
Copyright © 1998-2010 Sparx Systems Pty Ltd

Visual Execution Analyzer in
Enterprise Architect

Enterprise Architect is an intuitive, flexible and powerful UML
analysis and design tool for building robust and maintainable

software.

This booklet explains the Visual Execution Analyzer (Debugger)
feature of Enterprise Architect.

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this document
or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be
liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or
indirectly by this document.

Printed: May 2010

Visual Execution Analyzer in Enterprise Architect

© 1998-2010 Sparx Systems Pty Ltd

Publisher
Special thanks to:

All the people who have contributed suggestions, examples, bug
reports and assistance in the development of Enterprise Architect.
The task of developing and maintaining this tool has been greatly
enhanced by their contribution.Managing Editor

Technical Editors

Sparx Systems

Geoffrey Sparks

Geoffrey Sparks

Steve Meagher

IContents

© 1998-2010 Sparx Systems Pty Ltd

Table of Contents

Foreword 1

Visual Execution Analyzer 2

... 3Access and Use the Visual Execution Analyser

... 4Structure of the Visual Execution Analyzer

... 6Model Driven Development Environment

.. 7Getting Started With The MDDE

... 7Prerequisites

... 7Available Tools

... 8Workspace Layout

... 8General Workflow

.. 8Basic Setup

... 9Managing Scripts

... 10Defining Script Actions

... 11Setting the Default Script

.. 11Code Generation and Synchronization - Safeguards

.. 11Code Editing For MDDE

.. 12Build

... 12Add Commands

... 14Recursive Builds

.. 15Debugging

... 15How it Works

... 15Setup for Debugging

... 16Operating System Specific Requirements

... 17UAC-Enabled Operating Systems

... 18WINE Debugging

... 19Microsoft C++ and Native (C, VB)

... 20Debug Symbols

... 21Java

... 21General Setup for Java

... 22Advanced Techniques

... 22Attach to Virtual Machine

... 23Internet Browser Java Applets

... 25Working with Java Web Servers

... 27JBOSS Server

... 28Apache Tomcat Server

... 29Apache Tomcat Windows Service

... 29.NET

... 30General Setup for .NET

... 30Debug Assemblies

... 31Debug - CLR Versions

... 32Debug COM Interop

... 32Debug ASP .NET

... 35The Debug Window

... 37Breakpoint and Marker Management

... 38How Markers are Stored

... 38Setting Code Breakpoints

... 38Setting Data Breakpoints

... 39Debugging Actions

... 39Displaying Windows

... 40Start & Stop Debugger

... 40Debug Another Process

... 41Step Over Lines of Code

ContentsII

Visual Execution Analyzer in Enterprise Architect

... 41Step Into Function Calls

... 42Step Out of Functions

... 42View the Call Stack

... 43View the Local Variables

... 43View Content Of Long Strings

... 44View Variables in Other Scopes

... 45Inspect Process Memory

... 46Break When a Variable Changes Value

... 47Show Loaded Modules

... 47Show Output from Debugger

... 48Debug Tooltips in Code Editors

... 49Recording Actions

... 49Step Through Function Calls

... 49Create Sequence Diagram of Call Stack

... 50Saving the Call Stack

.. 51Searching in Files

... 51Search in Files

.. 53Testing Command

... 53Add Testing Command

.. 55Run Command

... 55Add Run Command

.. 56Deploy Command

... 56Add Deploy Command

... 57Execution Analysis

.. 57Recording Sequence Diagrams

... 57How it Works

... 59Setup for Recording

... 59Pre-Requisites

... 59Configure Recording Detail

... 60Enable Filter

... 61Record Arguments To Function Calls

... 61Record Calls To External Modules

... 62Record Calls to Dynamic Modules

... 63Limit Auto Recording

... 64Enable Diagnostic Messages

... 64Advanced Techniques

... 64Recording Activity for a Class

... 65Recording Activity for a Single Method

... 66Place Recording Markers

... 66Marker Types

... 70Setting Recording Markers

... 71The Breakpoints and Markers Window

... 71Activate and Disable Markers

... 72Working with Marker Sets

... 72Differences to Breakpoints

... 72Control the Recording Session

... 72Auto-Recording

... 73Manual Recording

... 73Pause Recording

... 73Resume Recording

... 73Stop Capture

... 74Generating Sequence Diagrams

... 74The Recording History

... 75Generate a Diagram

... 75Diagram Features

... 75Saving Recording

... 75Add State Transitions

... 76Setup for Capturing State Changes

... 77The State Machine

IIIContents

© 1998-2010 Sparx Systems Pty Ltd

... 78Recording and Mapping State Changes

.. 80Unit Testing

... 80Set Up Unit Testing

... 81Run Unit Tests

... 82Record Test Results

.. 82Profiling Native Applications

... 84System Requirements

... 84Getting Started

... 85Start & Stop the Profiler

... 85Profiler Operation

... 86Setting Options

... 86Save and Load Reports

... 87Save Report in Team Review

.. 87Object Workbench

... 88How it Works

... 88Workbench Variables

... 89Create Workbench Variables

... 90Invoke Methods

Index 94

Foreword

This user guide provides an introduction to the
Visual Execution Analyzer feature of Enterprise

Architect.

Foreword1

Visual Execution Analyzer in Enterprise Architect

 | 2

© 1998-2010 Sparx Systems Pty Ltd

Visual Execution Analyzer

The Visual Execution Analyzer provides facilities to model, develop, debug, profile and manage an application
from within the modeling environment.

The Visual Execution Analyzer can generate a number of outputs, including:

· Sequence Diagrams, recording live execution of an application, or specific call stacks

· State Transition Diagrams, a Sequence diagram with states, illustrating changes in data structures

· Profiler reports, showing application sequences and operation call frequency.

These outputs provide a better understanding of how your system works, enabling you to document system
features and providing information on the sequence of events that lead to an erroneous event or an
unexpected system behavior.

Note:

The Visual Execution Analyzer is available in the Enterprise Architect Professional, Corporate, Business and
Software Engineering, System Engineering, and Ultimate editions.

Access and Use the Visual Execution Analyser | 3

Visual Execution Analyzer in Enterprise Architect

1 Access and Use the Visual Execution Analyser

With the Visual Execution Analyzer, you can create and store custom scripts that specify how to build, test,
run and deploy code associated with a package. You can investigate and manipulate the output of the debug
process. The Analyzer also includes an Execution Profiler, which enables you to determine how the functions
in an application are called and executed.

You access the Visual Execution Analyzer using the Project | Execution Analyzer menu option, or the
context menu of the required package in the Project Browser. These menus provide a number of options to
facilitate debugging, such as setting recording options or breakpoints.

The Visual Execution Analyzer can be used to:

· Optimize existing system resources and understand resource allocation

· Ensure that the system is following the rules as designed

· Produce high quality documentation that more accurately reflects system behavior

· Understand how and why systems work

· Train new employees in the structure and function of a system

· Provide a comprehensive understanding of how existing code works

· Identify costly or unnecessary function calls

· Illustrate interactions, data structures and important relationships within a system

· Trace problems to a specific line of code, system interaction or event

· Visualize why a sequence of events is important

· Establish the sequence of events that occur immediately prior to system failure.

Structure of the Visual Execution Analyzer | 4

© 1998-2010 Sparx Systems Pty Ltd

2 Structure of the Visual Execution Analyzer

The Visual Execution Analyzer comprises a Model Driven Development Environment and an Execution
Analyzer.

The Model Driven Development Environment (MDDE) provides tools to design, build and debug an
application:

· UML technologies and tools to model software (see Extending UML Using Enterprise Architect and UML
Modeling With Enterprise Architect - UML Modeling Tool)

· Code generation tools to generate/reverse engineer source code (see Code Engineering Using UML
Models)

· Tools to import source code and binaries (see Code Engineering Using UML Models)

· Code editors that support different programming languages

· Intellisense to aid coding (see Using Enterprise Architect - UML Modeling Tool)

· Package scripts that enable a user to describe how to build, debug, test and deploy the application .

The Execution Analyzer (EA) provides tools to visualize an existing application's behaviour:

· Record sequence diagrams of application activities

· Capture State Transitions for a particular State Machine

· Capture Stacktraces at points in execution

· Profiling tool to sample application activity

· Object Workbench

· Unit Testing

6

11

9

57

57

75

37

82

87

80

Structure of the Visual Execution Analyzer | 5

Visual Execution Analyzer in Enterprise Architect

Model Driven Development Environment | 6

© 1998-2010 Sparx Systems Pty Ltd

3 Model Driven Development Environment

The Model Driven Development Environment (MDDE) provides tools to design, build and debug an
application.

The MDDE integrates code and model by providing options to either generate source code from the model or
reverse engineer existing source code into a model. Source code and model can be synchronized in either
direction.

The MDDE provides development environments for popular languages including:

· C++

· C

· Java

· Microsoft .NET family

· ADA

· Python

· Perl

Toolboxes provide for different modeling technologies.

Model Driven Development Environment | 7

Visual Execution Analyzer in Enterprise Architect

Note:

Although you can generate and reverse engineer code in a range of languages, Execution Analysis
debugging and recording are supported for the following platforms / languages only:

· Microsoft Windows Native C

· Microsoft Windows Native C++

· Microsoft Windows Visual Basic

· Microsoft .NET Family (C#, J#, VB)

· Sun Microsystems Java.

To use the MDDE, work through the following sections:

· Getting Started

· Basic Setup

· Code Engineering (see Code Engineering Using UML Models)

· Using Code Editors (see Using Enterprise Architect - UML Modeling Tool)

· Build Application

· Debug

· Test

· Run

· Deploy

3.1 Getting Started With The MDDE

To quickly start development in the Model Driven Development Environment, check through the following
topics:

· Prerequisites

· Available Tools

· Workspace Layouts

· General Workflow

3.1.1 Prerequisites

Before using the Model Driven Development Environment:

· You should be using the correct edition: Enterprise Architect Professional, Corporate or Suite Editions.

· You should be connected to the required model.

· Relevant source code should be imported into the model.

· Basic Setup should be complete.

3.1.2 Available Tools

This section describes the tools available in the Model Driven Development Environment:

· Workspace Layouts

· Code Engineering (see Code Engineering Using UML Models)

· Using Code Editors (see Using Enterprise Architect - UML Modeling Tool)

· Intellisense (see Using Enterprise Architect - UML Modeling Tool)

· Application Management

· Debugger Management

7

8

12

39

53

55

56

7

7

8

8

8

8

8

15

Model Driven Development Environment | Getting Started With The MDDE 8

© 1998-2010 Sparx Systems Pty Ltd

3.1.3 Workspace Layout

You can choose from many predefined workspace layouts (see Using Enterprise Architect - UML Modeling
Tool) depending on the tasks you perform. When you are familiar with the environment and controls available
to you, you can create your own.

Workspace Toolbar

Predefined Workspace Layouts

3.1.4 General Workflow

In working with the Model Driven Development Environment, you apply the following workflow as a circular
process, refining as necessary in each iteration.

· Configure and set up scripts

· Model - Edit - Build - Debug - Test - Profile - Deploy - Document and Analyze.

3.2 Basic Setup

To use the execution tools of the Model Driven Development Environment - debugging, build and recording - it
is necessary to record information about the application.This is achieved in Enterprise Architect through the
use of Package Scripts.

A Package Script, when created, is naturally associated with the package that is currently selected.

A Package Script houses all the information the MDDE requires in order to provide support for tasks such as
building the application, debugging and performing unit testing. A model can contain many Package Scripts.
Each can build a separate application, or perhaps the same application but with different compilation options.

When you select a package or child Class in the Project Explorer, the Debug Management window displays
any Package Scripts associated with that package. When you select a package root, the Debug Management
window displays the scripts for the first package it finds under the root that has Scripts.

When you selected another package, the scripts displayed in the Debug Management window change also.
You can force the scripts for a particular package to remain visible at all times by 'pinning ' the package in
the Debug Management window.

9

11

Model Driven Development Environment | Basic Setup9

Visual Execution Analyzer in Enterprise Architect

External Tools and Environment

If you plan on using any of the debugging features of the MDDE, you must have the appropriate Framework
installed on your machine:

· The Java Runtime Environment for Java

· The .NET Framework for managed applications

Any Operating System Environment Variables such as $PATH required by these kits should also be
established.

3.2.1 Managing Scripts

In Enterprise Architect, any package within the UML Model can be configured to act as the 'root' of a source
code project. By setting compilation scripts, xUnit commands, debuggers and other configuration settings for a
package, all contained source code and elements can be built, tested or debugged according to the currently
active configuration. Each package can have multiple scripts, but only one is active at any one time. The
Package Build Scripts dialog enables you to create and manage those scripts.

To access the Package Build Scripts dialog, either:

· Press [Shift]+[F12]

· On the Debug toolbar, click on the drop-down arrow on theScripts icon (the first icon on the left) and select
the Package Build Scripts option

· Select the Project | Execution Analyzer | Package Build Scripts menu option, or

· Right-click on a package in the Project Browser, and select the Execution Analyzer | Package Build
Scripts context menu option.

The Package Build Scripts dialog shows which script is active for the current package, and whether or not the
script contains Build, Test, Run, Debug and Deploy components. The current package is as selected in the
Project Browser; if a different package is selected, different scripts are available and different breakpoints and
markers are applied.

Note that you must close the Package Build Scripts dialog to select a different package in the Project Browser.
However, if the Debug window is open ([Alt]+[8]) you can see which debugging configuration is available and
selected, and which breakpoints and markers are displayed, as you change packages in the Project Browser.

Model Driven Development Environment | Basic Setup 10

© 1998-2010 Sparx Systems Pty Ltd

· To create a new script, click on the Add button; the Build Script dialog displays.

· To modify an existing script, highlight the script name in the list and click on the Edit button.

· To copy a script with a new name, highlight the script name to copy and click on the Copy button;
Enterprise Architect prompts you to enter a name for the new copy. Enter the new name in the dialog and
click on the OK button. The new copy appears in the list and can be modified as usual.

· To delete a script, highlight the script name to delete, click on the Delete button, and click on the OK
button.

· To export your scripts, click on the Export button to choose the scripts to export for this package.

· To import build scripts, click on the Import button to choose a .xml file of the scripts to import.

The Default Language field enables you to set the default language for generating source code for all new
elements within this package and its descendents.

Select the Use Live Code Generation checkbox to update your source code instantly as you make changes
to your model.

Click on the All Package Scripts button to open a new window that displays all scripts in the current project.

Once you have created new scripts or made changes to existing ones, click on the OK button to confirm the
changes, otherwise click on the Cancel button to quit the Package Build Scripts dialog without saving any
changes.

3.2.2 Defining Script Actions

Scripts are associated with a Package. When you create a Package Script you can define a number of
actions.

If you plan to use any of the features of the Execution Analyzer, you must complete at least the Build and
Debug tabs.

· Build

· Debug

· Test

· Run

· Deploy

10

12

15

53

55

56

Model Driven Development Environment | Basic Setup11

Visual Execution Analyzer in Enterprise Architect

3.2.3 Setting the Default Script

Normally the target for any debugging session changes, tracking the package selected in the Project Explorer.

You can change this behaviour so that the scripts for a package remain selected in the Debug window. Use
the context menu on the Scripts folder in the Debug window to either Pin or Unpin the currently-selected
package.

When a package is pinned, the Debug window always displays the scripts defined for that package, and the
debugger always uses the selected Package Script.

