@ ENTERPRISE

Visual Execution Analyzer in
Enterprise Architect

Enterprise Architect is an intuitive, flexible and powerful UML
analysis and design tool for building robust and maintainable
software.

This booklet explains the Visual Execution Analyzer (Debugger)
feature of Enterprise Architect.

SIPARX

Copyright © 1998-2010 Sparx Systems Pty Ltd

Visual Execution Analyzer in Enterprise Architect

© 1998-2010 Sparx Systems Pty Ltd

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this document
or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be
liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or
indirectly by this document.

Printed: May 2010

Special thanks to:
Publisher

All the people who have contributed suggestions, examples, bug
reports and assistance in the development of Enterprise Architect.
The task of developing and maintaining this tool has been greatly
enhanced by their contribution.

Sparx Systems

Managing Editor
Geoffrey Sparks

Technical Editors

Geoffrey Sparks
Steve Meagher

Contents |

Table of Contents

Foreword
Visual Execution Analyzer 2
Access and Use the Visual EXeCUtion ANAIYSErcooiiiiiiiiiiiie e 3
Structure of the Visual EXeCUution ANAIYZENoooceiiiiiiiie e e e 4
Model Driven Development ENVIFONMENTcc.uviiiiiiiee e e e eeeneeee s 6
Getting Started With The MDDEooo ittt e et e e e e e bee e e e aneeeeesnnneas 7
PIEIEQUISITES..........ovtctciiiit ettt bbbttt bbbtttk ettt 7
AVAIIADIE TOOIS..........uiiiiiiititciit ettt bbbttt b ettt b bttt 7
WOTKSPACE LAYOUL..........eiiiieciiiiiieteiet bbbttt b btttk ettt 8
GENEIAl WOTKFIOW. ...ttt 8
o= TS [T =] (| o T PSPV PP TPPPR PPN 8
MBINAGING SCIIPLS.eeieeiiieie ettt sttt e et e et s et e e st e e seteesaeseateessaessabessaesessseesaeseabessasessbesssssesseassaeseabenssnns 9
DefiNiNG SCHIPL ACHONS...........c.oiiiiiiitiiii ettt bttt et 10
Setting the DEfAUIt SCHIPL.............cooiiiiiieiiii bttt 11
Code Generation and Synchronization - SAfeguards ..o 11
Code EditiNg FOF IMDDEooiiiiii ittt e ettt e e e e ate e e e et b e e e e bbb e e e sssbe e e ansbee e e sbeeeeannneeesnnres 11
121U o TSP PP T PSP PP PSP UPRPRUPRPRPURION 12
A COMMEANGS..........cuiuiiiititeiiie ettt bbb bttt b bt b e bbbttt b bttt bbbt 12
RECUISIVE BUIIAS...........oiiiitciiii ettt 14
(D721 10 o o1 To RN TSRO UU PP RUPPPROt 15
HOW TEWOIKS ... bbb bbbt b ettt et 15
StUP fOr DEDUGGING.........c.cuiiiiiiciiiiiei ettt bbbttt 15
Operating System Specific REQUIFEMENES.vcuruiiiiciii i 16
UAC-Enabled OperatiNng SYSIEMS.uii it aiiiieeiiiee ettt et e et e e e sibe e e snbeeeaebeeaeasnseeas 17
WINE DEDUQGGING. + ettt ettt ettt ettt et e e e e st et e e bb e e e e eatb e e e eabbe e e e annneeesnnbeaeans 18
Microsoft C++ and Native (C, VB)... 19
DEBUG SYMDOIS......eiii e e et e e eab e e e be e e e anneeas 20
-1V Z- L TP T OPP PR 21
General SELUP fOr JAVAL.....ccciiuiiiiiiiie ettt e e st e e e eabe e e e saare e e snbeeeeannes 21
Advanced Techniques.... . 22
Attach to Virtual MacChine.............oooiiiii et e e seree e 22
Internet BrowSer JAVA APPIELS.......co ittt ettt e e e e e anbe e 23
Working With Java WED SEIVEIScoo it 25
JBOSS SBIVET ...ttt ettt ettt et e et e e e e et e e e e e e n et e e e e e e e ee e e e e e 27
APACNE TOMCAL SEIVEN.......eiiiiiiiiie ittt ettt e ettt e et e e s aabe e e e e be e e e e sbbe e e s aatb e e e abbeeeeannneaesnnreaeans 28
Apache Tomcat WINAOWS SEIVICE.coiuuuiiiiiiiieaiiiieaaieie et e st essiee e e str e e s sbae e e s ssnneassnreeeaas 29
.NET 29
General SEUP fOr LNETottt ettt e et e e e st b e e e s asbe e e e ssnbe e e snreeeaannes 30
DEbUG ASSEIMDIIES ... ittt e e bt e et e e e et e e e e aneeeas 30
DEDUQG = CLR VEISIONS. ...ceiiiieiieiiti ettt ettt ettt s ettt e e st e e e e abe e e e e bt e e e s enbe e e e ebaeeeeannneas 31
Debug COM Interop. . 32
DEDUG ASP INET ..ttt r ettt b ek nb et es ettt e r e ne e 32
The DEDUG WINTOW..........oiuiiiiiiiiiiiieic ettt b ettt b bttt n et 35
Breakpoint and Marker ManagemeNnt.ccvireuieirniiieiieies ettt 37
R [A N X =) (0 (=1 PO TR PUPPOPPPPPIOY 38
Setting Code BreakpoinNtS .. ouaiiiieiiiiiiiecie e 38
Setting Data BreakpPOointS. ..o it 38
DEDUGGING ACHONS ...ttt b ettt b bttt b ettt et 39
DiSPIAYING WINAOWS. +eevvetieiieitiitt et bbb et e st n e re s 39
Start & StOP DEDUGQET. .-+t euvetieiiitie ittt 40
DEDUQY ANOTNET PIOCESS. « v vetteutiitietietie ittt e b et n e re s 40
Step OVEr LINES Of COUE. .. iivieiiitiiiiii e 41

© 1998-2010 Sparx Systems Pty Ltd

Il Contents

Step INt0 FUNCHON CallS. . viviiiiiiiiiicie s 41

StEP OUL OF FUNCHONS .+ ovevitiiiiii s 42

VIEW the Call STACK- ++ - veririiiiii it 42

View the LOCal Variables.cviiiiiiiiiiii i 43

View Content Of LONG SHNGS. . veiveirrriieitiiiciie it 43

View Variables in Other SCOPES .. v veiaiiiiiii it 44

1 o 1= o B o 0T TR 1Y T3 To 45

Break When a Variable Changes Valueocviiiiiiiiiiiiiiiciiccce e 46

L] LTV ez Vo [=Yo 1Y o o (11 = PO a7

Show OULPUL from DEBUGGET -+ euveureiieiieiiitiie i 47

Debug Tooltips in COE EItOrS . .o iveieieieiiiiiiiiiieii s 48
RECOMING ACHONScuiieiiictiiee ettt ettt ettt e et b et e e et e ss et e s e ebesa et ese et ese et enssseseebesesseneabeneas 49
Step Through FUNCHON CallS .. .cviiiiiiiiiiiiiiiiie e 49

Create Sequence Diagram Of Call StaCK. .. v veierriiriiiiiii i 49

SAVING the Call STACK:+. vt eveeitieiiiie it 50
Searching in Files 51
Search in Files 51
Testing Command 53
Add TeStNG COMMEN..........ooieuiiiuirieeieeeeeeeeseeeeseesess e ees e sess et s et e ssseseeees e ea s ee e sseeenseseens 53

RUN COMIMENG ...ttt h e bttt e bt e s bt e b bt e ehe e e bt e ettt e bt e sab e e bn e e naneebeeennees 55
Add RUN COMMANG.........coiuiiiiiieiiictesete ettt s et e b ae st e s e b e et e s ebe e et e s ebensabe e esensns 55
Deploy Command 56
Add Deploy COMMANG..............cooeiieieeeeeeee et cte e ste st e ete et et et e et et se e e e beateeseatestestessesreerestesesseeseeses 56
EXECULION ANAIYSIS ..ottt e e e e e s e e e e e e e e e e s st e e e e e e e e e s e nnnnrnneees 57
Recording SEQUENCE DIAGTAIMNScoouiiiitiiiiieiiie ettt ettt sh ettt rae et e et e eb e e sate e sbn e e saneeabeeennees 57
HOW IEWOIKS ..ottt ettt ettt e ettt se e b e et ess et e s e et ens st ese et esesseneabeneas 57

ST (U] oI (o gl {=ToTo] (o |1 T IR 59

o LT 1= O 59
Configure ReCOrding DELail....c.veiueiuiiiiiiiiieiie 59

Enable Filter.......ccccoviiiiiniiie ... 60

Record Arguments TO FUNCHON CallS..........uueeiuiieiiiiee e et e e enae e e 61

Record Calls To EXternal MOAUIES............couiiiiiiiiiciceie et 61

Record Calls to Dynamic Modules e 62

[Ty a1 AW (o = J=Toto] o {1 o SO SR 63

ENable DIiagnOStiC MESSAGES ... uvuieeiieiieeitiiieeiiieeesitreeeesaeeesssteesssnteeeeataeeeansseeesssteeeeensneneesssees 64

Yo 177 T3 o =T I =T g0 1T 64
ReCOrding ACHIVILY fOr @ ClaSS.......uuiiiiiiiieeiiiie e iiee e see e se e e e e e e e et e e s snte e e e enteaeeennneeas 64

Recording Activity for a Single MethOd...........ccocuiiiiiiiiei e 65

Place RECOIAING MATKETS.............co..iuieiaeirieeeeeess ettt ettt 66

Y = 0T Y] TN 66

Setting RECOIAING MATKEIS . vveviitiiiiiiii ittt 70

The Breakpoints and Markers WindOW: .-« ...caeariiiiiiii s 71

ACHVALE AN DiISADIE MaAIKEIS o e e eeeiieiiiiiiiiiietitiettie e s e s e e e e e e e e e eeeteeteeetaaeetaasbbsbbasa i aaasaeaaeaaaaaaaaes 71
WOTKING With MArKEr SEIS....eeiviiiiitiiiiiie it 72
Differences t0 Bre@KPOiNTS: « e ueruerieieiaiieiieii e 72

Control the RECOITING SESSION..............c.coveiiriireerieeetectieteet ettt e ee e e e e e e e e e eresresresressessesresaesaesaessenees 72
N0 =Yoo o [T o RPNt 72

Y oV TUE= =Yoo o 1o PO PPN 73

oYU TSN = =Yoo o 1o PPN 73

TSN [=3 L= ol o] o [T PP PN 73

S o) N 7 {1 73
Generating SeqUENCE DIAGIAMS..............c.cceieiiirieierieeeeteeeeete et eeee e eee e ere e e e e ereeresresreeressessessesaesaessessesees 74

The RECOIING HISIOIY e euveoteeiiiiieiti ettt 74
(TR TT = (SR W BT Vo= o PP 75

Do =Ty =T LU= PPN 75

TV aTo T ol o 1T T PP P 75

Add SEALE TIANSILIONS............cuiiiiiieieiee ettt ettt e st e st et et e s ese et eeesete e e teaenesenenena 75
Setup for Capturing State CRANGES -« -« ererrairiatieitee e 76

THE SEALE IMACKHINE: ¢+t ttttttttttttttiiiie s e et e e et e et e e e e e e e et ettt e et e e e et b et b e b s s e e s e e e e e e e aeeaaaeeeeeeeeeeseessbesbansbnnnnnns 77

Visual Execution Analyzer in Enterprise Architect

Contents 11

Recording and Mapping State ChangesS. i e 78

L8]) =T o T U S PO SO P U P TR OPPRO 80
SEEUP UNIETESHNGcoiiiiiiiceieeeee ettt ettt et esa et e eseeseeteereerestseresressessestesaeseestessenen 80

RUN UNIE TESES ...ttt ettt ettt et et e b e et e st ebes e ebe e e b essebese et enssseseebesesseneabeneas 81
RECOI TEST RESUILS.........oiiiiiiiiceeeeeete ettt sttt et e et e s e e eseeseeseabesresbesbestestestensesentens 82
Profiling Native APPIICALIONSoc.uiiiiiiii ettt et 82
S (eI R UeTe VT g=T o T o 84
GEIHNG STAMEA.........ccuiiiiiiiitii ettt ettt e s e b ae st et et ese st e s et esessese b esessesessesesbesessetessenesnenin 84

S eo] (o o (T o o] 1= O 85
(11T @7 o =T =1 i o] o R 85

TS 11TqTo @ o] {4 TSRS 86
SaVE ANA LOAU REPOIS. ...ttt et e s et et en e s e enenns 86
Save RePOItin TEAM REVIEW.............c..ccovieirrireeeeetecteetieteete et eeeeseaeaeseesseseeteeseesestesssssessessessessesaessessessen 87

(@] 0] =To3 ahVAY o1 4 { o =1 g Tox o [0SR UPSRY 87
HOW EWOTKS ...ttt ettt ettt et s s nen e 88
WOTKDENCH VANIADIES.............ciiiiciici ettt ettt 88
Create WOrkhDench VariabIES...............c.ccooviiiiiiccccceccececec ettt re e ae st ste st sae st s 89
INVOKE MEBLNOUS..........cuiiiiiicicitc ettt ettt sttt b bbb et b e et et et e et et ebe s ebe s enensne 90
Index 94

© 1998-2010 Sparx Systems Pty Ltd

1 Foreword

Foreword

This user guide provides an introduction to the
Visual Execution Analyzer feature of Enterprise
Architect.

Visual Execution Analyzer in Enterprise Architect

Visual Execution Analyzer

The Visual Execution Analyzer provides facilities to model, develop, debug, profile and manage an application
from within the modeling environment.

The Visual Execution Analyzer can generate a number of outputs, including:

e Sequence Diagrams, recording live execution of an application, or specific call stacks
e State Transition Diagrams, a Sequence diagram with states, illustrating changes in data structures
o Profiler reports, showing application sequences and operation call frequency.

These outputs provide a better understanding of how your system works, enabling you to document system

features and providing information on the sequence of events that lead to an erroneous event or an
unexpected system behavior.

Note:

The Visual Execution Analyzer is available in the Enterprise Architect Professional, Corporate, Business and
Software Engineering, System Engineering, and Ultimate editions.

© 1998-2010 Sparx Systems Pty Ltd

Access and Use the Visual Execution Analyser |

1 Access and Use the Visual Execution Analyser

With the Visual Execution Analyzer, you can create and store custom scripts that specify how to build, test,
run and deploy code associated with a package. You can investigate and manipulate the output of the debug
process. The Analyzer also includes an Execution Profiler, which enables you to determine how the functions
in an application are called and executed.

You access the Visual Execution Analyzer using the Project | Execution Analyzer menu option, or the
context menu of the required package in the Project Browser. These menus provide a number of options to
facilitate debugging, such as setting recording options or breakpoints.

The Visual Execution Analyzer can be used to:

Optimize existing system resources and understand resource allocation

Ensure that the system is following the rules as designed

Produce high quality documentation that more accurately reflects system behavior
Understand how and why systems work

Train new employees in the structure and function of a system

Provide a comprehensive understanding of how existing code works

Identify costly or unnecessary function calls

lllustrate interactions, data structures and important relationships within a system
Trace problems to a specific line of code, system interaction or event

Visualize why a sequence of events is important

Establish the sequence of events that occur immediately prior to system failure.

Visual Execution Analyzer in Enterprise Architect

Structure of the Visual Execution Analyzer | 4

2 Structure of the Visual Execution Analyzer

The Visual Execution Analyzer comprises a Model Driven Development Environment and an Execution

Analyzer.

The Model Driven Development Environment| 6 (MDDE) provides tools to design, build and debug an

application:

e UML technologies and tools to model software (see Extending UML Using Enterprise Architect and UML
Modeling With Enterprise Architect - UML Modeling Tool)

e Code generation tools to generate/reverse engineer source code (see Code Engineering Using UML

Models)

e Tools to import source code and binaries (see Code Engineering Using UML Models)
e Code editors that support different programming languages| 11"

¢ Intellisense to aid coding (see Using Enterprise Architect - UML Modeling Tool)
e Package scripts that enable a user to describe how to build, debug, test and deploy the application| ™.

BCGPCalendarDema\View cpp
miEE 2-a0 2E8 axam
i |CreateDemo(BOOL) -

% Dump({CDumpContext)

4 GetDocument()

@ OnallAppointmentsRemoved()

% OnAppointmentAdded(CBCGPAppoint
@ OnAppointmentUpdated{CBCGPAppoi
i OnBeginPrinting(CDC, CPrintInfo)

i OnCompressWeekend()

% OnContextMenu{CwWnd, CPoint)

& OnCreate(LPCREATESTRUCT) E
@ OnDateChanged()

& OnDbICICHI(UINT, CPaint)

4 OnDraw(CDC)

i OnDrawTimeAsIcons()

4 OnDrawTimeFinish()

@ OnEditPaste()

i OnEndPrinting{CDC, CPrintInfo)

@ OnFilePrintPreview()

i OnGotoDay()

4 OnGotoThisday()

CBCGPCalendarDemoView =N

CLR_DEFAULT,
RGE(0, 0, 255)

CreateDemo(BOOL)

2:00 PM:

DApp = ne|w CBCGPAppointmentDemo
{

a 2 of 2 ® CBCGPAppointmentDemonCBCGPAppointmentDemo(COleDateTime8: dtStart,
COleDateTimed dtFinish, CString 8 strText, COLORREF clrBackground, COLORREF
clrForeground, COLORREF clrDuration)

] RGE (165, 222, 99),

CLR_DEFAULT,

RGE (128, 0, 128)

The Execution Analyzer[57 (EA) provides tools to visualize an existing application's behaviour:

Record sequence diagrams of application activities!57)
Capture State Transitions for a particular State Machine[75)
Capture Stacktraces at points in execution[37

Profiling tool to sample application activity[82

Obiject Workbench|[87

Unit Testing[8

© 1998-2010 Sparx Systems Pty Ltd

Structure of the Visual Execution Analyzer |

Visual Execution Analyzer in Enterprise Architect

Model Driven Development Environment | 6

3 Model Driven Development Environment

>

The Model Driven Development Environment (MDDE) provides tools to design, build and debug an
application.

The MDDE integrates code and model by providing options to either generate source code from the model or
reverse engineer existing source code into a model. Source code and model can be synchronized in either
direction.

ui Calendar /

The MDDE provides development environments for popular languages including:

o C++

e C

e Java

e Microsoft .NET family

e ADA

e Python

e Perl

Toolboxes provide for different modeling technologies.

© 1998-2010 Sparx Systems Pty Ltd

Model Driven Development Environment |

Note:

Although you can generate and reverse engineer code in a range of languages, Execution Analysis
debugging and recording are supported for the following platforms / languages only:

e Microsoft Windows Native C

o Microsoft Windows Native C++

e Microsoft Windows Visual Basic

o Microsoft .NET Family (C#, J#, VB)

e Sun Microsystems Java.

To use the MDDE, work through the following sections:

Getting Started| 7

Basic Setup! 8"

Code Engineering (see Code Engineering Using UML Models)

Using Code Editors (see Using Enterprise Architect - UML Modeling Tool)
Build Application| 12"

Debug| 3

Test/sH

Run/ss)

Deploy| 567

3.1 Getting Started With The MDDE

To quickly start development in the Model Driven Development Environment, check through the following
topics:

Prerequisites/ 7™
Available Tools! 78

Workspace Layouts| 8%
General Workflow/ 8%

3.1.1 Prerequisites

Before using the Model Driven Development Environment:

You should be using the correct edition: Enterprise Architect Professional, Corporate or Suite Editions.
You should be connected to the required model.

Relevant source code should be imported into the model.

Basic Setup! 8" should be complete.

3.1.2 Available Tools

This section describes the tools available in the Model Driven Development Environment:

Workspace Layouts| 8"

Code Engineering (see Code Engineering Using UML Models)

Using Code Editors (see Using Enterprise Architect - UML Modeling Tool)
Intellisense (see Using Enterprise Architect - UML Modeling Tool)
Application Management! 8"

Debugger Management/ 15

Visual Execution Analyzer in Enterprise Architect

Model Driven Development Environment | Getting Started With The MDDE 8

3.1.3 Workspace Layout

You can choose from many predefined workspace layouts (see Using Enterprise Architect - UML Modeling
Tool) depending on the tasks you perform. When you are familiar with the environment and controls available
to you, you can create your own.

Workspace Toolbar

0 ff Execution Analysis - D... = 0~ =~ =

Predefined Workspace Layouts

*Debugger
*Maintenance
*Regrassion

Basic Layout

Basic Layout [Alternate]
Code - Development
Code - Model and Design
Data Madelling

Diagram - Advanced
Diagram - Basic

Diagram - Minimal

Execution Analysis - Profile
Execution Analysis - Visualize
Getting Started
Maintenance and Support
Project Management
Requirements Engineering
Requirements Engineering (Matrix)
Scripting

Testing

Use Case Development

3.1.4 General Workflow

In working with the Model Driven Development Environment, you apply the following workflow as a circular
process, refining as necessary in each iteration.

e Configure and set up scripts/ o
e Model - Edit - Build - Debug - Test - Profile - Deploy - Document and Analyze.

3.2 Basic Setup

To use the execution tools of the Model Driven Development Environment - debugging, build and recording - it
is necessary to record information about the application.This is achieved in Enterprise Architect through the
use of Package Scripts.

A Package Script, when created, is naturally associated with the package that is currently selected.

A Package Script houses all the information the MDDE requires in order to provide support for tasks such as
building the application, debugging and performing unit testing. A model can contain many Package Scripts.
Each can build a separate application, or perhaps the same application but with different compilation options.

When you select a package or child Class in the Project Explorer, the Debug Management window displays
any Package Scripts associated with that package. When you select a package root, the Debug Management
window displays the scripts for the first package it finds under the root that has Scripts.

When you selected another package, the scripts displayed in the Debug Management window change also.
You can force the scripts for a particular package to remain visible at all times by ‘pinning[11 the package in
the Debug Management window.

© 1998-2010 Sparx Systems Pty Ltd

Model Driven Development Environment | Basic Setup

External Tools and Environment

If you plan on using any of the debugging features of the MDDE, you must have the appropriate Framework
installed on your machine:

e The Java Runtime Environment for Java

e The .NET Framework for managed applications

Any Operating System Environment Variables such as $PATH required by these kits should also be
established.

3.2.1 Managing Scripts

In Enterprise Architect, any package within the UML Model can be configured to act as the ‘root' of a source
code project. By setting compilation scripts, xUnit commands, debuggers and other configuration settings for a
package, all contained source code and elements can be built, tested or debugged according to the currently
active configuration. Each package can have multiple scripts, but only one is active at any one time. The
Package Build Scripts dialog enables you to create and manage those scripts.

To access the Package Build Scripts dialog, either:

e Press [Shift]+[F12]

e On the Debug toolbar, click on the drop-down arrow on theScripts icon (the first icon on the left) and select
the Package Build Scripts option

e Select the Project | Execution Analyzer | Package Build Scripts menu option, or

¢ Right-click on a package in the Project Browser, and select the Execution Analyzer | Package Build
Scripts context menu option.

Defined Scripts

(=

Active Mame Build Test Run Debug | Deploy d

E Example 1.6.0_03 X -
|

Copy

Import

NNk

Delete

All Package Scripts...]

Options
|:| lUse Live Code Generation
Default Language: [<Model Default= -

The Package Build Scripts dialog shows which script is active for the current package, and whether or not the
script contains Build, Test, Run, Debug and Deploy components. The current package is as selected in the
Project Browser; if a different package is selected, different scripts are available and different breakpoints and
markers are applied.

Note that you must close the Package Build Scripts dialog to select a different package in the Project Browser.
However, if the Debug window is open ([Alt]+[8]) you can see which debugging configuration is available and
selected, and which breakpoints and markers are displayed, as you change packages in the Project Browser.

Visual Execution Analyzer in Enterprise Architect

Model Driven Development Environment | Basic Setup 10

o To create a new script, click on the Add button; the Build Script dialog 103 displays.
e To modify an existing script, highlight the script name in the list and click on the Edit button.

e To copy a script with a new name, highlight the script name to copy and click on the Copy button;
Enterprise Architect prompts you to enter a name for the new copy. Enter the new name in the dialog and
click on the OK button. The new copy appears in the list and can be modified as usual.

e To delete a script, highlight the script name to delete, click on the Delete button, and click on the OK
button.

e To export your scripts, click on the Export button to choose the scripts to export for this package.
e To import build scripts, click on the Import button to choose a .xml file of the scripts to import.

