@ ENTERPRISE

Code Engineering Using UML
Models

Enterprise Architect is an intuitive, flexible and powerful UML
analysis and design tool for building robust and maintainable
software.

This booklet describes the code engineering facilities of
Enterprise Architect.

SIPARX

SYSTEMS

Copyright © 1998-2010 Sparx Systems Pty Ltd

Enterprise Architect - Code Engineering Using UML Models

© 1998-2010 Sparx Systems Pty Ltd

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this document
or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be
liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or
indirectly by this document.

Printed: May 2010

Special thanks to:
Publisher

All the people who have contributed suggestions, examples, bug
reports and assistance in the development of Enterprise Architect.
The task of developing and maintaining this tool has been greatly
enhanced by their contribution.

Sparx Systems

Managing Editor
Geoffrey Sparks

Technical Editors

Geoffrey Sparks
Simon McNeilly
Vimal Kumar
Henk Dekker

Contents |

Table of Contents

Foreword

Code Engineering 2

Reverse Engineering

Import Source Code

Notes on Source Code Import 6
IMPOIt @ DIFECTONY STFUCKUIEeiiiiiiiie ettt ettt b ettt ettt e s bt e et e sbe e et e e e beeereenineenes 8
IMPOTt BINAY MOGUIE ...t b ettt e s bt ena e esbe e et e e e be e ebeesineenes 9
MDG Integration and Code ENQGINEEIINGccuiiiiiiiiiiiiieiet ettt sbe e 10
Classes NOt FOUNd DUFING IMPOIT ...oo.iiiiiiiiii ettt et e e be et e e 10
Synchronize Model and Code 10
GENEIAtE SOUICE COOE ...eeiiiiiiiiiie ittt ettt ettt e e st e e e st b e e e snbbe e e e s snbeeeeesnbbeeeesanes 12
GeNErate @ SINGIE CIASSoiiiiiiitiiiiie ettt et e st e et nae et et e an e b e e e e 13
Generate a Group of Classes 14
GENETALE 8 PACKAGEviiiiiiiiiet ettt et he e bt e e e et eshb e e it e e nae et et e neeebeenaneennne 15
Update Package Contents 16
NAIMESPACES ...ooeeiiee ittt et e et e e ettt e e ket e e aa bt e e et e e e e as s et e e s s e e e s aEe e e e e abe e e e e nasr e e e e sneeenannneeennree 17
Code Generation From Behavioral MOAEIS ... 19
SW Code Generation - State Maching DIAQIamScuuiiiiiiiieiiiee ettt ee e s ibe e e sareeesnees 19
Java Code Generated From State Maching DIagram..........c.eeieiuuiieiiiiieeiiiie ettt 20
State Machine MOdeliNG FOP HDLScoouiiiiiiiii etttk et e e atb e e e st e e e s sbe e e e annneeeanres 23
Code Generation - INtEraCtion DIAGIAMSc.uiiiiiiiieiiiie e ee et e e et et e e e s stee e e e ssbreaessbeeesssbeeeaanneeesnnres 26
Code Generation - ACHIVILY DIGQIAMSuiiiiiiiiieiitiie et ee et ettt et e e s tb e e e e stee e e e sssbeaessbeeesssbeeeaanneassnres 27
Code ENGINEEring SEtHNGSuuiiiiiiiiiiiiiii ettt e e e e e e s e e e e e e e e e e e annees 32
SOUICE COAE ENQGINEEIING ..oouviiitiiiiieeiiie ittt ettt ettt ettt ae e ab e rae e et e et e e et e e sab e e eab e e san e e beeebneebeesnneeanne 32
SOUICE COUE OPTIONS...c.ttieiteeitee ettt ettt ettt ettt eea ettt e e bt e e bt e ea bt e ebb e e eab e e abe e e be e e bt e aabeeesbeennbeenaneennnes 32
IMPOrt COMPONENT TYPES...ciiiiiieeiiiiee ettt e st e e st et e e s r e e e ss e e e s aneeeeesnneeesanns 33

(@] 0] 110 a I Ofe o [o) (o] £ TSP U PP TP TP 34
OPLONS - OBJECE LIfELIMEScoiiiiiieii ettt et 35
OPLiONS - AttHDULE/OPEIALIONSeeeeitii ittt ettt et nees 36
Code Page fOr SOUICE EQItiNGuueeiiieiieiiiieeeiiieeesieieeeseeeeeseaeeestaeeeessaeeeesssaeeessteeeessseeeesnsnseesnssesesnnnes 37
[IoTot: |l == 1 o T O PO TP P U RTOPPRP 38
(o Tor= VI = Ui E= 3 -1 Lo o USRS URSRY 39
(=TT [E= Vo L= Y= T o P PUPT O PPRP 39
S COIECTION CIASSES ...ttt ettt ae ek et b e sab e s ab e e nae e et e e nneebeesaneennne 41
(BT aTe [To [@] o) 1 o] a1 TR U O T PO OO P P RURTOPP 42
yaXel o] RSYol 4] o] L@ o] 110] 0 KT TS PPV PP PSP OPPOPRON 43

AdA 2005 OPLIONS.eeieieiie ettt a et b e sa e b bt e h ekt e b e bt e et e na bt e ehe e e nn e e nne e teeenn 43

O3 @] o] 170] KOOSO U PP PPPTPPPP 44

(052 0] o] ([0 o TP ST PTOTPPU PP TPPTRPPOP 45

(02 @] o 1o 3 OO U PP PPPRPPOP 46
(D=1 o] o TR @] o] 110] 0 TN TPV U PO PR OURPPRPTPN 47
DEIPNT PrOPEITIES. ...ttt ht e bt b et ettt e b st e bt 48

JAVA OPTIONS. ..tttk bttt ettt eh bRt E e bbbt e h bt na bt e abe e e nr e e nne e e teeenn 51

PHP OPtIONS. ...ttt ettt h ekt b et bttt h e e hb e nh ettt e e 51
PYENON OPtIONS ...ttt h e bttt b e et nh et 52

53 1S 1 [@] o 1101 O OO OTTU PP TPPTPPO 53
V4= L= @ o] 1T] T P O PSP P PO PP PR OPPOPRON 54
V2=][To J @ 011 o] 4 L T OO PPV OPPOPRION 55

V4 | @] o] 11e] o T O OOV PP PSP TOPPROPRON 56
VISUAI BASIC OPTIONS.eeiuiieiiiietee ittt ettt ettt st b e e ab e ekt ettt e bt e et e e ess e e eab e e abe e e snneennneebeeanne 57
MDG Technology Language OPtiONS............eeiiiiueiiiieaiie ittt ettt ettt ettt e b nbe e 58

