UML 2.0 Superstructure Specification

This OMG document replaces the submission document (ad/03-04-01) and the Draft Adopted
specification (ptc/03-07-06). It isan OMG Final Adopted Specification and is currently in the
finalization phase. Comments on the content of this document are welcomed, and should be
directed to issues@omg.org by September 8, 2003.

You may view the pending issues for this specification from the OMG revision issues web page
http: //mww.omg.org/issues/; however, at the time of this writing there were no pending issues.

The FTF Recommendation and Report for this specification will be published on April 30, 2004. I
you are reading this after that date, please download the available specification from the OMG
Specifications Catal og.

OMG Adopted Specification
ptc/03-08-02

Date: August 2003

Unified Modeling Language: Superstructure

version 2.0

Final Adopted Specification
ptc/03-08-02

Copyright © 2001-2003 Adaptive Ltd.

Copyright © 2001-2003 Alcatel

Copyright © 2001-2003 Borland Software Corporation
Copyright © 2001-2003 Computer Associates I nternational, Inc.
Copyright © 2001-2003 Telefonaktiebolaget LM Ericsson
Copyright © 2001-2003 Fujitsu

Copyright © 2001-2003 Hewlett-Packard Company

Copyright © 2001-2003 I-Logix Inc.

Copyright © 2001-2003 International Business Machines Corporation
Copyright © 2001-2003 IONA Technologies

Copyright © 2001-2003 Kabira Technologies, Inc.

Copyright © 2001-2003 MEGA International

Copyright © 2001-2003 Motorola, Inc.

Copyright © 1997-2001 Object Management Group.

Copyright © 2001-2003 Oracle Corporation

Copyright © 2001-2003 SOFTEAM

Copyright © 2001-2003 Telelogic AB

Copyright © 2001-2003 Unisys

Copyright © 2001-2003 X-Change Technologies Group, LLC

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change without
notice.

LICENSES

The companies|listed above have granted to the Object Management Group, Inc. (OMG) anonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of
the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have
infringed the copyright in the included material of any such copyright holder by reason of having used the
specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use
this specification to create and distribute software and special purpose specifications that are based upon this
specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:
(2) both the copyright notice identified above and this permission notice appear on any copies of this specification;
(2) the use of the specificationsis for informational purposes and will not be copied or posted on any network
computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this specification. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OM G shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiriesinto thelegal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective

users are responsible for protecting themselves against liability for infringement of patents.
GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved.
No part of thiswork covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THISPUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED "ASIS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,
IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR
PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED
ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS,
REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH
THE FURNISHING, PERFORMANCE, OR USE OF THISMATERIAL, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software devel oped using this specification is borne by you. This
disclaimer of warranty congtitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)
(i) of The Rightsin Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph
(©)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as
specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R.
12.212 of the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners
are asindicated above and may be contacted through the Object Management Group, 250 First Avenue, Needham,
MA 02494, U.SA.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®,
XMI® and IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management
Group™, CORBA logos™, OMG Interface Definition Language (IDL)™, The Architecture of Choice for a
Changing World™, CORBAservices™, CORBAfacilities™, CORBAmed™, CORBAnNet™, Integrate 2002™,
Middleware That's Everywhere™, UML ™, Unified Modeling Language™, The UML Cube logo™, MOF™,
CWM™ The CWM Logo™, Model Driven Architecture™, Model Driven Architecture Logos™, MDA™, OMG
Model Driven Architecture™, OMG MDA ™ and the XMI Logo™ are trademarks of the Object Management Group.
All other products or company names mentioned are used for identification purposes only, and may be trademarks of
their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at al times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if
and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using
this specification may claim compliance or conformance with the specification only if the software satisfactorily
completes the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

Table of Contents

o oo = P 1
P2 O o101] 11 F= 1 [od = ST PPTTTRRPR 1
I N o4 g F= LAY =) (=TT oL PRSPPI 3
N =11 4 E3= g o o 1= T a1 (T L PR RRSRT 4
LS Y/ 2] 0T | SRS 18
R Yo (o T11Te] o T= 1N gl (o] 1 4 F= 1 4o] o IR PP 18
6.1 Changes to Adopted OMG SPECIfICAtIONSuuuuiiiiiiiieee e e e e arreeees 18

6.2 Architectural Alignment and MDA SUPPOITuuuiiiiie e re e e e e s e s rrrr e e e e e e e e e s annenrrrneareeaees 18

6.3 HOw t0 Read thisS SPECIfICALIONuiiiiie i e e r e e e e e e s e s rneaeeeeeeas 18

LS o] (Lo 1T/ [=To [o 1= 0 =T o1 SRR 19

o BT (0 (o1 (1] £ OO PP PUPPPPTPPPPPPPRPIN 23
A 1 = 1= TSP 25
7.1 OVEBIVIBW ...eei ettt ettt ettt ettt e ekttt e+ ottt e e 42kttt e e e 42kttt et e 4a bbbt e e e e 4a bttt e e e aa b ettt e e s e bbb e e e e annebee e e s annneee s 25

7.2 Kernel — the ROOt DIAQIAIMuuuiiiiiiiieeeee i iiie sttt e e s te e e s s s s st eeeeeeeeeess s nnenebaeeeeeaeeesssaanssentnrnnaeeeeees 27

7.2.1 Comment (from KEINEI) ..oevvee i r e e e e e e e ee e e 28

7.2.2 DirectedRelationship (from Kernel)ccviiiiiiiiii e 28

7.2.3 Element (from KEINEI)eiiieieiiiiiec e e e e e s e e e e e e e e e e e nnenes 29

7.2.4 Relationship (from KErNEI)uueeiiiiiiii i e e e e 30

7.3 Kernel — the NameSPaCeS DIAQIamMccoiicuriiiiiiiieeie e e is s sttt e e e e e e s e e s st eeeraaeaeesassnntnsreneeeeeraaees 31

7.3.1 Elementimport (from KEIrNEI)oeviiie oot e e e e e e e e 31

7.3.2 NamedElement (from Kernel, DependencCi€s)cccvvecvirieiiiiieeeieeiiiiirieeeeeeee e e s s 33

7.3.3 Namespace (from KEIMNEI)eueiiiiiieiiii e e e e e e e e e e e e ananns 35

7.3.4 PackageableElement (from Kernel)oocceeiiiiiiiiei e 37

7.3.5 Packagelmport (from KErNEI)ooeieiiiiiiiiie et e e e 38

7.3.6 VisibilityKind (from KEINEI) ...eeeiieiieei e e e e e e s ennnes 39

7.4 Kernel — the MUltipliCItieS DIAQIaMcciieiiis it ee e e e s e e e e e s e s ree e e e e e e e e s s s nnnenbrreeaeeaaeeas 40

7.4.1 MultiplicityElement (from Kernel)coooiiiiiiiii e e e 40

7.4.2 Type (from KEINEI) .. e e e e e s e e e e e eee e s e e annenns 43

7.4.3 TypedElement (from KErnel)ooooiiiiiie e e e e nnennes 44

7.5 Kernel — the EXPresSioNs DIAQIAMc.coiiieiiiiriieieeeteeess e sesite e eee e e e e e e ssssreeaeeeeeeaeesassennsnnssnnneseeeeees 45

7.5.1 EXPression (from KEINEI) ... e e e e e e e e e snenees 45

7.5.2 OpaqueExpression (from KErNEl) ... 46

7.5.3 InstanceValue (from KErNel)ooooioiiiiiiieeee e e e e e e a7

7.5.4 LiteralBoolean (from KEINEI)oouviiiiiiiiiiiiii et e e e e e nnnenes 48

7.5.5 Literallnteger (from KEINEI)oeeviiiiiiiiiiie e e e e e e 49

7.5.6 LiteralNUll (from KEINEI)eeiieiieieiiie et e e e e e e s e rer e e e e e e e e e e e 49

7.5.7 LiteralSpecification (from Kernel)coooiiiiiiiiiie e e e 50

7.5.8 LiteralString (from KEIMNEI)evveiiiieee it r e e e e e e e e 51

7.5.9 LiteralUnlimitedNatural (from Kernel)uvueviiiieoii e e e 51

7.5.10 ValueSpecification (from KernNel)ccoiiiiiiiiiiiiee e 52

7.6 Kernel — the CoNSraiNtS DIAgIaM........cceeiiiieiieiiieie e te e e es e se st er e e e e e e e e s s s eereeaeeeeseaansnesrnrnnaeeeaees 53

7.6.1 Constraint (from KEINEI)cooiiiiie e e 54

7.7 Kernel — the INStanCeS DIAGIAMccieiiiiiiciiiiiee it e e e e e s et e e e e e e s e e s st e eeeaeeeesassnrnnreneneaeeeeanas 57

7.7.1 InstanceSpecification (from Kernel) ... 57

7.7.2 Y [1A e 1 L S C= 1 1 PR 60

7.8 Kernel — the ClasSifiers DIAQIAMcuiiiieciiie e e e e s s s s st e e e e e e e s s s s st ereeeaeaeesesasnssnrrrneaeeeaeeas 61

7.8.1 Classifier (from Kernel, Dependencies, POWEITYPES) ...coiceveeiiiviiiiniiiiieeeeeeissseeeninneee s 61

UML Superstructure 2.0 Draft Adopted Specification i

7.8.2 Generalization (from Kernel, POWEITYPES) ..occeeoiiiiiiiiiiieiieeeeeese s e e e e e e e e 66

7.8.3 RedefinableElement (from KErNel)covovieoiiii i 70

7.9 Kernel —the FEAtUreS DIAQIaMuuuueiiiiie e eisieiiiiee e e e e e e e e s s s s et ereeeeeesessnnanbe e eeeeeeaeesaas s snnnnrnrenes 71
7.9.1 BehavioralFeature (from Kernel)uveiiiiieiiiiiieee e 72

7.9.2 Feature (from KEIMNEI) ...ouvii oot e e e e e s reeaeee s 73

7.9.3 Parameter (from KEINEI)ocoiiiiiiiee et e e e e e e e s 73

7.9.4 ParameterDirectionKind (from Kernel)cooooiiiiiiiiiie e 74

7.9.5 StructuralFeature (from KerNel)oooooiiiiiiiiieieee e 75

7.10 Kernel — the Operations DIAQIAMuueiieeieeiiiiiiieiieereeeee et e e ssetanreeeeeereeaeessassnsraeaerreeaeeesassnnsnnnrnsenes 76
7.10.1 Operation (from KEINEI)ceeeeeiiii et s e e e e e e e e e nnreeee e 76

7.11 Kernel —the ClasSes DIAgIamuuiiiieeiiiiiiiiiieeeeeee e e e e s ss s st e eeeeae e e s e s s anteaeeereeeaeesaasannnnnreneeees 80
7.11.1 AggregationKind (from KerNel)c..oeuiiiiiiiiiiiie e 80

7.11.2 Association (from Kernel) ... 81

7.11.3 Class (from KEINEI)eeeiiiiiiiieiee et e e e e e e ee e 86

7.11.4 Property (from Kernel, ASSOCIatioNCIaSSES)coccuuiiiiiiiiaiieei it 89

7.12 Kernel — the DataTYPES DIAgIaM e ittt e sttt e e e e e e e e e b b aebe e e e e aaaeeaeeaannnnbeeeees 94
7.12.1 DataType (from KErnel) ...t 95

7.12.2 Enumeration (from Kernel) ...t e 96

7.12.3 EnumerationLiteral (from Kernel) ... 97

7.12.4 PrimitiveType (from Kernel) ...t 98

7.13 Kernel — the Packages DIAgIaIMc.iiii oottt e e e e e e e et ee e e e e e aaa e e e s s anbannreeeees 99
7.13.1 Package (from KerNelI) ...t 99

7.13.2 PackageMerge (from Kernel) ... 101

A =T o 1=t o 1= o ol [T PSPPSRSO 105
7.14.1 Abstraction (from DePeNdENCIES)uuiiiiieaiiiiiiiiiiiiiie it e e a e 107

7.14.2 Classifier (from DePENUENCIES)uuuieiiiiiiaiiiiiiiiiiiiie et a e 107

7.14.3 Dependency (from DePENUENCIES)eueiiiiiiiiiiiiiiiiiiiieiiee e e e e e e 108

7.14.4 NamedElement (from DependenCies)coouiiiiuiiiiiiiiiiaaee it 109

7.14.5 Permission (from DEPENUENCIES)eeiiiiiiiiiiiiiiiiiiiiee e 109

7.14.6 Realization (from DEPENUENCIES)eeeiiiiiiiiiiiiiiiiiiiie et 110

7.14.7 Substitution (from DEPENENCIES)coeiiiiiiiiiiiiiiiiie e 110

7.14.8 Usage (from DEPENUENCIES)ocuuuiiiiiiiiiiaie ettt e e e e e e e s e ee b eee s 111

A Rl 1] (] g = ToT =T U PP P T PPPPPPPON 112
7.15.1 BehavioredClassifier (from INterfaces)ooooiiiuiiiiiiiiiiii e 113

7.15.2 Implementation (from INtErfaCeS)eeiiiiiiiiiiiii e 113

7.15.3 Interface (from INTErfACES)ccoceiiiiiiiii e 114

7.16 ASSOCIALIONCIASSES eeeieeiiiteiiee ettt ettt e ettt et e e e et bt e e e e s bt e e e e as b e et e e e e nb e e e e e e nre e e e e aannre e e e e annnes 117
7.16.1 AssociationClass (from AsSSOCIatiONCIASSES)cc.uvviriiiiiiiiiaiiiiiiiieeee e 118

A o= g Y o= TP TSP UPPT PP PPPPPPUPPTPRPRON 120
7.17.1 Classifier (from POWEITYPES) ..ottt e e e e e e e s e s eeeeeeee s 121

7.17.2 Generalization (from POWEITYPES) ...eeeiiiiiiiiiiiiiiiiitiiie et e e e e 121

7.17.3 GeneralizationSet (from POWEITYPES) ..ocooiiiiiiiiiiiiiiii ettt 121

A RS DT To | =10 T PP PTTT TR 128
L I ©70] 1 o] o L] gT=T o1 T TP P TP PP PP PPUPTPPPPPPPPPPIN 133
8.1 OVEBIVIBW ...ttt ettt e ettt e oottt e o4 okt e e oo 4a b et e e o4 oa b et e e oo 1a R e et e e e aaa b e e e e e e anEe e e e e e annRn e e e e e nnrneeeenn 133
I N o1 - Tod R3] = O U PPRPURTRN 134
8.3 ClaSS DESCIIPLIONS ...ttt e e e e ettt ettt e et e e e e e e ettt et e et e e e e e e e s e s s e bbe bbb et eeeaaaaeesaaassnbbbbesseeaaaaaeaasaaannes 136
8.3.1 (7o ap]oTo] o T=T o | A O TPPPPT 136

8.3.2 Connector (from InternalStructures, as specialized)cccccoviiiiiiiiiiiiie s 143

8.3.3 Realization (from Dependencies, as specialized)ccccccoiiiiiiiiieeeen 146

R B I T= T = T [PPSO PPPRRPPTR 147

i UML Superstructure 2.0 Draft Adopted Specification

S B O] 401 o To 1S (=TS £ (1 (o (0 =R 151

LS R @Y= T PP PRRRPRIN 151
LS I N o1 1 - T)Y/ 1 €= 0GP EPER 151
LS IR O o TR D =T Tod o 1T 1 SO 156
9.3.1 Class (from StructuredClasses, as specialized)cccccveeveiiiiiiiiiiieiiie e 156

9.3.2 Classifier (from Collaborations, as specialized)ccccccceeiiiiiiiiiiiieiireee e 157

9.3.3 Collaboration (from Collaborations)cccccviiiiiiiiiiieiie e 157

9.3.4 CollaborationOccurrence (from Collaborations)cccccceeeiiviiiiiieiiieee e 160

9.3.5 ConnectableElement (from INternalStruCtures)cccccceeveeivciiiiieeieeeee e 163

9.3.6 Connector (from INtErNaISIIUCIUIES) ...vvviviiieeiii i 163

9.3.7 ConnectorEnd (from InternalStructures, POIS)cevveiiiiiiciiiiiiire e 165

9.3.8 EncapsulatedClassifier (from POrtS)cooouiiiiiiiii e 166

9.3.9 InvocationAction (from Actions, as specialized) ..o 167

9.3.10 Parameter (Collaboration, as specialiZed)cccccoiiiiiiiiiiiiiiie e 167

9.3.11 POrt (frOM POIMS) ..ceeiiiiiiiie ettt e et e e e e e et e e e e e e e e e e ns 167

9.3.12 Property (from InternalStructures, as specialized)ccccuieiiiiiiiiiiiiiie e 171

9.3.13 StructuredClassifier (from INternalStruCtures) ... 173

9.3.14 Trigger (from InvocationActions, as specialized)occouviiiiiiiiiiiiiieee e 177

9.3.15 Variable (from StructuredActivities, as specialized)cccoceiieiiiiiiiiiiiiii s 178

LR BT To | =10 0T PR ORI 178
O D= o] (0] V0 T=T o £ TSP PPSUPRTTRN 181
F10. L OVBIVIBW ...ttt e e ettt et e e oo ookttt ettt e e 224444 R e b e bt e e e e 222 e e oo e aa Rt bbb be e e e e e e e e e e e aannnbbnbebbeeeeaaaeeesaaannn 181
O Y o 1S3 (= Tod 3 Y 1 = QU TP PP PPURTRPPT 181
10.3 ClaSS DESCIIPLIONS ...ttt et e e ettt e e e e e e e e e bt bbbt e e et e aa e e e s e aaaabbbeeteeeeaaeese e s sannbbbbeeeeaaaaeaaesanns 184
O R 0t R AV 1] 7= Lod S T P PSP VPP U P UPPTRURN 184

10.3.2 ComMUNICALIONPALNuiiiiiiiiiie ittt e e e e e e e e e eneees 186

O JRC J0C T B =T o] (o) V/=T0 1A 4] 7= od AU TP PPRUPRTT I 187

10.3.4 DEPIOYMENL ...ttt e e e e e e e e bbbttt e ee e e e e e e s e e banbebebeeeaaaaaeaasaaannnes 187

10.3.5 DePIOYMENTTANGELttt e e e e e e e e e e bbb e e e e e eeaaaaeeaasaannnes 189

10.3.6 DeploymentSPeCIfiCatiONcoiiiiiiiiiiiiiiiii e 190

O JRC J A B T o - TSP PPUPPRTTTTIIN 191

10.3.8 EXECULIONENVIFONMENTutiiiiiiiiii ittt e ettt e e e e e e e e e st e e e e e e e e e e e aasanneees 192

10.3.9 InstanceSpecification (from Kernel, as specialized)ccccccooiiiiiiiiiiiiiiiiee, 194
10.3.20 MaANIFESTALION ..ottt e ettt e e e e e e e e e aba e bee e e e e e e e e e s e e annnnbnneeas 194
O R 20t I [To [O PP UPR PR 195
10.3.12 Property (from InternalStructures, as specialized)ccccoceeeiiiiiiiiiiiiii s 197

O B I = To] =Ty o PP PPPRTTPPPR 198
10.5 GraphiCal PAtNS......coo ittt e e e e e e e e e e e bbb e et e e e e e aae e e e e e aaae 199
(e TR =TT o= 1Y/ o] SRS U PR PPSUPPPTRTN 201
V! 1o [TSP UTPT TP 203
O 1= V= TP TP PPPPTRPPT 203
Y o 1S3 (= (o)Y] 7 VPP TP PPUPTRPPT 205
11.3 ClaSS DESCIIPLIONS ...ttt et e e ettt et e e e e e e et e et e et e e e e e e e e aa bt be e teeeeeaaeee e s aannbbbbeneeaaaaeaaeaanns 216
RS 201 R oot = o] (@2 | 7AYo 1o o PP RPN 216

11.3.2 ACCEPIEVENTACHION ...ttt ettt et e e e e e e et e e e e e e e e e e e aasanneees 217

11.3.3 AddStructuralFeatureValUBACLIONccoiiii it 219

11.3.4 AddVariableValUBACLIONcoiiiiiiiiie ettt e e e e e e e e e e e eaneees 220

11.3.5 APPIYFUNCHONACLIONiiiiiiiiie ittt e e e e e e ettt e e e e e e e e e e s aaneees 222

11.3.6 BroadCastSIGNAlACIONcooiiiii ittt e e e e e e e e e e e e e e e anneees 223

RS A O 1|1 o (o] [T PPTUPPTR I 224

11.3.8 CallBENAVIOTACIIONieiiiiiiiiie ettt ettt e e e e e e e e e sttt eae et e e aaaeeeaasanneees 224

UML Superstructure 2.0 Draft Adopted Specification iii

12 Activities

i C I I 011 [@] o =T = 111 oV AY o 1o o PSSR 227
11.3.10 ClearAsSOCIatiONACHONccceiiiieiiee e e e e s s e e e e e e s e r e e e e e e e e s s s aneeeeeeaeeeeans 228
11.3.11 ClearStructuralFEatUrEACIIONciiieeeeiii it e e e e e e e s e st err e e e e e e s s s aereeeaeeeeeas 229
11.3.12 ClearVariablEACONcooiiiiiiieie e e e e s e e e e e e e e s st reeeaaeeeeaann 230
B B0 e T O T 11 N 0] 24T o 231
G 100 I A O Y- 1 1 I | (@ o] =3 72X o 1 o] o PSR 232
11.3.15 CreateODJECIACLION ...iiieii e it e e e e e e e e e e e e s e e e e e aaeeeeas 233
11.3.16 DeSrOYLINKACHION ..oiiiiiieeeiii ittt e e e e e e s s e e e e e e s e et e e e e e e e e s e e nnnannnneeeeaeeeeas 234
11.3.17 DeStroyODJECIACLION .oiiii ettt e e s e e e e e e e s s s e e e e e e e 235
500 100 T 1 1Y/ Yo 1 o V2 31T o PSS 236
5 100 L T I 10172 o1 T PSSR 236
11.3.20 LIiNKENACreatioNDAaLaccoieiiiiiiiieii et e et e e e et e e e e e e eabee s e e e eeabaaeeeans 237
0 T R I 1014 = g To | D= = TR PURTRTRRTRI 239
11.3.22 MultiplicityElement (as SPecCialiZed)cooiiiiiiiiiiiiiiiie e 240
11.3.23 PrimMItIVEFUNCHION L.vuueiiiiiiiie ettt e et e e e e e et e e e e e et e e e e e eaaan e 240
11.3.24 QUANFIEIVAIUEceveiiiiiiicccceie e e e s e e e e e e e e e e e e e e e aeeeeeaeaaaens 241
11.3.25 RAISEEXCEPLONACHON .ooiiiieitie ittt e e e e e e e e e e e e as 242
11.3.26 REAAEXIENTACIION ..uuiiiiiiiiii et e e e e e et e e e e e e e aateeeeeseebbaaeeaaas 243
11.3.27 ReadIsClassifiedODJECIACHONciiiiiiiiiiiiiiee e e 243
11.3.28 REAALINKACLION .ovuiiiiiiieiieei et e e e e e e e et e e e e e eeaba e e e e e s saaban e aeeees 244
11.3.29 ReadLinkODBJECIENUACLIONuuiiiiiiiieieiiei ettt e e e e e e e 246
11.3.30 ReadLinkObjectENdQUAlIfIEIACLIONccoiiiiiiiiiieee e 247
11.3.31 REAASEIFACLON ..ovviiiiiiiieiieie et e e e e e et s e e e e e eba e e e e e senbanaeaeaas 248
11.3.32 ReadStructuralFeatUrEACHIONcoiiiiiiiiiie e e e et e e e e e eaaban e eeaes 249
11.3.33 ReadVariablEACHIONoouuiiiiiiieici et e et e e et e e e e e e eaa e e e 250
11.3.34 ReclassifyODJECIACIION ...t e e e e e e 251
11.3.35 RemoveStructuralFeatureValuBACHIONcccooeviviiiiiiiee e 252
11.3.36 RemoveVariableValUBACHIONcocooiiiiiiiiii et e e et e 253
RS TR I A = =T o] Y7o 1 [o] [T PPTURTRTT 254
11.3.38 SENUODJECLACHON ...oiiiiiiiiiiiietee ettt e e e e ettt et e e e e e e e e e bbb aeeeeaaaaeeaaans 254
11.3.39 SeNASIGNAIACLION ...oiiiiiiiieii ittt e e ettt e e e e e e e e e s e e bbb beaeeeeaaaeeas 255
11.3.40 StartOWNEdBENAVIOTACHIONcvviiiiiiiiii et e et e e e e e e eaaba e eeees 257
11.3.41 StruCtUralFEatUrEACLIONcciiiiiiiiieie e e e e e et ee e e e e e ee bt eeeeessabtan e eeeeees 258
11.3.42 TeSIAENTILYACHION ..ooiiiiiiiiiiit ettt e e e e e ettt e e e e e e e e e s e e aabbbbbaeeeeaaaeens 259
11.3.43 VariablEACLIONovviiiiiiiiiiei et e e et e e e e e e et e s e e e e e aba e e e e e s seabanaaeaaaes 260
11.3.44 WriteStruCturalFEatUrEACLIONciiiiiiiiiii et e et e e e e e e e e e eerbaa e e e 260
11.3.45 WIITELINKACHION ovviiiiiiiiiiiiie et e e e e e e et e e e e e e eaaaaeeeeseeatanaaaeaes 261
11.3.46 WIrIteVariablEACLIONouiiii i et e e e e e e e e ba e e e e e e eerba e aeeans 262
I B = To | =Ty 4 TP 263
.. 265
F2.0 OVEBIVIEBW ..ottt e et e e et e e ettt e e e et ettt e e e e e e ea bt e e e e e st et s eeesee aaa e eaessasaan s seessstanseeesessatanseaesssrannn 265
A Y o 1S3 (= (o)] - VU 267
12.3 ClasSS DESCIIPLIONS ...ttt e ettt e e e e e oo e b bbbttt et e e e e e e sa e anbeebeeeeeaeaeeaaeaannbabbeeeeeaeaaaaeeanns 280
2 Tt R Yo 1o T KRR 280
2 T Xox 11/ PP RPS 283
D2 TRC T Yor 11711V =l [0 =TT PPPRTPTP 293
12.3.4 ACHVILYFINAINOGE ...oooiiiiiiiiiee et e e e e e e et e e e e e e e e as 298
D2 T Yor 11714V €T (01U o PP 301
12.3.6 ACHVIEYNOGE ...ttt e ettt e e e e e e e e e e e a bt e s e e eeaaaaaeaans 302
12.3.7 ACtiVityParameterNOUE ...ttt ae e e e e e e e 304
12.3.8 ACHVILYPAITIEIONveeiiiiiiiiiiiii ittt ettt e e e e e e e s e nb e e e e aaaaee e s 307

UML Superstructure 2.0 Draft Adopted Specification

12.3.9 CentralBUffErNOUEcoocviiiiiiiitiee e 311
12.3.10 ClAUSEceeeiiiie ettt ettt ettt n 313
12.3.11 CoNAIitIONAINOUEcueriiiiiieiriie et e s e e e e 313
12.3.12 CONIOIFIOW ..ottt se e s e s e s e e re e e s nnne e 315
12.3.13 CONIOINOUE ...ooeieiiiiiie ittt et se e s e s s e s e e s e e s nnee e e 316
12.3.14 DataSIOrENOUEcccviiiiirieitiie ettt et r e s e s n e e e n 318
12.3.15 DECISIONNOUEeoiiiiiiieiiiie ittt ettt s s e e sere e s s e s s e e e e e s nnneee 319
D20 300 S T (ot =T o] 1o 1 = T T | = S 322
12.3.17 EXECULADIENOUEcoiiiiiiieiiii ettt 324
12.3.18 EXPANSIONKING ..oiiiiiiiiiiiiiiie et r e e e e e e s e s r e e e e e e s e e ssntanbeaeaeeeeaeeeeaasannnees 324
12.3.19 EXPANSIONNOUE ...ttt s et e e e e e e s e st e e eeee e s e e ssnnsnntrananeeeaeeeeansannnnnes 325
12.3.20 EXPANSIONREGIONeuiiiiiiiiiiiaeaeie ittt ee et e e e e e e e e e et e et eeeaaaaaeaa s saanbebbeeeeeeaaaeseesaannnrenes 325
12.3.21 FNAINOUE ..ottt e e ekt e s e et et e e s anb b e e e e e 331
12.3.22 FIOWFINAINOGEccoiiiiiiiiiiieie ettt et s et e e s st e e e e ennnes 333
12.3.23 FOTKNOUE ...ttt et e e s e et e e e s aabbre e e e e e 334
12.3.24 INIGAINOGEeeieeiee ittt e s et e e e bbb e e e 335
D2 4 ST T o 101 o I TP PPRUPPT I 336
12.3.26 InterruptibDIE ACHIVIEYREGIONocoiiiiiiiiiiie ettt e e e e e e e e e e e e e anes 336
12.3.27 JOINNOGE ..ottt ettt s et e e bbb e e e e e e e e s b n e e e e annbe e e e e annnes 338
D2 P04 I Mo To] o]\ [To [TR PTPUUPPPTTTPRII 341
12.3.29 MEIGENOE ...ttt e e oottt et e e e e e e e e e s e b b bebeseeeaaeaeaaasaanree 343
12.3.30 ODBJECLFIOW ...ceiiieiiiii ettt ettt et e e e e e e e e e e a bbb s beeeaaaaaeeasaaanrne 344
12.3.31 ODbjJeCtFIOWEECIKINGeeeiiiiiieiii et e e 349
12.3.32 ODBJECINOUE ...coiiiiiiiii ettt bttt e e e e e e e e e s e ab bt e b e et e e aaaaeeaasaannee 349
12.3.33 ObjectNodeOrderingKingdooi it 352
12.3.34 OULPULPIN oottt e e e e e e skttt et e e e e e e aa s aanbebbeeeeaeaeeeseesannannnrne 352
12.3.35 Parameter (aS SPeCIaliZEd)ooooiiiiiiiiiiie e 352
12.3.36 ParameterSeLcoooiiiiiiiiiiiie e e e e s 354
R B A = U PO PO UPOUPPRTRN 355
12.3.38 StruCtUr@dACHVIEYNOGEoeiiiiiiiiiii e 361
12.3.39 VAIUEPIN .ottt s e e s e 363
12.3.40 VAMHADIE ...ooiiiiiiiieie e 363
2 B I - To] =114 PP PP PRPRPPPPPR 364
13 COMIMON BENAVIOISeiiiiiiiiiii ittt e et e e e e e b b e e e e ek b e e e e s e b b et e e e s abnbe e e e e e anbeeeeesannbeeeae 369
L3.0 OVEIVIEW ...ttt ettt ettt ettt e e ettt e e oo h bttt e 44 a skttt 444 eh b e et e 4 s b et e 4 4R b et e e e e n b b e et e e e annnn et e e nnnnne s 369
R Y o 1S3 (= Tod 3 1 = QU T T PPTUPPPPPUPPPPPT 374
13.3 ClaSS DESCIIPLIONS ...ttt e i e e ettt e e e e e e e e e h bbbttt e et e e e e e e e e s abbbeebe e et e aeeee e s sannbbbbeeeeaaaaeaaeeanns 378
13.3.1 Activity (from BasiCBENAVIOIS)coccuiiiiiiiiiie e 378
13.3.2 AnyTrigger (from CoOmMmMUNICALIONS)uueiiiiiiiiiiiiiiiiiiiii e ee e e e e ieeees 379
13.3.3 Behavior (from BasSiCBENAVIOIS)uuiiiiiiiiiiiai ittt 379
13.3.4 BehavioralFeature (from BasicBehaviors, Communications, specialized) 382
13.3.5 BehavioredClassifier (from BasiCBehaviors)ooccuuiiiiiiiiiiiiiiieece s 383
13.3.6 CallConcurrencyKind (from CommuNIiCatiONS)uueeeiiiiiraiiiiiiiiieiiee e 384
13.3.7 CallTrigger (from COmMMUNICALIONS)uueiiiiiiiiiiiiii ittt ee e e e e e e e e e e eaneees 385
13.3.8 ChangeTrigger (from COMMUNICALIONS)eeiiiiiiiiiiiiiiiiiiiie e e e e e e e e e e e e e eeeees 385
13.3.9 Class (from Communications, specialiZed)cccuueiiiiiiariiini e 386
13.3.10 Duration (from TIME)eueeiiiiiiieii ettt e e e ettt e e e e e e s e e s aababbebe et eaaaaaeesasaanneees 387
13.3.11 DurationConstraint (from TIME)coouuiiiiiiiiii e 388
13.3.12 Durationinterval (from TimMe)ooiiiiiiiiiii e 389
13.3.13 DurationObservationAction (from TiME)cocoieiiiiiiiiiiiiii e 390
13.3.14 Interface (from Communications, specialized)cccuueeiiiiiiiiiiiniiie e 391

UML Superstructure 2.0 Draft Adopted Specification \

14 Interactions

15 State Machines

Vi

13.3.15 Interval (from TiME) .ooieeeii i e e e s e e e e e e e e s s st e nnneeeaaeeeeas 391
13.3.16 IntervalConstraint (from TIME)cceiiiieeiiiiiiciiir e e e s e e e e e e s e arr e e e e e e e e s 391
13.3.17 MessageTrigger (from CoOmMmUNICAtIONS)c.vvvviieiiieeeeeeieiciie e e e e e s e e e e 392
13.3.18 OpaqueExpression (from BasicBehaviors, specialized)ccccccceeeveviiiiiciiieiineeeeeeenn 393
13.3.19 Operation (from Communications, as specialized)cccccvvriieree i, 393
13.3.20 Reception (from COMMUNICALIONS)ccccieieieiiiiiiieeeee e e es s et e e e e e e e e s sarrrererreeeeeeaeas 394
13.3.21 Signal (from COMMUNICALIONS) ...vvvviiiieeieeeiieiiiitiieereeeee e e s s e s e e e e e e e e e s s snnnnenrrerereeeeees 395
13.3.22 SignalTrigger (from COMMUNICAtIONS)ccccvvriiiiriieee e e e e e e e e e s e e e e e e e 396
13.3.23 TimeConstraint (from TiME)ueieiiiieieiieiiiiier e e e e e e s s err e e e aee e e s 396
13.3.24 TimeEXPression (from TIME)ueeeiiiieeeiiiiciiiiiiire e e e e e s e srerr e e e e e e e s s st areeeeaeeeeeas 397
13.3.25 Timelnterval (from TIME) ...cccuueiiiiiiiiiee e rr e e e e e e s e s re e e e e aaeee s 398
13.3.26 TimeObservationAction (from TIME)ccoiiiiiiiiiiiiiiie e 399
13.3.27 TimeTrigger (from COMMUNICAIONS)coiiiiiiiiiiiieiiee et e e e e 399
13.3.28 Trigger (from COMMUNICALIONS)eiiiiiiiiiiiiiiiiiiiiee et e ettt e e e e e e e e e 400
.. 403

L. OVEIVIEW ..ttt ettt ettt ettt o4kttt e e 4kttt e 4kt e e+ 4R et e+ 4 a et e+ 4 n b e e e o4 e b b et e e e e b e e e e e annbbe e e s e annnes 403
A Y o153 (= (o A3 V1 = QPP PPPPRT 404
14.3 ClasSS DESCIIPLIONS ...ttt e ettt e e e e e e e e et bbbt ettt e e e e e e sa s abbeebeeeeeaeaeeaasaannbabbeeeeaaaaeaaeeanns 409
14.3.1 CombinedFragment (from FragmentS)ceeeiiiiiiiiiiiiiiiiiiiie e e 409

14.3.2 Continuation (from FragmentS) ...t e e e 414

14.3.3 EventOccurrence (from BasiCINteraCtions)cceeieiraiiiiiiiiiiiiiiieee e e e 416

14.3.4 ExecutionOccurrence (from BasiCINtEractions)cccccooiiiiiiiiiiiiieieiiiiiiieeeeeeen 417

14.3.5 Gate (from FragmentS)oocuueiiiiiiiiiaeee ettt e e e e e e e e s ebb e aaeeaaaaae e s 418

14.3.6 GeneralOrdering (from BasiCINteraCtionS)coeiiiiiiiiiiiiiiiiiiiiieeee e 418

14.3.7 Interaction (from Basiclnteraction, Fragments)ccccooccuiiiiiiiiiieininiiiieiiee e 419

14.3.8 InteractionConstraint (from Fragments)eueeiiiiiiiiiiiiiieeiee e 421

14.3.9 InteractionFragment (from Fragments)c....eeeeiiiiiiiiiiiiiiiiiieeii e 422
14.3.10 InteractionOccurrence (from Fragments) ... 423
14.3.11 InteractionOperand (from Fragments)cccuuiiiiiiiiiianaii e 425
14.3.12 InteractionOperator (from FragmentS)oeoiiiiiiiiiiiiiie e 426
14.3.13 Lifeline (from Basiclnteractions, Fragments) ...t 427
14.3.14 Message (from BasiCINtEraCtionNS)coooiiiiiiiiiiieiie ettt a e 428
14.3.15 MessageEnd (from BasiCINteraCtions)c.eueeeiieiiaiiiiiiiiiie e ieeee e 431
14.3.16 PartDecomposition (from FragmentS)ccccuuiiiiiiiiiiiiiiiiiiee e e e 431
14.3.17 Statelnvariant (from BasiCINtEractionS)c..eeeeiiiiiiiiiiiiiiee e 433
14.3.18 Stop (from BaSiCINTEraCtiONS)ciiiiiiiiiiiiiiiiiiie e e e e e e 434

O B I = To | =V 4 L ST PRI 435
.. 455

15,1 OVEIVIBW ..ttt ettt ettt ettt e ket e+ 4k et e 4kt e 44 sk et e o4 a ket e+ 4 a b b e e e a4 e R b et e e e aan b e e e e e annbre e e e e annnes 455
I Y o 1S3 (= (o)] - N U 456
15.3 ClasSS DESCIIPLIONS ...ttt e ettt e e e e e oot bbbt e et e a e e e e e s e s anbeebeeeeeaeeeeaaesannbabbeeeeaaaaaaaeeanns 459
15.3.1 ConnectionPointReference (from BehaviorStatemachings)cccccccoviiiiiiiiieeeenanenn. 459

15.3.2 Interface (from ProtocolStatemachines, as specialized)cccccoceiiiiiiiiiiiiiinn. 461

15.3.3 FinalState (from BehaviorStatemachings) ..o 462

15.3.4 Port ((from ProtocolStatemachines, as specialized)ccccoiieeieiiiiiiiniiiieeeeeee, 463

15.3.5 ProtocolConformance (from ProtocolStatemachines)ccccoceeiiiiiiiiiiiiiiiiieen, 463

15.3.6 ProtocolStateMachine (from ProtocolStatemachings)cccceeeeiiriiiiiiiiiiiiiiceeeeeee, 464

15.3.7 ProtocolTransition (from ProtocolStateMachinges) ... 466

15.3.8 PseudoState (from BehaviorStatemachings) ..., 469

15.3.9 PseudoStateKind (from BehaviorStatemachings)ocoociiiiiiiiiiieiiiiniiiiieeeeeeenn 475
15.3.10 Region (from BehaviorStatemachines)uueiiiiiiiiiiiiie e 476

UML Superstructure 2.0 Draft Adopted Specification

15.3.11 State (from BehaviorStatemachines)ccccveeiiiiiiiiiiiiicce e 477
15.3.12 StateMachine (from BehaviorStatemachings)cccccoiviiiiie e 489
15.3.13 TimeTrigger (from BehaviorStatemachines, as specialized)ccccccveeeeeenniiiinns 498
15.3.14 Transition (from BehaviorStatemachinges)ccccccovviiiiiiiiiic e 498
15.3.15 Vertex (from BehaviorStatemachings)cooovviiiiiieiiiie e 505
15.3.16 TranSitioNKINGooooiiiiiie e s e s e 506

ST D - Vo | - 01 PSSR 507
16 USE CASESeereiieeiiitiiie et ettt e et e e e oottt e e oot e a et e e e a e e e e e e nre e e e e e nrnneeenns 511
ST O V=T T PP PRSPPI 511
T2 Y o 1S3 (= Lod 0= Y 01 - PRSP 511
16.3 Class DESCIIPLONSeiiiiieii e e e e e e e e e et r e e e e e e s s ss s et re e e e e eeeeeessaansstantaeeteaaeeeansannntanreneeaeeeeeeeesnns 512
16.3.1 ACEOF (frOM USECASES) ...evveeiiiiieiaiieiiitiitet ettt e e e e e ettt e e e e e e e e e e s abbabbeeeeeeaaaaaeeaasannnees 512

16.3.2 Classifier (from UseCases, as specialized)cc.uuuiiiiiiiiiiiiiniiieeeeee e 514

16.3.3 EXtENd (frOmM USECASES) ..eeeiiiiiieiiiiiiitiitiee et e ettt et e e e e e et e e e e e e e e e e e e e s annnees 515

16.3.4 ExtensionPoint (from USECASES)cccuuuiiiiiiiiiiieaaia ittt e e e e e e e e e e e e e e e e e e e aenes 516

16.3.5 INclude (from USECASES) ..ociiiiiiiiiiiiiiiiiiiit e e ettt e e e e e e e e be b e e e e e e e e e e e e aananneees 517

16.3.6 USeCase (from USECASES)cccoiiiiiiiiitiiiiieiia e e ettt e e e e e et ee e e e e e e e e e e e e s aaneees 519

G B IT= To] =Ty o TP PPUTTUPPPT 523
e 1 R U o] o] [T 4 [= o | TS U PP SUPPPTRTN 529
17 AUXIIAIY CONSITUCES ..eiiiiiiiiii ittt e oottt e e e e e e s e e abbe bt ettt et e e e e e e o e ab b et be e e e e e aeeasee s nnbbbbeeeeeeaeeeaee s nbebeeas 531
L7.0 OVEIVIEWtteeee ettt ettt ettt ettt e+ et e 444 a ket e 4 4a ket e 44 ea ke e e 4o s bttt e 44 a R b e e et e e s b b e et e e e aanbe et e e nnnnnee s 531
17.2 INFOrMALIONFIOWSeiieiieieee ettt e e e st e e sab et e e e s bbn e e e e snineee s 531
17.2.1 InformationFlow (from INfOormationFIOWS)coooiiiiiiiiiiiii e 532

17.2.2 Informationltem (from INformationFIOWS)cooiiiiiiiiiiiiiii e 533

A RC I Y [o 1= I O TP PP PP RO PPPRPROPPIN 535
17.3.1 Model (from MOAEIS)eueiiiiiiiieii et e e e e e e e e aneees 535

A o g 4 1Y Y 1= ST PPUPTPPPR 537
17.4.1 Boolean (from PrimitiVETYPES) ..ccooiiiiiiiiiiiiite ettt e e e e e e e e e e s e eaneees 538

17.4.2 Integer (from PrimitiVETYPES) ..coooiiiiiiiiiiieii ettt e e e e e e e s aeeees 538

17.4.3 String (from PrimitiVETYPES) ..eeeieiiiiiiiiiiie ettt e e e e e e e e e eaeeees 539

17.4.4 UnlimitedNatural (from PrimitiVETYPES) ..eeeeeiiiiiiiiiiiiiiiiiee et 540

ST =T 00T o] o= PP T T TT PP PUPPPPPRTT 541
17.5.1 ParameterableEIementooo i 543

17.5.2 TemplateableEIEMENToooi i et 545

17.5.3 TemplateBinding ... e e 547

17.5.4 TemplateParameterco et e e e e e e e eaeee 548

17.5.5 TemplateParameterSUDSHIULIONuuiiiiiiiiiiiii e 549

17.5.6 TemPlateSIgNAtUIEeeeeiiiiiiieeai ettt e et e e e e e e e e e s aib bt eeeeeaaaaaeeeasaannnees 550

17.5.7 Classifier (as SPeCialiZed)cooiiiiiiiiiiiiii e 552

17.5.8 ClassifierTemplateParameteroc.uuiiiiiiiiiie et a e 556

17.5.9 RedefinableTemplateSIigNatureuueiiiiiiiiiiii e 557
17.5.10 Package (8 SPECIAlIZEA)cooiiiiiiiiiiiiiei e 558
17.5.11 NamedElement (as Specialized)ccueiiiiiiiiiiiiiiii e 560
17.5.12 Operation (as SPECIAlIZEA)coiiiiiiiii e e 563
17.5.13 Operation (as SPECIAlIZEA)coiiiiiiiiiiee e 563
17.5.14 OperationTemplateParameteruuuiiiiiiiiiia e 564
17.5.15 ConnectableElement (as specialiZed) ... 565
17.5.16 ConnectableElementTemplateParameterooooiiieiiiiiiiiiieonie e 566
17.5.17 Property (8S SPECIANIZEA)ceiiiiiiiiiiiiiiii et 567
17.5.18 ValueSpecification (as SPeCialiZed)eeeiiiiiiiiiiiiiiiie e 568

RS T o (0] (1= SO U PP PPP PSPPI 569

UML Superstructure 2.0 Draft Adopted Specification Vii

RS T @ Y=Y V711 569

RSB Y o153 = Tox 0= V0 - SO 570

ST T @ F= T 0 L=TT o7 1T SO EESSRR 570

18.3.1 Extension (from Profil@S)ccccuiiiiiiiiiiic e 570

18.3.2 ExtensionENd (from ProfileS)eeeiioiiiiiiiiiiiec e 573

18.3.3 Class (from Constructs, ProfileS)cccooiiiiiiiiiiieiiiee e e e 574

18.3.4 Package (from Constructs, Profil€S)ccccciiiiiiiiio e 575

18.3.5 Profile (from Profil€S)coiiiiiieiie e 575

18.3.6 ProfileApplication (from Profil€S)cceveeiiiiiiiiiiiiiiee e 578

18.3.7 Stereotype (from Profil€S) ...c..uuviiiiiiiiiie i 580

RSB D = o | -1 SRR 583

T AV Y o] 01T o To [ot =2 TR 585
APPENAIX AL DIAGIAIMSeeeeeiiiee e ittt ettt e e e e e e e bbbt e et e aaaaaaaaababe et et eeeaaeaesaaaaanbebeeeeeaaeaaeassannnbsbesbeeaaaaaeessaaannes 587
ApPPENiX B. StANAard StEIEOLYPESuuiiiiiiiiiia ettt e ettt e et e e e e e e e e sa bbb e e teeeaeaaeeeaa s abbebaeeeaaaaeeasaaaane 593
2 = T T Lo PP 593

B.2 INTEIMEAIALE.eeeeeeeeiei ettt et e oo e e e bbbttt e e e e e e e e e o e abb bbb et e eeeaaeeeesa e nnnbabeaneeaaaeeann 596

(2l ©70] o] o] (= 1 T PP 597
Appendix C. Component Profile EXAMPIEScooiiuiiieieiee et ettt e e e e e e bb e e e e e e e e e e e e e e aanes 599
C.1 J2EE/EJB Component Profile EXamPIEccuueuiiiiiiiaei e 599

C.2 COM Component Profile EXAMIPIEcceiiiii ittt e e e e e e e e e nnbanee s 600

C.3 .NET Component Profile EXAMPIEcou ettt e e 600

C.4 CCM Component Profile EXAMPIEoo ettt e e e 601
AppeNndiX D. TabUlar NOTATIONS ittt e e e e e e ettt e e et e e ae e e s e e aannbeb e e e e eeeaaeseeaannnnseees 603
D.1 Tabular Notation for SEQUENCE DIAGIAIMSuuuiiiiiaiaieii ittt e e eee e e e e e e e e s sanbesbeeeeaaaaeas 603

D.2 Tabular Notation for Other Behavioral DIagramscccuueiiiiiiiiaaiaiiiiieceee e 605
AppendiX E. ClasSIfiers TAXONOIMYoiiiii ittt et e ettt e et e e e e e e s b beebeeeeaaaeaeaasaannbebbeeeeeeaaaasaeaannnnneees 607
Appendix F. XMI Serialization and SCREMA.........ooiuiiiiiiiiiie et e e e e e e e e e e e e aanes 609
[0 To [TR 611

Viii UML Superstructure 2.0 Draft Adopted Specification

1 Scope

ThisUML 2.0: Superstructureisthe second of two complementary specifications that represent a major revision to the Object
Management Group’'s Unified Modeling Language (UML), for which the most current versionis UML v1.4. The first
specification, which serves as the architectural foundation for this specification, isthe UML 2.0: Infrastructure.

ThisUML 2.0: Superstructure defines the user level constructs required for UML 2.0. It is complemented by UML 2.0:
Infrastructure which defines the foundational 1anguage constructs required for UML 2.0. The two complementary
specifications constitute a compl ete specification for the UML 2.0 modeling language.

Editorial Comment: The FTF needs to review and complete this section -- this version was derived by a literal
copying of the “Introduction” section of the Preface in the Draft Adopted Specification

2 Conformance

Editorial Comment: The FTF needs to review and complete this section -- this version was derived by literal
copying the “Compliance Points” section of the Preface in the Draft Adopted Specification

The basic units of compliance for UML are the packages which define the UML metamodel. Unless otherwise qualified,
complying with a package requires complying with its abstract syntax, well-formedness rules, semantics, notation and XM|
schema. Complying with a particular package requires complying with any packages on which the particular package depends
via a package merge or import relationship

In the case of the UML Superstructure, the metamodel is organized into medium-grain packages (compare the
InfrastructureLibrary’ s fine-grained packages) that support flexible compliance points. All UML 2.0 compliant
implementations are required to implement the UML ::Classes::Kernel package. All other UML Superstructure packages are
optional compliance points.

The following table summarizes the compliance points of the UML 2.0: Superstructure, where the following compliance
options are valid:

» no compliance: Implementation does not comply with the abstract syntax, well-formedness rules, semantics and nota-
tion of the package.

« partial compliance: Implementation partially complies with the abstract syntax, well-formedness rules, semantics and
notation of the package.

» compliant compliance: Implementation fully complies with the abstract syntax, well-formedness rules, semantics and
notation of the package

+ interchange compliance: Implementation fully complies with the abstract syntax, well-formedness rules, semantics,
notation and XMI schema of the package.

UML Superstructure 2.0 Draft Adopted Specification 1

Table 1 Summary of Compliance Points

Compliance Level

Compliance Paint

Valid Options

Basic (Level 1) Classes::Kernel complete, interchange

Basic (Level 1) Activities::BasicActivities no, partial, complete, interchange

Basic (Level 1) AuxiliaryConstructs::Primitives no, partial, complete, interchange

Basic (Level 1) Classes::Dependencies no, partial, complete, interchange

Basic (Level 1) Classes::Interfaces no, partial, complete, interchange

Basic (Level 1) CommonBehaviors:: no, partial, complete, interchange
BasicBehaviors

Basic (Level 1) CompositeStructures:: no, partial, complete, interchange
Internal Structures

Basic (Level 1) Interactions::Basiclnteractions no, partial, complete, interchange

Basic (Level 1) AuxiliaryConstructs:: no, partial, complete, interchange
PrimitiveTypes

Basic (Level 1) UseCases no, partial, complete, interchange

Intermediate (Level 2)

Actions::IntermediateActions

no, partial, complete, interchange

Intermediate (Level 2) Activities:: no, partial, complete, interchange
IntermediateActivities

Intermediate (Level 2) Activities:: no, partial, complete, interchange
StructuredActivities

Intermediate (Level 2)

CommonBehaviors::
Communications

no, partial, complete, interchange

Intermediate (Level 2)

CommonBehaviors:: Time

no, partial, complete, interchange

Intermediate (Level 2)

Components::BasicComponents

no, partial, complete, interchange

Intermediate (Level 2)

CompositeStructures::Actions

no, partial, complete, interchange

Intermediate (Level 2)

CompositeStructures::Ports

no, partial, complete, interchange

Intermediate (Level 2)

CompositeStructures::
StructuredClasses

no, partial, complete, interchange

Intermediate (Level 2)

Deployments::Artifacts

no, partial, complete, interchange

Intermediate (Level 2)

Deployments::Nodes

no, partial, complete, interchange

Intermediate (Level 2)

Interactions::Fragments

no, partial, complete, interchange

Intermediate (Level 2)

Profiles

no, partial, complete, interchange

Intermediate (Level 2)

StateM achines::
BehaviorStateM achines

no, partial, complete, interchange

UML Superstructure 2.0 Draft Adopted Specification

Table 1 Summary of Compliance Points

Intermediate (Level 2)

StateMachines::
MaximumOneRegion

no, partial, complete, interchange

Complete (Level 3)

Actions::CompleteActions

no, partial, complete, interchange

Complete (Level 3)

Activities::CompleteActivities

no, partial, complete, interchange

Complete (Level 3) Activities:: no, partial, complete, interchange
CompleteStructuredActivities

Complete (Level 3) Activities:: no, partial, complete, interchange
ExtraStructuredActivities

Complete (Level 3)

AuxiliaryConstructs::
InformationFlows

no, partial, complete, interchange

Complete (Level 3)

AuxiliaryConstructs::

no, partial, complete, interchange

Models

Complete (Level 3) AuxiliaryConstructs:: Templates no, partial, complete, interchange

Complete (Level 3) Classes:: no, partial, complete, interchange
AssociationClasses

Complete (Level 3) Classes:: no, partial, complete, interchange
PowerTypes

Complete (Level 3) CompositeStructures:: no, partial, complete, interchange
Collaborations

Complete (Level 3) Components:: no, partial, complete, interchange
PackagingComponents

Complete (Level 3) Deployments:: no, partial, complete, interchange
ComponentDeployments

Complete (Level 3)

StateM achines:: Protocol StateM achines

no, partial, complete, interchange

3 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

« UML 2.0 Superstructure RFP

« UML 2. Infrastructure Specification

» MOF 2.0 Specification

Editorial Comment: The FTF needs to review and complete this section

UML Superstructure 2.0 Draft Adopted Specification

4 Terms and definitions

Editorial Comment: The FTF needs to review and complete this section -- the version in this document was
produced by literal copying of the contents of the Glossary from the Draft Adopted Spec (Appendix G) into this
section.

For the purposes of this specification, the terms and definitions given in the normative references and the following apply.
(Note: The following conventions are used in the term definitions below:

» Theentriesusually begin with alowercase letter. Aninitial uppercase letter is used when aword is usually capitalized
in standard practice. Acronyms are all capitalized, unless they traditionally appear in all lowercase.

» When one or more words in a multi-word term is enclosed in brackets, it indicates that those words are optional when
referring to the term. For example, use case [class] may be referred to as smply use case.

» A phrase of the form “Contrast: <term>" refersto aterm that has an opposed or substantively different meaning.
» A phrase of the form “ See: <term>" refersto arelated term that has a similar, but not synonymous meaning.

« A phrase of the form “ Synonym: <term>" indicates that the term has the same meaning as another term, which is ref-
erenced.

» A phrase of the form “Acronym: <term>" indicates that the term is an acronym. The reader is usually referred to the
spelled-out term for the definition, unless the spelled-out termisrarely used.)

abstract class

A class that cannot be directly instantiated. Contrast: concrete class.

abstraction

The result of empasizing certain features of a thing while de-emphasizing other features that are not relative. An
abstraction is definedrelative to the perspective of the viewer.

action

A fundamental unit of behavior specification that represents some transformation or processing in the modeled
system, be it a computer system or a real-world system. Actions are contained in activities, which provide their
context. See: activity.

action sequence

An expression that resolves to a sequence of actions.

action state

A state that represents the execution of an atomic action, typically the invocation of an operation.

activation

The initiation of an action execution.

active class

A class whose instances are active objects. See: active object.

active object

An object that may execute its own behavior without requiring method invocation. This is sometimes referred to as
“the object having its own thread of control.” The points at which an active object responds to communications from
other objects are determined solely by the behavior of the active object and not by the invoking object. This implies
that an active object is both autonomous and interactive to some degree. See: active class, thread.

activity

A specification of parameterized behavior that is expressed as a flow of execution via a sequencing of subordinate
units (whose primitive elements are individual actions). See actions.

activity diagram

4 UML Superstructure 2.0 Draft Adopted Specification

A diagram that depicts behavior using a control and data-flow model.

actor

A construct that is employed in use cases that define a role that a user or any other system plays when interacting
with the system under consideration. It is a type of entity that interacts, but which is itself external to the subject.
Actors may represent human users, external hardware, or other subjects. An actor does not necessarily represent
a specific physical entity. For instance, a single physical entity may play the role of several different actors and,
conversely, a given actor may be played by multiple physical entities.

actual parameter

Synonym: argument.

aggregate

A class that represents the “whole” in an aggregation (whole-part) relationship. See: aggregation.

aggregation

A special form of association that specifies a whole-part relationship between the aggregate (whole) and a
component part. See: composition.

analysis

The phase of the system development process whose primary purpose is to formulate a model of the problem
domain that is independent of implementation considerations. Analysis focuses on what to do; design focuses on
how to do it. Contrast: design.

analysis time

Refers to something that occurs during an analysis phase of the software development process. See: design time,
modeling time.

argument

A binding for a parameter that is resolved later. An independent variable.

artifact

A physical piece of information that is used or produced by a development process. Examples of Artifacts include
models, source files, scripts, and binary executable files. An artifact may constitute the implementation of a
deployable component. Synonym: product. Contrast: component.

association

A relationship that may occur between instances of classifiers.

association class

A model element that has both association and class properties. An association class can be seen as an
association that also has class properties, or as a class that also has association properties.

association end

The endpoint of an association, which connects the association to a classifier.

attribute

A structural feature of a classifier that characterizes instances of the classifier. An attribute relates an instance of a
classifier to a value or values through a named relationship.

auxiliary class

A stereotyped class that supports another more central or fundamental class, typically by implementing secondary
logic or control flow. Auxiliary classes are typically used together with focus classes, and are particularly useful for
specifying the secondary business logic or control flow of components during design. See also: focus.

behavior

The observable effects of an operation or event, including its results. It specifies the computation that generates the
effects of the behavioral feature. The description of a behavior can take a number of forms: interaction,
statemachine, activity, or procedure (a set of actions).

behavior diagram

A form of diagram that depict behavioral features.

behavioral feature

A dynamic feature of a model element, such as an operation or method.

behavioral model aspect

A model aspect that emphasizes the behavior of the instances in a system, including their methods, collaborations,

UML Superstructure 2.0 Draft Adopted Specification 5

and state histories.

binary association

An association between two classes. A special case of an n-ary association.

binding

The creation of a model element from a template by supplying arguments for the parameters of the template.
boolean

An enumeration whose values are true and false.

boolean expression

An expression that evaluates to a boolean value.

cardinality

The number of elements in a set. Contrast: multiplicity.

child

In a generalization relationship, the specialization of another element, the parent. See: subclass, subtype.
Contrast: parent.

call

An action state that invokes an operation on a classifier.

class

A classifier that desctibes of a set of objects that share the same specifications of features, constraints, and
semantics.

classifier

A collection of instances that have something in common. A classifier can have features that characterize its
instances. Classifiers include interfaces, classes, datatypes, and components.

classification

The assignment of an instance to a classifier. See dynamic classification, multiple classification and static
classification.

class diagram

A diagram that shows a collection of declarative (static) model elements, such as classes, types, and their contents
and relationships.

client

A classifier that requests a service from another classifier. Contrast: supplier.

collaboration

The specification of how an operation or classifier, such as a use case, is realized by a set of classifiers and
associations playing specific roles used in a specific way. The collaboration defines an interaction. See: interaction.
collaboration occurrence

A particular use of a collaboration to explain the relationships between the parts of a classifier or the properties of
an operation. It may also be used to indicate how a collaboration represents a classifier or an operation. A
collaboration occurrence indicates a set of roles and connectors that cooperate within the classifier or operation
according to a given collaboration, indicated by the type of the collaboration occurrence. There may be multiple
occurrences of a given collaboration within a classifier or operation, each involving a different set of roles and
connectors. A given role or connector may be involved in multiple occurrences of the same or different
collaborations. See: collaboration.

communication diagram

A diagram that focuses on the interaction between lifelines where the architecture of the internal structure and how
this corresponds with the message passing is central. The sequencing of messages is given through a sequence
numberering scheme. Sequence diagrams and communication diagrams express similar information, but show it in
different ways. See: sequence diagram.

compile time

Refers to something that occurs during the compilation of a software module. See: modeling time, run time.
component

A modular part of a system that encapsulates its contents and whose manifestation is replaceable within its
environment. A component defines its behavior in terms of provided and required interfaces. As such, a component

6 UML Superstructure 2.0 Draft Adopted Specification

serves as a type, whose conformance is defined by these provided and required interfaces (encompassing both
their static as well as dynamic semantics).

component diagram

A diagram that shows the organizations and dependencies among components.

composite

A class that is related to one or more classes by a composition relationship. See: composition.

composite aggregation

Synonym: composition.

composite state

A state that consists of either concurrent (orthogonal) substates or sequential (disjoint) substates. See: substate.
composite structure diagram

A diagram that depicts the internal structure of a classifier, including the interaction points of the classifier to other
parts of the system. It shows the configuration of parts that jointly perform the behavior of the containing classifier.
The architecture diagram specifies a set of instances playing parts (roles), as well as their required relationships
given in a particular context.

composition

A form of aggregation which requires that a part instance be included in at most one composite at a time, and that
the composite object is responsible for the creation and destruction of the parts. Composition may be recursive.
Synonym: composite aggregation.

concrete class

A class that can be directly instantiated. Contrast: abstract class.

concurrency

The occurrence of two or more activities during the same time interval. Concurrency can be achieved by
interleaving or simultaneously executing two or more threads. See: thread.

concurrent substate

A substate that can be held simultaneously with other substates contained in the same composite state. See:
composite state. Contrast: disjoint substate.

connectable element

An abstract metaclass representing model elements which may be linked via connector. See: connector.
connector

A link that enables communication between two or more instances. The link may be realized by something as
simple as a pointer or by something as complex as a network connection.

constraint

A semantic condition or restriction. It can be expressed in natural language text, mathematically formal notation, or
in a machine-readable language for the purpose of declaring some of the semantics of a model element.
container

1. An instance that exists to contain other instances, and that provides operations to access or iterate over its
contents. (for example, arrays, lists, sets).

2. A component that exists to contain other components.

containment hierarchy

A namespace hierarchy consisting of model elements, and the containment relationships that exist between them.
A containment hierarchy forms a graph.

context

A view of a set of related modeling elements for a particular purpose, such as specifying an operation.

data type

A type whose values have no identity (i.e., they are pure values). Data types include primitive built-in types (such
as integer and string) as well as enumeration types.

delegation

The ability of an object to issue a message to another object in response to a message. Delegation can be used as
an alternative to inheritance. Contrast: inheritance.

dependency

UML Superstructure 2.0 Draft Adopted Specification 7

A relationship between two modeling elements, in which a change to one modeling element (the independent
element) will affect the other modeling element (the dependent element).

deployment diagram

A diagram that depicts the execution architecture of systems. It represents system artifacts as nodes, which are
connected through communication paths to create network systems of arbitrary complexity. Nodes are typically
defined in a nested manner, and represent either hardware devices or software execution environments. See:
component diagrams.

derived element

A model element that can be computed from another element, but that is shown for clarity or that is included for
design purposes even though it adds no semantic information.

design

The phase of the system development process whose primary purpose is to decide how the system will be
implemented. During design strategic and tactical decisions are made to meet the required functional and quality
requirements of a system.

design time

Refers to something that occurs during a design phase of the system development process. See: modeling time.
Contrast: analysis time.

development process

A set of partially ordered steps performed for a given purpose during system development, such as constructing
models or implementing models.

diagram

A graphical presentation of a collection of model elements, most often rendered as a connected graph of arcs
(relationships) and vertices (other model elements). UML supports the diagrams listed in Appendix A.

disjoint substate

A substate that cannot be held simultaneously with other substates contained in the same composite state. See:
composite state. Contrast: concurrent substate.

distribution unit

A set of objects or components that are allocated to a process or a processor as a group. A distribution unit can be
represented by a run-time composite or an aggregate.

domain

An area of knowledge or activity characterized by a set of concepts and terminology understood by practitioners in
that area.

dynamic classification

The assignment of an instance from one classifier to another. Contrast: multiple classification, static classification.
element

A constituent of a model.

entry action

An action that a method executes when an object enters a state in a state machine regardless of the transition
taken to reach that state.

enumeration

A data type whose instances a list of named values. For example, RGBColor = {red, green, blue}. Boolean is a
predefined enumeration with values from the set {false, true}.

event

The specification of a significant occurrence that has a location in time and space and can cause the execution of
an associated behavior. In the context of state diagrams, an event is an occurrence that can trigger a transition.
exception

A special kind of signal, typically used to signal fault situations. The sender of the exception aborts execution and
execution resumes with the receiver of the exception, which may be the sender itself. The receiver of an exception
is determined implicitly by the interaction sequence during execution; it is not explicitly specified.

execution occurrence

A unit of behavior within the lifeline as represented on an interaction diagram.

8 UML Superstructure 2.0 Draft Adopted Specification

exit action

An action that a method executes when an object exits a state in a state machine regardless of the transition taken
to exit that state.

export

In the context of packages, to make an element visible outside its enclosing namespace. See: visibility. Contrast:
export [OMA], import.

expression

A string that evaluates to a value of a particular type. For example, the expression “(7 + 5 * 3)” evaluates to a value
of type number.

extend

A relationship from an extension use case to a base use case, specifying how the behavior defined for the
extension use case augments (subject to conditions specified in the extension) the behavior defined for the base
use case. The behavior is inserted at the location defined by the extension point in the base use case. The base
use case does not depend on performing the behavior of the extension use case. See extension point, include.
extension

An aggregation that is used to indicate that the properties of a metaclass are extended through a stereotype, and
that gives the ability to flexibly add and remove stereotypes from classes.

facade

A stereotyped package containing only references to model elements owned by another package. It is used to
provide a ‘public view’ of some of the contents of a package.

feature

A property, such as an operation or attribute, that characterizes the instances of a classifier.

final state

A special kind of state signifying that the enclosing

composite state or the entire state machine is completed.

fire

To execute a state transition. See: transition.

focus class

A stereotyped class that defines the core logic or control flow for one or more auxiliary classes that support it.
Focus classes are typically used together with one or more auxiliary classes, and are particularly useful for
specifying the core business logic or control flow of components during design. See also: auxiliary class.

focus of control

A symbol on a sequence diagram that shows the period of time during which an object is performing an action,
either directly or through a subordinate procedure.

formal parameter

Synonym: parameter.

framework

A stereotyped package that contains model elements which specify a reusable architecture for all or part of a
system. Frameworks typically include classes, patterns or templates. When frameworks are specialized for an
application domain, they are sometimes referred to as application frameworks. See: pattern.

generalizable element

A model element that may participate in a generalization relationship. See: generalization.

generalization

A taxonomic relationship between a more general classifier and a more specific classifier. Each instance of the
specific classifier is also an indirect instance of the general classifier. Thus, the specific classifier indirectly has
features of the more general classifier. See: inheritance.

guard condition

A condition that must be satisfied in order to enable an associated transition to fire.

implementation

A definition of how something is constructed or computed. For example, a class is an implementation of a type, a
method is an implementation of an operation.

UML Superstructure 2.0 Draft Adopted Specification 9

implementation class

A stereotyped class that specifies the implementation of a class in some programming language (e.g., C++,
Smalltalk, Java) in which an instance may not have more than one class. An Implementation class is said to realize
a type if it provides all of the operations defined for the type with the same behavior as specified for the type's
operations. See also: type.

implementation inheritance

The inheritance of the implementation of a more general element. Includes inheritance of the interface. Contrast:
interface inheritance.

import

In the context of packages, a dependency that shows the packages whose classes may be referenced within a
given package (including packages recursively embedded within it). Contrast: export.

include

A relationship from a base use case to an inclusion use case, specifying how the behavior for the base use case
contains the behavior of the inclusion use case. The behavior is included at the location which is defined in the
base use case. The base use case depends on performing the behavior of the inclusion use case, but not on its
structure (i.e., attributes or operations). See extend.

inheritance

The mechanism by which more specific elements incorporate structure and behavior of more general elements.
See generalization.

initial state

A special kind of state signifying the source for a single transition to the default state of the composite state.
instance

An entity that has unique identity, a set of operations that can be applied to it, and state that stores the effects of the
operations. See: object.

interaction

A specification of how stimuli are sent between instances to perform a specific task. The interaction is defined in
the context of a collaboration. See collaboration.

interaction diagram

A generic term that applies to several types of diagrams that emphasize object interactions. These include
communication diagrams, sequence diagrams, and the interaction overview diagram.

interaction overview diagram

A disgram that depicts interactions through a variant of

activity diagrams in a way that promotes overview of

the control flow. It focuses on the overview of the flow of control where each node can be an interaction diagram.
interface

A named set of operations that characterize the behavior of an element.

interface inheritance

The inheritance of the interface of a more general element. Does not include inheritance of the implementation.
Contrast: implementation inheritance.

internal transition

A transition signifying a response to an event without changing the state of an object.

layer

The organization of classifiers or packages at the same level of abstraction. A layer may represent a horizontal
slice through an architecture, whereas a partition represents a vertical slice. Contrast: partition.

lifeline

A modeling element that represents an individual participant in an interaction. A lifeline represents only one
interacting entity.

link

A semantic connection among a tuple of objects. An instance of an association. See: association.

link end

An instance of an association end. See: association end.

10 UML Superstructure 2.0 Draft Adopted Specification

message

A specification of the conveyance of information from one instance to another, with the expectation that activity will
ensue. A message may specify the raising of a signal or the call of an operation.

metaclass

A class whose instances are classes. Metaclasses are typically used to construct metamodels.

meta-metamodel

A model that defines the language for expressing a metamodel. The relationship between a meta-metamodel and
a metamodel is analogous to the relationship between a metamodel and a model.

metamodel

A model that defines the language for expressing a model.

metaobject

A generic term for all metaentities in a metamodeling language. For example, metatypes, metaclasses,
metaattributes, and metaassociations.

method

The implementation of an operation. It specifies the algorithm or procedure associated with an operation.

model aspect

A dimension of modeling that emphasizes particular qualities of the metamodel. For example, the structural model
aspect emphasizes the structural qualities of the metamodel.

model elaboration

The process of generating a repository type from a published model. Includes the generation of interfaces and
implementations which allows repositories to be instantiated and populated based on, and in compliance with, the
model elaborated.

model element

An element that is an abstraction drawn from the system being modeled. Contrast: view element.

model library

A stereotyped package that contains model elements that are intended to be reused by other packages. A model
library differs from a profile in that a model library does not extend the metamodel using stereotypes and tagged
definitions. A model library is analogous to a class library in some programming languages.

modeling time

Refers to something that occurs during a modeling phase of the system development process. It includes analysis
time and design time. Usage note: When discussing object systems, it is often important to distinguish between
modeling-time and run-time concerns. See: analysis time, design time. Contrast: run time.

multiple classification

The assignment of an instance directly to more than one classifier at the same time. See: static classification,
dynamic classification.

multiple inheritance

A semantic variation of generalization in which a type may have more than one supertype. Contrast: single
inheritance.

multiplicity

A specification of the range of allowable cardinalities that a set may assume. Multiplicity specifications may be
given for association ends, parts within composites, repetitions, and other purposes. Essentially a multiplicity is a
(possibly infinite) subset of the non-negative integers. Contrast: cardinality.

n-ary association

An association among three or more classes. Each instance of the association is an n-tuple of values from the
respective classes. Contrast: binary association.

name

A string used to identify a model element.

namespace

A part of the model in which the names may be defined and used. Within a namespace, each name has a unique
meaning. See: name.

node

UML Superstructure 2.0 Draft Adopted Specification 11

A classifier that represents a run-time computational resource, which generally has at least memory and often
processing capability. Run-time objects and components may reside on nodes.

note

An annotation attached to an element or a collection of elements. A note has no semantics. Contrast: constraint.
object

An instance of a class. See: class, instance.

object diagram

A diagram that encompasses objects and their relationships at a point in time. An object diagram may be
considered a special case of a class diagram or a communication diagram. See: class diagram, communication
diagram.

object flow state

A state in an activity diagram that represents the passing of an object from the output of actions in one state to the
input of actions in another state.

object lifeline

A line in a sequence diagram that represents the existence of an object over a period of time. See: sequence
diagram.

operation

A feature which declares a service that can be performed by instances of the classifier of which they are instances.
package

A general purpose mechanism for organizing elements into groups. Packages may be nested within other
packages.

package diagram

A diagram that depicts how model elements are organized into packages and the dependencies among them,
including package imports and package extensions.

parameter

An argument of a behavioral feature. A parameter specifies arguments that are passed into or out of an invocation
of a behavioral element like an operation. A parameter’s type restricts what values can be passed. Synonyms:
formal parameter. Contrast: argument.

parameterized element

The descriptor for a class with one or more unbound parameters. Synonym: template.

parent

In a generalization relationship, the generalization of another element, the child. See: subclass, subtype. Contrast:
child.

part

An element representing a set of instances that are owned by a containing classifier instance or role of a classifier.
(See role.) Parts may be joined by attached connectors and specify configurations of linked instances to be created
within an instance of the containing classifier.

participate

The connection of a model element to a relationship or to a reified relationship. For example, a class participates in
an association, an actor participates in a use case.

partition

A grouping of any set of model elements based on a set of criteria.

1. activity diagram: A grouping of activity nodes and edges. Patrtitions divide the nodes and edges to constrain and
show a view of the contained nodes. Partitions can share contents. They often correspond to organizational units in
a business model. They may be used to allocate characteristics or resources among the nodes of an activity.

2. architecture: A set of related classifiers or packages at the same level of abstraction or across layers in a layered
architecture. A partition represents a vertical slice through an architecture, whereas a layer represents a horizontal
slice. Contrast: layer.

pattern

A template collaboration that describes the structure of

a design pattern. UML patterns are more limited than those used by the design pattern community. In general,

12 UML Superstructure 2.0 Draft Adopted Specification

design patterns involve many non-structural aspects, such as heuristics for their use and usage trade-offs.
persistent object

An object that exists after the process or thread that created it has ceased to exist.

pin

A model element that represents the data values passed into a behavior upon its invocation as well as the data
values returned from a behavior upon completion of its execution.

port

A feature of a classifier that specifies a distinct interaction point between that classifier and its environment or
between the (behavior of the) classifier and its internal parts. Ports are connected to other ports through connectors
through which requests can be made to invoke the behavioral features of a classifier.

postcondition

A constraint expresses a condition that must be true at the completion of an operation.

powertype

A classifier whose instances are also subclasses of another classifier. Power types, then, are metaclasses with an
extra twist: the instances are also subclasses.

precondition

A constraint expresses a condition that must be true when an operation is invoked.

primitive type

A pre-defined data type without any relevant substructure (i.e., is not decomposable) such as an integer or a string.
It may have an algebra and operations defined outside of UML, for example, mathematically.

procedure

A set of actions that may be attached as a unit to other parts of a model, for example, as the body of a method.
Conceptually a procedure, when executed, takes a set of values as arguments and produces a set of values as
results, as specified by the parameters of the procedure.

process

1. A heavyweight unit of concurrency and execution in an operating system. Contrast: thread, which includes
heavyweight and lightweight processes. If necessary, an implementation distinction can be made using
stereotypes.

2. A software development process—the steps and guidelines by which to develop a system.

3. To execute an algorithm or otherwise handle something dynamically.

profile

A stereotyped package that contains model elements that have been customized for a specific domain or purpose
using extension mechanisms, such as stereotypes, tagged definitions and constraints. A profile may also specify
model libraries on which it depends and the metamodel subset that it extends.

projection

A mapping from a set to a subset of it.

property

A named value denoting a characteristic of an element. A property has semantic impact. Certain properties are
predefined in the UML; others may be user defined. See: tagged value.

pseudo-state

A vertex in a state machine that has the form of a state, but doesn’t behave as a state. Pseudo-states include initial
and history vertices.

physical system

1. The subject of a model.

2. A collection of connected physical units, which can include software, hardware and people, that are organized to
accomplish a specific purpose. A physical system can be described by one or more models, possibly from different
viewpoints. Contrast: system.

qualifier

An association attribute or tuple of attributes whose values partition the set of objects related to an object across an
association.

realization

UML Superstructure 2.0 Draft Adopted Specification 13

A specialized abstraction relationship between two sets of model elements, one representing a specification (the
supplier) and the other representing an implementation of the latter (the client). Realization can be used to model
stepwise refinement, optimizations, transformations, templates, model synthesis, framework composition, etc.
receive [a message]

The handling of a stimulus passed from a sender instance. See: sender, receiver.

receiver

The object handling a stimulus passed from a sender object. Contrast: sender.

reception

A declaration that a classifier is prepared to react to the receipt of a signal.

reference

1. A denotation of a model element.

2. A named slot within a classifier that facilitates navigation to other classifiers. Synonym: pointer.

refinement

A relationship that represents a fuller specification of something that has already been specified at a certain level of
detail. For example, a design class is a refinement of an analysis class.

relationship

An abstract concept that specifies some kind of connection between elements. Examples of relationships include
associations and generalizations.

repository

A facility for storing object models, interfaces, and implementations.

requirement

A desired feature, property, or behavior of a system.

responsibility

A contract or obligation of a classifier.

reuse

The use of a pre-existing artifact.

role

The named set of features defined over a collection of entities participating in a particlar context.

Collaboration: The named set of behaviors possessed by a class or part participating in a particular context.

Part: a subset of a particular class which exhibits a subset of features possessed by the class

Associations: A synonym for association end often referring to a subset of classifier instances that are participating
in the association.

run time

The period of time during which a computer program or a systemexecutes. Contrast: modeling time.

scenario

A specific sequence of actions that illustrates behaviors. A scenario may be used to illustrate an interaction or the
execution of a use case instance. See: interaction.

semantic variation point

A point of variation in the semantics of a metamodel. It provides an intentional degree of freedom for the
interpretation of the metamodel semantics.

send [a message]

The passing of a stimulus from a sender instance to a receiver instance. See: sender, receiver.

sender

The object passing a stimulus to a receiver instance. Contrast: receiver.

sequence diagram

A diagram that depicts an interaction by focusing on the sequence of messages that are exchanged, along with
their corresponding event occurrences on the lifelines.

Unlike a communication diagram, a sequence diagram includes time sequences but does not include object
relationships. A sequence diagram can exist in a generic form (describes all possible scenarios) and in an instance
form (describes one actual scenario). Sequence diagrams and communication diagrams express similar
information, but show it in different ways. See: communication diagram.

14 UML Superstructure 2.0 Draft Adopted Specification

signal

The specification of an asynchronous stimulus that triggers a reaction in the receiver in an asynchronous way and
without a reply. The receiving object handles the signal as specified by its receptions. The data carried by a send
request and passed to it by the occurrence of the send invocation event that caused the request is represented as
attributes of the signal instance. A signal is defined independently of the classifiers handling the signal.
signature

The name and parameters of a behavioral feature. A signature may include an optional returned parameter.
single inheritance

A semantic variation of generalization in which a type may have only one supertype. Synonym: multiple inheritance
[OMA]. Contrast: multiple inheritance.

slot

A specification that an entity modeled by an instance specification has a value or values for a specific structural
feature.

software module

A unit of software storage and manipulation. Software modules include source code modules, binary code
modules, and executable code modules.

specification

A set of requirements for a system or other classifier. Contrast: implementation.

state

A condition or situation during the life of an object during which it satisfies some condition, performs some activity,
or waits for some event. Contrast: state [OMA].

state machine diagram

A diagram that depicts discrete behavior modeled through finite state-transition systems. In particular, it specifies
the sequences of states that an object or an interaction goes through during its life in response to events, together
with its responses and actions. See: state machine.

state machine

A behavior that specifies the sequences of states that an object or an interaction goes through during its life in
response to events, together with its responses and actions.

static classification

The assignment of an instance to a classifier where the assignment may not change to any other classifier.
Contrast: dynamic classification.

stereotype

A class that defines how an existing metaclass (or stereotype) may be extended, and enables the use of platform
or domain specific terminology or notation in addition to the ones used for the extended metaclass.

Certain stereotypes are predefined in the UML, others may be user defined. Stereotypes are one of the
extensibility mechanisms in UML. See: constraint, tagged value.

stimulus

The passing of information from one instance to another, such as raising a signal or invoking an operation. The
receipt of a signal is normally considered an event. See: message.

string

A sequence of text characters. The details of string representation depend on implementation, and may include
character sets that support international characters and graphics.

structural feature

A static feature of a model element, such as an attribute.

structural model aspect

A model aspect that emphasizes the structure of the objects in a system, including their types, classes,
relationships, attributes, and operations.

structure diagram

A form of diagram that depicts the elements in a specification that are irrespective of time. Class diagrams and
component diagrams are examples of structure diagrams.

subactivity state

UML Superstructure 2.0 Draft Adopted Specification 15

A state in an activity diagram that represents the execution of a non-atomic sequence of steps that has some
duration.

subclass

In a generalization relationship, the specialization of another class, the superclass. See: generalization. Contrast:
superclass.

submachine state

A state in a state machine that is equivalent to a

composite state but whose contents are described by another state machine.

substate

A state that is part of a composite state. See: concurrent state, disjoint state.

subpackage

A package that is contained in another package.

subsystem

A unit of hierarchical decomposition for large systems. A subsystem is commonly instantiated indirectly. Definitions
of subsystems vary widely among domains and methods, and it is expected that domain and method profiles will
specialize this construct. A subsystem may be defined to have specification and realization elements.

subtype

In a generalization relationship, the specialization of another type, the supertype. See: generalization. Contrast:
supertype.

superclass

In a generalization relationship, the generalization of another class, the subclass. See: generalization. Contrast:
subclass.

supertype

In a generalization relationship, the generalization of another type, the subtype. See: generalization. Contrast:
subtype.

supplier

A classifier that provides services that can be invoked by others. Contrast: client.

synch state

A vertex in a state machine used for synchronizing the

concurrent regions of a state machine.

system

An organized array of elements functioning as a unit

Also, a top-level subsystem in a model.

tagged value

The explicit definition of a property as a name-value pair. In a tagged value, the name is referred as the tag. Certain
tags are predefined in the UML; others may be user defined. Tagged values are one of three extensibility
mechanisms in UML. See: constraint, stereotype.

template

Synonym: parameterized element.

thread [of control]

A single path of execution through a program, a dynamic model, or some other representation of control flow. Also,
a stereotype for the implementation of an active object as lightweight process. See process.

time event

An event that denotes the time elapsed since the current state was entered. See: event.

time expression

An expression that resolves to an absolute or relative value of time.

timing diagram

An interaction diagram that shows the change in state or condition of a lifeline (representing a Classifier Instance or
Classifier Role) over linear time. The most common usage is to show the change in state of an object over time in
response to accepted events or stimuli.

top level

16 UML Superstructure 2.0 Draft Adopted Specification

A stereotype denoting the top-most package in a containment hierarchy. The topLevel stereotype defines the outer
limit for looking up names, as hamespaces “see” outwards. For example, opLevel subsystem represents the top of
the subsystem containment hierarchy.

trace

A dependency that indicates a historical or process relationship between two elements that represent the same
concept without specific rules for deriving one from the other.

transient object

An object that exists only during the execution of the process or thread that created it.

transition

A relationship between two states indicating that an object in the first state will perform certain specified actions
and enter the second state when a specified event occurs and specified conditions are satisfied. On such a change
of state, the transition is said to fire.

type

A stereotyped class that specifies a domain of objects together with the operations applicable to the objects,
without defining the physical implementation of those objects. A type may not contain any methods, maintain its
own thread of control, or be nested. However, it may have attributes and associations. Although an object may
have at most one implementation class, it may conform to multiple different types. See also: implementation class
Contrast: interface.

type expression

An expression that evaluates to a reference to one or more types.

uninterpreted

A placeholder for a type or types whose implementation is not specified by the UML. Every uninterpreted value has
a corresponding string representation. See: any [CORBA].

usage

A dependency in which one element (the client) requires the presence of another element (the supplier) for its
correct functioning or implementation.

use case

The specification of a sequence of actions, including variants, that a system (or other entity) can perform,
interacting with actors of the system. See: use case instances.

use case diagram

A diagram that shows the relationships among actors and the subject (system), and use cases.

use case instance

The performance of a sequence of actions being specified in a use case. An instance of a use case. See: use case
class.

use case model

A model that describes a system’s functional requirements in terms of use cases.

utility

A stereotype that groups global variables and procedures in the form of a class declaration. The utility attributes
and operations become global variables and global procedures, respectively. A utility is not a fundamental
modeling construct, but a programming convenience.

value

An element of a type domain.

vertex

A source or a target for a transition in a state machine. A vertex can be either a state or a pseudo-state. See: state,
pseudo-state.

view

A projection of a model that is seen from a given perspective or vantage point and omits entities that are not
relevant to this perspective.

view element

A textual and/or graphical projection of a collection of model elements.

view projection

UML Superstructure 2.0 Draft Adopted Specification 17

A projection of model elements onto view elements. A view projection provides a location and a style for each view
element.

visibility

An enumeration whose value (public, protected, or private) denotes how the model element to which it refers may
be seen outside its enclosing namespace.

5 Symbols

Editorial Comment: The FTF needs to complete this section (or possibly eliminate it)

6 Additional information

6.1 Changes to Adopted OMG Specifications

This specification, in conjunction with the specification that complementsit, the UML 2.0: Infrastructure, completely
replaces the UML 1.4.1 and UML 1.5 with Action Semantics specifications, except for the “Model Interchange Using
CORBA IDL" (see Chapter 5, Section 5.3 of the OMG UML Specification v1.4, OMG document ad/01-02-17). It is
recommended that “Model Interchange Using CORBA IDL” isretired as an adopted technology because of lack of vendor and
user interest.

6.2 Architectural Alignment and MDA Support

Chapter 1, “Language Architecture” of the UML 2.0: Infrastructure explains how the UML 2.0: Infrastructureis
architecturally aligned with the UML 2.0: Superstructure that complementsit. It also explains how the Infrastructurel ibrary
defined in the UML 2.0: Infrastructure can be strictly reused by MOF 2.0 specifications.

It isthe intent that the unified MOF 2.0 Core specification must be architecturally aligned with the UML 2.0: Infrastructure
part of this specification. Similarly, the unified UML 2.0 Diagram Interchange specification must be architecturally aligned
with the UML 2.0: Superstructure part of this specification.

The OMG’s Model Driven Architecture (MDA) initiative is an evolving conceptual architecture for a set of industry-wide
technology specifications that will support a model-driven approach to software development. Although MDA isnot itself a
technology specification, it represents an important approach and a plan to achieve a cohesive set of model-driven technology
specifications. This specification’s support for MDA is discussed in the UML 2.0: Infrastructure Appendix B, “ Support for
Model Driven Architecture”.

6.3 How to Read this Specification

The rest of this document contains the technical content of this specification. As background for this specification, readers are
encouraged to first read the UML: Infrastructure specification that complements this. Part I, “Introduction” of UML:
Infrastructure explains the language architecture structure and the formal approach used for its specification. Afterwards the
reader may choose to either explore the InfrastructureLibrary, described in Part |1, “Infrastructure Library”, or the
Classes::Kernel package which reusesit, described in Chapter 1, “Classes’. The former specifies the flexible metamodel
library that is reused by the latter; the latter defines the basic constructs used to define the UML metamodel.

With that background the reader should be well prepared to explore the user level constructs defined in this UML:

18 UML Superstructure 2.0 Draft Adopted Specification

Superstructure specification. These concepts are organized into three parts: Part | - “ Structure”, Part 11 - “Behavior”, and Part
111 - “Supplement”. Part | - “Structure” definesthe static, structural constructs (e.g., classes, components, nodes artifacts) used

in various structural diagrams, such as class diagrams, component diagrams and deployment diagrams. Part |1 - “Behavior”

specifiesthe dynamic, behavioral constructs (e.g., activities, interactions, state machines) used in various behavioral diagrams,

such as activity diagrams, sequence diagrams, and state machine diagrams. Part | - “ Structure” defines auxiliary constructs
(e.g., information flows, models, templates, primitive types) and the profiles used to customize UML for various domains,

platforms and methods.

Although the chapters are organized in alogical manner and can be read sequentially, thisis a reference specification is

intended to be read in a non-sequential manner. Consequently, extensive cross-references are provided to facilitate browsing
and search.

6.4

The following companies submitted and/or supported parts of this specification:

Acknowledgements

Adaptive

Advanced Concepts Center LLC
Alcatel

Artisan

Borland

Ceira Technologies
Commissariat aL'Energie Atomique
Computer Associates
Compuware
DaimlerChrysler

Domain Architects
Embarcadero Technologies
Enea Business Software
Ericsson

France Telecom
Fraunhofer FOKUS
Fujitsu

Gentleware

Intellicorp
Hewlett-Packard

I-Logix

International Business Machines

UML Superstructure 2.0 Draft Adopted Specification

19

IONA

Jaczone

Kabira Technologies
Kennedy Carter

Klasse Objecten
KLOCwork

Lockheed Martin
MEGA International
Mercury Computer
Motorola
MSC.Software
Northeastern University
Oracle

Popkin Software
Proforma

Project Technology
Sims Associates
SOFTEAM

Sun Microsystems
Syntropy Ltd.

Telelogic

Thales Group
TNI-Valiosys

Unisys

University of Kaiserslautern
University of Kent
VERIMAG

WebGain

X-Change Technologies
Tirene

88solutions

UML Superstructure 2.0 Draft Adopted Specification

The following persons were members of the core team that designed and wrote this specification: Don Baisley, Morgan
Bjorkander, Conrad Bock, Steve Cook, Philippe Desfray, Nathan Dykman, Anders Ek, David Frankel, Eran Gery, @ystein
Haugen, Sridhar lyengar, Cris Kobryn, Birger Mgller-Pedersen, James Odell, Gunnar Overgaard, Karin Palmkvist, Guus
Ramackers, Jim Rumbaugh, Bran Selic, Thomas Weigert and Larry Williams.

In addition, the following persons contributed val uable ideas and feedback that significantly improved the content and the
quality of this specification: Colin Atkinson, Ken Baclawski, Mariano Belaunde, Steve Brodsky, Roger Burkhart, Bruce
Douglass, Karl Frank, William Frank, Sandy Friedenthal, Sébastien Gerard, Dwayne Hardy, Mario Jeckle, Larry Johnson,

Allan Kennedy, Mitch Kokar, Thomas Kuehne, Michael Latta, Antoine Lonjon, Dave Mellor, Stephen Mellor, Joaquin Miller,

Jeff Mischkinksky, Hiroshi Miyazaki, Jishnu Mukerji, lleana Ober, Barbara Price, Tom Rutt, Kendall Scott, Oliver Sims,
Cameron Skinner, Jeff Smith, Doug Tolbert, and lan Wilkie.

UML Superstructure 2.0 Draft Adopted Specification

21

22

UML Superstructure 2.0 Draft Adopted Specification

Part | - Structure

This part defines the static, structural constructs (e.g., classes, components, nodes artifacts) used in various structural
diagrams, such as class diagrams, component diagrams and deployment diagrams. The UML packages that support

structural modeling are shown in Figure 1.

]

Classes

CompositeStructures

N

|
|

Components

A

|
|

Deployments

Figure 1 - UML packages that support structural modeling

The function and contents of these packages are described in following chapters, which are organized by major subject areas.

UML Superstructure 2.0 Draft Adopted Specification

23

24

UML Infrastructure 2.0 Draft Adopted Specification

7 Classes

7.1 Overview

The Classes package contains subpackages that deal with the basic modeling concepts of UML, and in particular classes and
their relationships.

Package Structure
Figure 2 describes the dependencies (i.e., package merges) between the subpackages of the package Classes.

Kernel
Y\\\\
«merge» / «merge»’ «merge» .
- PowerTypes
AssociationClasses Dependencies

«merge»

Interfaces

Figure 2 - The subpackages of the Classes package and their dependencies

Due to the size of the Kernel package, this chapter has been divided according to diagrams, where each diagram of Kernel is
turned into a separate section.

» “Kernel —the Root Diagram” on page 27

» “Kernel —the Namespaces Diagram” on page 31
» “Kernel —the Multiplicities Diagram” on page 40
» “Kernel —the Expressions Diagram” on page 45

» “Kernel —the Constraints Diagram” on page 53

» “Kernel —the Instances Diagram” on page 57

» “Kernel —the Classifiers Diagram” on page 61

» “Kernel —the Features Diagram” on page 71

» “Kernel —the Operations Diagram” on page 76

UML Superstructure 2.0 Draft Adopted Specification 25

» “Kernel —the Classes Diagram” on page 80
» “Kernel —the DataTypes Diagram” on page 94
» “Kernel —the Packages Diagram” on page 99

The packages AssociationClasses and Power Types are closely related to the Kernel diagrams, but are described in separate
sections (See “ AssociationClasses” on page 117 and “ PowerTypes’ on page 120, respectively). The packages Dependencies
and Interfaces are described in separate sections (See “ Dependencies’” on page 105 and “Interfaces’ on page 112,
respectively).

In those cases where any of the latter four packages add to the definitions of classes originally defined in Kernel, the
description of the additionsis found under the original class.

Reusing packages from UML 2.0 Infrastructure

The Kernel package represents the core modeling concepts of the UML, including classes, associations, and packages. This
part is mostly reused from the infrastructure library, since many of these concepts are the same as those that are used in for
example MOF. The Kernel packageisthe central part of the UML, and primarily reuses the Constructs and Abstractions
packages of the InfrastructureLibrary.

The reuse is accomplished by merging Constructs with the relevant subpackages of Abstractions. In many cases, the reused
classes are extended in the Kernel with additional features, associations, or superclasses. In subsequent diagrams showing
abstract syntax, the subclassing of elements from the infrastructure library is always elided since thisinformation only addsto
the complexity without increasing understandability. Each metaclass is completely described as part of this chapter; the text
from the infrastructure library is repeated here.

It should al so be noted that while Abstractions contained several subpackages, Kernel isaflat structure that like Constructs
only contains metaclasses. The reason for this distinction is that parts of the infrastructure library have been designed for
flexibility and reuse, while the Kernel in reusing the infrastructure library has to bring together the different aspects of the
reused metaclasses. In order to organize this chapter, we therefore use diagrams rather than packages as the main grouping
mechanism.

The packages that are explicitly merged from the InfrastructureLibrary::Core are the following:
 Abstractions::Instances
« Abstractions::MultiplicityExpressions
» Abstractions::Literals
 Absdtractions::Generalizations

« Constructs

26 UML Superstructure 2.0 Draft Adopted Specification

All other packages of the InfrastructureLibrary::Core are implicitly merged through the ones that are explicitly merged.

Core:: Core:: Core::
Abstractions:: Abstractions:: Abstractions::
Generalizations Literals MultiplicityExpressions

\\\\\\\ «merge» “’ ////
- | T «merge»

«merge» e |
Core::
Abstractions::
Instances

Kernel

Core::Constructs

«merge»

«merge»

Figure 3 - The InfrastructureLibrary packages that are merged by Kernel; all
dependencies in the picuture represent package merges

7.2 Kernel —the Root Diagram

The Root diagram of the Kernel package is shown in Figure 4.

+/owner

Element
0.1 {union}

+/ownedElement

* {union} +ownedComment
> ~ | Comment
{subsets ownedElement} =

0.1

: : +/relatedElement Eleme nt +annotatedElement c
Relationship omment
{union} 1..* N body : String
DirectedRelationship +/target
{union, 1..*
subsets relatedElement}
+/source
{union, 1.%

subsetsrelatedElement}

Figure 4 - The Root diagram of the Kernel package

UML Superstructure 2.0 Draft Adopted Specification

7.2.1 Comment (from Kernel)
A comment is atextual annotation that can be attached to a set of elements.

Description

A comment gives the ability to attach various remarks to elements. A comment carries no semantic force, but may contain
information that is useful to a modeler.

A comment can be owned by any element.

Attributes
e body: String Specifies a string that is the comment.

