the condition C1, then the final state S2 must be reached under the condition
C2.

This can be translated into the following pre and post conditions of the operation m1 (Figure 365).
UML Superstructure 2.0 Draft Adopted Specification 467

Operation m1()

Pre: S1 is in the configuration state and C1

Post: if the initial condition was “S1 is in the configuration state and C1” then S2 is in the configuration state and C2.

Operations referred by several transitions

In a protocol state machine, several transitions can refer to the same operation as illustrated below. In that case, all pre
conditions and post conditions will be combined in the operation pre condition as below:

Figure 365 - Example of a protocol transition associated to the "m1" operation

Figure 366 - Example of several transitions referring to the same operation

S1 S2

[C1]m1/[C2]

S1 S2

[C1]m1/[C2]

S1 S2
[C1]m1/[C2]

S3 S4
[C3]m1/[C4]

S1 S2
[C1]m1/[C2]

S3 S4
[C3]m1/[C4]

Operation m1()

Pre: S1 is in the configuration state and C1

 or

 S3 is in the configuration state and C3

Post: if the initial condition was “S1 is in the configuration state and C1”

then S2 is in the configuration state and C2

 else

if the initial condition was “S3 is in the configuration state and C3”

then S4 is in the configuration state and C4
468 UML Superstructure 2.0 Draft Adopted Specification

A protocol state machine specifies all the legal transitions for each operation refered by its transitions. This means that for
any operation refered by a protocol state machine, the part of its precondition relative to legal initial or final state is
completely specified by the protocol stat machine.

Unreferred Operations

If an operation is not referred by any transition of a protocol state machine, then the operation can be called for any state
of the protocol state machine, and does not change the current state.

Using events in protocol state machines

Apart from the operation call event, events are generally used for expressing a dynamic behavior interpretation of
protocol state machines. An event which is not a call event can be specified on protocol transitions.

In this case, this specification is a requirement to the environment external to the state machine : it is legal to send this
event to an instance of the context classifier only under the conditions specified by the protocol state machine.

Just like call event, this can also be interpreted in a dynamic way, as a semantic variation point.

Notation

The usual state machine notation applies. The difference is that no actions are specified for protocol transitions, and that
post conditions can exist. Post conditions have the same syntax as guard conditions, but appear at the end of the transition
syntax.

15.3.8 PseudoState (from BehaviorStatemachines)

A pseudostate is an abstraction that encompasses different types of transient vertices in the state machine graph.

Description

Pseudostate are typically used to connect multiple transitions into more complex state transitions paths. For example, by
combining a transition entering a fork pseudostate with a set of transitions exiting the fork pseudostate, we get a
compound transition that leads to a set of orthogonal target states.

Attributes

• kind: PseudoStateKind Determines the precise type of the PseudoState and can be one of: entryPoint, exitPoint,
initial, deepHistory, shallowHistory, join, fork, junction, terminate or choice.

Associations

No additional associations.

Constraints

An initial vertex can have at most one outgoing transition.

Figure 367 - Protocol transition notation

[precondition] event / [post condition][precondition] event / [post condition]
UML Superstructure 2.0 Draft Adopted Specification 469

(self.kind = #initial) implies
((self.outgoing->size <= 1)

[2] History vertices can have at most one outgoing transition.
((self.kind = #deepHistory) or (self.kind = #shallowHistory)) implies

(self.outgoing->size <= 1)

[3] In a complete statemachine, a join vertex must have at least two incoming transitions and exactly one outgoing transition.
(self.kind = #join) implies

((self.outgoing->size = 1) and (self.incoming->size >= 2))

[4] All transitions incoming a join vertex must originate in different regions of an orthogonal state.
(self.kind = #join

and not oclIsKindOf(self.stateMachine, ActivityGraph))
implies

self.incoming->forAll (t1, t2 | t1<>t2 implies
(self.stateMachine.LCA(t1.source, t2.source).

container.isOrthogonal)

[5] In a complete statemachine, afork vertex must have at least two outgoing transitions and exactly one incoming transition.
(self.kind = #fork) implies

((self.incoming->size = 1) and (self.outgoing->size >= 2))

[6] All transitions outgoing a fork vertex must target states in different regions of an orthogonal state.
(self.kind = #fork

and not oclIsKindOf(self.stateMachine, ActivityGraph)) implies
self.outgoing->forAll (t1, t2 | t1<>t2 implies

(self.stateMachine.LCA(t1.target, t2.target).
container.isOrthogonal)

[7] In a complete statemachine, ajunction vertex must have at least one incoming and one outgoing transition.
(self.kind = #junction) implies

((self.incoming->size >= 1) and (self.outgoing->size >= 1))

[8] In a complete statemachine, a choice vertex must have at least one incoming and one outgoing transition.
(self.kind = #choice) implies

((self.incoming->size >= 1) and (self.outgoing->size >= 1))

[9] Pseudostates of kind entryPoint can only be defined in the topmost regions of a StateMachine.

(kind = #entryPoint) implies (owner.oclIsKindOf(Region) and owner.owner.oclIsKindOf(StateMachine))

[10] Pseudostates of kind exitPoint can only be defined in the topmost regions of a StateMachine.

(kind = #exitPoint) implies (owner.oclIsKindOf(Region) and owner.owner.oclIsKindOf(StateMachine))

Semantics

The specific semantics of a Pseudostate depends on the setting of its kind attribute.

• An initial pseudostate represents a default vertex that is the source for a single transition to the default state of a com-
posite state. There can be at most one initial vertex in a region. The initial transition may have an action.

• deepHistory represents the most recent active configuration of the composite state that directly contains this pseu-
dostate; e.g. the state configuration that was active when the composite state was last exited. A composite state can
have at most one deep history vertex. At most one transition may originate from the history connector to the default
deep history state. This transition is taken in case the composite state had never been active before. Entry actions of
states entered on the path to the state represented by a deep history are performed.

• shallowHistory represents the most recent active substate of its containing state (but not the substates of that substate).
A composite state can have at most one shallow history vertex. A transition coming into the shallow history vertex is
equivalent to a transition coming into the most recent active substate of a state. At most one transition may originate
470 UML Superstructure 2.0 Draft Adopted Specification

from the history connector to the deafault shallow history state. This transition is taken in case the composite state had
never been active before. Entry actions of states entered on the path to the state represented by a shallow history are
performed.

• join vertices serve to merge several transitions emanating from source vertices in different orthogonal regions. The
transitions entering a join vertex cannot have guards or triggers.

• fork vertices serve to split an incoming transition into two or more transitions terminating on orthogonal target vertices
(i.e. vertices in different regions of a composite state). The segments outgoing from a fork vertex must not have guards
or triggers.

• junction vertices are semantic-free vertices that are used to chain together multiple transitions. They are used to con-
struct compound transition paths between states. For example, a junction can be used to converge multiple incoming
transitions into a single outgoing transition representing a shared transition path (this is known as an merge). Con-
versely, they can be used to split an incoming transition into multiple outgoing transition segments with different guard
conditions. This realizes a static conditional branch. (In the latter case, outgoing transitions whose guard conditions
evaluate to false are disabled. A predefined guard denoted “else” may be defined for at most one outgoing transition.
This transition is enabled if all the guards labeling the other transitions are false.) Static conditional branches are dis-
tinct from dynamic conditional branches that are realized by choice vertices (described below).

• choice vertices which, when reached, result in the dynamic evaluation of the guards of the triggers of its outgoing tran-
sitions. This realizes a dynamic conditional branch. It allows splitting of transitions into multiple outgoing paths such
that the decision on which path to take may be a function of the results of prior actions performed in the same run-to-
completion step. If more than one of the guards evaluates to true, an arbitrary one is selected. If none of the guards
evaluates to true, then the model is considered ill-formed. (To avoid this, it is recommended to define one outgoing
transition with the predefined “else” guard for every choice vertex.) Choice vertices should be distinguished from
static branch points that are based on junction points (described above).

• An entry point pseudostate is an entry point of a state machine. In each region of the state machine it has a single tran-
sition to a vertex within the same region.

• An exit point pseudostate is an exit point of a state machine. Entering an exit point within any region of the state
machine referenced by a submachine state implies the exit of this submachine state and the triggering of the transition
that has this exit point as source in the state machine enclosing the submachinestate.

• Entering a terminate pseudostate implies that the execution of this state machine by means of its context object is ter-
minated.

Notation

An initial pseudostate is shown as a small solid filled circle (see Figure 368). In a region of a classifierBehavior state
machine, the transition from an initial pseudostate may be labeled with the trigger event that creates the object; otherwise,
it must be unlabeled. If it is unlabeled, it represents any transition from the enclosing state.

A shallowHistory is indicated by a small circle containing an ‘H’ (see Figure 369). It applies to the state region that
directly encloses it.

Figure 368 - Initial Pseudo State
UML Superstructure 2.0 Draft Adopted Specification 471

A deepHistory is indicated by a small circle containing an ‘H*’ (see Figure 370). It applies to the state region that directly
encloses it.

An entry point is shown as a small circle on the border of the state machine diagram, with the name associated with it (see
Figure 371).

Optionally it may be placed both the within state machine diagram and outside the border of the state machine diagram.

An exit point is shown as a small circle with a cross on the border of the state machine diagram, with the name associated
with it (see Figure 372).

Optionally it may be placed both within the state machine diagram and outside the border of the state machine diagram.

Figure 369 - Shallow History

Figure 370 - Deep History

Figure 371 - Entry point

Figure 372 - Exit point

H

H*

againagain

abortedabortedabortedaborted
472 UML Superstructure 2.0 Draft Adopted Specification

A junction is represented by a small black circle (see Figure 373).

A choice pseudostate is shown as a diamond-shaped symbol as exemplified by Figure 374.

Figure 374 - Choice Pseudo State

A terminate pseudostate is shown as a cross, see Figure 375.

Figure 373 - Junction

Figure 375 - Terminate node

[a < 0]

State1

State2 State3 State4

e1[b < 0]e2[b < 0]

State0

[a = 5]

[a > 7]

[Id>10]

[Id<=10]

[>10]

[<=10]

Id
UML Superstructure 2.0 Draft Adopted Specification 473

The notation for a fork and join is a short heavy bar (Figure 376). The bar may have one or more arrows from source
states to the bar (when representing a joint) The bar may have one or more arrows from the bar to states (when
representing a fork). A transition string may be shown near the bar.

Presentation Options

If all guards associated with triggers of transitions leaving a choice PseudoState are binary expressions that share a
common left operand, then the notation for choice PseudoState may be simplified. The left operand may be placed inside
the diamond-shaped symbol and the rest of the Guard expressions placed on the outgoing transitions. This is exemplified
in Figure 377.

Figure 377 - Alternative Notation for Choice Pseudostate

Multiple trigger-free and effect-free transitions originating on a set of states and targeting a junction vertex with a single
outgoing transition may be presented as a state symbol with a list of the state names and an outgoing transition symbol
corresponding to the outgoing transition from the junction.

The special case of the transition from the junction having a history as target may optionally be presented as the target
being the state list state symbol. See Figure 378 and Figure 379 for examples.

Figure 376 - Fork and Join

Figure 378 - State List Option

Process

Setup Cleanup

A1 A2

B2B1

[>10]

[<=10]

Id
[Id>10]

[Id<=10]

s1, s2

s3

e

f

474 UML Superstructure 2.0 Draft Adopted Specification

Changes from previous UML

• Entry and exit point and terminate Pseudostates have been introduced.

• The semantics of deepHistory has been aligned with shallowHistory in that the containing state does not have to be
exited in order for deepHistory to be defined. The implication of this is that deepHistory (as is the case for shallowHis-
tory) can be the target of transitions also within the containing state and not only from states outside.

• The state list presentation option is an extension to UML1.x.

15.3.9 PseudoStateKind (from BehaviorStatemachines)

PseudoStateKind is an enumeration type.

Description

PseudoStateKind is an enumeration of the following literal values:

• initial

• deepHistory

• shallowHistory

• join

• fork

• junction

• choice

• entryPoint

• exitPoint

• terminate

Attributes

No additional attributes.

Associations

No additional associations.

Figure 379 - State Lists

VerifyCard,
Releas eCard

VerifyCard,
VerifyTrans action

logCard logVerify
UML Superstructure 2.0 Draft Adopted Specification 475

Changes from previous UML

EntryPoint, exitPoint, and terminate has been added.

15.3.10 Region (from BehaviorStatemachines)

A region is an orthogonal part of either a composite state or a state machine. It contains states and transitions.

Attributes

No additional attributes.

Associations

• transition:Transition[*] The set of transitions owned by the region. Note that internal transitions are owned by a
region, but applies to the source state.

• subvertex: Vertex[*] The set of vertices that are owned by this region.

• extendedRegion: Region[0..1] The region of which this region is an extension.

• /redefinitionContext: Classifier[1]References the classifier in which context this element may be redefined.

Constraints

[1] A region can have at most one initial vertex

self.subvertex->select (v | v.oclIsKindOf(Pseudostate))->
select(p : Pseudostate | p.kind = #initial)->size() <= 1

[2] A region can have at most one deep history vertex
self.subvertex->select (v | v.oclIsKindOf(Pseudostate))->

select(p : Pseudostate | p.kind = #deepHistory)->size() <= 1

[3] A region can have at most one shallow history vertex
self.subvertex->select(v | v.oclIsKindOf(Pseudostate))->

select(p : Pseudostate | p.kind = #shallowHistory)->size() <= 1

[4] The redefinition context of a region is the nearest containing statemachine
redefinitionContext =

let sm = containingStateMachine() in
if sm.context->isEmpty() or sm.general->notEmpty() then

sm
else

sm.context
endif

Additional constraints

[1] The query isRedefinitionContextValid() specifies whether the redefinition contexts of a region are properly related to the
redefinition contexts of the specified region to allow this element to redefine the other. The containing statemachine/state
of a redefining region must redefine the containing statemachine/state of the redefined region.

[2] ‘The query isConsistentWith() specifies that a redefining region is consistent with a redefined region provided that the
redefining region is an extension of the redefined region, i.e. it adds vertices and transitions and it redefines states and
transitions of the redefined region.
476 UML Superstructure 2.0 Draft Adopted Specification

Semantics

The semantics of regions is tightly coupled with states or state machines having regions, and it is therefore defined as part
of the semantics for state and state machine.

When a composite state or state machine is extended, each inherited region may be extended, and regions may be added.

Notation

A composite state or state machine with regions is shown by tiling the graph region of the state/state machine using
dashed lines to divide it into regions. Each region may have an optional name and contains the nested disjoint states and
the transitions between these. The text compartments of the entire state are separated from the orthogonal regions by a
solid line.

A composite state or state machine with just one region is shown by showing a nested state diagram within the graph
region.

In order to indicate that an inherited region is extended, the keyword «extended» is associated with the name of the
region.

15.3.11 State (from BehaviorStatemachines)

A state models a situation during which some (usually implicit) invariant condition holds.

Description

State in Behavioral State machines

A state models a situation during which some (usually implicit) invariant condition holds. The invariant may represent a
static situation such as an object waiting for some external event to occur. However, it can also model dynamic conditions
such as the process of performing some activity (i.e., the model element under consideration enters the state when the
activity commences and leaves it as soon as the activity is completed).

The following kinds of states are distinguished:

• Simple state,

• composite state, and

• submachine state.

Figure 380 - Notation for composite state/state machine with regions

S
UML Superstructure 2.0 Draft Adopted Specification 477

A composite state is either a simple composite state (with just one region) or an orthogonal state (with more than one
region).

Simple state

A simple state is a state that does not have substates, i.e. it has no regions and it has no submachine state machine.

Composite state

A composite state either contains one region or is decomposed into two or more orthogonal regions. Each region has a set
of mutually exclusive disjoint subvertices and a set of transitions. A given state may only be decomposed in one of these
two ways.

Any state enclosed within a region of a composite state is called a substate of that composite state. It is called a direct
substate when it is not contained by any other state; otherwise it is referred to as a indirect substate.

Each region of a composite state may have an initial pseudostate and a final state. A transition to the enclosing state
represents a transition to the initial pseudostate in each region. A newly-created object takes it’s topmost default
transitions, originating from the topmost initial pseudostates of each region.

A transition to a final state represents the completion of activity in the enclosing region. Completion of activity in all
orthogonal regions represents completion of activity by the enclosing state and triggers a completion event on the
enclosing state. Completion of the topmost regions of an object corresponds to its termination.

Submachine state

A submachine state specifies the insertion of the specification of a submachine state machine. The state machine that
contains the submachine state is called the containing state machine. The same state machine may be a submachine more
than once in the context of a single containing state machine.

A submachine state is semantically equivalent to a composite state. The regions of the submachine state machine are the
regions of the composite state. The entry, exit and activity actions, and internal transitions, are defined as part of the state.
Submachine state is a decomposition mechanism that allows factoring of common behaviors and their reuse.

Transitions in the containing state machine can have entry/exit points of the inserted state machine as targets/sources.

State in Protocol State machines

The states of protocol state machines are exposed to the users of their context classifiers. A protocol state represents an
exposed stable situation of its context classifier: when an instance of the classifier is not processing any operation, users
of this instance can always know its state configuration.

Attributes

• /isComposite A state with isComposite=true is said to be a composite state. A composite state is a state
that contains at least one region.

• /isOrthogonal: Boolean A state with isOrthogonal=true is said to be an orthogonal composite state. An orthogonal
composite state contains two or more regions.

• /isSimple A state with isSimple=true is said to be a simple state. A simple state does not have any
regions and it does not refer to any submachine state machine.

• /isSubmachineState A state with isSubmachineState=true is said to be a submachine state. Such a state refers
to a state machine (submachine).
478 UML Superstructure 2.0 Draft Adopted Specification

Associations

BehaviorStateMachines

• connection: ConnectionPointReference The entry and exit connection points used in conjunction with this (submachine)
state, i.e. as targets and sources, respectively, in the region with the submachine state. A
connection point reference references the corresponding definition of a connection point
pseudostate in the statemachine referenced by the submachinestate.

• deferrableTrigger: Trigger A list of triggers that are candidates to be retained by the state machine if they trigger no
transitions out of the state (not consumed). A deferred trigger is retained until the state
machine reaches a state configuration where it is no longer deferred.

• doActivity: Activity[0..1] An optional activity that is executed while being in the state. The execution starts when
this state is entered, and stops either by itself, or when the state is exited, whichever comes
first.

• entry: Activity[0..1] An optional activity that is executed whenever this state is entered regardless of the transi-
tion taken to reach the state. If defined, entry actions are always executed to completion
prior to any internal activity or transitions performed within the state.

• exit: Activity[0..1] An optional activity that is executed whenever this state is exited regardless of which tran-
sition was taken out of the state. If defined, exit actions are always executed to completion
only after all internal activities and transition actions have completed execution.

• redefinedState: State[0..1] The state of which this state is a redefinition.

• region: Region[*] The regions of the state.

• submachine: StateMachine[0..1]The state machine that is to be inserted in place of the (submachine) state.

• stateInvariant: Constraint [0..1]Specifies conditions that are always true when this state is the current state. In protocol
state machines, state invariants are additional conditions to the preconditions of the outgo-
ing transitions, and to the postcondition of the incoming transitions.

• /redefinitionContext: Classifier[1]References the classifier in which context this element may be redefined.

MaximumOneRegion

• region: Region[0..1] A state with none or just one region.

Constraints

[1] There have to be at least two regions in an orthogonal composite state
(self.isOrthogonal) implies

(self.region->size >= 2)

[2] Only submachine states can have connection point references.

[3] The connection point references used as destinations/sources of transitions associated with a submachine state must be
defined as entry/exit points in the submachine state machine.

[4] A state is not allowed to have both a submachine and regions.
not (self.isSubmachineState and self.isComposite)

[5] A simple state is a state without any regions.
isSimple = content.isEmpty()

[6] Acomposite state is a state with at least one region.
isComposite = content.notEmpty()
UML Superstructure 2.0 Draft Adopted Specification 479

[7] An orthogonal state is a composite state with at least 2 regions
isOrthogonal = (context.size() >= 2)

[8] Only submachine states can have a reference statemachine.
isSubmachineState = submachine.notEmpty()

[9] A Protocol state (state belonging to a protocol state machine) has no entry or exit or do activity actions.
entry->isEmpty() and
exit->isEmpty() and
doActivity->isEmpty()

[10] Protocol states cannot be deep or shallow history pseudo states.
if oclIsTypeOf(Pseudostate) then (kind <> #deepHistory) and (kind <> #shallowHistory)

[11] The redefinition context of a state is the nearest containing statemachine
redefinitionContext =

let sm = containingStateMachine() in
if sm.context->isEmpty() or sm.general->notEmpty() then

sm
else

sm.context
endif

Additional constraints

[1] The query isRedefinitionContextValid() specifies whether the redefinition contexts of a state are properly related to the
redefinition contexts of the specified state to allow this element to redefine the other. The containing region of a redefin-
ing state must redefine the containing region of the redefined state.

[2] The query isConsistentWith() specifies that a redefining state is consistent with a redefined state provided that the rede-
fining state is an extension of the redefined state: A simple state can be redefined (extended) to become a composite state
(by adding a region) and a composite state can be redefined (extended) by adding regions and by adding vertices, states,
entry/exit/do activities (if the general state has none), and transitions to inherited regions.

Semantics

States in general

The following applies to states in general. Special semantics applies to composite states and submachine states.

Active states

A state can be active or inactive during execution. A state becomes active when it is entered as a result of some transition, and
becomes inactive if it is exited as a result of a transition. A state can be exited and entered as a result of the same transition
(e.g., self transition).

State entry and exit

Whenever a state is entered, it executes its entry activity before any other action is executed. Conversely, whenever a state is
exited, it executes its exit activity as the final step prior to leaving the state.

Activity in state (do-activity)
480 UML Superstructure 2.0 Draft Adopted Specification

The activity represents the execution of a activity, that occurs while the state machine is in the corresponding state. The
activity starts executing upon entering the state, following the entry activity. If the activity completes while the state is
still active, it raises a completion event. In case where there is an outgoing completion transition (see below) the state will
be exited. Upon exit, the activity is terminated before the exit activity is executed. If the state is exited as a result of the
firing of an outgoing transition before the completion of the activity, the activity is aborted prior to its completion.

Deferred events

A state may specify a set of event types that may be deferred in that state. An event that does not trigger any transitions
in the current state, will not be dispatched if its type matches one of the types in the deferred event set of that state.
Instead, it remains in the event pool while another non-deferred event is dispatched instead. This situation persists until a
state is reached where either the event is no longer deferred or where the event triggers a transition.

State redefinition

A state may be redefined, provided that the value of isFinal is False. A simple state can be redefined (extended) to
become a composite state (by adding a region) and a composite state can be redefined (extended) by adding regions and
by adding vertices, states, entry/exit/do activities (if the general state has none), and transitions to inherited regions. The
redefinition of a state applies to the whole state machine, e.g. if a state list as part of the extended state machine includes
a state that is redefined, then the state list for the extension state machine includes the redefined state.

Composite state

Active state configurations

In a hierarchical state machine more than one state can be active at the same time. If the state machine is in a simple state
that is contained in a composite state, then all the composite states that either directly or transitively contain the simple
state are also active. Furthermore, since the state machine as a whole and some of the composite states in this hierarchy
may be orthogonal (i.e. containing regions), the current active “state” is actually represented by a set of trees of states
starting with the top-most states of the root regions down to individual simple states at the leaves. We refer to such a state
tree as a state configuration.

Except during transition execution, the following invariants always apply to state configurations:

• If a composite state is active and not orthogonal, exactly one of its substates is active.

• If the composite state is active and orthogonal, all of its regions are active, one substate in each region.

Entering a non-orthogonal composite state

Upon entering a composite state, the following cases are differentiated:

• Default entry: Graphically, this is indicated by an incoming transition that terminates on the outside edge of the com-
posite state. In this case, the default transition is taken. If there is a guard on the trigger of the transition it must be
enabled (true). (A disabled initial transition is an ill-defined execution state and its handling is not defined.) The entry
activity of the composite state is executed before the activity associated with the initial transition.

• Explicit entry: If the transition goes to a substate of the composite state, then that substate becomes active and its entry
code is executed after the execution of the entry code of the composite state. This rule applies recursively if the transi-
tion terminates on a transitively nested substate.

• Shallow history entry: If the transition terminates on a shallow history pseudostate, the active substate becomes the
most recently active substate prior to this entry, unless the most recently active substate is the final state or if this is the
first entry into this state. In the latter two cases, the default history state is entered. This is the substate that is target of
the transition originating from the history pseudostate. (If no such transition is specified, the situation is il defined and
UML Superstructure 2.0 Draft Adopted Specification 481

its handling is not defined.) If the active substate determined by history is a composite state, then it proceeds with its
default entry.

• Deep history entry: The rule here is the same as for shallow history except that the rule is applied recursively to all lev-
els in the active state configuration below this one.

Entering an orthogonal composite state

Whenever an orthogonal composite state is entered, each one of its orthogonal regions is also entered, either by default or
explicitly. If the transition terminates on the edge of the composite state, then all the regions are entered using default
entry. If the transition explicitly enters one or more regions (in case of a fork), these regions are entered explicitly and the
others by default.

Exiting non-orthogonal state

When exiting from a composite state, the active substate is exited recursively. This means that the exit activities are
executed in sequence starting with the innermost active state in the current state configuration.

Exiting an orthogonal state

When exiting from an orthogonal state, each of its regions is exited. After that, the exit activities of the state is executed.

Deferred events

Composite states introduce potential event deferral conflicts. Each of the substates may defer or consume an event,
potentially conflicting with the composite state, e.g. a substate defers an event while the composite state consumes it, or
vice versa. In case of a composite orthogonal state, substates of orthogonal regions may also introduce deferral conflicts.
The conflict resolution follows the triggering priorities, where nested states override enclosing states. In case of a conflict
between states in different orthogonal regions, a consumer state overrides a deferring state.

Submachine state

A submachine state is semantically equivalent to the composite state defined by the referenced state machine. Entering
and leaving this composite state is, in contrast to an ordinary composite state, via entry and exit points.

A submachine composite state machine can be entered via its default (initial) pseudostate or via any of its entry points,
i.e. it may imply entering a non-orthogonal or an orthogonal composite state with regions. Entering via the initial
pseudostate has the same meaning as for ordinary composite states. An entry point is equivalent with a junction
pseudostate (fork in case the composite state is orthogonal): Entering via an entry point implies that the entry activity of
the composite state is executed, followed by the (partial) transition(s) from the entry point to the target state(s) within the
composite state. As for default initial transitions, guards associated with the triggers of these entry point transitions must
evaluate to true in order for the specification not to be ill-formed.

Similarly, it can be exited as a result of reaching its final state, by a “group” transition that applies to all substates in the
submachine state composite state, or via any of its exit points. Exiting via a final state or by a group transition has the
same meaning as for ordinary composite states. An exit point is equivalent with a junction pseudostate (join in case the
composite state is orthogonal): Exiting via an exit point implies that first activity/activities of the transition(s) with the
exit point as target is executed, followed exit activity of the composite state.

Notation

States in general

A state is in general shown as a rectangle with rounded corners, with the state name shown inside the rectangle.
482 UML Superstructure 2.0 Draft Adopted Specification

Optionally, it may have an attached name tab, see Figure 382. The name tab is a rectangle, usually resting on the outside
of the top side of a state and it contains the name of that state. It is normally used to keep the name of a composite state
that has orthogonal regions, but may be used in other cases as well. The state in Figure 376 on page 474 illustrates the use
of the name tab.

A state may be subdivided into multiple compartments separated from each other by a horizontal line, see Figure 383.

The compartments of a state are:

• name compartment

• internal activities compartment

• internal transitions compartment

A composite state has in addition a

• decomposition compartment

Each of these compartments is described below.

Figure 381 - State

Figure 382 - State with name tab

Figure 383 - State with compartments

Ty ping
Password

Typing Password

Typing Password

entry / set echo invisible
exit / set echo normal
character / handle character
help / display help
UML Superstructure 2.0 Draft Adopted Specification 483

• Name compartment

This compartment holds the (optional) name of the state, as a string. States without names are anonymous and are all
distinct. It is undesirable to show the same named state twice in the same diagram, as confusion may ensue, unless control
icons (page 502) are used to show a transition oriented view of the state machine. Name compartments should not be used
if a name tab is used and vice versa.

In case of a submachine state, the name of the referenced state machine is shown as a string following ‘:’ after the name
of the state.

• Internal activities compartment

This compartment holds a list of internal activities or state (do) activities that are performed while the element is in the
state.

The activity label identifies the circumstances under which the activity specified by the activity expression will be
invoked. The activity expression may use any attributes and association ends that are in the scope of the owning entity.
For list items where the activity expression is empty, the backslash separator is optional.

A number of activity labels are reserved for various special purposes and, therefore, cannot be used as event names. The
following are the reserved activity labels and their meaning:

• entry

This label identifies an activity, specified by the corresponding activity expression, which is performed upon entry to the
state (entry activity)

• exit

This label identifies an activity, specified by the corresponding activity expression, that is performed upon exit from the
state (exit activity)

• do

This label identifies an ongoing activity (“do activity”) that is performed as long as the modeled element is in the state or
until the computation specified by the activity expression is completed (the latter may result in a completion event being
generated).

• Internal transition compartment

This compartment contains a list of internal transitions, where each item has the form as described for Trigger.

Each event name may appear more than once per state if the guard conditions are different. The event parameters and the
guard conditions are optional. If the event has parameters, they can be used in the activity expression through the current
event variable.

Composite state

• decomposition compartment

This compartment shows its composition structure in terms of regions, states and transition. In addition to the (optional)
name and internal transition compartments, the state may have an additional compartment that contains a nested diagram.
For convenience and appearance, the text compartments may be shrunk horizontally within the graphic region.

In some cases, it is convenient to hide the decomposition of a composite state. For example, there may be a large number
of states nested inside a composite state and they may simply not fit in the graphical space available for the diagram. In
that case, the composite state may be represented by a simple state graphic with a special “composite” icon, usually in the
484 UML Superstructure 2.0 Draft Adopted Specification

lower right-hand corner (see Figure 385). This icon, consisting of two horizontally placed and connected states, is an
optional visual cue that the state has a decomposition that is not shown in this particular statechart diagram. Instead, the
contents of the composite state are shown in a separate diagram. Note that the “hiding” here is purely a matter of
graphical convenience and has no semantic significance in terms of access restrictions.

Examples

Figure 384 - Composite state with two states

Start

entry/ start dial tone

Partial Dial

entry/number.append(n)

digit(n)

digit(n)

[number.isValid()]

Dialing

exit/ stop dial tone
UML Superstructure 2.0 Draft Adopted Specification 485

Submachine state

The submachine state is depicted as a normal state where the string in the name compartment has the following syntax

<state name> ‘:’ <name of referenced state machine>

The submachine state symbol may contain the references to one or more entry points and to one or more exit points. The
notation for these connection point references are entry/exit point pseudostates on the border of the submashine state. The
names are the names of the corresponding entry/exit points defined within the referenced state machine. See
(“ConnectionPointReference (from BehaviorStatemachines)” on page 459).