© 1998-2010 Sparx Systems Pty Ltd

Il Contents

Reset Options..........cccc.c.....
Code Template Framework

(070T0 ST =14 4To] F= 1 =TT PP T PO PP OVRUPPRUPRIN 61
Base Templates 62
The Code TEMPIAE EQITONoiiiiiiii ettt bbb eneneeaiee e 64
Synchronize Codecccceeueee. ... 66
SYNChroNize EXISHNG SECHONS.......uuiiiiiiiieeiiie et et e st e e e st e e e sstaeessbeeeessaeeeeannaeeesnnreeesnnnes 67
AAD NEW SECHIONS..... oottt st e et e e r e e e sr e e et see e e reeneeneesreene e 67
Add New Features and Elements 67
Y/ oTo [=1 [T aTe @101 1V7=T o1 1] o 1= SRS 68
ACLIONSCHIPL CONVENTIONS ...ttt ittt et e ettt e e stb et e e st b e e e s bbe e e e e s be e e e sasbe e e e nbeeeeanbeeeesanbeeeeanrnneas 69
AT 2005 ...t E R R Rt E e E R R e AR e e £ R e bt e R Rt e aR e et nh e bt n et re e e 69
(O3 0010 171 o) 1] o E= NN U PSP UUP PP UUPPPROY 71
Object Oriented Programming [N C........ooo ittt et e s seb e e e s sbe e e e ssbe e e e aneeeessreeeaannes 72
(022 @] 01Y/<T o1 1o] o 13NN T PSP TP UUP PP UUPPPOt 73
(0% S OTe T 1V7=] o] 1] o £ ST PP U PR UUP PP RUPRPROY 75
MaNAGEA CH+ CONVENTIONSceiutiiieiiiiee et ie e ettt e ettt e e sttt e e e s abe e e e s aabeeeaaabeeeeaabeeeeesasbeaeabbeeeaannneaesnreeesannes 76
(02 (O N 0e] 11V/=T 01 (1] oL T U PP PP UPPPPRUPPPROE 7
[D1=11 o] g T @e] V7] oY1 o] o F- U TSSO PT OO PP RUPPPROY 78
N Yz W @] o1V 7=T 011 o] o F- 3T PP P T OPPPTUOUPRN 79
ASPECET CONVEINTIONS. ...ttt ettt ettt e e ettt e e ettt e e e ettt e e s ab e e e e e sbe e e e e sbee e e e aabe e e e aabe e e e abs e e e e sabseeeaabbeeeabbnaeeannneaeaas 80
PHP CONVENTIONS ...ttt ettt ettt e oottt e e ok bt e e 2 e s be e e e e s be e e e e abe e e e e abee e e e ambbeeeansbneeaannneeesnnnes 80
PYENON CONVENTIONSooiiiiiie ettt ettt e ettt e e e bt e e e s abe e e e e abe e e e e bee e e e eabbeeeasbneeeannneaesnnres 81
SYSTEM C CONVENTIONS ..ttt ettt e ettt ettt e ettt e e e ate e e e e bt e e e e aaee e e e aabbe e e e bbeeeeasnbeeeaasbeeeesbeeeeannneeesnres 81
VB.NEE CONVENTIONS ..ottt e ettt ettt ettt e et e e e e bb e e e e ahb b e e e aab b e e e e bbb e e e asbe e e e aanbe e e e nbe e e e abeeeesanneeeeantneeas 83
AVZ=] g1 o To lOTe] 0 1V/=Tq 1 {To] o 1< TSP PP PP PPPPT PP 84
VHDL CONVENTIONS ...ttt ettt ettt ekttt e e et e e ettt e e e ahbb e e e sab b e e e 2 bbb e a2 e s be e e e aanbe e e e nbe e e e anbeeeesanbeeeeantneeas 85
ViSU@l BASIC CONVENTIONSuuiiiiiiiiie ittt ettt ettt ettt e e eiab e e e st b e e e e sbe e a2 e s bb e e e aanbe e e e nbe e e e asbeeeesanneeeeantneeas 87
XML Technologies 88
XML SCHEMA (XSD) .eeeiiiieiiiiieitieiie et e e e e s ee ettt e e e e e s s s st e e e e e e e e s sneat e eeaeaeeeseassnstnaeneeeaeeesannnnes 89
Y oL =T 5] PP U OO RPN 89
UML PrOfIlE fOF XSD.....coiuiiiiiiiiiiieie st n e ne s 91
XSD Datatypes PaACKAGEco ittt 97
ADSLFACE XSD MOGEIS......ciiiiiiiiii et ne 98
Default UML t0 XSD MaPPINGS. .. ccuveiteeateeiiieeniteeniree sttt atee sttt e st esaseebeeabeesbeesineesineenareenbeeannes 99
GENETALE XSD ...iiiiiiiiiiiiii e 100
Generate Global EIEMENT.........ccoiiiiiic e 101
[Lag] e o] o 00651 B PP PUPPPPRPPPTRTN 102
Global Element and COMPIEXTYPE.......iiiiiiiieiiie ittt ettt et et e et e beesaneenas 104
WED SEIVICES (WSDL) ..eiiiiiiiiieeie i ittt et st e e e e e e e e e e e e e e e s s et e e e e e e e e e sennnnnraneeees 106
MOAEI WSDL ...tttk b e b e bttt eh e bt e bt b e bt et ehe et e ettt e e bt e e nne e e 106
WSDL Namespace.... .. 108
WVVSDL DOCUMENL......ceieieiiiiiit ettt ettt e e et e e e e e e e e et e e e e e e e s s e et e et e e e e e s snbn e s e e e e e e e e s snbnnreneeeas 110
WVSDL SEIVICE ...ttt ettt ettt ettt ettt oottt e e ekt e e ek bt e e £ ok kbt e e oa kbt e e 2k be e a2 e sk bt e e s ambe e e e e nbe e e e e anbeeeennbneeeennnas 111
WSDL Port Type.... .o 112
WV SDL IMESSAQE. ... teeeteeeeeieiitt ettt e e e ettt et e e e e e et e e et e e e e e e e bbb e et e e e e e e s e s s b e st e e e e e e e e s b nnn e e e e e e e e e n it n e n e e s 113
L ST T I 21T o [o T T PSPPSR PR PPTUR PR 113
WSDL Port Type Operation... . 115
WWSDL MESSAQE PAIT.....ciiiiiiiieiiieee ettt e e e e et e e e e e e e e b e e e et e e e e e s b a e s e et e e e e e s snnnbeneeeas 116
GENEIALE WSDLL ...ttt ettt ettt e o4 o4ttt e e e e o4 e st e et e e e e e e eesass e b ettt e e e e e sannbnnn e e e e e e e e s nannnnees 117
Import WSDL 119
Data Modeling 120
FANIBE=1 = 1Y, Lo o [=1 I D TT- Vo | o= 1o o SR 122

Code Engineering Using UML Models

Contents 11

Create @ TaDIE ..o 123
Y - o] [o] o 1= g [SRR 124
L= A =T o (= @11V o 1= T PO UPU TP PP UPPN 126
SOt MYSQL OPLIONS ..ttt ettt ettt e b e e ettt e e e b bt e e e aabe e e e s s bt e e e aabe et e e bee e e e ambe e e e eabbeeeeasbneesannbeaeaanrneanan 126
Set Oracle TabIe PrOPerti€Sooo ittt et e et e e e e bb e e e e aasr e e s snnbeeeanbeeaaas 127
Create COIUMNS ... 130
Create Oracle PACKAGESovvviiiiiiiiee ettt sttt e e saaeee s 133
L T 0 F= UV £ Y/ SRR 134
SQL Server NON CIUSTErEA KEYSooiiiiiiiiiiieiiee ettt ettt ettt enaeeetee s 136
(0] =1 To | TN =Y SRR 137
Create FOreign KEY ..o 137
Define Foreign Key Name TeMPIALEooo ittt e st e e e e e e nes 141
) (o] (=Yo [=] foTot=To [U [{1 143
Create INdividual Class PrOCEAUIEcc.eiiiiiiiiiiie ettt ettt ettt saee e s 143
RV = L RO 145
Index, Trigger, Check CONSLIAINTcciiiiiiiiiiee e 147
Generate DDL FOr a Table ... 149
Generate DDL fOr @ PACKAQEccoiiiiiiiiiiiiiiie et a e e e eeeee 151
Data Type CONVErsioN ProCEAUIEuuuiiiiiee i iiicieie e e s st e e e e e s s an e e e e e e e e e ennenes 155
Data Type Conversion fOr a PACKage ...t sssee e e 156
[Y SR I = = 1Y o 1Lt 158
Import Database Schema from ODBC ... 160
ST [=Tod = W D - BT o 11] of T O PO U PRSP PP YRROPPPP 162
1] (=T ot B 1= o] LT O O PP U PRSP PP VRRPPPPI 163
The IMPorted Class EIBMENTSooiiiiiie ittt ettt nbe e 163
Index 165

© 1998-2010 Sparx Systems Pty Ltd

1 Foreword

Foreword

This user guide describes the code engineering
facilities of Enterprise Architect.

Code Engineering Using UML Models

1 Code Engineering

T

PHP

Code Engineering is a process that includes automated code generation, reverse engineering of source
code and synchronization between the source code and model.

Enterprise Architect also enables you to rapidly model, generate - or forward engineer - and reverse engineer:

e XML Technologies| 8", namely XML Schema (XSD) and Web Service Definition Language (WSDL)

e Database schema/1265, keys, triggers, constraints, Rl and other relational database features, for and from a
range of database products.

Code Engineering is available in the Professional, Corporate, Business and Software Engineering, System
Engineering and Ultimate editions of Enterprise Architect.

Code Generation

Enterprise Architect enables you to generate source code/ 12 from UML model elements, creating a source
code equivalent of the Class or Interface element for future elaboration and compilation. In particular you can
generate C, C++, C#, Delphi, Java, PHP, Python, ActionScript, Visual Basic and VB.NET| 421 source code. The
source code generated includes Class definitions, variables and function stubs for each attribute and method
in the UML Class. You can use the Source Code Viewer to view any source code you are opening (see the
Dockable Windows section of Using Enterprise Architect - UML Modeling Tool).

Note:

You view source code for an element by selecting it and pressing either [Ctrl]+[E] or [F12]. If the element
does not have a generation file (that is, code has not been or cannot be generated, such as for a Use Case),
Enterprise Architect checks whether the element has a link to either an operation or an attribute of another
element. If such a link exists, and that other element has source code, the code for that element displays.

You can also generate code from three UML behavioral modeling/ 19 paradigms:

e State Machine diagrams
¢ Interaction diagrams
e Activity diagrams.

The Code Template Framework (CTF)[61 enables you to customize the way Enterprise Architect generates
source code. It also enables you to generate languages that Enterprise Architect does not specifically support,
by helping you define the appropriate code generation templates for that language (this is discussed in SDK
for Enterprise Architect).

You can integrate the facilities of Enterprise Architect with other development environments. The MDG
Integration for Eclipse and MDG Integration for Visual Studiol 10" are standalone products that provide an
enhanced code engineering functionality between Enterprise Architect and the development environments.

Reverse Engineering

Reverse Engineering| 4™ is the import of existing source code into model elements, mapping the source code
structures onto their UML representations. This enables you to examine legacy code and the functionality of
code libraries for reuse, or to bring the UML model up to date with the code. You can reverse engineer in the
same languages as you perform code generation with Enterprise Architect.

Enterprise Architect is also able to reverse engineer binary files, namely Java .jar files and .NET PE files.

Note:

Reverse Engineering of other languages including CORBA IDL is also currently available through the use of
the MDG Technologies. See www.sparxsystems.com/resources/mdg _tech/.

© 1998-2010 Sparx Systems Pty Ltd

http://www.sparxsystems.com/resources/mdg_tech/

Synchronization

Synchronization| 107 is when changes in the model are exported to the source code and changes to source
code are imported into the model. This enables you to keep your model and source up to date as the project

develops.