The Default Language field enables you to set the default language for generating source code for all new
elements within this package and its descendents.

Select the Use Live Code Generation checkbox to update your source code instantly as you make changes
to your model.

Click on the All Package Scripts button to open a new window that displays all scripts in the current project.

Once you have created new scripts or made changes to existing ones, click on the OK button to confirm the
changes, otherwise click on the Cancel button to quit the Package Build Scripts dialog without saving any
changes.

3.2.2 Defining Script Actions

Scripts are associated with a Package. When you create a Package Script you can define a number of
actions.

If you plan to use any of the features of the Execution Analyzer, you must complete at least the Build and
Debug tabs.

e Build[1h
e Debug[1h
e Test/sh
e Run/ssY
e Deploy/se)

s ==
MName: Calendar

Directory: C:\Program Files\BCGSoft\BCGControlBarPro\Examples\BCGPCalendarDemo E]

Build |Test | Run | Debug I Deploy | Sequence Diagram F'.emrdingl

Enter the path to the build application for the chosen compiler

%%IDE%:\deverv.com™ frebuild Debug BCGPCalendarDemo. sln -

-]

[capture Qutput Output Parser; |Microsoft JMET V]

[Ok J [Cancel l [Help

© 1998-2010 Sparx Systems Pty Ltd

11

Model Driven Development Environment | Basic Setup

3.2.3 Setting the Default Script

Normally the target for any debugging session changes, tracking the package selected in the Project Explorer.

You can change this behaviour so that the scripts for a package remain selected in the Debug window. Use
the context menu on the Scripts folder in the Debug window to either Pin or Unpin the currently-selected
package.

Package Build Scripts... Shift+F12
Eﬁ Find in Project Browser...

Pin Package
Help

When a package is pinned, the Debug window always displays the scripts defined for that package, and the
debugger always uses the selected Package Script.

#-0) [E 6= 2=
Eﬂ Scripts : Controls
[57 Calendar
g Controls
= Debugger Windows
4@ Breakpoints 8 Markers
M i Call Stack
gz Locals
A [#] Watches
| Modules
= Debug Output
I Memory Viewer
= Analyzer Windows
[1=] Record & Analyze
[1 %% Profiler
[zz] Warkbench
A&, Search

3.3 Code Generation and Synchronization - Safeguards

It is important that the model and source code are kept synchronized for the Visual Execution Analyzer to
produce useful results.

Use the Code Generation tools to synchronize your model after any design changes or code editing (see Code
Engineering Using UML Models).

Always build the application prior to any Execution Analysis session - debugging, recording or profiling.

3.4 Code Editing For MDDE

See the Code Editors topic in Using Enterprise Architect - UML Modeling Tool.

Visual Execution Analyzer in Enterprise Architect

Model Driven Development Environment | Build 12

3.5 Build

The topics in this section describe how you specify the commands to build the project / package:

e Add Comands/ 123
e Recursive Builds 14"

3.5.1 Add Commands

The Build tab enables you to enter multiple commands for building the current package. These commands are
executed when you select the Project | Execution Analyzer | Build menu option. The following examples are
for Java and .NET respectively.

Mame: JarLoader

Directory: C:\Benchmark\Java'JarLoader| E]

Build |Test I Run I Debug I Deploy I Sequence Diagram Recording

Enter the path to the build application for the chosen compiler

"BeJAVA\binYjavac” -cp Yedasspath ;. ; -g JarLoader.java -
"BL]AVAY\binYjavac” -cp Yedasspath ;. ; g BaseTestBase. java

"Be]AVASbinYjar” ofm Base.jar Base\Testbase. twt BaseTestBase.dass

"5eJAVA % \bintjavac” -p Yedasspath ;. ;g -cp Base.jar Base\Test1* java

"2eJAV A% \bintjar” ofm Test1.jar Base'Test1Test. tut Base{Test1\Test. dass

"2eJAVA%\bintjavac” -op Yedasspath ;. ;"0 -cp Base.jar Base\Test2* java

"spJAVASG\bin'jar” ofm Test2.jar Base\Test2Test. tet BaseTest2}Test. dass

Capture Output Output Parser: |Java SDK "]

0K Cancel] [Help

© 1998-2010 Sparx Systems Pty Ltd

13

Model Driven Development Environment | Build

Mame: Example 1.6.0_03
Directory: C:\Debugging‘\Assemblies\MyClassLibrary [I]
Build |Test I Run I Debug I Deploy I Sequence Diagram F‘.emrding|
Enter the path to the build application for the chosen compiler
C:\Program Files'\Microsoft Visual Studio 8YCommon7YDE\deveny.com /Build Debug MyClassLibrary.sin -
Capture Output Output Parser: |Microsoft .MET N l
0K] [Cancel] [Help

Write your script in the large text box using the standard Windows Command Line commands. You can
specify, for example, compiler and linker options, and the names of output files. The format and content of this
section depends on the actual compiler, make system, linker and so on that you use to build your project. You
can also wrap up all these commands into a convenient batch file and call that here instead.

If you select the Capture Output checkbox, output from the script is logged in Enterprise Architect's Output
window. This can be activated by selecting the View | System Output menu option.

The Output Parser field enables you to define a method for automatically parsing the compiler output. If you
have selected the Capture Output checkbox, Enterprise Architect parses the output of the compiler so that by
clicking on an error message in the Output window, you directly access the corresponding line of code.

Notes:

e The command listed in this field is executed as if from the command prompt. Therefore, if the executable
path or any arguments contain spaces, they must be surrounded by quotes.

e Throughout this dialog, you can use Local Paths in specifying paths to executables; see the Code
Engineering Settings section in Code Engineering Using UML Models.

When you run the compile command inside Enterprise Architect, output from the compiler is piped back to the
Output window and displayed as in the following illustration:

Visual Execution Analyzer in Enterprise Architect

Model Driven Development Environment | Build 14

Output X
Running build script - JarLoader
ChBenchmarkdJavatJarLoader= "C:\Program Files'Java'jdkl.6.0_07\binjavac" -cp "C:\Program Files\Javaljdkl.6.0_07:.;" -g JarLo:
Mote: JarLoader.java uses or overrides a deprecated APL
Mote: Recompile with -Xlint:deprecation for details.
Mote: JarLoader,java uses unchecked or unsafe operations.
Mote: Recompile with -Xlintunchecked for details.
ChBenchmark\JavatJarLoader="C:\Program Files\Javaljdkl.6.0_07\binjavac" -cp "Ch\Program Files\Javaljdkl.6.0_07;.;"-g Base\]
ChBenchmarkJavatJarLoader="C\Program Files'Java'jdkl.6.0_07\bin'jar" cfm Base,jar Base\TestBase.bit Base\TestBase.class
ChBenchmarkhJavatarLoader>"C:\Program Files\Java'jdkl .6.0_07\bin\javac” -cp "ChProgram Files'Java\jdkl.6.0_07;.:" -g -cp Bi
ChBenchmarkJava'JarLoader> "C:\Program Files\Java\jdkl.6.0_07\bin\jar" cfm Testl.jar Base\Testl\ Test.tet Base\ Testl\ Test.clas
ChBenchmarki\JavatJarLoader> "Ch\Program Files\Javaljdkl.6.0_07\bin'javac" -cp "C\Program Files\Java'jdkl.6.0_07;.;" -g -cp Bi
ChBenchmark\JavatJarLoader> "Ch\Program FilestJavaljdkl.6.0_07\bin\jar" cfm Test2.jar Base\Test2' Test.bet Baseh\ Test2\ Test.cla:
ChBenchmark\JavatJarLoader Build completed with exit code 0

H 4 » M| System. Script 1 L} }

If you double-click on an error line, Enterprise Architect loads the appropriate source file and positions the
cursor on the line where the error has been reported.

3.5.2 Recursive Builds

For any project you can apply the command entered in the build script to all sub folders of the initial directory
by specifying the token %r immediately preceding the files to be built. The effect of this is Enterprise Architect
iteratively replaces the token with any subpath found under the root and executes the command again.

Mame: Java - Example 1

Directory: C:\Debugging'Java'Example E]

Build |Test I Run I Debug I Deploy I Seguence Diagram F‘.emrding|

Enter the path to the build application for the chosen compiler

C:\Program Files\Javatjdk1. 5.0_06'\bin'javac.exe -g %r=.javal -

The output from this Java example is shown below:

Qutput X

Running build scripk - Jawva - Example 1

CiBenchmark! JavalExamplel Build completed wikh exit code 0

C1Benchmarkh JavalExamplelicommontdraw Build completed with exit code 0
C1\Benchmark) JavalExamplelicommonitoolbars Build completed with exit code 0
Maote: sourcetiCollection, java uses unchecked or unsafe operations.

Mote: Recompile with -xlink:unchecked for details,

C1\Benchmark) JavalExamplelisource Build completed with exit code 0

M 4 » M| System, Script 4 mn &

© 1998-2010 Sparx Systems Pty Ltd

15

Model Driven Development Environment | Build

Note:

The path being built is displayed along with the exit code.

3.6 Debugging

This section describes how you define the debugging actions:

How it works 153

Setup for Debugging! 157

Breakpoint and Marker Management/ 37
Debugging Actions| 39

Recording Actions| 49"

3.6.1 How it Works

The Model Driven Development Environment provides Debuggers for the following frameworks:

Microsoft Native Code applications
Microsoft .NET applications
Java applications

To begin debugging:

1. Ensure the model is open.

2. Ensure Basic Setup[8" has been completed for the Package or Project.

3. Ensure any source code for the areas of interest have been generated, or imported into the Model.

4. Ensure the application has been built. You can do this internally using the Build[123 Script or you can
build the application externally. The important thing is that the application is built on the latest versions
of the source.

5. Ensure that the model and source are synchronized (see Code Engineering Using UML Models).

6. Set breakpoints! 38,

7. Startl 39 the Debugger.

3.6.2 Setup for Debugging

To begin debugging you must specify

The Debugger to use
The Application path
Runtime options, if applicable

The following example shows a .NET Debug script.

Visual Execution Analyzer in Enterprise Architect

Model Driven Development Environment | Debugging 16

| Build | Test | Run | Debug |IZ)E|:»J|::\1-I | Seguence Diagram Recording

@ Application (Enter path) () Attach to process

bin'debug'example.net.exe "C#" example using ".Net 1,17 -

Enter any run time variables below

Show Caonsale Use Debugger: |Microsoft .NET 1.1 vl

3.6.2.1 Operating System Specific Requirements

Important:

Please read the information provided in this topic.

Prerequisites
Creation of a Package Build Script and configuration of the Debug command in that script.

Supported Platforms
Enterprise Architect supports debugging on these platforms:

.Net
e MicrosofttM NET Framework 1.1 and later
e Language support: C, C#, C++, J#, Visual Basic

Note:

Debugging under Windows Vista (x64) - If you encounter problems debugging with Enterprise Architect on a
64-bit platform, you should build a Win32 platform configuration in Visual Studio; that is, do not specify
ANY-CPU, specify WIN32.

Java
e Java 2 Platform Standard edition (J2SE) version 5.0
e J2EE JDK 1.4 and above

e Requires previous installation of the Java Runtime Environment and Java Development Kit from Sun
Microsystems™,

Debugging is implemented through the Java Virtual Machine Tools Interface (JVMTI), which is part of the Java
Platform Debugger Architecture (JPDA). The JPDA is included in the J2SE SDK 1.3 and later.

Windows for Native Applications

Enterprise Architect supports debugging native code (C, C++ and Visual Basic) compiled with the Microsoft™
compiler where an associated PDB file is available. Select Microsoft Native from the list of debugging
platforms in your package script.

You can import native code into your model, and record the execution history for any Classes and methods.
You can also generate Sequence diagrams from the resulting execution path.

© 1998-2010 Sparx Systems Pty Ltd

17 Model Driven Development Environment | Debugging

Note:

Enterprise Architect currently does not support remote debugging.

3.6.2.1.1 UAC-Enabled Operating Systems

The Microsoft operating systems Windows Vista and Windows 7 provide User Account Control (UAC) to
manage security for applications.

The Enterprise Architect Visual Execution Analyser is UAC-compliant, and users of UAC-enabled systems can
perform operations with the Visual Execution Analyser and related facilities under accounts that are members
of only the Users group.

However, when attaching to processes running as services on a UAC-enabled operating system, it might be
necessary to log in as an Administrator. To do this, follow the step below:

1. Before you run Enterprise Architect, right-click on the Enterprise Architect icon on the desktop and
select the Run as administrator option.

Alternatively, edit or create a link to Enterprise Architect and configure the link to run as an administrator;
follow the steps below:

1. Right-click on the Enterprise Architect icon and select the Properties menu option. The Enterprise
Architect Properties dialog displays.

Securty | Details I Previous \ersions
General | Shortcut | Compatibilty

@ Enterprise Architect

Target type: Application

Target location: EA

Target: "C\Program FileshSpan: Systems \EANEA exe"

Start in:

Shortout key: Mone

Run: [Marmal window =]
Comment:
Open File Location] [Change lcon...] [Advanced. ..]
oK] [Cancel Apply

2. Click on the Advanced button. The Advanced Properties dialog displays.

Visual Execution Analyzer in Enterprise Architect

Model Driven Development Environment | Debugging 18

Choose the advanced properties you want for this shortout.

Run as administrator

This option allows you to run this shortout as an
administrator, while protecting your computer from
unauthorized activity.

&
Ic
]
m
=]
A1)
i)
o
m
3
Lo
=]
i)
]
m

CK] I Cancel

3. Select the Run as administrator checkbox.
4. Click on the OK button, and again on the Enterprise Architect Properties dialog.

3.6.2.1.2 WINE Debugging
At the command line, run $ winecfg.

Set the library overrides for dbghelp to (native, builtin), and accept the warning about overriding this DLL:

Changing the load order of this library is nok recommended,
Are wou sure you wank ko da Ehis?

Yes Mo

Note:

If WINE crashes, the back traces may not be correct.

1. Set dbghelp to native by using winecfg.

Copy the application source code plus executable(s) to your bottle. (The path must be the same as the
compiled version; that is:

If Windows source = C:\Source\SampleApp, under Crossover it must be C:\Source\SampleApp.)
3. Copy any Side-By-Side assemblies that are used by the application.

Import the source code into Enterprise Architect. (Optional.)
5. Create a build script/ 12" on a package.

Set the path of the application on the Debug tab, and set Use Debugger to Microsoft Native.
Open the Profiler| 82" (View | Execution Analyzer | Profiler).
Click on the Launch button (first button on the Profiler window).

If the sample didn't start, click on the Sampling button (third button on the Profiler window).
Once you have finished profiling, shut down the application (not Enterprise Architect).
9. View the Sampler report by clicking the View Report button (fifth button on the Profiler window).

© 1998-2010 Sparx Systems Pty Ltd

19 Model Driven Development Environment | Debugging

Tips:

o If you are using MFC remember to copy the debug side-by-side assemblies to the C:\window\winsxs
directory.

e To add a windows path to WINE, modify the Registry entry:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session Manager\Environment

Access Violation Exceptions

Due to the manner in which WINE handles direct drawing and access to DIB data, an additional option is
provided on the Debug window toolbar drop-down menu to ignore or process access violation exceptions
thrown when your program directly accesses DIB data.

B Debug F&
L Attach to process
Biuild Conkrol_|+Shift_4+F12
Test Control_H+alk_[+T
Run Contral_HAlE_+M
Package Build Scripts. .. Shift_|+F12

Process fccess Violation Exceptions

@ Help

Select this option to catch genuine (unexpected) access violations; deselect it to ignore expected violations.
As the debugger cannot distinguish between expected and unexpected violations, you might have to use trial
and error to capture and inspect genuine program crashes.

3.6.2.2 Microsoft C++ and Native (C, VB)

The example script below is configured to enable debugging of a C++ project built in Microsoft Visual Studio
2005 or 2008.

You can debug native code only if there is a corresponding PDB file for the executable. You normally create
the PDB file as a result of building the application.

The build should include full debug information and there should be no optimizations set.

Visual Execution Analyzer in Enterprise Architect

Model Driven Development Environment | Debugging 20

Mame: Subway

Directory: C:\Tutorial\Mative\Subway E]

| Build I Test I Run | Debug |I3|eployuI I Sequence Diagram Recording

(@ Application (Enter path) () Attach to process

debug'subway.exe -

Enter any run time variables below

Show Consale [Use Debugger: |Microsoft Native "l

0K Cancel] [Help

The script must specify two things to support debugging:

e The path to the executable
e Microsoft Native as the debugging platform.

3.6.2.2.1 Debug Symbols

For Applications built using Microsoft Platform SDK Debug Symbols are written to an Application PDB file
when the Application is built.

The Debugging Tools for Windows, an API used by the Visual Execution Debugger, uses these symbols to
present meaningful information to Execution Analyzer controls.

These symbols can easily get out of date and cause errant behaviour. The debugger might highlight the wrong
line of code in the editor whilst at a breakpoint. It is therefore best to ensure the application is built prior to any
debugging or recording session.

The debugger must inform the API how to reconcile addresses in the image being debugged. It does this by
specifying a number of paths to the API that tell it where to look for PDB files. The API automatically picks up
the path to the main image PDB from the image itself.

For system DLLs (kernel32, mfc90ud ...) for which no debug symbols are found, the Call Stack shows some
frames with module names and addresses only .

You can supplement the symbols translated by passing additional paths to the API. To do this there must be a
Package Script selected and it must have the Native debugger specified.

You pass additional symbol paths in a semi-colon separated list in the Enter any runtime variables... field of
the Debug tab, as illustrated below.

© 1998-2010 Sparx Systems Pty Ltd

21

Model Driven Development Environment | Debugging

@ Application (Enter path) () Attach to process

debug'stepping.exe -

Enter any run time variables below

c:\window\symbol -~

Show Console [Use Debugger: | Microsoft Mative "'l

3.6.2.3 Java

This section describes how to configure Enterprise Architect for debugging Java applications and Web
Servers.

3.6.2.3.1 General Setup for Java

This is the general setup for debugging Java applications:

Mame: Example 1.6.0_03
Directory: C:\benchmarkjavaiexample1 E]

| Build I Test I Run | Debug |Dep|-::q-I I Sequence Diagram Recording

(@ Application (Enter path) (7 Attach to process

source.example “1% "2° 3" -

Enter any run time variables below

jre=c:\Program Files\Java\dk1.6.0_03, Djava.dass. path="%dasspath 1603%;c: \benchmark'javaiexample 1| -

Show Console [] lUse Debugger: |Java ""]

QK Cancel] ’ Help

Visual Execution Analyzer in Enterprise Architect

Model Driven Development Environment | Debugging 22

Option Use to

Application (Enter path) | Identify the fully qualified Class name to debug, followed by any arguments.
The Class must have a method declared with the following signature:

public static void main(String[]);

The debugger calls this method on the Class you name. In the example above,
the parameters 1, 2 and 3 are passed to the method.

You can also debug a Java application by attaching to an existing Java
process| 22,

Enter any run time Type any required command line options to the Java Virtual Machine.

variables below You also must provide a parameter (jre) that is a path to be searched for the

jvm.dll. This is the DLL supplied as part of the Java runtime environment or
Java JDK from Sun Microsystems™ (see Debugging|s7).

In the example above, a virtual machine is created with a new Class path
property that comprises any paths named in the environment variable
classpath 1603 plus the single path "C:\benchmark\java\examplel1".

If no Class path is specified, the debugger always creates the virtual machine
with a Class path property equal to any path contained in the environment
variable plus the path entered in the default working directory of this script.

Note:

If source files and .class files are located under different directory trees, the
Class path property MUST include both root path(s) to the source and root
path(s) to binary class files.

Show Console Create a console window for Java. If no console window is required, leave
blank.
Use Debugger Select Java.

3.6.2.3.2 Advanced Techniques
In addition to the standard Java debugging techniques, you can also:

e Attach to a Virtual Machine! 22
e Debug Internet Browser Java Applets. [234

You can debug a Java application by attaching to an existing Java process.
However, the Java process requires a specific startup option specifying the Sparx Systems Java Agent. The
format of the command line option is:

-agentlib:SSJavaProfiler80
or:

-agentpath:"c:\program files\sparx systems\ea\SSJavaProfiler80"
The example below is for attaching to the Tomcat Webserver. Select the Attach to process radio button, and
then the keyword Attach is all that you have to enter. This keyword causes the debugger to prompt you for a
process at runtime.
Note:

The Show Console checkbox has no effect when attaching to an existing virtual machine.

© 1998-2010 Sparx Systems Pty Ltd

23 Model Driven Development Environment | Debugging

Mame: Java Web Server

Directory: C:\benchmark'javaiweb E

| Build | Test | Run | Debug ||:|E|J|O1f' I Sequence Diagram Recording

(7) Application (Enter path) (@) Attach to process

Enter any run time variables below

Show Console [Use Debugger: |Java ']

0K Cancel l [Help

No run time variables are necessary when attaching as these are specified as startup parameters to the
process.

This topic describes the configuration requirements and procedure for debugging Java Applets running in a
browser from Enterprise Architect.

The procedure requires you to attach to the browser process hosting the Java Virtual Machine (JVM) from
Enterprise Architect, as summarized below:

1. Ensure binaries for the applet code to be debugged have been built with debug information.
2. Configure the JVM using the Java Control Panel.

Visual Execution Analyzer in Enterprise Architect

Model Driven Development Environment | Debugging 24

3.

General | Update | Java | Security I Ad\ranced|

Java Applet Runtime Settings

Funkime settings are used when an applet is executed in the browser,

Java Application Runtime Settings

Runkime settings are used when a Java application or applet is launched using the
Java Metwork Launching Pratacal (IMLP),

QK H Cancel] Apply

In the Java Applet Runtime Settings panel, click on the View button. The Java Runtime Settings dialog

displays.

]

Java Runtime Versions

Product Mame Version Location Java Runkime Parameters

e B ETE S B agentpath: c:\program files\sparx systems|zalssjavaprofiler 80 -Djava. class.path="%classpath¥s;c:\myapplets;"

—]

© 1998-2010 Sparx Systems Pty Ltd

25

Model Driven Development Environment | Debugging

4. Click on the appropriate entry and click on the OK button to load the Sparx Systems Agent.

Import source code into the Enterprise Architect model, or synchronize existing code. (See Code
Engineering Using UML Models.)

6. Create or modify the Package Build Script/ 8™ to specify the option for attaching to the process.
5. Set breakpoints/ 37,

6. Launch the browser.

7. Attach to the browser process from Enterprise Architect.

Note that the class.path property specified for the JVM includes the root path to the applet source files. This is
necessary for the Enterprise Architect debugger to match the execution to the imported source in the model.

3.6.2.3.3 Working with Java Web Servers

This topic describes the configuration requirements and procedure for debugging Java web servers such as
JBOSSI 27 and Apache Tomcat (both Server| 28 configuration and Windows Service [293 configuration) in
Enterprise Architect.

The procedure involves attaching to the process hosting the Java Virtual Machine from Enterprise Architect,
as summarized below:

1. Ensure binaries for the web server code to be debugged have been built with debug information.
Launch the server with the Virtual Machine startup option[251 described in this topic.
Import source code into the Enterprise Architect Model, or synchronize existing code.
Create or modify the Package Build Script[251 to specify the Debug option for attaching to the process.

Set breakpoints. [37
Launch the client.

No ok~ wd

Attach to the process from Enterprise Architect.

Server Configuration

The configuration necessary for the web servers to interact with Enterprise Architect must address the
following two essential points:

e Any VM to be debugged, created or hosted by the server must have the Sparx Systems Agent
SSJavaProfiler80 command line option specified in the VM startup option (that is: -agentlib:SSJavaProfiler80)
e The CLASSPATH, however it is passed to the VM, must specify the root path to the package source files.

The Enterprise Architect debugger uses the java.class.path property in the VM being debugged, to locate the
source file corresponding to a breakpoint occurring in a Class during execution. For example, a Class to be
debugged is called:

a.b.C

This is located in physical directory:
C:\source\a\b

So, for debugging to be successful, the CLASSPATH must contain the root path:
c:\source.