Figure 385 - Composite State with hidden decomposition indicator icon

Figure 386 - Orthogonal state with regions

entry / start dial tone
exit / stop dial tone

HiddenComposite

entry / start dial tone
exit / stop dial tone

HiddenComposite

CourseAttempt

Failed

Lab1 Lab2

Term Project

Final Test

project done

lab done lab done

pass

fail

Studying

Passed

CourseAttempt

Failed

Lab1 Lab2

Term Project

Final Test

project done

lab done lab done

pass

failfail

Studying

Passed
486 UML Superstructure 2.0 Draft Adopted Specification

If the substate machine is entered through its default initial pseudostate or if it is exited as a result of the completion of
the submachine, it is not necessary to use the entry/exit point notation. Similarly, an exit point is not required if the exit
occurs through an explicit “group” transition that emanates from the boundary of the submachine state (implying that it
applies to all the substates of the submachine).

Submachine states invoking the same submachine may occur multiple times in the same state diagram with the entry and
exit points being part of different transitions.

Examples

The diagram in Figure 387 shows a fragment from a statechart diagram in which a sub state machine (the
FailureSubmachine) is referenced. The actual sub state machine is defined in some enclosing or imported name space.

In the above example, the transition triggered by event “error1” will terminate on entry point “sub1” of the
FailureSubmachine state machine. The “error3” transition implies taking of the default transition of the
FailureSubmachine.

The transition emanating from the “subEnd” exit point of the submachine will execute the “fixed1” activity in addition to
what is executed within the HandleFailure state machine. This transition must have been triggered within the
HandleFailure state machine. Finally, the transition emanating from the edge of the submachine state is taken as a result
of the completion event generated when the FailureSubmachine reaches its final state.

Figure 387 - Submachine State

HandleFailure:

sub1

subEnd

error1/

error3/

/fixed1

FailureSubmachine
UML Superstructure 2.0 Draft Adopted Specification 487

Figure 388 is an example of a state machine defined with two exit points. The entry and exit points may also be shown
on the frame or outside the frame (but still associated with it), and not only within the state graph.

Figure 388 - State machine with exit point as part of the state graph

Figure 389 - State machine with exit point on the border of the statemachine

ReadAmountSM

selectAmount

enterAmount
ok

abort

otherAmount

amount

abort

aborted

selectAmount

enterAmount
ok

abort

otherAmount

amount

abort

aborted

ReadAmountSM

selectAmount

enterAmount
ok

abort

otherAmount

amount

abort

aborted

selectAmount

enterAmount
ok

abort

otherAmount

amount

abort

aborted

selectAmount

enterAmount
ok

abort

otherAmount

amount

abort

aborted

selectAmount

enterAmount
ok

abort

otherAmount

amount

abort

aborted

ReadAmountSM

selectAmount

enterAmount
ok

abort

otherAmount

amount

abort

selectAmount

ok

otherAmount

amount

abort

aborted

ReadAmountSM

selectAmount

enterAmount
ok

abort

otherAmount

amount

abort

selectAmount

ok

otherAmount

amount

abort

aborted

selectAmount

enterAmount
ok

abort

otherAmount

amount

abort

selectAmount

ok

otherAmount

amount

abort

aborted
488 UML Superstructure 2.0 Draft Adopted Specification

In Figure 390 this state machine is referenced in a submachine state, and the presentation option with the exit points on
the state symbol is shown.

Notation for protocol state machines

The two differences that exist for state in protocol state machine, versus states in behavioral state machine, are as follow:
Several features in behavioral state machine do not exist for protocol state machines (entry, exit, do); States in protocol
state machines can have an invariant. The textual expression of the invariant will be represented by placing it after or
under the name of the state, surrounded by square braquets.

Figure 391 - State with invariant - notation

Rationale

Submachine states with usages of entry and exit points defined in the corresponding state machine has been introduced in
order for state machines with submachines to scale and in order to provide encapsulation.

15.3.12 StateMachine (from BehaviorStatemachines)

State machines can be used to express the behavior of part of a system. Behavior is modeled as a traversal of a graph of
state nodes interconnected by one or more joined transition arcs that are triggered by the dispatching of series of events.
During this traversal, the state machine executes a series of activities associated with various elements of the state
machine.

Figure 390 - SubmachineState with usage of exit point

VerifyCard

acceptCard

ReleaseCardVerifyTransaction

OutOfService

outOfService

VerifyCard

acceptCard

ReleaseCardVerifyTransaction
releaseCard

OutOfService

outOfService

ReadAmount :
ReadAmountSM abortedaborted

ATM

VerifyCard

acceptCard

ReleaseCardVerifyTransaction

OutOfService

outOfService

VerifyCard

acceptCard

ReleaseCardVerifyTransaction
releaseCard

OutOfService

outOfService

ReadAmount :
ReadAmountSM abortedaborted

ReadAmount :
ReadAmountSM abortedaborted

ATM

Ty ping
Password

[invariant expr]
UML Superstructure 2.0 Draft Adopted Specification 489

Description

A state machine owns one or more regions, which in turn own vertices and transitions.

The behaviored classifier context owning a state machine defines which signal and call triggers are defined for the state
machine, and which attributes and operations are available in activities of the state machine. Signal triggers and call
triggers for the state machine are defined according to the receptions and operations of this classifier.

As a kind of behavior, a state machine may have an associated behavioral feature (specification) and be the method of this
behavioral feature. In this case the state machine specifies the behavior of this behavioral feature. The parameters of the
state machine in this case match the parameters of the behavioral feature and provide the means for accessing (within the
state machine) the behavioral feature parameters.

A state machine without a context classifier may use triggers that are independent of receptions or operations of a
classifier, i.e. either just signal triggers or call triggers based upon operation template parameters of the (parameterized)
statemachine.

Attributes

No additional attributes.

Associations

BehaviorStateMachines

• region: Region[1..*] The regions of the state machine.

• connectionPoint: Pseudostate[*]The connection points defined for this state machine. They represent the interface of the
state machine when used as part of submachine state.

• extendedStateMachine: StateMachine[*]The state machines of which this is an extension.

• /redefinitionContext: Classifier[1]References the classifier in which context this element may be redefined.

MaximumOneRegion

• region: Region[1] A statemachine with just one region.

Constraints

[1] The classifier context of a state machine cannot be an interface

[2] The context classifier of the method state machine of a behavioral feature must be the classifier that owns the behavioral
feature.

[3] The connection points of a state machine are pseudostates of kind entry point or exit point.

[4] A state machine as the method for a behavioral feature cannot have entry/exit connection points.

[5] The redefinition context of a state is the nearest containing statemachine or context classifier
redefinitionContext =

let sm = containingStateMachine() in
if sm.context->isEmpty() or sm.general->notEmpty() then

sm
else

sm.context
endif
490 UML Superstructure 2.0 Draft Adopted Specification

Additional Operations

[1] The operation LCA(s1,s2) returns the state which is the least common ancestor of states s1 and s2.

context StateMachine::LCA (s1 : State, s2 : State) :
CompositeState

result = if ancestor (s1, s2) then
s1

else if ancestor (s2, s1) then
s2

else (LCA (s1.container, s2.container))

[2] The query ancestor(s1, s2) checks whether s2 is an ancestor state of state s1.
context StateMachine::ancestor (s1 : State, s2 : State) : Boolean
result = if (s2 = s1) then

true
else if (s1.container->isEmpty) then

true
else if (s2.container->isEmpty) then

false
else (ancestor (s1, s2.container)

[3] The query containingStateMachine() yields the statemachine owning a given element, either directly as for regions or
indirectly as for states and transitions.

[4] The query isRedefinitionContextValid() specifies whether the redefinition contexts of a statmachine are properly related
to the redefinition contexts of the specified statemachine to allow this element to redefine the other. The containing clasi-
fier of a redefining statemachine must redefine the containing classifier of the redefined statemachine.

[5] The query isConsistentWith() specifies that a redefining state machine is consistent with a redefined state machine pro-
vided that the redefining state machine is an extension of the redefined state machine: Regions are inherited and regions
can be added, inherited regions can be redefined. In case of multiple redefining state machines, extension implies that the
redefining state machine gets orthogonal regions for each of the redefined state machines.

Semantics

The event pool for the state machine is the event pool of the instance according to the behaviored context classifier, or the
classifier owning the behavioral feature for which the state machine is a method.

Event processing - run-to-completion step

Events are dispatched and processed by the state machine, one at a time. The order of dequeuing is not defined, leaving
open the possibility of modeling different priority-based schemes.

The semantics of event processing is based on the run-to-completion assumption, interpreted as run-to-completion
processing. Run-to-completion processing means that an event can only be taken from the pool and dispatched if the
processing of the previous current event is fully completed.

Run-to-completion may be implemented in various ways. For active classes, it may be realized by an event-loop running
in its own thread, and that reads events from a pool. For passive classes it may be implemented as a monitor.

The processing of a single event by a state machine is known as a run-to-completion step. Before commencing on a run-
to-completion step, a state machine is in a stable state configuration with all entry/exit/internal activities (but not
necessarily state (do) activities) completed. The same conditions apply after the run-to-completion step is completed.
Thus, an event will never be processed while the state machine is in some intermediate and inconsistent situation. The
run-to-completion step is the passage between two state configurations of the state machine.
UML Superstructure 2.0 Draft Adopted Specification 491

The run-to-completion assumption simplifies the transition function of the state machine, since concurrency conflicts are
avoided during the processing of event, allowing the state machine to safely complete its run-to-completion step.

When an event is dispatched, it may result in one or more transitions being enabled for firing. If no transition is enabled
and the event is not in the deferred event list of the current state configuration, the event is discarded and the run-to-
completion step is completed.

In the presence of orthogonal regions it is possible to fire multiple transitions as a result of the same event — as many as
one transition in each region in the current state configuration. In case where one or more transitions are enabled, the state
machine selects a subset and fires them. Which of the enabled transitions actually fire is determined by the transition
selection algorithm described below. The order in which selected transitions fire is not defined.

Each orthogonal region in the active state configuration that is not decomposed into orthogonal regions (i.e., “bottom-
level” region) can fire at most one transition as a result of the current event. When all orthogonal regions have finished
executing the transition, the current event is fully consumed, and the run-to-completion step is completed.

During a transition, a number of actions may be executed. If such an action is a synchronous operation invocation on an
object executing a state machine, then the transition step is not completed until the invoked object complete its run-to-
completion step.

Run-to-completion and concurrency

It is possible to define state machine semantics by allowing the run-to-completion steps to be applied orthogonally to the
orthogonal regions of a composite state, rather than to the whole state machine. This would allow the event serialization
constraint to be relaxed. However, such semantics are quite subtle and difficult to implement. Therefore, the dynamic
semantics defined in this document are based on the premise that a single run-to-completion step applies to the entire state
machine and includes the steps taken by orthogonal regions in the active state configuration.

In case of active objects, where each object has its own thread of execution, it is very important to clearly distinguish the
notion of run to completion from the concept of thread pre-emption. Namely, run-to-completion event handling is
performed by a thread that, in principle, can be pre-empted and its execution suspended in favor of another thread
executing on the same processing node. (This is determined by the scheduling policy of the underlying thread
environment — no assumptions are made about this policy.) When the suspended thread is assigned processor time again,
it resumes its event processing from the point of pre-emption and, eventually, completes its event processing.

Conflicting transitions

It was already noted that it is possible for more than one transition to be enabled within a state machine. If that happens,
then such transitions may be in conflict with each other. For example, consider the case of two transitions originating
from the same state, triggered by the same event, but with different guards. If that event occurs and both guard conditions
are true, then only one transition will fire. In other words, in case of conflicting transitions, only one of them will fire in
a single run-to-completion step.

Two transitions are said to conflict if they both exit the same state, or, more precisely, that the intersection of the set of
states they exit is non-empty. Only transitions that occur in mutually orthogonal regions may be fired simultaneously. This
constraint guarantees that the new active state configuration resulting from executing the set of transitions is well formed.

An internal transition in a state conflicts only with transitions that cause an exit from that state.
492 UML Superstructure 2.0 Draft Adopted Specification

Firing priorities

In situations where there are conflicting transitions, the selection of which transitions will fire is based in part on an
implicit priority. These priorities resolve some transition conflicts, but not all of them. The priorities of conflicting
transitions are based on their relative position in the state hierarchy. By definition, a transition originating from a substate
has higher priority than a conflicting transition originating from any of its containing states.

The priority of a transition is defined based on its source state. The priority of joined transitions is based on the priority
of the transition with the most transitively nested source state.

In general, if t1 is a transition whose source state is s1, and t2 has source s2, then:

• If s1 is a direct or transitively nested substate of s2, then t1 has higher priority than t2.

• If s1 and s2 are not in the same state configuration, then there is no priority difference between t1 and t2.

Transition selection algorithm

The set of transitions that will fire is a maximal set of transitions that satisfies the following conditions:

• All transitions in the set are enabled.

• There are no conflicting transitions within the set.

• There is no transition outside the set that has higher priority than a transition in the set (that is, enabled transitions with
highest priorities are in the set while conflicting transitions with lower priorities are left out).

This can be easily implemented by a greedy selection algorithm, with a straightforward traversal of the active state
configuration. States in the active state configuration are traversed starting with the innermost nested simple states and
working outwards. For each state at a given level, all originating transitions are evaluated to determine if they are
enabled. This traversal guarantees that the priority principle is not violated. The only non-trivial issue is resolving
transition conflicts across orthogonal states on all levels. This is resolved by terminating the search in each orthogonal
state once a transition inside any one of its components is fired.

StateMachine extension

A state machine is generalizable. A specialised state machine is an extension of the general state machine, in that regions,
vertices and transitions may be added, regions and states may be redefined (extended: simple states to composite states
and composite states by adding states and transitions), and transitions can be redefined.

As part of a classifier generalization, the classifierBehavior state machine of the general classifier and the method state
machines of behavioral features of the general classifier can be redefined (by other state machines). These state machines
may be specializations (extensions) of the corresponding state machines of the general classifier or of its behavioral
features.

A specialised state machine will have all the elements of the general state machine, and it may have additional elements.
Regions may be added. Inherited regions may be redefined by extension: States and vertices are inherited, and states and
transitions of the regions of the state machine may be redefined.

A simple state can be redefined (extended) to a composite state, by adding one or more regions.

A composite state can be redefined (extended) by either extending inherited regions or by adding regions. A region is
extended by adding vertices, states and transitions and by redefining states and transitions.
UML Superstructure 2.0 Draft Adopted Specification 493

A submachine state may be redefined. The submachine state machine may be replaced by another submachine state
machine, provided that it has the same entry/exit points as the redefined submachine state machine, but it may add entry/
exit points.

Transitions can have their content and target state replaced, while the source state and trigger is preserved.

In case of multiple general classifiers, extension implies that the extension state machine gets orthogonal regions for each
of the state machines of the general classifiers in addition to the one of the specific classifier.

Notation

A statechart diagram is a graph that represents a state machine. States and various other types of vertices (pseudostates)
in the state machine graph are rendered by appropriate state and pseudostate symbols, while transitions are generally
rendered by directed arcs that connect them or by control icons representing the actions of the activity on the transition
(page 502).

The association between a state machine and its context classifier or behavioral feature does not have a special notation.

A state machine that is an extension of the state machine in a general classifier will have the keyword «extended»
associated with the name of the state machine.

The default notation for classifier is used for denoting state machines. The keyword is «statemachine».

Inherited states are drawn with dashed lines or

Presentation option

Inherited states are drawn with gray-toned lines.
494 UML Superstructure 2.0 Draft Adopted Specification

Examples

Figure 392 is an example statemachine diagram for the state machine for simple telephone object. In addition to the initial

state, the state machine has an entry point called activeEntry, and in addition to the final state, it has an exit point called
aborted.

Figure 392 - State machine diagram representing a state machine

DialTone
Dialing

Talking
Ringing

Busy

dial digit(n)

connected

callee answers

Idle

busy

lift
receiver

caller
hangs up

callee
hangs up

Active

dial digit(n)

/get dial tone

do/ play busy
tone

do/ play ringing
tone/enable speech

/disconnect

do/ play dial tone

Pinned

callee
answers

Connecting

dial digit(n)[valid]

Time-out

do/ play message

dial digit(n)[invalid]

/connectInvalid

do/ play message

[incomplete]after (15 sec.)

after (15 sec.)

activeEntry

aborted

abort terminate
UML Superstructure 2.0 Draft Adopted Specification 495

As an example of state machine specialization, the states VerifyCard, OutOfService and VerifyTransaction in the ATM
state machine in Figure 393 have been specified as {final}, which means that they can not redefined (i.e. extended) in
specializations of ATM. The other states can be redefined. The (verifyTransaction,releaseCard) transition has also been
specified as {final}, meaning that the effect activity and the target state cannot be redefined.

In Figure 394 a specialized ATM (which is the statemachine of a class that is a specialization of the class with the ATM
statemachine of Figure 393) is defined by extending the composite state by adding a state and a transition, so that users
can enter the desired amount. In addition a transition is added from an inherited state to the newly introduced state.

Figure 393 - A general state machine

VerifyCard

OutOfService

ReadAmount

selectAmount

acceptCard

ReleaseCard
VerifyTransaction

selectAmount

amount
outOfService

releaseCard

{final}

{final}

{final} {final}

ATM
VerifyCard

OutOfService

ReadAmount

selectAmount

acceptCard

ReleaseCard
VerifyTransaction

selectAmount

amount
outOfService

releaseCard

{final}

{final}

{final} {final}

VerifyCard

OutOfService

ReadAmount

selectAmount

acceptCard

ReleaseCardReleaseCard
VerifyTransaction

selectAmount

amount
outOfService

releaseCard

{final}

{final}

{final} {final}

ATM
496 UML Superstructure 2.0 Draft Adopted Specification

Rationale

The rationale for statemachie extension is that it shall be possible to define the redefined behavior of a special classifier
as an extension of the behavior of the general classifier.

Changes from previous UML

• The association ownedStateMachine is introduced in order for StateMachines to have locally defined StateMachines
that can be referenced from SubmachineStates.

• State machine extension is an extension of 1.x.

Rationale

State machines are used for the definition of behavior for e.g. classes that are generalizable. As part of the specialization
of a class it is desirable also the specialize the behavior definition.

Changes from previous UML

This is an extension to 1.x. In 1.x state machine generalization is only described through a note.

Figure 394 - An extended state machine

ReadA m oun t

S e lectA m ount

E nterA m o unt

S e lectA m ount

V erifyTra nsaction

E nterA m o unt

ok

otherA m o unt

re jec tTra nsaction

{extended}

A TM {exte nded}

ReadA m oun t

S e lectA m ount

E nterA m o unt

S e lectA m ount

V erifyTra nsaction

E nterA m o unt

ok

otherA m o unt

re jec tTra nsaction

{extended}

A TM {exte nded}
UML Superstructure 2.0 Draft Adopted Specification 497

15.3.13 TimeTrigger (from BehaviorStatemachines, as specialized)

Description

Extends time triggers to be defined relative to entering the current state of the executing state machine.

Constraints

[1] The starting time for a relative time event may only be omitted for a time event that is the trigger of a state machine.

Semantics

If the deadline expression is relative and no explicit starting time is defined, then it is relative to the time of entry into the
source state of the transition triggered by the event. In that case, the time event occurrence is generated only if the state
machine is still in that state when the deadline expires.

Notation

If no starting point is indicated, then it is the time since the entry to the current state.

15.3.14 Transition (from BehaviorStatemachines)

A transition is a directed relationship between a source vertex and a target vertex. It may be part of a compound
transition, which takes the state machine from one state configuration to another, representing the complete response of
the state machine to a particular event.

Attributes

• kind: TransitionKind See definition of TransitionKind.

Associations

• trigger: Trigger[0..*] Specifies the triggers that may fire the transition.

• guard: Constraint[0..1] A guard is a constraint that provides a fine-grained control over the firing of the transition.
The guard is evaluated when an event is dispatched by the state machine. If the guard is
true at that time, the transition may be enabled, otherwise, it is disabled. Guards should be
pure expressions without side effects. Guard expressions with side effects are ill formed.

• effect: Activity[0..1] Specifies an optional activity to be performed when the transition fires.

• source: Vertex[1] Designates the originating vertex (state or pseudostate) of the transition.

• target: Vertex[1] Designates the target vertex that is reached when the transition is taken.

• replacedTransition: Transition[0..1]The transition of which this is a replacement.

• /redefinitionContext: Classifier[1]References the classifier in which context this element may be redefined.

Constraints

[1] A fork segment must not have guards or triggers.

(self.source.oclIsKindOf(Pseudostate)
and not oclIsKindOf(self.stateMachine, ActivityGraph)) implies
((self.source.oclAsType(Pseudostate).kind = #fork) implies

((self.guard->isEmpty) and (self.trigger->isEmpty)))
498 UML Superstructure 2.0 Draft Adopted Specification

[2] A join segment must not have guards or triggers.
self.target.oclIsKindOf(Pseudostate) implies

((self.target.oclAsType(Pseudostate).kind = #join) implies
((self.guard->isEmpty) and (self.trigger->isEmpty)))

[3] A fork segment must always target a state.
(self.stateMachine->notEmpty) implies
self.source.oclIsKindOf(Pseudostate) implies

((self.source.oclAsType(Pseudostate).kind = #fork) implies
(self.target.oclIsKindOf(State)))

[4] A join segment must always originate from a state.
(self.stateMachine->notEmpty) implies
self.target.oclIsKindOf(Pseudostate) implies

((self.target.oclAsType(Pseudostate).kind = #join) implies
(self.source.oclIsKindOf(State)))

[5] Transitions outgoing pseudostates may not have a trigger.
self.source.oclIsKindOf(Pseudostate)

implies (self.trigger->isEmpty))

[6] An initial transition at the topmost level (region of a statemachine) either has no trigger or it has a trigger with the stereo-
type "create”.
self.source.oclIsKindOf(Pseudostate) implies

(self.source.oclAsType(Pseudostate).kind = #initial) implies
(self.source.container = self.stateMachine.top) implies

((self.trigger->isEmpty) or
 (self.trigger.stereotype.name = 'create'))

[7] In case of more than one trigger, the signatures of these must be compatible in case the parameters of the signal are
assigned to local variables/attributes.

[8] The redefinition context of a transition is the nearest containing statemachine
redefinitionContext =

let sm = containingStateMachine() in
if sm.context->isEmpty() or sm.general->notEmpty() then

sm
else

sm.context
endif

Additional constraints

[1] The query isConsistentWith() specifies that a redefining transition is consistent with a redefined transition provided that
the redefining transition has the following relation to the redefined transition: A redefinining transition redefines all prop-
erties of the corresponding redefined transition, except the source state and the trigger.

Semantics

High-level transitions

Transitions originating from composite states themselves are called high-level or group transitions. If triggered, they
result in exiting of all the substates of the composite state executing their exit activities starting with the innermost states
in the active state configuration. Note that in terms of execution semantics, a high-level transition does not add
specialized semantics, but rather reflects the semantics of exiting a composite state. A high-level transition with a target
outside the composite state will imply the execution of the exit action of the composite state, while a high-level transition
with a target inside the composite state will not imply execution of the exit action of the composite state.
UML Superstructure 2.0 Draft Adopted Specification 499

Compound transitions

A compound transition is a derived semantic concept, represents a “semantically complete” path made of one or more
transitions, originating from a set of states (as opposed to pseudo-state) and targeting a set of states. The transition
execution semantics described below, refer to compound transitions.

In general, a compound transition is an acyclical unbroken chain of transitions joined via join, junction, choice, or fork
pseudostates that define path from a set of source states (possibly a singleton) to a set of destination states, (possibly a
singleton). For self-transitions, the same state acts as both the source and the destination set. A (simple) transition
connecting two states is therefore a special common case of a compound transition.

The tail of a compound transition may have multiple transitions originating from a set of mutually orthogonal regions that
are joined by a join point.

The head of a compound transition may have multiple transitions originating from a fork pseudostate targeted to a set of
mutually orthogonal regions.

In a compound transition multiple outgoing transitions may emanate from a common junction point. In that case, only one
of the outgoing transition whose guard is true is taken. If multiple transitions have guards that are true, a transition from
this set is chosen. The algorithm for selecting such a transition is not specified. Note that in this case, the guards are
evaluated before the compound transition is taken.

In a compound transition where multiple outgoing transitions emanate from a common choice point, the outgoing
transition whose guard is true at the time the choice point is reached, will be taken. If multiple transitions have guards
that are true, one transition from this set is chosen. The algorithm for selecting this transition is not specified. If no guards
are true after the choice point has been reached, the model is ill formed.

Internal transitions

An internal transition executes without exiting or re-entering the state in which it is defined. This is true even if the state
machine is in a nested state within this state.

Completion transitions and completion events

A completion transition is a transition where the source is a composite state, a submachine state or an exit point, and
without an explicit trigger, although it may have a guard defined. When all transitions and entry activities and state (do)
activities in the currently active state are completed, a completion event is generated. This event is the implicit trigger for
a completion transition. The completion event is dispatched before any other events in the pool and has no associated
parameters. For instance, a completion transition emanating from an orthogonal composite state will be taken
automatically as soon as all the orthogonal regions have reached their final state.

If multiple completion transitions are defined for a state, then they should have mutually exclusive guard conditions.

Enabled (compound) transitions

A transition is enabled if and only if:

• All of its source states are in the active state configuration.

• One of the triggers of the transition is satisfied by the current event. An event satisfies a trigger if it matches the event
specified by the trigger. In case of signal events, since signals are generalized concepts, a signal event satisfies a signal
event associated with the same signal or a generalization thereof.

• If there exists at least one full path from the source state configuration to either the target state configuration or to a
500 UML Superstructure 2.0 Draft Adopted Specification

dynamic choice point in which all guard conditions are true (transitions without guards are treated as if their guards are
always true).

Since more than one transition may be enabled by the same event, being enabled is a necessary but not sufficient
condition for the firing of a transition.

Guards

In a simple transition with a guard, the guard is evaluated before the transition is triggered.

In compound transitions involving multiple guards, all guards are evaluated before a transition is triggered, unless there
are choice points along one or more of the paths. The order in which the guards are evaluated is not defined.

If there are choice points in a compound transition, only guards that precede the choice point are evaluated according to
the above rule. Guards downstream of a choice point are evaluated if and when the choice point is reached (using the
same rule as above). In other words, for guard evaluation, a choice point has the same effect as a state.

Guards should not include expressions causing side effects. Models that violate this are considered ill formed.

Transition execution sequence

Every transition, except for internal and local transitions, causes exiting of a source state, and entering of the target state.
These two states, which may be composite, are designated as the main source and the main target of a transition.

The least common ancestor (LCA) state of a transition is the lowest composite state that contains all the explicit source
states and explicit target states of the compound transition. In case of junction segments, only the states related to the
dynamically selected path are considered explicit targets (bypassed branches are not considered).

If the LCA is not an orthogonal state, the main source is a direct substate of the least common ancestor that contains the
explicit source states, and the main target is a substate of the least common ancestor that contains the explicit target states.
In case where the LCA is an orthogonal state, the main source and main target are the orthogonal state itself. The reason
is that if an orthogonal region is exited, it forces exit of the entire orthogonal state.

Example

• The common simple case: A transition t between two simple states s1 and s2, in a composite states. Here the least com-
mon ancestor of t is s, the main source is s1 and the main target is s2.

Note that a transition from one region to another in the same immediate enclosing composite state is not allowed: the two
regions must be part of two different composite states. Here least common ancestor of t is s, the main source is s and the
main target is s, since s is an orthogonal state as specified above.

Once a transition is enabled and is selected to fire, the following steps are carried out in order:

• The main source state is properly exited.

• Activities are executed in sequence following their linear order along the segments of the transition: The closer the
activity to the source state, the earlier it is executed.

• If a choice point is encountered, the guards following that choice point are evaluated dynamically and a path whose
guards are true is selected.

• The main target state is properly entered.
UML Superstructure 2.0 Draft Adopted Specification 501

Transition redefinition

A transition of an extended state machine may in the state machine extension be redefined, provided that the value of
isFinal is False. A redefinition transition redefines all properties of the corresponding replaced transition in the extended
state machine, except the source state and the trigger.

Transitions are identified by the (source state, trigger) pair. Only transitions that can be uniquely defined by this pair can
be redefined. This excludes transitions with the same source, same trigger but different guards from being redefined.

Notation

In addition to the notation defined in Common Behaviors, an item of an assignment-specification can have this form:

• attr-name ‘:’ type-name: this implies an implicit declaration of a local attribute in the effect activity instance and an
implicit assignment of the corresponding event parameter to this local attribute.

The guard-constraint is a Boolean expression written in terms of parameters of the triggering event and attributes and
links of the context object. The guard constraint may also involve tests of orthogonal states of the current state machine,
or explicitly designated states of some reachable object (for example, “in State1” or “not in State2”). State names may be
fully qualified by the nested states and regions that contain them, yielding pathnames of the form
“(RegionOrState1::RegionOrState2::State3.” This may be used in case the same state name occurs in different composite
state regions.

The activity-expression is executed if and when the transition fires. It may be written in terms of operations, attributes,
and links of the context object and the parameters of the triggering event, or any other features visible in it’s scope. The
activity expression may be an action sequence comprising a number of distinct actions including actions that explicitly
generate events, such as sending signals or invoking operations. The details of this expression are dependent on the action
language chosen for the model.

Both in the activity-expression and in actions of the effect transition specified graphically, the values of the signal
instance (in case of a signal trigger) are denoted by signal-name ‘.’attribute-name in case of just one signal trigger, and
by ‘msg.’attr-name in case of more than one trigger.

Internal transitions are specified in a special compartment of the source state, see Figure 383.

The following icons provide explicit symbols for certain kinds of information that can be specified on transitions. The
control icons are intended to provide a transition-oriented view of a state machine as exemplified in Figure 395. These
icons are not necessary for constructing state machine diagrams, but many users prefer the added impact that they
provide.

Signal receipt

The receipt of a signal may be shown as a concave pentagon that looks like a rectangle with a triangular notch in its side
(either side). The signature of the signal is shown inside the symbol. A unlabeled transition arrow is drawn from the
source state to the pentagon and another unlabeled transition arrow is drawn from the pentagon to the target state.