Round-Trip Engineering
Round trip engineering is a combination of reverse and forward generation of code and includes
synchronization between the source code and the model in all but the most trivial of code engineering
projects. In order to get the most out of round trip engineering in Enterprise Architect, you should be familiar
with the modeling conventions| 681 used when generating and reverse engineering the languages you use.

Code Engineering Using UML Models

Reverse Engineering | 4

1.1 Reverse Engineering
UML

o™ L 7l

Cty yavd Cy, Pt PHP e 3

Reverse Engineering in Enterprise Architect enables you to import existing source code from a variety of code
languages into a UML model. Existing source code structures are mapped into their UML representations, for
example a Java Class is mapped into a UML Class element with the variables being defined as attributes,
methods are modeled as operations and the interactions between the Java Classes being displayed in the
UML model Class diagram with the appropriate connectors.

Reverse Engineering enables users to examine legacy code and examine the functionality of code libraries for
reuse or to bring the UML model up to date with the code that has been developed as part of a process called
synchronization. Examining the code in a UML model enables user to identify the critical modules contained
the code, enabling a starting point for understanding of the business and system requirements of the pre-
existing system and to enable the developers to gain a better overall understanding of the source code.

To begin the process of importing existing code into Enterprise Architect, an existing source of code must be
imported into Enterprise Architect| 55, which can be a single directory or a directory structure [8. Several
options are available when performing the reverse engineering process. The Source Code Engineering
Options! 32 topic contains several options that affect the reverse engineering process. These include:

e If comments are reverse engineered into notes fields, and how they are formatted if they are
e How property methods are recognized
e If dependencies should be created for operation return and parameter types.

It is important to note that when a legacy system is not well designed, simply importing the source into
Enterprise Architect does not create an easily understandable UML model. When working with a legacy
system that is poorly designed it is useful to break down the code into manageable components by examining
the code elements individually. This can be achieved by importing a specific Class of interest into a diagram
and then inserting the related elements (see UML Modeling with Enterprise Architect — UML Modeling Tool) at
one level to determine immediate relationship to other Classes. From this point it is possible to create Use
Cases that identify the interaction between the legacy Classes, enabling an overview of the legacy system's
operation.

Copyright ownership is an important issue to take into account when undertaking the process of reverse
engineering. In some cases, software might have specific limitations that prohibit the process of reverse
engineering. It is important that a user address the issue of copyright before beginning the process of reverse
engineering code. Situations that typically lend themselves to reverse engineering source code include source
code that:

e You have already developed

e Is part of a third-party library that you have obtained permission to use

e Is part of a framework that your organization uses

¢ Is being developed on a daily basis by your developers.

Enterprise Architect currently supports reverse engineering in the following programming languages:

e ActionScript/ 69"
o Ada 2005/ 69 (Systems Engineering and Ultimate editions)

o Cl[mh

o CHl7h

o Ctt[75)

e Delphil 78"

. Jaﬂ%

e PHP[s

e Python/s

o SystemC/8l (Systems Engineering and Ultimate editions)
« Verilog/ s (Systems Engineering and Ultimate editions)

© 1998-2010 Sparx Systems Pty Ltd

5 Reverse Engineering |

o VHDL 857 (Systems Engineering and Ultimate editions)
e Visual Basicl 8™
e Visual Basic .NET/ 83"

Enterprise Architect is also able to reverse engineer certain types of binary files: Java .jar files and .NET PE
files. See Import Binary Module[o™ for more information.

Notes:

e Reverse Engineering of other languages is currently available through the use of MDG Technologies from
www.sparxsystems.com/resources/mdg_tech/.

¢ In the Corporate, Business and Software Engineering, System Engineering and Ultimate editions of
Enterprise Architect, if security is enabled you must have Reverse Engineer From DDL And Source
Code permission to reverse engineer source code and synchronize model elements against code. See
User Security in UML Models.

1.1.1 Import Source Code

To import source code (reverse engineer) follow the steps below:

1. Inthe Project Browser, select (or add) a diagram into which to import the Classes.
2. Right-click on the diagram background to open the context menu and either:
e Select the language to import from the Import from source file(s) submenu, or

e Click on the Import Language drop-down arrow in the Code Generation toolbar and select the
Import | Import xxx files menu option, where xxx represents the language to import.

3. From the file browser that appears, select one or more source code files| 6 to import.

‘ Organize ~ gag Views = [Mew Folder

Favonte Links Name Date modified Type Size

B Decktop Sl

| eclipse 3.3

=i| Recent Places)
J Linux Procedures
8 Computer

|| Class.java
LTS || ContactInfo java
Folders v | | |HelloWeorld,java
. Roy » | |_| OrderStatus.java
, arc || ShoppingBasket,java
. eclipse 3.3 || Transition.java

, Linux Proced

; Sam L&

J ServerConfigu

. Sharon
J Simon
Sirnnni” T
File name: - [Ja\ra Source Files {*.Java; ~.C v]
[Open |V] [Cancel]

4. Click on the Open button to start the import process.

As the import proceeds, Enterprise Architect provides progress information. When all files are imported,
Enterprise Architect makes a second pass to resolve associations and inheritance relationships between the
imported Classes.

Code Engineering Using UML Models

http://sparxsystems.com/resources/mdg_tech/

Reverse Engineering | Import Source Code 6

Cumrent Action

Reverse engineer classes:

—impaoring Y:\DevRoyHelloWord java
Adding: Class - HelloWord

Resolve relationships:

—elationships for HelloWaord

—linking with existing attributes

—esolve generalizations

—resolve realisations

Cancel Import

1.1.2 Notes on Source Code Import

Enterprise Architect enables you to import code[5™ into your project, in the following programming languages:

 ActionScript/ 6"

° Q’—G‘ﬁ

° %m

° &’—G‘ﬁ

* Delphil 7%

e Javal 7%

° wm

e Pythonl 79

e Visual Basic[7"

e Visual Basic .NET[78
Enterprise Architect supports most constructs and keywords for each coding language.

If there is a particular feature you require support for that you feel is missing, please contact Sparx Systems.

You must select the appropriate type of source file for the language, as the source code to import.

ActionScript
Appropriate type of source file: .as.

C

Appropriate type of source file: .h header files and/or .c files.

When you select a header file Enterprise Architect automatically searches for the corresponding .c
implementation file to import based on the options for extension and search path specified in the C options 44"

Enterprise Architect does not expand macros that have been used, these must be added into the internal list
of Language Macros| 39",

C++
Appropriate type of source file: .h header file.

© 1998-2010 Sparx Systems Pty Ltd

http://www.sparxsystems.com/feature_request.htm

Reverse Engineering | Notes on Source Code Import

Enterprise Architect automatically searches for the .cpp implementation file based on the extension and
search path set in the C++ options| 46" When it finds the implementation file it can use it to resolve parameter
names and method notes as necessary.

When importing C++ source code, Enterprise Architect ignores function pointer declarations. To import them
into your model you could create a typedef to define a function pointer type, then declare function pointers
using that type. Function pointers declared in this way are imported as attributes of the function pointer type.

Enterprise Architect does not expand macros that have been used; these must be added into the internal list
of Language Macros| 39.

C#

Appropriate type of source file: .cs.

Delphi

Appropriate type of source file: .pas.

Java
Appropriate type of source file: .java.

Enterprise Architect supports the AspectJ language extensions.

wBspacts
ThingObserving

Wecton()

- obseners: WV I

CIOr = NEew

+ addObserer(Thing, Thing) : woid
+ rmemovelbsenerThing, ThingChsanver) : void
~ updateObserwerThing, ThingObserer) : void

wBOVICE R

+ afterThing) : woid

~ changes(Thing} : void

Aspects are modeled using Classes with the stereotype aspect. These aspects can then contain attributes and
methods as for a normal Class. If an intertype attribute or operation is required, you can add a tag className
with the value being the name of the Class it belongs to.

Pointcuts are defined as operations with the stereotype of pointcut. These can occur in any Java Class,
Interface or aspect. The details of the pointcut are included in the behavior field of the method.

Advice is defined as an operation with the stereotype advice. The pointcut this advice operates on is in the
behavior field and acts as part of the method's unique signature. After advice can also have one of the
Tagged Values returning or throwing.

PHP
Appropriate type of source file: .php, .php4, or .inc.

Python
Appropriate type of source file: .py.

Visual Basic
Appropriate type of source file: .cls Class file.

Visual Basic .NET
Appropriate type of source file: .vb Class file.

Code Engineering Using UML Models

Reverse Engineering | Import a Directory Structure 8

1.1.3 Import a Directory Structure

You can import from all source files in a complete directory structure. This process enables you to import or
synchronize multiple files in a directory tree in one pass. Enterprise Architect creates the necessary packages
and diagrams during the import process.

To import a directory structure, follow the steps below:

1. Inthe Project Browser, right-click on the target package for the import.

2. From the context menu, select the Code Engineering | Import Source Directory menu option. The
Import Source Directory dialog displays.

Root Directory C:%Java BExample

Source Type IJa-u-a + | File Btensions java

Defined Componert Extensions: Mone.
Recursively Process Subdirectories
Create Logical Diagram for Each Package
mport defined components Cancel
[7] Do not import private members

QETI

l.1:

Package Structure Mew Diagram
Options

HER .