Associations
e annotatedElement: Element[*] References the Element(s) being commented.

Constraints
No additiona constraints.

Semantics
A Comment adds no semantics to the annotated elements, but may represent information useful to the reader of the model.

Notation

A Comment is shown as a rectangle with the upper right corner bent (thisis also known as a“note symbol”). The rectangle
contains the body of the Comment. The connection to each annotated element is shown by a separate dashed line.

Presentation Options

The dashed line connecting the note to the annotated element(s) may be suppressed if it is clear from the context, or not
important in this diagram.

Examples

This class was added

by Alan Wright after

meeting with the T
mission planning team. ——| Account

Figure 5 - Comment notation

7.2.2 DirectedRelationship (from Kernel)

A directed relationship represents a rel ationship between a collection of source model elements and a collection of target
model elements.

28 UML Superstructure 2.0 Draft Adopted Specification

Description

A directed relationship references one or more source elements and one or more target elements. Directed relationship isan
abstract metaclass.

Attributes
No additional attributes.

Associations

e/ source: Element [1..%] Specifies the sources of the DirectedRelationship. Subsets Relationship::relatedEle-
ment. Thisis aderived union.

e [target: Element [1..*] Specifies the targets of the DirectedRelationship. Subsets Relationship: :relatedElement.
Thisisaderived union.

Constraints
No additional constraints.

Semantics

DirectedRel ationship has no specific semantics. The various subclasses of DirectedRelationship will add semantics
appropriate to the concept they represent.

Notation

Thereisno general notation for a DirectedRel ationship. The specific subclasses of DirectedRelationship will define their own
notation. In most cases the notation is a variation on aline drawn from the source(s) to the target(s).

7.2.3 Element (from Kernel)
An element is a constituent of amodel. As such, it has the capability of owning other elements.

Description

Element is an abstract metaclass with no superclass. It is used as the common superclass for all metaclassesin the
infrastructure library. Element has a derived composition association to itself to support the general capability for elements
to own other elements.

Attributes
No additional attributes.

Associations
¢ ownedComment: Comment[*] The Comments owned by this el ement. Subsets Element:: ownedElement.

e [/ ownedElement: Element[*] The Elements owned by this element. Thisis a derived union.

e /owner; Element [0..1] The Element that owns this element. Thisis aderived union.

UML Superstructure 2.0 Draft Adopted Specification 29

Constraints

[1] Anelement may not directly or indirectly own itself.
not self.allOwnedElements()->includes(self)

[2] Elementsthat must be owned must have an owner.
self.mustBeOwned() implies owner->notEmpty()

Additional Operations
[1] The query allOwnedElements() gives all of the direct and indirect owned elements of an element.

Element::allOwnedElements(): Set(Element);
allownedElements = ownedElement->union(ownedElement->collect(e | e.allOwnedElements()))

[2] The query mustBeOwned() indicates whether elements of this type must have an owner. Subclasses of Element that do
not require an owner must override this operation.

Element::mustBeOwned() : Boolean;
mustBeOwned = true

Semantics

Subclasses of Element provide semantics appropriate to the concept they represent. The comments for an Element add no
semantics but may represent information useful to the reader of the model.

Notation
There is no general notation for an Element. The specific subclasses of Element define their own notation.

7.2.4 Relationship (from Kernel)
Relationship is an abstract concept that specifies some kind of relationship between elements.

Description
A relationship references one or more related elements. Relationship is an abstract metaclass.

Attributes
No additional attributes.

Associations
e /relatedElement: Element [1..*]Specifies the elements related by the Relationship. Thisis a derived union.

Constraints
No additional constraints.

Semantics

Relationship has no specific semantics. The various subclasses of Relationship will add semantics appropriate to the concept
they represent.

Notation

Thereisno general notation for a Relationship. The specific subclasses of Relationship will define their own notation. In most
cases the notation is a variation on aline drawn between the related elements.

30 UML Superstructure 2.0 Draft Adopted Specification

7.3 Kernel —the Namespaces Diagram

The Namespaces diagram of the Kernel packageis shown in Figure 6.

N\

NamedElement

name : Sting [0..1]
visibility : VisibilityKind [0..1]
I qualifiedName : String [0..1]

1

PackageableElement | jimporedmember Namespace
visibility : VisibilityKind

NamedElement

* {subsets member)

ubsets owne i} sub mber,
subsets ownedElement}

+importedElement

PackageableElement
{subsets target} 1

+elementimport

Elementim port
visibility : VisibilityKind
alias: Stiing [0..1]

fubsets ownedElement)

+importingNamespace +packagelmport Packagelmport +importedPackage

visibility : VisibilityKind

{subsets ownedElement) (subsetstarget) 1

Figure 6 - The Namespaces diagram of the Kernel package

In order to locate the metaclasses that are referenced from this diagram,
» See“DirectedRelationship (from Kernel)” on page 28.
» See“Element (from Kernel)” on page 29.
» See“Package (from Kernel)” on page 99.

7.3.1 Elementimport (from Kernel)

An element import identifies an element in another package, and allows the element to be referenced using its name without a
qualifier.

Description

An element import is defined as a directed relationship between an importing namespace and a packageable element. The
name of the packageable element or its aliasis to be added to the namespace of the importing namespace. It is also possible to
control whether the imported element can be further imported.

Attributes

e vidghility: VisibilityKind Specifiesthevisibility of theimported Packageabl eElement within the importing Package.
The default visibility is the same asthat of the imported element. If the imported element
does not have avisihility, it is possible to add visibility to the element import.

e dias String [0..1] Specifies the name that should be added to the namespace of the importing Pack-age in

lieu of the name of the imported PackagableElement. The aliased name must not clash
with any other member name in the importing Package. By default, no alias is used.

UML Superstructure 2.0 Draft Adopted Specification 31

Associations

« importedElement: PackageableElement [1] Specifies the Packageabl eElement whose name isto be added to a Namespace.
Subsets DirectedRel ationship::target.

« importingNamespace: Namespace [1] Specifies the Namespace that imports a Packageabl eElement from another Package.
Subsets DirectedRel ationship:: source and Element::owner.

Constraints

[1] Thevisibility of an Elementimport is either public or private.
self.visibility = #public or self.visibility = #private

[2] AnimportedElement has either public visibility or no visibility at all.
self.importedElement.visibility.notEmpty() implies self.importedElement.visibility = #public

Additional Operations

[1] The query getName() returns the name under which the imported Packageabl eElement will be known in the importing
namespace.
Elementimport::getName(): String;
getName =
if self.alias->notEmpty() then
self.alias
else
self.importedElement.name
endif

Semantics

An element import adds the name of a packageable element from a package to the importing namespace. It works by
reference, which means that it is not possible to add features to the element import itself, but it is possible to modify the
referenced element in the namespace from which it was imported. An element import is used to selectively import individual
elements without relying on a package import.

In case of a nameclash with an outer name (an element that is defined in an enclosing namespace is available using its
unqualified name in enclosed namespaces) in the importing namespace, the outer name is hidden by an ele-ment import, and
the unqualified name refers to the imported element. The outer name can be accessed using its qual-ified name.

If more than one element with the same name would be imported to a namespace as a consequence of element imports or
package imports, the names of the imported elements must be qualified in order to be used and the ele-ments are not added to
the importing namespace. If the name of an imported element is the same as the name of an element owned by the importing
namespace, the name of the imported element must be qualified in order to be used and is not added to the importing
namespace.

An imported element can be further imported by other namespaces using either element or member imports.

The visibility of the Elementimport may be either the same or more restricted than that of the imported element.

Notation

An element import is shown using a dashed arrow with an open arrowhead from the importing namespace to the imported
element. The keyword «import» is shown near the dashed arrow if the visibility is public, otherwise the key-word «access» is
shown.

If an element import has an alias, thisisused in lieu of the name of the imported element. The aliased name may be shown
after or below the keyword «import».

32 UML Superstructure 2.0 Draft Adopted Specification

Presentation options
If the imported element is a package, the keyword may optionally be preceded by element, i.e., «element import».

As an dternative to the dashed arrow, it is possible to show an element import by having atext that uniquely identifies the
imported element within curly brackets either below or after the name of the namespace. The textual syntax is then:

{element import <qualifiedName>} or { element access <qualifiedName>}
Optionally, the aliased name may be show as well:

{element import <qualifiedName> as <alias>} or { element access <qualifiedName> as <alias>}

Examples

The element import that is shown in Figure 7 allows elements in the package Program to refer to the type Timein Types
without qualification. However, they still need to refer explicitly to Types::Integer, since this element is not imported.

Types
«datatype»
Integer
——)
«import» «datatype»
Program A R Time

Figure 7 - Example of element import

In Figure 8, the element import is combined with aliasing, meaning that the type Types::Real will be referred to as Double in
the package Shapes.

Types
Shapes
«import»
«dzla-_\t,atyrl)e» < Double
eal [Nl Circle
radius: Double

Figure 8 - Example of element import with aliasing
7.3.2 NamedElement (from Kernel, Dependencies)

A named element is an element in amodel that may have a name.

UML Superstructure 2.0 Draft Adopted Specification 33

Description

A named element represents el ements that may have a name. The nameis used for identification of the named element within
the namespace in which it isdefined. A named element also has a qualified name that allowsit to be unambiguously identified
within a hierarchy of nested namespaces. NamedElement is an abstract metaclass.

Attributes
e name: String [0..1] The name of the NamedElement.

e [quaifiedName: String [0..1] A name which allows the NamedElement to be identified within a hierarchy of nested
Namespaces. It is constructed from the names of the containing namespaces starting at the
root of the hierarchy and ending with the name of the NamedElement itself. Thisisa
derived attribute.

e vishility: VisibilityKind [0..1] Determines the visibility of the NamedElement within different Namespaces within the
overall model.

Package Dependencies (“Dependencies” on page 105)
< supplierDependency: Dependency [*]Indicates the dependencies that reference the supplier.
e clientDependency: Dependency[*]Indicates the dependencies that reference the client.

Associations

e [/ namespace: Namespace [0..1] Specifies the namespace that owns the NamedElement. Subsets Element::owner. Thisisa
derived union.

Constraints
[1] If thereis no name, or one of the containing namespaces has no name, there is no qualified name.

(self.name->isEmpty() or self.allNamespaces()->select(ns | ns.name->isEmpty())->notEmpty())
implies self.qualifiedName->isEmpty()
[2] When there is a name, and all of the containing namespaces have a name, the qualified nhame is constructed from the
names of the containing namespaces.

(self.name->notEmpty() and self.allNamespaces()->select(ns | ns.name->isEmpty())->isEmpty()) implies
self.qualifiedName = self.allNamespaces()->iterate(ns : Namespace; result: String = self.name |
ns.name->union(self.separator())->union(result))

[3] If aNamedElement is not owned by a Namespace, it does not have a visibility.
namespace->isEmpty() implies visibility->isEmpty()

Additional Operations
[1] The query allNamespaces() gives the sequence of namespaces in which the NamedElement is nested, working outwards.

NamedElement::allNamespaces(): Sequence(Namespace);
allNamespaces =
if self.namespace->isEmpty()
then Sequence{}
else self.name.allNamespaces()->prepend(self.namespace)
endif

34 UML Superstructure 2.0 Draft Adopted Specification

[2] Thequery isDistinguishableFrom() determines whether two NamedElements may logically co-exist within a Namespace.
By default, two named elements are distinguishable if (a) they have unrelated types or (b) they have related types but dif-
ferent names.

NamedElement::isDistinguishableFrom(n:NamedElement, ns: Namespace): Boolean;
isDistinguishable =
if self.oclisKindOf(n.oclType) or n.ocllsKindOf(self.oclType)
then ns.getNamesOfMember(self)->intersection(ns.getNamesOfMember(n))->isEmpty()
else true
endif

[3] The query separator() gives the string that is used to separate names when constructing a qualified name.

NamedElement::separator(): String;
separator =’

Semantics

The name attribute is used for identification of the named element within namespaces where its name is accessible. Note that
the attribute has a multiplicity of [0..1] which provides for the possibility of the absence of a name (which is different from
the empty name).

The visibility attribute provides the means to constrain the usage of a named element in different namespaces within a model.
It isintended for use in conjunction with import and generalization mechanisms.

Notation
No additional notation.

7.3.3 Namespace (from Kernel)
A namespace is an element in amodel that contains a set of named elements that can be identified by name.

Description

A namespace is a named element that can own other named elements. Each named element may be owned by at most one
namespace. A namespace provides a means for identifying named elements by name. Named elements can be identified by
name in a namespace either by being directly owned by the namespace or by being introduced into the namespace by other
means e.g. importing or inheriting. Namespace is an abstract metaclass.

A namespace can own constraints. The constraint does not necessarily apply to the namespace itself, but may also apply to
elements in the namespace.

A namespace has the ability to import either individial members or all members of a package, thereby making it possible to
refer to those named elements without qualification in the importing namespace. In the case of conflicts, it is hecessary to use
qualified names or aliases to disambiguate the referenced elements.

Attributes
No additional attributes.

UML Superstructure 2.0 Draft Adopted Specification 35

Associations

« elementimport: Elementlmport [*]References the Elementimports owned by the Namespace. Subsets Ele-
ment: : ownedElement.

« /importedMember: PackageableElement [*] References the Packageabl eElements that are members of this Namespace as
aresult of either Packagel mports or Elementlmports. Subsets Namespace: : member.

* / member: NamedElement [*] A collection of NamedElements identifiable within the Namespace, either by being owned
or by being introduced by importing or inheritance. Thisis aderived union.

e/ ownedMember: NamedElement [*]A collection of NamedElements owned by the Namespace. Subsets Ele-
ment:: ownedElement and Namespace: :member. Thisis a derived union.

e ownedRule: Constraint[*] Specifies a set of Constraints owned by this Namespace. Subsets Namespace: : owned-
Member.

e packagelmport: Packagel mport [*] References the Packagel mports owned by the Namespace. Subsets Ele-
ment: : ownedElement.

Constraints

[1] All the members of a Namespace are distinguishable within it.
membersAreDistinguishable()

[2] TheimportedMember property is derived from the Elementlmports and the Packagel mports.

self.importedMember->includesAll(self.importedMembers(self.elementimport.importedElement.asSet()-
>union(self.packagelmport.importedPackage->collect(p | p.visibleMembers()))))

Additional Operations

[1] The query getNamesOfMember() givesa set of al of the names that a member would have in a Namespace. In general a
member can have multiple namesin a Namespace if it isimported more than once with different aliases. The query takes
account of importing. It gives back the set of names that an element would have in an importing namespace, either
because it is owned, or if not owned then imported individually, or if not individually then from a package.

Namespace::getNamesOfMember(element: NamedElement): Set(String);
getNamesOfMember =

if self.ownedMember ->includes(element)
then Set{}->include(element.name)
else let elementimports: Elementimport = self.elementimport->select(ei | ei.importedElement = element) in
if elementimports->notEmpty()
then elementimports->collect(el | el.getName())
else
self.packagelmport->select(pi | pi.importedPackage.visibleMembers()->includes(element))->

collect(pi | pi.importedPackage.getNamesOfMember(element))
endif

endif

[2] The Boolean query membersAreDistinguishable() determines whether al of the namespace’s members are distinguisha-
blewithinit.

Namespace::membersAreDistinguishable() : Boolean;
membersAreDistinguishable =
self.member->forAll(memb |
self.member->excluding(memb)->forAll(other |
memb.isDistinguishableFrom(other, self)))

36 UML Superstructure 2.0 Draft Adopted Specification

[3] The query importMembers() defines which of a set of PackageableElements are actually imported into the namespace.
This excludes hidden ones, i.e., those which have names that conflict with names of owned members, and also excludes
elements which would have the same name when imported.

Namespace::importMembers(imps: Set(PackageableElement)): Set(PackageableElement);
importMembers = self.excludeCollisions(imps)->select(imp | self.ownedMember->forAll(mem |
mem.imp.isDistinguishableFrom(mem, self)))

[4] The query excludeCollisions() excludes from a set of PackageableElements any that would not be distinguishable from
each other in this namespace.

Namespace::excludeCollisions(imps: Set(PackageableElements)): Set(PackageableElements);
excludeCollisions = imps->reject(impl | imps.exists(imp2 | not impl.isDistinguishableFrom(imp2, self)))

Semantics

A namespace provides a container for named elements. It provides a means for resolving composite names, such as
namel::name2::name3. The member association identifies all named elements in anamespace called N that can be referred to
by a composite name of the form N::<x>. Note that thisis different from all of the names that can be referred to unqualified
within N, because that set also includes al unhidden members of enclosing namespaces.

Named elements may appear within a namespace according to rules that specify how one named element is distinguishable
from another. The default ruleis that two elements are distinguishable if they have unrelated types, or related types but
different names. Thisrule may be overridden for particular cases, such as operations which are distinguished by their
signature.

The ownedRule constraints for a Namespace represent well formedness rules for the constrained elements. These constraints
are evaluated when determining if the model elements are well formed.

Notation

No additional notation. Concrete subclasses will define their own specific notation.
7.3.4 PackageableElement (from Kernel)
A packageable element indicates a named element that may be owned directly by a package.

Description

A packageable element indicates a named element that may be owned directly by a package.

Attributes

e visbility: VisibilityKind [1] Indicates that packageable elements must always have avisibility, i.e., visibility is not
optional. Redefines NamedElement:: visibility.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

No additional semantics.

UML Superstructure 2.0 Draft Adopted Specification 37

Notation

No additional notation.
7.3.5 Packagelmport (from Kernel)

A package import is arelationship that allows the use of unqualified names to refer to package members from other
namespaces.

Description

A package import is defined as a directed relationship that identifies a package whose members are to be imported by a
namespace.

Attributes

e visbility: VisibilityKind Specifies the visibility of the imported Packageabl eElements within the import-ing
Namespace, i.e., whether imported elements will in turn be visible to other packages that
use that importingPackage as an importedPackage. If the Packagel mport is public, the
imported elements will be visible outside the package, whileiif it is private they will not.
By default, the value of visibility is public.

Associations

« importedPackage: Package [1] Specifiesthe Package whose members are imported into a Namespace. Subsets Directe-
dRelationship::target.

« importingNamespace: Namespace [1] Specifies the Namespace that imports the members from a Package. Subsets Direct-
edRelationship:: source and Element::owner.
Constraints
[1] Thevisibility of a Packagelmport is either public or private.
self.visibility = #public or self.visibility = #private
Semantics

A package import is a relationship between an importing namespace and a package, indicating that the importing namespace

adds the names of the members of the package to its own namespace. Conceptually, a package import is equivalent to having
an element import to each individual member of the imported namespace, unless there is already a separately-defined element
import.

Notation

A package import is shown using a dashed arrow with an open arrowhead from the importing namespace to the imported
package. A keyword is shown near the dashed arrow to identify which kind of package import that isintended. The predefined
keywords are «import» for a public package import , and «access» for a private package import.

Presentation options

As an dternative to the dashed arrow, it is possible to show an element import by having atext that uniquely identi-fies the
imported element within curly brackets either below or after the name of the namespace. The textual syntax is then:

{import <qualifiedName>} or { access <qualifiedName>}

38 UML Superstructure 2.0 Draft Adopted Specification

Examples

In Figure 9, a number of package imports are shown. The elementsin Types are imported to ShoppingCart, and then further
imported WebShop. However, the elements of Auxiliary are only accessed from ShoppingCart, and cannot be referenced
using ungualified names from WebShop.

—
Auxiliary
§'\\ «access»
\‘\\\ ——1
— o ShoppingCart S —
Types é/«’ir;port» «import> | \WebShop

Figure 9 - Examples of public and private package imports
7.3.6 VisibilityKind (from Kernel)

VisibilityKind is an enumeration type that defines literals to determine the visibility of elementsin a model.

Description

VisibilityKind is an enumeration of the following literal values:

e public

e private
e protected
e package

Additional Operations

[1] The query bestVisibility() examines a set of VisibilityKinds that includes only public and private, and returns public asthe
preferred visibility.
VisibilityKind::bestVisibility(vis: Set(VisibilityKind)) : VisibilityKind;
pre: not vis->includes(#protected) and not vis->includes(#package)
bestVisibility = if vis->includes(#public) then #public else #private endif

Semantics

VisibilityKind isintended for use in the specification of visibility in conjunction with, for example, the Imports,
Generalizations and Packages packages. Detailed semantics are specified with those mechanisms. If the Visibility package is
used without those packages, these literals will have different meanings, or no meanings.

» A public element isvisibleto al elements that can access the contents of the namespace that ownsiit.
« A private element is only visible inside the namespace that ownsiit.
» A protected element is visible to elements that have a generalization relationship to the namespace that owns it.

» A package element is owned by a namespace that is not a package, and is visible to elements that are in the same pack-

UML Superstructure 2.0 Draft Adopted Specification 39

age as its owning namespace. Only named el ements that are not owned by packages can be marked as having package
visibility. Any element marked as having package element is visible to all elements within the nearest enclosing pack-
age (given that other owning elements have proper visibility). Outside the nearest enclosing package, an element
marked as having package visibility isnot visible.

In circumstances where a named element ends up with multiple visibilities, for example by being imported multiple times,
public visibility overrides private visibility, i.e., if an element is imported twice into the same namespace, once using a
public import and once using a private import, it will be public.

7.4 Kernel —the Multiplicities Diagram

The Multiplicities diagram of the Kernel package is shown in Figure 10.

Element
— % +ownerUpper
MultiplicityElement {subsets owner} +upperValue

isOrdered : Boolean = false ValueSpecification

isUnique : Boolean = true 0.1 {subsets ownedElement} 0.1
Unlimi +ownerLower
/ upper : UnlimitedNatural [0..1] {subsets owner} +lowerValue

/ lower : Integer [0..1]

0.1 {subsets ownedElement} g 1
NamedElement PackageableElement
Z% +t Zﬁ
TypedElement ype Type
0..1

Figure 10 - The Multiplicities diagram of the Kernel package.

In order to locate the metaclasses that are referenced from this diagram,
» See“Classifier (from Kernel, Dependencies, PowerTypes)” on page 61.
» See“Element (from Kernel)” on page 29.
» See"“VaueSpecification (from Kernel)” on page 52.
7.4.1 MultiplicityElement (from Kernel)
A multiplicity is a definition of an inclusive interval of non-negative integers beginning with a lower bound and ending

with a (possibly infinite) upper bound. A multiplicity element embeds this information to specify the allowable
cardinalities for an instantiation of this element.

40 UML Superstructure 2.0 Draft Adopted Specification

Description

A MultiplicityElement is an abstract metaclass which includes optional attributes for defining the bounds of a multiplicity.
A MultiplicityElement also includes specifications of whether the values in an instantiation of this element must be
unique or ordered.

Attributes

¢ isOrdered: Boolean For a multivalued multiplicity, this attribute specifies whether the values in an instantia-
tion of this element are sequentially ordered. Default is false.

e isUnique: Boolean For a multivalued multiplicity, this attributes specifies whether the valuesin an instantia-
tion of this element are unique. Default istrue.

e /lower : Integer [0..1] Specifies the lower bound of the multiplicity interval, if it is expressed as an integer.

e [upper : UnlimitedNatural [0..1]Specifies the upper bound of the multiplicity interval, if it is expressed as an unlimited
natural.

Associations

* lowerValue: ValueSpecification [0..1] The specification of the lower bound for this multiplicity. Subsets Ele-
ment: : ownedElement.

e upperValue: ValueSpecification [0..1] The specification of the upper bound for this multiplicity. Subsets Ele-
ment: :ownedElement.

Constraints

These constraint must handle situations where the upper bound may be specified by an expression not computable in the
model.
[1] A multiplicity must define at least one valid cardinality that is greater than zero.
upperBound()->notEmpty() implies upperBound() > 0
[2] Thelower bound must be a non-negative integer literal.
lowerBound()->notEmpty() implies lowerBound() >= 0
[3] The upper bound must be greater than or equal to the lower bound.
(upperBound()->notEmpty() and lowerBound()->notEmpty()) implies upperBound() >= lowerBound()

[4] If anon-literal ValueSpecification is used for the lower or upper bound, then evaluating that specification must not have
side effects.

Cannot be expressed in OCL.

[5] If anon-literal ValueSpecification is used for the lower or upper bound, then that specification must be a constant expres-
sion.

Cannot be expressed in OCL.

[6] Thederived lower attribute must equal the lowerBound.
lower = lowerBound()

[7] Thederived upper attribute must equal the upperBound.
upper = upperBound()

Additional Operations

[1] The query isMultivalued() checks whether this multiplicity has an upper bound greater than one.

UML Superstructure 2.0 Draft Adopted Specification 41

MultiplicityElement::isMultivalued() : Boolean;
pre: upperBound()->notEmpty()
isMultivalued = (upperBound() > 1)
[2] Thequery includesCardinality() checks whether the specified cardinality isvalid for this multiplicity.

MultiplicityElement::includesCardinality(C : Integer) : Boolean;
pre: upperBound()->notEmpty() and lowerBound()->notEmpty()
includesCardinality = (lowerBound() <= C) and (upperBound() >= C)
[3] The query includesMultiplicity() checks whether this multiplicity includes all the cardinalities allowed by the specified
multiplicity.
MultiplicityElement::includesMultiplicity(M : MultiplicityElement) : Boolean;
pre: self.upperBound()->notEmpty() and self.lowerBound()->notEmpty()
and M.upperBound()->notEmpty() and M.lowerBound()->notEmpty()
includesMultiplicity = (self.lowerBound() <= M.lowerBound()) and (self.upperBound() >= M.upperBound())
[4] The query lowerBound() returnsthe lower bound of the multiplicity as an integer.
MultiplicityElement::lowerBound() : [Integer];
lowerBound = if lowerValue->isEmpty() then 1 else lowerValue.integerValue() endif
[5] The query upperBound() returns the upper bound of the multiplicity for abounded multiplicity as an unlimited natural.

MultiplicityElement::upperBound() : [UnlimitedNatural];
upperBound = if upperValue->isEmpty() then 1 else upperValue.unlimitedValue() endif

Semantics

A multiplicity defines a set of integers that define valid cardinalities. Specifically, cardinality Cisvalid for multiplicity M if
M.includesCardinality(C).

A multiplicity is specified as an interval of integers starting with the lower bound and ending with the (possibly infinite) upper
bound.

If aMultiplicityElement specifies amultivalued multiplicity, then an instantiation of this element has a set of values. The
multiplicity is a constraint on the number of values that may validly occur in that set.

If the MultiplicityElement is specified as ordered (i.e. isOrdered is true), then the set of valuesin an instantiation of this
element is ordered. This ordering implies that there is a mapping from positive integers to the elements of the set of values. If
aMultiplicityElement is not multivalued, then the value for isOrdered has no semantic effect.

If the MultiplicityElement is specified as unordered (i.e. isOrdered is false), then no assumptions can be made about the order
of the valuesin an instantiation of this element.

If the MultiplicityElement is specified as unique (i.e. isUniqueistrue), then the set of valuesin an instantiation of this element
must be unique. If a MultiplicityElement is not multivalued, then the value for isUnique has no semantic effect.

The lower and upper bounds for the multiplicity of a MultiplicityElement may be specified by value specifications, such as
(side-effect free, constant) expressions.

Notation

The specific notation for a MultiplicityElement is defined by the concrete subclasses. In general, the notation will include a
multiplicity specification is shown as atext string containing the bounds of the interval, and a notation for showing the
optional ordering and uniqueness specifications.

The multiplicity bounds are typically shown in the format:
lower-bound..upper-bound

where lower-bound is an integer and upper-bound is an unlimited natural number. The star character (*) is used as part of a
multiplicity specification to represent the unlimited (or infinite) upper bound.

42 UML Superstructure 2.0 Draft Adopted Specification

If the Multiplicity is associated with an element whose notation is atext string (such as an attribute, etc.), the multiplicity
string will be placed within square brackets ([]) as part of that text string. Figure 11 shows two multiplicity strings as part of
attribute specifications within a class symbol.

If the Multiplicity is associated with an element that appears as a symbol (such as an association end), the multiplicity stringis
displayed without square brackets and may be placed near the symbol for the element. Figure 12 shows two multiplicity
strings as part of the specification of two association ends.

The specific notation for the ordering and uniqueness specifications may vary depending on the specific subclass of
MultiplicityElement. A general notation isto use a property string containing ordered or unordered to define the ordering, and
unique or nonunique to define the uniqueness.

Presentation Options

If the lower bound is equal to the upper bound, then an alternate notation is to use the string containing just the upper bound.
For example, “1" is semantically equivalent to “1..1".

A multiplicity with zero as the lower bound and an unspecified upper bound may use the alternative notation containing a
single star “*” instead of “0..*".

The following BNF defines the syntax for amultiplicity string, including support for the presentation options.
multiplicity ::= <multiplicity range> [‘{* <order_designator> ‘}’]
multiplicity range::=[lower ‘.."] upper
lower ::= integer | value specification
upper ::= unlimited_natural | ‘*’ | value_specification
<order_designator> :;= ordered | unordered
<uniqueness_designator> ::= unique | nonunique

Examples

Customer

purchase : Purchase [*] {ordered, unique}
account: Account [0..5] {unique}

Figure 11 - Multiplicity within a textual specification

purchase account
Purchase Customer Account
. lordered {unique}
unique} — 0.5

Figure 12 - Multiplicity as an adornment to a symbol
7.4.2 Type (from Kernel)

A type constrains the values represented by a typed element.

UML Superstructure 2.0 Draft Adopted Specification 43

Description

A type serves as a constraint on the range of values represented by a typed element. Type is an abstract metaclass.

Attributes
No additional attributes.

Associations

No additional associations.

Constraints

No additiona constraints.

Additional Operations

[1] Thequery conformsTo() givestrue for atype that conformsto ancther. By default, two types do not conform to each other.
This query isintended to be redefined for specific conformance situations.

conformsTo(other: Type): Boolean;
conformsTo = false

Semantics

A type represents a set of values. A typed element that has thistype is constrained to represent values within this set.

Notation

No general notation.
7.4.3 TypedElement (from Kernel)

A typed element has atype.

Description

A typed element is an element that has a type that serves as a constraint on the range of values the element can represent.
Typed element is an abstract metaclass.

Attributes
No additional attributes.

Associations

e type Type[0..1] The type of the TypedElement.

Constraints

No additiona constraints.

Semantics

Values represented by the element are constrained to be instances of the type. A typed element with no associated type may
represent values of any type.

44 UML Superstructure 2.0 Draft Adopted Specification

Notation

No general notation.

7.5 Kernel —the Expressions Diagram

The Expressions diagram of the Kernel package is shown in Figure 13.

TypedElement

+operand ValueSpecification

T

{ordered, subsets ownedElement} =

. - - +instance R
‘+expression Expression OpaqueExpression - — InstanceSpecification
- - LiteralSpecification InstanceValue
symbol : String body : String 1
0.1 language : String [0..1]
{subsets owner} %
Literal Boolean Literalinteger LiteralString LiteralUnlimitedNatural LiteralNull
value : Boolean value : Integer value : String value : Unlimited Natural

Figure 13 - The Expressions diagram of the Kernel package.

In order to locate the metaclasses that are referenced from this diagram,
» See“Element (from Kernel)” on page 29.
» See“InstanceSpecification (from Kernel)” on page 57.
« See“MultiplicityElement (from Kernel)” on page 40.

7.5.1 Expression (from Kernel)
An expression is a structured tree of symbolsthat denotes a (possibly empty) set of values when evaluated in a context.

Description

An expression represents a node in an expression tree, which may be non-terminal or terminal. It defines a symbol, and has a
possibly empty sequence of operands which are value specifications.

Attributes

e symbol: String [1] The symbol associated with the node in the expression tree.

UML Superstructure 2.0 Draft Adopted Specification 45

Associations

e operand: ValueSpecification[*] Specifies a sequence of operands. Subsets Element:: ownedElement.

Constraints

No additional constraints.

Semantics

An expression represents anode in an expression tree. If there are no operands it represents aterminal node. If there are
operands it represents an operator applied to those operands. In either case there is a symbol associated with the node. The
interpretation of this symbol depends on the context of the expression.

Notation

By default an expression with no operands is notated simply by its symbol, with no quotes. An expression with operandsis
notated by its symbol, followed by round parentheses containing its operands in order. In particular contexts special notations
may be permitted, including infix operators.

Examples

xor
else

plus(x,1)
x+1

7.5.2 OpaqueExpression (from Kernel)

An opague expression is an uninterpreted textual statement that denotes a (possibly empty) set of values when evaluated in a
context.

Description

An expression contains a language-specific text string used to describe a value or values, and an optional specification of the
language.

One predefined language for specifying expressionsis OCL. Natural language or programming languages may also be used.

Attributes
e body: String [1] The text of the expression.
e language: String [0..1] Specifies the language in which the expression is stated. The interpretation of the expres-

sion body depends on the language. If language is unspecified, it might be implicit from
the expression body or the context.

Associations

No additional associations.

Constraints

No additiona constraints.

46 UML Superstructure 2.0 Draft Adopted Specification

Additional Operations

These operations are not defined within the specification of UML. They should be defined within an implementation that
implements constraints so that constraints that use these operations can be evaluated.
[1] The query value() gives an integer value for an expression intended to produce one.

Expression::value(): Integer;
pre: self.isintegral()

[2] Thequery isintegral() tells whether an expression isintended to produce an integer.
Expression::isintegral(): Boolean;
[3] The query isPositive() tells whether an integer expression has a positive value.

Expression::isPositive(): Boolean;
pre: self.isintegral()

[4] The query isNonNegative() tells whether an integer expression has a non-negative value.

Expression::isNonNegative(): Boolean;
pre: self.isintegral()

Semantics

The interpretation of the expression body depends on the language. If the language is unspecified, it might beimplicit from the
expression body or the context.

It is assumed that alinguistic analyzer for the specified language will evaluate the body. The time at which the body will be
evaluated is not specified.

Notation

An opague expression is displayed as atext string in a particular language. The syntax of the string is the responsibility of a
tool and alinguistic analyzer for the language.

An opaque expression is displayed as a part of the notation for its containing element.

The language of an opague expression, if specified, is often not shown on a diagram. Some modeling tools may impose a
particular language or assume a particular default language. The language is often implicit under the assumption that the form
of the expression makes its purpose clear. If the language name is shown, it should be displayed in braces ({}) before the
expression string.

Style Guidelines

A language name should be spelled and capitalized exactly asit appearsin the document defining the language. For example,
use OCL, not ocl.

Examples

a>0

{OCL} i > jand self.size> i

average hours worked per week
7.5.3 InstanceValue (from Kernel)

An instance value is a value specification that identifies an instance.

UML Superstructure 2.0 Draft Adopted Specification 47

Description

An instance value specifies the value modeled by an instance specification.

Attributes
No additional attributes.

Associations

* instance: InstanceSpecification [1] The instance that is the specified value.

Constraints

No additiona constraints.

Semantics

The instance specification is the specified value.

Notation

An instance value can appear using textual or graphical notation. When textual, as can appear for the value of an attribute slot,
the name of the instance is shown. When graphical, areference value is shown by connecting to the instance. See
“InstanceSpecification”.

7.5.4 LiteralBoolean (from Kernel)

A literal boolean is a specification of a boolean value.

Description

A literal boolean contains a Boolean-valued attribute.

Attributes

e vaue Boolean The specified Boolean value.

Associations

No additional associations.

Constraints

No additiona constraints.

Additional Operations

[1] The query isComputable() is redefined to be true.

LiteralBoolean::isComputable(): Boolean;
isComputable = true

[2] The query booleanValue() givesthe value.

LiteralBoolean::booleanValue() : [Boolean];
booleanValue = value

48 UML Superstructure 2.0 Draft Adopted Specification

Semantics

A LiteralBoolean specifies a constant Boolean value.

Notation

A LiteralBoolean is shown as either the word ‘true’ or the word ‘false’, corresponding to its value.
7.5.5 Literalinteger (from Kernel)

A literal integer is a specification of an integer value.

Description

A literal integer contains an Integer-valued attribute.

Attributes
e vaue: Integer The specified Integer value.

Associations

No additional associations.

Constraints

No additional constraints.

Additional Operations

[1] The query isComputable() is redefined to be true.

Literallnteger::isComputable(): Boolean;
isComputable = true

[2] Thequery integerVaue() givesthe value.

Literallnteger::integerValue() : [Integer];
integerValue = value

Semantics

A Literallnteger specifies a constant Integer value.

Notation

A Literallnteger is shown as a sequence of digits.
7.5.6 LiteralNull (from Kernel)

A literal null specifiesthe lack of avalue.

Description

A literal null isused to represent null, i.e., the absence of avalue.

UML Superstructure 2.0 Draft Adopted Specification

49

Attributes
No additional attributes.

Associations

No additional associations.

Constraints
No additional constraints.

[1] The query isComputable() isredefined to be true.

LiteralNull::isComputable(): Boolean;
isComputable = true

[2] Thequery isNull() returnstrue.

LiteralNull::isNull() : Boolean;
isNull = true

Semantics

LiteralNull isintended to be used to explicitly model the lack of avalue.

Notation

Notation for LiteralNull varies depending on whereit is used. It often appears astheword ‘null’. Other notations are described
for specific uses.

7.5.7 LiteralSpecification (from Kernel)

A literal specification identifies aliteral constant being modeled.

Description

A literal specification is an abstract specialization of VaueSpecification that identifies aliteral constant being modeled.

Attributes
No additional attributes.

Associations

No additional associations.

Constraints

No additiona constraints.

Semantics

No additional semantics. Subclasses of Literal Specification are defined to specify literal values of different types.

Notation

No specific notation.

50 UML Superstructure 2.0 Draft Adopted Specification

7.5.8 LiteralString (from Kernel)
A literal string is a specification of a string value.

Description

A literal string contains a String-valued attribute.

Attributes
e vaue String The specified String value.

Associations

No additional associations.

Constraints

No additional constraints.

Additional Operations

[1] The query isComputable() is redefined to be true.

LiteralString::isComputable(): Boolean;
isComputable = true

[2] The query stringValue() gives the value.

LiteralString::stringValue() : [String];
stringValue = value

Semantics

A Literal String specifies a constant String value.

Notation
A Literal String is shown as a sequence of characters within double quotes.

The character set used is unspecified.

7.5.9 LiteralUnlimitedNatural (from Kernel)

A literal unlimited natural is a specification of an unlimited natural number.

Description

A literal unlimited natural contains a UnlimitedNatural-valued attribute.

Attributes
e vaue: UnlimitedNatural The specified UnlimitedNatural value.

Associations

No additional associations.

UML Superstructure 2.0 Draft Adopted Specification

51

Constraints

No additional constraints.

Additional Operations

[1] The query isComputable() isredefined to be true.

LiteralUnlimitedNatural::isComputable(): Boolean;
isComputable = true

[2] The query unlimitedvValue() givesthe value.

LiteralUnlimitedNatural::unlimitedValue() : [UnlimitedNatural];
unlimitedValue = value

Semantics

A LiteralUnlimitedNatural specifies a constant UnlimitedNatural value.

Notation
A LiteralUnlimitedNatural is shown either as a sequence of digits or as an asterisk (*), where an asterisk denotes unlimited
(and not infinity).

7.5.10 ValueSpecification (from Kernel)

A value specification is the specification of a (possibly empty) set of instances, including both objects and data values.

Description

ValueSpecification is an abstract metaclass used to identify avalue or valuesin amodel. It may reference an instance or it may
be an expression denoting an instance or instances when eval uated.

Attributes

e expression: Expression[0..1] If thisvalue specification is an operand, the owning expression. Subsets Element::owner.

Associations

No additiona associations.

Constraints

No additional constraints.

Additional Operations

These operations are introduced here. They are expected to be redefined in subclasses. Conforming implementations may be
able to compute values for more expressions that are specified by the constraints that involve these operations.

[1] Thequery isComputable() determines whether aval ue specification can be computed in amodel. This operation cannot be
fully defined in OCL. A conforming implementation is expected to deliver true for this operation for all value specifica-
tions that it can compute, and to compute all of those for which the operation is true. A conforming implementation is
expected to be able to compute the value of al literals.

ValueSpecification::isComputable(): Boolean;
isComputable = false

52 UML Superstructure 2.0 Draft Adopted Specification

(2]

(3]

[4]

(3]

(6]

The query integerVaue() gives asingle Integer value when one can be computed.

ValueSpecification::integerValue() : [Integer];
integerValue = Set{}

The query booleanValue() gives a single Boolean value when one can be computed.
ValueSpecification::booleanValue() : [Boolean];

booleanValue = Set{}

The query stringValue() gives asingle String value when one can be computed.

ValueSpecification::stringValue() : [String];
stringValue = Set{}

The query unlimitedValue() gives a single UnlimitedNatural value when one can be computed.

ValueSpecification::unlimitedValue() : [UnlimitedNaturall;
unlimitedValue = Set{}

The query isNull() returns true when it can be computed that the valueis null.

ValueSpecification::isNull() : Boolean;
isNull = false

Semantics

A value specification yields zero or more values. It isrequired that the type and number of values is suitable for the context
where the value specification is used.

Notation

No specific notation.

7.6 Kernel —the Constraints Diagram

The Constraints diagram of the Kernel package is shown in Figure 14.

‘ PackageableElement ‘

1

Element

Constraint +constrainedElement
Namesp ace
P +eontext {ordered} «
0.1 {union}
+namespace +ownedRule +gpecification
>
0.1 {subsetscontext} {subsetsownedMember} * 0.1 {subsetsownedElement} 1

ValueSpecification

Figure 14 - The Constraints diagram of the Kernel package

In order to locate the metaclasses that are referenced from this diagram,

» See“Element (from Kernel)” on page 29.

» See “Namespace (from Kernel)” on page 35.

» See “PackageableElement (from Kernel)” on page 37.
» See“VaueSpecification (from Kernel)” on page 52.

UML Superstructure 2.0 Draft Adopted Specification

53

7.6.1 Constraint (from Kernel)

A constraint is a condition or restriction expressed in natural language text or in a machine readable language for the purpose
of declaring some of the semantics of an element.

Description

Constraint contains a V alueSpecification that specifies additional semantics for one or more elements. Certain kinds of
constraints (such as an association “xor” constraint) are predefined in UML, others may be user-defined. A user-defined
Constraint is described using a specified language, whose syntax and interpretation is a tool responsibility. One predefined
language for writing constraintsis OCL . In some situations, a programming language such as Java may be appropriate for
expressing a constraint. In other situations natural language may be used.

Congtraint is a condition (a Boolean expression) that restricts the extension of the associated element beyond what isimposed
by the other language constructs applied to that element.

Congtraint contains an optional name, although they are commonly unnamed.

Attributes
No additional attributes.

Associations
« congtrainedElement: Element[*] The ordered set of Elements referenced by this Constraint.

e /context: Namespace[0..1] Specifies the Namespace that is the context for evaluating this constraint. Thisisa
derived union.

» gpecification: ValueSpecification[0..1]
A condition that must be true when evaluated in order for the constraint to be satisfied.
Subsets Element: : ownedElement.

Constraints

[1] The value specification for a constraint must evaluate to a boolean value.
Cannot be expressed in OCL.

[2] Evauating the value specification for a constraint must not have side effects.
Cannot be expressed in OCL.

[3] A constraint cannot be applied to itself.
not constrainedElement->includes(self)

Semantics

A Consgtraint represents additional semantic information attached to the constrained elements. A constraint is an assertion that
indicates arestriction that must be satisfied by a correct design of the system. The constrained elements are those elements
required to evaluate the constraint specification. In addition, the context of the Constraint may be accessed, and may be used as
the namespace for interpreting names used in the specification. For example, in OCL ‘self’ is used to refer to the context
element.

Congtraints are often expressed as atext string in some language. If aformal language such as OCL is used, then tools may be
ableto verify some aspects of the constraints.

In general there are many possible kinds of owners for aConstraint. The only restriction is that the owning element must have

54 UML Superstructure 2.0 Draft Adopted Specification

access to the constrai nedElements.

The owner of the Constraint will determine when the constraint specification is evaluated. For example, thisallows an
Operation to specify if a Constraint represents a precondition or a postcondition.

Notation

A Consgtraint is shown as atext string in braces ({}) according to the following BNF:
constraint ::= ‘{* [<name> ‘:’] <boolean expression>" }’

For an element whose notation is atext string (such as an attribute, etc.), the constraint string may follow the element text
string in braces. Figure 15 shows a constraint string that follows an attribute within a class symbol.

For a Constraint that applies to a single element (such as a class or an association path), the constraint string may be placed
near the symbol for the element, preferably near the name, if any. A tool must make it possible to determine the constrained
element.

For a Constraint that applies to two elements (such as two classes or two associations), the constraint may be shown as a
dashed line between the elements |abel ed by the constraint string (in braces). Figure 16 showsan { xor} constraint between two
associations.

Presentation Options

The constraint string may be placed in a note symbol and attached to each of the symbols for the constrained elements by a
dashed line. Figure 17 shows an example of a constraint in a note symbol.

If the congtraint is shown as a dashed line between two elements, then an arrowhead may be placed on one end. The direction
of the arrow isrelevant information within the constraint. The element at the tail of the arrow is mapped to the first position
and the element at the head of the arrow is mapped to the second position in the constrainedElements collection.

For three or more paths of the same kind (such as generalization paths or association paths), the constraint may be attached to
adashed line crossing all of the paths.

UML Superstructure 2.0 Draft Adopted Specification 55

56

Examples

Stack
size: Integer {size >= 0}
push()
pop()

Figure 15 - Constraint attached to an attribute

Account

/ Person
\
‘

Corporation

Figure 16 - {xor} constraint

UML Superstructure 2.0 Draft Adopted Specification

0.1/, boss

Person

employee

employer

*

0.1

Company

{self.boss->isEmpty() or
self.employer = self.boss.employer}

Figure 17 - Constraint in a note symbol

7.7 Kernel —the Instances Diagram

The Instances diagram of the Kernel package is shown in Figure 18.

PackageableElement

InstanceSpecification

+value

fordered ValueSpecification
ordered,

subsets ownedElement} *

A +owningSlot
{subsets owner}
+owninglnstance +slot Slot
0.1

1 {subsetsowner} {subsetsownedElement} *

+owninglnstanceSpec L

{subsets owner} +specification

ValueSpecification
0.1 {subsets ownedElement} 0..1

+dassifier

W Classifier
0..*

+definingFe ature
= StructuralFeature
1

Figure 18 - The Instances diagram of the Kernel package.

In order to locate the metaclasses that are referenced from this diagram,

» See“Classifier (from Kernel, Dependencies, PowerTypes)” on page 61.

» See“Element (from Kernel)” on page 29.

» See “PackageableElement (from Kernel)” on page 37.

» See“Structural Feature (from Kernel)” on page 75.

» See“VaueSpecification (from Kernel)” on page 52.

7.7.1 InstanceSpecification (from Kernel)

An instance specification isamodel element that represents an instance in a modeled system.

UML Superstructure 2.0 Draft Adopted Specification

57

Description

An instance specification specifies existence of an entity in amodeled system and completely or partially describes the entity.
The description may include:

- Classification of the entity by one or more classifiers of which the entity is an instance. If the only classifier specified
is abstract, then the instance specification only partially describes the entity.

» Thekind of instance, based on its classifier or classifiers— for example, an instance specification whose classifier isa
class describes an object of that class, while an instance specification whose classifier is an association describes alink
of that association.

» Specification of values of structural features of the entity. Not all structural features of all classifiers of the instance
specification need be represented by dots, in which case the instance specification isa partial description.

» Specification of how to compute, derive or construct the instance (optional).

InstanceSpecification is a concrete class.

Attributes
No additional attributes.

Associations

e classifier ; Classifier [0..%] The classifier or classifiers of the represented instance. If multiple classifiers are specified,
theinstanceis classified by all of them.

e dot: Sot[*] A dot giving the value or values of a structural feature of the instance. An instance speci-
fication can have one dot per structural feature of its classifiers, including inherited fea-
tures. It is not necessary to model a slot for each structural feature, in which case the
instance specification is a partial description. Subsets Element: : ownedElement.

e gpecification : ValueSpecification [0..1]A specification of how to compute, derive, or construct the instance. Subsets Ele-
ment: : ownedElement.

Constraints

[1] The defining feature of each slot is a structural feature (directly or inherited) of aclassifier of the instance specification.

slot->forAll(s |
classifier->exists(c | c.allFeatures()->includes(s.definingFeature)

)
[2] One structural feature (including the same feature inherited from multiple classifiers) is the defining feature of at most
one dot in an instance specification.

classifier->forAll(c |
(c.allFeatures()->forAll(f | slot->select(s | s.definingFeature = f)->size() <= 1)

)

Semantics

An instance specification may specify the existence of an entity in a modeled system. An instance specification may provide
anillustration or example of apossible entity in amodeled system. An instance specification describesthe entity. These details
can be incomplete. The purpose of an instance specification is to show what is of interest about an entity in the modeled
system. The entity conforms to the specification of each classifier of the instance specification, and has features with values
indicated by each ot of the instance specification. Having no slot in an instance specification for some feature does not mean
that the represented entity does not have the feature, but merely that the feature is not of interest in the model.

58 UML Superstructure 2.0 Draft Adopted Specification

An instance specification can represent an entity at a point in time (a snapshot). Changes to the entity can be modeled using
multiple instance specifications, one for each snapshot.

Note — When used to provide an illustration or example of an entity in amodeled system, an InstanceSpecification class does
not depict a precise run-time structure. Instead, it describes information about such structures. No conclusions can be drawn
about the implementation detail of run-time structure. When used to specify the existence of an entity in amodeled system, an
instance specification represents part of that system. Instance specifications can be modeled incompletely — required struc-
tural features can be omitted, and classifiers of an instance specification can be abstract, even though an actual entity would
have a concrete classification.

Notation

An instance specification is depicted using the same notation asiits classifier, but in place of the classifier name appears an
underlined concatenation of the instance name (if any), acolon (‘:") and the classifier name or names. If there are multiple
classifiers, the names are all shown separated by commas. Classifier names can be omitted from a diagram.

If an instance specification has a value specification as its specification, the value specification is shown either after an equal
sign (“=") following the name, or without an equal sign below the name. If the instance specification is shown using an
enclosing shape (such as arectangle) that contains the name, the value specification is shown within the enclosing shape.

streetName: String
"S. Crown Ct."

Figure 19 - Specification of an instance of String

Slots are shown using similar notation to that of the corresponding structural features. Where a feature would be shown
textually in acompartment, a slot for that feature can be shown textually as afeature name followed by an equal sign (‘=") and
avalue specification. Other properties of the feature, such asits type, can optionally be shown.

myAddress: Address

streetName ="S. Crown Ct."
streetNumber : Integer = 381

Figure 20 - Slots with values

An instance specification whose classifier is an association represents alink and is shown using the same notation as for an
association, but the solid path or paths connect instance specifications rather than classifiers. It is not necessary to show an
underlined name where it is clear from its connection to instance specifications that it represents alink and not an association.
End names can adorn the ends. Navigation arrows can be shown, but if shown, they must agree with the navigation of the

UML Superstructure 2.0 Draft Adopted Specification 59

association ends.

Don : Person | father son | Josh: Person

Figure 21 - Instance specifications representing two objects connected by a link

Presentation Options

A dlot value for an attribute can be shown using a notation similar to that for alink. A solid path runs from the owning
instance specification to the target instance specification representing the slot value, and the name of the attribute adorns
the target end of the path. Navigability, if shown, must be only in the direction of the target.

7.7.2 Slot (from Kernel)

A dot specifies that an entity modeled by an instance specification has a value or values for a specific structural feature.

Description

A dot isowned by an instance specification. It specifies the value or values for its defining feature, which must be a structural
feature of aclassifier of the instance specification owning the dlot.

Attributes
No additional attributes.

Associations

e definingFeature : Structural Feature [1]
The structural feature that specifies the values that may be held by the slot.

e owninglnstance : InstanceSpecification [1]
The instance specification that owns this slot. Subsets Element: : owner.

e value: InstanceSpecification [*]
The value or values corresponding to the defining feature for the owning instance specifi-
cation. Thisis an ordered association. Subsets Element:: ownedElement.

Constraints

No additiona constraints.

Semantics

A dot relates an instance specification, a structural feature, and a value or values. It represents that an entity modeled by the
instance specification has a structural feature with the specified value or values. The valuesin aslot must conform to the
defining feature of the dot (in type, multiplicity, etc.).

Notation

See “InstanceSpecification (from Kernel)”.

60 UML Superstructure 2.0 Draft Adopted Specification

7.8 Kernel —the Classifiers Diagram

The Classifiers diagram of the Kernel package is shown in Figure 22.

NamedElement RedefinableElement ‘Namespace ‘ Type ‘ DirectedRelationship

Classifier

+general Generalization
isSubstitutable : Boolean

" isAbstract : Boolean = false
+/redefinitionContext

RedefinableElement 1 {subsetstarget}
i +specific +generalization
isLeaf : Boolean = false {union} « >
{subsets source,
1 subsets owner} {subsetsownedElement} *
.)
finheritedMem ber NamedElement
+/redefi nedElement
{subsets member}
« f{union}

+redefinedClassifier

* {subsets redefinedElement}

+/general

Figure 22 - The Classifiers diagram of the Kernel package

In order to locate the metaclasses that are referenced from this diagram,
» See“DirectedRelationship (from Kernel)” on page 28.
» See“NamedElement (from Kernel, Dependencies)” on page 33.
» See “Namespace (from Kernel)” on page 35.
» See “PackageableElement (from Kernel)” on page 37.

7.8.1 Classifier (from Kernel, Dependencies, PowerTypes)
A classifier is aclassification of instances — it describes a set of instances that have features in common.

Description
A classifier is a namespace whose members can include features. Classifier is an abstract metaclass.

A classifier isatype and can own generalizations, thereby making it possible to define generalization relationships to other
classifiers. A classifier can specify a generalization hierarchy by referencing its general classifiers.

A classifier is aredefinable element, meaning that it is possible to redefine nested classifiers.

Attributes

e isAbstract: Boolean If true, the Classifier does not provide a complete declaration and can typically not be
instantiated. An abstract classifier isintended to be used by other classifierse.g. asthetar-
get of general metarel ationships or generalization relationships. Default valueis false.

UML Superstructure 2.0 Draft Adopted Specification 61

Associations

e attribute: Property [*] Refersto all of the Propertiesthat are direct (i.e. not inherited or imported) attributes of
the classifier. Subsets Classifier::feature and is a derived union.

e [feature: Feature [*] Specifies each feature defined in the classifier. Subsets Namespace::member. Thisisa
derived union.

e /genera : Classifier[*] Specifies the general Classifiersfor this Classifier. Thisis derived.

e generalization: Generalization[*]Specifies the Generalization relationships for this Classifier. These Generalizations navi-
gate to more general classifiersin the generalization hierarchy. Subsets Ele-
ment: : ownedElement.

¢ /inheritedMember: NamedElement[*]Specifies all elementsinherited by this classifier from the general classifiers. Sub-
sets Namespace:: member. Thisis derived.

* package: Package[0..1] Specifies the owning package of this classifier, if any. Subsets NamedEle-
ment: : namespace.

« redefinedClassifier: Classifier [*]References the Classifiers that are redefined by this Classifier. Subsets Redefinabl eEle-
ment: : redefinedElement.

Package Dependencies (“Dependencies” on page 105)

e substitution : Substitution References the substitutions that are owned by this Classifier. Subsets Ele-
ment:: ownedElement and NamedElement: : clientDependency.)

Package PowerTypes (“PowerTypes” on page 120)

¢ powertypeExtent : GeneralizationSet
Designates the GeneralizationSet of which the associated Classifier is a power type.

Constraints

[1] The general classifiers are the classifiers referenced by the generalization relationships.
general = self.parents()

[2] Generalization hierarchies must be directed and acyclical. A classifier can not be both a transitively general and transi-
tively specific classifier of the same classifier.

not self.allParents()->includes(self)
[3] A classifier may only specialize classifiers of avalid type.
self.parents()->forAll(c | self.maySpecializeType(c))

[4] TheinheritedMember association is derived by inheriting the inheritable members of the parents.
self.inheritedMember->includesAll(self.inherit(self.parents()->collect(p | p.inheritableMembers(self)))
Package PowerTypes (“PowerTypes” on page 120)

[5] TheClassifier that maps to a GeneralizationSet may neither be a specific nor ageneral Classifier in any of the Generaliza-
tion relationships defined for that GeneralizationSet. In other words, a power type may not be an instance of itself nor may
itsinstances also be its subclasses.

Additional Operations

[1] Thequery alFeatures() givesall of the featuresin the namespace of the classifier. In general, through mechanisms such as
inheritance, thiswill be alarger set than feature.

62 UML Superstructure 2.0 Draft Adopted Specification

Classifier::allFeatures(): Set(Feature);
allFeatures = member->select(ocllsKindOf(Feature))

[2] Thequery parents() givesall of the immediate ancestors of a generalized Classifier.
Classifier::parents(): Set(Classifier);
parents = generalization.general
[3] Thequery alParents() givesall of the direct and indirect ancestors of a generalized Classifier.
Classifier::allParents(): Set(Classifier);
allParents = self.parents()->union(self.parents()->collect(p | p.allParents())
[4] The query inheritableMembers() gives all of the members of a classifier that may be inherited in one of its descendants,
subject to whatever visibility restrictions apply.
Classifier::inheritableMembers(c: Classifier): Set(NamedElement);
pre: c.allParents()->includes(self)
inheritableMembers = member->select(m | c.hasVisibilityOf(m))
[5] Thequery hasVisibilityOf() determines whether anamed element isvisiblein the classifier. By default all arevisible. It is
only called when the argument is something owned by a parent.
Classifier::hasVisibilityOf(n: NamedElement) : Boolean;
pre: self.allParents()->collect(c | c.member)->includes(n)
hasVisibilityOf =true
[6] Thequery conformsTo() givestrue for aclassifier that defines atype that conforms to another. Thisis used, for example,
in the specification of signature conformance for operations.
Classifier::conformsTo(other: Classifier): Boolean;
conformsTo = (self=other) or (self.allParents()->includes(other))
[7] Thequery inherit() defines how to inherit a set of elements. Here the operation is defined to inherit them all. It isintended
to be redefined in circumstances where inheritance is affected by redefinition.
Classifier::inherit(inhs: Set(NamedElement)): Set(NamedElement);
inherit = inhs
[8] Thequery maySpecializeType() determines whether this classifier may have a generalization relationship to classifiers of
the specified type. By default a classifier may specialize classifiers of the same or a more general type. It isintended to be
redefined by classifiers that have different specialization constraints.

Classifier::maySpecialize Type(c : Classifier) : Boolean;
maySpecializeType = self.oclisKindOf(c.ocIType)

Semantics
A classifier isaclassification of instances according to their features.

A Classifier may participate in generalization relationships with other Classifiers. An instance of aspecific Classifier isalso an
(indirect) instance of each of the general Classifiers. Therefore, features specified for instances of the general classifier are
implicitly specified for instances of the specific classifier. Any constraint applying to instances of the general classifier aso
applies to instances of the specific classifier.

The specific semantics of how generalization affects each concrete subtype of Classifier varies. All instances of a classifier
have values corresponding to the classifier’s attributes.

A Classifier defines atype. Type conformance between generalizable Classifiers is defined so that a Classifier conformsto
itself and to all of its ancestorsin the generalization hierarchy.

Package PowerTypes (“PowerTypes” on page 120)

The notion of power type was inspired by the notion of power set. A power set is defined as a set whose instances are subsets.
In essence, then, a power type is a class whose instances are subclasses. The powertypeExtent association relates a Classifier

UML Superstructure 2.0 Draft Adopted Specification 63

with a set of generalizations which @) have a common specific Classifier, and b) represent a subclass partitioning of that class.

Semantic Variation Points

The precise lifecycle semantics of aggregation is a semantic variation point.

Notation

The default notation for a classifier is a solid-outline rectangle containing the classifier' s name, and optionally with
compartments separated by horizontal lines containing features or other members of the classifier. The specific type of
classifier can be shown in guillemets above the name. Some specializations of Classifier have their own distinct notations.

The name of an abstract Classifier is shown initalics.

An attribute can be shown as atext string that can be parsed into the various properties of an attribute. The basic syntax is
(with optional parts shown in braces):

[visibility] [/] name[: type] [multiplicity] [= default] [{ property-string }]
In the following bullets, each of these parts is described:
« visibility isavisibility symbol such as +, -, #, or ~. See VisibilityKind (from Kernel) on page -39.
-/ meansthe attribute is derived.
« nameisthe name of the attribute.
- typeidentifies aclassifier that is the attribute’s type.

« multiplicity shows the attribute’s multiplicity in square brackets. The term may be omitted when a multiplicity of 1
(exactly one) isto be assumed. See MultiplicityElement (from Kernel) on page -40

 default is an expression for the default value or values of the attribute.

« property-string indicates property values that apply to the attribute. The property string is optional (the braces are
omitted if no properties are specified).

The following property strings can be applied to an attribute: {readOnly}, { union}, { subsets <property-name>}, { redefines
<property-name>}, { ordered}, { bag}, { seq} or { sequence}, and { composite} .

An attribute with the same name as an attribute that would have been inherited is interpreted to be aredefinition, without the
need for a{redefines <x>} property string. Note that a redefined attribute is not inherited into a namespace where it is
redefined, so its name can be reused in the featuring classifier, either for the redefining attribute, or alternately for some other
attribute.

Presentation Options

Any compartment may be suppressed. A separator lineis not drawn for a suppressed compartment. If a compartment is
suppressed, no inference can be drawn about the presence or absence of elementsin it. Compartment names can be used to
remove ambiguity, if necessary.

An abstract Classifier can be shown using the keyword { abstract} after or below the name of the Classifier.

The type, visihility, default, multiplicity, property string may be suppressed from being displayed, even if there are valuesin
the model.

Theindividual properties of an attribute can be shown in columns rather than as a continuous string.

64 UML Superstructure 2.0 Draft Adopted Specification

Style Guidelines

Attribute names typically begin with alowercase |etter. Multiword names are often formed by concatenating the words and
using lowercase for all letter except for upcasing the first letter of each word but the first.

Examples

ClassA

name: String

shape: Rectangle

+ size: Integer [0..1]

| area: Integer {readOnly}
height: Integer=5

width: Integer

ClassB

id {redefines name}
shape: Square
height =7

/ width

Figure 23 - Examples of attributes

The attributesin Figure 23 are explained below.
« ClassA::nameis an attribute with type String.
» ClassA::shapeisan attribute with type Rectangle.
» ClassA::sizeisapublic attribute of type Integer with multiplicity 0..1.
» ClassA::areaisaderived attribute with type Integer. It is marked as read-only.
» ClassA::height is an attribute of type Integer with a default initial value of 5.
» ClassA::width is an attribute of type Integer
+ ClassB::id is an attribute that redefines ClassA::name.
» ClassB::shapeisan attribute that redefines ClassA::shape. It has type Square, a specialization of Rectangle.

» ClassB::height is an attribute that redefines ClassA::height. It has a default of 7 for ClassB instances which overrides
the ClassA default of 5.

« ClassB::width is aderived attribute that redefines ClassA::width, which is not derived.

UML Superstructure 2.0 Draft Adopted Specification 65

An attribute may also be shown using association notation, with no adornments at the tail of the arrow as shown in Figure 24.

] size
Window Area

Figure 24 - Association-like notation for attribute

Package PowerTypes (“PowerTypes” on page 120)

For example, aBank Account Type classifier could have a powertype association with a GeneralizationSet. This
GeneralizationSet could then associate with two Generalizations where the class (i.e., general Classifier) Bank Account has
two specific subclasses (i.e., Classifiers): Checking Account and Savings Account. Checking Account and Savings Account,
then, are instances of the power type: Bank Account Type. In other words, Checking Account and Savings Account are both:
instances of Bank Account Type, aswell as subclasses of Bank Account. (For more explanation and examples, see Examples
in the GeneralizationSet section, below.)

7.8.2 Generalization (from Kernel, PowerTypes)

A generalization is ataxonomic relationship between amore general classifier and a more specific classifier. Each instance of
the specific classifier is also an indirect instance of the general classifier. Thus, the specific classifier inherits the features of
the more general classifier.

Description

A generalization relates a specific classifier to amore general classifier, and is owned by the specific classifier.

Package PowerTypes (“PowerTypes” on page 120)

A generalization can be designated as being a member of a particular generalization set.

Attributes

e isSubstitutable: Boolean [0..1] Indicates whether the specific classifier can be used whereever the general classifier can
be used. If true, the execution traces of the specific classifier will be a superset of the exe-
cution traces of the general classifier.

Associations

e general: Classifier [1] References the genera classifier in the Generalization relationship.
Subsets DirectedRel ationship::target.

e gpecific: Classifier [1] References the specializing classifier in the Generalization relationship.
Subsets DirectedRel ati onship:: source and Element: :owner.

Package PowerTypes (“PowerTypes” on page 120)

e generalizationSet Designates a set in which instances of Generalization is considered members.

Constraints

No additiona constraints.

66 UML Superstructure 2.0 Draft Adopted Specification

Package PowerTypes (“PowerTypes” on page 120)

[1] Every Generalization associated with a given GeneralizationSet must have the same general Classifier. That is, all Gener-
alizations for a particular GeneralizationSet must have the same superclass.

Semantics

Where a generalization relates a specific classifier to a general classifier, each instance of the specific classifier isalso an
instance of the general classifier. Therefore, features specified for instances of the general classifier areimplicitly specified for
instances of the specific classifier. Any constraint applying to instances of the general classifier also appliesto instances of the
specific classifier.

Package PowerTypes (“PowerTypes” on page 120)

Each Generalization isabinary relationship that relates a specific Classifier to amore general Classifier (i.e., a subclass). Each
GeneralizationSet contains a particular set of Generalization relationships that collectively describe the way in which aspecific
Classifier (or class) may be partitioned. The generalizationSet associates those instances of a Generalization with a particular
GeneralizationSet.

For example, one Generalization could relate Person as a general Classifier with a Female Person as the specific Classifier.
Another Generalization could al so relate Person as a general Classifier, but have Male Person as the specific Classifier. These
two Generalizations could be associated with the same GeneralizationSet, because they specify one way of partitioning the
Person class.

Notation

A Generalization is shown as aline with an hollow triangle as an arrowhead between the symbols representing the involved
classifiers. The arrowhead points to the symbol representing the general classifier. This notation is referred to asthe “ separate
target style”. See the example section below.

Package PowerTypes (“PowerTypes” on page 120)

A generalization is shown as aline with an hollow triangle as an arrowhead between the symbols representing the involved
classifiers. The arrowhead points to the symbol representing the general classifier. When these relationships are named, that
name designates the GeneralizationSet to which the Generalization belongs. Each GeneralizationSet has a name (which it
inherits sinceit is asubclass of PackableElement). Therefore, all Generalization relationships with the same Generali zationSet
name are part of the same GeneralizationSet. This notation form is depicted in a), below.

When two or more lines are drawn to the same arrowhead, asillustrated in b) below, the specific Classifiers are part of the
same GeneralizationSet. When diagrammed in the way, the lines do not need to be labeled separately; instead the
generalization set need only be labeled once. The labels are optional because the GeneralizationSet is clearly designated.

Lastly in c) below, a GeneralizationSet can be designated by drawing a dashed line across those lines with separate arrowheads
that are meant to be part of the same set, asillustrated at the bottom of the figure below. Here, aswith b), the GeneralizationSet
may be labeled with a single name, instead of each line labeled separately. However, such labels are optional because the

UML Superstructure 2.0 Draft Adopted Specification 67

GeneralizationSet is clearly designated.

another
Generalization Set

one Generalization Set

generalization

generalization
set name-2

generalization
set name-1

set name-1

a) GeneralizationSet sharing same general Classifier using the same generalization relationship names.

one another generaization generalization
Generalization A Generalization St set name-1 et name-2
Set generalization
set name-1 generdlization
set name-2
another
Generalization Set

one Generalization Set
b) GeneralizationSet designation by subtypes sharing a common generalization arrowhead.

one another
Generallzatl on P~
R Generalization Set
generdization generdization
set name- - — set name-2

¢) GeneralizationSet sharing same general Classifier using the dashed-line notation.

Figure 25 - GeneralizationSet designation notations

Presentation Options

Multiple Generalization relationships that reference the same general classifier can be connected together in the “ shared target
style”. See the exampl e section below.

68 UML Superstructure 2.0 Draft Adopted Specification

Examples

Shape Separate target style
Polygon Ellipse Spline
Shared target style
Shape 9 y
Polygon Ellipse Spline

Figure 26 - Examples of generalizations between classes

Package PowerTypes (“PowerTypes” on page 120)

In theillustration below, the Person class can be specialized as either a Female Person or a Male Person. Furthermore,
Person’ s can be specialized as an Employee. Here, Femal e Person or a Male Person of Person constitute one GeneralizationSet
and Manager another. Thisillustration employs the notation forms depicted in the diagram above.

Person Person
’ employment
ender
.) employment g status
gender, gender Status
Female Employee
Female Male Employee Person
Person Person
Mae
Person
Person Person
employment
gender 7_/2 fF- Satus 712 ?_
Female Mae Femal Male
Employee €
Person Person ploy! Person Person Employee

Figure 27 - Multiple subtype partitions (GeneralizationSets) example

UML Superstructure 2.0 Draft Adopted Specification 69

7.8.3 RedefinableElement (from Kernel)

A redefinable element is an element that, when defined in the context of a classifier, can be redefined more specifically or
differently in the context of another classifier that specializes (directly or indirectly) the context classifier.

Description

A redefinable element is a named element that can be redefined in the context of a generalization. RedefinableElement is an
abstract metaclass.

Attributes

e isLeaf: Boolean Indicates whether it is possible to further specialize a RedefinableElement. If the value is
true, then it is not possible to further specialize the RedefinableElement. Default valueis
false.

Associations

e | redefinedElement: RedefinableElement[*] The redefinable element that is being redefined by this element. Thisisa
derived union.

e /[redefinitionContext: Classifier[* |References the contexts that this element may be redefined from. Thisis a derived
union.

Constraints

[1] Atleast one of the redefinition contexts of the redefining element must be a specialization of at least one of the redefinition
contexts for each redefined element.

self.redefinedElement->forAll(e | self.isRedefinitionContextValid(e))
[2] A redefining element must be consistent with each redefined element.
self.redefinedElement->forAll(re | re.isConsistentWith(self))

Additional Operations

[1] The query isConsistentWith() specifies, for any two RedefinableElementsin a context in which redefinition is possible,
whether redefinition would be logically consistent. By default, thisis false; this operation must be overridden for sub-
classes of RedefinableElement to define the consistency conditions.

RedefinableElement::isConsistentWith(redefinee: RedefinableElement): Boolean;

pre: redefinee.isRedefinitionContextValid(self)

isConsistentWith = false

[2] The query isRedefinitionContextValid() specifies whether the redefinition contexts of this RedefinableElement are prop-

erly related to the redefinition contexts of the specified RedefinableElement to allow this element to redefine the other. By
default at least one of the redefinition contexts of this element must be a specialization of at least one of the redefinition
contexts of the specified element.

RedefinableElement::isRedefinitionContexValid(redefinable: RedefinableElement): Boolean;

isRedefinitionContextValid = self.redefinitionContext->exists(c |
redefinable.redefinitionContext->exists(c | c.allParents()->includes(r))
)

Semantics
A RedefinableElement represents the general ability to be redefined in the context of a generalization relationship. The

detailed semantics of redefinition varies for each specialization of RedefinableElement.

70 UML Superstructure 2.0 Draft Adopted Specification

A redefinable element is a specification concerning instances of a classifier that is one of the element’ s redefinition contexts.
For aclassifier that specializes that more general classifier (directly or indirectly), another element can redefine the element

from the general classifier in order to augment, constrain, or override the specification as it applies more specifically to
instances of the specializing classifier.

A redefining element must be consistent with the element it redefines, but it can add specific constraints or other details that

are particular to instances of the specializing redefinition context that do not contradict invariant constraints in the general

context.

A redefinable element may be redefined multiple times. Furthermore, one redefining element may redefine multiple inherited
redefinable elements.

Semantic Variation Points

There are various degrees of compatibility between the redefined element and the redefining element, such as name

compatibility (the redefining element has the same name as the redefined element), structural compatibility (the client visible
properties of the redefined element are also properties of the redefining element), or behavioral compatibility (the redefining

element is substitutable for the redefined element). Any kind of compatibility involves a constraint on redefinitions. The

particular constraint chosen is a semantic variation point.

Notation

No general notation. See the subclasses of RedefinableElement for the specific notation used.

7.9

Kernel —the Features Diagram

The Features diagram of the Kernel package is shown in Figure 28.

nnnnn

+/parameter

TypedElement MultiplicityElement

A A

isReadOnly : Boolean = false

Parameter

[vau

.. * |direction : ParameterDirctionKind = in

o
I/ default: String [0..1]

{orde:

ubsets parameter,
subsets ownedMember}

ubsets namespace} +retumResult

0.1 {ordere
subsets parameter,
subsets ownedMember}

| Twe
+raisedException +

Figure 28 - The Features diagram of the Kernel package

In order to locate the metaclasses that are referenced from this diagram,

» See“Classifier (from Kernel, Dependencies, PowerTypes)” on page 61.

» See“NamedElement (from Kernel, Dependencies)” on page 33.

» See “Namespace (from Kernel)” on page 35.

UML Superstructure 2.0 Draft Adopted Specification

0.1 {subsetsowner) {sub:

o

1

71

» See “RedefinableElement (from Kernel)” on page 70.
» See“TypedElement (from Kernel)” on page 44.
» See“VaueSpecification (from Kernel)” on page 52.

7.9.1 BehavioralFeature (from Kernel)

A behavioral feature is afeature of a classifier that specifies an aspect of the behavior of itsinstances.

Description

A behavioral feature specifies that an instance of a classifier will respond to a designated request by invoking a behavior.
Behavioral Feature is an abstract metaclass specializing Feature and Namespace. Kinds of behavioral aspects are modeled by
subclasses of Behavioral Feature.

Attributes
No additional attributes.

Associations

e formalParameter: Parameter[*] Specifies the ordered set of formal parameters of this BehavioralFeature. Subsets
Behavioral Feature: ; parameter and Namespace: : ownedMember.

e raisedException: Type[*] References the Types representing exceptions that may be raised during an invocation of
this operation.

e [parameter; Parameter|[*] Specifies the parameters of the Behaviora Feature. Subsets Namespace: : member. Thisisa
derived union and is ordered.

e returnResult: Parameter[*] Specifies the ordered set of return results of this Behavioral Feature. Subsets Behavioral-
Feature:: parameter and Namespace: : ownedMember.

Constraints

No additiona constraints.

Additional Operations

[1] The query isDistinguishableFrom() determines whether two Behavioral Features may coexist in the same Namespace. It
specifies that they have to have different signatures.

BehavioralFeature::isDistinguishableFrom(n: NamedElement, ns: Namespace): Boolean;
isDistinguishableFrom =
if n.ocllsKindOf(BehavioralFeature)
then
if ns.getNamesOfMember(self)->intersection(ns.getNamesOfMember(n))->notEmpty()
then Set{}->including(self)->including(n)->isUnique(bf | bf.parameter->collect(type))
else true
endif
else true
endif

Semantics

Thelist of parameters describes the order and type of arguments that can be given when the Behavioral Feature is invoked.

72 UML Superstructure 2.0 Draft Adopted Specification

Theformal parameters define the type, and number, of arguments that must be provided when invoking the Behavioral Feature.
The return results define the type, and number, of arguments that will be returned from a successful invocation. A
Behavioral Feature may raise an exception during its invocation.

Notation

No additional notation.
7.9.2 Feature (from Kernel)

A feature declares abehavioral or structural characteristic of instances of classifiers.

Description

A feature declares abehavioral or structural characteristic of instances of classifiers. Feature is an abstract metaclass.

Attributes

e isStatic: Boolean Specifies whether the feature is applied at the classifier-level (true) or the instance-level
(false). Default valueisfalse.

Associations

» [featuringClassifier: Classifier [1..%]
The Classifiers that have this Feature as a feature. Thisis a derived union.

Constraints

No additional constraints.

Semantics

A Feature represents some characteristic for its featuring classifiers. A Feature can be a feature of multiple classifiers.

Notation
No general notation. Subclasses define their specific notation.

Static features are underlined.

Presentation Options

Only the names of static features are underlined.
7.9.3 Parameter (from Kernel)

A parameter is a specification of an argument used to pass information into or out of an invocation of a behavioral feature.

Description

A parameter is a specification of an argument used to pass information into or out of an invocation of a behavioral feature. It
has atype, and may have amultiplicity and an optional default value.

UML Superstructure 2.0 Draft Adopted Specification 73

Attributes

e [default: String [0..1] Specifies a String that represents a value to be used when no argument is supplied for the
Parameter. Thisis a derived value.

e direction: ParameterDirectionKind [1] Indicates whether a parameter isbeing sent into or out of abehavioral element. The
default valueisin.

Associations

e /operation: Operation[0..1] References the Operation for which thisis aformal parameter. Subsets NamedEle-
ment: : namespace.

« defaultValue: ValueSpecification [0..1] Specifies a ValueSpecification that represents a val ue to be used when no argument
is supplied for the Parameter. Subsets Element:: ownedElement.

Constraints

No additional constraints.

Semantics

A parameter specifies how arguments are passed into or out of an invocation of abehavioral feature like an operation. The type
and multiplicity of a parameter restrict what values can be passed, how many, and whether the values are ordered.

If adefault is specified for a parameter, then it is evaluated at invocation time and used as the argument for this parameter if
and only if no argument is supplied at invocation of the behavioral feature.

A parameter may be given a name, which then identifies the parameter uniquely within the parameters of the same behavioral
feature. If it isunnamed, it is distinguished only by its position in the ordered list of parameters.

Notation

No general notation. Specific subclasses of Behavioral Feature will define the notation for their parameters.

Style Guidelines

A parameter name typically starts with alowercase letter.
7.9.4 ParameterDirectionKind (from Kernel)
Parameter direction kind is an enumeration type that defines literals used to specify direction of parameters.

Description

ParameterDirectionKind is an enumeration of the following literal values:

e in Indicates that parameter values are passed into the behavioral element by the caller.

e inout Indicates that parameter values are passed into a behavioral element by the caller and then
back out to the caller from the behaviora element.

e out Indicates that parameter values are passed from a behavioral element out to the caller.

e return Indicates that parameter val ues are passed as return values from a behavioral element back
to the caller.

74 UML Superstructure 2.0 Draft Adopted Specification

7.9.5 StructuralFeature (from Kernel)
A structural feature is atyped feature of a classifier that specify the structure of instances of the classifier.

Description

A structural featureis atyped feature of a classifier that specify the structure of instances of the classifier. Structural feature is
an abstract metaclass.

By specializing multiplicity element, it supports a multiplicity that specifies valid cardinalities for the set of values associated
with an instantiation of the structural feature.

Attributes
¢ isReadOnly: Boolean States whether the feature’s value may be modified by a client. Default is false.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

A structural feature specifies that instances of the featuring classifier have a slot whose value or values are of a specified type.

Notation

A read only structural feature is shown using { readOnly} as part of the notation for the structural feature. A modifiable
structural feature is shown using { unrestricted} as part of the notation for the structural feature. This annotation may be
suppressed, in which caseit is not possible to determine its value from the diagram.

Presentation Option

It is possible to only allow suppression of this annotation when isReadOnly=false. In this case it is possible to assume this
valuein all cases where {readOnly} is not shown.

UML Superstructure 2.0 Draft Adopted Specification 75

7.10 Kernel —the Operations Diagram

The Operations diagram of the Kernel package is shown in Figure 29.

BehavioralFeature
4 +operation +formalParameter
Operation Parameter
isQuery : Boolean =fal® 0"1(subsets namespace} {re defines formalParameter} *
/isOdered : Boolean
/isUnique : Bool ean ¢+p reContext +precondition
/ lower: Integer {subsets context Constraint
/ upper : UnlimitedNatural 0"1sjbset5names;)aée} {subsets ownedMember}
+postContext +postcondition
subse ts context,
® b
0..1sybsets namespace} {subsets ownedMember} *
+bodyContext +bodyCondition
0.1 lsubsetscontext, (qhcetsownedMember} @1
subsetsnamegace}
+ltype
i Type
0.1
+raisedException
*
+redefinedOperation
* {subsetsredefinedElement}

Figure 29 - The Operations diagram of the Kernel package.

In order to locate the metaclasses that are referenced from this diagram,
» See“Behaviora Feature (from Kernel)” on page 72.
» See“Congtraint (from Kernel)” on page 54.
» See“Classifier (from Kernel, Dependencies, PowerTypes)” on page 61.
» See“Parameter (from Kernel)” on page 73.

7.10.1 Operation (from Kernel)

An operation is abehavioral feature of a classifier that specifies the name, type, parameters, and constraints for invoking an
associated behavior.

Description

An operation is abehavioral feature of a classifier that specifies the name, type, parameters, and constraints for invoking an
associated behavior.

76 UML Superstructure 2.0 Draft Adopted Specification

Attributes

e class: Class[0..1] The class that owns this operation. Subsets Redefinabl eElement: : redefinitionContext,
NamedElement: : namespace and Feature:: featuringClassifier.

e [isOrdered : Boolean Specifies whether the return parameter is ordered or not, if present. Thisis derived.

e isQuery : Boolean Specifies whether an execution of the Behavioral Feature |eaves the state of the system
unchanged (isQuery=true) or whether side effects may occur (isQuery=false). The default
valueisfase

e [isUnique: Boolean Specifies whether the return parameter is unique or not, if present. Thisis derived.

e /lower : Integer[0..1] Specifies the lower multiplicity of the return parameter, if present. Thisis derived.

e Jupper : UnlimitedNatural[0..1] Specifies the upper multiplicity of the return parameter, if present.Thisis derived.

Associations

¢ bodyCondition: Constraint[0..1]An optional Constraint on the result values of an invocation of this Operation. Subsets
Namespace: : ownedMember.

« formalParameter: Parameter[*] Specifies the formal parameters for this Operation. Redefines Behavioral Feature: :formal-
Parameter.

e postcondition: Constraint[*] An optional set of Constraints specifying the state of the system when the Operation is
completed. Subsets Namespace: : ownedMember.

e precondition: Congtraint[*] ~ An optional set of Constraints on the state of the system when the Operation is invoked.
Subsets Namespace: : ownedMember.

e raisedException: Type[*] References the Types representing exceptions that may be raised during an invocation of
this operation. Redefines Basi c::Operation.rai sedException and Behavioral Fea-
ture.rai sedException.

« redefinedOperation: Operation[*]References the Operations that are redefined by this Operation. Subsets Redefinabl eEl e-
ment.redefinedElement.

Itype: Type[0..1] Specifies the return result of the operation, if present. Thisis aderived value.

Constraints

[1] If this operation has asingle return result, isOrdered equal s the value of isOrdered for that parameter. Otherwise isOrdered
isfase.
isOrdered = if returnResult->size() = 1 then returnResult->any().isOrdered else false endif

[2] If thisoperation has asingle return result, isUnique equals the value of isUnique for that parameter. Otherwise isUniqueis
true.

isUnique = if returnResult->size() = 1 then returnResult->any().isUnique else true endif

[3] If this operation has a single return result, lower equals the value of lower for that parameter. Otherwise lower is not
defined.

lower = if returnResult->size() = 1 then returnResult->any().lower else Set{} endif

[4] If this operation has a single return result, upper equals the value of upper for that parameter. Otherwise upper is not
defined.

upper = if returnResult->size() = 1 then returnResult->any().upper else Set{} endif
[5] If this operation has a single return result, type equals the value of type for that parameter. Otherwise type is not defined.

UML Superstructure 2.0 Draft Adopted Specification 77

type = if returnResult->size() = 1 then returnResult->any().type else Set{} endif

[6] A bodyCondition can only be specified for a query operation.
bodyCondition->notEmpty() implies isQuery

Additional Operations

[1] The query isConsistentWith() specifies, for any two Operationsin a context in which redefinition is possible, whether
redefinition would be logically consistent. A redefining operation is consistent with aredefined operation if it has the
same number of formal parameters, the same number of return results, and the type of each formal parameter and return
result conforms to the type of the corresponding redefined parameter or return result.
Operation::isConsistentWith(redefinee: RedefinableElement): Boolean;
pre: redefinee.isRedefinitionContextValid(self)
isConsistentWith = (redefinee.ocllsKindOf(Operation) and

let op: Operation = redefinee.oclAsType(Operation) in
self.formalParameter.size() = op.formalParameter.size() and
self.returnResult.size() = op.returnResult.size() and

forAll(i | op.formalParameter(i].type.conformsTo(self.formalParameter[i].type)) and
forAll(i | op.returnResult[i].type.conformsTo(self.returnResult[i].type))

Semantics
An operation isinvoked on an instance of the classifier for which the operation is a feature.

The preconditions for an operation define conditions that must be true when the operation isinvoked. These preconditions may
be assumed by an implementation of this operation.

The postconditions for an operation define conditions that will be true when the invocation of the operation is completes
successfully, assuming the preconditions were satisfied. These postconditions must be satisfied by any implementation of the
operation.

The bodyCondition for an operation constrains the return result. The bodyCondition differs from postconditions in that the
bodyCondition may be overridden when an operation is redefined, whereas postconditions can only be added during
redefinition.

An operation may raise an exception during its invocation. When an exception is raised, it should not be assumed that the
postconditions or bodyCondition of the operation are satisfied.

An operation may be redefined in a specialization of the featured classifier. This redefinition may specialize the types of the
formal parameters or return results, add new preconditions or postconditions, add new raised exceptions, or otherwise refine
the specification of the operation.

Each operation states whether or not its application will modify the state of the instance or any other element in the model

(isQuery).
An operation may be owned by and in the namespace of a class that provides the context for its possible redefinition.

Semantic Variation Points

The behavior of an invocation of an operation when a precondition is not satisfied is a semantic variation point.

Notation

An operation is shown as atext string of the form:
visibility name (parameter-list) : property-string

« Wherevisibility is the operation’s visibility -- visibility may be suppressed.

78 UML Superstructure 2.0 Draft Adopted Specification

Where name is the operation’s name.

Where parameter-list is a comma-separated list of formal parameters, each specified using the syntax:
direction name : type-expression [multiplicity] = default-value [{ property-string }]

* Where direction is the parameter’ s direction, with the default of in if absent.
* Where name is the parameter’ s name.
* Where type-expression identifies the type of the parameter.

« Where multiplicity is the parameter’ s multiplicity in square brackets -- multiplicity may be suppressed in which
case[1] is assumed.

« Where default-value is a value specification for the default value of the parameter. The default value is optional
(the equal sign is also omitted if the default value is omitted).

» Where property-string indicates property values that apply to the parameter. The property string is optional (the
braces are omitted if no properties are specified).

Where property-string optionally shows other properties of the operation enclosed in braces.

Presentation Options

The parameter list can be suppressed.

Style Guidelines

An operation name typically begins with alowercase letter.

Examples

display ()
-hide ()
+createWindow (location: Coordinates, container: Container [0..1]): Window

+toString (): String

UML Superstructure 2.0 Draft Adopted Specification

79

7.11 Kernel —the Classes Diagram

The Classes diagram of the Kernel package is shown in Figure 30.

Structural Feature
felenonsntp

A A

+dassfer +lattribute
Classifier Property
union, d : Boolean = false
0.1 {subsets redefinitionContext} { isDerive +memberEnd Association
subsetsfeature} |isReadOnly : Boolean = false +assoclation
isDerivedUnion : Boolean = false 2 isDerived: Boolean = fals
+olass +ownedatibute | % S0 g 10.4] . prdeed, 0.1
ci d= subsets member} +lendType
lass ind = none “+owningAssociation Type
0.1 {subsetsclassifier, {ordered, * |/ iComposite : Boolean
subsets namespace, subsetsaatribute, . {ordered, {subsetsassociation, 0.1 -
subsets featuringClassifier} subsets owne dM em ber} subsets mem berEnd, Subse‘snamespace' o
subsets feature, subsets featuringClassifier}
+aibs tedProperty subsets ownedMember}
* +owningProperty +defaultvalue
“lsuperClass ” i gl
defi |
sfedefinesgeneral} +redefinedProperty
{subsets redefinedElement) +
+lopposite
<<enumeration>>
0.1 AggregationKind

+clas +nestedClassifier none

o dered oo
0.1 {subsetsnamespace, {ordered, « - Composite

subsets redefinit onContext} ~ subsets ownedMember}

+olass +ownedOperation
Operation
0.1 {subsetsredefinitionContext, {ordered, ‘
subsef
subsets featuringClassifier} subsets
ownedMember}

Figure 30 - The Classes diagram of the Kernel package

In order to locate the metaclasses that are referenced from this diagram,
» See“Classifier (from Kernel, Dependencies, PowerTypes)” on page 61.
« See“Operation (from Kernel)” on page 76.
» See“Relationship (from Kernel)” on page 30.
» See“Structural Feature (from Kernel)” on page 75.
» See"“VaueSpecification (from Kernel)” on page 52.

7.11.1 AggregationKind (from Kernel)

AggregationKind is an enumeration type that specifiesthe literals for defining the kind of aggregation of a property.

Description

AggregationKind is an enumeration of the following literal values:

e none Indicates that the property has no aggregation.

e shared Indicates that the property has a shared aggregation.

e composite Indicates that the property is aggregated compositely, i.e., the composite object has
responsibility for the existence and storage of the composed objects (parts).

Semantic Variation Points

Precise semantics of shared aggregation varies by application area and modeler.

80 UML Superstructure 2.0 Draft Adopted Specification

The order and way in which part instances are created is not defined.
7.11.2 Association (from Kernel)

An association describes a set of tuples whose values refers to typed instances. An instance of an association is called alink.

Description

An association specifies a semantic relationship that can occur between typed instances. It has at |east two ends represented by
properties, each of which is connected to the type of the end. More than one end of the association may have the same type.

When a property is owned by an association it represents a non-navigable end of the association. In this case the property does
not appear in the namespace of any of the associated classifiers. When a property at an end of an association is owned by one
of the associated classifiersit represents a navigable end of the association. In this case the property is aso an attribute of the
associated classifier. Only binary associations may have navigable ends.

Attributes

e isDerived : Boolean Specifies whether the association is derived from other model elements such as other asso-
ciations or constraints. The default valueis false.

Associations

« memberEnd : Property [2..*] Each end represents participation of instances of the classifier connected to theend in
links of the association. Thisis an ordered association. Subsets Namespace:: member.

« ownedEnd : Property [*] The non-navigable ends that are owned by the association itself. Thisis an ordered associ-
ation. Subsets Association::member End, Classifier::feature, and Namespace: : owned-
Member.

e [endType: Type[l..*] References the classifiers that are used as types of the ends of the association.

Constraints

[1] An association specializing another association has the same number of ends as the other association.
self.parents()->forAll(p | p.memberEnd.size() = self. memberEnd.size())

[2] When an association specializes another association, every end of the specific association corresponds to an end of the
general association, and the specific end reaches the same type or a subtype of the more general end.

[3] endTypeisderived from the types of the member ends.
self.endType = self. memberEnd->collect(e | e.type)

Semantics

An association declares that there can be links between instances of the associated types. A link is atuple with one value for
each end of the assocaition, where each value is an instance of the type of the end.

When one or more ends of the association have isUnique=false, it is possible to have several links associating the same set of
instances. In such a case, links carry an additional identifier apart from their end values.

When one or more ends of the association are ordered, links carry ordering information in addition to their end values.

For an association with N ends, choose any N-1 ends and associate specific instances with those ends. Then the collection of
links of the association that refer to these specific instances will identify a collection of instances at the other end. The
multiplicity of the association end constrains the size of this collection. If the end is marked as ordered, this collection will be

UML Superstructure 2.0 Draft Adopted Specification 81

ordered. If the end is marked as unique, this collection is a set; otherwise it allows duplicate elements.

An end of one association may be marked as a subset of an end of another in circumstances where (a) both have the same
number of ends, and (b) each of the set of types connected by the subsetting association conforms to a corresponding type
connected by the subsetted association. In this case, given aset of specific instances for the other ends of both associations, the
collection denoted by the subsetting end is fully included in the collection denoted by the subsetted end.

An end of one association may be marked as redefining an end of another in circumstances where (a) both have the same
number of ends, and (b) each of the set of types connected by the redefing association conforms to a corresponding type
connected by the redefined association. In this case, given a set of specific instances for the other ends of both associations, the
collections denoted by the redefining and redefined ends are the same.

Associations may be specialized. The existence of alink of a specializing association implies the existence of alink relating
the same set of instances in a specialized association.

The semantics of navigable association ends are the same as for attributes.
Note — For n-ary associations, the lower multiplicity of an end is typicaly 0. If the lower multiplicity for an end of an n-ary

association of 1 (or more) implies that one link (or more) must exist for every possible combination of values for the other
ends.

An association may represent a composite aggregation (i.e., awhole/part relationship). Only binary associations can be
aggregations. Composite aggregation is a strong form of aggregation that requires a part instance be included in at most one
composite at atime. If acomposite is deleted, al of its parts are normally deleted with it. Note that a part can (where allowed)
be removed from a composite before the composite is deleted, and thus not be deleted as part of the composite. Compositions
define transitive asymmetric relationships—their links form a directed, acyclic graph. Composition is represented by the
isComposite attribute on the part end of the association being set to true.

Semantic Variation Points

The order and way in which part instances in a composite are created is not defined.

Thelogical relationship between the derivation of an association and the derivation of its endsis not defined.

The interaction of association specialization with association end redefinition and subsetting is not defined.

Notation

Any association may be drawn as adiamond (larger than a terminator on aline) with asolid line for each association end
connecting the diamond to the classifier that is the end’ stype. An association with more than two ends can only be drawn this

way.

A binary assocation isnormally drawn as asolid line connecting two classifiers, or asolid line connecting asingle classifier to
itself (the two ends are distinct). A line may consist of one or more connected segments. The individual segments of the line
itself have no semantic significance, but they may be graphically meaningful to atool in dragging or resizing an association
symbol.

An association symbol may be adorned as follows:

» The association’s name can be shown as a name string near the association symbol, but not near enough to an end to be
confused with the end’s name.

» A dash appearing in front of the name of an association, or in place of the name if no name is shown, marks the asso-
ciation as being derived.

« A property string may be placed near the association symbol, but far enough from any end to not be confused with a

82 UML Superstructure 2.0 Draft Adopted Specification

property string on an end.

On a binary association drawn as a solid line, a solid triangular arrowhead next to or in place of the name of the
association and pointing along the line in the direction of one end indicates that end to be the last in the order of the ends
of the association. The arrow indicates that the association is to be read as associating the end away from the direction of
the arrow with the end to which the arrow is pointing (see Figure 31).

» Generalizations between associations can be shown using a generalization arrow between the association symbols.

An association end is the connection between the line depicting an association and the icon (often a box) depicting the
connected classifier. A name string may be placed near the end of the line to show the name of the association end. The name
is optional and suppressible.

Various other notations can be placed near the end of the line as follows:
« A multiplicity.

» A property string enclosed in curly braces. The following property strings can be applied to an association end:
« { subsets <property-name>} to show that the end is a subset of the property called <property-name>.
« {redefined <end-name>} to show that the end redefines the one named <end-name>.
 {union} to show that the end is derived by being the union of its subsets.
« {ordered} to show that the end represents an ordered set.
« {bag} to show that the end represents a collection that permits the same element to appear more than once.
« {sequence} or {seq} to show that the end represents a sequence (an ordered bag).
« if the end is navigable, any property strings that apply to an attribute.

Note that by default an association end represents a set.

A stick arrowhead on the end of an association indicates the end is navigable. A small x on the end of an association indicates
the end is not navigable. A visibility symbol can be added as an adornment on a navigable end to show the end’ s visibility as
an attribute of the featuring classifier.

If the association end is derived, this may be shown by putting aslash in front of the name, or in place of the name if no name
is shown.