Package Script Configuration

Using the Debug tab 21" of the Build Script/ 2™ dialog, create a script for the code you have imported and
specify the following:

e Select the Attach to process radio button, and in the field below type attach.
¢ Inthe Use Debugger field, click on the drop-down arrow and select Java.

Visual Execution Analyzer in Enterprise Architect

26

Model Driven Development Environment | Debugging

Mame: Java Web Server

Directory: C:\Benchmark'Javaiwebl| E]

| Build | Test I Run | Debug |IZ:Iva|:bI|::n,-I I Sequence Diagram Recording

) Application (Enter path) @ Attach to process

Enter any run time variables below

Show Consale Use Debugger: |Java V]

0K Cancel] [Help

All other fields are unimportant. The Directory field is normally used in the absence of any Class path
property.

Debugging
First ensure that the server is running, and that the server process has loaded the Sparx Systems Agent DLL
SSJavaProfiler80.DLL (use Process Explorer or similar tools to prove this).

Launch the client and ensure the client executes. This must be done before attaching to the server process in
Enterprise Architect.

After the client has been executed at least once, return to Enterprise Architect, open the source code you
imported and set some breakpoints| 37,

Click on the Run Debugger/ 151 button in Enterprise Architect. The Attach To Process dialog displays.

© 1998-2010 Sparx Systems Pty Ltd

27

Model Driven Development Environment | Debugging

PID Name Path -

344 inetinfo.exe C:\Windows\system32Ynetsrviinetinfo, exe

935 sqlservr.exe C:\Program Files\Microsoft SQL Server\MSS0L, 1WMSSOLBINN sglservr . exe

1356 nod3zkrn.exe C:\Program Files\Esetinod32krn, exe

1908 gychost.exe C:\Windows\System32svchost.exe

543 sglbrowser.exe C:\Proagram FilesMicrosoft SQL Server\30'Sharedsglbrowser . exe

1500 sglwriter.exe C:'Program Files\Microsoft SQL Server\a0'\Sharedisglwriter. exe

1668 svchost.exe C:\Windows\System32svchost,exe

2036 vds.exe C:\Windows\System32wds.exe

2056 vmnat,exe C:\Windows\System32wmnat.exe
= 2084 gychost.exe C:Windows\System32isvchost. exe —

5363 W3wp.exe C:Windows\System32netsrvw3wp. exe

2100 svchost.exe C:\Windows\System32svchost, exe

2136 vmnetdhcp.exe C:\Windows\System32wmnetdhop.exe

2220 vmware-authd.exe C:\Program Files\WMware \WMware Player wmware-authd.exe

3752 WmiApSry .. exe C:\Windows\System32wbemWmiApSrv.exe e
2125 explorer.exe C:\Windows\Explorer . EXE

3872 SearchIndexer.exe C:\Windows'\system32\SearchIndexer.exe

2956 SMSvicHost exe C:\Windows\Microsoft. NET \Framewarkw 3. 0YWWindows Communication Fou. .,

2568 iexplore,exe C:\Program Files\Internet Exploreriexplore. exe

5668 avant.exe C:\Program Files\Avant Erowser\avant.exe 1
N 1 | 3

Click on the OK button. A confirmation message displays in the Debug Output window, stating that the
process has been attached.

The breakpoints should remain enabled (bright red). If the breakpoints fail, and contain either an exclamation
mark or a question mark, then either the process is not hosting the SSJavaprofiler80 Agent or the binaries being
executed by the server are not based on the source code. If so, check your configuration.

Consider the JBoss example below. The source code for a simple servlet is located in the directory location:

@{_‘:)14 , % Local Disk (C:) » benchmark » Java » JBOSS » Inventory » com » inventory » dio v|¢f‘

‘ Organize =

Name, Date modified Type Size
2 carDT O java

Favorite Links

E. Documents

The binaries executed by JBOSS are located in the JAW.EAR file in this location:

@Qv| | <« Local Disk (C:) » JBOSS » 03b-dao » build » distribution

‘ Crganize =

Favorite Links Name Date modified

F2 jaw.car 3/07/2009 1:44 PM
E| Documents

[

The Enterprise Architect debugger has to be able to locate source files during debugging. To do this it also
uses the CLASSPATH, searching in any listed path for a matching JAVA source file, so the CLASSPATH must
include a path to the root of the package for Enterprise Architect to find the source during debugging.

The following is an excerpt from the command file that executes the JBOSS server. Since the Class to be

Visual Execution Analyzer in Enterprise Architect

Model Driven Development Environment | Debugging 28

debugged is at com/inventory/dto/carDTO, the root of this path is included in the JBOSS classpath.

RUN.BAT

s(;-t“S-gL-J-I-?CE:C:\Benchmark\Java\JBOSS\Inventory

set JAVAC_JAR=%JAVA_HOME%\lib\tools.jar

if "%JBOSS_CLASSPATH%" ==""

) set JIBOSS_CLASSPATH=%SOURCE%;%JAVAC_JAR%;%RUNJAR;

else

set JBOSS_CLASSPATH=%SOURCE%;%JBOSS_CLASSPATH%;%JAVAC_JAR%;%RUNJAR%;
)

set JAVA_OPTS=%JAVA_OPTS% -agentpath:"c:\program files\sparx systems\ssjavaprofiler80"

This configuration is for the same application as outlined in the JBOSS server[271 configuration topic.

There are two things to notice of importance.

e The Java VM option: -agentpath:c:\program files\sparx systems\ea\ssjavaprofiler80
e The addition to the Class path property of the path to the source code: C:\JBOSS\03b-dao\common\src;

| General | Log On | Logging | Java |513th|:| I Shutdown

Use default
Java Virtual Machine:

\2un 1avabire 1 7. 0vhind AtYivm
H gvd gre L. £.UD =

Java Classpath:
C:VB0OS5Y13b-dao\common'sre; C: Vavajdk 1.6.0_07re; CiJavajdk 1.6,
Java Options:

Dijava.util.logging. manager =org.apache.juli. ClassLoaderLogManage =
Dijava.util.logging.config. file =C:\Program Files\Apache Software Fou
-agentpath:c: \program files\sparx systems\ea'ssiavaprofiler 50 (W

-

Initial memory pool: MEB
Maximum memory pool: ME
Thread stack size: KB
Ok] [Cancel Apply

© 1998-2010 Sparx Systems Pty Ltd

29

Model Driven Development Environment | Debugging

For users running Apache Tomcat as a Windows™ service, it is important to configure the service to enable
interaction with the Desktop. Failure to do so causes debugging to fail within Enterprise Architect.

|Genaa| Log On |HJE>1::u::n.r»a-r:,.r Dependencies

Log on as:

i@ Local System account
Allow service to interact with desktop

(7 This account: Browse...

Help me configure user account log on options.

fou can enable or disable this service for the hardware profiles listed below:

Hardware Profile Service
Undocked Profile Enabled

Troubleshooting using hardware profiles. Enahble

0K || Cancel || foply

Select the Allow service to interact with desktop checkbox.

3.6.2.4 .NET

This section describes how to configure Enterprise Architect for debugging .NET applications. It covers:
e General Setup| 3

o Debug Assemblies| 30"

e Debug CLR Versions| 31"

e Debug COM Interop|3?"

o Debug ASP .NET |3

Visual Execution Analyzer in Enterprise Architect

Model Driven Development Environment | Debugging 30

3.6.2.4.1 General Setup for .NET
This is the general setup for debugging .NET applications:

| Build | Test | Run | Debug |Deploy | Seguence Diagram Recording

@ Application {Enter path)) Attach to process

bin'debug'example.net.exe "C#" example using ".Net 1,17 -

Enter any run time variables below

Show Caonsale Use Debugger: |Microsoft .NET 1.1 v‘
Option Use to
Application (Enter path) Select and enter either the full or the relative path to the application
executable, followed by any command line arguments.
Enter any runtime variables Type any required command line options, if debugging a single .NET
below Assembly 30",
Show Console Create a console window for the debugger. Not applicable for attaching

to a process.

Use Debugger Select the debugger to suit the .NET Framework under which your
application runs.

Note:

If you intend to debug managed code using an unmanaged application, please see the Debug - CLR
Versions 31" topic.

3.6.2.4.2 Debug Assemblies
Enterprise Architect permits debugging of individual assemblies.

The assembly is loaded and a specified method invoked. If the method takes a number of parameters, these
can be passed.

Constraints
Debugging of assemblies is only supported for .NET version 2.

The following image is of a Build Script configured for debugging a .NET assembly.

© 1998-2010 Sparx Systems Pty Ltd

31

Model Driven Development Environment | Debugging

Mame: MyClassLibrary
Directory: C:\benchmark'\dotmet\csharp\Assemblies\MyClassLibrary E]

| Build | Test I Run | Debug |II:|va|:»l-::q-I I Sequence Diagram Recording

(@ Application (Enter path) (7 Attach to process

bin'\Debug\MyClassLibrary. dll -

Enter any run time variables below

MyClassLibrary.Clohn,Setdge, 23 -~

- [

Show Console |Jse Debugger: |Microsoft \MET 2.0, 3.0, 3.5 v]

0K Cancel] [Help

Notice the Enter any run time variables below field. This field is a comma-delimited list of values that must
present in the following order:

type_name, method_name, { method_argument_1, method_argument2,....}
where:

e type_name is the qualified type to instantiate

¢ method_name is the unqualified name of the method belonging to the type that is invoked
e the argument list is optional depending on the method invoked.

The information in this field is passed to the debugger.

3.6.2.4.3 Debug - CLR Versions

Please note that if you are debugging managed code using an unmanaged application, the debugger might
fail to detect the correct version of the Common Language Runtime (CLR) to load. You should specify a config
file if you don’t already have one for the debug application specified in the Debug command of your script. The
config file should reside in the same directory as your application, and take the format:

name.exe.config
where name is the name of your application.

The version of the CLR you should specify should match the version loaded by the managed code invoked by
the debuggee.

Sample config file:

<configuration>
<startup>
<requiredRuntime version="version "/>
</startup>
</configuration>

where version is the version of the CLR targeted by your plugin or COM code.
For further information, see http://www.msdn2.microsoft.com/en-us/library/9w519wzk.aspx.

Visual Execution Analyzer in Enterprise Architect

http://msdn2.microsoft.com/en-us/library/9w519wzk.aspx

32

Model Driven Development Environment | Debugging

3.6.2.4.4 Debug COM Interop

Enterprise Architect enables you to debug .NET managed code executed using COM in either a Local or an
In-Process server.

This feature is useful for debugging Plugins and ActiveX components.
1. Create a package in Enterprise Architect and import the code to debug. See Code Engineering Using
UML Models.
2. Ensure the COM component is built with debug information.
3. Create a Script for the Package.

4. In the Debug tab, you can elect to either attach to an unmanaged process or specify the path to an
unmanaged application to call your managed code.

| Build | Test | Run | Debug | Deploy | Sequence Diagram Recording |

~1 Application (Enter path) @ Attach to process

n\debug'consoleapplication 1

m

X

]
m

Enter any run time variables below

Show Console Use Debugger: |Microsoft \MET 1.1 A

5. Add breakpoints in the source code to debug.

Attach to an Unmanaged Process
e If an In-Process COM server, attach to the client process or
e If a Local COM Server, attach to the server process.

Click on the Debug window Run button (or press [F6]) to display a list of processes from which you can
choose.

Important:

Detaching from a COM interop process you have been debugging terminates the process. This is a known
issue for Microsoft .NET Framework, and information on it can be found on many of the MSDN .NET blogs.

3.6.2.4.5 Debug ASP .NET

Debugging for web services such as ASP requires that the Enterprise Architect debugger is able to attach to a
running service.
Begin by ensuring that the directory containing the ASP .NET service project has been imported into

Enterprise Architect and, if required, the web folder containing the client web pages. If your web project
directory resides under the website hosting directory, then you can import from the root and include both ASP

code and web pages at the same time.

The following image shows the project tree of a web service imported into Enterprise Architect.

© 1998-2010 Sparx Systems Pty Ltd

33 Model Driven Development Environment | Debugging

= [Ef AP NET Web Service
=l |_| s5_webserverl
%g g5 _wehserver]
= sreferences Cotore
& @ m_Name
s Cotoredvoid)
5 Inik)
- sreferences Global
¥ & Application_BeginRequest{Object™, Eventargs™)
¥ & Application_End{Object, Eventhrgs™)
& Application_EndRequest{Object™, EventArgs™)
¥ & Application_Start{Object™, EventArgs™)
¥ & Session_End{Object™, Eventargs™)
¥ 4 Session_Start{Object™, EventArgs™)
= sreferences ss_webserver1Class
R
) 4 components
& @ Store
» Addifloat, float)
) & Construct)
y Dividedfloat, float)
» Hella'Warldy)
& 4 InitializeCompanent])
s Mulkiply(float, float)
55_webserver1Class()
¥ 4 ess_webserveriClass()
s Subtrack{float, Foak)

It is necessary to launch the client first, as the ASP .NET service process might not already be running. Load
the client by using your browser. This ensures that the web server is running. The only difference to a debug
script for ASP is that you specify the attach keyword in your script, as follows:

Visual Execution Analyzer in Enterprise Architect

Model Driven Development Environment | Debugging 34

Mame: Webservice

Directory: C:\Inetpubwwwrootiss_webserver1 E]

| Build I Test I Run | Debug |Dep|ny I Sequence Diagram Recording

() Application (Enter path) (@ Attach to process

attach -

Enter any run time variables below

—

Show Console] IUse Debugger: |Microsoft .MET 2.0, 3.0, 3.5 v]

K, Cancel] [Help

Build |Test | Run I Debug | Deploy | Sequence Diagram Recording

Enter the path to the build application for the chosen compiler

devenv.com /build debug ss_webserver 1.sln

| Build | Test | Run |Debug | Deploy I Sequence Diagram Recording

Enter the path to the compiled application

http:/flocalhosts/ss_webserver 1/

When you start the debugger (click on the Debug window! 151 Run button) the Attach To Process dialog
displays.

© 1998-2010 Sparx Systems Pty Ltd

35 Model Driven Development Environment | Debugging

PID MName Path
3494 inetinfo.exe C:\Windows\system32Ynetsrviinetinfo, exe
935 sqlservr.exe C:\Program Files\Microsoft SQL Server\MSS0L, 1WMSSOLBINN sglservr . exe
1356 nod3zkrn.exe C:\Program Files\Esetinod32krn, exe
1908 gychost.exe C:\Windows\System32svchost.exe
543 sglbrowser.exe C:\Proagram FilesMicrosoft SQL Server\30'Sharedsglbrowser . exe
1500 sglwriter.exe C:'Program Files\Microsoft SQL Server\a0'\Sharedisglwriter. exe
1668 svchost.exe C:\Windows\System32svchost,exe
2036 vds.exe C:\Windows\System32wds.exe
2056 vmnat,exe C:\Windows\System32wmnat.exe
= 2084 gychost.exe C:Windows\System32isvchost. exe
5363 W3wp.exe C:Windows\System32netsrvw3wp. exe
2100 svchost.exe C:\Windows\System32svchost, exe
2136 vmnetdhcp.exe C:\Windows\System32wmnetdhop.exe
2220 vmware-authd.exe C:\Program Files\WMware \WMware Player wmware-authd.exe
3752 WmiApSry .. exe C:\Windows\System32wbemWmiApSrv.exe
+ 2123 explorer.exe C:\Windows\Explorer . EXE
3872 SearchIndexer.exe C:\Windows'\system32\SearchIndexer.exe
2956 SMSvicHost exe C:\Windows\Microsoft NET\Framework Yy 3, 0Windows Communication Fou, |
2568 iexplore,exe C:\Program Files\Internet Exploreriexplore. exe
5668 avant.exe C:\Program Files\Avant Erowser\avant.exe
[T, b

Note that the name of the process varies across Microsoft operating systems.; check the ASP .NET SDK for
more information. The image above shows the IIS process w3wp.exe, which is the name of the process that
runs under Windows Vista.

On Windows XP, the name of the process is something like aspnet_wp.exe, although the name could reflect
the version of the .NET framework that it is supporting. There can be multiple ASP.NET processes running
under XP; you must ensure that you attach to the correct version, which would be the one hosting the .NET
framework version that your application runs on. Check the web.config file for your web service to verify the
version of .NET framework it is tied to.

The Debug window Stop button should be enabled and any breakpoints| 371 should be red, indicating they
have been bound.

Note:

Some breakpoints might not have bound successfully, but if none at all are bound (indicated by being dark
red with question marks) something has gone out of sync. Try rebuilding and re-importing source code.

You can set breakpoints at any time in the web server code. You can also set breakpoints in the ASP web
page(s) if you imported them.

3.6.3 The Debug Window

The Debug window gives access to the scripts and windows of the debug facility.

To access the Debug window, select the View | Execution Analyzer | Debugger menu option.

m

Visual Execution Analyzer in Enterprise Architect

Model Driven Development Environment | Debugging 36

#-0 p 0=

M
IIIIT

Eﬂ Scripts : Controls

[57 Calendar
g Controls
= Debugger Windows
4@ Breakpoints & Markers
M iz Call Stack
| Locals
B4 [R] Watches
[#] Modules
M= Debug Output
B e Memory Viewer
= Analyzer Windows
1] Record & Analyze
5% Profiler
[zz] Warkbench
A&, Search

The Debug Window has three top-level folders:

Scripts - The Scripts <Package Name> folder lists the scripts available for the currently-selected package,
the first in the list being, by default, the active script that is executed when you start debugging, as
indicated by the selected checkbox. If you are using recording markers, this is also the script that
determines what recording options are applied[59". If you want to execute a different script, select the
appropriate checkbox. The context menu for each script provides further scripting options, such as Debug,
Build, Test and Edit.

You can pin the package scripts so that they remain listed in the Debug window even if you select a
different package. To do this, right-click on the folder title and select the Pin Package context menu option;
the Scripts folder icon changes. To unpin the scripts, right-click on the folder title and deselect the Pin
Package option.

The Debugger Windows folder lists the debug windows, which you can display or hide by selecting or
deselecting the checkbox against each one. If the window is docked, you can bring it to the front by clicking
on the window name:

o Breakpoints & Markers[37 - lists any breakpoints placed in the package source code, along with
their status (enabled/disabled), line number, and the physical source file in which they are located

o Call Stack[42" - shows the position of the debugger in the code; clicking on the > button advances
the stack through the code until the next breakpoint is reached

o Locals[43" - shows the local variables defined in the current code segment, their type and value
o Watches[44" - shows the values of static and globally scoped expressions you have entered
o Modules[47 - displays all the modules loaded during a debug session

o Debug Output/47 - displays output from the debugger including any messages output by the
debugged process, such as writes to standard output.

The Analyzer Windows folder lists the advanced control windows of the Execution Analyzer, which you can
display or hide by selecting or deselecting the checkbox against each one:

o Record & Analyzel 74" - records any activity that takes place during a debug session; once the
activity has been logged, Enterprise Architect can use it to create a new Sequence diagram

o Profiler[82 - opens the Profiler window to sample an application
o Workbench[87) - enables you to create instances of .NET and Java Classes
o Search[51" - enables you to search for text in files.

You can dock and combine the windows to suit your working requirements; see the Arrange Windows and
Menus section in Using Enterprise Architect - UML Modeling Tool.

© 1998-2010 Sparx Systems Pty Ltd

37 Model Driven Development Environment | Debugging

3.6.4 Breakpoint and Marker Management

Breakpoints work in Enterprise Architect much like in any other debugger. Adding a breakpoint notifies the
debugger to trap code execution at the point you have specified. When a breakpoint is encountered by a
thread of the application being debugged, the source code is displayed in an editor window, and the line of
code where the breakpoint occurred is highlighted.

Selecting a different package in the project affects which breakpoints are displayed.

Note:
The debugger does not stop automatically. It runs to completion unless it encounters a breakpoint.
An Enterprise Architect model maintains breakpoints for every package having a Build Script - Debug

command. Breakpoints themselves are listed in their own Breakpoints & Markers window (View | Execution
Analyzer | Breakpoints & Markers).

EBreakpoints & Markers x
il 3 | Mone * Slsdids
Enabled Line Source Details

L] 15 - WDev Roy'Classlib java: 15

d» O 36 - WDev Roy'Classlib java: 36

d» O 48 - WDeviRoy'Classlib java: 48

Breakpoint States

DEBUGGER STATE
Running Not running
o Bound Enabled
’ Disabled Disabled
& Not bound - this usually means that the DLL is not yet | N/a

loaded or was not built with debug information

o Failed - this usually means a break could not be set at | N/a
this time, and can occur when the source file is newer
or older than that used to build the application.

Delete, Disable and Enable Breakpoints
To delete a specific breakpoint, either:

o If the breakpoint is enabled, click on the red breakpoint circle in the left margin of the Source Code Editor
¢ Right-click on the breakpoint marker in the editor and select the appropriate context menu option, or
e Select the breakpoint in the Breakpoints & Markers tab and press [Delete].

Whether you are viewing the Breakpoints folder or the Breakpoints & Markers window, you can right-click on
an existing breakpoint and select a context menu option either to delete it or to convert it to a start recording
marker or end recording marker! 66",

You can also delete all breakpoints by clicking on the Delete all breakpoints button on the Breakpoints &

Markers window toolbar (|).

Visual Execution Analyzer in Enterprise Architect

Model Driven Development Environment | Debugging 38

To disable a breakpoint, deselect its checkbox on the Breakpoints & Markers window or, to disable all

breakpoints, click on the Disable all breakpoints button in the toolbar (| *-!). The breakpoint is then shown
as an empty grey circle. Select the checkbox or use the Enable all breakpoints button to enable it again (

s,

3.6.4.1 How Markers are Stored

Breakpoints created that are not part of any set are maintained in an external file for the current model.

The file format is as follows:
path\guid.brkpt

where:
e path = The O/S application data directory for each user
e guid = model Guid.

Marker Sets are stored in the model and are available to all users of the Model.

3.6.4.2 Setting Code Breakpoints

To set breakpoints for a code segment:

1. Open the model code to debug.

2. Find the appropriate code line and click in the left margin column. A solid red circle in the margin
indicates that a breakpoint has been set at that position.

12 CTest::CTlest (LPCTSTE name, TTestIype type)
{

% 14 m Name = name;
15 m Type = type;
16

16 theTest = this;

If the code is currently halted at a breakpoint, that point is indicated by a blue arrow next to the marker.

int tmain(int argc, TCHAR® argv([])
{

aid

CTest Test(T ("Model™), CTest::Regression):
return Test.Run();

[T =R e

3.6.4.3 Setting Data Breakpoints

Data breakpoints can currently only be set by right-clicking on the variable in the Locals[43" window and
selecting the Set Data Breakpoint context menu option. This means that in order to establish a data
breakpoint you must first set a normal breakpoint| 371 at a point in the code that presents the required scope of
local variables to choose from.

© 1998-2010 Sparx Systems Pty Ltd

39

Model Driven Development Environment | Debugging

Locals

able

4

* 0 X
Yalue Type Address

{) m_bDefaultlmage 1 int 0:0012celc
H-g m_sizelmage CSize 0x0012ce20
Elﬁ m_strLabel " ATL.CStringT=char.. 0x0012cel8 |:|
. B¢ ATL:CSimpleStringT... 0x0012ce28

Iél--ﬁ m_pszData 067 2b4 50 char® (0012 ce?8
o | Break When Variable is Modified | 06720430
[+-¢ m_strDefF cedc
..@ m_strFileF] View Memaory at Address F,eak When Variable is Modified |30
i~ m_nBrows Copy Break when item modified e3d =
i K
“——— @ Help

E Locals Watches

3.6.5 Debugging Actions

3.6.5.1 Displaying Windows

| O IO | T TYTONOOTEY

This section describes the actions you perform in running a debug session. It covers:

e Displaying Windows! 3

o Starting and Stopping the Debugger/ 40

o Debugging a Subsequent Process| 40"

o Stepping Over Lines of Code[413

e Stepping Into Function Calls[41

e Stepping Out of Functions[42

o Viewing the Call Stack/ 4%

e Viewing the Local Variables/ 43

e Viewing the Content of Long Strings! 43

e Viewing Variables in Other Scopes/ 4

e Inspecting Process Memory| 45

o Setting Breaks for When a Variable Changes Value/[463

e Showing Loaded Modules| 47

e Showing Output from the Debugger| 47

o Debugging Tooltips in Code Editors. [483

Debugger Actions - Displaying Windows

The Debugger windows| 251 are available from the View | Execution Analyzer menu options.