" Create Packaoge per Directony
@) Create Package per Namespace
" Create Package per File

Synchronization

@ Synchronize exdsting classes
| Owenwrite existing classes

Remove Classes not found in code
@ Never delete
" Prompt for action
! Always delete T

3. Select the options you require. You can configure:
e The source directory
e The source type
e The file extensions to look at
e Whether to recurse sub directories
o Whether to create a diagram for each package
e Whether to import additional files as described in the Import Component Types dialog
o Whether to exclude private members from libraries being imported from the model

o Whether to create a package for every directory, namespace or file; this might be restricted
depending on the source type selected

o Whether to Synchronize or Overwrite existing Classes when found (if a model Class is found
matching the one in code, Synchronize updates the model Class to include the details from the one
in code, which preserves information not represented in code such as the location of Classes in
diagrams; Overwrite deletes the model Class and generates a new one from code, which deletes
and does not replace the additional information)

¢ How to handle Classes not found during the import (Prompt for action enables you to review
Classes individually [10%)

o What is shown on diagrams created by the import.
4. Click on the OK button to start.

© 1998-2010 Sparx Systems Pty Ltd

9 Reverse Engineering | Import Binary Module

1.1.4 Import Binary Module

Enterprise Architect enables you to reverse-engineer certain types of binary modules. To import a binary
module, right-click on the target package in the Project Browser and select the Code Engineering | Import
Binary Module context menu option.

File(s):]

Source Type: Mo file(s) selected.
(Generation Import Method

@ Synchronise existing classes
Chverwrte existing Classes

Create Logical Diagram for
each package

W

SARILIUT

Do not import private members

Please be aware that creating diagrams for each package may significanthy
increase the time required to impaort .

— Cancel | | Help |

Currently the permitted types are as follows:

e Java Archive (.jar)

¢ .Net PE file (.exe, .dll); native Windows DLL and EXE files are not supported, only PE files containing .NET
assembly data

¢ Intermediate Language file (.il).

Enterprise Architect creates the necessary packages and diagrams during the import process. Selecting the
Do not import private members checkbox excludes private members from libraries from being imported into
the model.

When importing .Net files,you can import via reflection or via disassembly, or let Enterprise Architect decide
the best method - this might result in both types being used. The reflection-based importer relies on a .Net
program, and requires the .Net runtime environment to be installed. The disassembler-based importer relies
on a native Windows program called lldasm.exe, which is a tool provided with the MS .Net SDK. The SDK can
be downloaded from the Microsoft website.

A choice of import methods is available because some files are not compatible with reflection (such as
mscorlib.dll) and can only be opened using the disassembler. However, the reflection-based importer is
generally much faster.

You can also configure:

e Whether to Synchronize or Overwrite existing Classes when found (if a model Class is found matching
the one in the file, Synchronize updates the model Class to include the details from the one in the file,
which preserves information not represented in the file such as the location of Classes in diagrams;
Overwrite deletes the model Class and generates a new one from the file, which deletes and does not
replace the additional information)

e Whether to create a diagram for each package
¢ What is shown on diagrams created by the import.

Code Engineering Using UML Models

Reverse Engineering | MDG Integration and Code Engineering 10

1.1.5 MDG Integration and Code Engineering

MDG Integration for Eclipse and MDG Integration for Visual Studio are standalone products that provide an
enhanced code engineering functionality between Enterprise Architect and the development environments.

The MDG Integration programs provide a lightweight bridge between Enterprise Architect and the
development environment, offering enhanced code generation, reverse engineering and synchronization
between code and the UML model. Merging changes can be achieved with minimal effort, and navigation
between model and source code is significantly enhanced.

A trial version of MDG Integration for Eclipse can be downloaded from www.sparxsystems.com/products/mdg/
int/eclipse/index.html and MDG Integration for Visual Studio can be downloaded from www.sparxsystems.com/
products/mdg/int/vs/index.html.

1.1.6 Classes Not Found During Import

When reverse synchronizing from your code, there are times when some Classes might be deliberately
removed from your source code. Enterprise Architect's import source directory functionality keeps track of the
Classes it expects to synchronize with and, on the Import Directory Structure dialog, provides options for how
to handle the Classes that weren't found. You can select the appropriate action so that, at the end of the
import, Enterprise Architect either ignores the missing Classes, automatically deletes them or prompts you to
handle them.

If you select the Prompt For Action[8™ radio button on the Import Directory Structure dialog, to manually
review missing Classes, the following dialog displays:

Classes not found in code [select Al] [Clear Al]
Mame Action Seslril
Address Delete
CartlD Delete
tem Delete
CartAddItem Delete

Help

By default, all Classes are marked for deletion. To keep one or more Classes, select them and click on the
Ignore button.

1.1.7 Synchronize Model and Code

In addition to generating and importing code, Enterprise Architect provides the option to synchronize the
model and source code, creating a model that represents the latest changes in the source code and vice
versa. You can use either the model as the source, or the code as the source.

For example: you generated some source code, but made subsequent changes to the model. When you
generate code again, Enterprise Architect adds any new attributes or methods to the existing source code,
leaving intact what already exists. This means developers can work on the source code and then generate
additional methods as required from the model, without having their code overwritten or destroyed.

© 1998-2010 Sparx Systems Pty Ltd

http://www.sparxsystems.com/products/mdg/int/eclipse/index.html
http://www.sparxsystems.com/products/mdg/int/eclipse/index.html
http://www.sparxsystems.com/products/mdg/int/vs/index.html
http://www.sparxsystems.com/products/mdg/int/vs/index.html

11

Reverse Engineering | Synchronize Model and Code

Note:

Code synchronization does not change method bodies. Behavioral code generation[197 only works when
generating the entire file.

Similarly, you might have made changes to a source code file, but the model has detailed notes and
characteristics you do not want to lose. By synchronizing from the source code into the model, you import
additional attributes and methods but do not change other model elements.

Using the two synchronization methods above, it is simple to keep source code and model elements up to
date and synchronized.

Note:

In the Corporate, Business and Software Engineering, System Engineering and Ultimate editions of
Enterprise Architect, if security is enabled you must have Generate Source Code and DDL permission to
synchronize source code with model elements. See User Security in UML Models.

Synchronize Classes on Forward Generation

When there are features present in the code but not in the model you can use the following buttons during
forward synchronization:
Note:

These buttons are only available when the On forward synch, prompt to delete code features not in
model checkbox is selected in the Options - Attributes and Operations| 36 dialog.

e Delete: when you click on this button the selected code features are removed from the code.

e Reassign: when you click on this button the code elements are reassigned to elements in the model (this
is only possible when an appropriate model element is present that is not already defined in the code).

e Ignore: when you click on this button the code elements not present in the model are ignored completely.

e Reset to Default: when you click on this button the settings for synchronizing during forward generation
are set to Ignore, meaning that the elements present in the code but not in the model are ignored
completely.

Code features not in model Select Al] [Clear Al]
Set Action for Selected
Feature Action Type
ClassLibX) “none operation [Delete]
“ClassLibX]) “naones operation i
Re

StatesProc({State Type Command Type) <nones operation [assan]
Transitions Proc{Transition Type) <nones operation [|]
intialize State Machine () <none: operation L
munStateMachine() <None: operation [Reset to Default]
transcend <none:: attribute
cur Transition Znones attribute
next State Znones: attribute
cumstate £none: attribute [oK]

[Cancel]

[Help |

Code Engineering Using UML Models

Generate Source Code | 12

1.2 Generate Source Code

umML
|]
| |

Generating source code (forward engineering) takes the UML Class or Interface model elements and creates
a source code equivalent for future elaboration and compilation. By forward engineering code from the model,
the mundane work involved with having to key in Classes and attributes and methods is avoided, and
symmetry between model and code is ensured.

Code is generated from Class or Interface model elements, so you must create the required Class and
Interface elements to generate from. Add attributes (which become variables) and operations (which become
methods).

Before you generate code, you should ensure the default settings for code generation match your
requirements. The default generation settings are located in the Source Code Engineering page of the Options
dialog (select the Tools | Options | Source Code Engineering menu option). Set up the defaults to match
your required language and preferences. Preferences that you can define include default constructors and
destructors, methods for interfaces and the Unicode options for created languages. Languages such as Java
support namespaces| 171 and can be configured to specify a namespace root. In addition to the default
settings for generating code, Enterprise Architect supports the following code languages with their own
specific code generation options:

e ActionScript[43

° Q%

e Ci45" (for both .NET 1.1 and .NET 2.0)

e C++[467 (standard, plus .NET managed C++ extensions)
e Delphil 47

e Javals™ (including Java 1.5, Aspects and Generics)

° w’?ﬁ

e Python[s

e Visual Basicl 5™

e Visual Basic .NET/[54

The Code Template Framework (CTF)[61 enables you to customize the way Enterprise Architect generates
source code and also enables generation of languages that are not specifically supported by Enterprise
Architect.

Before generating code, you should also familiarize yourself with the way Enterprise Architect handles local
path names. Local path names enable you to substitute tags for directory names (for example %SRC% = C:
\Source).

When you have completed the design of your Classes, you can generate source code.

Note:

In the Corporate, Business and Software Engineering, System Engineering and Ultimate editions of
Enterprise Architect, if security is enabled you must have Generate Source Code and DDL permission to
generate source code. See User Security in UML Models.

Use Live Code Generation

On the Package Build Scripts dialog, you have the option to update your source code instantly as you make
changes to your model. (See the Setup for Execution Analysis topic in Visual Execution Analyzer in Enterprise
Architect.)