The notation for an attribute can be applied to a navigable assocation end name.

A composite aggregation is shown using the same notation as a binary association, but with asolid, filled diamond at the
aggregate end.

Presentation Options

When two lines cross, the crossing may optionally be shown with a small semicircular jog to indicate that the lines do not
intersect (asin electrical circuit diagrams).

Various options may be chosen for showing navigation arrows on adiagram. In practice, it is often convenient to suppress
some of the arrows and crosses and just show exceptional situations:

» Show all arrows and xs. Navigation and its absence are made completely explicit.

» Suppressall arrows and xs. No inference can be drawn about navigation. Thisissimilar to any situation in which infor-
mation is suppressed from aview.

» Suppress arrows for associations with navigability in both directions, and show arrows only for associations with one-

UML Superstructure 2.0 Draft Adopted Specification 83

way navigability. In this case, the two-way navigability cannot be distinguished from situations where there is no nav-
igation at all; however, the latter case occursrarely in practice.

If there are two or more aggregations to the same aggregate, they may be drawn as a tree by merging the aggregation ends into
asingle segment. Any adornments on that single segment apply to all of the aggregation ends.

Style Guidelines

Lines may be drawn using various styles, including orthogonal segments, oblique segments, and curved segments. The choice
of aparticular set of line stylesisauser choice.

Generalizations between associations are best drawn using a different color or line width than what is used for the associations.

Examples

Figure 31 shows a binary association from Player to Year named PlayedinYear. The solid triangle indicates the order of

* « PlayedinYear
Year
year
season | *
* *
Team Player
team goalie

Figure 31 - Binary and ternary associations

reading: Player PlayedinYear Year. The figure further shows aternary association between Team, Year, and Player with ends
named team, season, and goalie respectively.

The following example shows association ends with various adornments.

a b
A B
0.1 {ordered}
d
C D
1 0..1

{subsets b}
Figure 32 - Association ends with various adornments

The following adornments are shown on the four association ends in Figure 32.

« Names a, b, and d on three of the ends.

84 UML Superstructure 2.0 Draft Adopted Specification

« Multiplicities0..1 on a, * on b, 1 on the unnamed end, and 0..1 on d.
 Specification of ordering on b.

» Subsetting on d. For an instance of class C, the collection d is asubset of the collection b. Thisisequivalent to the OCL
constraint:

context C inv: b->includesAll(d)

The following examples show notation for navigable ends.

a b
A B
1..4 2.5
c d
C D
1.4 2.5
e f
E F
1.4 2.5
g h
G H
1..4 2.5
[j
I J
1.4 2.5

Figure 33 - Examples of navigable ends

In Figure 33:

Thetop pair AB shows a binary association with two navigable ends.

The second pair CD shows a binary association with two non-navigable ends.

The third pair EF shows a binary association with unspecified navigability.

The fourth pair GH shows a binary association with one end navigable and the other non-navigable.

Thefifth pair 1J shows a binary association with one end navigable and the other having unspecified navigability.

Figure 34 shows a navigable end using attribute notation. A navigable end is an attribute, so it can be shown using attribute
notation. Normally this notation would be used in conjunction with the line-arrow notation to make it perfectly clear that the

UML Superstructure 2.0 Draft Adopted Specification 85

navigable ends are al so attributes.

b: B[*]

Figure 34 - Example of navigable end shown with attribute notation

Figure 35 shows the notation for aderived union. The attribute A::b is derived by being the strict union of all of the attributes

/b {union}
a
A B
0.1 0.*
a bl
Al B1
0.1 0.*

{subsets b}

Figure 35 - Derived supersets (union)

that subset it. In this case there isjust one of these, Al::bl. So for an instance of theclass A1, bl isasubset of b, and bis
derived from bl.

Figure 36 shows the black diamond notation for composite aggregation.

1 1
1
+scrollbar
2 +itle 1 +body 1
Slider
Header Panel

Figure 36 - Composite aggregation is depicted as a black diamond
7.11.3 Class (from Kernel)

A class describes a set of objects that share the same specifications of features, constraints, and semantics.

86 UML Superstructure 2.0 Draft Adopted Specification

Description

Classisakind of classifier whose features are attributes and operations. Attributes of a class are represented by instances of
Property that are owned by the class. Some of these attributes may represent the navigabl e ends of binary associations.
Attributes

No additional attributes.

Associations

¢ nestedClassifier: Classifier [*] References all the Classifiers that are defined (nested) within the Class. Subsets Ele-
ment: :ownedMember.

« ownedAttribute : Property [*]
The attributes (i.e. the properties) owned by the class. The association is ordered. Subsets
Classifier::attribute and Namespace: : ownedMember.

e ownedOperation : Operation [*]
The operations owned by the class. The association is ordered. Subsets Classifier::feature
and Namespace: :ownedMember.

e /superClass: Class[*] This gives the superclasses of a class. It redefines Classifier::general. Thisis derived.

Constraints

No additional constraints.

Additional Operations

[1] Theinherit operation is overridden to exclude redefined properties.
Class::inherit(inhs: Set(NamedElement)) : Set(NamedElement);
inherit = inhs->excluding(inh |
ownedMember->select(oclisKindOf(RedefinableElement))->select(redefinedElement->includes(inh)))

Semantics

The purpose of a classisto specify a classification of objects and to specify the features that characterize the structure and
behavior of those objects.

Objects of aclass must contain values for each attribute that is amember of that class, in accordance with the characteristics of
the attribute, for example its type and multiplicity.

When an object isinstantiated in aclass, for every attribute of the class that has a specified default, if an initial value of the
attribute is not specified explicitly for the instantiation, then the default value specification is evaluated to set theinitial value
of the attribute for the object.

Operations of aclass can be invoked on an object, given a particular set of substitutions for the parameters of the operation. An
operation invocation may cause changes to the values of the attributes of that object. It may also return avalue as aresullt,
where aresult type for the operation has been defined. Operation invocations may also cause changes in value to the attributes
of other objects that can be navigated to, directly or indirectly, from the object on which the operation isinvoked, to its output
parameters, to objects navigable from its parameters, or to other objectsin the scope of the operation’ s execution. Operation
invocations may also cause the creation and deletion of objects.

Notation

A classis shown using the classifier symbol. Asclassisthe most widely used classifier, the keyword “class’ need not be

UML Superstructure 2.0 Draft Adopted Specification 87

shown in guillemets above the name. A classifier symbol without a metaclass shown in guillemets indicates a class.

Presentation Options

A classis often shown with three compartments. The middle compartment holds alist of attributes while the bottom
compartment holds alist of operations.

Attributes or operations may be presented grouped by visibility. A visibility keyword or symbol can then be given once for
multiple features with the same visibility.

Additional compartments may be supplied to show other details, such as constraints, or to divide features.

Style Guidelines

* Center class namein boldface.

e Capitalizethefirst letter of class names (if the character set supports uppercase).
e Left justify attributes and operationsin plain face.

e Begin attribute and operation names with alowercase | etter.

* Puttheclassnameinitalicsif the classis abstract.

e Show full attributes and operations when needed and suppress them in other contexts or when merely referring to a class.

Examples

Window Window

+ size: Area = (100, 100)
visibility: Boolean = true
+ defaultSize: Rectangle

- XWin: XWindow
Window display()
size: Area hide() . _
visibility: Boolean - attachX(xWin: XWindow)
display()
hide()

Figure 37 - Class notation: details suppressed, analysis-level details, implemen-
tation-level details

88 UML Superstructure 2.0 Draft Adopted Specification

Window

public
size: Area = (100, 100)
defaultSize: Rectangle
protected
visibility: Boolean = true
private
XWin: XWindow
public
display()
hide()
private
attachX(xWin: XWindow)

Figure 38 - Class notation: attributes and operations grouped according to visi-
bility

7.11.4 Property (from Kernel, AssociationClasses)

A property isastructural feature.

When a property is owned by a class it represents an attribute. In this case it relates an instance of the classto avalue or set of
values of the type of the attribute.

When a property is owned by an association it represents a non-navigable end of the association. In this case the type of the
property is the type of the end of the association.
Description

Property represents a declared state of one or more instances in terms of a named relationship to a value or values. When a
property isan attribute of aclassifier, the value or values are rel ated to the instance of the classifier by being held in dots of the
instance. When a property is an association end, the value or values are related to the instance or instances at the other end(s)
of the association (see semantics of Association).

Property isindirectly a subclass of Constructs:: TypedElement. The range of valid values represented by the property can be
controlled by setting the property’s type.
Package AssociationClasses (“AssociationClasses” on page 117)

A property may have other properties (attributes) that serve as qualifiers.

Attributes
* aggregation: AggregationKind [1] Specifies the kind of aggregation that appliesto the Property. The default value is none.

e /default: String [0..1] A String that is evaluated to give a default value for the Property when an object of the
owning Classifier isinstantiated. Thisis aderived value.

e /isComposite: Boolean [1] Thisisaderived value, indicating whether the aggregation of the Property is composite or
not.

* isDerived: Boolean [1] Specifies whether the Property is derived, i.e., whether its value or values can be com-
puted from other information. The default valueis false.

UML Superstructure 2.0 Draft Adopted Specification 89

e isDerivedUnion : Boolean Specifies whether the property is derived as the union of al of the properties that are con-
strained to subset it. The default valueisfalse.

e isReadOnly : Boolean If true, the attribute may only be read, and not written. The default valueisfalse.

Associations
e association: Association [0..1] References the association of which this property isamember, if any.

e owningAssociation: Association [0..1]
References the owning association of this property. Subsets Property::association,
NamedElement:: namespace, Feature::featuringClassifier, and RedefinableEle-
ment: : redefinitionContext.

e datatype: DataType[0..1] The DataType that owns this Property. Subsets NamedElement: : namespace, Feature: : fea-
turingClassifier, and Property::classifier.

e defaultValue: ValueSpecification [0..1]A ValueSpecification that is evaluated to give a default value for the Property
when an object of the owning Classifier isisinstantiated. Subsets Element:: ownedEle-
ment.

* redefinedProperty : Property [*]
References the properties that are redefined by this property. Subsets RedefinableEle-
ment: : redefinedEl ement.

e subsettedProperty : Property [*]
References the properties of which this property is constrained to be a subset.

« | opposite: Property [0..1] In the case where the property is one navigable end of abinary association with both ends
navigable, this gives the other end.

Package AssociationClasses (“AssociationClasses” on page 117)

e associationEnd : Property [0..1]
Designates the optional association end that owns a qualifier attribute. Subsets Element::owner.

e qualifier : Property [*] An optional list of ordered qualifier attributes for the end. If the list is empty, then the Associationis
not qualified. Subsets Element:: ownedElement.

Constraints

[1] If thisproperty isowned by aclass, associated with abinary association, and the other end of the association is also owned

by a class, then opposite gives the other end.
opposite =

if owningAssociation->notEmpty() and association.memberEnd->size() = 2 then

let otherEnd = (association.memberEnd - self)->any() in
if otherEnd.owningAssociation->notEmpty() then otherEnd else Set{} endif
else Set {}
endif

[2] A multiplicity on an aggregate end of a composite aggregation must not have an upper bound greater than 1.
isComposite implies (upperBound()->isEmpty() or upperBound() <= 1)
[3] Subsetting may only occur when the context of the subsetting property conforms to the context of the subsetted property.

subsettedProperty->notEmpty() implies
(subsettingContext()->notEmpty() and subsettingContext()->forAll (sc |
subsettedProperty->forAll(sp |
sp.subsettingContext()->exists(c | sc.conformsTo(c)))))

a0 UML Superstructure 2.0 Draft Adopted Specification

[4] A navigable property (one that is owned by a class) can only be redefined or subsetted by a navigable property.

(subsettedProperty->exists(sp | sp.class->notEmpty())
implies class->notEmpty())

and

(redefinedProperty->exists(rp | rp.class->notEmpty())
implies class->notEmpty())

[5] A subsetting property may strengthen the type of the subsetted property, and its upper bound may be less.

subsettedProperty->forAll(sp |
type.conformsTo(sp.type) and
((upperBound()->notEmpty() and sp.upperBound()->notEmpty()) implies
upperBound()<=sp.upperBound()))

[6] Only anavigable property can be marked as readOnly.
isReadOnly implies class->notEmpty()

[7] A derived unionis derived.
isDerivedUnion implies isDerived

[8] A derived unionisread only.
isDerivedUnion implies isReadOnly

[9] Thevalue of isCompositeistrue only if aggregation is composite.
isComposite = (self.aggregation = #composite)

Additional Operations

[1] The query isConsistentWith() specifies, for any two Propertiesin a context in which redefinition is possible, whether
redefinition would be logically consistent. A redefining property is consistent with aredefined property if the type of the
redefining property conformsto the type of the redefined property, the multiplicity of the redefining property (if.specified)
is contained in the multiplicity of the redefined property, and the redefining property is derived if the redefined attributeis
property.

Property::isConsistentWith(redefinee : RedefinableElement) : Boolean
pre: redefinee.isRedefinitionContextValid(self)
isConsistentWith = (redefinee.oclisKindOf(Property) and
let prop: Property = redefinee.oclAsType(Property) in
type.conformsTo(prop.type) and
(lowerBound()->notEmpty and prop.lowerBound()->notEmpty() implies
lowerBound() >= prop.lowerBound()) and
(upperBound()->notEmpty and prop.upperBound()->notEmpty() implies
upperBound() <= prop.upperBound()) and
(prop.isDerived implies isDerived)

[2] The query subsettingContext() gives the context for subsetting a property. It consists, in the case of an attribute, of the
corresponding classifier, and in the case of an association end, all of the classifiers at the other ends.

Property::subsettingContext() : Set(Type)

subsettingContext =
if association->notEmpty()
then association.endType-type
else if classifier->notEmpty() then Set{classifier} else Set{} endif
endif

Semantics

When a property is owned by aclass or data type via ownedAttribute, then it represents an attribute of the class or data type.
When owned by an association via ownedEnd, it represents a non-navigable end of the association. In either case, when
instantiated a property represents a value or collection of values associated with an instance of one (or in the case of aternary

UML Superstructure 2.0 Draft Adopted Specification 91

or higher-order association, more than one) type. This set of classifiersis called the context for the property; in the case of an
attribute the context isthe owning classifier, and in the case of an association end the context isthe set of types at the other end
or ends of the association.

The value or collection of values instantiated for a property in an instance of its context conforms to the property’ s type.
Property inherits from MultiplicityElement and thus allows multiplicity bounds to be specified. These bounds constrain the
size of the collection. Typically and by default the maximum bound is 1.

Property also inherits the isUnique and isOrdered meta-attributes. When isUnique is true (the default) the collection of values
may not contain duplicates. When isOrdered is true (fal se being the default) the collection of valuesis ordered. In combination
these two alow the type of a property to represent a collection in the following way:

Table 2 - Collection types for properties

isOrdered isUnique Collection type
false true St

true true OrderedSet

false false Bag

true false Sequence

If there is adefault specified for a property, this default is evaluated when an instance of the property is created in the absence
of aspecific setting for the property or a constraint in the model that requires the property to have a specific value. The
evaluated default then becomes the initial value (or values) of the property.

If aproperty is derived, then its value or values can be computed from other information. Actionsinvolving a derived property
behave the same as for a nonderived property. Derived properties are often specified to be read-only (i.e. clients cannot
directly change values). But where a derived property is changeable, an implementation is expected to appropriately change
the source information of the derivation. The derivation for a derived property may be specified by a constraint.

The name and visibility of a property are not required to match those of any property it redefines.

A derived property can redefine one which is not derived. An implementation must ensure that the constraintsimplied by the
derivation are maintained if the property is updated.

If a property has a specified default, and the property redefines another property with a specified default, then the redefining
property’s default is used in place of the more general default from the redefined property.

If anavigable property (attribute) is marked as readOnly then it cannot be updated, once it has been assigned an initial value.

A property may be marked as the subset of another, aslong as every element in the context of subsetting property conformsto
the corresponding element in the context of the subsetted property. In this case, the collection associated with an instance of
the subsetting property must be included in (or the same as) the collection associated with the corresponding instance of the
subsetted property.

A property may be marked as being a derived union. This means that the collection of values denoted by the property in some
context is derived by being the strict union of al of the values denoted, in the same context, by properties defined to subset it.
If the property has amultiplicity upper bound of 1, then this means that the values of all the subsets must be null or the same.

A property may be owned by and in the namespace of a datatype.

92 UML Superstructure 2.0 Draft Adopted Specification

Package AssociationClasses (“AssociationClasses” on page 117)

A qualifier declares a partition of the set of associated instances with respect to an instance at the qualified end (the qualified
instanceis at the end to which the qualifier is attached). A qualifier instance comprises one value for each qualifier attribute.
Given aqualified object and a qualifier instance, the number of objects at the other end of the association is constrained by the
declared multiplicity. In the common case in which the multiplicity is 0..1, the qualifier value is unique with respect to the
qualified object, and designates at most one associated object. In the general case of multiplicity 0..*, the set of associated
instances is partitioned into subsets, each selected by a given qualifier instance. In the case of multiplicity 1 or 0..1, the
qualifier has both semantic and implementation consequences. In the case of multiplicity 0..*, it has no real semantic
consequences but suggests an implementation that facilitates easy access of sets of associated instances linked by a given
qualifier value.

Note — The multiplicity of aqualifier is given assuming that the qualifier value is supplied. The “raw” multiplicity without the
qualifier is assumed to be 0..*. Thisis not fully general but it is almost always adequate, as a situation in which the raw multi-
plicity is 1 would best be modeled without a qualifier.

Note — A qualified multiplicity whose lower bound is zero indicates that a given qualifier value may be absent, while a lower
bound of 1 indicates that any possible qualifier value must be present. The latter is reasonable only for qualifiers with afinite
number of values (such as enumerated values or integer ranges) that represent full tables indexed by some finite range of val-
ues.

Notation

Notation for propertiesis defined separately for their use as attributes and association ends. Examples of subsetting and
derived union are shown for associations. See “ Classifier (from Kernel, Dependencies, PowerTypes)” on page 61. See
“Association (from Kernel)” on page 81.

Package AssociationClasses (“AssociationClasses” on page 117)

A qualifier is shown as a small rectangle attached to the end of an association path between the final path segment and the
symbol of the classifier that it connects to. The qualifier rectangle is part of the association path, not part of the classifier. The
qualifier is attached to the source end of the association.

The multiplicity attached to the target end denotes the possible cardinalities of the set of target instances selected by the
pairing of a source instance and a qualifier value.

The qualifier attributes are drawn within the qualifier box. There may be one or more attributes shown one to aline. Qualifier
attributes have the same notation as classifier attributes, except that initial value expressions are not meaningful.

It is permissible (although somewhat rare), to have a qualifier on each end of a single association.

A qualifier may not be suppressed.
Style Guidelines

Package AssociationClasses (“AssociationClasses” on page 117)

The qualifier rectangle should be smaller than the attached class rectangle, although thisis not always practical.

UML Superstructure 2.0 Draft Adopted Specification 93

Examples

Package AssociationClasses (“AssociationClasses” on page 117)

Bank

accountNo

*

0.1

Person

7.12 Kernel —the DataTypes Diagram

Chessboard

rank : Rank
file : File

1
1

Square

Figure 39 - Qualified associations

The DataTypes diagram of the Kernel package is shown in Figure 40.

/\

+ownedAttribute
Property

InstanceSp ecification

+literal ZF

EnumerationLiteral

0..1 {subsets namespace}

+datatype
DataType
0.1 {subsetsnamespace, {ordered, *
subsets featuringClassifier, subsets attrib ute,

subsets classifier} subsets ownedMember}

+datatype +ownedOperation

P Operation

01 {subsets namespace, {ordered .

~+ subsets redefln.ltlonCor.n.ext, subsets feature,

subsets featuringClassifier} subsets ownedM emben
— - +enumeration
PrimitiveType Enumeration

{ordered, *
subsets ownedMember}

Figure 40 - The DataTypes diagram of the Kernel package

In order to locate the metaclasses that are referenced from this diagram,

» See“Classifier (from Kernel, Dependencies, PowerTypes)” on page 61.

» See“InstanceSpecification (from Kernel)” on page 57.

94

UML Superstructure 2.0 Draft Adopted Specification

» See“Property (from Kernel, AssociationClasses)” on page 89.
» See“Operation (from Kernel)” on page 76.

7.12.1 DataType (from Kernel)

A datatypeis atype whose values have no identity (i.e., they are pure values). Data types include primitive built-in types
(such as integer and string) as well as enumeration types.

Description

DataType defines akind of classifier in which operations are all pure functions (i.e., they can return data values but they
cannot change data val ues, because they have no identity). For example, an “add” operation on a number with another number
as an argument yields a third number as aresult; the target and argument are unchanged.

A DataType may also contain attributes to support the modeling of structured data types.

Attributes
No additional attributes.

Associations

« ownedAttribute: Attribute[*] The Attributes owned by the DataType. Subsets Classifier::attribute and Ele-
ment: :ownedMember.

« ownedOperation: Operation[*] The Operations owned by the DataType. Subsets Classifier::feature and Ele-
ment: :ownedMember.

Constraints

No additional constraints.

Semantics

A datatypeisaspecia kind of classifier, similar to aclass, whose instances are values (not objects). For example, the integers
and strings are usually treated as values. A value does not have an identity, so two occurrences of the same value cannot be
differentiated. Usually, adatatypeis used for specification of the type of an attribute. An enumeration typeis a user-definable
type comprising a finite number of values.

If adatatype has attributes, then instances of that data type will contain attribute values matching the attributes.

Semantic Variation Points

Any restrictions on the capabilities of datatypes, such as constraining the types of their attributes, is a semantic variation point.

Notation

A data type is denotated using the rectangle symbol with keyword «dataType» or, when it is referenced by e.g. an attribute,
denoted by a string containing the name of the data type.

Presentation Options

The attribute compartment is often suppressed, especially when a data type does not contain attributes. The operation
compartment may be suppressed. A separator lineis not drawn for a missing compartment. If acompartment is suppressed, no
inference can be drawn about the presence or absence of elementsin it. Compartment names can be used to remove ambiguity,

UML Superstructure 2.0 Draft Adopted Specification 95

if necessary.

Additional compartments may be supplied to show other predefined or user-defined model properties (for example, to show
business rules, responsibilities, variations, events handled, exceptions raised, and so on). Most compartments are simply lists
of strings, although more complicated formats are also possible. Appearance of each compartment should preferably be
implicit based on its contents. Compartment names may be used, if needed.

A data-type symbol with a stereotype icon may be “ collapsed” to show just the sterectype icon, with the name of the datatype
either inside the rectangle or below the icon. Other contents of the data type are suppressed.

Style Guidelines
» Center the name of the data type in boldface.
« Center keyword (including stereotype names) in plain face within guillemets above data-type name.

 For those languages that distinguish between uppercase and lowercase characters, capitalize names (i.e, begin them
with an uppercase character).

» Leftjustify attributes and operationsin plain face.
« Begin attribute and operation names with alowercase | etter.

 Show full attributes and operations when needed and suppress them in other contexts or references

Examples

«dataType» size: Integer
Integer

Figure 41 - Notation of data type: to the left is an icon denoting a data type and
to theright is areference to a data type which is used in an attribute.

7.12.2 Enumeration (from Kernel)
An enumeration is a data type whose values are enumerated in the model as enumeration literals.

Description
Enumeration is akind of datatype, whose instances may be any of a number of user-defined enumeration literals.

It is possible to extend the set of applicable enumeration literalsin other packages or profiles.

Attributes
No additional attributes.

Associations
e ownedLiteral: EnumerationLiteral[*]The ordered set of literals for this Enumeration. Subsets Element::ownedMember.

96 UML Superstructure 2.0 Draft Adopted Specification

Constraints

No additional constraints.

Semantics

The run-time instances of an Enumeration are data values. Each such value corresponds to exactly one EnumerationLiteral.

Notation

An enumeration may be shown using the classifier notation (a rectangle) with the keyword «enumeration». The name of the
enumeration is placed in the upper compartment. A compartment listing the attributes for the enumeration is placed below the
name compartment. A compartment listing the operations for the enumeration is placed below the attribute compartment. A
list of enumeration literals may be placed, oneto aline, in the bottom compartment. The attributes and operations
compartments may be suppressed, and typically are suppressed if they would be empty.

Examples

«enumeration»
VisibilityKind

public
private

Figure 42 - Example of an enumeration

7.12.3 EnumerationLiteral (from Kernel)
An enumeration literal is a user-defined data value for an enumeration.

Description

An enumeration literal is a user-defined data value for an enumeration.

Attributes
No additional attributes.

Associations

e enumeration: Enumeration[0..1] The Enumeration that this EnumerationLiteral is a member of. Subsets NamedEl e-
ment: : namespace.

Constraints

No additional constraints.

Semantics
An EnumerationLiteral defines an element of the run-time extension of an enumeration data type.

An EnumerationLiteral has a name that can be used to identify it within its enumeration datatype. The enumeration literal

UML Superstructure 2.0 Draft Adopted Specification 97

name is scoped within and must be unique within its enumeration. Enumeration literal names are not global and must be
qualified for general use.

The run-time values corresponding to enumeration literals can be compared for equality.

Notation

An EnumerationLiteral istypically shown as a name, oneto aline, in the a compartment of the enumeration notation.
7.12.4 PrimitiveType (from Kernel)

A primitive type defines a predefined data type, without any relevant substructure (i.e. it has no parts). A primitive datatype
may have an algebra and operations defined outside of UML, for example, mathematically.

Description

The instances of primitive type used in UML itself include Boolean, Integer, UnlimitedNatural, and String.

Attributes
No addtional attributes.

Associations

No additional associations.

Constraints

No additiona constraints.

Semantics

The run-time instances of a primitive type are data values. The values are in many-to-one correspondence to mathematical
elements defined outside of UML (for example, the various integers).

Instances of primitive types do not have identity. If two instances have the same representation, then they are
indistinguishable.

Notation

A primitive type has the keyword «primitive» above or before the name of the primitive type.

Instances of the predefined primitive types may be denoted with the same notation as provided for references to such instances
(see the subtypes of “VaueSpecification (from Kernel)”).

98 UML Superstructure 2.0 Draft Adopted Specification

7.13 Kernel —the Packages Diagram

The Packages diagram of the Kernel package is shown in Figure 43.

Namespace

% Z} +owningPackage
{subsets namespace}
Package = +ownedMember Packageable Ele ment
0..1 {redefines ownedMember} .

‘ PackageableElement

+package +/lownedClassifier Type
L g
0..1 {subsetsnamespace} {subsetsownedMember «
DirectedRelationship
+me ging Package +packageExtension A
PackageMerge

{subsets ource,
subsets owner}

{subsets ownedElement} *

+memgedPaclkage

1 {subsetstarget}

+nestingPackage

>

0..1 {subsets nam esp ace}

+nestedPackage | *
g {subsets ownedMember}

Figure 43 - The Packages diagram of the Kernel package

In order to locate the metaclasses that are referenced from this diagram,
» See“Classifier (from Kernel, Dependencies, PowerTypes)” on page 61.
» See“DirectedRelationship (from Kernel)” on page 28.
» See“Namespace (from Kernel)” on page 35.
» See “PackageableElement (from Kernel)” on page 37.

7.13.1 Package (from Kernel)

A package is used to group elements, and provides a namespace for the grouped el ements.

Description

A package is a namespace for its members, and may contain other packages. Only packageable elements can be owned
members of apackage. By virtue of being a namespace, a package can import either individual members of other packages, or
all the members of other packages.

In addition a package can be merged with other packages.

Attributes
No additional attributes.

UML Superstructure 2.0 Draft Adopted Specification 99

Associations

* nestedPackage: Package[*] References the owned members that are Packages. Subsets Package: : ownedMember.

« ownedMember: PackageableElement [*] Specifies the members that are owned by this Package. Redefines
Namespace: : ownedMember.

« ownedType: Type[*] References the owned members that are Types. Subsets Package: : ownedMember.
e package: Package[0..1] References the owning package of a package. Subsets NamedElement: : namespace.

e packageMerge: Package[*] References the PackageMerges that are owned by this Package. Subsets Ele-
ment: : ownedElement.

Constraints

[1] If an element that is owned by a package has visibility, it is public or private.
self.ownedElements->forAli(e | e.visibility->notEmpty() implies e.vishility = #public or e.visibility = #private)

Additional Operations

[1] The query mustBeOwned() indicates whether elements of this type must have an owner.

Package::mustBeOwned() : Boolean
mustBeOwned = false

[2] Thequery visibleMembers() defines which members of a Package can be accessed outsideit.

Package::visibleMembers() : Set(PackageableElement);
visibleMembers = member->select(m | self.makesVisible(m))

[3] The query makesVisible() defines whether a Package makes an element visible outside itself. Elements with no visibility
and elements with public visibility are made visible.

Package::makesVisible(el: Namespaces::NamedElement) : Boolean;
pre: self.member->includes(el)
makesVisible = el.visibility->isEmpty() or el.visibility = #public

Semantics

A package is a namespace and is also an packageable element that can be contained in other packages.

The elements that can be referred to using non-qualified names within a package are owned elements, imported elements, and
elements in enclosing (outer) namespaces. Owned and imported elements may each have a visibility that determines whether
they are available outside the package.

A package owns its owned members, with the implication that if a package is removed from amodel, so are the elements
owned by the package.

The public contents of a package is always accessible outside the package through the use of qualified names.

Notation

A package is shown as alarge rectangle with a small rectangle (a“tab”) attached to the left side of the top of the large
rectangle. The members of the package may be shown within the large rectangle. Members may also be shown by branching
lines to member elements, drawn outside the package. A plus sign (+) within acircle is drawn at the end attached to the
namespace (package).

- If the members of the package are not shown within the large rectangle, then the name of the package should be placed
within the large rectangle.

100 UML Superstructure 2.0 Draft Adopted Specification

« If the members of the package are shown within the large rectangle, then the name of the package should be placed
within the tab.

Thevisibility of a package element may be indicated by preceding the name of the element by avisibility symbol (‘+' for
public and ‘-’ for private).
Presentation Options

A tool may show visibility by agraphic marker, such as color or font. A tool may aso show visibility by selectively displaying
those elements that meet a given visibility level, e.g., only public elements. A diagram showing a package with contents must
not necessarily show all its contents; it may show a subset of the contained elements according to some criterion.

Elements that become available for use in aimporting package through a package import or an element import may have a
distinct color or be dimmed to indicate that they cannot be modified.

Examples

There are three representations of the same package Types in Figure 44. The one on the left just shows the package without
revealing any of its members. The middle one shows some of the members within the borders of the package, and the one to
the right shows some of the members using the alternative membership notation.

1
Types
Types Types
Integer O
Jr
Time
Shape Point

Figure 44 - Examples of a package with members
7.13.2 PackageMerge (from Kernel)

A package merge defines how one package extends another package by merging their contents.

Description

A package mergeis arelationship between two packages, where the contents of the target package (the one pointed at) is
merged with the contents of the source package through specialization and redefinition, where applicable.

Thisis amechanism that should be used when elements of the same name are intended to represent the same concept,
regardless of the package in which they are defined. A merging package will take elements of the same kind with the same
name from one or more packages and merge them together into a single element using generalization and redefinitions.

It should be noted that a package merge can be viewed as a short-hand way of explicitly defining those generalizations and
redefinitions. The merged packages are still available, and the elementsin those packages can be separately qualified.

From an XMI point of view, it is either possible to exchange a model with all PackageM erges retained or a model where all
PackageM erges have been transformed away (in which case package imports, generalizations, and redefinitions are used
instead).

UML Superstructure 2.0 Draft Adopted Specification 101

Attributes
No additional attributes.

Associations

« mergedPackage: Package[1] Referencesthe Package that isto be merged with the source of the PackageM erge. Subsets
DirectedRelationship; ;target.

« mergingPackage: Package [1] References the Package that is being extended with the contents of the target of the Pack-
ageMerge. Subsets Element::owner and DirectedRel ationship:: source.

Constraints

No additional constraints.

Semantics

A package merge between two packages implies a set of transformations, where the contents of the merged package is
expanded in the merging package. Each element has its own specific expansion rules. The package mergeistransformed to a
package import having the same source and target packages as the package merge.

An element with private visibility in the merged package is not expanded in the merging package. This applies recursively to
al owned elements of the merged package.

A classifier from the target (merged) package is transformed into a classifier with the same name in the source (merging)
package, unless the source package already contains a classifier of the same kind with the same name. In the former case, the
new classifier gets a generalization to the classifier from the target package. In the latter case, the already existing classifier
gets ageneralization to the classifier from the target package. In either case, every feature of the general classifier is redefined
in the specific classifier in such away that all types refer to the transformed classifiers. In addition, the classifier in the source
package gets generalizations to each transformed superclassifier of the classifier from the target package. Thisis because the
superclassifiers may have merged in additional properties in the source package that need to be propagated properly to the
classifier. Classifiers of the same kind with the same name from multiple target packages are transformed into asingle
classifier in the source package, with generalizationsto each target classifier. Nested classifiers are recursively transformed the
same way. If features from multiple classifiers are somehow conflicting, the same rulesthat apply for multiple inheritance are
used to resolve conflicts.

Note that having an explicit generalization from a classifier in a source package to a classifier of the same kind with the same
name in atarget package is redundant, since it will be created as part of the transformation.

A subpackage from the target (merged) package is transformed into a subpackage with the same name in the source (merging)
package, unless the source package already contains a subpackage with the same name. In the former case, the new
subpackage gets a package merge to the subpackage from the target package. In the latter case, the already existing package
gets a package merge to the subpackage from the target package. Subpackages with the same name from multiple target
packages are transformed into a single subpackage in the source package, with package merges to each target subpackage.
Nested subpackages are recursively transformed the same way.

A package import owned by the target package is transformed into a corresponding new package import in the source package.
Elements from imported packages are not merged (unless there is al so a package merge to the imported package). The names
of merged elements take precedence over the names of imported elements, meaning that names of imported elements are
hidden in case of name conflicts and need to be referred to using qualifiers. An element import owned by the target packageis
transformed into a corresponding new element import in the source package. Imported elements are not merged (unless there
is also a package merge to the package owning the imported element or its alias).

A non-generalizable packageable element owned by the target package is copied down to the source package. Any classifiers

102 UML Superstructure 2.0 Draft Adopted Specification

referenced as part of the packageable element are redirected at transformed classifiers, if any.

Notation

A PackageMerge is shown using a dashed line with a stick arrowhead pointing from the merging package (the source) to the
merged package (the target). In addition, the keyword «merge» is shown near the dashed line.

Target g*\\\gmerge»

o Source

Figure 45 - Notation for package merge

Examples

In Figure 46, packages P and Q are being merged by package R, while package S merges only package Q.

—
I
\

/
,/ «merge» /]
B / /
/ /
/ /
/ /
/ /
/
\\ // I/
\ / S ; «merge»
«merge» \ / .
\ /
\\ /
/
\ /
R |\ / D
1 L
A
A B

Figure 46 - Simple example of package merges

The transformed packages R and Q are shown in Figure 47. While not shown, the package merges have been transformed into

UML Superstructure 2.0 Draft Adopted Specification 103

package imports.

R S
P:A | QA Q::C D QA Q:C
JANA I Zr A A
P::B A C c
A A
RN
B

Figure 47 - Simple example of transformed packages

In Figure 48, additional package merges are introduced by having the package T merge the packages R and S that were
previously defined. Aside from the package merges, the package T is completely empty.

1
R
§:\\ «merge»
\\\\\
T
//’—

S é’/ «merge»

Figure 48 - Introducing additional package merges
In Figure 49, the transformed version of the package T is depicted. In this package, the partial definitionsof A, B, C, and D

have all been brought together. Again, the package merges have been transformed to package imports. Note that the types of
the ends of the associationsthat were originally in the packages Q and S have al been updated to refer to the appropriate types

104 UML Superstructure 2.0 Draft Adopted Specification

in package T.

T
S::D
AN
D R::A |S::A R::C |S::C
R::B| |S::B A C
LF LT 1
B

Figure 49 - The result of the additional package merges

It ispossible to elide all but the most specific of each classifier, which gives a clearer picture of the end result of the package
merge transformations, as is shown in Figure 50.

I

Figure 50 - The result of the additional package merges: elided view

7.14 Dependencies

The contents of the Dependencies package is shown in Figure 51. The Dependencies package is one of the packages of the
Classes package.

UML Superstructure 2.0 Draft Adopted Specification 105

NamedElement DirectedRelationship PackageableElement

fromKemel) (fromKernel) (fromKemel)
Zﬁ +supplier +supplierDependency Zﬁ ‘
NamedElement 1x Dependency
- *
+client +clientDependency
1.* *

: 0.1 Ab: ; .
Expression straction Usage Permission
(from Kemel) ~ o

+mapping

{subsets ownedElement}

Realization -
Classifier
(fromKemel)
‘ — +contract
Substitution {subsets supplier, subsets target} —
Classifier
* 1
+substitutingClassifier
. {subsets client, subsets source}

+substitution 1
{subsets ownedElement, subsets clientDependency}

Figure 51 - The contents of Dependencies package

In order to locate the metaclasses that are referenced from this package,

» See“Classifier (from Kernel, Dependencies, PowerTypes)” on page 61.

See “DirectedRelationship (from Kernel)” on page 28.

» See“OpagueExpression (from Kernel)” on page 46.

» See“NamedElement (from Kernel, Dependencies)” on page 33.
» See “PackageableElement (from Kernel)” on page 37.

106 UML Superstructure 2.0 Draft Adopted Specification

7.14.1 Abstraction (from Dependencies)

Description

An abstraction is arelationship that relates two elements or sets of elements that represent the same concept at different levels
of abstraction or from different viewpoints. (See a so, the definition of abstration in the Glossary.) In the metamodel, an
Abstraction is a Dependency in which there is a mapping between the supplier and the client.

Attributes

No additional attributes.

Associations

e mapping: Expression An composition of an Expression that states the abstraction relationship between the sup-
plier and the client. In some cases, such as Derivation, it isusually formal and unidirec-
tional; in other cases, such as Trace, it isusually informal and bidirectional. The mapping
expression isoptional and may be omitted if the precise relationship between the elements
is not specified.

Constraints

No additional constraints.

Semantics

Depending on the specific stereotype of Abstraction, the mapping may be formal or informal, and it may be unidirectional or
bidirectional. Abstraction has predefined stereotypes (such as «derive», «refine», and «trace») which are defined in the
Standard Profiles chapter. If an Abstraction element has more than one client element, the supplier element maps into the set
of client elements as a group. For example, an analysis-level class might be split into several design-level classes. The
situation is similar if there is more than one supplier element.

Notation

An abstraction relationship is shown as a dependency with an «abstraction» keyword attached to it or the specific predefined
stereotype name.

Examples

In the example below, the Employee classindentified in analysis (i.e., the «type») maps to the same concept in the design
model called Employee Record.

«refine»

«type» «implementation
——————— = class»
Employee Employee Record

Figure 52 - An example of arefine abstraction
7.14.2 Classifier (from Dependencies)

e See“Classifier (from Kernel, Dependencies, PowerTypes)” on page 61.

UML Superstructure 2.0 Draft Adopted Specification 107

7.14.3 Dependency (from Dependencies)

Description

A dependency isarelationship that signifies that a single or a set of model elements requires other model elements for their
specification or implementation. This means that the complete semantics of the depending elements is either semantically or
structurally dependent on the definition of the supplier element(s).

Attributes
No additional attributes.

Associations

e client: NamedElement [1..*] The element that is affected by the supplier element. In some cases (such as a Trace
Abstraction) the direction is unimportant and serves only to distinguish the two elements.

e supplier: NamedElement [1..*] Designates the element that is unaffected by a change. In atwo-way relationship (such as
some Refinement Abstractions) this would be the more general element. In an undirected
situation, such as a Trace Abstraction, the choice of client and supplier is not relevant.

Constraints

No additiona constraints.

Semantics

A dependency signifies a supplier/client relationship between model elements where the modification of the supplier may
impact the client model elements. A dependency implies the semantics of the client is not complete without the supplier. The
presence of dependency relationshipsin a model does not have any runtime semantics implications, it is all given in terms of
the model-elements that participate in the relationship, not in terms of their instances.

Notation

A dependency is shown as a dashed arrow between two model elements. The model element at the tail of the arrow (the client)
depends on the model element at the arrowhead (the supplier). The arrow may be labeled with an optiona stereotype and an
optional name. It is possible to have a set of elements for the client or supplier. In this case, one or more arrows with their tails
on the clients are connected the tails of one or more arrows with their heads on the suppliers. A small dot can be placed on the
junction if desired. A note on the dependency should be attached at the junction point.

«dependecyName»

NamedElement-1F — — — — — — —= NamedElement-2

Figure 53 - Notation for a dependency between two elements

Examples

In the example below, the Car class has a dependency on the Vehicle Type class. In this case, the dependency is an instantiate

108 UML Superstructure 2.0 Draft Adopted Specification

dependency, where the Car classis an instance of the Vehicle Type class.

«instantiate» Vehicle
Car [—————— =
Type

Figure 54 - An example of a instantiatedependency
7.14.4 NamedElement (from Dependencies)
See “NamedElement (from Kernel, Dependencies)” on page 33.
7.14.5 Permission (from Dependencies)

Description

A Permission signifies granting of access rightsfrom the supplier model element to aclient model element. Or to put it another
way, it signifies that the client requires access to some or al of the constituent elements of the supplier. The supplier element
givesthe client permission to access some or all of its constituents elements.

Attributes
No additional attributes.

Constraints

[1] The supplier must be a namespace

Notation

A permission dependency is shown as a dependency with a «permit» keyword attached to it.

Examples

In the example below, the Employee class grants access rights to Executive objects. This means that executive objects may
access the private properties of salary and homePhoneNumber.

«permit»
Employee |< — — — — — — 1 Executive

+ phoneExtension
+employeel D

- saary

- homePhoneNumber

Figure 55 - An example of a permit dependency

UML Superstructure 2.0 Draft Adopted Specification 109

7.14.6 Realization (from Dependencies)

Description

Realization is a specialized abstraction relationship between two sets of model elements, one representing a specification (the
supplier) and the other represents an implementation of the latter (the client). Realization can be used to model stepwise
refinement, optimizations, transformations, templates, model synthesis, framework composition, etc.

Realization is a specialized abstraction relationship between two sets of model elements. Onespecifies the source (the
supplier); the other implements the targer (the client). Realization can be used to model stepwise refinement, optimizations,
transformations, templates, model synthesis, framework composition, etc.

Attributes
No additional attributes.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

A Readlization signifiesthat the client set of elements are an implementation of the supplier set, which serves as the
specification. The meaning of ‘implementation’ is not strictly defined, but rather implies a more refined or elaborate form in
respect to a certain modeling context. It is possible to specify a mapping between the specification and implementation
elements, although it is not necessarily computable.

Notation

A Realization dependency is shown as a dependency with the keyword «realize» attached to it.
7.14.7 Substitution (from Dependencies)

Description

A substitution is arelationship between two classifiers signifies that the substitutingClassifier complies with the contract
specified by the contract classifier. Thisimplies that instances of the substitutingClassifier are runtime substitutable where
instances of the contract classifier are expected.

Associations
e contract: Classifier [1] (Specializes Dependency.target.)
e substitutingClassifier: Classifier [1]

(Specializes Dependency.client.)
Attributes

None.

110 UML Superstructure 2.0 Draft Adopted Specification

Constraints

No additional constraints.

Semantics

The substitution relationship denotes runtime substitutability which is not based on specialization. Substitution, unlike
specialization, does not imply inheritance of structure, but only compliance of publicly available contracts. A substitution like
relationship is instrumental to specify runtime substitutability for domains that do not support specilization such as certain
component technologies. It requires that (1) interfaces implemented by the contract classifier are aso implemented by the
sunstituting classifier, or else the substituting classifier implements a more specilized interface type. And, (2) the any port
owned by the contract classifier has a matching port (see ports) owned by the substituting classifier.

Notation

A Substitution dependency is shown as a dependency with the keyword «substitute» attached to it.

Examples

In the example below, a generic Window classis substituted in a particular environment by the Resizable Window class.

«substitute»

. Resizable
Window < — = = — = — 7

Window

Figure 56 - An example of a substitute dependency
7.14.8 Usage (from Dependencies)

Description

A usageisareationship in which one element requires another element (or set of elements) for its full implementation or
operation. In the metamodel, a Usage is a Dependency in which the client requires the presence of the supplier.

Attributes
No additional attributes.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

The usage dependency does not specify how the client uses the supplier other than the fact that the supplier is used by of the
definition or implementation of the client.

UML Superstructure 2.0 Draft Adopted Specification 111

Notation

A usage dependency is shown as a dependency with a «use» keyword attached to it.

Examples

In the example below, a Order class requires the Line Item class for its full implementation.

«use»

Line
Order F—————— =

Iltem

Figure 57 - An example of a use dependency

7.15 Interfaces

The contents of the Interfaces package is shown in Figure 51. The Interfaces package is one of the packages of the Classes
package.

Classifier
(fromKemel)
{ordered, subsets attribute, subsets ownedMember} Z% {subsets namespace,
+ownedAttribute 0.1 subsets redefinitionContext}
Property > 2 Interface P R —
(from Kemel) * {subsets classifier, subsets namespace, 0.1

subsets featuringClassffie} .

{ordered, subsets ownedMember}
{ordered, subsets feature, subsets ownedMember}
+ownedOperation

; 0.1
Operation & *
(from Kemel) * {subsets redefinitionContext}

* +redefinedinterface
+contract | 1 {subsets redefined Element}
{subsets supplier, subsets target}

+nestedIinterface

{subsets ownedElement,
subsets clientDependency}

BehavioredClassifier 01 +implementation Implementation

*

+implementatingClassifier
{subsets client, subsets source}

Realization
(from Dependencies)

Figure 58 - The contents of Interfaces package

112 UML Superstructure 2.0 Draft Adopted Specification

In order to locate the metaclasses that are referenced from this package,
» See“BehavioredClassifier (from Interfaces)” on page 113.
» See“Classifier (from Kernel, Dependencies, PowerTypes)” on page 61.
» See“Operation (from Kernel)” on page 76.
» See“Property (from Kernel, AssociationClasses)” on page 89.
» See“Redlization (from Dependencies)” on page 110.

7.15.1 BehavioredClassifier (from Interfaces)

Description

A BehavioredClassifier may have implementations.

Associations

« implementation: Implementation [*](Specializes Element.ownedElement and Realization.clientDependency.)
7.15.2 Implementation (from Interfaces)

Description

An Implementation is a specialized Realization relationship between a Classifier and an Interface. The implementation
relationship signifies that the realizing classifier conforms to the contract specified by the interface.

Attributes

No additional attributes.

Associations

e contract: Interface [1] References the | nterface specifying the conformance contract. (Specializes Depen-
dency.supplier and Relationship.target)

« implementingClassifier: Classifier [1]
References the operations owned by the Interface. (Specializes Dependency.client and
Relationship.source)

Constraints

No additional constraints.

Semantics

A classifier that implements an interface specifies instances that are conforming to the interface and to any of its ancestors. A
classifier may implement anumber of interfaces. The set of interfacesimplemented by the classifier areits provided interfaces

and signify the set of services the classifier offersto itsclients. A classifier implementing an interface supports the set of

features owned by the interface. In addition to supporting the features, a classifier must comply with the constraints owned by

the interface.

An implementation relationship between a classifier and an interface implies that the classifier supports the set of features
owned by the interface, and any of its parent interfaces. For behavioral features, the implementing classifier will have an

UML Superstructure 2.0 Draft Adopted Specification 113

operations or reception for every operation or reception, respectively, owned by theinterface. For properties, the implementing
classifier will provide functionality that maintains the state represented by the property. While such may be done by direct
mapping to a propertyof the implementing classifier, it may also be supported by the state machine of the classifier or by apair
of operations that support the retrieval of the state information and an operation that changes the state information.

Notation

See “Interface (from Interfaces)”.
7.15.3 Interface (from Interfaces)

Description

Aninterfaceisakind of classifier that represents a declaration of a set of coherent public features and obligations. In a sense,
an interface specifies akind of contract which must be fulfilled by any instance of a classifier that realizes the interface. The
obligations that may be associated with an interface are in the form of various kinds of constraints (such as pre- and post-
conditions) or protocol specifications, which may impose ordering restrictions on interactions through the interface.

Since interfaces are declarations, they are not directly instantiable. Instead, an interface specification isrealized by an instance
of aclassifier, such as a class, which means that it presents a public facade that conforms to the interface specification. Note
that a given classifier may realize more than one interface and that an interface may be realized by a number of different
classifiers.

Attributes
No additional attributes.

Associations

« ownedAttribute: Proprety References the properties owned by the Interface. (Subsets Namespace.ownedMember
and Classifier.feature.)

* ownedOperation: Operation References the operations owned by the Interface. (Subsets Namespace.ownedMember
and Classifier.feature.)

¢ nestedinterface: Interface (Subsets Namespace.ownedMember.)
« redefinedinterface: Interface (Subsets Element.redefinedElement.)

Constraints

[1] Thevisibility of all features owned by an interface must be public.
self.feature->forAll(f | f.visibility = #public)

Semantics

An interface declares a set of public features and obligations that constitute a coherent service offered by a classifier.
Interfaces provide a way to partition and characterize groups of properties that realizing classifier instances must possess. An
interface does not specify how it is to be implemented, but merely what needs to be supported by realizing instances. That is,
such instances must provide a a public facade (attributes, operations, externally observable behavior) that conformsto the
interface. Thus, if an interface declares an attribute, this does not necessarily mean that the realizing instance will necessarily
have such an attribute in its implementation, only that it will appear so to external observers.

Because an interface is merely adeclaration it is not an instantiable model element; that is, there are no instances of interfaces

114 UML Superstructure 2.0 Draft Adopted Specification

at run time.

The set of interfaces realized by a classifier are its provided interfaces, which represent the obligations that instances of that
classifier have to their clients. They describe the services that the instances of that classifier offer to their clients. Interfaces
may also be used to specify required interfaces, which are specified by a usage dependency between the classifier and the
corresponding interfaces. Required interfaces specify servicesthat aclassifier needsin order to performits function and fulfill
its own obligationsto its clients.

Properties owned by interfaces are abstract and imply that the conforming instance should maintain information corresponding
to the type and multiplicity of the property and facilitate retrieval and modification of that information. There will not
necessarily be a property implementing the classifier corresponding to the property of the interface. Interfaces may also own
constraints which impose constraints on the features of the implementing classifier.

An association between an interface and any other classifier implies that a conforming association must exist between any
implementation of that interface and that other classifier. In particular, an association between interfaces implies that a
conforming association must exist between implementations of the interfaces.

An interface cannot be directly instantiated. Instantiable classifiers, such as classes, must implement an interface (see
“Implementation (from Interfaces)”).

Notation
Asaclassifier, an interface may be shown using arectangle symbol with the keyword «interface» preceding the name.

The implementation dependency from a classifier to an interface is shown by representing the interface by a circle or ball,
|abelled with the name of the interface, attached by a solid line to the classifier that implements this interface (see Figure 59).

O_ ProximitySensor

ISensor

Figure 59 - Isensor is the provided interface of ProximitySensor

The usage dependency from a classifer to an interface is shown by representing the interface by a half-circle or socket, labeled
with the name of the interface, attached by a solid line to the classifier that implements this interface (see Figure 60).

TheftAlarm

—

ISensor

Figure 60 - Isensor is the required interface of TheftAlarm

Where two classifiers provide and require the same interface, respectively, these two notations may be combined as shown in
Figure 61. The ball-and-socket notation hints at that the interface in question serves to mediate interacti ons between the two

UML Superstructure 2.0 Draft Adopted Specification 115

classifiers.

TheftAlarm ProximitySensor
)=
O—

ISensor

Figure 61 - Isensor is the required interface of TheftAlarm as well as the pro-
vided interface of ProximitySensor

Presentation Option

Alternatively, if an interface is shown using the rectangle symbol, their implementation and usage dependenciesto provided
and required interfaces, respectively, may be shown using dependency arrows (see Figure 62). The classifier at the tail of the
arrow implements the interface at the head of the arrow or uses that interface, respectively.

TheftAlarm ProximitySensor
= ISensor

activate() D —
read()

Figure 62 - Alternative notation for the situation depict in Figure 61

A set of interfaces constituting a protocol may be depicted as interfaces with associations between them (see Figure 63).

Interface» «Interface»
+theAlarm +theSensor sensor
IAlarm ! ;
i + activate
+ notify() 1 1|} a0

Figure 63 - IAlarm is the required interface for any classifier implementing Isen-
sor; conversely, Isensor is the required interface for any classifier implementing
IAlarm.

Examples

The following example shows a set of associated interfaces that specify an alarm system. (These interfaces may be defined
independently or as part of a collaboration.) Figure 64 shows the specification of three interfaces, | Alarm, | Sensor, and
IBuzzer. | Alarm and Isensor are shown as engaged in a bidirectional protocol; |Buzzer describes the required interface for

116 UML Superstructure 2.0 Draft Adopted Specification

instances of classifiersimplementing |Alarm, as depicted by their respective associations.

Three classes: Door Sensor, DoorAlarm, and DoorBell, implement the above interfaces (see Figure 65 below). These
classifiers are completely decoupled. Nevertheless, instances of these classifiers are able to interact by virtue of the

Figure 64 - A set of collaborating interfaces

«Interface»
«Interface» «Interface» IBuzzer
ISensor +theAlarm| jalarm +theBuzzer Volume
Activate() |+theSensor Detect
0 Start()
Reset()

conforming associations declared by the associations between the interfaces that they realize.

O ISensor

DoorSensor

O Alarm

DoorAlarm

IBuzzer

oorBell

Figure 65 - Classifiers implementing the above interfaces

7.16 AssociationClasses

The contents of the AssociationClasses package is shown in Figure 66. The AssociationClasses package is one of the packages

of the Classes package.

UML Superstructure 2.0 Draft Adopted Specification

117

+qualifier +associationEnd

Property

& Property
* 0.1
{ordered, subsets ownedElement} {subsets owner}

Class Association
(from Kemel) (from Kernel)

AssociationClass

Figure 66 - The contents of AssociationClasses package

In order to locate the metaclasses that are referenced from this package,
» See“Property (from Kernel, AssociationClasses)” on page 89.
» See“Class (from Kernel)” on page 86.
» See“Association (from Kernel)” on page 81.

7.16.1 AssociationClass (from AssociationClasses)

A model element that has both association and class properties. An AssociationClass can be seen as an association that also
has class properties, or as a class that also has association properties. It not only connects a set of classifiers but also defines
aset of features that belong to the relationship itself and not to any of the classifiers.

Description

In the metamodel, an AssociationClass is a declaration of a semantic relationship between Classifiers, which has a set of
features of its own. AssociationClass is both an Association and a Class.

Attributes
No additional attributes.

Associations

No additional associations.

Constraints

[1] An AssociationClass cannot be defined between itself and something el se.

self.allConnections->forAll (ar |
ar.type <> self

118 UML Superstructure 2.0 Draft Adopted Specification

and

ar.type.allParents ()-> excludes (self)
and

ar.type.allChildren () -> excludes (self))

Additional Operations

[1] The operation allConnections resultsin the set of all AssociationEnds of the Association.

allConnections : Set (AssociationEnd);
allConnections = self.end->union (self.allParents ().end)

Semantics

An association may be refined to have its own set of features; that is, features that do not belong to any of the connected
classifiers but rather to the association itself. Such an association is called an association class. It will be both an association,
connecting a set of classifiersand a class, and as such have features and be included in other associations. The semantics of an
association class is a combination of the semantics of an ordinary association and of aclass.

An association classis both akind of association and kind of a class. Both of these constructs are classifiers and hence have a
set of common properties, like being able to have features, having aname etc. Asthese properties are inherited from the same
construct (Classifier), they will not be duplicated. Therefore, an association class has only one name, and has the set of
features that are defined for classes and for associations. The constraints defined for class and for association also are
applicable for association class, which implies for example that the attributes of the association class, the ends of the
association class, and the opposite ends of associations connected to the association class must al have distinct names.
Moreover, the specialization and refinement rules defined for class and association are also applicable to association class.

Note — It should be noted that in an instance of an association class, there is only one instance of the associated classifiers at
each end , i.e. from the instance point of view, the multiplicity of the associationsendsare‘1’.

Notation

An association class is shown as a class symbol attached to the association path by a dashed line. The association path and the
association class symbol represent the same underlying model element, which has a single name. The name may be placed on
the path, in the class symbol, or on both, but they must be the same name.

Logically, the association class and the association are the same semantic entity; however, they are graphically distinct. The
association class symbol can be dragged away from the line, but the dashed line must remain attached to both the path and the
class symbal.

UML Superstructure 2.0 Draft Adopted Specification 119

* Job 1.*
person company

Person Company

Job
salary

Figure 67 - An AssociationClass is depicted by an association symbol (aline)
and a class symbol (a box) connected with a dashed line. The diagram shows
the association class Job which is defined between the two classes Person and
Company.

7.17 PowerTypes

The contents of the PowerTypes package is shown below. The PowerTypes package is one of the packages of the Classes
package.

Generalization

Classifier 1 +specific +generalization *
(from Kernel)

(from Kernel) ‘

{subsets source, {subsets ownedElement}
subsets owner}

1 +general

{subsets target}

Classifier PackageableElement Generalization
(from Kernel)

0.1 +powertype

*

+generalizati

GeneralizationSet

0.* isCovering : Boolean
isDisjoint : Boolean

+powertypeExtent +generalizationSet

Figure 68 - The contents of PowerTypes package

120 UML Superstructure 2.0 Draft Adopted Specification

In order to locate the metaclasses that are referenced from this package,

See “Classifier (from Kernel, Dependencies, PowerTypes)” on page 61.
» See“Generalization (from Kernel, PowerTypes)” on page 66.
» See “PackageableElement (from Kernel)” on page 37.

7.17.1 Classifier (from PowerTypes)

See “Classifier (from Kernel, Dependencies, PowerTypes)” on page 61.
7.17.2 Generalization (from PowerTypes)

See “Generalization (from Kernel, PowerTypes)” on page 66.

7.17.3 GeneralizationSet (from PowerTypes)

A GeneralizationSet is an AutonomousElement (from Foundation :: Kernel :: PackagingNamespaces) whose instances define
partitioned sets of Generalization relationships.

Description

Each Generalization isabinary relationship that relates a specific Classifier to amore general Classifier (i.e., a subclass). Each
GeneralizationSet defines a particular set of Generalization relationships that describe the way in which a specific Classifier
(or superclass) may be partitioned. For example, a GeneralizationSet could define a partitioning of the class Person into two
subclasses. Male Person and Female Person. Here, the GeneralizationSet would associate two instances of Generalization.
Both instances would have Person as the specific classifier, however one Generalization would involve Male Person as the
general Classifier and the other would involve Female Person as the general classifier. In other words, the class Person can
here be said to be partitioned into two subclasses: Male Person and Femal e Person. Person could also be partitioned into North
American Person, Asian Person, European Person, or something else. This partitioning would define a different
GeneralizationSet that would associate with three other Generalization relationships. All three would have Person as the
specific Classifier; only the general classifiers would differ: i.e., North AmericanPerson, Asian Person, and European Person.

Attributes

e isCovering : Boolean Indicates (viathe associated Generalizations) whether or not the set of specific Classifiers
are covering for a particular general classifier. When isCovering is true, every instance of
aparticular general Classifier isalso aninstance of at least one of its specific Classifiers
for the GeneralizationSet. When isCovering isfalse, there are one or more instances of the
particular general Classifier that are not instances of at |east one of its specific Classifiers
defined for the GeneralizationSet. For example, Person could have two Generalization
relationships each with a different specific Classifier: Male Person and Female Person.
This GeneralizationSet would be covering because every instance of Person would be an
instance of Male Person or Female Person. In contrast, Person could have a three General -
ization relationships involving three specific Classifiers: North AmericanPerson, Asian
Person, and European Person. This GeneralizationSet would not be covering because
there are instances of Person for which these three specific Classifiers do not apply. The
first example, then, could be read: any Person would be specialized as either being aMale
Person or a Femal e Person—and nothing el se; the second could be read: any Person would
be specialized as being North American Person, Asian Person, European Person, or some-
thing else.

UML Superstructure 2.0 Draft Adopted Specification 121

e isDigoint : Boolean Indicates whether or not the set of specific Classifiersin a Generalization relationship
have instance in common. If isDigjoint istrue, the specific Classifiersfor a particular Gen-
eralizationSet have no members in common; that is, their intersection is empty. If isDis-
joint isfalse, the specific Classifiers in a particular GeneralizationSet have one or more
members in common; that is, their intersection is not empty. For example, Person could
have two Generalization relationships, each with the different specific Classifier: Manager
or Staff. Thiswould be disjoint because every instance of Person must either be aManager
or Staff. In contrast, Person could have two Generalization relationships involving two
specific (and non-covering) Classifiers: Sales Person and Manager. This Generalization-
Set would not be digjoint because there are instances of Person which can be a Sales Per-
son and a Manager.

Associations

e generalization [1] Designates the instances of Generalization which are members of a given Generalization-
Set.

e powertype[2] Designates the Classifier that is defined as the power type for the associated Generaliza-
tionSet.

Constraints
[1] Every Generalization associated with a particular GeneralizationSet must have the same general Classifier.

[2] TheClassifier that maps to a GeneralizationSet may neither be a specific nor ageneral Classifier in any of the Generadiza-
tion relationships defined for that GeneralizationSet. In other words, a power type may not be an instance of itself nor may
itsinstances be its subclasses.

Semantics

The generalizationSet association designates the partition to which the Generalization link belongs. All of the Generalization
links that share a given general Classifier are divided into digjoint sets (that is, partitions) using the generalizationSet
association. Each partition represents an orthogonal dimension of specialization of the general Classifier.

As mentioned above, in essence, a power type isaclass whose instances are subclasses of another class. Power types, then, are
metaclasses with an extratwist: the instances are also be subclasses. The powertype association relates a classifier to the
instances of that classifier—which are the specific classifiersidentified for a GeneralizationSet. For example, the Bank
Account Type classifier could associate with a Generalization relationship that has specific classifiers of Checking Account
and Savings Account. Here, then, Checking Account and Savings Account are instances of Bank Account Type. Furthermore,
if the Generalization relationship has a general classifier of Bank Account, then Checking Account and Savings Account are
also subclasses of Bank Account. Therefore, Checking Account and Savings Account are both instances of Bank Account
Type and subclasses of Bank Account. (For more explanation and examples, see Examplesin the Generalization section,
below.)

Notation

The notation to express the grouping of Generalizations into GeneralizationSets were presented in the Notation section of
Generalization, above. To indicate whether or not a generalization set is covering and disjoint, each set should be labeled with

122 UML Superstructure 2.0 Draft Adopted Specification

one of the constraints indicated below.

{complete, dioint} - Indicates the generalization set is covering and
its specific Classifiers have no common instances
{incomplete, digoint} - Indicates the generalization set is not covering and
its specific Classifiers have no common instances*

{ complete, overlapping} - Indicates the generalization set is covering and

its specific Classifiers do share common instances
{incomplete, overlapping} - Indicates the generalization set is not covering and
its specific Classifiers do share common instances

*Default is {incomplete, digoint}
Figure 69 - Generalization set constraint notation

Graphically, the GeneralizationSet constraints are placed next to the sets, whether the common arrowhead notation is
employed of the dashed line, asillustrated below.

{Generalization

{Generalization
Set constraint-1}

Set constraint-2}

(a) GeneralizationSet constraint when sharing common generalization arrowhead

{Generalization
Set constraint-3} o
_____ - {Generalization

Set constraint-4}

(b) GeneralizationSet constraint using dashed-line notation.
Figure 70 - GeneralizationSet constraint notation

Power type specification isindicated by placing the name of the powertype Classifier—preceded by a colon—next the
GeneralizationSet graphically containing the specific classifiersthat are the instances of the power type. Theillustration below

UML Superstructure 2.0 Draft Adopted Specification 123

indicates how this would appear for both the “shared arrowhead” and the “dashed-line” notation. for GeneralizationSets.

PowerType

Classifier-1

General

Classifier

PowerType
Classifier-2

: powertype classifier-1]

A

: powertype classifier-2

Specific
Classifier-1

Specific
Classifier-2

Specific
Classifier-3

PowerType

Classifier-1

General

(a) Power type specification when sharing common generalization arrowhead

Classifier

PowerType
Classifier-2

: powertype classifier-1

. powertype classifier-2

Specific
Classifier-3

Specific
Classifier-2

Specific
Classifier-1

(b) Power type specification using dashed-line notation
Figure 71 - Power type notation

Examples

In theillustration below, the Person class can be specialized as either a Female Person or a Male Person. Because this
partitioning, or GeneralizationSet, is constrained to be complete and disjoint, each instance of Person must either be a Female
Person or aMale Person; that is, it must be one or the other and not both. (Therefore, Person is an abstract class because a
Person object may not exist without being either a Female Person or a Male Person.) Furthermore, Person’ s can be specialized
as an Employee. The generalization set here is expressed as {incomplete, digjoint}, which means that instances of Persons can
be partitioned as Employees or some other unnamed collection that consists of all non-Employee instances. In other words,
Persons can either be an Employee or in the complement of Employee, and not both. Taken together, the diagram indicates
that a Person may be 1) either a Male Person or Female Person, and 2) an Employee or not. When expressed in this manner, it

124 UML Superstructure 2.0 Draft Adopted Specification

is possible to partition the instances of a classifier using a disjunctive normal form (DNF).

Person

{complete, {incomplete,
disjoint} disjoint} An incomplete partition

Female indicating that a Person

A complete partition Employee can also be an Employee

indicating that a Person Person or not.

may be subtyped as

either aFemale Person

or aMale Person.

Male
Person

Figure 72 - Multiple subtype partitions (generalization sets) and constraint
examples

Grouping the objects in our world by categories, or classes, is an important technique for organizations. For instance, one of
the way's botanists organize trees is by species. In thisway, each tree we see can be classified as an American elm, sugar
mapl e, apricot, saguaro—or some other species of tree. The class diagram below expresses that each Tree Species classifies
zero or more instances of Tree, and each Treeis classified as exactly one Tree Species. For example, one of the instances of
Tree could be the tree in your front yard, the tree in your neighbor’ s backyard, or trees at your local nursery. Instances of Tree
Species, such as sugar maple and apricot. Furthermore, this figure indicates the rel ationships that exist between these two sets
of objects. For instance, the tree in your front yard might be classified as a sugar maple, your neighbor’ s tree as an apricot, and
so on. Thisclass diagram expresses that each Tree Species classifies zero or more instances of Tree, and each Treeisclassified
as exactly one Tree Species. It also indicates that each Tree Speciesisidentified with aLeaf Pattern and has ageneral location
in any number of Geographic Locations. For example, the saguaro cactus has leaves reduced to large spines and is generally
found in southern Arizona and northern Sonora. Additionally, thisfigure indicates each Tree has an actual location at a
particular Geographic Location. In thisway, a particular tree could be classified as a saguaro and be located in Phoenix,
Arizona.

Lastly, thisdiagramsillustrates that Treeis subtyped as American EIm, Sugar Maple, Apricot, or Saguaro—or something else.
Each subtype, then, can have its own specialized properties. For instance, each Sugar Maple could have a yearly maple sugar
yield of some given quantity, each Saguaro could be inhabited by zero or more instances of a Gila Woodpecker, and so on. At
first glance, it would seem that a modeler should only use either the Tree Species class or the subclasses of Tree—since the
instances of Tree Species are the same as the subclasses of tree. In other words, it seems redundant to represent both on the
same diagram. Furthermore, having both would seem to cause potential diagram maintenanceissues. For instance, if botanists
got together and decided that the American elm should no longer be a species of tree, the American EIm object would then be
removed as an instance of Tree Species. To maintain the integrity of our model in such a situation, the American EIm subtype
of Tree must also be removed. Additionally, if anew species were added as a subtype of Tree, that new species would have to
be added as an instance of Tree Species. The same kind of situation existsif the name of atree species were changed—both the
subtype of Tree and the instance of Tree Specieswould have to be modified accordingly.

Asit turns out, this seemis redunadancy is not aredundancy semantically (although it may beimplemented that way). different
modeling approaches depicted above are not really al that different. In reality, the subtypes of Tree and the instances of Tree
Species are the same objects. In other words, the subtypes of Tree are instances of Tree Species. Furthermore, the instances of
Tree Species are the subtypes of Tree. The fact that an instance of Tree Species is called sugar maple and a subtype of Treeis
called Sugar Maple is no coincidence. The sugar maple instance and Sugar Maple subtype are the same object. The instances
of Tree Species are—as the name implies—types of trees. The subtypes of Tree are—by definition—types of trees. While Tree
may be partitioned in various ways (based on size or age, for example), in this exampleit is partitioned on the basis of species.
Therefore, the integrity issue mentioned above is not really an issue here. Deleting the American Elm subtype from the Tree

UML Superstructure 2.0 Draft Adopted Specification 125

partition does not require also deleting the corresponding Tree Species instance, because the American Elm subtype and the
corresponding Tree Species instance are the same object. Figures 23.4 and 23.5 depict another way of thinking about this. .

tree tree species
— 2 L Tree
Tree Species
* * 1
actual general leaf
{disjoint, location locations pattern
incomplete} 1 * 1
: Tree Species Geogre_lphic Leaf
Location Pattern
Sugar
Maple
T Apricot
American
Elm
— Saguaro

Figure 73 - Power type example and notation

Asestablished above, the instances of Classifiers can also be Classifiers. (Thisis the stuff that metamodels are made of) These
same instances, however, can also be specific classifiers (i.e. subclasses) of another classifier. When this occurs, we have what
is called a power type. Formally, a power type is a classifier whose instances are also subclasses of another classifier

In the examples above, Tree Speciesis apower type on the Treetype. Therefore, the instances of Tree Species are subtypes of
Tree. This concept applies to many situations within many lines of business. The figure below depicts other examples of
power types. The name on the generalization set beginning with a colon indicates the power type. In other words, thisnameis
the name of the type of which the subtypes are instances.

Diagram (a) in the figure bel ow, then, can be interpreted as. each instance of Account is classified with exactly one instance of
Account Type. It can also be interpreted as: the subtypes of Account are instances of Account Type. This means that each
instance of Checking Account can have its own attributes (based on those defined for Checking Account and those inherited
from Account), such as account number and balance. Additionally, it means that Checking Account as an object in its own
right can have attributes, such as interest rate and maximum delay for withdrawal. (Such attributes are sometime referred to as
class variables, rather than instance variables.) The example (b) depicts a vehicle-modeling example. Here, each Vehicle can
be subclassed as either a Truck or a Car or something else. Furthermore, Truck and Car are instances of Vehicle Type. In (¢),
Disease Occurrence classifies each occurrence of disease, e.g. my chicken pox and your measles. Disease Classification isthe

126 UML Superstructure 2.0 Draft Adopted Specification

power type whose instances are classes such as Chicken Pox and Measles.

vehicle category

Account) 1 Vehicle
Account [Type Vehicle [+ Type

account classified vehicle

account classifier

{disjoint, incomplete} {disjoint, incomplete}

) :Account Type :Vehicle Type
Checking Truck
Account ruc
Savings
Account Car
(a) Bank account/account type example (b) Vehicle/vehicle type example
) disease classifierl . Installed service catego?/ Telephone
Disease Disease S ;
Occurrence |* Classification Telephone I ervice
classified disease Service installed service Category
{disjoint, incomplete} {disjoint, incomplete}
: Disease Classification : Telephone Service Category
Chicken Call
Pox Waiting
Measles Call
Transferring
(c) Disease Occurrence/Disease Classification example (d) Telephone service example

Figure 74 - Other power type examples

L abeling partitions with the power type becomes increasingly important when atype has more than one power type. Thefigure
below is one such example. Without knowing which partition contains Policy Coverage Types and which Insurance Lines,
clarity is compromised. This figure depicts an even more complex situation. Here, a power type is expressed with multiple
partitions. For instance, a Policy can be subtyped as either a Life, Health, Property/Casualty, or some other Insurance Line.
Furthermore, a Property/Casualty policy can be further subtyped as Automobile, Equipment, Inland Marine, or some other
Property/Casualty line of insurance. In other words, the subtypes in the partitions labeled Insurance Line are all instances of

UML Superstructure 2.0 Draft Adopted Specification 127

the Insurance Line power type.

Policy issued 90"02’ insurance Iin(i
Coverage 1 Policy _ Insmli.rance
Type coverage type issued policy iIne

{disjoint, complete}4 {disjoint, complete}

:Policy Coverage Type :Insurance Line
Group Life
Policy | Policy

Individual Health
Policy —| Policy
Property/
Casualty
Policy

Figure 75 - Other power type examples

Power types are a conceptual, or analysis, notion. They express a real-world situation. Implementing, however, them may
not be easy and efficient. To implement power types with arelational database would mean that the instances of arelation
could aso be relations in their own right. In object-oriented implementations, the instances of a class could also be
classes. However, if the software implementation can not directly support classes being objects and vice versa, redundant
structures must be defined. In other words, unless you’ re programming in Smalltalk or CLOS, the designer must be aware
of the integrity problem of keeping the list of power type instances in sync with the existing subclasses. Without the
power type designation, implementors would not be aware that they need to consider keeping the subclasses in sync with
the instances of the power type; with the power type indication, the implementor knows that a) an data integrity situation
exists, and b) how to manage the integrity situation. For example, if the Life Policy instance of Insurance Line were
deleted, the subclass called Life Policy can no longer exist. Or, is a new subclass of Policy were added, a new instance
must also be added to the appropriate power type.

7.18 Diagrams

Structure diagram

This section outlines the graphic elements that may be shown in structure diagrams, and provides cross references where
detailed information about the semantics and concrete notation for each element can be found. It also furnishes examples that
illustrate how the graphic elements can be assembled into diagrams.

128 UML Superstructure 2.0 Draft Adopted Specification

Graphical nodes

The graphic nodes that can be included in structure diagrams are shown in Table 3.

Table 3 Graphic nodes included in structure diagrams

<<interface>>

NoODE TYPE NOTATION REFERENCE
Class See “Class (from Kernel)” on page 86.
ClassName
Interface See “Interface (from Interfaces)” on page 114.
InterfaceName
—0

InterfaceName
InstanceSpecification See “InstanceSpecification (from Kernel)” on
page 57. (Note that instances of any classifier can
Instancename : be shown by prefixing the classifier name by the
ClassName instance name followed by a colon and underlining
the complete name string.)
Package See “Package (from Kernel)” on page 99.
|
PackageName

UML Superstructure 2.0 Draft Adopted Specification

129

Graphical paths

The graphic paths that can be included in structure diagrams are shown in Table 4.

Table 4 - Graphic nodes included in structure diagrams

PATH TYPE NOTATION REFERENCE
Aggregation See “AggregationKind (from Kernel)” on page 80.
Association See “Association (from Kernel)” on page 81.
Composition See “AggregationKind (from Kernel)” on page 80.
Dependency See “Dependency (from Dependencies)” on
page 108.
Generalization See “Generalization (from Kernel, PowerTypes)”
on page 66.
Realization See “Realization (from Dependencies)” on
page 110.
Package Merge See “PackageMerge (from Kernel)” on page 101.
<<merge>>
Packagel mport See “Packagelmport (from Kernel)” on page 38.
(private)
<<use>>
130

UML Superstructure 2.0 Draft Adopted Specification

Table 4 - Graphic nodes

included in structure diagrams

PATH TYPE NOTATION REFERENCE
Packagel mport See “Packagel mport (from Kernel)” on page 38.
(public)
<<import>>
Variations

Variations of structure diagrams often focus on particular structural aspects, such as relationships between packages, showing

instance specifications, or relationships between classes. There are no strict boundaries between different variations; it is

possible to display any element you normally display in a structure diagram in any variation.

Class diagram

The following nodes and edges are typically drawn in a class diagram:

Association
Aggregation
Class
Composition
Dependency
Generalization
Interface

Readlization

Package diagram

The following nodes and edges are typically drawn in a package diagram:

Dependency
Package
PackageExtension
Packagel mport

Object diagram

The following nodes and edges are typically drawn in an object diagram:

InstanceSpecification

Link (i.e., Association)

UML Superstructure 2.0 Draft Adopted Specification

131

132 UML Superstructure 2.0 Draft Adopted Specification

8 Components

8.1 Overview

The Components package specifies a set of constructs that can be used to define software systems of arbitrary size and
complexity. In particular, the package specifies a component as amodular unit with well-defined interfaces that is replaceable
within its environment. The component concept addresses the area of component-based devel opment and component-based
system structuring, where a component is model ed throughout the development life cycle and successively refined into
deployment and run-time.

An important aspect of component-based devel opment is the reuse of previously constructed components. A component can
aways be considered an autonomous unit within a system or subsystem. It has one or more provided and required interfaces
(potentially exposed via ports), and itsinternal s are hidden and inaccessible other than as provided by its interfaces. Although
it may be dependent on other elementsin terms of interfaces that are required, a component is encapsulated and its
dependencies are designed such that it can be treated as independently as possible. As aresult, components and subsystems
can be flexibly reused and replaced by connecting (“wiring”) them together viatheir provided and required interfaces. The
aspects of autonomy and reuse also extend to components at deployment time. The artifacts that implement component are
intended to be capable of being deployed and re-deployed independently, for instance to update an existing system.

The Components package supports the specification of both logical components (e.g. business components, process
components) and physical components (e.g. EJB components, CORBA components, COM+ and .NET components, WSDL
components, etc.), along with the artifacts that implement them and the nodes on which they are deployed and executed. It is
anticipated that profiles based around components will be devel oped for specific component technologies and associated
hardware and software environments.

Basic Components

The BasicComponents package focuses on defining a component as an executable element in a system. It defines the concept
of acomponent as a specialized class that has an external specification in the form of one or more provided and required
interfaces, and an internal implementation consisting of one or more classifiers that realize its behavior. In addition, the
BasicComponents package defines specialized connectors for ‘wiring’ components together based on interface compatibility.

Packaging Components

The PackagingComponents package focuses on defining a component as a coherent group of elements as part of the
devel opment process. It extends the concept of a basic component to formalize the aspects of a component as a‘building
block’ that may own and import a (potentially large) set of model elements.

UML Superstructure 2.0 Draft Adopted Specification 133

8.2 Abstract syntax

Figure 76 shows the dependencies of the Component packages.

-

StructuredClasses Dependencies
(from CompositeStructures) (from Classes)

Z
(

|

|

| -
|

|

-
-
-

BasicComponents

-

.
. <<merge>>

|
<<merge>>",
|
|
|
|
|
|

PackagingComponents

Figure 76 - Dependencies between packages described in this chapter
(transitive dependencies to Kernel and Interfaces packages are not shown).

134 UML Superstructure 2.0 Draft Adopted Specification

Package BasicComponents

Interface

(fromInefaes) *

Class
(from StructuredClasses)

+/provided
*

{subsets ource,
subsets owner,
subsets client}
Component)
- - - +abstraction %
isindirectlylnstantiated : Boolean

0.1 +realization

+/required

Connector

{subsets ownedElement,
subsets clientDependency}

+realizingClassifier

{subsets supplier,

Realization

subsets target} 1

Figure 77 - The metaclasses that define the basic Component construct.

+contract

kind : ConnectorKind

<<enumeration>>
ConnectorKind

asse mbly
delegation

Behavior
% | (from BasicBehaviors)

Figure 78 - The metaclasses that define the component wiring constructs

UML Superstructure 2.0 Draft Adopted Specification

Classifier
(fromKemel)

135

Package PackagingComponents

+ownedMember
Component P " PackageableElement

(fromKernel)

0.1 {redefines ownedMember} *

Figure 79 - The packaging capabilities of Components

8.3 Class Descriptions

8.3.1 Component

A component represents a modular part of a system that encapsulates its contents and whose manifestation is replaceable
within its environment.

A component defines its behavior in terms of provided and required interfaces. As such, acomponent serves as atype, whose
conformance is defined by these provided and required interfaces (encompassing both their static aswell as dynamic
semantics). One component may therefore be substituted by another only if the two are type conformant. Larger pieces of a
system's functionality may be assembled by reusing components as parts in an encompassing component or assembly of
components, and wiring together their required and provided interfaces.

A component is modeled throughout the development life cycle and successively refined into deployment and run-time. A
component may be manifest by one or more artifacts, and in turn, that artifact may be deployed to its execution environment.
A deployment specification may define values that parameterize the component’ s execution. (See Deployment chapter).

Description

BasicComponents

A component is a subtype of Class which provides for a Component having attributes and operations, and being able to
participate in Associations and Generalizations. A Component may form the abstraction for a set of realizingClassifiers that
realize its behavior. In addition, because aitself Classis a subtype of an EncapsulatedClassifier, a Component may optionally
have an internal structure and own a set of Ports that formalize its interaction points.

A component has a number of provided and required Interfaces, that form the basis for wiring components together, either
using Dependencies, or by using Connectors. A provided Interfaceisonethat is either implemented directly by the component
or one of itsrealizingClassifiers, or it isthe type of aprovided Port of the Component. A required interface is designated by a
Usage Dependency from the Component or one of itsrealizingClassifiers, or it is the type of arequired Port.

PackagingComponents

A component is extended to define the grouping aspects of packaging components. This defines the Namespace aspects of a
Component through its inherited ownedMember and elementlmport associations. In the namespace of a component, all model
elements that are involved in or related to its definition are either owned or imported explicitly. This may include e.g. Use
Cases and Dependencies (e.g. mappings), Packages, Components, and Artifacts.

136 UML Superstructure 2.0 Draft Adopted Specification

Attributes

BasicComponents

e isIndirectlylnstantiated : Boolean { default = true}
The kind of instantiation that applies to a Component. If false, the component is instanti-
ated as an addressable object. If true, the Component is defined at design-time, but at run-
time (or execution-time) an object specified by the Component does not exist, that is, the
component isinstantiated indirectly, through the instantiation of its realizing classifiers or
parts. Several standard stereotypes use this meta attribute, e.g. «specification, «focus», «sub-
systemp».

Associations
BasicComponents

e provided: Interface The interfaces that the component exposes to its environment. These interfaces may be
Implemented or Realized by the Component or any of itsrealizingClassifiers, or they may
be the types of its required Ports.

The provided interfaces association is a derived association (OCL version of the deriva-
tion above to be added).

e required: Interface The interfaces that the component requires from other components in its environment in
order to be able to offer its full set of provided functionality. Theseinterfaces may be Used
by the Component or any of itsrealizingClassifiers, or they may be the types of its
required Ports.

The required interfaces association is aderived association (OCL version of the derivation
above to be added).

e redization: Redlization References the Classifiers of which the Component is an abstraction, i.e. that realizeits
behavior.

PackagingComponents

¢ ownedMember: Packageabl eElement
The set of Packageabl eElements that a Components owns. In the namespace of a compo-
nent, all model elementsthat are involved in or related to its definition may be owned or
imported explicitly. These may include e.g. Classes, Interfaces, Components, Packages,
Use cases, Dependencies (e.g. mappings), and Artifacts.

Constraints

No further constraints.

Semantics

A component isa self contained unit that encapsul ates the state and behavior of anumber of classifiers. A component specifies
aformal contract of the servicesthat it providesto its clients and those that it requires from other components or servicesin the
system in terms of its provided and required interfaces.

A component is a substitutable unit that can be replaced at design time or run-time by a component that offers that offers
equivalent functionality based on compatibility of itsinterfaces. Aslong as the environment obeys the constraints expressed
by the provided and required interfaces of a component, it will be able to interact with this environment. Similarly, a system
can be extended by adding new component types that add new functionality.

UML Superstructure 2.0 Draft Adopted Specification 137

The required and provided interfaces of a component allow for the specification of structural features such as attributes and
association ends, as well as behavioral features such as operations and events. A component may implement a provided
interface directly, or, itsrealizing classifiers may do so. The required and provided interfaces may optionally be organized
through ports, these enable the definition of named sets of provided and required interfaces that are typically (but not always)
addressed at run-time.

A component has an external view (or. “black-box” view) by means of its publicly visible properties and operations.
Optionally, a behavior such as a protocol state machine may be attached to an interface, port and to the component itself, to
define the external view more precisely by making dynamic constraints in the sequence of operation calls explicit. Other
behaviors may also be associated with interfaces or connectors to define the ‘ contract’ between participantsin a collaboration
e.g. interms of use case, activity or interaction specifications.

The wiring between components in a system or other context can be structurally defined by using dependencies between
component interfaces (typically on structure diagrams). Optionally, a more detailed specification of the structural
collaboration can be made using parts and connectors in of composite structures, to specify the role or instance level
collaboration between components (See Chapter Composite Structures).

A component also has an internal view (or “white-box” view) by means of its private properties and realizing classifiers. This
view shows how the external behavior is realized internally. The mapping between external and internal view is by means of
dependencies (on structure diagrams), or delegation connectors to internal parts (on composite structure diagrams). Again,
more detailed behavior specifications such as for example interactions and activities may be used to detail the mapping from
external to interna behavior.

A number of UML standard stereotypes exist that apply to component, e.g. «subsystem» to model large-scale components, and
«specification» and «realization» to model components with distinct specification and realization definitions, where one
specification may have multiple realizations - see the UML Standard Elements Appendix.

Notation

A component is shown as a Classifier rectangle with the keyword «component». Optionally, in the right hand corner a
component icon can be displayed. Thisisaclassifier rectangle with two smaller rectangles protruding from its left hand side.

Quotelnf
O——| «component> = |

QuoteService

Figure 80 - A Component with one provided interface

: «component» @ Person :
: Order Invoice i

J\Orderableltem

Figure 81 - A Component with two provided and three required interfaces

138 UML Superstructure 2.0 Draft Adopted Specification

An external view of a Component is by means of Interface symbols sticking out of the Component box (external, or black-box

view). Alternatively, the interfaces and/or individual operations and attributes can be listed in the compartments of a
component box (for scalability, tools may offer way of listing and abbreviating component properties and behavior).

For displaying the full signature of an interface of a component, the interfaces can also be displayed astypical classifier

«component» @
Order

«provided interfaces»
OrderEntry
Billing
«required interfaces»
Invoice
create (...)
registerPayment (...)

Figure 82 - Black box notation showing a listing of the properties
of a component.

rectangles that can be expanded to show details of operations and events.

«Interface»
OrderEntry

Create()
ValidateDetails()
AddOrderline()

Order

«use»

«Interface»
Person

FindbyName()
Create()
GetDetails()

Figure 83 - Explicit representation of the provided and required

Aninternal, or white box view of a Component iswhere the realizing classifiers are listed in an additional compartment.
Compartments may also be used to display alisting of any parts and connectors, or any implementing artifacts.

interfaces, allowing interface details such as operation

to be displayed (when desired).

Figure 84 - A white-box representation of a component

UML Superstructure 2.0 Draft Adopted Specification

«component» @
Order

«provided interfaces»
OrderEntry
AccountPayable

«required interfaces»
Person

«realizations»
OrderHeader
Lineltem

«artifacts»
Order.jar

139

Theinternal classifiersthat realize the behavior of acomponent may be displayed by means of general dependencies.
Alternatively, they may be nested within the component shape.

Customer

Customerimpl CustomerColl CustomerDef

Figure 85 - A representation of the realization of a complex component

Alternatively, the internal classifiers that realize the behavior of a component may be displayed nested within the component
shape.

Order @

OrderHeader

. Perso

OrderEntry
order T 1 C

item

Lineltem

Figure 86 - An alternative nested representation of a complex component

If more detail isrequired of therole or instance level containment of acomponent, then an internal structure consisting of parts
and connectors can be defined for that component. This allows e.g. explicit part names or connector names to be shown in
situations where the same Classifier (Association) is the type of more than one Part (Connector). That is, the Classifier is
instantiated more than once inside the component, playing different rolesin its realization. Optionally, specific instances
(InstanceSpecifications) can also be referred to as in this notation.

140 UML Superstructure 2.0 Draft Adopted Specification

Store @
OrderEntry

o—L «delegate»
@ Person @
O——q :Order [} :Customer

OrderEntry Person
Orderableltem Account /L
«delegate»
Orderableltem N
Account
:Product

Figure 87 - An internal or white-box view of the internal structure
of a component that contains other components as parts of
its internal assembly.

Artifacts that implement components can be connected to them by physical containment or by an «implement» relationship,
which is an instance of the meta association between Component and Artifact.

Examples

«component» @ «component»
Order = f---------------3 Account
i
1
1
1
1
i
A\
«component»
Product @

Figure 88 - Example of an overview diagram showing
components and their general dependencies.

UML Superstructure 2.0 Draft Adopted Specification 141

The wiring of components can be represented on structure diagrams by means of classifiers and dependencies between them

«companent» @ «component» @
1 Order
Account .
Jaccount .
«focus»
A)— .- OrderHeader
AccountPayable
/ordereditem @
1
] Product
concerns i
* «component»
Lineltem Ci
Orderableltem
Figure 89 - Example of a platform independent model of a component,
its provided and required interfaces, and wiring through
dependencies on a structure diagram.
Person
:BackOrder
OrderEntry Person
:ShoppingCart :Order (e} :Customer
OrderEntry Person
Orderableltem
) Orderableltem o o
:Service :Organization
Orderableltem Client

:Product

Figure 90 - Example of a composite structure of components, with
connector wiring between provided and required interfaces
of parts (Note: “Client” interface is a subtype of “Person”).

(Note: the ball-and-socket notation from Figure 90 may used as a notation option for dependency based wiring). On composite
structure diagrams, detailed wiring can be performed at the role or instance level by defining parts and connectors.

142 UML Superstructure 2.0 Draft Adopted Specification

Changes from previous UML
The following changes from UML 1.x have been made:

The component model has made a number of implicit concepts from the UML 1.x model explicit, and made the concept more
applicable throughout the modeling life cycle (rather than the implementation focus of UML 1.x). In particular, the “resides’
relationship from 1.x relied on namespace aspects to define both namespace aspects aswell as ‘residence’ aspects. These two
aspects have been separately modeled in the UML metamodel in 2.0. The basic residence relationship in 1.x mapsto the
realizingClassifiers relationship in 2.0. The namespace aspects are defined through the basic namespace aspects of Classifiers
in UML 2.0, and extended in the PackagingComponents metamodel for optional namespace rel ationships to el ements other
than classifiers.

In addition, the Component construct gains the capabilities from the general improvements in CompositeStructures (around
Parts, Ports and Connectors).

In UML 2.0, a Component is notated by a classifier symbol that no longer has two protruding rectangles. These were
cumbersome to draw and did not scale well in al circumstances. Also, they interfered with any interface symbols on the edge
of the Component. I nstead, a «component» keyword notation is used in UML 2.0. Optionally, acomponent icon that is similar
to the UML 1.4 icon can still be used in the upper right-hand corner of the component symbol. For backward compatibility
reasons, the UML 1.4 notation with protruding rectangles can still be used.

8.3.2 Connector (from InternalStructures, as specialized)

The connector concept is extended in the Components package to include interface based constraints and notation.

A delegation connector is a connector that links the external contract of a component (as specified by its ports) to the internal
realization of that behavior by the component’ s parts. It represents the forwarding of signals (operation requests and events) : a
signal that arrives at a port that has a delegation connector to a part or to another port will be passed on to that target for
handling.

An assembly connector is a connector between two components that defines that one component provides the services that
another component requires. An assembly connector is a connector that is defined from arequired interface or port to a
provided interface or port.

Description

In the metamodel, a connector kind attribute is added to the Connector metaclass. Its value is an enumeration type with valid
values “assembly” or “delegation”.

Attributes
BasicComponents

e kind: ConnectorKind = {assembly, delegation} Indicates the kind of connector.

Associations

No additional associations.

Constraints

[1] A delegation connector must only be defined between used Interfaces or Ports of the same kind, e.g. between two pro-
vided Ports or between two required Ports.

[2] If adelegation connector is defined between a used Interface or Port and an internal Part Classifier, then that Classifier
must have an “implements’ relationship to the Interface type of that Port.

UML Superstructure 2.0 Draft Adopted Specification 143

[3] If adelegation connector is defined between a source Interface or Port and atarget Interface or Port, then the target Inter-
face must support a signature compatible subset of Operations of the source Interface or Port.

[4] Inacomplete model, if a source Port has delegation connectors to a set of delegated target Ports, then the union of the
Interfaces of these target Ports must be signature compatible with the I nterface that types the source Port.

[5] Anassembly connector must only be defined from arequired Interface or Ports to a provided Interface or Port.

Semantics

A delegation connector is a declaration that behavior that is available on a component instance is not actually realized by that
component itself, but by another instance that has “compatible” capabilities. This may be another Component or a (smple)
Class. The latter situation is modeled through a delegation connector from a Component I nterface or Port to a contained Class
that functions as a Part. In that case, the Class must have an implements relationship to the Interface of the Port.

Delegation connectors are used to model the hierarchical decomposition of behavior, where services provided by a component
may ultimately be realized by one that is nested multiple levels deep within it. The word delegation suggests that concrete
message and signal flow will occur between the connected ports, possibly over multiple levels. It should be noted that such
signal flow is not alwaysrealized in all system environments or implementations (i.e. it may be design time only).

A port may delegate to a set of ports on subordinate components. In that case, these subordinate ports must collectively offer
the delegated functionality of the delegating port. At execution time, signals will be delivered to the appropriate port. In the
cases where multiple target ports support the handling of the same signal, the signal will be delivered to all these subordinate
ports.

The execution time semantics for an assembly connector are that signalstravel along an instance of a connector, originating in
arequired port and delivered to a provided port. Multiple connectors directed from a single required interface or port to
provided interfaces on different components indicates that the instance that will handle the signal will be determined at
execution time. Similarly, multiple required ports that are connected to a single provided port indicates that the request may
originate from instances of different component types.

The interface compatibility between provided and required ports that are connected enables an existing component in a system
to be replaced by one that (minimally) offers the same set of services. Also, in contexts where components are used to extend
a system by offering existing services, but also adding new functionality, assembly connectors can be used to link in the new
component definition. That is, by adding the new component type that offers the same set of services as existing types, and
defining new assembly connectorsto link up its provided and required ports to existing portsin an assembly.

Notation

A delegation connector is notated as a Connector from the delegating source Port to the handling target Part, and vice versafor

144 UML Superstructure 2.0 Draft Adopted Specification

required Interfaces or Ports.

Order @

:OrderHeader

OrderEntry

o—

Person

:Lineltem

Figure 91 - Delegation connectors connect the externally provided
interfaces of a component to the parts that realize or require them.

An assembly connector is notated by a“ball-and-socket” connection between a provided interface and a required interface.
This notation allows for succinct graphical wiring of components, a requirement for scaling in complex systems.

When this notation is used to connect “complex” ports that are typed by multiple provided and/or required interfaces, the
variousinterfaces are listed as an ordered set, designated with { provided} or {required} if needed.

OrderEntry «components @ «component» @
C Order O— :Order

Orderableltem

Orderableltem

«component»

O—— Product @

Orderableltem

Orderableltem

«component» @
:Product

Figure 92 - An assembly connector maps a required interface of a
component to a provided interface of another component in a
certain context (definition of components e.g. in alibrary on the

left, an assembly of those components on the right).

In a system context where there are multiple components that provide or require a particular interface, a notation abstraction
can be used that combines by joining the multiple connectors. Thisabstraction is similar to the one defined for aggregation and

UML Superstructure 2.0 Draft Adopted Specification 145

subtyping relationships.

«component» @

Qi :BackOrder

Person

OrderEntry
«component» @ Person «component»
O— :Order :Customer
OrderEntry Person

«component» @

:Organization

Note: Client interface is a subtype of Person interface

Figure 93 - As a notation abstraction, multiple wiring relationships
can be visually grouped together in a component assembly.

Changes from previous UML

The following changes from UML 1.x have been made: Connector is not defined in UML 1.4.
8.3.3 Realization (from Dependencies, as specialized)

The Realization concept is specialized in the Components package to (optionally) define the Classifiers that realize the
contract offered by a component in terms of its provided and required interfaces. The component forms an abstraction from
these various Classifiers.