These windows can also be displayed and hidden from the debug management control checkboxes shown

below:

Visual Execution Analyzer in Enterprise Architect

Model Driven Development Environment | Debugging 40

-0 p oo [=6= 2z
Eﬂ Scripts : Controls
[57 Calendar
g Controls
= Debugger Windows
4@ Breakpoints & Markers
M iz Call Stack
gz Locals
B4 [R] Watches
[#] Modules
M= Debug Output
B e Memory Viewer
= Analyzer Windows
1] Record & Analyze
5% Profiler
[zz] Warkbench
A&, Search

3.6.5.2 Start & Stop Debugger

3.6.5.3

Debugging Actions - Start & Stop
If Basic Setup| 8™ has been completed, pressing [F6] starts the application using the configured Debugger.

If not, debugging is still possible by using the Attach button on either one of the Debugger toolbars.

To stop debugging, click on the Stop button in the Debug window toolbar, or press [Ctri]+[Alt]+[F6].

Notes:

In most situations, the debugger ends:

e when it encounters breakpoints (which should be set beforehand)
o when the debug process terminates or

¢ when the Java Class thread exits.

However, due to the nature of the Java Virtual Machine, it is necessary at times for Java developers to stop
the debugger manually with the Stop button.

Debug Another Process

Debugging Actions - Debug Another Process
When debugging another process, the Attach To Process dialog is displayed.

You can limit the processes displayed using the radio buttons at the top of the dialog. To find a service such
as Apache Tomcat or ASP.NET, select the System radio button.

You must choose the debugger when you select a process. However, if the selected Package has already
been configured for debugging then the Debugger listed is the one specified in the Script.

© 1998-2010 Sparx Systems Pty Ltd

41

Model Driven Development Environment | Debugging

Debugger: lMicrosoﬂ: Mative v]

Show processes: (@) User

FID

3564
3672
=] 3780
4000
4008
4016
3184
3724
3788
3236
3352
3912
3796

2544
2516

Image

C:\Windows\System32\taskeng. exe
C:\Windows\System32\dwm.exe
Ci\windows\explorer..exe

C:\Program Files\Eset\nod32kui.exe

C:'\Program Files\Windows Sidebar\sidebar. exe
C:\Program Files\MWSnap MW Snap. exe

C:\Program Files'\HelpandManual4\HelpMan. exe
C:\Program Files'\HelpandManual4\HelpMan.exe
C:\Program Files\OpenOffice.org 3'programswriter.exe
C:\Program Files\Sparx Systems\EA\EA.exe

C:\Program Files\WwinMerge\WinMergell. exe
C:\Windows\System32\conime. exe
C:\Windows\System32wuaudt.exe

C:\Program Files\OpenOffice.org 3'\programsoffice.exe
C:\Program Files\OpenOffice.org 3\programisoffice.bin
C:\Program Files\Sparx Systems\EA\SScripter.exe

4

UL

() System () All

Session User Descriptior]
1 SPARXSYSTEMS\smeagher Task Sche
1 SPARXSYSTEMS \smeagher Desktop W
1 SPARXSYSTEMS \smeagher Windows g
1 SPARXSYSTEMS \smeagher NOD32 Co
1 SPARXSYSTEMS\smeagher Windows 9
1 SPARXSYSTEMS \smeagher
1 SPARXSYSTEMS \smeagher Help Man
1 SPARXSYSTEMS \smeagher Help Man
1 SPARXSYSTEMS\smeagher
1 SPARXSYSTEMS \smeagher Enterprise
1 SPARXSYSTEMS \smeagher WinMerge
1 SPARXSYSTEMS \smeagher Console T
1 SPARXSYSTEMS \smeagher Windows
1 SPARXSYSTEMS\smeagher OpenOffic
1 SPARXSYSTEMS \smeagher 0OpenOffic
1 SPARXSYSTEMS \smeagher

| 3

’ Refresh l [OK] ’ Help] ’ Cancel]

Once Enterprise Architect is attached to the process, any breakpoints encountered are detected by the
debugger and the information is available in the Debugger windows.

To detach from a process, click on the Debug Stop button.

3.6.5.4 Step Over Lines of Code

Debugging Actions - Step Over

You can only step over the lines of a function using the Debug toolbar buttons.

When you step to the end of the function, you step back to the caller.

p mfCElozzm L)L) 6=

|

Alternatively, press [Alt]+[F6] or select the Project | Execution Analyzer | Step Over context menu option.

3.6.5.5 Step Into Function Calls

Debugging Actions - Step In

The Step In function is executed by clicking on the Step In button.

-«

oo [E[5z[ez

oo =
[N ===

Alternatively, press [Shift]+[F6] or select the Project | Execution Analyzer | Step In context menu option.

If no source is available for the function then the debugger continues stepping till it either enters a new

Visual Execution Analyzer in Enterprise Architect

Model Driven Development Environment | Debugging 42

function or reaches the next line of the current one.

3.6.5.6 Step Out of Functions

Debugging Actions - Step Out

The Step Out function is executed by clicking on the Step Out button.

#-l0 p o (Eozlt=m)= E

Alternatively, press [Ctrl]+[F6] or select the Project | Execution Analyzer | Step Out context menu option.

If no source is available for the function then the debugger will continue stepping till it either enters a new
function or reaches the

next line of the current one.

3.6.5.7 View the Call Stack

Debugging Actions - View the Call Stack

The Call Stack window shows all currently running threads. A Stack trace is displayed whenever a thread is
suspended, through one of the step actions or through encountering a breakpoint| 37

e A green or yellow arrow highlights the current stack frame

¢ A blue arrow indicates a thread that is running

e Ared arrow indicates a thread for which a stack trace history is being recorded

e Double-clicking a frame takes you to that line of code in the Source Code Editor; local variables are also
refreshed for the selected frame.

; =

- g Thread 1380

----- stepping!0114153h, stepping:wmain, chdeviexamples\steppinghstepping.cppl2
----- stepping!01141603, 55P.CTrace:Run, chdeviexamples\stepping\trace.cppil3

----- stepping!01141ed3, 55P.CTracenFuncd, chdeviexamplesisteppingitrace h:148

----- stepping!01141f43, 55P.CTrace:Funcs, ehdeviexamples\steppingitrace.hil52

----- stepping!01141fa3, 55P.CTracenFunch, chdeviexamples\steppingitrace. hi:156

----- g+ stepping!01142003, 55P.CTracenFunc?, chdeviexamples\stepping\trace.h::160

ug Call Stack ,«_,JL-:u:aIs *| Watches ﬂm-:u:lules

Toolbar

= Save Stack to file
B Generate Sequence diagram from Stack

Bz _ Copy Stack to recording history

- Toggle Stack View

© 1998-2010 Sparx Systems Pty Ltd

43 Model Driven Development Environment | Debugging

- Stop recording

3.6.5.8 View the Local Variables

Debugging Actions - Viewing Local Variables

Whenever a thread encounters a breakpoint| 37, the Locals window displays all the local variables for the

thread at its current stack/ 42" frame.

The value and the type of any in-scope variables are displayed in a tree, as illustrated below:

Yariable Value Type
= Train 031198 CTrain™
3- 3 CTrain
<-4 TObject
. @g Events 0x31€278 void**
¢ Ident 8 int
+V Position CPoint
Q Type TypelsTrain TObjectType
-4 h_thread Oxl6c void*
@ rn_tid 2608 unsigned leng
#-4 MNetwork 01 2F784 Chetwork™
+V Arriving k31 bfcd Cstation™
@ Distance 0 float
Q Capacity 500 int
..¢ Passengers 82 int
r.; Mumber 2 unsigned leng

4 T

Address

D0384£F30

000312198
(0031195
(003119¢
0:0031e1 a0
000311 a4
0031l ac
(00311 b0
000311 b4
000311 b
00031l be
0:0031e1c0
00031l cB
00031l cc
000311 d0

»

m

4 Call 5tack 1-;_,JLcucaIs | Watches ﬂm-:udules

Local variables are displayed with colored box icons with the following meanings:

e Blue Object with members
e Green Arrays

e Pink Elemental types

e Yellow Parameters

e Red Workbench Instance

3.6.5.9 View Content Of Long Strings

Debugging Actions - View Entire Content Of Long Strings

For efficiency, the Locals window only shows partial strings. The size of any variable value displayed in the

window can be up to 256 characters.

To view the entire value of a variable, right-click on it and select the View in Editor context menu option. The

String Viewer dialog displays.

Visual Execution Analyzer in Enterprise Architect

Model Driven Development Environment | Debugging 44

Locals * 0 X
Variable Value Type Address
-y argc 1 int :0020fE0E »
W@ argv 0x953118 wchar™ 000208 be
el X 0 int 0:0020f39¢
B¢ T 0:855d10 55PuCTrace” 00020828
=4 S5P:CTrace (000955410
W m_rect CRect 0:00955d14
¢ members 0858230 int* 0:00955d24 | =
H-¢ m_ptrs (20518 S5PuCPEr 0200955428
-4 m_pBigString 0:8531b8, "ABCDEF... wchar® (0:00855d2c
ey " ABCDEFGHDKLEA] MaNAED LD
__' Faormats Ereak When Variable is Modified
H-§ Strings View Memary at Address | &
“ m_Color Green | View in Editor | I
:-'| — m Copy 3
B3l Locals | (%] Watches | Maodules | Debug ... | Rg @ Help ut
I NI [%= o=z (= == = Jiimm*Debugger SRERE
d @

ARCDEFGHIELMNOPQESTUVWEY Z BCDEFGHITE L MNOPQESTUVWEYT L
BCDEFGHITELMMOPQESTUVWEY Z BCDEFGHIELMMNOPQESTUVWEYE
BCDEFGHITE L MNOPQRSTUVWEY Z BCDEFGHIE L MNOPQRSTUVWEYZ
BCDEFGHITE L MMNOPQRSTUVWEY Z BCDEFGHIETL MNOPQRSTUVWEYZ
BCDEFGHITE L MMNOPQFSTUVWIEY Z BCDEFGHIEL MMNOPQESTUVWEYE
BCDEFGHIELMMNOPQEETUVWEY Z BCDEFGHIELMMNOPQEETUVWEYZ
BCDEFGHIE L MNOPQRSTUVWEY Z BCDEFGHIEL MNOPQRSTUVWEYZ
BCDEFGHIEL MMNOPQFSTUVWIEY Z BCDEFGHIETL MMNOPQESTUVWEYZ
BCDEFGHIELMMNOPQESTUVWEY Z BCDEFGHIEL MNOPQESTUVWEYZ
BCDEFGHIELMMNOPQEETUVWEY Z BCDEFGHIELMMNOPQEETUVWEYZ

[o |

3.6.5.10 View Variables in Other Scopes

Debugging Actions - Viewing the Variables in Other Scopes

The Watches window is most useful for native code (C, C++, VB) where it can be used to evaluate data items
that are not available as Local Variables[43 - data items with module or file scope and static Class member
items.

You can also use the window to evaluate static Class member items in Java and .NET.

© 1998-2010 Sparx Systems Pty Ltd

45 Model Driven Development Environment | Debugging

Watches

this =

Variable Yalue Type

H-ip IpszDefault Oedd 2264, "Default” char®

+-4 IpszCustomn edd2abec, "Custom” char®

+ s lpszMo Oxdd2ab0, "No" char®

+-§ indicators unsigned int[4]
4 I

&2 Locals | Watches e Stack 'Breakpo... Ijﬂecordi... | Modules | Waorkbe... EDebug...

To use the Watches window, type the name of the variable to examine in the field in the window toolbar, and
either press [Enter] or click on the Add new watched item icon.

To examine a static Class member variable in C++, Java or Microsoft .NET enter its fully qualified name. For
example:
CMyClass::MyStaticVar

To examine a C++ data symbol with module or file scope, just enter its name. Note, items are evaluated only if
the package in whose scope the item resides is currently loaded by the process being debugged. If the
debugger is not running, no items are listed.

The names of the items to evaluate persist for the package and user ID, so the next time you debug the same
project, the items evaluate automatically whenever a breakpoint occurs. They do not appear if another user
debugs the same code.

If necessary, you can delete items using the Delete all watched items icon in the toolbar, or the right-click
context menu options inside the window.

3.6.5.11 Inspect Process Memory

Debugging Actions - Inspecting Process Memory Debugging

You can display the raw values at a memory address or for a variable in a window using the Memory Viewer -
select the View Memory at Address context menu option.

Visual Execution Analyzer in Enterprise Architect

Model Driven Development Environment | Debugging 46

Locals * 0 X
Variable Value Type Address
EI{) [0] wchar*[80] 00087711 B
EI{) [0] 0:xB77ed48, "String[0]... wchar* 00087711
ey "String[0][0]" INRTT A2
e 1] 0x878088, "String[0]... wchar* Ereak When Variable is Modified
--0 [2] 08782k, "String[0]... wchar* Wiew Memaory at Address
--0 [3] 0878508, "String[0]... wchar* Copy
- [4] 0878748, "String[0]... wchar*
--0 [5] 0878988, "String[0]... wchar* @ Help
--0 [6] 0xB78bcE, "String[0... wchar* 00877134
--r.;) [71 0xE78e08, "String[0]... wchar® 00877138
The Memory Viewer displays the raw values at a memory address
OxD0BTTEAS € @
Ox(8TTE4S 33 00 74 00 72 00 69 00 6E 00 67 00 3B 00 30 00 3D 00 3B 00 30 S.t.r.i.n.g. [
0x00877ESD 00 5D 00 00 00 CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD T

Ox(08TTET2
Ox(08TTEET
Ox(08TTESC

CDCDCDCDCDCDCDCDCDCDCDCDCD CDCD CDCDCDCDCDCD
CDCDCDCDCDCDCDCDCDCDCDCDCD CDCD CDCDCDCDCDCD
CDCDCDCDCDCDCDCDCDCDCDCDCD CDCD CDCDCDCDCDCD

Ox(8TTEEL
Ox(ETTECE
x(087TTEDE
Ox(087TEFD
Ox(08TTFOS
Ox(087TTFLA
Ox(087TF2F
Ox(087TF44
Ox(8TTF3S
Ox(8TTFEE
Ox(87TTFE3

Ox(8TTFSE

CDCDCDCDCDCDCDCDCDCDCDCDCD CDCD CDCDCDCDCDCD
CDCDCDCDCDCDCDCDCDCDCDCDCD CDCD CDCDCDCDCDCD
CDCDCDCDCDCDCDCDCDCDCDCDCD CDCD CDCDCDCDCDCD
CDCDCDCDCDCDCDCDCDCDCD CDCD CDCD CDCD CD CDCDED
CDCDCDCDCDCDCDCDCDCDCD CDCD CDCD CDCD CD CDCDED
CDCDCDCDCDCDCDCDCDCDCD CDCD CDCD CDCD CD CDCDED
CDCDCDCDCDCDCDCDCDCDCD CDCD CDCD CDCD CD CDCDED
CDCDCDCDCDCDCDCDCDCDCD CDCD CDCD CDCD CD CDCDED
CDCDCDCDCDCDCDCDCDCDCDCDCD CDCD CDCD CDCDCDED
CDCDCDCDCDCDCDCDCDCDCDCDCD CDCD CDCD CDCDCDED
CDCDCDCDCDCDCDCDCDCDCDCDCD CDCD CDCD CDCDCDED
CDCDCDCDCDCDCDCDCDCDCDCDCD CDCD CDCD CDCDCDED

D;Dutput | Qutput Recording History L Ereakpoints & Markers

&}, Search | v Memory View

The Memory Viewer is available for debugging Microsoft Native Code Applications (C,C++,VB) running on
Windows or within WINE on Linux.

3.6.5.12 Break When

a Variable Changes Value

Debugging Actions - Break when a Variable Changes Value

An invalid or uninitialised variable can cause the program behaviour to differ from expected. This tool enables
you to halt execution whenever a certain variable has its value changed.

Note:

This feature is not presently supported by the Microsoft .NET platform.

The example below creates a notification on a variable from the Watches window. The item being watched is
an integer in the SSP namespace scope.

© 1998-2010 Sparx Systems Pty Ltd

a7

Model Driven Development Environment | Debugging

BR
Variable Value Type Address

..... 'Y m 0 int 00114210

Break When Variable is Modified

View Memory at Address
Copy

Delete Watch

Delete All Watches
4 I

| Watches | o Cal il

3.6.5.13 Show Loaded Modules

Debugging Actions - Show loaded modules

The debugger Modules window lists the modules loaded by the process being debugged.

Modules

Path Modified Date Debug Sym... Symbol File Match Symbaol Path Modified Date
nitelll.lll Export,False True

ChWindows\systern32ikernel32.dlI 21/01/2008 2:24 Export,False True

ChBenchmark\Mative\ TwoDLLs\Console.exe 19/01/2009 5:45 PDB,Truelines True ch\Benchmark... 19/01,/2009 5:4¢
ChBenchmark\ Mative, TwoDLLs\Files.dll 19/01/2009 5:45 PDEB,TrugLines True ch\Benchmark... 19/01,/2009 5:4¢

The columns on this window are described below:

Column Use To

Path Determine the file path of the loaded module.

Modified Date Determine the local file date and time the module was modified.

Debug Symbols Establish the debug symbols type, whether debug information is present in the
module and whether line information is present for the module (required for
debugging).

Symbol File Match | Check the validity of the symbol file; if the value is false, the symbol file is out of
date.

Symbol Path Determine the file path of the symbol file, which must be present for debugging to
work.

Modified Date Determine the local file date and time the symbol file was created.

3.6.5.14 Show Output from Debugger

Debugging Actions - Show Output From Debugger

During a debug session the Debugger emits messages detailing both startup and termination of session, to its
Output tab. Details of exceptions and any errors are also output to this tab. Any trace messages such as those
output using Java System.out or .NET System.Diagnostics.Debug are also captured and displayed here.

Visual Execution Analyzer in Enterprise Architect

Model Driven Development Environment | Debugging 48

CQutput

= @

05/08/2009 09::49 Warning: no filters defined for package script; debugger will record every call
05/08,/2002 02::49 Default Directory is Y\Dev! Builds\Test Model Data\Debug & Profile\Microsoft MET
05/08,/2002 0%:43 ¥:\Dev\Builds\Test Model Data\Debug & Profile\Microsoft MET\DelegatesDelegate
05/08/2009 09::49 Debugger CLR runtirme version is v2.0.50727

05/08/2002 02::49 Process created \Device\ Muph\SPARXSYSD2\SparSharel DeviBuildsh Test Madel Data'
05/08/200% 02::49 Debug process in domain DefaultDomain

05/08/2009 09::49 Debug process in domain Delegates?. exe

05/08/2009 09::49 Hello, Al

05/08/2009 09:49 Invoking delegate b

05/08/2009 09::49 Goodbye, B!

3.6.5.15 Debug Tooltips in Code Editors

Debugging Actions - Viewing Variable Values in Code Editors

During debugging, whenever a thread is suspended at a line of execution, you can inspect member variables
in the Editor window.

To evaluate a member variable, use the mouse to move the cursor over the variable in the Editor window, as
shown in the following examples.

public woid Print i)
{
int n = 0;
while (hames[n] . Length = 0)

{ names = {[4] names[0]=book, names[0]=book, names[1]=novel, names[z]=Fim}, }-|
Doocumehit d = few Document THEmes [T+ 7T 7

d_Print();

public woid Print ()

i
int n = 0;
1E'5'11='L-‘L'132-I:uilz signed integer n=0 L oy
{
Document d = new Document (hames[nt+]);
d.Printi);
}
}

© 1998-2010 Sparx Systems Pty Ltd

49

Model Driven Development Environment | Debugging

3.6.6 Recording Actions

This section describes how to perform the following debug recording actions:

o Step through function calls[491
e Create a Sequence diagram of the Call Stack/ 4d"
e Save the Call Stack.[5h

3.6.6.1 Step Through Function Calls

Debugging Actions - Step Through

The Step Through function can be executed by clicking on the Step Through button on the Record & Analyze
window toolbar.

b Elalvods @

Alternatively, press [Shift]+[F6] or select the Project | Execution Analyzer | Step Into context menu option.

The Step Through command causes a Step Into command to be executed. If any function is detected, then
that function call is recorded in the History window. The debugger then steps out, and the process can be
repeated.

This button enables you to record a call without having to actually step into a function. The button is only
enabled when at a breakpoint and in manual recording mode.

3.6.6.2 Create Sequence Diagram of Call Stack

Debugging Actions - Create Sequence Diagram from Current Call Stack

To generate a Sequence diagram from the current Stack, click on the Generate Sequence Diagram of Stack
button on the Call Stack window toolbar.

L

d[&[E 2 = @
- g—= :
T Generate Sequence Diagram of Stack

Generate Sequence Diagram of Stack

----- stepping00a92b4f, stepping::wmainCRT Startup

----- stepping!00a92d08, stepping:_tmainCRTStartup

----- stepping!00a8153hb, steppingwmain, ch\deviexamples\stepping\stepping.cpp:l2
----- stepping00a91603, 55P.CTrace:Run, ch\deviexampleshstepping'trace.cpp:l3

----- stepping00a81ed3, 55P.CTracenFuncd, chdeviexamples\steppingitrace hil48

----- stepping!00a91f43, 55P.CTrace:Funch, chdevexamples\steppingitrace.h:152

----- stepping!00af1fa3, 55P.CTracenFunch, chdeviexamples\steppingitrace.h:156

----- g stepping!00a92008, 55P.CTracezFunc?, chdeviexamples\stepping\trace.h:161

This immediately generates a Sequence diagram in the Diagram View.

Visual Execution Analyzer in Enterprise Architect

Model Driven Development Environment | Debugging 50

3.6.6.3 Saving the Call Stack

Debugging Actions - Saving the Call Stack

On the Call Stack window, you can save the current Stack to file or copy the Stack to the recording history.

© 1998-2010 Sparx Systems Pty Ltd

51

Model Driven Development Environment | Debugging

Call 5tack o x

A % By o

=-- g Thread 00000f2c
----- consolell042cheb, consclenwmain, yhdevbuildsitest model data'\debug & profilehmic
----- consolel0042c84b, CTest:Run, yidevbuilds\test model datatdebug & profile\microsof
----- Files1003637d, CTrace:Print, y\dev\builds\test rodel data\debug & profile\microsoft
----- Tirnes!G402d939, Tirnes: GetTime, yhdevibuilds\test model data\debug & profilemicro
- ge Timesle402d713, 55P.CTimenGetTime, yhdevibuildsitest model datatdebug & profilein

Toolbar

H - Save Stack to file

Bz Copy Stack to recording history

3.7 Searching in Files

This topic describes how to use the File Search[5™ facility.

3.7.1 Search in Files
This topic describes the File Search control.
File Text Searches are provided by the Search Window and from within the Code Editors.

The Search window enables you to search for text in code files and scripts. You can select to display the
results of the search in one of two formats:

e List View - each result line consists of the file path and line number, followed by the line text; multiple lines
from one file are listed as separate entries

Visual Execution Analyzer in Enterprise Architect

Model Driven Development Environment | Searching in Files 52

Search

C\Benchmark = - Window ~ .cpp,.h,.c v Aa ax T8 E S
- ChBenchmark\DotMet\cpp\example_net_1%Forml.h::11, using namespace System:Windows:Forms;

- C\Benchmark\DotMet\cppexample_net_1'\Forml.h:167, private: System:Windows:Forms:Button * buttonl;
- ChBenchmark\DotMet\cpp\example_net_1\Forml.h::170, private: Systern:Windows:Forms:Button * button2;

- C\Benchmark\DotMet\cpp\example_net 1\Forml.h::185, this-> buttonl = new System:Windows:Forms:Button();

- C\Benchmark\DotMet\cpp\example_net 1\Forml.h::187, this-> button2 = new System:Windows:Forms:Button();

- ChBenchmark\DotMet\csharp\Loader\Loader\Forml.h:8, using namespace System:Windows:Forms;

- Ch\Benchmark\DotMet\csharp\Loader\Loader\Forml.h:44, private: System:Windows:Forms:Panel® panell;

- ChBenchmark\DotMet\csharp\Loader\Loader\Forml.h:46, private: System:Windows:Forms:TextBox” textBoxl;
- Ch\Benchmark\DotMet\csharp\Loader\Loader\Forml.h:47, private: Systern:Windows:Forms:Button® buttonl;
- Ch\Benchmark\DotMet\csharp\Loader\Loader\Forml.h::48, private: System:Windows:Forms:Label* labell;

- Ch\Benchmark\DotMet\csharp\Loader\Loader\Forml.h::48, private: System:Windows:Forms:Panel® panel;
4 (1]

- C\Benchmark\DotMet\cppexample_net_1'\Forml.h:18, public __gc class Forml : public System:Windows:Forms:Form

- ChBenchmark\DotMet\cpp\example_net_1'Forml.h::20, private: System:Windows:Forms:CheckedListBox * ThreadList;

- C\Benchmark\DotMet\cpplexample_net_1\Forml.h:171, private: System:Windows:Forms:TextBox ™ ThreadMame;

- C\Benchmark\DotMet\cpp\example_net 1\ Forml.h::186, this-> ThreadMame = new System:Windows:Forms: TextBox();

- C\Benchmark\DotMet\cpp\example_net 1\ Forml.h::188, this-> ThreadList = new System:Windows:Forms:CheckedListBox();

- C\Benchmark\DotMet\cpp\example_net 14 Forml.h::209, this- > button2-» DialogResult = System:Windows:Forms:DialogResult: OK;

- C\Benchmarlk\DotMet\cpp\example_net_1\stdafx.h::7, #define WIN32_LEAN_AND_MEAN// Exclude rarely-used stuff from Windows headers

- ChBenchrark\DotMet\csharp\Loader\Loader\Forml.h:22, public ref class Forml : public SystermzWindows:Forms:Form;

|.m

e Tree View - each result line consists of the file path that matches the search criteria, and the number of
lines matching the search text within that file; you can expand the entry to show the line number and text of

each line.