Tasks
When you generate code, you perform one or more of the following tasks:

© 1998-2010 Sparx Systems Pty Ltd

13 Generate Source Code |

e Generate a Single Class/ 13

e Generate a Group of Classes| 144
e Generate a Package/ 153

e Update Package Contents| 163

1.2.1 Generate a Single Class

To generate code for a single Class, first ensure the design of the model element (Class or Interface) is

complete. Also ensure you have added Inheritance connectors to parents and associations to other Classes
that are used. Also add Inheritance connectors to Interfaces that your Class implements; Enterprise Architect
offers the option to generate function stubs for all interface methods that a Class implements. Once the design
is satisfactory, follow the steps below.

Generate Code for a Single Class

1.
2.

Open the diagram containing the Class or Interface for which to generate code.

Right-click on the required Class or Interface to display the context menu and select the Generate
Code menu option, or press [F11]. The Generate Code dialog displays, which enables you to control

how and where your source code is generated.

Path
MbenchmarkJava ' Bample 14 Classlib java

Details
Classlib

Target language

[Java v]

Impaort(s) / Header(s)

L]

Advanced
Wiew
Save

Close

&
= g

i Help

3. On the Path field, click on [...] (Browse) and select a path name for your source code to be generated

to.

4. In the Target Language field, click on the drop-down arrow and select the language to generate; this
becomes the permanent option for that Class, so change it back if you are only doing one pass in

another language.
5. Click on the Advanced button. The Object Options dialog displays.

Code Engineering Using UML Models

Generate Source Code | Generate a Single Class 14

----- # Object Lifetimes

_____ 4 Atribute/Operations 0 Always synchronize with existing file {recommended) Component Types

..... {B)] ActionScript () Replace (overwrite) existing source file
..... [e]C
""" & C# Default Language for Code Generation:
..... [Cae
..... ﬂ Delphi Wrap long comment lines at: a0 charz(-1 = no wrap)
""" Q’ Java Auto Layout Diagram on Import: On New Diagram v
----- ghp PHP
Python
Visual Basic Prompt when synchronizing (reversing) Comments
S VB MNet Remove hard breaks from comments on impart
£ Auto generate role names when creating code EoiEElE
Do not generate members where association = Reverse
direction is "Unspecified'
Create dependencies for operation returns and 1

parameter types

Remove prefives when generating Get/Set properties (zeparate entries with '}’

m_s;m_r;m_b;m_; [7] Treat as suffixes

[T capitalized Attribute Name for Properties [¥] Use 'Is' for Boolean property Get()

Code page for source

[Close] [Help

Set any custom options (for this Class alone), then click on the Close button to return to the Generate
Code dialog.

In the Import(s) / Header(s) fields, type any import statements, #includes or other header information.

(Note that in the case of Visual Basic this information is ignored; in the case of Java the two import text
boxes are merged; and in the case of C++ the first import text area is placed in the header file and the

second in the body (.cpp) file.)

Click on the Generate button to create the source code.

When complete, click on the View button to see what has been generated. Note that you should set up
your default viewer/editor for each language type first (see the Source Code Viewer topic in Using
Enterprise Architect - UML Modeling Tool). You can also set up the default editor on the DDL page of
the Options dialog (Tools | Options | Source Code Engineering | Code Editors).

1.2.2 Generate a Group of Classes

In addition to being able to generate code for an individual Class, you can also select a group of Classes for
batch code generation. When you do this, you accept all the default code generation options for each Class in
the set.

To Generate Multiple Classes

1.
2.
3.

Select a group of Classes and/or interfaces in a diagram.
Right-click on an element in the group to display the context menu.

Select the Code Generation | Generate Selected elements menu option. The Save As dialog
displays, on which you specify the file path and name for each code file. Enter this information and click
on the Save button.

The Batch Generation dialog displays, showing the status of the process as it executes (the process
might be too fast to see this dialog).

© 1998-2010 Sparx Systems Pty Ltd

15 Generate Source Code | Generate a Group of Classes

Note:

If any of the elements selected are not Classes or interfaces the option to generate code is not

available.

1.2.3 Generate a Package

In addition to generating source code from single Classes and groups of Classes, you can also generate code
from a package. This feature provides options to recursively generate child packages and automatically
generate directory structures based on the package hierarchy. This enables you to generate a whole branch of

your project model in one step.

Generate a Package
To generate a package, follow the steps below:

1. Inthe Project Browser, right-click on the package to generate code for. The context menu displays.
2. Select the Code Engineering | Generate Source Code menu option. The Generate Package Source

Code dialog displays.

Root Package: Class Model Generate
Synchronize: Synchronize model and code - m
Generate:
[7] Auto Generate Files Root Directory:
- - Help
Select Objects to Generate [Include all Child Packages
Ohject Type Target File o
Exdend Class C:M\Documents and Settings rchester'My Doc...
Hello Class CMUsersrchester\Documents'Hello h
Interffacename Interface CMUsersrchester\Documents®Jntefacename. ..
Intefacename Inteface C:hDocuments and Settingsrchester'\My Doc... E
LibCheck:1 Class CDocuments and Settings*rchester\My Doc...
LibCheckZ Class CDocuments and Settings*rchester\My Doc...
SubTopiz1 Class C:xUserstrchesterDocuments® Sub Topic1.h il
Select All | | Select None

3. Inthe Synchronize field, click on the drop-down arrow and select the appropriate synchronize option:

e Synchronize model and code: Classes with existing files are forward synchronized with that file;

Classes with no existing file are generated to the displayed target file
e Overwrite code: All selected target files are overwritten (forward generated)

o Do not generate: Only selected Classes that do not have an existing file are generated; all other

Classes are ignored.

information in a more readable layout, you can resize the dialog and its columns.

5. To make Enterprise Architect automatically generate directories and filenames based on

Highlight the Classes to generate. Leave unselected any to not generate. If you want to display the

the package

hierarchy, select the Auto Generate Files checkbox. This then enables the Root Directory field, in

which you select a root directory under which the source directories are to be generated.

By default,

the Auto Generate Files feature ignores any file paths that are already associated with a Class. You

can change this behavior by also selecting the Retain Existing File Paths checkbox.

6. To include all sub-packages in the output, select the Include Child Packages checkbox.

Click on the Generate button to start generating code.

Code Engineering Using UML Models

Generate Source Code | Generate a Package 16

As code generation proceeds Enterprise Architect displays progress messages. If a Class requires an output
filename Enterprise Architect prompts you to enter one at the appropriate time (assuming Auto Generate
Files is not selected). For example, if the selected Classes include partial Classes, a prompt displays to enter
the filename for the second partial Class.

For additional information on the options on the Generate Package Source Code dialog, see the following

table:

Option

Use to

Root Package

Check the name of the package to be generated.

Synchronize

Select options that specify how existing files should be generated.

Auto Generate Files

Specify whether Enterprise Architect should automatically generate file
names and directories, based on the package hierarchy.

Root Directory

If Auto Generate Files is selected, display the path under which the
generated directory structures are created.

Retain Existing File Paths

If Auto Generate Files is selected, specify whether to use existing file paths
associated with Classes. If unselected, Enterprise Architect generates
Classes to automatically determined paths, regardless of whether source
files are already associated with Classes.

Include all Child Packages

Include all Classes from all sub-packages of the target package in the list.
This option facilitates recursive generation of a given package and its sub-
packages.

Select Objects to Generate

List all Classes that are available for generation under the target packages.
Only selected (highlighted) Classes are generated. Classes are listed with
their target source file.

Select All Mark all Classes in the list as selected.

Select None Mark all Classes in the list as unselected.

Generate Start the generation of all selected Classes.

Cancel Exit the Generate Package Source Code dialog. No Classes are generated.

1.2.4 Update Package Contents

Enterprise Architect enables you to synchronize a directory tree. Follow the steps below:

1. Inthe Project Browser, right-click on the root package of the tree to synchronize. The context menu

displays.

2. Select the Code Engineering | Synchronize Package With Code menu option. The Synchronize
Package Contents dialog displays.

© 1998-2010 Sparx Systems Pty Ltd

17

Generate Source Code | Update Package Contents

1.2.5

Generate or reverse engineer all classes in this
package that have a source file specified.

Update Type
@ Forward engineer (model -> source)
() Reverse engineer (source - model)

Include child packages

| oKk || Cancel | | Hebp

3. Inthe Update Type panel, select the radio button to Forward Engineer or Reverse Engineer the
package Classes.

4. To include child packages in the synchronization, select the Include child packages in generation
checkbox.

5. Click on the OK button to start.

Enterprise Architect uses the directory names specified when the project source was first imported/generated
and updates either the model or the source code depending on the option chosen.

Namespaces

Languages such as Java support package structures or namespaces. Enterprise Architect lets you specify a
package as a namespace root, which denotes where the namespace structure starts; all subordinate
packages below this point are generated as hamespaces to code.

To define a package as a namespace root, right-click on the package in the Project Browser and select the
Code Engineering | Set as Namespace Root context menu option. The package icon in the Project Browser

changes to include a colored corner (—.J).

When you have set the namespace root, the menu option changes to Clear Namespace Root; click on this
option to take the namespace root status off the package. (Also, see the context menu described below.)

Once you have set a namespace root, Java code generated beneath this root automatically adds a package
declaration at the head of the generated file indicating the current package location.

To view a list of namespaces, select the Settings | Namespaces menu option. The Namespaces dialog
displays.