3.3 Code Generation and Synchronization - Safeguards

It is important that the model and source code are kept synchronized for the Visual Execution Analyzer to
produce useful results.

Use the Code Generation tools to synchronize your model after any design changes or code editing (see Code
Engineering Using UML Models).

Always build the application prior to any Execution Analysis session - debugging, recording or profiling.

3.4 Code Editing For MDDE

See the Code Editors topic in Using Enterprise Architect - UML Modeling Tool.

Model Driven Development Environment | Build 12

© 1998-2010 Sparx Systems Pty Ltd

3.5 Build

The topics in this section describe how you specify the commands to build the project / package:

· Add Comands

· Recursive Builds

3.5.1 Add Commands

The Build tab enables you to enter multiple commands for building the current package. These commands are
executed when you select the Project | Execution Analyzer | Build menu option. The following examples are
for Java and .NET respectively.

12

14

Model Driven Development Environment | Build13

Visual Execution Analyzer in Enterprise Architect

Write your script in the large text box using the standard Windows Command Line commands. You can
specify, for example, compiler and linker options, and the names of output files. The format and content of this
section depends on the actual compiler, make system, linker and so on that you use to build your project. You
can also wrap up all these commands into a convenient batch file and call that here instead.

If you select the Capture Output checkbox, output from the script is logged in Enterprise Architect's Output
window. This can be activated by selecting the View | System Output menu option.

The Output Parser field enables you to define a method for automatically parsing the compiler output. If you
have selected the Capture Output checkbox, Enterprise Architect parses the output of the compiler so that by
clicking on an error message in the Output window, you directly access the corresponding line of code.

Notes:

· The command listed in this field is executed as if from the command prompt. Therefore, if the executable
path or any arguments contain spaces, they must be surrounded by quotes.

· Throughout this dialog, you can use Local Paths in specifying paths to executables; see the Code
Engineering Settings section in Code Engineering Using UML Models.

When you run the compile command inside Enterprise Architect, output from the compiler is piped back to the
Output window and displayed as in the following illustration:

Model Driven Development Environment | Build 14

© 1998-2010 Sparx Systems Pty Ltd

If you double-click on an error line, Enterprise Architect loads the appropriate source file and positions the
cursor on the line where the error has been reported.

3.5.2 Recursive Builds

For any project you can apply the command entered in the build script to all sub folders of the initial directory
by specifying the token %r immediately preceding the files to be built. The effect of this is Enterprise Architect
iteratively replaces the token with any subpath found under the root and executes the command again.

The output from this Java example is shown below:

Model Driven Development Environment | Build15

Visual Execution Analyzer in Enterprise Architect

Note:

The path being built is displayed along with the exit code.

3.6 Debugging

This section describes how you define the debugging actions:

· How it works

· Setup for Debugging

· Breakpoint and Marker Management

· Debugging Actions

· Recording Actions

3.6.1 How it Works

The Model Driven Development Environment provides Debuggers for the following frameworks:

· Microsoft Native Code applications

· Microsoft .NET applications

· Java applications

To begin debugging:

1. Ensure the model is open.

2. Ensure Basic Setup has been completed for the Package or Project.

3. Ensure any source code for the areas of interest have been generated, or imported into the Model.

4. Ensure the application has been built. You can do this internally using the Build Script or you can
build the application externally. The important thing is that the application is built on the latest versions
of the source.

5. Ensure that the model and source are synchronized (see Code Engineering Using UML Models).

6. Set breakpoints .

7. Start the Debugger.

3.6.2 Setup for Debugging

To begin debugging you must specify

· The Debugger to use

· The Application path

· Runtime options, if applicable

The following example shows a .NET Debug script.

15

15

37

39

49

8

12

38

39

Model Driven Development Environment | Debugging 16

© 1998-2010 Sparx Systems Pty Ltd

3.6.2.1 Operating System Specific Requirements

Important:

Please read the information provided in this topic.

Prerequisites

Creation of a Package Build Script and configuration of the Debug command in that script.

Supported Platforms

Enterprise Architect supports debugging on these platforms:

.Net

· MicrosoftÔ .NET Framework 1.1 and later

· Language support: C, C#, C++, J#, Visual Basic

Note:

Debugging under Windows Vista (x64) - If you encounter problems debugging with Enterprise Architect on a
64-bit platform, you should build a Win32 platform configuration in Visual Studio; that is, do not specify
ANY-CPU, specify WIN32.

Java

· Java 2 Platform Standard edition (J2SE) version 5.0

· J2EE JDK 1.4 and above

· Requires previous installation of the Java Runtime Environment and Java Development Kit from Sun
MicrosystemsÔ.

Debugging is implemented through the Java Virtual Machine Tools Interface (JVMTI), which is part of the Java
Platform Debugger Architecture (JPDA). The JPDA is included in the J2SE SDK 1.3 and later.

Windows for Native Applications

Enterprise Architect supports debugging native code (C, C++ and Visual Basic) compiled with the MicrosoftÔ
compiler where an associated PDB file is available. Select Microsoft Native from the list of debugging
platforms in your package script.

You can import native code into your model, and record the execution history for any Classes and methods.
You can also generate Sequence diagrams from the resulting execution path.

Model Driven Development Environment | Debugging17

Visual Execution Analyzer in Enterprise Architect

Note:

Enterprise Architect currently does not support remote debugging.

3.6.2.1.1 UAC-Enabled Operating Systems

The Microsoft operating systems Windows Vista and Windows 7 provide User Account Control (UAC) to
manage security for applications.

The Enterprise Architect Visual Execution Analyser is UAC-compliant, and users of UAC-enabled systems can
perform operations with the Visual Execution Analyser and related facilities under accounts that are members
of only the Users group.

However, when attaching to processes running as services on a UAC-enabled operating system, it might be
necessary to log in as an Administrator. To do this, follow the step below:

1. Before you run Enterprise Architect, right-click on the Enterprise Architect icon on the desktop and
select the Run as administrator option.

Alternatively, edit or create a link to Enterprise Architect and configure the link to run as an administrator;
follow the steps below:

1. Right-click on the Enterprise Architect icon and select the Properties menu option. The Enterprise
Architect Properties dialog displays.

2. Click on the Advanced button. The Advanced Properties dialog displays.

Model Driven Development Environment | Debugging 18

© 1998-2010 Sparx Systems Pty Ltd

3. Select the Run as administrator checkbox.

4. Click on the OK button, and again on the Enterprise Architect Properties dialog.

3.6.2.1.2 WINE Debugging

At the command line, run $ winecfg.

Set the library overrides for dbghelp to (native, builtin), and accept the warning about overriding this DLL:

Note:

If WINE crashes, the back traces may not be correct.

1. Set dbghelp to native by using winecfg.

2. Copy the application source code plus executable(s) to your bottle. (The path must be the same as the
compiled version; that is:

If Windows source = C:\Source\SampleApp, under Crossover it must be C:\Source\SampleApp.)

3. Copy any Side-By-Side assemblies that are used by the application.

4. Import the source code into Enterprise Architect. (Optional.)

5. Create a build script on a package.

Set the path of the application on the Debug tab, and set Use Debugger to Microsoft Native.

6. Open the Profiler (View | Execution Analyzer | Profiler).

7. Click on the Launch button (first button on the Profiler window).

If the sample didn't start, click on the Sampling button (third button on the Profiler window).

8. Once you have finished profiling, shut down the application (not Enterprise Architect).

9. View the Sampler report by clicking the View Report button (fifth button on the Profiler window).

12

82

Model Driven Development Environment | Debugging19

Visual Execution Analyzer in Enterprise Architect

Tips:

· If you are using MFC remember to copy the debug side-by-side assemblies to the C:\window\winsxs
directory.

· To add a windows path to WINE, modify the Registry entry:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session Manager\Environment

Access Violation Exceptions

Due to the manner in which WINE handles direct drawing and access to DIB data, an additional option is
provided on the Debug window toolbar drop-down menu to ignore or process access violation exceptions
thrown when your program directly accesses DIB data.

Select this option to catch genuine (unexpected) access violations; deselect it to ignore expected violations.
As the debugger cannot distinguish between expected and unexpected violations, you might have to use trial
and error to capture and inspect genuine program crashes.

3.6.2.2 Microsoft C++ and Native (C, VB)

The example script below is configured to enable debugging of a C++ project built in Microsoft Visual Studio
2005 or 2008.

You can debug native code only if there is a corresponding PDB file for the executable. You normally create
the PDB file as a result of building the application.

The build should include full debug information and there should be no optimizations set.

Model Driven Development Environment | Debugging 20

© 1998-2010 Sparx Systems Pty Ltd

The script must specify two things to support debugging:

· The path to the executable

· Microsoft Native as the debugging platform.

3.6.2.2.1 Debug Symbols

For Applications built using Microsoft Platform SDK Debug Symbols are written to an Application PDB file
when the Application is built.

The Debugging Tools for Windows, an API used by the Visual Execution Debugger, uses these symbols to
present meaningful information to Execution Analyzer controls.

These symbols can easily get out of date and cause errant behaviour. The debugger might highlight the wrong
line of code in the editor whilst at a breakpoint. It is therefore best to ensure the application is built prior to any
debugging or recording session.

The debugger must inform the API how to reconcile addresses in the image being debugged. It does this by
specifying a number of paths to the API that tell it where to look for PDB files. The API automatically picks up
the path to the main image PDB from the image itself.

For system DLLs (kernel32, mfc90ud ...) for which no debug symbols are found, the Call Stack shows some
frames with module names and addresses only .

You can supplement the symbols translated by passing additional paths to the API. To do this there must be a
Package Script selected and it must have the Native debugger specified.

You pass additional symbol paths in a semi-colon separated list in the Enter any runtime variables... field of
the Debug tab, as illustrated below.

Model Driven Development Environment | Debugging21

Visual Execution Analyzer in Enterprise Architect

3.6.2.3 Java

This section describes how to configure Enterprise Architect for debugging Java applications and Web
Servers.

3.6.2.3.1 General Setup for Java

This is the general setup for debugging Java applications:

Model Driven Development Environment | Debugging 22

© 1998-2010 Sparx Systems Pty Ltd

Option Use to

Application (Enter path) Identify the fully qualified Class name to debug, followed by any arguments.
The Class must have a method declared with the following signature:

public static void main(String[]);

The debugger calls this method on the Class you name. In the example above,
the parameters 1, 2 and 3 are passed to the method.

You can also debug a Java application by attaching to an existing Java
process .

Enter any run time
variables below

Type any required command line options to the Java Virtual Machine.

You also must provide a parameter (jre) that is a path to be searched for the
jvm.dll. This is the DLL supplied as part of the Java runtime environment or
Java JDK from Sun MicrosystemsTM (see Debugging).

In the example above, a virtual machine is created with a new Class path
property that comprises any paths named in the environment variable
classpath 1603 plus the single path "C:\benchmark\java\example1".

If no Class path is specified, the debugger always creates the virtual machine
with a Class path property equal to any path contained in the environment
variable plus the path entered in the default working directory of this script.

Note:

If source files and .class files are located under different directory trees, the
Class path property MUST include both root path(s) to the source and root
path(s) to binary class files.

Show Console Create a console window for Java. If no console window is required, leave
blank.

Use Debugger Select Java.

3.6.2.3.2 Advanced Techniques

In addition to the standard Java debugging techniques, you can also:

· Attach to a Virtual Machine

· Debug Internet Browser Java Applets.

You can debug a Java application by attaching to an existing Java process.

However, the Java process requires a specific startup option specifying the Sparx Systems Java Agent. The
format of the command line option is:

-agentlib:SSJavaProfiler80

or:

-agentpath:"c:\program files\sparx systems\ea\SSJavaProfiler80"

The example below is for attaching to the Tomcat Webserver. Select the Attach to process radio button, and
then the keyword Attach is all that you have to enter. This keyword causes the debugger to prompt you for a
process at runtime.

Note:

The Show Console checkbox has no effect when attaching to an existing virtual machine.

22

57

22

23

Model Driven Development Environment | Debugging23

Visual Execution Analyzer in Enterprise Architect

No run time variables are necessary when attaching as these are specified as startup parameters to the
process.

This topic describes the configuration requirements and procedure for debugging Java Applets running in a
browser from Enterprise Architect.

The procedure requires you to attach to the browser process hosting the Java Virtual Machine (JVM) from
Enterprise Architect, as summarized below:

1. Ensure binaries for the applet code to be debugged have been built with debug information.

2. Configure the JVM using the Java Control Panel.

Model Driven Development Environment | Debugging 24

© 1998-2010 Sparx Systems Pty Ltd

3. In the Java Applet Runtime Settings panel, click on the View button. The Java Runtime Settings dialog
displays.

Model Driven Development Environment | Debugging25

Visual Execution Analyzer in Enterprise Architect

4. Click on the appropriate entry and click on the OK button to load the Sparx Systems Agent.

5. Import source code into the Enterprise Architect model, or synchronize existing code. (See Code
Engineering Using UML Models.)

6. Create or modify the Package Build Script to specify the option for attaching to the process.

5. Set breakpoints .

6. Launch the browser.

7. Attach to the browser process from Enterprise Architect.

Note that the class.path property specified for the JVM includes the root path to the applet source files. This is
necessary for the Enterprise Architect debugger to match the execution to the imported source in the model.

3.6.2.3.3 Working with Java Web Servers

This topic describes the configuration requirements and procedure for debugging Java web servers such as
JBOSS and Apache Tomcat (both Server configuration and Windows Service configuration) in
Enterprise Architect.

The procedure involves attaching to the process hosting the Java Virtual Machine from Enterprise Architect,
as summarized below:

1. Ensure binaries for the web server code to be debugged have been built with debug information.

2. Launch the server with the Virtual Machine startup option described in this topic.

3. Import source code into the Enterprise Architect Model, or synchronize existing code.

4. Create or modify the Package Build Script to specify the Debug option for attaching to the process.

5. Set breakpoints.

6. Launch the client.

7. Attach to the process from Enterprise Architect.

Server Configuration

The configuration necessary for the web servers to interact with Enterprise Architect must address the
following two essential points:

· Any VM to be debugged, created or hosted by the server must have the Sparx Systems Agent
SSJavaProfiler80 command line option specified in the VM startup option (that is: -agentlib:SSJavaProfiler80)

· The CLASSPATH, however it is passed to the VM, must specify the root path to the package source files.

The Enterprise Architect debugger uses the java.class.path property in the VM being debugged, to locate the
source file corresponding to a breakpoint occurring in a Class during execution. For example, a Class to be
debugged is called:

a.b.C

This is located in physical directory:

C:\source\a\b

So, for debugging to be successful, the CLASSPATH must contain the root path:

c:\source.

Package Script Configuration

Using the Debug tab of the Build Script dialog, create a script for the code you have imported and
specify the following:

· Select the Attach to process radio button, and in the field below type attach.

· In the Use Debugger field, click on the drop-down arrow and select Java.

8

37

27 28 29

25

25

37

21 2

Model Driven Development Environment | Debugging 26

© 1998-2010 Sparx Systems Pty Ltd

All other fields are unimportant. The Directory field is normally used in the absence of any Class path
property.

Debugging

First ensure that the server is running, and that the server process has loaded the Sparx Systems Agent DLL
SSJavaProfiler80.DLL (use Process Explorer or similar tools to prove this).

Launch the client and ensure the client executes. This must be done before attaching to the server process in
Enterprise Architect.

After the client has been executed at least once, return to Enterprise Architect, open the source code you
imported and set some breakpoints .