Search

C\Benchmark = ~ Window ~ .pp,.h,.c ~ o Aa ax == S

G- CoBenchmarkd DotMet\cpphexample_net_1\Forml.h (11)
MBenchmark\DotMet\cpphexample_net_1\stdaf.h (1)

ChBenchmark\DotMet\csharp'\Loader\Loader\Forml.h (19)
Ch\Benchmark\DotMet\csharp\Loader\Loader\Loader.cpp (1)
ChBenchmark\DotMet\csharp\ Threading'\ Threading\Forml.h (68)
ChBenchmark\DotMet\csharp\ Threading'\ Threading\ Threading.cpp (1)
ChBenchmark\Interop\Mative'stdafie.h (8)
ChBenchmark\Interop\ Mative'_Mative_p.c (1)
ChBenchmark\Mative'BenchmarkBench.cpp (1)
ChBenchmark\Mative'BenchmarkBenchDlg.cpp (32)
ChBenchmark\Mative'Benchmark\ProfileDlg.cpp (20)
ChBenchmark\Mative' Benchmarkistdafich (12)
C\Benchmark\Mative\Benchmark\ ToLowerDlg.cpp (10)
ChBenchmark\Mative\C Console\ C-Codelstdafih (2)
C\Benchmark\Mative\Example\Example.cpp (1)
Ch\Benchmark\Mative\Example\stdafx.h (12)
C\Benchmark\Mative NativeClient\Proxy.h (1)
ChBenchmark\Mative\Scripter\Scripter\Scripter.cpp (11)

- C\Benchmark\Mative\ Scripten Scripterstdafi.h (&)

7, #define WIN32_LEAN_AND_MEAN// Exclude rarely-used stuff from Windows headers

m

Search Toolbar

You can use the toolbar options in the Search window to control the search operation. The state of all buttons

persists over time to always reflect your previous search criteria.

C\Benchmark = ~ Window + | pp,.h,c - & ha ax [0 E =

The options, from left to right, are as follows:

Option Use to

Search Path list box Specify the folder to search.

© 1998-2010 Sparx Systems Pty Ltd

53

Model Driven Development Environment | Searching in Files

Option

Use to

You can type the path to search directly into the text box, or click on the folder icon
to browse for the path. Any paths you enter are automatically saved in the
drop-down list, up to a maximum of ten; paths added after that overwrite the oldest
path in the list.

A fixed option in the drop-down list is Search in Scripts, which sets the search to
operate on all local and user-defined scripts in the Scripts tab of the Scripter
window. This option disables the Search File Types list box.

Search Text list box

Specify the text to look for.

You can type the text directly into the text box or click on the drop-down arrow to
select from a previous entry in the list. The search text you enter is automatically
saved in the list when you click on the Search button.

The list box saves up to ten search queries. Search queries added after that
overwrite the oldest query in the list.

Search File Types list
box

Limit the search to specific types of files. You can select multiple file types in a
string, separated by either a comma or a semi-colon as shown in the image above.

Search button

Begin the search.

During the course of the search all other buttons in the toolbar are disabled. You
can cancel the search at any time by clicking on the Search button again.

If you switch any of the toggle buttons below, you must run the search again to
change the output.

Case Sensitivity
button

Toggle the case sensitivity of the search. The tooltip message identifies the
current status of the button.

Word Match button

Toggle between searching for any match and searching for only those matches
that form an entire word. The tooltip message identifies the current status of the
button.

SubFolders button

Toggle between limiting the search to a single path and including all subfolders
under that path. The tooltip message identifies the current status of the button.

Result View button

Select the presentation format of the search results - List View or Tree View
format.

Clear Results button

Clear the results.

Clear Search Criteria
button

Remove all the entries in the Search Path, Search Text and Search File Types
list boxes, if required.

Help button

Display this Help topic.

3.8 Testing Command

This section describes how to create a command for performing unit testing/ 531 on your code.

3.8.1 Add Testing Command

This topic explains how you enter a command for performing unit testing on your code.

The command is entered in the text box using the standard Windows Command Line commands. A sample
script would contain a line to execute the testing tool of your choice, with the filename of the executable
produced by the Build command as the option. To execute this test select the Project | Execution Analyzer |

Test menu option.

Testing could be integrated with any test tool using the command line provided, but in these examples you can
see how to integrate NUnit and JUnit testing with your source code. Enterprise Architect provides an inbuilt

Visual Execution Analyzer in Enterprise Architect

54

Model Driven Development Environment | Testing Command

MDA Transform from source to Test Case, plus the ability to capture xUnit output and use it to go directly to a
test failure. xUnit integration with your model is now a powerful means of delivering solid and well-tested code

as part of the complete model-build-test-execute-deploy life-cycle.

Note:
NUnit and JUnit must be downloaded and installed prior to their use. Enterprise Architect does not include
these products in the base installer.

The Capture Output checkbox enables Enterprise Architect to show the output of the program in the Output
window, while the Output Parser field specifies what format output is expected. When parsing is enabled,
double-clicking on a result in the Output window opens the corresponding code segment in Enterprise

Architect's code window.
Selecting the Build before Test checkbox ensures that the package is recompiled each time you run the test.

Two example test scripts are included below. The first is an NUnit example that shows the Build before Test
checkbox selected. As a result, every time the test command is given it runs the build script first.

Build | Test |Run | Debug | Deploy | Sequence Diagram Remrdingl

Enter your test script below and select the appropriate output parser for the type of testing required

"C:\Program Files\Munitibinynunit-console. exe™ bindebug\customer . exe

[T capture Output Build before Test Cutput Parser: | MUnit - J

Note:
The command listed in this field is executed as if from the command prompt. As a result, if the executable
path or any arguments contain spaces, they must be surrounded in quotes.

The second example is for JUnit. It doesn't have the Build before Test checkbox selected, so the build script
won't be executed before every test, but as a result it could test out of date code. This also shows the use of %
N, which is replaced by the fully namespace-qualified name of the currently selected Class when the script is

executed.

© 1998-2010 Sparx Systems Pty Ltd

55

Model Driven Development Environment | Testing Command

Build | Test |F‘.un | Debug | Deploy | Sequence Diagram Remrdingl

Enter your test script below and select the appropriate output parser for the type of testing required

java junit, texttui. Testrunner ‘5-‘nl"l| -

[] Capture Output [] Build before Test Output Parser: | JUnit v]

3.9 Run Command

This section describes how to create a command for runningl 551 your executable code.

3.9.1 Add Run Command

This topic explains how you enter a command for running your executable.

This is the command that is executed when you select the Project | Execution Analyzer | Run menu option.
At its simplest, the script would contain the location and name of the file to be run.

Note:

Enterprise Architect provides the ability to start your application normally OR with debugging from the same
script. The Execution Analyzer menu has separate options for starting a normal run and a debug run.

The following two examples show scripts configured to run a .Net and a Java application in Enterprise
Architect.

Build | Test | Run |Debug | Deploy I Seqguence Diagram Recording

Enter the path to the compiled application

C:\benchmark\cpplexample_net_1irelease\example.exel

Build | Test | Rum |Debug I Deploy | Seguence Diagram Recording

Enter the path to the compiled application

r:usb:umer|

Visual Execution Analyzer in Enterprise Architect

Model Driven Development Environment | Run Command 56

Note:

The command listed in this field is executed as if from the command prompt. As a result, if the executable
path or any arguments contain spaces, they must be surrounded in quotes.

3.10 Deploy Command

This section describes how to create a command for deploying! 55 the current package.

3.10.1 Add Deploy Command

This topic enables you to create a command for deploying the current package.

These are the commands that are executed when you select the Project | Execution Analyzer | Deploy
menu option.

Write your script in the large text box using the standard Windows Command Line commands.

| Build | Test | Run I Debug | Deploy |5equence Diagram Recording

Enter your script below for deploying the current package

deploy.bat|

© 1998-2010 Sparx Systems Pty Ltd

57

Execution Analysis |

4 Execution Analysis

This section describes the Visual Analysis of executing applications by recording application execution and
generating:

e Sequence Diagrams

e Sequence/State Diagrams

e Profile (execution) Reports

Execution analysis is configured by creating a debug script/ 15 for the packages to be tested. One of the
primary objectives of this feature is to enable you to perform a debug walk-through executing code, and
capture your stack trace for direct conversion into a Sequence diagram. This is a great way to document and
understand what your program is doing during its execution phase.

Execution Analysis debugging and recording are supported for the following platforms / languages:

e Microsoft Windows Native C

e Microsoft Windows Native C++

e Microsoft Windows Visual Basic

e Microsoft .NET Family (C#, J#, VB)
e Sun Microsystems Java.

4.1 Recording Sequence Diagrams

This section explains how to use the Visual Execution Analyzer to record execution data in the form of a
Sequence Diagram. It covers:

e An overview of how the process works! 57

e Setup for recording 5

e Placing recording markers! 66"

e Controlling the recording session| 72

e Generating Sequence diagrams/ 743

e Adding State Transitions. [753

4.1.1 How it Works

The Visual Execution Analyzer enables you to generate a Sequence Diagram. The diagram below illustrates
the output of a Sequence Diagram for a program that calculates the price of books. The diagram creates a
visual representation of the execution of an application, outlining what functions are being called, types of
messages being sent, key data structure used and the relationships between different classes. The diagram
makes it much simpler to Understand how information is moved throughout the system and what values are
being passed by various functions. The first loop structure is executed four times and is being used to add
four books to the book database. The arrows indicate information flow and demonstrate the change of states
over time.

Visual Execution Analyzer in Enterprise Architect

Execution Analysis | Recording Sequence Diagrams S8

Test BookDB astructs PriceTotaller

Book

I
|
. Main) l

BookDB()

-

|
AddBooks(BockDB) |
|
]

[

loop 1 (4} | | i
AddBook(string, string. decimal. bool)

-
J Bookistring, string, decimal, bool)

) i

F'I:H:Escs-F'apl:—rbac:-:EI:}:m{F’r:}cEs&El:}:}(DEII:—g ate)
L

loop 2 (3} ./

PrintTitle{Book)

-

i
|
|
|
|
|
|
|
|
|
Print{string) |
; |
|
|
I
|
|
|
|
|
I

Price Totaller()

Y

B

ProcessPaperbadiBooks(ProcessBookDelegate)
Ll
loop 3 (3] ./
AddBookToTotal{Book) -
-
LI |
| |
| |
| AweragePrice{) :decimal |
. == . >
L | |
| [

A Sequence diagram provides easy to understand visual information including:

e An understanding of how information is passed throughout a system.

e The sequence of various functions and their corresponding parameters.

e A clear understanding of how different classes interact to create behavior.
e A visual overview of how data structures are used to produce results.

If an application crashes, data corruption such as a stack overflow can prevent you from diagnosing and
rectifying the problem. However the Visual Execution Analyzer allows you to record a given execution
sequence and provide a reliable source of information that may further explain why a crash occurred.
Enterprise Architect can record arguments to functions, record calls to external modules or capture state
transitions based on any given constraint. This information can be integrated with existing system knowledge
and test data to optimize code execution, reduce errors and understand why application failure and system
crashes occur.

A Sequence Diagram extends traditional analysis to help identify errors in logic, explain unexpected system
behavior and identify data flow inconsistencies. The Visual Execution Analyzer extends analysis through the
use of a comprehensive array of reports that detail everything from state transitions through to the contents of
the stack at a given time. A Sequence Diagram can convey more detail and provide greater understanding
than reading unfamiliar code that has potentially been written by someone else. It also makes it easier to
document existing code when a Sequence Diagram illustrates functions are being called and the specific
sequence of events that occur to produce a particular type of system behavior.

© 1998-2010 Sparx Systems Pty Ltd

59

Execution Analysis | Recording Sequence Diagrams

4.1.2 Setup for Recording

4121

41.2.2

This section explains how you prepare to record execution of the application. It covers:

e Prerequisites/ 591
e Configuring Recording Detail[59"
o Advanced Technigues! e

Pre-Requisites

Recording is available to users of Enterprise Architect Professional and above.
Basic setup | 8“must be completed.

You should first be able to successfully debug 15°the application.

Configure Recording Detail

The Sequence Diagram Recording tab enables you to set various options for generating Sequence diagrams
from the debugger.

|Build | Test |Run | Debug | Deploy | Sequence Diagram Recording

Options E

w

i

[]Enable Filter

[¥]|record arguments to function calls
[T|record calls to external modules
[¥]record calls to dynamic modules

|:|Ca|:uture state transitions using constraint

m
m
u

[]Enable diagnostic messages

These options are not all available for each platform, as indicated in the following table:

Option .NET Java Native
Enable Filter[60 X X X
Record arguments to function calls| 61 X X X
Record calls to external modules| 68 X X X
Record calls to dynamic modules| 62" X - -
Capture state transitions using constraint/ 75" X X X
Limit auto recording to stack frame threshold| 63 X X X
Enable diagnostic messages| 641 X X X

Visual Execution Analyzer in Enterprise Architect

Execution Analysis | Recording Sequence Diagrams 60

4.1.2.2.1 Enable Filter

If the Enable Filter option is selected on the Sequence Diagram Recording tab, the debugger excludes calls
to matching methods from the generated sequence history and diagram. The comparison is case-sensitive.

To add a value, click on the New (Insert) icon in the right corner of the Filters box, and type in the comparison
string. Each filter string takes the form:

class_name_token::method_name_token

The class_name_token excludes calls to all methods of a Class or Classes having a name that matches the
token. The string can contain the wildcard character * (asterisk). The token is optional.

The method_name_token excludes calls to methods having a name that matches token. The string can
contain the wildcard character *. The token is optional.

Where no Class token is present, the filter is applied only to global or public functions; that is, methods not
belonging to any Class.

To Filter Use Filter Entry
All public functions having a name beginning with Get from the recording - Gett
session (GetClientRect for example in Windows API). h
All methods beginning with Get for every Class member method. - Get
All methods beginning with Get from the Class CClass. CClass-Get*
All methods for Class CClass. .
CClass::*
All methods for Classes belonging to Standard Template and Active Template
ibrari o ATL*
Libraries.
e std*
The specific method GetName for Class CClass. CClass:-GetName

In the Java example in the screen below, the debugger would exclude:

e Calls to OnDraw method for Class Example.common.draw.DrawPane
e Calls to any method of any Class having a name beginning with Example.source.Collection
e Calls to any constructor for any Class (ie: <clint> and <init>).

Build | Test |Run | Debug | Deploy | Sequence Diagram Recording

Options Filters 4
7| Enable Filter Example.common.draw.DrawPane::OnDraw
Example.source. Collection®
Record arguments to function calls Einit®

Record calls to external modules

In the Native code example below, the debugger would exclude:

e Calls made to Standard Template Library namespace
e Calls to any Class beginning with TOb
e Calls to any method of Class CLock

© 1998-2010 Sparx Systems Pty Ltd

61

Execution Analysis | Recording Sequence Diagrams

e Calls to any Global or Public Function with a name beginning with Get
e Calls to the method GetLocation for Class Ctrain.

| Build | Test | Run I Debug | Deploy | Sequence Diagram Recording

Options Filters i X
Enable Filter std™
TOb*
Record arguments to function calls Clock
CTrain::Getlocation
[T Record calls to external modules Lcet*®
Record calls to dynamic modules
Capture state fransitions using constraint

4.1.2.2.2 Record Arguments To Function Calls

When recording the sequence history, Enterprise Architect can record the arguments passed to method calls.

| Buid | Test |Run | Debug | Deploy | Sequence Diagram Recording |_

Options Filters
[| Enable Filter

Record arguments to function calls

When the Record Arguments to function calls option is selected on the Build Script dialog Sequence
Diagram Recording tab, the resulting Sequence diagram shows the values of elemental and string types
passed to the method. See the following Java example.

I 1.0 RentalComposite()

1.1 <init="Ban
Fransisco Aiport”,
.'Esn Fransisco
Airport™, "D&", "18",
20067, "01:107, "06",
.IEEII |2E|[H;|I '12:['["}. 1.2 Eetltinerary[ltinerary}

1.3 getltinerary()

. S, SRR . 58

o

Where the argument is not an elemental type, the type name is recorded instead.

4.1.2.2.3 Record Calls To External Modules

On the Sequence Diagram Recording tab, the Record calls to external modules option causes function calls
to external modules outside the model to be included in the sequence history and generated diagram.

For applications built in a Microsoft Native code (C, C++) you can record calls to the WIN32 API if required,
using the Record calls to external modules option. This option can also be used to record calls to
functions in modules that have a PDB file but for which there is no source.

Visual Execution Analyzer in Enterprise Architect

Execution Analysis | Recording Sequence Diagrams 62

|Build | Test |Run | Debug | Deploy | Sequence Diagram Recording |_

Options Filters
[| Enable Filter
[| Record arguments to function calls

Record calls to external modules

Only calls originating within the model to functions external to the model are recorded.

Note:

External calls are displayed with a blue connector, as shown below.

areferences areferences areferences
ASP default_sspx Example:Servarllass System.Single

I
|
|
| Add{fioat, float) :float

T
1
I
e l
- I
1
: I
ToStrng()]
I e
I T
I I
Subtract{float, float) -float |
™ I
I 1
ToString() I
! s
I]
Muttiply{flost, float) :float ! :
b 1 I
I 1
TaSthing() ol
| oot 5|
I I

This example shows three external calls (ToString()) to the Microsoft .NET framework assembly function
System.Single.

4.1.2.2.4 Record Calls to Dynamic Modules
(Available only for .NET platforms.)

On the Sequence Diagram Recording tab, the Record calls to dynamic modules option causes the
debugger to record execution of dynamic or 'In Memory' function calls, in transitions between normal
assemblies and those emitted dynamically.

© 1998-2010 Sparx Systems Pty Ltd

63 Execution Analysis | Recording Sequence Diagrams

|Buld | Test |Run | Debug | Deploy | Sequence Diagram Recording |_

Options Filters

[| Enable Filter
Record arguments to function calls
[Record calls to external modules

Record calls to dynamic modules

4.1.2.2.5 Limit Auto Recording

Where the Stack window shows recording to be involved in function calls that are not particularly useful, and
that are not being excluded in a filter, you can achieve a quicker and more general picture of a sequence by
limiting the stack depth being recorded. You can do this on the Sequence Diagram Recording tab, by selecting
the Limit auto recording to stack frame threshold: option.

If you use this option, be aware that the threshold value you set is a relative frame count; that is, the count is
relative to the frame at which recording begins. For example:

A breakpoint has occurred, and the Stack window shows five frames. If the stack frame threshold is set
to 3 and you begin auto-recording at this breakpoint, the debugger records all function calls between the
current frame 5 and a maximum stack frame depth of 8 inclusive.

For situations during auto-recording where the stack is very large, it is recommended that you first use a low
stack frame threshold of 2 or 3, gradually increasing it if necessary to expand the picture. You can also use the
threshold to work out which filters you could add to the script in order to further clarify the Sequence diagram
that is ultimately produced.

Build Script

Mame; Calendar

Directory: C:‘\Program Files\BCGSoft\BCGControlBarPro\Examples \BCGPCalendarDemo

| Build | Test | Run | Debug | Deploy | Sequence Diagram Recording
Options

Filters

[T Enable Filter

[rRecord arguments to function calls

[Record calls to external modules
Record calls to dynamic modules

|:| Capture state transitions using constraint
<any >
Lirit auto recording to stack frame threshold

4
["|Enable diagnostic messages

Visual Execution Analyzer in Enterprise Architect

Execution Analysis | Recording Sequence Diagrams 64

4.1.2.2.6 Enable Diagnostic Messages

The Enable diagnostic messages checkbox triggers the debugger to output more self-reporting, diagnostic
messages as it executes. For example, the debugger might output messages about method calls that are
being excluded from the recording history due to a filter also having been set in the Sequence Diagram
Recording tab of the Build Script dialog.

[Buid [Test |Run [Debug [Deploy | Sequence Diagram Recording |

Options Filters

[] Enable Filter

[T1record arguments to function calls

[record calls to external modules
Record calls to dynamic modules

|:| Capture state transitions using constraint

[Limit auto recording to stack frame threshold

Enable diagnostic messages

4.1.2.3 Advanced Techniques

This section describes the advanced techniques for configuring recording detail:

e Recording Activity for a Class/ 64
e Recording Activity for a single method/ 65

4.1.2.3.1 Recording Activity for a Class

In addition to setting breakpoints and markers in the code editor, you record all the operations of a class, or a
subset by using the Class Markup Feature.

This feature is available from the Project Browser context menu while on a Class. Select the operations to
record, choose the marker type and enter a name for the set. When you click on the OK button the markers
are stored as a marker set using the name you specify.

This set can then be loaded either before or during a session.
The marker type specifies the action to take when the process encounters that marker.

e Record function
e Record Stack Trace
e Break execution

You can also specify a recording depth. This limits the recording, which if uncontrolled can ultimately produce
Sequence Diagrams that are too complicated to read. When you specify a depth, the Debugger does not
record beyond this depth.

The depth is relative to the stack depth where the Debugger first encountered the recording marker. So, if the
stack depth is 7 when recording begins, and the Limit Depth is set to 3, the Debugger does not record
beyond a Stack depth of 10.

© 1998-2010 Sparx Systems Pty Ltd

65 Execution Analysis | Recording Sequence Diagrams

‘

8 Class Markup Selection

Add Markers To...
Existing marker set

(@ Mew marker set;

Mame: Calendar Tool3ar

CCalendarBar
-[¥=4 ~CCalendarBar()
-[¥=4 cCalendarBar()
{724 int OnCreate{lLPCREATESTRUCT)
-[¥]=4 void OnPaint()
-{¥]=4 LRESULT OnSelChanged(WPARAM, LPARAM)
--[¥]=% void OnSize{UINT, int, int)
-[¥]=% void UpdateCalendar()

[tndude disabled operations

Marker Type: Func -

Limit recording frame depth: 3 %

| ok || cancel

4.1.2.3.2 Recording Activity for a Single Method

A Method Auto Record| 66 marker enables you to record activity for a particular function during a debug
session. The debugger records any function calls executed after the marker point, and always stops recording
when this function exits. The function marker combines a Start Recording marker and an End Recording
marker in one.