Signal sending

The sending of a signal may be shown as a convex pentagon that looks like a rectangle with a triangular point on one side
(either side). The actual parameters of the signal is shown inside the symbol. A unlabeled transition arrow is drawn from
the source state to the pentagon and another unlabeled transition arrow is drawn from the pentagon to the target state.
502 UML Superstructure 2.0 Draft Adopted Specification

Action sequence

A sequence of actions in a transition may be shown as a rectangle that contains a textual description of the actions. The
syntax used in the textual description is tool specific but must map to a sequence of Actions.

Deferred triggers

A deferrable trigger is shown by listing it within the state followed by a slash and the special operation defer. If the event
occurs, it is saved and it recurs when the object transitions to another state, where it may be deferred again. When the
object reaches a state in which the event is not deferred, it must be accepted or lost. The indication may be placed on a
composite state or its equivalents, submachine states, in which case it remains deferrable throughout the composite state.
A contained transition may still be triggered by a deferrable event, whereupon it is removed from the pool.

Figure 395 - Symbols for Signal Receipt, Sending and Actions on transition

Idle

Busy

Minor(Id)

Req(Id)

Major(Id)

[Id>10]

[Id<=10]

MinorReq = Id; MajorReq = Id;
UML Superstructure 2.0 Draft Adopted Specification 503

Figure 397 shows an example of adding transitions in a specialized state machine.

Figure 396 - Deferred Trigger Notation

Turn on
Machine

Brew coffee

Pour Coffee

turnOn

light goes out / defer

Get Cups

light goes out

light goes out / defer
504 UML Superstructure 2.0 Draft Adopted Specification

Example

Transition, with guard constraint and transition string:

right-mouse-down (location) [location in window] / object := pick-object (location);object.highlight ()

The trigger may be any of the standard trigger types. Selecting the type depends on the syntax of the name (for time
triggers, for example); however, SignalTriggers and CallTriggers are not distinguishable by syntax and must be
discriminated by their declaration elsewhere.

Changes from previous UML

• Transition redefinition has been added, in order to express if a transition of a general state machine can be redefined or
not.

• Along with this, an association to the redefined transition has been added.

• Guard has been replaced by a Constraint.

15.3.15 Vertex (from BehaviorStatemachines)

A vertex is an abstraction of a node in a statechart graph. In general, it can be the source or destination of any number of
transitions.

Figure 397 - Adding Transitions

ReadAmount

SelectAmount

EnterAmount

ReleaseCard

SelectAmount

EnterAmount

abort

abort

ATM {extended}
UML Superstructure 2.0 Draft Adopted Specification 505

Attributes

No additional attributes.

Associations

• outgoing: Transition[1..*] Specifies the transitions departing from this vertex.

• incoming: Transition[1..*] Specifies the transitions entering this vertex.

• container: Region[0..1] The region that contains this vertex.

15.3.16 TransitionKind

TransitionKind is an enumeration type.

Description

TransitionKind is an enumeration of the following literal values:

• external

• internal

• local

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

[1] The source state of a transition with transition kind local must be a composite state.

[2] The source state of a transition with transition kind external must be a composite state.

Semantics

• kind=internal implies that the transition, if triggered, occur without exiting or entering the source state. Thus, it does not
cause a state change. This means that the entry or exit condition of the source state will not
be invoked. An internal transition can be taken even if the state machine is in one or more
regions nested within this state.

• kind=local implies that the transition, if triggered, will not exit the composite (source) state, but it will apply to any state
within the composite stat, and these will be exited and entered.

• kind=external implies that the transition, if triggered, will exit the composite (source) state.

Notation

• Transitions of kind local will be on the inside of the frame of the composite state, leaving the border of the composite state
and end at a vertex inside the composite state. Alternatively a transition of kind local can
be shown as a transition leaving a state symbol containing the text “*”. The transition is
then considered to belong to the enclosing composite state.
506 UML Superstructure 2.0 Draft Adopted Specification

• Transitions of kind external will leave the border of the composite state and end at either a vertex outside the composite
state or the composite state itself.

Changes from previous UML

The semantics implied by local is new.

15.4 Diagrams

State machine diagrams specify state machines. This chapter outlines the graphic elements that may be shown in state
machine diagrams, and provides cross references where detailed information about the semantics and concrete notation
for each element can be found. It also furnishes examples that illustrate how the graphic elements can be assembled into
diagrams.

Graphic Nodes

The graphic nodes that can be included in state machine diagrams are shown in Table 20.

Table 20 - Graphic nodes included in state machine diagrams

NODE TYPE NOTATION REFERENCE

Choice pseudo state See “ProtocolTransition (from Protocol-
StateMachines)” on page 466.

Composite state See “State (from BehaviorStatema-
chines)” on page 477.

Entry point See “ProtocolTransition (from Protocol-
StateMachines)” on page 466.

Exit point See “ProtocolTransition (from Protocol-
StateMachines)” on page 466.

[Id>10]

<=10]

S

Sb1 Sb3

Sb2

againagain

abortedabortedabortedaborted
UML Superstructure 2.0 Draft Adopted Specification 507

Final state See “FinalState (from BehaviorStatema-
chines)” on page 462.

History, Deep
Pseudo state

See “ProtocolTransition (from Protocol-
StateMachines)” on page 466.

History, Shallow
pseudo state

See “ProtocolTransition (from Protocol-
StateMachines)” on page 466.

Initial pseudo state See “ProtocolTransition (from Protocol-
StateMachines)” on page 466.

Junction pseudo state See “ProtocolTransition (from Protocol-
StateMachines)” on page 466.

Region See “Region (from BehaviorStatema-
chines)” on page 476.

Simple state See “State (from BehaviorStatema-
chines)” on page 477.

State list See “ProtocolTransition (from Protocol-
StateMachines)” on page 466.

Table 20 - Graphic nodes included in state machine diagrams

NODE TYPE NOTATION REFERENCE

H*

H

S

S

S1,S2
508 UML Superstructure 2.0 Draft Adopted Specification

Graphic Paths

The graphic paths that can be included in state machine diagrams are shown in Table 21.

Examples

The following are examples of state machine diagrams.

State Machine See “StateMachine (from BehaviorState-
machines)” on page 489.

Terminate node See “ProtocolTransition (from Protocol-
StateMachines)” on page 466

Submachine state See “State (from BehaviorStatema-
chines)” on page 477.

Table 21 - Graphic paths included in state machine diagrams

PATH TYPE NOTATION REFERENCE

Transition See “Transition (from BehaviorStatemachines)” on
page 498.

Table 20 - Graphic nodes included in state machine diagrams

NODE TYPE NOTATION REFERENCE

ReadAmountSM

aborted

ReadAmount :
ReadAmountSM abortedaborted

ReadAmount :
ReadAmountSM abortedaborted

e[g]/ ae[g]/ a
UML Superstructure 2.0 Draft Adopted Specification 509

Figure 398 - State machine with exit point definition

Figure 399 - SubmachineState with usage of exit point

ReadAmountSM

selectAmount

enterAmount
ok

abort

otherAmount

amount

abort

selectAmount

ok

otherAmount

amount

abort

aborted

ReadAmountSM

selectAmount

enterAmount
ok

abort

otherAmount

amount

abort

selectAmount

ok

otherAmount

amount

abort

aborted

selectAmount

enterAmount
ok

abort

otherAmount

amount

abort

selectAmount

ok

otherAmount

amount

abort

aborted

VerifyCard

acceptCard

ReleaseCardVerifyTransaction

OutOfService

outOfService

VerifyCard

acceptCard

ReleaseCardVerifyTransaction
releaseCard

OutOfService

outOfService

ReadAmount :
ReadAmountSM abortedaborted

ATM

VerifyCard

acceptCard

ReleaseCardVerifyTransaction

OutOfService

outOfService

VerifyCard

acceptCard

ReleaseCardVerifyTransaction
releaseCard

OutOfService

outOfService

ReadAmount :
ReadAmountSM abortedaborted

ReadAmount :
ReadAmountSM abortedaborted

ATM
510 UML Superstructure 2.0 Draft Adopted Specification

16 Use Cases

16.1 Overview

Use cases are a means for specifying required usages of a system. Typically, they are used to capture the requirements of
a system, that is, what a system is supposed to do. The key concepts associated with use cases are actors, use cases, and
the subject. The subject is the system under consideration to which the use cases apply. The users and any other systems
that may interact with the subject are represented as actors. Actors always model entities that are outside the system. The
required behavior of the subject is specified by one or more use cases, which are defined according to the needs of actors.

Strictly speaking, the term “use case” refers to a use case type. An instance of a use case refers to an occurrence of the
emergent behavior that conforms to the corresponding use case type. Such instances are often described by interaction
specifications.

Use cases, actors, and systems are described using use case diagrams.

16.2 Abstract syntax

Figure 400 - Dependencies of the UseCases package

UseCases

(from UML)

Kernel

(from Classes)

BasicBehaviors

(from CommonBehaviors)

<<merge>>

<<m erge>>
UML Superstructure 2.0 Draft Adopted Specification 511

Figure 401 - The concepts used for modeling use cases

16.3 Class Descriptions

16.3.1 Actor (from UseCases)

An actor specifies a role played by a user or any other system that interacts with the subject. (The term “role” is used
informally here and does not necessarily imply the technical definition of that term found elsewhere in this specification.)

Description

An Actor models a type of role played by an entity that interacts with the subject (e.g., by exchanging signals and data),
but which is external to the subject (i.e., in the sense that an instance of an actor is not a part of the instance of its
corresponding subject). Actors may represent roles played by human users, external hardware, or other subjects. Note that
an actor does not necessarily represent a specific physical entity but merely a particular facet (i.e., “role”) of some entity
that is relevant to the specification of its associated use cases. Thus, a single physical instance may play the role of
several different actors and, conversely, a given actor may be played by multiple different instances.

Since an actor is external to the subject, it is typically defined in the some classifier or package that incorporates the
subject classifier.

DirectedRelationship
(from Kernel)

RedefinableElement
(from Kernel)

BehavioredClassifier
(from BasicBehaviors)

Actor

Constraint
(from Kernel)

Include

ExtensionPoint

Extend

0..1

0..1

+condition

0..1

0..1

1..*

*

+extensionLocation1..*

*

Classifier
(from Kernel)

UseCase

1

*

+includingCase 1

+include
*

1

*

+addition
1

*

* 1

+extensionPoint

*

+useCase

1
1

*

+extendedCase1

*

1

*

+extension
1

+extend
*

*

*

+subject*

+useCase*

Classifier

*

0..1

+ownedUseCase

*

0..1

{subsets ownedMember}

{subsets ownedMember}

{subsets source}{ordered}

{subsets feature,
subsets ownedMember}

{subsets ownedMember}

{subsets target} {subsets source}

{subsets ownedMember}

{subsets target}
512 UML Superstructure 2.0 Draft Adopted Specification

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

[1] An actor can only have associations to use cases, subsystems, components and classes, and these associations must be
binary.

[2] An actor must have a name.
name->notEmpty()

Semantics

Actors model entities external to the subject. Each actor represents a coherent set of roles that users of the subject can
play when interacting with it. When an external entity interacts with the subject, it plays the role of a specific actor.

Notation

An actor is represented by “stick man” icon with the name of the actor in the vicinity (usually above or below) the icon.

Presentation Options

An actor may also be shown as a class rectangle with the keyword «actor», with the usual notation for all compartments.

Other icons that convey the kind of actor may also be used to denote an actor, such as using a separate icon for non-
human actors.

Style Guidelines

Actor names should follow the capitalization and punctuation guidelines used for classes in the model. The names of
abstract actors should be shown in italics.

Rationale

Not applicable.

Customer

«actor»

Customer

User
UML Superstructure 2.0 Draft Adopted Specification 513

Changes from previous UML

There are no changes to the Actor concept except for the addition of a constraint that requires that all actors must have
names.

16.3.2 Classifier (from UseCases, as specialized)

Description

Extends a classifier with the capability to own use cases. Although the owning classifier typically represents the subject
to which the owned use cases apply, this is not necessarily the case. In principle, the same use case can be applied to
multiple subjects, as identified by the subject association role of a UseCase (see “UseCase (from UseCases)” on page
519).

Attributes

No additional attributes

Associations

• ownedUseCase: UseCase References the use cases owned by this classifier. (Specializes
Namespace.ownedMember.)

Constraints

No additional constraints.

Semantics

See “UseCase (from UseCases)” on page 519.

Notation

The nesting (owning) of a use case by a classifier is represented using the standard notation for nested classifiers.

Rationale

This extension to the Classifier concept was added to allow classifiers in general to own use cases.

Changes from previous UML

No changes.

DepartmentStore

MakePurchase
514 UML Superstructure 2.0 Draft Adopted Specification

16.3.3 Extend (from UseCases)

A relationship from an extending use case to an extended use case that specifies how and when the behavior defined in
the extending use case can be inserted into the behavior defined in the extended use case.

Description

This relationship specifies that the behavior of a use case may be extended by the behavior of another (usually
supplementary) use case. The extension takes place at one or more specific extension points defined in the extended use
case. Note, however, that the extended use case is defined independently of the extending use case and is meaningful
independently of the extending use case. On the other hand, the extending use case typically defines behavior that may
not necessarily be meaningful by itself. Instead, the extending use case defines a set of modular behavior increments that
augment an execution of the extended use case under specific conditions.

Note that the same extending use case can extend more than one use case. Furthermore, an extending use case may itself
be extended.

It is a kind of DirectedRelationship, such that the source is the extending use case and the destination is the extended use
case. The extend relationship itself is owned by the extending use case.

Attributes

No additional attributes.

Associations

• extendedCase : UseCase [1] References the use case that is being extended. (Specializes DirectedRelationship.target.)

• extension : UseCase [1] References the use case that represents the extension and owns the extend relationship.
(Specializes DirectedRelationship.source.)

• condition : Constraint [0..1] References the condition that must hold when the first extension point is reached for the
extension to take place. If no constraint is associated with the extend relationship, the
extension is unconditional. (Specializes Namespace.ownedMember.)

• extensionLocation: ExtensionPoint [1..*]
An ordered list of extension points belonging to the extended use case, specifying where
the respective behavioral fragments of the extending use case are to be inserted. The first
fragment in the extending use case is associated with the first extension point in the list,
the second fragment with the second point, and so on. (Note that, in most practical
cases, the extending use case has just a single behavior fragment, so that the list of
extension points is trivial.)

Constraints

[1] The extension points referenced by the extend relationship must belong to the use case that is being extended.

extensionLocation->forAll (xp | extendedCase.extensionPoint->include(xp))

Semantics

If the condition of the extension is true at the time the first extension point is reached during the execution of the
extended use case, then all of the appropriate behavior fragments of the extending use case will also be executed. If the
condition is false, the extension does not occur. The individual fragments are executed as the corresponding extension
UML Superstructure 2.0 Draft Adopted Specification 515

points of the extending use case are reached. Once a given fragment is completed, execution continues with the behavior
of the extended use case following the extension point. Note that even though there are multiple use cases involved, there
is just a single behavior execution.

Notation

An extend relationship between use cases is shown by a dashed arrow with an open arrowhead from the use case
providing the extension to the base use case. The arrow is labeled with the keyword «extend». The condition of the
relationship as well as the references to the extension points are optionally shown in a Note attached to the corresponding
extend relationship.(See Figure 402.)

Examples

Figure 402 - Example of an extend relationship between use cases

In the use case diagram above, the use case “Perform ATM Transaction” has an extension point “Selection”. This use case
is extended via that extension point by the use case “On-Line Help” whenever execution of the “Perform ATM
Transaction” use case occurrence is at the location referenced by the “Selection” extension point and the customer selects
the HELP key. Note that the “Perform ATM Transaction” use case is defined independently of the “On-Line Help” use
case.

Rationale

This relationship is intended to be used when there is some additional behavior that should be added, possibly
conditionally, to the behavior defined in another use case (which is meaningful independently of the extending use case).

Changes from previous UML

The notation for conditions has been changed such that the condition and the referenced extension points may now be
included in a Note attached to the extend relationship, instead of merely being a textual comment that is located in the
vicinity of the relationship.

16.3.4 ExtensionPoint (from UseCases)

An extension point identifies a point in the behavior of a use case where that behavior can be extended by the behavior of
some other (extending) use case, as specified by an extend relationship.

Description

An ExtensionPoint is a feature of a use case that identifies a point where the behavior of a use case can be augmented
with elements of another (extending) use case.

Perform ATM Transaction On-Line Help

«extend»

Condition: {customer selected HELP}
extension point: Selection

extension points
Selection
516 UML Superstructure 2.0 Draft Adopted Specification

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

[1] An ExtensionPoint must have a name.

self.name->notEmpty ()

Semantics

An extension point is a reference to a location within a use case at which parts of the behavior of other use cases may be
inserted. Each extension point has a unique name within a use case.

Semantic Variation Points

The specific manner in which the location of an extension point is defined is left as a semantic variation point.

Notation

Extension points are indicated by a text string within in the Use Case oval symbol or use case rectangle according to the
syntax below:

<extension point> ::= <name> [: <explanation>]

Note that explanation, which is optional, may be any informal text or a more precise definition of the location in the
behavior of the use case where the extension point occurs.

Examples

See Figure 402 on page 516 and Figure 408 on page 522.

Rationale

ExtensionPoint supports the use case extension mechanism (see “Extend (from UseCases)” on page 515).

Changes from previous UML

In 1.x, ExtensionPoint was modeled as a kind of ModelElement, which due to a multiplicity constraint, was always
associated with a specific use case. This relationship is now modeled as an owned feature of a use case. Semantically, this
is equivalent and the change will not be visible to users.

ExtensionPoints in 1.x had an attribute called location, which was a kind of LocationReference. Since the latter had no
specific semantics it was relegated to a semantic variation point. When converting to UML 2.0, models in which
ExtensionPoints had a location attribute defined, the contents of the attribute should be included in a note attached to the
ExtensionPoint.

16.3.5 Include (from UseCases)

An include relationship defines that a use case contains the behavior defined in another use case.
UML Superstructure 2.0 Draft Adopted Specification 517

Description

Include is a directed relationship between two use cases, implying that the behavior of the included use case is inserted
into the behavior of the including use case. The including use case may only depend on the result (value) of the included
use case. This value is obtained as a result of the execution of the included use case.

Note that the included use case is not optional, and is always required for the including use case to execute correctly.

Attributes

No additional attributes.

Associations

• addition : UseCase [1] References the use case that is to be included. (Specializes
DirectedRelationship.target.)

• includingCase : UseCase [1] References the use case which will include the addition and owns the include relationship.
(Specializes DirectedRelationship.source.)

Constraints

No additional constraints.

Semantics

An include relationship between two use cases means that the behavior defined in the including use case is included in the
behavior of the base use case. The include relationship is intended to be used when there are common parts of the
behavior of two or more use cases. This common part is then extracted to a separate use case, to be included by all the
base use cases having this part in common. Since the primary use of the include relationship is for reuse of common parts,
what is left in a base use case is usually not complete in itself but dependent on the included parts to be meaningful. This
is reflected in the direction of the relationship, indicating that the base use case depends on the addition but not vice
versa.

Execution of the included use case is analogous to a subroutine call. All of the behavior of the included use case are
executed at a single location in the included use case before execution of the including use case is resumed.

Notation

An include relationship between use cases is shown by a dashed arrow with an open arrowhead from the base use case to
the included use case. The arrow is labeled with the keyword «include». (See Figure 403.)

Examples

A use case “Withdraw” includes an independently defined use case “Card Identification”.

Figure 403 - Example of the Include relationship

Rationale

The Include relationship allows hierarchical composition of use cases as well as reuse of use cases.

Withdraw
Card

Identification
«include»
518 UML Superstructure 2.0 Draft Adopted Specification

Changes from previous UML

There are no changes to the semantics or notation of the Include relationship relative to UML 1.x.

16.3.6 UseCase (from UseCases)

A use case is the specification of a set of actions performed by a system, which yields an observable result that is,
typically, of value for one or more actors or other stakeholders of the system.

Description

A UseCase is a kind of behaviored classifier that represents a declaration of an offered behavior. Each use case specifies
some behavior, possibly including variants, that the subject can perform in collaboration with one or more actors. Use
cases define the offered behavior of the subject without reference to its internal structure. These behaviors, involving
interactions between the actor and the subject, may result in changes to the state of the subject and communications with
its environment. A use case can include possible variations of its basic behavior, including exceptional behavior and error
handling.

The subject of a use case could be a physical system or any other element that may have behavior, such as a component,
subsystem or class. Each use case specifies a unit of useful functionality that the subject provides to its users, i.e., a
specific way of interacting with the subject. This functionality, which is initiated by an actor, must always be completed
for the use case to complete. It is deemed complete if, after its execution, the subject will be in a state in which no further
inputs or actions are expected and the use case can be initiated again or in an error state.

Use cases can be used both for specification of the (external) requirements on a subject and for the specification of the
functionality offered by a subject. Moreover, the use cases also state the requirements the specified subject poses on its
environment by defining how they should interact with the subject so that it will be able to perform its services.

The behavior of a use case can be described by a specification that is some kind of Behavior (through its ownedBehavior
relationship), such as interactions, activities, and state machines, or by pre-conditions and post-conditions as well as by
natural language text where appropriate. It may also be described indirectly through a Collaboration that uses the use case
and its actors as the classifiers that type its parts. Which of these techniques to use depends on the nature of the use case
behavior as well as on the intended reader. These descriptions can be combined. An example of a use case with an
associated state machine description is shown in Figure 405.

Attributes

No additional attributes.

Associations

• subject : Classifier References the subjects to which this use case applies. The subject or its parts realize all
the use cases that apply to this subject. Use cases need not be attached to any specific sub-
ject, however. The subject may, but need not, own the use cases that apply to it.

• include : Include References the Include relationships owned by this use case. (Specializes
Classifier.feature and Namespace.ownedMember.)

• extend : Extend References the Extend relationships owned by this use case. (Specializes
Classifier.feature and Namespace.ownedMember.)

• extensionPoint: ExtensionPoint
References the ExtensionPoints owned by the use case. (Specializes
Classifier.feature and Namespace.ownedMember.)
UML Superstructure 2.0 Draft Adopted Specification 519

Constraints

[1] A UseCase must have a name.

self.name -> notEmpty ()

[2] UseCases can only be involved in binary Associations.

[3] UseCases can not have Associations to UseCases specifying the same subject.

Semantics

An execution of a use case is an occurrence of emergent behavior.

Every instance of a classifier realizing a use case must behave in the manner described by the use case.

Use cases may have associated actors, which describes how an instance of the classifier realizing the use case and a user
playing one of the roles of the actor interact. Two use cases specifying the same subject cannot be associated since each
of them individually describes a complete usage of the subject. It is not possible to state anything about the internal
behavior of the actor apart from its communications with the subject.

Notation

A use case is shown as an ellipse, either containing the name of the use case or with the name of the use case placed
below the ellipse. An optional stereotype keyword may be placed above the name and a list of properties included below
the name. If a subject (or system boundary) is displayed, the use case ellipse is visually located inside the system
boundary rectangle. Note that this does not necessarily mean that the subject classifier owns the contained use cases, but
merely that the use case applies to that classifier. For example, the use cases shown in Figure 404 on page 520 apply to
the “ATMsystem” c lassifier but are owned by various packages as shown in Figure 406

Figure 404 - Example of the use cases and actors for an ATM system

Customer

Administrator

«subsystem»
ATMsystem

Bank

Withdraw

Transfer Funds

Deposit
Money

Register ATM
at Bank

Read Log

0..1

1

0..1
1

0..1

1

0..11

0..1

1

0..*

1

0..*

1

520 UML Superstructure 2.0 Draft Adopted Specification

Figure 405 - Example of a use case with an associated state machine behavior

Figure 406 - Example of use cases owned by various packages

statemachine Call

Dialing

Ringing

Talking

lastDigit

answer
onHook

usecase MakeCall

package TransactionUseCases

package ATM Services

package Administration

Card
Identification

Perform ATM
Transaction

On-Line
Help«extends»

condition: {customer
selected HELP}
extension point: Selection

Withdraw Transfer Funds
Deposit
Funds

«includes»

«includes»

Read Log
Register ATM

at Bank
UML Superstructure 2.0 Draft Adopted Specification 521

Extension points may be listed in a compartment of the use case with the heading extension points. The description of
the locations of the extension point is given in a suitable form, usually as ordinary text, but can also be given in other
forms, such as the name of a state in a state machine, an activity in an activity diagram, a precondition, or a postcondition.

Use cases may have other associations and dependencies to other classifiers, e.g. to denote input/output, events and
behaviors.

The detailed behavior defined by a use case is notated according to the chosen description technique, in a separate
diagram or textual document. Operations and attributes are shown in a compartment within the use case.

Use cases and actors may represent roles in collaborations as indicated in Figure 407.

Figure 407 - Example of a use case for withdrawal and transfer of funds

Presentation Options

A use case can also be shown using the standard rectangle notation for classifiers with an ellipse icon in the upper-right-
hand corner of the rectangle with optional separate list compartments for its features. This rendering is more suitable
when there are a large number of extension points.

Figure 408 - Example of the classifier based notation for a use case

Examples

See Figure 402 through Figure 408.

Rationale

The purpose of use cases is to identify the required functionality of a system.

«subsystem»
: ATMsystem

: Customer : Bank

: Withdraw

: Transfer Funds

extension points

order created : in Created state
order processed : in Processed state
order cancelled : in Cancelled state
order rejected : in Rejected state
order completed : in Completed state
order destroyed : in Destroyed state
order delivered : in Delivered state
order obfuscated : in Obfuscated state

OrderStationery : PlaceOrder
522 UML Superstructure 2.0 Draft Adopted Specification

Changes from previous UML

The relationship between a use case and its subject has been made explicit. Also, it is now possible for use cases to be
owned by classifiers in general and not just packages.

16.4 Diagrams

Description

Use Case Diagrams are a specialization of Class Diagrams such that the classifiers shown are restricted to being either
Actors or Use Cases.

Graphic Nodes

The graphic nodes that can be included in structural diagrams are shown in Table 22.

Table 22 - Graphic nodes included in sequence diagrams

NODE TYPE NOTATION REFERENCE

Actor (default) See “Actor (from UseCases)” on page 512

Actor
(optional user-
defined icon -
example)

Extend See “Extend (from UseCases)” on page 515

Extend (with
Condition)

Customer

erform ATM Transaction

«extends»extension points
Selection

extended (use case) extending (use case)

«extends»

Condition: {customer selected HELP}
extension point: Selection
UML Superstructure 2.0 Draft Adopted Specification 523

Extension-
Point

See “ExtensionPoint (from UseCases)” on
page 516

Include See “Include (from UseCases)” on page 517

Table 22 - Graphic nodes included in sequence diagrams

NODE TYPE NOTATION REFERENCE

extension points
Selection

extension point

extension points

order created : in Created state
order shipped : in Shipped state

OrderStationery

extension point

Withdraw Card
Identification

«includes»

included (use case) including (use case)
524 UML Superstructure 2.0 Draft Adopted Specification

Use Case See “UseCase (from UseCases)” on page 519

Table 22 - Graphic nodes included in sequence diagrams

NODE TYPE NOTATION REFERENCE

Withdraw

On-Line Help

Perform ATM Transaction

extension points
Selection

OrderStationery
UML Superstructure 2.0 Draft Adopted Specification 525

Examples

The use case diagram in Figure 409 shows a set of use cases used by four actors of a physical system that is the subject
of those use cases. The subject can be optionally represented by a rectangle as shown in this example.

Figure 409 - Use Case diagram with a rectangle representing the
 boundary of the subject.

Customer

Supervisor

Salesperson

Establish Credit

Telephone Catalog

Shipping Clerk

Check Status

Place Order

Fill Orders

use case

actor

subject
526 UML Superstructure 2.0 Draft Adopted Specification

Figure 410 illustrates a package that owns a set of use cases (NB: a use case may be owned either by a package or by a
classifier (typically the classifier specifying the subject)).

Figure 410 - Use cases owned by a package

Changes from previous UML

There are no changes from UML 1.x, although some aspects of notation to model element mapping have been clarified.

package ATMtopPkg

Customer

Administrator

«subsystem»
ATMsystem

Bank

Withdraw

Transfer Funds

Deposit
Money

Register ATM
at Bank

Read Log

0..1

1

0..11

0..1

1

0..11

0..1

1

0..*

1

0..*

1

UML Superstructure 2.0 Draft Adopted Specification 527

528 UML Superstructure 2.0 Draft Adopted Specification

Part III - Supplement
This part defines auxiliary constructs (e.g., information flows, models, templates, primitive types) and the profiles used to
customize UML for various domains, platforms and methods. The UML packages that support auxiliary constructs, along
with the structure packages they depend upon (InternalStructures, Dependencies and Kernel) are shown in Figure 411.

The function and contents of these packages are described in following chapters, which are organized by major subject
areas.

Figure 411 - UML packages that support auxiliary constructs

AuxiliaryConstructs Profiles

K ernel

(from Classes)

Dependencies

(from Clas ses)

<<merge>>

<<merge>>

InternalS tructures

(from CompositeStructures)
UML Infrastructure 2.0 Draft Adopted Specification 529

530 UML Infrastructure 2.0 Draft Adopted Specification

17 Auxiliary Constructs

17.1 Overview

This chapter defines mechanisms for information flows, models, primitive types, and templates.

Package structure

17.2 InformationFlows

The InformationFlows package provides mechanisms for specifying the exchange of information between entities of a
system at a high level of abstraction. Information flows describe circulation of information in a system in a general
manner. They do not specify the nature of the information (type, initial value), nor the mechanisms by which this
information is conveyed (message passing, signal, common data store, parameter of operation, etc.). They also do not
specify sequences or any control conditions. It is intended that, while modeling in detail, representation and realization
links will be able to specify which model element implements the specified information flow, and how the information
will be conveyed.

Figure 412 - Dependencies between packages described in this chapter

InformationFlows Models

PrimitiveTypesKernel

(from Classes)

<<merge>> <<merge>>

Templates

InternalStructures

(from CompositeStructures)

<<merge>>
UML Superstructure 2.0 Draft Adopted Specification 531

The contents of the InfromationFlows package is shown in Figure 413. The InformationFlows package is one of the
packages of the AuxiliaryConstructs package.

17.2.1 InformationFlow (from InformationFlows)

Description

An Information Flow specifies that one or more information items circulate from its sources to its targets.

Attributes

None.

Associations

• realization : Relationship [*] : Determines which Relationship will realize the specified flow

• conveyed : Classifier [1..*] : Specifies the information items that may circulate on this information flow.

Constraints

[1] The sources and targets of the information flow can only be of the following kind : Actor, Node, Use Case, Artifact, Class,
Component, Port, Property, Interface, Package, and InstanceSpecification except when its classifier is a relationship (i.e. it
represents a link).

[2] The sources and targets of the information flow must conform with the sources and targets or conversely the target and
sources of the realization relationships, if any.