Click on the Run Debugger button in Enterprise Architect. The Attach To Process dialog displays.

37

15

Model Driven Development Environment | Debugging27

Visual Execution Analyzer in Enterprise Architect

Click on the OK button. A confirmation message displays in the Debug Output window, stating that the
process has been attached.

The breakpoints should remain enabled (bright red). If the breakpoints fail, and contain either an exclamation
mark or a question mark, then either the process is not hosting the SSJavaprofiler80 Agent or the binaries being
executed by the server are not based on the source code. If so, check your configuration.

Consider the JBoss example below. The source code for a simple servlet is located in the directory location:

The binaries executed by JBOSS are located in the JAW.EAR file in this location:

The Enterprise Architect debugger has to be able to locate source files during debugging. To do this it also
uses the CLASSPATH, searching in any listed path for a matching JAVA source file, so the CLASSPATH must
include a path to the root of the package for Enterprise Architect to find the source during debugging.

The following is an excerpt from the command file that executes the JBOSS server. Since the Class to be

Model Driven Development Environment | Debugging 28

© 1998-2010 Sparx Systems Pty Ltd

debugged is at com/inventory/dto/carDTO, the root of this path is included in the JBOSS classpath.

RUN.BAT

set SOURCE=C:\Benchmark\Java\JBOSS\Inventory

set JAVAC_JAR=%JAVA_HOME%\lib\tools.jar

if "%JBOSS_CLASSPATH%" == ""
(
 set JBOSS_CLASSPATH=%SOURCE%;%JAVAC_JAR%;%RUNJAR%;
)
else
(
 set JBOSS_CLASSPATH=%SOURCE%;%JBOSS_CLASSPATH%;%JAVAC_JAR%;%RUNJAR%;
)

set JAVA_OPTS=%JAVA_OPTS% -agentpath:"c:\program files\sparx systems\ssjavaprofiler80"

This configuration is for the same application as outlined in the JBOSS server configuration topic.

There are two things to notice of importance.

· The Java VM option: -agentpath:c:\program files\sparx systems\ea\ssjavaprofiler80

· The addition to the Class path property of the path to the source code: C:\JBOSS\03b-dao\common\src;

27

Model Driven Development Environment | Debugging29

Visual Execution Analyzer in Enterprise Architect

For users running Apache Tomcat as a WindowsTM service, it is important to configure the service to enable
interaction with the Desktop. Failure to do so causes debugging to fail within Enterprise Architect.

Select the Allow service to interact with desktop checkbox.

3.6.2.4 .NET

This section describes how to configure Enterprise Architect for debugging .NET applications. It covers:

· General Setup

· Debug Assemblies

· Debug CLR Versions

· Debug COM Interop

· Debug ASP .NET

30

30

31

32

32

Model Driven Development Environment | Debugging 30

© 1998-2010 Sparx Systems Pty Ltd

3.6.2.4.1 General Setup for .NET

This is the general setup for debugging .NET applications:

Option Use to

Application (Enter path) Select and enter either the full or the relative path to the application
executable, followed by any command line arguments.

Enter any runtime variables
below

Type any required command line options, if debugging a single .NET
Assembly .

Show Console Create a console window for the debugger. Not applicable for attaching
to a process.

Use Debugger Select the debugger to suit the .NET Framework under which your
application runs.

Note:

If you intend to debug managed code using an unmanaged application, please see the Debug - CLR
Versions topic.

3.6.2.4.2 Debug Assemblies

Enterprise Architect permits debugging of individual assemblies.

The assembly is loaded and a specified method invoked. If the method takes a number of parameters, these
can be passed.

Constraints

Debugging of assemblies is only supported for .NET version 2.

The following image is of a Build Script configured for debugging a .NET assembly.

30

31

Model Driven Development Environment | Debugging31

Visual Execution Analyzer in Enterprise Architect

Notice the Enter any run time variables below field. This field is a comma-delimited list of values that must
present in the following order:

type_name, method_name, { method_argument_1, method_argument2,....}

where:

· type_name is the qualified type to instantiate

· method_name is the unqualified name of the method belonging to the type that is invoked

· the argument list is optional depending on the method invoked.

The information in this field is passed to the debugger.

3.6.2.4.3 Debug - CLR Versions

Please note that if you are debugging managed code using an unmanaged application, the debugger might
fail to detect the correct version of the Common Language Runtime (CLR) to load. You should specify a config
file if you don’t already have one for the debug application specified in the Debug command of your script. The
config file should reside in the same directory as your application, and take the format:

name.exe.config

where name is the name of your application.

The version of the CLR you should specify should match the version loaded by the managed code invoked by
the debuggee.

Sample config file:

<configuration>
 <startup>
 <requiredRuntime version="version "/>
 </startup>
</configuration>

where version is the version of the CLR targeted by your plugin or COM code.

For further information, see http://www.msdn2.microsoft.com/en-us/library/9w519wzk.aspx.

http://msdn2.microsoft.com/en-us/library/9w519wzk.aspx

Model Driven Development Environment | Debugging 32

© 1998-2010 Sparx Systems Pty Ltd

3.6.2.4.4 Debug COM Interop

Enterprise Architect enables you to debug .NET managed code executed using COM in either a Local or an
In-Process server.

This feature is useful for debugging Plugins and ActiveX components.

1. Create a package in Enterprise Architect and import the code to debug. See Code Engineering Using
UML Models.

2. Ensure the COM component is built with debug information.

3. Create a Script for the Package.

4. In the Debug tab, you can elect to either attach to an unmanaged process or specify the path to an
unmanaged application to call your managed code.

5. Add breakpoints in the source code to debug.

Attach to an Unmanaged Process
· If an In-Process COM server, attach to the client process or

· If a Local COM Server, attach to the server process.

Click on the Debug window Run button (or press [F6]) to display a list of processes from which you can
choose.

Important:

Detaching from a COM interop process you have been debugging terminates the process. This is a known
issue for Microsoft .NET Framework, and information on it can be found on many of the MSDN .NET blogs.

3.6.2.4.5 Debug ASP .NET

Debugging for web services such as ASP requires that the Enterprise Architect debugger is able to attach to a
running service.

Begin by ensuring that the directory containing the ASP .NET service project has been imported into
Enterprise Architect and, if required, the web folder containing the client web pages. If your web project
directory resides under the website hosting directory, then you can import from the root and include both ASP
code and web pages at the same time.

The following image shows the project tree of a web service imported into Enterprise Architect.

Model Driven Development Environment | Debugging33

Visual Execution Analyzer in Enterprise Architect

It is necessary to launch the client first, as the ASP .NET service process might not already be running. Load
the client by using your browser. This ensures that the web server is running. The only difference to a debug
script for ASP is that you specify the attach keyword in your script, as follows:

Model Driven Development Environment | Debugging 34

© 1998-2010 Sparx Systems Pty Ltd

When you start the debugger (click on the Debug window Run button) the Attach To Process dialog
displays.

15

Model Driven Development Environment | Debugging35

Visual Execution Analyzer in Enterprise Architect

Note that the name of the process varies across Microsoft operating systems.; check the ASP .NET SDK for
more information. The image above shows the IIS process w3wp.exe, which is the name of the process that
runs under Windows Vista.

On Windows XP, the name of the process is something like aspnet_wp.exe, although the name could reflect
the version of the .NET framework that it is supporting. There can be multiple ASP.NET processes running
under XP; you must ensure that you attach to the correct version, which would be the one hosting the .NET
framework version that your application runs on. Check the web.config file for your web service to verify the
version of .NET framework it is tied to.

The Debug window Stop button should be enabled and any breakpoints should be red, indicating they
have been bound.

Note:

Some breakpoints might not have bound successfully, but if none at all are bound (indicated by being dark
red with question marks) something has gone out of sync. Try rebuilding and re-importing source code.

You can set breakpoints at any time in the web server code. You can also set breakpoints in the ASP web
page(s) if you imported them.

3.6.3 The Debug Window

The Debug window gives access to the scripts and windows of the debug facility.

To access the Debug window, select the View | Execution Analyzer | Debugger menu option.

37

Model Driven Development Environment | Debugging 36

© 1998-2010 Sparx Systems Pty Ltd

The Debug Window has three top-level folders:

· Scripts - The Scripts <Package Name> folder lists the scripts available for the currently-selected package,
the first in the list being, by default, the active script that is executed when you start debugging, as
indicated by the selected checkbox. If you are using recording markers, this is also the script that
determines what recording options are applied . If you want to execute a different script, select the
appropriate checkbox. The context menu for each script provides further scripting options, such as Debug,
Build, Test and Edit.

You can pin the package scripts so that they remain listed in the Debug window even if you select a
different package. To do this, right-click on the folder title and select the Pin Package context menu option;
the Scripts folder icon changes. To unpin the scripts, right-click on the folder title and deselect the Pin
Package option.

· The Debugger Windows folder lists the debug windows, which you can display or hide by selecting or
deselecting the checkbox against each one. If the window is docked, you can bring it to the front by clicking
on the window name:

· Breakpoints & Markers - lists any breakpoints placed in the package source code, along with
their status (enabled/disabled), line number, and the physical source file in which they are located

· Call Stack - shows the position of the debugger in the code; clicking on the > button advances
the stack through the code until the next breakpoint is reached

· Locals - shows the local variables defined in the current code segment, their type and value

· Watches - shows the values of static and globally scoped expressions you have entered

· Modules - displays all the modules loaded during a debug session

· Debug Output - displays output from the debugger including any messages output by the
debugged process, such as writes to standard output.

· The Analyzer Windows folder lists the advanced control windows of the Execution Analyzer, which you can
display or hide by selecting or deselecting the checkbox against each one:

· Record & Analyze - records any activity that takes place during a debug session; once the
activity has been logged, Enterprise Architect can use it to create a new Sequence diagram

· Profiler - opens the Profiler window to sample an application

· Workbench - enables you to create instances of .NET and Java Classes

· Search - enables you to search for text in files.

You can dock and combine the windows to suit your working requirements; see the Arrange Windows and
Menus section in Using Enterprise Architect - UML Modeling Tool.

59

37

42

43

44

47

47

74

82

87

51

Model Driven Development Environment | Debugging37

Visual Execution Analyzer in Enterprise Architect

3.6.4 Breakpoint and Marker Management

Breakpoints work in Enterprise Architect much like in any other debugger. Adding a breakpoint notifies the
debugger to trap code execution at the point you have specified. When a breakpoint is encountered by a
thread of the application being debugged, the source code is displayed in an editor window, and the line of
code where the breakpoint occurred is highlighted.

Selecting a different package in the project affects which breakpoints are displayed.

Note:

The debugger does not stop automatically. It runs to completion unless it encounters a breakpoint.

An Enterprise Architect model maintains breakpoints for every package having a Build Script - Debug
command. Breakpoints themselves are listed in their own Breakpoints & Markers window (View | Execution
Analyzer | Breakpoints & Markers).

Breakpoint States

DEBUGGER STATE

Running Not running

Bound Enabled

Disabled Disabled

Not bound - this usually means that the DLL is not yet
loaded or was not built with debug information

N/a

Failed - this usually means a break could not be set at
this time, and can occur when the source file is newer
or older than that used to build the application.

N/a

Delete, Disable and Enable Breakpoints

To delete a specific breakpoint, either:

· If the breakpoint is enabled, click on the red breakpoint circle in the left margin of the Source Code Editor

· Right-click on the breakpoint marker in the editor and select the appropriate context menu option, or

· Select the breakpoint in the Breakpoints & Markers tab and press [Delete].

Whether you are viewing the Breakpoints folder or the Breakpoints & Markers window, you can right-click on
an existing breakpoint and select a context menu option either to delete it or to convert it to a start recording
marker or end recording marker .

You can also delete all breakpoints by clicking on the Delete all breakpoints button on the Breakpoints &

Markers window toolbar ().

66

Model Driven Development Environment | Debugging 38

© 1998-2010 Sparx Systems Pty Ltd

To disable a breakpoint, deselect its checkbox on the Breakpoints & Markers window or, to disable all

breakpoints, click on the Disable all breakpoints button in the toolbar (). The breakpoint is then shown

as an empty grey circle. Select the checkbox or use the Enable all breakpoints button to enable it again (

).

3.6.4.1 How Markers are Stored

Breakpoints created that are not part of any set are maintained in an external file for the current model.

The file format is as follows:

path\guid.brkpt

where:

· path = The O/S application data directory for each user

· guid = model Guid.

Marker Sets are stored in the model and are available to all users of the Model.

3.6.4.2 Setting Code Breakpoints

To set breakpoints for a code segment:

1. Open the model code to debug.

2. Find the appropriate code line and click in the left margin column. A solid red circle in the margin
indicates that a breakpoint has been set at that position.

If the code is currently halted at a breakpoint, that point is indicated by a blue arrow next to the marker.

3.6.4.3 Setting Data Breakpoints

Data breakpoints can currently only be set by right-clicking on the variable in the Locals window and
selecting the Set Data Breakpoint context menu option. This means that in order to establish a data
breakpoint you must first set a normal breakpoint at a point in the code that presents the required scope of
local variables to choose from.

43

37

Model Driven Development Environment | Debugging39

Visual Execution Analyzer in Enterprise Architect

3.6.5 Debugging Actions

This section describes the actions you perform in running a debug session. It covers:

· Displaying Windows

· Starting and Stopping the Debugger

· Debugging a Subsequent Process

· Stepping Over Lines of Code

· Stepping Into Function Calls

· Stepping Out of Functions

· Viewing the Call Stack

· Viewing the Local Variables

· Viewing the Content of Long Strings

· Viewing Variables in Other Scopes

· Inspecting Process Memory

· Setting Breaks for When a Variable Changes Value

· Showing Loaded Modules

· Showing Output from the Debugger

· Debugging Tooltips in Code Editors.

3.6.5.1 Displaying Windows

Debugger Actions - Displaying Windows

The Debugger windows are available from the View | Execution Analyzer menu options.

These windows can also be displayed and hidden from the debug management control checkboxes shown
below:

39

40

40

41

41

42

42

43

43

44

45

46

47

47

48

35

Model Driven Development Environment | Debugging 40

© 1998-2010 Sparx Systems Pty Ltd

3.6.5.2 Start & Stop Debugger

Debugging Actions - Start & Stop

If Basic Setup has been completed, pressing [F6] starts the application using the configured Debugger.

If not, debugging is still possible by using the Attach button on either one of the Debugger toolbars.

To stop debugging, click on the Stop button in the Debug window toolbar, or press [Ctrl]+[Alt]+[F6].

Notes:

In most situations, the debugger ends:

· when it encounters breakpoints (which should be set beforehand)

· when the debug process terminates or

· when the Java Class thread exits.

However, due to the nature of the Java Virtual Machine, it is necessary at times for Java developers to stop
the debugger manually with the Stop button.

3.6.5.3 Debug Another Process

Debugging Actions - Debug Another Process

When debugging another process, the Attach To Process dialog is displayed.

You can limit the processes displayed using the radio buttons at the top of the dialog. To find a service such
as Apache Tomcat or ASP.NET, select the System radio button.

You must choose the debugger when you select a process. However, if the selected Package has already
been configured for debugging then the Debugger listed is the one specified in the Script.

8

Model Driven Development Environment | Debugging41

Visual Execution Analyzer in Enterprise Architect

Once Enterprise Architect is attached to the process, any breakpoints encountered are detected by the
debugger and the information is available in the Debugger windows.