Description

In the metamodel, a Redlization is a subtype of Dependencies::Realization.

Attributes
No additional attributes.

Associations

No additiona associations.

Constraints

No additional associations.

Semantics

A component’ s behavior may typically be realized (or implemented) by a number of Classifiers. In effect, it formsan
abstraction for a collection of model elements. In that case, a component owns a set of Realization Dependencies to these

146 UML Superstructure 2.0 Draft Adopted Specification

Classifiers.

It should be noted that for the purpose of applications that require multiple different sets of realizationsfor a single component
specification, a set of standard stereotypes are defined in the UML Standard Profile. In particular, «specification» and
«realization» are defined there for this purpose.

Notation

A component realization is notated in the same way as the realization dependency, i.e. as a general dashed line with an open
arrow-head.

Changes from previous UML

The following changes from UML 1.x have been made: Realization isdefined in UML 1.4 asa‘free standing’ general
dependency - it is not extended to cover component realization specifically. These semantics have been made explicitin UML
2.0.

8.4 Diagrams

Structure diagram

Graphical nodes

The graphic nodes that can be included in structure diagrams are shown in Table 4.

Table 4 - Graphic nodes included in structure diagrams

NoODE TYPE NOTATION REFERENCE
Component See “Component”.
<<comp0nent>>
ComponentName

=l

ComponentName
Component implements See “Interface’.
Interface «component» @
O— Name

UML Superstructure 2.0 Draft Adopted Specification 147

Table 4 - Graphic nodes included in structure diagrams

NODE TYPE NOTATION REFERENCE
Component has provided See “Port”.
Port (typed by Interface)
«component» @
Name
Component uses Inter- See “Interface’.
face
«component» @
— Name
Component has required See “Port”.
Port (typed by Interfme) «component» @
Name
Component has complex See “Port”.
Port (typw by prOVIded «component» E
and required Interfaces) Name

Graphical paths
The graphic paths that can be included in structure diagrams are shown in Table 5.

Table 5 Graphic nodes included in structure diagrams

PATH TYPE NOTATION REFERENCE

Assembly connector See “assembly connector”. Also used as notation
option for wiring between interfaces using Depen-

{O dencies.

Variations

Variations of structure diagrams often focus on particular structural aspects, such as rel ationships between packages, showing
instance specifications, or relationships between classes. There are no strict boundaries between different variations; it is
possible to display any element you normally display in a structure diagram in any variation.

148 UML Superstructure 2.0 Draft Adopted Specification

Component diagram
The following nodes and edges are typically drawn in a component diagram:
« Component
* Interface
 Realization, Implementation, Usage Dependencies
» Class
 Artifact

» Port

UML Superstructure 2.0 Draft Adopted Specification 149

150 UML Superstructure 2.0 Draft Adopted Specification

9 Composite Structures

9.1 Overview

The term “structure” in this chapter refers to a composition of interconnected elements, representing run-time instances
collaborating over communications links to achieve some common objectives.

Internal Structures

The Internal Structure subpackage provides mechanisms for specifying structures of interconnected elements that are created
within an instance of a containing classifier. A structure of this type represents a decomposition of that classifier. and is
referred to asits “internal structure”.

Ports

The Ports subpackage provides mechanisms for isolating a classifier from its environment. Thisis achieved by providing a
point for conducting interactions between the internals of the classifier and its environment. This interaction point is referred
toasa“port.” Multiple ports can be defined for a classifier, enabling different interactions to be distinguished based on the
port through which they occur. By decoupling the internal s of the classifier from its environment, ports allow aclassifier to be
defined independently of its environment, making that classifier reusable in any environment that conforms to the interaction
constraints imposed by its ports.

Collaborations

Objectsin a system typically cooperate with each other to produce the behavior of a system. The behavior is the functionality
that the system is required to implement.

A behavior of acollaboration will eventually be exhibited by a set of cooperating instances (specified by classifiers) that
communicate with each other by sending signals or invoking operations. However, to understand the mechanisms used in a
design, it may be important to describe only those aspects of these classifiers and their interactions that are involved in
accomplishing atask or arelated set of tasks, projected from these classifiers. Collaborations allow us to describe only the
relevant aspects of the cooperation of a set of instances by identifying the specific roles that the instances will play. Interfaces
alow the externally observable properties of an instance to be specified without determining the classifier that will eventually
be used to specify thisinstance. Consequentialy, the rolesin a collaboration will often be typed by interfaces and will then
prescribe properties that the participating instances must exhibit, but will not determine what class will specify the
participating instances.

StructuredClasses

The StructuredClasses subpackage supports the representation of classes that may have ports as well asinternal structure.

Actions

The Actions subpackage adds actions that are specific to the features introduced by composite structures, e.g., the sending of
messages via ports.

9.2 Abstract syntax

Figure 94 shows the dependencies of the CompositeStructures packages.

UML Superstructure 2.0 Draft Adopted Specification 151

152

Communications
(from CommonBehaviors)

[—

Interfaces
(from Classes)

<<merge>>1\

/ \ <éwge>> IntemnalStructures

<<merge>> —7

<<merge>>/ \ \ - — /‘\ \\\
<<merge>>

Ports

- - |
/ \/ /4

StructuredActivities

(from Activities) <<merge>>
/ <<merge>> \\<<merge>>

Collaborations

Structured Classes

R R

IntermediateActions Structured Activities

(from Actions)

InvocationActions <<merge>>

Figure 94 - Dependencies between packages described in this chapter

UML Superstructure 2.0 Draft Adopted Specification

Package InternalStructures

Classifier
(from Kernel)

NamedElement
(from Kernel)

% — {union, subsets member} Z%
StructuredClassifier +/role | ConnectableElement
* *

{subsets role, subsets attribute,
subsets ownedMember}

i

0..1 +ownedAttribute
Property
{subsets classifier} *
0..1 +/part
*
{subsets feature, subsets ownedMember} .
+ownedConnector Connector
0..1 .
{subsets redefinition Context}
+redefinedConnector
{subsets redefinedElement}
Figure 95 - Structured classifier
MultiplicityElement Feature
(from Kemel) (fromKemel)
ConnectableElement | +role +end ConnectorEnd 2.* Connector
0.1 * +end 1
* {ordered, subsets ownedElement} .
+/definingEnd 0.1 0..1.|, +type
Property Association

Figure 96 - Connectors

UML Superstructure 2.0 Draft Adopted Specification

(from Kernel)

153

Package Ports

StructuredClassifier ConnectableElement StructuralFeature
(from hternalStructures) (from Internal Structures) (from Kernel)

{subsets feature,

EncapsulatedClassifier subsets ownedMember}
0.1 +ownedPort Port
" isBehavior : Boolean = false +/required
*
{subsets redefinitionContext} isSenice : Boolean = true Interface
* . (from Interfaces)
ConnectorEnd
+/provided
* * *
0..1 \|,+partWithPort *
Property +redefinedPort
(from IntemalStructures) {subsets redefinedElement}

Figure 97 - The Port metaclass

Package StructuredClasses

EncapsulatedClassifier Class
(from Ports) (from Communications)

Class

Figure 98 - Classes with internal structure

154 UML Superstructure 2.0 Draft Adopted Specification

Package Collaborations

StructuredClassifier
(from InternalStructures)

BehavioredClassifier
(from BasicBehaviors)

1

1

Dependency
(from Dependencies)

Package Actions

ConnectableElement Collaboration
(from InternalStructures) [o|1aborationRole
% {subsets role}
Parameter
Figure 99 - Collaboration
NamedElement
(fomKemel)
{subsets ownedElement} Collab -Z%O ¥ 0.1
ollaborationOccurrence ifi
+roleBinding 1 +oceurrence Classifier
{subsets ownedElement}
* 0..1 0.1
. +representation
{subsets occurrence}
1 | +type
Collaboration
Figure 100 - Collaboration.occurrence and role binding
+onPort Port % % -
InvocationAction 0 Trigger
0..1 (from Ports) +port

Figure 101 - Actions specific to composite structures

UML Superstructure 2.0 Draft Adopted Specification

155

Package StructuredActivities

ConnectableElement
frominternal Stucture s)

]

Variable

Figure 102 - Extension to Variable

9.3 Class Descriptions

9.3.1 Class (from StructuredClasses, as specialized)

Description

Extends the metaclass Class with the capability to have an internal structure and ports.

Semantics

See “Property” on page 167, “Connector” on page 163, and “Port” on page 167 for the semantics of the features of Class.
Initialization of the internal structure of aclassis discussed in section “ StructuredClassifier” on page 171.

A class acts as the namespace for various kinds of classifiers defined within its scope, including classes. Nesting of classifiers
limits the visibility of the classifier to within the scope of the namespace of the containing class and is used for reasons of
information hiding. Nested classifiers are used like any other classifier in the containing class.

Notation

See “Class (from Kernel)” on page 86, “ StructuredClassifier” on page 171, and “Port” on page 167.

Presentation Option

A dashed arrow with a stick arrowhead, optionally |abelled with the keyword «create», may be used to relate an instance value
to a constructor for aclass, describing the single value returned by the constructor which must have the class asiits classifier.
The arrowhead points at the operation defining the constructor. The constructor may reference parameters declared by the
operation. The instance value at the base of the arrow represents the default for the return value of the constructor.

Window

make (...) <=——-———+—————- theW:Window
«create»

Figure 103 - Instance specification describes the return value of an operation

156 UML Superstructure 2.0 Draft Adopted Specification

Changes from UML 1.x

Class has been extended with internal structure and ports.
9.3.2 Classifier (from Collaborations, as specialized)

Description

Classifier is extended with the capability to own collaboration occurrences. These collaboration occurrences link a
collaboration with the classifier to give a description of the workings of the classifier.

Associations

« occurrence: CollaborationOccurrence
References the collaboration occurrences owned by the classifier. (Subsets Ele-
ment.ownedElement.)

e representation: CollaborationOccurrence[0..1]
References a collaboration occurrence which indicates the collaboration that represents
this classifier. (Subsets Classifier.occurrence.)

Semantics

A classifier can own collaboration occurrences which relate (aspects of) this classifier to a collaboration. The collaboration
describes those aspects of this classifier.

One of the collaboration occurrences owned by a classifier may be singled out as representing the behavior of the classifier as
awhole. The collaboration that is related to the classifier by this collaboration occurrence shows how the instances
corresponding to the structural features of this classifier (e.g., its attributes and parts) interact to generate the overall behavior
of the classifier. The representing collaboration may be used to provide a description of the behavior of the classifier at a
different level of abstraction than is offered by the internal structure of the classifier. The properties of the classifier are
mapped to rolesin the collaboration by the role bindings of the collaboration occurrence.

Notation

See “CollaborationOccurrence” on page 160.

Changes from UML 1.x
Replaces and widens the applicability of Collaboration.usedCollaboration. Together with the newly introduced concept of
internal structure replaces Collaboration.representedClassifier.

9.3.3 Collaboration (from Collaborations)

A collaboration describes a structure of collaborating elements (roles), each performing a specialized function, which
collectively accomplish some desired functionality. Its primary purposeis to explain how a system works and, therefore, it
typically only incorporates those aspects of reality that are deemed relevant to the explanation. Thus, details, such as the
identity or precise class of the actual participating instances are suppressed.

Description

A collaboration is represented as akind of classifier and defines a set of cooperating entities to be played by instances (its
roles), as well as a set of connectors that define communication paths between the participating instances. The cooperating
entities are the properties of the collaboration (see “ Property” on page 167).

UML Superstructure 2.0 Draft Adopted Specification 157

A collaboration specifies aview (or projection) of a set of cooperating classifiers. It describes the required links between
instances that play the roles of the collaboration, as well as the features required of the classifiers that specify the participating
instances. Several collaborations may describe different projections of the same set of classifiers.

Attributes

No additional attributes.

Associations

» collaborationRole: ConnectableElement
References connectable elements (possibly owned by other classifiers) which represent
roles that instances may play in this collaboration. (Subsets SructuredClassifier.role.)

Constraints

No additional constraints.

Semantics

Collaborations are generally used to explain how a collection of cooperating instances achieve ajoint task or set of tasks.
Therefore, a collaboration typically incorporates only those aspects that are necessary for its explanation and suppresses
everything else. Thus, a given object may be simultaneously playing roles in multiple different collaborations, but each
collaboration would only represent those aspects of that object that are relevant to its purpose.

A collaboration defines a set of cooperating participants that are needed for a given task. The roles of a collaboration will be
played by instances when interacting with each other. Their relationships relevant for the given task are shown as connectors
between the roles. Roles of collaborations define a usage of instances, while the classifiers typing these roles specify all
required properties of these instances. Thus, a collaboration specifies what properties instances must have to be able to
participate in the collaboration: A role specifies (through its type) the required set of features a participating instance must
have. The connectors between the roles specify what communication paths must exist between the participating instances.

Neither all features nor all contents of the participating instances nor al links between these instances are always required in a
particular collaboration. Therefore, a collaboration is often defined in terms of roles typed by interfaces (see “ Interface (from
Interfaces)” on page 114). An interface is a description of a set of properties (externally observable features) required or
provided by an instance. An interface can be viewed as a projection of the externally observable features of a classifier
realizing the interface. Instances of different classifiers can play arole defined by agiven interface, aslong as these classifiers
realizetheinterface, i.e., have all the required properties. Several interfaces may be realized by the same classifier, evenin the
same context, but their features may be different subsets of the features of the realizing classifier.

Collaborations may be specialized from other collaborations. If aroleis extended in the specialization, the type of arolein the
specialized collaboration must be conform to the type of therolein the general collaboration. The specialization of the types of
the roles does not imply corresponding specialization of the classifiersthat realize thoseroles. It is sufficient that they conform
to the constraints defined by those roles.

A collaboration may be attached to an operation or aclassifier through a CollaborationOccurrence. A collaboration used in this
way describes how this operation or this classifier is realized by a set of cooperating instances. The connectors defined within
the collaboration specify links between the instances when they perform the behavior specified in the classifier. The
collaboration specifies the context in which behavior is performed. Such a collaboration may constrain the set of valid
interactions that may occur between the instances that are connected by alink.

A collaboration is not directly instantiable. Instead, the cooperation defined by the collaboration comes about as a consegquence
of the actual cooperation between the instances that play the roles defined in the collaboration (the collaboration is a selective
view of that situation).

158 UML Superstructure 2.0 Draft Adopted Specification

Notation

A collaboration is shown as a dashed ellipse icon containing the name of the collaboration. The internal structure of a
collaboration as comprised by roles and connectors may be shown in a compartment within the dashed ellipse icon.
Alternatively, a composite structure diagram can be used.

P - Observer — —
;7 T
\ Subject : CallQueue Observer : SlidingBarlcon /\
~ ~ - _ _ -

Figure 104 - The internal structure of the Observer collaboration shown
inside the collaboration icon (a connection is shown between
the Subject and the Observer role).

Using an alternative notation for properties, aline may be drawn from the collaboration icon to each of the symbols denoting
classifiersthat are the types of properties of the collaboration. Each line islabeled by the name of the property. In this manner,
a collaboration icon can show the use of a collaboration together with the actual classifiers that occur in that particular use of

the collaboration (see Figure 105).

CallQueue Subject idi
Q Observer SlidingBarlcon

- T = ~
queue: List of Call y h reading: Real
source: Object . Observer \ color: Color
waitAlarm: Alarm “ / range: Interval
capacity: Integer - -

—__

Observer.reading = length (Subject.queue)
Observer.range = (0 .. Subject.capacity)

Figure 105 - In the Observer collaboration two roles, a Subject and an
Observer, collaborate to produce the desired behavior. Any
instance playing the Subject role must possess the properties

specified by CallQueue, and similarly for the Observer role.

Rationale

The primary purpose of collaborationsisto explain how asystem of communicating entities collectively accomplish a specific
task or set of tasks without necessarily having to incorporate detail that isirrelevant to the explanation. It is particularly useful
asameans for capturing standard design patterns.

Changes from UML 1.x

The contents of a collaboration is specified asits internal structure relying on roles and connectors; the concepts of

UML Superstructure 2.0 Draft Adopted Specification 159

ClassifierRole, AssociationRole, and AssociationEndRole have been superseded. A collaboration in UML 2.0 isakind of
classifier, and can have any kind of behavioral descriptions associated. Thereis no loss in modeling capabilities.

9.3.4 CollaborationOccurrence (from Collaborations)

A collaboration occurrence represents the application of the pattern described by a collaboration to a specific situation
involving specific classes or instances playing the roles of the collaboration.

Description

A collaboration occurrence represents one particular use of a collaboration to explain the relationships between the properties
of aclassifier. A collaboration occurrence indicates a set of roles and connectors that cooperate within the classifier according
to agiven collaboration, indicated by the type of the collaboration occurrence. There may be multiple occurrences of agiven
collaboration within a classifier, each involving adifferent set of roles and connectors. A given role or connector may be
involved in multiple occurrences of the same or different collaborations.

Associated dependencies map features of the collaboration type to features in the classifier. These dependencies indicate
which role in the classifier plays which role in the collaboration.

Attributes

No additional attributes.

Associations

e type: Collaboration [1] The collaboration which is used in this occurrence. The collaboration defines the coopera-
tion between its roles which are mapped to properties of the classifier owning the collabo-
ration occurrence.

< roleBinding: Dependency A mapping between features of the collaboration type and features of the classifier or
operation. This mapping indicates which connectable element of the classifier or operation
plays which role(s) in the collaboration. A connectable element may be bound to multiple
roles in the same collaboration occurrence (that is, it may play multiple roles).

Constraints

[1] All the client elements of aroleBinding arein one classifier and all supplier elements of aroleBinding are in one collabo-
ration and they are compatible.

[2] Every roleinthe collaboration is bound within the collaboration occurrence to a connectable element within the classifier
or operation.

[3] Theconnectorsin the classifier connect according to the connectors in the collaboration

Semantics

A collaboration occurrence relates afeaturein its collaboration type to connectable a element in the classifier or operation that
owns the collaboration occurrence.

Any behavior attached to the collaboration type applies to the set of roles and connectors bound within a given collaboration
occurrence. For example, an interaction among parts of a collaboration applies to the classifier parts bound to asingle
collaboration occurrence. If the same connectable element is used in both the collaboration and the represented element, no
role binding is required.

160 UML Superstructure 2.0 Draft Adopted Specification

Semantic Variation Points

It is asemantic variation when client and supplier elementsin role bindings are compatible.

Notation

A collaboration occurrence is shown by a dashed ellipse containing the name of the occurrence, a colon, and the name of the
collaboration type. For every role binding, there is a dashed line from the ellipse to the client element; the dashed line is
labeled on the client end with the name of the supplier element.

Presentation Option

A dashed arrow with a stick arrowhead may be used to show that a collaborationisused in a classifier, optionally labelled with
the keyword «represents». A dashed arrow with a stick arrowhead may also be used to show that a collaboration represents a
classifier, optionally labelled with the keyword «occurrence». The arrowhead points at the owning classifier. When using this
presentation option, the role bindings are shown explicitly as dependencies.

Window - o~
. /~ :RealizeDisplay >,
display (...) <o N Behavior !
«represents» >~ -

Figure 106 - Collaboration occurrence relates a classifier to a collaboration

Examples

This exampl e shows the definition of two collaborations, Sale (Figure 107) and BrokeredSale (Figure 108). Sale is used twice
as part of the definition of BrokeredSale. Sale is a collaboration among two roles, aseller and abuyer. An interaction, or other
behavior specification, could be attached to Sale to specify the stepsinvolved in making a Sale.

Figure 107 - The Sale collaboration

BrokeredSaleis a collaboration among three roles, a producer, a broker, and a consumer. The specification of BrokeredSale
shows that it consists of two occurrences of the Sale collaboration, indicated be the dashed ellipses. The occurrence wholesale
indicates a Sale in which the producer is the seller and the broker is the buyer. The occurrence retail indicates a Salein which
the broker isthe seller and the consumer is the buyer. The connectors between sellers and buyers are not shown in the two
occurrences; these connectors are implicit in the BrokeredSal e collaboration in virtue of them being comprised of Sales. The
BrokeredSal e collaboration could itself be used as part of alarger collaboration.

UML Superstructure 2.0 Draft Adopted Specification 161

/// o \\\
e 7 ~~ N
2 /" wholesale: \\ N
7/ .
/ — — Sale ~ AN
)/ broker | — Ny e ~ N
// buyer ———— ~ ~ seller \\
{ \ ~ \
! seller \‘
\ \ producer
\ |
\ /
\\\ \ //
\ e /
\ - ~ /
\\ / retail: AN e
~ \ Sale / 4
Y - <L buyer et
RN T~ ™ — consumer g
Figure 108 - The BrokeredSale collaboration
Figure 109 shows part of the BrokeredSal e collaboration in a presentation option.
e «occurrence» U
= T~ T Sale T
-~ BrokeredSale "< ST T 5
B NS [
/ ////,,/////)\/////// \\ ////// //
/ IS \ ~o_ -
/ S ! T T T
/ broker !
\ e
\ ////
\ producer =/
\ s
AN Ve
N e
\\ //

Figure 109 - A subset of the BrokeredSale collaboration

Rationale
A collaboration occurrenceis used to specify the application of a pattern specified by a collaboration to a specific situation. In
that regard, it acts as the invocation of a macro with specific values used for the parameters (roles).

Changes from UML 1.x
This metaclass has been added.

162 UML Superstructure 2.0 Draft Adopted Specification

9.3.5 ConnectableElement (from InternalStructures)

Description

A ConnectableElement is an abstract metaclass representing a set of instances that are owned by a containing classifier
instance. Connectable elements may be joined by attached connectors and specify configurations of linked instances to be
created within an instance of the containing classifier.

Attributes
No additional attributes.

Associations

* end: ConnectorEnd Denotes a connector that attaches to this connectabl e element.

Constraints

No additional constraints.

Semantics

The semantics of ConnectableElement is given by its concrete subtypes.

Notation

None.

Examples

None.

Rationale

This metaclass supports factoring out the ability of amodel element to be linked by a connector.

Changes from UML 1.x

This metaclass generalizes the concept of classifier role from 1.x
9.3.6 Connector (from InternalStructures)

Specifies alink that enables communication between two or more instances. Thislink may be an instance of an association, or
it may represent the possibility of the instances being able to communicate because their identities are known by virtue of
being passed in as parameters, held in variables, created during the execution of a behavior, or because the communicating
instances are the same instance. The link may be realized by something as simple as a pointer or by something as complex asa
network connection. In contrast to associations, which specify links between any instance of the associated classifiers,
connectors specify links between instances playing the connected parts only.

Description

Each connector may be attached to two or more connectable elements, each representing a set of instances. Each connector end
isdistinct in the sense that it plays a distinct role in the communication realized over a connector. The communications
realized over a connector may be constrained by various constraints (including type constraints) that apply to the attached
connectable elements.

UML Superstructure 2.0 Draft Adopted Specification 163

Constraints

No additional constraints.

Attributes
No additional attributes.

Associations

e end: ConnectorEnd [2..*] A connector consists of at two connector ends, each of which represents the participation
of instances of the classifiers typing the connectable elements attached to thisend. The set
of connector endsis ordered. (Subsets Element.ownedElement.)

e type: Association An optional association that specifies the link corresponding to this connector.

« redefinedConnector: ConnectorA connector may be redefined when its containing classifier is specialized. The redefining
connector may have atype that specializes the type of the redefined connector. The types
of the connector ends of the redefining connector may specialize the types of the connec-
tor ends of the redefined connector. The properties of the connector ends of the redefining
connector may be replaced. (Subsets Element.redefinedElement.)

Constraints

[1] Thetypes of the connectable elements that the ends of a connector are attached to must conform to the types of the associ-
ation ends of the association that types the connector, if any.

[2] If aconnector is attached to a connectable element which has required interfaces, then the connectable elements attached
to the other ends must realize interfaces that are compatible with these required interfaces.

[3] If aconnector is attached to a connectable element which has required interfaces, then either ports attached on the other
ends must provide interfaces that are compatible with these required interfaces, or other connectable elements must realize
interfaces that are compatible with these required interfaces.

Semantics

If a connector between two roles of a classifier is afeature of an instantiable classifier, it declares that alink may exist within
an instance of that classifier. If a connector between two roles of aclassifier isafeature of an uninstantiable classifier, it
declares that links may exist within an instance of the classifier that realizes the original classifier. These links will connect
instances corresponding to the parts joined by the connector.

Links corresponding to connectors may be created upon the creation of the instance of the containing classifier (see
“StructuredClassifier” on page 171). The set of linksis a subset of the total set of links specified by the association typing the
connector. All links are destroyed when the containing classifier instance is destroyed.

If the type of the connector is omitted, the type is inferred based on the connector, as follows: If the type of arole (i.e, the
connectabl e element attached to a connector end) realizes an interface that has a unique association to another interface which
isrealized by the type of another role (or an interface compatible to that interface is realized by the type of another role), then
that association is the type of the connector between these parts. If the connector realizes a collaboration (that is, a
collaboration occurrence maps the connector to a connector in an associated collaboration through role bindings), then the type
of the connector is an anonymous association with association ends corresponding to each connector end. The type of each
association end is the classifier that realizes the parts connected to the matching connector in the collaboration. Any
adornments on the connector ends (either the original connector or the connector in the collaboration) specify adornments of
the ends of the inferred association. Otherwise, the type of the connector is an anonymously named association with
association ends corresponding to each connector end. The type of each association end is the type of the part that each
corresponding connector end is attached to. Any adornments on the connector ends specify adornments of the ends of the

164 UML Superstructure 2.0 Draft Adopted Specification

inferred association. Any inferred associations are always bidirectionally navigable and are owned by the containing classifier.

Semantic Variation Points

What makes interfaces compatible is a semantic variation point. At aminimum, the provided interfaces must support a
superset of the operations and signals specified in the required interfaces.

Notation

A connector is drawn using the notation for association (see “ Association (from Kernel)” on page 81). The optional name
string of the connector obeys the following syntax:
{{[name] *:’ classname} | name}

where name is the name of the connector, and classname is the name of the association that isitstype. A stereotype keyword
within guillemets may be placed above or in front of the connector name. A property string may be placed after or below the
connector name.Examples

Examples are shown in section “ StructuredClassifier” on page 171.

Changes from UML 1.x

Connector has been added in UML 2.0. The UML 1.4 concept of association rolesis subsumed by connectors.
9.3.7 ConnectorEnd (from InternalStructures, Ports)

Description

A connector end is an endpoint of a connector, which attaches the connector to a connectable element. Each connector end is
part of one connector.

Attributes

No additional attributes.

Associations

InternalStructures

e role: ConnectableElement [1] The connectable element attached at this connector end. When an instance of the contain-
ing classifier is created, alink may (depending on the multiplicities) be created to an
instance of the classifier that types this connectable element.

e definingEnd: Property [0..1] A derived association referencing the corresponding association end on the association
which types the connector owing this connector end. This association is derived by select-
ing the association end at the same place in the ordering of association ends as this con-
nector end.

Ports

e partWithPort: Property [0..1] Indicatestherole of the internal structure of aclassifier with the port to which the connec-
tor end is attached.

Constraints

[1] If aconnector end is attached to a port of the containing classifier, partWithPort will be empty.

UML Superstructure 2.0 Draft Adopted Specification 165

[2] If aconnector end references both arole and a partWithPort, then the role must be a port that is defined by the type of the
partWithPort.

Semantics

InternalStructures

A connector end describes which connectable element is attached to the connector owning that end. Its multiplicity indicates
the number of instances that may be linked to each instance of the property connected on the other end.

Notation

InternalStructures

Adornments may be shown on the connector end corresponding to adornments on association ends (see “ Association (from
Kernel)” on page 81). These adornments specify properties of the association typing the connector. The multiplicity indicates
the number of instances that may be connected to each instance of the role on the other end. If no multiplicity is specified, the
multiplicity matches the multiplicity of the role the end is attached to.

Ports

If the end is attached to a port on a part of the internal structure and no multiplicity is specified, the multiplicity matchesthe
multiplicity of the port multiplied by the multiplicity of the part (if any).

Changes from UML 1.x
Connector end has been added in UML 2.0. The UML 1.4 concept of association end rolesis subsumed by connector ends.

9.3.8 EncapsulatedClassifier (from Ports)

Description

Extends a classifier with the ability to own ports as specific and type checked interaction points.

Attributes
No additional attributes.

Associations

e ownedPort: Port References a set of ports that an encapsulated classifier owns. (Subsets Classifier.feature
and Namespace.ownedMember.)

Constraints

No additiona constraints.

Semantics

See “Port” on page 167.

Notation

See “Port” on page 167.

166 UML Superstructure 2.0 Draft Adopted Specification

Changes from UML 1.x
This metaclass has been added to UML.

9.3.9 InvocationAction (from Actions, as specialized)

Description

In addition to targeting an object, invocation actions can also invoke behavioral features on ports from where the invocation
reguests are routed onwards on links deriving from attached connectors. Invocation actions may also be sent to atarget viaa
given port, either on the sending object or on another object.

Associations

e onPort: Port [0..1] A optional port of the receiver object on which the behavioral feature isinvoked.

Constraints

[1] The onPort must be a port on the receiver object.

Semantics

Thetarget value of an invocation action may also be aport. In this case, theinvocation request is sent to the object owning this
port as identified by the port identity, and is, upon arrival, handled as described in “ Port” on page 167.

Notation
The optional port isidentified by the phrase “via <port>" in the name string of the icon denoting the particular invocation
action (for example, see “CallOperationAction” on page 227).

9.3.10 Parameter (Collaboration, as specialized)

Description

Parameters are allowed to be treated as connectable el ements.

Constraints

[1] A parameter may only be associated with a connector end within the context of a collaboration.
9.3.11 Port (from Ports)

A port isastructural feature of a classifier that specifies a distinct interaction point between that classifier and its environment
or between the (behavior of the) classifier and itsinternal parts. Ports are connected to properties of the classifier by
connectors through which requests can be made to invoke the behavioral features of a classifier. A Port may specify the
services a classifier provides (offers) to its environment as well as the services that a classifier expects (requires) of its
environment.

Description

Ports represent interaction points between a classifier and its environment. The interfaces associated with a port specify the
nature of the interactions that may occur over a port. The required interfaces of a port characterize the requests which may be
made from the classifier to its environment through this port. The provided interfaces of a port characterize requests to the
classifier that its environment may make through this port.

UML Superstructure 2.0 Draft Adopted Specification 167

A port has the ability to specify that any requests arriving at this port are handled by the behavior of the instance of the owning
classifier, rather than being forwarded to any contained instances, if any.

Attributes

e isService: Boolean If true indicates that this port is used to provide the published functionality of a classifier;
if false, this port is used to implement the classifier but is not part of the essential exter-
nally-visible functionality of the classifier and can, therefore, be altered or deleted along
with the internal implementation of the classifier and other properties that are considered
part of itsimplementation. The default value for this attribute is true.

« isBehavior: Boolean Specifies whether requests arriving at this port are sent to the classifier behavior of this

classifier (see“BehavioredClassifier (from BasicBehaviors)” on page 383). Such portsare
referred to as behavior port. Any invocation of abehavioral feature targeted at a behavior
port will be handled by the instance of the owning classifier itself, rather than by any
instances that this classifier may contain. The default value is false.

Associations

e required: Interface References the interfaces specifying the set of operations and receptions which the classi-
fier expectsits environment to handle. This association is derived as the set of interfaces
required by the type of the port or its supertypes.

e provided: Interface References the interfaces specifying the set of operations and receptions which the classi-
fier offersto its environment, and which it will handle either directly or by forwarding it to
apart of itsinternal structure. This association is derived from the interfaces realized by
the type of the port or by the type of the port, if the port was typed by an interface.

e redefinedPort: Port A port may be redefined when its containing classifier is specialized. The redefining port
may have additional interfaces to those that are associated with the redefined port or it
may replace an interface by one of its subtypes. (Subsets Element.redefinedElement.)

Constraints
[1] A port cannot be created or destroyed except as part of the creation or destruction of the owning classifier.
[2] Therequired interfaces of aport must be provided by elements to which the port is connected.

Semantics

A port represents an interaction point between a classifier instance and its environment or between a classifier instance and
instancesit may contain. A port by default has public visibility. However, a behavior port may be hidden but does not have to
be.

The required interfaces characterize services that the owning classifier expects from its environment and that it may access
through this interaction point: Instances of this classifier expects that the features owned by its required interfaces will be
offered by one or more instances in its environment. The provided interfaces characterize the behavioral features that the
owning classifier offersto its environment at this interaction point: The owning classifier must offer the features owned by the
provided interfaces.

The provided and required interfaces completely characterize any interaction that may occur between a classifier and its
environment at a port. When an instance of a classifier is created, instances corresponding to each of its ports are created and
held in the dlots specified by the ports, in accordancy with its multiplicity. These instances are referred to as “interaction
points’ and provide unique references. A link from that instance to the instance of the owning classifier is created through
which communication is forwarded to the instance of the owning classifier or through which the owning classifier
communicates with its environment. It is, therefore, possible for an instance to differentiate between requests for the

168 UML Superstructure 2.0 Draft Adopted Specification

invocation of abehavioral featuretargeted at its different ports. Similarly, it ispossible to direct such requests at a port, and the
requests will be routed as specified by the links corresponding to connectors attached to this port. (In the following, “requests
arriving at aport” shall mean “request occurrences arriving at the interaction point of thisinstance corresponding to this port™.)

The interaction point object must be an instance of a classifier that realizes the provided interfaces of the port. If the port was
typed by an interface, the classifier typing the interaction point object realizes that interface. If the port was typed by a class,
the interaction point object will be an instance of that class. The latter case allows elaborate specification of the
communication over a port. For example, it may describe that communication is filtered, modified in some way, or routed to
other parts depending on its contents as specified by the classifier that types the port.

If connectors are attached to both the port when used on a property within the internal structure of a classifier and the port on
the container of an internal structure, the instance of the owning classifier will forward any requests arriving at this port along
the link specified by those connectors. If there is a connector attached to only one side of a port, any requests arriving at this
port will terminate at this port.

For abehavior port, the instance of the owning classifier will handle requests arriving at this port (as specified in the behavior
of the classifier, see Chapter 13, “Common Behaviors’), if this classifier has any behavior. If thereis no behavior defined for
this classifier, any communication arriving at a behavior port islost.

Semantic Variation Points

If several connectors are attached on one side of a port, then any request arriving at this port on alink derived from a connector
on the other side of the port will be forwarded on links corresponding to these connectors. It is a semantic variation point
whether these request will be forwarded on al links, or on only one of those links. In the latter case, one possibility isthat the
link at which this request will be forwarded will be arbitrarily selected among those links leading to an instance that had been
specified as being able to handle this request (i.e., thisrequest is specified in a provided interface of the part corresponding to
thisinstance).

Notation

A port of aclassifier is shown as asmall square symbol. The name of the port is placed near the square symboal. If the port
symbol is placed overlapping the boundary of the rectangle symbol denoting that classifier this port is exposed (i.e., its
visibility is public). If the port is shown inside the rectangle symbol, then the port is hidden and its visibility is as specified (it
is protected by default).

A port of aclassifier may also be shown as a small square symbol overlapping the boundary of the rectangle symbol denoting
apart typed by that classifier (see Figure 110). The name of the port is shown near the port; the multiplicity follows the name
surrounded by brackets. Name and multiplicity may be elided.

The type of aport may be shown following the port name, separated by colon (“:”). A provided interface may be shown using
the “lollipop” notation (see “ Interface (from Interfaces)” on page 114) attached to the port. A required interface may be shown
by the “socket” notation attached to the port. The presentation options shown there are also applicable to interfaces of ports.
Figure 110 shows the notation for ports: p isa port on the Engine class. The provided interface (also its type) of port p is
powertrain. The multiplicity of pis“1”. In addition, arequired interface, power, is shown also. The figure on the left shows

UML Superstructure 2.0 Draft Adopted Specification 169

the provided interface using the “lollipop” notation, while the figure onj the right shows the interface as the type of the port.

) Engine Engine
powertrain
Oj%(p: powertrain [1]
] ol
power power

Figure 110 - Port notation

A behavior port isindicated by a port being connected through aline to a small state symbol drawn inside the symbol
representing the containing classifier. (The small state symbol indicates the behavior of the containing classifier.) Figure 111
shows the behavior port p, asindicated by its connection to the state symbol representing the behavior of the Engine class. Its
provided interface is powertrain. In addition, arequired interface, power, is shown also.

Engine

powertrain
p

power

Figure 111 - Behavior port notation

Presentation Option
The name of aport may be suppressed. Every depiction of an unnamed port denotes a different port from any other port.

If there are multiple interfaces associated with a port, these interfaces may be listed with the interface icon, separated by
commas. Figure 112 below shows a port OnlineServices on the Order Process class with two provided interfaces, OrderEntry
and Tracking, as well as arequired interface Payment.

Online OrderEntry,
Services Tracking

OrderProcess
Payment

Figure 112 - Port notation showing multiple provided interfaces

170 UML Superstructure 2.0 Draft Adopted Specification

Examples

powertrain Engine Car

p

axle p
rear : Wheel [2] e : Engine
power

<<interface>>
powertrain

Boat

shaft p
<<interface>> : Propeller e : Engine
power

Figure 113 - Port examples

Figure 113 shows a class Engine with a port p with a provided interface powertrain. Thisinterface specifies the services that
the engine offers at this port (i.e., the operations and receptions that are accessible by communication arriving at this port). The
interface power isthe required interface of the engine. The required interface specifies the services that the engine expectsits
environment to provide. At port p, the Engine class is completely encapsulated; it can be specified without any knowledge of
the environment the engine will be embedded in. Aslong as the environment obeys the constraints expressed by the provided
and required interfaces of the engine, the engine will function properly.

Two uses of the Engine class are depicted: Both aboat and a car contain a part that is an engine. The Car class connects port
p of the engineto a set of wheelsviathe axle. The Boat class connects port p of the engine to a propeller viathe shaft. Aslong
as the interaction between the Engine and the part linked to its port p obeys the constraints specified by the provided and
required interfaces, the engine will function as specified, whether it is an engine of acar or an engine of aboat. (This example
also shows that connectors need not necessarily attach to parts via ports (as shown in the Car class.)

Rationale

The required and provided interfaces of a port specify everything that is necessary for interactions through that interaction
point. If al interactions of a classifier with its environment are achieved through ports, then the internals of the classifier are
fully isolated from the environment. This allows such a classifier to be used in any context that satisfies the constraints
specified by its ports.

Changes from UML 1.x
This metaclass has been added to UML.

9.3.12 Property (from InternalStructures, as specialized)

Description

A property represents a set of instances that are owned by a containing classifier instance.

UML Superstructure 2.0 Draft Adopted Specification 171

Attributes
No additional attributes.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

When an instance of the containing classifier is created, a set of instances corresponding to its properties may be created either
immediately or at some later time (see “ StructuredClassifier” on page 171). These instances are instances of the classifier
typing the property. A property specifiesthat a set of instances may exist; this set of instancesis a subset of the total set of
instances specified by the classifier typing the property.

A part (see “ StructuredClassifier” on page 171) declares that an instance of this classifier may contain a set of instances by
composition. All such instances are destroyed when the containing classifier instance is destroyed. Figure 114 shows two
possible views of the Car class. In subfigure (i), Car is shown as having a composition associations with role namerear to a
class Wheel and an association with role name e to a class Engine. In subfigure (ii), the same is specified. However, in
addition, in subfigure (ii) it is specified that rear and e belong to the internal structure of the class Car. This alows
specification of detail that holds only for instances of the Wheel and Engine classes within the context of the class Car, but
which will not hold for wheels and enginesin general. For example, subfigure (i) specifies that any instance of class Engine
can be linked to an arbitrary number of instances of class Wheel. Subfigure (ii), however, specifies that within the context of
class Car, the instance playing the role of e may only be connected to two instances playing the role of rear. In addition, the
instances playing the e and rear roles may only be linked if they are roles of the same instance of class Car.

In other words, subfigure (ii) asserts additional constraints on the instances of the classes Wheel and Engine, when they are
playing the respective roles within an instance of class Car. These constraints are not true for instances of Wheel and Enginein
general. Other wheels and engines may be arbitrarily linked as specified in subfigure (i).

Car
Car
P
rear 2 1 e a: Axle }
rear : Wheel [2] —— e: Engine
Wheel Axle Engine 2 1
* *
. (i)
(i)

Figure 114 - Properties

Notation

A part is shown by graphical nesting of abox symbol with asolid outline representing the part within the symbol representing

172 UML Superstructure 2.0 Draft Adopted Specification

the containing classifier in a separate compartment. A property specifying an instance that is not owned by composition by the
instance of the containing classifier is shown by graphical nesting of abox symbol with a dashed outline.

The contained box symbol has only a name compartment, which contains a string according to the syntax defined in Chapter 1,
“Classes’. Detail may be shown within the box symbol indicating specific values for properties of the type classifier when
instances corresponding to the property symbol are created.

Presentation Options
The multiplicity for a property may also be shown as a multiplicity mark in the top right corner of the part box.

A property symbol may be shown containing just a single name (without the colon) in its name string. Thisimpliesthe
definition of an anonymously named class nested within the namespace of the containing class. The part has this anonymous
class asitstype. Every occurrence of an anonymous class is different from any other occurrence. The anonymously defined
class has the properties specified with the part symbol. It is allowed to show compartments defining attributes and operations
of the anonymously named class.

Examples

\
|
|
|
w: Wheel } e: Engine [1..2] i
|
|
|

Figure 115 - Property examples

Figure 115 shows examples of properties. On the | eft, the property denotes that the containing instance will own four instances
of the Wheel class by composition. The multiplicity is shown using the presentation option discussed above. The property on
the right denotes that the containing instance will reference one or two instances of the Engine class. For additional examples,
see “ StructuredClassifier” on page 171.

Changes from UML 1.x

A connectable element used in a collaboration subsumes the concept of ClassifierRole.
9.3.13 StructuredClassifier (from InternalStructures)

Description

A structured classifier is an abstract metaclass that represents any classifier whose behavior can be fully or partly described by
the collaboration of owned or referenced instances.

Attributes

No additional attributes.

Associations

« role: ConnectableElement References the roles that instances may play in this classifier. (Abstract union; subsets
Classifier.feature.)

« ownedAttribute: Property References the properties owned by the classifier. (Subsets SructuredClassifier.role, Clas-
sifier.attribute,and Namespace.ownedMember)

UML Superstructure 2.0 Draft Adopted Specification 173

e part: Property References the properties specifying instances that the classifier owns by composition.
Thisassociation is derived, selecting those owned properties where isComposite is true.

« ownedConnector: Connector References the connectors owned by the classifier. (Subsets Classifier.feature and
Namespace.ownedMember)

Constraints

[1] The multiplicities on connected elements must be consistent.

Semantics

The multiplicities on the structural features and connector ends indicate the number of instances (objects and links) that may
be created within an instance of the containing classifier, either when the instance of the containing classifier is created, or at a
later time. The lower bound of the multiplicity range indicates the number of instances that are created (unless indicated
differently by an associated instance specification or an invoked constructor function); the upper bound of the multiplicity
range indicates the maximum number of instances that may be created. The slots corresponding to the structural features are
initialized with these instances.

For each instance playing arolein an internal structure, there will initially be as many links asindicated by the multiplicity of
the opposite ends of connectors attached to that role (see “ConnectorEnd” on page 165 for the semantics where no
multiplicities are given for an end). If the multiplicities of the ends match the multiplicities of the roles they are attached to
(see Figure 116 1), theinitial configuration that will be created when an instance of the containing classifier is created consists
of the set of instances corresponding to the roles (as specified by the multiplicities on the roles) fully connected by links (see
the resultant instance, Figure 116 ii).

0] 2 2
a b:
2 2
(if)
La /b
La Lb:

Figure 116 - “Star” connector pattern
Multiplicities on connector ends serve to restrict the number of initial links created. Links will be created for each instance

playing the connected roles according to their ordering until the minimum connector end multiplicity is reached for both ends
of the connector (see the resultant instance, Figure 117 ii). In this example, only two links are created, resulting in an array

174 UML Superstructure 2.0 Draft Adopted Specification

pattern.

0] 2 2
a b:
1 1
(i)
La Lb:
la /b

Figure 117 - “Array” connector pattern

The manner of creation of the containing classifier may override the default instantiation. When an instance specification is
used to specify the initid instance to be created for a classifiers (see “Class’ on page 156), the multiplicities of its parts
determine the number of initial instances that will be created within that classifier. Initialy, there will be as many instances
held in slots as indicated by the corresponding multiplicity. Multiplicity ranges on such instance specifications may not
contain upper bounds.

All instances corresponding to parts of a structured classifier are destroyed recursively, when an instance of that structured
classifier is deleted. Theinstance is removed from the extent of its classifier, and isitself destroyed.

Notation

The namestring of arole in an instance specification obeys the following syntax:
{{{[name[‘/ rolename]] | ‘/ rolename} ‘:’ classifiername [{*,’ classifiername}*]} | { name[‘/ rolename] | ‘/' rolename}}

The name of the instance specification may be followed by the name of the part which the instance plays. The name of the part
may only be present if the instance plays arole.

Examples

The following example shows two classes, Car and Wheel. The Car class has four parts, al of type Wheel, representing the
four wheels of the car. The front wheels and the rear wheels are linked via a connector representing the front and rear axle,
respectively. An implicit association is defined as the type of each axle with each end typed by the Wheel class. Figure 118
specifies that whenever an instance of the Car classis created, four instances of the Wheel class are created and held by
composition within the car instance. In addition, one link each is created between the front wheel instances and the rear wheel

UML Superstructure 2.0 Draft Adopted Specification 175

instances.

Car Wheel
tire: String
size: String

leftFront : frontaxe rightFront :
Wheel Wheel

leftRear : rearavie rightRear :
Wheel Wheel

Figure 118 - Connectors and parts in a structure diagram

Figure 119 specifies an equivalent system, but relies on multiplicities to show the replication of the wheel and axle
arrangement: This diagram specifies that there will be two instances of the left wheel and two instances of the right wheel,
with each matching instance connected by alink deriving from the connector representing the axle. As specified by the
multiplicities, no additional instances of the Wheel class can be added as | eft or right parts for a Car instance.

Car Wheel
tire: String
size: String

axe
left: Wheel [2] right: Wheel [2]
1

Figure 119 - Connectors and parts in a structure diagram using multiplicities

Figure 120 shows an instance of the Car class (as specified in Figure 118). It describes the internal structure of the Car that it
creates and how the four contained instances of Wheel will beinitialized. In this case, every instance of Wheel will have the
predefined size and use the brand of tire as specified. The left wheel instances are given names, and all whedl instances are

176 UML Superstructure 2.0 Draft Adopted Specification

shown as playing the respective roles. The types of the wheel instances have been suppressed.

Car Wheel
tire: String

11/ leftfront frontaxle Lrightfront size: String
tire = "Michelin" tire = "Michelin"
size ="215x95" size ="215x95"

12/ leftrear rearaxle Lrightrear Car
tire ="Firestone" tire = "Firestone"
size ="215x95" size ="215x95"

Figure 120 - A instance of the Car class

Finally, Figure 121 shows a constructor for the Car class (see “Class’ on page 156). This constructor takes a parameter brand
of type Sring. It describesthe internal structure of the Car that it creates and how the four contained instances of Wheel will be
initialized. In this case, every instance of Wheel will have the predefined size and use the brand of tire passed as parameter.

The left wheel instances are given names, and all wheel instances are shown as playing the parts. The types of the wheel

instances have been suppressed.

Car

make(brand:String)

. Car
«create» 11 / leftfront frontaxle Lrightfront
tire = brand tire = brand
size = "215x95" size = "215x95"
12 / leftrear rearaxle Lrightrear
tire = brand tire = brand
size = "215x95" size = "215x95"

Figure 121 - A constructor for the Car class

9.3.14 Trigger (from InvocationActions, as specialized)

Description

A trigger specification may be qualified by the port on which the event occurred.

Associations

e port: Port [*]

Specifies the ports at which a communication that caused an event may have arrived.

UML Superstructure 2.0 Draft Adopted Specification

177

Semantics

Specifying one or more ports for an event implies that the event triggers the execution of an associated behavior only if the
event was received via one of the specified ports.

Notation

The ports of atrigger are specified following atrigger signature by alist of port names separated by comma, preceded by the

keyword «from»;

«from» {port \ '} +

9.3.15 Variable (from StructuredActivities, as specialized)

Description

A variable is considered a connectable element.

Semantics

Extends variable to specialize connectable element.

9.4 Diagrams

Composite structure diagram

A composite structure diagram depicts the internal structure of aclassifier, , aswell as the use of a collaborationin a
collaboration occurrence.

Graphical nodes

Additional graphical nodes that can be included in composite structure diagrams are shown in Table 6.

Table 6 - Graphic nodes included in composite structure diagrams

NODE TYPE NOTATION REFERENCE
Part See “Property” on page 167.
partName :
ClassName
Port See “Ports’ on page 167. A port may appear either
on acontained part representing aport on that part,
portName: or on the boundary of the class diagram, represent-
ClassifierName | ing a port on the represented classifier itself. The
optional ClassifierNameis only used for Complex-
| Ports.
178

UML Superstructure 2.0 Draft Adopted Specification

Table 6 - Graphic nodes included in composite structure diagrams

NODE TYPE NOTATION REFERENCE

Collaboration See “Collaboration” on page 157.

CollaborationName

Collaboration See “CollaborationOccurrence” on page 160.
Occurrence

occurrenceName :
CollaborationName

Graphical paths
Additional graphical paths that can be included in composite structure diagrams are shown in Table 7.

Table 7 - Graphic nodes included in composite structure diagrams

PATH TyPE NOTATION REFERENCE
Connector See “ Connector” on page 163.
Role binding See “CollaborationOccurrence” on page 160.

Structure diagram

All graphical nodes and paths shown on composite structure diagrams can also be shown on other structure diagrams.

UML Superstructure 2.0 Draft Adopted Specification 179

180 UML Superstructure 2.0 Draft Adopted Specification

10 Deployments

10.1 Overview

The Deployments package specifies a set of constructs that can be used to define the execution architecture of systems that
represent the assignment of software artifacts to nodes. Nodes are connected through communication paths to create network
systems of arbitrary complexity. Nodes are typically defined in a nested manner, and represent either hardware devices or
software execution environments. Artifacts represent concrete elementsin the physical world that are the result of a

devel opment process.

The Deployment package supports a streamlined model of deployment that is deemed sufficient for the majority of
modern applications. Where more elaborate deployment models are required, it can be extended through profiles or meta
models to model specific hardware and software environments.

Artifacts

The Artifacts package defines the basic Artifact construct as a special kind of Classifier.

Nodes

The Nodes package defines the concept of Node, as well as the basic deployment relationship between Artifacts and Nodes.

Component Deployments

The ComponentDeployments package extends the basic deployment model with capabilities to support deployment
mechanisms found in several common component technol ogies.

10.2 Abstract syntax

Figure 123 shows the dependencies of the Deployments packages.

UML Superstructure 2.0 Draft Adopted Specification 181

]

Dependencies
(from Classes)

N

Artifacts
StructuredClasses Kernel
(from CompositeStructures) (from Classes)
NN N z
N .
S e
<<merge>> ~ <<merge>> P

Nodes BasicComponents
(from Components)

<<merge>> \ /
\

ComponentDeployments

Figure 123 - Dependencies between packages described in this chapter

Package Artifacts

Classifier
(fromK ernel) Abstraction
(from Dependencies)
{re defines neste dCl assifi er}
+nestedAttifact
. {subsets ownedElement,
subsets clientDependency}
; : : +utilizedElement
Artifact +mani festation Manisfestation PackageableElement
fileName : String & . (fromKernel)
{subsets redefinitionContext, 1 * 1
subsets namespace, 0.1 0.1 {subsets namespace, {subsets supplier,
subsets featuringClassifier} subsets featuiingClass fier, subsets target}

subsetsdasdfier}
{ordered, subsets feature,

sub sets ownedMember}
+ownedOperation * * | +ownedP rop erty
Operation Property
(from Kernel) (from Kernd)

Figure 124 - The elements defined in the Artifacts package

182 UML Superstructure 2.0 Draft Adopted Specification

Package Nodes

Class
(from StructuredClass. ..

Association
(from Kernel)
{redefines nestedClassifier}
+nestedNode .
Node CommunicationPath

*

]

{ All ends of a Communi ationP ath
are typed by Nodes }

Device ExecutionEnvironment

Figure 125 - The definition of the Node concept

Named Ele ment Dependency NamedElement
(fromDependencies) (fromDependencies) (fromD ependenci es)

{subsets supplier,
subsets targ et}
+deployedArtifact

{subsets ownedElement,
+/depl oyed Ele me nt subsets dientDependency}
+location +deployment

{subsets source,
A subsets client}

Deployment DeployedAttifact

*

\M \M InstanceS pecification Artifact

Figure 126 - The definition of the Deployment relationship
between DeploymentTargets and DeployedArtifacts.

UML Superstructure 2.0 Draft Adopted Specification

183

Package ComponentDeployments

Artifact
D(? pl 0’\)"“; e)m (from Artifacts)
rom Nodes
+configuration
Deployment | DeploymentSpecification
0.1 {subsets ownedMember} * |deploymentLocation : String
executionLocation : String

{the deployment target of a
DeploymentSpecification is of type
ExecutionEnvironment }

{the utilized elements of a
DeploymentSpecification are of type
Component }

Figure 127 - The metaclasses that define component Deployment

10.3 Class Descriptions

10.3.1 Artifact

An artifact isthe specification of a physical piece of information that is used or produced by a software development process,
or by deployment and operation of a system. Examples of artifactsinclude modd files, source files, scripts, and binary
executablefiles, atable in a database system, a devel opment deliverable, or a word-processing document, a mail message.

Description

Artifacts

In the metamodel, an Artifact is a Classifier that represents a physical entity. Artifacts may have Properties that represent
features of the Artifact, and Operations that can be performed on its instances. Artifacts can beinvolved in Associations to
other Artifacts, e.g. composition associations. Artifacts can be instantiated to represent detailed copy semantics, where
different instances of the same Artifact may be deployed to various Node instances (and each may have separate property
values, e.g. for a‘time-stamp’ property.

Node

As part of the Nodes package, an Artifact is extended to become the source of a deployment to aNode. Thisis achieved by
specializing the abstract superclass DeployedArtifact defined in the Nodes package.

Attributes

Artifacts

e filename: String [0..1] A concrete name that is used to refer to the Artifact in a physical context. Example: file
system name, universal resource locator.

184 UML Superstructure 2.0 Draft Adopted Specification

Associations

Artifacts

e nestedArtifact: Artifact [*] The Artifacts that are defined (nested) within the Artifact.
The association is a specialization of the nestedClassifier association from Class to Classi-
fier.

« ownedProperty : Property [*] The attributes or association ends defined for the Artifact.
The association is a specialization of the ownedMember association.

¢ ownedOperation : Operation [*]The Operations defined for the Artifact.
The association is a specialization of the ownedMember association.

* manifestation : Manifestation [*] The set of model elements that are manifested in the Artifact. That is, these model ele-
ments are utilized in the construction (or generation) or the artifact.
This association is a specialization of the clientDependency association.

Constraints

No additional constraints.

Semantics

An Artifact defined by the user represents a concrete el ement in the physical world. A particular instance (or ‘copy’) of an
artifact is deployed to a node instance. Artifacts may have composition associations to other artifacts that are nested within it.
For instance, a deployment descriptor artifact for a component may be contained within the artifact that implements that
component. In that way, the component and its descriptor are deployed to a node instance as one artifact instance.

Specific profiles are expected to stereotype artifact to model sets of files (e.g. as characterized by a‘file extension’ on afile
system). The UML Standard Profile defines several standard stereotypes that apply to Artifacts, e.g. «source», or «executable»
(See the Appendix). These stereotypes can be further specialized into implementation and platform specific stereotypesin
profiles. For example, an EJB profile might define «jar» as a subclass of «executable» for executable Java archives.

Notation

An artifact is presented using an ordinary class rectangle with the key-word «artifact». Alternatively, it may be depicted by a
icon.

Optionally, the underlining of the name of an artifact instance may be omitted, as the context is assumed to be known to users.

«artifact» [
Order.jar

Figure 128 - An Artifact instance

UML Superstructure 2.0 Draft Adopted Specification 185

«component» @
Oi Order
A
«manifest»

«artifact» D
Order .jar

Figure 129 - A visual representation of the manifestation relationship
between artifacts and components.

Changes from previous UML

The following changes from UML 1.x have been made: Artifacts can now manifest any Packageabl eElement (not just
Components, asin UML 1.x). In UML 1.x,

10.3.2 CommunicationPath

A communication path is an association between two Nodes, through which Nodes are able to exchange signals and messages.

Description

In the metamodel, Communi cationPath is a subclass of Association.

Attributes
No additional attributes.

Associations

No additional associations.

Constraints

e Theassociation ends of a CommunicationPath are typed by Nodes.

Semantics

A communication path is an association that can only be defined between nodes, to model the exchange of signals and
messages between them.

Notation

No additional notation.

186 UML Superstructure 2.0 Draft Adopted Specification

Changes from previous UML

The following changes from UML 1.x have been made: CommunicationPath was implicit in UML 1.x. It has been made
explicit to formalize the modeling of networks of complex Nodes.

10.3.3 DeployedArtifact

A deployed artifact is an artifact or artifact instance that has been deployed to a deployment target.

Description

In the metamodel, DeployedArtifact is an abstract metaclass that is a specialization of NamedElement. A DeployedArtifact is
involved in one or more Deployments to a DeploymentTarget.

Attributes
No additional attributes.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

Deployed artifacts are deployed to a deployment target.

Notation

No additional notation.

Changes from previous UML

The following changes from UML 1.x have been made: the capability to deploy artifacts and artifact instances to nodes has
been made explicit based on UML 2.0 instance modeling through the addition of this abstract metaclass.

10.3.4 Deployment

Nodes
A deployment is the allocation of an artifact or artifact instance to a deployment target.

ComponentDeployments

A component deployment is the deployment of one or more executable artifacts or artifact instances to a deployment target,
optionally parameterized by a deployment specification.

Description

In the metamodel, Deployment is a subtype of Dependency.

UML Superstructure 2.0 Draft Adopted Specification 187

Attribute
No additional attributes.

Associations

Nodes
« deployedArtifact : Artifact [*] The Artifacts that are deployed onto a Node.
This association specializes the supplier association.

e location: Node[1] The Node which is the target of a Deployment.
This association specializes the client association.

ComponentDeployments

e configuration : deploymentSpecification [*]
The specification of properties that parameterize the deployment and execution of one or
more Artifacts.
This association is specialized from the ownedMember association.

Constraints

No additional constraints.

Semantics

The deployment relationship between a DeployedArtifact and a DeploymentTarget can be defined at the “type” level and at
the “instance level”. For example, a‘typelevel’ deployment relationship can be defined between an “ application server” Node
and a“ order entry request handler” executable Artifact. At the ‘instance level’, 3 specific instances “app-serverl” ... “app-
server3” may be the deployment target for six “request handler*” instances. Finally, for modeling complex deployment target
models consisting of hodes with an composite structure defined through ‘ parts', a Property (that functions as a part) may also
be the target of a deployment.

Notation

Deployment diagrams show the allocation of Artifacts to Nodes according to the Deployments defined between them.

:AppServerl
«artifact» D «artifact» D
ShoppinCart.jar Fmm e e = D Order.jar

Figure 130 - A visual representation of the deployment location
of artifacts (including a dependency between the artifacts).

188 UML Superstructure 2.0 Draft Adopted Specification

:AppServerl

Order.jar
ShoppingCart.jar
Account.jar

Product.jar
BackOrder.jar

Service.jar

Figure 131 - A textual list based representation of the deployment location of artifacts.

Changes from previous UML

The following changes from UML 1.x have been made: An association to DeploymentSpecification has been added.
10.3.5 DeploymentTarget

A deployment target is the location for a deployed artifact.

Description

In the metamodel, DeploymentTarget is an abstract metaclass that is a specialization of NamedElement. A DeploymentTarget
owns a set of Deployments.

Attributes

No additional attributes.

Associations

Nodes

e deployment : Deployment [*] The set of Deployments for a DeploymentTarget.
This association specializes the clientDependency association.

e/ deployedElement : PackageableElement [*]
The set of elementsthat are manifested in an Artifact that is involved in Deployment to a
DeploymentTarget.
The association is a derived association (OCL for informal derivation above to be pro-
vided).

Constraints

No additional constraints.

Semantics

Artifacts are deployed to a deployment target. The deployment target owns the a set of deployments that target it.

UML Superstructure 2.0 Draft Adopted Specification 189

Notation

No additional notation.

Changes from previous UML

The following changes from UML 1.x have been made: the capability to deploy artifacts and artifact instances to nodes has
been made explicit based on UML 2.0 instance modeling.

10.3.6 DeploymentSpecification

A deployment specification specifies a set of properties which determine execution parameters of a component artifact that is
deployed on anode. A deployment specification can be aimed at a specific type of container. An artifact that reifies or
implements deployment specification propertiesis a deployment descriptor.

Description

In the metamodel, a DeploymentSpecification is a subtype of Artifact. It defines a set of deployment propertiesthat are
specific to acertain Container type. An instance of a DeploymentSpecification with specific values for these properties may be
contained in acomplex Artifact.

Attributes

ComponentDeployments

e deploymentLocation : String The location where an Artifact is deployed onto a Node. Thisistypicaly a'directory’ or
‘memory address.

e executionLocation : String The location where a component Artifact executes. Thismay be alocal or remote location.

Associations

ComponentDeployments
e deployment : Deployment [0..1] The deployment with which the DeploymentSpecification is associated.

Constraints
[1] The DeploymentTarget of a DeploymentSpecification isakind of ExecutionEnvironment.

[2] The deployedElements of a DeploymentTarget that are involved in a Deployment that has an associated Deployment-
Specification is akind of Component (i.e. the configured components).

Semantics

A Deployment specification is a general mechanism to parameterize a Deployment relationship, asis common in various
hardware and software technologies. The deployment specification element is expected to be extended in specific component
profiles. Non-normative examples of standard tagged values that a profile might add to deployment specification are e.g.
«concurrencyM ode» with tagged values { thread, process, none}, or «transactionM ode» with tagged values { transaction,
nestedTransaction, none} .

Notation

A DeploymentSpecification is graphically displayed as a classifier rectangle that is attached to a component artifact that is
deployed on a container using aregular dependency notation is used. If the deployment relationship is made explicit (asin
Figure 132), the Dependency may be attached to that relationship.

190 UML Superstructure 2.0 Draft Adopted Specification

«deployment spec» «deployment spec»
Name Name
execution: execKind executiqn: thread
transaction : Boolean transaction : true

Figure 132 - A DeploymentSpecification for an artifact (specification and instance levels)

:AppServerl

«artifact» D
ShoppingApp.ear

«artifact» 0 «artifact» 0

«deployment spec» «deployment spec»

ShoppingAppdesc.xm| Orderdesc.xml

Figure 133 - DeploymentSpecifications related to the artifacts that they parameterize

:AppServer

«artifact» N
Order.jar

Figure 134 - A DeploymentSpecification for an artifact

Changes from previous UML

The following changes from UML 1.x have been made: DeploymentSpecification does not exist in UML 1.x.

10.3.7 Device

A Deviceisaphysical computational resource with processing capability upon which artifacts may be deployed for execution.

UML Superstructure 2.0 Draft Adopted Specification 191

Devices may be complex, i.e. they may consist of other devices.

Description

In the metamodel, a Device is a subclass of Node.

Attributes
No additional attributes.

Associations

No additiona associations.

Constraints

No additiona constraints.

Semantics

A device may be a nested element, where a physical machine is decomposed into its elements, either through namespace
ownership or through attributes that are typed by Devices.

Notation

A Deviceis notated by a Node annotated with the stereotype «device».

«device»
:AppServer
: «device»
«container» :DBServer
:J2EEServer
e OrderSchema.ddl
Order.jar

ItemSchema.dd|

ShoppingCart.jar
Account.jar

Product.jar

BackOrder.jar

Service.jar

Figure 135 - Notation for a Device

Changes from previous UML

The following changes from UML 1.x have been made: Device is not defined in UML 1.x.
10.3.8 ExecutionEnvironment

A ExecutionEnvironment is anode that offers an execution environment for specific types of components that are deployed on

192 UML Superstructure 2.0 Draft Adopted Specification

it in the form of executable artifacts.

Description

In the metamodel, a ExecutionEnvironment is a subclass of Node. It is usually part of a general Node, representing the
physical hardware environment on which the ExecutionEnvironment resides. In that environment, the ExecutionEnvironment
implements a standard set of services that Components require at execution time (at the modeling level these services are
usualy implicit). For each component Deployment, aspects of these services may be determined by propertiesin a
DeploymentSpecification for a particular kind of ExecutionEnvironment.

Attributes
No additional attributes.

Associations

No additional associations.

Constraints

No additional constraints.

Semantics

ExecutionEnvironment instances are assigned to node instances by using composite associati ons between nodes and
ExecutionEnvironments, where the ExecutionEnvironment plays the role of the part. ExecutionEnvironments can be nested,
e.g. adatabase ExecutionEnvironment may be nested in an operating system ExecutionEnvironment. Components of the
appropriate type are then deployed to specific ExecutionEnvironment nodes.

Typical examples of standard ExecutionEnvironments that specific profiles might define stereotypes for are «OS», «workflow
engine», «database system»and «J2EE container.

An ExecutionEnvironment can optionally have an explicit interface of system level servicesthat can be called by the deployed
elements, in those cases where the model er wants to make the ExecutionEnvironment software execution environment
services explicit.

Notation

A ExecutionEnvironment is notated by a Node annotated with the stereotype «ExecutionEnvironments.

«container»
:J2EEServer

Order.jar
ShoppingCart.jar
Account.jar
Product.jar
BackOrder.jar

Service.jar

Figure 136 - Notation for a ExecutionEnvironment (example of an
instance of a J2EEServer ExecutionEnvironment)

UML Superstructure 2.0 Draft Adopted Specification 193

Changes from previous UML

The following changes from UML 1.x have been made: ExecutionEnvironment is not defined in UML 1.x.
10.3.9 InstanceSpecification (from Kernel, as specialized)

An instance specification is extended with the capability of being a deployment target in a deployment relationship, in the case
that it is an instance of anode. It is also extended with the capability of being adeployed artifact, if it isan instance of an
artifact.

Description

In the metamodel, InstanceSpecification is a specialization of DeploymentTarget and DeployedArtifact.

Attributes
No additional attributes.

Associations

No additional associations.

Constraints

[1] An InstanceSpecification can be a DeploymentTarget if it is the instance specification of a Node and functions asapart in
the internal structure of an encompassing Node.

[2] An InstanceSpecification can be a DeployedArtifact if it isthe instance specification of an Artifact.

Semantics

No additional semantics.

Notation

An instance can be attached to a node using a deployment dependency, or it may be visually nested inside the node.

Changes from previous UML

The following changes from UML 1.x have been made: the capability to deploy artifact instances to node instances existed in
UML 1.x, and has been made explicit based on UML 2.0 instance modeling.

10.3.10 Manifestation

A manifestation is the concrete physical of one or more model elements by an artifact.

Description

In the metamodel, a Manifestation is a subtype of Abstraction. A Manifestation is owned by an Artifact.

Attributes
No additional attributes.

194 UML Superstructure 2.0 Draft Adopted Specification

Associations
Artifacts

e utilizedElement : PackageableElement [1]
The model element that is utilized in the manifestation in an Artifact.
This association specializes the supplier association.

Constraints

No additional associations.

Semantics

An artifact embodies or manifests a number of model elements. The artifact owns the manifestations, each representing the
utilization of a packageable element.

Specific profiles are expected to stereotype the manifestation relationship to indicate particular forms of manifestation, e.g.
<<tool generated>> and <<custom code>> might be two manifestations for different classes embodied in an artifact.

Notation

A manifestation is notated in the same way as an abstraction dependency, i.e. asageneral dashed line with an open arrow-head
|abeled with the keyword <<manifest>>.

Changes from previous UML

The following changes from UML 1.x have been made: Manifestation is defined as a meta association in UML 1.x,
prohibiting stereotyping of manifestations. In UML 1.x, the concept of Manifestation was referred to as ‘implementation’ and
annotated in the notation as <<implement>>. Since this was one of the many uses of the word ‘implementation’ this has been
replaced by <<manifest>>.

10.3.11 Node

A node is computational resource upon which artifacts may be deployed for execution.

Nodes can be interconnected through communication paths to define network structures.

Description

In the metamodel, aNodeis a subclass of Class. It is associated with a Deployment of an Artifact. It isalso associated with a
set of Elements that are deployed on it. Thisis a derived association in that these PackageableElements are involved in a
Manifestation of an Artifact that is deployed on the Node. Nodes may have an internal structure defined in terms of parts and
connectors associated with them for advanced modeling applications.

Attributes
No additional attributes.

Associations

Nodes

¢ nestedNode: Node [*] The Nodes that are defined (nested) within the Node.
The association is a specialization of the ownedMember association from Namespace to
NamedElement.

UML Superstructure 2.0 Draft Adopted Specification 195

Constraints

[1] Theinternal structure of aNode (if defined) consists solely of parts of type Node.

Semantics

Nodes can be connected to represent a network topology by using communication paths. Communication paths can be defined
between nodes such as “application server” and “client workstation” to define the possible communication paths between
nodes. Specific network topol ogies can then be defined through links between node instances.

Hierarchical nodes (i.e. nodes within nodes) can be modeled using composition associations, or by defining an internal
structure for advanced modeling applications.

Non-normative examples of nodes are «application server», «client workstation», «mobile device», «embedded device».

Notation

A node is shown as afigure that looks like a 3-dimensional view of a cube.

:AppServer

Figure 137 - An instance of a Node

Dashed arrows with the keyword «depl oy» show the capability of a node type to support a component type. Alternatively, this
may be shown by nesting component symbols inside the node symbol.

Nodes may be connected by associations to other nodes. A link between node instances indicates a communication path
between the nodes.

AppServer 1 DBServer

*

«deploy» .~ 5
', «deploy»

Order.jar O

RequestHandler.jar 0

Figure 138 - A communication path between two Node types, with deployed Artifacts

196 UML Superstructure 2.0 Draft Adopted Specification

Artifacts may be contained within node instance symbols. This indicates that the items are deployed on the node instances.

:AppServer
«artifact» D «artifact» D
ShoppinCartijar f------------------omoooooooo > Order.jar

Figure 139 - A set of deployed component artifacts on a Node
Examples

Changes from previous UML

The following changes from UML 1.x have been made: to be written.
10.3.12 Property (from InternalStructures, as specialized)

A Property is extended with the capability of being a DeploymentTarget in a Deployment relationship. This enables modeling
the deployment to hierarchical Nodes that have Properties functioning as internal parts.

Description

In the metamodel, Property is a specialization of DeploymentTarget.

Attributes
No additional attributes.

Associations

No additional associations.

Constraints

[1] A Property can be a DeploymentTarget if it isakind of Node and functions as a part in the internal structure of an encom-
passing Node.

Semantics

No additional semantics.

Notation

No additional notation.

Changes from previous UML

The following changes from UML 1.x have been made: the capability to deploy to Nodes with an internal structure has been
added to UML 2.0.

UML Superstructure 2.0 Draft Adopted Specification 197

10.4 Diagrams

Deployment diagram

Graphical nodes
The graphic nodes that can be included in deployment diagrams are shown in Table 8.

Table 8 - Graphic nodes included in deployment diagrams

NODE TYPE NOTATION REFERENCE

Artifact See “Artifact”

«artifact» D
ArtifactName

Node See “Node”. Has keyword options «device» and
«execution environment».

NodeName

Artifact deployed on Node See “Deployment”

«artifact» D
ArtifactName

Node with deployed Artifacts See “Deployment”

Node

«artifact> [)
ArtifactName

Node with deployed Artifacts See “Deployment” (alternative, textual notation)
«execut_ion env»
NodeName
artifactl
artifact2
artifact3
Deployment specification See “Deployment Specification”.

«deployment spec»

Name

198 UML Superstructure 2.0 Draft Adopted Specification

Table 8 - Graphic nodes included in deployment diagrams

NODE TYPE

NOTATION

REFERENCE

Deployment specification - with
properties

«deployment spec»

Name

execution: execKind
transaction : Boolean

See “Deployment Specification”.

Deployment specification - with
property values

«deployment spec»
Name

execution: thread
transaction : true

See “Deployment Specification”.

Artifact with annotated deploy-
ment properties

«artifact» D
ArtifactName

{execution=thread,
transaction =true}

See“Artifact”.

10.5 Graphical paths

The graphic paths that can be included in deployment diagrams are shown in Table 9.

Table 9 - Graphic nodes included in deployment diagrams

PATH TYPE NOTATION REFERENCE

Association See “Association” on page 10-50. Used to model communication paths
between Nodes.

Dependency See “Dependency” on page 26-201. Used to model general dependencies. In
Deployment diagrams, this notation is used to depict the following metamodel
associations: (i) the relationship between an Artifact and the model element(s)
that it implements, and (ii) the deployment of an Artifact (instance) on aNode
(instance).

Generalization See “Generalization” on page 6-30.

>
Deployment The Deployment relationship
«deploy»

UML Superstructure 2.0 Draft Adopted Specification 199

Table 9 - Graphic nodes included in deployment diagrams

PATH TYPE NOTATION REFERENCE
Manifestation The Manifestation relationship
«manifest»
200 UML Superstructure 2.0 Draft Adopted Specification

Part Il - Behavior

This part specifies the dynamic, behavioral constructs (e.g., activities, interactions, state machines) used in various
behavioral diagrams, such as activity diagrams, sequence diagrams, and state machine diagrams.. The UML packages that
support behavioral modeling, along with the structure packages they depend upon (CompositeStructures and Classes) are

shown in Figure 140.

]

Classes

A

]

CommonBehaviors

e
o / N
- P s / \ RN
ctvties Interactions StateMachines UseCases

N

- |

Actions

Figure 140 - UML packages that support behavioral modeling

The function and contents of these packages are described in following chapters, which are organized by major subject
areas.

UML Infrastructure 2.0 Draft Adopted Specification 201

202 UML Infrastructure 2.0 Draft Adopted Specification

11 Actions

11.1 Overview

Basic Concepts
The abstract concept of an action is found in the Activities chapter. This chapter covers its specific actions.

An action is the fundamental unit of behavior specification. An action takes a set of inputs and converts them into a set of
outputs, though either or both sets may be empty. In addition, some actions modify the state of the system in which the action
executes. The values that are the inputs to an action may be obtained from the results of other actions using the activity flow
model, or they may be described by value specifications. The outputs of the action may be provided as inputs to other actions
using the activity flow model.

Actions are contained in activities, which provide their context. Activities provide control and data sequencing constraints
among actions as well as nested structuring mechanisms for control and scope. See the Activities chapter for details. The
Actions chapter is concerned with the semantics of individual, primitive actions.

Intermediate Concepts

Theintermediate level describes the various action primitives that may be executed within UML activity models. These
primitive actions are defined in such away as to enable the maximum range of mappings. Specifically, primitive actions are
defined so that they either carry out a computation or access object memory, and never both. This approach enables clean
mappings to a physical model, even those with data organi zations different from that suggested by the specification. In
addition, any re-organization of the data structure will leave the specification of the computation unaffected.

A surface action language would encompass both primitive actions and the control mechanisms provided by activities. In
addition, a surface language may map higher-level constructs to the actions. For example, in a composition association where
the deletion of an instance implies the deletion of all its components, the specification defines the delete action to remove only
the single instance, and the specification requires further deletions for each of the component instances. A surface language
could choose to define a del ete-composition operation as asingle unit as a shorthand for several deletions that cascade across
other associations.

A particular surface language could implement each semantic construct one-to-one, or it could define higher-level, composite
constructs to offer the modeler both power and convenience. This specification, then, expresses the fundamental semanticsin
terms of primitive behavioral concepts that are conceptually simple to implement. Modelers can work in terms of higher-level
constructs as provided by their chosen surface language or notation.

The semantic primitives are defined to enable the construction of different execution engines, each of which may have
different performance characteristics. A model compiler builder can optimize the structure of the software to meet specific
performance requirements, so long as the semantic behavior of the specification and the implementation remain the same. For
example, one engine might be fully sequential within a single task, while another may separate the classes into different
processors based on potential overlapping of processing, and yet others may separate the classesin a client-server, or even a
three-tier model

The modeler can provide “hints’ to the execution engine when the modeler has special knowledge of the domain solution that
could be of value in optimizing the execution engine. For example, instances could—Dby design—be partitioned to match the
distribution selected, so tests based on this partitioning can be optimized on each processor. The execution engines are not
required to check or enforce such hints. An execution engine can either assume that the modeler is correct, or just ignoreit. An
execution engine is not required to verify that the modeler’ s assertion is true.

When an action violates aspects of static UML modeling that constrain runtime behavior, the semanticsis left undefined. For
example, attempting to create an instance of an abstract class is undefined: some languages may make this action illegal,

UML Superstructure 2.0 Draft Adopted Specification 203

others may create a partial instance for testing purposes. The semantics are also left undefined in situations that require classes
as values at runtime. However, in the execution of actions the lower multiplicity bound ignored and no error or undefined
semanticsisimplied. (Otherwiseit isimpossible to use actions to pass through the intermediate configurations necessary to
construct object configurations that satisfy multiplicity constraints.) The modeler must determine when minimum multiplicity
should be enforced, and these points cannot be everywhere or the configuration cannot change.

Invocation Actions

The actions defined in this package perform operation calls and signal sends (including both transmissions to specific targets
and broadcasts to the available “ universe”). Operations are specified in the model and can be dynamically selected only
through polymorphism. Signals are specified by asignal object, whose type represents the kind of message transmitted
between objects, and can be dynamically created. Note that operations may be bound to activities (procedures), state machine
transitions, or other behaviors. The receipt of signals may be bound to activities, state machine transitions, or other behaviors.
Thereis also an action to directly invoke behavior.

Read Write Actions

Objects, structural features, links, and variables have val ues that are available to actions. Objects can be created and destroyed;
structural features and variables have values; links can be created and destroyed, and can reference val ues through their ends;
al of which are available to actions. Read actions get values, while write actions modify values and create and destroy objects
and links. Read and write actions share the structures for identifying the structural features, links, and variables they access.
The use of qualifiers on associations is supported in CompleteActions. Read actions do not modify the values they access,
while write actions have only limited effect. The semantics of actions that read and write associations that have a static end
is undefined.

Object actions create and destroy objects. Structural feature actions support the reading and writing of structural features. The
abstract metaclass Structural FeatureAction statically specifies the structural feature being accessed. The object to accessis
specified dynamically, by referring to an input pin on which the object will be placed at runtime. The semantics for static
features is undefined. Association actions operate on associations and links. In the description of these actions, the term
“associations” does not include those modeled with association classes, unless specifically indicated. Similarly, a“link” is
not a link object unless specifically indicated. The semantics of actions that read and write associations that have a static
end is undefined. Variable actions support the reading and writing of variables. The abstract metaclass VariableAction
statically specifies the variable being accessed. Variable actions can only access variables within the activity of which the
actionisapart.

Computation Actions

Computation actions transform a set of input values to a set of output values by invoking afunction. Primitive functions
represent functions from a set of input valuesto a set of output values. The execution of a primitive function depends only on
the input values and has no other effect than to compute output values. A primitive function does not read or write structural
feature or link values, nor otherwise interact with object memory or other objects. Its behavior is completely self-contained.
Specific primitive functions are not defined in the UML, but would be defined in domain-specific extensions. Typical
primitive functions would include arithmetic, Boolean, and string functions.

Complete Concepts

The major constructs associated with complete actions are outlined below.

Read Write Actions

Additional actions deal with the relation between object and class and link objects. These read the instances of agiven classi-

fier, check which classifier an instanceis classified by, and change the classifier of aninstance. Link object actions operate on
instances of association classes. Also the reading and writing actions of associations are extended to support qualifiers. Other

204 UML Superstructure 2.0 Draft Adopted Specification

Actions

Actions are defined for raising exceptions and accepting events, including operation calls. The StartOwnedBehaviorAction
provides a way to indicate when the behavior of a newly created object should begin to execute.

11.2 Abstract Syntax

The package dependencies of the Actions chapter are shown in Figure 141.

1 I

StructuredA ctivities Communications

(from Activities) (from CommonBehaviors)

\ / <<merge>>
<<merge>>

/

IntermediateActions BehaviorStateMachines AssociationClasses

(from StateMachines) (from Classes)

AN , /7
\ <<merge>> ‘ /

<<merge>> \ /
<<merge>>

CompleteActions

Figure 141 Dependencies of the Action packages

UML Superstructure 2.0 Draft Adopted Specification 205

Class Diagrams (IntermediateActions)

Note that class Action is defined in the Activities chapter.

Action
(fromBasicActivities)
+argument
{ordered,
subsetsinput}
InvocationAction P InputPin
% (from BasicAdiities)
+request 1
{redefines argument}
OutputPin
(from BasicActivities)
+reault
: ¢
{ordered, -
subsets output} CallAction SendSignalAction BroadcastSignalAdtion SendObjectAction
isSynchronous: Boolean = true
o1 |- . ¢
1 1
+signal +signal
Signal
(from Comnuri catiors)
; : _ - 0.1
CallBehaviorAdion CallOperationAction
* *
+target +target
{subsetsinput} | 1 1| {subsetsinpuf}
+behavior 1 +operation, |, 1
Behavior Operation InputPin +target {subsetsinput}
(from BasicBehaviors) (fomkemé) (from BasicActivities) 1

Figure 142 - Invocation actions

206 UML Superstructure 2.0 Draft Adopted Specification

Action Element

(fromBasicActivities) (fromKernel)

ApplyFunctionAction +function PrimitiveFundion
body : String
1 language : Sting[0..1]

+result

{fordered, +argument
subsets output} {subsetsinput}

OutputPin InputPin
(from BasicAdiities) (from BasicActivities)

Figure 143 - Apply actions

Action InputPin
(fromBasicActivities) (from BasicActivities)
+Hirst /| ¢ 1/|' +=cond
{subsetsinput} {subsetsinput}
0.1 ‘ ¢ o1
CreateObjectAction DestroyObjectAction TestldentityAction ReadSelfAction
¥ 0.1 0.1 0.1 0.1
. It +result +resul t
resu ;
. {subsets input} 1 | {subsetsoutput} {subsetsoutput}
1 |+classfier 1
{subsets output} 1|, +arget 1
Classifier OutputPin InputPin OutputPin OutputPin
(fromKernel) (from BasicAdtiti es) (from Basic Aci viiies) (from BasicActivities) (from BasicAdiiti es)

Figure 144 - Object actions

UML Superstructure 2.0 Draft Adopted Specification

207

Action
(fromBasicActivities)

1 *

Structural Feature StructuralFeatureAction 0.1 1 InputPin
(fromKernel) +ducuralFeature L g +object (from BasicActivities)

{subsetsinput}

Read Structural FeatureAction HOI WriteStructural FeatureAction ClearStructural FeatureAction
0.1
+result
1 {subsets output}
OutputPin AddStructuralFeatureVal ueAction
(from BasicActiities) isReplaceAll : Boolean = false
+value 0.1
{subsetsinput} -
1 RemovesStructural FeatureValueAction
- 0.1
InputPin

(from BasicActivities) +insertAt {subsetsinput}

Figure 145 - Structural Feature Actions

208 UML Superstructure 2.0 Draft Adopted Specification

Action Element

(fromBasic Aci vities) (fromKernel)
LinkAction 2.* | LinkEndData
1 +endData
* 0.1
= — +value
{ Property must be 1 | +end 0.1
an association -
end} Property InputPin
(from Kernel) (fromBasi cAdivities)
Figure 146 - Link identification
LinkAction
, - 0.1 1
ReadLinkAction @ OutputPin
+result (from BasicActivities)
subsetsoutput

Figure 147 - Read link actions

UML Superstructure 2.0 Draft Adopted Specification 209

210

Action

(fromBasicActivii es)

7

LinkAction

WriteLinkAction

{subsetsinput} 1

ClearAssociationAction

0.1 0.1

+object

InputPin
(from BasicActivities)

+associati on 1

Assodi ation

(from Kernel)

LinkEndData

CreateLinkAction

DestroyLinkAction

+endData

2 % {redefines endData}

LinkEndCreationData

0.1 InputPin

isReplaceAll : Boolean = false

0.1

(from BasicActivities)

+insertAt

Figure 148 - Write link actions

UML Superstructure 2.0 Draft Adopted Specification

Action

(fromBasicActivities)

VariableAction 1 Variable
+variable (from St uctured Activit es)
0 - 1 . . .
ReadVaiiableAction & WriteVariableAction ClearVariableAction
0.1
+result
{subsets output} AddVai ableValue Action
OutputPin isReplaceAll : Boolean = false
(fromBasicAdi\ities)
0.1
+value 1
{subsetsinput} RemoveVariableValueAction
- 0..1
InputPin

(fomBasicActiviies) | +insertAt {subsetsinput}

Figure 149 - Variable actions

UML Superstructure 2.0 Draft Adopted Specification

211

Class Diagrams (CompleteActions)

)

212

AcceptEventAction

AcceptCallAction

Action
(fromBasicActivities)
! ReplyActi
Trigger eplyAction
+rigger (fromConmrunications)
0.*
Outp.utPliri 0.* 1
+result | (fomEascAdivies) +replyValue +retuminformation
{subsets output} {subsetsinput} {subsetsinput}
InputPin
(from BasicActivities)
+tigger 1 +replyToCall
{redefinestrigger} iad
CallTrigger
(from Communications)

1 +retumlnformation

OutputPin
(from BasicActivities)

{subsets output}

Figure 150 - Accept event actions

UML Superstructure 2.0 Draft Adopted Specification

Action

(fromBasicActivities)
ReadExtentAction Red assifyObjectAction Read|sClassifiedObjectAction StartOwnedBehaviorAction
isReplaceAll : Boolean = false isDirect : Boolean = false
’ 0.1 - 0.1 ’ 0.1 ’ 0.1
0.1
+object)
{subsets input} +object
1 1 {subsetsinput}
InputPin
(from BasicActivities) InputPi n
(from Basic Acti\ities)
+result +oldClassifier | * | +tnewClassifier +realt +object
1 subsets output .
{subsets output} L 1| & put} {subsetsinput} | 1
Outp.utP.ir_1. 1 Classifier OutputPin InputPin
(fromBasic Acivities) +dassfier (fromKernel) +classfier (from BasicActivities) (from BasicActivities)

Figure 151 - Object actions (CompleteActions)

UML Superstructure 2.0 Draft Adopted Specification 213

214

LinkEndData
(from IntermediateActions)

LinkEndData Element

(fromKernel)

1

* +qualifier

Qualifiervalue * 1
I Property
0.1 +qual ifier (fromAssod di nA & ses)
+value
! ‘ {Property must
InputPin —— —— be a qualifier
(from BasicActivities) attri bute.}

Figure 152 - Link identification (CompleteActions)

UML Superstructure 2.0 Draft Adopted Specification

Action

(fromBasicAdivities)
ReadLinkObje ctEndAction ReadLinkObjectEndQualifierAction
0.1 ¢ 0.14 0.1 0.1
0.1 0.1
W +qualifier 1
+end
! ‘ 1 1 ‘ Property
Property OutputPin (fromAssoddi nClasses)
(fromKernel) +result| (fromBasicActvies) | TEsult ‘
‘ {subsets output} {subsets output}
{ Property must ‘
be an 1 1 {Property must
association InputPin be an qualifier
end.} +object (from BasicActivities) +object attribute.}
{subsetsinput} {subsetsinput}
Figure 153 - Read link actions (CompleteActions)
CreateLinkAction LinkEndCreationData

(from Intermedate Actions) (from IntermediateActions)

+endData

CreateLinkObjectAction LinkEndCreationData
2.%
0.1 {re defines endData}
dered
+realt {subsetsoutput} fordere 1 -
1 1. +qualifier
OutputPin

B Qualifiervalue
(from BasicActivities)

Figure 154 - Write link actions (CompleteActions)

UML Superstructure 2.0 Draft Adopted Specification 215

Action
(fromBasicActivities)

+exception

RaiseExceptionAction {subsetsinput} InputPin
(from BasicActivities)

Figure 155 - Raise exception action

11.3 Class Descriptions

11.3.1 AcceptCallAction

(CompleteActions) AcceptCallAction is an accept event action representing the receipt of a synchronous call request. In
addition to the normal operation parameters, the action produces a output token that is needed later to supply the information
to the ReplyAction necessary to return control to the caller.

Thisactionisfor synchronous calls. If it is used to handle an asynchronous call, execution of the subsequent reply action will
complete immediately with no effects.
Attributes

None.

Associations
e trigger: CallTrigger The operation call trigger accepted by the action.

e returninformation: OutputPin [1..1]
Pin where atoken is placed containing sufficient information to perform a subsequent
reply and return control to the caller. The value in this token is opaque. It can be passed
and copied but it cannot be manipulated by the model.

Constraints

[1] Theresult pins must match the in and inout parameters of the call trigger operation in number, type, and order.

Semantics

This action accepts events representing the receipt of calls on the operation specified by the call trigger. If an ongoing activity
has executed an accept call action that has not completed and the owning object has an event representing a call of the
specified activity, the accept call action claims the event and removes it from the owning object. If several accept call actions
concurrently request a call on the same operation, it is unspecified which one claims the event, but one and only one action
will claim the event. The argument values of the call are placed on the result output pins of the action. Information sufficient to
perform a subsequent reply action is placed in atoken on the returninformation output pin. The execution of the accept call
action is then complete. This return information token flows like any other data token, but the information in it is opaque and

216 UML Superstructure 2.0 Draft Adopted Specification

may not be manipulated by any actions. It only has meaning to ReplyAction.

Note that the target class must not define amethod for the operation being received. Otherwise, the operation call will be
dispatched to that method instead of being put in the event buffer to be handled by AcceptCallAction. In general, classes
determine how operation calls are handled, namely by a method, by a behavior owned directly by the class, by a state machine
transition, and so on. The class must ensure that the operation call is handled in away that AcceptCallAction has access to the
cal event.

11.3.2 AcceptEventAction

(CompleteActions) AcceptEventAction is an action that waits for the occurrence of an event meeting specified conditions.

Attributes

none

Associations

e trigger : Trigger [1] Thetype of event accepted by the action, as specified by atrigger. If itisasignal trigger, a
signal of any subtype of the specified signal type is accepted.

e result: OutputPin [1] Pin holding the event object that has been received. Event objects may be copied in trans-
mission, so identity might not be preserved.

Constraints
[1] Only control edges may target an AcceptEventAction.

[2] If thetrigger is a ChangeTrigger, there are no output pins. Sameis true for Call Trigger if this class is AcceptCallAction
and not one of its children.

[3] If thetrigger isa SignalTrigger or a TimeTrigger, there is exactly one output pin.

Semantics

Accept event actions handle events detected by the object owning the activity. Events are detected by objectsindependently of
actions and the events are stored by the object. The arrangement of detected eventsis not defined, but it is expected that
extensions or profiles will specify such arrangements. If the accept event action is executed and the object detected an event
matching the specification on the action and the event has not been accepted by another action or otherwise consumed by
another behavior, then the accept signal action completes and outputs atoken describing the event. If such amatching event is
not available, the action waits until such an event becomes available, at which point the action may accept it. In a system with
concurrency, several actions or other behaviors might contend for an available event. Unless otherwise specified by an
extension or profile, only one action accepts a given event, even if the event would satisfy multiple concurrently executing
actions.

If the event is a Signal Event, the result token contains asignal object whose reception by the owning object caused the event.
Signal objects may be copied in transmission and storage by the owning object, so identity might not be preserved. An action
whose event isasignal event isinformally called an accept signal action. If the event isa TimeEvent, the result token contains
the time at which the event occurred. Such an action isinformally called await time action. If the event isa ChangeEvent ot a
CallEvent, the result is a control token, there are no output pins. See CommonBehavior for adescription of Event
specifications.

If an AcceptEventAction has no incoming edges, then the action starts when the containing activity or structured node does. In
addition, an AcceptEventAction with no incoming edges is always enabled to accept events, no matter how many it accepts. It
does not terminate after accepting an event and outputing a value, but continues to wait for other events. This semantic isan

UML Superstructure 2.0 Draft Adopted Specification 217

exception to the normal execution rulesin Activities.

This action handles asynchronous messages, including asynchronous calls. If it is used for a synchronous call with no return
parameters, an immediate reply is sent with no parameters. If it is used for a synchronous call with return parameters, it isan
error and the system behavior is unspecified.

Notation

An accept event action is notated with a concave pentagon. A wait time action is notated with an hour glass.

X

Accept event action Accept time event action

Figure 156 - Accept event notations.

Examples

Figure 157 is an example of the acceptance of a signal indicating the cancellation of an order. The acceptance of the signal
causes an invocation of a cancellation behavior. This action is enabled on entry to the activity containing it, therefore no input
arrow is shown. In many cases, the arrow from such a signal will be an interrupting edge (CompleteActions).

Cancel Cancel
order
request Order

Figure 157 - Accept signal, top level in scope.

In Figure 158, arequest payment signal is sent after an order is processed. The activity then waits to receive a payment
confirmed signal. Acceptance of the payment confirmed signal is enabled only after the request for payment is sent; no
confirmation is accepted until then. When the confirmation is received, the order is shipped.

Process Shi
—= Ip

In Figure 159, the end-of-month accept time event action generates an output at the end of the month. Since there are no
incoming edges to the time event action, it is enabled aslong asits containing activity or structured nodeis. It will generate an

Figure 158 - Accept signal, explicit enable

218 UML Superstructure 2.0 Draft Adopted Specification

output at the end of every month.

End of Report
month Meter
occurred Readin:

Figure 159 - Repetitive time event

Rationale

Accept event actions are introduced to handle processing of events during the execution of an activity.

Changes from previous UML

AcceptEventAction isnew in UML 2.0.
11.3.3 AddStructuralFeatureValueAction
AddStructural FeatureValueAction is awrite structural feature action for adding values to a structural feature.

Description

Structura Features are potentially multi-valued and ordered, so the action supports specification of insertion points for new
values. It also supports the removal of existing values of the structural feature before the new value is added.

The object to accessis specified dynamically, by referring to an input pin on which the object will be placed at runtime. The
type of the value of this pin isthe classifier that owns the specified structural feature, and the value's multiplicity is 1..1.

Attributes

« isReplaceAll : Boolean [1..1] = falseSpecifies whether existing val ues of the structural feature of the object should be
removed before adding the new value.

Associations

e insertAt: InputPin[0..1] (Specialized from Action:input) Gives the position at which to insert anew value or move
an existing value in ordered structural features. The type of the pin is UnlimitedNatural,
but the value cannot be zero. This pin is omitted for unordered structural features.

Constraints

[1] Actions adding avalueto ordered structural features must have a single input pin for the insertion point with type Unlim-
itedNatural and multiplicity of 1..1, otherwise the action has no input pin for the insertion point.

let insertAtPins : Collection = self.insertAt in

if self.structuralFeature.isOrdered = #false

then insertAtPins->size() = 0

else let insertAtPin : InputPin= insertAt->asSequence()->first() in
insertAtPins->size() = 1
and insertAtPin.type = UnlimitedNatural
and insertAtPin.multiplicity.is(1,1))

endif

UML Superstructure 2.0 Draft Adopted Specification 219

Semantics

If isReplaceAll is true, then the existing values of the structural feature are removed before the new one added, except if the
new value already exists, then it isnot removed under this option. If isReplaceAll isfalse, then adding an existing value has no
effect.