[3] An information flow can only convey classifiers that are allowed to represent an information item. (see constraints on
InformationItem)

Semantics

An information flow is an abstraction of the communication of an information item from its sources to its targets. It is used to
abstract the communication of information between entities of a system. Sources or targets of an information flow designate
sets of objects that can send or receive the conveyed information item. When a source or a target is a classifier, it represents all
the potential instances of the classifier; when it is a part, it represents all instances that can play the role specified by the part;
when it is a package, it represents all potential instances of the directly or indirectly owned classifiers of the package.

Figure 413 - The contents of the InformationFlows package

DirectedRelationship
(f rom Kernel)

InformationItem

Relationship
(f rom Kernel)Class ifier

(from Kernel)

*

*

+represented*

+representation

*
InformationFlow

*

*

+realization

*

+abstraction

*

1..*

*

+conveyed

1..*

*

532 UML Superstructure 2.0 Draft Adopted Specification

An information flow may directly indicate a concrete classifier, such as a class, that is conveyed instead of using an
information item.

Notation

An information flow is represented as a dependency, with the keyword <<flow>>.

Figure 414 - Example of information flows conveying information items

Changes from UML1.x

InformationFlow does not exist in UML 1.4.

17.2.2 InformationItem (from InformationFlows)

An information Item is an abstraction of all kinds of information that can be exchanged between objects. It is a kind of
classifier intended for representing information at a very abstract way, which is cannot be instanciated.

One purpose of Information Items is to be able to define preliminary models, before having taken detailed modeling decisions
on types or stuctures. One other purpose of information items and information flows is to abstract complex models by a less
precise but more general representation of the information exchanged betwen entities of a system.

Attributes

No additional attributes.

Associations

• represented : Classifier [*] : Determines the classifiers that will specify the structure and nature of the information. An
information item represents all its represented classifiers.

Constraints
[4] The sources and targets of an information item (its related information flows) must designate subsets of the sources and

targets of the representation information item, if any.The Classifiers that can realize an information item can only be of
the following kind : Class, Interface, InformationItem, Signal, Component.

[5] An informationItem has no feature, no generalization, and no associations.

[6] It is not instanciable

Semantics

"Information" as represented by an information item encompasses all sorts of data, events, facts that are exploited inside
the modeled system. For example, the information item "wage" can represent a Salary Class, or a Bonus Class (see
example Figure 416). An information item does not specify the structure, the type or the nature of the represented
information. It specifies at an abstract level the elements of information that will be exchanged inside a system. More
accurate description will be provided by defining the classifiers represented by information item.

C ustom er C om pany

E m ployee

product
w age

<<flow >>

<<flow >>
UML Superstructure 2.0 Draft Adopted Specification 533

Information items can be decomposed into more specific information item, using representation links between them. This
gives the ability to express that in specific contexts (specific information flows) a specific information is exchanged.

Information Items cannot have properties, or associations. Specifying these detailed informations belongs to the
represented classifiers.

Notation

Being a classifier, an information item can be represented as a name inside a rectangle. The keyword «information», or the
black triangle icon on top of this rectangle indicates that it is an information item.

Figure 415 - Information Item represented as a classifier

Representation links between a classifier and a representation item are represented as dashed lines with the keyword
«representation».

Figure 416 - Examples of «representation» notation

An information item is usually represented attached to an information flow, or to a relationship realizing an information
flow. When it is attached to an information flow (see Figure 414) its name is displayed close to the information flow line.
When it is attached to an information channel, a black triangle on the information channel indicates the direction (source
and target) of the realized information flow conveying the information item, and its name is displayed close to that
triangle. In the example Figure 418, two associations are realizing informations flows. The black triangle indicates that an
information flow is realized, and the information item name is displayed close to the triangle.

The example Figure 417 shows the case of information items represented on connectors. When several information items
having the same direction are represented, only one triangle is shown, and the list of information item names, separated
by a comma is presented.

The name of the information item can be prefixed by the names of the container elements, such as a container information
flow, or a container package or classifier, separated by a colon.

w a g e

< < in f o r m a t io n > >

w a g e

wage Salary
<<representation>>

Bonus
<<representation>>

travel
document <<representation>>

<<representation>> flyticket

passport
534 UML Superstructure 2.0 Draft Adopted Specification

Figure 417 - Information item attached to connectors

Figure 418 - Information Items attached to associations

17.3 Models

The contents of the Models package is shown in Figure 419. The Models package is one of the packages of the
AuxiliaryConstructs package.

17.3.1 Model (from Models)

A model captures a view of a physical system. It is an abstraction of the physical system, with a certain purpose. This
purpose determines what is to be included in the model and what is irrelevant. Thus the model completely describes those
aspects of the physical system that are relevant to the purpose of the model, at the appropriate level of detail.

Description

The Model construct is defined as a Package. It contains a (hierarchical) set of elements that together describe the
physical system being modeled. A Model may also contain a set of elements that represents the environment of the
system, typically Actors, together with their interrelationships, such as Associations and Dependencies

Figure 419 - The contents of the Models package

m 1 : m y C 1 m 2 : m y C
p qa b , d

C u s to m e r C o m p a n y

E m p lo y e e

p ro d u c t

w a g e

* *

p ro v id e r

*

0 ..1

e m p lo y e r

Model

viewpoint : String

Package
(from Kernel)
UML Superstructure 2.0 Draft Adopted Specification 535

Attributes

• viewpoint : String [*] The name of the viewpoint that is expressed by a model (This name may refer to a profile
definition).

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

A model is a description of a physical system with a certain purpose, such as to describe logical or behavioral aspects of
the physical system to a certain category of readers.

Thus, a model is an abstraction of a physical system. It specifies the physical system from a certain vantage point (or
viewpoint), i.e. for a certain category of stakeholders, e.g. designers, users, or orderers of the system, and at a certain
level of abstraction, both given by the purpose of the model. A model is complete in the sense that it covers the whole
physical system, although only those aspects relevant to its purpose, i.e. within the given level of abstraction and vantage
point, are represented in the model. Furthermore, it describes the physical system only once, i.e. there is no overlapping;
no part of the physical system is captured more than once in a model.

A model owns or imports all the elements needed to represent a physical system completely according to the purpose of
this particular model. The elements are organized into a containment hierarchy where the top-most package or subsystem
represents the boundary of the physical system. It is possible to have more than one containment hierarchy within a
model, i.e. the model contains a set of top-most packages/subsystems each being the root of a containment hierarchy. In
this case there is no single package/subsystem that represents the physical system boundary.

The model may also contain elements describing relevant parts of the system’s environment. The environment is typically
modeled by actors and their interfaces. As these are external to the physical system, they reside outside the package/
subsystem hierarchy. They may be collected in a separate package, or owned directly by the model. These elements and
the elements representing the physical system may be associated with each other.

Different models can be defined for the same physical system, where each model represents a view of the physical system
defined by its purpose and abstraction level. Typically different models are complementary and defined from the
perspectives (viewpoints) of different system stakeholders. When models are nested, the container model represents the
comprehensive view of the physical system given by the different views defined by the contained models.

Models can have refinement or mapping dependencies between them. These are typically decomposed into dependencies
between the elements contained in the models. Relationships between elements in different models have no semantic
impact on the contents of the models because of the self-containment of models. However, they are useful for tracing
refinements and for keeping track of requirements between models.

Notation

A model is notated using the ordinary package symbol (a folder icon) with a small triangle in the upper right corner of the
large rectangle. Optionally, especially if contents of the model is shown within the large rectangle, the triangle may be
drawn to the right of the model name in the tab.
536 UML Superstructure 2.0 Draft Adopted Specification

Presentation Options

A model is notated as a package, using the ordinary package symbol with the keyword «model» placed above the name
of the model.

Examples

Figure 420 - Three models representing parts of a system

Figure 421 - Two views of one and the same physical system
 collected in a container model.

17.4 PrimitiveTypes

A number of primitive types have been defined for use in the specification of the UML metamodel. These include
prmitive types such as Integer, Boolean, and String. These types are reused by both MOF and UML, and may potentially
be reused also in user models. Tool vendors, however, typically provide their own libraries of data types to be used when
modeling with UML.

The contents of the PrimitiveTypes package is shown in Figure 422. The PrimitiveTypes package is one of the packages
of the AuxiliaryConstructs package.

Figure 422 - The contents of the PrimitiveTypes package

Client tier Business
tier

Data tier

 Analysis Design

 Model Model

«model»

 OrderEntry

Integer
<<primi tive>>

Boolean
<<primitive>>

String
<<primitive>>

UnlimitedNatural
<<primitive>>
UML Superstructure 2.0 Draft Adopted Specification 537

17.4.1 Boolean (from PrimitiveTypes)

A boolean type is used for logical expression, consisting of the predefined values true and false.

Description

Boolean is an instance of PrimitiveType. In the metamodel, Boolean defines an enumeration that denotes a logical
condition. Its enumeration literals are:

• true The Boolean condition is satisfied.

• false The Boolean condition is not satisfied.

It is used for boolean attribute and boolean expressions in the metamodel, such as OCL expression.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

Boolean is an instance of PrimitiveType.

Notation

Boolean will appear as the type of attributes in the metamodel. Boolean instances will be values associated to slots, and
can have literally the following values : true, or false.

Examples

17.4.2 Integer (from PrimitiveTypes)

An integer is a primitive type representing integer values.

Figure 423 - An example of a boolean attribute

Car

isAutomatic: Boolean = true
538 UML Superstructure 2.0 Draft Adopted Specification

Description

An instance of Integer is an element in the (infinite) set of integers (…-2, -1, 0, 1, 2…). It is used for integer attributes
and integer expressions in the metamodel.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

Integer is an instance of PrimitiveType.

Notation

Integer will appear as the type of attributes in the metamodel. Integer instances will be values associated to slots such as
1, -5, 2, 34, 26524, etc.

Examples

17.4.3 String (from PrimitiveTypes)

A string is a sequence of characters in some suitable character set used to display information about the model. Character
sets may include non-Roman alphabets and characters.

Description

An instance of String defines a piece of text. The semantics of the string itself depends on its purpose, it can be a
comment, computational language expression, OCL expression, etc. It is used for String attributes and String expressions
in the metamodel.

Attributes

No additional attributes.

Figure 424 - An example of an integer attribute

Magazine

pages: Integer = 64
UML Superstructure 2.0 Draft Adopted Specification 539

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

String is an instance of PrimitiveType.

Notation

String appears as the type of attributes in the metamodel. String instances are values associated to slots. The value is a
sequence of characters surrounded by double quotes ("). It is assumed that the underlying character set is sufficient for
representing multibyte characters in various human languages; in particular, the traditional 8-bit ASCII character set is
insufficient. It is assumed that tools and computers manipulate and store strings correctly, including escape conventions
for special characters, and this document will assume that arbitrary strings can be used.

A string is displayed as a text string graphic. Normal printable characters should be displayed directly. The display of
nonprintable characters is unspecified and platform-dependent.

Examples

17.4.4 UnlimitedNatural (from PrimitiveTypes)

An unlimited natural is a primitive type representing unlimited natural values.

Description

An instance of UnlimitedNatural is an element in the (infinite) set of naturals (0, 1, 2…). The value of infinity is shown
using an asterisk (‘*’).

Attributes

No additional attributes.

Associations

No additional associations.

Figure 425 - An example of a string attribute

Book

author: String = "Joe"
540 UML Superstructure 2.0 Draft Adopted Specification

Constraints

No additional constraints.

Semantics

UnlimitedNatural is an instance of PrimitiveType.

Notation

UnlimitedNatural will appear as the type of upper bounds of multiplicities in the metamodel. UnlimitedNatural instances
will be values associated to slots such as 1, 5, 398475, etc. The value infinity may be shown using an asterisk (‘*’).

Examples

17.5 Templates

The Templates package specifies how both Classifiers, Packages and Operations can be parameterized with Classifier,
ValueSpecification and Feature (Property and Operation) template parameters. The package introduces mechanisms for
defining templates, template parameters, and bound elements in general, and the specialization of these for classifiers and
packages.

Classifier, package and operation templates were covered in 1.x in the sense that any model element could be
templateable. This new metamodel restricts the templateable elements to those for which it is meaningful to have template
parameters.

Figure 426 - An example of an unlimited natural

Teacher Student
*

student
UML Superstructure 2.0 Draft Adopted Specification 541

Templates

Figure 427 - Templates

Element
(from Kernel)

Element
(from Kernel)

Element
(from Kernel)

Element
(from Kernel)

TemplateableElement
TemplateSignature

0..1 1

ownedTemplateSignatu re

0..1
{subsets ownedElement}

template

1
{subsets owner}

Parameterab leElementTempla teParam eter

1..*
parameter

1..**

1

ownedParameter

*
{subsets ownedElement,

subsets parameter}

signature 1

{subsets owner}

0..1 1

templateParameter

0..1

parameteredElement

1

0..1
0..1

ownedParameteredElement

0..1
{subsets ownedElement,

subsets parameteredElement}

owningParameter

0..1 {subs ets owner}

0..1

default

0..1

0..10..1

ownedDefault

0..1{subsets default,
subsets ownedElement}

owningDefault

0..1
{subsets owner}
542 UML Superstructure 2.0 Draft Adopted Specification

17.5.1 ParameterableElement

A parameterable element is an element that can be exposed as a formal template parameter for a template, or specified as
an actual parameter in a binding of a template.

Description

A ParameterableElement can be referenced by a TemplateParameter when defining a formal template parameter for a
template. A ParameterableElement can be referenced by a TemplateParameterSubstitution when used as an actual
parameter in a binding of a template.

ParameterableElement is an abstract metaclass.

Attributes

No additional attributes

Associations

• owningParameter : TemplateParameter[0..1]The formal template parameter that owns this element. Subsets Ele-
ment::owner.

Figure 428 - Template parameters

DirectedRelationship
(from Kernel)

Element
(f ro m Ke rn el)

TemplateSignature

TemplateableElement TemplateBinding

1

signature

1 {subsets target}

1 *

boundE lement

1 {subsets owner,
subsets sourc e}

templateBinding

*
{subsets ownedElement}

TemplateParameter

ParameterableElement

TemplateParameterSubstitution

*

1

parameterSubstitution*

{subsets ownedElement}

templateBinding

1 {subsets owner}

1

formal

1

1.. *

actual

1.. *

0..1 0..1

ownedActual

0..1 {subsets actual,
subsets ownedElement}

owningSubstitut ion

0..1
{subsets owner}
UML Superstructure 2.0 Draft Adopted Specification 543

• templateParameter : TemplateParameter [0..1] The template parameter that exposes this element as a formal parameter.

Constraints

No additional constraints.

Additional Operations

[1] The query isCompatibleWith() determines if this parameterable element is compatible with the specified parameterable
element. By default parameterable element P is compatible with parameterable element Q if the kind of P is the same or a
subtype as the kind of Q. Subclasses should override this operation to specify different compatibility constraints.

ParameterableElement::isCompatibleWith(p : ParameterableElement) : Boolean;
isCompatibleWith = p->oclIsKindOf(self.oclType)

[2] The query isTemplateParameter() determines if this parameterable element is exposed as a formal template parameter.

ParameterableElement::isTemplateParameter() : Boolean;
isTemplateParameter = parameter->notEmpty()

Semantics

A ParameterableElement may be part of the definition of a template parameter. The ParameterableElement is used to
constrain the actual arguments that may be specified for this template parameter in a binding of the template.

A ParameterableElement exposed as a template parameter can be used in the template as any other element of this kind
defined in the namespace of the template, e.g. a classifier template parameter can be used as the type of typed elements.
In a element bound to the template, any use of the template parameter will be substituted by the use of the actual
parameter.

If a ParameterableElement is exposed as a template parameter, then the parameterable element is only meaningful within
the template (it may not be used in other parts of the model).

Semantic Variation Points

The enforcement of template parameter constraints is a semantic variation point:

• If template parameter constraints apply, then within the template element a template parameter can only be used
according to its constraint, e.g. an operation template parameter can only be called with actual parameters matching the
constraint in terms of the signature constraint of the operation template parameter. Applying constraints will imply that
a bound element is well-formed if the template element is well-formed and if actual parameters comply with the formal
parameter constraints.

• If template parameter constraints do not apply, then within the template element a template parameter can be used
without being constrained, e.g. an operation template parameter will have no signature in terms of parameters and it
can be called with arbitrary actual parameters. Not applying constraints provides more flexibility, but some actual tem-
plate parameters may not yield a well-formed bound element.

Notation

See TemplateParameter for a description of the notation for exposing a ParameterableElement as a formal parameter of a
template.

See TemplateBinding for a description of the notation for using a ParameterableElement as an actual parameter in a
binding of a template.
544 UML Superstructure 2.0 Draft Adopted Specification

Within these notations, the parameterable element is typically shown as the name of the parametered element (if that
element is a named element).

Examples

See TemplateParameter.

17.5.2 TemplateableElement

A templateable element is an element that can optionally be defined as a template and bound to other templates.

Description

TemplateableElement may contain a template signature which specifies the formal template parameters. A
TemplateableElement that contains a template signature is often referred to as a template.

TemplateableElement may contain bindings to templates that describe how the templateable element is constructed by
replacing the formal template parameters with actual parameters. A TemplateableElement containing bindings is often
referred to as a bound element.

Attributes

No additional attributes

Associations

• ownedSignature : TemplateSignature[0..1]The optional template signature specifying the formal template parameters.
Subsets Element::ownedElement.

• templateBinding : TemplateBinding[*]The optional bindings from this element to templates.

Constraints

No additional constraints.

Additional Operations

[1] The query getParameterableElements() returns the set of elements that may be used as the parametered element for a tem-
plate parameter if this templateable element. By default this set includes all the owned elements. Subclasses may override
this operation if they choose to restrict the set of parameterable elements.

TemplateableElement::getParameterableElements() : Set(ParameterableElement);
getParameterableElements = allOwnedElements->select(oclIsKindOf(ParameterableElement))

[2] The query isTemplate() returns whether this templateable element is actually a template.

TemplateableElement::isTemplate() : Boolean;
isTemplate = ownedSignature->notEmpty()

Semantics

A TemplateableElement that has a template signature is a specification of a template. A template is a parameterized
element that can be used to generate other model elements using TemplateBinding relationships. The template parameters
for the template signature specify the formal parameters that will be substituted by actual parameters (or the default) in a
binding.
UML Superstructure 2.0 Draft Adopted Specification 545

A template parameter is defined in the namespace of the template, but the template parameter represents a model element
which is defined in the context of the binding.

A templateable element can be bound to other templates. This is represented by the bound element having bindings to the
template signatures of the target templates. In a canonical model a bound element does not explicitly contain the model
elements implied by expanding the templates it binds to, since those expansions are regarded as derived. The semantics
and well-formedness rules for the bound element must be evaluated as if the bindings were expanded with the
subsititutions of actual elements for formal parameters.

The semantics of a binding relationship is equivalent to the model elements that would result from copying the contents
of the template into the bound element, replacing any elements exposed as a template parameter with the corresponding
element(s) specified as actual parameters in this binding.

A bound element may have multiple bindings, possibly to the same template. In addition, the bound element may contain
elements other than the bindings. The specific details of how the expansions of multiple bindings, and any other elements
owned by the bound element, are combined together to fully specify the bound element are found in the subclasses of
TemplateableElement. The general principle is that one evaluates the bindings in isolation to produce intermediate results
(one for each binding) which are then merged to produce the final result. It is the way the merging is done, that is specific
to each kind of templateable element.

A templateable element may contain both a template signature and bindings. Thus a templateable element may be both a
template and a bound element.

A template cannot be used in the same manner as a non-template element of the same kind. The template element can
only be used to generate bound elements, e.g. a template class cannot be used as the type of a typed element, or as part of
the specification of another template, e.g. a template class may specialize another template class.

A bound (non-template) element is an ordinary element and can be used in the same manner as a non-bound (and non-
template) element of the same kind. For example, a bound class may be used as the type of a typed element.

Notation

If a TemplateableElement has template parameters, a small dashed rectangle is superimposed on the symbol for the
templateable element, typically on the upper right-hand corner of the notation (if possible). The dashed rectangle contains
a list of the formal template parameters. The parameter list must not be empty, although it might be suppressed in the
presentation. Any other compartments in the notation of the templateable element will appear as normal.

The formal template parameter list may be shown as a comma-separated list, or it may be one formal template parameter
per line. See TemplateParameter for the general syntax of each template parameter.

A bound element has the same graphical notation as other elements of that kind. Each binding is shown using the notation
described under TemplateBinding.

Presentation Options

An alternative presentation for the bindings for a bound element is to include the binding information within the notation
for the bound element. Typically the name compartment would be extended to contain a string with the following syntax:

element-name ’:’ binding-expression-list

where binding-expression-list is a comma-separated list of binding-expression defined to be:

template-element-name ‘<‘ {template-parameter-substitution}* ‘>’

and template-parameter-substitution is defined in TemplateBinding.
546 UML Superstructure 2.0 Draft Adopted Specification

Examples

For examples of templates, the reader is referred to those sections which deal with specializations of
TemplateableElement, in particular ClassifierTemplate and PackageTemplate.

17.5.3 TemplateBinding

A template binding represents a relationship between a templateable element and a template. A template binding specifies
the substitutions of actual parameters for the formal parameters of the template.

Description

TemplateBinding is a directed relationship from a bound templateable element to the template signature of the target
template. A TemplateBinding owns a set of template parameter substitutions.

Attributes

No additional attributes.

Associations

• parameterSubstitution : TemplateParameterSubstitution[*]The parameter substitutions owned by this template binding.
Subsets Element::ownedElement.

• boundElement : TemplateableElement[1]The element that is bound by this binding. Subsets DirectedRelationship::source.

• template : TemplateSignature[1]The template signature for the template that is the target of the binding. Subsets Directe-
dRelationship::target.

Constraints

[1] Each parameter substitution must refer to a formal template parameter of the target template signature.

parameterSubstitution->forAll(b | template.parameter->includes(b.formal))

[2] A binding contains at most one parameter substitution for each formal template parameter of the target template signa-
ture.

template.parameter->forAll(p | parameterSubstitution->select(b | b.formal = p)->size() <= 1)

Semantics

The presence of a TemplateBinding relationship implies the same semantics as if the contents of the template owning the
target template signature were copied into the bound element, substituting any elements exposed as formal template
parameters by the corresponding elements specified as actual parameters in this binding. If no actual parameter is
specified in this binding for a formal parameter, then the default element for that formal template parameter (if specified)
is used.

Semantic Variation Points

It is a semantic variation point

• if all formal template parameters must be bound as part of a binding (complete binding), or

• if a subset of the formal template parameters may be bound in a binding (partial binding).
UML Superstructure 2.0 Draft Adopted Specification 547

In case of complete binding, the bound element may have its own formal template parameters, and these template
parameters can be provided as actual parameters of the binding. In case of partial binding, the unbound formal template
parameters are formal template parameters of the bound element.

Notation

A TemplateBinding is shown as a dashed arrow with the tail on the bound element and the arrowhead on the template and
the keyword <<bind>>. The binding information is generally displayed as a comma-separated list of template parameter
substitutions:

template-parameter-substitition : template-parameter-name ‘->’ actual-template-parameter

where the syntax of template-parameter-name depends on the kind of parameteredElement for this template parameter
substitution and of actual-template-parameter depend upon the kind of element. See ParameterableElement (and its
subclasses).

Examples

For examples of templates, the reader is referred to those sections which deal with specializations of
TemplateableElement, in particular ClassifierTemplate and PackageTemplate.

17.5.4 TemplateParameter

A template parameter exposes a parameterable element as a formal template parameter of a template.

Description

TemplateParameter references a ParameterableElement which is exposed as a formal template parameter in the containing
template.

Attributes

No additional attributes

Associations

• default : ParameterableElement[0..1]The element that is the default for this formal template parameter.

• ownedDefault : ParameterableElement[0..1]The element that is owned by this template parameter for the purpose of pro-
viding a default. Subsets default and Element::ownedElement.

• ownedParameteredElement : ParameterableElement[0..1]The element that is owned by this template parameter. Subsets
parameteredElement and Element::ownedElement.

• parameteredElement : ParameterableElement[1]The element exposed by this template parameter.

• signature : TemplateSignature[1]The template signature that owns this template parameter. Subsets Element::owner.

Constraints

[1] The default must be compatible with the formal template parameter.

default->notEmpty() implies default->isCompatibleWith(parameteredElement)

[2] The default can only be owned if the parametered element is not owned.

ownedDefault->notEmpty() implies ownedParameteredElement->isEmpty()
548 UML Superstructure 2.0 Draft Adopted Specification

Semantics

A TemplateParameter references a ParameterableElement that is exposed as a formal template parameter in the containing
template. This parameterable element is meaningful only within the template, or other templates that may have access to
its internals (e.g. if the template supports specialization). The exposed parameterable element may not be used in other
parts of the model. A TemplateParameter may own the exposed ParameterableElement in situations where that element is
only referenced from within the template.

Each the exposed element constrains the elements that may be substituted as actual parameters in a binding.

A TemplateParameter may reference a ParameterableElement as the default for this formal parameter in any binding that
does not provide an explicit substitution. The TemplateParameter may own this default ParameterableElement in
situations where the exposed ParameterableElement is not owned by the TemplateParameter.

Notation

The general notation for a template parameter is a string displayed within the template parameter list for the template:

template-parameter ::= template-parameter-name [‘:‘ parameter-kind] [‘=’ default]

where parameter-kind is the name of the metaclass for the exposed element. The syntax of template-parameter-name
depends on the kind of parameteredElement for this template parameter substitution and of default depend upon the kind
of element. See ParameterableElement (and its subclasses).

Examples

See TemplateableElement.

17.5.5 TemplateParameterSubstitution

A template parameter substitution relates the actual parameter(s) to a formal template parameter as part of a template
binding.

Description

TemplateParameterSubstitution associates one or more actual parameters with a formal template parameter within the
context of a TemplateBinding.

Attributes

No additional attributes

Associations

• actual : ParameterableElement[1..*]The elements that are the actual parameters for this substitution.

• binding : TemplateBinding[1] The template binding that owns this substitution. Subsets Element::owner

• formal : TemplateParameter[1] The formal template parameter that is associated with this substitution.

• ownedActual : ParameterableElement[1..*] The actual parameters that are owned by this substitution. Subsets Ele-
ment::ownedElement and actual.
UML Superstructure 2.0 Draft Adopted Specification 549

Constraints

[1] The actual parameter must be compatible with the formal template parameter, e.g. the actual parameter for a class template
parameter must be a class.

actual->forAll(a | a.isCompatibleWith(formal.parameteredElement))

Semantics

A TemplateParameterSubstitution specifies the set of actual parameters to be substituted for a formal template parameter
within the context of a template binding.

Notation

See TemplateBinding.

Examples

See TemplateBinding.

17.5.6 TemplateSignature

A template signature bundles the set of formal template parameters for a templated element.

Description

A TemplateSignature is owned by a TemplateableElement and has one or more TemplateParameters that define the
signature for binding this template. A TemplateSignature may reference a set of nested template signatures to reflect the
hierarchical nature of a template.

Attributes

No additional attributes.

Associations

• ownedParameter : TemplateParameter[*] The formal template parameters that are owned by this template signature. Sub-
sets parameter and Element::ownedElement.

• parameter : TemplateParameter[1..*] The complete set of formal template parameters for this template signature.

• template : TemplateableElementr[1]The element that owns this template signature. Subsets Element::owner.

Constraints

[1] Parameters must own the elements they parameter or those elements must be owned by the element being templated.

templatedElement.ownedElement->includesAll(parameter.parameteredElement - parameter.ownedParameteredElement)

[2] parameter are the owned parameter.
parameter = ownedParameter

Semantics

A TemplateSignature specifies the set of formal template parameters for the associated templated element. The formal
template parameters specify the elements that may be substituted in a binding of the template.
550 UML Superstructure 2.0 Draft Adopted Specification

There are constraints on what may be parametered by a template parameter. Either the parameter owns the parametered
element, or the element is owned, directly or indirectly, by the template. Subclasses of TemplateSignature can add
additional rules constraining what a parameter can reference in the context of a particular kind of template.

Notation

See TemplateableElement for a description of how the template parameters are shown as part of the notation for the
template.

Examples

See TemplateableElement.

ClassifierTemplates

The Classifier templates diagram specifies the abstract mechanisms that support defining classifier templates, bound
classifiers, and classifier template parameters. Specific subclasses of Classifier must also specialize one or more of the
abstract metaclasses defined in this diagram in order to expose these capabilities in a concrete manner.

Figure 429 - Classifier templates

TemplateableElement
(from Templates)

TemplateSignature
(from Templates)

ParameterableElement
(from Templates)

TemplateParameter
(from Templates)

RedefinableTemplateSignature

*

*

* extendedSignature

*

{subsets redefinedElement}

*
+/inheritedParameter

* {subsets parameter}

Classifier

0..1 1

+ownedSignature +classifier

1{subsets redefinit ionContext,
subsets templatedElement}

ClassifierTemplateParameter

allowSubstitutable : Boolean = true

1

0..1

+parameteredElement1

+parameter0..1

0..1

RedefinableElement
(from Kernel) Classifier

(from Kernel)
UML Superstructure 2.0 Draft Adopted Specification 551

17.5.7 Classifier (as specialized)

Classifier is defined to be a kind of templateable element so that a classifier can be parameterized, and as a kind of
parameterable element so that a classifier that can be exposed as a formal template parameter, and provided as an actual
parameter in a binding of a template.

Description

Classifier specializes Kernel::Classifier TemplateableElement and ParameterableElement to specify that a classifier can be
parameterized, be exposed as a formal template parameter, and can be specified as an actual parameter in a binding of a
template.

A classifier with template parameters is often called a template classifier, while a classifier with a binding is often called
a bound classifier.

By virtue of Classifier being defined here, all subclasses of Classifier (such as Class, Collaboration, Component,
Datatype, Interface, Signal and Use Cases) can be parameterized, bound and used as template parameters. The same holds
for Behavior as a subclass of Class, and thereby all subclasses of Behavior (such as Activity, Interaction, Statemachine).

Attributes

No additional attributes.

Associations

• ownedSignature : RedefinableTemplateSignature[0..1]The optional template signature specifying the formal template
parameters. Subsets Element::ownedElement.

• parameter : ParameterableElement [0..1]The template parameter that exposes this element as a formal parameter. Rede-
fines ParameterableElement::parameter.

Constraints

No additional constraints.

Additional Operations

[1] The query isTemplate() returns whether this templateable element is actually a template.

Classifier::isTemplate() : Boolean;
isTemplate = TemplatableElement::isTemplate() or general->exists(isTemplate())

Semantics

Classifier in general

Classifier provides the abstract mechanism that can be specialized to support subclass of Classifiers to be templates,
exposing subclasses of Classifier as formal template parameters, and as actual parameters in a binding of a template.