To detach from a process, click on the Debug Stop button.

3.6.5.4 Step Over Lines of Code

Debugging Actions - Step Over

You can only step over the lines of a function using the Debug toolbar buttons.

When you step to the end of the function, you step back to the caller.

Alternatively, press [Alt]+[F6] or select the Project | Execution Analyzer | Step Over context menu option.

3.6.5.5 Step Into Function Calls

Debugging Actions - Step In

The Step In function is executed by clicking on the Step In button.

Alternatively, press [Shift]+[F6] or select the Project | Execution Analyzer | Step In context menu option.

If no source is available for the function then the debugger continues stepping till it either enters a new

Model Driven Development Environment | Debugging 42

© 1998-2010 Sparx Systems Pty Ltd

function or reaches the next line of the current one.

3.6.5.6 Step Out of Functions

Debugging Actions - Step Out

The Step Out function is executed by clicking on the Step Out button.

Alternatively, press [Ctrl]+[F6] or select the Project | Execution Analyzer | Step Out context menu option.

If no source is available for the function then the debugger will continue stepping till it either enters a new
function or reaches the

next line of the current one.

3.6.5.7 View the Call Stack

Debugging Actions - View the Call Stack

The Call Stack window shows all currently running threads. A Stack trace is displayed whenever a thread is
suspended, through one of the step actions or through encountering a breakpoint .

· A green or yellow arrow highlights the current stack frame

· A blue arrow indicates a thread that is running

· A red arrow indicates a thread for which a stack trace history is being recorded

· Double-clicking a frame takes you to that line of code in the Source Code Editor; local variables are also
refreshed for the selected frame.

Toolbar

 - Save Stack to file

 - Generate Sequence diagram from Stack

 - Copy Stack to recording history

 - Toggle Stack View

37

Model Driven Development Environment | Debugging43

Visual Execution Analyzer in Enterprise Architect

 - Stop recording

3.6.5.8 View the Local Variables

Debugging Actions - Viewing Local Variables

Whenever a thread encounters a breakpoint , the Locals window displays all the local variables for the
thread at its current stack frame.

The value and the type of any in-scope variables are displayed in a tree, as illustrated below:

Local variables are displayed with colored box icons with the following meanings:

· Blue Object with members

· Green Arrays

· Pink Elemental types

· Yellow Parameters

· Red Workbench Instance

3.6.5.9 View Content Of Long Strings

Debugging Actions - View Entire Content Of Long Strings

For efficiency, the Locals window only shows partial strings. The size of any variable value displayed in the
window can be up to 256 characters.

To view the entire value of a variable, right-click on it and select the View in Editor context menu option. The
String Viewer dialog displays.

37

42

Model Driven Development Environment | Debugging 44

© 1998-2010 Sparx Systems Pty Ltd

3.6.5.10 View Variables in Other Scopes

Debugging Actions - Viewing the Variables in Other Scopes

The Watches window is most useful for native code (C, C++, VB) where it can be used to evaluate data items
that are not available as Local Variables - data items with module or file scope and static Class member
items.

You can also use the window to evaluate static Class member items in Java and .NET.

43

Model Driven Development Environment | Debugging45

Visual Execution Analyzer in Enterprise Architect

To use the Watches window, type the name of the variable to examine in the field in the window toolbar, and
either press [Enter] or click on the Add new watched item icon.

To examine a static Class member variable in C++, Java or Microsoft .NET enter its fully qualified name. For
example:

CMyClass::MyStaticVar

To examine a C++ data symbol with module or file scope, just enter its name. Note, items are evaluated only if
the package in whose scope the item resides is currently loaded by the process being debugged. If the
debugger is not running, no items are listed.

The names of the items to evaluate persist for the package and user ID, so the next time you debug the same
project, the items evaluate automatically whenever a breakpoint occurs. They do not appear if another user
debugs the same code.

If necessary, you can delete items using the Delete all watched items icon in the toolbar, or the right-click
context menu options inside the window.

3.6.5.11 Inspect Process Memory

Debugging Actions - Inspecting Process Memory Debugging

You can display the raw values at a memory address or for a variable in a window using the Memory Viewer -
select the View Memory at Address context menu option.

Model Driven Development Environment | Debugging 46

© 1998-2010 Sparx Systems Pty Ltd

The Memory Viewer displays the raw values at a memory address

The Memory Viewer is available for debugging Microsoft Native Code Applications (C,C++,VB) running on
Windows or within WINE on Linux.

3.6.5.12 Break When a Variable Changes Value

Debugging Actions - Break when a Variable Changes Value

An invalid or uninitialised variable can cause the program behaviour to differ from expected. This tool enables
you to halt execution whenever a certain variable has its value changed.

Note:

This feature is not presently supported by the Microsoft .NET platform.

The example below creates a notification on a variable from the Watches window. The item being watched is
an integer in the SSP namespace scope.

Model Driven Development Environment | Debugging47

Visual Execution Analyzer in Enterprise Architect

3.6.5.13 Show Loaded Modules

Debugging Actions - Show loaded modules

The debugger Modules window lists the modules loaded by the process being debugged.

The columns on this window are described below:

Column Use To

Path Determine the file path of the loaded module.

Modified Date Determine the local file date and time the module was modified.

Debug Symbols Establish the debug symbols type, whether debug information is present in the
module and whether line information is present for the module (required for
debugging).

Symbol File Match Check the validity of the symbol file; if the value is false, the symbol file is out of
date.

Symbol Path Determine the file path of the symbol file, which must be present for debugging to
work.

Modified Date Determine the local file date and time the symbol file was created.

3.6.5.14 Show Output from Debugger

Debugging Actions - Show Output From Debugger

During a debug session the Debugger emits messages detailing both startup and termination of session, to its
Output tab. Details of exceptions and any errors are also output to this tab. Any trace messages such as those
output using Java System.out or .NET System.Diagnostics.Debug are also captured and displayed here.

Model Driven Development Environment | Debugging 48

© 1998-2010 Sparx Systems Pty Ltd

3.6.5.15 Debug Tooltips in Code Editors

Debugging Actions - Viewing Variable Values in Code Editors

During debugging, whenever a thread is suspended at a line of execution, you can inspect member variables
in the Editor window.

To evaluate a member variable, use the mouse to move the cursor over the variable in the Editor window, as
shown in the following examples.

Model Driven Development Environment | Debugging49

Visual Execution Analyzer in Enterprise Architect

3.6.6 Recording Actions

This section describes how to perform the following debug recording actions:

· Step through function calls

· Create a Sequence diagram of the Call Stack

· Save the Call Stack.

3.6.6.1 Step Through Function Calls

Debugging Actions - Step Through

The Step Through function can be executed by clicking on the Step Through button on the Record & Analyze
window toolbar.

Alternatively, press [Shift]+[F6] or select the Project | Execution Analyzer | Step Into context menu option.

The Step Through command causes a Step Into command to be executed. If any function is detected, then
that function call is recorded in the History window. The debugger then steps out, and the process can be
repeated.

This button enables you to record a call without having to actually step into a function. The button is only
enabled when at a breakpoint and in manual recording mode.

3.6.6.2 Create Sequence Diagram of Call Stack

Debugging Actions - Create Sequence Diagram from Current Call Stack

To generate a Sequence diagram from the current Stack, click on the Generate Sequence Diagram of Stack
button on the Call Stack window toolbar.

This immediately generates a Sequence diagram in the Diagram View.

49

49

50

Model Driven Development Environment | Debugging 50

© 1998-2010 Sparx Systems Pty Ltd

3.6.6.3 Saving the Call Stack

Debugging Actions - Saving the Call Stack

On the Call Stack window, you can save the current Stack to file or copy the Stack to the recording history.

Model Driven Development Environment | Debugging51

Visual Execution Analyzer in Enterprise Architect

Toolbar

 - Save Stack to file

 - Copy Stack to recording history

3.7 Searching in Files

This topic describes how to use the File Search facility.

3.7.1 Search in Files

This topic describes the File Search control.

File Text Searches are provided by the Search Window and from within the Code Editors.

The Search window enables you to search for text in code files and scripts. You can select to display the
results of the search in one of two formats:

· List View - each result line consists of the file path and line number, followed by the line text; multiple lines
from one file are listed as separate entries

51

Model Driven Development Environment | Searching in Files 52

© 1998-2010 Sparx Systems Pty Ltd

· Tree View - each result line consists of the file path that matches the search criteria, and the number of
lines matching the search text within that file; you can expand the entry to show the line number and text of
each line.

Search Toolbar

You can use the toolbar options in the Search window to control the search operation. The state of all buttons
persists over time to always reflect your previous search criteria.

The options, from left to right, are as follows:

Option Use to

Search Path list box Specify the folder to search.

Model Driven Development Environment | Searching in Files53

Visual Execution Analyzer in Enterprise Architect

Option Use to

You can type the path to search directly into the text box, or click on the folder icon
to browse for the path. Any paths you enter are automatically saved in the
drop-down list, up to a maximum of ten; paths added after that overwrite the oldest
path in the list.

A fixed option in the drop-down list is Search in Scripts, which sets the search to
operate on all local and user-defined scripts in the Scripts tab of the Scripter
window. This option disables the Search File Types list box.

Search Text list box Specify the text to look for.

You can type the text directly into the text box or click on the drop-down arrow to
select from a previous entry in the list. The search text you enter is automatically
saved in the list when you click on the Search button.

The list box saves up to ten search queries. Search queries added after that
overwrite the oldest query in the list.

Search File Types list
box

Limit the search to specific types of files. You can select multiple file types in a
string, separated by either a comma or a semi-colon as shown in the image above.

Search button Begin the search.

During the course of the search all other buttons in the toolbar are disabled. You
can cancel the search at any time by clicking on the Search button again.

If you switch any of the toggle buttons below, you must run the search again to
change the output.

Case Sensitivity
button

Toggle the case sensitivity of the search. The tooltip message identifies the
current status of the button.

Word Match button Toggle between searching for any match and searching for only those matches
that form an entire word. The tooltip message identifies the current status of the
button.

SubFolders button Toggle between limiting the search to a single path and including all subfolders
under that path. The tooltip message identifies the current status of the button.

Result View button Select the presentation format of the search results - List View or Tree View
format.

Clear Results button Clear the results.

Clear Search Criteria
button

Remove all the entries in the Search Path, Search Text and Search File Types
list boxes, if required.

Help button Display this Help topic.

3.8 Testing Command

This section describes how to create a command for performing unit testing on your code.

3.8.1 Add Testing Command

This topic explains how you enter a command for performing unit testing on your code.

The command is entered in the text box using the standard Windows Command Line commands. A sample
script would contain a line to execute the testing tool of your choice, with the filename of the executable
produced by the Build command as the option. To execute this test select the Project | Execution Analyzer |
Test menu option.

Testing could be integrated with any test tool using the command line provided, but in these examples you can
see how to integrate NUnit and JUnit testing with your source code. Enterprise Architect provides an inbuilt

53

Model Driven Development Environment | Testing Command 54

© 1998-2010 Sparx Systems Pty Ltd

MDA Transform from source to Test Case, plus the ability to capture xUnit output and use it to go directly to a
test failure. xUnit integration with your model is now a powerful means of delivering solid and well-tested code
as part of the complete model-build-test-execute-deploy life-cycle.

Note:

NUnit and JUnit must be downloaded and installed prior to their use. Enterprise Architect does not include
these products in the base installer.

The Capture Output checkbox enables Enterprise Architect to show the output of the program in the Output
window, while the Output Parser field specifies what format output is expected. When parsing is enabled,
double-clicking on a result in the Output window opens the corresponding code segment in Enterprise
Architect's code window.

Selecting the Build before Test checkbox ensures that the package is recompiled each time you run the test.

Two example test scripts are included below. The first is an NUnit example that shows the Build before Test
checkbox selected. As a result, every time the test command is given it runs the build script first.

Note:

The command listed in this field is executed as if from the command prompt. As a result, if the executable
path or any arguments contain spaces, they must be surrounded in quotes.

The second example is for JUnit. It doesn't have the Build before Test checkbox selected, so the build script
won't be executed before every test, but as a result it could test out of date code. This also shows the use of %
N, which is replaced by the fully namespace-qualified name of the currently selected Class when the script is
executed.

Model Driven Development Environment | Testing Command55

Visual Execution Analyzer in Enterprise Architect

3.9 Run Command

This section describes how to create a command for running your executable code.

3.9.1 Add Run Command

This topic explains how you enter a command for running your executable.

This is the command that is executed when you select the Project | Execution Analyzer | Run menu option.
At its simplest, the script would contain the location and name of the file to be run.

Note:

Enterprise Architect provides the ability to start your application normally OR with debugging from the same
script. The Execution Analyzer menu has separate options for starting a normal run and a debug run.

The following two examples show scripts configured to run a .Net and a Java application in Enterprise
Architect.

55

Model Driven Development Environment | Run Command 56

© 1998-2010 Sparx Systems Pty Ltd

Note:

The command listed in this field is executed as if from the command prompt. As a result, if the executable
path or any arguments contain spaces, they must be surrounded in quotes.

3.10 Deploy Command

This section describes how to create a command for deploying the current package.

3.10.1 Add Deploy Command

This topic enables you to create a command for deploying the current package.

These are the commands that are executed when you select the Project | Execution Analyzer | Deploy
menu option.

Write your script in the large text box using the standard Windows Command Line commands.

55

Execution Analysis | 57

Visual Execution Analyzer in Enterprise Architect

4 Execution Analysis

This section describes the Visual Analysis of executing applications by recording application execution and
generating:

· Sequence Diagrams

· Sequence/State Diagrams

· Profile (execution) Reports

Execution analysis is configured by creating a debug script for the packages to be tested. One of the
primary objectives of this feature is to enable you to perform a debug walk-through executing code, and
capture your stack trace for direct conversion into a Sequence diagram. This is a great way to document and
understand what your program is doing during its execution phase.

Execution Analysis debugging and recording are supported for the following platforms / languages:

· Microsoft Windows Native C

· Microsoft Windows Native C++

· Microsoft Windows Visual Basic

· Microsoft .NET Family (C#, J#, VB)

· Sun Microsystems Java.

4.1 Recording Sequence Diagrams

This section explains how to use the Visual Execution Analyzer to record execution data in the form of a
Sequence Diagram. It covers:

· An overview of how the process works

· Setup for recording

· Placing recording markers

· Controlling the recording session

· Generating Sequence diagrams

· Adding State Transitions.

4.1.1 How it Works

The Visual Execution Analyzer enables you to generate a Sequence Diagram. The diagram below illustrates
the output of a Sequence Diagram for a program that calculates the price of books. The diagram creates a
visual representation of the execution of an application, outlining what functions are being called, types of
messages being sent, key data structure used and the relationships between different classes. The diagram
makes it much simpler to Understand how information is moved throughout the system and what values are
being passed by various functions. The first loop structure is executed four times and is being used to add
four books to the book database. The arrows indicate information flow and demonstrate the change of states
over time.

15

57

59

66

72

74

75

Execution Analysis | Recording Sequence Diagrams 58

© 1998-2010 Sparx Systems Pty Ltd

A Sequence diagram provides easy to understand visual information including:

· An understanding of how information is passed throughout a system.

· The sequence of various functions and their corresponding parameters.

· A clear understanding of how different classes interact to create behavior.

· A visual overview of how data structures are used to produce results.