Defined Mamespaces

MNamespace

Development Madel DFD.Fulfill Orders

Development Model Use Case Model

Development Model Use Case Model ClassLibrany1
Development Madel Use Case View Sequence Diagram
Development Madel Work WSDLPackage

m

Maodel Locking
Madel System Model Implementation Model (PSM).CH Model —
4 I 3

Cancel | [Help

Code Engineering Using UML Models

Generate Source Code | Namespaces 18

If you double-click on a namespace in the list, the package is highlighted in the Project Browser. Alternatively,
right-click on the namespace to display a context menu, and select the Locate Package in Browser menu
option.

Defined Mamespaces

MNamespace

Development Madel DFD . FulfillDicdaee
Developmert Model Use Cas Locate Package in Browser
Development Model.Use Cas Clear Mamespace Attribute
De'u'elnpment Maodel Use Ca rmmvmmﬂ—[
Development Model Wore WSDLPackage1

Model. Locking

Model System Model Implementation Model (PSM).CH Model =

1|] | »

Locate Package in Browser

m

You can also clear the selected namespace, by selecting the Clear Namespace Attribute option.

© 1998-2010 Sparx Systems Pty Ltd

19

Code Generation From Behavioral Models |

1.3 Code Generation From Behavioral Models

-y

— |

o——1

1.3.1

=

Notes:
e Software code generation from behavioral models is available in the Business and Software Engineering,
Systems Engineering and Ultimate editions of Enterprise Architect.

e Hardware code generation from State Machine models is available in the Systems Engineering and
Ultimate editions of Enterprise Architect.

e For C(00), please ensure that, on the C Specifications page of the Options dialog, you have set the
Object Oriented Support option to True.

e To be able to generate code from behavioral models, all behavioral constructs should be contained within a
Class.

Enterprise Architect's system engineering capability facilitates code generation from each of the following UML
behavioral diagrams:

e State Machine diagrams/ 197 (SW & HW)

« Interaction (Sequence) diagrams| 26" (SW)

e Activity diagrams|271 (SW).

You can generate code in various software and hardware 23 languages, including C(O0), C++, C#, Java,
VB.Net, VHDL, Verilog and SystemC.

To experiment with code generation from these diagrams, use the EAExample project provided with your
Enterprise Architect installer.

SW Code Generation - State Machine Diagrams

New Packed
=
. + do/updateStatus + do/ updateStatus
7 Dispatched T
k do { updeteStatus J
[status==DrderStatus.deliverad]
f=etStatus(OrderStatus closad)
Closed Delivered
+ do/ updateStatus

Code Engineering Using UML Models

Code Generation From Behavioral Models | SW Code Generation - State Machine Diagrams 20

Note:

To be able to generate code from behavioral models, all behavioral constructs should be contained within a
Class.

A State Machine (see the UML Dictionary) in a Class internally generates the following constructs in software
languages to enable effective execution of the States' behaviors (do, entry and exit) and also to code the
appropriate transition's effect when necessary.

Enumerations
e StateType - comprises an enumeration for each of the States contained within the State Machine

e TransitionType — comprises an enumeration for each transition that has a valid effect associated with it; for
example ProcessOrder_Delivered_to_ProcessOrder_Closed

¢ CommandType — comprises an enumeration for each of the behavior types that a State can contain (Do,
Entry, Exit).

Attributes
e currState:StateType - a variable to hold the current State's information

e nextState:StateType — a variable to hold the next State's information, set by each State's transitions
accordingly

e currTransition:TransitionType — a variable to hold the current transition information; this is set if the
transition has a valid effect associated with it

e transcend:Boolean - a flag used to advise if a transition is involved in transcending between different State
Machines (or Submachine states)

e xx_history:StateType — a history variable for each State Machine/Submachine State, to hold information
about the last State from which the transition took place.

Operations

e StatesProc - a States procedure, containing a map between a State's enumeration and its operation; it
de-references the current State's information to invoke the respective State's function

e TransitionsProc - a Transitions procedure, containing a map between the Transition's enumeration and its
effect; it invokes the respective effect

e <<State>> - an operation for each of the States contained within the State Machine; this renders a State's
behaviors based on the input CommandType, and also executes its transitions

e initializeStateMachine — a function that initializes all the framework-related attributes

e runStateMachine - a function that iterates through each State, and executes their behaviors and transitions
accordingly.

Click here[20" to display an example of Java code generated from the State Machine diagram above.

1.3.1.1 Java Code Generated From State Machine Diagram

private enum StateType : int

{
ProcessOrder_Delivered,
ProcessOrder_Packed,
ProcessOrder_Closed,
ProcessOrder_Dispatched,
ProcessOrder_New,
ST_NOSTATE

}

private enum TransitionType : int

{
ProcessOrder_Delivered_to_ProcessOrder_Closed,
TT_NOTRANSITION

}

private enum CommandType

{
Do,
Entry,
Exit

}

© 1998-2010 Sparx Systems Pty Ltd

21 Code Generation From Behavioral Models | SW Code Generation - State Machine Diagrams

private StateType currState;

private StateType nextState;

private TransitionType currTransition;

private boolean transcend;

private StateType ProcessOrder_history;

private void processOrder_Delivered(CommandType command)

{
switch(command)
{
case Do:
{
// Do Behaviors..
setStatus(Delivered);
/I State's Transitions
if((status==Delivered))
nextState = StateType.ProcessOrder_Closed;
currTransition =
TransitionType.ProcessOrder_Delivered_to_ProcessOrder_Closed;
}
break;
default:
{
break;
}
}
}
private void processOrder_Packed(CommandType command)
{
switch(command)
{
case Do:
{
// Do Behaviors..
setStatus(Packed);
/I State's Transitions
nextState = StateType.ProcessOrder_Dispatched;
break;
default:
{
break;
}
}
}
private void processOrder_Closed(CommandType command)
{
switch(command)
{
case Do:
{
/I Do Behaviors..
/I State's Transitions
break;
default:
{
break;
}
}
}
private void processOrder_Dispatched(CommandType command)
{
switch(command)
{
case Do:
{

/I Do Behaviors..

setStatus(Dispatched);

/I State's Transitions

nextState = StateType.ProcessOrder_Delivered,;

Code Engineering Using UML Models

Code Generation From Behavioral Models | SW Code Generation - State Machine Diagrams

break;
default:
{
break;
}
}
}
private void processOrder_New(CommandType command)
{
switch(command)
{
case Do:
{
/I Do Behaviors..
setStatus(new);
/I State's Transitions
nextState = StateType.ProcessOrder_Packed;
break;
default:
{
break;
}
}
private void StatesProc(StateType currState, CommandType command)
{
switch(currState)
case ProcessOrder_Delivered:
{
processOrder_Delivered(command);
break;
}
case ProcessOrder_Packed:
{
processOrder_Packed(command);
break;
}
case ProcessOrder_Closed:
{
processOrder_Closed(command);
break;
}
case ProcessOrder_Dispatched:
{
processOrder_Dispatched(command);
break;
}
case ProcessOrder_New:
{
processOrder_New(command);
break;
default:
break;
}
private void TransitionsProc(TransitionType transition)
{
switch(transition)

case ProcessOrder_Delivered_to_ProcessOrder_Closed:

{
setStatus(closed);
break;

default:
break;

22

© 1998-2010 Sparx Systems Pty Ltd

23

Code Generation From Behavioral Models | SW Code Generation - State Machine Diagrams

}
}
private void initalizeStateMachine()
{
currState = StateType.ProcessOrder_New;
nextState = StateType.ST_NOSTATE;
currTransition = TransitionType.TT_NOTRANSITION;
}

private void runStateMachine()
while(true)

if (currState == StateType.ST_NOSTATE)
{

}

currTransition = TransitionType. TT_NOTRANSITION;
StatesProc(currState, CommandType.Do);

/I then check if there is any valid transition assigned after the do behavior
if (nextState == StateType.ST_NOSTATE)

break ;

{
break;
}
if (currTransition != TransitionType.TT_NOTRANSITION)
{

TransitionsProc(currTransition);

if (currState != nextState)

{
StatesProc(currState, CommandType.Exit);
StatesProc(nextState, CommandType.Entry);
currState = nextState ;

}

1.3.2 State Machine Modeling For HDLs

Note:

To be able to generate code from behavioral models, all behavioral constructs should be contained within a
Class.

For efficient code generation from State Machine models into Hardware Description Languages (HDL) such as
VHDL, Verilog and Systems C, apply the design practices outlined in this topic.

In an HDL State Machine model, the following are expected:

e Designate Driving Triggers
e Establish Port—Trigger Mapping
e Active State Logic

Designate Driving Triggers

The top level State Machine diagram should be used to model the different modes of a hardware component,
and the associated triggers that drive them, as shown in the following diagram.

Code Engineering Using UML Models

Code Generation From Behavioral Models | State Machine Modeling For HDLs 24

stm StateMachine

i Reset "
'. | a =t

Achange" trigger is deemed as an
The trigger to drive the actual asynchronous trigger if the following o
systemn [clodk) is of type "time" dock — conditions are satisfied:
and is asociated with the [°°°°"°""°"°"°"°"°"1 | """"°°C 1. There iz a transition from the actual
transition from the reset state to Submachine state [which encapsulates the
the active state actual logic) triggerad by it.
2. and the target state of that transition has a
self transition triggered by the same trigger.
Active

The Submachine state, that i intanded to
contain the actual design

Asynchronous Triggers
Asynchronous triggers should be modeled according to the following pattern:

1. The trigger should be of type Change (specification: true / false)
2. The active state (Submachine State) should have a transition trigger by it.
3. The target state of the triggered transition should have a self transition with the same trigger

Clock

A trigger of type time, which triggers the transitions to the active state (Submachine State) is deemed as the
Clock. The specification of this trigger should be specific to the target language.