Visual Execution Analyzer in Enterprise Architect

Execution Analysis | Recording Sequence Diagrams 66

185
186
188 BOOL CRecurrenceDlg::0nInitDialog/()
188 EH{

] 190 CBCGPDialog: :OnInitDialog() -
191
192 UINT nMask =
193 CECGPDateTimeCtrl: :DTHM SPIN |
194 CBCGFDateTimeCtrl: :DTM DATE |
145 CBCGPDateTimeCtrl: :DTM TIME |
196 CECGPDateTimeCrrl: : DTHM CHECEBOX |
197 CECGPDateTimeCtrl: :DTHM DROPCALENDAR |
198 CECGPDateTimeCtrl: :DTHM CHECKED;
199
200 UINT nFlags = CECGPDateTimeCtrl::DTM CHECKED | CBCGPDateTimeCtrl::DI
2 :|"_ L L ——
202 Setup date fields:

4.1.3 Place Recording Markers
This section explains how to deploy recording markers:

e Marker types| e
o Setting Recording Markers /[70%

e The Breakpoint and Markers window! 71

e Activate and Disable Markers/ 714

o Working with Marker Sets| 72

o Differences between breakpoints and markers. [72

4.1.3.1 Marker Types

Trace marking is a feature that enables you to silently record code executed between two points, and
incorporate it in a Sequence diagram. The feature also enables you to capture the execution of multiple
threads. It can be particularly useful in capturing event driven sequences (such as mouse and timer events)
without any user intervention.

The recording markers are breakpoints; however, instead of stopping, the debugger behaves according to the
type of marker. If the marker is denoted as a recording start point, the debugger immediately begins to trace
all executed calls from that point for the breaking thread. Recording is stopped again when either the thread
that is being captured terminates or the thread encounters a recording end point.

Recording markers are set in the source code editor. If you right-click on the breakpoint margin at the point to
begin recording, a context menu displays:

© 1998-2010 Sparx Systems Pty Ltd

67

Execution Analysis | Recording Sequence Diagrams

&

C I % N L T L
o I s T o B 3

¢}

Add Breakpoint
Add 5tart Recording Marker

* @exception Throwable

public void finalize ()
= throwse Thrawmahle |

Add End Recording Marker

[© Add Start Recording Marker]

Add Stack Auto Capture Marker

00080

Add Method Auto Record Marker

®

Help

L Cad
]

[RE]

Select the Add Start Recording Marker option,

()i

then right-click on the breakpoint margin at the point to stop

recording and select the Add End Recording Marker context menu option. The markers are shown below:

o 17 private int m delivery;
19 H pubklic ClassLibi(){
20
211
22
23 0 P
24 #
25 * @exception Throwakle
26 [*f
9 27 public void finalize ()

When the debugger is run it continues to run the

thread, recording a stack history, until either the End

Recording marker is encountered or the thread terminates, unlike normal breakpoints where the debugger

halts and displays the line of code.

It is useful to limit the stack depth[3 when recording particularly high-level points in an application, as the
stack frame count can result in too much information being collected. You can limit stack depth using the
Sequence Diagram Recording tab on the Build Script dialog.

Visual Execution Analyzer in Enterprise Architect

Execution Analysis | Recording Sequence Diagrams 68

Build Script

Mame: Calendar

Directory: C:\Program Files\BCGSoft\BCGControlBarProi\Examples \BCGPCalendarDemo

| Build | Test | Run | Debug | Deplay | Sequence Diagram Recording
Options Filters

|| Enable Filter

[[1Record arguments to function calls

[[record calls to external modules
Record calls to dynamic modules

|:| Capture state transitions using constraint
<any:>
Limit auto recording to stack frame threshold

4
|| Enable diagnostic messages

Running this Calendar example with the one function record marker in CRecurrenceDIg::OnlnitDialog()
produced the following output in the Recording History window:

Sequence | Insta... ‘ Method Direction Method

=] 00000001 Call CRecumenceDlg OninitDialog
00000002 CRecumenceDlg.Oninit Dialog Call CBCGPDialog.Oninit Dialog
DO000003 CBCGPDialog Oninit Dialog Call CBCGP Dialog IsVisual ManagerStyle
OOD00004 Retum CBCGP Dialog.Oninit Dialog
0000000 CBCGFPDialog Oninit Dialog Call CBCGP Dialog IsVisualManagerNCArea
00000006 Retum CBCGPDialog. Oninit Dialog
[LLLLEE IR CBCGPDialog Onlinit Dialog Call CBCGP Diglmpl EnableVisualManagerStyle
00000002 CBCGPDIgimpl. EnableVisualManagerStyle Call CBCGPButton Get ThisClass
00000009 Retum CBCGPDlglmpl EnableVisualManagerStyle
DO00D010 CBCGPDIgimpl EnableVisualManagerStyle Call ATL operatar==
OOO00011 Retum CBCGP Diglmpl . EnableVisualManagerStyle
00000012 CBCGPDIgImpl. EnableVisualManagerStyle Call ATL operator==
00000013 Retum CBCGPDlglmpl EnableVisualManagerStyle
0000014 CBCGPDIgImpl EnableVisualManagerStyle Call CBCGPGroup CBCGPGroup
A nnnnnnA s [D =l n] T P PR sl PR T EREES | T P Chda

Stack Auto-Capture Marker

76 /% End - EL generated code for Parts and Portcs #/

T7 J/* Begin - EL generated code for Activities and In
& i poblic void ClassLib ActivityGraphWithhctionPin ()

T {

Ve R s"]

(Native Code only.) Stack markers enable you to capture any unique stack traces that occur at a point in an
application. To insert a marker at the required point in code, right-click on the line and select the Add Stack
Auto Capture Marker context menu option.

Each time the debugger encounters the marker it performs a stack trace. If the stack trace is not in the
recording history, it is copied. The application then continues running. Stack markers provide a quick and

© 1998-2010 Sparx Systems Pty Ltd

69 Execution Analysis | Recording Sequence Diagrams

useful picture of where a point in an application is being called from.

p ¢ B ZalvEHB@
Sequence Instance Method Direction Method In) =
= Q0000001 stepping.__tmainCRTStatup Call stepping wmain

00000002 stepping.wmain Call S5P.CTrace.Run

00000003 55P CTrace.Run Call 55P CTrace Get

OO0 S55P CTrace Get Call S55P CTrace SetRect E

00000005 Retum 55P CTrace Get

00000006 Retum 55P CTrace.Run

00000007 55P CTrace.Run Call 55P CTrace Func3

00000003 55P CTrace.Func3 Call 55P CTrace . SetRect bl

00000005 Retum 55P CTrace Func3

00000010 Retum S55P CTrace.Run

00000011 55P CTrace.Run Call 55P CTrace.Func4

00000012 55P CTrace.Funcd Call 55P CTrace Funch

00000013 55P CTrace.Funch Call 55P CTrace.Funch

00000014 55P CTrace.Funct Call 55P CTrace.Func?

00000015 Retum S5P CTrace Funch -
' 1 | b

@ Breakpoints & ... | i Memory Viewer | Debug Cutput | Q Search |D§Gutput I Record & Analyze

Visual Execution Analyzer in Enterprise Architect

Execution Analysis | Recording Sequence Diagrams 70

areferences CTest areferences areferences areferences sreferences

console CTrace CFile String CBuffer<char>

W 4+ wmaing |
e Ad

T T T T

| | | |

| | | |

| | | |

| | | |

o} CTestiLPCTSTR, TTestType) : : : :

| | | |

C n | | | |

CTrace{} e | i i

| | |

| | |

CFilel) o | | |

| |

S | |

tring() - |

. =0 I

Init{} | |

| | |

| | |

Stringl) ! ! :

| | |

|5 tor= | | |

| eperator=() i o |

L | I I

: | | | | |
M-

Run{} :int o | | | |
| | | |
| | | |

Load() o | | | |
| | |
| | |

Load{) o | : :
| |
operator={} [|
- |
H |
operator wchar_t const it ! :
GetCodePage() | :
| |
! |
CBuffer<char={) o |

I
| |
Tolines() . |
T Lagl

|

4.1.3.2 Setting Recording Markers

Recording markers are set in the source code editor. If you right-click on the breakpoint margin at the point to
begin recording, a context menu displays:

-

* @exception Throwable

&

=1 Mo

pubklic void finalize ()
= throws Thrawmahle |
Add Breakpoint

Add Start Recording Marker

SN L% B % B % R 9

n

Add End Recording Marker [© Add Start Recording r--1arker]

Add Stack Auto Capture Marker
Add Method Auto Record Marker

o Q00e

®
T
®
=]

e)i

L L
-]

(=]

Select the Add Start Recording Marker option, then right-click on the breakpoint margin at the point to stop
recording and select the Add End Recording Marker context menu option. The markers are shown below:

© 1998-2010 Sparx Systems Pty Ltd

1 Execution Analysis | Recording Sequence Diagrams

[+ 17 private int m delivery:
13 H pubklic ClassLibi(){
20
21 [
22
230 SR
24 *
25 * @exception Throwable
2a | *f
] 27 public volid finalize()

When the debugger is run it continues to run the thread, recording a stack history, until either the End
Recording marker is encountered or the thread terminates, unlike normal breakpoints where the debugger
halts and displays the line of code.

4.1.3.3 The Breakpoints and Markers Window
The Breakpoints and Markers window allows you to manage control of the process. Here you can enable,

disable, delete markers and also manage them as sets. You can organize how they are displayed, either in list
view or grouped by file or class.

Breakpoints & Markers x
il oy iy 3 | Mone * (F- 3 -
Enabled Line Source Details

@ 15 ¥ \DeviRoy'Classlib java: 15

O 36 ¥ 4Dev'Roy'Classlib java: 36

@ O 48 ¥ \Dev'Roy'ClassLib java: 48

4.1.3.4 Activate and Disable Markers

To delete a specific breakpoint, either:

o If the breakpoint is enabled, click on the red breakpoint circle in the left margin of the Source Code Editor
¢ Right-click on the breakpoint marker in the editor and select the appropriate context menu option, or
e Select the breakpoint in the Breakpoints & Markers tab and press [Delete].

Whether you are viewing the Breakpoints folder or the Breakpoints & Markers window, you can right-click on
an existing breakpoint and select a context menu option either to delete it or to convert it to a start recording
marker or end recording marker| 66",

You can also delete all breakpoints by clicking on the Delete all breakpoints button on the Breakpoints &
Markers window toolbar (-y).
To disable a breakpoint, deselect its checkbox on the Breakpoints & Markers window or, to disable all

breakpoints, click on the Disable all breakpoints button in the toolbar (s). The breakpoint is then shown
as an empty grey circle. Select the checkbox or use the Enable all breakpoints button to enable it again (

=),

Visual Execution Analyzer in Enterprise Architect

Execution Analysis | Recording Sequence Diagrams 2

4.1.3.5 Working with Marker Sets

Marker sets enable you to group markers into collections.

A set can be used to record a specific Use Case, which might involve the operations of various Classes. Once
a set is created it is saved with the Model. Any other user using the Model has access to that set.

Sets are normally loaded prior to the point at which an action is to be captured. For example, to record a
sequence involving a particular dialog, you might set markers for the areas to record, saving the markers as a
set. When you begin debugging, prior to invoking the dialog you would then load the set. Once you bring up

the dialog in the application, the operations you have marked are recorded. Review the recording history and
create a Sequence diagram.

4.1.3.6 Differences to Breakpoints

Breakpoints differ from Markers in that they always break execution whereas Markers operate silently without
intervention.

4.1.4 Control the Recording Session

414.1

This section describes how you control the recording session:
o Auto Recording /72"
e Manual Recording/ 73

e Pause Recording/ 73
e Resume Recordingl 3%

o Stop Capture.[73

Auto-Recording

Auto-Recording is available when the process being debugged is at a breakpoint.

You can use the record button on the Record & Analyze window toolbar.

|gE|_f ¥

Alternatively, select the thread in the stack window:

Stack o X
A % By =
[=- g¢ Thread 00000508

----- Ethtack, BlgStack Class001:Main, YKDEVKBUlIds.\Test Madel DataiDehug é

=] suto Record
L4 =] Record

Record steps
Generate Sequence [Nagram

Copy Stack To Recording History

Help

© 1998-2010 Sparx Systems Pty Ltd

73

Execution Analysis | Recording Sequence Diagrams

4.1.4.2

4.1.4.3

41.4.4

4.1.4.5

Manual Recording

Manual Recording is available when the process being debugged is at a breakpoint.

Display the Stack window and use the context menu to switch to record mode.

Stack o x

A B Bz
=~ 5= Thread 00000508
----- Ethtack, BlgStack Class001:Main, Y\DE‘V\BUIMS\TEﬂ Madel DataiDehug é

|;| Record
Epd Auto Record

|;| Record
Record steps
Generate Sequence [Nagram

Copy Stack To Recording History

Help

Thereafter you must issue debug commands {Stepin, StepOver, StepOut, Stop} manually.

Each time you issue a step command and the thread stack changes, the sequence of execution is logged.

When you have finished tracing, click on the Stop button (i).

Pause Recording

You can pause recording by using the Pause/Resume Execution button on the Debug window toolbar or in
the Debug Management window ([Alt]+[8]).

Resume Recording

You can resume recording using the Pause/Resume Execution button on the Debug window toolbar or in
the Debug Management window ([Alt]+[8]).

Stop Capture

To stop recording at any time click on the Stop Recording button on the Record & Analyze window toolbar.

p ¢ DLl Ew|vEHBE @

Sequence Direction Method Instance
I Stop Ilecordlng ;
= 00000001 End recording of the current 1B Call CAppointment Dlg OnO K
00000002 g Call CBCGPAppointment . SetAll. .

: ;
00000003 ol L BLn Cal CBOGPAppointment SetAll..

Visual Execution Analyzer in Enterprise Architect

Execution Analysis | Recording Sequence Diagrams 74

4.1.5 Generating Sequence Diagrams
Once you have captured activity and are about to generate the diagram, firstly select a package in the Project

Browser where you intend the Sequence diagram to be stored. Then use the toolbar on the Record & Analyze
window to generate the diagram.

4.1.5.1 The Recording History

All information recorded as a result of the application encountering recording markers set by the user is held in
the Record & Analyze window.

fr) Gl 2= _xﬂ?:'ﬁ

Sequence Instance Method Diirection Method In =
- Q0000001 stepping.__tmainCRTStatup Call stepping wmain

Q0000002 stepping wmain Call S55P CTrace.Run

Q0000003 S55P CTrace.Run Call 55P CTrace Get

00000004 S5P CTrace Get Call S55P CTrace.SetRect =

Q0000005 Retum 55P CTrace Get

00000006 Retum S55P CTrace.Run

Q0000007 55P CTrace.Run Call 55P CTrace Func3

00000003 55P CTrace.Func3 Call 55F CTrace . SetRect

CO000005 Retum S55P CTrace Func3

Q0000010 Retum S55P CTrace.Run

Q0000011 S5P CTrace.Run Call 55P CTrace.Func4d

Q0000012 55P CTrace.Funcd Call 55P CTrace Funch

00000013 55P CTrace.Funch Call 55P CTrace.Funcé

00000014 55P CTrace.Funct Call 55P CTrace.Func?

00000015 Retum 55P CTrace Funcét -
4 0 3
@ Breakpoints & ... Memory Viewer = Debug Cutput Q Search D;Output =l Record & Analyze

The columns in this window are as follows:
e Seqguence - The unique sequence number
Note:

The checkbox against each number is used to control whether or not this call should be used to create a

Sequence diagram from this history. In addition to enabling or disabling the call using the checkbox, you

can use context menu options to enable or disable an entire call, all calls to a given method, or all calls to
a given Class.

e Threads - The operating system thread 1D
e Delta - The elapsed thread CPU time since the start of the sequence

e Method - There are two Method columns: the first shows the caller for a call or for a current frame if a
return; the second shows the function called or function returning

e Direction - Stack Frame Movement, can be Call, Return, State, Breakpoint or Escape (Escape is used
internally when producing a Sequence diagram, to mark the end of an iteration)

e Depth - The stack depth at the time of a call; used in the generation of Sequence diagrams
e State - The state between sequences

e Source - There are two Source columns: the first shows the source filename and line number of the caller
for a call, or for a current frame if a return; the second shows the source filename and line number of the
function called or function returning.

e Instance - There are two Instance columns; these columns only have values when the Sequence diagram
produced contains State transitions. The values consist of two items separated by a comma - the first item
is a unique number for the instance of the Class that was captured, and the second is the actual instance
of the Class.

© 1998-2010 Sparx Systems Pty Ltd

75 Execution Analysis | Recording Sequence Diagrams

For example: supposing a Class CName has an internal value of 4567 and the program created two
instances of that Class; the values might be:

e 4567,1
o 4567,2
The first entry shows the first instance of the Class and the second entry shows the second instance.

4.1.5.2 Generate a Diagram

To generate a Sequence diagram for all history click on the toolbar Create Sequence Diagram icon (IEIE).
To generate a Sequence diagram for a single sequence, select it and then click the toolbar Create Sequence

Diagram icon (IEIE).

4.1.5.3 Diagram Features

The Sequence diagram produced includes the following:
References

When the VEA cannot match a function call to an operation within the model, it still creates the sequence, but
it creates a reference for any Class that it cannot locate. It does this for all languages.

Fragments

Fragments displayed in the Sequence diagram represent loops or iterations of a section(s) of code. The VEA
does its best to match function scope with method calls to as accurately as possible represent the execution
visually.

States

If a State Machine has been used during the recording process, any transitions in State are presented after
the method call that caused the transition to occur. States are calculated on the return of every method to its
caller.

4.1.5.4 Saving Recording

To save a sequence to an XML file, click on the sequence and on the toolbar Save button (=).
To access an existing sequence file, either:

e Click on the toolbar Open icon (l::), or
¢ Right-click on a blank area of the screen and click on the Load Sequence From File context menu option.
The Windows Open dialog displays, from which you select the file to open.

4.1.6 Add State Transitions

This topic describes how to add State Transitions. It covers:

e Setup for Capturing State Changes/ 76"
e The State Machinel 773
e Recording and Mapping State Changes. [784

Visual Execution Analyzer in Enterprise Architect

Execution Analysis | Recording Sequence Diagrams 76

4.1.6.1 Setup for Capturing State Changes

You can generate Sequence diagrams that show transitions in state as a program executes. The illustration
below shows a project that has, in its State Machine, a number of States that correspond to stations in the
Melbourne underground railway system.

areferencexw ainstancex ainstances

Subway CTrain.2 CTrain.1

I

|

|

|

i .

tirmel)
s :

|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

- OnAmival{CStation®) :DWORD

- Disembark({) :DWORD

i GetRandemiint, int) :int

Treasury

1y DA
loop 2 (62} - Embark() :-DWORD

|
| GetRandomiint, int) :int
[
— CnAmival{CStation®) :DWORD

-

— Disembark]) :DWORD
-

i GetRandomiint, int) :int

Central

"

Embari(} :DWORD

GetRandomdint, int) :int

Showing State transitions on your debug-generated Sequence diagrams is optional; you set an option in the
package script associated with the Class for which you intend to record States.

Note:

If you do not have a package script for the Class or package you must create one. Sequence diagrams can
only be generated for a package that has been configured for debug.

Next, you create a State Machine under the Class. On the State Machine you create the State elements that
correspond to any states to be captured for your Class. The debugger evaluates your States by checking
constraints on the States you create. The States on this diagram are then used by the debugger and State
transitions are incorporated into the diagram.

© 1998-2010 Sparx Systems Pty Ltd

77

Execution Analysis | Recording Sequence Diagrams

-l Ly Mative -
+ (B} CoM
+ Elf Paint
= [B] Subway
=) 4 Subway
T3 Subway
+ senumeration» <ancnyrmou|
= CXTrain
‘ft' ¢ DoDatabxchange(CDataE
. @ Stations
- [53) Stations
- 13 Central
- I3 Flinders
- & Lonsdale
- 12 Parliament
- I3 Spencer
- IZ Treasury
4 [l Stations
: CContrelPanel

: Clock -
Fi n I

+

oy

This figure shows the Class CXTrain with a State Machine called Stations. It has a child diagram also called
Stations, on which the States {Central,Flinders,Lonsdale...} are placed.

4.1.6.2 The State Machine

A State Transition diagram can be used to illustrate how States change during the execution of an application.
The Visual Execution Analyzer can build a State Machine to model all the valid system states and explicitly
describe the transitions between each state. The diagram below is a State Machine that shows the different
States within the Melbourne Underground Loop subway system. A train traveling on the subway network can
be stopped at any of the stations represented on the State Machine below.

Melbourne City Subway Loop

Lansdale Flinders

Visual Execution Analyzer in Enterprise Architect

Execution Analysis | Recording Sequence Diagrams 78

This State Machine diagram is a child of the CXTrain Class.

= L-E Mative -
- (B} COM
- |E4 Paint
E| |E] Subway
=) [} Subway
- 3 Subway
=2 «enumerations <anonymoul =
= CXTrain
‘E’{) DoDatabxchange(CDataE
5 @ Stations
- [53) Stations
- I3 Central
- IZ0 Flinders
- 2 Lensdale
- I3 Parliament
- I3 Spencer

- I3 Treasury
@ B Stations
[CControlPanel

[+ Clock -
] 1} | 3

4.1.6.3 Recording and Mapping State Changes

The State Properties dialog below is for the State Parliament. The Constraints tab is open to show how the
State is linked to the Class CXTrain. A State can be defined by a single constraint or by many; in the example
below the State Parliament has two constraints.

© 1998-2010 Sparx Systems Pty Ltd

79 Execution Analysis | Recording Sequence Diagrams

el State : Parliament =
| General | Hequirernents| Caonstraints ||J-n|{5 ISCEﬂEll'ius | Files | Tagged ‘u’alues|
Constrairt :
= | Type: [In'u'ariarrt v]
= | Status: [vamved ,]
B I UM ZiZ %@

Defined Constraints Save Delete

Constraint Type Status
Location=0 Invariant Approved
Departing. Name=FPariament [nvariant Approved

The CXTrain Class has a member called Location of type int, and a member called Departing.Name of type
Cstring.

The values of constraints can only be compared for elemental, enum and string types. What this constraint
means is:

e when an instance of the CXTrain Class exists and

e its member variable Location has the value 0 and

o the member variable Departing.Name has the value Parliament then
o this State is evaluated to true.

Operators in Constraints
There are two types of operators you can use on constraints to define a State:

e Logical operators AND and OR can be used to combine constraints
e Equivalence operators {= and !=} can be used to define the conditions of a constraint.

All the constraints for a State are subject to an AND operation unless otherwise specified. You can use the OR
operation on them instead, so you could rewrite the constraints in the above example as:

Location=0 OR
Location=1 AND
Departing.Name!=Central
Below are some examples of using the equivalence operators:
Departing.Name!=Central AND

Location!=1

Visual Execution Analyzer in Enterprise Architect

Execution Analysis | Recording Sequence Diagrams 80

Note:

Quotes around strings are optional. The comparison for strings is always case-sensitive in determining the
truth of a constraint.

4.2 Unit Testing

JUnit A

MUnIt

Enterprise Architect supports integration with unit testing tools in order to make it easier to develop good
quality software.

Firstly, Enterprise Architect helps you to create test Classes with the JUnit and NUnit transformations (see the
MDA Transformations User Guide). Then you can set upl 8o a test script/ 537 against any package and run[s
it. Finally, all tests results are automatically recorded| 82 inside Enterprise Architect.

4.2.1 Set Up Unit Testing

In order to use unit testing in Enterprise Architect, you must first set it up. This happens in two parts.

Firstly the appropriate tests must be defined[53". Enterprise Architect is able to help with this. By using the
JUnit or NUnit transformations and code generation (see Code Engineering Using UML Models) you can
create test method stubs for all of the public methods in each of your Classes.

The following is an NUnit example in C# that is followed through the rest of this topic, although it could also be
any other .Net language or Java and JUnit.

[TestFixture]
public class CalculatorTest

{

[Test]

public void testAdd(){
Assert.AreEqual(1+1,2);

}

[Test]

public void testDivide(){
Assert.AreEqual(2/2,1);

}

[Test]

public void testMultiply(){
Assert.AreEqual(1*1,1);

}

[Test]

public void testSubtract(){
Assert.AreEqual(1-1,1);

}

}

This code can be reverse engineered into Enterprise Architect so that Enterprise Architect can record all test
results against this Class.

Once the unit tests are set up, you can then set up the Build and Test scripts to run the tests. These scripts
must be set up against a package.

The sample above can be called by setting up the Package Build Scripts/ 12 dialog as follows.

© 1998-2010 Sparx Systems Pty Ltd

81

Execution Analysis | Unit Testing

MName: C# Calculator

Directory: C:\Chlculator E

| Build | Test |Run | Debug | Deploy | Sequence Diagram F‘.er_ordingl

Enter your test script below and select the appropriate output parser for the type of testing required

"C:\program files\Munit'bininunit-console. exe"pin\debug\Calculator . exe

Capture Qutput Build before Test Output Parser: | NUnRit -]

0K Cancel] [Help

If Enterprise Architect is to handle unit testing, it is important that you select the Capture Output checkbox

and select the appropriate Output Parser for the testing. Without doing this you won't see the program output
and therefore you cannot open the source at the appropriate location.