If an application crashes, data corruption such as a stack overflow can prevent you from diagnosing and
rectifying the problem. However the Visual Execution Analyzer allows you to record a given execution
sequence and provide a reliable source of information that may further explain why a crash occurred.
Enterprise Architect can record arguments to functions, record calls to external modules or capture state
transitions based on any given constraint. This information can be integrated with existing system knowledge
and test data to optimize code execution, reduce errors and understand why application failure and system
crashes occur.

A Sequence Diagram extends traditional analysis to help identify errors in logic, explain unexpected system
behavior and identify data flow inconsistencies. The Visual Execution Analyzer extends analysis through the
use of a comprehensive array of reports that detail everything from state transitions through to the contents of
the stack at a given time. A Sequence Diagram can convey more detail and provide greater understanding
than reading unfamiliar code that has potentially been written by someone else. It also makes it easier to
document existing code when a Sequence Diagram illustrates functions are being called and the specific
sequence of events that occur to produce a particular type of system behavior.

Execution Analysis | Recording Sequence Diagrams59

Visual Execution Analyzer in Enterprise Architect

4.1.2 Setup for Recording

This section explains how you prepare to record execution of the application. It covers:

· Prerequisites

· Configuring Recording Detail

· Advanced Techniques

4.1.2.1 Pre-Requisites

Recording is available to users of Enterprise Architect Professional and above.

Basic setup must be completed.

You should first be able to successfully debug the application.

4.1.2.2 Configure Recording Detail

The Sequence Diagram Recording tab enables you to set various options for generating Sequence diagrams
from the debugger.

These options are not all available for each platform, as indicated in the following table:

Option .NET Java Native

Enable Filter X X X

Record arguments to function calls X X X

Record calls to external modules X X X

Record calls to dynamic modules X - -

Capture state transitions using constraint X X X

Limit auto recording to stack frame threshold X X X

Enable diagnostic messages X X X

59

59

64

8

15

60

61

61

62

75

63

64

Execution Analysis | Recording Sequence Diagrams 60

© 1998-2010 Sparx Systems Pty Ltd

4.1.2.2.1 Enable Filter

If the Enable Filter option is selected on the Sequence Diagram Recording tab, the debugger excludes calls
to matching methods from the generated sequence history and diagram. The comparison is case-sensitive.

To add a value, click on the New (Insert) icon in the right corner of the Filters box, and type in the comparison
string. Each filter string takes the form:

class_name_token::method_name_token

The class_name_token excludes calls to all methods of a Class or Classes having a name that matches the
token. The string can contain the wildcard character * (asterisk). The token is optional.

The method_name_token excludes calls to methods having a name that matches token. The string can
contain the wildcard character *. The token is optional.

Where no Class token is present, the filter is applied only to global or public functions; that is, methods not
belonging to any Class.

To Filter Use Filter Entry

All public functions having a name beginning with Get from the recording
session (GetClientRect for example in Windows API).

::Get*

All methods beginning with Get for every Class member method.
::Get

All methods beginning with Get from the Class CClass.
CClass::Get*

All methods for Class CClass.
CClass::*

All methods for Classes belonging to Standard Template and Active Template
Libraries. · ATL*

· std*

The specific method GetName for Class CClass.
CClass::GetName

In the Java example in the screen below, the debugger would exclude:

· Calls to OnDraw method for Class Example.common.draw.DrawPane

· Calls to any method of any Class having a name beginning with Example.source.Collection

· Calls to any constructor for any Class (ie: <clint> and <init>).

In the Native code example below, the debugger would exclude:

· Calls made to Standard Template Library namespace

· Calls to any Class beginning with TOb

· Calls to any method of Class CLock

Execution Analysis | Recording Sequence Diagrams61

Visual Execution Analyzer in Enterprise Architect

· Calls to any Global or Public Function with a name beginning with Get

· Calls to the method GetLocation for Class Ctrain.

4.1.2.2.2 Record Arguments To Function Calls

When recording the sequence history, Enterprise Architect can record the arguments passed to method calls.

When the Record Arguments to function calls option is selected on the Build Script dialog Sequence
Diagram Recording tab, the resulting Sequence diagram shows the values of elemental and string types
passed to the method. See the following Java example.

Where the argument is not an elemental type, the type name is recorded instead.

4.1.2.2.3 Record Calls To External Modules

On the Sequence Diagram Recording tab, the Record calls to external modules option causes function calls
to external modules outside the model to be included in the sequence history and generated diagram.

For applications built in a Microsoft Native code (C, C++) you can record calls to the WIN32 API if required,
using the Record calls to external modules option. This option can also be used to record calls to
functions in modules that have a PDB file but for which there is no source.

Execution Analysis | Recording Sequence Diagrams 62

© 1998-2010 Sparx Systems Pty Ltd

Only calls originating within the model to functions external to the model are recorded.

Note:

External calls are displayed with a blue connector, as shown below.

This example shows three external calls (ToString()) to the Microsoft .NET framework assembly function
System.Single.

4.1.2.2.4 Record Calls to Dynamic Modules

(Available only for .NET platforms.)

On the Sequence Diagram Recording tab, the Record calls to dynamic modules option causes the
debugger to record execution of dynamic or 'In Memory' function calls, in transitions between normal
assemblies and those emitted dynamically.

Execution Analysis | Recording Sequence Diagrams63

Visual Execution Analyzer in Enterprise Architect

4.1.2.2.5 Limit Auto Recording

Where the Stack window shows recording to be involved in function calls that are not particularly useful, and
that are not being excluded in a filter, you can achieve a quicker and more general picture of a sequence by
limiting the stack depth being recorded. You can do this on the Sequence Diagram Recording tab, by selecting
the Limit auto recording to stack frame threshold: option.

If you use this option, be aware that the threshold value you set is a relative frame count; that is, the count is
relative to the frame at which recording begins. For example:

A breakpoint has occurred, and the Stack window shows five frames. If the stack frame threshold is set
to 3 and you begin auto-recording at this breakpoint, the debugger records all function calls between the
current frame 5 and a maximum stack frame depth of 8 inclusive.

For situations during auto-recording where the stack is very large, it is recommended that you first use a low
stack frame threshold of 2 or 3, gradually increasing it if necessary to expand the picture. You can also use the
threshold to work out which filters you could add to the script in order to further clarify the Sequence diagram
that is ultimately produced.

Execution Analysis | Recording Sequence Diagrams 64

© 1998-2010 Sparx Systems Pty Ltd

4.1.2.2.6 Enable Diagnostic Messages

The Enable diagnostic messages checkbox triggers the debugger to output more self-reporting, diagnostic
messages as it executes. For example, the debugger might output messages about method calls that are
being excluded from the recording history due to a filter also having been set in the Sequence Diagram
Recording tab of the Build Script dialog.

4.1.2.3 Advanced Techniques

This section describes the advanced techniques for configuring recording detail:

· Recording Activity for a Class

· Recording Activity for a single method

4.1.2.3.1 Recording Activity for a Class

In addition to setting breakpoints and markers in the code editor, you record all the operations of a class, or a
subset by using the Class Markup Feature.

This feature is available from the Project Browser context menu while on a Class. Select the operations to
record, choose the marker type and enter a name for the set. When you click on the OK button the markers
are stored as a marker set using the name you specify.

This set can then be loaded either before or during a session.

The marker type specifies the action to take when the process encounters that marker.

· Record function

· Record Stack Trace

· Break execution

You can also specify a recording depth. This limits the recording, which if uncontrolled can ultimately produce
Sequence Diagrams that are too complicated to read. When you specify a depth, the Debugger does not
record beyond this depth.

The depth is relative to the stack depth where the Debugger first encountered the recording marker. So, if the
stack depth is 7 when recording begins, and the Limit Depth is set to 3, the Debugger does not record
beyond a Stack depth of 10.

64

65

Execution Analysis | Recording Sequence Diagrams65

Visual Execution Analyzer in Enterprise Architect

4.1.2.3.2 Recording Activity for a Single Method

A Method Auto Record marker enables you to record activity for a particular function during a debug
session. The debugger records any function calls executed after the marker point, and always stops recording
when this function exits. The function marker combines a Start Recording marker and an End Recording
marker in one.

66

Execution Analysis | Recording Sequence Diagrams 66

© 1998-2010 Sparx Systems Pty Ltd

4.1.3 Place Recording Markers

This section explains how to deploy recording markers:

· Marker types

· Setting Recording Markers

· The Breakpoint and Markers window

· Activate and Disable Markers

· Working with Marker Sets

· Differences between breakpoints and markers.

4.1.3.1 Marker Types

Trace marking is a feature that enables you to silently record code executed between two points, and
incorporate it in a Sequence diagram. The feature also enables you to capture the execution of multiple
threads. It can be particularly useful in capturing event driven sequences (such as mouse and timer events)
without any user intervention.

The recording markers are breakpoints; however, instead of stopping, the debugger behaves according to the
type of marker. If the marker is denoted as a recording start point, the debugger immediately begins to trace
all executed calls from that point for the breaking thread. Recording is stopped again when either the thread
that is being captured terminates or the thread encounters a recording end point.

Recording markers are set in the source code editor. If you right-click on the breakpoint margin at the point to
begin recording, a context menu displays:

66

70

71

71

72

72

Execution Analysis | Recording Sequence Diagrams67

Visual Execution Analyzer in Enterprise Architect

Select the Add Start Recording Marker option, then right-click on the breakpoint margin at the point to stop
recording and select the Add End Recording Marker context menu option. The markers are shown below:

When the debugger is run it continues to run the thread, recording a stack history, until either the End
Recording marker is encountered or the thread terminates, unlike normal breakpoints where the debugger
halts and displays the line of code.

It is useful to limit the stack depth when recording particularly high-level points in an application, as the
stack frame count can result in too much information being collected. You can limit stack depth using the
Sequence Diagram Recording tab on the Build Script dialog.

63

Execution Analysis | Recording Sequence Diagrams 68

© 1998-2010 Sparx Systems Pty Ltd

Running this Calendar example with the one function record marker in CRecurrenceDlg::OnInitDialog()
produced the following output in the Recording History window:

Stack Auto-Capture Marker

(Native Code only.) Stack markers enable you to capture any unique stack traces that occur at a point in an
application. To insert a marker at the required point in code, right-click on the line and select the Add Stack
Auto Capture Marker context menu option.

Each time the debugger encounters the marker it performs a stack trace. If the stack trace is not in the
recording history, it is copied. The application then continues running. Stack markers provide a quick and

Execution Analysis | Recording Sequence Diagrams69

Visual Execution Analyzer in Enterprise Architect

useful picture of where a point in an application is being called from.

Execution Analysis | Recording Sequence Diagrams 70

© 1998-2010 Sparx Systems Pty Ltd

4.1.3.2 Setting Recording Markers

Recording markers are set in the source code editor. If you right-click on the breakpoint margin at the point to
begin recording, a context menu displays:

Select the Add Start Recording Marker option, then right-click on the breakpoint margin at the point to stop
recording and select the Add End Recording Marker context menu option. The markers are shown below:

Execution Analysis | Recording Sequence Diagrams71

Visual Execution Analyzer in Enterprise Architect

When the debugger is run it continues to run the thread, recording a stack history, until either the End
Recording marker is encountered or the thread terminates, unlike normal breakpoints where the debugger
halts and displays the line of code.

4.1.3.3 The Breakpoints and Markers Window

The Breakpoints and Markers window allows you to manage control of the process. Here you can enable,
disable, delete markers and also manage them as sets. You can organize how they are displayed, either in list
view or grouped by file or class.

4.1.3.4 Activate and Disable Markers

To delete a specific breakpoint, either:

· If the breakpoint is enabled, click on the red breakpoint circle in the left margin of the Source Code Editor

· Right-click on the breakpoint marker in the editor and select the appropriate context menu option, or

· Select the breakpoint in the Breakpoints & Markers tab and press [Delete].

Whether you are viewing the Breakpoints folder or the Breakpoints & Markers window, you can right-click on
an existing breakpoint and select a context menu option either to delete it or to convert it to a start recording
marker or end recording marker .

You can also delete all breakpoints by clicking on the Delete all breakpoints button on the Breakpoints &

Markers window toolbar ().

To disable a breakpoint, deselect its checkbox on the Breakpoints & Markers window or, to disable all

breakpoints, click on the Disable all breakpoints button in the toolbar (). The breakpoint is then shown

as an empty grey circle. Select the checkbox or use the Enable all breakpoints button to enable it again (

).

66

Execution Analysis | Recording Sequence Diagrams 72

© 1998-2010 Sparx Systems Pty Ltd

4.1.3.5 Working with Marker Sets

Marker sets enable you to group markers into collections.

A set can be used to record a specific Use Case, which might involve the operations of various Classes. Once
a set is created it is saved with the Model. Any other user using the Model has access to that set.

Sets are normally loaded prior to the point at which an action is to be captured. For example, to record a
sequence involving a particular dialog, you might set markers for the areas to record, saving the markers as a
set. When you begin debugging, prior to invoking the dialog you would then load the set. Once you bring up
the dialog in the application, the operations you have marked are recorded. Review the recording history and
create a Sequence diagram.

4.1.3.6 Differences to Breakpoints

Breakpoints differ from Markers in that they always break execution whereas Markers operate silently without
intervention.

4.1.4 Control the Recording Session

This section describes how you control the recording session:

· Auto Recording

· Manual Recording

· Pause Recording

· Resume Recording

· Stop Capture.

4.1.4.1 Auto-Recording

Auto-Recording is available when the process being debugged is at a breakpoint.

You can use the record button on the Record & Analyze window toolbar.

Alternatively, select the thread in the stack window:

72

73

73

73

73

Execution Analysis | Recording Sequence Diagrams73

Visual Execution Analyzer in Enterprise Architect

4.1.4.2 Manual Recording

Manual Recording is available when the process being debugged is at a breakpoint.

Display the Stack window and use the context menu to switch to record mode.

Thereafter you must issue debug commands {StepIn, StepOver, StepOut, Stop} manually.

Each time you issue a step command and the thread stack changes, the sequence of execution is logged.

When you have finished tracing, click on the Stop button ().

4.1.4.3 Pause Recording

You can pause recording by using the Pause/Resume Execution button on the Debug window toolbar or in
the Debug Management window ([Alt]+[8]).

4.1.4.4 Resume Recording

You can resume recording using the Pause/Resume Execution button on the Debug window toolbar or in
the Debug Management window ([Alt]+[8]).

4.1.4.5 Stop Capture

To stop recording at any time click on the Stop Recording button on the Record & Analyze window toolbar.

Execution Analysis | Recording Sequence Diagrams 74

© 1998-2010 Sparx Systems Pty Ltd

4.1.5 Generating Sequence Diagrams

Once you have captured activity and are about to generate the diagram, firstly select a package in the Project
Browser where you intend the Sequence diagram to be stored. Then use the toolbar on the Record & Analyze
window to generate the diagram.

4.1.5.1 The Recording History

All information recorded as a result of the application encountering recording markers set by the user is held in
the Record & Analyze window.

The columns in this window are as follows:

· Sequence - The unique sequence number

Note:

The checkbox against each number is used to control whether or not this call should be used to create a
Sequence diagram from this history. In addition to enabling or disabling the call using the checkbox, you
can use context menu options to enable or disable an entire call, all calls to a given method, or all calls to
a given Class.