Classifier as a kind of templateable element provides the abstract mechanism that can be specialized by subclasses of
Classifier to support being defined as a template, or being bound to a template.

A bound classifier may have contents in addition to those of the template classifier. In this case the semantics are
equivalent to inserting an anonymous general classifier which contains the contents, and the bound classifier is defined to
be a specialization this anonymous general classifier. This supports the use of elements within the bound classifier as
actual parameters in a binding.
552 UML Superstructure 2.0 Draft Adopted Specification

A bound classifier may have multiple bindings. In this case the semantics are equivalent to inserting an anonymous
general bound classifier for each binding, and specializing all these bound classifiers by this (formerly) bound classifier.

The formal template parameters for a classifier include all the formal template parameters of all the templates it
specializes. For this reason the classifier may reference elements that are exposed as template parameters of the
specializes templates.

Collaboration

A Collaboration supports the ability to be defined as a template. A collaboration may be defined to be bound from
template collaboration(s).

A collaboration template will typically have the types of it parts as class template parameters. Consider the Collaboration
in Figure 104 on page 159. This Collaboration can be bound from a Collaboration template of the form found in Figure
434, by means of the binding described in Figure 435. We have here used that the default kind of template parameter is a
class, i.e., SubjectType and ObserverType are class template parameters.

A bound Collaboration is not the same as a CollaborationOccurrence; in fact, parameterized Collaborations (and binding)
can not express what CollaborationOccurrences can. Consider the Sale Collaboration in Figure 107 on page 161. It is
defined by means of two parts (Buyer and Seller) representing roles in this collaboration. The two
CollaborationOccurrences ’wholesale’ and ‘retail’ in Figure 108 on page 162 cannot be defined as bound Collaborations.

A bound Collaboration is a Collaboration, while a CollaborationOccurrence is not. A CollaborationOccurrence is defined
by means of RoleBindings, binding parts in a Collaboration (here Buyer and Seller) to parts in another classifier (here
broker, produce and consumer in NrokeredSale) with the semantics that the interaction described in Sale will occur
between broker, producer and consumer. Binding eventual Buyer and Seller part template parameters (of a Sale
Collaboration template) to broker and producer would just provide that the parts broker and producer are visible within
the bound Sale Collaboration. And anyway, even if Sale had two part template parameters Buyer and Seller, it could not
use these for defining an internal structure as is the case in Figure 108 on page 162. Parameters, by the very nature,
represent elements that are defined ‘outside’ a Collaboration template and can therefore not be parts of an internal
structure of the Collaboration template.

Semantic Variation Points

If template parameter constraints apply, then the actual classifier is constrained as follows:

• if the classifier template parameter has a generalization, then an actual classifier must have generalization with the
same general classifier

• if the classifier template parameter has a substitution, then an actual classifier must have a substitution with the same
contract

• if the classifier template parameter has neither a generalization nor a substitution, then an actual classifier can be any
classifier.

If template parameter constraints do not apply, then an actual classifier can be any classifier.

Notation

See ClassifierTemplateParameter for a description of how a parameterable classifier is displayed as a formal template
parameter.

See TemplateableElement for the general notation for displaying a template and a bound element.
UML Superstructure 2.0 Draft Adopted Specification 553

When a bound classifier is used directly as the type of an attribute, then <classifier expression> acts as the type of the
attribute in the notation for an attribute:

[visibility] [/] name [: type] [multiplicity] [= default] [{ property-string }]

When a bound classifier is used directly as the type of a part, then <classifier-expression> acts as the classname of the
part in the notation for a part:

{{ [name] ‘:’ classname } | name } [‘[‘ multiplicity ‘]’]

Presentation Options

Collaboration extends the presentation option for bound elements described under TemplateableElement so that the
binding information can be displayed in the internal structure compartment.

Examples

Class templates

As Classifier is an abstract class, the following example is an example of concrete subclass (Class) of Classifier being a
template.

The example shows a class template (named FArray) with two formal template parameters. The first formal template
parameter (named T) is an unconstrained class template parameter. The second formal template parameter (named k) is an
integer expression template parameter that has a default of 10. There is also a bound class (named AddressList) which
substitutes the Address for T and 3 for k.

Figure 430 - Template Class and Bound Class

The following figure shows an anonymous bound class that substitutes the Point class for T. Since there is to substitution
for k, the default (10) will be used.

Figure 431 - Anonymous Bound Class

FArray

contents: T [0..k]

T, k : IntegerExpression = 10

AddressList

<<bind>> <T -> Address, k -> 3>

FArray

contents: T [0..k]

T, k : IntegerExpression = 10

AddressList

<<bind>> <T -> Address, k -> 3>

FArray<T -> Point>
554 UML Superstructure 2.0 Draft Adopted Specification

The following figure shows a template class (named Car) with two formal template parameters. The first formal template
parameter (named CarEngine) is a class template parameter that is constrained to conform to the Engine class. The second
formal template parameter (named n) is an integer expression template parameter.

Figure 432 - Template Class with a constrained class parameter

The following figure shows a bound class (named DieselCar) that binds CarEngine to DieselEngine and n to 2.

Figure 433 - Bound Class

Collaboration templates

The example below shows a collaboration template (named ObserverPattern) with two formal template parameters
(named SubjectType and ObserverType). Both formal template parameters are unconstrained class template parameters.

Figure 434 - Template Collaboration

The following figure shows a bound collaboration (named Observer) which substitutes CallQueue for SubjectType, and
SlidingBarIcon for ObserverType.

Car

CarEngine > Engine, n : IntegerExpression

e : CarEngine dw : Wheel[n + 1]

DieselCar : Car<CarEngine -> DieselEngine, n -> 2>

ObserverPattern

Observer : ObserverTypeSubject : SubjectType

SubjectType, ObserverType
UML Superstructure 2.0 Draft Adopted Specification 555

Figure 435 - Bound Collaboration

17.5.8 ClassifierTemplateParameter

A classifier template parameter exposes a classifier as a formal template parameter.

Description

ClassifierTemplateParameter is a template parameter where the parametered element is a Classifier in its capacity of being
a kind of ParameterableElement.

Attributes

• allowSubstitutable : Boolean[1]Constrains the required relationship between an actual parameter and the parameteredEle-
ment for this formal parameter. Default is true.

Associations

• parameteredElement : Classifier[1]The parameterable classifier for this template parameter. Redefines TemplateParame-
ter::parameteredElement.

Constraints

No additional constraints.

Semantics

See Classifier for additional semantics related to the compatibility of actual and formal classifier parameters.

Notation

A classifier template parameter extends the notation for a template parameter to include an optional type constraint:

classifier-template-parameter ::= parameter [‘:‘ parameter-kind] [‘>’ constraint] [‘=’ default]

parameter ::= parameter-name

constraint ::= [‘{contract }’] classifier-name

default ::= classifier-name

The parameter-kind indicates the metaclass of the parametered element. It may be suppressed if it is ‘class’.

Observer

ObserverPattern<SubjectType \ CallQueue, ObserverType \ SlidingBarIcon>
556 UML Superstructure 2.0 Draft Adopted Specification

The classifier-name of constraint designates the type constraint of the parameter, which reflects the general classifier for
the parametered element for this template parameter. The ‘contract’ option indicates that allowsSubstitutable is true,
meaning the actual parameter must be a classifier that may substitute for the classifier designated by the classifier-name.
A classifier template parameter with a constraint but without ‘contract’ indicates that the actual classifier must be a
specialization of the classifier designated by the classifier-name.

Examples

See Classifier.

17.5.9 RedefinableTemplateSignature

A redefinable template signature supports the addition of formal template parameters in a specialization of a template
classifier.

Description

RedefinableTemplateSignature specializes both TemplateSignature and RedefinableElement in order to allow the addition
of new formal template parameters in the context of a specializing template Classifier.

Attributes

No additional attributes.

Associations

• classifier : Classifier[1] The classifier that owns this template signature. Subsets RedefinableElement::redefini-
tionContext and Template::templatedElement.

• / inheritedParameter : TemplateParameter[*]The formal template parameters of the extendedSignature. Subsets Tem-
plate::parameter.

• extendedSignature : RedefinableTemplateSignature[*]The template signature that is extended by this template signature.
Subsets RedefinableElement::redefinedElement.

Constraints

[1] The inherited parameters are the parameters of the extended template signature.

inheritedParameter = if extendedSignature->isEmpty() then Set{} else extendedSignature.parameter endif

Additional Operations

[1] The query isConsistentWith() specifies, for any two RedefinableTemplateSignatures in a context in which redefinition is
possible, whether redefinition would be logically consistent. A redefining template signature is always consistent with a
redefined template signature, since redefinition only adds new formal parameters.

RedefineableTemplateSignature::isConsistentWith(redefinee: RedefinableElement): Boolean;
pre: redefinee.isRedefinitionContextValid(self)
isConsistentWith = redefinee.oclIsKindOf(RedefineableTemplateSignature)

Semantics

A RedefinableTemplateSignature may extend an inherited template signature in order to specify additional formal
template parameters that apply within the templateable classifier that owns this RedefinableTemplateSignature. All the
formal template parameters of the extended signatures are included as formal template parameters of the extending
signature, along with any parameters locally specified for the extending signature.
UML Superstructure 2.0 Draft Adopted Specification 557

Notation

Notation as for redefinition in general.

PackageTemplates

The Package templates diagram supports the specification of template packages and package template parameters.

Figure 436 - Package templates

17.5.10 Package (as specialized)

Description

Package specializes TemplateableElement and PackageableElement specializes ParameterableElement to specify that a
package can be used as a template and a PackageableElement as a template parameter.

Attributes

No additional attributes

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

A Package supports the ability to be defined as a template, and PackageableElements may, therefore, be parametered in a
package template. A package template parameter may refer to any element owned or used by the package template, or
templates nested within it, and so on recursively. That is, there are no special rules concerning how

A package may be defined to be bound to one or more template packages. The semantics for these bindings is as
described in the general case, with the exception that we need to spell out the rules for merging the results of multiple
bindings. In that case, the effect is the same as taking the intermediate results and merging them into the eventual result
using package merge. This is illustrated by the example below.

Notation

See TemplateableElement for a description of the general notation that is defined to support these added capabilities.

ParameterableElement
(from Templates)

TemplateableElement
(from Templates)

Package PackageableElement
558 UML Superstructure 2.0 Draft Adopted Specification

Examples

The example below shows a package template (named ResourceAllocation) with three formal template parameters. All
three formal template parameters (named Resource, ResourceKind, and System) are unconstrained class template
parameters. There is also a bound package (named CarRental) which substitutes Car for Resource, CarSpec for
ResourceKind, and CarRentalSystem for System.

Figure 437 - Template Package and Bound Package

NameExpressions

The NameExpressions diagram supports the use of string expressions to specify the name of a named element.

ResourceAllocation Resource,
ResourceKind,
System

Resource

Resource
Kind

System

Allocation

Request

TimeSlot

resource

kind

timeSlot

kind request

allocation

*resource

1

1

1

1

1 request

*

*

resource

kind

*

*

CarRental

<<bind>>
<Resource -> Car, ResourceKind -> CarSpec, System -> CarRentalSystem>
UML Superstructure 2.0 Draft Adopted Specification 559

Figure 438 - Name expression

17.5.11 NamedElement (as specialized)

A named element is extended to support using a string expression to specify its name. This allows names of model
elements to involve template parameters. The actual name is evaluated from the string expression only when it is sensible
to do so, e.g. when a template is bound.

Description

NamedElement specializes Kernel::NamedElement and adds a composition association to Expression.

Attributes

No additional attributes.

Associations

• nameExpression : Expression [0..1] The expression used to define the name of this named element.

Constraints

[1] The name expression must be a string expression.

nameExpression->notEmpty() implies nameExpression.type = String

[2] The name is derived from the name expression only in the case that the nameExpression is a string literal.

nameExpression.oclIsKindOf(LiteralString) implies name = nameExpression.value

Semantics

A NamedElement may, in addition to a name, be associated with a string expression. This expression is used to calculate
the name in the special case when it is a string literal. This allows string expressions, whose sub-expressions may be
parametered elements, to be associated with named elements in a template. When a template is bound, the sub-
expressions are substituted with the actuals substituted for the template parameters. In many cases, the resultant
expression will be a string literal (if we assume that a concatenation of string literals is itself a string literal), in which
case this will provide the name of the named element.

A NamedElement may have both a name and a name expression associated with it. In which case, the name can be used
as an alias for the named element, which will surface, for example, in an OCL string. This avoids the need to use string
expressions in surface notation, which is often cumbersome, although it doesn’t preclude it.

NamedElement
(from Kernel)

Expression
(from Kernel)

NamedElement

name : St ring [0. .1] Expression

0..10. .1

nameExpression

0..1

{subsets ownedElement}

namedElement

0. .1
{subsets owner}
560 UML Superstructure 2.0 Draft Adopted Specification

Notation

The expression associated with a named element can be shown in two ways, depending on whether an alias is required or
not. Both notations are illustrated in Figure 439.

No alias: The string expression appears as the name of the model element.

With alias: Both the the string expression and the alias is shown wherever the name usually appears. The alias is given
first and the string expression underneath.

In both cases the string expression appears between $ signs. The specification of expressions in UML supports the use of
alternative string expression languages in the abstract syntax - they have to have String as their type and can be some
structure of operator expressions with operands. The notation for this is discussed in the section on Expressions. In the
context of templates, sub-expressions of a string expression (usually string literals) which are parametered in the template
are shown between angle brackets (see section on ValueSpecificationTemplateParameters).

Examples

The figure shows a modified version of the ResourceAllocation package template where the first two formal template
parameters have been changed to be string expression parameters. These formal template parameters are used within the
package template to name some of the classes and association ends. The figure also shows a bound package (named
TrainingAdmin) that has two bindings to this ResourceAllocation template. The first binding substitutes the string “Instructor”
for Resource, the string “Qualification” for ResourceKind, and the class TrainingAdminSystem for System. The second
binding substitutes the string “Facility” for Resource, the string “FacilitySpecification” for ResourceKind, and the class
TrainingAdminSystem is again substituted for System.

The result of the binding includes both classes Instructor, Qualification and InstructorAllocation as well as classes Facility,
FacilitySpecification and FacilityAllocation. The associations are similarly replicated. Note that Request will have two
attributes derived from the single <resourceKind> attribute (shown here by an arrow), namely qualification and
facilitySpecification.
UML Superstructure 2.0 Draft Adopted Specification 561

Figure 439 - Template Package with string parameters

Operation templates

The Operation templates diagramsupports the specification of operation templates.

Figure 440 - Operation templates

ResourceAllocation Resource:StringExpression,
ResourceKind:StringExpression,
System

$<Resource>$

$<Resource
Kind>$

System

Allocation
$<Resource>Allocation$

Request

TimeSlot

resource

kind

timeSlot

$<resourceKind>$ request

allocation
$<resource>Allocation$

*resource

1

1

1

1

1 request

*

*

$<resource>$

$<resourceKind>$

*

*

TrainingAdmin

<<bind>>
<Resource -> "Facility,"
ResourceKind -> "FacilitySpecification",
System -> TrainingAdminSystem>

<<bind>>
<Resource -> "Instructor",

ResourceKind -> "Qualification",
System -> TrainingAdminSystem>

Operation

TemplateableElem ent
(from Tem pl ate s)
562 UML Superstructure 2.0 Draft Adopted Specification

17.5.12 Operation (as specialized)

Description

Class specializes TemplateableElement in order to support specification of template operations and bound operations.

Attributes

No additional attributes

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

An Operation supports the ability to be defined as a template. An operation may be defined to be bound to template
operation(s).

Notation

The template parameters and template parameter binding of a template operation are two lists in between the name of the
operation and the parameters of the operation

visibility name ‘<‘ template-parameter-list ‘>’ ‘<<‘binding-expression-list ‘>>’‘(‘ parameter-list ‘)’ ‘:’ property-string

where template-parameter-list is a comma-separated list of template-parameter.

OperationTemplateParameters

The Operation template parameters diagram supports the specification of operation template parameters.

Figure 441 - Operation template parameters

17.5.13 Operation (as specialized)

Description

Operation specializes ParameterableElement to specify that an operation can be exposed as a formal template parameter,
and provided as an actual parameter in a binding of a template.

ParameterableElement
(from Templates)

TemplateParameter
(from T emplates)

Operation Operat ionTemplateParam eter

1 0..1

parameteredElement

1

parameter

0..1
UML Superstructure 2.0 Draft Adopted Specification 563

Attributes

No additional attributes

Associations

• parameter : ParameterableElement [0..1]The template parameter that exposes this element as a formal parameter. Rede-
fines ParameterableElement::parameter.

Constraints

No additional constraints.

Semantics

An Operation may be exposed by a template as a formal template parameter. Within a template classifier an operation
template parameter may be used as any other operation defined in an enclosing namespace. Any references to the
operation template parameter within the template will end up being a reference to the actual operation in the bound
classifier. For example, a call to the operation template parameter will be a call to the actual operation.

Notation

See OperationTemplateParameter for a description of the general notation that is defined to support these added
capabilities.

Within the notation for formal template parameters and template parameter bindings, an operation is shown as operation-
name ‘(‘ operation-parameters ‘)’.

17.5.14 OperationTemplateParameter

An operation template parameter exposes an operation as a formal parameter for a template.

Description

OperationTemplateParameter is a template parameter where the parametered element is an Operation.

Attributes

No additional attributes.

Associations

• parameteredElement : Operation[1]The operation for this template parameter. Redefines TemplateParameter::parame-
teredElement.

Constraints

No additional constraints.

Semantics

See Operation for additional semantics related to the compatibility of actual and formal operation parameters.
564 UML Superstructure 2.0 Draft Adopted Specification

Notation

An operation template parameter extends the notation for a template parameter to include the parameters for the
operation:

operation-template-parameter ::= parameter [‘:‘ parameter-kind] [‘=’ default]

parameter ::= operation-name (parameter-list)

default ::= operation-name (parameter-list)

ConnectableElement template parameters

The Connectable element template parameters package supports the specification of ConnectableElement template
parameters.

17.5.15 ConnectableElement (as specialized)

A connectable element may be exposed as a connectable element template parameter.

Description

ConnectableElement is the connectable element of a ConnectableElementTemplateParameter.

Attributes

No additional attributes.

Associations

• parameter : ConnectableElementTemplateParameter [0..1]The ConnectableElementTemplateParameter for this Connect-
ableElement parameter. Redefines TemplateParameter::parameter.

Constraints

No additional constraints.

Semantics

No additional semantics.

Figure 442 - Connectable element template parameters

Param eterab leElem ent
(from Templates)

TemplateParam eter
(from T em pla tes)

ConnectableElement ConnectableElementTemplate
Param ete r

0..111 0..1

parameterparameteredElement
UML Superstructure 2.0 Draft Adopted Specification 565

Notation

No additional notation.

17.5.16 ConnectableElementTemplateParameter

A connectable element template parameter exposes a connectable element as a formal parameter for a template.

Description

ConnectableElementTemplateParameter is a template parameter where the parametered element is a ConnectableElement.

Attributes

No additional attributes.

Associations

• parameteredElement : ConnectableElement[1]The ConnectableElement for this template parameter. Redefines Tem-
plateParameter::parameteredElement.

Constraints

No additional constraints.

Semantics

No additional semantics.

Notation

No additional notation.

PropertyTemplateParameters

The Property template parameters diagram supports the specification of property template parameters.

Figure 443 - The elements defined in the PropertyTemplates package

ParameterableElement
(f rom Te mpla tes)

Property
566 UML Superstructure 2.0 Draft Adopted Specification

17.5.17 Property (as specialized)

Description

Property specializes ParameterableElement to specify that a property can be exposed as a formal template parameter, and
provided as an actual parameter in a binding of a template.

Attributes

No additional attributes

Associations

No additional associations.

Constraints

[1] A binding of an property template parameter representing an attribute must be to an attribute.

Additional Operations

[1] The query isCompatibleWith() determines if this parameterable element is compatible with the specified parameterable
element. By default parameterable element P is compatible with parameterable element Q if the kind of P is the same or a
subtype as the kind of Q. In addition, for properties, the type must be conformant with the type of the specified parameter-
able element.

Property::isCompatibleWith(p : ParameterableElement) : Boolean;
isCompatibleWith = p->oclIsKindOf(self.oclType) and self.type.conformsTo(p.oclAsType(TypedElement).type)

Semantics

A Property may be exposed by a template as a formal template parameter. Within a template a property template
parameter may be used as any other property defined in an enclosing namespace. Any references to the property template
parameter within the template will end up being a reference to the actual property in the bound element.

Notation

See ParameterableElement for a description of the general notation that is defined to support these added capabilities.

ValueSpecificationTemplateParameters

The ValueSpecification template parameters diagram supports the specification of value specification template
parameters.

Figure 444 - ValueSpecification template parameters

ParameterableElement
(from Templates)

ValueSpecification
UML Superstructure 2.0 Draft Adopted Specification 567

17.5.18 ValueSpecification (as specialized)

Description

ValueSpecification specializes ParameterableElement to specify that a value specification can be exposed as a formal
template parameter, and provided as an actual parameter in a binding of a template.

Attributes

No additional attributes.

Associations

• typeConstraint : Classifier[0..1] Optional specification of the type of the value.

Constraints

No additional attributes.

Additional Operations

[1] The query isCompatibleWith() determines if this parameterable element is compatible with the specified parameterable
element. By default parameterable element P is compatible with parameterable element Q if the kind of P is the same or a
subtype as the kind of Q. In addition, for ValueSpecification, the type must be conformant with the type of the specified
parameterable element.

Property::isCompatibleWith(p : ParameterableElement) : Boolean;
isCompatibleWith = p->oclIsKindOf(self.oclType) and self.type.conformsTo(p.oclAsType(TypedElement).type)

Semantics

The semantics is as in the general case. However, two aspects are worth commenting on. The first is to note that a value
specification may be an expression with substructure (i.e. an instance of the Expression class), in which case a template
parameter may expose a subexpression, not necessarily the whole expression itself. An example of this is given in Figure
432 where the paremetered element with label ‘n’ appears within the expression ‘n+1’. Secondly, to note that by
extending NamedElement to optionally own a name expression, strings that are part of these named expressions may be
parametered.

Notation

Where a parametered ValueSpecification is used within an expression, the name of the parameter is used instead of any
symbol (in case of an Expression) or value (in case of a Literal) would otherwise appear.
568 UML Superstructure 2.0 Draft Adopted Specification

18 Profiles

18.1 Overview

The Profiles package contains mechanisms that allow metaclasses from existing metamodels to be extended to adapt them
for different purposes. This includes the ability to tailor the UML metamodel for different platforms (such as J2EE or
.NET) or domains (such as real-time or business process modeling). The profiles mechanism is consistent with the OMG
Meta Object Facility (MOF).

Extensibility

The profiles mechanism is not a first-class extension mechanism, i.e., it does not allow for modifying existing
metamodels. Rather, the intention of profiles is to give a straightforward mechanism for adapting an existing metamodel
with constructs that are specific to a particular domain, platform, or method. Each such adaption is grouped in a profile.
It is not possible to take away any of the constraints that apply to a metamodel such as UML using a profile, but it is
possible to add new constraints that are specific to the profile. The only other restrictions are those inherent in the profiles
mechanism; there is nothing else that is intended to limit the way in which a metamodel is customized.

First-class extensibility is handled through MOF, where there are no restrictions on what you are allowed to do with a
metamodel: you can add and remove metaclasses and relationships as you find necessary. Of course, it is then possible to
impose methodology restrictions that you are not allowed to modify existing metamodels, but only extend them. In this
case, the mechanisms for first-class extensibility and profiles start coalescing.

There are several reasons why you may want to customize a metamodel:

• Give a terminology that is adapted to a particular platform or domain (such as capturing EJB terminology like home
interfaces, enterprise java beans, and archives).

• Give a syntax for constructs that do not have a notation (such as in the case of actions).

• Give a different notation for already existing symbols (such as being able to use a picture of a computer instead of the
ordinary node symbol to represent a computer in a network).

• Add semantics that is left unspecified in the metamodel (such as how to deal with priority when receiving signals in a
statemachine).

• Add semantics that does not exist in the metamodel (such as defining a timer, clock, or continuous time)

• Add constraints that restrict the way you may use the metamodel and its constructs (such as disallowing actions from
being able to execute in parallel within a single transition).

• Add information that can be used when transforming a model to another model or code (such as defining mapping
rules between a model and Java code).

Profiles and Metamodels

There is no simple answer for when you should create a new metamodel and when you instead should create a new
profile.
UML Superstructure 2.0 Draft Adopted Specification 569

18.2 Abstract syntax

Package structure

The classes of the Profiles package are depicted in Figure 446, and subsequently specified textually.

18.3 Class descriptions

18.3.1 Extension (from Profiles)

An extension is used to indicate that the properties of a metaclass are extended through a stereotype, and gives the ability
to flexibly add (and later remove) stereotypes to classes.

Description

Extension is a kind of Association. One end of the Extension is an ordinary Property and the other end is an
ExtensionEnd. The former ties the Extension to a Class, while the latter ties the Extension to a Stereotype that extends the
Class.

Figure 445 - Dependencies between packages described in this chapter

Figure 446 - The elements defined in the Profiles package

Constructs

Profiles

Class Extens ion

/ isRequired : Boolean
*1

/extension

*

/metaclass

1 /

Package ExtensionEnd

11

ownedEnd

11

ProfileApplication

1 *1

appliedProfile

*

{subsets pack ageImport}

Stereotype

1

*

type

1

*

ElementImport
(from Constructs)

PackageImport
(from Constructs)

Profile
1

*

importedProfi le

1 {subsets importedPackage}

*

*1

ownedStereotype

*{subsets ownedMember}1

*0.. 1

metaclassReference

*{subsets elementImport}0.. 1

*0.. 1

metamodelReference

*{subsets packageIm port}0.. 1

Package
(from Constructs)

PackageImport
(f rom Const ructs)

Class
(from Constructs)

Property
(f ro m Con st ru ct s)

As sociation
(from Constructs)
570 UML Superstructure 2.0 Draft Adopted Specification

Attributes

• / isRequired: Boolean Indicates whether an instance of the extending stereotype must be created when an
instance of the extended class is created. The attribute value is derived from the multiplic-
ity of Extension::ownedEnd; a multiplicity of 1 means that isRequired is true, but other-
wise it is false. Since the default multiplicity of an ExtensionEnd is 0..1, the default value
of isRequired is false.

Associations

• ownedEnd: ExtensionEnd [1] References the end of the extension that is typed by a Stereotype. Redefines Associa-
tion::ownedEnd.

• / metaclass: Class [1] References the Class that is extended through an Extension. The property is derived from
the type of the memberEnd that is not the ownedEnd.

Constraints

[1] The non-owned end of an Extension is typed by a Class.

metaclassEnd()->notEmpty() and metaclass()->oclIsKindOf(Class)

[2] An Extension is binary, i.e., it has only two memberEnds.

memberEnd->size() = 2

Additional Operations

[1] The query metaclassEnd() returns the Property that is typed by a metaclass (as opposed to a stereotype)

Extension::metaclassEnd(): Property;
metaclassEnd = memberEnd->reject(ownedEnd)

[2] The query metaclass() returns the metaclass that is being extended (as opposed to the extending stereotype).

Extension::metaclass(): Class;
metaclass = metaclassEnd().type

[3] The query isRequired() is true if the owned end has a multiplicity with the lower bound of 1.

Extension::isRequired(): Boolean;
isRequired = (ownedEnd->lowerBound() = 1)

Semantics

A required extension means that an instance of a stereotype must always be linked to an instance of the extended
metaclass. The instance of the stereotype is typically deleted only when either the instance of the extended metaclass is
deleted, or when the profile defining the stereotype is removed from the applied profiles of the package. The model is not
well-formed if an instance of the stereotype is not present when isRequired is true.

A non-required extension means that an instance of a stereotype can be linked to an instance of an extended metaclass at
will, and also later deleted at will; however, there is no requirement that each instance of a metaclass be extended. An
instance of a stereotype is further deleted when either the instance of the extended metaclass is deleted, or when the
profile defining the stereotype is removed from the applied profiles of the package.

In order to be able to navigate to the extended metaclass when writing constraints, the end must have a name. If no name
is given, the default name is baseClass.
UML Superstructure 2.0 Draft Adopted Specification 571

Notation

The notation for an Extension is an arrow pointing from a Stereotype to the extended Class, where the arrowhead is
shown as a filled triangle. An Extension may have the same adornments as an ordinary association, but navigability
arrows are never shown. If isRequired is true, the property {required} is shown near the ExtensionEnd.

Presentation Option

It is possible to use the multiplicities 0..1 or 1 on the ExtensionEnd as an alternative to the property {required}. Due to
how isRequired is derived, the multiplicity 0..1 corresponds to isRequired being false.

Style Guidelines

Adornments of an Extension are typically elided.

Examples

In Figure 448, a simple example of using an extension is shown, where the stereotype Home extends the metaclass
Interface.

An instance of the stereotype Home can be added to and deleted from an instance of the class Interface at will, which
provides for a flexible approach of dynamically adding (and removing) information specific to a profile to a model.

In Figure 449, an instance of the stereotype Bean always needs to be linked to an instance of class Component since the
Extension is defined to be required. (Since the stereotype Bean is abstract, this means that an instance of one of its
concrete subclasses always has to be linked to an instance of class Component.) The model is not well-formed unless such
a stereotype is applied. This provides for a way to express extensions that should always be present for all instances of the
base metaclass depending on which profiles are applied.

Changes from UML 1.4

Extension did not exist as a metaclass in UML 1.x.

Figure 447 - The notation for an Extension

Figure 448 - An example of using an Extension

Figure 449 - An example of a required Extension

«stereotype»
Home

Interface

Component
«stereotype»

Bean

{required}
572 UML Superstructure 2.0 Draft Adopted Specification

Occurrences of Stereotype::baseClass of UML 1.4 is mapped to an instance of Extension, where the ownedEnd is typed
by Stereotype and the other end is typed by the metaclass that is indicated by the baseClass.

18.3.2 ExtensionEnd (from Profiles)

An extension end is used to tie an extension to a stereotype when extending a metaclass.

Description

ExtensionEnd is a kind of Property that is always typed by a Stereotype.

An ExtensionEnd is never navigable. If it was navigable, it would be a property of the extended classifier. Since a profile
is not allowed to changed the referenced metamodel, it is not possible to add properties to the extended classifier. As a
consequence, an ExtensionEnd can only be owned by an Extension.

The aggregation of an ExtensionEnd is always composite.

The default multiplicity of an ExtensionEnd is 0..1.

Attributes

No additional attributes.