4.2.2 Run Unit Tests

You can run the test script you set up previously, by selecting the Project | Execution Analyzer | Test menu
option.

The following output is generated.

Qutput
MUnit version 2,.2.2

Copwright (C) 2002-2003 James W', Mewkirk, Michael C, Two, Alexei A, Yoronksow, Charlie Poole,
Copyright () 2000-2003 Philip Craig.
all Rights Reserved,

05 Version; Microsoft Windows MT 5,1,2600.0 MET Version: 1.1.4322.573
F
Tests run; 4, Failures: 1, Mot run: O, Time: 0.031 seconds

Failures:
1) Calculakor Test, kestSubtract
expecked; <0=
but was: 1=
at MUnit Framework, Equaldsserter FaillMotEqual()
ak MUt Framework,Equalfsserter, Assert)

at CalculatorTest. kestSubtrack!) in s\ SimpleCalculatorC S Calculakor Tesk . cs:line 23
Test completed with exit code 1

H 4 kK System .~ Script.| Build 1 LLLJ

Notice how NUnit reports that four tests have run, including one failure. It also reports what method failed and

the file and line number the failure occurred at. If you double-click on that error, Enterprise Architect opens the
editor to that line of code.

Visual Execution Analyzer in Enterprise Architect

82

Execution Analysis | Unit Testing

Source Code

FE B8 BEa 3058 5]A

20
21 [Test]
22 Hdpublic woid testSubtract() {
23 Lzgert.AreEqual (1-1,1);
24 T }
25 T

L I

This enables you to quickly find and fix the error.

Enterprise Architect also records the run status of each test as described in Record Test Results| &2,

4.2.3 Record Test Results

Enterprise Architect is able to automatically record all results from tests by a testing script/ 80 in Enterprise
Architect. In order to use this feature, you just reverse engineer the test Class (see Code Engineering Using

UML Models) into the package containing your test script.

Once your model contains your test Class, on the next run of the test script| 81 Enterprise Architect adds test
cases to the Class for each test method found. On this and all subsequent test runs all test cases are updated
with the current run time and if they passed or failed as shown in the following illustration.

Calculator Test

testAdd() : void
testDivide() : void
testhMultiphy() : void
testSubtract() : void

+

test scripts
Unit: : [Pass) testAdd
Unit: : (Pass) testDivide
Unit: : (Pass) testMultiply
Unit: : {Fail) testSubtract

The error description for each failed test is added to any existing results for that test case, along with the
current date and time. Over time this provides a log of all test runs where each test case has failed. This can
then be included in generated documentation and could resemble the following.

Failed at 05-Jul-2006 1:02:08 PM
expected: <0>
but was: <1>

Failed at 28-Jun-2006 8:45:36 AM
expected: <0>
but was: <2>

4.3 Profiling Native Applications

The Visual Execution Profiler enables you to quickly report on:

e The most frequently called functions in a running application
e Tasks in an application that are taking more time than expected
e Which functions are taking the most time in an application.

The Profiler, or sampler, is available in the Enterprise Architect Professional, Corporate, Business and
Software Engineering, System Engineering and Ultimate editions.

© 1998-2010 Sparx Systems Pty Ltd

83

Execution Analysis | Profiling Native Applications

Note:

The Profiler only works with MS Native Windows applications, but can be used under WINE (Linux and Mac)
to debug standard Windows applications deployed in a WINE environment.

Profiler

O | R T B
Itern

=+ Summary

: Target

PID

Session
Functions
Modules

Current sarnpling time
Mazx sampling time

Mean idle time
= Threads

Thread: 740
Thread: 3784
Thread: 1192
Thread: 2888
Thread: 284

q

- @

MFC.exe
1300

1

226

32
0.0191

1.7289
Sampled Processed Tirme
260 260

The Profiler can generate a report that shows how these functions are called in relation to the application, as

illustrated below:

H =
Stack
=~ Thread: 2848
& wWinMainCRTStartup
E| __tmainCRTStartup
- wWinMain
&- CMFCApp:Initinstance

&

E| CBCGPMDIFrameWnd::LoadFrame
2 CMainFrame:OnCreate
= CMainFrame:OnApplook
& CBCGPVisualManager:SetDefaultManager
- CBCGPTabbedControlBar:ResetTabs
& CBCGPVisualManager:Getlnstance
= CBCGPVisualManager2010:0nUpdateSysternColors

CBCGPVisualManager2010:5etStyle

= CBCGPVisualManager2007:5etResourceHandle

& CBCGPVisualManager2010:OnUpdateSystemColors

= CBCGPTagManager:ExcludeTag

i mfca0ud

. BCGCBPRO1100ud90

- CBCGPControlRenderer:Create

=~ CBCGPTagManager:ReadControlRenderer

E| CBCGPTagManager:ParseControlRenderer

: E| CBCGPControlRenderer:Create

E| CBCGPToolBarlmages:LoadStr

- CBCGPPnglmage:Load

: CBCGPPnglmage:LoadFromBuffer
: ATL:CImage:Load

=~ ATL:CImage:CreateFromGdiplusBitmap
- Gdiplus:Bitmap:LockBits
- ATL:CImagenGetPitch

Inclusive Hits | Hits

276
273
273
273
273
264
255
212
212
205
205
204
203
200
200
85
84
1
32
62
56
43
48
46
43
35
17
15
2

Inclusive Hi...

100%
99%
99%
99%
99%
96%
92%
1%
1%
T4%
T4%
4%
T4%
2%
2%
3%
30%
0%
12%
22%
20%
18%
17%
17%
16%
13%
6%
5%

1%

m

Visual Execution Analyzer in Enterprise Architect

Execution Analysis | Profiling Native Applications 84

See Also
o Profiler System Requirements| &4
e Profiler Operation| s

4.3.1 System Requirements

Prerequisites

The Profiler window! 851 becomes available when a model is opened. Options| 851 on the Profiler window
toolbar enable you to attach to an existing process or launch a new application if a Package Script been
specified.

Supported Platforms

Enterprise Architect supports profiling on native Windows applications (C, C++ and Visual Basic) compiled
with the Microsoft™ native compiler where an associated PDB file is available. Select Microsoft Native from
the list of debugging platforms in your package script.

The Profiler can sample both Debug and Release configurations of an application, providing the PDB for each
executable exists and is up to date.

4.3.2 Getting Started

The Profiler window can be accessed by selecting the View | Execution Analyzer | Profiler menu option, or
by selecting it from the Analysis Windows folder on the Debugger window ([Alt]+[8]). The toolbar options are
explained in the table below.

The Profiler operates by taking samples of a process at intervals of up to 250 milliseconds. At these intervals
the Profiler interrupts the process and collects stack information for all threads running at that time. This
information is sent back to Enterprise Architect where it is collected sorted and and stored.

You can Pause and Resume profiling at any time during the session. You can also clear any sample data
collected and begin again.

If you stop the Profiler and the process is still running, you can quickly attach to it again.

Icon Use to
-+ (When an application is configured for the package)l8?) create the Profiler process, which
launches the configured application.
< Profile an application that is already running.
% When the application is running, pause and resume sample capture. Pausing sampling enables

the Report and Erase buttons.
1L

o Stop the Profiler process. If any samples have been collected, the Report button is enabled.

Generate a report! 823 on the current number of samples collected.

5 = | Setthe interval, in milliseconds, at which samples are taken of the target process. The range of
possible values is 1 - 250.

Set Profiler options, using a drop-down menu. The options are:
o Load Report from Disk - load and display a previously-generated report from an xml disk file

o Package Build Scripts ([Shift]+[F12]) - display the Build Script/12" dialog to enable creation or

© 1998-2010 Sparx Systems Pty Ltd

85 Execution Analysis | Profiling Native Applications

Icon Use to

editing of package scripts and debug configuration

e Start Sampling Immediately - begin sample collection immediately upon either process start
(main thread entry point executed) or attachment of process by Profiler

e Capture Debug output - capture any appropriate debug output and redirect it to the Enterprise
Architect Output window

e Stop Process on Exit - select to terminate the target process when the Profiler is stopped.

Erase the collected data.
[

Display the Help topic for this window.

4.3.3 Start & Stop the Profiler

For most debugging operations it is necessary to have first configured a Package Script that typically defines
the application to build, test and debug as well as sequence recording options.

It is possible to use the Profiler without doing any of this by using the Attach to Process button.

If the Application to Profile is the one defined in the current Package, use the Launch button.

+ O 2 L -
> (When an application is configured for the package) 82 create the Profiler process, which
launches the configured application.
< Profile an application that is already running.
o Stop the Profiler process.

4.3.4 Profiler Operation
Enterprise Architect creates a Profiler process whenever you click on the Launch or Attach to Process

button on the Profiler window toolbar. This process operates by collecting samples from the stacks of every
thread in the target process.

class Profiler

EA Profiler Target Application

uflows uflowe

The sampler process exits if you click on the Stop button, if the target application terminates, or if you close
the current model.

You can turn sample collection on and off at any time during a session. When sampling is turned on or
resumed, the Profiler process becomes active and samples are collected from the target. Resuming sampling
collects completely new samples.

Visual Execution Analyzer in Enterprise Architect

Execution Analysis | Profiling Native Applications 86

The Profiler process idles if sampling is turned off or paused during a session. The Report and Erase buttons
then become enabled.

Click on the Report button to produce a call graph summary similar to that in the Visual Execution Profiler[82"
topic. This report can be saved to file.

Click on the Erase button to discard any samples currently collected for the target.

4.3.5 Setting Options

Interval

5 = | Setthe interval, in milliseconds, at which samples are taken of the target process. The range of
possible values is 1 - 250.

Set Profiler options, using a drop-down menu. The options are:

e Start Sampling Immediately - begin sample collection immediately upon either process start
(main thread entry point executed) or attachment of process by Profiler

e Capture Debug output - capture any appropriate debug output and redirect it to the Enterprise
Architect Output window

e Stop Process on EXxit - select to terminate the target process when the Profiler is stopped.

4.3.6 Save and Load Reports

The Profiler Reports can be saved in either binary format or xml format. Save the report using the toolbar
above the report (Stack) view.

H=:
Stack Inclusive Hits | Hits | Inclusive Hi... | HitsS
= Thread: 2848 276 100% -
=8 wWinMainCRTStartup 273 99%
= _tmainCRTStartup 273 99%
= wWinMain 73 99%
=8 CMFCApp:Initinstance 273 99%
- CBCGPMDIFrameWnd::LoadFrame 264 96%
- CMainFrame:OnCreate 255 92%
=8 CMainFrame:OnApplook 212 7%
=% CBCGPVisualManager:SetDefaultManager 212 1%
2 CBCGPTabbedControlBar:ResetTabs 205 T4%
=8 CBCGPVisualManager:Getlnstance 205 4% L
=8 CBCGPVisualManager2010:OnUpdateSystemColors 204 4% 3
- CBCGPVisualManager2010:5etStyle 203 4%
=8 CBCGPVisualManager2007:5etResourceHandle 200 2%
= CBCGPVisualManager2010:OnUpdateSystemColors 200 12%
=8 CBCGPTagManager:ExcludeTag 85 31%
- mfc90ud 84 30%
.. BCGCBPRO1100ud90 1 1 0%
+- CBCGPControlRenderer:Create 32 12%
=8 CBCGPTagManager:ReadControlRenderer 62 22%
— CBCGPTagManager:ParseControlRenderer 56 20%
. B CBCGPControlRenderer:Create 43 18%
CBCGPToolBarlmages:LoadStr 48 17%
CBCGPPnglmage:Load 46 17%
=8 CBCGPPnglmage:LoadFromBuffer 43 16%
- ATL:CImage:Load 35 13%
. ATL:CImage:CreateFromGdiplusBitmap 17 6%
- Gdiplus:Bitmap:LockBits 15 5%
+- ATL:CImage:GetPitch 2 1 1%

To load a report use the Profiler Toolbar Options button d -

option.

and select the Load Report From Disk

© 1998-2010 Sparx Systems Pty Ltd

87

Execution Analysis | Profiling Native Applications

Profiler D
b ol e @2 =
Itern
=+ Summary
Target MFC.exe
----- FID 1300
----- Session 1
Functions 226
Modules 32
Current sarnpling time 0.0191
----- Mazx sampling time
----- Mean idle time 17289
=+ Threads Sampled Processed Tirme
- Thread: 740 260 260

Thread: 3784
Thread: 1192
Thread: 2888
.. Thread: 284

4.3.7 Save Report in Team Review

You can save any current report as a resource for a Category, Topic or Post in the Team Review. The report
can then be shared and reviewed at any time as it is saved with the model.

[T

Mo current diagram v X CDe
¥y & | <Curent Model> = 2 | @
= o o CDe
e T
L e = :E Profiles
Call Stack Inclusive Hits Hits Inclusive Hi... Hits% New Topic
= Thread: 1456 14 100% : Mew Topic from Template
=8 _DlIMainCRTStartup
Rename [F2)
=8 _DiiMainCRIStartup _-- _
fj _CRTINIT 4 Copy Path To Clipboard
B _initterm 4 ;_q% Show Contents
E| “dynamic initializer for 'afx.. 3 21 e — T — | p—— i
& AFX_GLOBAL DATA:A.. 3 215 ackage from Current Mode are Resource
S AfCiloadLibrary 2 149 | Image of Adtive Diagram Refresh Category ‘Profiles’
=) kernel32 2 14% GUE GIGETR O HEET | Reload Current Connection
P - ntdll 2 1 145 Image from Clipboard)
: - AFX_GLOBAL_DAT... 1 7% | Add Active Profiler Report] »
[“dynamic initializer for 'g_b... 1 7% A
- DliMain 2 14% Fg Connectians..
- AfsloadlangResourceDLL 2 14% Options...
= _AfxLoadLangDLL 1 7%)
_____ kemel22 1 7% Delete Category 'Profiles’
=3 C:ActivationContext::Create 1 T% il @ Help..
H Lrmwum = 27 1 T

4.4 Object Workbench

This section describes the Object Workbench:

e How it works| e

e Workbench variables| &8

o Create Workbench Variables|&d
e Invoke Methods. [90"

Visual Execution Analyzer in Enterprise Architect

Execution Analysis | Object Workbench 88

4.4.1 How it Works

The Workbench is a tool in Enterprise Architect Debugging, enabling you to create your own variables |89 and
invoke methods| e on them. Stack trace can be recorded and Sequence diagrams produced from the
invocation of such methods. It provides a quick and simple way to debug your code.

Platforms Supported
The Workbench supports the following workbench platforms:

e Microsoft .NET (version 2.0 or later)
e Java (JDK 1.4 or later)
Note:

The Workbench does not currently support the creation of Class instances written in native C++, C or VB.

Mode
The Workbench operates in two modes:

Idle mode
When the Workbench is in idle mode, instances can be created and viewed and their members inspected.

Active mode

When methods are invoked on an instance, the Workbench enters Active mode, and the variables displayed
change if the debugger encounters any breakpoints. If no breakpoints are set, then the variables do not
change. The Workbench immediately returns to Idle mode.

Logging

The results of creating variables and the results of calls on their methods are displayed in the Debug Output
window.

4.4.2 Workbench Variables

You can create (and delete) workbench variables from any Class in your model. When you do so, you are
asked to name the variable. It then displays in the Workbench window. It shows the variable in a hierarchy,
displaying its type and value and those of any members.

© 1998-2010 Sparx Systems Pty Ltd

89 Execution Analysis | Object Workbench

Workbench x
Varable Value Type il
-l @ FRob MyClassLibrany CRobert
=l ¢ MyClasslibrary CPerson

§ Averagefge 0 float

§ FrendCount 1 int

& Age 2 int

-| & Friends MyClass Librany CPerson[]

H [0 MyClassLibrany CPerson

& Town "Daylesford"” String

& MName "Robert" String

§ occupation "Programmer” String
-l & Fred MyClassLibrany CFred £

= ¢ MyClasslibrary CPerson

§ Averagehge 0 float

§ FrendCount 0 int

& Age 2 int

+ § Friends 1

& Town "hepbum™ String

§ MName “Fred" String

§ occupation "Programmer” String

Workbench Requirements
o NET framework version 2 is required to workbench any .NET model.
o The package from which the variable is created must have a debugger configured (see the Debug Tab/ 153

topic).
Constraints (.NET)

e Members defined as struct in managed code are not supported.
¢ Classes defined as internal are not supported.

Delete Workbench Variables

You can delete variables using the Delete shortcut menu on any instance on the Workbench. If all instances
are deleted the debugger is shut down, and the Workbench window is closed.

4.4.3 Create Workbench Variables

Right-click on the required Class node in the Project Browser and select the Create Workbench Instance
context menu option, or press [Ctrl]+[Shift]+[J]. The menu option is also available from within a Class
diagram.

Naming the Workbench

When you elect to create an instance of a type Enterprise Architect prompts you with the \Workbench dialog to
name the variable. Each instance name must be unique for the workbench.

Visual Execution Analyzer in Enterprise Architect

Execution Analysis | Object Workbench 90

MName
Willizm

Value

MyClassLibrary.CPerson

Create | [Help][Cancel

Choosing a Constructor
Having given the variable a name, you must now choose which constructor to use.

If you do not define a constructor, or define a single constructor taking no arguments, the default constructor
or the defined constructor is automatically invoked.

Otherwise the following dialog displays. Select the constructor from the drop-down list and fill in any
parameters required.

Willam(MyClassibray:Chers Ol -
J
i

CPerson(MyClassLibrary, CPerson)
CPerson(string,string,int)

I Invoke ” Help ” Cancel

4.4.4 Invoke Methods

On the Workbench window, right-click on the instance on which to execute a method, and select the Invoke
context menu option.

Workbench x
Varable Value Type
§ FRob WMyClassLibrary CRobert
§ Fred MyClassLibrary. CFred
§ John MyClassLibrary. CPersan
= ill MyClassLibrary. CPersan

& Invoke float

L Delete irt

S Invoke int

o Reset warkbench Upgrade Wizard 0

6 | @ Help Elmuwn" String

i o eknown' String

§ occupation "Programmer" String

© 1998-2010 Sparx Systems Pty Ltd

o1 Execution Analysis | Object Workbench

Choose Method

A list of methods for the type are presented in a dialog. Select a method from the list and click on the Invoke
button. Note that all methods listed are public; private methods are not available.

Rob({MyClassLibrary:CRobert)
nt AddFriend(MyClassLibrary. CPerson E

bool Findistrini i

int AddFriend(MyClassLibrary. CPerson

int AddFriends(MyClassLibrary. CPerson[])
int CreateFriends(int)

bool Find(string[])

float GetAverage()

bool IsFriend(MyClassLibrary.CPerson)
void main(string[])

& |string Occupation()

void Runistrina[])

void Set(string,int)

int SetAge(int)

void SetAverage(float)

void SetMame(string)

String SetTown{string)

void Test(string)

Supply Arguments

In this example, you have created an instance or variable named Rob of type MyClassLibrary.CRobert, and
have invoked a method named AddFriends that takes an array of CPerson objects as its only argument. What
you now supply to it are the three other Workbench instances Fred, John and William.

Visual Execution Analyzer in Enterprise Architect

Execution Analysis | Object Workbench 92

Workbench = r
Vanable Value Type
¥ @ Rob MyClassLibrary CRobert -
+ § Fred yClassLibrany CFred
+ ¢ John MyClassLibrary CPerson
=l Wiliam MyClassLibrary CPerson

i Ayemasbo [Hinat

& Fl Rob{MyClassLibrary:CRobert} eS|

o 2 int AddFriend(MyClassLibrary. CPerson) -

+

g 1 My ClassLibrary.CPerson Fred,John, Williarn

G N

é o

Invoke][Help H Cancel

Arguments

In the dialog above, type any parameters required by the constructor.

e Literals as arguments
e Text: abc or "abc" or "a b c"
e Numbers: lorlb5

e Objects as arguments

If an argument is not a literal then you can supply it in the list only if you have already created an
instance of that type in the workbench. You do this by typing the name of the instance as the
argument. The debugger checks any name entered in an argument against its list of workbench
instances, and substitutes that instance in the actual call to the method.

e Strings as arguments
Surrounding strings with quotes is unnecessary as anything you type for a string argument becomes
the value of the string; for example, the only time you should surround strings with quotes is in

supplying elements of a string array, or where the string is equal to the name of an existing
workbench instance.

"Abc"
"ab$%64"
Abcd
As57)2===
e Arrays as arguments
Enter the elements that compose the array, separated by commas.

Type Arguments
String][] one,two,three,"a book","a bigger book"
CPerson(] Tom,Dick,Harry

© 1998-2010 Sparx Systems Pty Ltd

93 Execution Analysis | Object Workbench

Note:

If you enter text that matches the name of an existing instance, surround it in quotes to avoid the debugger
passing the instance rather than a string.

void SetMame (string) -
string "Bill"
Invoke] [Help] [Cancel
Invoke

Having chosen the constructor and supplied any arguments, click on the Invoke button to create the variable.
Output confirming this action is displayed in the QOutput tab| 47,

Visual Execution Analyzer in Enterprise Architect

Index 94

Index

.NET
ASP, Debug 32
Debug 29

Debug Another Process 40

Debug Assembly 30

Debug CLR Versions 31

Debug With COM Interop Process 32
Debug, System Requirements 16
Set Up Debug Session 30

_A -

Activate Recording Markers 71
Analyzer Windows
From the Debug Window 35
Apache Tomcat
Server Configuration 28
Server, Debugging 25
Service Configuration 29
Applets
Java, In Internet Browsers, Debug 23
ASP .NET

Debug 32
Assembly
Debug 30

Attach To Process Dialog 40
Automatic Recording

Execution Analysis, Recording Sequence
Diagrams 72

_B -

Breakpoint
Delete 37
Difference From Recording Marker 72
Disable 37
Enable 37
Management 37
Set For Modifiable Data 38
SetIn Code 38
States 37
Storage 38
Breakpoints And Markers Window 71
Build Script
Create 12

Deploy Script, Create 56

Enable Diagnostic Messages, Sequence
Diagram Recording Tab 64

Enable Filter, Sequence Diagram Recording Tab
60

Filters 60

Limit Auto Recording, Sequence Diagram
Recording Tab 63

Options, Sequence Diagram Recording Tab 59

Record Arguments To Function Calls, Sequence
Diagram Recording Tab 61

Record Calls To Dynamic Modules, Sequence
Diagram Recording Tab 62

Record Calls To External Modules, Sequence
Diagram Recording Tab 61

Recursive 14

Run Script, Create 55

Test Script, Create 53

Wildcard in Filter 60
Build Scripts

Introduction 12

_C-

C++
Debug Symbols 20
Set Up Debug Session 19
Call Stack
Copy To Recording History 50
Create Sequence Diagram 49

Save 50
View 42
Window 42

Capture State Changes
Setup To, Visual Execution Analyzer 76
CLR Versions
Debug .NET 31
Code
Breakpoint, Set 38
Debug, Step Into Function Calls 41
Debug, Step Out Of Functions 42
Debug, Step Over Lines 41
Debug, Step Through Function Calls 49
Code Breakpoint
Set 38
Code Editor, Common
Debug Tooltips 48
Tooltips, Debug 48
COM Interop
Debug .NET 32
Command
Deploy, Create 56

© 1998-2010 Sparx Systems Pty Ltd

95

Index

Command
Deploy, Introduction 56
Run, Create 55
Run, Introduction 55
Unit Test, Create 53
Unit Test, Introduction 53
Configuration
Apache Tomcat Server 28
JBOSS Server 27
Tomcat Server 28
Tomcat Service 29
Control Recording

Execution Analysis, Recording Sequence
Diagrams 72

Create
Build Script 12

D -

Data
Breakpoint, Set 38
Data Breakpoint

Set 38
Debug
.NET 16,29

.NET Assembly 30

.NET CLR Versions 31

.NET With COM Interop Process 32
Another .NET Process 40

ASP NET 32

Break On Variable Changing Value 46
Create Sequence Diagram, Call Stack
Deploy Script, Create New 56
Deploy Script, Introduction 56