· Threads - The operating system thread ID

· Delta - The elapsed thread CPU time since the start of the sequence

· Method - There are two Method columns: the first shows the caller for a call or for a current frame if a
return; the second shows the function called or function returning

· Direction - Stack Frame Movement, can be Call, Return, State, Breakpoint or Escape (Escape is used
internally when producing a Sequence diagram, to mark the end of an iteration)

· Depth - The stack depth at the time of a call; used in the generation of Sequence diagrams

· State - The state between sequences

· Source - There are two Source columns: the first shows the source filename and line number of the caller
for a call, or for a current frame if a return; the second shows the source filename and line number of the
function called or function returning.

· Instance - There are two Instance columns; these columns only have values when the Sequence diagram
produced contains State transitions. The values consist of two items separated by a comma - the first item
is a unique number for the instance of the Class that was captured, and the second is the actual instance
of the Class.

Execution Analysis | Recording Sequence Diagrams75

Visual Execution Analyzer in Enterprise Architect

For example: supposing a Class CName has an internal value of 4567 and the program created two
instances of that Class; the values might be:

· 4567,1

· 4567,2

The first entry shows the first instance of the Class and the second entry shows the second instance.

4.1.5.2 Generate a Diagram

To generate a Sequence diagram for all history click on the toolbar Create Sequence Diagram icon ().

To generate a Sequence diagram for a single sequence, select it and then click the toolbar Create Sequence

Diagram icon ().

4.1.5.3 Diagram Features

The Sequence diagram produced includes the following:

References

When the VEA cannot match a function call to an operation within the model, it still creates the sequence, but
it creates a reference for any Class that it cannot locate. It does this for all languages.

Fragments

Fragments displayed in the Sequence diagram represent loops or iterations of a section(s) of code. The VEA
does its best to match function scope with method calls to as accurately as possible represent the execution
visually.

States

If a State Machine has been used during the recording process, any transitions in State are presented after
the method call that caused the transition to occur. States are calculated on the return of every method to its
caller.

4.1.5.4 Saving Recording

To save a sequence to an XML file, click on the sequence and on the toolbar Save button ().

To access an existing sequence file, either:

· Click on the toolbar Open icon (), or

· Right-click on a blank area of the screen and click on the Load Sequence From File context menu option.

The Windows Open dialog displays, from which you select the file to open.

4.1.6 Add State Transitions

This topic describes how to add State Transitions. It covers:

· Setup for Capturing State Changes

· The State Machine

· Recording and Mapping State Changes.

76

77

78

Execution Analysis | Recording Sequence Diagrams 76

© 1998-2010 Sparx Systems Pty Ltd

4.1.6.1 Setup for Capturing State Changes

You can generate Sequence diagrams that show transitions in state as a program executes. The illustration
below shows a project that has, in its State Machine, a number of States that correspond to stations in the
Melbourne underground railway system.

Showing State transitions on your debug-generated Sequence diagrams is optional; you set an option in the
package script associated with the Class for which you intend to record States.

Note:

If you do not have a package script for the Class or package you must create one. Sequence diagrams can
only be generated for a package that has been configured for debug.

Next, you create a State Machine under the Class. On the State Machine you create the State elements that
correspond to any states to be captured for your Class. The debugger evaluates your States by checking
constraints on the States you create. The States on this diagram are then used by the debugger and State
transitions are incorporated into the diagram.

Execution Analysis | Recording Sequence Diagrams77

Visual Execution Analyzer in Enterprise Architect

This figure shows the Class CXTrain with a State Machine called Stations. It has a child diagram also called
Stations, on which the States {Central,Flinders,Lonsdale...} are placed.

4.1.6.2 The State Machine

A State Transition diagram can be used to illustrate how States change during the execution of an application.
The Visual Execution Analyzer can build a State Machine to model all the valid system states and explicitly
describe the transitions between each state. The diagram below is a State Machine that shows the different
States within the Melbourne Underground Loop subway system. A train traveling on the subway network can
be stopped at any of the stations represented on the State Machine below.

Execution Analysis | Recording Sequence Diagrams 78

© 1998-2010 Sparx Systems Pty Ltd

This State Machine diagram is a child of the CXTrain Class.

4.1.6.3 Recording and Mapping State Changes

The State Properties dialog below is for the State Parliament. The Constraints tab is open to show how the
State is linked to the Class CXTrain. A State can be defined by a single constraint or by many; in the example
below the State Parliament has two constraints.

Execution Analysis | Recording Sequence Diagrams79

Visual Execution Analyzer in Enterprise Architect

The CXTrain Class has a member called Location of type int, and a member called Departing.Name of type
CString.

The values of constraints can only be compared for elemental, enum and string types. What this constraint
means is:

· when an instance of the CXTrain Class exists and

· its member variable Location has the value 0 and

· the member variable Departing.Name has the value Parliament then

· this State is evaluated to true.

Operators in Constraints

There are two types of operators you can use on constraints to define a State:

· Logical operators AND and OR can be used to combine constraints

· Equivalence operators {= and !=} can be used to define the conditions of a constraint.

All the constraints for a State are subject to an AND operation unless otherwise specified. You can use the OR
operation on them instead, so you could rewrite the constraints in the above example as:

Location=0 OR

Location=1 AND

Departing.Name!=Central

Below are some examples of using the equivalence operators:

Departing.Name!=Central AND

Location!=1

Execution Analysis | Recording Sequence Diagrams 80

© 1998-2010 Sparx Systems Pty Ltd

Note:

Quotes around strings are optional. The comparison for strings is always case-sensitive in determining the
truth of a constraint.

4.2 Unit Testing

Enterprise Architect supports integration with unit testing tools in order to make it easier to develop good
quality software.

Firstly, Enterprise Architect helps you to create test Classes with the JUnit and NUnit transformations (see the
MDA Transformations User Guide). Then you can set up a test script against any package and run
it. Finally, all tests results are automatically recorded inside Enterprise Architect.

4.2.1 Set Up Unit Testing

In order to use unit testing in Enterprise Architect, you must first set it up. This happens in two parts.

Firstly the appropriate tests must be defined . Enterprise Architect is able to help with this. By using the
JUnit or NUnit transformations and code generation (see Code Engineering Using UML Models) you can
create test method stubs for all of the public methods in each of your Classes.

The following is an NUnit example in C# that is followed through the rest of this topic, although it could also be
any other .Net language or Java and JUnit.

[TestFixture]
public class CalculatorTest
{

[Test]
public void testAdd(){

Assert.AreEqual(1+1,2);
}

[Test]
public void testDivide(){

Assert.AreEqual(2/2,1);
}

[Test]
public void testMultiply(){

Assert.AreEqual(1*1,1);
}

[Test]
public void testSubtract(){

Assert.AreEqual(1-1,1);
}

}

This code can be reverse engineered into Enterprise Architect so that Enterprise Architect can record all test
results against this Class.

Once the unit tests are set up, you can then set up the Build and Test scripts to run the tests. These scripts
must be set up against a package.

The sample above can be called by setting up the Package Build Scripts dialog as follows.

80 53 81

82

53

12

Execution Analysis | Unit Testing81

Visual Execution Analyzer in Enterprise Architect

If Enterprise Architect is to handle unit testing, it is important that you select the Capture Output checkbox
and select the appropriate Output Parser for the testing. Without doing this you won't see the program output
and therefore you cannot open the source at the appropriate location.

4.2.2 Run Unit Tests

You can run the test script you set up previously, by selecting the Project | Execution Analyzer | Test menu
option.

The following output is generated.

Notice how NUnit reports that four tests have run, including one failure. It also reports what method failed and
the file and line number the failure occurred at. If you double-click on that error, Enterprise Architect opens the
editor to that line of code.

Execution Analysis | Unit Testing 82

© 1998-2010 Sparx Systems Pty Ltd

This enables you to quickly find and fix the error.

Enterprise Architect also records the run status of each test as described in Record Test Results .

4.2.3 Record Test Results

Enterprise Architect is able to automatically record all results from tests by a testing script in Enterprise
Architect. In order to use this feature, you just reverse engineer the test Class (see Code Engineering Using
UML Models) into the package containing your test script.

Once your model contains your test Class, on the next run of the test script Enterprise Architect adds test
cases to the Class for each test method found. On this and all subsequent test runs all test cases are updated
with the current run time and if they passed or failed as shown in the following illustration.

The error description for each failed test is added to any existing results for that test case, along with the
current date and time. Over time this provides a log of all test runs where each test case has failed. This can
then be included in generated documentation and could resemble the following.

Failed at 05-Jul-2006 1:02:08 PM
expected: <0>
but was: <1>

Failed at 28-Jun-2006 8:45:36 AM
expected: <0>
but was: <2>

4.3 Profiling Native Applications

The Visual Execution Profiler enables you to quickly report on:

· The most frequently called functions in a running application

· Tasks in an application that are taking more time than expected

· Which functions are taking the most time in an application.

The Profiler, or sampler, is available in the Enterprise Architect Professional, Corporate, Business and
Software Engineering, System Engineering and Ultimate editions.

82

80

81

Execution Analysis | Profiling Native Applications83

Visual Execution Analyzer in Enterprise Architect

Note:

The Profiler only works with MS Native Windows applications, but can be used under WINE (Linux and Mac)
to debug standard Windows applications deployed in a WINE environment.

The Profiler can generate a report that shows how these functions are called in relation to the application, as
illustrated below:

Execution Analysis | Profiling Native Applications 84

© 1998-2010 Sparx Systems Pty Ltd

See Also

· Profiler System Requirements

· Profiler Operation

4.3.1 System Requirements

Prerequisites

The Profiler window becomes available when a model is opened. Options on the Profiler window
toolbar enable you to attach to an existing process or launch a new application if a Package Script been
specified.

Supported Platforms

Enterprise Architect supports profiling on native Windows applications (C, C++ and Visual Basic) compiled
with the MicrosoftÔ native compiler where an associated PDB file is available. Select Microsoft Native from
the list of debugging platforms in your package script.

The Profiler can sample both Debug and Release configurations of an application, providing the PDB for each
executable exists and is up to date.

4.3.2 Getting Started

The Profiler window can be accessed by selecting the View | Execution Analyzer | Profiler menu option, or
by selecting it from the Analysis Windows folder on the Debugger window ([Alt]+[8]). The toolbar options are
explained in the table below.

The Profiler operates by taking samples of a process at intervals of up to 250 milliseconds. At these intervals
the Profiler interrupts the process and collects stack information for all threads running at that time. This
information is sent back to Enterprise Architect where it is collected sorted and and stored.

You can Pause and Resume profiling at any time during the session. You can also clear any sample data
collected and begin again.

If you stop the Profiler and the process is still running, you can quickly attach to it again.

Icon Use to

(When an application is configured for the package) create the Profiler process, which
launches the configured application.

Profile an application that is already running.

When the application is running, pause and resume sample capture. Pausing sampling enables
the Report and Erase buttons.

Stop the Profiler process. If any samples have been collected, the Report button is enabled.

Generate a report on the current number of samples collected.

Set the interval, in milliseconds, at which samples are taken of the target process. The range of
possible values is 1 - 250.

Set Profiler options, using a drop-down menu. The options are:

· Load Report from Disk - load and display a previously-generated report from an xml disk file

· Package Build Scripts ([Shift]+[F12]) - display the Build Script dialog to enable creation or

84

85

85 85

82

82

12

Execution Analysis | Profiling Native Applications85

Visual Execution Analyzer in Enterprise Architect

Icon Use to

editing of package scripts and debug configuration

· Start Sampling Immediately - begin sample collection immediately upon either process start
(main thread entry point executed) or attachment of process by Profiler

· Capture Debug output - capture any appropriate debug output and redirect it to the Enterprise
Architect Output window

· Stop Process on Exit - select to terminate the target process when the Profiler is stopped.

Erase the collected data.

Display the Help topic for this window.

4.3.3 Start & Stop the Profiler

For most debugging operations it is necessary to have first configured a Package Script that typically defines
the application to build, test and debug as well as sequence recording options.

It is possible to use the Profiler without doing any of this by using the Attach to Process button.

If the Application to Profile is the one defined in the current Package, use the Launch button.

(When an application is configured for the package) create the Profiler process, which
launches the configured application.

Profile an application that is already running.

Stop the Profiler process.

4.3.4 Profiler Operation

Enterprise Architect creates a Profiler process whenever you click on the Launch or Attach to Process
button on the Profiler window toolbar. This process operates by collecting samples from the stacks of every
thread in the target process.

The sampler process exits if you click on the Stop button, if the target application terminates, or if you close
the current model.

You can turn sample collection on and off at any time during a session. When sampling is turned on or
resumed, the Profiler process becomes active and samples are collected from the target. Resuming sampling
collects completely new samples.

82

Execution Analysis | Profiling Native Applications 86

© 1998-2010 Sparx Systems Pty Ltd

The Profiler process idles if sampling is turned off or paused during a session. The Report and Erase buttons
then become enabled.

Click on the Report button to produce a call graph summary similar to that in the Visual Execution Profiler
topic. This report can be saved to file.

Click on the Erase button to discard any samples currently collected for the target.

4.3.5 Setting Options

Interval

Set the interval, in milliseconds, at which samples are taken of the target process. The range of
possible values is 1 - 250.

Set Profiler options, using a drop-down menu. The options are:

· Start Sampling Immediately - begin sample collection immediately upon either process start
(main thread entry point executed) or attachment of process by Profiler

· Capture Debug output - capture any appropriate debug output and redirect it to the Enterprise
Architect Output window

· Stop Process on Exit - select to terminate the target process when the Profiler is stopped.

4.3.6 Save and Load Reports

The Profiler Reports can be saved in either binary format or xml format. Save the report using the toolbar
above the report (Stack) view.

To load a report use the Profiler Toolbar Options button and select the Load Report From Disk
option.

82

Execution Analysis | Profiling Native Applications87

Visual Execution Analyzer in Enterprise Architect

4.3.7 Save Report in Team Review

You can save any current report as a resource for a Category, Topic or Post in the Team Review. The report
can then be shared and reviewed at any time as it is saved with the model.

4.4 Object Workbench

This section describes the Object Workbench:

· How it works

· Workbench variables

· Create Workbench Variables

· Invoke Methods.

88

88

89

90

Execution Analysis | Object Workbench 88

© 1998-2010 Sparx Systems Pty Ltd

4.4.1 How it Works

The Workbench is a tool in Enterprise Architect Debugging, enabling you to create your own variables and
invoke methods on them. Stack trace can be recorded and Sequence diagrams produced from the
invocation of such methods. It provides a quick and simple way to debug your code.

Platforms Supported

The Workbench supports the following workbench platforms:

· Microsoft .NET (version 2.0 or later)

· Java (JDK 1.4 or later)

Note:

The Workbench does not currently support the creation of Class instances written in native C++, C or VB.

Mode

The Workbench operates in two modes:

Idle mode

When the Workbench is in idle mode, instances can be created and viewed and their members inspected.

Active mode

When methods are invoked on an instance, the Workbench enters Active mode, and the variables displayed
change if the debugger encounters any breakpoints. If no breakpoints are set, then the variables do not
change. The Workbench immediately returns to Idle mode.

Logging

The results of creating variables and the results of calls on their methods are displayed in the Debug Output
window.

4.4.2 Workbench Variables

You can create (and delete) workbench variables from any Class in your model. When you do so, you are
asked to name the variable. It then displays in the Workbench window. It shows the variable in a hierarchy,
displaying its type and value and those of any members.

89

90

Execution Analysis | Object Workbench89

Visual Execution Analyzer in Enterprise Architect

Workbench Requirements
· NET framework version 2 is required to workbench any .NET model.