Values of a structural feature may be ordered or unordered, even if the multiplicity maximum is 1.Adding values to ordered
structural features requires an insertion point for a new value using the insertAt input pin. The insertion point is a positive
integer giving the position to insert the value, or infinity, to insert at the end.. A positive integer less than or equal to the
current number of values means to insert the new value at that position in the sequence of existing values, with the integer one
meaning the new value will be first in the sequence. A value of infinity for insertAt meansto insert the new value at the end of
the sequence. The semantics is undefined for a value of zero or an integer greater than the number of existing values. The
insertion point isrequired for ordered structural features and omitted for unordered structural features. Reinserting an existing
value at a new position moves the value to that position (this works because structural feature values are sets).

The semantics is undefined for adding a value that violates the upper multiplicity of the structural feature. Removing avalue
succeeds even when that violates the minimum multiplicity—the same as if the minimum were zero. The modeler must
determine when minimum multiplicity of structural features should be enforced.

The semantics is undefined for adding a new value for a structural feature with settability readOnly or removeOnly after
initialization of the owning object.

Notation

None.
Examples

Rationale

AddStructural FeatureV alueAction isintroduced to add structural feature values. isReplaceAll isintroduced to replace and add
in asingle action, with no intermediate states of the object where only some of the existing values are present.

Changes from previous UML

AddStructural FeatureValueAction is new in UML 2.0. It generalizes AddAttributeActionin UML 1.5.
11.3.4 AddVariableValueAction

AddVariableValueAction is awrite variable action for adding values to a variable.

Description

Variables are potentially multi-valued and ordered, so the action supports specification of insertion points for new values. It
also supports the removal of existing values of the variable before the new value is added.

Attributes

« isReplaceAll : Boolean [1..1] = falseSpecifies whether existing values of the variable should be removed before adding
the new value.

220 UML Superstructure 2.0 Draft Adopted Specification

Associations

e insertAt: InputPin[0..1] (Specialized from Action:input) Gives the position at which to insert anew value or move
an existing value in ordered variables. The typesis Unlimitedl Natural, but the value can-
not be zero. This pin is omitted for unordered variables.

Constraints

[1] Actions adding valuesto ordered variables must have asingle input pin for the insertion point with type UnlimtedNatural
and multiplicity of 1..1, otherwise the action has no input pin for the insertion point.
let insertAtPins : Collection = self.insertAt in
if self.variable.ordering = #unordered
then insertAtPins->size() = 0
else let insertAtPin : InputPin = insertAt->asSequence()->first() in
insertAtPins->size() = 1
and insertAtPin.type = UnlimitedNatural
and insertAtPin.multiplicity.is(1,1))
endif

Semantics

If isReplaceAll istrue, then the existing values of the variable are removed before the new one added, except if the new value
aready exists, then it is not removed under this option. If isReplaceAll isfalse, then adding an existing value has no effect.

Values of an variable may be ordered or unordered, even if the multiplicity maximum is 1.Adding valuesto ordered variables
requires an insertion point for a new value using the insertAt input pin. The insertion point is a positive integer giving the
position to insert the value, or infinity, to insert at the end.. A positive integer lessthan or equal to the current number of values
means to insert the new value at that position in the sequence of existing values, with the integer one meaning the new value
will befirst in the sequence. A value of infinity for insertAt means to insert the new value at the end of the sequence. The
semantics is undefined for avalue of zero or an integer greater than the number of existing values. The insertion point is
required for ordered variables and omitted for unordered variables. Reinserting an existing value at a new position moves the
value to that position (this works because variable values are sets).

The semantics is undefined for adding a value that violates the upper multiplicity of the variable. Removing a value succeeds
even when that violates the minimum multiplicity—the same asif the minimum were zero. The model er must determine when
minimum multiplicity of variables should be enforced.

Notation

None.
Examples

Rationale

AddVariableValueAction isintroduced to add variable values. isReplaceAll isintroduced to replace and add in asingle action,
with no intermediate states of the variable where only some of the existing values are present.

Changes from previous UML

AddVariableValueAction is unchanged from UML 1.5.

UML Superstructure 2.0 Draft Adopted Specification 221

11.3.5 ApplyFunctionAction

Description

ApplyFunctionAction is an action that invokes a primitive predefined function that computes output values based only on the
input values and the function. The execution does not have access to object memory or to any objects. The execution of a
primitive function has no side effects on any other object.

Attributes

None.

Associations
e argument : InputPin [*] The pinsthat provide inputs to the function. (Specializes Action.input.)
e function : PrimitiveFunction [1] The primitive function to be invoked.

e result: OutputPin [*] The pins on which the results of invoking the function are returned. (Specializes
Action.output.)

Stereotypes

None.

Tagged Values

None.

Constraints

[1] The number and types of the input arguments and output result pins are derived from the parameters of the function.

self.argument->size() = self.function.formalParameter->size()
and Sequence {1..self.argument->size()}
-> forAll (i:Integer |
let argumenti = self.argument->at(i) in
let inparameteri = self.function.formalParameter->at(i) in
argumenti.type = inparameteri.type)
and self.result->size() = self.function.returnedResult->size()
and Sequence {1..self.result->size()}
-> forAll (i:Integer |
let resulti = self.result->at(i) in
let outparameteri = self.function.returnedResult>at(i) in
resulti.type = outparameteri.type)

Semantics

The result values are computed from the input values according to the given function. During the execution of the
computation, no communication or interaction with the rest of the system is possible. The amount of time to compute the
results is undefined.

The result values are placed on the output pins of the action execution and the execution of the apply function actionis
complete. Primitive functions may raise exceptions for certain input values, in which case the computation is abandoned.

Notation

None.

222 UML Superstructure 2.0 Draft Adopted Specification

Presentation Option

None.

Examples

None.

Rationale

ApplyFunctionAction is introduced to invoke behaviors that are external to the modeled system.

Changes from previous UML

SameasUML 1.5.
11.3.6 BroadcastSignalAction

Description

BroadcastSignal Action is an action that transmits a signal instance to all the potential target objects in the system, which may
cause the firing of a state machine transitions or the execution of associated activities of atarget object. The argument values
are available to the execution of associated behaviors. The requestor continues execution immediately. Any reply messages are
ignored and are not transmitted to the requestor.

Attributes

None

Associations

e signal: Signal [1] The specification of signal object transmitted to the target objects.

Constraints
[1] The number and order of argument pins must be the same as the number and order of attributesin the signal.
[2] Thetype, ordering, and multiplicity of an argument pin must be the same as the corresponding attribute of the signal.

Semantics

When all the control and data flow prerequisites of the action execution are satisfied, asignal object is generated from the
argument values according to signal and this signal object is transmitted concurrently to each of the implicit broadcast target
objects in the system. The manner of identifying the set of objects that are broadcast targets is a semantic variation point and
may be limited to some subset of al the objects that exist. There is no restriction on the location of target objects. The manner
of transmitting the signal object, the amount of time required to transmit it, the order in which the transmissions reach the
various target objects, and the path for reaching the target objects are undefined.

[1] When atransmission arrives at atarget object, it may invoke a behavior in the target object. The effect of receiving such
transmission is specified in Chapter 13, “Common Behaviors’. Such effects include executing activities and firing state
machine transitions.

[2] A broadcast signal action receives no reply from the invoked behavior; any attempted reply is simply ignored, and no
transmission is performed to the requestor.

UML Superstructure 2.0 Draft Adopted Specification 223

Semantic Variation Point

The determination of the set of broadcast target objects is a semantic variation point.Notation

None.

Examples

None

Rationale

Sends a signal to a set of system defined target objects.

Changes from previous UML

SameasUML 1.5.
11.3.7 CallAction

CallAction is an abstract class for actions that invoke behavior and receive return values.

Attributes

¢ isSynchronous: Boolean If true, the call is synchronous and the caller waits for completion of the invoked behavior.
If false, the call is asynchronous and the caller proceeds immediately and does not expect
areturn values.

Associations

e result: OutputPin [0..*] A list of output pins where the results of performing the invocation are placed.

Constraints

[1] Only synchronous call actions can have result pins.

Semantics

See children of CallAction.
11.3.8 CallBehaviorAction

Description

CallBehaviorAction is a call action that invokes a behavior directly rather than invoking a behavioral feature that, in turn,
resultsin the invocation of that behavior. The argument values of the action are available to the execution of the invoked
behavior. The execution of the call behavior action waits until the execution of the invoked behavior completes and aresult is
returned on its output pin. In particular, the invoked behavior may be an activity.

Attributes

None.

224 UML Superstructure 2.0 Draft Adopted Specification

Associations

e behavior : Behavior [1..1] The invoked behavior. It must be capable of accepting and returning control.

Constraints

[1] The number of argument pins and the number of parameters of the behavior of type in and in-out must be equal.
[2] The number of result pins and the number of parameters of the behavior of type return, out, and in-out must be equal.

[3] The type, ordering, and multiplicity of an argument or result pin is derived from the corresponding parameter of the
behavior.

Semantics

[1] When all the control and data flow prerequisites of the action execution are satisfied, CallBehaviorAction consumes its
input tokens and invokes its specified behavior. The valuesin the input tokens are made available to the invoked behavior
as argument values. When the behavior is finished, tokens are offered on all outgoing control edges, with acopy made for
each control edge. Object and data tokens are offered on the outgoing object flow edges as determined by the output pins.
Each parameter of the behavior of the action provides input to a pin or takes output from one. See Pin. The inputs to the
action determine the actual arguments of the call.

[2] If the call is asynchronous, a control token is offered to each outgoing control edge of the action and execution of the
action is complete. Execution of the invoked behavior proceeds without any further dependency on the execution of the
activity containing the invoking action. Once the invocation of the behavior has been initiated, execution of the asynchro-
nous action is complete.

[3] An asynchronous invocation completes when its behavior is started, or is at least ensured to be started at some point.
When an asynchronous invocation is done, the flow continues regardless of the status of the invoked behavior. For exam-
ple, the containing activity may complete even though the invoked behavior is not finished. This is why asynchronous
invocation is not the same as using a fork to invoke the behavior followed by aflow final. A forked behavior still needsto
finish for the containing activity to finish. If it is desired to complete the invocation, but have some outputs provided later
when they are needed, then use a fork to give the invocation its own flow line, and rejoin the outputs of the invocation to
the original flow when they are needed.

[4] If the call is synchronous, execution of the calling action is blocked until it receives a reply token from the invoked
behavior. The reply token includes values for any return, out, or inout parameters.

[5] If the call is synchronous, when the execution of the invoked behavior completes, the result values are placed as object
tokens on the result pins of the call behavior action, a control token is offered on each outgoing control edge of the call
behavior action, and the execution of the action is complete. (CompleteActions, ExtraActivities) If the execution of the
invoked behavior yields an exception, the exception is transmitted to the call behavior action where it is presented on a
declared exception pin as an exception token, and the action delivers no normal object or control tokens. If no exception
pin isdeclared, the exception is propagated to an enclosing scope.

Notation

The name of the behavior, or other description of it, that is performed by the action is placed inside the rectangle. If the node

UML Superstructure 2.0 Draft Adopted Specification 225

name is different than the behavior name, then it appears in the symbol instead.

[behavior name j

Figure 160 CallBehaviorAction

Presentation Option

The call of an activity isindicated by placing arake-style symbol within the symbol. The rake resembles a miniature
hierarchy, indicating that thisinvocation starts another activity that represents afurther decomposition. An alternative notation
in the case of aninvoked activity isto show the contents of the invoked activity inside alarge round-cornered rectangle. Edges
flowing into the invocation connect to the parameter object nodes in the invoked activity. The parameter object nodes are
shown on the border of the invoked activity. The model is the same regardless of the choice of notation. This assumes the
UML 2.0 Diagram Interchange RFP supports the interchange of diagram elements and their mapping to model elements..

é Activity name A
Parameter name: type

Activity - —— =
name

\. J

(Note: the border and name are the notation; the
other symbols are present to provide clarity, only.)

Figure 161 - Invoking Activities that have nodes and edges

Below is an example of invoking an activity called FillOrder.

OFicy
rder
rh

Figure 162 - Example of invoking an activity
Examples

Rationale

Invokes a behavior directly without the need for a behavioral feature.

Changes from previous UML

SameasUML 1.5.

226 UML Superstructure 2.0 Draft Adopted Specification

11.3.9 CallOperationAction

Description

CallOperationAction is an action that transmits an operation call request to the target object, where it may cause the invocation
of associated behavior. The argument values of the action are available to the execution of the invoked behavior. If the action
is marked synchronous, the execution of the call operation action waits until the execution of the invoked behavior completes
and areply transmission is returned to the caller; otherwise execution of the action is complete when the invocation of the
operation is established and the execution of the invoked operation proceeds concurrently with the execution of the calling
activity. Any values returned as part of the reply transmission are put on the result output pins of the call operation action.
Upon receipt of the reply transmission, execution of the call operation action is compl ete.

Attributes

None.

Associations
e operation; Operation [1] The operation to be invoked by the action execution

e target: InputPin[1] The target object to which the request is sent. The classifier of the target object is used to
dynamically determine a behavior to invoke. This object constitutes the context of the exe-
cution of the operation.

Constraints

[1] The number of argument pins and the number of formal parameters of the operation of type in and in-out must be equal.

[2] The number of result pins and the number of formal parameters of the operation of type return, out, and in-out must be
equal.

[3] Thetype, ordering, and multiplicity of an argument or result pin is derived from the corresponding formal parameter of
the operation.

[4] Thetype of the target pin must be the same as the type that owns the operation.

Semantics
The inputs to the action determine the target object and additional actual arguments of the call.

[1] When all the control and data flow prerequisites of the action execution are satisfied, information comprising the operation
and the argument pin values of the action execution is created and transmitted to the target object. The target objects may
be local or remote. The manner of transmitting the call, the amount of time required to transmit it, the order in which the
transmissions reach the various target objects, and the path for reaching the target objects are undefined.

[2] When acall arrives at a target object, it may invoke a behavior in the target object. The effect of receiving such call is
specified in Chapter 13, “Common Behaviors’. Such effects include executing activities and firing state machine transi-
tions.

[3] If thecall issynchronous, when the execution of the invoked behavior completes, itsreturn results are transmitted back as
areply to the calling action execution. The manner of transmitting the reply, the time required for transmission, the repre-
sentation of the reply transmission, and the transmission path are unspecified. If the execution of the invoked behavior
yields an exception, the exception is transmitted to the caller where it is reraised as an exception in the execution of the
calling action. Possible exception types may be specified by attaching them to the called Operation using the raisedEx-
ception association.

UML Superstructure 2.0 Draft Adopted Specification 227

[4] If the call isasynchronous, the caller proceeds immediately and the execution of the call operation action is complete. If
the call is synchronous, the caller is blocked from further execution until it receives areply from the invoked behavior.

[5] When the reply transmission arrives at the invoking action execution, the return result values are placed on the result pins
of the call operation action, and the execution of the action is complete.

Semantic Variation Points

The mechanism for determining the method to be invoked as aresult of a call operation is unspecified.

Notation

The name of the operation, or other description of it, is displayed in the symbol.

[operation name]

Figure 163 - Calling an operation

Presentation Option

If the node has a different name than the operation, then thisis used in the symbol instead. The name of the class may
optionally appear below the name of the operation, in parentheses postfixed by a double colon. If the node nameis different
than the operaiton name, then the behavioral feature name may be shown after the double colon.

name name
(ClassName::) (ClassName::OperationName)

Figure 164 - Invoking behavioral feature notations

Examples

None

Rationale

Calls an operation on a specified target object.

Changes from previous UML

Sameas UML 1.5.
11.3.10 ClearAssociationAction
ClearAssociationAction is an action that destroys all links of an association in which a particular object participates.

Description

This action destroys all links of an association that have a particular object at one end.

228 UML Superstructure 2.0 Draft Adopted Specification

Attributes

None.

Associations
e association : Association [1..1] Association to be cleared.

e object: InputPin[1..1] (Specialized from Action:input) Gives the input pin from which is obtained the object
whose participation in the association is to be cleared.

Constraints

[1] Thetype of theinput pin must be the same as the type of at least one of the association ends of the association.
self.association->exists(end.type = self.object.type)

[2] Themultiplicity of theinput pinis1..1.
self.object.multiplicity.is(1,1)

Semantics

This action has a stati cally-specified association. It has an input pin for a runtime object that must be of the same type as at
|east one of the association ends of the association. All links of the association in which the object participates are destroyed
even when that violates the minimum multiplicity of any of the association ends. If the association is a class, then link object
identities are destroyed.

Notation

None.
Examples

Rationale

ClearAssociationAction isintroduced to remove all links from an association in which an object participatesin asingle action,
with no intermediate states where only some of the existing links are present.

Changes from previous UML

ClearAssociationAction is unchanged from UML 1.5.
11.3.11 ClearStructuralFeatureAction

ClearStructural FeatureAction is a structural feature action that removes all values of a structural feature.

Description

This action removes all values of a structural feature.

Attributes

None.

Associations

None.

UML Superstructure 2.0 Draft Adopted Specification 229

Constraints

None.

Semantics

All values are removed even when that violates the minimum multiplicity of the structural feature—the same asif the
minimum were zero. The semanticsis undefined if the settability of the structural feature is addOnly, or the settability is
readOnly after initialization of the object owning the structural feature, unless the structural feature has no values. The action
has no effect if the structural feature has no values.

Notation

None.
Examples

Rationale

ClearStructural FeatureAction is introduced to remove all values from a structural featurein a single action, with no
intermediate states where only some of the existing values are present.

Changes from previous UML

ClearStructural FeatureActionisnew in UML 2.0. It generalizes ClearAttributeAction from UML 1.5.
11.3.12 ClearVariableAction

ClearVariableAction is a variable action that removes all values of an variable.

Description

This action removes all values of an variable.

Attributes

None.

Associations

None.

Constraints

None.

Semantics

All values are removed even when that violates the minimum multiplicity of the variable—the same as if the minimum were
zero.

Notation

None.

230 UML Superstructure 2.0 Draft Adopted Specification

Examples

Rationale

ClearVariableAction isintroduced to remove al values from an variable in a single action, with no intermediate states where
only some of the existing values are present.

Changes from previous UML

ClearVariableAction is unchanged from UML 1.5.
11.3.13 CreateLinkAction

CreateLinkAction isawrite link action for creating links.

Description

This action can be used to create links and link objects. There isno return valuein either case. Thisis so that no change of the
action isrequired if the association is changed to an association class or vice versa. Createl inkAction uses a specialization of
LinkEndData called LinkEndCreationData, to support ordered associations. The insertion point is specified at runtime by an
additional input pin, which isrequired for ordered association ends and omitted for unordered ends. The insertion point isa
positive integer giving the position to insert the link, or infinity, to insert at the end. Reinserting an existing end at a new
position moves the end to that position.

Createl inkAction also uses LinkEndCreationData to support the destruction of existing links of the association that connect
any of the objects of the new link. When thelink is created, this option is available on an end-by-end basis, and causes all links
of the association emanating from the specified ends to be destroyed before the new link is created.

Attributes

None.

Associations

¢ endData: LinkEndCreationData[2..*] (Redefined from LinkAction:endData) Specifies ends of association and inputs.

Constraints

[1] The association cannot be an abstract classifier.
self.association().isAbstract = #false

Semantics

CreateLinkAction createsalink or link object for an association or association class. It has no output pin, because links are not
necessarily values that can be passed to and from actions. When the action creates alink object, the object could be returned on
output pin, but it is not for consistency with links. This allows actions to remain unchanged when an association is changed to
an association class or vice versa. The semantics of CreatelinkObjectAction appliesto creating link objects with
CreateLinkAction.

This action also supports the destruction of existing links of the association that connect any of the objects of the new link.
This option isavailable on an end-by-end basis, and causes all links of the association emanating from the specified endsto be
destroyed before the new link is created. If thelink aready exists, then it is not destroyed under this option. Otherwise,
recreating an existing link has no effect.

The semantics is undefined for creating alink for an association class that is abstract. The semantics is undefined for creating

UML Superstructure 2.0 Draft Adopted Specification 231

alink that violates the upper multiplicity of one of its association ends. A new link violates the upper multiplicity of an end if
the cardinality of that end after thelink is created would be greater than the upper multiplicity of that end. The cardinality of an
end is equal to the number of links with objects participating in the other ends that are the same as those participating in those
other ends in the new link, and with qualifier values on all ends the same as the new link, if any.

The semantics is undefined for creating alink that has an association end with settability readOnly or removeOnly after
initialization of the other end objects, unless the link being created already exists. Objects participating in the association
across from an addable end can have links created aslong as the objects across from all readOnly or removeOnly ends are still
being initialized. This means that objects participating in links with two or more readOnly or removeOnly ends cannot have
links created unless all the linked objects are being initialized.

Creating ordered association ends requires an insertion point for a new link using the insertAt input pin of
LinkEndCreationData. The pin is of type UnlimitedNatural with multiplicity of 1..1. A pin value that is a positive integer less
than or equal to the current number of links means to insert the new link at that position in the sequence of existing links, with
the integer one meaning the new link will be first in the sequence. A value of infinity for insertAt meansto insert the new link
at the end of the sequence. The semanticsis undefined for value of zero or an integer greater than the number of existing links.
TheinsertAt input pin does not exist for unordered association ends. Reinserting an existing end at a new position moves the
end so that it isin the position specified after the action is complete.

Notation

None.
Examples

Rationale

CreateLinkAction isintroduced to create links.

Changes from previous UML

CreateLinkAction is unchanged from UML 1.5.
11.3.14 CreateLinkObjectAction

(CompleteActions) Createl inkObjectAction creates alink object.

Description

Thisactionis exclusively for creating links of association classes. It returns the created link object.

Attributes

None.

Associations

e result[1..1] : OutputPin[1..1] (Specialized from Action:output) Gives the output pin on which the result is put.

Constraints

[1] The association must be an association class.
self.association().oclisKindOf(Class)

[2] Thetype of the result pin must be the same as the association of the action.

232 UML Superstructure 2.0 Draft Adopted Specification

self.result.type = self.association()
[3] Themultiplicity of the output pinis1..1.
self.result.multiplicity.is(1,1)

Semantics

Createl inkObjectAction inherits the semantics of CreateLinkAction, except that it operates on association classes to create a
link object. The additional semantics over CreateLinkAction isthat the new or found link object is put on the output pin. If the
link already exists, then the found link object is put on the output pin. The semantics of CreateObjectAction appliesto creating
link objects with Createl.inkObjectAction.

Notation

None.

Examples

Rationale

Createl inkObjectAction isintroduced to create link objectsin away that returns the link object. Compare Createl inkAction.

Changes from previous UML

Createl inkObjectAction is unchanged from UML 1.5.
11.3.15 CreateObjectAction

CreateObjectAction is an action that creates an object that conforms to a statically specified classifier and puts it on an output
pin at runtime.

Description

This action instantiates a classifier. The semanticsis undefined for creating objects from abstract classifiers or from
association classes.

Attributes

None.

Associations
e classifier : Classifier [1..1] Classifier to be instantiated.

e result: OutputPin[1..1] (Specialized from Action:output) Gives the output pin on which the result is put.

Constraints

[1] The classifier cannot be abstract.
not (self.classifier.isAbstract = #true)

[2] Theclassifier cannot be an association class
not self.classifier.oclisKindOf(AssociationClass)

[3] Thetype of the result pin must be the same as the classifier of the action.

UML Superstructure 2.0 Draft Adopted Specification 233

self.result.type = self.classifier
[4] Themultiplicity of the output pinis1..1.
self.result. multiplicity.is(1,1)

Semantics

The new object is created, and the classifier of the object is set to the given classifier. The new object is returned as the value
of the action. The action has no other effect. In particular, no behaviors are executed, no initial expressions are evaluated, and
no state machines transitions are triggered. The new object has no structural feature values and participatesin no links.

Notation

None.
Examples

Rationale

CreateObjectAction isintroduced for creating new objects.

Changes from previous UML

Sameas UML 1.5.
11.3.16 DestroyLinkAction

DestroyLinkAction isawrite link action that destroys links and link objects.

Description

Thisaction destroysalink or alink object. Link objects can a so be destroyed with DestroyObjectAction. The link is specified
in the same way aslink creation, even for link objects. This alows actions to remain unchanged when their associations are
transformed from ordinary ones to association classes and vice versa.

Attributes

None.

Associations

None.

Constraints

None.

Semantics

Destroying alink that does not exist has no effect. The semantics of DestroyObjectAction applies to destroying alink that has
alink object with DestroyLinkAction.

The semantics is undefined for destroying alink that has an association end with settability addOnly, or readOnly after
initialization of the other end objects, unless the link being destroyed does not exist. Objects participating in the association
across from a removable end can have links destroyed as long as the objects across from al readOnly ends are still being

234 UML Superstructure 2.0 Draft Adopted Specification

initialized. This means that objects participating in links with two or more addOnly ends cannot have links destroyed. Same
for objects participating in two or more readOnly ends, unless all the linked objects are being initialized.

Notation

None.
Examples

Rationale

DestroyL inkAction isintroduced for destroying links.

Changes from previous UML

DestroyLinkAction is unchanged from UML 1.5.
11.3.17 DestroyObjectAction

DestroyObjectAction is an action that destroys objects.

Description

This action destroys the object on itsinput pin at runtime. The object may be alink object, in which case the semantics of
DestroyL inkAction also applies.

Attributes

None.

Associations

e target: InputPin[1..1] (Specialized from Action:input) The input pin providing the object to be destroyed.

Constraints

[1] The multiplicity of theinput pinis1..1.
self.input.multiplicity.is(1,1)

[2] Theinput pin has no type.
self.input.type->size() = 0

Semantics

The classifiers of the object are removed as its classifiers, and the object is destroyed. The action has no other effect. In
particular, no behaviors are executed, no state machines transitions are triggered, and references to the destroyed objects are
unchanged.

Destroying an object that is already destroyed has no effect.

Notation

None.

UML Superstructure 2.0 Draft Adopted Specification 235

Examples

Rationale

DestroyObjectAction is introduced for destroying objects.

Changes from previous UML

Same as UML 1.5.
11.3.18 InvocationAction

Invocation is an abstract class for the various actions that invoke behavior.

Attributes

none

Associations

e argument : InputPin [0..*] Specification of an argument val ue that appears during execution.
Constraints

Semantics

See children of InvocationAction.
11.3.19 LinkAction

LinkAction isan abstract class for all link actions that identify their links by the objects at the ends of the links and by the
qualifiers at ends of the links.

Description

A link action creates, destroys, or reads links, identifying alink by its end objects and qualifier values, if any.

Attributes

None.

Associations
¢ endData: LinkEndData[2..*] Dataidentifying one end of alink by the objects on its ends and qualifiers.
e input: InputPin [1..*] (Specialized from Action:input) Pins taking end objects and qualifier values asinput.

Constraints

[1] The association ends of the link end data must all be from the same association and include all and only the association
ends of that association.
self.endData->collect(end) = self.association()->collect(connection))

[2] Theassociation ends of the link end data must not be static.
self.endData->forall(end.oclisKindOf(NavigableEnd) implies end.isStatic = #false)

236 UML Superstructure 2.0 Draft Adopted Specification

[3] Theinput pins of the action are the same as the pins of the link end data and insertion pins.

self.input->asSet() =
let ledpins : Set = self.endData->collect(value) in
if self.ocllsKindOf(LinkEndCreationData)
then ledpins->union(self.endData.oclAsType(LinkEndCreationData).insertAt)
else ledpins

Additional operations:

[1] association operates on LinkAction. It returns the association of the action.

association();
association = self.endData->asSequence().first().end.association

Constraints

[1] Theinput pins of the action are the same as the pins of the link end data, qualifier values, and insertion pins.

self.input->asSet() =

let ledpins : Set =

if self.endData.oclisKindOf(CompleteActions::LinkEndData)

then self.endData->collect(value)->union(self.endData.qualifier.value)

else self.endData->collect(value) in
if self.oclisKindOf(LinkEndCreationData)
then ledpins->union(self.endData.oclAsType(LinkEndCreationData).insertAt)
else ledpins

Semantics

For actions that writelinks, all association ends must have a corresponding input pin so that all end objects are specified when
creating or deleting alink. Aninput pin identifies the end object by being given avalue at runtime. It has the type of the
association end and multiplicity of 1..1, since alink always have exactly one object at its ends.

The behavior is undefined for links of associations that are static on any end.

For the semantics of link actions see the children of LinkAction.

Notation

None.
Examples

Rationale
LinkActionisintroduced to abstract aspects of link actions that identify links by the objects on their ends.
In CompleteActions, LinkAction is extended for qualifiers.

Changes from previous UML

LinkAction is unchanged from UML 1.5.
11.3.20 LinkEndCreationData

LinkEndCreationData is not an action. It is an element that identifies links. It identifies one end of alink to be created by
CreateLinkAction.

UML Superstructure 2.0 Draft Adopted Specification 237

Description

This classis required when using Createl inkAction, to specify insertion points for ordered ends and for replacing all links at
end. A link cannot be passed as aruntime value to or from an action. Instead, alink isidentified by its end objects and qualifier
values, as required. Thisrequires more than one piece of data, namely, the statically-specified end in the user model, the object
on the end, and the qualifier values for that end. These pieces are brought together around LinkEndData. Each association end
isidentified separately with an instance of the LinkEndData class.

Qualifier values are used in CompleteActions.

Attributes

« isReplaceAll : Boolean [1..1] = falseSpecifies whether the existing links emanating from the object on this end should be
destroyed before creating a new link.

Associations

e insertAt: InputPin[0..1] Specifies where the new link should be inserted for ordered association ends, or where an
existing link should be moved to. The type of the input is UnlimitedNatural, but the input
cannot be zero. This pin is omitted for association ends that are not ordered.

Associations (CompleteActions)

e qualifier : QualifierValue [0..*] Specifies qualifier attribute/value pairs of the given end.

Constraints

[1] LinkEndCreationData can only be end data for Createl inkAction or one of its specializations.
self.LinkAction.ocllsKindOf(CreateLinkAction)

[2] Link end creation datafor ordered association ends must have a single input pin for the insertion point with type Unlimit-
edNatural and multiplicity of 1..1, otherwise the action has no input pin for the insertion point..

let insertAtPins : Collection = self.insertAt in

if self.end.ordering = #unordered

then insertAtPins->size() = 0

else let insertAtPin : InputPin = insertAts->asSequence()->first() in
insertAtPins->size() = 1
and insertAtPin.type = UnlimitedNatural
and insertAtPin.multiplicity.is(1,1))

endif

Constraints (CompleteActions)

[1] The qualifiersinclude all and only the qualifiers of the association end.
self.qualifier->collect(qualifier) = self.end.qualifier

[2] Theend object input pinis not also aqualifier value input pin.
self.value->excludesAll(self.qualifier.value)

Semantics

See CreatelinkAction, also see LinkAction and all its children.

Notation

None.

238 UML Superstructure 2.0 Draft Adopted Specification

Examples

Rationale

LinkEndCreationData is introduced to indicate which inputs are for which link end objects and qualifiers.

Changes from previous UML

LinkEndCreationData is unchanged from UML 1.5.
11.3.21 LinkEndData

LinkEndDatais not an action. It is an element that identifies links. It identifies one end of alink to be read or written by the
children of LinkAction. A link cannot be passed as a runtime value to or from an action. Instead, alink isidentified by its end
objects and qualifier values, if any. This requires more than one piece of data, namely, the statically-specified end in the user
model, the object on the end, and the qualifier values for that end, if any. These pieces are brought together around
LinkEndData. Each association end is identified separately with an instance of the LinkEndData class.

Attributes

None.

Associations

e end: Property [1..1] Association end for which this link-end data specifies values.

e vaue: InputPin[0..1] Input pin that provides the specified object for the given end. This pin is omitted if the
link-end data specifies an “open” end for reading.

Associations (CompleteActions)

o qualifier : QualifierValue[*] List of qualifier values

Constraints

[1] The property must be an association end.
self.end.association->size = 1

[2] Thetype of the end object input pin is the same as the type of the association end.
self.value.type = self.end.type

[3] Themultiplicity of the end object input pin must be“1..1".
self.value.multiplicity.is(1,1)

Additional operations:

[1] association operates on LinkAction. It returns the association of the action.

association();
association = self.endData->asSequence().first().end.association

Semantics

See LinkAction and its children.

UML Superstructure 2.0 Draft Adopted Specification 239

Notation

None.
Examples

Rationale

LinkEndDatais introduced to indicate which inputs are for which link end objects and qualifiers.

Changes from previous UML

LinkEndDatais unchanged from UML 1.5.
11.3.22 MultiplicityElement (as specialized)

Operations

[1] The operation compatibleWith takes another multiplicity asinput. It checksif one multiplicity is compatible with another.
compatibleWith(other : Multiplicity) : Boolean;
compatibleWith(other) = Integer.allinstances()->
forAll(i : Integer | self.includesCardinality(i) implies other.includesCardinality(i))
[2] Theoperation isdeterminesif the upper and lower bound of the ranges are the ones given.

is(lowerbound : integer, upperbound : integer) : Boolean
is(lowerbound, upperbound) = (lowerbound = self.lowerbound and upperbound = self.upperbound)

11.3.23 PrimitiveFunction

Description

PrimitiveFunction is not an action. It isthe signature of a function that produces output values from input values for use with
ApplyFunctionAction. The behavior is described using the body and language attributes. The specification of the detailed
behavior is expressed in an external language and is not further specified within UML.

Attributes
e body: String A textual representation of the function in the named surface language.
e language: String [0..1] Specifies the language in which the body of the primitive function is stated. The interpre-

tation of the body depends on the language. If the language is unspecified, it might be
implicit from the body or the context.

Associations

None.

Constraints

None.

Semantics

The interpretation of the function body depends on the specified language. If formal parameters are specified, these provide
values to the function during its execution. The result parameters specify the val ues to be returned by the function.

240 UML Superstructure 2.0 Draft Adopted Specification

The execution of a primitive function has no effect on the execution environment other than the production of output values
that depend only on the supplied input values.

Notation

None.

Examples

None.

Rationale

PrimitiveFunction models external functions that only take inputs and product outputs and have no effect on the specified
system.
Changes from previous UML

SameasUML 1.5.
11.3.24 QualifierValue

(CompleteActions) QualifierValueisnot an action. It isan element that identifieslinks. It gives asingle qualifier within alink
end data specification. See LinkEndData.
Description

A link cannot be passed as a runtime value to or from an action. Instead, alink isidentified by its end objects and qualifier
values, as required. This requires more than one piece of data, namely, the end in the user model, the object on the end, and the
qualifier values for that end. These pieces are brought together around LinkEndData. Each association end is identified
separately with an instance of the LinkEndData class.

Attributes

None.

Associations
e qualifier : Property [1..1] Attribute representing the qualifier for which the value isto be specified.
e vaue: InputPin[1..1] Input pin from which the specified value for the qualifier is taken.

Constraints
[1] The qualifier attribute must be a qualifier of the association end of the link-end data.
self.LinkEndData.end->collect(qualifier)->includes(self.qualifier)

[2] Thetype of the quaifier value input pin are the same as the type of the qualifier attribute.
self.value.type = self.qualifier.type

[3] Themultiplicity of the qualifier value input pinis*“1..1".
self.value.multiplicity.is(1,1)

Semantics

See LinkAction and its children.

UML Superstructure 2.0 Draft Adopted Specification 241

Notation

None.
Examples

Rationale

QualifierValueisintroduced to indicate which inputs are for which link end qualifiers.

Changes from previous UML

QualifierValueis unchanged from UML 1.5
11.3.25 RaiseExceptionAction

Description

(CompleteActions) RaiseExceptionAction is an action that causes an exception to occur. The input value becomes the
exception object.

Attributes

None.

Associations

e exception: InputPin[1..1] An input pin whose value becomes an exception object.

Semantics

When araise exception action is executed, the value on the input pin israised as an exception. The value may be copied in this
process, so identity may not be preserved. Raising the exception terminates the immediately containing structured node or
activity and begins a search of enclosing nested scopes for an exception handler that matches the type of the exception object.
See “ExceptionHandler” on page 322 for details of handling exceptions.

Notation

See Action.
Examples

Rationale

Rai se exception action allows model s to generate exceptions. Otherwise the only exception types would be predefined built-in
exception types, which would be too restrictive.

Changes from previous UML

Rai seExceptionAction replaces JumpAction from UML 1.5. Their behavior is essentially the same, except that it is no longer
needed for performing simple control constructs such as break and continue.

242 UML Superstructure 2.0 Draft Adopted Specification

11.3.26 ReadExtentAction

Description

(CompleteActions) ReadExtentAction is an action that retrieves the current instances of a classifier.

Attributes

None.

Associations
e classifier: Classifier [1..1] The classifier whose instances are to be retrieved.

e result: OutputPin[1..1] The runtime instances of the classifier.

Constraints
[1] Thetype of theresult output pin isthe classifier.

[2] Themultiplicity of the result output pinis“0..*”.
self.result.multiplicity.is(0,#null)

Semantics

The extent of aclassifier isthe set of all instances of a classifier that exist at any one time.

Semantic Variation Point

It is not generally practical to require that reading the extent produce all the instances of the classifier that exist in the entire
universe. Rather, an execution engine typically manages only alimited subset of the total set of instances of any classifier and
may manage multiple distributed extents for any one classifier. It is not formally specified which managed extent is actually
read by a ReadExtentAction.

Notation

None.

Examples

None.

Rationale

ReadExtentAction is introduced to provide access to the runtime instances of a classifier.

Changes from previous UML

ReadExtentAction is unchanged from UML 1.5.
11.3.27 ReadlIsClassifiedObjectAction

(CompleteActions) ReadlsClassifiedObjectAction is an action that determines whether a runtime object is classified by a
given classifier.

UML Superstructure 2.0 Draft Adopted Specification 243

Description

This action tests the classification of an object against a given class. It can be restricted to testing direct instances.

Attributes

e isDirect : Boolean[1..1] Indicates whether the classifier must directly classify theinput object. The default valueis
false.

Associations

e classifier: Classifier [1..1] The classifier against which the classification of the input object is tested.

e object : InputPin [1..1] Holds the object whose classification is to be tested. (Specializes Action.input.)

e result: OutputPin[1..1] After termination of the action, will hold the result of the test. (Specializes Action.output.)

Constraints

[1] The multiplicity of theinput pinis1..1.
self.argument.multiplicity.is(1,1)

[2] Theinput pin has no type.
self.argument.type->size() = 0

[3] Themultiplicity of the output pinis1..1.
self.result. multiplicity.is(1,1)

[4] Thetype of the output pin is Boolean
self.result.type = Boolean

Semantics

The action returns true if the input object is classified by the specified classifier. It returnstrueif the isDirect attribute is false
and the input object is classified by the specified classifier, or by one of its (direct or indirect) descendents. Otherwise, the
action returns false.

Notation

None.

Examples

None.

Rationale

ReadisClassifiedObjectAction is introduced for run-time type identification.

Changes from previous UML

Readi sClassifiedObjectAction is unchanged from UML 1.5.
11.3.28 ReadLinkAction

ReadLinkAction isalink action that navigates across associations to retrieve objects on one end.

244 UML Superstructure 2.0 Draft Adopted Specification

Description

This action navigates an association towards one end, which is the end that does not have an input pin to take its object (the
“open” end). The objects put on the result output pin are the ones participating in the association at the open end, conforming
to the specified qualifiers, in order if the end is ordered. The semanticsis undefined for reading alink that violates the
navigability or visibility of the open end.

Attributes

None.

Associations

e result : OutputPin [0..*] (Specialized from Action:output) The pin on which are put the objects participating in the
association at the end not specified by the inputs.

Constraints

[1] Exactly onelink-end data specification (the “open” end) must not have an end object input pin.
self.endData->select(ed | ed.value->size() = 0)->size() = 1
[2] Thetypeand ordering of the result output pin are same as the type and ordering of the open association end.

let openend : AssociationEnd = self.endData->select(ed | ed.value->size() = 0)->asSequence()->first().end in
self.result.type = openend.type
and self.result.ordering = openend.ordering

[3] Themultiplicity of the open association end must be compatible with the multiplicity of the result output pin.

let openend : AssociationEnd = self.endData->select(ed | ed.value->size() = 0)->asSequence()->first().end in
openend.multiplicity.compatibleWith(self.result.multiplicity)

[4] The open end must be navigable.

let openend : AssociationEnd = self.endData->select(ed | ed.value->size() = 0)->asSequence()->first().end in
openend.isNavigable = #true

[5] Visibility of the open end must allow access to the object performing the action.

let host : Classifier = self.activity().hostClassifier() in
let openend : AssociationEnd = self.endData->select(ed | ed.value->size() = 0)->asSequence()->first().end in
openend.visibility = #public
or self.endData->exists(oed | not oed.end = openend
and (host = oed.end.participant
or (openend.visibility = #protected
and host.allSupertypes->includes(oed.end.participant))))

Semantics

Navigation of a binary association requires the specification of the source end of the link.The target end of the link is not
specified. When qualifiers are present, one navigates to a specific end by giving objects for the source end of the association
and qualifier valuesfor all the ends. Theseinputsidentify a subset of all the existing links of the association that match the end
objects and qualifier values. The result is the collection of objects for the end being navigated towards, one object from each
identified link.

In aReadLinkAction, generalized for n-ary associations, one of the link-end data must have an unspecified object (the “ open”
end). The result of the action is a collection of objects on the open end of links of the association, such that the links have the
given objects and qualifier values for the other ends and the given qualifier values for the open end. Thisresult is placed on the
output pin of the action, which has a type and ordering given by the open end. The multiplicity of the open end must be
compatible with the multiplicity of the output pin. For example, the modeler can set the multiplicity of this pin to support
multiple values even when the open end only allows a single vaue. Thisway the action model will be unaffected by changes

UML Superstructure 2.0 Draft Adopted Specification 245

in the multiplicity of the open end. The semantics are defined only when the open end is navigable, and visible to the host
object of the action.

Notation

None.
Examples

Rationale

ReadLinkAction isintroduced to navigate across links.

Changes from previous UML

ReadLinkAction is unchanged from UML 1.5.
11.3.29 ReadLinkObjectEndAction

(CompleteActions) ReadLinkObjectEndAction is an action that retrieves an end object from alink object.

Description

This action reads the object on an end of alink object. The association end to retrieve the object from is specified statically,
and the link object to read is provided on the input pin at run time.

Attributes

None.

Associations

e end: Property [1..1] Link end to be read.

e object: InputPin [1..1] (Specialized from Action:input) Gives the input pin from which the link object is
obtained.

e result: OutputPin[1..1] Pin where the result value is placed

Constraints

[1] The property must be an association end.
self.end.association->size = 1

[2] Theassociation of the association end must be an association class.
self.end.Association.ocllsKindOf(AssociationClass)

[3] Theends of the association must not be static.
self.end.association.end->forall(ocllsKindOf(NavigableEnd) implies isStatic = #false)

[4] Thetype of the object input pin is the association class that owns the association end.
self.object.type = self.end.association

[5] Themultiplicity of the object input pinis“1..1".
self.object.multiplicity.is(1,1)

[6] Thetype of the result output pin isthe same as the type of the association end.

246 UML Superstructure 2.0 Draft Adopted Specification

self.result.type = self.end.type
[7] Themultiplicity of the result output pinis 1..1.
self.result.multiplicity.is(1,1)

Semantics

Notation

None.
Examples

Rationale

ReadL inkObjectEndAction isintroduced to navigate from alink object to its end objects.

Changes from previous UML

ReadL inkObjectEndAction is unchanged from UML 1.5.
11.3.30 ReadLinkObjectEndQualifierAction

(CompleteActions) ReadLinkObjectEndAction is an action that retrieves a qualifier end value from alink object.

Description

This action reads a qualifier value or values on an end of alink object. The association end to retrieve the qualifier fromis
specified statically, and the link object to read is provided on the input pin at run time.

Attributes

None.

Associations

e qualifier : Property [1..1] The attribute representing the qualifier to be read.

e object: InputPin[1..1] (Specialized from Action:input) Gives the input pin from which the link object is
obtained.
e result: OutputPin[1..1] Pin where the result value is placed

Constraints

[1] The qualifier attribute must be a qualifier attribute of an association end.
self.qualifier.associationEnd->size() = 1

[2] Theassociation of the association end of the qualifier attribute must be an association class.
self.qualifier.associationEnd.association.oclisKindOf(AssociationClass)

[3] Theends of the association must not be static.
self.qualifier.associationEnd.association.end->forall(oclisKindOf(NavigableEnd) implies isStatic = #false)

[4] Thetype of the object input pin is the association class that owns the association end that has the given qualifier attribute.
self.object.type = self.qualifier.associationEnd.association

UML Superstructure 2.0 Draft Adopted Specification 247

[5] Themultiplicity of the qualifier attributeis 1..1.
self.qualifier.multiplicity.is(1,1)
[6] Themultiplicity of the object input pinis“1..1".
self.object.multiplicity.is(1,1)
[7] Thetype of the result output pin isthe same as the type of the qualifier attribute.
self.result.type = self.qualifier.type
[8] Themultiplicity of the result output pinis“1..1".
self.result. multiplicity.is(1,1)

Semantics

Notation

None.
Examples

Rationale

ReadLinkObjectEndQualifierAction is introduced to navigate from alink object to its end objects.

Changes from previous UML

ReadLinkObjectEndQualifierAction is unchanged from UML 1.5, except the name was corrected from
ReadLinkObjectQualifierAction.

11.3.31 ReadSelfAction

ReadSelfAction is an action that retrieves the host object of an action.

Description

Every action is ultimately a part of some activity, which isin turn is optionally attached in some way to the specification of a
classifier—for example as the body of a method or as part of a state machine. When the activity executes, it does so in the
context of some specific host instance of that classifier. This action produces this host instance, if any, on its output pin. The
type of the output pin is the classifier to which the activity is associated in the user model.

Attributes

None.

Associations

e result: OutputPin[1..1] (Specialized from Action:output) Gives the output pin on which the hosting object is
placed.

Constraints

[1] The action must be contained in an activity that has a host classifier.
self.activity().hostClassifier()->size() = 1

248 UML Superstructure 2.0 Draft Adopted Specification

[2] If theactioniscontained in an activity that is acting as the body of amethod, then the operation of the method must not be
static.

let hostelement : Element = self.activity().hostElement() in
not hostelement.oclisKindOf(Method)
or hostelement.oclAsType(Method).specification.isStatic = #false

[3] Thetype of the result output pin isthe host classifier.
self.result.type = self.activity().hostClassifier()

[4] Themultiplicity of the result output pinis“1..1".
self.result.multiplicity.is(1,1)

Semantics

The semanticsis undefined for activities that have no context object.

Notation

None.
Examples

Rationale

ReadSelfAction is introduced to provide access to the context object when it is not available as a parameter.

Changes from previous UML

ReadSelfAction is unchanged from UML 1.5.
11.3.32 ReadStructuralFeatureAction

ReadStructural FeatureAction is a structural feature action that retrieves the values of a structural feature.

Description

This action reads the values of a structural feature, in order if the structural feature is ordered.

Attributes

None.

Associations

e result: OutputPin[1..1] (Specialized from Action:output) Gives the output pin on which the result is put.

Constraints

[1] Thetype and ordering of the result output pin are the same as the type and ordering of the structural feature.

self.result.type = self.structuralFeature.type
and self.result.ordering = self.structuralFeature.ordering

[2] Themultiplicity of the structural feature must be compatible with the multiplicity of the output pin.
self.structuralFeature.multiplicity.compatible With(self.result.multiplicity)

UML Superstructure 2.0 Draft Adopted Specification 249

Semantics

The values of the structural feature of the input object are placed on the output pin of the action. The type and ordering of the
output pin are the same as the specified structural feature. The multiplicity of the structural feature must be compatible with
the multiplicity of the output pin. For example, the modeler can set the multiplicity of this pin to support multiple values even
when the structural feature only allows a single value. Thisway the action model will be unaffected by changesin the
multiplicity of the structural feature.

Notation

None.
Examples

Rationale

ReadStructural FeatureAction is introduced to retrieve the values of a structural feature.

Changes from previous UML

ReadStructural FeatureAction isnew in UML 2.0. It generalizes ReadAttributeAction from UML 1.5.
11.3.33 ReadVariableAction

ReadVariableAction is avariable action that retrieves the values of an variable.

Description

This action reads the values of avariables, in order if the variable is ordered.

Attributes

None.

Associations

e result: OutputPin[1..1] (Specialized from Action:output) Gives the output pin on which the result is put.

Constraints
[1] Thetype and ordering of the result output pin of a read-variable action are the same as the type and ordering of the vari-
able.

self.result.type =self.variable.type
and self.result.ordering = self.variable.ordering

[2] Themultiplicity of the variable must be compatible with the multiplicity of the output pin.
self.variable.multiplicity.compatible With(self.result. multiplicity)

Semantics

The values of the variable are placed on the output pin of the action. The type and ordering of the output pin are the same asthe
specified variable. The multiplicity of the variable must be compatible with the multiplicity of the output pin. For example, the
modeler can set the multiplicity of this pin to support multiple values even when the variable only allows asingle value. This
way the action model will be unaffected by changes in the multiplicity of the variable.

250 UML Superstructure 2.0 Draft Adopted Specification

Notation

None.
Examples

Rationale

ReadVariableAction isintroduced to retrieve the values of a variables.

Changes from previous UML

ReadVariableAction is unchanged from UML 1.5.
11.3.34 ReclassifyObjectAction

(CompleteActions) ReclassifyObjectAction is an action that changes which classifiers classify an object.

Description

ReclassifyObjectAction adds given classifier to an object and removes given classifiers from that object. Multiple classifiers

may be added and removed at atime.

Attributes

* isReplaceAll : Boolean [1..1] Specifies whether existing classifiers should be removed before adding the new classifi-
ers. The default value isfalse.

Associations

e object: InputPin[1..1] Holds the object to be reclassified. (Specializes Action.input.)

« newClassifier : Classifier [0..*] A set of classifiersto be added to the classifiers of the object.

e oldClassifier : Classifier [0..*] A set of classifiers to be removed from the classifiers of the object.

Constraints

[1] None of the new classifiers may be abstract.
not self.newClassifier->exists(isAbstract = true)

[2] Themultiplicity of theinput pinis1..1.
self.argument.multiplicity.is(1,1)

[3] Theinput pin has no type.
self.argument.type->size() = 0

Semantics

After the action completes, the input object is classified by its existing classifiers and the “new” classifiers given to the action;
however, the “old” classifiers given to the actions do not any longer classify the input object. The identity of the object is
preserved, no behaviors are executed, and no initial expressions are evaluated. “New” classifiers replace existing classifiersin
an atomic step, so that structural feature values and links are not lost during the reclassification, when the “old” and “new”
classifiers have structural features and associations in common.

Neither adding a classifier that duplicates an already existing classifier, nor removing a classifier that is not classifying the

UML Superstructure 2.0 Draft Adopted Specification 251

input object, has any effect. Adding and removing the same classifiers has no effect.

If isReplaceAll istrue, then the existing classifiers are removed before the “new” classifiers are added, except if the “ new”
classifier already classifies the input object, in which case this classifier it is not removed. If isReplaceAll is false, then adding
an existing value has no effect.

Itisan error, if any of the “new” classifiersis abstract or if al classifiers are removed from the input object.

Notation

None.

Examples

None.

Rationale

ReclassifyObjectAction isintroduced to change the classifiers of an object.

Changes from previous UML

ReclassifyObjectAction is unchanged from UML 1.5.
11.3.35 RemoveStructuralFeatureValueAction
RemoveStructural FeatureValueAction is awrite structural feature action that removes values from structural features.

Description

The object to access is specified dynamically, by referring to an input pin on which the object will be placed at runtime. The
type of the value of this pin isthe classifier that owns the specified structural feature, and the value's multiplicity is 1..1.

Attributes

None.

Associations

None.

Constraints

None.

Semantics

Structural features are potentially multi-valued. Removing a value succeeds even when it violates the minimum multiplicity.
Removing avalue that does not exist has no effect.

The semantics is undefined for removing an existing value for a structural feature with settability addOnly. The semanticsis
undefined for removing an existing value of a structural feature with settability readOnly after initialization of the owning
object.

252 UML Superstructure 2.0 Draft Adopted Specification

Notation

None.
Examples

Rationale

RemoveStructural FeatureV alueAction is introduced to remove structural feature values.

Changes from previous UML

RemoveStructural FeatureValueAction isnew in UML 2.0. It generalizes RemoveAttributeVaueAction in UML 2.0.
11.3.36 RemoveVariableValueAction
RemoveVaraibleVaueAction is awrite variable action that removes val ues from variables.

Description

One value is removed from the set of possible variable values.

Attributes

None.

Associations

None.

Constraints

None.

Semantics

Variables are potentially multi-valued. Removing aval ue succeeds even when it violates the minimum multiplicity. Removing
avalue that does not exist has no effect.

Notation

None.
Examples

Rationale

RemoveVariableValueAction is introduced to remove variable val ues.

Changes from previous UML

RemoveVariableValueAction is unchanged from UML 1.5.

UML Superstructure 2.0 Draft Adopted Specification 253

11.3.37 ReplyAction

(CompleteActions) ReplyAction is an action that accepts a set of return values and a token containing return information
produced by a previous accept call action. The reply action returns the values to the caller of the previous call, completing
execution of the call.

Attributes

none

Associations
e replyToCal : CalTrigger [1..1] The operation call trigger being replied to.

e replyVaue: OutputPin [0..*] A list of pinscontaining the reply values of the operation. These values are returned to the
caler.

e returninformation : InputPin [1..1]
A pin containing the return information token produced by an earlier AcceptCallAction.

Constraints

[1] Thereply value pins must match the return, out, and inout parameters of the call trigger operation in number, type, and
order.

Semantics

The execution of areply action completes the execution of acall that was initiated by a previous AcceptCall Action. The two

are connected by the returnl nformation token, which is produced by the AcceptCallAction and consumed by the ReplyAction.
The information in thistoken is used by the execution engine to return the reply valuesto the caller and to compl ete execution
of the original call. The details of transmitting call requests, encoding return information, and transmitting replies are opaque
and unavailable to models, therefore they need not be and are not specified in this document.

Return information may be copied, stored in objects, and passed around, but it may only be used in areply action once. If the
same return information token is supplied to a second ReplyAction, the execution isin error and the behavior of the system is
unspecified. It is not intended that any profile give any other meaning the the return information. The operation specified by
the call trigger must be consistent with the information returned at runtime.

If the return information is lost to the execution or if areply is never made, the caller will never receive areply and therefore
will never complete execution. Thisis not inherently illegal but it represents an unusual situation at the very least.

11.3.38 SendObjectAction

SendObjectAction is an action that transmits an object to the target object, where it may invoke behavior such as the firing of
state machine transitions or the execution of an activity. The value of the object is available to the execution of invoked
behaviors. The requestor continues execution immediately. Any reply message isignored and is not transmitted to the
requestor.

Attributes

None

254 UML Superstructure 2.0 Draft Adopted Specification

Associations

e request: InputPin [1] The signal request object, which is transmitted to the target object asasignal. The signal
object may be copied in transmission, so identity might not be preserved. (Specialized
from InvocationActon.argument)

e target: InputPin[1] The target object to which the signal is sent.

Constraints

None.

Semantics

[1] When all the control and data flow prerequisites of the action execution are satisfied, the object on the input pinistrans-
mitted to the target object. The target object may be local or remote. The object on the input pin may be copied during
transmission, so identity might not be preserved. The manner of transmitting the object, the amount of time required to
transmit it, the order in which the transmissions reach the various target objects, and the path for reaching the target
objects are undefined.

[2] When atransmission arrives at atarget object, it may invoke behavior in the target object. The effect of receiving a object
is specified in Chapter 13, “Common Behaviors’. Such effects include executing activities and firing state machine tran-
sitions.

[3] A send object action receives no reply from the invoked behavior; any attempted reply is simply ignored, and no trans-
mission is performed to the requestor.

Notation

See Action.

Presentation Option

If the activity in which asend object action is used will always send a signal, then the SendSignal Action notation can be used.

Examples

None

Rationale

Sends a signal to a specified target object.

Changes from previous UML

SendObjectAction is new in UML 2.0.

11.3.39 SendSignalAction

SendSignalAction is an action that creates a signal instance from its inputs, and transmits it to the target object, where it
may cause the firing of a state machine transition or the execution of an activity. The argument values are available to the

execution of associated behaviors. The requestor continues execution immediately. Any reply message isignored and is
not transmitted to the requestor. If the input is already a signal instance, use SendObjectAction.

UML Superstructure 2.0 Draft Adopted Specification 255

Attributes

None

Associations
e dignal: Signa [1] The type of signal transmitted to the target object.
e target: InputPin [1] The target object to which the signal is sent.

Constraints
[1] The number and order of argument pins must be the same as the number and order of attributesin the signal.

The type, ordering, and multiplicity of an argument pin must be the same as the corresponding attribute of the signal.

Semantics

[1] When all the control and data flow prerequisites of the action execution are satisfied, asignal instance of the type specified
by signal is generated from the argument values and his signal instance is transmitted to the identified target object. The
target object may be local or remote. The signal instance may be copied during transmission, so identity might not be pre-
served.The manner of transmitting the signal object, the amount of time required to transmit it, the order in which the
transmissions reach the various target objects, and the path for reaching the target objects are undefined.

[2] When atransmission arrives at atarget object, it may invoke behavior in the target object. The effect of receiving asignal

object is specified in Chapter 13, “Common Behaviors’. Such effects include executing activities and firing state machine
transitions.

[3] A send signal action receives no reply from the invoked behavior; any attempted reply is simply ignored, and no trans-
mission is performed to the requestor.

Notation

A send signal action is notated with a convex pentagon. The symbol may optionally have ainput pin for the target object but
thisis often omitted. The symbol has a control output only.

Signal
Type

Receive signal action

Figure 165 - Send signal notation

Examples

Figure 166 shows part of an order-processing workflow in which two signals are sent. An order is created (in response to some
previous request that is not shown in the example). A signal is sent to the warehouse to fill and ship the order. Then aninvoice

256 UML Superstructure 2.0 Draft Adopted Specification

is created and sent to the customer.

Create . Create .
Fill order request % Notify customer>

Figure 166 - Signal node notations

Rationale

Sends a signal to a specified target object.

Changes from previous UML

Same as UML 1.5.
11.3.40 StartOwnedBehaviorAction

Description

(CompleteActions) StartOwnedBehaviorAction is an action that starts the owned behavior of the input.

Attributes

None.

Associations

e object: InputPin[1..1] Holds the object on which to start the owned behavior. (Specializes Action.input.)

Constraints

[1] Theinput pin has no type.
self.argument.type->size() = 0

Semantics

When a StartOwnedBehaviorAction is invoked, it initiates the owned behavior of the classifier of the input object. If the
behavior has already been initiated, this action has no effect.

Notation

None.

Examples

None.

Rationale

Thisaction is provided to permit the explicit initiation of owned behaviors, such as state machines and code, in adetailed, low-

UML Superstructure 2.0 Draft Adopted Specification 257

level “raw” specification of behavior.

Changes from previous UML

StartOwnedBehaviorAction is unchanged from UML 1.5.
11.3.41 StructuralFeatureAction

Structural FeatureAction is an abstract class for all structural feature actions.

Description
This abstract action class statically specifies the structural feature being accessed.

The object to access is specified dynamically, by referring to an input pin on which the object will be placed at runtime. The
type of the value of this pin isthe classifier that owns the specified structural feature, and the value’' s multiplicity is 1..1.

Attributes

None.

Associations
e structuralFeature : Structural Feature [1..1] Structural feature to be read.

e object: InputPin[1..1] (Specialized from Action:input) Gives the input pin from which the object whose struc-
tural featureisto be read or written is obtained.

Constraints

[1] The structural feature must have not be static.
self.structuralFeature.isStatic = #false
[2] Thetype of the object input pinis the same as the classifier of the object passed on this pin.

[3] Themultiplicity of theinput pin must be 1..1.
self.object.multiplicity.is(1,1)
[4] Visibility of structural feature must allow access to the object performing the action.

let host : Classifier = self.activity().hostClassifier() in
self.structuralFeature.visibility = #public
or host = self.structuralFeature.featuringClassifier.type
or (self.structuralFeature.visibility = #protected and host.allSupertypes
->includes(self.structuralFeature.featuringClassifier.type)))

Semantics

A structural feature action operates on a statically specified structural feature of some classifier. The action requires an object
on which to act, provided at runtime through an input pin. The semantics is undefined for accessing a structural feature that
violatesits visibility. The semantics for static features is undefined.

The structural features of an object may change over time due to dynamic classification. However, the structural feature
specified in a structural feature action isinherited from asingle classifier, and it is assumed that the object passed to a
structural feature action is classified by that classifier directly or indirectly. The structural featureis referred to as a user model
element, so it isuniquely identified, even if there are other structural features of the same name on other classifiers.

258 UML Superstructure 2.0 Draft Adopted Specification

Notation

None.
Examples

Rationale

Structura FeatureAction is introduced for the abstract aspects of structural feature actions.

Changes from previous UML

Structural FeatureAction is new in UML 2.0. It generalizes AttributeAction in UML 1.5.
11.3.42 TestldentityAction

TestldentifyAction is an action that tests if two values are identical objects.t

Description

This action returnstrue if the two input values are the same identity, false if they are not.

Attributes

None.

Associations

e first: InputPin[1..1]. (Speciaized from Action:input) Gives the pin on which an object is placed.
e result: OutputPin [1..1] (Specialized from Action:output) Tells whether the two input objects are identical.
e second: InputPin [1..1] (Specialized from Action:input) Gives the pin on which an object is placed.

Constraints

[1] Theinput pinshave no type.

self first.type->size() = 0
and self.second.type->size() =0

[2] Themultiplicity of theinput pinsis1..1.

self.first.multiplicity.is(1,1)
and self.second.multiplicity.is(1,1)

Semantics

When all control and data flow prerequisites of the action have been satisfied, the input values are obtained from the input pins
and made available to the computation. If the two input values represent the same object (regardless of any implementation-
level encoding), the value true is placed on the output pin of the action execution, otherwise the value falseis placed on the
output pin. The execution of the action is complete and satisfies appropriate control and data flow prerequisites.

Notation

None.

UML Superstructure 2.0 Draft Adopted Specification 259

Examples

Rationale

TestldentityAction is introduced to tell when two values refer to the same object.

Changes from previous UML

TestldentityAction is unchanged from UML 1.5.
11.3.43 VariableAction

Description

VariableAction is an abstract class for actions that operate on a statically specified variable.

Attributes

None.

Associations
e variable: Variable[1..1] Variable to be read.

Constraints

[1] The action must be in the scope of the variable.
self.variable.isAccessibleBy(self)

Semantics

Variable action is an abstract metaclass. For semantics see its concrete subtypes.

Notation

None.
Examples

Rationale

VariableAction isintroduced for the abstract aspects of variable actions.

Changes from previous UML

VariableAction is unchanged from UML 1.5.
11.3.44 WriteStructuralFeatureAction
WriteStructural FeatureAction is an abstract class for structural feature actions that change structural feature values.

Description

A write structural feature action operates on a structural feature of an object to modify its values. It has an input pin on which
the value that will be added or removed is put. Other aspects of write structural feature actions are inherited from

260 UML Superstructure 2.0 Draft Adopted Specification

Structural FeatureAction.

Attributes

None.

Associations

e vaue: InputPin[1..1] (Specialized from Action:input) Value to be added or removed from the structural feature.

Constraints

[1] Thetypeinput pin isthe same asthe classifier of the structural feature.
self.value.type = self.structuralFeature.featuringClassifier

[2] Themultiplicity of theinput pinis1..1.
self.value.multiplicity.is(1,1)

Semantics

None.Notation

None.
Examples

Rationale

WriteStructural FeatureAction is introduced to abstract aspects of structural feature actions that change structural feature
values.

Changes from previous UML

WriteStructural FeatureAction is new in UML 2.0. It generalizes WriteAttributeAction in UML 1.5.
11.3.45 WriteLinkAction
WriteLinkAction is an abstract class for link actions that create and destroy links.

Description

A write link action takes a complete identification of alink and creates or destroysit.

Attributes

None.

Associations

None.

Constraints

[1] All end data must have exactly one input object pin.
self.endData.forall(value->size() = 1)

UML Superstructure 2.0 Draft Adopted Specification 261

Semantics

See children of WriteLinkAction.

Notation

None.
Examples

Rationale

WriteLinkAction is introduced to navigate across links.

Changes from previous UML

WriteLinkAction is unchanged from UML 1.5.
11.3.46 WriteVariableAction

WriteVariableAction is an abstract class for variable actions that change variable values.

Description

A write variable action operates on a variable to modify its values. It has an input pin on which the value that will be added or
removed is put. Other aspects of write variable actions are inherited from VariableAction.

Attributes

None.

Associations
e vaue: InputPin[1..1] (Specialized from Action:input) Value to be added or removed from the variable.

Constraints

[1] Thetypeinput pinisthe same asthe type of the variable.
self.value.type = self.variable.type

[2] Themultiplicity of theinput pinis1..1.
self.value.multiplicity.is(1,1)

Semantics

See children of WriteVariableAction.

Notation

None.
Examples

Rationale

WriteVariableAction is introduced to abstract aspects of structural feature actions that change variable values.

262 UML Superstructure 2.0 Draft Adopted Specification

Changes from previous UML

WriteVariableAction is unchanged from UML 1.5.

11.4 Diagrams

The following sections describe the graphic nodes for actions. The notation for actionsis optional. A textual notation may be

used instead.

Graphic Nodes
The graphic nodes for actions are shown in Table 10.

Table 10 - Graphic nodes included in activity diagrams

NODE TYPE NOTATION

REFERENCE

AcceptEventAction

X

See “AcceptEventAction” on page 217

SendSignalAction

See “SendSignalAction” on page 255.

UML Superstructure 2.0 Draft Adopted Specification

263

264 UML Superstructure 2.0 Draft Adopted Specification

12 Activities

12.1 Overview

Activity modeling emphasi zes the sequence and conditions for coordinating lower-level behaviors, rather than which
classifiers own those behaviors. These are commonly called control flow and object flow models. The actions coordinated by
activity models can be initiated because other actions finish executing, because objects and data become available, or because
events occur external to the flow.

Actions and activities

An action execution corresponds to the execution of a particular action within an activity. Similarly, an activity execution is
the execution of an activity, ultimately including the executions of actions within it. Each action in an activity may execute
zero, one, or more times for each activity execution. Execution is not instantaneous, but takes place over a period of time.
The UML does not provide for the specification of atime metric, but only describes sequences of executions. Activities and
other groupings of actions must be executed in a number of steps, including control of the execution of nested actions.

At the minimum, actions need access to data, they need to transform and test data, and actions may require sequencing. The
activities specification (at the higher compliance levels) allows for several (logical) threads of control executing at once and
synchroni zation mechanisms to ensure that activities execute in a specified order. Semantics based on concurrent execution
can then be mapped easily into a distributed implementation. However, the fact that the UML allows for concurrently
executing objects does not necessarily imply a distributed software structure. Some implementations may group together
objectsinto asingle task and execute sequentially—so long as the behavior of the implementation conforms to the sequencing
constraints of the specification.

There are potentially many ways of implementing the same specification, and any implementation that preserves the
information content and behavior of the specification is acceptable. Because the implementation can have a different structure
from that of the specification, there is a mapping between the specification and its implementation. This mapping need not be
one-to-one: an implementation need not even use object-orientation, or it might choose a different set of classes from the
original specification.

The mapping may be carried out by hand by overlaying physical models of computers and tasks for implementation purposes,
or the mapping could be carried out automatically. This specification neither provides the overlays, nor doesiit provide for
code generation explicitly, but the specification makes both approaches possible.

See the “Activity” and “Action” metaclasses for more introduction and semantic framework.

BasicActivities

The basic level supports modeling of traditional sequential flow charts. It includes control sequencing, but explicit forks and
joins of control are not supported at this level. Decisions and merges are supported at thislevel and need not be well
structured.

IntermediateActivities

Theintermediate level supports modeling of activity diagrams that include concurrent control and data flow. It supports
modeling similar to traditional Petri nets with queuing. It requires the basic level.

The intermediate and structured levels are orthogonal. Either can be used without the other or both can be used to support
modeling that includes both concurrency and structured control constructs.

UML Superstructure 2.0 Draft Adopted Specification 265

CompleteActivities

The complete level adds constructs that enhance the lower level models, such as edge weights and streaming.

StructuredActivities

The structured level supports modeling of traditional structured programming constructs, such asloops and conditionals, asan
addition the basic nonstructured activity sequencing. It requires the basic level. It is compatible with the intermediate and
complete levels.

CompleteStructuredActivities

This level adds support for data flow output pins of conditionals and loops. It isintended to be used in conjunction with the
intermediate layer, which supports explicit concurrency, but there is no actual dependency between the levels.

ExtraStructuredActivities

The extra structure level supports exception handling as found in traditional programming languages and invocation of
behaviors on sets of values. It requires the structured level.

266 UML Superstructure 2.0 Draft Adopted Specification

12.2 Abstract Syntax

Figure 175 shows the dependencies of the activity packages.

BasicBehaviors Kernel
(from CommonBehaviors) (from Classes)
<<merge>>

/

BasicActivities

4 BehaviorStateMachines
/ <merge>> (from StateMachines)

- Vecmergeos “ 2

StructuredActivities Intermediate Adivities

e - /

<<merge>>
TN K /
/ \ <<merge>> \ / <<merge>>

<<merge>>

<<merge>>/ \ /
ExtraStructuredActiv CompleteStructuredActivities CompleteActivities
ities

Figure 175 - Dependencies of the Activity packages

UML Superstructure 2.0 Draft Adopted Specification 267

Class Diagrams (BasicActivities)

Activity
(fromBasicBehaia's)

RedefinableElement

(fromKernel)
+node
0.1 —
Activity {subsets ownedElement} ActivityNode
isReadOnly : Boolean = false +adivity *
’ {subsets owner}
0.1
+redefinedElement
{redefines redefinedElement} *
TypedElement
(from Kernel)
ExecutableNode ObjectNode ContoINode
0.* " ‘ —
N Action Pin ActivityParameterNode
+action
{ordered,
subsets node} +/context
0.1 1 +parameter
Classifier Parameter
(fromKernel) (from Kernel)

Figure 176 - Nodes

268 UML Superstructure 2.0 Draft Adopted Specification

RedefinableElement

(fromKernel)
+edge 0.1
— {subsets ownedElement} " —
)) ActivityEdge < Activity
ActivityNode 1 +target +incoming R +adtivity
N {subsets owner}
1 +source +outgoing
*
ValueSpecification | 1 *
(fromkerre) +guard * +redefinedEement
{default value istrue} {sUbsets ownedElement} {re definesredefinedElement}
ControIFl ow Obje ctFlow

Figure 177 - Flows

UML Superstructure 2.0 Draft Adopted Specification

269

Pin

QutputPin InputPin ValuePin
+loutput Hinput /\ 0.1
{ordered, union, {ordered, union,
subsets subsets +value 1
ownedElement} ownedElement}
ValueSpecification
1 1 (fromKernel)
Action

effect : String

Figure 178 - Actions

ControlNode

InitialNode FinalNode MergeNode DecisionNode

+decisionlnput 0.1

Behavior

ACtMtyFmalNOde (from BasicBehaviors)

Figure 179 - Control nodes

270 UML Superstructure 2.0 Draft Adopted Specification

Element
(fromKernel)

+/subgroup
{union, subsets ownedElement}

+activity

{subsets owner} —
Py Activity

*

0.1

+group
{subsets ownedElement}
*

0.1 ActivityGroup
+/superGroup
{union, subsets owner} * *
+inGroup +nGroup

* *

ActivityEdge ActivityNode
+edgeContents +nodeContents
Figure 180 - Groups
Class Diagrams (IntermediateActivities)
ObjectNode

(fromBasicActivities)

CentralBufferNode

Figure 181 - Object nodes (IntermediateActivities)

UML Superstructure 2.0 Draft Adopted Specification

271

272

ControlNode
(fromBasicActivities)

ForkNode

JoinNode

FinalNode

(fromBasicActivities)

FlowFinalNode

Figure 182 - Controls (IntermediateActivities)

UML Superstructure 2.0 Draft Adopted Specification

ActivityGroup NamedElement

(fromBasicActivities) (fromKemd)
+subgroup
{redefines subgroup}
*
0.1 ActivityPartition +represents
+superPartition isDimension : Boolean = false . Element
isExternal : Boolean = false 0.1 (fromKe rnel)
{subsets superGroup}
* *
+inPattition +inPartition
{subsetsinGroup} {subsetsinGroup}
ActivityEdge ActivityNode
+edgeContents +nodeContents

{redefines edgeContents} {redefines nodeContents}

Figure 183 - Partitions

Class Diagrams (CompleteActivities)

Activity
(from BasicActivities)

Activity

isSingleExecution : Boolean

Figure 184 - Elements (CompleteActivities)

UML Superstructure 2.0 Draft Adopted Specification

273

Action
(fromBasicActiviti es)

+localPrecondition
{subsets ownedElement}

‘0..1
*

Action Constraint
(from Kernel)
0.1 *

+localP ostcondition
{subsets owned Ele me nt}

Figure 185 - Constraints (CompleteActivities)

ObjectFlow
(from BasicActivities)

,

*

ObjectFlow Behavior
effect : ObjectFlowEffectKind +transformation (fromBasicB ehaviors)
isMulticast : Boolean = false * 0.1
isMultireceive : Boolean = false

+selection
ActivityEdge
(fromBasic Act vities) <<enumeration>>
ObjectrFlowEffectKind
create
. read
+wei ght update
ActivityEdge - {subsets ownedElement} Value Specification delete
(fromKemd)
0.1 1

{default value is1}

Figure 186 - Flows (CompleteActivities)

274 UML Superstructure 2.0 Draft Adopted Specification

Obje ctNode
(fromBasicActivities)

ObjectNode

0.1

ordering : ObjectNodeOrderingKind = FIFO

g

*

+inState *
State
(from Behavior StateMachines)

*

+selection
0.1

Behavior
(from BasicBehava s)

{subsets ownedElement} {default value isnull,
which means unlimited

}

Value Specification

(fromKemd)

+upperBound

<<enumeration>>
ObjectNode OrderingKind

ordered
LIFO
FIFO

unordered

Figure 187 - Object nodes (CompleteActivities)

CentralBufferNode
(from Activities-int)

DataStoreNode

Figure 188 - Data stores

Figure 189 - Parameter sets

UML Superstructure 2.0 Draft Adopted Specification

Parameter NamedElement
(from Kernel) (fromKernel)
Parameter +parameterSet +parameterinSet| pgrameterSet
isException : Boolean = false
isStream : Boolean = false 1.* *

275

276

JoinNode

(from IntermediateActivities)

JoinNode

+join Spec

ValueSpecification
(fromKernel)

{subsets ownedElement} {default value is"and"}

Figure 190 - Control nodes (CompleteActivities)

ActivityGroup
(fromBasicActivities)

+interruptibleRegi on —
" 9 InterruptibleActivityRegion ActivityNode
0.1 (fromBasicActivities)
+inGroup +interruptibleRegion
{subsets {subsets inGroup}
+interruptingEdge inGroup}
*
ActivityEdge | O ActivityNode
+edgeContents +nodeContents

{redefines edgeContents} {redefines nodeContents}

Figure 191 - Interruptible regions

UML Superstructure 2.0 Draft Adopted Specification

Class Diagrams (StructuredActivities)

TvpedElement ActivityGroup Namespace ExecutableNode
y(F;romKemel) (fromB asicActivities) (fromKernel) (from Basic Aci vities)
" +inStructuredNode
@ +variable 1 Z} Z} fbsets inG)
’ . subsets inGroup
Variable {subsets ownedMember} StructuredActivityNode ActivityNode
* +scope 0.1 +nodeContents
{subsets owner} {redefines nodeContentsy
+activity
{redefines activity, .
redefines activity} * +inStructuredNod e
Activity @ {subsetsinGroup} ActivityEdge
0.1 +structuredNode L 2
{subsets node, 0.1 +edgeContents
subsets group} Z> {redefines edgeContents}
\
ConditionalNode
isDeterminate : Boolean Element
isAssured : Boolean (fromKernel)
1
+clause
{subsetsownedElement} | 1. *
0.1 0.1 0..1
+predecessorClause Clause LoopNode
. isTestedFirst : Boolean
0.1 0..1
+successorClause
N 0.1 0.1
+setupPatt +bodyPart
+body ‘ ttest +decider | 1 1| 4decider * *
ActivityNode OutputPin ActivityNode *

UML Superstructure 2.0

(fromB asic Activities)

(from BasicActivities)

Figure 192 - Structu

Draft Adopted Specification

red nodes

(fromBasicActivities)

+test

277

Class Diagrams (CompleteStructuredActivities)

StructuredActivityNode Action LoopNode
(from StructuredActivities) (fromBasicActivities) (from StructuredActivities)

; Clause
o InputPin
ConditionalNode -
i (from StructuredActivities)
(from StructuredActivities) (from Basic Adiviies)
* +loopVar abl el nput
{ordered,
0.1 subsetsinput}
- ®—
StructuredActivityNode ConditionalNode LoopNode Clause
mustisolate : Boolean *
0.1 0.1 0.1 *
{ordered,
subsets {ordered,
{ordered, output} subsets +bodyOutput
subsets output} ownedElement}
+result\|/ * +result \|/ * %\|, +loopVariable *
OutputPin OutputPin "
(from Basic Adi viti s) (from BasicActivities)
+bodyOutput

Figure 193 - Structured nodes (CompleteStructuredActivities)

278 UML Superstructure 2.0 Draft Adopted Specification

Class Diagrams (ExtraStructuredActivities)

ExecutableNode Element
(from BasicActivities) (from Kernel)
1 +handler ol
+exceptioninput -
ExecutableNode {subsets ownedElement} : ObjectNode
Exce ptionHandler) -
+protectedNode « q | (romBasiciciviies)
{subsets owner}
1 +exceptionType
Classifier
1% (fromKernel)
+handlerBody
Figure 194 - Exceptions
StructuredActivityNode ObjectNode
(from Str e turedadi vties) (fromBasicActiviti...

+inputElement

+regionAsinput 1.%
o
ExpandonRegion ExpansionNode
mode : ExpansionKind
‘ 0.1 0.*
+region AOutput +outputElement

<<enumeration>>
ExpansionKind

parallel

iterative

stream

Figure 195 - Expansion regions

UML Superstructure 2.0 Draft Adopted Specification 279

12.3 Class Descriptions

12.3.1 Action

Description

An action is an executable activity node that is the fundamental unit of executable functionality in an activity, as opposed to
control and data flow among actions. The execution of an action represents some transformation or processing in the modeled
system, be it a computer system or otherwise.

An action may have sets of incoming and outgoing activity edges that specify control flow and data flow from and to other
nodes. An action will not begin execution until al of itsinput conditions are satisfied. The completion of the execution of an
action may enable the execution of a set of successor nodes and actions that take their inputs from the outputs of the action.

In CompleteActivities, action is extended to have pre- and postconditions.

Attributes
e /context : Classifier [1] The classifier that owns the behavior of which this action is a part.
o effect: String [0..1] An optional text specification of the effect of the action. This may be used to indicate the

behavior of an action without specialization into a subclass, or it may represent atext
description of an action that is specialized, either for human understanding or to help code

generation.

Associations (BasicActivities)

e [input: InputPin [*] The ordered set of input pins connected to the Action. These are among the total set of
inputs (other inputs represent constant values).

e Joutput : OutputPin [*] The ordered set of output pins connected to the Action. The action places its results onto
pinsin this set.

Associations (CompleteActivities)
e locaPrecondition : Constraint [0..*] Congtraint that must be satisfied when execution is started.
e locaPostcondition : Constraint [0..*] Constraint that must be satisfied when executed is completed.

Constraints

none

Operations
[3] activity operates on Action. It returns the activity containing the action.

activity() : Activity;
activity = if self.Activity->size() > 0 then self.Activity else self.group.activity() endif

Semantics

An action execution represents the run-time behavior of executing an action within a specific activity execution. AsAction is
an abstract class, al action executions will be executions of specific kinds of actions.

The sequencing of actions are controlled by control edges and object flow edges within activities, which carry control and
object tokens respectively (see Activity). Except where noted, an action can only begin execution when all incoming control

280 UML Superstructure 2.0 Draft Adopted Specification

edges have tokens, and all input pins have object tokens. The action begins execution by taking tokens from itsincoming
control edges and input pins. When the execution of an action is complete, it offers tokens in its outgoing control edges and
output pins, where they are accessible to other actions.

The steps of executing an action are as follows:

[1] An action execution is created when all its object flow and control flow prerequisites have been satisfied (implicit join).
Exceptionsto this are listed below. The flow prerequisiteis satisfied when all of the input pins are offered tokens and
accept them all at once, precluding them from being consumed by any other actions. This ensures that multiple action exe-
cutions competing for tokens do not accept only some of the tokens they need to begin, causing deadlock as each execu-
tion waits for tokens that are already taken by others.

[2] An action execution consumes the input control and object tokens and removes them from the sources of control edges
and from input pins. The action execution is now enabled and may begin execution.

[3] An action continues executing until it has completed. Most actions operate only on their inputs. Some give access to a
wider context, such as variables in the a containing structured activity node, or the self object, which is the object owning
the activity containing the executing action. The detailed semantic of execution an action and definition of completion
depends on the particular subclass of action.

[4] When completed, an action execution offers object tokens on all its output pins and control tokens on all its outgoing con-
trol edges (implicit fork), and it terminates. Exceptions to this are listed below. The output tokens are now available to
satisfy the control or object flow prerequisites for other action executions.

[5] After anaction execution hasterminated, its resources may be reclaimed by an implementation, but the details of resource
management are not part of this specification and are properly part of an implementation profile.

See VauePin for exception to rule for starting action execution.

If abehavior is not reentrant, then no more than one execution of it wil exist at any given time. An invocation of a non-
reentrant behavior does not start the behavior when the behavior is already executing. In this case, tokens collect at the input
pins of the invocation action, if their upper bound is greater than one, or upstream otherwise. An invocation of a reentrant
behavior will start a new execution of the behavior with newly arrived tokens, even if the behavior is already executing from
tokens arriving at the invocation earlier.

(ExtraStructuredActivities) If an exception occurs during the execution of an action, the execution of the action is abandoned
and no regular output is generated by this action. If the action has an exception handler, it receives the exception object as a
token. If the action has no exception handler, the exception propagates to the enclosing node and so on until it is caught by one
of them. If an exception propagates out of a hested node (action, structured activity node, or activity), al tokensin the nested
node are terminated. The data describing an exception is represented as an object of any class.

(CompleteActivities) Streaming allows an action execution to take inputs and provide outputs whileit is executing. During
one execution, the action may consume multiple tokens on each streaming input and produce multiple tokens on each
streaming output. See Parameter.

(CompleteActivities) Local preconditions and postconditions are constraints that must hold when the execution starts and
completes, respectively. They hold only at the point in the flow that they are specified, not globally for other invocations of the
behavior at other placesin the flow or on other diagrams. Compare to pre- and postconditions on Behavior (in Activities). See
semantic variations below for their effect on flow.

Semantic Variation Points

(CompleteActivities) How local pre- and postconditions are enforced is determined by the implementation. For example,
violations may detected at compile time or runtime. The effect may be an error that stops the execution or just awarning, and
so on. Since local pre and postconditions are modeler-defined constraints, violations do not mean that the semantics of the
invocation is undefined as far as UML goes. They only mean the model or execution trace does not conform to the modeler’s

UML Superstructure 2.0 Draft Adopted Specification 281

intention (although in most cases this indicates a serious modeling error that calls into question the validity of the model).

See variationsin ActivityEdge and ObjectNode.

Notation
Use of action and activity notation is optional. A textual notation may be used instead.

Actions are notated as round-cornered rectangles. The name of the action or other description of it may appear in the symbol.

See children of action for refinements.

(CompleteActivities) Local pre- and postconditions are shown as notes attached to the invocation with the keywords
«local Precondition» and «local Postconditions, respectively.

Figure 196 - Action

constraint

«local Precondition» |ﬁ

«l ocal Postcondition»
constraint

Figure 197 - Local pre- and postconditions

Examples

Examples of actions are illustrated below. These perform behaviors called Send Payment and Accept Payment.

Send Accept
Payment Payment

Figure 198 - Examples of actions.

282 UML Superstructure 2.0 Draft Adopted Specification

Below is an example of an action expressed in an application-dependent action language:

FOR every Employee
calculate salary

print check

ENDFOR

Figure 199 - Example of action with tool-dependent action language..

(CompleteActivities) The example below illustrates local pre and postcondition for the action of a drink dispensing machine.

«locaPrecondition»

A drink is selected that
the vending machine contains.

Dispense
Drink

«local Post.conditi on»
The vending machine dispen
the drink that is selected.

Figure 200 - Example of an action with local pre/postconditions.

Rationale

An action represents a single step within an activity, that is, one that is not further decomposed within the activity. An activity
represents a behavior which is composed of individual elementsthat are actions. Note, however, that a call behavior action
may reference an activity definition, in which case the execution of the call action involves the execution of the referenced
activity and its actions. Similarly for al the invocation actions. An action is therefore simple from the point of view of the
activity containing it, but may be complex inits effect and not be atomic. As apiece of structure within an activity mode, itis
asingle discrete element; as a specification of behavior to be performed, it may invoke referenced behavior that is arbitrarily
complex. As aconsequence, an activity defines a behavior that can be reused in many places, whereas an instance of an action
isonly used once at a particular point in an activity.

Changes from previous UML

Explicitly modeled actions as part of activitiesare new in UML 2.0, and replace ActionState, Call State, and SubactivityState
in UML 1.5. They represent a merger of activity graphs from UML 1.5 and actions from UML 1.5.

Local pre and postconditions are new to UML 2.0.
12.3.2 Activity

An activity isthe specification of parameterized behavior as the coordinated sequencing of subordinate units whose individual
elements are actions. There are actions that invoke activities (directly by “CallBehaviorAction” on page 224 or indirectly as

UML Superstructure 2.0 Draft Adopted Specification 283

methods by “CallOperationAction” on page 227).

Description

An activity specifies the coordination of executions of subordinate behaviors, using a control and data flow model. The
subordinate behaviors coordinated by these models may be initiated because other behaviors in the model finish executing,
because objects and data become available, or because events occur external to the flow. The flow of execution is modeled as
activity nodes connected by activity edges. A node can be the execution of a subordinate behavior, such as an arithmetic
computation, acall to an operation, or manipulation of object contents. Activity nodes al so include flow-of-control constructs,
such as synchronization, decision, and concurrency control. Activities may form invocation hierarchies invoking other
activities, ultimately resolving to individual actions. In an object-oriented model, activities are usually invoked indirectly as
methods bound to operations that are directly invoked.

Activities may describe procedural computation. In this context, they are the methods corresponding to operations on classes.
Activities may be applied to organizational modeling for business process engineering and workflow. In this context, events
often originate from inside the system, such as the finishing of atask, but also from outside the system, such as acustomer call.
Activities can a so be used for information system modeling to specify system level processes.

Activities may contain actions of various kinds:
« occurrences of primitive functions, such as arithmetic functions.
« invocations of behavior, such as activities.
» communication actions, such as sending of signals.
» manipulations of objects, such as reading or writing attributes or associations.

Actions have no further decomposition in the activity containing them. However, the execution of a single action may induce
the execution of many other actions. For example, a call action invokes an operation which isimplemented by an activity
containing actions that execute before the call action completes.

Most of the constructs in the activity chapter deal with various mechanisms for sequencing the flow of control and data among
the actions:

 object flows for sequencing data produced by one node that is used by other nodes.
« control flows for sequencing the execution of nodes.

- control nodes to structure control and object flow. These include decisions and merges to model contingency. These
asoincludeinitial and final nodes for starting and ending flows. In IntermediateActivities, they include forks and joins
for creating and synchronizing concurrent subexecutions.

« activity generalization to replace nodes and edges.

» (StructuredActivities) composite nodes to represent structured flow-of-control constructs, such asloops and condition-
as.

- object nodesto represent objects and data as they flow in and out of invoked behaviors, or to represent collections of
tokens waiting to move downstream.

» (IntermediateActivities) partitionsto organize lower-level activities according to various criteria, such asthe real-world
organization responsible for their performance.

» (CompleteActivities) interruptible regions and exceptions to represent deviations from the normal, mainline flow of
control.

284 UML Superstructure 2.0 Draft Adopted Specification

Attributes (CompleteActivities)

e isReadOnly : Boolean = false If true, thisactivity must not make any changes to variables outside the activity or to
objects. (Thisisan assertion, not an executable property. It may be used by an execution
engine to optimize model execution. If the assertion is violated by the action, then the
model isill-formed.) The default is false (an activity may make nonlocal changes).

e isSingleExecution : Boolean =false If true, tokens from separate invocations of the activity may interact.

Associations (BasicActivities)

e edge: ActivityEdge [0..*] Edges expressing flow between nodes of the activity.
e group: ActivityGroup [0..*] Top-level groupsin the activity.

¢ node: ActivityNode [0..*] Nodes coordinated by the activity.

Associations (IntermediateActivities)

e partition : ActivityPartition [0..*] Top-level partitionsin the activity.

Associations (StructuredActivities)

e structuredNode : StructuredActivityNode [0..*] Top-level structured nodes in the activity.

Stereotypes

None.

Tagged Values

None.

Constraints

[1] The nodes of the activity must include one ActivityParameterNode for each parameter.

[2] Anactivity cannot be autonomous and have a classifier or behavioral feature context at the same time.

Operations

[1] hostElement operates on Activity. It returnsthe “innermost” element in the user model that is hosting the activity. Thiswill
be either a Method, State, Transition, Message, or Stimulus.
hostElement() : ModelElement;
hostElement = if self.Method->size() > 0

then self.Method
else if self.State->size() > 0
then self.State
else if self. Transition->size() > 0
then self. Transition
else if self. Message->size()>0
then self.Message
else if self.Stimulus->size>0
then self.Stimulus
endif
endif
endif
endi

UML Superstructure 2.0 Draft Adopted Specification 285

[2] hostClassifier operates on Activity. It returns the classifier hosting the activity. Thisisthe classifier on which the activity
is defined as a method, action in a state machine, sender of a message in a collaboration, or sender of astimulusin a Col-
|aborationl nstance.

hostClassifier() : Classifier;
hostClassifier = if self. Method->size() > 0
then self.Method.owner
else if self.State->size() > 0
then self.oclAsType(StateVertex).hostClassifier()
else if self.Transition->size() > 0
then self.Transition.source.hostClassifier()
else if self. Message->size()>0
then self. Message.sender.base
else if self.Stimulus->size>0
then self.Stimulus.sender.classifier
endif
endif
endif
endif

Semantics

The semantics of activitiesis based on token flow. By flow, we mean that the execution of one node affects and is affected by
the execution of other nodes, and such dependencies are represented by edges in the activity diagram. A token contains an
object, datum, or locus of control, and is present in the activity diagram at a particular node. Each token is distinct from any
other, eveniif it contains the same value as another. A node may begin execution when specified conditions on its input tokens
are satisfied; the conditions depend on the kind of node. When a node begins execution, tokens are accepted from some or all
of itsinput edges and atoken is placed on the node. When a node compl etes execution, atoken is removed from the node and
tokens are offered to some or all of its output edges. See later in this section for more about how tokens are managed.

All restrictions on the rel ative execution order of two or more actions are explicitly constrained by flow relationships. If two
actions are not directly or indirectly ordered by flow relationships, they may execute concurrently. This does not require
parallel execution; a specific execution engine may choose to perform the executions sequentially or in parallel, aslong as any
explicit ordering constraints are satisfied. In most cases, there are some flow relationships that constrain execution order.
Concurrency is supported IntermediateActivities, but not in BasicActivities.

Activities can be parameterized, which is a capability inherited from Behavior. See “ ActivityParameterNode’. Functionality
inherited from Behavior also supports the use of activities on classifiers and as methods for behaviora features. The classifier,
if any, isreferred to as the context of the activity. At runtime, the activity has access to the attributes and operations of its
context object and any objects linked to the context object, transitively. An activity that is also a method of a behaviora
feature has access to the parameters of the behavioral feature. In workflow terminology, the scope of information an activity
usesis called the process-rel evant data. |mplementations that have access to metadata can define parameters that accept entire
activities or other parts of the user model.

An activity with aaclassifier context, but that is not amethod of a behavioral feature, isinvoked when the classifier is
instantiated. An activity that isamethod of a behavioral feature isinvoked when the behavioral feature isinvoked. The
Behavior metaclass also provides parameters, which must be compatible with the behavioral feature it is a method of, if any.
Behavior also supports overriding of activities used as inherited methods. See the Behavior metaclass for more information.

Activities can also be invoked directly by other activities rather than through the call of abehavioral feature that has an activity
as amethod. This functional or monomorphic style of invocation is useful at the stage of development where focusis on the
activities to be completed and goals to be achieved. Classifiers responsible for each activity can be assigned at alater stage by
declaring behavioral features on classifiers and assigning activities as methods for these features. For example, in business
reengineering, an activity flow can be optimized independently of which departments or positions are later assigned to handle
each step. Thisiswhy activities are autonomous when they are not assigned to a classifier.

Regardless of whether an activity isinvoked through a behavioral feature or directly, inputs to the invoked activity are

286 UML Superstructure 2.0 Draft Adopted Specification

supplied by an invocation action in the calling activity, which gets its inputs from incoming edges. Likewise an activity
invoked from another activity produces outputs that are delivered to an invocation action, which passes them onto its outgoing
edges.

An activity execution represents an execution of the activity. An activity execution, as areflective object, can support
operations for managing execution, such as starting, stopping, aborting, and so on; attributes, such as how long the process has
been executing or how much it costs; and links to objects, such asthe performer of the execution, who to report completion to,
or resources being used, and states of execution such as started, suspended, and so on. Used this way activity is the modeling
basisfor the WfProcessinterface in the OMG Workflow Management Facility, www.omg.org/cgi-bin/doc?ormal/00-05-02. It
is expected that profiles will include class libraries with standard classes that are used as root classes for activities in the user
model. Vendors may define their own libraries, or support user-defined features on activity classes.

Nodes and edges have token flow rules. Nodes control when tokens enter or |eave them. Edges have rules about when atoken
may be taken from the source node and moved to the target node. A token traverses an edge when it satisfies the rules for
target node, edge, and source node all at once. This means a source node can only offer tokens to the outgoing edges, rather
than force them along the edge, because the tokens may be rejected by the edge or the target node on the other side. Since
multiple edges can leave the same node, token flow semanticsis highly distributed and subject to timing issues and race
conditions, asis any distributed system. There is no specification of the order in which rules are applied on the various nodes
and edges in an activity. It is the responsibility of the modeler to ensure that timing issues do not affect system goals, or that
they are eliminated from the model. Execution profiles may tighten the rules to enforce various kinds of execution semantics.
Start at ActivityEdge and ActivityNode to see the token management rules.

Tokens cannot “rest” at control nodes, such as decisions and merges, waiting to moving downstream. Control nodes act as
traffic switches managing tokens as they make their way between object nodes and actions, which are the nodes where tokens
can rest for aperiod of time. Initial nodes are excepted from thisrule.

A datatoken with no value in is called the null token. It can be passed along and used like any other token. For example, an
action can output a null token and a downstream decision point can test for it and branch accordingly. Null tokens satisfy the
type of all object nodes.

The semantics of activitiesis specified in terms of these token rules, but only for the purpose of describing the expected
runtime behavior. Token semanticsis not intended to dictate the way activities are implemented, despite the use of the term
“execution”. They only define the sequence and conditions for behaviors to start and stop. Token rules may be optimized in
particular cases as long as the effect is the same.

(IntermediateActivities) Activities can have multiple tokens flowing in them at any onetime, if required. Special nodes called
object nodes provide and accept objects and data as they flow in and out of invoked behaviors, and may act as buffers,
collecting tokens as they wait to move downstream.