Associations

• type: Stereotype [1] References the type of the ExtensionEnd. Note that this association restricts the possible
types of an ExtensionEnd to only be Stereotypes. Redefines Property::type.

Constraints

[1] The multiplicity of ExtensionEnd is 0..1 or 1.

(self->lowerBound() = 0 or self->lowerBound() = 1) and self->upperBound() = 1

[2] The aggregation of an ExtensionEnd is composite.

self.aggregation = #composite

Additional Operations

[1] The query lowerBound() returns the lower bound of the multiplicity as an Integer. This is a redefinition of the default
lower bound, which was 1.

ExtensionEnd::lowerBound() : [Integer];
lowerBound = if lowerValue->isEmpty() then 0 else lowerValue->IntegerValue() endif

Semantics

No additional semantics.

Notation

No additional notation.

Examples

See “Extension (from Profiles)” on page 570.
UML Superstructure 2.0 Draft Adopted Specification 573

Changes from UML 1.4

ExtensionEnd did not exist as a metaclass in UML 1.4. See “Extension (from Profiles)” on page 570 for further details.

18.3.3 Class (from Constructs, Profiles)

Description

Class has derived association that indicates how it may be extended through one or more stereotypes.

Because a stereotype is a class, it is possible to apply a stereotype not only to classes, but also to definitions of
stereotypes.

Attributes

No additional attributes.

Associations

• / extension: Extension [*] References the Extensions that specify additional properties of the metaclass. The prop-
erty is derived from the extensions whose memberEnds are typed by the Class.

Constraints

No additional constraints.

Semantics

No additional semantics.

Notation

No additional notation.

Presentation Option

A Class that is extended by a Stereotype may have the optional keyword «metaclass» shown above or before its name.

Examples

In Figure 450, an example is given where it is made explicit that the extended class Interface is in fact a metaclass (from
a reference metamodel).

Changes from UML 1.4

A link typed by UML 1.4 ModelElement::stereotype is mapped to a link that is typed by Class::extension.

Figure 450 - Showing that the extended class is a metaclass

«metaclass»
Interface

«stereotype»
Remote
574 UML Superstructure 2.0 Draft Adopted Specification

18.3.4 Package (from Constructs, Profiles)

Description

A package can have one or more ProfileApplications to indicate which profiles have been applied.

Because a profile is a package, it is possible to apply a profile not only to packages, but also to profiles.

Attributes

No additional attributes.

Associations

• appliedProfile: ProfileApplication [*]References the ProfileApplications that indicate which profiles have been applied to
the Package. Subsets Package::packageImport.

Constraints

No additional constraints.

Semantics

No additional semantics.

Notation

No additional notation.

Changes from UML 1.4

In UML 1.4, it was not possible to indicate which profiles were applied to a package.

18.3.5 Profile (from Profiles)

A profile defines limited extensions to a reference metamodel with the purpose of adapting the metamodel to a specific
platform or domain.

Description

A Profile is a kind of Package that extends a reference metamodel. The primary extension construct is the Stereotype,
which are defined as part of Profiles.

A profile introduces several constraints, or restrictions, on ordinary metamodeling through the use of the metaclasses
defined in this package.

A profile is a restricted form of a metamodel that must always be related to a reference metamodel, such as UML, as
described below. A profile cannot be used without its reference metamodel, and defines a limited capability to extend
metaclasses of the reference metamodel. The extensions are defined as stereotypes that apply to existing metaclasses.

Attributes

No additional attributes.
UML Superstructure 2.0 Draft Adopted Specification 575

Associations

• metaclassReference: ElementImport [*]References a metaclass that may be extended. Subsets Package::elementImport.

• metamodelReference: PackageImport [*] References a package containing (directly or indirectly) metaclasses that may
be extended. Subsets Package::packageImport.

• ownedStereotype: Stereotype [*] References the Stereotypes that are owned by the Profile. Subsets Package::ownedMem-
ber.

Constraints

[1] An element imported as a metaclassReference is not specialized or generalized in a Profile.

self.metaclassReference.importedElement->
select(c | c.oclIsKindOf(Classifier) and
(c.generalization.namespace = self or
(c.specialization.namespace = self))->isEmpty()

[2] All elements imported either as metaclassReferences or through metamodelReferences are members of the same base ref-
erence metamodel.

self.metamodelReference.importedPackage.elementImport.importedElement.allOwningPackages())->
union(self.metaclassReference.importedElement.allOwningPackages())->notEmpty()

Additional Operations

[1] The query allOwningPackages() returns all the directly or indirectly owning packages.

NamedElement::allOwningPackages(): Set(Package)
allOwningPackages = self.namespace->select(p | p.oclIsKindOf(Package))->

union(p.allOwningPackages())

Semantics

A profile by definition extends a reference metamodel or another profile. It is not possible to define a standalone profile
that does not directly or indirectly extend an existing metamodel. The profile mechanism may be used with any
metamodel that is created from MOF, including UML and CWM.

A reference metamodel typically consists of metaclasses that are either imported or locally owned. All metaclasses that
are extended by a profile have to be members of the same reference metamodel. A tool can make use of the information
about which metaclasses are extended in different ways, for example to filter or hide elements when a profile is applied,
or to provide specific tool bars that apply to certain profiles. However, elements of a package or model cannot be deleted
simply through the application of a profile. Each profile thus provides a simple viewing mechanism.

As part of a profile, it is not possible to have an association between two stereotypes or between a stereotype and a
metaclass unless they are subsets of existing associations in the reference metamodel. However, it is possible to have
associations between ordinary classes, and from stereotypes to ordinary classes. Likewise, properties of stereotypes may
not be typed by metaclasses or stereotypes.

Notation

A Profile uses the same notation as a Package, with the addition that the keyword «profile» is shown before or above the
name of the Package. Profile::metaclassReference and Profile::metamodelReference uses the same notation as
Package::elementImport and Package::packageImport, respectively.
576 UML Superstructure 2.0 Draft Adopted Specification

Examples

In Figure 451, a simple example of an EJB profile is shown.

The profile states that the abstract stereotype Bean is required to be applied to metaclass Component, which means that an
instance of either of the concrete subclasses Entity and Session of Bean must be linked to each instance of Component.
The constraints that are part of the profile are evaluated when the profile has been applied to a package, and need to be
satisfied in order for the model to be well formed.

Figure 451 - Defining a simple EJB profile

«profile» EJB

«metaclass»
Interface

«stereotype»
Remote

«stereotype»
Home

Artifact
«stereotype»

JARComponent
«stereotype»

Bean

{required}

«stereotype»
Entity

«stereotype»
Session

«enumeration»
StateKind

{A component
cannot be
generalized or
specialized. }

{A Bean must
realize exactly
one Home
interface.}

stateless
stateful

state: StateKind
UML Superstructure 2.0 Draft Adopted Specification 577

In Figure 452, the package Types is imported from the profile Manufacturer. The data type Color is then used as the type
of one of the properties of the stereotype Device, just like the predefined type String is also used. Note that the class
JavaInteger may also be used as the type of a property.

If the profile Manufacturer is later applied to a package, then the types from Types are also available for use in the
package to which the profile is applied (since profile application is a kind of import). This means that for example the
class JavaInteger can be used as both a metaproperty (as part of the stereotype Device) and an ordinary property (as part
of the class TV). Note how the metaproperty is given a value when the stereotype Device is applied to the class TV.

18.3.6 ProfileApplication (from Profiles)

A profile application is used to show which profiles have been applied to a package.

Description

ProfileApplication is a kind of PackageImport that adds the capability to state that a Profile is applied to a Package.

Attributes

No additional attributes.

Associations

• importedProfile: Profile [1] References the Profiles that is applied to a Package through this ProfileApplication. Sub-
sets PackageImport::importedPackage.

Figure 452 - Importing a package from a profile

«profile»
Manufacturer

«metaclass»
Class

«stereotype»
Device

author: String
color: Color
volume: JavaInteger

Types

«enumeration»
Color

red
green
blue

JavaInteger

«import»

Factory

«device»
TV

channel: JavaInteger

«apply»

«device»
volume=10
578 UML Superstructure 2.0 Draft Adopted Specification

Constraints

No additional constraints.

Semantics

One or more profiles may be applied at will to a package that is created from the same metamodel that is extended by the
profile. Applying a profile means that it is allowed, but not necessarily required, to apply the stereotypes that are defined
as part of the profile. It is possible to apply multiple profiles to a package as long as they do not have conflicting
constraints. If a profile that is being applied depends on other profiles, then those profiles must be applied first.

When a profile is applied, instances of the appropriate stereotypes should be created for those elements that are instances
of metaclasses with required extensions. The model is not well-formed without these instances.

Once a profile has been applied to a package, it is allowed to remove the applied profile at will. Removing a profile
implies that all elements that are instances of elements defined in a profile are deleted. A profile that has been applied
cannot be removed unless other applied profiles that depend on it are first removed.

Note – The removal of an applied profile leaves the instances of elements from the referenced metamodel intact. It is only the
instances of the elements from the profile that are deleted. This means that for example a profiled UML model can always be
interchanged with another tool that does not support the profile and be interpreted as a pure UML model.

Notation

The names of Profiles are shown using a dashed arrow with an open stick arrowhead from the package to the applied
profile. The keyword «apply» is shown near the arrow.

If multiple applied profiles have stereotypes with the same name, it may be necessary to qualify the name of the
stereotype (with the profile name).

Examples

Given the profiles Java and EJB, Figure 453 shows how these have been applied to the package WebShopping.

Figure 453 - Profiles applied to a package

WebShopping

«profile»
Java «profile»

EJB

«apply»
«apply»
UML Superstructure 2.0 Draft Adopted Specification 579

18.3.7 Stereotype (from Profiles)

A stereotype defines how an existing metaclass (or stereotype) may be extended, and enables the use of platform or
domain specific terminology or notation in addition to the ones used for the extended metaclass.

Description

Stereotype is a kind of Class that extends Classes through Extensions.

Just like a class, a stereotype may have properties, which may be referred to as tag definitions. When a stereotype is
applied to a model element, the values of the properties may be referred to as tagged values.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

[1] A Stereotype may only generalize or specialize another Stereotype.

self.generalization.general->forAll(e | e.oclIsKindOf(Stereotype)) and
self.specialization.specific->forAll(e | e.oclIsKindOf(Stereotype))

[2] A concrete Stereotype must directly or indirectly extend a Class.

not self.isAbstract implies self.extensionEnd->union(self.parents.extensionEnd)->notEmpty()

Semantics

A stereotype is a limited kind of metaclass that cannot be used by itself, but must always be used in conjunction with one
of the metaclasses it extends. Each stereotype may extend one or more classes through extensions as part of a profile.
Similarly, a class may be extended by one or more stereotypes.

An instance of a stereotype is linked to an instance of an extended metaclass (or stereotype) by virtue of the extension
between their types.

Notation

A Stereotype uses the same notation as a Class, with the addition that the keyword «stereotype» is shown before or above
the name of the Class.

When a stereotype is applied to a model element (an instance of a stereotype is linked to an instance of a metaclass), the
name of the stereotype is shown within a pair of guillemets above or before the name of the Stereotype. If multiple
stereotypes are applied, the names of the applied stereotypes is shown as a comma-separated list with a pair of guillemets.

Presentation Options

If multiple stereotypes are applied to an element, it is possible to show this by enclosing each stereotype name within a
pair of guillemets and list them after each other.

The values of a stereotype that has been applied to a model element can be shown as part of a comment symbol tied to
the model element. The values from a specific stereotype are optionally preceded with the name of the applied stereotype
within a pair of guillemets, which is useful if values of more than one applied stereotype should be shown.
580 UML Superstructure 2.0 Draft Adopted Specification

If the extension end is given a name, this name can be used in lieu of the stereotype name within the pair of guillemets
when the stereotype is applied to a model element.

It is possible to attach a specific notation to a stereotype that can be used in lieu of the notation of a model element to
which the stereotype is applied.

Style Guidelines

The first letter of an applied stereotype should not be capitalized. The values of an applied stereotype are normally not
shown.

Examples

In Figure 454, a simple stereotype Clock is defined to be applicable at will (dynamically) to instances of the metaclass
Class.

Note that in order to be able to write constraints on the stereotype Clock that should be applied to the metaclass Class or
any of its relationships, it is necessary to give the end typed by the metaclass a name for navigation purposes. A typical
such name would be for example base.

In Figure 455, an instance specification of the example in Figure 454 is shown. Note that the extension must be
composite, and that the the derived required attribute in this case is false.

Figure 454 - Defining a stereotype

Figure 455 - An instance specification when defining a stereotype

«metaclass»
Class

«stereotype»
Clock

resolution: Integer

:Class

name="Class"

:Stereotype

name="Clock"

:Property :Extension :ExtensionEnd
ownedEnd,
memberEnd

memberEnd

type type

isRequired = false

metaclass

extension

ownedAttribute
:Property

name="resolution"

ownedAttribute

isComposite = trueisComposite = false

:PrimitiveType

name="Integer"

type
UML Superstructure 2.0 Draft Adopted Specification 581

In Figure 456, it is shown how the same stereotype Clock can extend either the metaclass Component or the metaclass
Class. It is also shown how different stereotypes can extend the same metaclass.

Figure 457 shows how the stereotype Clock, as defined in Figure 456, is applied to a class called StopWatch.

Figure 458 shows an example instance model for when the stereotype Clock is applied to a class called StopWatch. The
extension between the stereotype and the metaclass results in a link between the instance of stereotype Clock and the
(user-defined) class StopWatch.

Figure 456 - Defining multiple stereotypes on multiple stereotypes

Figure 457 - Using a stereotype

Figure 458 - Showing values of stereotypes and a simple instance specificiation

«metaclass»
Component

«stereotype»
Clock

resolution: Integer

«metaclass»
Class

«stereotype»
Creator

author: String
date: String

{required}

«clock»
StopWatch

«clock»
StopWatch «clock»

resolution = 2

:Class

name="StopWatch"

:Clock

resolution = 2
582 UML Superstructure 2.0 Draft Adopted Specification

Next, two stereotypes, Clock and Creator, are applied to the same model element, as is shown in Figure 459. Note that the
attribute values of each of the applied stereotypes can be shown in a comment symbol attached to the model element.

18.4 Diagrams

Structure diagrams

This section outlines the graphic elements that may be shown in structure diagrams, and provides cross references where
detailed information about the semantics and concrete notation for each element can be found. It also furnishes examples
that illustrate how the graphic elements can be assembled into diagrams.

Graphical nodes

The graphic nodes that can be included in structure diagrams are shown in Table 23.

Figure 459 - Using stereotypes and showing values

Table 23 - Graphic nodes included in structure diagrams

NODE TYPE NOTATION REFERENCE

Stereotype See “Stereotype (from Profiles)” on page 580.

Metaclass See “Class (from Constructs, Profiles)” on
page 574

Profile See “Profile (from Profiles)” on page 575.

«clock»
resolution = 2

«creator»
author = "Jones"
date = "02-04-15"

«creator, clock»
StopWatch

«stereotype»
Name

«metaclass»
Name

«profile»
Name
UML Superstructure 2.0 Draft Adopted Specification 583

Graphical paths

The graphic paths that can be included in structure diagrams are shown in Table 24.

Table 24 - Graphic paths included in structure diagrams

NODE TYPE NOTATION REFERENCE

Extension See “Extension (from Profiles)” on page 570.

ProfileAppli-
cation

See “ProfileApplication (from Profiles)” on
page 578

«apply»
584 UML Superstructure 2.0 Draft Adopted Specification

Part IV - Appendices
This section contains the appendices for this specification.

• Appendix A - Diagrams

• Appendix B - Standard Stereotypes

• Appendix C - Component Profile Examples

• Appendix D - Tabular Notations

• Appendix E - Classifiers Taxonomy

• Appendix F - XMI Serialization and Schema
UML Infrastructure 2.0 Draft Adopted Specification 585

586 UML Infrastructure 2.0 Draft Adopted Specification

Appendix A.Diagrams
This appendix describes the general properties of UML diagrams and how they relate to a UML (repository) model and to
elements of this. It also introduces the different diagram types of UML.

A UML model consists of elements such as packages, classes, and associations. The corresponding UML diagrams are
graphical representations of parts of the UML model. UML diagrams contains graphical elements (nodes connected by
paths) that represent elements in the UML model. As an example, two associated classes defined in a package will in a
diagram for the package be represented by two class symbols and an association path connecting these two class symbols.

Each diagram has a frame, a contents area, and a heading, see Figure 460.

The frame is a rectangle. The frame is primarily used in cases where the diagrammed element has graphical border
elements, like ports for classes and components (in connection with composite structures), and entry/exit points on
statemachines. In cases where not needed, the frame may be omitted and implied by the border of the diagram area
provided by a tool. In case the frame is omitted, the headning is also omitted.

The diagram contents area contains the graphical symbols; the primary graphical symbols defines the type of the diagram,
e.g. a class diagram is a diagram where the primary symbols in the contents area are class symbols.

The heading is a string contained in a name tag (rectangle with cutoff corner) in the upper leftmost corner of the
rectangle, with the following syntax:

[<kind>]<name>[<parameters>]

The heading of a diagram represents the kind, name and parameters of the namespace enclosing or the model element
owning elements that are represented by symbols in the contents area. Most elements of a diagram contents area represent
model elements that are defined in the namespace or are owned by another model element.

As an example, Figure 461 is a class diagram of a package P: classes C1 and C1 are defined in the namespace of the
package P.

Figure 460

<heading>

<contents area>
UML Superstructure 2.0 Draft Adopted Specification 587

Figure 462 illustrates that a package symbol for package P (in some containing package CP) may show the same contents
as the class diagram for the package. i) is a diagram for package CP with a graphical symbols representing the fact that
the CP package contains a package P. ii) is a class diagram for this package P. Note that the package symbol in i) does not
have to contain the class symbols and the assocition symbol; for more realistic models, the package symbols will typically
just have the package names, while the class diagrams for the packages will have class symbols for the classes defined in
the packages.

In Figure 463 i) is a class diagram for the package Cars, with a class symbol representing the fact that the Cars package
contains a class Car. ii) is a composite structure diagram for this class Car. The class symbol in i) does not have to contain
the structure of the class in a compartment ; for more realistic models, the class symbols will typically just have the class
names, while the composite structure diagrams for the classes will have symbols for the composite structures.

Figure 461 - Class diagram of package P

Figure 462 - Two diagrams of packages

C1 C2

package P

C1 C2C1 C2

package P

C1 C2

P
C1 C2

package P

i) Package symbol (as part of a larger diagram) ii) Class diagram for the same package

package CP

C1 C2C1 C2

P
C1 C2

package P

C1 C2C1 C2

package P

i) Package symbol (as part of a larger diagram) ii) Class diagram for the same package

package CPpackage CP
588 UML Superstructure 2.0 Draft Adopted Specification

UML diagrams may have the following kinds frame names as part of the heading.:

• activity

• class

• component

• interaction

• package

• state machine

• use case

Note – Short forms of these names should also be defined, e.g. pkg for package.

Figure 463 - A class diagram and a composite structure diagram

rear : Wheel [2] e : Engine
axle p

classCar

i) Classsymbol for classCar(as part of a larger diagram) ii) Composite structurediagram for the same class Car

Car

e : Engine
axle p

rear : Wheel [2]

packageCars

rear : Wheel [2] e : Engine
axle p

rear : Wheel [2] e : Engine
axle p

classCar

i) Classsymbol for classCar(as part of a larger diagram) ii) Composite structurediagram for the same class Car

Car

e : Engine
axle p

rear : Wheel [2]

Car

e : Engine
axle p

rear : Wheel [2]

packageCars
UML Superstructure 2.0 Draft Adopted Specification 589

As is shown in Figure 464, there are two major kinds of diagram types: structure diagrams and behavior diagrams.

Structure diagrams show the static structure of the objects in a system. That is, they depict those elements in a
specification that are irrespective of time. The elements in a structure diagram represent the meaningful concepts of an
application, and may include abstract, real-world and implementation concepts. For example, a structure diagram for an
airline reservation system might include classifiers that represent seat assignment algorithms, tickets, and a credit
authorization service. Structure diagrams do not show the details of dynamic behavior, which are illustrated by behavioral
diagrams. However, they may show relationships to the behaviors of the classifiers exhibited in the structure diagrams.

Behavior diagrams show the dynamic behavior of the objects in a system, including their methods, collaborations,
activities and state histories. The dynamic behavior of a system can be described as a series of changes to the system over
time. Behavior diagrams can be further classified into several other kinds as illustrated in Figure 464.

Please note that this taxonomy provides a logical organization for the various major kinds of diagrams. However, it does
not preclude the mixing different kinds of diagram types, as one might do when one combines structural and behavioral
elements (e.g., showing a state machine nested inside an internal structure). Consequently, the boundaries between the
various kinds of diagram types are not strictly enforced.

The constructs contained in each of the thirteen UML diagrams is described in the Superstructure chapters as indicated
below.

• Activity Diagram - Activities chapter

• Class Diagram - Classses chapter

• Communication Diagram - Interactions chapter

• Component Diagram - Components chapter

• Composite Structure Diagram - Composite Structures chapter

• Deployment diagram - Deployments chapter

Figure 464 - The taxonomy of structure and behavior diagrams

D ia g ra m

S tru c tu re
D ia g ra m

B e h a v io r
D ia g ra m

In te ra c tio n
D ia g ra m

U s e C a s e
D ia g ra m

A c tiv ity
D ia g ra m

C o m p o s ite
S tru c tu re
 D ia g ra m

C la s s D ia g ra m
C o m p o n e n t

D ia g ra m

D e p lo ym e n t
D ia g ra m

S e q u e n c e
D ia g ra m

In te ra c tio n
O v e rv ie w
D ia g ra m

O b je c t
D ia g ra m

S ta te M a c h in e
D ia g ra m

P a c k a g e
D ia g ra m

C o lla b o ra tio n
D ia g ra m

T im in g
D ia g ra m
590 UML Superstructure 2.0 Draft Adopted Specification

• Interaction Overview Diagram - Interactions chapter

• Object Diagram - Classses chapter

• Package Diagram - Classses chapter

• State Machine Diagram - State Machines chapter

• Sequence Diagram - Interactions chapter

• Timing Diagram - Interactions chapter

• Use Case Diagram - Use Cases chapter
UML Superstructure 2.0 Draft Adopted Specification 591

592 UML Superstructure 2.0 Draft Adopted Specification

Appendix B.Standard Stereotypes
This appendix describes the predefined standard stereotypes for UML. The standard stereotypes are organized by
compliance levels: Basic, Intermediate and Complete.

B.1 Basic

Table 25

Name Subpackage Applies to Description

«auxiliary» Kernel Class A class that supports another more central or fundamental
class, typically by implementing secondary logic or control
flow. The class that the auxiliary supports may be defined
explicitly using a Focus class or implicitly by a dependency
relationship. Auxiliary classes are typically used together
with Focus classes, and are particularly useful for specifying
the secondary business logic or control flow of components
during design. See also: «focus».

«buildComponent» Components Component A collection component that defines a set for organizational
or system level
development purposes.

«call» Dependencies Usage A usage dependency whose source is an operation and
whose target is an operation. The relationship may also be
subsumed to the class containing an operation, with the
meaning that there exists an operation in the class to which
the dependency applies.
A call dependency specifies that the source operation or an
operation in the source class invokes the target operation or
an operation in the target class. A call dependency may
connect a source operation to any target operation that is
within scope including, but not limited to, operations of the
enclosing classifier and operations of other visible
classifiers.

«create» Dependencies Usage A usage dependency denoting that the client classifier
creates instances of the supplier classifier.

«create» Kernel BehavioralFeatu
re

Specifies that the designated feature creates an instance of
the classifier to which the feature is attached. May be
promoted to the
Classifier containing the feature.
UML Superstructure 2.0 Draft Adopted Specification 593

«derive» Dependencies Abstraction Specifies a derivation relationship among model elements
that are usually, but not necessarily, of the same type. A
derived dependency specifies that the client may be
computed from the supplier. The mapping specifies the
computation. The client may be implemented for design
reasons, such as efficiency, even though it is logically
redundant.

«destroy» Kernel BehavioralFeatu
re

Specifies that the designated feature destroys an instance of
the classifier to which the feature is attached. May be
promoted to the
classifier containing the feature.

«focus» Kernel Class A class that defines the core logic or control flow for one or
more auxiliary classes that support it. Support classes may be
defined explicitly using Auxiliary classes or implicitly by
dependency relationships. Focus classes are typically used
together with one or more Auxiliary classes, and are
particularly useful for specifying the core business logic or
control flow of components during design. See also:
«auxiliary».

«framework» Kernel Package A package that contains model elements which specify a
reusable architecture for all or part of a
system. Frameworks typically include classes, patterns or
templates. When frameworks are specialized for an
application domain, they are sometimes referred to as
application frameworks.

«implement» Components Component A component definition that is not intended to have a
specification itself. Rather, it is an implementation for a
separate «specification» to which it has a Dependency.

«implementation
Class»

Classes Class The implementation of a class in some programming
language (e.g., C++, Smalltalk, Java) in which an instance
may not have more than one class. This is in contrast to
Class, for which an instance may have multiple classes at one
time and may gain or lose classes over time, and an object (a
child of instance) may dynamically
have multiple classes.
An Implementation class is said to realize a Classifier if it
provides all of the operations defined for the Classifier with
the same behavior as specified for the Classifier's operations.
An Implementation Class may realize a number of different
Types. Note that the physical attributes and associations of
the Implementation class do not have to be the same as those
of any Classifier it realizes and that the Implementation
Class may provide methods for its operations in terms of its
physical attributes and associations. See also: «type».

Table 25
594 UML Superstructure 2.0 Draft Adopted Specification

«instantiate» Dependencies Usage A usage dependency among classifiers indicating that
operations on the client create instances of the supplier.

«metaclass» Kernel Class A class whose instances are also classes.

«modelLibrary» Kernel Package A package that contains model elements which are intended
to be reused by other packages. A model library differs from
a profile in that a model library does not extend the
metamodel using stereotypes and tagged definitions. A
model library is analogous to a class library in some
programming languages.

«refine» Dependencies Abstraction Specifies a refinement relationship between model elements
at different semantic levels, such as analysis and design. The
mapping specifies the relationship between the two elements
or sets of elements. The mapping may or may not be
computable, and it may be unidirectional or bidirectional.
Refinement can be used to model transformations from
analysis to design and other such changes.

«responsibility» Kernel Usage A contract or an obligation of an element in its relationship
to other elements.

«script» Deployments Artifiact A script file that can be interpreted by a computer system.
Subclass of «file».

«send» Dependencies Usage A usage dependency whose source is an operation and
whose target is a signal, specifying that the source sends the
target signal.

«trace» Dependencies Abstraction Specifies a trace relationship between model elements or sets
of model elements that represent the same concept in
different models. Traces are mainly used for tracking
requirements and changes across models. Since model
changes can occur in both directions, the directionality of the
dependency can often be ignored. The mapping specifies the
relationship between the two, but it is rarely computable and
is usually informal.

«type» Classes Class A class that specifies a domain of objects together with the
operations applicable to the objects, without defining the
physical implementation of those objects. However, it may
have attributes and associations. Behavioral specifications
for type operations may be expressed using, for example,
activity diagrams. An object may have at most one
implementation class, however it may conform to multiple
different types. See also: «implementationClass».

«utility» Classes Class A class that has no instances, but rather denotes a named
collection of non-member attributes and operations, all of
which are class-scoped.

Table 25
UML Superstructure 2.0 Draft Adopted Specification 595

B.2 Intermediate

Table 26

Name Subpackage Applies to Description

«document» Deployments Artifact A generic file that is not a «source» file or «executable».
Subclass of «file».

«entity» Components Component A persistent information component representing a business
concept.

«executable» Deployments Artifact A program file that can be executed on a computer system.
Subclass of «file».

«file» Deployments Artifact A physical file in the context of the system developed.

«library» Deployments Artifact A static or dynamic library file. Subclass of «file».

«process» Components Component A transaction based component.

«realization» Kernel Classifier A classifier that specifies a domain of objects and that also
defines the physical implementation of those objects. For
example, a Component stereotyped by «realization» will
only have realizing Classifiers that implement behavior
specified by a separate «specification» Component. See
«specification». This differs from «implementation class»
because an «implementation class» ia a realization of a Class
which can have features such as attributes and methods
which is useful to system designers.

«service» Components Component A stateless, functional component (computes a value).

«source» Deployments Artifact A source file that can be compiled into an executable file.
Subclass of «file».

«specification» Kernel Classifier A classifier that specifies a domain of objects without
defining the physical implementation of those objects. For
example, a Component stereotyped by «specification» will
only have provided and required interfaces, and is not
intended to have any realizingClassifiers as part of its
definition. This differs from «type» because a «type» can
have features such as attributes and methods which is useful
to analysts modeling systems. Also see: «realization»

«subsystem» Components Component A unit of hierarchical decomposition for large systems. A
subsystem is commonly instantiated indirectly. Definitions
of subsystems vary widely among domains and methods,
and it is expected that domain and method profiles will
specialize this construct. A subsystem may be defined to
have specification and realization elements. See also:
«specification» and «realization».
596 UML Superstructure 2.0 Draft Adopted Specification

B.3 Complete

Changes from previous UML

The following table lists predefined standard elements for UML 1.x that are now obsolete.

Table 27

Name Subpackage Applies to Description

«buildComponent» Components Component A collection component that defines a set for organizational
or system level development purposes.

«metamodel» Model
Management

Model A model of a model, that typically contains containing
metaclasses. See <<metaclass>>.

«systemModel» Model
Management

Model A systemModel is a stereotyped model that contains a
collection of models of the same physical system. A
systemModel also contains all relationships and constraints
between model elements contained in
different models.

Table 28 - Retired standard elements

Standard Element Name Applies to Base Element

«access» Permission

«appliedProfile» Package

«association» AssociationEnd

«copy» Flow

«create» CallEvent

«create» Usage

«destroy» CallEvent

«facade» Package

«friend» Permission

«invariant» Constraint

«local» AssociationEnd

«parameter» AssociationEnd

«postcondition» Constraint

«powertype» Class

«precondition» Constraint

«profile» Package

«realize» Abstraction

«requirement» Comment
UML Superstructure 2.0 Draft Adopted Specification 597

«self» AssociationEnd

«signalflow» ObjectFlowState

«stateInvariant» Constraint

«stub» Package

«table» Artifact

«thread» Classifier

«topLevel» Package

Table 28 - Retired standard elements
598 UML Superstructure 2.0 Draft Adopted Specification

Appendix C. Component Profile Examples
This appendix describes example profiles for J2EE/Enterprise Java Beans (EJB), NET, COM and CORBA Component
Model (CCM) components. These profiles are not meant to be either normative or complete, but are provided as an
illustration of how UML 2.0 can be customized to model component architectures.