· The package from which the variable is created must have a debugger configured (see the Debug Tab
topic).

Constraints (.NET)
· Members defined as struct in managed code are not supported.

· Classes defined as internal are not supported.

Delete Workbench Variables

You can delete variables using the Delete shortcut menu on any instance on the Workbench. If all instances
are deleted the debugger is shut down, and the Workbench window is closed.

4.4.3 Create Workbench Variables

Right-click on the required Class node in the Project Browser and select the Create Workbench Instance
context menu option, or press [Ctrl]+[Shift]+[J]. The menu option is also available from within a Class
diagram.

Naming the Workbench

When you elect to create an instance of a type Enterprise Architect prompts you with the Workbench dialog to
name the variable. Each instance name must be unique for the workbench.

15

Execution Analysis | Object Workbench 90

© 1998-2010 Sparx Systems Pty Ltd

Choosing a Constructor

Having given the variable a name, you must now choose which constructor to use.

If you do not define a constructor, or define a single constructor taking no arguments, the default constructor
or the defined constructor is automatically invoked.

Otherwise the following dialog displays. Select the constructor from the drop-down list and fill in any
parameters required.

4.4.4 Invoke Methods

On the Workbench window, right-click on the instance on which to execute a method, and select the Invoke
context menu option.

Execution Analysis | Object Workbench91

Visual Execution Analyzer in Enterprise Architect

Choose Method

A list of methods for the type are presented in a dialog. Select a method from the list and click on the Invoke
button. Note that all methods listed are public; private methods are not available.

Supply Arguments

In this example, you have created an instance or variable named Rob of type MyClassLibrary.CRobert, and
have invoked a method named AddFriends that takes an array of CPerson objects as its only argument. What
you now supply to it are the three other Workbench instances Fred, John and William.

Execution Analysis | Object Workbench 92

© 1998-2010 Sparx Systems Pty Ltd

Arguments

In the dialog above, type any parameters required by the constructor.

· Literals as arguments

· Text: abc or "abc" or "a b c"

· Numbers: 1 or 1.5

· Objects as arguments

If an argument is not a literal then you can supply it in the list only if you have already created an
instance of that type in the workbench. You do this by typing the name of the instance as the
argument. The debugger checks any name entered in an argument against its list of workbench
instances, and substitutes that instance in the actual call to the method.

· Strings as arguments

Surrounding strings with quotes is unnecessary as anything you type for a string argument becomes
the value of the string; for example, the only time you should surround strings with quotes is in
supplying elements of a string array, or where the string is equal to the name of an existing
workbench instance.

"A b c"

"a b $ % 6 4"

A b c d

As 5 7) 2 === 4

· Arrays as arguments

Enter the elements that compose the array, separated by commas.

Type Arguments

String[] one,two,three,"a book","a bigger book"

CPerson[] Tom,Dick,Harry

Execution Analysis | Object Workbench93

Visual Execution Analyzer in Enterprise Architect

Note:

If you enter text that matches the name of an existing instance, surround it in quotes to avoid the debugger
passing the instance rather than a string.

Invoke

Having chosen the constructor and supplied any arguments, click on the Invoke button to create the variable.
Output confirming this action is displayed in the Output tab .47