Clock Trigger Specifications

Trigger Type Language Specification
Positive Edge Triggered | Negative Edge Triggered
VHDL rising_edge falling_edge
Time Verilog posedge negedge
SystemC positive negative

© 1998-2010 Sparx Systems Pty Ltd

25 Code Generation From Behavioral Models | State Machine Modeling For HDLs

Establish Port — Trigger Mapping

After successfully modeling the different operating modes of the component, and the triggers associated with
them, you must associate the triggers with the component's ports as shown in the following diagram.

class HDL

ActiveClass

R resat e — — - — — — — [:l
: re=at
A dependency relationship is
used to represent association 7T TTTTTTT clear - I:E
betwean ports and their triggers. clear

A Dependency relationship from the Port to the associated trigger should be used to signify their association.

See Also:
e State Diagram } See the UML Dictionary
e Transition }

e SW Code Generation - State Machine Diagrams/ 19,

Active State Logic

The first two aspects, above, put in place the preliminaries required for efficient interpretation of the hardware
components. The actual State Machine logic is now modeled within the Active (Submachine) state.

stm StateMachine

Active \‘1\

i

The Submachine state, that is intended to
contain the actual design

Note:

The current code generation engine supports only one clock trigger for a component.

Code Engineering Using UML Models

Code Generation From Behavioral Models | Code Generation - Interaction Diagrams 26

1.3.3 Code Generation - Interaction Diagrams

Note:

To be able to generate code from behavioral models, all behavioral constructs should be contained within a
Class.

For an Interaction (Sequence) diagram, the behavioral code generation engine expects the Sequence
diagram and all its associated messages and interaction fragments to be encapsulated within an Interaction
element (see the UML Dictionary).

During code generation from Interaction (Sequence) diagrams (see the UML Dictionary) in a Class, Enterprise
Architect applies its system engineering graph optimizer to transform the Class constructs into programmatic
paradigms. Messages and Fragments are identified as one of the several action types based on their
functionality, and Enterprise Architect uses the EASL code generation templates to render their behavior

accordingly. For example:

e A Message that invokes an operation is identified as an Action Call and is rendered accordingly

e Combined Fragments are identified by their types and conditions; for instance, an Alt fragment is identified
as an Action If, and a loop fragment is identified as an Action Loop.

For more information on the EASL code generation macros and templates Enterprise Architect uses to

generate code from behavioral models see the EASL Code Generation Macros topic in the Code Template

Framework in SDK section of SDK for Enterprise Architect.

account (Acmount Onrder :ShoppingBasket

alt

ref

A —————— placeCrder[arg_iCOrderNo: iGrderMo)

[bValidUser]

i return{)

i

The above diagram contains:

e A Combined Fragment (alt), which is identified as an Action If (see the UML Dictionary)
e An Interaction Occurrence, which is identified as an Action Call with all argument information associated
with it (see the UML Dictionary), and

¢ A message (Action Opaque).
The Java code generated from this diagram resembles the following:
public void newTransaction()

/I behavior is an Interaction
if (bValidUser) /I Alt combined fragment

placeOrder(101); //Interaction Occurrence

© 1998-2010 Sparx Systems Pty Ltd

27

Code Generation From Behavioral Models | Code Generation - Interaction Diagrams

else

return;

1.3.4 Code Generation - Activity Diagrams

Note:

To be able to generate code from behavioral models, all behavioral constructs should be contained within a
Class.

Code generation from an Activity diagram (see the UML Dictionary) in a Class requires a validation phase,
during which Enterprise Architect uses the system engineering graph optimizer to analyze the diagram and
render it into various code-generatable constructs. Enterprise Architect also transforms the constructs into one
of the various action types (if appropriate), similar to the Interaction diagram constructs. Enterprise Architect
then uses the EASL code generation macros to generate code from these constructs.

For more information on the EASL code generation macros and templates Enterprise Architect uses to
generate code from behavioral models see the EASL Code Generation Macros topic in the Code Template
Framework in SDK section of SDK for Enterprise Architect.

To provide a comprehensive analysis of these features several diagrams from the EAExample project are
shown as examples.

Conditional Statements

To model a conditional statement, you use Decision/Merge nodes. Alternatively, you can imply
Decisions/Merges internally. The graph optimizer expects an associated Merge node for each Decision node,
to facilitate efficient tracking of various branches and analysis of the code constructs within them.

The following diagram is interpreted as a nested IF statement.

Code Engineering Using UML Models

Code Generation From Behavioral Models | Code Generation - Activity Diagrams 28

leadAccountDetails
[Account::)

Initialize

[UserMame==nams]

[Password ==

password]
Valid Password

Invalid Password

InwalidUser

Set User [
Status

ActivityFinal

The Java code that might be generated from this diagram is as follows:

public boolean doValidateUser(String Password,String UserName)
{

loadAccountDetails();

boolean bRet;

if (Username==name)

if (Password == password)

bRet = true;
bValidUser = true;
}
else
bRet = false;
}
}
else

© 1998-2010 Sparx Systems Pty Ltd

29 Code Generation From Behavioral Models | Code Generation - Activity Diagrams

bRet = false;
}

return bRet;

}

Invocation Actions (Call Operation Action, Call Behavior Action)

Call Actions are handled more efficiently. Each action has arguments relating to the parameters of the
associated behavior (use the Synchronize button of the Arguments dialog to synchronize arguments and
parameters).

The following diagram demonstrates the use of a Call Behavior Action and a Call Operation Action
interspersed with a conditional statement.

: Password :Password
arg_Useriame :UserMams dnvalidatEuEl_ﬁr e Asswar

[bValidUsar

setClosed
[Aoccount::)

Invalid User

arg_nawyal

ActivityFinal

The generated Java code might appear as follows:

public void doMarkAccountClosed()
{

doValidateUser(password,name);
if (bValiduser)
{

setClosed(true);

}

else

{
}

return;

System.out.printin("Invalid user");

Code Engineering Using UML Models

Code Generation From Behavioral Models | Code Generation - Activity Diagrams 30

Loops

Enterprise Architect's system engineering graph optimizer is also capable of analyzing and identifying loops.
An identified loop is internally rendered as an Action Loop, which is translated by the EASL code generation

macros to generate the required code.

The following diagram demonstrates how a loop can be modeled.

status I=
CrderStatus.closed]

Initialize
StateMachine

MNotify Ready

status I=
OrderStatus.closad]

Run StateMachine

The generated Java code might appear as follows:

public void doCheckForOutstandingOrders()

if (status != closed)

{
initializeStateMachine();
while (status != closed)

{

runStateMachine();

© 1998-2010 Sparx Systems Pty Ltd

31 Code Generation From Behavioral Models | Code Generation - Activity Diagrams

else

/INo Outstanding orders;

}

return;

Code Engineering Using UML Models

Code Engineering Settings | 32

1.4 Code Engineering Settings

You can set the default code options such as the editors for each of the programming languages available for
Enterprise Architect and special options for how source code is generated.

See Also

General Options|[32
Local Paths| 38

Local Path Dialog| 33
Language Macros/ 39

Setting Collection Classes/ 413

1.4.1 Source Code Engineering

The following topics describe general options that apply to all languages when generating code from
Enterprise Architect. These options are all available under the Source Code Engineering section of the
Options dialog (select the Tools | Options | Source Code Engineering menu option).

Source Code Options |32
Options - Code Editors/ 34
Options - Object Lifetimes| 25
Options - Attribute/Operations| 36"

Synchronize Model and Code| 104

Code Page for Source Editing/[37

1.4.1.1 Source Code Options

When you generate code for a particular language, you can set certain options. These include:

Create a default constructor

Create a destructor

Generate copy constructor

Select default language

Generate methods for implemented interfaces
Set the unicode options for code generation.

These options are accessed the Source Code Engineering page of the Options dialog (select the Tools |
Options | Source Code Engineering menu option).

© 1998-2010 Sparx Systems Pty Ltd

33

Code Engineering Settings | Source Code Engineering

o] "?_f SE-'E]LIEI'IDE ~ =
@

ﬂ Objects : Always synchronize with existing file (recommended)

. Links (") Replace (overwrte) existing source file

&= Communication Colors

@ XML Speciications Default Language for Code Generation: [CH vl
E‘ﬂ Wrap long comment lines at: 20 chars(-1 = no wrap)
----- Code Edit
_____ g Oubj:ct L'rfeDtrismes Auto Layout Diagram on Import: [On Mew Diagram V]
----- % Attribute/Operations Output files use both CR & LF
""" {3 ActionScript Prompt when synchronizing (reversing) 0 Comments
----- €] C Remove hard breaks from comments on import
----- [ed C# Puto generate role names when creating code Generate
..... e Ce+ Do not generate members where association [F Reverse
_____ :Im Delphi - direction is 'Unspecified’
_____ & || Create dependencies for operation retums and 0
o F‘EI-TF‘E parameter types
..... 5
""" Q‘ Python Remove prefiees when generating Get/Set properties (separate entries with)
SSUSLTBESID m_s;m_n;m_bim_; [7] Treat as suffices
&8l VB,
----- & Ada [Capitalized Attribute Name for Properties Use ‘Is' for Boolean property Get()
----- S SystemC
l‘: ET_’I”!JDE 3 Code page for source editing: -
i i
[Cloze] [Help

Most of the settings are self-explanatory. The Remove prefixes when generating Get/Set properties field
enables you to specify prefixes used in your variable naming conventions, if those prefixes should be removed
in the variables' corresponding get/set functions.