(CompleteActivities) Each time an activity isinvoked, the isSingleExecution attribute indicates whether the same execution of
the activity handles tokens for all invocations, or a separate execution of the activity is created for each invocation. For
example, an activity that models a manufacturing plant might have a parameter for an order to fill. Each time the activity is
invoked, a new order enters the flow. Since there is only one plant, one execution of the activity handles all orders. If asingle
execution of the activity is used for all invocations, the modeler must consider the interactions between the multiple streams of
tokens moving through the nodes and edges. Tokens may reach bottlenecks waiting for other tokens ahead of them to move
downstream, they may overtake each other due to variations in the execution time of invoked behaviors, and most importantly,
may abort each other with constructs such as activity final.

If a separate execution of the activity is used for each invocation, tokens from the various invocations do not interact. For
example, an activity with a context classifier, but that is not a method, is invoked when the classifier isinstantiated, and the
modeler will usually want a separate execution of the activity for each instance of the classifier. A new activity execution for
each invocation reduces token interaction, but might not eliminate it. For example, an activity may have aloop creating tokens
to be handled by the rest of the activity, or an unsynchronized flow that is aborted by an activity final. In these cases, modelers
must consider the same token interaction issues as using a single activity execution for all invocations. Also see the effect of

UML Superstructure 2.0 Draft Adopted Specification 287

non-reentrant behaviors described at “ Action”. Except in CompleteActivities, each invocation of an activity is executed
separately; tokens from different invocations do not interact.

Nodes and edges inherited from more general activities can be replaced. See RedefinableElement for more information on
overriding inherited elements.

(IntermediateActivities) If asingle execution of the activity is used for al invocations, the modeler must consider additional
interactions between tokens. Tokens may reach bottlenecks waiting for tokens ahead of them to move downstream, they may
overtake each other due to the ordering algorithm used in object node buffers, or due to variations in the execution time of
invoked behaviors, and most importantly, may abort each other with constructs such as activity final, exception outputs, and
interruptible regions.

(CompleteActivities) Complete activities add functionality that also increases interaction. For example, streaming outputs
create tokens to be handled by the rest of the activity. In these cases, modelers must consider the same token interaction issues
even when using a separate execution of activity execution for all invocations.

(CompleteActivities) Interruptible activity regions are groups of nodes within which all execution can be terminated if an
interruptible activity edgeis traversed leaving the region.

See “ActivityNode” and “ActivityEdge” for more information on the way activities function. An activity with no nodes and
edges is well-formed, but unspecified. It may be used as an aternative to a generic behavior in activity modeling. See
“ActivityPartition” for more information on grouping mechanismsin activities.

Semantic Variation Points

No specific variations in token management are defined, but extensions may add new types of tokens that have their own flow
rules. For example, aBPEL extension might define a failure token that flows along edges that reject other tokens. Or an
extension for systems engineering might define anew control token that terminates executing actions.

Notation
Use of action and activity notation is optional. A textual notation may be used instead.

The notation for an activity is a combination of the notations of the nodes and edgesit contains, plus a border and name
displayed in the upper left corner. Activity parameter nodes are displayed on the border. Actions and flows that are contained
in the activity are also depicted.

Pre- and postcondition constraints, inherited from Behavior, are shown as with the keywords «precondition» and
«postcondition», respectively. These apply globally to all uses of the activity. See Figure 201 and Behavior in Common
Behavior. Compare to local pre- and postconditions on Action.

(CompleteActivities) The keyword «singleExecution» is used for activities that execute as a single shared execution.
Otherwise, each invocation executes in its space. See the notation sections of the various kinds of nodes and edges for more
information.

288 UML Superstructure 2.0 Draft Adopted Specification

activity name «precondition» constraint I
parameter name: Type «postconditions» constraint

e)

Figure 201 - Activity notation

The notation for classes can be used for diagramming the features of a reflective activity as shown below, with the keyword
“activity” toindicateit isan activity class. Association and state machine notation can also be used as necessary.

«activity»
Activity Name

attribute : type
attribute : type

operation (parameters)
operation (parameters)

Figure 202 - Activity class notation

Presentation OptionExamples

The definition of Process Order below uses the border notation to indicate that it is an activity. It has pre and post conditions

UML Superstructure 2.0 Draft Adopted Specification 289

on the order (see Behavior). All invocations of it use the same execution.

[Process Order «precondition» Order complete .)
Requested Order: Order «postcondition» Order closed «singleCopy»
[order
rejected)]
Requested . Receive
Order Order
Invoice
Invoice /
\\ J

Figure 203 - Example of an activity with input parameter

The diagram below is based on a standard part selection workflow within an airline design process in section 6.1.1.2 of the
Workflow Process Definition RFP, bom/2000-12-11. Notice that the Standards Engineer insures that the substepsin Provide
Required Part are performed in the order specified and under the conditions specified, but doesn't necessarily perform the
steps. Some of them are performed by the Design Engineer even though the Standards Engineer is managing the process. The
Expert Part Search behavior can result in a part found or not. When a part is not found, it is assigned to the Assign Standards
Engineer activity. Lastly, Specify Part Mod Workflow invocation produces entire activities and they are passed to subsequent
invocations for scheduling and execution (i.e. Schedule Pat Mod Workflow, Execute Part Mod Workflow, and Research
Production Possibility). In other words, behaviors can produce tokens that are activities that can in turn be executed; in short,

290 UML Superstructure 2.0 Draft Adopted Specification

runtime activity generation and execution.

[partn
found]

Assign
Standards
Engineer
ot

Requirement

Review

(. N
Design Part
[part
ID Part Sandard found] Use
Design Requirement Part Searc Part
Engineer [part not
found]
t id
Engineer Required
Part s O
\ S
[Provide Required Part Standards Design)
Engineer Engineer
\[Q Clarify
equirement;
[stream] [stream]

Review
Schedule

X [cancel]

o @

[Provide

addt’| part
mod info

J

Figure 204 - Workflow based on example from the Workflow Process Definition RFP

The diagram below is based on atrouble-ticket activity defined in section 6.1.1.3 of the Workflow Process Definition RFP,

UML Superstructure 2.0 Draft Adopted Specification

291

bom/2000-12-11.

4 -
Trouble Ticket)
[problem statement rectified)]
[cannot
reproduce
problem
s Correct <
[not recorded)] [elsg]
known
[can oblem
reproduce
problem]
Communicatd
Results
Audit and
Record
[problem not solved]
\ J

Figure 205 - Workflow based on example from the Workflow Process Definition RFP.

Below isan example of using class notation to show the class features of an activity. Associations and state machines can also
be shown.

«activity»
Fill Order

costSoFar : USD
timeToComplete : Integer

suspend ()
resume ()

Figure 206 - Activity class with attributes and operations

Rationale

Activities are introduced to flow models that coordinate other behaviors, including other flow models. It supports class
featuresto model control and monitoring of executing processes, and relating them to other objects, for examplein an
organization model.

Changes from previous UML

Activity replaces ActivityGraph in UML 1.5. Activities are redesigned to use a Petri-like semantics instead of state machines.
Among other benefits, this widens the number of flows that can be modeled, especially those that have parallel flows. Activity
also replaces proceduresin UML 1.5, aswell as the other control and sequencing aspects, including composite and collection
actions.

292 UML Superstructure 2.0 Draft Adopted Specification

12.3.3 ActivityEdge
An activity edgeis an abstract class for directed connections between two activity nodes.

Description

ActivityEdge is an abstract class for the connections along which tokens flow between activity nodes. It covers control and
data flow edges.

Description (CompleteActivities)

Edges support controlling token flow and be contained in interruptible regions.

Associations (BasicActivities)
e activity : Activity[0..1] Activity containing the edge.

* inGroup : ActivityGroup[0..*] Groups containing the edge. Multiplicity specialized to [0..1] for StructuredActivity-
Group.

e guard: VaueSpecification [1..1] = trueSpecification evaluated at runtime to determine if the edge can be traversed.
< redefinedElement: ActivityEdge [0..*]Inherited edges replaced by this edge in a specialization of the activity.
e sourceActivityNode[1..1] Node from which tokens are taken when they traverse the edge.

e target: ActivityNode[1..1] Node to which tokens are put when they traverse the edge.

Associations (IntermediateActivities)

e inPartition : Partition [0..*] Partitions containing the edge.

Associations (StructuredActivities)

e inStructuredNode : StructuredActivityNode [0..1] Structured activity node containing the edge.

Associations (CompleteActivities)
« interruptibleRegion : InterruptibleActivityRegion [0..1]Region that the edge can interrupt.

e weight : ValueSpecification [1..1] = INumber of objects consumed from the source node on each traversal.

Constraints

[1] The source and target of an edge must be in the same activity as the edge.

[2] Activity edges may be owned only by activities or groups.

Semantics

Activity edges are directed connections, that is, they have a source and a target, along which tokens may flow.

Other rules for when tokens may be passed along the edge depend the kind of edge and characteristics of its source and target.
See the children of ActivityEdge and ActivityNode. The rules may be optimized to adifferent algorithm aslong asthe effect is
the same.

Semantics (IntermediateActivities)

The guard must evaluate to true for every token that is offered to pass along the edge. Tokensin the intermediate level of

UML Superstructure 2.0 Draft Adopted Specification 293

activities can only pass along the edge individually at different times. See application of guards at DecisionNode.

Semantics (CompleteActivities)

Any number of tokens can pass along the edge, in groups at one time, or individually at different times. The weight attribute
dictates the minimum number of tokens that must traverse the edge at the sametime. It is avalue specification evaluated every
time a new token becomes available at the source. It must evaluate to a positive integer or null, and may be a constant, that is,
aLiterallnteger or aLiteralNull. When the minimum number of tokens are offered, all the tokens at the source are offered to
the target all at once. The guard must evaluate to true for each token. If the guard fails for any of the tokens, and this reduces
the number of tokens that can be offered to the target to less than the weight, then all the tokens fail to be offered. A null
weight means that all the tokens at the source are offerred to the target. This can be combined with ajoin to take al of the
tokens at the source when certain conditions hold. See examplesin Figure 210. A weaker but simpler alternative to weight is
grouping information into larger objects so that asingle token carries all necessary data. See additional functionality for guards
at DecisionNode.

Other rules for when tokens may be passed along the edge depend the kind of edge and characteristics of its source and target.
Seethe children of ActivityEdge and ActivityNode. The rules may be optimized to a different algorithm aslong as the effect is
the same. For example, if the target is an object node that has reached its upper bound, no token can be passed. The
implementation can omit unnecessary weight evaluations until the downstream object node can accept tokens.

Edges can be named, by inheritance from RedefinableElement, which is a NamedElement. However, edges are not required to
have unique names within an activity. The fact that Activity is a Namespace, inherited through Behavior, does not affect this,
because the containment of edgesis through ownedElement, the general ownership metaassociation for Element that does not
imply unique names, rather than ownedMember.

Edges inherited from more general activities can be replaced. See Redefinabl eElement for more information on overriding
inherited elements.

Semantic Variation Points

See variations at children of ActivityEdge and ActivityNode.

Notation

An activity edgeis notated by a stick-arrowhead line connecting two activity nodes. If the edge has a name it is hotated near
the arrow.

name
_—

Regular activity edge Activity edge with name

Figure 207 - Activity edge notation

An activity edge can also be notated using a connector, which isasmall circle with the name of the edge init. The circles and
lines involved map to a single activity edge in the model. Every connector with a given label must be paired with exactly one
other with the same label on the same activity diagram. One connector must have exactly one incoming edge and the other
exactly one outgoing edge, each with the same type of flow, object or control. This assumes the UML 2.0 Diagram

294 UML Superstructure 2.0 Draft Adopted Specification

Interchange RFP supports the interchange of diagram elements and their mapping to model elements.

é@ % (where, n is connector name)

Figure 208 - Activity edge connector notation

Notation (CompleteActivities)

The weight of the edge many be shown in curly braces that contain the weight. The weight is a value specification that isa
positive integer, which may be a constant. When regions have interruptions, a lightning-bolt style activity edge expresses this
interruption, see InterruptibleActivityRegion. See Pin for filled arrowhead notation.

{weight=n}
{weight=null} .)))
Activity edge for interruptible regions
With edge weight

(where niis a value specification)

Figure 209 - Activity edge notation

Examples (BasicActivities)

In the exampleillustrated below, the arrowed line connecting Fill Order to Ship Order is acontrol flow edge. This means that
when the Fill Order behavior is completed, control is passed to the Ship Order. Below it, the same control flow is shown with
an edge name. The one at the bottom left employs connectors, instead of a continuous line. On the upper right, the arrowed
lines starting from Send Invoice and ending at Make Payment (via the Invoice object node) are object flow edges. This
indicates that the flow of Invoice objects goes from Send Invoice to Make Payment.

UML Superstructure 2.0 Draft Adopted Specification 295

Order Order
Send Make
Invoice
Fill Filled Ship
Order Order Invoice

Fill Ship is equi Fill Ship
e ° IS eqUIvaI ent to Order Order

Figure 210 - Activity edge examples

In the example below, a connector is used to avoid drawing along edge around one tine of the fork. If a problem is not priority
one, the token going to the connector is sent to the merge instead of the one that would arrive from Revise Plan for priority one
problems. Thisis equivalent to the activity shown in Figure 212, whichishow Figure 211 is stored in the model.

Figure 211 - Connector example

296 UML Superstructure 2.0 Draft Adopted Specification

[priority=1]

Register
Problem
Fix
Problem

Examples (CompleteActivities)

Test
Fix

Figure 212 - Equivalent model to Figure 211

Release
Fix

Thefigure below illustrates three examples of using the weight attribute. The Cricket example uses a constant weight to
indicate that a cricket team cannot be formed until eleven players are present. The Task example uses a non-constant weight to
indicate that an invoice for a particular job can only be sent when all of its tasks have been completed. The proposal example
depictsan activity for placing bidsfor a proposal, where many such bids can be placed. Then, when the bidding period is over,
the Award Proposal Bid activity reads all the bids as a single set and determines which vendor to award the bid.

{weight=11}
) Form
glrlckd ——| Cricket
e Team
Ready
to award
bid
Bid Bidsfor
arrives Proposal

{weight=no_of job tasks}

Task
[completed]

{weight=all}

Figure 213 - Activity edge examples

Rationale

Send
Job
Invoice

Award
Bid

Activity edges are introduced to provide a general class for connections between activity nodes.

UML Superstructure 2.0 Draft Adopted Specification

297

Changes from previous UML

ActivityEdge replaces the use of (state) Transition in UML 1.5 activity modeling. It aso replaces data flow and control flow
linksin UML 1.5 action model.

12.3.4 ActivityFinalNode

An activity final node is afinal node that stops all flowsin an activity.

Description

An activity may have more than one activity final node. The first one reached stops all flows in the activity.

Attributes

None.

Associations

None.

Stereotypes

None.

Tagged Values

None.

Constraints

None.

Semantics

A token reaching an activity final node aborts all flows in the containing activity, that is the activity is terminated, and the
token is destroyed. All tokens offered on the incoming edges are accepted. Any object nodes declared as outputs are passed
out of the containing activity. If there is more than one final nodein an activity, the first one reached terminates the activity,
including the flow going towards the other activity final.

If it is not desired to abort all flowsin the activity, use flow final instead. For example, if the same execution of an activity is
being used for al itsinvocations, then multiple streams of tokenswill be flowing through the same activity. In this case, it is
probably not desired to abort all tokens just because one reaches an activity final. Using a flow final will simply consume the
tokens reaching it without aborting other flows. Or arrange for separate invocations of the activity to use separate executions
of the activity, so tokens from separate invocations will not affect each other.

Semantic Variation Points

None.

Notation

Activity final nodes are notated as a solid circle with ahollow circle, asindicated in the figure below. It can be thought of asa

298 UML Superstructure 2.0 Draft Adopted Specification

goal notated as “bull’s eye,” or target.

®

Figure 214 - Activity final notation
Presentation Option
Style Guidelines

Examples

Thefirst example below depicts that when the Close Order behavior is completed, all tokens in the activity are terminated.
Thisisindicated by passing control to an activity fina node.

Cl
ax

Figure 215 - Activity final example
The next figure is based on an example for an employee expense reimbursement processin section 6.1.1.1 of the Workflow

Process Definition RFP, bom/2000-12-11. It uses an activity diagram that illustrates two parallel flowsracing to complete. The
first one to reach the activity final aborts the others. The two flows appear in the same activity so they can share data, for

UML Superstructure 2.0 Draft Adopted Specification 299

example who to notify in the case of no action.

[decision = reject] Notif

j y
> ; —

Reject Reject

[amount >= 200] Submit for

Approva >
Service
.

[decision = accept] (Approval ’ >@

Auto
= A
[amount < 200] Pprove
No action Notify 5 Cancel Cancel
= Transactio Service

Figure 216 - Activity final example based on example from the
Workflow Process Definition RFP.

Thelast figure is based on the second example in section 6.1.1.4 of the Workflow Process Definition RFP, bom/2000-12-11.
Here, two waysto reach an activity final exist; but it is result of exclusive “or” branching, not a“race” situation like the
previous example. This example uses two activity final nodes, which has the same semantics as using one with two edges
targeting it. The Notify of Modification behavior must not take long or the activity finals might kill it.

Notify of
Modificatiol

[decision = modify]
Publish
Proposal

[decision = accept]

Notify of
Rejection O

[decision = rgject]

Figure 217 - Activity final example based on an example from the
Workflow Process Definition RFP.

Rationale

Activity final nodes are introduced to model non-local termination of al flowsin an activity.

300 UML Superstructure 2.0 Draft Adopted Specification

Changes from previous UML

ActivityFinal isnew in UML 2.0.
12.3.5 ActivityGroup

(IntermediateActivities) An activity group is an abstract class that for defining sets of nodes and edgesin an activity.

Description

Activity groups are a generic grouping construct for nodes and edges. Nodes and edges can belong to more than group. They
have no inherent semantics and can be used for various purposes. Subclasses of ActivityGroup may add semantics.

Attributes

None.

Associations

e activity : Activity [0..1] Activity containing the group.

e edgeContents : ActivityEdge [0..*] Edges immediately contained in the group.
* nodeContents : ActivityNode[0..*] Nodesimmediately contained in the group.
e /superGroup : ActivityGroup [0..1] Group immediately containing the group.

e /subgroup : ActivityGroup [0..*] Groups immediately contained in the group.
Constraints

[1] All nodes and edges of the group must be in the same activity as the group.

[2] Nonode or edgein agroup may be contained by its subgroups or its containing groups, transitively.
[3] Groups may only be owned by activities or groups.

Semantics

None.

Notation

None.

Examples

None.

Rationale

Activity groups provide a generic grouping mechanism that can be used for various purposes, as defined in the subclasses of
ActivityGroup, and in extensions and profiles.

Changes from previous UML

ActivityGroups are new in UML 2.0.

UML Superstructure 2.0 Draft Adopted Specification 301

12.3.6 ActivityNode
An activity node is an abstract class for pointsin the flow of an activity connected by edges.

Description
An activity node is an abstract class for the steps of an activity. It covers invocation nodes, control nodes, and object nodes.

Nodes can be replaced in generalization and (CompleteActivities) be contained in interruptible regions.

Attributes (CompleteStructuredActivities)

* mustlsolate : Boolean If true, then the actions in the node execute in isolation from actions outside the node.

Associations (BasicActivities)

e activity : Activity[0..1] Activity containing the node.
e inGroup: Group [0..*] Groups containing the node. Multiplicity specialized to [0..1] for StructuredActivity-
Group.

« incoming : ActivityEdge [0..*] Edges that have the node as target.
e outgoing ActivityEdge [0..*] Edgesthat have the node as source.
e redefinedElement : ActivityNode [0..*]Inherited nodes replaced by this node in a specialization of the activity.

Associations (IntermediateActivities)

e inPartition : Partition [0..*] Partitions containing the node.

Associations (StructuredActivities)

« inStructuredNode : StructuredActivityNode [0..1]Structured activity node containing the node.

Associations

« interruptibleRegion : InterruptibleActivityRegion [0..*] Interruptible regions containing the node.

Constraints

[1] Activity nodes can only be owned by activities or groups.

Semantics

Nodes can be named, however, nodes are not required to have unique names within an activity to support multipleinvocations
of the same behavior or multiple uses of the same action. See Action, which isakind of node. The fact that Activity isa
Namespace, inherited through Behavior, does not affect this, because the containment of nodes is through ownedElement, the
general ownership metaassociation for Element that does not imply unique names, rather than ownedM ember. Other than
naming, and functionality added by the complete version of activities, an activity nodeisonly apoint in an activity at thislevel
of abstraction. See the children of ActivityNode for additional semantics.

Nodes inherited from more general activities can be replaced. See RedefinableElement for more information on overriding
inherited elements, and Activity for more information on activity generalization. See children of ActivityNode for additional
semantics.

(CompleteStructuredActivities) If the mustisolate flag istrue for an activity node, then any access to an object by an action
within the node must not conflict with access to the object by an action outside the node. A conflict is defined as an attempt to

302 UML Superstructure 2.0 Draft Adopted Specification

write to the object by one or both of the actions. If such a conflict potentially exists, then no such access by an action outside
the node may be interleaved with the execution of any action inside the node. This specification does not constrain the waysin
which this rule may be enforced. If it isimpossible to execute a model in accordance with these rules, then it isill formed.

Notation

The notations for activity nodes areillustrated below. There are a three kinds of nodes: action node, object node, and control
node. See these classes for more information.

)] o). oo

Action node Object node —— Control nodes -

Figure 218 - Activity node notation

Examples

This figure illustrates the following kinds of activity node: action nodes (e.g., Receive Order, Fill Order), object nodes
(Invoice), and control nodes (the initial node before Receive Order, the decision node after Receive Order, and the fork
node and Join node around Ship Order, merge node before Close Order, and activity final after Close Order).

[order
rejected)]

Ship Close
Order Order

accepted]

Send
Invoice

Invoice

Figure 219 - Activity node example (where the arrowed lines are only the non-activity node
symbols)

Rationale

Activity nodes are introduced to provide a general class for nodes connected by activity edges.

UML Superstructure 2.0 Draft Adopted Specification 303

Changes from previous UML

ActivityNode replaces the use of StateVertex and its children for activity modeling in UML 1.5.
12.3.7 ActivityParameterNode

An activity parameter node is an object node for inputs and outputs to activities.

Description

Activity parameters are object nodes at the beginning and end of flows, to accept inputsto an activity and provide outputs from
it.

(CompleteActivities) Activity parameters inherit support for streaming and exceptions from Parameter.

Attributes

None.

Associations

e parameter : Parameter The parameter the object node will be accepting and providing values for.

Constraints

[1] Activity parameter nodes must have parameters from the containing activity.

[2] Thetype of an activity parameter node is the same as the type of its parameter.

[3] Activity parameter nodes must have either no incoming edges or no outgoing edges.

[4] Activity parameter object nodes with no incoming edges and one or more outgoing edges must have a parameter with in
or inout direction.

[5] Activity parameter object nodes with no outgoing edges and one or more incoming edges must have a parameter with in,
inout, or return direction.

See Activity.

Semantics

When an activity in invoked, the inputs values are placed as tokens on the input activity parameter nodes, those with no
incoming edges. Outputs of the activity must flow to output activity parameter nodes, those with no outgoing edges. See
semantics at ObjectNode, Action, and ActivityParameterNode.

304 UML Superstructure 2.0 Draft Adopted Specification

Notation

Also see notation at Activity.

Activity name)
Parameter name: type

Figure 220 - Activity notation

(CompleteActivities) The figure below shows annotations for streaming and exception activity parameters, which are same as
for pins. See Parameter for semantics of stream and exception parameters.

Activity name)
{stream} Parameter name: type

e)

Figure 221 - Activity notation

Presentation Option

(CompleteActivities) See presentation option for Pin when parameter is streaming. This can be used for activity parameters
also.

Examples

In the example below, production materials are fed into printed circuit board. At the end of the activity, computers are quality

UML Superstructure 2.0 Draft Adopted Specification 305

checked.

(Rejected

Computers
Production . Pre%d‘c’:‘?e . Assemble Test
Materials Printed-Circuit Computers Computers |
Boards
Accepted
%: ?(t:ﬁﬂ A bled Computers
Boards Computers J

Figure 222 - Example of activity parameters.nodes

(CompleteActivities) In the example bel ow, production materials are streaming in to feed the ongoing printed circuit board
fabrication. At the end of the activity, computers are quality checked. Computers that do not pass the test are exceptions. See
Parameter for semantics of streaming and exception parameters.

VAN
{stream} A | Rejected
Computers
Production . Precadgc_:e . Assemble Test
Materials Printed-Circuit Computers Computers |
Boards
Accepted
%: ?éﬁlljt_ Assembled Computers
Boards Computers J
Figure 223 - Example of activity parameter nodes for streaming and exceptions
Rationale

Activity parameter nodes are introduced to model parameters of activitiesin way that integrates easily with the rest of the flow
model.

Changes from previous UML

ActivityParameterNode is new in UML 2.0.

306 UML Superstructure 2.0 Draft Adopted Specification

12.3.8 ActivityPartition

(IntermediateActivities) An activity partition isakind of activity group for identifying actions that have some characteristic in
common.

Description

Partitions divide the nodes and edges to constrain and show a view of the contained nodes. Partitions can share contents. They
often correspond to organizational unitsin a business model. They may be used to allocate characteristics or resources among
the nodes of an activity.

Attributes

< isDimension : Boolean [1..1] = falseTells whether the partition groups other partitions along a dimension.

e isExterna : Boolean [1..1] = falseTells whether the partition represents an entity to which the partitioning structure does
not apply.

Associations

e partition : ActivityPartition [0..1] Partition immediately containing the partition. Specialized from Activity-
Group::group.

e represents: Element [0..1] An element constraining behaviors invoked by nodes in the partition.

e superPartition : ActivityPartition [0..1] Partitionsimmediately containing the partition. Specialized from Activity-
Group::subgroup.

e activity : Activity [0..1] The activity containing the partition. Specialized from ActivityGroup.

Constraints
[1] A partition with isDimension = true may not be contained by another partition.
[2] Nonode or edge of a partition may be in another partition in the same dimension.

[3] If apartition represents a part, then all the non-external partitions in the same dimension and at the same level of nesting
in that dimension must represent parts directly contained in the internal structure of the same classifier.

[4] If anon-external partition represents a classifier and is contained in another partition, then the containing partition must
represent a classifier, and the classifier of the subpartition must be nested in the classifier represented by the containing
partition, or be at the contained end of a strong composition association with the classifier represented by the containing
partition.

[5] If apartition represents apart and is contained by another partition, then the part must be of a classifier represented by the
containing partition, or of a classifier that is the type of a part representing the containing partition.

Semantics

Partitions do not affect the token flow of the model. They constrain and provide a view on the behaviorsinvoked in activities.
Congtraints vary according to the type of element that the partition represents. The following constraints are normative:

1) Classifier

Behaviors of invocations contained by the partition are the responsibility of instances of the classifier represented by the
partition. This means the context of invoked behaviorsisthe classifier. Invoked procedures containing a call to an operation or
sending a signal must target objects at runtime that are instances of the classifier.

UML Superstructure 2.0 Draft Adopted Specification 307

2) Instance
This imposes the same constraints as classifier, but restricted to a particular instance of the classifier.
3) Part

Behaviors of invocations contained by the partition are the responsibility of instances playing the part represented by the
partition. Thisimposes the constraints for classifiers above according to the type of the part. In addition, invoked procedures
containing acall to an operation or sending a signal must target objects at runtime that play the part at the time the message is
sent. Just as partitions in the same dimension and nesting must be represented by parts of the same classifier’s internal
structure, all the runtime target objects of operation and signal passing invoked by the same execution of the activity must play
parts of the sameinstance of the structured classifier. In particular, if an activity is executed in the context of a particular object
at runtime, the parts of that object will be used as targets. If a part has more than one object playing it at runtime, the
invocations are treated as if they were multiple, that is, the calls are sent in parallel, and the invocation does not compl ete until
al the operations return.

4) Attribute and Value

A partition may be represented by an attribute and its subpartitions by values of that attribute. Behaviors of invocations
contained by the subpartition have this attribute and the value represented by the subpartition. For example, a partition may
represent the location at which abehavior is carried out, and the subpartitions would represent specific values for that attribute,
such as Chicago. The location attribute could be on the process class associated with an activity, or added in a profile to extend
behaviors with these attributes.

A partition may be marked as being a dimension for its subpartitions. For example, an activity may be have one dimension of
partitions for location at which the contained behaviors are carried out, and another for the cost of performing them.
Dimension partitions cannot be contained in any other partition.

Partitions may be used in away that provides enough information for review by high-level modelers, though not enough for
execution. For example, if a partition represents a classifier, then behaviorsin that partition are the responsibility of instances
of the classifier, but the model may or may not say which instance in particular. In particular, abehavior in the partition calling
an operation would be limited to an operation on that classifier, but an input object flow to the invocation might not be
specified to tell which instance should be the target at runtime. The object flow could be specified in alater stage of
development to support execution. Another option would be to use partitions that represent parts. Then when the activity
executes in the context of a particular object, the parts of that object at runtime will be used as targets for the operation calls, as
described above.

External partitions are intentional exceptionsto the rulesfor partition structure. For example, a dimension may have partitions
showing parts of a structured classifier. It can have an external partition that does not represent one of the parts, but a
completely separate classifier. In business modeling, externa partitions can be used to model entities outside a business.

Notation

Activity partition may beindicated with two, usually parallel lines, either horizontal or vertical, and a name labeling the
partition in abox at one end. Any activity nodes and edges placed between these lines are considered to be contained within
the partition. Swimlanes can express hierarchical partitioning by representing the children in the hierarchy as further
partitioning of the parent partition, asillustrated in b), below. Diagrams can also be partitioned multidimensionaly, as
depicted in c), below, where, each swim cell is an intersection of multiple partitions. The specification for each dimension

308 UML Superstructure 2.0 Draft Adopted Specification

(e.g., part, attribute) is expressed in next to the appropriate partition set.

® Dimension name
5
= Partition Partition
2 Name-3 Name-4
a) Partition using a swimlane notation o 18%
E|5S
s &
w b= 4]
% Q @ 4] 8
a 1 —
= 5§28 3 5%
sl 2132 =25
21 § gz
gl = |<
1€ 12
] I 1 - o
2E ¢) Partition using a multidimensional
3Z hierarchical swimlane notation

b) Partition using a hierarchical swimlane notation

Figure 224 - Activity partition notations

In some diagramming situations, using parallel linesto delineate partitionsis not practical. An alternateisto place the partition
name in parenthesis above the activity name, asillustrated for actionsin a), below. A comma-delimited list of partition names
means that the node is contained in more than one partition. A double colon within a partition name indicates that the partition
isnested, with the larger partitions coming earlier in the name. When activities are considered to occur outside the domain of a
particular model, the partition can be label with the keyword «external», as illustrated in b) below. Whenever an activity in a

swimlane is marked «external», this overrides the swimlane and dimension designation.

(" (Partition Name) ") «external»
action Partition Name
_ J
«external»
/~ (Namel, Name2) (PartitionName)
action action
\ J
/~ (Name::Subname) "\
action
_ Y, b) Partition notated to occur outside

a) Partition notated on a specific activity the primary concern of the model.

Figure 225 - Activity partition notations

Presentation Option

When partitions are combined with the frame notation for Activity, the outside edges of the top level partition can be merged
with the activity frame.

Examples

Thefigures below illustrate an example of partitioning the order processing activity diagram into “swim lanes.” The top

UML Superstructure 2.0 Draft Adopted Specification 309

partition contains the portion of an activity for which the Order Department is responsible; the middle partition, the
Accounting Department, and the bottom the Customer. These are attributes of the behavior invoked in the partitions, except

for Customer, which is external to the domain. The flow of the invoice is nhot a behavior, so it does not need to appear in a
partition.

g |3
£ | g
a +|
5 | - - . .
Receive Fill Ship ose
2 q | Order ’ oder =L Order = ‘ Order
g‘ -ét’ [order X
g’ O accepted] O
£
=]
AE
A @
%3 & Send Accept
a]o i
2 14 Invoice Payment
Invoice
z|2 \
|z
<18 Make Payment
910

Figure 226 - Activity partition using swimlane example

(Order
Department) (Order
O—=| Fill Order Department)
[order Close Order
accepted]

«external »

(Customer)
Make

(Accounting
Department)

Invoice

Figure 227 - Activity partition using annotation example

310 UML Superstructure 2.0 Draft Adopted Specification

The example below depicts multidimensional swim lanes. The Receive Order and Fill Order behaviors are performed by an
instance of the Order Processor class, situated in Seattle, but not necessarily the same instance for both behaviors. Even though
the Make Payment is contain with in the Seattle/Accounting Clerk swim cell, it's performer and location are not specified by
the containing partition, because it has an overriding partition.

«attribute» performingL ocation:Location

Seattle Reno

% S i i i Close
85 Receive Fill Ship
h .9 oder = Order =~ Order

g [order

accepted]

®
A0 «external»
gg’ Send (Customer) [| Accept
S= Invoice Make Payment Payment

< Invoice

Figure 228 - Activity partition using multidimensional swimlane example

Rationale

Activity partitions are introduced to support the assignment of domain-specific information to nodes and edges.

Changes from previous UML

Edges can be contained in partitionsin UML 2.0. Additional notation is provided for cases when swimlanes are too
cumbersome. Partitions can be hierarchical and multidimensional. The relation to classifier, parts, and attributesis formalized,
including external partitions as exceptions to these rules.

12.3.9 CentralBufferNode

A central buffer node is a object node for managing flows from multiple sources and destinations.

Description

A central buffer node accepts tokens from upstream objects nodes and passes them along to downstream object nodes. They
act as a buffer for multiple in flows and out flows from other object nodes. They do not connect directly to actions.

Attributes

None.

UML Superstructure 2.0 Draft Adopted Specification 311

Associations

None.

Semantics

See semantics at ObjectNode. All object hodes have buffer functionality, but central buffers differ in that they are not tied to
an action as pins are, or to an activity as activity parameter nodes are. See example below.

Notation

See notation at ObjectNode. A central buffer may also have the keyword «central Buffer» as shown below. Thisis useful when
it needs to be distinguished from the standalone notation for pins shown on the left of Figure 280 and the top left of Figure 286.

«central Buffers

Figure 229 - Optional central buffer notation

Examples

In the example below, the behaviors for making parts at two factories produce finished parts. The central buffer node collects
the parts, and behaviors after it in the flow use them as needed. All the parts that are not used will be packed as spares, because
each token can only be drawn from the object node by one outgoing edge.

Part
[Finished]

«central Buffer»
Part
[Finished]

Part [Finished]

[Finished]
Figure 230 - Central buffer node example

Rationale

Central buffer nodes give additional support for queuing and competition between flowing objects.

Changes from previous UML

CentralBufferNode is new in UML 2.0.

312 UML Superstructure 2.0 Draft Adopted Specification

12.3.10 Clause

A clauseis an element that represents a single branch of a conditional construct, including atest and a body section. The body
section is executed only if (but not necessarily if) the test section evaluates true.
Attributes

none

Associations (StructuredActivities)
e test: ActivityNode [0..*] A nested activity fragment with a designated output pin that specifies the result of the test.

e body : ActivityNode [0..*] A nested activity fragment that is executed if the test evaluates to true and the clause is
chosen over any concurrent clauses that also evaluate to true.

e predecessorClause : Clause[*] A set of clauses whose tests must all evaluate false before the current clause can be tested.

e successorClause : Clause[*] A set of clauses which may not be tested unless the current clause tests fal se.

e decider : OutputPin [1] An output pin within the test fragment the value of which is examined after execution of
the test to determine whether the body shoud be executed.

Associations ((CompleteStructuredActivities))

* bodyOutput : OutputPin [0..*] A list of output pinswithin the body fragment whose val ues are copied to the result pins of
the containing conditional node or conditional node after execution of the clause body.

Semantics

The semantics are explained under “ ConditionalNode” .
12.3.11 ConditionalNode
A conditional nodeis a structured activity node that represents an exclusive choice among some number of alternatives.

Description

A conditional node consists of one or more clauses. Each clause consists of atest section and a body section. When the
conditional node begins execution, the test sections of the clauses are executed. If one or more test sectionsyield atrue value,
one of the corresponding body sections will be executed. If more than one test section yields a true value, only one body
section will be executed. The choice is nondeterministic unless the test sequence of clausesis specified. If no test section
yields atrue value, then no body section is executed; this may be a semantic error if output values are expected from the
conditional node.

In general, test section may be executed in any order, including ssimultaneoudly (if the underlying execution architecture
supportsit). The result may therefore be nondeterministic if more than one test section can be true concurrently. To enforce
ordering of evaluation, sequencing constraints may be specified among clauses. One frequent case is atotal ordering of
clauses, in which case the result is determinate. If it isimpossible for more than one test section to evaluate true
simultaneously, the result is deterministic and it is unnecessary to order the clauses, as ordering may impose undesirable and
unnecessary restrictions on implementation.Note that, although evaluation of test sections may be specified as concurrent, this
does not require that the implementation evaluate them in parallel; it merely means that the model does not impose any order
on evaluation.

An“else’ clauseisaclausethat is asuccessor to al other clausesin the conditional and whose test part aways returnstrue. A

UML Superstructure 2.0 Draft Adopted Specification 313

notational glossis provided for this frequent situation.

Output values created in the test or body section of a clause are potentially available for use outside the conditional. However,
any value used outside the conditional must be created in every clause, otherwise an undefined value would be accessed if a
clause not defining the value were executed.

Attributes (StructuredAdctivities)
¢ isAssured : Boolean If true, the modeler asserts that at least one test will succeed.

e isDeterminate: Boolean If true, the modeler asserts that at most one test will succeed concurrently and therefore
the choice of clauseis deterministic.

Associations (StructuredActivities)

e clause: Clause[1..*] Set of clauses composing the conditional.

Associations (CompleteStructuredActivities)

e result: OutputPin [0..*] A list of output pinsthat congtitute the data flow outputs of the conditional.

Constraints

None.

Semantics

No part of a conditional node is executed until al control-flow or data-flow predecessors of the conditional node have
completed execution. When all such predecessors have completed execution and made tokens available to inputs of the
conditional node, the conditional node captures the input tokens and begins execution.

The test section of any clause without a predecessorClauseis eligible for execution immediately. If atest section yieldsafase
value, a control token is delivered to all of its successorClauses. Any test section with a predecessorClauseis eligible for
execution when it receives control tokens from each of its predecessor clauses.

If atest section yields atrue value, then the corresponding body section is executed provided another test section does not also
yield atrue value. If more than one test section yields a true value, exactly one body section will be executed, but it is
indeterminate which one will be executed. When abody section is chosen for execution, the evaluation of all other test partsis
terminated (just like an interrupting edge). If some of the test parts have external effects, terminating them may be another
source of indeterminacy. Although test parts are permitted to produce side effects, avoiding side effectsin tests will greatly
reduce the chance of logical errors and race conditionsin amodel and in any code generated from it.

If no test section yields atrue value, the execution of the conditional node terminates with no outputs. This may be a semantic
error if asubsequent node requires an output from the conditional. It is safe if none of the clauses create outputs. If the
isAssured attribute of the conditional node has a true value, the modeler asserts that at least one true section will yield atrue
value. If the isDeterminate attribute has a true value, the modeler asserts that at most one true section will concurrently yield a
true value (the predecessor relationship may be used to enforce this assertion). Notethat it is, in general, impossible for a
computer system to verify these assertions, so they may provide useful information to a code generator, but if the assertions
are incorrect then incorrect code may be generated.

When a body section is chosen for execution, al of its nodes without predecessor flows within the conditional receive control
tokens and are enabled for execution. When execution of all nodes within the body section has completed, execution of the
conditional node is complete and its successors are enabl ed.

Within the body section, variables defined in the loop node or in some higher-level enclosing node may be accessed and
updated with new values. Vauesthat are used in a data flow manner must be created or updated in al clauses of the

314 UML Superstructure 2.0 Draft Adopted Specification

conditional, otherwise undefined values would be accessed.

Notation

Presentation Option

Style Guidelines

Mixing sequential and concurrent tests in one conditional may be confusing, although it is permitted.

Examples

Rationale

Conditional nodes are introduced to provide a structured way to represent decisions.

Changes from previous UML

Conditional nodes replace Conditional Action from the UML 1.5 action model.
12.3.12 ControlFlow

A control flow is an edge starts an activity node after the previous one s finished.

Description

Objects and data cannot pass along a control flow edge.

Attributes

None.

Associations

None.

Constraints

[1] Control flows may not have object nodes at either end.

Semantics

See semantics inherited from ActivityEdge. A control flow is an activity edge that only passes control tokens. Tokens offered

by the source node are al offered to the target node.

UML Superstructure 2.0 Draft Adopted Specification

315

Notation

A control flow is notated by an arrowed line connecting two actions.

-)~

Control flow Control flow edge linking
(without actions) two actions

Figure 231 - Control flow notation

Examples

The figure bel ow depicts an example of the Fill Order action passing control to the Ship Order action. The activity edge
between the two is a control flow which indicates that when Fill Order is completed, Ship Order isinvoked.

Fill Ship
Order Order

Figure 232 - Control flow example

Rationale

Control flow isintroduced to model the sequencing of behaviors that does not involve the flow of objects.

Changes from previous UML

Explicitly modeled control flows are new to activity modeling in UML 2.0. They replace the use of (state) Transitionin UML
1.5 activity modeling. They replace control flowsin UML 1.5 action model.

12.3.13 ControlNode
A control node is an abstract activity node that coordinates flowsin an activity.

Description

A control node is an activity node used to coordinate the flows between other nodes. It coversinitial node, final node and its
children, fork node, join node, decision node, and merge node.

Attributes

None.

Associations

None.

316 UML Superstructure 2.0 Draft Adopted Specification

Stereotypes

None.

Tagged Values

None.

Constraints

[1] The edges coming into and out of a control node must be either all object flows or all control flows.

Semantics

See semantics at Activity. See subclasses for the semantics of each kind of control node.

Semantic Variation Points

None.

Notation
The notations for control nodes are illustrated below: decision node, initial node, activity final, and flow final.

(IntermediateActivities) Fork node and join node are the same symbol, they have different semantics and are distinguished
notationally by the way edges are used with them. For more information, see ForkNode and JoinNode below.

0 | ¢ © ®

Decisonnode Fork node, join node Initial node Activity final Flow final

or Merge node ‘ Einal nodes - ‘

Figure 233 - Control node notations

Examples

Thefigure below contains exampl es of various kinds of control nodes. Aninitial node is depicted in the upper left astriggering
the Receive Order action. A decision node after Received Order illustrates branching based on order rejected or order accepted
conditions. Fill Order isfollowed by afork node which passes control both to Send Invoice and Ship Order. The join node
indicates that control will be passed to the merge when both Ship Order and A ccept Payment are completed. Since a merge
will just pass the token along, Close Order activity will beinvoked. (Control is also passed to Close Order whenever an order

UML Superstructure 2.0 Draft Adopted Specification 317

isrejected.) When Close Order is completed, control passes to an activity final.

[order
rejected)]

Ship Close
Order Order

accepted]

Send
Invoice

Invoice

Figure 234 - Control node examples (with accompanying actions and control flows)

Rationale

Control nodes are introduced to provide a general class for nodes that coordinate flowsin an activity.

Changes from previous UML

ControlNode replaces the use of PseudoState in UML 1.5 activity modeling.
12.3.14 DataStoreNode
A data store node is a central buffer node for non-transient information.

Description

A data store keeps all tokens that enter it, copying them when they are chosen to move downstream. Incoming tokens
containing a particular object replace any tokens in the object node containing that object.

Attributes

None.

Associations

None

Constraints

None.

Semantics

Tokens chosen to move downstream are copied so that tokens appear to never |eave the data store. If atoken containing an

318 UML Superstructure 2.0 Draft Adopted Specification

object is chosen to move into a data store, and there is atoken containing that object already in the data store, then the chosen
token replaces existing one. Selection and transformation behavior on outgoing edges can be designed to get information out
of the data store, asif a query were being performed. For example, the selection behavior can identify an object to retrieve and
the transformation behavior can get the value of an attribute on that object. Selection can also be designed to only succeed
when a downstream action has control passed to it, thereby implementing the pull semantics of earlier forms of data flow.

Notation

The data store notation is a special case of the object node notation, using the label «datastore».

«datastore»
name
[state]

Figure 235 - Data store node notation.
Presentation Option
Style Guidelines

Examples

Thefigure below is an example of using a data store node.

. «datastore» :
Hire {weight=all}
Employee Personnel
Employee
«selection» [\ ..---
employee. -
I

assignment = nu
Assign
Employee

Figure 236 - Data store node example

Once ayear

Rationale

Data stores are introduced to support earlier forms of data flow modeling in which datais persistent and used as needed, rather
than transient and used when available.

Changes from previous UML

Data stores are new in UML 2.0.
12.3.15 DecisionNode

A decision node is a control node that chooses between outgoing flows.

UML Superstructure 2.0 Draft Adopted Specification 319

Description

A decision node has one incoming edge and multiple outgoing activity edges.

Attributes

None.

Associations

* decisioninput : Behavior [0..1] Provides input to guard specifications on edges outgoing from the decision node.

Stereotypes

None.

Tagged Values

None.

Constraints
[1] A decision node has one incoming edge.

[2] A decisioninput behavior has one input parameter and one output parameter. The input parameter must be the same as or
a supertype the type of object token coming along the incoming edge. The behavior cannot have side effects.

Semantics

Each token arriving at a decision node can traverse only one outgoing edge. Tokens are not duplicated. Each token offered by
theincoming edge is offered to the outgoing edges.

Most commonly, guards of the outgoing edges are evaluated to determine which edge should be traversed. The order in which
guards are evaluated is not defined, because edges in general are not required to determine which tokens they accept in any
particular order. The modeler should arrange that each token only be chosen to traverse one outgoing edge, otherwise there
will be race conditions among the outgoing edges. For decision points, a predefined guard “else” may be defined for at most
one outgoing edge. This guard succeeds for atoken only if the token is not acepted by all the other edges outgoing from the
decision point.

Notice that the semantics only requires that the token traverse one edge, rather than be offered to only one edge. Multiple
edges may be offered the token, but if only one of them has atarget that accepts the token, then that edgeis traversed. If
multiple edges accept the token and have approval from their targets for traversal at the same time, then the semanticsis not
defined.

If adecision input behavior is specified, then each token is passed to the behavior before guards are evaluated on the outgoing
edges. The output of the behavior is available to the guard. Because the behavior is used during the process of offering tokens
to outgoing edges, it may be run many times on the same token before the token is accepted by those edges. This means the
behavior cannot have side effects. It may not modify objects, but it may for example, navigate from one object to another or
get an attribute value from an object.

Semantic Variation Points

None.

320 UML Superstructure 2.0 Draft Adopted Specification

Notation

The notation for a decision node is a diamond-shaped symbol, asillustrated on the left side of the figure below. Decision input
behavior is specified by the keyword «decisionlnput» placed in a note symbol, and attached to the appropriate decision node
symbol asillustrated in the figure below.

A decision node must have a single activity edge entering it, and one or more edges leaving it. The functionality of decision
node and merge node can be combined by using the same node symbol, asillustrated at the right side of the figure below. This
case maps to amodel containing a amerge node with all the incoming edges shown in the diagram and one outgoing edge to a
decision node that has all the outgoing edges shown in the diagram. It assumes the UML 2.0 Diagram Interchange RFP
supports the interchange of diagram elements and their mapping to model elements.

«decisionl nput»
decision condition

O e ’ —
. . O Decision node Decision node and merge node used
Decision node Decision node (with control flows) together, sharing the same symbol

with behavior

Figure 237 - Decision node notation
Presentation Option
Style Guidelines

Examples

Thefigure below contains a decision node that follows the Received Order behavior. The branching is based on whether order
was rejected or accepted. An order accepted condition results in passing control to Fill Order and rejected ordersto Close
Order.

[order

o—

Close
Order

The example in the figure below illustrates an order process example. Here, an order itemis pulled from stock and prepared
for delivery. Since the item has been remove from inventory, the reorder level should also be checked; and if the actual level

[order
accepted]

Figure 238 - Decision node example.

UML Superstructure 2.0 Draft Adopted Specification 321

falls below a prespecified reorder point, more of the same type of item should be reordered.

Prepare Item
Pull for Delivery
Order Item
rom Stoc

" «decisionlnput»
inventoryL evel

< reorderPoint

Figure 239 - Decision node example

Rationale

Decision nodes are introduced to support conditionalsin activities. Decision input behaviors are introduced to avoid redudant
recalculationsin guards.

Changes from previous UML

Decision nodes replace the use of PseudoState with junction kind in UML 1.5 activity modeling.
12.3.16 ExceptionHandler

(ExtraStructuredActivities) An exception handler is an element that specifies a body to executein case the specified exception
occurs during the execution of the protected node.
Associations

« protectedNode : ExecutableNode[1..1]
The node protected by the handler. The handler is examined if an exception propagates to
the outside of the node.

e handlerBody : ExecutableNode [1..1]A node that is executed if the handler satisfies an uncaught exception.

e exceptionType: Classsifier [1..*]The kind of instances that the handler catches. If an exception occurs whose typeis any
of the classifiersin the set, the handler catches the exception and executes its body.

e exceptionlnput : ObjectNode An object node within the handler body. When the handler catches an exception, the
exception token is placed in this node, causing the body to execute.

Constraints
The exception body may not have any explicit input or output edges.

(str-adv) The result pins of the exception handler body must correspond in number and types to the result pins of the protected
node.

Semantics

If an exception occurs during the execution of an action, the set of execution handlers on the action is examined for a handler
that matches the exception. A handler matches if the type of the exception is the same as or a descendant of one of the

322 UML Superstructure 2.0 Draft Adopted Specification

exception classifiers specified in the handler. If there is a match, the handler “ catches’ the exception. The exception object is
placed in the exceptionlnput node as a token to start execution of the handler body.

If the exception is not caught by any of the handlers on the node, all the tokens in the node are terminated and the exception
propagates to the enclosing executable node or activity. If the exception propagates to the topmost level of the system and is
not caught, the behavior of the system is unspecified. Profiles may specify what happensin such cases.

The exception body has no explicit input or output edges. It has the same access to its surrounding context as the protected
node. The result tokens of the exception body become the result tokens of the protected node. Any control edges leaving the
protected node receive control tokens on completion of execution of the exception body. When the execution body completes
execution, it isasif the protected node had completed execution.

Semantic Variation Points
None.
Notation

The notation for exception handlersisillustrated in Figure 240. An exception handler for a protected node is shown by
drawing a“lightning bolt” symbol from the boundary of the protected node to a small square on the boundary of the exception
handler. The name of the exception typeis placed next to the lightning bolt. The small square is the exception input node, and
it must be owned by the handler body. Itstype is the given exception type. Both the protected node and the exception handler
must be at the same nesting level. (Otherwise the notation could be misinterpreted as an interrupting edge, which crosses a
boundary.) Multiple exception handlers may may attached to the same protected node, each by its own lightning bolt.

Protected
Node

HandlerBody

. Node

ExceptionType

Figure 240 - Exception Handler Notation
Presentation Option
Style Guidelines

Examples

Figure 241 shows a matrix calculation. First amatrix isinverted, then it is multiplied by a vector to produce a vector. If the
matrix is singular, the inversion will fail and a SingularMatrix exception occurs. This exception is handled by the exception
handler labeled SingularMatrix, which executes the region containing the SubstituteVectorl action. If an overflow exception
occurs during either the matirx inversion or the vector multiplication, the region containing the SubstituteVector2 action is
executed.

The successors to an exception handler body are the same as the successors to the protected node. It is unnecessary to show
control flow from the hander body. Regardless of whether the matrix operations compl ete without exception or whether one of

UML Superstructure 2.0 Draft Adopted Specification 323

the exception handlersistriggered, the action PrintResults is executed next.

l

~ ' N

SingularMatrix

Invert 1 (Substitute
Matrix Vectorl

[Multipl]
VectoE y Overflow (N

] Substitute
= o Vector2

Print
Results

Figure 241 - Exception Handler example
Rationale

Changes from previous UML
ExceptionHandler replaces JumpHandler in UML 1.5.

Modeling of traditional break and continue statements can be accomplished using direct control flow from the statement to the
control target. UML 1.5 combined the modeling of breaks and continues with exceptions, but that is no longer necessary and it
is not recommended in this specification.

12.3.17 ExecutableNode

An executable node is an abstract class for activity nodes that may be executed. It is used as an attachment point for exception
handlers.

Associations (StructuredActivities)

e handler : ExceptionHandler [0..*]
A set of exception handlers that are examined if an uncaught exception propagates to the
outer level of the executable node.

12.3.18 ExpansionKind

(ExtraStructuredActivities) ExpansionKind is an enumeration type used to specify how multiple executions of an expansion
region interact. See “ ExpansionRegion”.

324 UML Superstructure 2.0 Draft Adopted Specification

Enumeration Literals

e paalld The executions are independent. They may be executed concurrently.

e iterative The executions are dependent and must be executed one at atime, in order of the collec-
tion elements.

e stream A stream of collection elements flows into a single execution, in oprder of the collection
elements.

12.3.19 ExpansionNode

(ExtraStructuredActivities) An expansion node is an object node used to indicate a flow across the boundary of an expansion
region. A flow into aregion contains a collection that is broken into its individual elementsinside the region, which is
executed once per element. A flow out of aregion combinesindividual elementsinto a collection for use outside the region.
Associations

e regionAslnput : ExpansionRegion[0..1] The expansion region for which the node is an input.

« regionAsOutput : ExpansionRegion[0..1] The expansion region for which the node is an output.

Semantics

See “ExpansionRegion”.

Notation

See “ExpansionRegion”.
12.3.20 ExpansionRegion

(ExtraStructuredActivities) An expansion region is a structured activity region that executes multiple times corresponding to
elements of an input collection.

Description

An expansion region is a strictly nested region of an activity with explicit input and outputs (modeled as ExpansionNodes).
Each input is a collection of values. If there are multiple input pins, each of them must hold the same kind of collection,
although the types of the elementsin the different collections may vary. The expansion region is executed once for each
element (or position) in the input collection.

If an expansion region has outputs, they must be collections of the same kind and must contain elements of the same type as
the corresponding inputs. The number of output collections at runtime can differ from the number of input collections. On
each execution of the region, an output value from the region is inserted into an output collection at the same position as the
input elements. If the region execution ends with no output, then nothing is added to the output collection. When this happens
the output collection will not have the same number of elements as the input collections, the region actsas a.

[Reviewer: text ismissing]

If all the executions provide an output to the collection, then the output collections will have the same number of elements as
the input collections.

The inputs and outputs to an expansion region are modeled as ExpansionNodes. From “outside” of the region, the values on
these nodes appear as collections. From “inside” the region the values appear as elements of the collections. Object flow edges
connect pins outside the region to input and output expansion nodes as collections. Object flow edges connect pins inside the

UML Superstructure 2.0 Draft Adopted Specification 325

region to input and output expansion nodes as individual elements. From the inside of the region, these nodes are visible as
individual values. If an expansion node has aname, it is the name of the individual element within the region.

Any object flow edges that cross the boundary of the region, without passing through expansion nodes, provide valuesthat are
fixed within the different executions of the region.

Attributes

¢ mode: ExpansionKind The way in which the executions interact:
parallel — all interactions are independent
iterative — the interactions occur in order of the elements
stream — a stream of values flowsinto asingle execution

Associations

e inputElement : ExpansionNode[1..*]
An object node that holds a separate element of the input collection during each of the
multiple executions of the region.

e outputElement : ExpansionNode[0..*]
An object node that accepts a separate element of the output collection during each of the
multiple executions of the region. The values are formed into a collection that is available
when the execution of the region is complete.

Constraints
[1] An ExpansionRegion must have one or more argument ExpansionNodes and zero or more result ExpansionNodes.

Semantics

When an execution of an activity makes a token available to the input of an expansion region, the expansion region
consumes the token and begins execution. The expansion region is executed once for each element in the collection (or
once per element position, if there are multiple collections). The concurrency attribute controls how the multiple
executions proceed:

If the value is parallel, the execution may happen in parallel, or overlapping in time, but they are not required to.

If the value is iterative, the executions of the region must happen in sequence, with one finishing before another can
begin. The first iteration begins immediately. Subsequent iterations start when the previous iteration is completed. During
each of these cases, one element of the collection is made available to the execution of the region as a token during each
execution of the region. If the collection is ordered, the elements will be presented to the region in order; if the collection
in unordered, the order of presenting elements is undefined and not necessarily repeatable. On each execution of the
region, an output value from the region is inserted into an output collection at the same position as the input elements.

If the value is stream, there is a single execution of the region, but its input place receives a stream of elements from the
collection. The values in the input collection are extracted and placed into the execution of the expansion region as a
stream, in order if the collection is ordered. Such a region must handle streams properly or it isill defined. When the
execution of the entire stream is complete, any output streams are assembled into collections of the same kinds as the
inputs.

Notation

An expansion region is shown as a dashed rounded box with one of the keywords concurrent, iterative, or streaming in
the upper left corner.

326 UML Superstructure 2.0 Draft Adopted Specification

Input and output expansion nodes are drawn as small rectangles divided by vertical bars into small compartments. (The
symbol in meant to suggest a list of elements.) The expansion node symbols are placed on the boundary of the dashed
box. Usually arrows inside and outside the expansion region will distinguish input and output expansion nodes. If not,
then a small arrow can be used as with Pins (see Figure 284 on page 358).

Figure 242 - Expansion region

As a shorthand notation, the “list box pin” notation may be placed directly on an action symbol, replacing the pins of the
action (Figure 243). This indicates an expansion region containing a single action. The equivalent full form is shown in

Figure 244.

keyword

identifier: behaviorDescription

s

Figure 243 - Shorthand notation for expansion region containing single node

UML Superstructure 2.0 Draft Adopted Specification 327

Figure 244 - Full form of previous shorthand notation
Presentation Option

The UML 1.5 notation for unlimited dynamicMultiplicity maps to an expansion region in parallel mode, with one behavior
invoked in the region, as shown below.

name

Figure 245 - UML 1.5 notation for expansion region with one behavior invocation

Examples

Figure 246 shows an expansion region with two inputs and one output that is executed concurrently. Execution of the
region does not begin until both input collections are available. Both collections must have the same number of elements.
The interior activity fragment is executed once for each position in the input collections. During each execution of the
region, apair of values, one from each collection, is available to the region on the expansion nodes. Each execution of the

328 UML Superstructure 2.0 Draft Adopted Specification

region produces a result value on the output expansion node. All of the result values are formed into a collection of the
same size as the input collections. This output collection is available outside the region on the result node after all the
concurrent executions of the region have completed.

B W T ----

| parallel
|

|

|

|

|

|

l

Figure 246 - Expansion region with 2 inputs and 1 output
Figure 246 shows a fragment of an FFT (Fast Fourier Transform) computation containing an expansion region. Outside the

region, there are operations on arrays of complex numbers. S, Slower, Supper, and V are arrays. Cut and shuffle are operations
on arrays. Inside the region, two arithmetic operations are performed on elements of the 3 input arrays, yielding 2 output

UML Superstructure 2.0 Draft Adopted Specification 329

arrays. Different positions in the arrays do not interact, therefore the region can be executed concurrently on all positions.

S: Array<Complex>

V: Array<Complex>

plex root:Complex

concurrent

\
|
|
|
|
@teven = Iower+upp9 Gxtodd = (Iower-upper)*rocD :
|
|
|
|
|
/

nxteven:Complex nxtodd:Complex

L ———— — — — — — — — —

Sneven: Array<Complex> Snodd: Array<Complex>

H

= shuffle(Sneven,Snodd

S’: Array<Complex>

Figure 247 - Expansion region

The following example shows a use of the shorthand notation for an expansion region with asingle action. In this example, the
trip route outputs sets of flights and sets of hotels to book. The hotels may be booked independently and concurrently with

330 UML Superstructure 2.0 Draft Adopted Specification

each other and with booking the flight.

Print
Itinerary

Figure 248 -Examples of expansion region shorthand

Using the UML 1.5 notation, specify Trip Route below can result in multiple flight segments, each of which must be booked
separately. The Book Flight action will invoke the Book Flight behavior multiple times, once for each flight segment in the set

passed to BookFlight.
= ~
S‘-)l-erﬂ) y B(_)Ok
Route Flight

Figure 249 - Shortand notation for expansion region

Rationale

Expansion regions are introduced to support applying behaviors to elements of a set without constraining the order of
application.

Changes from previous UML

ExpansionRegion replaces MapAction, FilterAction, and dynamicConcurrency and dynamicMultiplicity attributes on
ActionState. Dynamic multiplicities less than unlimited are not supported in UML 2.0.

12.3.21 FinalNode
A final node is an abstract control node at which a flow in an activity stops.

Description

See descriptions at children of final node.

Attributes

None.

UML Superstructure 2.0 Draft Adopted Specification 331

Associations

None.

Constraints

[1] A final node has no outgoing edges.

Semantics

All tokens offered on incoming edges are accepted. See children of final node for other semantics.

Notation

The notations for final node are illustrated below. There are atwo kinds of final node: activity final and
(IntermediateActivities) flow final. For more detail on each of these specializations, see ActivityFinal and FlowFinal.

® 02

Activity final Flow final

Figure 250 - Final node notation

Examples

The figure below illustrates two kinds of final node: flow final and activity final. In this example, it is assumed that many
components can be built and installed before finally delivering the resulting application. Here, the Build Component behavior
occursiteratively for each component. When the last component is built, the end of the building iteration isindicated with a
flow final. However, even though all component building has come to an end, other behaviors are still executing. When the
last component has been installed, the application is delivered. When Deliver Application has completed, control is passed to
an activity final node—indicating that al processing in the activity is terminated.

[no more
components

Build (Ingtall \ /\tobeinstalled] @@
Component (Component] Applicatiol

- ? 5 ® [more components
[no more to be installed]

[more components ~ components
to be built] to be built]

Figure 251 - Final node example.

Rationale

Final nodes are introduced to model where flows end in an activity.

Changes from previous UML

FinalNode replaces the use of FinalStatein UML 1.5 activity modeling, but its concrete classes have different semantics than
Final State.

332 UML Superstructure 2.0 Draft Adopted Specification

12.3.22 FlowFinalNode
A flow final node is afinal node that terminates a flow.

Description

A flow final destroys all tokens that arrive at it. It has no effect on other flows in the activity.

Attributes

None.

Associations

None.

Constraints

None.

Semantics

Flow final destroystokensflowinginto it.

Notation

The notation for flow final isillustrated below.

®

Figure 252 - Flow final notation

Examples

In the example below, it is assumed that many components can be built and installed. Here, the Build Component behavior
occursiteratively for each component. When the last component is built, the end of the building iteration is indicated with a
flow final. However, even though all component building has come to an end, other behaviors are still executing (such as

Install Component).
Build
Component
; [no more

[more components ~ Components
to be built] to be built]

Figure 253 - Flow final example without merge edge

UML Superstructure 2.0 Draft Adopted Specification 333

Rationale

Flow final nodes are introduced to model termination or merging of aflow in an activity.

Changes from previous UML

Flow final isnew in UML 2.0.
12.3.23 ForkNode

A fork nodeis a control node that splits aflow into multiple concurrent flows.

Description

A fork node has one incoming edge and multiple outgoing edges.

Attributes

None.

Associations

None.

Constraints

[1] A fork node has one incoming edge.

Semantics

Tokens arriving at afork are duplicated across the outgoing edges. Tokens offered by the incoming edge are al offered to the
outgoing edges. When an offered token is accepted on all the outgoing edges, duplicates of the token are made and one copy
traverses each edges. No duplication is necessary if thereis only one outgoing edge, but it is not a useful case.

If guards are used on edges outgoing from forks, the modelers should ensure that no downstream joins depend on the arrival of
tokens passing through the guarded edge. If that cannot be avoided, then a decision node should be introduced to have the
guard, and shunt the token to the downstream join if the guard fails. See example in Figure 212 on page 297.

Notation

The notation for afork nodeis simply aline segment, asillustrated on the left side of the figure below. In usage, however, the
fork node must have asingle activity edge entering it, and two or more edges |eaving it. The functionality of join node and fork
node can be combined by using the same node symbol, asillustrated at the right side of the figure below. This case mapsto a
model containing aajoin node with all the incoming edges shown the diagram and one outgoing edge to afork node that has
al the outgoing edges shown in the diagram. It assumes the UML 2.0 Diagram Interchange RFP supports the interchange of
diagram elements and their mapping to model elements.

—
—
e
Fork node Fork node Join node and fork node used
(without flows) (with flows) together, sharing the same symbol

Figure 254 - Fork node notation

334 UML Superstructure 2.0 Draft Adopted Specification

Examples

In the example below, the fork node passes control to both the Ship Order and Send Invoice behaviors when Fill Order is
completed.

Fill
Fill Order
Order
Send
Invoice

Figure 255 - Fork node example.

Rationale

Fork nodes are introduced to support parallelism in activities.

Changes from previous UML

Fork nodes replace the use of PseudoState with fork kind in UML 1.5 activity modeling. State machine forksin UML 1.5
required synchronization between parallel flows through the state machine RTC step. UML 2.0 activity forks model
unrestricted parallelism.

12.3.24 InitialNode
Aninitial node is acontrol node at which flow starts when the activity isinvoked.

Description

An activity may have more than one initial node.

Attributes

None.

Associations

None.

Constraints

[1] Aninitial node has no incoming edges.

Semantics

Aninitial node is astarting point for invoking an activity. A control token is placed at the initial node when the activity starts.
Tokensin an initial node are offered to al outgoing edges. If an activity has more than oneinitial node, then invoking the
activity starts multiple flows, one at each initial node. For convenience, initial nodes are an exception to the rule that control
nodes cannot hold tokens if they are blocked from moving downstream (see Activity). Thisis equivalent interposing a
CentralBufferNode between the initial node and its outgoing edges.

Note that flows can also start at other nodes, see ActivityParameterNode and AcceptEventAction, so initial nodes are not

UML Superstructure 2.0 Draft Adopted Specification 335

required for an activity to start execution.

Notation

Initial nodes are notated as a solid circle, asindicated in the figure below.

Figure 256 - Initial node notation

Examples

In the example below, theinitial node passes control to the Receive Order behavior at the start of an activity.

- Receive

Figure 257 - Initial node example

Rationale

Initial nodes are introduced to model where flows start in an activity.

Changes from previous UML

InitialNode replaces the use of PseudoState with kind initial in UML 1.5 activity modeling.
12.3.25 InputPin

Aninput pinisapin that holdsinput values to be consumed by an action. They are object nodes and receive values from other
actions through object edges. See Pin, Action, and ObjectNode for more details.

Attributes

None.

Associations

None.

Constraints

[1] Input pins have incoming edges only.
12.3.26 InterruptibleActivityRegion

An interruptible activity region is an activity group that supports termination of tokens flowing in the portions of an activity.

336 UML Superstructure 2.0 Draft Adopted Specification

Description

An interruptible region contains activity nodes. When atoken leaves an interruptible region via edges designated by the region
asinterrupting edges, all tokens and behaviorsin the region are terminated.

Attributes

None.

Associations (CompleteActivities)

« interruptingEdge : ActivityEdge [0..*].The edges |eaving the region that will abort other tokens flowing in the region.

Constraints

[1] Interrupting edges of aregion must have their source node in the region and their target node outside the region in the
same activity containing the region.

Semantics

Theregion isinterrupted when atoken traverses an interrupting edge. At this point the interrupting token has |eft the region
and is not terminated.

Token transfer is still atomic, even when using interrupting regions. If anon-interrupting edgeis passing atoken from asource
node in the region to target node outside the region, then the transfer is completed and the token arrives at the target even if in
interruption occurs during the traversal. In other words, a token transition is never partia; it is either complete or it does not
happen at all.

Do not use an interrupting region if it is not desired to abort al flows in the region in some cases. For example, if the same
execution of an activity is being used for al its invocations, then multiple streams of tokens will be flowing through the same
activity. In this case, it is probably not desired to abort all tokens just because one leaves the region. Arrange for separate
invocations of the activity to use separate executions of the activity when employing interruptible regions, so tokens from each
invocation will not affect each other.

Notation

An interruptible activity region is notated by a dashed, round-cornered rectangle drawn around the nodes contained by the
region. An interrupting edge is notation with alightning-bolt activity edge.

Figure 258 - InterruptibleActivityRegion notation with interrupting edge

UML Superstructure 2.0 Draft Adopted Specification 337

Presentation Option

An option for notating an interrupting edge is an zig zag adornment on a straight line.

Figure 259 - InterruptibleActivityRegion notation with interrupting edge

Examples

Thefirst figure below illustrates that when an order cancellation reguest is made—only while receiving, filling, or shipping)
orders—the Cancel Order behavior isinvoked.

Invoice

Invoice

Figure 260 - InterruptibleActivityRegion example

Rationale

Interruptible regions are introduced to support more flexible non-local termination of flow.

Changes from previous UML

Interruptible regionsin activity modeling are new to UML 2.0.
12.3.27 JoinNode

A join nodeis a control node that synchronizes multiple flows.

338 UML Superstructure 2.0 Draft Adopted Specification

Description
A join node has multiple incoming edges and one outgoing edge.

(CompleteActivities) Join nodes have a boolean value specification using the names of the incoming edges to specify the
conditions under which the join will emit atoken.

Attributes

None.

Associations

None.

Associations (CompleteActivities)

e joinSpec: VaueSpecification [1..1] A specification giving the conditions under which the join will emit atoken. Default
is“and”.

Constraints

[1] A join node has one outgoing edge.

Semantics

If thereis atoken offered on all incoming edges, then tokens are offered on the outgoing edge according to the following join
rules:

1. If al the tokens offered on the incoming edges are control tokens, then one control token is offered on the outgoing
edge.

2. If some of the tokens offered on the incoming edges are control tokens and other are data tokens, then only the data
tokens are offered on the outgoing edge.

No joining of tokensis necessary if there is only one incoming edge, but it is not a useful case.

(CompleteActivities) The reserved string “and” used as ajoin specification is equivalent to a specification that requires at least
one token offered on each incoming edge. It isthe default. Thejoin specification is evaluated whenever anew token is offered
on any incoming edge. The evaluation is not interrupted by any new tokens offered during the evaluation, nor are concurrent
evaluations started when new tokens are offered during an evaluation.

If any tokens are offered to the outgoing edge, they must be accepted or rejected for traversal before any more tokens are
offered to the outgoing edge. If tokens are rejected for traversal, they are no longer offered to the outgoing edge. Thejoin
specification may contain the names of the incoming edges to refer to whether a token was offered on that edge at the time the
evaluation started.

Other rules for when tokens may be passed al ong the outgoing edge depend the characteristics of the edge and its target. For
example, if the outgoing edge targets an object node that has reached its upper bound, no token can be passed. The rules may
be optimized to a different algorithm as long as the effect isthe same. In the full object node example, the implementation can
omit the unnecessary join evaluations until the down stream object node can accept tokens.

Notation

The notation for ajoin node isaline segment, asillustrated on the | eft side of the figure below. The join node must have one or
more activity edges entering it, and only one edge leaving it. The functionality of join node and fork node can be combined by

UML Superstructure 2.0 Draft Adopted Specification 339

using the same node symbol, asillustrated at the right side of the figure below. This case maps to amodel containing aajoin
node with all the incoming edges shown in the diagram and one outgoing edge to a fork node that has all the outgoing edges
shown in the diagram. It assumes the UML 2.0 Diagram Interchange RFP supports the interchange of diagram elements and

their mapping to model elements.

—>
—__-
—
Join node Join node Join node and fork node used
(without flows) (with flows) together, sharing the same symbol

Figure 261 - Join node notations

(CompleteActivities) Join specifications are shown near the join node, as shown below.

{joinSpec=...}
Join node (with flows — =
and a join specification) : 1 —
—>

Figure 262 - Join node notations

Examples

The example at the left of the figure indicates that a Join is used to synchronize the processing of the Ship Order and Accept
Order behaviors. Here, when both have been completed, control is passed to Close Order.

Ship
Order J—— = .
ose
9
Accept |
Order

Figure 263 - Join node example

(CompleteActivities) The example below illustrates how ajoin specification can be used to ensure that both adrink is selected
and the correct amount of money has been inserted before the drink is dispensed. Names of the incoming edges are used in the

340 UML Superstructure 2.0 Draft Adopted Specification

join specification to refer to whether tokens are available on the edges.

{joinSpec =
A and B
and the total coin value

inserted is >= drink price}
Select A
Drink)
Dispense
B Drink
Insert |
Coin

Figure 264 - Join node example

Rationale

Join nodes are introduced to support parallelism in activities.

Changes from previous UML

Join nodes replace the use of PseudoState with join kind in UML 1.5 activity modeling.
12.3.28 LoopNode
(StructuredActivities) A loop node is a costructured activity node that represents a loop with setup, test, and body sections.

Description

Each section is awell-nested subregion of the activity whose nodes follow any predecessors of the loop and precede any
successors of the loop. The test section may precede or follow the body section. The setup section is executed once on entry to
the loop, and the test and body sections are executed repeatedly until the test produces afalse value. The results of the fina
execution of the test or body are available after completion of execution of the loop.

Attributes
e isTestedFirst : Boolean [1] If true, the test is performed before the first execution of the body.
If false, the body is executed once before the test is performed.

Associations (StructuredActivities)

e setupPart : ActivityNode[0..*] The set of hodes and edges that initialize values or perform other setup computations for
the loop.

e bodyPart : ActivityNode[0..*] The set of nodes and edges that perform the repetitive computations of the loop. The body
section is executed as long as the test section produces a true value.

e test: ActivityNode[0..*] The set of nodes, edges, and designated value that compute a Boolean value to determine
if another execution of the body will be performed.

e decider : OutputPin [1] An output pin within the test fragment the value of which is examined after execution of
the test to determine whether to execute the loop body.

UML Superstructure 2.0 Draft Adopted Specification 341

Associations ((CompleteStructuredActivities)
e result: OutputPin [0..*] A list of output pinsthat constitute the data flow output of the entire loop.

« loopVariable: OutputPin [0..*] A list of output pins owned by the loop that hold the values of the loop variables during an
execution of the loop. When the test fails, the values are copied to the result pins of the
loop.

e bodyOutput : OutputPin [0..*] A list of output pins within the body fragment the values of which are copied to the loop
variable pins after completion of execution of the body, before the next iteration of the
loop begins or before the loop exits.

* loopVariablelnput : InputPin[0..*]
A list of valuesthat are copied into the loop variable pins before the first iteration of the
loop.

Constraints

None.

Semantics

No part of aloop node is executed until all control-flow or data-flow predecessors of the loop node have completed execution.
When all such predecessors have completed execution and made tokens available to inputs of the loop node, the loop node
captures the input tokens and begins execution.

First the setup section of the loop node is executed. A front end node is a node within a nested section (such as the setup
section, test section, or body section) that has no predecessor dependencies within the same section. A control token is offered
to each front end node within the setup section. Nodes in the setup section may also have individual dependencies (typically
data flow dependencies) on nodes external to the loop node. To begin execution, such nodes must receive their individual
tokens in addition to the control token from the overall loop.

A back end node is a node within a nested section that has no successor dependencies within the same section. When all the
back end nodes have compl eted execution, the overall section is considered to have completed execution. (It may be thought
of as delivering a control token to the next section within the loop.)

When the setup section has compl eted execution, the iterative execution of the loop begins. The test section may precede or
follow the body section (test-first loop or test-last loop). The following description assumes that the test section comes first. If
the body section comes first, it is always executed at |east once, after which this description applies to subsequent iterations.

When the setup section has completed execution (if the test comesfirst) or when the body sections has completed execution of
an iteration, thetest section is executed. A control token is offered to each front end node within the test section. When all back
end nodesin the test section have completed execution, execution of the test section is complete. Typically there will only be
one back end node and it will have aBoolean value, but for generality it is permitted to perform arbitrary computation in the

test section.

When the test section has completed execution, the Boolean value on the designated decider pin within the test sectionis
examined. If the value istrue, the body section is executed again. If the value is false, execution of the loop node is complete.

When the setup section has completed execution (if the body comes first) or when the iteration section has completed
execution and produced atrue val ue, execution of the body section begins. Each front end node in the body section is offered a
control token. When all back end nodes in the body section have completed execution, execution of the body section is
complete.

Within the body section, variables defined in the loop node or in some higher-level enclosing node are updated with any new
values produced during the iteration and any temporary val ues are discarded.

342 UML Superstructure 2.0 Draft Adopted Specification

Notation

Examples

Rationale

L oop nodes are introduced to provide a structured way to represent iteration.

Changes from previous UML

Loop nodes are new in UML 2.0.
12.3.29 MergeNode

A merge node is a control node that brings together multiple alternate flows. It is not used to synchronize concurrent flows but
to accept one among several aternate flows.

Description

A merge node has multiple incoming edges and a single outgoing edge.

Attributes

None.
Associations

Constraints

[1] A merge node has one outgoing edge.

Semantics

All tokens offered on incoming edges are offered to the outgoing edge. There is no synchronization of flows or joining of
tokens.

Notation

The notation for a merge node is a diamond-shaped symbol, asillustrated on the left side of the figure below. In usage,
however, the merge node must have two or more edges entering it and a single activity edge leaving it. The functionality of
merge node and decision node can be combined by using the same node symbol, asillustrated at the right side of the figure
below. This case maps to amodel containing aamerge node with all the incoming edges shown the diagram and one outgoing
edge to a decision node that has all the outgoing edges shown in the diagram. It assumes the UML 2.0 Diagram Interchange

UML Superstructure 2.0 Draft Adopted Specification 343

RFP supports the interchange of diagram elements and their mapping to model elements.

0 =

Merge node Merge node Merge node and decision node used
(with flows) together, sharing the same symbol

Figure 265 - Merge node notation

Examples

In the example below, either one or both of the behaviors, Buy Item or Make Item could have been invoked. As each
completes, control is passed to Ship Item. That is, if only one of Buy Item or Make Item complete, then Ship Item isinvoked
only once; if both complete, Ship Item isinvoked twice.

Figure 266 - Merge node example

Rationale

Merge nodes are introduced to support bringing multiple flows together in activities. For example, if adecision isused after a
fork, the two flows coming out of the decision need to be merged into one before going to ajoin. Otherwise the join will wait
for both flows, only one of which will arrive.

Changes from previous UML

Merge nodes repl ace the use of PseudoState with junction kind in UML 1.5 activity modeling.
12.3.30 ObjectFlow
An object flow is an activity edge that can have objects or data passing along it.

Description
An object flow models the flow of values to or from object nodes.

(CompleteActivities) Object flows add support for modeling the effects of behaviors, multicast/receive, and token selection
from object nodes and transformation of tokens.

344 UML Superstructure 2.0 Draft Adopted Specification

Attributes (CompleteActivities)

« effect : ObjectFlowEffectKind [0..*] Specifies the effect that the immediately upstream or downstream action has on the
objects flowing along the edge.

e isMulticast : Boolean [1..1] = falseTells whether the objects in the flow are passed by multicasting.
e isMultireceive: Boolean [1..1] = falseTells whether the objectsin the flow are gathered from respondents to multicasting.

Associations (CompleteActivities)
e selection : Behavior [0..1] Sel ects tokens from a source object node.

e transformation : Behavior [0..1]Changes or replaces data tokens flowing along edge.

Constraints (BasicActivities)
[1] Object flows may have an action on at most one end.

[2] Object nodes connected by an object flow, with optionally intervening control nodes, must have compatible types. In par-
ticular, the downstream object node type must be the same or a supertype of the upstream object node type.

[3] Object nodes connected by an object flow, with optionally intervening control nodes, must have the same upper bounds.

Constraints (CompleteActivities)

[1] An edge with constant weight may not target an object node, or lead to an object node downstream with no intervening
actions, that has an upper bound less than the weight.

[2] A transformation behavior has one input parameter and one output parameter. The input parameter must be the same as or
a supertype the type of object token coming from the source end. The output parameter must be the same or a subtype of
the type of object token expected downstream. The behavior cannot have side effects.

[3] An object flow may have a selection behavior only if has an object node as a source.

[4] A selection behavior has one input parameter and one output parameter. Theinput parameter must be a bag of elements of
the same as or a supertype the type of source object node. The output parameter must be the same or a subtype of the type
of source object node. The behavior cannot have side effects.

[5] isMulticast and isMultireceive cannot both be true.
[6] Only object flows with actions at one end or the other may have effects. Only object flows with actions on the target end
may have a delete effect. Only object flows with actions on the source end may have create effect.

Semantics (BasicActivities)

See semantics inherited from ActivityEdge. An object flow is an activity edge that only passes object and data tokens.
Tokens offered by the source node are all offered to the target node, subject to the restrictions inherited from ActivityEdge.

Two object flows may have the same object node as source. In this case the edges will compete for objects. Once an edge takes
an object from an object node, the other edges do not have accessto it. Use afork to duplicate tokens for multiple uses.

Semantics (CompleteActivities)

If atransformation behavior is specified, then each token offered to the edge is passed to the behavior, and the output of the
behavior is given to the target node for consideration. Because the behavior is used while offering tokens to the target node, it
may be run many times on the same token before the token is accepted by the target node. This means the behavior cannot
have side effects. It may not modify objects, but it may for example, navigate from one object to another, get an attribute value
from an object, or replace a data value with another.

UML Superstructure 2.0 Draft Adopted Specification 345

If a selection behavior is specified, then it is used to offer atoken from the source object node to the edge, rather than using
object node’ s ordering. It has the same semantics as selection behavior on object nodes. See ObjectNode. See application at
DataStoreNode.

Multicasting and receiving is used in conjunction with partitions to model flows between behaviors that are the responsibility
of objects determined by a publish and subscribe facility. To support execution the model must be refined to specify the
particular publish/subscribe facility employed. Thisisillustrated in the Figure 274.

Notation

An object flow is notated by an arrowed line.

— (=

Object flow Two object flow edges linking
(without activity nodes) object nodes and actions

(P

An object flow edge linking
two object node pins.

Figure 267 - Object flow notations

(CompleteActivities) Selection behavior is specified with the keyword «selection» placed in a note symbol, and attached to the
appropriate objectFlow symbol asillustrated in the figure bel ow.

selection

«selection» |ﬁ «selection»

specification

selectio
qoecﬁ‘?c'atpon -
. @ >@

Figure 268 - Specifying selection behavior on an Object flow

(CompleteActivities) Specifying the effect that the behavior of the actions have on the objects flowing on the edge can be
represented by placing the effect in braces near the edge leading to the affected object node. Since flows from actions to pins
are elided, the effect is shown next to the pin.

{output {input {output {input

Figure 269 - Specifying effect that actions have on objects

346 UML Superstructure 2.0 Draft Adopted Specification

Presentation Option

To reduce clutter in complex diagrams, object nodes may be elided. The names of the invoked behaviors can suggest their
parameters. Tools may support hyperlinking from the edge lines to show the data flowing along them, and show asmall square
above theline to indicate that pins are elided, asillustrated in the figure below. Any adornments that would normally be near
the pin, like effect, can be displayed at the ends of the flow lines.

B) =)

With explicit pins With pins elided

Figure 270 - Eliding objects flowing on the edge

Examples

In the example on the | eft below, the two arrowed lines are both object flow edges. This indicates that order objects flow from
Fill Order to Ship Order. In the example on the right, the one arrowed line starts from the Fill Order object node pin and ends
at Ship Order object node pin. This aso indicates that order objects flow from Fill Order to Ship Order.

Fill Shi Order Order
! ip ill i
=] Order Fi Ship
Order Order Order Order

Figure 271 - Object flow example

On the left, the example below shows the Pick Materials activity provide an order along with its associated materials for
assembly. On the right, the object flow has been simplified through eliding the object flow details.

5 Order Order S
c c O
Materials AOrdeEle Materials Asseg1b|e
for Order for Order Order
Materials Materials
With explicit pins With elided pins

Figure 272 - Eliding objects flowing on the edge

(CompleteActivities) In the figure below, two examples of selection behavior areillustrated. The example on the |eft indicates
that the orders are to be shipped based or order priority—and those with the same priority should befilled on afirst-in/first-out
(FIFO) basis. The example on the right indicates that the result of a Close Order activity produces closed order objects, but the
Send Customer Notice activity requires a customer object. The selection, then, specifies that a query operation that takes an
Order evaluates the customer object via the Order.customer:Party association. At the bottom of the figure, an example depicts
a Place Order activity which creates orders and Fill Order activity which reads these placed orders for the purpose of filling
them.

UML Superstructure 2.0 Draft Adopted Specification 347

«selection» -
FIFO within «transformation»
Order Priority Order.customer
Order : Order Order : Cust
: [Filled] [Filled] Closed] - ustomer =
Fill : Ship Close :
Order Order Order Customer
Notice
Order Order

[Placed] [Placed]
" T create) {read} _ Order

Figure 273 - Specifying selection behavior on an Object flow

(CompleteActivities) In the example below, the Requests for Quote (RFQs) are sent to multiple specific sellers (i.e. is
multicast) for a quote response by each of the sellers. Some number of sellers then respond by returning their quote response.
Since multiple responses can be received, the edge is labeled for the multiple-receipt option. Publish/subscribe and other
brokered mechanisms can be handled using the multicast and multireceive mechanisms. Note that the swimlanes are an
important feature for indicating the subject and source of this.

Buyer Seller

Request
é
Quote Responses

Figure 274 - Specifying multicast and multireceive on the edge

«multicast»

«multireceive»

Rationale

Object flow isintroduced to model the flow of data and objectsin an activity.

Changes from previous UML

Explicitly modeled object flowsare new in UML 2.0. They replace the use of (state) Transitionin UML 1.5 activity modeling.
They a so replace data flow dependencies from UML 1.5 action model.

348 UML Superstructure 2.0 Draft Adopted Specification

12.3.31 ObjectFlowEffectKind

The datatype ObjectFlowEffectKind is an enumeration that indicates the data base effect of an action.

Enumeration Values
 Create
- read
+ update
» delete

12.3.32 ObjectNode

An object node is an abstract activity node that is part of defining object flow in an activity.

Description

An object node is an activity node that indicates an instance of a particular classifier, possibly in a particular state, may be
available at a particular point in the activity. Object nodes can be used in a variety of ways, depending on where objects are
flowing from and to, as described in the semantics section.

(CompleteActivities) Compl ete object nodes add support for token selection, limitation on the number of tokens, and
specifying the state required for tokens.
Attributes (CompleteActivities)
e ordering : ObjectNodeOrderingKind [1..1] = FIFO
Tellswhether and how the tokens in the object node are ordered for selection to traverse
edges outgoing from the object node.
Associations (BasicActivities)

None.

Associations (CompleteActivities)
e inState: State[0..*] The required states of the object available at this point in the activity.
e selection: Behavior [0..1] Selects tokens for outgoing edges.

e upperBound : ValueSpecification [1..1] = Null
The maximum number of tokens allowed in the node. Objects cannot flow into the node if
the upper bound is reached.

Constraints (BasicActivities)

[1] All edges coming into or going out of object nodes must be object flow edges.

Constraints (CompleteActivities)

[1] The upper bound must be equal to the upper bound of nearest upstream and downstream object nodes that do not have
intervening action nodes.

UML Superstructure 2.0 Draft Adopted Specification 349

[2] If an object node has a selection behavior, then the ordering of the object node is ordered, and vice versa.

[3] A selection behavior has one input parameter and one output parameter. The input parameter must be a bag of elements of
the same type as the object node or a supertype of the type of object node. The output parameter must be the same or a
subtype of the type of object node. The behavior cannot have side effects.

Semantics

Object nodes may only contain values at runtime that conform to the type of the object node, in the state or states specified, if
any. If no typeis specified, then the values may be of any type. Multiple tokens containing the same value may reside in the
object node at the same time. Thisincludes data values.

Semantics (CompleteActivities)

An object node may not contain more tokens than its upper bound. The upper bound must be a positive LiteralInteger or a
LiteralNull. An upper bound that is a LiteralNull means the upper bound is unlimited. See ObjectFlow for additional rules
regarding when objects may traverse the edges incoming and outgoing from an object node.

The ordering of an object node specifies the order in which tokens in the node are offered to the outgoing edges. This can be
set to require that tokens do not overtake each other as they pass through the node (FIFO), or that they do (LI1FO or modeler-
defined ordering). Modeler-defined ordering is indicated by an ordering value of ordered, and a selection behavior that
determines what token to offer to the edges. The selection behavior takes al the tokensin the object node asinput and chooses
asingle token from those. It is executed whenever atoken isto be offered to an edge. Because the behavior is used while
offering tokens to outgoing edges, it may be run many times on the same token before the token is accepted by those edges.
This means the behavior cannot have side effects. The selection behavior of an object node is overridden by any selection
behaviors on its outgoing edges. See ObjectFlow. Overtaking due to ordering is distinguished from the case where the each
invocation of the activity is handled by a separate execution of the activity. In this case, the tokens have no interaction with
each other, because they flow through separate executions of the activity. See Activity.

Notation

Object nodes are notated as rectangles. A name labeling the node is placed inside the symbol, where the name indicates the
type of the object node. Object nodes whose instances are sets of the “name” type are labeled as such. Object nodes with a
signal astype are shown with the symbol on the right.

name Set of name

Object node Object node Object node
for tokens for tokens with
containing sets signal astype

Figure 275 - Object node notations

(CompleteActivities) A name labeling the node indicates the type of the object node. The name can aso be qualified by a state
or states, which isto be written within brackets below the name of the type. Upper bounds and ordering other than the defaults

350 UML Superstructure 2.0 Draft Adopted Specification

are notated in braces underneath the object node.

name name name
[state, state...]
Object node for { upperBound = 2} {ordering = LIFO}
tokens containing Object node Object node
objects in specific with a limited with ordering
states upper bound other than FIFO

Figure 276 - Object node notations

(CompleteActivities) Selection behavior is specified with the keyword «sel ection» placed in anote symbol, and attached to an
ObjectNode symbol asillustrated in the figure below.

«selection»
selection
specification

name

Figure 277 - Specifying selection behavior on an Object node

Presentation Option

It is expected that the UML 2.0 Diagram Interchange RFP will define a metaassociation between model elements and view
elements, like diagrams. It can be used to link an object node to an object diagram showing the classifier that isthe type of the
object and itsrelations to other elements. Tools can use thisinformation in various ways to integrate the activity and class
diagrams, such as a hyperlink from the object node to the diagram, or insertion of the class diagram in the activity diagram as
desired. See example in Figure 287.

Style Guidelines

Examples

See examples at ObjectFlow and children of ObjectNode.

Rationale

Object nodes are introduced to model the flow of objectsin an activity.

Changes from previous UML

ObjectNode replaces and extends ObjectFlowState in UML 1.5. In particular, it and its children support collection of tokens at
runtime, single sending and receipt, and the new “pin” style of activity model.

UML Superstructure 2.0 Draft Adopted Specification 351

12.3.33 ObjectNodeOrderingKind

ObjectNodeOrderingKind is an enumeration indicating queuing order within a node.

Enumeration Values

e unordered

e ordered
« LIFO
« FIFO

12.3.34 OutputPin

An output pin isapin that holds output values produced by an action. Output pins are object nodes and deliver values to other
actions through object edges. See Pin, Action, and ObjectNode for more details.

Attributes

None.

Associations

None.

Constraints

[1] Output pins have outgoing edges only.
12.3.35 Parameter (as specialized)

(CompleteActivities) Parameter is specialized when used with complete activities.

Description

Parameters are extended in complete activities to add support for streaming, exceptions, and parameter sets.

Attributes

e isException : Boolean [1..1] =falseTells whether an output parameter may emit a value to the exclusion of the other out-
puts.

e isStream : Boolean [1..1] = falseTells whether an input parameter may accept values while its behavior is executing, or
whether an output parameter post values while the behavior is executing.

e parameterSet ;: ParameterSet [0..*] The parameter sets containing the parameter. See ParameterSet.

Associations

None.

Constraints

[1] A parameter cannot be a stream and exception at the same time.

352 UML Superstructure 2.0 Draft Adopted Specification

[2] Aninput parameter cannot be an exception.
[3] Reentrant behaviors cannot have stream parameters.

Semantics

isException applies to output parameters. An output posted to an exception excludes outputs from being posted to other data
and control outputs of the behavior. A token arriving at an exception output parameter of an activity aborts all flowsin the
activity. Any objects previously posted to non-stream outputs never leave the activity. Streaming outputs posted before any
exception are not affected. Use exception parameters on activities only if it is desired to abort al flowsin the activity. For
example, if the same execution of an activity is being used for all its invocations, then multiple streams of tokens will be
flowing through the same activity. In this case, it is probably not desired to abort all tokens just because one reaches an
exception. Arrange for separate executions of the activity to use separate executions of the activity when employing
exceptions, so tokens from separate executions will not affect each other.

Streaming parameters give an action access to tokens passed from its invoker while the action is executing. Values for
streaming parameters may arrive anytime during the execution of the action, not just at the beginning. Multiple value may
arrive on a streaming parameter during a single action execution and be consumed by the action. In effect, streaming
parameters give an action access to token flows outside of the action while it is executing. In addition to the execution rules
given at Action, these rules also apply to invoking a behavior with streaming parameters:

« All non-stream inputs must arrive for the behavior to be invoked. If there are only stream inputs, then at least one must
arrive for the behavior to be invoked.

« All inputs must arrive for the behavior to finish, that is, for all inputs must arrive for non-stream outputs to be posted
and control edges traversed out of the invocation of the behavior.

- Either all non-stream outputs must be posted when an activity is finished, or one of the exception outputs must be.

The execution rules above provide for the arrival of inputs after a behavior is started and the posting of outputs before a
behavior is finished. These are stream inputs and outputs. Multiple stream input and output tokens may be consumed and
posted while abehavior is running. Since an activity isakind of behavior, the above rules apply to invoking an activity, even
if theinvocation is not from another activity. A reentrant behavior cannot have streaming parameters because there are
potentially multiple executions of the behavior going at the same time, and it is ambiguous which execution should receive
streaming tokens.

See semantics of Action and ActivityParameterNode.

Notation

See notation at Pin and ActivityParameterNode. The notation in class diagrams for exceptions and streaming parameters
on operations has the keywords “exception” or “stream” in the property string. See notation for Operation.

Examples

See examples at Pin and ActivityParameterNode.

Rationale

Parameter (in Activities) is extended to support invocation of behaviors by activities.

Changes from previous UML

Parameter (in Activities) isnew in UML 2.0.

UML Superstructure 2.0 Draft Adopted Specification 353

12.3.36 ParameterSet
A parameter set is an element that provides alternative sets of inputs and outputs that a behavior may use.

Description

An parameter set acts as a complete set of inputs and outputs to a behavior, exclusive of other parameter sets on the behavior.

Attributes

None.

Associations (CompleteActivities)

e parameterinSet : ParameterPin[1..*] Parametersin the parameter set.

Constraints

[1] The parametersin a parameter set must all be inputs or all be outputs of the same parameterized entity, and the parameter
set is owned by that entity.

[2] If abehavior has input parameters that are in a parameter set, then any inputs that are not in a parameter set must be
streaming. Same for output parameters.

Semantics

A behavior with input parameter sets can only accept inputs from parameters in one of the sets per execution. A behavior with
output parameter sets can only post outputs to the parameters in one of the sets per execution. The semantics described at
Action and ActivityParameter apply to each set separately.

Notation

Multiple object flows entering or leaving a behavior invocation are typically treated as“and” conditions. However, sometimes
one group of flows are permitted to the exclusion of another. Thisis modeled as parameter set and notated with rectangles
surrounding one or more pins. The notation in the figure below expresses a digunctive normal form where one group of “and”
flows are separated by “or” groupings. For input, when one group or another has a complete set of input flows, the activity
may begin. For output, based on the internal processing of the behavior, one group or other of output flows may occur.

i

J

Figure 278 - Alternative input/outputs using parameter sets notation

354 UML Superstructure 2.0 Draft Adopted Specification

Examples

In the figure below, the Ship Item activity begins whenever it receives a bought item or a made item. The diagram on the | eft
uses a decision diamond; the one on the left uses parameter sets to express the same notion. The example at the bottom of the
figureisasimilar simplification of the Trouble Ticket example earlier.