Index 94

© 1998-2010 Sparx Systems Pty Ltd

Index
- . -
.NET

ASP, Debug 32

Debug 29

Debug Another Process 40

Debug Assembly 30

Debug CLR Versions 31

Debug With COM Interop Process 32

Debug, System Requirements 16

Set Up Debug Session 30

- A -
Activate Recording Markers 71

Analyzer Windows

From the Debug Window 35

Apache Tomcat

Server Configuration 28

Server, Debugging 25

Service Configuration 29

Applets

Java, In Internet Browsers, Debug 23

ASP .NET

Debug 32

Assembly

Debug 30

Attach To Process Dialog 40

Automatic Recording

Execution Analysis, Recording Sequence
Diagrams 72

- B -
Breakpoint

Delete 37

Difference From Recording Marker 72

Disable 37

Enable 37

Management 37

Set For Modifiable Data 38

Set In Code 38

States 37

Storage 38

Breakpoints And Markers Window 71

Build Script

Create 12

Deploy Script, Create 56

Enable Diagnostic Messages, Sequence
Diagram Recording Tab 64

Enable Filter, Sequence Diagram Recording Tab
 60

Filters 60

Limit Auto Recording, Sequence Diagram
Recording Tab 63

Options, Sequence Diagram Recording Tab 59

Record Arguments To Function Calls, Sequence
Diagram Recording Tab 61

Record Calls To Dynamic Modules, Sequence
Diagram Recording Tab 62

Record Calls To External Modules, Sequence
Diagram Recording Tab 61

Recursive 14

Run Script, Create 55

Test Script, Create 53

Wildcard in Filter 60

Build Scripts

Introduction 12

- C -
C++

Debug Symbols 20

Set Up Debug Session 19

Call Stack

Copy To Recording History 50

Create Sequence Diagram 49

Save 50

View 42

Window 42

Capture State Changes

Setup To, Visual Execution Analyzer 76

CLR Versions

Debug .NET 31

Code

Breakpoint, Set 38

Debug, Step Into Function Calls 41

Debug, Step Out Of Functions 42

Debug, Step Over Lines 41

Debug, Step Through Function Calls 49

Code Breakpoint

Set 38

Code Editor, Common

Debug Tooltips 48

Tooltips, Debug 48

COM Interop

Debug .NET 32

Command

Deploy, Create 56

Index95

Visual Execution Analyzer in Enterprise Architect

Command

Deploy, Introduction 56

Run, Create 55

Run, Introduction 55

Unit Test, Create 53

Unit Test, Introduction 53

Configuration

Apache Tomcat Server 28

JBOSS Server 27

Tomcat Server 28

Tomcat Service 29

Control Recording

Execution Analysis, Recording Sequence
Diagrams 72

Create

Build Script 12

- D -
Data

Breakpoint, Set 38

Data Breakpoint

Set 38

Debug

.NET 16, 29

.NET Assembly 30

.NET CLR Versions 31

.NET With COM Interop Process 32

Another .NET Process 40

ASP .NET 32

Break On Variable Changing Value 46

Create Sequence Diagram, Call Stack 49

Deploy Script, Create New 56

Deploy Script, Introduction 56

File Search, Introduction 51

File Search, Use 51

Inspect Process Memory 45

Java 16, 21

Java Applets In Internet Browsers 23

Java Web Servers 25, 29

Java, Advanced Techniques 22

Java, General Setup 21

On Windows 7 And Windows Vista 17

Platforms 16

Recording Actions 49

Run Script, Create New 55

Run Script, Introduction 55

Save Call Stack 50

Script Search 51

Search Window 51

Show Loaded Modules 47

Show Output 47

Step Into Function Calls 41

Step Out Of Functions 42

Step Over Lines Of Code 41

Step Through Function Calls 49

Tooltips In Code Editor 48

Under Windows Vista 16

Unit Test Script, Create 53

Unit Test Script, Introduction 53

View Call Stack 42

View Local Variables 43

View Local Variables, Long Values 43

View Variables In Other Scopes 44

WINE Applications 18

Debug Session

Debug C++ 19

Java, Attach To VM 22

Microsoft Native Setup 19

Set Up 15

Set Up For .NET 30

Set Up For Microsoft Native 19

Debug Symbols

Debug C++ 20

Microsoft Native 20

Debugger

Actions 15

Debug Another Process 40

Detatch From Process 40

Execution Analysis 57

Frameworks 15

How It Works 15

Introduction 15

On Windows 7 And Windows Vista 17

Overview 15

Process 15

Start 40

Stop 40

System Requirements 16

Debugger Windows

From the Debug Window 35

Debugging Actions 39

Deploy Command

Create 56

Introduction 56

Deploy Script

Create 56

Introduction 56

Dialog

Attach To Process 40

DIB Data Access Violation 18

Disable Recording Markers 71

Index 96

© 1998-2010 Sparx Systems Pty Ltd

- E -
EA

Execution Analyzer, Introduction 4

Enable Diagnostic Messages

Build Script, Sequence Diagram Recording Tab
 64

Enable Filter

Build Script, Sequence Diagram Recording Tab
 60

Execution Analysis

Add State Transitions 75

Automatic Recording, Record Sequence
Diagrams 72

Breakpoints And Markers Window, Record
Sequence Diagrams 71

Control Recording, Record Sequence Diagrams
 72

Diagram Features, Generate Sequence
Diagrams 75

Difference Between Recording Marker And
Breakpoint 72

Generate Sequence Diagram 74, 75

Introduction 57

Manual Recording, Record Sequence Diagrams
 73

Marker Types, Record Sequence Diagrams 66

Object Workbench, Create Variables 89

Object Workbench, Introduction 87

Object Workbench, Invoke Methods 90

Object Workbench, Overview 88

Object Workbench, Variables 88

Pause Recording, Record Sequence Diagrams
73

Place Markers, Recording Sequence Diagrams
 66

Platforms 57

Profiler Operation 85

Profiler Report, Load 86

Profiler Report, Save 86

Profiler Report, Save As Resource In Team
Review 87

Profiler Toolbar 84

Profiler, Attach To Process 85

Profiler, Getting Started 84

Profiler, Launch 85

Profiler, Overview 82

Profiler, Prerequisites 84

Profiler, Set Options 86

Profiler, Set Sample Intervals 86

Profiler, Start 85

Profiler, Stop 85

Profiler, Supported Platforms 84

Profiler, System Requirements 84

Record Activity For Class 64

Record Activity For Method 65

Record Sequence Diagrams, Advanced
Techniques 64

Record Sequence Diagrams, Enable Filter 60

Record Sequence Diagrams, Introduction 57

Record Sequence Diagrams, Overview 57

Record Sequence Diagrams, Prerequisites 59

Record Sequence Diagrams, Recording Options
 59

Record Sequence Diagrams, Set Up 59

Record Unit Test Results 82

Recording History 74

Recording Markers, Activate, Record Sequence
Diagrams 71

Recording Markers, Disable, Record Sequence
Diagrams 71

Resume Recording, Record Sequence Diagrams
 73

Run Unit Test 81

Save Recording History 75

Sequence Diagrams, Enable Diagnostic
Messages 64

Sequence Diagrams, Limit Auto Recording 63

Sequence Diagrams, Record Arguments To
Function Calls 61

Sequence Diagrams, Record Calls To Dynamic
Modules 62

Sequence Diagrams, Record Calls To External
Modules 61

Set Recording Markers, Record Sequence
Diagrams 70

Set Up To Capture State Changes 76

State Machine Diagram 77

State Transition Diagram 77

Stop Recording, Record Sequence Diagrams
73

Team Review, Save Profiler Report As Resource
 87

Unit Test Script, Create 80

Unit Test, Record Results 82

Unit Testing, Introduction 80

With Enterprise Architect 57

Work With Marker Sets, Record Sequence
Diagrams 72

Execution Analyzer

Introduction 4

Execution Profiler

Attach To Process 85

Getting Started 84

Launch 85

Operation 85

Index97

Visual Execution Analyzer in Enterprise Architect

Execution Profiler

Overview 82

Prerequisites 84

Report, Example 82

Report, Load 86

Report, Save 86

Report, Save As Resource In Team Review 87

Set Options 86

Set Sample Intervals 86

Start 85

Stop 85

Supported Platforms 84

System Requirements 84

Team Review, Save Report As Resource 87

Toolbar 84

- F -
File Search

Introduction 51

List View 51

Search Window, Debugging 51

Toolbar 51

Tree View 51

Use 51

Function

Step Out Of 42

Function Call

Step Into 41

Step Through 49

- G -
Generate Sequence Diagram

Execution Analysis 74, 75

Generate Sequence Diagrams

Diagram Features 75

- I -
Internet Browser Applets

Java, Debug 23

Invoke

Method, Object Workbench 90

- J -
Java

Advanced Debug Techniques 22

Applets In Internet Browsers, Debug 23

Debug 21

Debug Session, Attach To VM 22

Debug, System Requirements 16

General Debug Setup 21

Web Servers, Debugging 25

JBOSS

Server Configuration 27

Server, Debugging 25

- L -
Limit Auto Recording to Stack Frame Threshold

Build Script, Sequence Diagram Recording Tab
 63

Loaded Modules

Show In Debugger 47

Local Variables

View 43

View Long Values 43

Locals Window 43

View Long Values 43

- M -
Manual Recording

Execution Analysis, Recording Sequence
Diagrams 73

Map State Changes

Visual Execution Analyzer 78

Marker

Storage 38

Marker Management

Debugger 37

Marker Sets

Work With 72

MDDE

Advanced Debug Techniques, Java 22

Available Tools 7

Basic Setup 8

Breakpoint Management 37

Build Script, Create 12

Build Script, Introduction 12

Code Editors 11

Debug .NET 29

Debug .NET Assembly 30

Debug .NET CLR Versions 31

Debug .NET With COM Interop Process 32

Debug Apache Tomcat Server Configuration
28

Debug Apache Tomcat Windows Service 29

Debug ASP .NET 32

Debug Java 21

Index 98

© 1998-2010 Sparx Systems Pty Ltd

MDDE

Debug Java Applets In Internet Browsers 23

Debug Java Web Servers 25

Debug JBOSS Server Configuration 27

Debug Symbols, C++ And Native Applications
20

Debugger Frameworks 15

Debugger System Requirements 16

Debugger, Overview 15

Default Script, Set 11

External Tools 8

For C++ Applications 19

For Microsoft Native Applications 19

For WINE Applications 18

General Debug Setup, Java 21

General Workflow 8

Generate Code 11

Getting Started 7

Java Debug Session, Attach To VM 22

Limitations 6

Marker Management 37

Model Driven Development Environment 4

Overview 6

Package Build Scripts, Manage 9

Pin/Unpin A Package 11

Prerequisites 7

Recursive Builds 14

Script Actions, Define 10

Set Up Debug Session 15

Set Up Debug Session For .NET 30

Supported Environments 6

Synchronize Code 11

UAC-Enabled Operating Systems 17

Workspace Layout 8

Memory Viewer

Window 45

Method

Invoke, Object Workbench 90

Microsoft Native

Debug Symbols 20

Set Up Debug Sessions 19

Model Driven Development Environment

Advanced Debug Techniques, Java 22

Available Tools 7

Basic Setup 8

Breakpoint Management 37

Build Script, Create 12

Build Script, Introduction 12

Code Editors 11

Debug .NET 29

Debug .NET Assembly 30

Debug .NET CLR Versions 31

Debug .NET With COM Interop Process 32

Debug Apache Tomcat Server Configuration
28

Debug Apache Tomcat Windows Service 29

Debug ASP .NET 32

Debug Java 21

Debug Java Applets In Internet Browsers 23

Debug Java Web Servers 25

Debug JBOSS Server Configuration 27

Debug Symbols, C++ And Native Applications
20

Debugger Frameworks 15

Debugger System Requirements 16

Debugger, Overview 15

Default Script, Set 11

External Tools 8

For C++ Applications 19

For Microsoft Native Applications 19

For WINE Applications 18

General Debug Setup, Java 21

General Workflow 8

Generate Code 11

Getting Started 7

Introduction 4

Java Debug Session, Attach To VM 22

Limitations 6

Marker Management 37

Overview 6

Package Build Scripts, Manage 9

Pin/Unpin A Package 11

Prerequisites 7

Recursive Builds 14

Script Actions, Define 10

Set Up Debug Session 15

Set Up Debug Session For .NET 30

Supported Environments 6

Synchronize Code 11

UAC-Enabled Operating Systems 17

Workspace Layout 8

Modules

Window 47

- O -
Object Workbench

Constraints 88

Introduction, Visual Execution Analyzer 87

Invoke Method 90

Modes 88

Overview, Visual Execution Analyzer 88

Platforms Upported 88

Requirements 88

Index99

Visual Execution Analyzer in Enterprise Architect

Object Workbench

Workbench Variables, Constructors 89

Workbench Variables, Create 89

Workbench Variables, Delete 88

Output

Debugger, View 47

Debugger, Window 47

Overview

Visual Execution Analyzer 2

- P -
Package

Pin/Unpin, Visual Execution Analyzer 11

Package Build Scripts

Manage, Visual Execution Analyzer 9

Pause Recording

Execution Analysis, Recording Sequence
Diagrams 73

Place Recording Markers

Execution Analysis, Recording Sequence
Diagrams 66

Process Memory

Inspect 45

Profiler

Attach To Process 85

Getting Started 84

Launch 85

Operation 85

Overview 82

Prerequisites 84

Report, Example 82

Report, Load 86

Report, Save 86

Report, Save As Resource In Team Review 87

Set Options 86

Set Sample Intervals 86

Start 85

Stop 85

Supported Platforms 84

System Requirements 84

Team Review, Save Report As Resource 87

Toolbar 84

- R -
Record & Analyze Window 74

Record Activity For Class

Execution Analysis, Record Sequence Diagram
 64

Record Activity For Method

Execution Analysis, Record Sequence Diagram
 65

Record Arguments To Function Calls

Build Script, Sequence Diagram Recording Tab
 61

Record Calls To Dynamic Modules

Build Script, Sequence Diagram Recording Tab
 62

Record Calls To External Modules

Build Script, Sequence Diagram Recording Tab
 61

Record Sequence Diagrams

Automatic Recording 72

Control Recording 72

Execution Analysis, Advanced Techniques 64

manual Recording 73

Pause Recording 73

Resume Recording 73

Stop Recording 73

Record State Changes

Visual Execution Analyzer 78

Recording Actions

Create Sequence Diagram, Call Stack 49

Debugger, Overview 49

Debugger, Step Through Function Calls 49

Save Call Stack 50

Recording History

Save, Execution Analysis 75

Recording Markers

Activate, Execution Analysis 71

Breakpoints And Markers Window, Execution
Analysis 71

Difference From Breakpoint 72

Disable, Execution Analysis 71

Marker Types, Execution Analysis 66

Place, Execution Analysis 66

Set, Execution Analysis 70

Work With Marker Sets, Execution Analysis 72

Recursive Builds

Visual Execution Analyzer 14

Resume Recording

Execution Analysis, Recording Sequence
Diagrams 73

Run Command

Create 55

Introduction 55

Run Script

Create 55

Introduction 55

Index 100

© 1998-2010 Sparx Systems Pty Ltd

- S -
Script

Default, Set In Visual Execution Analyzer 11

Deploy, Create 56

Deploy, Introduction 56

Run, Introduction 55

Search 51

Unit Test, Create 53

Unit Test, Introduction 53

Script Actions

Define, Visual Execution Analyzer 10

Scripts

Build 12

Search

Debugger File Search 51

File, Introduction 51

Scripts 51

Sequence Diagram

Diagram Features, Generate Sequence
Diagrams 75

Generate From Debugger Call Stack 49

Generate From Recording, Execution Analysis
74

Generate In Execution Analysis 57

Generate, Execution Analysis 75

Recording History, Execution Analysis 74

Save Recording History, Execution Analysis 75

Sequence Diagram Recording Tab

Build Script, Options 59

Sequence Recording Option 59

Advanced Techniques 64

Enable Diagnostic Messages 64

Enable Filter 60

Limit Auto Recording 63

Record Activity For Class 64

Record Activity For Method 65

Record Arguments To Function Calls 61

Record Calls To Dynamic Modules 62

Record Calls To External Modules 61

Server

Apache Tomcat, Debugging 25

JBOSS, Debugging 25

Tomcat, Debugging 25

Server Configuration

JBOSS 27

Tomcat 28

Service Configuration

Tomcat 29

Set Up

Debug Session 15

For .NET 30

State Changes

Capture, Execution Analysis 76

Map, Visual Execution Analyzer 78

Record, Visual Execution Analyzer 78

Set Up To Capture, Execution Analysis 76

State Machine Diagram

Execution Analysis 77

In Visual Execution Analyzer 77

State Transitions

Add, Visual Execution Analyzer 75

Step Into

Function Calls 41

Step Out Of

Functions 42

Step Over

Lines Of Code 41

Step Through

Function Calls 49

Stop Recording

Execution Analysis, Recording Sequence
Diagrams 73

- T -
Team Review

Save Profiler Report As Resource 87

Test

Unit, In Execution Analysis 80

Unit, Record Results In Execution Analysis 82

Unit, Run In Execution Analysis 81

Unit, Set Up In Execution Analysis 80

Test Script

Introduction 53

JUnit 80

NUnit 80

The Debug Window 35

Tomcat

Server, Configuration 28

Server, Debugging 25

Service Configuration 29

Toolbar

(File) Search, Debugging 51

- U -
UAC

And Debugging 17

Unit Test Command

Introduction 53

Unit Test Script

Index101

Visual Execution Analyzer in Enterprise Architect

Unit Test Script

Create 53

Unit Testing

Create Test Scripts, Execution Analysis 80

Define Tests, Execution Analysis 80

Introduction, Execution Analysis 80

JUnit 80

NUnit 80

Record Test Results, Execution Analysis 82

Run, Execution Analysis 81

Set Up, Execution Analysis 80

- V -
Variable

Debug, Break On Change In Value 46

Visual Execution Analyzer

Access 3

Add State Transitions 75

Advanced Debug Techniques, Java 22

Automatic Recording, Record Sequence
Diagrams 72

Availability 2

Break On Variable Changing Value 46

Breakpoint Management 37

Breakpoint Storage 38

Breakpoints And Markers Window, Record
Sequence Diagrams 71

Build Script, Create 12

Control Recording, Record Sequence Diagrams
 72

Create Sequence Diagram, Call Stack 49

Debug .NET 29

Debug .NET Assembly 30

Debug .NET CLR Versions 31

Debug .NET With COM Interop Process 32

Debug Another Process 40

Debug Apache Tomcat Server Configuration
28

Debug Apache Tomcat Windows Service 29

Debug ASP .NET 32

Debug Java 21

Debug Java Applets In Internet Browsers 23

Debug Java Web Servers 25

Debug JBOSS Server Configuration 27

Debug Symbols, C++ And Native Applications
20

Debugger Frameworks 15

Debugger System Requirements 16

Debugger Windows, Display 39

Debugger, Overview 15

Debugging Actions 39

Deploy Script, Create New 56

Deploy Script, Introduction 56

Diagram Features, Generate Sequence
Diagrams 75

Difference Between Recording Marker And
Breakpoint 72

Execution Analysis, Introduction 57

File Search, Introduction 51

File Search, Use 51

For C++ Applications 19

For Microsoft Native Applications 19

For WINE Applications 18

General Debug Setup, Java 21

Generate Sequence Diagram 74, 75

Inspect Process Memory 45

Java Debug Session, Attach To VM 22

Manual Recording, Record Sequence Diagrams
 73

Map State Changes 78

Marker Management 37

Marker Storage 38

Marker Types, Record Sequence Diagrams 66

MDDE Basic Setup 8

MDDE External Tools 8

MDDE, Build Scripts 12

MDDE, Code Editors 11

MDDE, Default Script, Set 11

MDDE, Generate Code 11

MDDE, Package Build Scripts, Manage 9

MDDE, Script Actions, Define 10

MDDE, Synchronize Code 11

Object Workbench, Create Variables 89

Object Workbench, Introduction 87

Object Workbench, Invoke Methods 90

Object Workbench, Overview 88

Object Workbench, Variables 88

Outputs 2

Overview 2

Pause Recording, Record Sequence Diagrams
73

Pin/Unpin A Package 11

Place Markers, Recording Sequence Diagrams
 66

Profiler Overview 82

Record Activity For Class 64

Record Activity For Method 65

Record Sequence Diagrams, Advanced
Techniques 64

Record Sequence Diagrams, Enable Filter 60

Record Sequence Diagrams, Introduction 57

Record Sequence Diagrams, Overview 57

Record Sequence Diagrams, Prerequisites 59

Index 102

© 1998-2010 Sparx Systems Pty Ltd

Visual Execution Analyzer

Record Sequence Diagrams, Recording Options
 59

Record Sequence Diagrams, Set Up 59

Record State Changes 78

Record Unit Test Results 82

Recording Actions 49

Recording History 74

Recording Markers, Activate, Record Sequence
Diagrams 71

Recording Markers, Disable, Record Sequence
Diagrams 71

Recursive Builds 14

Resume Recording, Record Sequence Diagrams
 73

Run Script, Create New 55

Run Script, Introduction 55

Run Unit Test 81

Save Call Stack 50

Save Recording History 75

Script Search 51

Search Window 51

Sequence Diagrams, Enable Diagnostic
Messages 64

Sequence Diagrams, Limit Auto Recording 63

Sequence Diagrams, Record Arguments To
Function Calls 61

Sequence Diagrams, Record Calls To Dynamic
Modules 62

Sequence Diagrams, Record Calls To External
Modules 61

Set Code Breakpoint 38

Set Data Breakpoint 38

Set Recording Markers, Record Sequence
Diagrams 70

Set Up Debug Session 15

Set Up Debug Session For .NET 30

Set Up To Capture State Changes 76

Show Loaded Modules 47

Show Output 47

Start Debugger 40

State Machine Diagram 77

State Transition Diagram 77

Step Into Function Calls 41

Step Out Of Functions 42

Step Over Lines Of Code 41

Step Though Function Calls 49

Stop Debugger 40

Stop Recording, Record Sequence Diagrams
73

Structure 4

Tooltips In Code Editor 48

UAC-Enabled Operating Systems 17

Unit Test Script, Create 53, 80

Unit Test Script, Introduction 53

Unit Test, Record Results 82

Unit Testing, Introduction 80

Uses Of 3

View Call Stack 42

View Local Variables 43

View Local Variables, Long Values 43

View Variables In Other Scopes 44

Work With Marker Sets, Record Sequence
Diagrams 72

Workspace Layouts 8

Visual Execution Profiler

Attach To Process 85

Getting Started 84

Launch 85

Operation 85

Overview 82

Prerequisites 84

Report, Example 82

Report, Load 86

Report, Save 86

Report, Save As Resource In Team Review 87

Set Options 86

Set Sample Intervals 86

Start 85

Stop 85

Supported Platforms 84

System Requirements 84

Team Review, Save Report As Resource 87

Toolbar 84

Visual Execution Sampler

Attach To Process 85

Getting Started 84

Launch 85

Operation 85

Overview 82

Prerequisites 84

Report, Example 82

Report, Load 86

Report, Save 86

Report, Save As Resource In Team Review 87

Set Options 86

Set Sample Intervals 86

Start 85

Stop 85

Supported Platforms 84

System Requirements 84

Team Review, Save Report As Resource 87

Toolbar 84

VM

Attach To In Java Debug Session 22

Index103

Visual Execution Analyzer in Enterprise Architect

- W -
Watched Items

Debugger 44

Watches Window 44

Break On Variable Changing Value 46

Web Server

Java, Debug 25

Window

Breakpoints And Markers 71

Call Stack 42, 48

Debug 35

Locals 43

Locals, View Long Values 43

Memory Viewer 45

Modules 47

Output, Debugger 47

Record & Analyze 74

Search, Debugging 51

Watches 44

Watches, Break On Variable Changing Value
46

Workbench 88

Windows

Service, Apache Tomcat 29

Windows 7

Use Debugger 17

Windows Vista

Use Debugger 17

WINE

Debugging 18

DIB Data Access Violation 18

Workbench Variables

Constraints 88

Constructors 89

Create 89

Delete 88

Requirements 88

Workbench Window 88

Workspace Layout

For Execution Analysis 8

Visual Execution Analyzer in
Enterprise Architect

www.sparxsystems.com

	Visual Execution Analyzer
	Access and Use the Visual Execution Analyser
	Structure of the Visual Execution Analyzer
	Model Driven Development Environment
	Getting Started With The MDDE
	Prerequisites
	Available Tools
	Workspace Layout
	General Workflow

	Basic Setup
	Managing Scripts
	Defining Script Actions
	Setting the Default Script

	Code Generation and Synchronization - Safeguards
	Code Editing For MDDE
	Build
	Add Commands
	Recursive Builds

	Debugging
	How it Works
	Setup for Debugging
	Operating System Specific Requirements
	UAC-Enabled Operating Systems
	WINE Debugging

	Microsoft C++ and Native (C, VB)
	Debug Symbols

	Java
	General Setup for Java
	Advanced Techniques
	Attach to Virtual Machine
	Internet Browser Java Applets

	Working with Java Web Servers
	JBOSS Server
	Apache Tomcat Server
	Apache Tomcat Windows Service

	.NET
	General Setup for .NET
	Debug Assemblies
	Debug - CLR Versions
	Debug COM Interop
	Debug ASP .NET

	The Debug Window
	Breakpoint and Marker Management
	How Markers are Stored
	Setting Code Breakpoints
	Setting Data Breakpoints

	Debugging Actions
	Displaying Windows
	Start & Stop Debugger
	Debug Another Process
	Step Over Lines of Code
	Step Into Function Calls
	Step Out of Functions
	View the Call Stack
	View the Local Variables
	View Content Of Long Strings
	View Variables in Other Scopes
	Inspect Process Memory
	Break When a Variable Changes Value
	Show Loaded Modules
	Show Output from Debugger
	Debug Tooltips in Code Editors

	Recording Actions
	Step Through Function Calls
	Create Sequence Diagram of Call Stack
	Saving the Call Stack

	Searching in Files
	Search in Files

	Testing Command
	Add Testing Command

	Run Command
	Add Run Command

	Deploy Command
	Add Deploy Command

	Execution Analysis
	Recording Sequence Diagrams
	How it Works
	Setup for Recording
	Pre-Requisites
	Configure Recording Detail
	Enable Filter
	Record Arguments To Function Calls
	Record Calls To External Modules
	Record Calls to Dynamic Modules
	Limit Auto Recording
	Enable Diagnostic Messages

	Advanced Techniques
	Recording Activity for a Class
	Recording Activity for a Single Method

	Place Recording Markers
	Marker Types
	Setting Recording Markers
	The Breakpoints and Markers Window
	Activate and Disable Markers
	Working with Marker Sets
	Differences to Breakpoints

	Control the Recording Session
	Auto-Recording
	Manual Recording
	Pause Recording
	Resume Recording
	Stop Capture

	Generating Sequence Diagrams
	The Recording History
	Generate a Diagram
	Diagram Features
	Saving Recording

	Add State Transitions
	Setup for Capturing State Changes
	The State Machine
	Recording and Mapping State Changes

	Unit Testing
	Set Up Unit Testing
	Run Unit Tests
	Record Test Results

	Profiling Native Applications
	System Requirements
	Getting Started
	Start & Stop the Profiler
	Profiler Operation
	Setting Options
	Save and Load Reports
	Save Report in Team Review

	Object Workbench
	How it Works
	Workbench Variables
	Create Workbench Variables
	Invoke Methods