C.1 J2EE/EJB Component Profile Example

Table 29 shows an example profile for Enterprise Java Beans components:

Table 29 - Example Profile for Enterprise Java Beans

Stereotype Base Class Parent Tags Constraints Description

EJBEntityBean

«EJBEntityBean»

Component N/A N/A N/A Indicates that a Component represents an
EJB Entity Bean, a component that manages
the business logic of an application.

EJBSessionBean

«EJBSessionBean»

Component N/A N/A N/A Indicates that a Component represents an
EJB Session Bean, a component that pro-
cesses transactions.

EJBMessage
DrivenBean

«EJBMessage
DrivenBean»

Component N/A N/A N/A Indicates that a Component represents an
EJB Message-Driven Bean, a component
that handles messages, and is invoked on
the arrival of a message.

EJBHome

«EJBHome»

Interface N/A N/A N/A Indicates that the Interface is an EJB Home
interface that supports lifecycle and class-
level operations.

EJBRemote

«EJBRemote»

Interface N/A N/A N/A Indicates that the Interface is an EJB Remote
interface that supports business-specific
operations.

EJBService

«EJBRemote»

Interface N/A N/A N/A Indicates that the Interface is an EJB Service
interface that is exposed as a webservice
definition.

EJBCreate

«EJBCreate»

Method N/A N/A N/A Indicates that the Method is an EJB Create
Method that facilitates a create operation.

EJBBusiness

«EJBBusiness»

Method N/A N/A N/A Indicates that the Method is an EJB instance-
level methods that supports the buisness
logic of the EJB associated with the Remote
interface.

EJBSecurityRoleRef

«EJBSecurity
RoleRef»

Association N/A N/A N/A Indicates an Association between an EJB cli-
ent and an EJB Role Name Reference sup-
plier.

EJBRoleName

«EJBRoleName»

Actor N/A N/A N/A Indicates the name of a security role used in
the definitions of method permissions, etc.

EJBRoleNameRef

«EJBRoleNameRef»

Actor N/A N/A N/A Indicates the name of a security role refer-
ence used programmatically in an EJB’s
source code and mapped to an EJB Role
Name.

JavaSourceFile
«JavaSourceFile»

Artifact «file» N/A N/A Indicates that the Artifact represents a Java
source file.
UML Superstructure 2.0 Draft Adopted Specification 599

C.2 COM Component Profile Example

Table 30 shows an example profile for COM components:

C.3 .NET Component Profile Example

Table 31 shows an example profile for .NET components:

JAR
«JAR»

Artifact «file» N/A N/A Indicates that the Artifact represents a JAR
(Java ARchive) file.

EJBQL

«EJBQL»

Expression N/A N/A N/A Indicates that the expression conforms to the
EJB Query Language syntax.

Table 30 - Example Profile for COM Components

Stereotype Base Class Parent Tags Constraints Description

COMCoClass

«COMCoClass»

Component N/A N/A N/A Indicates a Component specification in COM
(as defined in a type library). Specifies all
externally visible aspects of a component.

COMAtlClass

«COMAtlClass»

Component N/A N/A N/A Indicates a component implementation class
using the ATL framework. An ATL class real-
izes a CoClass and provides its implementa-
tion.

COMInterface

«COMInterface»

Interface N/A N/A N/A Indicates a component interface. COMInter-
faces are oferred or required by CoClasses
and realized by COMAtlClasses.

COMConnectionPoint

«COMConnection-
Point»

Dependency N/A N/A N/A Indicates that a component publishes an inter-
face for subscribers. It is a special kind of a
provided interface.

COMTypeLibrary

«COMTypeLibrary»

Package N/A N/A N/A Indicates a packaging of COM types (COMCo-
Classes, COMInterface) to be deployed as a
library.

COMTLB

«COMTLB»

Artifact Indicates a (runtime) component specification
file (similar to a deployment descriptor).

COMExe
«COMExe»

Artifact «file» N/A N/A An artifact that deployes an executable COM
server application.

COMDLL
«COMDLL»

Artifact «file» N/A N/A An artifact that deployes a component library.

Table 31 - Example Profile for .NET Components

Stereotype Base Class Parent Tags Constraints Description

NetComponent

«NetComponent»

Component N/A N/A N/A Indicates that a Component represents a com-
ponent in the .NET framework.

NETProperty

«NETProperty»

Property N/A N/A N/A Indicates a Property oferred by a component
for public get/set operations.

Table 29 - Example Profile for Enterprise Java Beans

Stereotype Base Class Parent Tags Constraints Description
600 UML Superstructure 2.0 Draft Adopted Specification

C.4 CCM Component Profile Example

Table 32 shows an example profile for CCM components.

NETAssembly
«NETAssembly»

Package N/A N/A N/A Indicates that a .NET assembly, which is a
runtime packaging entitiy for components and
other type definitions.

MSI

«MSI»

Artifact N/A N/A N/A Indicates a component self installer file.

DLL

«DLL»

Artifact «file» N/A N/A Indicates a portable executable (PE) of type
DLL

EXE

«EXE»

Artifact «file» N/A N/A Indicates a portable executable (PE) of type
EXE

Table 32 - Example Profile for CCM Components

Stereotype Base Class Parent Tags Constraints Description

CCMEntity

«CCMEntity»

Component N/A N/A N/A Indicates that a Component represents an
Entity CC, a component that manages the
business logic of an application.

CCMSession

«CCMSession»

Component N/A N/A N/A Indicates that a Component represents a
Session CC, a component that processes
transactions.

CCMService

«CCMService»

Component N/A N/A N/A Indicates that a Component represents a
Service CC, a component that models sin-
gle independent execution of an “opera-
tion.

CCMProcess

«CCMService»

Component N/A N/A N/A Indicates that a Component represents a
service CC, a component realizing a long-
lived business process.

CCMHome

«CCMHome»

Interface N/A Must have a
manages depen-
dency

Indicates that the Interface is an CCM-
Home that provides factory and finder
methods for a particular CC.

CCMManages

«CCMManages»

Dependency N/A allways between
a CCMHome
and some CCM
component

Associates a CCM home with the CC com-
ponent it manages.

CCMFactory

«CCMFactory»

Operation N/A N/A Operation is
owned by CCM-
Home

Indicates that the Operation is a CCM-
home Create Method that facilitates a cre-
ate operation.

CCMFinder

«CCMFinder»

Operation N/A N/A Operation is
owned by CCM-
Home

Indicates that the operation is a finder
method of a CCMHome.

CCMProvided

«CCMProvided»

Port N/A N/A Port owns a sin-
gle provided
interface

Indicates a port that models a CC facet.

Table 31 - Example Profile for .NET Components

Stereotype Base Class Parent Tags Constraints Description
UML Superstructure 2.0 Draft Adopted Specification 601

CCMRequired

«CCMRequired»

Port N/A N/A Port owns a sin-
gle provided
interface

Indicates a port that models a CC Recep-
tacle.

CCMPackage

«CCMPackage»

Artifact N/A N/A N/A Indicates an artifact that deploys a set of
CCs.

CCMComponentDe-
scriptor

«CCMComponent
Descriptor»

Artifact «file» N/A N/A Indicates that the Artifact represents a
CCMComponentDescriptor.

CCMSoftPkgDescrip-
tor

«CCMComponent
Descriptor»

Artifact «file» N/A N/A Indicates that the Artifact represents a
CCM softPkg descriptor.

Table 32 - Example Profile for CCM Components

Stereotype Base Class Parent Tags Constraints Description
602 UML Superstructure 2.0 Draft Adopted Specification

Appendix D. Tabular Notations
This appendix describes optional tabular notations for UML behavioral diagrams, that some vendors or users may want to
use as alternatives to UML’s graphic notation. Although this appendix mostly describes tabular notations for sequence
diagrams, the approach may also be applied to other kinds of behavioral diagrams.

D.1 Tabular Notation for Sequence Diagrams

This section describes an optional tabular notation for sequence diagrams. The table row descriptions for this notation
follow:

1. Lifeline Class: Designates Class name of Lifeline. If there is no Class name on the Lifeline symbol, this class name is
omitted.

2. Lifeline Instance: Designates Instance name of Lifeline. If there is no Instance name on the Lifeline symbol, this
instance name is omitted.

3. Constraint: Designates some kind of constraint. For example, indication of oblique line is denoted as "{delay}". To
represent CombinedFragments, those operators are denoted with an index adorned by square bracket. In a case of
InteractionOccurrence, it is shown as parenthesized "Diagram ID", which designates referred Interaction Diagram,
with "ref" tag, like "ref(M.sq)"..

4. Message Sending Class: Designates the message sending class name for each incoming arrow.

5. Message Sending instance: Designates the message sending instance name for each incoming arrow. In a case of Gate
message that is outgoing message from InteractionOccurrence, it is shown as parenthesized "Diagram ID", which
designates referred Interaction Diagram, with underscore, like "_(M.sq)".

6. Diagram ID: Identifies the document that describes the corresponding sequence/communication diagram and can be
the name of the file that contains the corresponding sequence or communication diagram.

7. Generated instance name: An identifier name that is given to each instance symbol in the sequence /communication
diagram. The identifier name is unique in each document.

8. Sequence Number: The corresponding message number on the sequence /communication diagram.

9. Weak Order: Designates partial (relative) orders of events, as ordered on individual lifelines and across lifelines,
given a message receive event has to occur after its message send event. See definition of weak order (section 34.1 in
the U2 partners submission.) Events are shown as "e" + event order + event direction (incoming or outgoing).

10. Message name: The corresponding message name on the sequence /communication diagram.

11. Parameter: A set of parameter variable names and parameter types of the corresponding message on the sequence/
communication diagrams.

12. Return value: The return value type of the corresponding message on the sequence/communication diagram.

13. Message Receiving Class: Designates the message receiving class name for each outgoing arrow.

14. Message Receiving Instance: Designates the message receiving instance name for each outgoing arrow. In a case of
Gate message that is outgoing message from ordinary instance symbol, it is shown as parenthesized message name
with "out_" tag, like "(out_s)".

15. Other End: Designates event order of another end on the each message.
UML Superstructure 2.0 Draft Adopted Specification 603

Examples

Figure 465 - Sequence diagram enhanced with identification
 of the Event occurrences

Table 33 - Interaction Table describing Figure 465

sd N

A B C

M
ref

t()

s()

alt [x==5]
u()

[x==0] v()

e1oe2i

e3o(ref)

e4i

e5o

e6i

e7o

sd N

A B C

M
ref

t()

s()

alt [x==5]
u()

[x==0] v()

e1oe2i

e3o(ref)

e4i

e5o

e6i

e7o

Lifeline
Class

Lifeline
Inst Constraint

Message
Sending
Class

Message
Sending
Instance

Diag
ID

Generated
Instance
Name

Sequence
No

Weak
Order

Mesg
Name

Para
meter

Return
Value

Message
Receiving
Class

Message
Receive
Instance

Other
End

 C N.sq e1o t B e2i

 B C N.sq e2i t e1o

 A Ref (M.sq) N.sq e3o(ref) s C e4i

 B Ref (M.sq) N.sq e3o(ref) s C e4i

 C _(M.sq) N.sq e4i s e3o(ref)

 C alt [1]x==5 N.sq e5o u B e6i

 B alt[1] x==5 B N.sq e6i u e5o

 C alt[2] x==o N.sq e7o v out_v
604 UML Superstructure 2.0 Draft Adopted Specification

D.2 Tabular Notation for Other Behavioral Diagrams

The approach for defining tabular notation for sequence diagrams should also be applicable to other major behavioral
diagram types, such as state machine diagrams and activity diagrams.

Figure 466 - Sequence diagram with guards, parallel
 composition and alternatives

Table 34 - Interaction Table for Figure 466
UML Superstructure 2.0 Draft Adopted Specification 605

606 UML Superstructure 2.0 Draft Adopted Specification

Appendix E. Classifiers Taxonomy
The class inheritance hierarchy of the Classifiers in the UML 2.0 Superstructure is shown in Figure 467. The root of the
Classifier hierarchy is the Classifier defined in the Classes::Kernel package, and includes over 30 subclasses. The
Classifier hierarchy includes package references, so that readers can refer to their definitions in the appropriate packages.

Figure 467 - Classifier hierarchy for UML 2.0 Superstructure

Class
(from Kernel)

DataType
(from Kernel)

Enumeration
(from Kernel)

Association
(from Kernel)

Classifier
(from Dependencies)

StructuredClassifier
(from InternalStructures)

Signal
(from Communications)

Interface
(from Interfaces)

AssociationClass
(from AssociationClasses)

Class
(from Communications)

Collaboration
(from Collaborations)

Behavior
(from BasicBehaviors)

Classifier
(from Collaborations)

PrimitiveType
(from Kernel)

Classifier
(from PowerTypes)

Artifact
(from Artifacts)

UseCase
(from UseCases)

Actor
(from UseCases)

Classifier
(from Kernel)

InformationItem
(from InformationFlows)

EncapsulatedClassifier
(from Ports)

Node
(from Nodes)

Device
(from Nodes)

Class
(from StructuredC...)

ExecutionEnvironment
(from Nodes)

CommunicationPath
(from Nodes)

Activity
(from BasicActivities)

Activity
(from BasicBehaviors)

Interaction
(from BasicInteractions)

StateMachine
(from BehaviorStateMachines)

BehavioredClassifier
(from BasicBehaviors)

Activity
(from CompleteActivities)

ProtocolStateMachine
(from ProtocolStateMachines)
UML Superstructure 2.0 Draft Adopted Specification 607

608 UML Superstructure 2.0 Draft Adopted Specification

Appendix F.XMI Serialization and Schema
UML 2.0 models are serialized in XMI 2.0 according to the rules specified by the proposed MOF 2.0 XMI specification
(OMG document ad/2002-12-07). The XML schema for MOF 2.0 models that support the MOF 2.0 XMI specification is
available in OMG document ad/2002-12-09.

The XMI for serializing the UML 2.0 Superstructure as an instance of MOF 2.0 according to the rules specified by the
proposed MOF2 XMI specification is available in OMG document ad/2003-04-04. It is expected that the normative XMI
for this specification will be generated by a Finalization Task Force, which will architectually align and finalize the
relevant specifications.
UML Superstructure 2.0 Draft Adopted Specification 609

610 UML Superstructure 2.0 Draft Adopted Specification

Index

A
Abstraction (from Dependencies) 107
AcceptCallAction 216
AcceptEventAction 217
Action 280
Activity 283
activity 293, 301, 302, 307
Activity (from BasicBehaviors) 378
ActivityEdge 293
ActivityFinalNode 298
ActivityGroup 301
ActivityNode 302
ActivityParameterNode 304
ActivityPartition 307
Actor 512
Actor (from UseCases) 512
actual 549
actualGate 423
AddAttributeValueAction 219
addition 518
AddStructuralFeatureValueAction 219
AddVariableValueAction 220
after 419
aggregation 89
AggregationKind (from Kernel) 80
alias 31
allFeatures 62
allowSubstitutable 556
alt 426
ancestor 491
annotatedElement 28
AnyTrigger (from Communications) 379
appliedProfile 575
ApplyFunctionAction 222
argument 222, 236, 423, 429
Artifact 184
AssemblyConnector 136
assert 426
association 90, 229
Association (from Kernel) 81
AssociationClass (from AssociationClasses) 118
associationEnd 90
attribute 62

B
behavior 225, 393, 417
Behavior (from BasicBehaviors) 379
BehavioralFeature (from BasicBehaviors, Communications, specialized) 382
BehavioralFeature (from Kernel) 72
BehavioredClassifier (from BasicBehaviors) 383
BehavioredClassifier (from Interfaces) 113
binding 549
BlockActivityGroup 318
body 28, 46, 240, 313, 378
bodyCondition 77
bodyOutput 313, 342
bodyPart 341
Boolean (from PrimitiveTypes) 538
booleanValue 48, 53
UML Superstructure 2.0 Draft Adopted Specification 611

boundElement 547
BroadcastSignalAction 223

C
CallAction 224
CallBehaviorAction 224
CallConcurrencyKind (from Communications) 384
CallOperationAction 227
CallTrigger (from Communications) 385
CentralBufferNode 311
cfragmentGate 409
changeExpression 386
ChangeSignal 318
ChangeTrigger (from Communications) 385
class 77
Class (from Communications, specialized) 386
Class (from Constructs, Profiles) 574
Class (from Kernel) 86
Class (from StructuredClasses, as specialized) 156
Classifier 514
classifier 58, 233, 243, 244, 557
Classifier (as specialized) 552
Classifier (from Collaborations, as specialized) 157
Classifier (from Dependencies) 107
Classifier (from Kernel, Dependencies, PowerTypes) 61
Classifier (from PowerTypes) 121
classifierBehavior 383
ClassifierTemplateParameter 556
Clause 232, 313
clause 314
Clause (extended) 232
ClearAssociationAction 228
ClearAttributeAction 229
ClearStructurealFeatureAction 229
ClearVariableAction 230
clientDependency 34
Collaboration (from Collaborations) 157
CollaborationOccurrence (from Collaborations) 160
collaborationRole 158
CombinedFragment (from Fragments) 409
Comment 28
CommunicationPath 186
Component 136
composite 80
concurrency 382
concurrent 384
condition 515
ConditionalNode 313
configuration 188
conformance (of StateMachine) 464, 490
conformsTo 44
ConnectableElement (as specialized) 565
ConnectableElement (from InternalStructures) 163
ConnectableElementTemplateParameter 566
connection 479
connectionPoint (of StateMachine) 490
ConnectionPointReference (from BehaviorStatemachines) 459
connector 428
Connector (from InternalStructures) 163
Connector (from InternalStructures, as specialized) 143
ConnectorEnd (from InternalStructures, Ports) 165
612 UML Superstructure 2.0 Draft Adopted Specification

consider 426
constrainedElement 54
Constraint (from Kernel) 54
container (StateVertex) 506
containingStateMachine 491
context 54, 280, 380
Continuation (from Fragments) 414
ControlFlow 315
ControlNode 316
conveyed 532
covered 416, 422
CreateLinkAction 231
CreateLinkObjectAction 232
CreateObjectAction 233
critical 426

D
DataStoreNode 318
datatype 90
DataType (from Kernel) 95
decider 313, 341
decisionInput 320
DecisionNode 319
declarative protocol state machines 465
decomposedAs 427
default 74, 89, 548
defaultValue 74, 90
deferrableEvent (State) 479
deferrableTrigger 479
definingEnd 165
definingFeature 60
DelegationConnector 187
Dependency (from Dependencies) 108
DeployedArtifact 187
deployedArtifact 188
deployedElement 189
Deployment 187
deployment 189, 190, 195
deploymentLocation 190
DeploymentSpecification 190, 195
DeploymentTarget 189
DestroyLinkAction 234
DestroyObjectAction 235
Device 191
DirectedRelationship 28
direction 74
doActivity 479
doActivity (State) 479
duration 390
Duration (from Time) 387
DurationConstraint (from Time) 388
DurationInterval (from Time) 389
DurationObservationAction (from Time) 390

E
edge 285
edgeContents 301
effect 280, 345
effect (Transition) 498
Element 29
Element (from Kernel) 29
UML Superstructure 2.0 Draft Adopted Specification 613

ElementImport 31
elementImport 36
ElementImport (from Kernel) 31
EncapsulatedClassifier (from Ports) 166
enclosingOperand 422
end 163, 164, 239, 246
endData 231, 236
endType 81
entry (ConnectionPoint) 460
entry (State) 479
entry point (kind of Pseudostate) 471
enumeration 97
Enumeration (from Kernel) 96
EnumerationLiteral (from Kernel) 97
event 387, 398, 419
EventOccurrence 416
EventOccurrence (from BasicInteractions) 416
exception 242
ExceptionHandler 322
exceptionInput 322
exceptionType 322
executable protocol state machines 465
ExecutableNode 324
ExecutionEnvironment 192
executionLocation 190
ExecutionOccurrence (from BasicInteractions) 417
exit (ConnectionPoint) 460
exit (State) 479
ExpansionKind 324
ExpansionNode 325
ExpansionRegion 325
expression 52
Expression (from Kernel) 45
extend 519
Extend (from UseCases) 515
extendedCase 515
extendedRegion 476
extendedSignature 557
extendedState 479
extendedStateMachine 490
extension 515, 574
Extension (from Profiles) 570
ExtensionEnd (from Profiles) 573
extensionLocation 515
extensionPoint 519
ExtensionPoint (from UseCases) 516
external 506

F
feature 62
Feature (from Kernel) 73
featuringClassifier 73
FIFO 352
filename 184
FinalNode 331
FinalState (from BehaviorStatemachines) 462
finish 417
finishExec 416
first 259
firstTime 387, 397
FlowFinalNode 333
614 UML Superstructure 2.0 Draft Adopted Specification

ForkNode 334
formal 549
formalGate 419
formalParameter 72, 77, 380
fragment 419, 426
function 222

G
Gate 418
Gate (from Fragments) 418
general 62, 66
generalization 62
Generalization (from Kernel, PowerTypes) 66
Generalization (from PowerTypes) 121
generalizationSet 66
GeneralizationSet (from PowerTypes) 121
generalMachine 464
generalOrdering 422
GeneralOrdering (from BasicInteractions) 418
group 285
guard 293, 426
Guard (Trigger) 498
guarded 384

H
handler 324
handlerBody 322

I
ignore 426
Implementation (from Interfaces) 113
importedElement 32
importedMember 36
importedPackage 38
importedProfile 578
importingNamespace 32, 38
in 74
include 519
Include (from UseCases) 517
includedCase 518
incoming 302
incoming (StateVertex) 506
InformationFlow (from InformationFlows) 532
InformationItem (from InformationFlows) 533
inGroup 293, 302
inheritedMember 62
inheritedParameter 557
InitialNode 335
inout 74
inPartition 293, 302
input 236, 280
inputElement 326
InputPin 336
insertAt 219, 221, 238
instance 48
InstanceSpecification (from Kernel) 57
InstanceSpecification (from Kernel, as specialized) 194
InstanceValue (from Kernel) 47
inState 349
inStructuredGroup 293, 302
Integer (from PrimitiveTypes) 538
UML Superstructure 2.0 Draft Adopted Specification 615

integerValue 49, 53
interaction 427, 428, 431
Interaction (from BasicInteraction, Fragments) 419
InteractionConstraint (from Fragments) 421
InteractionFragment (from Fragments) 422
InteractionOccurrence (from Fragments) 423
InteractionOperand (from Fragments) 425
interactionOperator 409
InteractionOperator (from Fragments) 426
Interface (from Communications, specialized) 391
Interface (from Interfaces) 114
Interface (from ProtocolStatemachines, as specialized) 461
internal 506
InterruptibleActivityRegion 336
interruptibleRegion 293, 302
interruptingEdge 337
Interval (from Time) 391
IntervalConstraint (from Time) 391
invariant 434
InvocationAction 236
InvocationAction (from Actions, as specialized) 167
isAbstract 61, 382
isActive 386
isAssured 314
isBehavior 168
isComposite 89
isComposite (derived attribute of State) 478
isComputable 48, 49, 50, 51, 52
isConcurrent (CompositeState) 478
isConsistentWith 91
isDerived 81, 89, 90
isDeterminate 314
isDimension 307
isDirect 244
isException 352
isExternal 307
isIndirectlyInstantiated 137
isInternal (Transition) 498
isLeaf 70
isMultiCast 345
isMultireceive 345
isNull 50, 53
isOrdered 41, 77
isOrthogonal (derived attribute of State) 478
isQuery 77
isReadOnly 75, 90, 285
isRedefinitionContextValid 491
isReentrant 380
isRelative 400
isReplaceAll 219, 220, 238, 251
isRequired 571
isService 168
isSimple (derived attribute of State) 478
isSingleCopy 285
isSingleExecution 285
isStatic 73
isStream 352
isSubmachineState (derived attribute of State) 478
isSubstitutable 66
isSynchronous 224
isTestedFirst 341
616 UML Superstructure 2.0 Draft Adopted Specification

isUnique 41, 77
iterative 325

J
JoinNode 338
joinSpec 339

K
kind 143
kind (PseudoState) 469

L
language 46, 240, 378
LCA 491
Lifeline 427
lifeline 419, 434
Lifeline (from BasicInteractions, Fragments) 427
LIFO 352
LinkAction 236
LinkEndCreationData 237
LinkEndData 239
LiteralBoolean (from Kernel) 48
LiteralInteger (from Kernel) 49
LiteralNull (from Kernel) 49
LiteralSpecification (from Kernel) 50
LiteralString (from Kernel) 51
LiteralUnlimitedNatural 51
local 506
localPostcondition 280
localPrecondition 280
location 188
loop 426
LoopNode 341
loopVariable 342
loopVariableInput 342
lower 41, 77
lowerValue 41

M
Manifestation 194
manifestation 185
mapping 107
max 389, 391, 398
maxint 422
member 36
memberEnd 81
mergedPackage 102
MergeNode 343
mergingPackage 102
message 419
Message (from BasicInteractions) 428
MessageEnd (from BasicInteractions) 431
messageKind 428
messageSort 428
MessageTrigger (from Communications) 392
metaclass 571
metaclassReference 576
metamodelReference 576
method 382
min 389, 391, 398
minint 422
mode 326
UML Superstructure 2.0 Draft Adopted Specification 617

Model (from Models) 535
MultiplicityElement (as specialized) 240
MultiplicityElement (from Kernel) 40
mustIsolate 302

N
name 34
NamedElement 33
NamedElement (as specialized) 560
NamedElement (from Dependencies) 109
NamedElement (from Kernel, Dependencies) 33
nameExpression 560
Namespace 35
namespace 34
Namespace (from Kernel) 35
neg 426
nestedArtifact 185
nestedClassifier 87
nestedPackage 100
newClassifier 251
Node 195
node 285
nodeContents 301
none 80
now 399

O
object 229, 244, 246, 247, 251, 257, 258
ObjectFlow 344
ObjectFlowEffectKind 349
ObjectNode 349
ObjectNodeOrderingKind 352
occurrence 157
oldClassifier 251
onPort 167
OpaqueExpression (from BasicBehaviors, specialized) 393
OpaqueExpression (from Kernel) 46
operand 46, 409
operation 74, 227, 385
Operation (as specialized) 563
Operation (from Communications, as specialized) 393
Operation (from Kernel) 76
OperationTemplateParameter 564
opposite 90
opt 426
ordered 352
ordering 349
out 74
outgoing 302
outgoing (StateVertex) 506
output 280
outputElement 326
OutputPin 352
ownedActual 549
ownedAttribute 87, 95, 173
ownedBehavior 383
ownedComment 29
ownedConnector 174
ownedDefault 548
ownedElement 29
ownedEnd 81, 571
618 UML Superstructure 2.0 Draft Adopted Specification

ownedLiteral 96
ownedMember 36, 100, 137
ownedOperation 87, 95, 185
ownedParameter 550
ownedParameteredElement 548
ownedPort 166
ownedProperty 185
ownedReception 386, 391
ownedRule 36
ownedSignature 545, 552
ownedStereotype 576
ownedType 100
ownedUseCase 514
owner 29
owningAssociation 90
owningInstance 60
owningParameter 543

P
package 39, 62, 100
Package (as specialized) 558
Package (from Constructs, Profiles) 575
Package (from Kernel) 99
PackageableElement (from Kernel) 37
packageImport 36
PackageImport (from Kernel) 38
packageMerge 100
PackageMerge (from Kernel) 101
par 426
parallel 325
parameter 72, 304, 380, 550, 552, 564, 565
Parameter (as specialized) 352
Parameter (Collaboration, as specialized) 167
Parameter (from Kernel) 73
ParameterableElement 543
ParameterDirectionKind (from Kernel) 74
parameteredElement 548, 556, 564, 566
parameterInSet 354
ParameterSet 354
parameterSet 352
parameterSubstitution 547
part 174
Part (as extended) 198
PartDecomposition (from Fragments) 431
partition 285, 307
partWithPort 165
Permission (from Dependencies) 109
Pin 355
Port ((from ProtocolStatemachines, as specialized) 463
port (Event in Statemachine) 177, 379, 392, 400
Port (from Ports) 167
postCondition 466
postcondition 77, 381
powertypeExtent 62
preCondition 466
precondition 77, 381
predecessorClause 313
PrimitiveFunction 240
PrimitiveType (from Kernel) 98
private 39
Profile 129, 130, 147, 148, 179, 198, 199, 263, 365, 366, 367, 436, 445, 450, 507, 509, 523
UML Superstructure 2.0 Draft Adopted Specification 619

Profile (from Profiles) 575
ProfileApplication (from Profiles) 578
Property (as specialized) 567
Property (from InternalStructures, as specialized) 171, 197
Property (from Kernel, AssociationClasses) 89
protected 39
protectedNode 322
protocol 462, 463
ProtocolConformance (from ProtocolStatemachines) 463
ProtocolStateMachine (from ProtocolStatemachines) 464
ProtocolTransition (from ProtocolStateMachines) 466
provided 137, 168
PseudoState (from BehaviorStatemachines) 469
PseudoStateKind (from BehaviorStatemachines) 475
public 39

Q
qualifiedName 34
qualifier 90, 238, 239, 241, 247
QualifierValue 241

R
raisedException 72, 77, 382
RaiseExceptionAction 242
ReadAttributeAction 249
ReadExtentAction 243
ReadIsClassifiedObjectAction 243
ReadLinkAction 244
ReadLinkObjectEndAction 246
ReadLinkObjectEndQualifierAction 247
ReadSelfAction 248
ReadStructuralFeatureAction 249
ReadVariableAction 250
realization 137, 532
Realization (from Dependencies) 110
Realization (from Dependencies, as specialized) 146
receiveEvent 428
receiveMessage 431
Reception (from Communications) 394
ReclassifyObjectAction 251
RedefinableElement (from Kernel) 70
RedefinableTemplateSignature 557
redefinedBehavior 380
redefinedClassifier 62
redefinedConnector 164
redefinedElement 70, 293, 302
redefinedOperation 77
redefinedPort 168
redefinedProperty 90
redefinitionContext 70, 476, 479, 490, 498
referred 466
refersTo 423
region 479, 490
Region (from BehaviorStatemachines) 476
region (of StateMachine) 490
regionAsInput 325
regionAsOutput 325
relatedElement 30
Relationship 30
Relationship (from Kernel) 30
RemoveStructuralFeatureValueAction 252
620 UML Superstructure 2.0 Draft Adopted Specification

RemoveVariableValueAction 253
replacedTransition (Transition) 498
ReplyAction 254
replyToCall 254
replyValue 254
representation 157
represented 533
represents 307, 427
request 255
required 137, 168
result 217, 222, 224, 232, 233, 243, 244, 245, 246, 247, 248, 249, 250, 259, 314, 342, 393
return 74
returnedResult 380
returnInformation 216, 254
returnResult 72
role 165, 173
roleBinding 160