Using parameter setsto express*“ or” invocation

[problem statement rectified]

[cannot

Communicatd
Results

Audit and
Record

Figure 279 - Example of alternative input/outputs using parameter sets

Trouble Ticket example using parameter sets.

Rationale

Parameter sets provide away for behaviors to direct token flow in the activity which invokes those behaviors.

Changes from previous UML

ParameterSet isnew in UML 2.0.
12.3.37 Pin

A pinisan object node for inputs and outputs to actions.

Description

Pins are connected as inputs and outputs to actions. They provide values to actions and accept result values from them.

UML Superstructure 2.0 Draft Adopted Specification 355

Attributes

None.

Associations

None.

Constraints

[1] If the action is an invocation action, the number and types of pins must be the same as the number of parameters and
types of the invoked behavior or behavioral feature. Pins are matched to parameters by order.

See constraints on ObjectFlow.

Semantics

A pin represents an input to an action or an output from an action. The definition on an action assumes that pins are ordered
(although names are usually sufficient in the notation to disambiguate pins, so the ordering is rarely shown in the notation).

Notation

Pin rectangles may be notated as small rectangles that are attached to action rectangles. See figure below and examples. The
name of the pin can be displayed near the pin. The nameis not restricted, but it is often just shows the type of object or data
that flows through the pin. It can also be afull specification of the corresponding behavior parameter for invocation actions,
using the same notation as parameters for behavioral features on classes. The pins may be elided in the notation even though
they are present in the model.

name name

) (F

Input pin Output pin

Figure 280 - Pin notations

The situation in which the output pin of one action is connected to the input pin of the same name in another action may be
shown by the optional notations of Figure 281. The standalone pin in the notation maps to an output pin and an input pinin the
underlying model. This form should be avoided if the pins are not of the same type. These variations in notation assume the
UML 2.0 Diagram Interchange RFP supports the interchange of diagram elements and their mapping to model elements, so
that the chosen variation is preserved on interchange.

356 UML Superstructure 2.0 Draft Adopted Specification

O
o

Figure 281 - Standalone pin notations

See ObjectNode for other notations applying to pins, with examples for pins below.

(CompleteActivities) To show streaming, atext annotation is placed near the pin symbol: { stream} or { nonstream} . See figure
below. The notation is the same for a standal one object node. Nonstream is the default where the notation is omitted.

name name
{ stream\ / { stream} [state] [state]
)
{ stream} { stream}
Sandal one object node,, Input pin, Output pin,
streaming on both end streaming streaming

Figure 282 - Stream pin notations

(CompleteActivities) Pins for exception parameters are indicated with a small triangle annotating the source end of the edge
that comes out of the exception pin. The notation is the same even if the notation uses a standal one notation. See figure below.

UML Superstructure 2.0 Draft Adopted Specification 357

()

Output pin, pin style, exception

O

Input and output pin, standalone style, exception

Figure 283 - Exception pin notations
See ObjectNode for other notations applying to pins, with examples for pins below.

Presentation Option

When edges are not present to distinguish input and output pins, an optional arrow may be placed inside the pin rectangle, as
shown below. Input pins have the arrow pointing toward the action and output pins have the arrow pointing away from the
action.

. .

Input pin, ~ Output pin,
pin-style, with arrow pin-style, with arrow

Figure 284 - Pin notations, with arrows
(CompleteActivities) Additional emphasis may be added to streaming parameters by using a graphical notation instead of the

textual adornment. Object nodes can be connected with solid arrows contained filled arrowheads to indicate streaming. Pins
can be shown asfilled rectangles. When combined with the option above, the arrows are shown as normal arrowheads.

358 UML Superstructure 2.0 Draft Adopted Specification

name name

[state]
hET SO |
[state]

Input and output pin, Input pin, Output pin,
stand-alone style, streaming on both ends pin-style, streaming pin-style, streaming

Figure 285 - Stream pin notations, with filled arrows and rectangles

Examples

In the example below, the pin named “ Order” represents Order objects. In this example at the upper left, the Fill Order
behavior produces filled orders and Ship Order consumes them and an invocation of Fill Order must complete for Ship Order
to begin. The pin symbols have been elided from the actions symbols; both pins are represented by the single box on the arrow.
The example on the upper right shows the same thing with explicit pin symbols on actions. The example at the bottom of the
figureillustrates the use of multiple pins.

Fill Shi p Order Order
Fill Ship
Order Order
Order

M gteri as

Pick \Picked]
Materids
for Order

Figure 286 - Pin examples

In the figure below, the object node rectangle Order is linked to a class diagram that further defines the node. The class
diagram shows that filling an order requires order, lineitem, and the customer’ s trim-and-finish requirements. An Order token
isthe object flowing between the Accept and Fill activities, but linked to other objects. The activity without the class diagram

UML Superstructure 2.0 Draft Adopted Specification 359

provides asimplified view of the process. The link to an associated class diagram is used to show more detail.

Accept Fill

Object node

rectangle linked

with aclass diagram
Order
Line Trim &
Item Finish

Figure 287 - Linking a class diagram to an object node

(CompleteActivities) In the example below Order Filling is a continuous behavior that periodically emits (streams out) filled-
order objects, without necessarily concluding as an activity. The Order Shipping behavior is also a continuous behavior that
periodically receivesfilled-order objects as they are produced. Order Shipping isinvoked when the first order arrives and does
not terminate, processing orders as they arrive.

Order
Filling

{ stream}

Order

[Filled] i

Order

Filling Shipping
{ stream}

Order

[Filled] tstream}

Figure 288 - Pin examples
(CompleteActivities) Examples of exception notation is shown at the top of the figure below. Accept Payment normally

completes with a payment as being accepted and the account is then credited. However, when something goes wrong in the
acceptance process, an exception can be raised that the payment is not valid, and the payment is rejected.

360 UML Superstructure 2.0 Draft Adopted Specification

Rejected Send
Payment | Rejection
Accepted Credit
Payment Account

(CompleteActivities) The figure below shows two exampl es of selection behavior. Both examplesindicate that orders areto be
shipped based or order priority—and those with the same priority should be filled on afirst-in/first-out (FIFO) basis.

Order Fill Ship
Ord
e Fied Orcr
Fill
Order : Order

[Filled]

<SJection» ' .
FIFO within | «selection»
Order Priority FIFO within

Order Priority

Credit
Account

Figure 289 - Exception pin examples

Figure 290 - Specifying selection behavior on an Object flow

Rationale

Pins are introduced to model inputs and outputs of actions.

Changes from previous UML

Pinis new to activity modeling in UML 2.0. It replaces pins from UML 1.5 action model.
12.3.38 StructuredActivityNode

(StructuredActivities) A structured activity node is an executable activity node that may have an expansion into subordinate
nodes as an ActivityGroup. The subordinate nodes must belong to only one structured activity node, although they may be
nested.

Description

A structured activity node represents a structured portion of the activity that is not shared with any other structured node,
except for nesting. It may have control edges connected to it, and pinsin CompleteStructuredActivities. The execution of any
embedded actions may not begin until the structured activity node has received its object and control tokens. The availability
of output tokens from the structured activity node does not occur until all embedded actions have completed execution.

(CompleteStructuredActivities) Because of the concurrent nature of the execution of actionswithin and across activities, it can

UML Superstructure 2.0 Draft Adopted Specification 361

be difficult to guarantee the consistent access and modification of object memory. In order to avoid race conditions or other
concurrency-related problems, it is sometimes necessary to isolate the effects of a group of actions from the effects of actions
outside the group. This may beindicated by setting the mustlsolate attribute to true on a structured activity node. If a
structured activity node is “isolated,” then any object used by an action within the node cannot be accessed by any action
outside the node until the structured activity node as awhole completes. Any concurrent actions that would result in accessing
such objects are required to have their execution deferred until the completion of the node.

Note — Any required isolation may be achieved using a locking mechanisms, or it may simply sequentialize execution to
avoid concurrency conflicts. Isolation is different from the property of “atomicity”, which is the guarantee that a group of
actions either all complete successfully or have no effect at al. Atomicity generally requires a rollback mechanism to prevent
committing partial results.

Attributes

None.

Associations

e variable: Variable[0..*] A variable defined in the scope of the structured activity node. It has no value and may not
be accessed outside the node.

Constraints

[1] The edges owned by a structured node must have source and target nodes in the structured node.

Semantics

Nodes and edges contained by a structured node cannot be contained by any other structured node. This constraint is modeled
as aspecialized multiplicity from ActivityNode and ActivityEdge to StructuredActivityNode. See children of
StructuredActivityNode.

No subnode in the structured node may begin execution until the node itself has consumed a control token. A control flow
from a structured activity node implies that atoken is produced on the flow only after no tokens are |eft in the node or its
contained nodes recursively.

(CompleteStructuredActivities) An object node attached to a structured activity node is accessible within the node. The same
rules apply as for control flow. An input pin on a structured activity node implies that no action in the node may begin
execution until all input pins have received tokens. An output pin on a structured activity node will make tokens available
outside the node only after no tokens I eft in the node or its contained nodes recursively.

Notation

A structured activity node is notated with a dashed round cornered rectangle enclosed its nodes and edges, with the keyword
«structured» at the top. Also see children of StructuredActivityNode.

Examples

See children of StructuredActivityNode.

Rationale

StructuredActivityNode is for applications that require well-nested nodes. It provides well-nested nodes that were enforced by
strict nesting rulesin UML 1.5.

362 UML Superstructure 2.0 Draft Adopted Specification

Changes from previous UML

StructuredActivityNode is new in UML 2.0.
12.3.39 ValuePin

A value pinisaninput pin that provides a value to an action that does not come from an incoming object flow edge.

Attributes

None.

Associations
e vaue: VaueSpecification [1..1] Va ue that the pin will provide.

Constraints

[1] Value pins have no incoming edges.

[2] Thetype of value specification must be compatible with the type of the value pin.
Semantics

ValuePins provide values to their actions, but only when the actions are otherwise enabled. If an action has no incoming edges
or other way to start execution, avalue pin will not start the execution by itself or collect tokens waiting for execution to start.
When the action is enabled by these other means, the value specification of the value pinis evaluated and the result provided
as input to the action, which begins execution. Thisis an exception to the normal token flow semantics of activities.

Notation

A value pin is nhotated as an input pin with the value specification written beside it.
Examples

Rationale

ValuePin isintroduced to reduce the size of activity models that use constant values.

Changes from UML 1.5
ValuePin replaces Literal ValueAction from UML 1.5.

12.3.40 Variable

(StructuredActivities) Variables are elements for passing data between actionsindirectly. A local variable stores values shared
by the actions within a structured activity group but not accessible outside it. The output of an action may be writtento a
variable and read for the input to a subsequent action, which is effectively an indirect data flow path. Because thereisno
predefined relationship between actions that read and write variables, these actions must be sequenced by control flows to
prevent race conditions that may occur between actions that read or write the same variable.

Description

A variable specifies data storage shared by the actions within a group. There are actionsto write and read variables. These
actions are treated as side effecting actions, similar to the actions to write and read object attributes and associations. There are

UML Superstructure 2.0 Draft Adopted Specification 363

no sequencing constraints among actions that access the same variable. Such actions must be explicitly coordinated by control
flows or other constraints.

Any values contained by a variable must conform to the type of the variable and have cardinalities allowed by the multiplicity
of the variable.

Associations

None.

Attributes
« scope: StructuredActivityGroup [1] The structured activity group that owns the variable.

Constraints

None.

Semantics

A variable specifies aslot able to hold a value or a sequence of values, consistent with the multiplicity of the variable. The
values held in this slot may be accessed from any action contained directly or indirectly within the group action that isthe
scope of the variable.

Notation

None.

Examples

None.

Rationale

Variables areintroduced to simplify translation of common programming languagesinto activity modelsfor those applications
that do not require object flow information to be readily accessible. However, source programs that set variables only once can
be easily translated to use object flows from the action that determines the values to the actions that use them. Source programs
that set variables more than once can be trandlated to object flows by introducing alocal object containing attributes for the
variables, or one object per variable combined with data store nodes.

Changes from UML 1.5
Variableis unchanged from UML 1.5, except that it is used on StructuredActivityNode instead of GroupNode.

12.4 Diagrams

The focus of activity modeling is the sequence and conditions for coordinating lower-level behaviors, rather than which
classifiers own those behaviors. These are commonly called control flow and object flow models. The behaviors coordinated
by these models can be initiated because other behaviors finish executing, because objects and data become available, or
because events occur external to the flow. Seethe Activity on page -283 metaclass for more introduction and semantic
framework.

The notation for activitiesis optional. A textual notation may be used instead.

The following sections describe the graphic nodes and paths that may be shown in activity diagrams.

364 UML Superstructure 2.0 Draft Adopted Specification

Graphic Nodes

The graphic nodes that can be included in structural diagrams are shown in Table 11.

Table 11 - Graphic nodes included in activity diagrams

NODE TYPE NOTATION REFERENCE
Action : See Action on page -280.
ActivityFinal @ See ActivityFinalNode on page -298.
ActivityNode | See ExecutableNode, ControlN- | See ActivityNode on page -302.

ode, and ObjectNode.
ControlNode See DecisionNode, FinalNode, See ControlNode on page -316.
ForkNode, InitialNode, Join-
Node, and MergeNode.
DataStore ~<dasores See DataStoreNode on page -318 .
DecisionNode ! See DecisionNode on page -319.
FinalNode See ActivityFinal and FlowFinal. | See FinalNode on page -331.
FlowFina ® See FlowFinalNode on page -333.
ForkNode See ForkNode on page -334.
—
InitialNode ® See InitialNode on page -335.

UML Superstructure 2.0 Draft Adopted Specification

365

Table 11 - Graphic nodes included in activity diagrams

NODE TYPE NOTATION REFERENCE
JoinNode = See “JoinNode” on page 338.

MergeNode See “MergeNode” on page 343.

ObjectNode

—>
S
EQ See “ObjectNode” on page 349 and its children.

Graphic Paths

The graphic paths that can be included in structural diagrams are shown in Table 12.

Table 12 - Graphic nodes included in activity diagrams

PATH TYPE REFERENCE
ActivityEdge See Control Flow and Object- See “ActivityEdge” on page 293.
Flow.
ControlFlow : : See “ControlFlow” on page 315.
ObjectFlow

See “ObjectFlow” on page 344 and its children.

366 UML Superstructure 2.0 Draft Adopted Specification

Other Graphical Elements

Activity diagrams have graphical elementsfor containment. These are included in Table 13.

Table 13 - Graphic nodes included in activity diagrams

TYPE

NOTATION

REFERENCE

Activity

Activity name ™\
Parameter name: type

()
=

J

See “Activity” on page 283.

ActivityPartition

Partition Name

(Partition Name)
invocation

See “ActivityPartition” on
page 307.

InterruptibleActivityRegion

See “InterruptibleActivityRegion
on page 336.

ExceptionHandler

See “ExceptionHandler” on
page 322.

ExpansionRegion

“ExpansionRegion” on page 325

UML Superstructure 2.0 Draft Adopted Specification

367

Table 13 - Graphic nodes included in activity diagrams

0
]
[
[
[

«Jocal Postcondition» |§|

constraint

TYPE NOTATION REFERENCE
Local pre- and postconditions. See “Action” on page 280.
«local Precondition»
constraint

ParameterSet

See * ParameterSet” on page 354.

368

UML Superstructure 2.0 Draft Adopted Specification

13 Common Behaviors

13.1 Overview

The Common Behaviors packages specify the core concepts required for dynamic elements and provides the
infrastructure to support more detailed definitions of behavior. Figure 306 shows a domain model explaining the
relationship between occurrences of behaviors.

Note — The models shown in Figure 306 through Figure 310 are not metamodel s but show objects in the semantic domain and
relationships between these objects. These models are used to give an informal explication of the dynamic semantics of the
classes of the UML metamodel.

BehaviorOccurrence

+execution ﬁ

Object +host , | BehaviorExecution BehaviorEmergence
1

+invoker *
+participant | 1..* *

1

Figure 306 - Common Behaviors Domain Model

Any behavior is the direct consequence of the action of at least one object. A behavior describes how the states of these
objects, as reflected by their structural features, change over time. Behaviors, as such, do not exist on their own, and they
do not communicate. If a behavior operates on data, that data is obtained from the host object. (Note that an executing
behavior may itself be an object, however.)

There are two kinds of behaviors, emergent behavior and executing behavior. An executing behavior is performed by an
object (its host) and is the description of the behavior of this object. An executing behavior is directly caused by the
invocation of a behavioral feature of that object or by its creation. In either case, it is a consequence of the execution of
an action by some related object. A behavior has access to the structural features of its host object. Objects that may host
behaviors are specified by the concrete subtypes of the BehavioredClassifier metaclass.

Emergent behavior results from the interaction of one or more participant objects. If the participating objects are parts of
alarger composite object, an emerging behavior can be seen as indirectly describing the behavior of the container object
also. Nevertheless, an emergent behavior is simply the sum of the executing behaviors of the participant objects.

Occurring behaviors are specified by the concrete subtypes of the abstract Behavior metaclass. Behavior specifications
can be used to define the behavior of an object, or they can be used to describe or illustrate the behavior of an object. The
latter may only focus on a relevant subset of the behavior an object may exhibit (allowed behavior), or it may focus on
behavior an object must not exhibit (forbidden behavior).

Albeit behavior is ultimately related to an object, emergent behavior may also be specified for non-instantiable classifiers,
such as interfaces or collaborations. Such behaviors describe the interaction of the objects that realize the interfaces or the
parts of the collaboration (see “Collaboration (from Collaborations)” on page 157).

UML Superstructure 2.0 Draft Adopted Specification 369

BasicBehaviors

The BasicBehaviors subpackage of the Common Behavior package introduces the framework that will be used to specify
behaviors. The concrete subtypes of Behavior will provide different mechanisms to specify behaviors. A variety of
specification mechanisms are supported by the UML, such as automata (“ StateMachine (from BehaviorStatemachines)”
on page 489), Petri-net like graphs (“Activity (from BasicBehaviors)” on page 378), informal descriptions (“UseCase
(from UseCases)” on page 519), or partially-ordered sequences of events (“Interaction (from Basiclnteraction,
Fragments)” on page 419). Profiles may introduce additional styles of behavioral specification. The styles of behavioral
specification differ in their expressive power and domain of applicability. Further, they may specify behaviors either
explicitly, by describing the observable events resulting from the occurrence of the behavior, or implicitly, by describing
a machine that would induce these events. The relationship between a specified behavior and its hosting or participating
instances is independent of the specification mechanism chosen and described in the common behavior package. The
choice of specification mechanism is one of convenience and purpose; typically, the same kind of behavior could be
described by any of the different mechanisms. Note that not all behaviors can be described by each of the different
specification mechanisms, as these do not all have the same expressive power. However, for many behaviors, the choice
of specification mechanism is one of convenience.

As shown in the domain model of Figure 307, the execution of a behavior may be caused by a call behavior event
(representing the direct invocation of a behavior through an action) or a trigger event (representing an indirect invocation
of a behavior, such as through an operation call). A start event marks the beginning of a behavior execution, while its
completion is accompanied by atermination event.

Object

+host 1

Temination Event +execution | *
1 1
- BehaviorExecution | +effect +cause
+finish Event
Start Event 1 1 0.1 1
+start / R
Trigger Event CallBehaviorEvent

Figure 307 - Invocation Domain Model

Communications

The Communications subpackage of the Common Behavior package adds the infrastructure to communicate between
objects in the system and to invoke behaviors. The domain model shown in Figure 308 explains how communication
takes place. Note that this domain model specifies the semantics of communication between objects in a system. Not all
aspects of the domain model are explicitly represented in the specification of the system but may be implied by the
dynamic semantics of the constructs used in a specification.

An action representing the invocation of a behaviora feature is executed by a sender object resulting in an invocation

event occurring. The invocation event may represent the sending of asignal or the call to an operation. As aresult of the
invocation event, arequest is generated. A request is an object capturing the data that was passed to the action causing the
invocation event (the arguments which must match the parameters of the invoked behavioral feature), information about

370 UML Superstructure 2.0 Draft Adopted Specification

the nature of the request (i.e., the behavioral feature that was invoked), the identities of the sender and receiver objects, as
well as sufficient information about the behavior execution to enable the return of a reply from the invoked behavior,
where appropriate. (In profiles, the request object may include additional information, for example, a time stamp.)

While each request is targeted at exactly one receiver object and caused by exactly one sending object, an invocation
event may result in a number of requests being generated (asin a signal broadcast). The receiver may be the same object
that is the sender, it may be local (i.e., an object held in aslot of the currently executing object, or the currently executing
object itself, or the object owning the currently executing object), or it may be remote. The manner of transmitting the
request object, the amount of time required to transmit it, the order in which the transmissions reach their receiver objects,
and the path for reaching the receiver objects are undefined. Once the generated request arrives at the receiver object, a
receiving event will occur.

Object
Invocation Event | sendEvent +message Request +message +receiveEvent| Receiving Event
1 1.x 1 1
+event | = * * * *

+sender |1 1 |+receiver

) +sender -)

+execution | 1 1 Object +receiver
BehaviorExecution 1
* +execution +host 1

Figure 308 - Communication Domain Model

Several kinds of requests exist between instances, for example, sending a signal or invoking an operation. The kind of
request is determined by the kind of invocation event that caused it, as shown in Figure 309. The former is used to trigger
areaction in the receiver in an asynchronous way and without a reply, while the latter applies an operation to an instance,
which may be either synchronously or asynchronously and may require a reply from the receiver to the sender. A send
invocation event creates a send request and causes a signal event in the receiver. A call invocation event creates a call
request and causes a call event in the receiver.

UML Superstructure 2.0 Draft Adopted Specification 371

SendInvocation SendRequest Signal Event

Event
47 +message 1 —
Invocation Event | +S€ndEvent 1 Request Receiving Event
1 +message 1 +receiveEvent

Callinvocation Ewvent CallRequest Call Event

Figure 309 - Domain Model Showing Request Kinds

Invocation events are specified by various kinds of actions (see Chapter 5, “Actions”). A send request is specified by a
Signal (see “Signal” on page 395). A call request is derived from the operation associated with the specification of the
call invocation event. Signal events and call events are specified by the corresponding metaclasses (see “ Signal Trigger”
on page 396 and “CallTrigger” on page 385).

As shown in Figure 308, the invocation event that eventually will lead to a behavior invocation which itself occurs within
the context of a behavior execution, isin turn hosted by an object. In case of an operation invocation, the invoked
behavior will be able to reply to the action in virtue of having knowledge of this behavior execution.

Receiving events may cause a behavioral response. For example, a statemachine may transition to a new state upon
detection of atrigger event or an activity may be enabled upon detection of a receiving event. The specific mechanism by
which the data passed with the request (the attributes of the request object) are made available as arguments to the
invoked behavior (e.g., whether the data or copies are passed with the request) is a semantic variation point. The behavior
will be executed in the context of the receiving object (i.e., the receiving object will host the behavior execution). The
details of identifying the behavior to be invoked in response to the occurrence of an event is a semantic variation point.

The occurrence of spontaneous events may also trigger behaviors: The occurrence of a change event (see
“ChangeTrigger” on page 385) is based on some expression becoming true. A time event occurs when a predetermined
deadline expires (see “TimeTrigger” on page 399). No data is passed by the occurrence of a spontaneous event. Figure
310 shows the hierarchy of such trigger events. The occurrence of trigger events, may also cause the invocation of a
behavior in the context of the containing object. When a trigger event is recognized by an object, it may have an
immediate effect or the event may be saved in an event pool and have a later effect when it is matched by a trigger
specified for a behavior.

372 UML Superstructure 2.0 Draft Adopted Specification

Trigger Event

7

Receiving Event

Spontaneous Event

.

Change Event

Time Event

Figure 310 - Domain Model Showing Event Kinds

SimpleTime

The SimpleTime subpackage of the Common Behavior package adds metaclasses to represent time and durations, as well

as actions to observe the passing of time.

The simple model of time described here is intended as an approximation for situations where the more complex aspects
of time and time measurement can safely be ignored. For example, this model does not account for the relativistic effects
that occur in many distributed systems, or the effects resulting from imperfect clocks with finite resolution, overflows,
drift, skew, etc. It is assumed that applications for which such characteristics are relevant will use a more sophisticated
model of time provided by an appropriate profile.

UML Superstructure 2.0 Draft Adopted Specification

373

13.2 Abstract syntax
Figure 311 shows the dependencies of the CommonBehaviors packages.

]

Kernel
(from Classes)

A
<<merge>>
Interfaces - -
BascBehaviors " -
(from Classes) <<merge>> IntermediateActions
<<merge>> (from Actions)

/7
N L f
<<merge>> \ ‘
]]

Communications Time

Figure 311 - Dependencies of the CommonBehaviors packages

374 UML Superstructure 2.0 Draft Adopted Specification

BasicBehaviors

Classifier
(from Kemel)

BehavioredClassifier

Class
(from Kemel)

BehavioralFeature

isAbstract : Boolean

+ownedBehavior
{ordered, subsets ownedMember}
0.1 {subsets ownedMember} Behavior o1 +paameter
+context * |isReentrant : Boolean
*
+classifierBehavior
0..1 {subsets ownedBehavior}, +/formalParameter
0.1 0.1 {ordered} «
+/returnResult
+specification +method 0.1 {ordered}
0.1 *
*
*
+redefinedBehavior
{subsets redefinedElement} Z}
Activity
body : String
language : String
Figure 312 - Common Behavior
+
- fresult Parameter
OpaqueExpression . 0.1 (from Kernel)
+behavior
Behavior
* 0.1
Figure 313 - Expression
{subsets namespace, subsets context}
Behavior | +precondition Constraint
0.1 {subsets ownedRule} * (from Kemel)
+postcondition
L g
0.1 {subsets ownedRule} *

{subsets namespace, subsets context}

Figure 314 - Precondition and postcondition constraints for behavior

UML Superstructure 2.0 Draft Adopted Specification

Parameter
(from Kernel)

375

Communications

Behavioral Feature BehavioredClassifier
(from BasicBehaviors)

concurrency : CallConcurrencyKind

{subsets feature, %

subsets ownedMember} Class
* 0.1
Reception - <@ isActive : Boolean
0.1 +ownedReception
Signal -
+signal *
* 0.1 Interface
A 4
+ownedReception
{subsets feature,
subsets ownedMember}
Figure 315 - Reception
Classifier
(fromKemel)
*
Signal BehavioralFeature
+raisedException) * |concurrency : CallConcurrencyKind
{redefines raisedException}
0..1 +owningSignal
{subsets namespace, subsets classifier, subsets featuringClassifier}
+ownedAttribute <<enumeration>>
* \|/{ordered, subsets attribute, subsets ownedMember} CallConcurrencyKind
sequential
Property
(from Kermel) guardEd
concurrent

Figure 316 - Extensions to behavioral features and signal

376 UML Superstructure 2.0 Draft Adopted Specification

(from Kernel)

Element ‘

Trigger

MessageTrigger

I

AnyTrigger SignalTrigger CallTrigger
* *
+signal /1 +operation \[/ 1

Signal Operation

(from Kernel)

Figure 317 - Triggers

UML Superstructure 2.0 Draft Adopted Specification

j |

TimeTrigger

ChangeTrigger

isRelative : Boolean

+when | 1 +changeExpression,|, 1

ValueSpecification
(fromKernel)

ValueSpecification
(fromKernel)

{subsets ownedElement {Subsets ownedElement

377

SimpleTime

1 Constraint
TimeTrigger ValueSpecification +max (from Kemel)
(fromKernel) | E—
1
+min -
IntenvalConstraint
Interval r+specification
{redefines specification}
{redefines when}
+when 1 {redefines min}
+min TimeG -
. . i imeConstraint
NamedElement |+event TimeExpression Timelnterval _*specffication
(fromKerrel) firstTime : Boolean = True {redefjnes specification}
0..1
+max
0..2°|" +ewvent +now {redefines max}
{redefinesvalue}
{redefines min}
+min R R R
Duration Durationinternal | +pedfication DurationConstraint
firstTime : Boolean = True {redefines specification}
max
{redefinesvalue} +duration {redefines max}

WriteStructural FeatureAction
(frominternediateActions)

1

TimeObservationAction DurationObservationAction

Figure 318 - SimpleTime

13.3 Class Descriptions
13.3.1 Activity (from BasicBehaviors)
An activity specifies behavior by its body string.

Description

An activity contains a language-specific text string used to describe a computation, and an optional specification of the
language. OCL, natural language, or programming languages may be used to specify an activity.

Attributes

e body: String [0..1] A textual representation of the computation in the surface language determined by the lan-
guage attribute.

e language: String [0..1] Specifies the language in which the body of the activity is stated. The interpretation of the

expression body depends on the language.

Associations

No additional associations.

378 UML Superstructure 2.0 Draft Adopted Specification

Constraints
No additional constraints.

Semantics
The interpretation of the activity body depends on the specified language.

Notation
See “OpaqueExpression (from Kernel)” on page 46.

Changes from UML 1.x
In UML 1.4, the function of the Activity metaclass, as defined in this package, was subsumed by Expression.

13.3.2 AnyTrigger (from Communications)

Description

An AnyTrigger for a given state specifies that the transition is triggered for all applicable message triggers except for
those specified explicitly on other transitions for this state.

Attributes
No additional attributes.

Associations

No additional associations.

Constraints
No additional constraints.

Semantics

An AnyTrigger for a given state specifies that the transition is triggered for all applicable message triggers except for
those specified explicitly on other transitions for this state.

Notation

Any AnyTrigger is denoted by the string “all” used as the trigger.

Changes from UML 1.x
This construct has been added.

13.3.3 Behavior (from BasicBehaviors)

Description

Behavior is a specification of how its context classifier changes state over time. This specification may be either a
definition of possible behavior execution or emergent behavior, or a selective illustration of an interesting subset of
possible executions. The latter form is typically used for capturing examples, such as a trace of a particular execution.

UML Superstructure 2.0 Draft Adopted Specification 379

A classifier behavior is always a definition of behavior and not an illustration. It describes the sequence of state changes an
instance of a classifier may undergo in the course of itslifetime. Its precise semantics depends on the kind of classifier. For
example, the classifier behavior of a collaboration represents emergent behavior of all the parts, whereas the classifier
behavior of aclassisjust the behavior of instances of the class separated from the behaviors of any of its parts.

When a behavior is associated as the method of a behavioral feature, it defines the implementation of that feature; i.e., the
computation that generates the effects of the behavioral feature.

As aclassifier, a behavior can be specialized. Instantiating a behavior is referred to as “invocating” the behavior, an
instantiated behavior is also called a behavior “execution.” A behavior may be invoked directly or its invocation may be
the result of invoking the behavioral feature that specifies this behavior. A behavior can also be instantiated as an object
in virtue of it being a class.

The specification of a behavior can take a number of forms, as described in the subclasses of Behavior. Behavior is an
abstract metaclass factoring out the commonalities of these different specification mechanisms.

When a behavior isinvoked, its execution receives a set of input values that are used to affect the course of execution and
as aresult of its execution it produces a set of output values which are returned, as specified by its parameters. The
observable effects of a behavior execution may include changes of values of various objects involved in the execution, the
creation and destruction of objects, generation of communications between objects, as well as an explicit set of output
values.

Attributes

* isReentrant: Boolean [1] Tells whether the behavior can be invoked whileit is still executing from a previous invo-
cation.

Associations

e gpecification: BehavioralFeature[0..1]
Designates a behavioral feature that the behavior implements. The behavioral feature
must be owned by the classifier that owns the behavior or be inherited by it. The param-
eters of the behavioral feature and the implementing behavior must match. If a behavior
does not have a specification, it is directly associated with a classifier (i.e., it isthe
behavior of the classifier asawhole).

e context: BehavioredClassifier [0..1]
The classifier owning the behavior. The features of the context classifier aswell asthe ele-
ments visible to the context classifier are visible to the behavior.

e parameter: Parameter References alist of parameters to the behavior which describes the order and type of
arguments that can be given when the behavior is invoked and of the values which will
be returned when the behavior completes its execution. (Specializes Namespace.owned-
Member.)

e [formalParameter: Parameter Referencesalist of parameters to the behavior which describes the order and type of
arguments that can be given when the behavior isinvoked. Derived from Behav-
ior.parameter by omitting those parameters who have direction=return.

< [returnedResult: ReturnResult References a sequence of parameters to the behavior which describes the order and type
of values that will be returned when the behavior terminates. Derived from Behav-
ior.parameter by selecting those parameters who have direction=return.

« redefinedBehavior: Behavior References abehavior that this behavior redefines. A subtype of Behavior may redefine
any other subtype of Behavior. If the behavior implements a behavioral feature, it replaces

380 UML Superstructure 2.0 Draft Adopted Specification

the redefined behavior. If the behavior is a classifier behavior, it extends the redefined
behavior.

e precondition; Constraint An optional set of Constraints specifying what must be fulfilled when the behavior is
invoked. (Specializes Namespace.constraint and Constraint.context.)

e postcondition: Constraint An optiona set of Constraints specifying what is fulfilled after the execution of the behav-
ior is completed, if its precondition was fulfilled before its invocation. (Specializes
Namespace.constraint and Constraint.context.)

Constraints
[1] The parameters of the behavior must match the parameters of the implemented behavioral feature.

[2] Theimplemented behavioral feature must be afeature (possibly inherited) of the context classifier of the behavior.

[3] If theimplemented behavioral feature has been redefined in the ancestors of the owner of the behavior, then the behavior
must realize the latest redefining behavioral feature.

[4] There may be at most one behavior for a given pairing of classifier (as owner of the behavior) and behavioral feature (as
specification of the behavior).

Semantics

The detailed semantics of behavior is determined by its subtypes. The features of the context classifier and elements that
are visible to the context classifier are also visible to the behavior, provided that is allowed by the visibility rules.

When a behavior is invoked, its attributes and parameters (if any) are created and appropriately initialized. Upon
invocation, the arguments of the original invocation action are made available to the new behavior execution
corresponding to its formal parameters, if any. When a behavior completes its execution, a value or set of values is
returned corresponding to each return result parameter, if any. If such a parameter has a default value associated and the
behavior does not explicitly generate a value for this parameter, the default value describes the value that will be returned
corresponding to this parameter. If the invocation was synchronous, any return values from the behavior execution are
returned to the original caller, which is unblocked and allowed to continue execution

The behavior executes within its context object, independently of and concurrently with any existing behavior executions.
The object which is the context of the behavior manages the input pool holding the events to which a behavior may
respond (see BehavioredClassifier on page 383). As an object may have a number of behaviors associated, all these
behaviors may access the same input pool. The object ensures that each event on the input pool is consumed by only one
behavior.

When a behavior is instantiated as an object, it is its own context.

Semantic Variation Points

The means by which requests are transported to their target depend on the type of requesting action, the target, the
properties of the communication medium, and numerous other factors. In some cases, this is instantaneous and compl etely
reliable while in others it may involve transmission delays of variable duration, 1oss of requests, reordering, or
duplication. (See also the discussion on page 371.)

How the parameters of behavioral features or a behavior match the parameters of a behavioral feature is a semantic
variation point (see Behavioral Feature on page 382).

Notation

None.

UML Superstructure 2.0 Draft Adopted Specification 381

Changes from UML 1.x

This metaclass has been added. It abstracts the commonalities between the various ways that behavior can be
implemented in the UML. It allows the various ways of implementing behavior (as expressed by the subtypes of
Behavior) to be used interchangeably.

13.3.4 BehavioralFeature (from BasicBehaviors, Communications, specialized)

Description

A behavioral feature is implemented (realized) by a behavior. A behavioral feature specifies that a classifier will respond
to a designated request by invoking its implementing method.

Attributes

BasicBehaviors

e isAbstract: Boolean If true, then the behavioral feature does not have an implementation, and one must be
supplied by a more specific element. If false, the behavioral feature must have an imple-
mentation in the classifier or one must be inherited from a more general element.

Communications

e concurrency: CallConcurrencyKind
Specifies the semantics of concurrent calls to the same passive instance (i.e., an instance
originating from a class with isActive being false). Active instances control access to
their own behavioral features.

Associations

BasicBehaviors

¢ method: Behavior A behavioral description that implements the behavioral feature. There may be at most
one behavior for aparticular pairing of a classifier (as owner of the behavior) and a behav-
ioral feature (as specification of the behavior).

Communications

e raisedException: Signal The signals that the behavioral feature raises as exceptions. (Specializes Behavioral Fea-
ture.raisedException.)

Constraints
No additional constraints.

Semantics

The invocation of a method is caused by receiving a request invoking the behavioral feature specifying that behavior. The
details of invoking the behavioral feature are defined by the subclasses of Behavioral Feature.

382 UML Superstructure 2.0 Draft Adopted Specification

Semantic Variation Points

How the parameters of behavioral features or a behavior match the parameters of a behavioral feature is a semantic
variation point. Different languages and methods rely on exact match (i.e., the type of the parameters must be the same),
co-variant match (the type of a parameter of the behavior may be a subtype of the type of the parameter of the behavioral
feature), contra-variant match (the type of a parameter of the behavior may be a supertype of the type of the parameter of
the behavioral feature), or a combination thereof.

Changes from UML 1.x
The metaattributes isLeaf and isRoot have been replaced by properties inherited from RedefinableElement.

13.3.5 BehavioredClassifier (from BasicBehaviors)

Description

A classifier can have behavior specifications defined in its namespace. One of these may specify the behavior of the
classifier itself.

Attributes
No additional attributes.

Associations

¢ ownedBehavior: Behavior References behavior specifications owned by a classifier. (Specializes Namespace.owned-
Member.)

» classifierBehavior: Behavior [0..1]
A behavior specification that specifies the behavior of the classifier itself. (Specializes
BehavioredClassifier.ownedBehavior.)

Constraints

If abehavior is classifier behavior, it does not have a specification.

Semantics

The behavior specifications owned by a classifier are defined in the context of the classifier. Consequently, the behavior
specifications may reference features of the classifier. Any invoked behavior may, in turn, invoke other behaviors visible
to its context classifier. When an instance of a behaviored classifier is created, its classifier behavior is invoked.

When an event is recognized by an object that is an instance of a behaviored classifier, it may have an immediate effect
or the event may be saved for later triggered effect. An immediate effect is manifested by the invocation of a behavior as
determined by the event. A triggered effect is manifested by the storage of the event in the input event pool of the object
and the later consumption of the event by the execution of an ongoing behavior that reaches a point in its execution at
which a trigger matches the event in the pool. At this point, a behavior may be invoked as determined by the event.

When an executing behavior owned by an object comes to a point where it needs a trigger to continue its execution, the
input pool is examined for an event that satisfies the outstanding trigger or triggers. If an event satisfies one of the
triggers, the event is removed from the input pool and the behavior continues its execution, as specified. Any data
associated with the event are made available to the triggered behavior.

UML Superstructure 2.0 Draft Adopted Specification 383

Semantic Variation Points

It is a semantic variation whether one or more behaviors are triggered when an event satisfies multiple outstanding triggers.

If an event in the pool satisfies no triggers at a wait point, it is a semantic variation point what to do with it.

The ordering of the events in the input pool is a semantic variation.

Notation

See “Classifier (from Kernel, Dependencies, PowerTypes)” on page 61.

Changes from UML 1.x

In UML 1.4, there was no separate metaclass for classifiers with behavior.

13.3.6 CallConcurrencyKind (from Communications)

Description

CallConcurrencyKind is an enumeration with the following literals:

e sequentia

e guarded

. concurrent

Attributes
No additional attributes.

Associations

No additional associations.

Constraints
No additional constraints.

Semantics

Not applicable.

Notation
None.

Changes from UML 1.x
None.

384

No concurrency management mechanism is associated with the operation and, therefore,
concurrency conflicts may occur. Instances that invoke a behavioral feature need to coor-
dinate so that only one invocation to atarget on any behavioral feature occurs at once.

Multiple invocations of a behavioral feature may occur simultaneously to one instance,
but only one is allowed to commence. The others are blocked until the performance of
the first behavioral feature is complete. It is the responsibility of the system designer to
ensure that deadlocks do not occur due to simultaneous blocks.

Multiple invocations of a behavioral feature may occur simultaneously to one instance
and all of them may proceed concurrently.

UML Superstructure 2.0 Draft Adopted Specification

13.3.7 CallTrigger (from Communications)

A call trigger specifies that a given behavior execution may be triggered by a call event.

Description

A call trigger represents the reception of a reguest to invoke a specific operation and specifies a call event. A call event
is distinct from the call action that caused it. A call event may cause the invocation of a behavior that is the method of the
operation referenced by the call request, if that operation is owned or inherited by the classifier that specified the receiver
object.

Attributes
No additional attributes.

Associations

e operation; Operation [1] Designates the operation whose invocation raised the call event that is specified by the
call trigger.

Constraints
No additional constraints.

Semantics

A call trigger specifies that a behavior will be triggered by a call event as caused by the object receiving a call request
from some other object or from itself. The call event may result in the execution of the behavior that implements the
called operation. A call event may, in addition, cause other responses, such as a state machine transition, as specified in
the classifier behavior of the classifier that specified the receiver object. In that case, the additional behavior isinvoked
after the completion of the operation referenced by the call trigger.

A call event makes available any argument values carried by the received call request to all behaviors caused by this
event (such as transition actions or entry actions).

Notation

None.

Changes from UML 1.x
This metaclass replaces CallEvent.

13.3.8 ChangeTrigger (from Communications)
A change trigger specifies that a behavior execution may trigger as the result of a change event.

Description

A change trigger specifies an event that occurs when a Boolean-valued expression becomes true as a result of a change in
value of one or more attributes or associations. A change event is raised implicitly and is not the result of an explicit
action.

UML Superstructure 2.0 Draft Adopted Specification 385

Attributes
No additional attributes.

Associations

e changeExpression: Expression [1]
A Boolean-valued expression that will result in a change event whenever its value
changes from false to true.

Constraints
No additional constraints.

Semantics

Each time the value of the change expression changes from false to true, a change event is generated.

Semantic Variation Points

It is a semantic variation when the change expression is evaluated. For example, the change expression may be
continuously evaluated until it becomes true. It is further a semantic variation whether a change event remains until it is
consumed, even if the change expression changes to false after a change event.

Notation
A change trigger is denoted by a Boolean expression.

Changes from UML 1.x

This metaclass replaces change event.
13.3.9 Class (from Communications, specialized)

Description

A class may be designated as active, i.e., each of its instance having its own thread of control, or passive, i.e., each of its
instance executing within the context of some other object.

A class may also specify which signals the instances of this class handle.

Attributes

e isActive: Boolean Determines whether an object specified by this classis active or not. If true, then the
owning classisreferred to as an active class. If false, then such aclassisreferredtoasa
passive class.

Associations

« ownedReception: Reception Receptions that objects of this class are willing to accept. (Specializes Namespace.owned-
Member and Classifier.feature.)

386 UML Superstructure 2.0 Draft Adopted Specification

Semantics

An active object is an object that, as a direct consegquence of its creation, commences to execute its classifier behavior,
and does not cease until either the complete behavior is executed or the object is terminated by some external object.
(This is sometimes referred to as “the object having its own thread of control”.) The points at which an active object
responds to communications from other objects is determined solely by the behavior of the active object and not by the
invoking object. If the classifier behavior of an active object completes, the object is terminated.

Notation

Presentation options

A class with the property isActive = true can be shown by a class box with an additional vertical bar on either side, as
depicted in Figure 319.

EngineControl

Figure 319 - Active class
13.3.10 Duration (from Time)

Description

A duration defines a value specification that specifies the temporal distance between two time expressions that specify
time instants.

Attributes

e firstTime:Boolean [0..2] If the duration is between times of two NamedElements, there are two Bool ean attributes,
one for the start of the duration and one for the end of the duration. For each of these it
holdsthat firstTimeistrueif the time information is associated with the first point in time
of the NamedElement referenced by event, and falseiif it represents the last point in time
of the NamedElement. If thereis only one NamedElement referenced by event, then this
attribute isirrelevant. The default value istrue.

Associations

e event: NamedElement [0..2] Refersto the specification(s) that describes the starting TimeExpression and the ending
TimeExpression of the Duration. If only one NamedElement is referenced, the durationis
from the first point in time of that NamedElement until the last point in time of that
NamedElement.

Constraints
No additional constraints.

Semantics

A Duration defines a ValueSpecification that denotes some duration in time. The duration is given by the difference in
time between a starting point in time and an ending point in time.

UML Superstructure 2.0 Draft Adopted Specification 387

If the ending point in time precedes the starting point in time the duration will still be positive assuming the starting point
and ending points to swap.

Notation

A Duration is a value of relative time given in an implementaion specific textual format. Often a Duration is a non-
negative integer expression representing the number of "time ticks' which may elapse during this duration.

Changes from UML 1.x
This metaclass has been added.

13.3.11 DurationConstraint (from Time)

Description

A DurationConstraint defines a Constraint that refers to a Durationlnterval.

Attributes
No additional attributes.

Associations

No additional associations.

Constraints
No additional constraints.

Semantics

The semantics of a DurationConstraint is inherited from Constraints.

Notation

A DurationConstraint is shown as some graphical association between a Durationlnterval and the constructs that it
constrains. The notation is specific to the diagram type.

Examples

See example in Figure 320 where the TimeConstraint is associated with the duration of a Message and the duration
between two EventOccurrences.

388 UML Superstructure 2.0 Draft Adopted Specification

DurationConstraint
sd UserAccepted

:User :ACSystem

T

|

|

|

| |
/7 l | CardOut {0..13} |
} } t=now
| |
| |
| |
| |

. . OK
DurationConstraint {t.1+3) Unlock

Figure 320 - DurationConstraint. and other time-related concepts

Changes from UML 1.x
This metaclass has been added.

13.3.12 DurationiInterval (from Time)

Description

A Durationinterval defines the range between two Durations.

Attributes
No additional attributes.

Associations
e min: Duration [1] Refers to the Duration denoting the minimum value of the range.

e max: Duration [1] Refers to the Duration denoting the maximum value of the range.

Constraints
No additional constraints.

Semantics
None.

UML Superstructure 2.0 Draft Adopted Specification 389

Notation

A Durationinterval is shown using the notation of Interval where each value specification element is a
DurationExpression.

13.3.13 DurationObservationAction (from Time)

Description
A DurationObservationAction defines an action that observes duration in time.

Attributes
No additional attributes.

Associations
e duration: Duration[1] represent the measured Duration

Constraints
No additional constraints.

Semantics

A DurationObservationAction measures a duration during a trace at runtime.

Notation
A Duration is depicted by text in the expression language used to denote a time value. It may be possible that a duration
contains arithmetic operators.

A duration observation is when a duration is assigned to a write-once variable. The duration observation is associated
with two NamedElements with lines.
durationobservation ::= write-once-attribute=duration

Examples

See example in Figure 321 where the duration observation records the duration of a message, i.e., the time between the
sending and the reception of that message.

Duration
in a duration observation
of a Message

Code d=duration

Figure 321 - Duration observation

Changes from UML 1.x
This metaclass has been added.

390 UML Superstructure 2.0 Draft Adopted Specification

13.3.14 Interface (from Communications, specialized)

Description

Adds the capability for interfaces to include receptions (in addition to operations).

Associations

e ownedReception: Reception Receptions that objects providing this interface are willing to accept. (Subsets

Namespace.ownedMember and Classifier.feature.)
13.3.15 Interval (from Time)

Description

An Interval defines the range between two value specifications.

Attributes
No additional attributes.

Associations
e min: ValueSpecification[1] Refers to the Val ueSpecification denoting the minimum value of the range.

« max: ValueSpecification[l] Refersto the ValueSpecification denoting the maximum value of the range.

Constraints
No additional constraints.

Semantics
The semantics of an Interval is always related to Constraints in which it takes part.

Notation

An Interval is denoted textually by two ValueSpecifications separated by “..”:
interval ::= valuespecification-min .. valuespecifi cation-max

Changes from UML 1.x
This metaclass has been added.

13.3.16 IntervalConstraint (from Time)

Description
A IntervalConstraint defines a Constraint that refers to an Interval.

Attributes
No additional attributes.

UML Superstructure 2.0 Draft Adopted Specification

391

Associations
No additional associations.

Constraints
No additional constraints.

Semantics

The semantics of an IntervalConstraint is inherited from Constraint. All traces where the constraints are violated are

negative traces, i.e., if they occur in practice the system has failed.

Notation

An IntervalConstraint is shown as a graphical association between an Interval and the constructs that this Interval

constrains. The concrete form is given in its subclasses.

Changes from UML 1.x
This metaclass has been added.

13.3.17 MessageTrigger (from Communications)

Description

A message trigger specifies the an observable event caused by a either a call or a signal. MessageTrigger is an abstract

metaclass.

Attributes
No additional attributes.

Associations

No additional associations.

Constraints
No additiona constraints.

Semantics

No additional semantics.

Notation
None.

Changes from UML 1.x
The metaclass has been added.

392

UML Superstructure 2.0 Draft Adopted Specification

13.3.18 OpaqueExpression (from BasicBehaviors, specialized)

Description

Provides a mechanism for precisely defining the behavior of an opague expression. An opaque expression is defined by a
behavior restricted to return one result.

Attributes
No additional attributes.

Associations
e behavior: Behavior [0..1] Specifies the behavior of the opaque expression.

e result: Parameter [0..1] Restricts an opagque expression to return exactly one return result. When the invocation of
the opague expression completes, asingle set of valuesis returned to its owner. This asso-
ciation is derived from the single return result parameter of the associated behavior.

Constraints
[1] The behavior must not have formal parameters.

[2] Thebehavior must have exactly one return result parameter.

Semantics

An opaque expression is invoked by the execution of its owning element. Anopague expression does not have formal
parameters and thus cannot be passed data upon invocation. It accesses its input data through elements of its behavioral
description. Upon completion of its execution, a single value or a single set of values is returned to its owner.

13.3.19 Operation (from Communications, as specialized)

Description
On operation may invoke both the execution of method behaviors as well as other behavioral responses.

Semantics

If an operation is not mentioned in a trigger of a behavior owned or inherited by the behaviored classifier owning the
operation, then upon occurrence of a call event (representing the receipt of a request for the invocation of this operation)
aresolution process is performed which determines the method behavior to be invoked, based on the operation and the
data values corresponding to the parameters of the operation transmitted by the request. Otherwise, the call event is
placed into the input pool of the object (see BehavioredClassifier on page 383). If a behavior is triggered by this event, it
begins with performing the resolution process and invoking the so determined method. Then the behavior continues its
execution as specified.

Operations specify immediate or triggered effects (see “BehavioredClassifier” on page 383).

Semantic Variation Points

Resolution specifies how a particular behavior is identified to be executed in response to the invocation of an operation,
using mechanisms such as inheritance. The mechanism by which the behavior to be invoked is determined from an
operation and the transmitted argument data is a semantic variation point. In general, this mechanism may be complicated

UML Superstructure 2.0 Draft Adopted Specification 393

to include languages with features such as before-after methods, delegation, etc. In some of these variations, multiple
behaviors may be executed as a result of a single call. The following defines a simple object-oriented process for this
semantic variation point.

e Object-oriented resolution When acall request is received, the class of the target object is examined for an owned
operation with matching parameters (see “Behaviora Feature” on page 382). If such oper-
ation isfound, the behavior associated as method is the result of the resolution. Otherwise
the parent classifier is examined for a matching operation, and so on up the generalization
hierarchy until amethod is found or the root of the hierarchy is reached. If aclass has mul-
tiple parents, all of them are examined for a method. If amethod is found in exactly one
ancestor class, then that method is the result of theresolution. If amethod isfound in more
than one ancestor class along different paths, then the model isill-formed under this
semantic variation.

If no method by the resolution process, then it is a semantic variation point what is to happen.
13.3.20 Reception (from Communications)

Description

A reception is a declaration stating that a classifier is prepared to react to the receipt of asignal. A reception designates a
signal and specifies the expected behavioral response. The details of handling a signal are specified by the behavior
associated with the reception or the classifier itself.

Attributes
No additional attributes.

Associations
e dignal: Signal [0..1] The signal that this reception handles.

Constraints
[1] A Reception can not be a query.
not self.isQuery
[2] A passive class cannot have receptions.

Semantics

The receipt of asignal instance by the instance of the classifier owning a matching reception will cause the asynchronous
invocation of the behavior specified as the method of the reception. A reception matches a signal if the received signal is
a subtype of the signal referenced by the reception. The details of how the behavior responds to the received signal
depends on the kind of behavior associated with the reception. (For example, if the reception is implemented by a state
machine, the signal event will trigger a transition and subsequent effects as specified by that state machine.)

Receptions specify triggered effects (see “BehavioredClassifier” on page 383).

394 UML Superstructure 2.0 Draft Adopted Specification

Notation
Receptions are shown using the same notation as for operations with the keyword «signal», as shown in Figure 322.

«interface»
IAlarm

«signal» Notify
«signal» Activate

Figure 322 - Showing signal receptions in classifiers

Changes from UML 1.x

None.
13.3.21 Signal (from Communications)

Description

A signal is a specification of type of send request instances communicated between objects. The receiving object handles
the signal instance as specified by its receptions. The data carried by a send request and passed to it by the occurrence of
the send invocation event that caused the request is represented as attributes of the signal instance. A signal is defined
independently of the classifiers handling the signal.

Attributes
No additional attributes.

Associations

No additional associations.

Constraints
No additional constraints.

Semantics

A signal triggers areaction in the receiver in an asynchronous way and without a reply. The sender of a signal will not
block waiting for a reply but continue execution immediately. By declaring a reception associated to a given signal, a
classifier specifies that its instances will be able to receive that signal, or a subtype thereof, and will respond to it with the
designated behavior. An exception is also represented as signal and is typically used to indicate fault situations.

Notation
A signal is depicted by a classifier symbol with the keyword «signal».

Changes from UML 1.x

None.

UML Superstructure 2.0 Draft Adopted Specification 395

13.3.22 SignalTrigger (from Communications)

A signal trigger represents the fact that a behavior may trigger based upon the receipt of an asynchronous signal instance.
A signal event may e.g. cause a state machine to trigger a transition.

Description

A signal event represents the receipt of an asynchronous signal. A signal event may cause a response, such as a state
machine transition as specified in the classifier behavior of the classifier that specified the receiver object, if the signal
referenced by the send request is mentioned in a reception owned or inherited by the classifier that specified the receiver
object.

Attributes
e dignal: Signa [1] The specific signal that is associated with this event.

Associations
No additional associations.

Constraints
No additional constraints.

Semantics

A signal trigger specifies a signal event as caused by an object receiving a send request from some other object or from
itself. A signal event may result in the execution of the behavior that implements the reception matching the received
signal.

A signal event makes available any argument values carried by the received send request to all behaviors caused by this
event (such as transition actions or entry actions).

Semantic Variation Points

The means by which requests are transported to their target depend on the type of requesting action, the target, the
properties of the communication medium, and numerous other factors. In some cases, thisis instantaneous and completely
reliable while in others it may involve transmission delays of variable duration, loss of requests, reordering, or
duplication. (See also the discussion on page 371.)

Notation

See Trigger on page 400.

Changes from UML 1.x
This metaclass replaces SignalEvent.

13.3.23 TimeConstraint (from Time)

Description
A TimeConstraint defines a Constraint that refers to a Timelnterval.

396 UML Superstructure 2.0 Draft Adopted Specification

Attributes
No additional attributes.

Associations

No additional associations.

Constraints
No additional constraints.

Semantics

The semantics of a TimeConstraint is inherited from Constraints. All traces where the constraints are violated are negative
tracesi.e. if they occur in practice the system has failed.

Notation

A TimeConstraint is shown as graphical association between a Timelnterval and the construct that it constrains. Typically
this graphical association is a small line, e.g., between an EventOccurrence and a Timelnterval.

Examples

See example in Figure 323 where the TimeConstraint is associated with the reception of a Message.

TimeConstraint
CardOut {0..13}

Figure 323 - TimeConstraint

Changes from UML 1.x
This metaclass has been added.

13.3.24 TimeExpression (from Time)

Description

A Time Expression defines a value specification that represent a time value.

Attributes

o firstTime:Boolean Trueif the TimeExpression describes the first point in time of the NamedElement refer-
enced by event, in cases where the NamedElement describes something which extendsin

UML Superstructure 2.0 Draft Adopted Specification 397

time. Falseif the TimeExpression describes the last point in time for the referenced
NamedElement.

Associations
e event: NamedElement [0..1] Refersto the specification of the event occurrence that the TimeExpression describes

Constraints
No additional constraints.

Semantics
A TimeExpression denotes a time value.

Notation

A TimeExpression is a value of absolute time given in an implementation specific textual format. Often a TimeExpression
iS a non-negative integer expression representing the number of "time ticks' after some given starting point.

Changes from UML 1.x
This metaclass has been added.

13.3.25 Timelnterval (from Time)

Description

A Timelnterval defines the range between two TimeExpressions.

Attributes
No additional attributes.

Associations

e min:; TimeExpression [1] Refers to the TimeExpression denoting the minimum value of the range
e max: TimeExpression [1] Refers to the TimeExpression denoting the maximum val ue of the range

Constraints
No additional constraints.

Semantics
None.

Notation

A Timelnterval is shown with the notation of Interval where each value specification element is a TimeExpression.

Changes from UML 1.x
This metaclass has been added.

398 UML Superstructure 2.0 Draft Adopted Specification

13.3.26 TimeObservationAction (from Time)

Description

A TimeObservationAction defines an action that observes the current point in time.

Attributes
No additional attributes.

Associations
e now: TimeExpression [1] Represents the current point in time.

Constraints
No additional constraints.

Semantics

A TimeObservationAction is an action that, when executed, returns the current value of time in the context in which it is
executing.

Notation

A TimeExpression is depicted by text in the expression language used to denote a time value. It may be possible that a
time value contains arithmetic operators. The time expression is associated with a NamedElement with aline. A time
observation action assigns a time expression to a write-once attribute.

timeobservation ::= write-once-attribute=now

:ACSystem

TimeObservationAction

t=now

|
|
|
|
|
|
|
|
|
3
OK !
|
|
3
Figure 324 - Time observation

Changes from UML 1.x
This metaclass has been added.

13.3.27 TimeTrigger (from Communications)
A TimeTrigger is atrigger that specifies when atime event will be generated. The time event occurs at the instant when

a specified point in time has transpired.

UML Superstructure 2.0 Draft Adopted Specification 399

Description
A time trigger specifies a time event, which models the expiration of a specific deadline.

Attributes
* isRelative: Boolean Specifies whether it is relative or absolute time.

Associations
e when: TimeExpression [1] Specifies the corresponding time deadline.

Constraints
No additional constraints.

Semantics

The expression specifying the deadline may be relative or absolute. If the time trigger is relative, a starting time must be
defined.

Semantic Variation Points

There may be a variable delay between the time of reception and the time of dispatching of the TimeEvent (e.g., due to

queueing delays).

Notation

A relative time trigger is specified with the keyword ‘ after’ followed by an expression that evaluates to atime value, such
as “after (5 seconds)”. An absolute time trigger is specified as an expression that evaluates to a time value, such as “Jan.
1, 2000, Noon”.

Changes from UML 1.x
This metaclass replaces TimeEvent. The attribute isRelative has been added for clarity.

13.3.28 Trigger (from Communications)
A trigger specifies the an event that may cause the execution of an associated behavior.

Description

A trigger specifies the an event that may cause the execution of an associated behavior. An event is often ultimately
caused by the execution of an action, but need not be. Trigger is an abstract metaclass.

Attributes
No additional attributes.

Associations

e port: Port [*] Optionally specifies the ports at which a communication that caused an event may have
arrived.

400 UML Superstructure 2.0 Draft Adopted Specification

Constraints
No additional constraints.

Semantics

Events may cause execution of behavior, e.g the execution of the effect activity of a transition in a state machine. A
triggers specifies the event that may trigger a behavior execution as well as any constraints on the event to filter out
events not of interest. Based upon the different kinds of events that may trigger behavior execution, triggers are classified
into signal trigger, call trigger, change trigger and time trigger, specifying that a behavior might be triggered by a signal
event, call event, change event, or time event, respectively.

Events are often generated as a result of some action either within the system or in the environment surrounding the
system. Upon their occurrence, events are placed into the input pool of the object where they occurred (see
BehavioredClassifier on page 383). An event is dispatched when it is taken from the input pool and either directly cause
the occurrence of a behavior or are delivered to the classifier behavior of the receiving object for processing. At this
point, the event is considered consumed and referred to as the current event. A consumed event is no longer available for
processing.

Semantic Variation Points

No assumptions are made about the time intervals between event occurrence, event dispatching, and consumption. This
leaves open the possibility of different semantic variations such as zero-time semantics.

It is a semantic variation whether an event is discarded if there is no appropriate trigger defined for them.

Notation

A trigger is denoted by alist of names of the triggering events, followed by an assignment specification:
event-name-list [‘(assignment-specification ‘)’]

where the assignment-specification is a comma separated list of items, where each item may be of the form

- attr-name: thisimplies an implicit assignment of the corresponding parameter of the event to an attribute (with this
name) of the of the context object owning the triggered behavior.

Changes from UML 1.x

The corresponding metaclass in 1.x was Event. In 1.x, events were specified with Parameters. Instead, the data that may
be communicated by an event is accessed via the properties of the specification element defining the event. In UML 2.0,
the term “event” means an occurrence of an event of a particular type, whereasin UML 1.x, that same term indicated the
event type.

UML Superstructure 2.0 Draft Adopted Specification 401

402 UML Superstructure 2.0 Draft Adopted Specification

14 Interactions

14.1 Overview

Interactions are used in a number of different situations. They are used to get a better grip of an interaction situation for
an individual designer or for a group that need to achieve a common understanding of the situation. Interactions are also
used during the more detailed design phase where the precise inter-process communication must be set up according to
formal protocols. When testing is performed, the traces of the system can be described as interactions and compared with
those of the earlier phases.

The Interaction package describes the concepts needed to express Interactions.Depending on their purpose, an interaction
can be displayed in several different types of diagrams: Sequence Diagrams, Interaction Overview Diagrams and
Communication Diagrams. Optional diagram types such as Timing Diagrams and Interaction Tables come in addition.
Each type of diagram provides slightly different capabilities that makes it more appropriate for certain situations.

Interactions are a common mechanism for describing systems that can be understood and produced, at varying levels of
detail, by both professionals of computer systems design, as well as potential end users and stakeholders of (future)
systems.

Typically when interactions are produced by designers or by running systems, the case is that the interactions do not tell
the complete story. There are normally other legal and possible traces that are not contained within the described
interactions. Some projects do, however, request that all possible traces of a system shall be documented through
interactions in the form of e.g. sequence diagrams or similar notations.

The most visible aspects of an Interaction are the messages between the lifelines. The sequence of the messages is
considered important for the understanding of the situation. The data that the messages convey and the lifelines store may
also be very important, but the Interactions do not focus on the manipulation of data even though data can be used to
decorate the diagrams.

In this chapter we use the term trace to mean “ sequence of eventoccurrences’ which corresponds well with common use
in the area of trace-semantics which is a preferred way to describe the semantics of Interactions. We may denote this by
<eventoccurrencel, eventoccurrence2, ...,eventoccurrence-n>. We are aware that other parts of the UML languatge
definition the term “trace” is used also for other purposes.

By interleaving we mean the merging of two or more traces such that the events from different traces may come in any
order in the resulting trace, while events within the same trace retain their order. Interleaving semantics is different from
a semantics where it is perceived that two events may occur at exactly the same time. To explain Interactions we apply an
Interleaving Semantics.

UML Superstructure 2.0 Draft Adopted Specification 403

14.2 Abstract syntax

Package structure

|

Kernel
(from Classes)

<<merge>>/
/

BasdcBehaviors Internal Structures

(from CompositeStructures)

(from CommonBehaviors)

7

\ <<merge>> /

<<me|’ge>> N /

BasicInteractions

-

BasicActivities
(from Activities) 4\
<<merge>> ‘
<<merge>> Fragments

Figure 325 - Dependencies of the Interactions packages

404 UML Superstructure 2.0 Draft Adopted Specification

Basiclnteractions

Behavior

+ragment

NamedElement
(fromKernel)

|

(from BasicBehaviors)

+encl

{ordered .
subsets ownedMember}

InteractionFragment

singInteraction

Interaction

ExecutionOccurrence ‘ EventOccurrence ‘ ‘ Statelnvariant ‘

+invariant 1
{subsets ownedMember}\

Stop Constraint
(from Kernel)

Figure 326 - Interaction. (from Basiclnteractions)

UML Superstructure 2.0 Draft Adopted Specification

405

InteractionFragment

+coweredBy | *

Interaction EventOccurrence

1 ¢+interaction
{subsets namespace}

{redefines covefed} Statelnvariant
+covered
+lifeline } *
{subsets ownedMember} | +cowered « 1 1 efines covered}
+covered
Lifeline NamedElement
(fromKernel)
*
0.1
+represents +discriminator
1 0.1 {subsets ownedElement}
ConnectableElement Expression
(from Intemal Structures) (from Kernel)

Figure 327 - Lifeline (from Basiclnteractions)

406 UML Superstructure 2.0 Draft Adopted Specification

+argurent

/ jeKind : jeKind
messag Messag

NenedHenert

(from Keme)
Interaction
1 ¢ Hirterection
{subsets namespece}
+essage
* | {subsets onnedMerrber}
Message

InteractionFragent

rsendViessage +secBent.
.01
messageSart : MessageSart gr':eloa'\avxage sreceheli

ValueSpecification
(from Keme)) *

<<enumeraiion>>
Messagekind
compete
lost

<<enumeratior>>
MessageSart
synchCall
sychSigrel

asychSigndl

0.1 0.1 0.1

+oomectar | 0.1 tSigreurg, 0.1

Comector NenecHenert
(fram De i

waﬂer@)
i
BwentOccurrence # i
1 .| GenerdlOrdering
1 *
Hafter +toBefor

[,

+inish 1 |+stat

*| +inishbec *| +startbec

Execui mCcaurerce

“+behavior

|:|
(omBesicBeis)

Figure 328 - Messages (from Basiclnteractions)

UML Superstructure 2.0 Draft Adopted Specification

407

Fragments

+fragment -
{ordered} InteractionFragment
(from BasicInteractions)
*
+enclosingOperand
{subsets namespace} L 1
X +operand
InteractionOperand |{subsets ownedMember} CombinedFragment Continuation
1.* O..T interactionOperator : InteractionOperat...| |setting : Boolean = True
1
<<enumeration>>
InteractionOperator
seq
0.1 {subsets ownedElement} alt
"7\ +guard opt
{subsets ownedElement} break
InteractionConstraint +maxint 0.1} valueSpecification
(from Kemel) pa{
strict
+minint 0.. loop
{subsets ownedElement} region
v neg
Constraint gssert
(from Kernel) Ignor_e
consider

Figure 329 - CombinedFragments (from Fragments)

MessageEnd

fromBasicinteractions)

\
A

+actualGate Gate

InteractionOccurrence | {subsets ownedMember}

*

0.1
+cfragmentGate
CombinedFragment subsets ownedMember}
*
0.1
+formalGate

nteraction {subsets ownedMember}

*

0.1

Figure 330 - Gates (from Fragments)

408 UML Superstructure 2.0 Draft Adopted Specification

InteractionFragment
(from BasiclInteractions)

/\

I

+argument InteractionOccurrence

* +refersTo

Interaction

InputPin
(from BasicActivities) |, 0.1

1

PartDecomposition | 1 Lifeline

+decomposedAs

Figure 331 - InteractionOccurrence (from Fragments)

14.3 Class Descriptions

14.3.1 CombinedFragment (from Fragments)

A combined fragment defines an expression of interaction fragments. A combined fragment is defined by an interaction
operator and corresponding interaction operands. Through the use of CombinedFragments the user will be able to describe
a number of traces in a compact and concise manner.

CombinedFragment is a specialization of InteractionFragment.

Attributes

« interactionOperator : InteractionOperator Specifies the operation which defines the semantics of this combination of
InteractionFragments.

Associations

e cfragmentGate : Gate[*] Specifies the gates that form the interface between this CombinedFragment and its sur-
roundings

e operand: InteractionOperand[1..*] The set of operands of the combined fragment.

Constraints
[1] If theinteractionOperator is opt, loop or neg there must be exactly one operand

[2] The InteractionConstraint with minint and maxint only apply when attached to an InteractionOperand where the interac-
tionOperator is loop.

UML Superstructure 2.0 Draft Adopted Specification 409

Semantics
The semantics of a CombinedFragment is dependent upon the interactionOperator as explained below.
Alternatives

The interactionOperator alt designates that the CombinedFragment represents a choice of behavior. At most one of the
operands will execute. The operand that executes must have an explicit or implicit guard expression that evaluates to true
at this point in the interaction. An implicit true guard is implied if the operand has no guard.

The set of traces that defines a choice is the union of the (guarded) traces of the operands.

An operand guarded by else designates a guard that is the negation of the disjunction of all other guards in the enclosing
CombinedFragment.

Option

The interactionOperator opt designates that the CombinedFragment represents a choice of behavior where either the (sole)
operand happens or nothing happens. An option is semantically equivalent to an alternative CombinedFragment where
there is one operand with non-empty content and the second operand is empty.

Break

The interactionOperator break designates that the CombinedFragment represents a breaking scenario in the sense that the
operand is a scenario that is performed instead of the remainder of the enclosing InteractionFragment. Thus the break
operator is a shorthand for an Alternative operator where one operand is given and the other assumed to be the rest of the
enclosing InteractionFragment.

Break CombinedFragments must be global relative to the enclosing InteractionFragment.

Parallel

The interactionOperator par designates that the CombinedFragment represents a parallel merge between the behaviors of
the operands. The eventoccurrences of the different operands can be interleaved in any way as long as the ordering
imposed by each operand as such is preserved.

A parallel merge defines a set of traces that describes all the ways that eventoccurrences of the operands may be
interleaved without obstructing the order of the eventoccurrences within the operand.

Weak Sequencing

The interactionOperator seq designates that the CombinedFragment represents a weak sequencing between the behaviors
of the operands.

Weak sequencing is defined by the set of traces with these properties:
1. Theordering of eventoccurrences within each of the operands are maintained in the result
2. Eventoccurrences on different lifelines from different operands may come in any order.

3. Eventoccurrences on the same lifeline from different operands are ordered such that an eventoccurrence of the first
operand comes before that of the second operand.

Thus weak sequencing reduces to a parallel merge when the operands are on disjunct sets of participants. Weak
sequencing reduces to strict sequencing when the operands work on only one participant.

410 UML Superstructure 2.0 Draft Adopted Specification

Strict Sequencing

The interactionOperator strict designates that the CombinedFragment represents a strict sequencing between the behaviors
of the operands. The semantics of the strict operation defines a strict ordering of the operands on the first level within the
Combinedinteraction with operator strict. Therefore eventoccurrences within contained Combinedinteractions will not
directly be compared with other eventoccurrences of the enclosing Combinedinteraction.

Negative
The interactionOperator neg designates that the CombinedFragment represents traces that are defined to be invalid.

The set of traces that defined a negative CombinedFragment is equal to the set of traces given by its (sole) operand, only
that this set is a set of invalid rather than valid traces. All InteractionFragments that are different from Negative are
considered positive meaning that they describe traces that are valid and should be possible.

Critical Region

The interactionOperator critical designates that the CombinedFragment represents a critical region. A critical region
means that the traces of the region cannot be interleaved by other Eventoccurrences (on those Lifelines covered by the
region). This means that the region is treated atomically by the enclosing fragment when determining the set of valid
traces. Even though enclosing CombinedFragments may imply that some Eventoccurrences may interleave into the
region, such as e.g. with par-operator, this is prevented by defining a region.

Thus the set of traces of enclosing constructs are restricted by critical regions.

sd CriticalRegion)

:Emergency :Operator :Caller :Callee

| | | |
par | | | |

} } call(100) } }

\ \

} } call(100) } }

\
I T

} | call(101) }

| |

| | call(101) |

| | |

\ \ \

\ \ \

Figure 332 - Critical Region

UML Superstructure 2.0 Draft Adopted Specification 411

The example in Figure 332 shows that the handling of a 911-call must be contiguously handled. For the operator he must
make sure to forward the 911-call before doing anything else. The normal calls, however, can be freely interleaved.

Ignore / Consider

The interactionOperator ignore designates that there are some message types that are not shown within this combined
fragment. These message types can be considered insignificant and are intuitively ignored if they appear in a
corresponding execution. Alternatively one can understand ignore to mean that the messages that are ignored can appear
anywhere in the traces.

Conversely the interactionOperator consider designates which messages should be considered within this
CombinedFragment. This is equivalent to defining every other message to be ignored.

Assertion

The interactionOperator assert designates that the CombinedFragment represents an assertion. The sequences of the
operand of the assertion are the only valid continuations. All other continuations result in an invalid trace.

Assertions are often combined with Ignore or Consider as shown in Figure 345.

Loop

The interactionOperator loop designates that the CombinedFragment represents a loop. The loop operand will be repeated
a number of times.

The Guard may include a lower and an upper number of iterations of the loop as well as a Boolean expression. The
semantics is such that aloop will iterate minimum the ‘minint’ number of times (given by the iteration expression in the
guard) and at most the ‘maxint’ number of times. After the minimum number of iterations have executed, and the boolean
expression is false the loop will terminate. The loop construct represent a recursive application of the seq operator where
the loop operand is sequenced after the result of earlier iterations.

The Semantics of Gates (see also “Gate (from Fragments)” on page 418)

The gates of a CombinedFragment represent the syntactic interface between the CombinedFragment and its surroundings,
which means the interface towards other InteractionFragments.

The only purpose of gates is to define the source and the target of Messages or General Order relations.

Notation
The notation for a CombinedFragment in a Sequence Diagram is a solid-outline rectangle. The operator is shown in a
pentagon in the upper left corner of the rectangle.

More than one operator may be shown in the pentagon descriptor. This is a shorthand for nesting CombinedFragments.
This means that sd strict in the pentagon descriptor is the same as two CombinedFragments nested, the outermost with sd
and the inner with strict.

The operands of a CombinedFragment are shown by tiling the graph region of the CombinedFragment using dashed
horizontal lines to divide it into regions corresponding to the operands.

412 UML Superstructure 2.0 Draft Adopted Specification

Strict

Notationally this means that the vertical coordinate of the contained fragments is significant throughout the whole scope
of the CombinedFragment and not only on one Lifeline. The vertical position of an EventOccurrence is given by the
vertical position of the corresponding point. The vertical position of other InteractionFragments is given by the topmost
vertical position of its bounding rectangle.

Ignore / Consider

Textual syntax: (ignore | consider){ <message name>{ ,<message name>}* }

Examples: consider {m, s}: showing that only m and s messages are considered significant

ignore {q,r}: showing that g and r messages are considered insignificant

Ignore and consider operations are typically combined with other operations such as “assert consider {m, s}”

See example in Figure 345.

Loop

Textual syntax of the loop operand: loop [‘(* <minint> [, <maxint>1] ‘)"]
<minint> 1= non-negative natural

<maxint> = non-negative natural (greater than or equal to <minint> | ‘*’
“*' means infinity.

If only <minint> is present, this means that minint=maxint=integer.

If only loop then this means a loop with infinity upper bound and with O as lower bound.

Presentation Option for “coregion area”

A notational shorthand for parallel combined fragments are available for the common situation where the order of event
occurrences (or other nested fragments) on one Lifeline is insignificant. This means that in a given “coregion” area of a
Lifeline all the directly contained fragments are considered separate operands of a parallel combined fragment. See
example in Figure 333.

UML Superstructure 2.0 Draft Adopted Specification 413

Examples

sd example]

InteractionOperator .
CombinedFragment

(Alternative)

InteractionConstraint

create

foo(foo_par=x)

doit(z)

doit()

Figure 333 - CombinedFragment

Rationale
Not applicable.

Changes from UML 1.x
This concept was not included in UML 1.x.

14.3.2 Continuation (from Fragments)

A Continuation is a syntactic way to define continuations of different branches of an Alternative CombinedFragment.
Continuations is intuitively similar to labels representing intermediate points in a flow of control.

Attributes

e setting : Boolean True: when the Continuation is at the end of the enclosing InteractionFragment and False
when it isin the beginning.

414 UML Superstructure 2.0 Draft Adopted Specification

Constraints
[1] Continuations with the same name may only cover the same set of Lifelines (within one Classifier).

[2] Continuations are always global in the enclosing InteractionFragment e.g. it always covers all Lifelines covered by the
enclosing I nteractionFragment.

[3] Continuations always occur as the very first InteractionFragment or the very last InteractionFragment of the enclosing
InteractionFragment.

Semantics

Continuations have semantics only in connection with Alternative CombinedFragments and (weak) sequencing.

If an InteractionOperand of an Alternative CombinedFragment ends in a Continuation with name (say) X, only
I nteractionFragments starting with the Continuation X (or no continuation at all) can be appended.

Notation

Continuations are shown with the same symbol as States, but they may cover more than one Lifeline.
Continuations may also appear on flowlines of Interaction Overview Diagrams.

Continuations that are alone in an InteractionFragment is considered to be at the end of the enclosing
I nteractionFragment.

sd Continue J sd Question J

A
T
I
I
L

ask

ref .
Question

r—— @
.d
TR »P

O oo D

Continuation (setting==False) Continuation (setting==True)

Figure 334 - Continuation

UML Superstructure 2.0 Draft Adopted Specification 415

The two diagrams in Figure 334 are together equivalent to the diagram in Figure 335.

sd Continue J

A B C

I I I

: ask : :

I 1 |

| | |

| | :

f f |

alt \ | \

| | |

DoSth } }

| |

I | |

s |

| | |

—————————

} nonono } }

1 no 1 |

| | |

[1 |

| | |

t t |

| | |

Figure 335 - Continuation interpretation
14.3.3 EventOccurrence (from Basiclnteractions)

EventOccurrences represents moments in time to which Actions are associated. An EventOccurrence is the basic semantic
unit of Interactions. The sequences of Eventoccurrences are the meanings of Interactions. Messages are sent through
either asynchronous signal sending or operation calls. Likewise they are recieved by Receptions or actions of
consumption.

EventOccurrence is a specialization of InteractionFragment and of MessageEnd.
EventOccurrences are ordered along a Lifeline.

The namespace of an EventOccurrence is the Interaction in which it is contained.

Associations
e startExec: ExecutionOccurrence[0..1]References the ExecutionOccurrence of start (of action)

« finishExec:ExecutionOccurrence]0..1] References the ExecutionOccurrence of finish (of action)

e covered: Lifeling[1] References the Lifeline on which the Eventoccurrence appears. Redefines I nteraction-
Fragment.covered.

« toBefore:GeneralOrdering[*] Referencesthe General Orderingsthat specify EventOcurrences that must occur before this
EventOccurrence

* toAfter: GeneraOrdering[*] References the GeneralOrderings that specify EventOcurrences that must occur after this
EventOccurrence

416 UML Superstructure 2.0 Draft Adopted Specification

Semantics

The semantics of an EventOccurrence is just the trace of that single EventOccurrence.

The understanding and deeper meaning of the Eventoccurrence is dependent upon the associated Message and the
information that it conveys.

Notation

Eventoccurrences are merely syntactic points at the ends of Messages or at the beginning/end of an ExecutionOccurrence.

Examples

(formal)
Gate

sd EventOccurrence)

:Lifeline EventOccurrence

\ / (msg.sendEvent)
|

\

Message

Figure 336 - EventOccurrence

14.3.4 ExecutionOccurrence (from Basiclnteractions)

An ExecutionOccurrence is an instantiation of a unit of behavior within the Lifeline. Since the ExecutionOccurrence will
have some duration, it is represented by two Eventoccurrences, the start EventOccurrence and the finish
EventOccurrence.

An ExecutionOccurrence is an InteractionFragment.

Associations
e start : Eventoccurrence] 1] References the Eventoccurrence that designates the start of the Action

« finish: Eventoccurrence[1] References the Eventoccurrence that designates the finish of the Action.

e behavior:Behavior[0..1] References the associated behavior

Constraints
[1] The startEvent and the finishEvent must be on the same Lifeline

start.lifeline = finish.lifeline
Semantics

The trace semantics of Interactions merely see an ExecutionOccurrence as the trace <start, finish>. There may be
Eventoccurrences between these. Typically the start Eventoccurrence and the finish Eventoccurrence will refer to
Eventoccurrences such as a receive Eventoccurrence (of a Message) and the send Eventoccurrence (of a return Message).

UML Superstructure 2.0 Draft Adopted Specification 417

Notation

ExecutionOccurences are represented as thin rectangles (grey or white) on the lifeline (see “Lifeline (from
Basiclnteractions, Fragments)” on page 427).

We may also represent an ExecutionOccurrence as Actions are represented in Activity diagrams.

ExecutionOccurrences that refer to atomic actions such as reading attributes of a Signal (conveyed by the Message), the
Action symbol may be associated with the reception EventOccurrence with aline in order to emphasize that the whole
Action is associated with only one EventOccurrence (and start and finish associations refer the very same
EventOccurrence)

14.3.5 Gate (from Fragments)

A Gate is a connection point for relating a Message outside an InteractionFragment with a Message inside the
InteractionFragment.

Gate is a specialization of MessageEnd.

Gates are connected through Messages. A Gate is actually a representative of an EventOccurrence that is not in the same
scope as the Gate.

Gates play different roles: we have formal gates on Interactions, actual gates on InteractionOccurrences, expression gates
on CombinedFragments.

Constraints

[1] The message leading to/from an actual Gate of an InteractionOccurrence must correspond to the message leading from/to
the formal Gate with the same name of the Interaction referenced by the InteractionOccurrence.

[2] The message leading to/from an (expression) Gate within a CombinedFragment must correspond to the message leading
from/to the CombinedFragment on its outside.

Semantics

The gates are named either explicitly or implicitly. Gates may be identified either by name (if specified), or by a
constructed identifier formed by concatenating the direction of the message and the message name (e.g. out_CardOut).
The gates and the messages between gates have one purpose, namely to establish the concrete sender and receiver for

every message.
Notation
Gates are just points on the frame, the ends of the messages. They may have an explicit name. See Figure 336.

The same gate may appear several times in the same or different diagrams.
14.3.6 GeneralOrdering (from Basiclnteractions)

A GeneralOrdering represents a binary relation between two Eventoccurrences, to describe that one Eventoccurrence must
occur before the other in a valid trace. This mechanism provides the ability to define partial orders of EventOccurrences
that may otherwise not have a specified order.

A GeneralOrdering is a specialization of NamedElement.

A GeneralOrdering may appear anywhere in an Interaction, but only between Eventoccurrences.

418 UML Superstructure 2.0 Draft Adopted Specification

Associations
« before: EventOccurrence[l] The Eventoccurrence referred comes before the Eventoccurrence referred by after

e dfter:EventOccurrence[1] The Eventoccurrence referred comes after the Eventoccurrence referred by before

Semantics

A GeneralOrdering is introduced to restrict the set of possible sequences. A partia order of Eventoccurrences is defined
by a set of Genera Ordering.

Notation

A GeneralOrdering is shown by a dotted line connected the two Eventoccurrences. The direction of the relation from the
before to the after is given by an arrowhead placed somewhere in the middle of the dotted line (i.e. not at the endpoint).

14.3.7 Interaction (from BasicInteraction, Fragments)

An interaction is a unit of behavior that focuses on the observable exchange of information between
Connectabl eElements.

An Interaction is a specialization of InteractionFragment and of Behavior.

Associations

o formalGate: Gate[*] Specifies the gates that form the message interface between this Interaction and any Inter-
actionOccurrences which referenceit.

e lifeline: LifeLing[0..*] Specifies the participantsin this Interaction
¢ event:MessageEnd[*] MessageEnds (e.g. EventOccurrences or Gates) owned by this Interaction
¢ message:Message[*] The Messages contained in this Interaction.

« fragment:InteractionFragment[*] The ordered set of fragmentsin the Interaction

Semantics

Interactions are units of behavior of an enclosing Classifier. Interactions focus on the passing of information with
M essages between the ConnectableElements of the Classifier.

The semantics of an Interaction is given as a pair of sets of traces. The two trace sets represent valid traces and invalid
traces. The union of these two sets need not necessarily cover the whole universe of traces. The traces that are not
included are not described by this Interaction at all, and we cannot know whether they are valid or invalid.

A trace is a sequence of Eventoccurrences. The semantics of Interactions are compositional in the sense that the semantics
of an Interaction is mechanically built from the semantics of its constituent InteractionFragments. The constituent
InteractionFragments are ordered and combined by the seq operation (weak sequencing) as explained in “Weak
Sequencing” on page 410.

The invalid set of traces are associated only with the use of a Negative Combinedinteraction. For simplicity we describe
only valid traces for all other constructs.

As Behavior an Interaction is generalizable and redefineable. Specializing an Interaction is simply to add more traces to
those of the original. The traces defined by the specialization is combined with those of the inherited Interaction with a
union.

UML Superstructure 2.0 Draft Adopted Specification 419

The classifier owning an Interaction may be specialized, and in the specialization the Interaction may be redefined.
Redefining an Interaction simply means to exchange the redefining Interaction for the redefined one, and this exchange
takes effect also for InteractionOccurrences within the supertype of the owner. Thisis similar to redefinition of other
kinds of Behavior.

Basic trace model: The semantics of an Interaction is given by a pair [P, 1] where P is the set of valid traces and | is the
set of invalid traces. Pu | needs not be the whole universe of traces.

A trace is a sequence of event occurrences denoted <el, €2, ..., en>.
An event occurrence will also include information about the values of al relevant objects at this point in time.

Each construct of Interactions (such as CombinedFragments of different kinds) are expressed in terms of how it relates to
apair of sets of traces. For simplicity we normally refer only to the set of valid traces as these traces are those mostly
model ed.

Two Interactions are equivalent if their pair of trace-sets are equal.

Relation of trace model to execution model: In Chapter 13, “Common Behaviors’ we find an Execution model, and this
is how the Interactions Trace Model relates to the Execution model.

An Interaction is an Emergent Behavior.

An Invocation Event in the Execution model corresponds with an EventOccurrence in Interactions. Normally in
Interaction the action leading to the invocation as such is not described (such as the sending action). However, if it is
desirable to go into details, a Behavior (such as an Activity) may be associated with an Eventoccurrence. An
Eventoccurrence in Interactions are normally interpreted to take zero time. Duration is always between Eventoccurrences.

Likewise a Receiving Event in the Execution model corresponds with an Eventoccurrence in Interactions. Similarly the
detailed actions following immediately from this reception is often omitted in Interactions, but may also be described
explicitly with a Behavior associated with that Eventoccurrence.

A Request in the Execution model corresponds to the Message in Interactions.

A BehaviorExecution in the Execution model corresponds directly to an Execution Occurrence in Interactions. An
ExecutionOccurrence is defined in the trace by two EventOccurrences, one at the start and one at the end. This
corresponds to the Start Event and the Termination Event of the Execution model

Notation

The notation for an Interaction in a Sequence Diagram is a solid-outline rectangle. The keyword sd followed by the
Interaction name and parameters is in a pentagon in the upper left corner of the rectangle. The notation within this
rectangular frame comes in several forms: Sequence Diagrams, Communication Diagrams, Interaction Overview
Diagrams and Timing Diagrams.

The notation within the pentagon descriptor follows the general notation for the name of Behaviors. In addition the
Interaction Overview Diagrams may include a list of Lifelines through a lifeline-clause as shown in Figure 349. The list
of lifelines is simply alisting of the Lifelines involved in the Interaction. An Interaction Overview Diagram does not in
itself show the involved lifelines even though the lifelines may occur explicitly within inline Interactions in the graph
nodes.

An Interaction diagram may also include definitions of local attributes with the same syntax as attributes in general are
shown within class symbol compartments. These attribute definitions may appear near the top of the diagram frame or
within note symbols other places in the diagram.

420 UML Superstructure 2.0 Draft Adopted Specification

Please refer to Section 14.4 to see examples of notation for Interactions.

Examples

Name of Interaction
sd UserAccepted

+PIN:Integer {readonly 0<=PIN <=9999} <—}—— Local Attribute

- Lifeline
<l
:User :ACSystem

Code(PIN)

I
|
3
} Message
|
|
|
|

I
|
|
|
|
|
|
| CM
|
|
/ oK | e
‘ } Unlock
|
|
|
|

Figure 337 - An example of an Interaction in the form of a Sequence Diagram

The example in Figure 337 shows three messages communicated between two (anonymous) lifelines of types User and
ACSystem. The message CardOut overtakes the message OK in the way that the receiving event occurrences are in the
opposite order of the sending eventoccurrences. Such communication may occur when the messages are asynchronous.
Finally a fourth message is sent from the ACSystem to the environment through a gate with implicit name out_Unlock.
The local attriburte PIN of UserAccepted is declared near the diagram top. It could have been declared in a Note
somewhere else in the diagram.

Rationale
Not applicable.

Changes from UML 1.x

Interactions are now contained within Classifiers and not only within Collaborations. Their participants are modeled by
Lifelines instead of ClassifierRoles.

14.3.8 InteractionConstraint (from Fragments)

An InteractionConstraint is a boolean expression that guards an operand in a CombinedFragment.
InteractionConstraint is a specialization of Constraint.

Furthermore the InteractionConstraint contains two expressions designating the minimum and maximum number of times
aloop CombinedFragment should execute.

UML Superstructure 2.0 Draft Adopted Specification 421

Associations
* minint: ValueSpecification[0..1] The minimum number of iterations of aloop

¢ maxint: ValueSpecification[0..1] The maximum number of iterations of aloop

Constraints

[1] The dynamic variablesthat take part in the constraint must be owned by the ConnectableElement corresponding to the
covered Lifeline.

[2] The constraint may contain referencesto global data or write-once data.

[3] Minint/maxint can only be present if the InteractionConstraint is associated with the operand of aloop CombinedFrag-
ment.

[4] If minintisspecified, then the expression must evaluate to a non-negative integer.
[5] If maxint is specified, then the expression must evaluate to a positive integer.

[6] If maxint is specified, then minint must be specified and the evaluation of maxint must be >= the evaluation of minint

Semantics

InteractionConstraints are always used in connection with CombinedFragments, see “CombinedFragment (from
Fragments)” on page 409.

Notation

An InteractionConstraint is shown in sgquare brackets covering the lifeline where the first event occurrence will occur,
positioned above that event, in the containing Interaction or InteractionOperand.
interactionconstraint ::= [‘[* Boolean Expression | else']’]

When the InteractionConstraint is omitted, true is assumed.

Please refer to an example of InteractionConstraints in Figure 333.

14.3.9 InteractionFragment (from Fragments)

InteractionFragment is an abstract notion of the most general interaction unit. An interaction fragment is a piece of an
interaction. Each interaction fragment is conceptually like an interaction by itself.

InteractionFragment is an abstract class and a specialization of NamedElement.

Associations
e enclosingOperand: InteractionOperand[0..1] The operand enclosing this I nteractionFragment (they may nest recursively)

e covered: Lifeing[*] References the Lifelines that the InteractionFragment involves
e generalOrdering:General Ordering[*] The general ordering relationships contained in this fragment

e enclosinglnteraction: Interaction[0..1] The Interaction enclosing this I nteractionFragment.

Semantics

The semantics of an InteractionFragment is a pair of set of traces. See “Interaction (from Basiclnteraction, Fragments)”
for explanation of how to calculate the traces.

422 UML Superstructure 2.0 Draft Adopted Specification

Notation

There is no general notation for an InteractionFragment. The specific subclasses of InteractionFragment will define their
own notation.

Rationale

Not applicable.

Changes from UML 1.x
This concept did not appear in UML 1.x.

14.3.10 InteractionOccurrence (from Fragments)

An InteractionOccurrence refers to an Interaction. The InteractionOccurrence is a shorthand for copying the contents of
the referred Interaction where the InteractionOccurrence is. To be accurate the copying must take into account substituting
parameters with arguments and connect the formal gates with the actual ones.

It is common to want to share portions of an interaction between several other interactions. An InteractionOccurrence
allows multiple interactions to reference an interaction that represents a common portion of their specification.

Description

InteractionOccurrence is a specialization of InteractionFragment.

An InteractionOccurrence has a set of actual gates that must match the formal gates of the referenced Interaction.

Associations

e refersTo: Interaction[1] Refers to the Interaction that defines its meaning
e argument:InputPin[*] The actual arguments of the Interaction
e actualGate:Gate[*] The actual gates of the InteractionOccurrence

Constraints

[1] Actual Gates of the InteractionOccurrence must match Formal Gates of the referred Interaction. Gates match when their
names are equal.
TBD

[2] TheInteractionOccurrence must cover al Lifelines of the enclosing Interaction which appear within the referred Interac-
tion.

[3] Thearguments of the InteractionOccurrence must correspond to parameters of the referred Interaction

[4] The arguments must only be constants, parameters of the enclosing Interaction or attributes of the classifier owning the
enclosing Interaction.

Semantics

The semantics of the InteractionOccurrence is the set of traces of the semantics of the referred Interaction where the gates
have been resolved as well as al generic parts having been bound such as the arguments substituting the parameters.

UML Superstructure 2.0 Draft Adopted Specification 423

Notation

The InteractionOccurrence is shown as a CombinedFragment symbol where the operator is called ref. The complete
syntax of the name (situated in the InteractionOccurrence area) is:
name ::=[attribute-name =][collaborationoccurrence.] interactionname[* (‘arguments’)’] [: return-value]
argument ::= in-argument [out out-argument]

The attribute-name refers to an attribute of one of the lifelines in the Interaction.

The collaborationoccurence is an identification of a collaboration occurrence that binds lifelines of a collaboration. The
interaction name isin that case within that collaboration. See example of the usage of collaboration occurrencesin Figure
346.

The arguments are most often arguments of IN-parameters. If there are OUT- or INOUT-parameters and the output value
is to be described, this can be done following an out keyword.

For general syntax of arguments we use the same syntax as for Messages (“Message (from Basiclnteractions)” on
page 428).

If the InteractionOccurrence returns a value, this may be described following a colon at the end of the clause.

Examples

sd UserAccess]
InteractionOccurrence
:User :ACSystem /

r_ef)EstainshAccess("IIIegaI PIN™)

CardOut

opt Msg("Please Enter")

ref

OpenDoor

Figure 338 - InteractionOccurrence

In Figure 338 we show an InteractionOccurrence referring the Interaction EstablishAccess with (input) argument “1llegal
PIN”. Within the optional CombinedFragment there is another InteractionOccurrence without arguments referring
OpenDaoor.

424 UML Superstructure 2.0 Draft Adopted Specification

sd a_op_b(int x, inout int w):Verdict)

return parameter as
Lifeline

——u__inout parameter as

Lifeline

:xx.xc:a_util_b(31,w:1% _
— —+—————— __InteractionOccurrence

|

\ with valuereturn
|
| \

argument with output

|
|
put(fai I)/‘ i
1
|

Figure 339 - InteractionOccurrence with value return

In Figure 339 we have a more advanced Interaction that models a behavior returning a Verdict value. The return value
from the Interaction is shown as a separate Lifeline a_op_b. Inside the Interaction there is an InteractionOccurrence
referring a_util_b with value return to the attribute xc of :xx with the value 9, and with inout parameter where the
argument is w with returning out-value 12.

Rationale

Not applicable.

Changes from UML 1.x
I nteractionOccurrence was not a concept in UML 1.x

14.3.11 InteractionOperand (from Fragments)

An InteractionOperand is contained in a CombinedFragment. An InteractionOperand represent one operand of the
expression given by the enclosing CombinedFragment.