File Search, Introduction 51

File Search, Use 51

Inspect Process Memory 45

Java 16,21

Java Applets In Internet Browsers 23
Java Web Servers 25, 29

Java, Advanced Techniques 22
Java, General Setup 21

On Windows 7 And Windows Vista 17
Platforms 16

Recording Actions 49

Run Script, Create New 55

Run Script, Introduction 55

Save Call Stack 50

Script Search 51

Search Window 51

Show Loaded Modules 47

Show Output 47

Step Into Function Calls 41
Step Out Of Functions 42
Step Over Lines Of Code 41
Step Through Function Calls 49
Tooltips In Code Editor 48
Under Windows Vista 16
Unit Test Script, Create 53
Unit Test Script, Introduction 53
View Call Stack 42
View Local Variables 43
View Local Variables, Long Values
View Variables In Other Scopes
WINE Applications 18
Debug Session
Debug C++ 19
Java, Attach ToVM 22
Microsoft Native Setup 19
SetUp 15
SetUp For .NET 30
Set Up For Microsoft Native 19
Debug Symbols
Debug C++ 20
Microsoft Native 20
Debugger
Actions 15
Debug Another Process 40
Detatch From Process 40
Execution Analysis 57
Frameworks 15
How It Works 15
Introduction 15
On Windows 7 And Windows Vista
Overview 15
Process 15
Start 40
Stop 40
System Requirements 16
Debugger Windows
From the Debug Window 35
Debugging Actions 39
Deploy Command
Create 56
Introduction 56
Deploy Script
Create 56
Introduction 56
Dialog
Attach To Process 40
DIB Data Access Violation 18
Disable Recording Markers 71

44

43

17

Visual Execution Analyzer in Enterprise Architect

Index 96

“E -

EA
Execution Analyzer, Introduction 4
Enable Diagnostic Messages

Build Script, Sequence Diagram Recording Tab
64

Enable Filter

Build Script, Sequence Diagram Recording Tab
60

Execution Analysis
Add State Transitions 75

Automatic Recording, Record Sequence
Diagrams 72

Breakpoints And Markers Window, Record
Sequence Diagrams 71

Control Recording, Record Sequence Diagrams
72

Diagram Features, Generate Sequence
Diagrams 75

Difference Between Recording Marker And
Breakpoint 72

Generate Sequence Diagram 74, 75
Introduction 57

Manual Recording, Record Sequence Diagrams
73

Marker Types, Record Sequence Diagrams 66
Object Workbench, Create Variables 89
Object Workbench, Introduction 87

Object Workbench, Invoke Methods 90
Object Workbench, Overview 88

Object Workbench, Variables 88

Pause Recording, Record Sequence Diagrams
73

Place Markers, Recording Sequence Diagrams
66

Platforms 57

Profiler Operation 85
Profiler Report, Load 86
Profiler Report, Save 86

Profiler Report, Save As Resource In Team
Review 87

Profiler Toolbar 84

Profiler, Attach To Process 85
Profiler, Getting Started 84
Profiler, Launch 85

Profiler, Overview 82

Profiler, Prerequisites 84
Profiler, Set Options 86

Profiler, Set Sample Intervals 86
Profiler, Start 85

Profiler, Stop 85

Profiler, Supported Platforms 84
Profiler, System Requirements 84
Record Activity For Class 64
Record Activity For Method 65

Record Sequence Diagrams, Advanced
Techniques 64

Record Sequence Diagrams, Enable Filter 60
Record Sequence Diagrams, Introduction 57
Record Sequence Diagrams, Overview 57
Record Sequence Diagrams, Prerequisites 59

Record Sequence Diagrams, Recording Options
59

Record Sequence Diagrams, Set Up 59
Record Unit Test Results 82
Recording History 74

Recording Markers, Activate, Record Sequence
Diagrams 71

Recording Markers, Disable, Record Sequence
Diagrams 71

Resume Recording, Record Sequence Diagrams
73

Run Unit Test 81
Save Recording History 75

Sequence Diagrams, Enable Diagnostic
Messages 64

Sequence Diagrams, Limit Auto Recording 63

Sequence Diagrams, Record Arguments To
Function Calls 61

Sequence Diagrams, Record Calls To Dynamic
Modules 62

Sequence Diagrams, Record Calls To External
Modules 61

Set Recording Markers, Record Sequence
Diagrams 70

Set Up To Capture State Changes 76
State Machine Diagram 77
State Transition Diagram 77

Stop Recording, Record Sequence Diagrams
73

Team Review, Save Profiler Report As Resource
87

Unit Test Script, Create 80

Unit Test, Record Results 82
Unit Testing, Introduction 80
With Enterprise Architect 57

Work With Marker Sets, Record Sequence
Diagrams 72

Execution Analyzer

Introduction 4

Execution Profiler

Attach To Process 85
Getting Started 84
Launch 85
Operation 85

© 1998-2010 Sparx Systems Pty Ltd

97

Index
Execution Profiler Debug 21
Overview 82 Debug Session, Attach To VM 22
Prerequisites 84 Debug, System Requirements 16
Report, Example 82 General Debug Setup 21
Report, Load 86 Web Servers, Debugging 25
Report, Save 86 JBOSS
Report, Save As Resource In Team Review 87 Server Configuration 27
Set Options 86 Server, Debugging 25
Set Sample Intervals 86
Start 85
Stop 85 - I— -

Supported Platforms 84

] Limit Auto Recording to Stack Frame Threshold
System Requirements 84

Build Script, Sequence Diagram Recording Tab

Team Review, Save Report As Resource 87 63
Toolbar 84 Loaded Modules
Show In Debugger 47
- F - Local Variables
View 43
Eile Search View Long Values 43
Introduction 51 Locals Window 43
List View 51 View Long Values 43

Search Window, Debugging 51

Toolbar 51 _ M _

Tree View 51
Use 51 Manual Recording
Function Execution Analysis, Recording Sequence
Step Out Of 42 Diagrams 73
Function Call Map State Changes
StepInto 41 Visual Execution Analyzer 78
Step Through 49 Marker
Storage 38
_ G _ Marker Management
Debugger 37

Marker Sets
Work With 72
MDDE
Advanced Debug Techniques, Java 22
Available Tools 7
Basic Setup 8

Generate Sequence Diagram
Execution Analysis 74, 75

Generate Sequence Diagrams
Diagram Features 75

- I - Breakpoint Management 37
Build Script, Create 12
Internet Browser Applets Build Script, Introduction 12
Java, Debug 23 Code Editors 11
Invoke Debug .NET 29
Method, Object Workbench 90 Debug .NET Assembly 30
Debug .NET CLR Versions 31
- J - Debug .NET With COM Interop Process 32
Debug Apache Tomcat Server Configuration
Java 28]]
Advanced Debug Techniques 22 Debug Apache Tomcat Windows Service 29
Applets In Internet Browsers, Debug 23 Debug ASP .NET 32

Debug Java 21

Visual Execution Analyzer in Enterprise Architect

Index 98

MDDE Debug .NET With COM Interop Process 32
Debug Java Applets In Internet Browsers 23 Debug Apache Tomcat Server Configuration
Debug Java Web Servers 25 28
Debug JBOSS Server Configuration 27 Debug Apache Tomcat Windows Service 29
Debug Symbols, C++ And Native Applications Debug ASP .NET 32
20 Debug Java 21
Debugger Frameworks 15 Debug Java Applets In Internet Browsers 23
Debugger System Requirements 16 Debug Java Web Servers 25
Debugger, Overview 15 Debug JBOSS Server Configuration 27
Default Script, Set 11 Debug Symbols, C++ And Native Applications
External Tools 8 20
For C++ Applications 19 Debugger Frameworks 15
For Microsoft Native Applications 19 Debugger System Requirements 16
For WINE Applications 18 Debugger, Overview 15
General Debug Setup, Java 21 Default Script, Set 11
General Workflow 8 External Tools 8
Generate Code 11 For C++ Applications 19
Getting Started 7 For Microsoft Native Applications 19
Java Debug Session, Attach ToVM 22 For WINE Applications 18
Limitations 6 General Debug Setup, Java 21
Marker Management 37 General Workflow 8
Model Driven Development Environment 4 Generate Code 11
Overview 6 Getting Started 7
Package Build Scripts, Manage 9 Introduction 4
Pin/Unpin A Package 11 Java Debug Session, Attach To VM 22
Prerequisites 7 Limitations 6
Recursive Builds 14 Marker Management 37
Script Actions, Define 10 Overview 6
Set Up Debug Session 15 Package Build Scripts, Manage 9
Set Up Debug Session For .NET 30 Pin/Unpin A Package 11
Supported Environments 6 Prerequisites 7
Synchronize Code 11 Recursive Builds 14
UAC-Enabled Operating Systems 17 Script Actions, Define 10
Workspace Layout 8 Set Up Debug Session 15

Memory Viewer Set Up Debug Session For .NET 30
Window 45 Supported Environments 6

Method Synchronize Code 11
Invoke, Object Workbench 90 UAC-Enabled Operating Systems 17

Microsoft Native Workspace Layout 8
Debug Symbols 20 Modules
Set Up Debug Sessions 19 Window 47

Model Driven Development Environment
Advanced Debug Techniques, Java 22 - O -

Available Tools 7

Basic Setup 8 Object Workbench

Breakpoint Management 37 Constraints 88

Build Script, Create 12 Introduction, Visual Execution Analyzer 87
Build Script, Introduction 12 Invoke Method 90

Code Editors 11 Modes 88

Debug .NET 29 Overview, Visual Execution Analyzer 88
Debug .NET Assembly 30 Platforms Upported 88

Debug .NET CLR Versions 31 Requirements 88

© 1998-2010 Sparx Systems Pty Ltd

99

Index

Object Workbench
Workbench Variables, Constructors 89
Workbench Variables, Create 89
Workbench Variables, Delete 88
Output
Debugger, View 47
Debugger, Window 47
Overview
Visual Execution Analyzer 2

_P-

Package

Pin/Unpin, Visual Execution Analyzer 11
Package Build Scripts

Manage, Visual Execution Analyzer 9
Pause Recording

Execution Analysis, Recording Sequence
Diagrams 73

Place Recording Markers

Execution Analysis, Recording Sequence
Diagrams 66

Process Memory
Inspect 45
Profiler
Attach To Process 85
Getting Started 84
Launch 85
Operation 85
Overview 82
Prerequisites 84
Report, Example 82
Report, Load 86
Report, Save 86

Report, Save As Resource In Team Review 87

Set Options 86

Set Sample Intervals 86

Start 85

Stop 85

Supported Platforms 84

System Requirements 84

Team Review, Save Report As Resource 87
Toolbar 84

R -

Record & Analyze Window 74
Record Activity For Class

Execution Analysis, Record Sequence Diagram
64

Record Activity For Method

Execution Analysis, Record Sequence Diagram
65

Record Arguments To Function Calls

Build Script, Sequence Diagram Recording Tab
61

Record Calls To Dynamic Modules

Build Script, Sequence Diagram Recording Tab
62

Record Calls To External Modules

Build Script, Sequence Diagram Recording Tab
61

Record Sequence Diagrams
Automatic Recording 72
Control Recording 72
Execution Analysis, Advanced Techniques 64
manual Recording 73
Pause Recording 73
Resume Recording 73
Stop Recording 73
Record State Changes
Visual Execution Analyzer 78
Recording Actions
Create Sequence Diagram, Call Stack 49
Debugger, Overview 49
Debugger, Step Through Function Calls 49
Save Call Stack 50
Recording History
Save, Execution Analysis 75
Recording Markers
Activate, Execution Analysis 71

Breakpoints And Markers Window, Execution
Analysis 71

Difference From Breakpoint 72

Disable, Execution Analysis 71

Marker Types, Execution Analysis 66

Place, Execution Analysis 66

Set, Execution Analysis 70

Work With Marker Sets, Execution Analysis 72
Recursive Builds

Visual Execution Analyzer 14
Resume Recording

Execution Analysis, Recording Sequence
Diagrams 73

Run Command

Create 55

Introduction 55
Run Script

Create 55

Introduction 55

Visual Execution Analyzer in Enterprise Architect

Index 100

For .NET 30
_ S _ State Changes
Capture, Execution Analysis 76
Map, Visual Execution Analyzer 78
Record, Visual Execution Analyzer 78
Set Up To Capture, Execution Analysis 76
State Machine Diagram
Execution Analysis 77
In Visual Execution Analyzer 77

Script
Default, Set In Visual Execution Analyzer 11
Deploy, Create 56
Deploy, Introduction 56
Run, Introduction 55
Search 51

Unit Test, Create 53 State Tran_sition3 _

Unit Test, Introduction 53 Add, Visual Execution Analyzer 75
Script Actions Step Intol

Define, Visual Execution Analyzer 10 Function Calls 41
Scripts Step Out .Of

Build 12 Functions 42
Search Step .Over

Debugger File Search 51 Lines Of Code 41

File, Introduction 51 Step Through

Function Calls 49

Stop Recording

Execution Analysis, Recording Sequence
Diagrams 73

Scripts 51
Sequence Diagram

Diagram Features, Generate Sequence
Diagrams 75

Generate From Debugger Call Stack 49
Generate From Recording, Execution Analysis - T -

74
Generate In Execution Analysis 57 Team Review
Generate, Execution Analysis 75 Save Profiler Report As Resource 87
Recording History, Execution Analysis 74 Test
Save Recording History, Execution Analysis 75 Unit, In Execution Analysis 80
Sequence Diagram Recording Tab Unit, Record Results In Execution Analysis 82
Build Script, Options 59 Unit, Run In Execution Analysis 81
Sequence Recording Option 59 Unit, Set Up In Execution Analysis 80
Advanced Techniques 64 Test Script
Enable Diagnostic Messages 64 Introduction 53
Enable Filter 60 Junit 80
Limit Auto Recording 63 NUnit 80
Record Activity For Class 64 The Debug Window 35
Record Activity For Method 65 Tomcat
Record Arguments To Function Calls 61 Server, Configuration 28
Record Calls To Dynamic Modules 62 Server, Debugging 25
Record Calls To External Modules 61 Service Configuration 29
Server Toolbar
Apache Tomcat, Debugging 25 (File) Search, Debugging 51
JBOSS, Debugging 25
Tomcat, Debugging 25
Server Configuration = U =
JBOSS 27
Tomcat 28 UAC .
Service Configuration .And Debugging 17
Tomcat 29 Unit Test Co.mmand
Set Up Introduction 53

Debug Session 15 Unit Test Script

© 1998-2010 Sparx Systems Pty Ltd

101

Index

Unit Test Script

Create 53

Unit Testing

Create Test Scripts, Execution Analysis 80
Define Tests, Execution Analysis 80
Introduction, Execution Analysis 80

Junit 80

NUnit 80

Record Test Results, Execution Analysis 82
Run, Execution Analysis 81

Set Up, Execution Analysis 80

_V -

Variable

Debug, Break On Change In Value 46

Visual Execution Analyzer

Access 3
Add State Transitions 75
Advanced Debug Techniques, Java 22

Automatic Recording, Record Sequence
Diagrams 72

Availability 2

Break On Variable Changing Value 46
Breakpoint Management 37
Breakpoint Storage 38

Breakpoints And Markers Window, Record
Sequence Diagrams 71

Build Script, Create 12

Control Recording, Record Sequence Diagrams
72

Create Sequence Diagram, Call Stack 49
Debug .NET 29

Debug .NET Assembly 30

Debug .NET CLR Versions 31

Debug .NET With COM Interop Process 32
Debug Another Process 40

Debug Apache Tomcat Server Configuration
28

Debug Apache Tomcat Windows Service 29
Debug ASP .NET 32

Debug Java 21

Debug Java Applets In Internet Browsers 23
Debug Java Web Servers 25

Debug JBOSS Server Configuration 27
Debug Symbols, C++ And Native Applications
20

Debugger Frameworks 15
Debugger System Requirements 16
Debugger Windows, Display 39
Debugger, Overview 15
Debugging Actions 39

Deploy Script, Create New 56
Deploy Script, Introduction 56

Diagram Features, Generate Sequence
Diagrams 75

Difference Between Recording Marker And
Breakpoint 72

Execution Analysis, Introduction 57
File Search, Introduction 51

File Search, Use 51

For C++ Applications 19

For Microsoft Native Applications 19
For WINE Applications 18

General Debug Setup, Java 21
Generate Sequence Diagram 74, 75
Inspect Process Memory 45

Java Debug Session, Attach ToVM 22

Manual Recording, Record Sequence Diagrams
73

Map State Changes 78

Marker Management 37

Marker Storage 38

Marker Types, Record Sequence Diagrams 66
MDDE Basic Setup 8

MDDE External Tools 8

MDDE, Build Scripts 12

MDDE, Code Editors 11

MDDE, Default Script, Set 11

MDDE, Generate Code 11

MDDE, Package Build Scripts, Manage 9
MDDE, Script Actions, Define 10

MDDE, Synchronize Code 11

Object Workbench, Create Variables 89
Object Workbench, Introduction 87
Object Workbench, Invoke Methods 90
Object Workbench, Overview 88

Object Workbench, Variables 88
Outputs 2

Overview 2

Pause Recording, Record Sequence Diagrams
73

Pin/Unpin A Package 11

Place Markers, Recording Sequence Diagrams
66

Profiler Overview 82
Record Activity For Class 64
Record Activity For Method 65

Record Sequence Diagrams, Advanced
Techniques 64

Record Sequence Diagrams, Enable Filter 60
Record Sequence Diagrams, Introduction 57
Record Sequence Diagrams, Overview 57
Record Sequence Diagrams, Prerequisites 59

Visual Execution Analyzer in Enterprise Architect

Index 102

Visual Execution Analyzer

Record Sequence Diagrams, Recording Options
59

Record Sequence Diagrams, Set Up 59
Record State Changes 78

Record Unit Test Results 82

Recording Actions 49

Recording History 74

Recording Markers, Activate, Record Sequence
Diagrams 71

Recording Markers, Disable, Record Sequence
Diagrams 71

Recursive Builds 14

Resume Recording, Record Sequence Diagrams
73

Run Script, Create New 55
Run Script, Introduction 55
Run Unit Test 81

Save Call Stack 50

Save Recording History 75
Script Search 51

Search Window 51

Sequence Diagrams, Enable Diagnostic
Messages 64

Sequence Diagrams, Limit Auto Recording 63

Sequence Diagrams, Record Arguments To
Function Calls 61

Sequence Diagrams, Record Calls To Dynamic
Modules 62

Sequence Diagrams, Record Calls To External
Modules 61

Set Code Breakpoint 38
Set Data Breakpoint 38

Set Recording Markers, Record Sequence
Diagrams 70

Set Up Debug Session 15

Set Up Debug Session For .NET 30
Set Up To Capture State Changes 76
Show Loaded Modules 47

Show Output 47

Start Debugger 40

State Machine Diagram 77

State Transition Diagram 77

Step Into Function Calls 41

Step Out Of Functions 42

Step Over Lines Of Code 41

Step Though Function Calls 49
Stop Debugger 40

Stop Recording, Record Sequence Diagrams
73

Structure 4

Tooltips In Code Editor 48
UAC-Enabled Operating Systems 17
Unit Test Script, Create 53, 80

Unit Test Script, Introduction 53

Unit Test, Record Results 82

Unit Testing, Introduction 80

Uses Of 3

View Call Stack 42

View Local Variables 43

View Local Variables, Long Values 43
View Variables In Other Scopes 44

Work With Marker Sets, Record Sequence
Diagrams 72

Workspace Layouts 8

Visual Execution Profiler

Attach To Process 85

Getting Started 84

Launch 85

Operation 85

Overview 82

Prerequisites 84

Report, Example 82

Report, Load 86

Report, Save 86

Report, Save As Resource In Team Review 87
Set Options 86

Set Sample Intervals 86

Start 85

Stop 85

Supported Platforms 84

System Requirements 84

Team Review, Save Report As Resource 87
Toolbar 84

Visual Execution Sampler

Attach To Process 85

Getting Started 84

Launch 85

Operation 85

Overview 82

Prerequisites 84

Report, Example 82

Report, Load 86

Report, Save 86

Report, Save As Resource In Team Review 87
Set Options 86

Set Sample Intervals 86

Start 85

Stop 85

Supported Platforms 84

System Requirements 84

Team Review, Save Report As Resource 87
Toolbar 84

Attach To In Java Debug Session 22

© 1998-2010 Sparx Systems Pty Ltd

103

Index

W -

Watched Items
Debugger 44
Watches Window 44
Break On Variable Changing Value 46
Web Server
Java, Debug 25
Window
Breakpoints And Markers 71
Call Stack 42, 48
Debug 35
Locals 43
Locals, View Long Values 43
Memory Viewer 45
Modules 47
Output, Debugger 47
Record & Analyze 74
Search, Debugging 51
Watches 44

Watches, Break On Variable Changing Value
46

Workbench 88
Windows

Service, Apache Tomcat 29
Windows 7

Use Debugger 17
Windows Vista

Use Debugger 17
WINE

Debugging 18

DIB Data Access Violation 18
Workbench Variables

Constraints 88

Constructors 89

Create 89

Delete 88

Requirements 88
Workbench Window 88
Workspace Layout

For Execution Analysis 8

Visual Execution Analyzer in Enterprise Architect

Visual Execution Analyzer in
Enterprise Architect

www.sparxsystems.com

	Visual Execution Analyzer
	Access and Use the Visual Execution Analyser
	Structure of the Visual Execution Analyzer
	Model Driven Development Environment
	Getting Started With The MDDE
	Prerequisites
	Available Tools
	Workspace Layout
	General Workflow

	Basic Setup
	Managing Scripts
	Defining Script Actions
	Setting the Default Script

	Code Generation and Synchronization - Safeguards
	Code Editing For MDDE
	Build
	Add Commands
	Recursive Builds

	Debugging
	How it Works
	Setup for Debugging
	Operating System Specific Requirements
	UAC-Enabled Operating Systems
	WINE Debugging

	Microsoft C++ and Native (C, VB)
	Debug Symbols

	Java
	General Setup for Java
	Advanced Techniques
	Attach to Virtual Machine
	Internet Browser Java Applets

	Working with Java Web Servers
	JBOSS Server
	Apache Tomcat Server
	Apache Tomcat Windows Service

	.NET
	General Setup for .NET
	Debug Assemblies
	Debug - CLR Versions
	Debug COM Interop
	Debug ASP .NET

	The Debug Window
	Breakpoint and Marker Management
	How Markers are Stored
	Setting Code Breakpoints
	Setting Data Breakpoints

	Debugging Actions
	Displaying Windows
	Start & Stop Debugger
	Debug Another Process
	Step Over Lines of Code
	Step Into Function Calls
	Step Out of Functions
	View the Call Stack
	View the Local Variables
	View Content Of Long Strings
	View Variables in Other Scopes
	Inspect Process Memory
	Break When a Variable Changes Value
	Show Loaded Modules
	Show Output from Debugger
	Debug Tooltips in Code Editors

	Recording Actions
	Step Through Function Calls
	Create Sequence Diagram of Call Stack
	Saving the Call Stack

	Searching in Files
	Search in Files

	Testing Command
	Add Testing Command

	Run Command
	Add Run Command

	Deploy Command
	Add Deploy Command

	Execution Analysis
	Recording Sequence Diagrams
	How it Works
	Setup for Recording
	Pre-Requisites
	Configure Recording Detail
	Enable Filter
	Record Arguments To Function Calls
	Record Calls To External Modules
	Record Calls to Dynamic Modules
	Limit Auto Recording
	Enable Diagnostic Messages

	Advanced Techniques
	Recording Activity for a Class
	Recording Activity for a Single Method

	Place Recording Markers
	Marker Types
	Setting Recording Markers
	The Breakpoints and Markers Window
	Activate and Disable Markers
	Working with Marker Sets
	Differences to Breakpoints

	Control the Recording Session
	Auto-Recording
	Manual Recording
	Pause Recording
	Resume Recording
	Stop Capture

	Generating Sequence Diagrams
	The Recording History
	Generate a Diagram
	Diagram Features
	Saving Recording

	Add State Transitions
	Setup for Capturing State Changes
	The State Machine
	Recording and Mapping State Changes

	Unit Testing
	Set Up Unit Testing
	Run Unit Tests
	Record Test Results

	Profiling Native Applications
	System Requirements
	Getting Started
	Start & Stop the Profiler
	Profiler Operation
	Setting Options
	Save and Load Reports
	Save Report in Team Review

	Object Workbench
	How it Works
	Workbench Variables
	Create Workbench Variables
	Invoke Methods