S
scope 364
second 259
selection 345, 349
selector 427
sendEvent 428
sendMessage 431
SendObjectAction 254
SendSignalAction 255
seq 426
sequential 384
setting 414
setupPart 341
shared 80
signal 223, 256, 394, 396
Signal (from Communications) 395
SignalTrigger (from Communications) 396
signature 429, 548
slot 58
Slot (from Kernel) 60
source 29, 293
source (Transition) 498
specific 66
specification 54, 58, 380
specificMachine 464
start 417
startExec 416
StartOwnedBehaviorAction 257
State (from BehaviorStatemachines) 477
stateGroup 469
stateInvariant 479
StateInvariant (from BasicInteractions) 433
StateMachine (from BehaviorStatemachines) 489
Stereotype (from Profiles) 580
Stop (from BasicInteractions) 434
stream 325
strict 426
String (from PrimitiveTypes) 539
stringValue 51, 53
structuralFeature 258
StructuralFeature (from Kernel) 75
StructuralFeatureAction 258
StructuredActivityNode 361
UML Superstructure 2.0 Draft Adopted Specification 621

StructuredClassifier (from InternalStructures) 173
structuredNode 285
subgroup 301
subject 519
submachine 479
submachineState 469
subsettedProperty 90
subsettingContext 91
substitution 62
Substitution (from Dependencies) 110
subvertex (Region) 476
successorClause 313
superClass 87
superGroup 301
superPartition 307
supplierDependency 34
symbol 45

T
target 29, 227, 235, 255, 256, 293
target (Transition) 498
template 547, 550
TemplateableElement 545
TemplateBinding 547
templateBinding 545
TemplateParameter 548
templateParameter 544
TemplateParameterSubstitution 549
TemplateSignature 550
test 313, 341
TestIdentityAction 259
TimeConstraint (from Time) 396
TimeExpression (from Time) 397
TimeInterval (from Time) 398
TimeObservationAction (from Time) 399
TimeTrigger (from BehaviorStatemachines, as specialized) 498
TimeTrigger (from Communications) 399
toAfter 416
toBefore 416
top 464, 490
transformation 345
transition 464, 476, 490
Transition (from BehaviorStatemachines) 498
TransitionKind 506
trigger 216, 217
Trigger (from Communications) 400
Trigger (from InvocationActions, as specialized) 177
trigger (Transition) 498
type 44, 77, 160, 164, 573
Type (from Kernel) 43
typeConstraint 568
TypedElement (from Kernel) 44

U
UnlimitedNatural (from PrimitiveTypes) 540
unlimitedValue 52, 53
unordered 352
upper 41, 77
upperBound 349
upperValue 41
Usage (from Dependencies) 111
622 UML Superstructure 2.0 Draft Adopted Specification

UseCase (from UseCases) 519
utilizedElement 195

V
value 48, 49, 51, 60, 239, 241, 261, 262, 363
ValuePin 363
ValueSpecification (as specialized) 568
ValueSpecification (from Kernel) 52
Variable 363
variable 260, 362
Variable (from StructuredActivities, as specialized) 178
VariableAction 260
Vertex (from BehaviorStatemachines) 505
viewpoint 536
visibility 31, 34, 37, 38
VisibilityKind 39
VisibilityKind (from Kernel) 39

W
weight 293
when 400
WriteLinkAction 261
WriteStructuralFeatureAction 260
WriteVariableAction 262
UML Superstructure 2.0 Draft Adopted Specification 623

624 UML Superstructure 2.0 Draft Adopted Specification

	Unified Modeling Language: Superstructure
	Table of Contents
	1 Scope
	2 Conformance
	Table 1 Summary of Compliance Points

	3 Normative references
	4 Terms and definitions
	5 Symbols
	6 Additional information
	6.1 Changes to Adopted OMG Specifications
	6.2 Architectural Alignment and MDA Support
	6.3 How to Read this Specification
	6.4 Acknowledgements

	Part I - Structure
	7 Classes
	7.1 Overview
	Package Structure
	Reusing packages from UML 2.0 Infrastructure

	7.2 Kernel – the Root Diagram
	7.2.1 Comment (from Kernel)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Presentation Options
	Examples

	7.2.2 DirectedRelationship (from Kernel)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation

	7.2.3 Element (from Kernel)
	Description
	Attributes
	Associations
	Constraints
	Additional Operations
	Semantics
	Notation

	7.2.4 Relationship (from Kernel)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation

	7.3 Kernel – the Namespaces Diagram
	7.3.1 ElementImport (from Kernel)
	Description
	Attributes
	Associations
	Constraints
	Additional Operations
	Semantics
	Notation
	Presentation options
	Examples

	7.3.2 NamedElement (from Kernel, Dependencies)
	Description
	Associations
	Constraints
	Additional Operations
	Semantics
	Notation

	7.3.3 Namespace (from Kernel)
	Description
	Attributes
	Associations
	Constraints
	Additional Operations
	Semantics

	7.3.4 PackageableElement (from Kernel)
	7.3.5 PackageImport (from Kernel)
	7.3.6 VisibilityKind (from Kernel)

	7.4 Kernel – the Multiplicities Diagram
	7.4.1 MultiplicityElement (from Kernel)
	7.4.2 Type (from Kernel)
	7.4.3 TypedElement (from Kernel)

	7.5 Kernel – the Expressions Diagram
	7.5.1 Expression (from Kernel)
	7.5.2 OpaqueExpression (from Kernel)
	7.5.3 InstanceValue (from Kernel)
	7.5.4 LiteralBoolean (from Kernel)
	7.5.5 LiteralInteger (from Kernel)
	7.5.6 LiteralNull (from Kernel)
	7.5.7 LiteralSpecification (from Kernel)
	7.5.8 LiteralString (from Kernel)
	7.5.9 LiteralUnlimitedNatural (from Kernel)
	7.5.10 ValueSpecification (from Kernel)

	7.6 Kernel – the Constraints Diagram
	7.6.1 Constraint (from Kernel)

	7.7 Kernel – the Instances Diagram
	7.7.1 InstanceSpecification (from Kernel)
	Presentation Options

	7.7.2 Slot (from Kernel)

	7.8 Kernel – the Classifiers Diagram
	7.8.1 Classifier (from Kernel, Dependencies, PowerTypes)
	7.8.2 Generalization (from Kernel, PowerTypes)
	Examples

	7.8.3 RedefinableElement (from Kernel)
	Notation

	7.9 Kernel – the Features Diagram
	7.9.1 BehavioralFeature (from Kernel)
	7.9.2 Feature (from Kernel)
	7.9.3 Parameter (from Kernel)
	7.9.4 ParameterDirectionKind (from Kernel)
	7.9.5 StructuralFeature (from Kernel)

	7.10 Kernel – the Operations Diagram
	7.10.1 Operation (from Kernel)

	7.11 Kernel – the Classes Diagram
	7.11.1 AggregationKind (from Kernel)
	7.11.2 Association (from Kernel)
	7.11.3 Class (from Kernel)
	7.11.4 Property (from Kernel, AssociationClasses)
	Table 2 - Collection types for properties

	7.12 Kernel – the DataTypes Diagram
	7.12.1 DataType (from Kernel)
	Examples

	7.12.2 Enumeration (from Kernel)
	Examples

	7.12.3 EnumerationLiteral (from Kernel)
	7.12.4 PrimitiveType (from Kernel)

	7.13 Kernel – the Packages Diagram
	7.13.1 Package (from Kernel)
	7.13.2 PackageMerge (from Kernel)

	7.14 Dependencies
	7.14.1 Abstraction (from Dependencies)
	7.14.2 Classifier (from Dependencies)
	7.14.3 Dependency (from Dependencies)
	7.14.4 NamedElement (from Dependencies)
	7.14.5 Permission (from Dependencies)
	7.14.6 Realization (from Dependencies)
	7.14.7 Substitution (from Dependencies)
	7.14.8 Usage (from Dependencies)

	7.15 Interfaces
	7.15.1 BehavioredClassifier (from Interfaces)
	7.15.2 Implementation (from Interfaces)
	7.15.3 Interface (from Interfaces)
	Examples

	7.16 AssociationClasses
	7.16.1 AssociationClass (from AssociationClasses)

	7.17 PowerTypes
	7.17.1 Classifier (from PowerTypes)
	7.17.2 Generalization (from PowerTypes)
	7.17.3 GeneralizationSet (from PowerTypes)

	7.18 Diagrams
	Table 3 Graphic nodes included in structure diagrams
	Table 4 - Graphic nodes included in structure diagrams

	8 Components
	8.1 Overview
	8.2 Abstract syntax
	8.3 Class Descriptions
	8.3.1 Component
	8.3.2 Connector (from InternalStructures, as specialized)
	8.3.3 Realization (from Dependencies, as specialized)

	8.4 Diagrams
	Table 4 - Graphic nodes included in structure diagrams
	Table 5 Graphic nodes included in structure diagrams

	9 Composite Structures
	9.1 Overview
	9.2 Abstract syntax
	Figure 94 - Dependencies between packages described in this chapter

	9.3 Class Descriptions
	9.3.1 Class (from StructuredClasses, as specialized)
	9.3.2 Classifier (from Collaborations, as specialized)
	9.3.3 Collaboration (from Collaborations)
	9.3.4 CollaborationOccurrence (from Collaborations)
	9.3.5 ConnectableElement (from InternalStructures)
	9.3.6 Connector (from InternalStructures)
	9.3.7 ConnectorEnd (from InternalStructures, Ports)
	9.3.8 EncapsulatedClassifier (from Ports)
	9.3.9 InvocationAction (from Actions, as specialized)
	9.3.10 Parameter (Collaboration, as specialized)
	9.3.11 Port (from Ports)
	9.3.12 Property (from InternalStructures, as specialized)
	9.3.13 StructuredClassifier (from InternalStructures)
	9.3.14 Trigger (from InvocationActions, as specialized)
	9.3.15 Variable (from StructuredActivities, as specialized)

	9.4 Diagrams
	Table 6 - Graphic nodes included in composite structure diagrams
	Table 7 - Graphic nodes included in composite structure diagrams

	10 Deployments
	10.1 Overview
	10.2 Abstract syntax
	10.3 Class Descriptions
	10.3.1 Artifact

	Artifacts
	Node
	Artifacts
	Artifacts
	10.3.2 CommunicationPath
	10.3.3 DeployedArtifact
	10.3.4 Deployment

	Nodes
	ComponentDeployments
	Nodes
	ComponentDeployments
	10.3.5 DeploymentTarget

	Nodes
	10.3.6 DeploymentSpecification

	ComponentDeployments
	ComponentDeployments
	10.3.7 Device
	10.3.8 ExecutionEnvironment
	10.3.9 InstanceSpecification (from Kernel, as specialized)
	10.3.10 Manifestation
	10.3.11 Node

	Nodes
	10.3.12 Property (from InternalStructures, as specialized)
	10.4 Diagrams
	Table 8 - Graphic nodes included in deployment diagrams

	10.5 Graphical paths
	Table 9 - Graphic nodes included in deployment diagrams

	Part II - Behavior
	Figure 140 - UML packages that support behavioral modeling

	11 Actions
	11.1 Overview
	11.2 Abstract Syntax
	11.3 Class Descriptions
	11.3.1 AcceptCallAction
	11.3.2 AcceptEventAction
	11.3.3 AddStructuralFeatureValueAction
	11.3.4 AddVariableValueAction
	11.3.5 ApplyFunctionAction
	11.3.6 BroadcastSignalAction
	11.3.7 CallAction
	11.3.8 CallBehaviorAction
	11.3.9 CallOperationAction
	Presentation Option

	11.3.10 ClearAssociationAction
	11.3.11 ClearStructuralFeatureAction
	11.3.12 ClearVariableAction
	11.3.13 CreateLinkAction
	11.3.14 CreateLinkObjectAction
	11.3.15 CreateObjectAction
	11.3.16 DestroyLinkAction
	11.3.17 DestroyObjectAction
	11.3.18 InvocationAction
	11.3.19 LinkAction
	11.3.20 LinkEndCreationData
	11.3.21 LinkEndData
	11.3.22 MultiplicityElement (as specialized)
	11.3.23 PrimitiveFunction
	11.3.24 QualifierValue
	11.3.25 RaiseExceptionAction
	11.3.26 ReadExtentAction
	11.3.27 ReadIsClassifiedObjectAction
	11.3.28 ReadLinkAction
	11.3.29 ReadLinkObjectEndAction
	11.3.30 ReadLinkObjectEndQualifierAction
	11.3.31 ReadSelfAction
	11.3.32 ReadStructuralFeatureAction
	11.3.33 ReadVariableAction
	11.3.34 ReclassifyObjectAction
	11.3.35 RemoveStructuralFeatureValueAction
	11.3.36 RemoveVariableValueAction
	11.3.37 ReplyAction
	11.3.38 SendObjectAction
	11.3.39 SendSignalAction
	11.3.40 StartOwnedBehaviorAction
	11.3.41 StructuralFeatureAction
	11.3.42 TestIdentityAction
	11.3.43 VariableAction
	11.3.44 WriteStructuralFeatureAction
	11.3.45 WriteLinkAction
	11.3.46 WriteVariableAction

	11.4 Diagrams
	Table 10 - Graphic nodes included in activity diagrams

	12 Activities
	12.1 Overview
	12.2 Abstract Syntax
	12.3 Class Descriptions
	12.3.1 Action
	12.3.2 Activity
	12.3.3 ActivityEdge
	12.3.4 ActivityFinalNode
	12.3.5 ActivityGroup
	12.3.6 ActivityNode
	12.3.7 ActivityParameterNode
	12.3.8 ActivityPartition
	12.3.9 CentralBufferNode
	12.3.10 Clause
	12.3.11 ConditionalNode
	12.3.12 ControlFlow
	12.3.13 ControlNode
	12.3.14 DataStoreNode
	12.3.15 DecisionNode
	12.3.16 ExceptionHandler
	12.3.17 ExecutableNode
	12.3.18 ExpansionKind
	12.3.19 ExpansionNode
	12.3.20 ExpansionRegion
	Attributes
	Associations
	Constraints
	Semantics
	Notation

	12.3.21 FinalNode
	12.3.22 FlowFinalNode
	12.3.23 ForkNode
	12.3.24 InitialNode
	12.3.25 InputPin
	12.3.26 InterruptibleActivityRegion
	12.3.27 JoinNode
	1. If all the tokens offered on the incoming edges are control tokens, then one control token is ...
	2. If some of the tokens offered on the incoming edges are control tokens and other are data toke...

	12.3.28 LoopNode
	12.3.29 MergeNode
	12.3.30 ObjectFlow
	12.3.31 ObjectFlowEffectKind
	12.3.32 ObjectNode
	12.3.33 ObjectNodeOrderingKind
	12.3.34 OutputPin
	12.3.35 Parameter (as specialized)
	12.3.36 ParameterSet
	12.3.37 Pin
	12.3.38 StructuredActivityNode
	12.3.39 ValuePin
	12.3.40 Variable

	12.4 Diagrams
	Table 11 - Graphic nodes included in activity diagrams
	Table 12 - Graphic nodes included in activity diagrams
	Table 13 - Graphic nodes included in activity diagrams

	13 Common Behaviors
	13.1 Overview
	BasicBehaviors
	Communications
	SimpleTime

	13.2 Abstract syntax
	13.3 Class Descriptions
	13.3.1 Activity (from BasicBehaviors)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Changes from UML 1.x

	13.3.2 AnyTrigger (from Communications)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Changes from UML 1.x

	13.3.3 Behavior (from BasicBehaviors)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Changes from UML 1.x

	13.3.4 BehavioralFeature (from BasicBehaviors, Communications, specialized)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Changes from UML 1.x

	13.3.5 BehavioredClassifier (from BasicBehaviors)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Changes from UML 1.x

	13.3.6 CallConcurrencyKind (from Communications)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Changes from UML 1.x

	13.3.7 CallTrigger (from Communications)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Changes from UML 1.x

	13.3.8 ChangeTrigger (from Communications)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Changes from UML 1.x

	13.3.9 Class (from Communications, specialized)
	Description
	Attributes
	Associations
	Semantics
	Notation

	13.3.10 Duration (from Time)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Changes from UML 1.x

	13.3.11 DurationConstraint (from Time)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Examples
	Changes from UML 1.x

	13.3.12 DurationInterval (from Time)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation

	13.3.13 DurationObservationAction (from Time)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Examples
	Changes from UML 1.x

	13.3.14 Interface (from Communications, specialized)
	Description
	Associations

	13.3.15 Interval (from Time)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Changes from UML 1.x

	13.3.16 IntervalConstraint (from Time)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Changes from UML 1.x

	13.3.17 MessageTrigger (from Communications)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Changes from UML 1.x

	13.3.18 OpaqueExpression (from BasicBehaviors, specialized)
	Description
	Attributes
	Associations
	Constraints
	Semantics

	13.3.19 Operation (from Communications, as specialized)
	Description
	Semantics

	13.3.20 Reception (from Communications)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Changes from UML 1.x

	13.3.21 Signal (from Communications)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Changes from UML 1.x

	13.3.22 SignalTrigger (from Communications)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Changes from UML 1.x

	13.3.23 TimeConstraint (from Time)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Examples
	Changes from UML 1.x

	13.3.24 TimeExpression (from Time)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Changes from UML 1.x

	13.3.25 TimeInterval (from Time)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Changes from UML 1.x

	13.3.26 TimeObservationAction (from Time)
	Description
	Attributes
	Associations
	Constraints
	Notation
	Changes from UML 1.x

	13.3.27 TimeTrigger (from Communications)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Changes from UML 1.x

	13.3.28 Trigger (from Communications)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Changes from UML 1.x

	14 Interactions
	14.1 Overview
	14.2 Abstract syntax
	Package structure

	14.3 Class Descriptions
	14.3.1 CombinedFragment (from Fragments)
	Attributes
	Associations
	Constraints
	Semantics
	1. The ordering of eventoccurrences within each of the operands are maintained in the result
	2. Eventoccurrences on different lifelines from different operands may come in any order.
	3. Eventoccurrences on the same lifeline from different operands are ordered such that an eventoc...

	Notation
	Presentation Option for “coregion area”
	Examples
	Rationale
	Changes from UML 1.x

	14.3.2 Continuation (from Fragments)
	Attributes
	Constraints
	Semantics
	Notation

	14.3.3 EventOccurrence (from BasicInteractions)
	Associations
	Semantics
	Notation
	Examples

	14.3.4 ExecutionOccurrence (from BasicInteractions)
	Associations
	Constraints
	Semantics
	Notation

	14.3.5 Gate (from Fragments)
	Constraints
	Semantics
	Notation

	14.3.6 GeneralOrdering (from BasicInteractions)
	Associations
	Semantics
	Notation

	14.3.7 Interaction (from BasicInteraction, Fragments)
	Associations
	Semantics
	Notation
	Examples
	Rationale
	Changes from UML 1.x

	14.3.8 InteractionConstraint (from Fragments)
	Associations
	Constraints
	Semantics
	Notation

	14.3.9 InteractionFragment (from Fragments)
	Associations
	Semantics
	Notation
	Rationale
	Changes from UML 1.x

	14.3.10 InteractionOccurrence (from Fragments)
	Description
	Associations
	Constraints
	Semantics
	Notation
	Examples
	Rationale
	Changes from UML 1.x

	14.3.11 InteractionOperand (from Fragments)
	Associations
	Constraints
	Semantics
	Notation

	14.3.12 InteractionOperator (from Fragments)
	Literals
	Semantics
	Notation

	14.3.13 Lifeline (from BasicInteractions, Fragments)
	Associations
	Constraints
	Semantics
	Notation
	Rationale
	Changes from UML 1.x

	14.3.14 Message (from BasicInteractions)
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Rationale
	Changes from UML 1.x

	14.3.15 MessageEnd (from BasicInteractions)
	Associations
	Semantics

	14.3.16 PartDecomposition (from Fragments)
	Constraints
	Semantics
	Notation
	Style Guidelines
	Examples
	Rationale
	Changes from UML 1.x

	14.3.17 StateInvariant (from BasicInteractions)
	Associations
	Semantics
	Notation
	Presentation Options

	14.3.18 Stop (from BasicInteractions)
	Associations
	Constraints
	Semantics
	Notation

	14.4 Diagrams
	Sequence Diagrams
	Table 14 - Graphic nodes included in sequence diagrams
	Table 15 - Graphic paths included in sequence diagrams

	Internal Structure and corresponding Collaboration Occurrence
	Table 16 - Graphic nodes included in communication diagrams
	Table 17 - Graphic paths included in communication diagrams

	Interaction Overview Diagrams
	1. In place of ObjectNodes of Activity Diagrams, Interaction Overview Diagrams can only have eith...
	2. Alternative Combined Fragments are represented by a Decision Node and a corresponding Merge Node.
	3. Parallel Combined Fragments are represented by a Fork Node and a corresponding Join Node.
	4. Loop Combined Fragments are represented by simple cycles.
	5. Branching and joining of branches must in Interaction Overview Diagrams be properly nested. Th...
	6. Interaction Overview Diagrams are framed by the same kind of frame that encloses other forms o...
	Table 18 - Graphic nodes included in Interaction Overview Diagrams in addition to those borrowed ...
	Table 19 - Graphic nodes and paths included in sequence diagrams

	15 State Machines
	15.1 Overview
	Behavioral state machines
	Protocol State machines

	15.2 Abstract Syntax
	15.3 Class Descriptions
	15.3.1 ConnectionPointReference (from BehaviorStatemachines)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation

	15.3.2 Interface (from ProtocolStatemachines, as specialized)
	Description
	Attributes
	Associations
	Semantics
	Changes from UML 1.x

	15.3.3 FinalState (from BehaviorStatemachines)
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Example

	15.3.4 Port ((from ProtocolStatemachines, as specialized)
	Attributes
	Associations
	Semantics

	15.3.5 ProtocolConformance (from ProtocolStatemachines)
	Description
	Attributes
	Associations
	Constraints
	Semantics

	15.3.6 ProtocolStateMachine (from ProtocolStatemachines)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	1. Declarative protocol state machines that specify the legal transitions for each operation. The...
	2. Executable protocol state machines, that specify all events that an object may receive and han...

	Notation

	15.3.7 ProtocolTransition (from ProtocolStateMachines)
	Description
	Attributes
	Associations
	Constraints
	Additional Operations
	Semantics
	1. the operation "m1" can be called on an instance when it is in the state S1 under the condition...
	2. when m1 is called in the state S1 under the condition C1, then the final state S2 must be reac...

	Notation

	15.3.8 PseudoState (from BehaviorStatemachines)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Changes from previous UML

	15.3.9 PseudoStateKind (from BehaviorStatemachines)
	Description
	Attributes
	Associations
	Changes from previous UML

	15.3.10 Region (from BehaviorStatemachines)
	Attributes
	Associations
	Constraints
	Additional constraints
	Semantics
	Notation

	15.3.11 State (from BehaviorStatemachines)
	Description
	Attributes
	Associations
	Constraints
	Additional constraints
	Semantics
	Notation
	Rationale

	15.3.12 StateMachine (from BehaviorStatemachines)
	Description
	Attributes
	Associations
	Constraints
	Additional Operations
	Notation
	Presentation option
	Examples
	Rationale
	Changes from previous UML
	Rationale
	Changes from previous UML

	15.3.13 TimeTrigger (from BehaviorStatemachines, as specialized)
	Description
	Constraints
	Semantics
	Notation

	15.3.14 Transition (from BehaviorStatemachines)
	Attributes
	Associations
	Constraints
	Additional constraints
	Semantics
	Example
	Notation
	Example
	Changes from previous UML

	15.3.15 Vertex (from BehaviorStatemachines)
	Attributes
	Associations

	15.3.16 TransitionKind
	Description
	Attributes
	Constraints
	Semantics
	Notation
	Changes from previous UML

	15.4 Diagrams
	Graphic Nodes
	Table 20 - Graphic nodes included in state machine diagrams

	Graphic Paths
	Table 21 - Graphic paths included in state machine diagrams

	Examples

	16 Use Cases
	16.1 Overview
	16.2 Abstract syntax
	16.3 Class Descriptions
	16.3.1 Actor (from UseCases)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Presentation Options
	Style Guidelines
	Rationale
	Changes from previous UML

	16.3.2 Classifier (from UseCases, as specialized)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Rationale
	Changes from previous UML

	16.3.3 Extend (from UseCases)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Rationale
	Changes from previous UML

	16.3.4 ExtensionPoint (from UseCases)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Semantic Variation Points
	Notation
	Rationale
	Changes from previous UML

	16.3.5 Include (from UseCases)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Rationale
	Changes from previous UML

	16.3.6 UseCase (from UseCases)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Presentation Options
	Rationale
	Changes from previous UML

	16.4 Diagrams
	Description
	Graphic Nodes
	Table 22 - Graphic nodes included in sequence diagrams

	Examples
	Changes from previous UML

	Part III - Supplement
	17 Auxiliary Constructs
	17.1 Overview
	Package structure

	17.2 InformationFlows
	17.2.1 InformationFlow (from InformationFlows)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Changes from UML1.x

	17.2.2 InformationItem (from InformationFlows)
	Attributes
	Associations
	Constraints
	Semantics
	Notation

	17.3 Models
	17.3.1 Model (from Models)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Presentation Options
	Examples

	17.4 PrimitiveTypes
	17.4.1 Boolean (from PrimitiveTypes)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Examples

	17.4.2 Integer (from PrimitiveTypes)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Examples

	17.4.3 String (from PrimitiveTypes)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Examples

	17.4.4 UnlimitedNatural (from PrimitiveTypes)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Examples

	17.5 Templates
	17.5.1 ParameterableElement
	Description
	Attributes
	Associations
	Constraints
	Additional Operations
	Semantics
	Semantic Variation Points
	Notation
	Examples

	17.5.2 TemplateableElement
	Description
	Attributes
	Associations
	Constraints
	Additional Operations
	Semantics
	Notation
	Presentation Options
	Examples

	17.5.3 TemplateBinding
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Semantic Variation Points
	Notation
	Examples

	17.5.4 TemplateParameter
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Examples

	17.5.5 TemplateParameterSubstitution
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Examples

	17.5.6 TemplateSignature
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Examples

	17.5.7 Classifier (as specialized)
	Description
	Associations
	Constraints
	Additional Operations
	Semantics
	Semantic Variation Points
	Notation
	Presentation Options
	Examples

	17.5.8 ClassifierTemplateParameter
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Examples

	17.5.9 RedefinableTemplateSignature
	Description
	Attributes
	Associations
	Constraints
	Additional Operations
	Semantics
	Notation

	17.5.10 Package (as specialized)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Examples

	17.5.11 NamedElement (as specialized)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Examples

	17.5.12 Operation (as specialized)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation

	17.5.13 Operation (as specialized)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation

	17.5.14 OperationTemplateParameter
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation

	17.5.15 ConnectableElement (as specialized)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation

	17.5.16 ConnectableElementTemplateParameter
	Description
	Associations
	Constraints
	Semantics
	Notation

	17.5.17 Property (as specialized)
	Description
	Attributes
	Associations
	Constraints
	Additional Operations
	Semantics
	Notation

	17.5.18 ValueSpecification (as specialized)
	Description
	Attributes
	Associations
	Constraints
	Additional Operations
	Semantics
	Notation

	18 Profiles
	18.1 Overview
	Extensibility
	Profiles and Metamodels

	18.2 Abstract syntax
	Package structure

	18.3 Class descriptions
	18.3.1 Extension (from Profiles)
	Description
	Attributes
	Associations
	Constraints
	Additional Operations
	Semantics
	Notation
	Presentation Option
	Style Guidelines
	Examples
	Changes from UML 1.4

	18.3.2 ExtensionEnd (from Profiles)
	Description
	Attributes
	Associations
	Constraints
	Additional Operations
	Semantics
	Notation
	Examples
	Changes from UML 1.4

	18.3.3 Class (from Constructs, Profiles)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Presentation Option
	Examples
	Changes from UML 1.4

	18.3.4 Package (from Constructs, Profiles)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Changes from UML 1.4

	18.3.5 Profile (from Profiles)
	Description
	Attributes
	Associations
	Constraints
	Additional Operations
	Semantics
	Notation
	Examples

	18.3.6 ProfileApplication (from Profiles)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Examples

	18.3.7 Stereotype (from Profiles)
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Presentation Options
	Style Guidelines
	Examples

	18.4 Diagrams
	Table 23 - Graphic nodes included in structure diagrams
	Table 24 - Graphic paths included in structure diagrams

	Part IV - Appendices
	Appendix A. Diagrams
	Appendix B. Standard Stereotypes
	B.1 Basic
	Table 25

	B.2 Intermediate
	Table 26

	B.3 Complete
	Table 27
	Changes from previous UML
	Table 28 - Retired standard elements

	Appendix C. Component Profile Examples
	C.1 J2EE/EJB Component Profile Example
	Table 29 - Example Profile for Enterprise Java Beans

	C.2 COM Component Profile Example
	Table 30 - Example Profile for COM Components

	C.3 .NET Component Profile Example
	Table 31 - Example Profile for .NET Components

	C.4 CCM Component Profile Example
	Table 32 - Example Profile for CCM Components

	Appendix D. Tabular Notations
	D.1 Tabular Notation for Sequence Diagrams
	1. Lifeline Class: Designates Class name of Lifeline. If there is no Class name on the Lifeline s...
	2. Lifeline Instance: Designates Instance name of Lifeline. If there is no Instance name on the L...
	3. Constraint: Designates some kind of constraint. For example, indication of oblique line is den...
	4. Message Sending Class: Designates the message sending class name for each incoming arrow.
	5. Message Sending instance: Designates the message sending instance name for each incoming arrow...
	6. Diagram ID: Identifies the document that describes the corresponding sequence/communication di...
	7. Generated instance name: An identifier name that is given to each instance symbol in the seque...
	8. Sequence Number: The corresponding message number on the sequence /communication diagram.
	9. Weak Order: Designates partial (relative) orders of events, as ordered on individual lifelines...
	10. Message name: The corresponding message name on the sequence /communication diagram.
	11. Parameter: A set of parameter variable names and parameter types of the corresponding message...
	12. Return value: The return value type of the corresponding message on the sequence/communicatio...
	13. Message Receiving Class: Designates the message receiving class name for each outgoing arrow.
	14. Message Receiving Instance: Designates the message receiving instance name for each outgoing ...
	15. Other End: Designates event order of another end on the each message.
	Examples
	Table 33 - Interaction Table describing Figure 465
	Table 34 - Interaction Table for Figure 466

	D.2 Tabular Notation for Other Behavioral Diagrams

	Appendix E. Classifiers Taxonomy
	Appendix F. XMI Serialization and Schema
	Index