An InteractionOperand is an InteractionFragment with an optional guard expression. An InteractionOperand may be
guarded by a InteractionConstraint. Only InteractionOperands with a guard that evaluates to true at this point in the
interaction will be considered for the production of the traces for the enclosing CombinedFragment.

InteractionOperand contains an ordered set of InteractionFragments.

UML Superstructure 2.0 Draft Adopted Specification 425

In Sequence Diagrams these I nteractionFragments are ordered according to their geometrical position vertically. The
geometrical position of the InteractionFragment is given by the topmost vertical coordinate of its contained
eventoccurrences or symbols.

Associations
e fragment: InteractionFragment[*] The fragments of the operand.

e guard: InteractionConstraint[0..1]Constraint of the operand

Constraints

[1] The guard must be placed directly prior to (above) the eventoccurrence that will become the first eventoccurrence
within this InteractionOperand

[2] The guard must contain only references to values local to the Lifeline on which it resides, or values global to the whole
Interaction (See “InteractionConstraint (from Fragments)” on page 421).

Semantics

Only InteractionOperands with true guards are included in the calculation of the semantics. If no guard is present, thisis
taken to mean a true guard.

The semantics of an InteractionOperand is given by its constituent InteractionFragments combined by the implicit seq
operation. The seq operator is described in “CombinedFragment (from Fragments)” on page 409

Notation

InteractionOperands are separated by a dashed horizontal line. The InteractionOperands together make up the framed
CombinedFragment.

Within an InteractionOperand of a Sequence Diagram the order of the InteractionFragments are given simply by the
topmost vertical position.

See Figure 333 for examples of InteractionOperand.
14.3.12 InteractionOperator (from Fragments)

Interaction Operator is an enumeration designating the different kinds of operators of CombinedFragments.
The InteractionOperand defines the type of operator of a CombinedFragment.

Literals
e dlft, opt, par, loop, critical, neg, assert, strict, seq, ignore, consider

Semantics

The value of the InteractionOperator is significant for the semantics of “CombinedFragment (from Fragments)” on
page 409.

Notation

The value of the InteractionOperand is given as text in a small compartment in the upper left corner of the
CombinedFragment frame.

426 UML Superstructure 2.0 Draft Adopted Specification

See Figure 333 for examples of InteractionOperator.
14.3.13 Lifeline (from Basiclnteractions, Fragments)

A lifeline represents an individual participant in the Interaction. While Parts and Structural Features may have multiplicity
greater than 1, Lifelines represent only one interacting entity.

Lifeline is a specialization of NamedElement.

If the referenced ConnectableElement is multivalued (i.e. has a multiplicity > 1), then the Lifeline may have an
expression (the ‘selector’) that specifies which particular part is represented by this Lifeline. If the selector is omitted this
means that an arbitrary representative of the multivalued ConnectableElement is chosen.

Associations

e selector : Expression[0..1] If the referenced ConnectableElement is multivalued, then this specifies the specific indi-
vidual part within that set.

e interaction: Interaction[1] References the Interaction enclosing this Lifeline.

e represents; Connectabl eElement[1] References the Connectabl eElement within the classifier that contains the enclosing
interaction.

e decomposedAs : PartDecomposition[1] References the Interaction that represents the decomposition.

Constraints

[1] If two (or more) InteractionOccurrences within one Interaction, refer to Interactions with common Lifelines, those Life-
lines must also appear in the Interaction with the InteractionOccurrences. By ‘common Lifelines’ we mean Lifelineswith
the same selector and represents associations.

TBD

[2] Theselector for aLifeline must only be specified if the referenced Part is multival ued.

(self.selector->isEmpty implies not self.represents.isMultivalued()) or
(not self.selector->isEmpty implies self.represents.isMultivalued())

[3] Theclassifier containing the referenced ConnectableElement must be the same classifier, or an ancestor, of the classifier
that contains the interaction enclosing thislifeline.

Semantics

The order of Eventoccurrences along a Lifeline is significant denoting the order in which these Eventoccurrence will
occur. The absolute distances between the Eventoccurrences on the Lifeline are, however, irrelevant for the semantics.

The semantics of the Lifeline (within an Interaction) is the semantics of the Interaction selecting only Eventoccurrences
of this Lifeline.

Notation

A Lifeline is shown using a symbol that consists of a rectangle forming its “head” followed by a vertical line (which may
be dashed) that represents the lifetime of the participant. Information identifying the lifeline is displayed inside the
rectangle in the following format:

lifelineident ::= [connectable_element_name[‘[* selector ‘]']] [: class_name] [decomposition] | self

selector ::= expression

decomposition ::= ref interactionident

UML Superstructure 2.0 Draft Adopted Specification 427

class_nameis the type referenced by the represented Connectabl eElement.
Even though the syntax in principle allowsiit, a lifelineident cannot be empty.

The Lifeline head has a shape which is based on the classifier for the part that this lifeline represents. Often the head is a
white rectangle containing the name.

If the name is the keyword self, then the lifeline represents the object of the classifier that encloses the Interaction that
owns the Lifeline. Ports of the encloser may be shown separately even when self is included.

To depict method activations we apply athin grey or white rectangle that covers the Lifeline line.

Examples
See Figure 337 where the Lifelines are pointed to.

See Figure 333 to see method activations.

Rationale
Not applicable.

Changes from UML 1.x

Lifelines are basically the same concept as before in UML 1.x.
14.3.14 Message (from Basiclnteractions)

A Message defines a particular communication between Lifelines of an Interaction.

A Message is a NamedElement that defines one specific kind of communication in an Interaction. A communication can
be e.g. raising a signal, invoking an Operation, creating or destroying an Instance. The Message specifies not only the
kind of communication given by the dispatching ExecutionOccurrence, but also the sender and the receiver.

A Message associates normally two EventOccurrences - one sending EventOccurrence and one receiving
EventOccurrence.

Attributes

* messageKind:MessageKind The derived kind of the M essage (complete, lost, found or unknown)
complete = sendEvent and receiveEvent are present
lost = sendEvent present and receiveEvent absent
found = sendEvent absent and receiveEvent present
unknown = sendEvent and receiveEvent absent (should not appear)

e messageSort:MessageSort The sort of communication reflected by the Message (synchCall, synchSignal, asynchCall,
asynchSignal)

Associations
e interaction:Interaction[1] The enclosing Interaction owning the Message

e sendEvent : MessageEnd[0..1] References the Sending of the Message.
« receiveEvent: MessageEnd[0..1]References the Receiving of the Message

e connector: Connector[0..1] The Connector on which this Message is sent.

428 UML Superstructure 2.0 Draft Adopted Specification

e argument:ValueSpecification[*] The arguments of the Message
e signature:NamedElement[0..1] The definition of the type or signature of the Message (depending on its kind)

Constraints

[1] If the sendEvent and the receiveEvent of the same Message are on the same Lifeline, the sendEvent must be ordered
before the receiveEvent.

[2] Thesignature must either refer an Operation (in which case messageSort is either synchCall or asynchCall) or aSignal (in
which case messageSort is either synchSignal or asynchSignal). The name of the NamedElement referenced by signature
must be the same as that of the Message.

[3] Inthe casewhen the Message signature is an Operation, the arguments of the Message must correspond to the parameters
of the Operation. A Parameter corresponds to an Argument if the Argument is of the same Class or a specialization of that
of the Parameter.

[4] Inthe casewhen the Message signature is a Signal, the arguments of the Message must correspond to the attributes of the
Signal. A Message Argument corresponds to a Signal Attribute if the Arguement is of the same Class or a specialization
of that of the Attribute.

[5] Relations sendEvent and receiveEvent are mutually exclusive.

[6] Arguments of a Message must only be:
i) attributes of the sending lifeline
ii) constants
iii) symbolic values (which are wildcard values representing any legal value)
iv) explicit parameters of the enclosing Interaction
V) attributes of the class owning the Interaction

[7] Messages cannot cross bounderies of CombinedFragments or their operands.

[8] If the MessageEnds are both EventOccurrences then the connector must go between the Parts represented by the Lifelines
of the two MessageEnds.

Semantics

The semantics of a complete Message is simply the trace <sendEvent, receiveEvent>.

A lost message is a message where the sending event occurrence is known, but there is no receiving event occurrence. We
interpret this to be because the message never reached its destination. The semantics is simply the trace <sendEvent>.

A found message is a message where the receiving event occurrence is known, but there is no (known) sending event
occurrence. We interpret this to be because the origin of the message is outside the scope of the description. This may for
example be noise or other activity that we do not want to describe in detail. The semantics is simply the trace
<receiveEvent>.

A Message reflects either an Operation call and start of execution - or a sending and reception of a Signal.

When a Message represents an Operation the arguments of the Message are the arguments of the CallAction on the
sending Lifeline and the arguments of the CallEvent on the receiving Lifeline.

When a Message represents a Signal, the arguments of the Message are the arguments of the SendAction on the sending
Lifeline and on the receiving Lifeline the arguments are available in the Signa Event.

If the Message represents a CallAction, There will normally be a return message from the called lifeline back to the
calling lifeline before the calling Lifeline will proceed.

UML Superstructure 2.0 Draft Adopted Specification 429

Notation

A message is shown as aline from the sender message end to the receiver message end. The form of the line or arrowhead
reflect properties of the message:

Asynchronous Messages have an open arrow head.

Synchronous Messages typically represent method calls and are shown with afilled arrow head. The reply message from
a method has a dashed line.

Object creation Message has a dashed line with an open arrow.
Lost Messages are described as a small black circle at the arrow end of the Message.
Found Messages are described as a small black circle at the starting end of the Message.

On Communication Diagrams, the Messages are decorated by a small arrow along the connector close to the Message
name and sequence number in the direction of the Message.

Syntax for the Message name is the following:
messageident ::= [attribute =] signal-or-operation-name [(arguments)][: return-valug] | ‘*’
arguments ::= argument [, arguments]
argument ;= [parameter-name=]argument-value | attribute= out-parameter-name [:argument-value] | -

Messageident equalling ‘*’ is a shorthand for more complex alternative Combinedi nteraction to represent a message of
any type. Thisis to match asterisk triggers in State Machines.

Return-value and attribute assignment are used only for reply messages. Attribute assignment is a shorthand for including
the Action that assigns the return-value to that attribute. This holds both for the possible return value of the message (the
return value of the associated operation), and the out values of (in)out parameters.

When the argument list contains only argument-values, all the parameters must be matched either by a value or by a dash
(-). If parameter-names are used to identify the argument-value, then arguments may freely be omitted. Omitted
parameters get an unknown argument-value.

Examples
In Figure 337 we see only asynchronous Messages. Such Messages may overtake each other.

In Figure 333 we see method calls that are synchronous accompanied by replies. We also see a Message that represents
the creation of an object.

In Figure 348 we see how Messages are denoted in Communication Diagrams.

Examples of syntax:
mymessage(14, - , 3.14, “ hello”) // second argument is undefined
v=mymsg(16, variab): 96 // thisis a reply message carrying the return value 96 assigning it to v
mymsg(myint=16) // the input parameter ‘myint’ is given the argument value 16

See Figure 333 for a number of different applications of the textual syntax of message identification.

Rationale
Not applicable.

430 UML Superstructure 2.0 Draft Adopted Specification

Changes from UML 1.x
We notice that Messages may have Gates on either end.

14.3.15 MessageEnd (from Basiclnteractions)
A MessageEnd is an abstract NamedElement that represents what can occur at the end of a Message.

Associations
¢ sendMessage : Message]0..1] References the Message that contains the information of a sendEvent

« receiveMessage : Message[0..1] References the Message that contains the information of a receiveEvent

e interaction:Interaction[1] The enclosing Interaction owning the MessageEnd

Semantics

Subclasses of MessageEnd define the specific semantics appropriate to the concept they represent.
14.3.16 PartDecomposition (from Fragments)

PartDecomposition is a description of the internal interactions of one Lifeline relative to an Interaction.

A Lifeline has a class associated as the type of the ConnectableElement that the Lifeline represents. That class may have
an internal structure and the PartDecomposition is an Interaction that describes the behavior of that internal structure
relative to the Interaction where the decomposition is referenced.

A PartDecomposition is a specialization of InteractionOccurrence. It associates with the ConnectableElement that it
decomposes.

Constraints
[1] PartDecompositions apply only to Parts that are Parts of Internal Structures not to Parts of Collaborations.

[2] Assume that within Interaction X, Lifeline L is of class C and decomposed to D. Within X there is a sequence of con-
structs along L (such constructs are CombinedFragments, InteractionOccurrence and (plain) Eventoccurrences). Then a
corresponding sequence of constructs must appear within D, matched one-to-one in the same order.

i) CombinedFragment covering L are matched with an extra-global CombinedFragment in D

ii) An InteractionOccurrence covering L are matched with a global (i.e. covering all Lifelines) InteractionOccurrence in
D.

iii) A plain EventOccurrence on L is considered an actual Gate that must be matched by aformal Gate of D

[3] Assume that within Interaction X, Lifeline L is of class C and decomposed to D. Assume also that there is within X an
InteractionOccurrence (say) U that covers L. According to the constraint above U will have a counterpart CU within D.
Within the Interaction referenced by U, L should also be decomposed, and the decomposition should reference CU. (This
ruleis called commutativity of decomposition)

Semantics

Decomposition of a lifeline within one Interaction by an Interaction (owned by the type of the Lifeline's associated
ConnectableElement), is interpreted exactly as an InteractionOccurrence. The messages that go into (or go out from) the
decomposed lifeline are interpreted as actual gates that are matched by corresponding formal gates on the decomposition.

UML Superstructure 2.0 Draft Adopted Specification 431

Since the decomposed Lifeline is interpreted as an InteractionOccurrence, the semantics of a PartDecomposition is the
semantics of the Interaction referenced by the decomposition where the gates and parameters have been matched.

That a CombinedFragment is extra-global depicts that there is a CombinedFragment with the same operator covering the
decomposed Lifeline in its Interaction. The full understanding of that (higher level) CombinedFragment must be acquired
through combining the operands of the decompositions operand by operand.

Notation

PartDecomposition is designated by a referencing clause in the head of the Lifeline as can be seen in the notation section
of “Lifeline (from Basiclnteractions, Fragments)” on page 427. See also Figure 340.

Extraglobal CombinedFragments have their rectangular frame go outside the bounderies of the decomposition Interaction.

Style Guidelines

The name of an Interaction that are involved in decomposition would benefit from including in the name, the name of the
type of the Part being decomposed and the name of the Interaction originating the decomposition. Thisis shown in Figure
340 where the decomposition is called AC_UserAccess where ‘AC’ refers to ACSystem which is the type of the Lifeline
and UserAccess is the name of the Interaction where the decomposed lifeline is contained.

Examples

sd UserAccess J o
Part decomposition
ACSystem /

ref AC_UserAccess

r;ef/lEstabIi:shAccesrs("IIIegaI PIN")

:User

CardOut

opt

Msg("Please Enter") [pin ok]
|

ref

OpenDoor

Figure 340 - Part Decomposition - the decomposed part

In Figure 340 we see how ACSystem within UserAccess is to be decomposed to AC_UserAccess which is an Interaction
owned by class ACSystem.

432 UML Superstructure 2.0 Draft Adopted Specification

Msg("Please Enter") |

Inner
Connectable sd AC_UserAccess)
Elements
:AccessPoint :Authorizer :Console
I I
pl p2 | |
‘ ‘ 1 }
extra global| | e _
CombinedFial t AC_EstablishAccess("lllegal PIN")
CardOut } } | |
~ 1 1 }
| | | |
I I | |
opt ‘ N ! [
opy) | [pin ok] | |
‘ ! !
| |
| |
| |
| |

ref

AC_OpenDoor

Figure 341 - Part Decomposition - the decomposition

In Figure 341 we see that AC_UserAccess has global constructs that match the constructs of UserAccess covering
ACSystem.

In particular we notice the “extra global interaction group” that goes beyond the frame of the Interaction. This construct
corresponds to a CombinedFragment of UserAccess. However, we want to indicate that the operands of extra global
interaction groups are combined one-to-one with similar extra global interaction groups of other decompositions of the
same original CombinedFragment.

As anotational shorthand, decompositions can also be shown “inline”. In Figure 341 we see that the inner
ConnectableElements of : AccessPoint (pl and p2) are represented by Lifelines already on this level.

Rationale
Not applicable.

Changes from UML 1.x
PartDecomposition did not appear in UML 1.x.

14.3.17 Statelnvariant (from Basiclnteractions)

A Statelnvariant is a constraint on the state of a Lifeline. In this case we mean by “state” also the values of eventual
attributes of the Lifeline.

A Statelnvariant is an InteractionFragment and it is placed on a Lifeline.

UML Superstructure 2.0 Draft Adopted Specification 433

Associations

e invariant: Congtraint[1] A Congtraint that should hold at runtime for this Statel nvariant

e lifeline: Lifeling[1] References the Lifeline on which the Statel nvariant appears. Specializes I nteractionFrag-
ment.covered

Semantics

The Constraint is assumed to be evaluated during runtime. The Constraint is evaluated immediately prior to the execution
of the next EventOccurrence such that all actions that are not explicitly modeled have been executed. If the Constraint is
true the trace is a valid trace; if the Constraint is false the trace is an invalid trace. In other words all traces that has a
Statelnvariant with a false Constraint is considered invalid.

Notation

The possible associated Constraint is shown as text in curly brackets on the lifeline.

See example in Figure 345.

Presentation Options

A Statelnvariant can optionally be shown as a Note associated with an EventOccurrence.

State symbols may also be used to describe a Constraint. The State symbol represents the equivalent of a constraint that
checks the state of the classifierBehavior of the enclosing Classifier. Since States may be hierarchical and orthogonal, the
following syntax can be used for the state name:

<state-info>::= <region} {,<region> }*

<region>::= <trivial region> | <region-name> {::<state>}?

<trivial region>::= <state>

<state>::= <state-name> {::<region-list>}?

<region-list>::= <region> | (<state-info>)

The regions represent the orthogonal regions of states. The identifier need only define the state partially. The value of the
constraint is true if the specified state information is true.

The example in Figure 345 also shows this presentation option.
14.3.18 Stop (from Basiclnteractions)

A Stop is an EventOccurrence that defines the termination of the instance specified by the Lifeline on which the Stop
occurs.

Associations

No more associations

Constraints
[1] No other EventOccurrences may appear below a Stop on agiven Lifelinein an InteractionOperand.

Semantics
It is assumed that a Stop implies that the instance described by this Lifeline will terminate.

434 UML Superstructure 2.0 Draft Adopted Specification

The trace representing its semantics only contains a “stop” EventOccurrence.

Notation
The Stop is depicted by a cross in the form of an X at the bottom of a Lifeline.

X

Figure 342 - Stop symbol

See example in Figure 333.

14.4 Diagrams

Interaction diagrams come in different variants. The most common variant is the Sequence Diagram (“ Sequence
Diagrams’ on page 435) that focuses on the Message interchange between a number of Lifelines. Communication
Diagrams (“Communication Diagrams’ on page 444) show interactions through an architectural view where the arcs
between the communicating Lifelines are decorated with description of the passed Messages and their sequencing.
Interaction Overview Diagrams (“Interaction Overview Diagrams’ on page 447) are a variant of Activity Diagrams that
define interactions in a way that promotes overview of the control flow. In the Appendices one may also find optional
diagram notations such as Timing Diagrams and Interaction Tables.

Sequence Diagrams

The most common kind of Interaction Diagram is the Sequence Diagram, which focuses on the Message interchange
between a number of Lifelines.

A sequence diagram describes an Interaction by focusing on the sequence of Messages that are exchanged, along with
their corresponding EventOccurrences on the Lifelines. The Interactions that are described by Sequence Diagrams are
described in this chapter.

UML Superstructure 2.0 Draft Adopted Specification 435

Graphic Nodes

The graphic nodes that can be included in structural diagrams are shown in Table 14.

Table 14 - Graphic nodes included in sequence diagrams

NODE TYPE

NOTATION

REFERENCE

Frame

sd EventOccurrence)

The notation shows a rectangular frame around
the diagram with aname in acompartment in the
upper left corner. See “Interaction (from Basi-
clnteraction, Fragments)” on page 419.

Lifeline

See “Lifeline (from Basiclnteractions, Frag-
ments)” on page 427

:Lifeline
1
|
|
|
1
ExecutionOccurrence See “ CombinedFragment (from Fragments)” on
page 409. See also “Lifeine (from Basiclnterac-
0b2:C2 tions, Fragments)” on page 427 and “ Execution-
Occurrence (from Basiclnteractions)” on

page 417

I nteractionOccurrence

ref

See “InteractionOccurrence (from Fragments)”
on page 423.

436

UML Superstructure 2.0 Draft Adopted Specification

Table 14 - Graphic nodes included in sequence diagrams

NoDE TYPE NOTATION REFERENCE
CombinedFragment See “ CombinedFragment (from Fragments)” on
page 409
alt
Statelnvariant / See “Continuation (from Fragments)” on
Continuations _ page 414 and “ Statelnvariant (from Basiclnter-
Y actions)” on page 433

p==15
|
|
Coregion See explanation under parallél in “ Combined-
Fragment (from Fragments)” on page 409
s[u]:B
I
|
3
'T' m3
3 m2
o
|
|
Stop See Figure 333

UML Superstructure 2.0 Draft Adopted Specification 437

Table 14 - Graphic nodes

included in sequence diagrams

NODE TYPE NOTATION REFERENCE
Duration Constraint See Figure 347
Duration Observation
User
}
} Code d=duration
T
{d..3*d},
l i CardOut {0..13}
i/ oK
|
|
|
Time Constraint See Figure 347
Time Observation
i CardOut {0..13} :
} / t=now
/ oK !
{t..t+3} I
Graphic Paths
The graphic paths between the graphic nodes are given in Table 15
Table 15 - Graphic paths included in sequence diagrams
NoDE TYPE NOTATION REFERENCE
Message Messages come in different variants depending on
what kind of Message they convey. Here we show
Code
an asynchronous message, acall and areply. These
_ are al complete messages. See “Message (from
doit(2) Basiclnteractions)” on page 428.
_>
Lost Message L ost messages are messages with known sender,
lost but the reception of the message does not happen.
See “Message (from Basiclnteractions)” on
page 428

438

UML Superstructure 2.0 Draft Adopted Specification

Table 15 - Graphic paths included in sequence diagrams

NODE TYPE NOTATION REFERENCE
Found Message Found messages are messages with known
found receiver, but the sending of the message is not
described within the specification. See “Message
(from Basiclnteractions)” on page 428
GeneralOrdering See “General Ordering (from Basiclnteractions)”
on page 418
........ ’. - e e ===
Examples
sd M sd N
r s[k]:B s[u]:B s[u]:B s[k]:B
| m ¢ | m3 | m3 |
[1 | T 1
I I m2 I I I
1 1 1 m m3 1
| | | ! |
| | | | |
I m2 I
I m3 ref 1/ |
| S o i
| ! |
| 1 1 0= 3
ifeli Coregion
Lifeline Class g
. d sd
=[x =)
Interactions M N State
Invariant

Internal structure ————>

Part

s:B[*]

Figure 343 - Sequence Diagrams where two Lifelines refer to the same set of Parts (and Inter-

nal Structure)

UML Superstructure 2.0 Draft Adopted Specification

439

The sequence diagrams shown in Figure 343 shows a scenario where r sends m1 to g[k] (which is of type B), and s[k]
sends m2 to s[u]. In the meantime independent of k] and s[u], r may have sent m3 towards the InteractionOccurrence N
through a gate. Following the m3 message into N we see that s[u] then sends another m3 message to g[k]. g[k] then sends
m3 and then m2 towards s[u]. s[u] receives the two latter messages in any order (coregion). Having received these
messages, we state an invariant on a variable x (most certainly owned by s[u]).

In order to explain the mapping of the notation onto the metamodel we have pointed out areas and their corresponding
metamodel concept in Figure 344. Let us go through the simple diagram and explain how the metamodel is built up. The
whole diagram is an Interaction (named N). There is aformal gate (with implicit name in_m3) and two Lifelines (named
qu] and s[k]) that are contained in the Interaction. Furthermore the two Messages (occurrences) both of the same type
m3, implicitly named m3_1 and m3_2 here, are also owned by the Interaction. Finally there are the three
EventOccurrences.

We have omitted in this metamodel the objects that are more peripheral to the Interaction model, such as the Part s and
the class B and the connector referred by the Message.

440 UML Superstructure 2.0 Draft Adopted Specification

Interaction
T~ sdN

Lifeline\
—~ s[u]:B

4
(formal) Gate // i

EventOccurrence

m3

s[kl:B |_Message

| (receiving)EventOccurrence

N:Interaction

!

\

]

in_m3:Gate

s[u]:Lifeline

s[k]:Lifeline

rec_ma3_on_su:
EventOccurrence

m3_1:Message

UML Superstructure 2.0 Draft Adopted Specification

send_m3_on_su:
EventOccurrence

m3_2:Message

rec_m3_on_sk:
EventOccurrence

Figure 344 - Metamodel elements of a sequence diagram

441

sd Mignore {t,r})

X Y Z

T S
|

I
|
|
|
|
|

consider {q,v,w}]

| \'
|

a;sert)

Figure 345 - Ignore, Consider, assert with State Invariants

In Figure 345 we have an Interaction M which considers message types other than t and r. This means that if this
Interaction is used to specify atest of an existing system and when running that system at or an r occurs, these messages
will be ignored by this specification. t and r will of course be handled in some manner by the running system, but how
they are handled isirrelevant for our Interaction shown here.

The State invariant given as a state “mystate” will be evaluated at runtime directly prior to whatever event occurs on Y
after “mystate”. This may be the reception of q as specified within the assert-fragment, or it may be an event that is
specified to be insignificant by the filters.

The assert fragment is nested in a consider fragment to mean that we expect a g message to occur once a v has occurred
here. Any occurrences of messages other than v,w and q will be ignored in a test situation. Thus the appearance of aw
message after the v is an invalid trace.

The state invariant given in curly brackets will be evaluated prior to the next event occurrence after that on Y.

442 UML Superstructure 2.0 Draft Adopted Specification

Internal Structure and corresponding Collaboration Occurrence

E <<collaboration>>

W
Bk EJX

,,,,,,,,,,,,,,,,, X:superA y:superB
X Y \ ﬁ

A B CollaborationOccurrence

dp binding Parts

A ‘B sd Q

X:superA ysuperB

ref m1l

wl.Q

m2

Figure 346 - Describing collaborations and their binding

The example in Figure 346 shows how collaboration occurrences are used to make Interactions of a Collaboration
available in another classifier.

The collaboration W has two parts x and y that are of types (classes) superA and superB respectively. Classes A and B are
specializations of superA and superB respectively. The Sequence Diagram Q shows a simple Interaction that we will
reuse in another environment. The class E represents this other environment. There are two anonymous parts :A and :B
and the CollaborationOccurrence w1l of Collaboration W binds x and y to :A and :B respectively. This binding is legal
since :A and :B are parts of types that are specializations of the types of x and y.

In the Sequence Diagram P (owned by class E) we use the Interaction Q made available via the Collaboration Occurrence
wil.

UML Superstructure 2.0 Draft Adopted Specification 443

sd UserAccepted)

:User :ACSystem

DurationObservation—___|

DurationConstraint

§

I
T |
|
|
i
~ {d..3*d} |
TimeConstraint l CardOut W
! t=now

\ ek

TimeObservation — |

Figure 347 - Sequence Diagram with time and timing concepts

The Seguence Diagram in Figure 347 shows how time and timing notation may be applied to describe time observation
and timing constraints. The :User sends a message Code and its duration is measured. The :ACSystem will send two
messages back to the :User. CardOut is constrained to last between 0 and 13 time units. Furthermore the interval between
the sending of Code and the reception of OK is constrained to last between d and 3*d where d is the measured duration
of the Code signal. We also notice the observation of the time point t at the sending of OK and how this is used to
constrain the time point of the reception of CardOut.

Communication Diagrams

Communication Diagrams focus on the interaction between Lifelines where the architecture of the internal structure and
how this corresponds with the message passing is central. The sequencing of Messages is given through a sequence
numbering scheme.

Communication Diagrams correspond to simple Sequence Diagrams that use none of the structuring mechanisms such as
InteractionOccurrences and CombinedFragments. It is also assumed that message overtaking (i.e. the order of the
receptions are different from the order of sending of a given set of messages) will not take place or is irrelevant.

444 UML Superstructure 2.0 Draft Adopted Specification

Graphical Nodes
Communication diagram nodes are shown in Table 16.

Table 16 - Graphic nodes included in communication diagrams

NODE TYPE NOTATION REFERENCE

Frame The notation shows a rectangular frame around the dia-

gram with a name in a compartment in the upper left
corner. See “Interaction (from Basiclnteraction, Frag-
ments)” on page 419.

sd EventOccurrence)

Lifeline See “Lifeline (from Basiclnteractions, Fragments)” on

page 427

S[k]:B

Graphic Paths
Graphic paths of communication diagrams are given in Table 17

Table 17 - Graphic paths included in communication diagrams

NODE TYPE NOTATION REFERENCE

Message See “Message (from Basiclnteractions)” on page 428. and
“Sequence expression” on page 446

The arrow shown here indicates the communication direc-
tion.

lami() >

UML Superstructure 2.0 Draft Adopted Specification 445

Examples

Lifeline
sd M
laiml Message
z S[K:B |~ wiith
Sequence
number
Messages 1b:m3 2:m2
g = Ny (\
1b.1:m3 1b.1.1:m3,
\1b.1.1.1;m2
s[u]:B

Figure 348 - Communication diagram

The Interaction described by a Communication Diagram in Figure 348 shows messages m1 and m3 being sent
concurrently from :r towards two instances of the part s. The sequence humbers shows how the other messages are
sequenced. 1b.1 follows after 1b and 1b.1.1 thereafter etc. 2 follows after 1a and 1b.

Sequence expression

The sequence-expression is a dot-separated list of sequence-terms followed by a colon (*:").
sequence-term ‘. ... Y

Each term represents a level of procedural nesting within the overall interaction. If all the control is concurrent, then
nesting does not occur. Each sequence-term has the following syntax:
[integer | name] [recurrence]

The integer represents the sequential order of the Message within the next higher level of procedural calling. Messages
that differ in one integer term are sequentially related at that level of nesting. Example: Message 3.1.4 follows Message
3.1.3 within activation 3.1. The name represents a concurrent thread of control. Messages that differ in the final name are
concurrent at that level of nesting. Example: Message 3.1a and Message 3.1b are concurrent within activation 3.1. All
threads of control are equal within the nesting depth.

The recurrence represents conditional or iterative execution. This represents zero or more Messages that are executed
depending on the conditions involved. The choices are:

“** ‘[jteration-clause ‘]’ an iteration

‘[’ guard ‘]"a branch

446 UML Superstructure 2.0 Draft Adopted Specification

An iteration represents a sequence of Messages at the given nesting depth. The iteration clause may be omitted (in which
case the iteration conditions are unspecified). The iteration-clause is meant to be expressed in pseudocode or an actual
programming language, UML does not prescribe its format. An example would be: *[i := 1..n].

A guard represents a Message whose execution is contingent on the truth of the condition clause. The guard is meant to
be expressed in pseudocode or an actual programming language; UML does not prescribe its format. An example would
be [x>Y].

Note that a branch is notated the same as an iteration without a star. One might think of it as an iteration restricted to a
single occurrence.

The iteration notation assumes that the Messages in the iteration will be executed sequentially. There is aso the
possihility of executing them concurrently. The notation for this is to follow the star by a double vertical line (for
parallelism): *||.

Note that in a nested control structure, the recurrence is not repeated at inner levels. Each level of structure specifies its
own iteration within the enclosing context.

Interaction Overview Diagrams

Interaction Overview Diagrams define Interactions (described in Chapter 14, “Interactions’) through a variant of Activity
Diagrams (described in Chapter 6, “Activities’) in a way that promotes overview of the control flow.

Interaction Overview Diagrams focus on the overview of the flow of control where the nodes are Interactions or
InteractionOccurrences. The Lifelines and the Messages do not appear at this overview level.

Graphic Nodes
Interaction Overview Diagrams are specialization of Activity Diagrams that represent Interactions
Interaction Overview Diagrams differ from Activity Diagrams in some respects.

1. Inplace of ObjectNodes of Activity Diagrams, Interaction Overview Diagrams can only have either (inline) Interac-
tions or InteractionOccurrences. Inline Interaction diagrams and I nteractionOccurrences are considered special forms
of Activitylnvocations.

Alternative Combined Fragments are represented by a Decision Node and a corresponding Merge Node.
Parallel Combined Fragments are represented by a Fork Node and a corresponding Join Node.

Loop Combined Fragments are represented by simple cycles.

ag > w D

Branching and joining of branches must in Interaction Overview Diagrams be properly nested. Thisis more restric-
tive than in Activity Diagrams.

6. Interaction Overview Diagrams are framed by the same kind of frame that encloses other forms of Interaction Dia-
grams. The heading text may also include alist of the contained Lifelines (that do not appear graphically)

UML Superstructure 2.0 Draft Adopted Specification 447

Table 18 - Graphic nodes included in Interaction Overview Diagrams in addition to those borrowed from Activity

Diagrams
NODE TYPE NOTATION REFERENCE
Frame The notation shows arectangular frame around the
diagram with a name in a compartment in the
sd EventOccurrence) upper left corner. See “ Interaction (from Basi-
clnteraction, Fragments)” on page 419.
Interaction An Interaction diagram of any kind may appear

*d J| User | | AC System |

inline as an Activitylnvocation. See“ Interaction
(from BasicInteraction, Fragments)” on page 419.
The inline Interaction diagrams may be either

< CardOut anonymous (as here) or named.
InteractionOccurrence Activitylnvocation in the form of InteractionOc-
currence. See “InteractionOccurrence (from Frag-
ments)” on page 423. The tools may choose to
ref N “explode” the view of an InteractionOccurrence

into an inline Interaction with the name of the
Interaction referred by the occurrence. Theinline
Interaction will then replace the occurrence by a
replica of the definition Interaction where eventual
arguments have replaced parameters.

448

UML Superstructure 2.0 Draft Adopted Specification

Examples

sd OverviewDiagram lifelines :User, :ACSystem)

InteractionOccurrence

kAN r_Ef)EstablishAccess("IIlegal PIN")

Duration Constraint —______| {0..25}

sd ,
(inline) Interaction —H
:ACSystem

CardOut

.

decision

interaction constraint I

:ACSystem

Msg("Please Enter")

ref

@k OpenDoor {1__1}
5

Figure 349 Interaction Overview Diagram representing a High Level Interaction diagram

UML Superstructure 2.0 Draft Adopted Specification 449

Interaction Overview Diagrams use Activity diagram notation where the nodes are either Interactions or
InteractionOccurrences. Interaction Overview Diagrams are a way to describe Interactions where Messages and Lifelines
are abstracted away. In the purest form all Activities are InteractionOccurrences and then there are no Messages or
Lifelines shown in the diagram at all.

The Figure 349 is another way to describe the behavior shown in Figure 338, with some added timing constraints. The
Interaction EstablishAccess occurs first (with argument “Illegal PIN") followed by weak sequencing with the message
CardOut which is shown in an inline Interaction. Then there is an alternative as we find a decision node with an
InteractionConstraint on one of the branches. Along that control flow we find another inline Interaction and an
InteractionOccurrence in (weak) sequence.

Timing Diagram

Timing Diagrams are used to show interactions when a primary purpose of the diagram is to reason about time. Timing
diagrams focus on conditions changing within and among Lifelines along a linear time axis.

Timing diagrams describe behavior of both individual classifiers and interactions of classifiers, focusing attention on time
of occurrence of events causing changes in the modeled conditions of the Lifelines.

Graphic Nodes
The graphic nodes that can be included in structural diagrams are shown in Table 14 on page 436.

Table 19 - Graphic nodes and paths included in sequence diagrams

NODE TYPE NOTATION REFERENCE

Frame The notation shows arectangular frame around the
diagram with a name in a compartment in the upper
left corner. See “Interaction (from Basiclnteraction,
Fragments)” on page 419.

sd EventOccurrence)

Message Messages come in different variants depending on
what kind of Message they convey. Here we show an
asynchronous message, acall and areply. See“Mes-

VSense sage (from Basiclnteractions)” on page 428.

dolt(w:int)
evAcquire(
void): long

450 UML Superstructure 2.0 Draft Adopted Specification

Table 19 - Graphic nodes and paths included in sequence diagrams

NODE TYPE NOTATION REFERENCE

Message | abel Labelsare only notational shorthands used to prevent
cluttering of the diagrams with a number of mes-
sages crisscrossing the diagram between Lifelines
that are far apart.

The labels denote that a Message may be disrupted
by introducing labels with the same name.
State or condition Thisisthe state of the classifier or attribute, or some
timeline testable condition, such as an discrete enumerable

value. See also “ Statel nvariant (from Basiclnterac-
tions)” on page 433.

Initializing It is also permissable to let the state-dimension be
continuous aswell asdiscrete. Thisisillustrative for

Acquiring - . - .
_ scenarios where certain entities undergo continuous
Reporting state changes, such as temperature or density.
Idle
General value Shows the value of the connectable element asa
lifeline function of time. Value is explicitly denoted as text.
X"FFFF" >< x"0(Crossing reflects the event where the value changed.
Lifeline See “Lifeline (from Basiclnteractions, Fragments)”
on page 427
instance 1
Instance 2
GeneralOrdering See “ General Ordering (from Basiclnteractions)” on
page 418

UML Superstructure 2.0 Draft Adopted Specification 451

Table 19 - Graphic nodes and paths included in sequence diagrams

NODE TYPE NOTATION REFERENCE

Stop See “ Stop (from Basiclnteractions)” on page 434

X

Examples

Timing diagrams show change in state or other condition of a structural element over time. There are afew formsin use.
We shall give examples of the simplest forms.

Sequence Diagrams as the primary form of Interactions may also depict time observation and timing constraints. We show
in Figure 347 an example in Sequence Diagram that we will also give in Timing Diagrams.

The :User of the Sequence Diagram in Figure 347 is depicted with a simple Timing Diagram in Figure 350.

Lifeline State or condition DurationConstraint time constraint

/
sd L%/erAcc % /
{d..3*d}
/ Wanﬁéss

—
(<))
(%]

)

WaitCard
CardOut

Idle
Code OK {t..t+3}

t »\
X tick mark values timing ruler

Figure 350 - A Lifeline for a discrete object

event or stimulus

452 UML Superstructure 2.0 Draft Adopted Specification

The primary purpose of the timing diagram is to show the change in state or condition of alifeline (representing a
Classifier Instance or Classifier Role) over linear time. The most common usage is to show the change in state of an
object over time in response to accepted events or stimuli. The received events are annotated as shown when it is
desireable to show the event causing the change in condition or state.

Sometimes it is more economical and compact to show the state or condition on the vertical Lifeline as shown in Figure
351.

Lifeline State or condition DurationConstraint

e

sd UserAcc_User) A/
x ¥ SN S

:User Idle WaitCard XWaitAccess |dle
N~ v/ o

Figure 351 - Compact Lifeline with States
Finally we may have an elaborate form of TimingDiagrams where more than one Lifeline is shown and where the

messages are also depicted. We show such a Timing Diagram in Figure 352 corresponding to the Sequence Diagram in
Figure 347.

UML Superstructure 2.0 Draft Adopted Specification 453

Lifelines State or condition Duration Constraints
sd UsXLrAccepted) V

{d..3*d}

WaitAccess
\ E . -
3 waitCard A/T|me Constraint
N {t..t+3}
Idle

oK <tF———— Message

1 5 NoCard
2
Duration Observation | & Unlock
—l_ < HasCard
d
] B ™~Time Observation
01 2 t

Figure 352 - Timing Diagram with more than one Lifeline and with Messages

Changes from UML 1.x
The Timing Diagrams were not available in UML 1.4.

454 UML Superstructure 2.0 Draft Adopted Specification

15 State Machines

15.1 Overview

The StateMachine package defines a set of concepts that can be used for modeling discrete behavior through finite state-
transition systems. In addition to expressing the behavior of a part of the system, state machines can also be used to
express the usage protocol of part of a system. These two kinds of state machines are referred here as behavioral state
machines and protocol state machines.

Behavioral state machines

State machines can be used to specify behavior of various model elements. For example, they can be used to model the
behavior of individual entities (e.g., class instances). The state machine formalism described in this section is an object-
based variant of Harel statecharts.

Protocol State machines

Protocol state machines are used to express usage protocols. Protocol state machines express the legal transitions that a
classifier can trigger. The state machine notation is a convenient way to define a lifecycle for objects, or an order of the
invocation of its operation. Because protocol state machines do not preclude any specific behavioral implementation, and
inforces legal usage scenarios of classifiers, interfaces and ports can be associated to this kind of state machines.

UML Superstructure 2.0 Draft Adopted Specification 455

15.2 Abstract Syntax

Kernel BasicBehaviors
(from Classes) (from CommonBehavi...)
N N

—)
Ports |

Interfaces - -
(f cl) BehaviorStateMachines
rom Classes

(from CompositeStruc..)

|

N | 7 7 A

A\ / e

<<> e>> ‘ / <<vzge>> <<merge>>
e&g ; <<r?/érge>> P

N VA -

ProtocolStateMachines MaximumOneRegion

Figure 353 - Package Dependencies

456 UML Superstructure 2.0 Draft Adopted Specification

Package BehaviorStatemachines

+statelnv ariant
{subsets ownedElement} 0..1

(fromCommunications)

Constraint
(fromKemel)

+guard
{subsets ownedElement}

- <<enumeration>> <<enumeration>>
Behavmr . TransitionKind PseudostateKind
(from BasicBehaviors) —
internal initial
loca deepHistory
external shallowHis tory
o1 join
StateMachine fork
+submachine junction
choice
0.1 entryPoint
NamedElement 0.1 NamedElement exithint
(fromKernel) +region (fromkerrel) terminate
1 *| {subsets ownedMember}
+container - +container
{redefines owner} Region redefines owner}
+subv ertex 0.1 0.1 +transitions
* | {subsets ownedElement} * /)t +region + | {subsets ownedElement}
Vertex *source +outgoing Transition
1] x — —
+arget +incoming kind : TransitionKind °
1 * 0..1
)) Z> 0.1 N
+connectionPoint
{subsets ownedMember} 0.1 +effect
{subsets ownedElement}
. Pseudostate State 0.1
kind : PseudostateKind / isComposite : Boolean = false {subsets ownedET:r:\terﬁt} Activity
*/\ +entr Fexit / isOrthogonal : Boolean = false (from BasicBehaviors)
Yo+ / isSimple : Boolean = false 0.1 0.1
0..1] 0..1 / isSubmachineState : Boolean = false {subsets ownedEIer:\ee)rﬂltt}
ConnectionPointReference 0.1
0.1 -
0.1 +doActiv it
" {subs ets ownedHement
+cohnection 0.1 0.1
{subsets ownedElement} - 0..1 *
+submachineState
+deferrableTrigger |, * 0..* J/ +trigger
FinalState Trigger

Figure 354 - State Machines

UML Superstructure 2.0 Draft Adopted Specification

0..1

457

Package Redefinitions

RedefinableElement

(fromKernel)

+extendedRegion
+/redefinitionContext {redefines redefinedElement}
Classifier {subsets redefinitionContext} +redefinedState
Region {redefines redefinedElement}
(fromKernel) . 0.1 ot
+/redefinitionContext 0.1 s . 5
{s ubs ets redefinitionC ontext} tate +redefined Transition
{redefines redefinedElement}
1 0.1 -
+/redefinitionContext Transition 0.1
{subsets redefinition Context}
1 0..1

BehavioredClassifier

{subsets redefinitionContext} 0.1

+ownedStateMachine
{redefines ownedBehavior}

StateMachine

/iO..l 0.1

+extendedStateMachine
{redefines redefinedElement}

Figure 355 - State Machine Redefinitions

Package ProtocolStatemachines

StateMachine DirectedRelationship
(from BehaviorStateMechires) (fromKemel)
* 0.1 +specificVachine +conformance
Port Protocol StatelVachine subsets source, subsets owner} {subsets ownedBlement} |ProtocolConformance
+protocol &
1
1 *
Interface 0.1 0.1
eralVechine
?&‘?Bses target}

+interface #protocol
{subsets feature,
{subsets namespace} g jpsets ownedvember}

Figure 356 - Protocol state machines

458 UML Superstructure 2.0 Draft Adopted Specification

Transiion

(from BehaviorStatelVachines)
. . 0.1 +preConditio{subsets guard}
Qperation Protocol Transition (@ 01| Constraint
+referred 0. (from Kernel)
0.1 +postCondition
’ {subsets ownedElement} 0.1 | +statelmariant
{subsets onnedBement
State
L g
0.1

Figure 357 - Constraints

Package MaximumOneRegion

+region
{redefines region}

Region
0.1 (from BehaviorStateMachines)

State @

+region
{redefines region

StateMachine @
0..1 1

Figure 358 - Statemachines and States with maximum one region

15.3 Class Descriptions

15.3.1 ConnectionPointReference (from BehaviorStatemachines)

A connection point reference represents a usage (as part of a submachine state) of an entry/exit point defined in the
statemachine reference by the submachine state.

Description

Connection point references of a submachine state can be used as sources/targets of transitions. They represent entries
into or exits out of the submachine state machine referenced by the submachine state.

Attributes
No additional attributes.

UML Superstructure 2.0 Draft Adopted Specification 459

Associations
e entry: Pseudostate[1..*] The entryPoint kind pseudo states corresponding to this connection point.

e exit: Pseudostate[1..*] The exitPoints kind pseudo states corresponding to this connection point.

Constraints

[1] The entry Pseudostates must be Pseudostates with kind entryPoint.
entry->notEmpty() implies entry.kind = #entryPoint

[2] Theexit Pseudostates must be Pseudostates with kind exitPoint
exit->notEmpty() implies exit.kind = #exitPoint

Semantics

Connection point references are sources/targets of transitions implying exits out of/entries into the submachine state
machine referenced by a submachine state.

An entry point connection point reference as the target of a transition implies that the target of the transition is the entry
point pseudostate as defined in the submachine of the submachine state. As a result, the regions of the submachine state
machine are entered at the corresponding entry point pseudo states.

An exit point connection point reference as the source of a transition implies that the source of the transition is the exit
point pseudostate as defined in the submachine of the submachine state that has the exit point connection point defined.
When a region of the submachine state machine has reached the corresponding exit points, the submachine state exits at
this exit point.

Notation

A connection point reference to an entry point has the same notation as an entry point pseudostate. The circle is placed on
the border of the state symbol of a submachine state.

ReadAmount :
ReadAmountSM

again

Figure 359 - Entry Point

460 UML Superstructure 2.0 Draft Adopted Specification

A connection point reference to an entry point can also be visualized using a rectangular symbol as shown in Figure 362.
The text inside the symbol shall contain the keyword ‘via followed by the name of the connection point. This notation

may only be used if the transition ending with the connection point is defined using the transition-oriented control icon

notation as defined in “Transition (from BehaviorStatemachines)” on page 498.

< viaaborted)
v

ReadAmount:
ReadAmountSM

Figure 360 - Alternative Entry Point notation

A connection point reference to an exit point has the same notation as an exit point pseudostate. The encircled cross is
placed on the border of the state symbol of a submachine state.

ReadAmount :

ReadAmountSM aborted

Figure 361 - Exit Point

A connection point reference to an exit point can also be visualized using a rectangular symbol as shown in Figure 362.
The text inside the symbol shall contain the keyword ‘via followed by the name of the connection point. This notation

may only be used if the transition associated with the connection point is defined using the transition-oriented control icon
notation as defined in “Transition (from BehaviorStatemachines)” on page 498.

ReadAmount:
ReadAmountSM

< viaaborted)
|

Figure 362 - Alternative Exit Point notation

15.3.2 Interface (from ProtocolStatemachines, as specialized)

Interface is defined as a specialization of the general Interface, adding an association to a protocol state machine.

UML Superstructure 2.0 Draft Adopted Specification 461

Description

Since an interface specifies conformance characteristics, it does not own detailed behavior specifications. Instead,
interfaces may own a protocol state machine that specifies event sequences and pre/post conditions for the operations and
receptions described by the interface.

Attributes
No additional attributes.

Associations

e protocol: Protocol StateM achine [0..1]
References aprotocol state machine specifying the legal sequences of the invocation of
the behavioral features described in the interface.

Semantics

Interfaces can specify behavioral constraints on the features using a protocol state machine. A classifier realizing an
interface must comply with the protocol state machine owned by the interface.

Changes from UML 1.x

Interfaces can own a protocol state machine.
15.3.3 FinalState (from BehaviorStatemachines)

A special kind of state signifying that the enclosing region is completed. If the enclosing region is directly contained in a
state machine and all other regions in the state machine also are completed, then it means that the entire state machine is
completed.

Attributes
No additional attributes.

Associations

No additional associations.

Constraints

[1] A final state cannot have any outgoing transitions
self.outgoing->size() = 0

[2] A final state cannot have regions

[3] A final state cannot reference a submachine

[4] A final state has no entry activity

[5] A final state has no exit activity

[6] A final state has no state (doActivity) activity

462 UML Superstructure 2.0 Draft Adopted Specification

Semantics

When the final state is entered, its containing region is completed, which means that it satisfies the completion condition.
The containing state for this region is considered completed when all contained regions are completed. If the region is
contained in a state machine and all other regions in the state machine also are completed, the entire state machine
terminates, implying the termination of the context object of the state machine.

Notation

A final state is shown as a circle surrounding a small solid filled circle (see Figure 363). The corresponding completion
transition on the enclosing state has as notation an unlabeled transition.

®

Figure 363 - Final State

Example
Figure 384 has an example of afinal state (the rightmost of the states within the composite state).

15.3.4 Port ((from ProtocolStatemachines, as specialized)
Port is defined as a specialization of the general Port, adding an association to a protocol state machine.

Attributes
No additional attributes.

Associations

e protocol: Protocol StateMachine [0..1]
References an optional protocol state machine which describes valid interactions at this
interaction point.

Semantics

The protocol references a protocol state machine (see “Protocol StateM achine (from Protocol Statemachines)” on page 464)
that describes valid sequences of operation and reception invocations that may occur at this port.

15.3.5 ProtocolConformance (from ProtocolStatemachines)

Description

Protocol state machines can be redefined into more specific protocol state machines, or into behavioral state machines.
Protocol conformance declares that the specific protocol state machine specifies a protocol that conforms to the general
state machine one, or that the specific behavioral state machine abide by the protocol of the general protocol state
machine.

A protocol state machine is owned by a classifier. The classifiers owning a general state machine and an associated
specific state machine are generally also connected by a generalization or a realization link.

UML Superstructure 2.0 Draft Adopted Specification 463

Attributes
No additional attributes.

Associations
« gpecificMachine: StateMachine [1] :
Specifies the state machine which conforms to the general state machine.

« generalMachine: Protocol StateMachine [1] :
Specifies the protocol state machine to which the specific state machine conforms.

Constraints
No additional constraints

Semantics

Protocol conformance means that every rule and constraint specified for the general protocol state machine (state
invariants, pre and post conditions for the operations referred by the protocol state machine) apply to the specific protocol
or behavioral state machine.

In most cases, there are relationships between the classifier being the context of the specific state machine and the
classifier being the context of the general protocol state machine. Generally, the former specializes or realizes the later. It
is also possible that the specific state machine is a behavioral state machine that implements the general protocol state
machine, both state machines having the same class as a context.

15.3.6 ProtocolStateMachine (from ProtocolStatemachines)

Description

A protocol state machine is always defined in the context of a classifier. It specifies which operations of the classifier can
be called in which state and under which condition, thus specifying the allowed call sequences on the classifier's
operations. A protocol state machine presents the possible and permitted transitions on the instances of its context
classifier, together with the operations which carry the transitions. In this manner, an instance lifecycle can be created for
a classifier, by specifying the order in which the operations can be activated and the states through which an instance
progresses during its existence.

Attributes
No additional attributes.

Associations
e conformance: Protocol Conformance[*] : Conformance between protocol state machines.

Constraints
[1] A protocol state machine must only have a classifier context, not a behavioral feature context

[2] All transitions of a protocol state machine must be protocol transitions. (transitions as extended by the Protocol StateMa-
chines package)

[3] If two ports are connected, then the protocol state machine of the required interface (if defined) must be conformant to the
protocol state machine of the provided interface (if defined).

464 UML Superstructure 2.0 Draft Adopted Specification

Semantics
Protocol state machines help defining the usage mode of the operations and receptions of a classifier by specifying:

e -inwhich context (under which states and pre conditions) they can be used
e .if thereisaprotocol order between them

e -what result is expected from their use

Using pre and post conditions on operations is a technique well suited for expressing such specifications. However, pre
and post conditions are expressed at the operation level, and therefore do not provide a synthetic overview at the classifier
level. Protocol state machines provide a global overview of the classifier protocol usage, in a simple formal
representation. Protocol state machines may not express all the pre- and postconditions of operations. In that case,
additional pre- or postconditions can be added at the operation level. Formally, the pre condition of an operation will be
the addition (logical "and") of the constraint defined as pre condition of the operation, if any, to the constraint deduced
from the protocol state machine if any. The same applies to the post condition of an operation.

The protocol state machine defines all allowed transitions for each operation. The protocol state machine must represent
all operations that can generate a given change of state for a class. Those operations that do not generate a transition are
not represented in the protocol state machine.

Protocol state machines constitute a means to formalize the interface of classes, and do not express anything except
consistency rules for the implementation or dynamics of classes.

Protocol state machine interpretation can vary from:

1. Declarative protocol state machines that specify the legal transitions for each operation. The exact triggering condi-
tion for the operationsis not specified. This specification only defines the contract for the user of the context classi-
fier.

2. Executable protocol state machines, that specify all eventsthat an object may receive and handle, together with the
transitions that areimplied. In this case, the legal transitions for operations will exactly be the triggered transitions.
The call trigger specifies the effect action, which isthe call of the associated operation.

The representation for both interpretations is the same, the only difference being the direct dynamic implication that the
interpretation 2 provides.

Elaborated forms of state machine modeling such as compound transitions, sub-statemeachines, composite states and
concurrent regions can also be used for protocol state machines. For example, concurrent regions make it possible to
express protocol where an instance can have several active states simultaneously. Sub-state machines and compound
transitions are used as in behavioral state machines for factorizing complex protocol state machines.

A classifier may have several protocol state machines. This happens frequently, for example, when a class inherits several
parent classes having protocol state machine, when the protocols are orthogonal. An alternative to multiple protocol state
machines can always be found by having one protocol state machine, with sub-state machines in concurrent regions.

UML Superstructure 2.0 Draft Adopted Specification 465

Notation

The notation for protocol state machine is very similar to the one of behavioral state machines. The keyword { protocol}
placed close to the name of the state machine differentiates graphicaly protocol state machine diagrams.

Door {protocol})
doorWay -> isEmpty] Close/
@ ;l opened l closed lé
create/ —J l

l locked]—
unlock/

Figure 364 - Protocol state machine

15.3.7 ProtocolTransition (from ProtocolStateMachines)

Description

A protocoal transition (transition as specialized in the Protocol StateM achines package) specifies a legal transition for an
operation. Transitions of protocol state machines have the following information: a pre condition (guard), on trigger, and
apost condition. Every protocol transition is associated to zero or one operation (referred Behavioral Feature) that belongs
to the context classifier of the protocol state machine.

The protocol transition specifies that the associated (referred) operation can be caled for an instance in the origin state
under theinitial condition (guard), and that at the end of the transition, the destination state will be reached under the final
condition (post).

Attributes
No additional attributes.

Associations

e \referred: Operation[0..*] This association refers to the associated operation. It is derived from the operation of the
call trigger when applicable.

e postCondition: Constraint[0..1] Specifies the post condition of the transition which is the condition that should be
obtained oncethetransition istriggered. This post condition is part of the post condition of
the operation connected to the transition.

e preCondition: Constraint[0..1] Specifies the precondition of the transition. It specifies the condition that should be veri-
fied before triggering the transition. This guard condition added to the source state will be
evaluated as part of the precondition of the operation refered by the transition if any.

466 UML Superstructure 2.0 Draft Adopted Specification

Constraints

[1] A protocol transition always belongs to a protocol state machine.
container.belongsToPSM()

[2] A protocoal transition never has associated actions.
effect->isEmpty()

[3] If aprotocol transition refers to an operation (i. e. has a call trigger corresponding to an operation), then that operation
should apply to the context classifier of the state machine of the protocol transition.

Additional Operations
[1] The operation belongsToPSM () checksiif the region belongs to a protocol state machine

context Region::belongsToPSM () : Boolean

result = if not stateMachine->isEmpty() then
oclisTypeOf(ProtocolStateMachine)
else if not state->isEmpty() then
state.container.belongsToPSM ()
else false

Semantics
No "effect" action

The effect action is never specified. It is implicit, when the transition has a call trigger: the effect action will be the
operation specified by the call trigger. It is unspecified in the other cases, where the transition only defines that a given
event can be received under a specific state and pre-condition, and that a transition will lead to another state under a
specific post condition, whatever action will be made through this transition.

Unexpected event reception

The interpretation of the reception of an event in an unexpected situation (current state, state invariant, and pre-condition)
is a semantic variation point: the event can be ignored, rejected or deferred, an exception can be raised, or the application
can stop on an error. It corresponds semantically to a pre-condition violation, for which no predefined behavior is defined
in UML.

Unexpected behavior

The interpretation of an unexpected behavior, that is an unexpected result of a transition (wrong final state or final state
invariant, or post condition) is also a semantic variation point. However, this should be interpreted as an error of the
implementation of the protocol state machine.

Equivalences to pre and post conditions of operations
The protocol transition can always be translated into pre and post conditions of the associated operation.
For example, the transition in Figure 365 specifies that:

1. theoperation "m1" can be called on an instance when it isin the state S1 under the condition C1,

2. whenmliscalled in the state S1 under the condition C1, then the final state S2 must be reached under the condition
Cc2.

This can be translated into the following pre and post conditions of the operation m1 (Figure 365).

UML Superstructure 2.0 Draft Adopted Specification 467

[C1]m1/[C2]
s1 S2

Figure 365 - Example of a protocol transition associated to the "m1" operation

Operation m1()
Pre: S1 isin the configuration state and C1
Post: if the initial condition was “Sl is in the configuration state and C1” then S2 is in the configuration state and C2.

Operations referred by several transitions

:M [C1lm1/[C2] [:82
s S s

Figure 366 - Example of several transitions referring to the same operation

In a protocol state machine, several transitions can refer to the same operation as illustrated below. In that case, all pre
conditions and post conditions will be combined in the operation pre condition as below:
Operation m1()

Pre: S1isin the configuration state and C1

or

S3isin the configuration state and C3

Post: if theinitial condition was “ Sl isin the configuration state and C1”
then S2 isin the configuration state and C2

else

if theinitial condition was “S3 isin the configuration state and C3”

then $4 isin the configuration state and C4

468 UML Superstructure 2.0 Draft Adopted Specification

A protocol state machine specifies all the legal transitions for each operation refered by its transitions. This means that for
any operation refered by a protocol state machine, the part of its precondition relative to legal initial or final stateis
completely specified by the protocol stat machine.

Unreferred Operations

If an operation is not referred by any transition of a protocol state machine, then the operation can be called for any state
of the protocol state machine, and does not change the current state.

Using events in protocol state machines

Apart from the operation call event, events are generally used for expressing a dynamic behavior interpretation of
protocol state machines. An event which is not a call event can be specified on protocol transitions.

In this case, this specification is a requirement to the environment external to the state machine : it is legal to send this
event to an instance of the context classifier only under the conditions specified by the protocol state machine.

Just like call event, this can also be interpreted in a dynamic way, as a semantic variation point.

Notation

The usual state machine notation applies. The difference is that no actions are specified for protocol transitions, and that
post conditions can exist. Post conditions have the same syntax as guard conditions, but appear at the end of the transition
syntax.

[precondition] event / [post condition]

Figure 367 - Protocol transition notation
15.3.8 PseudoState (from BehaviorStatemachines)
A pseudostate is an abstraction that encompasses different types of transient vertices in the state machine graph.

Description

Pseudostate are typically used to connect multiple transitions into more complex state transitions paths. For example, by
combining a transition entering a fork pseudostate with a set of transitions exiting the fork pseudostate, we get a
compound transition that leads to a set of orthogonal target states.

Attributes

e kind: PseudoStateKind Determines the precise type of the PseudoState and can be one of: entryPoint, exitPoint,
initial, deepHistory, shallowHistory, join, fork, junction, terminate or choice.

Associations
No additional associations.

Constraints

An initial vertex can have at most one outgoing transition.

UML Superstructure 2.0 Draft Adopted Specification 469

(2]

(3]

[4]

(3]

6]

[7]

(8]

(9]

[10]

(self.kind = #initial) implies
((self.outgoing->size <= 1)

History vertices can have at most one outgoing transition.

((self.kind = #deepHistory) or (self.kind = #shallowHistory)) implies
(self.outgoing->size <= 1)

In a complete statemachine, ajoin vertex must have at least two incoming transitions and exactly one outgoing transition.
(self.kind = #join) implies
((self.outgoing->size = 1) and (self.incoming->size >= 2))

All transitionsincoming ajoin vertex must originate in different regions of an orthogonal state.
(self.kind = #join
and not ocllsKindOf(self.stateMachine, ActivityGraph))
implies
self.incoming->forAll (t1, t2 | t1<>t2 implies
(self.stateMachine.LCA(t1.source, t2.source).
container.isOrthogonal)

In a complete statemachine, afork vertex must have at least two outgoing transitions and exactly one incoming transition.
(self.kind = #fork) implies

((self.incoming->size = 1) and (self.outgoing->size >= 2))
All transitions outgoing a fork vertex must target statesin different regions of an orthogonal state.
(self.kind = #fork

and not oclisKindOf(self.stateMachine, ActivityGraph)) implies

self.outgoing->forAll (t1, t2 | t1<>t2 implies

(self.stateMachine.LCA(t1.target, t2.target).
container.isOrthogonal)

In a complete statemachine, ajunction vertex must have at least one incoming and one outgoing transition.
(self.kind = #junction) implies
((self.incoming->size >= 1) and (self.outgoing->size >= 1))

In a complete statemachine, a choice vertex must have at least one incoming and one outgoing transition.
(self.kind = #choice) implies
((self.incoming->size >= 1) and (self.outgoing->size >= 1))

Pseudostates of kind entryPoint can only be defined in the topmost regions of a StateMachine.

(kind = #entryPoint) implies (owner.ocllsKindOf(Region) and owner.owner.ocllsKindOf(StateMachine))
Pseudostates of kind exitPoint can only be defined in the topmost regions of a StateM achine.

(kind = #exitPoint) implies (owner.ocllsKindOf(Region) and owner.owner.ocllsKindOf(StateMachine))

Semantics

The specific semantics of a Pseudostate depends on the setting of its kind attribute.

470

« Aninitial pseudostate represents a default vertex that is the source for a single transition to the default state of a com-
posite state. There can be at most one initial vertex in aregion. The initial transition may have an action.

« deepHistory represents the most recent active configuration of the composite state that directly contains this pseu-
dostate; e.g. the state configuration that was active when the composite state was last exited. A composite state can
have at most one deep history vertex. At most one transition may originate from the history connector to the default
deep history state. Thistransition is taken in case the composite state had never been active before. Entry actions of
states entered on the path to the state represented by a deep history are performed.

- shallowHistory represents the most recent active substate of its containing state (but not the substates of that substate).
A composite state can have at most one shallow history vertex. A transition coming into the shallow history vertex is
equivalent to atransition coming into the most recent active substate of a state. At most one transition may originate

UML Superstructure 2.0 Draft Adopted Specification

from the history connector to the deafault shallow history state. Thistransition is taken in case the composite state had
never been active before. Entry actions of states entered on the path to the state represented by a shallow history are
performed.

- join vertices serve to merge several transitions emanating from source vertices in different orthogonal regions. The
transitions entering ajoin vertex cannot have guards or triggers.

« fork vertices serve to split an incoming transition into two or more transitions terminating on orthogonal target vertices
(i.e. verticesin different regions of a composite state). The segments outgoing from afork vertex must not have guards
or triggers.

« junction vertices are semantic-free vertices that are used to chain together multiple transitions. They are used to con-
struct compound transition paths between states. For example, a junction can be used to converge multiple incoming
transitions into a single outgoing transition representing a shared transition path (thisis known as an merge). Con-
versely, they can be used to split an incoming transition into multiple outgoing transition segments with different guard
conditions. Thisrealizes a static conditional branch. (In the latter case, outgoing transitions whose guard conditions
evaluate to false are disabled. A predefined guard denoted “else” may be defined for at most one outgoing transition.
Thistransition is enabled if al the guards labeling the other transitions are false.) Static conditional branches are dis-
tinct from dynamic conditional branches that are realized by choice vertices (described below).

- choice vertices which, when reached, result in the dynamic evaluation of the guards of the triggers of its outgoing tran-
sitions. Thisrealizes a dynamic conditional branch. It allows splitting of transitions into multiple outgoing paths such
that the decision on which path to take may be afunction of the results of prior actions performed in the same run-to-
completion step. If more than one of the guards evaluates to true, an arbitrary oneis selected. If none of the guards
evaluates to true, then the model is considered ill-formed. (To avoid this, it is recommended to define one outgoing
transition with the predefined “else” guard for every choice vertex.) Choice vertices should be distinguished from
static branch points that are based on junction points (described above).

» Anentry point pseudostate is an entry point of a state machine. In each region of the state machine it has asingle tran-
sition to a vertex within the same region.

» An exit point pseudostate is an exit point of a state machine. Entering an exit point within any region of the state
machine referenced by a submachine state implies the exit of this submachine state and the triggering of the transition
that has this exit point as source in the state machine enclosing the submachinestate.

 Entering aterminate pseudostate implies that the execution of this state machine by means of its context object is ter-
minated.

Notation

An initial pseudostate is shown as a small solid filled circle (see Figure 368). In a region of a classifierBehavior state
machine, the transition from an initial pseudostate may be labeled with the trigger event that creates the object; otherwise,
it must be unlabeled. If it is unlabeled, it represents any transition from the enclosing state.

Figure 368 - Initial Pseudo State

A shallowHistory is indicated by a small circle containing an ‘H’ (see Figure 369). It applies to the state region that
directly encloses it.

UML Superstructure 2.0 Draft Adopted Specification 471

(»)

Figure 369 - Shallow History

A deepHistory isindicated by a small circle containing an ‘“H*’ (see Figure 370). It applies to the state region that directly
encloses it.

()

Figure 370 - Deep History

An entry point is shown as a small circle on the border of the state machine diagram, with the name associated with it (see
Figure 371).

again O

Figure 371 - Entry point

Optionally it may be placed both the within state machine diagram and outside the border of the state machine diagram.

An exit point is shown as a small circle with a cross on the border of the state machine diagram, with the name associated
with it (see Figure 372).

aborted
0%

Figure 372 - Exit point

Optionally it may be placed both within the state machine diagram and outside the border of the state machine diagram.

472 UML Superstructure 2.0 Draft Adopted Specification

A junction is represented by a small black circle (see Figure 373).

ellb < 0]

e?2[b < 0]
[a>T7]

[a=>5]

Figure 373 - Junction

A choice pseudostate is shown as a diamond-shaped symbol as exemplified by Figure 374.

(510 [1d>10]

Id \1/ \l/

[1d<=10]

[<=10]

Figure 374 - Choice Pseudo State

A terminate pseudostate is shown as a cross, see Figure 375.

>

Figure 375 - Terminate node

UML Superstructure 2.0 Draft Adopted Specification 473

The notation for a fork and join is a short heavy bar (Figure 376). The bar may have one or more arrows from source
states to the bar (when representing a joint) The bar may have one or more arrows from the bar to states (when
representing a fork). A transition string may be shown near the bar.

Process

Figure 376 - Fork and Join

Presentation Options

If all guards associated with triggers of transitions leaving a choice PseudoState are binary expressions that share a
common left operand, then the notation for choice PseudoState may be simplified. The left operand may be placed inside
the diamond-shaped symbol and the rest of the Guard expressions placed on the outgoing transitions. This is exemplified

in Figure 377.

[>10] [1d>10]

v

Id

[<=10] [1d<=10]

Figure 377 - Alternative Notation for Choice Pseudostate

Multiple trigger-free and effect-free transitions originating on a set of states and targeting a junction vertex with a single
outgoing transition may be presented as a state symbol with alist of the state names and an outgoing transition symbol

corresponding to the outgoing transition from the junction.

The special case of the transition from the junction having a history as target may optionally be presented as the target
being the state list state symbol. See Figure 378 and Figure 379 for examples.

Figure 378 - State List Option

474 UML Superstructure 2.0 Draft Adopted Specification

VerifyCard,
ReleaseCard

logCard

Figure 379 - State Lists

Changes from previous UML

VerifyCard,
VerifyTransaction

logVerify

Entry and exit point and terminate Pseudostates have been introduced.

The semantics of deepHistory has been aligned with shallowHistory in that the containing state does not have to be
exited in order for deepHistory to be defined. The implication of thisisthat deepHistory (asisthe case for shallowHis-
tory) can be the target of transitions also within the containing state and not only from states outside.

The state list presentation option is an extension to UML1.x.

15.3.9 PseudoStateKind (from BehaviorStatemachines)

PseudoStateKind is an enumeration type.

Description

PseudoStateKind is an enumeration of the following literal values:

initial
deepHistory
shallowHistory
join

fork

junction
choice
entryPoint
exitPoint

terminate

Attributes
No additional attributes.

Associations

No additional associations.

UML Superstructure 2.0 Draft Adopted Specification

475

Changes from previous UML
EntryPoint, exitPoint, and terminate has been added.

15.3.10 Region (from BehaviorStatemachines)

A region is an orthogonal part of either a composite state or a state machine. It contains states and transitions.

Attributes
No additional attributes.

Associations

e transition:Transition[*] The set of transitions owned by the region. Note that internal transitions are owned by a
region, but applies to the source state.

e subvertex: Vertex[*] The set of vertices that are owned by thisregion.
« extendedRegion: Region[0..1] The region of which thisregion is an extension.

« [redefinitionContext: Classifier[1]References the classifier in which context this element may be redefined.

Constraints
[1] A region can have at most oneinitial vertex

self.subvertex->select (v | v.ocllsKindOf(Pseudostate))->
select(p : Pseudostate | p.kind = #initial)->size() <= 1

[2] A region can have at most one deep history vertex

self.subvertex->select (v | v.ocllsKindOf(Pseudostate))->
select(p : Pseudostate | p.kind = #deepHistory)->size() <= 1

[3] A region can have at most one shallow history vertex
self.subvertex->select(v | v.ocllsKindOf(Pseudostate))->
select(p : Pseudostate | p.kind = #shallowHistory)->size() <= 1

[4] Theredefinition context of aregion isthe nearest containing statemachine
redefinitionContext =
let sm = containingStateMachine() in
if sm.context->isEmpty() or sm.general->notEmpty() then
sm
else
sm.context
endif

Additional constraints

[1] The query isRedefinitionContextValid() specifies whether the redefinition contexts of aregion are properly related to the
redefinition contexts of the specified region to allow this element to redefine the other. The containing statemachine/state
of aredefining region must redefine the containing statemachine/state of the redefined region.

[2] ‘The query isConsistentWith() specifies that a redefining region is consistent with a redefined region provided that the

redefining region is an extension of the redefined region, i.e. it adds vertices and transitions and it redefines states and
transitions of the redefined region.

476 UML Superstructure 2.0 Draft Adopted Specification

Semantics

The semantics of regions istightly coupled with states or state machines having regions, and it is therefore defined as part
of the semantics for state and state machine.

When a composite state or state machine is extended, each inherited region may be extended, and regions may be added.

Notation

A composite state or state machine with regions is shown by tiling the graph region of the state/state machine using
dashed lines to divide it into regions. Each region may have an optional name and contains the nested disjoint states and
the transitions between these. The text compartments of the entire state are separated from the orthogonal regions by a
solid line.

S

Figure 380 - Notation for composite state/state machine with regions

A composite state or state machine with just one region is shown by showing a nested state diagram within the graph
region.

In order to indicate that an inherited region is extended, the keyword «extended» is associated with the name of the
region.

15.3.11 State (from BehaviorStatemachines)

A state models a situation during which some (usually implicit) invariant condition holds.

Description
State in Behavioral State machines

A state models a situation during which some (usually implicit) invariant condition holds. The invariant may represent a
static situation such as an object waiting for some external event to occur. However, it can a'so model dynamic conditions
such as the process of performing some activity (i.e., the model element under consideration enters the state when the
activity commences and leaves it as soon as the activity is completed).

The following kinds of states are distinguished:
« Simple state,
» composite state, and

« submachine state.

UML Superstructure 2.0 Draft Adopted Specification 477

A composite state is either a simple composite state (with just one region) or an orthogonal state (with more than one
region).

Simple state

A simple state is a state that does not have substates, i.e. it has no regions and it has no submachine state machine.

Composite state

A composite state either contains one region or is decomposed into two or more orthogonal regions. Each region has a set
of mutually exclusive disjoint subvertices and a set of transitions. A given state may only be decomposed in one of these
two ways.

Any state enclosed within a region of a composite state is called a substate of that composite state. It is called a direct
substate when it is not contained by any other state; otherwise it is referred to as a indirect substate.

Each region of a composite state may have an initial pseudostate and a final state. A transition to the enclosing state
represents a transition to the initial pseudostate in each region. A newly-created object takes it's topmost default
transitions, originating from the topmost initial pseudostates of each region.

A transition to afinal state represents the completion of activity in the enclosing region. Completion of activity in all
orthogonal regions represents completion of activity by the enclosing state and triggers a completion event on the
enclosing state. Completion of the topmost regions of an object corresponds to its termination.

Submachine state

A submachine state specifies the insertion of the specification of a submachine state machine. The state machine that
contains the submachine state is called the containing state machine. The same state machine may be a submachine more
than once in the context of a single containing state machine.

A submachine state is semantically equivalent to a composite state. The regions of the submachine state machine are the
regions of the composite state. The entry, exit and activity actions, and internal transitions, are defined as part of the state.
Submachine state is a decomposition mechanism that allows factoring of common behaviors and their reuse.

Transitions in the containing state machine can have entry/exit points of the inserted state machine as targets/sources.

State in Protocol State machines

The states of protocol state machines are exposed to the users of their context classifiers. A protocol state represents an
exposed stable situation of its context classifier: when an instance of the classifier is not processing any operation, users
of this instance can always know its state configuration.

Attributes

e /isComposite A state with isComposite=true is said to be a composite state. A composite state is a state
that contains at |east one region.

e [isOrthogonal: Boolean A state with isOrthogonal=true is said to be an orthogonal composite state. An orthogonal
composite state contains two or more regions.

e [isSimple A state with isSimple=true is said to be asimple state. A simple state does not have any
regions and it does not refer to any submachine state machine.

e [isSubmachineState A state with isSubmachineState=true is said to be a submachine state. Such a state refers

to a state machine (submachine).

478 UML Superstructure 2.0 Draft Adopted Specification

Associations

BehaviorStateMachines

connection: ConnectionPointReference The entry and exit connection points used in conjunction with this (submachine)
state, i.e. as targets and sources, respectively, in the region with the submachine state. A
connection point reference references the corresponding definition of a connection point
pseudostate in the statemachine referenced by the submachinestate.

deferrableTrigger: Trigger A list of triggers that are candidates to be retained by the state machine if they trigger no
transitions out of the state (not consumed). A deferred trigger is retained until the state
machine reaches a state configuration where it is no longer deferred.

doActivity: Activity[0..1] An optional activity that is executed while being in the state. The execution starts when
this state is entered, and stops either by itself, or when the state is exited, whichever comes
first.

entry: Activity[0..1] An optional activity that is executed whenever this state is entered regardless of the transi-
tion taken to reach the state. If defined, entry actions are always executed to completion
prior to any internal activity or transitions performed within the state.

exit: Activity[0..1] An optiona activity that is executed whenever this state is exited regardless of which tran-
sition was taken out of the state. If defined, exit actions are always executed to completion
only after all internal activities and transition actions have completed execution.

redefinedState: State[0..1] The state of which this state is a redefinition.
region: Region[*] The regions of the state.
submachine: StateMaching[0..1] The state machine that is to be inserted in place of the (submachine) state.

statelnvariant: Constraint [0..1] Specifies conditions that are always true when this state is the current state. In protocol
state machines, state invariants are additional conditions to the preconditions of the outgo-
ing transitions, and to the postcondition of the incoming transitions.

/redefinitionContext: Classifier[1]References the classifier in which context this element may be redefined.

MaximumOneRegion

region: Region[0..1] A state with none or just one region.

Constraints
[1] There haveto be at |east two regionsin an orthogonal composite state

(2]
(3]

[4]
(3]
6]

(self.isOrthogonal) implies
(self.region->size >= 2)

Only submachine states can have connection point references.

The connection point references used as destinations/sources of transitions associated with a submachine state must be
defined as entry/exit points in the submachine state machine.

A state is not allowed to have both a submachine and regions.
not (self.isSubmachineState and self.isComposite)

A simple state is a state without any regions.
isSimple = content.isEmpty()

Acomposite state is a state with at least one region.
isComposite = content.notEmpty()

UML Superstructure 2.0 Draft Adopted Specification 479

[7] Anorthogonal state is a composite state with at least 2 regions
isOrthogonal = (context.size() >= 2)

[8] Only submachine states can have areference statemachine.
isSubmachineState = submachine.notEmpty()

[9] A Protocol state (state belonging to a protocol state machine) has no entry or exit or do activity actions.
entry->isEmpty() and
exit->isEmpty() and
doActivity->isEmpty()

[10] Protocol states cannot be deep or shallow history pseudo states.
if ocllsTypeOf(Pseudostate) then (kind <> #deepHistory) and (kind <> #shallowHistory)

[11] Theredefinition context of a state is the nearest containing statemachine
redefinitionContext =
let sm = containingStateMachine() in
if sm.context->isEmpty() or sm.general->notEmpty() then
sm
else
sm.context
endif

Additional constraints

[1] The query isRedefinitionContextValid() specifies whether the redefinition contexts of a state are properly related to the
redefinition contexts of the specified state to alow this element to redefine the other. The containing region of aredefin-
ing state must redefine the containing region of the redefined state.

[2] The query isConsistentWith() specifies that a redefining state is consistent with a redefined state provided that the rede-
fining stateis an extension of the redefined state: A simple state can be redefined (extended) to become a composite state
(by adding aregion) and a composite state can be redefined (extended) by adding regions and by adding vertices, states,
entry/exit/do activities (if the general state has none), and transitions to inherited regions.

Semantics

States in general

The following applies to states in general. Special semantics applies to composite states and submachine states.
Active states

A state can be active or inactive during execution. A state becomes active when it is entered as aresult of some transition, and
becomesinactiveif it is exited asaresult of atransition. A state can be exited and entered as a result of the same transition
(e.g., self transition).

Sate entry and exit

Whenever astate is entered, it executes its entry activity before any other action is executed. Conversely, whenever astateis
exited, it executes its exit activity asthefinal step prior to leaving the state.

Activity in state (do-activity)

480 UML Superstructure 2.0 Draft Adopted Specification

The activity represents the execution of a activity, that occurs while the state machine is in the corresponding state. The
activity starts executing upon entering the state, following the entry activity. If the activity completes while the state is
till active, it raises a completion event. In case where there is an outgoing completion transition (see below) the state will
be exited. Upon exit, the activity is terminated before the exit activity is executed. If the state is exited as a result of the
firing of an outgoing transition before the completion of the activity, the activity is aborted prior to its completion.

Deferred events

A state may specify a set of event types that may be deferred in that state. An event that does not trigger any transitions
in the current state, will not be dispatched if its type matches one of the types in the deferred event set of that state.
Instead, it remains in the event pool while another non-deferred event is dispatched instead. This situation persists until a
state is reached where either the event is no longer deferred or where the event triggers a transition.

Sate redefinition

A state may be redefined, provided that the value of isFinal is False. A simple state can be redefined (extended) to
become a composite state (by adding a region) and a composite state can be redefined (extended) by adding regions and
by adding vertices, states, entry/exit/do activities (if the general state has none), and transitions to inherited regions. The
redefinition of a state applies to the whole state machine, e.g. if a state list as part of the extended state machine includes
a state that is redefined, then the state list for the extension state machine includes the redefined state.

Composite state
Active state configurations

In ahierarchical state machine more than one state can be active at the same time. If the state machine isin a simple state
that is contained in a composite state, then all the composite states that either directly or transitively contain the simple
state are also active. Furthermore, since the state machine as a whole and some of the composite states in this hierarchy
may be orthogonal (i.e. containing regions), the current active “state” is actually represented by a set of trees of states
starting with the top-most states of the root regions down to individual simple states at the leaves. We refer to such a state
tree as a state configuration.

Except during transition execution, the following invariants always apply to state configurations:

- If acomposite state is active and not orthogonal, exactly one of its substatesis active.

« If the composite state is active and orthogonal, all of its regions are active, one substate in each region.
Entering a non-orthogonal composite state
Upon entering a composite state, the following cases are differentiated:

- Default entry: Graphically, thisisindicated by an incoming transition that terminates on the outside edge of the com-
posite state. In this case, the default transition is taken. If thereisaguard on the trigger of the transition it must be
enabled (true). (A disabled initial transition is an ill-defined execution state and its handling is not defined.) The entry
activity of the composite state is executed before the activity associated with theinitial transition.

» Explicit entry: If the transition goes to a substate of the composite state, then that substate becomes active and its entry
code is executed after the execution of the entry code of the composite state. This rule applies recursively if the transi-
tion terminates on atransitively nested substate.

» Shallow history entry: If the transition terminates on a shallow history pseudostate, the active substate becomes the
most recently active substate prior to this entry, unless the most recently active substate isthe final state or if thisisthe
first entry into this state. In the latter two cases, the default history state is entered. This is the substate that is target of
the transition originating from the history pseudostate. (If no such transition is specified, the situation isil defined and

UML Superstructure 2.0 Draft Adopted Specification 481

itshandling is not defined.) If the active substate determined by history is a composite state, then it proceeds with its
default entry.

« Deep history entry: Therule hereisthe same as for shallow history except that the ruleis applied recursively to all lev-
elsin the active state configuration below this one.

Entering an orthogonal composite state

Whenever an orthogonal composite state is entered, each one of its orthogonal regionsis also entered, either by default or
explicitly. If the transition terminates on the edge of the composite state, then all the regions are entered using default
entry. If the transition explicitly enters one or more regions (in case of afork), these regions are entered explicitly and the
others by default.

Exiting non-orthogonal state

When exiting from a composite state, the active substate is exited recursively. This means that the exit activities are
executed in sequence starting with the innermost active state in the current state configuration.

Exiting an orthogonal state
When exiting from an orthogonal state, each of its regions is exited. After that, the exit activities of the state is executed.
Deferred events

Composite states introduce potential event deferral conflicts. Each of the substates may defer or consume an event,
potentially conflicting with the composite state, e.g. a substate defers an event while the composite state consumes it, or
vice versa. In case of a composite orthogonal state, substates of orthogonal regions may also introduce deferral conflicts.
The conflict resolution follows the triggering priorities, where nested states override enclosing states. In case of a conflict
between states in different orthogonal regions, a consumer state overrides a deferring state.

Submachine state

A submachine state is semantically equivalent to the composite state defined by the referenced state machine. Entering
and leaving this composite state is, in contrast to an ordinary composite state, via entry and exit points.

A submachine composite state machine can be entered via its default (initial) pseudostate or via any of its entry points,
i.e. it may imply entering a non-orthogonal or an orthogonal composite state with regions. Entering via the initial
pseudostate has the same meaning as for ordinary composite states. An entry point is equivalent with a junction
pseudostate (fork in case the composite state is orthogonal): Entering via an entry point implies that the entry activity of
the composite state is executed, followed by the (partial) transition(s) from the entry point to the target state(s) within the
composite state. As for default initial transitions, guards associated with the triggers of these entry point transitions must
evaluate to true in order for the specification not to be ill-formed.

Similarly, it can be exited as a result of reaching its final state, by a “group” transition that applies to all substates in the
submachine state composite state, or via any of its exit points. Exiting via a final state or by a group transition has the
same meaning as for ordinary composite states. An exit point is equivalent with a junction pseudostate (join in case the
composite state is orthogonal): Exiting via an exit point implies that first activity/activities of the transition(s) with the
exit point as target is executed, followed exit activity of the composite state.

Notation
States in general

A state isin general shown as a rectangle with rounded corners, with the state name shown inside the rectangle.

482 UML Superstructure 2.0 Draft Adopted Specification

Ty ping
Password

Figure 381 - State

Optionally, it may have an attached name tab, see Figure 382. The name tab is arectangle, usually resting on the outside
of the top side of a state and it contains the name of that state. It is normally used to keep the name of a composite state
that has orthogonal regions, but may be used in other cases as well. The state in Figure 376 on page 474 illustrates the use
of the name tab.

‘Typing Password

Figure 382 - State with name tab

A state may be subdivided into multiple compartments separated from each other by a horizontal line, see Figure 383.

Typing Password \

entry / set echo invisible
exit / set echo normal
character / handle character
help / display help

Figure 383 - State with compartments

The compartments of a state are:
+ name compartment
« internal activities compartment
« internal transitions compartment
A composite state has in addition a
» decomposition compartment

Each of these compartments is described below.

UML Superstructure 2.0 Draft Adopted Specification 483

« Name compartment

This compartment holds the (optional) name of the state, as a string. States without names are anonymous and are all
distinct. It is undesirable to show the same named state twice in the same diagram, as confusion may ensue, unless control
icons (page 502) are used to show atransition oriented view of the state machine. Name compartments should not be used
if a name tab is used and vice versa.

In case of a submachine state, the name of the referenced state machine is shown as a string following ‘:’ after the name
of the state.

« Internal activities compartment

This compartment holds a list of internal activities or state (do) activities that are performed while the element isin the
State.

The activity label identifies the circumstances under which the activity specified by the activity expression will be
invoked. The activity expression may use any attributes and association ends that are in the scope of the owning entity.
For list items where the activity expression is empty, the backslash separator is optional.

A number of activity labels are reserved for various special purposes and, therefore, cannot be used as event names. The
following are the reserved activity labels and their meaning:

. entry

This label identifies an activity, specified by the corresponding activity expression, which is performed upon entry to the
state (entry activity)

* exit
This label identifies an activity, specified by the corresponding activity expression, that is performed upon exit from the
state (exit activity)

*do

This label identifies an ongoing activity (“do activity”) that is performed as long as the modeled element is in the state or
until the computation specified by the activity expression is completed (the latter may result in a completion event being
generated).

e Interna transition compartment
This compartment contains a list of internal transitions, where each item has the form as described for Trigger.

Each event name may appear more than once per state if the guard conditions are different. The event parameters and the
guard conditions are optional. If the event has parameters, they can be used in the activity expression through the current
event variable.

Composite state
» decomposition compartment

This compartment shows its composition structure in terms of regions, states and transition. In addition to the (optional)
name and internal transition compartments, the state may have an additional compartment that contains a nested diagram.
For convenience and appearance, the text compartments may be shrunk horizontally within the graphic region.

In some cases, it is convenient to hide the decomposition of a composite state. For example, there may be a large number
of states nested inside a composite state and they may simply not fit in the graphical space available for the diagram. In
that case, the composite state may be represented by a simple state graphic with a special “composite” icon, usually in the

484 UML Superstructure 2.0 Draft Adopted Specification

lower right-hand corner (see Figure 385). This icon, consisting of two horizontally placed and connected states, is an
optional visual cue that the state has a decomposition that is not shown in this particular statechart diagram. Instead, the
contents of the composite state are shown in a separate diagram. Note that the “hiding” hereis purely a matter of
graphical convenience and has no semantic significance in terms of access restrictions.

Examples

/ Dialing \

(" star N digitn) (~ Partial Dial) [number.isvalid()] o
entry/ start dial tone entry/number.append(n) O
exit/ stop dial tone - J

- J

digit(n)

. J

Figure 384 - Composite state with two states

UML Superstructure 2.0 Draft Adopted Specification 485

(HiddenComposite \

entry / start dial tone
exit / stop dial tone

o0

Figure 385 - Composite State with hidden decomposition indicator icon

CourseAttempt

/ Studying

Final Test pass .
N o FreTes] ~®
el { Failed Passed

Figure 386 - Orthogonal state with regions

Submachine state
The submachine state is depicted as a normal state where the string in the name compartment has the following syntax
<state name> ‘:’ <name of referenced state machine>

The submachine state symbol may contain the references to one or more entry points and to one or more exit points. The
notation for these connection point references are entry/exit point pseudostates on the border of the submashine state. The
names are the names of the corresponding entry/exit points defined within the referenced state machine. See

(“ ConnectionPointReference (from BehaviorStatemachines)” on page 459).

486 UML Superstructure 2.0 Draft Adopted Specification

If the substate machine is entered through its default initial pseudostate or if it is exited as a result of the completion of
the submachine, it is not necessary to use the entry/exit point notation. Similarly, an exit point is not required if the exit
occurs through an explicit “group” transition that emanates from the boundary of the submachine state (implying that it
applies to all the substates of the submachine).

Submachine states invoking the same submachine may occur multiple times in the same state diagram with the entry and
exit points being part of different transitions.

Examples

The diagram in Figure 387 shows a fragment from a statechart diagram in which a sub state machine (the
FailureSubmachine) is referenced. The actual sub state machine is defined in some enclosing or imported name space.

/HandIeFaiIure: \

FailureSubmachine

errorl/

subl

error3/ bEnd
\ su\@ n o—cy

wedl

Figure 387 - Submachine State

In the above example, the transition triggered by event “errorl” will terminate on entry point “subl” of the
FailureSubmachine state machine. The “error3” transition implies taking of the default transition of the
FailureSubmachine.

The transition emanating from the “subEnd” exit point of the submachine will execute the “fixed1” activity in addition to
what is executed within the HandleFailure state machine. This transition must have been triggered within the
HandleFailure state machine. Finally, the transition emanating from the edge of the submachine state is taken as a result
of the completion event generated when the FailureSubmachine reaches its final state.

UML Superstructure 2.0 Draft Adopted Specification 487

Figure 388 is an example of a state machine defined with two exit points. The entry and exit points may also be shown
on the frame or outside the frame (but still associated with it), and not only within the state graph.

488

ReadAmountSM)

abort

amount

otherAmount

O
aborted

Figure 388 - State machine with exit point as part of the state graph

ReadAmountSM)

abort

amount

ok

otherAmount

abort
enterAmount

aborted

Figure 389 - State machine with exit point on the border of the statemachine

UML Superstructure 2.0 Draft Adopted Specification

In Figure 390 this state machine is referenced in a submachine state, and the presentation option with the exit points on
the state symbol is shown.

ATM
. VerifyCard
acceptCard
OutOfService ReadAmount :
ReadAmountSM aborted

outOfService

. . releaseCard
VerifyTransaction J ReleaseCar

Figure 390 - SubmachineState with usage of exit point

Notation for protocol state machines

The two differences that exist for state in protocol state machine, versus states in behavioral state machine, are as follow:
Several features in behaviora state machine do not exist for protocol state machines (entry, exit, do); States in protocol
state machines can have an invariant. The textual expression of the invariant will be represented by placing it after or
under the name of the state, surrounded by sgquare braquets.

Ty ping
Password
[invariant expr]

Figure 391 - State with invariant - notation

Rationale

Submachine states with usages of entry and exit points defined in the corresponding state machine has been introduced in
order for state machines with submachines to scale and in order to provide encapsulation.

15.3.12 StateMachine (from BehaviorStatemachines)
State machines can be used to express the behavior of part of a system. Behavior is modeled as a traversal of a graph of
state nodes interconnected by one or more joined transition arcs that are triggered by the dispatching of series of events.

During this traversal, the state machine executes a series of activities associated with various elements of the state
machine.

UML Superstructure 2.0 Draft Adopted Specification 489

Description
A state machine owns one or more regions, which in turn own vertices and transitions.
The behaviored classifier context owning a state machine defines which signal and call triggers are defined for the state

machine, and which attributes and operations are available in activities of the state machine. Signal triggers and call
triggers for the state machine are defined according to the receptions and operations of this classifier.

Asakind of behavior, a state machine may have an associated behavioral feature (specification) and be the method of this
behavioral feature. In this case the state machine specifies the behavior of this behavioral feature. The parameters of the
state machine in this case match the parameters of the behavioral feature and provide the means for accessing (within the
state machine) the behavioral feature parameters.

A state machine without a context classifier may use triggers that are independent of receptions or operations of a
classifier, i.e. either just signal triggers or call triggers based upon operation template parameters of the (parameterized)
statemachine.

Attributes
No additional attributes.

Associations

BehaviorStateMachines
e region: Region[1..*] The regions of the state machine.

e connectionPoint: Pseudostate]*] The connection points defined for this state machine. They represent the interface of the
state machine when used as part of submachine state.

« extendedStateMachine: StateMaching[*] The state machines of which thisis an extension.

e [redefinitionContext: Classifier[1]References the classifier in which context this element may be redefined.

MaximumOneRegion

e region: Region[1] A statemachine with just one region.

Constraints
[1] Theclassifier context of a state machine cannot be an interface

[2] The context classifier of the method state machine of a behavioral feature must be the classifier that owns the behavioral
feature.

[3] The connection points of a state machine are pseudostates of kind entry point or exit point.
[4] A state machine as the method for a behavioral feature cannot have entry/exit connection points.

[5] Theredefinition context of a state is the nearest containing statemachine or context classifier
redefinitionContext =
let sm = containingStateMachine() in
if sm.context->isEmpty() or sm.general->notEmpty() then
sm
else
sm.context
endif

490 UML Superstructure 2.0 Draft Adopted Specification

Additional Operations
[1] The operation LCA(s1,s2) returns the state which is the least common ancestor of states s1 and s2.
context StateMachine::LCA (sl : State, s2 : State) :

CompositeState
result = if ancestor (s1, s2) then
sl
else if ancestor (s2, s1) then
s2

else (LCA (sl.container, s2.container))

[2] The query ancestor(sl, s2) checks whether s2 is an ancestor state of state sl.
context StateMachine::ancestor (sl : State, s2 : State) : Boolean
result = if (s2 = sl1) then
true
else if (sl.container->isEmpty) then
true
else if (s2.container->isEmpty) then
false
else (ancestor (s1, s2.container)
[3] The query containingStateMachine() yields the statemachine owning a given element, either directly as for regions or
indirectly asfor states and transitions.

[4] The query isRedefinitionContextValid() specifies whether the redefinition contexts of a statmachine are properly related
to the redefinition contexts of the specified statemachine to alow this element to redefine the other. The containing clasi-
fier of aredefining statemachine must redefine the containing classifier of the redefined statemachine.

[5] The query isConsistentWith() specifies that a redefining state machine is consistent with a redefined state machine pro-
vided that the redefining state machine is an extension of the redefined state machine: Regions are inherited and regions
can be added, inherited regions can be redefined. In case of multiple redefining state machines, extension implies that the
redefining state machine gets orthogonal regions for each of the redefined state machines.

Semantics

The event pool for the state machine is the event pool of the instance according to the behaviored context classifier, or the
classifier owning the behavioral feature for which the state machine is a method.

Event processing - run-to-completion step

Events are dispatched and processed by the state machine, one at a time. The order of dequeuing is not defined, leaving
open the possibility of modeling different priority-based schemes.

The semantics of event processing is based on the run-to-completion assumption, interpreted as run-to-completion
processing. Run-to-completion processing means that an event can only be taken from the pool and dispatched if the
processing of the previous current event is fully completed.

Run-to-completion may be implemented in various ways. For active classes, it may be realized by an event-loop running
in its own thread, and that reads events from a pool. For passive cl