Click on the Component Types button to configure what elements| 333 you would like to be created for files of
any extension found while importing a source code directory.

Note:

It is worthwhile to configure these settings, as they serve as the defaults for all Classes in the model. You can
override these on a per-Class basis using the custom settings (from the Code Generation dialog).

1.4.1.1.1 Import Component Types

The Import Component Types dialog enables you to configure what elements you would like to be created for
files of any extension found while importing a source code directory.

To access the Import Component Types dialog select the Tools | Options | Source Code Engineering menu
option to display the Source Code Engineering page of the Options dialog, and click on the Component
Types button.

Code Engineering Using UML Models

Code Engineering Settings | Source Code Engineering

34

Specify for this model, the files by extension type, their UML equivalent and

an optional stereotype for importing additional items when reverse
engineering directares.

Extension Type Stereotype
sln [Mifact -] solution
Extension Type Stereotype
nc Artifact resource
bmp Component bitmap

zln Artifact solution

Save Mew][Delete]

For each extension you can specify:

The element type to be created
The stereotype to apply to these objects.
Note:

You can transport these import component types between models, using the Export Reference Data and

Import Reference Data options on the Tools menu. See the Reference Data topic in UML Model
Management.

1.4.1.2 Options - Code Editors

You access the source code editor options via the DDL page of the Options dialog (select the Tools | Options
| Source Code Engineering | Code Editors menu option). They enable you to configure options for

Enterprise Architect's internal editor, as well as the default editor for DDL scripts. You can configure external
editors for code languages on each language options page.

© 1998-2010 Sparx Systems Pty Ltd

35

Code Engineering Settings | Source Code Engineering

_Ega General
-0y Standard Colors DoL
[=-L_3 Diagram)
-3 Appearance DOL Editor: [1as]
----- {3 Behavior Default Database: MySql -
o Sequence
T Eijecig DDL Mame Templates: E]
.....*-._J Links
e Communication Colors Internal Source Editor
-4 ¥ML Specifications
Elﬂ Source Code Engineering Use inbuilt editor if no external editor set
----- i£2f Code Editors Shaw Line Mumbers
""" |# Object Lifetimes Show Structure Tree
""" ¥, Attribute/Operations Don't parse files larger than: Always Parse -
----- 23] ActionScript
..... [g]c
..... g CE
..... EI C++
----- it Delphi
..... Ja\l'a
----- e PHP
----- 48 python
-4l VHDL
Cloze] [Help
The options for the inbuilt editor are:
Option Use to
Use inbuilt editor if no Specify the editor for code in a language if no external editor is defined for
external editor set that language.
Show Line Numbers Show line numbers in the editor.
Show Structure Tree Show a tree with the results of parsing the open file (requires that the file is
parsed successfully).
Don't parse files larger than | Specify an upper limit on file size for parsing. Used to prevent performance
decrease due to parsing very large files.

1.4.1.3 Options - Object Lifetimes

This set of options enables you to configure:

e Constructor details when generating code
e Whether to create a copy constructor
e Destructor details.

These options are accessed via the Constructor page of the Options dialog (select the Tools | Options |
Source Code Engineering | Object Lifetimes menu option).

Code Engineering Using UML Models

Code Engineering Settings | Source Code Engineering 36

Jﬁ Sequence i Constructor
-|28 Objects
Links Generate Constructor

"

i Communication Calors [Constructor inding (C++ only)
@ ¥ML Specfications Default constructar visibility:
=& Source Code Enginesring Copy Constructor
----- |# Code Edtors
_____ B Cbiect Lstimes [Generate Copy Constructor
..... % Attribute/Operations [] Copy Constructor indine (C++ only)
_____ 1B ActionScript Default copy constructor visibility:
----- (€ C Destructor
..... £a C5 [¥] Generate Destructor
..... CY Cas
_____ ﬁ Delphi 3 [C] Destructor indine (C++ only)
..... Java r Virtual Destructor (C++ only)
_____ i PHP Default destructor visibility:
..... 48 Python
----- oy Visual Basic
i3l VB.Net
..... 2y Ada
----- (SystemC
----- W Verlog
- §Tfi VHDL il

Close] [Help

1.4.1.4 Options - Attribute/Operations

This set of options enables you to:

Configure the default name generated from imported attributes

Generate methods for implemented interfaces

Delete model attributes not included in the code during reverse synchronization
Delete model methods not included in the code during reverse synchronization
Delete code from features contained in the model during forward synchronization

Delete model associations and aggregations that correspond to attributes not included in the code during
reverse synchronization

Define whether or not the bodies of methods are included and saved in the Enterprise Architect model
when reverse engineering

Create attributes in quick succession, clearing the dialog when you click on Save so that you can enter
another attribute name.

These options are accessed via the Attribute Specifications page of the Options dialog (select the Tools |
Options | Source Code Engineering | Attribute/Operations menu option).

© 1998-2010 Sparx Systems Pty Ltd

37 Code Engineering Settings | Source Code Engineering

. TP Sequence »
: @ Objects

-, Links

L2 Communication Colors

Attribute Specifications

Default name for agsociated attrib: m_SLinkClass

@ ¥ML Specfications On reverse synch, delete model attributes not in code
EI@ Source Code Engineering B [T On reverse synch, delete model associations not in code

----- Code Edttors

..... Object Lifetimes Operation Specifications

----- ‘?ﬁ AMtribute/Operations

""" Action Script Generate methods for implemented intefaces

""" % E# On reverse synch, delete model methods not in code

..... @ C+ [7] Include method bodies in model when reverse engineering

""" 1 Delphi E Options

----- & Java

—ghp PHP After save, re-select edited item

""" Q Fython On forward synich, prompt to delete code features not in model

----- Fy Visual Basic

458 VB.Net

..... &y Ada

----- “(SystemC

----- W Verlog

-4l VHDL N

[Close] [Help

1.4.1.5 Code Page for Source Editing

Enterprise Architect enables you to define the Unicode character set for code generation. To set the Unicode
character set follow the steps below:

1. Select the Tools | Options | Source Code Engineering menu option. The Source Code Engineering
page of the Options dialog displays.

Code Engineering Using UML Models

Code Engineering Settings | Source Code Engineering 38

TULUS (MAL - Korean)
} . 10004 (MALC - Arabic)
@) Always synchronize with exist 1pnos (MAC - Hebrew)
") Replace {overwrite) existing = 10006 [MAC - Greek [)
10007 {MAL - Cyrillic)
10008 {MAC - Simplified Chinese GBE 2312)
Defautt Language for Code G 1010 {MAL - Romania)
10017 (MAC - Ukraine)
10021 {MALC - Thai)
Muto Layout Diagram on Impe 10023 (MAC - Latin 11)
R P* 10079 (MAC - Icelandic)
Output files use both CR & LF - 10081 {MAC - Turkish)
Promt when swmchronizi 10082 (MAC - Croatia)
Hr;;"g il mgkfrgﬁgc{f;i 26 (IBM EBCDIC - Turkish {Latin-5))
7 {IEM EBCDIC - Latin-1/Open System)

m

.. PF Sequence -
iig Objects
o Links

ifag Communication Colors
@ XML Specffications
—ﬂ Source Code Engineering
----- |# Code Editors

----- |# Object Lifetimes

----- “ ' Attribute/Operstions
----- 3| ActionScript

Wrap long comment lines at:

m

Auto generate role names when ¢ 114{}
Do not generate members where 1141
direction is "Unspecified’ 1142
Create dependencies for operatio 1143
parameter types 1144

(IEM EBCDIC - U.5./Canada (37 + Euro).
(IEM EBCDIC - Germaryy (20273 + Eura))
(IEM EBCDIC - Denmark. Norway (20277
(IEM EBCDIC - Finland,/Sweden (20278 -
(IEM EBCDIC - kaly (20280 + Eura))

1145 (IBM EBCDIC - Latin America/Spain (202
Remove prefixes when generat 1146 (IBM EBCDIC - United Kingdom (20285 +
m sm nm bm - 1148 (IBM EBCDIC - Intemational (500 + Eura)
o 1145 (IBEM EBCDIC - lcelandic (20871 = Eurol)
L , 1250 (ANSI - Central Europe)
[T Capitalized Attribute Name 1251 {ANSI - Cyrillic)

1252 (AMSI - Latin [) =
Code page for source editing: E]

----- ¥ Verlog
-l VHDL

[Close l I Help I

2. Inthe Code page for source editing field, click on the drop-down arrow and select the appropriate
Unicode character set.

3. Click on the Close button.

1.4.2 Local Paths

Sometimes a team of developers could be working on the same Enterprise Architect model. Each developer
might store their version of the source code in their local file system, but not always at the same location as
their fellow developers. To handle this scenario, Enterprise Architect enables you to define local paths for each
Enterprise Architect user, using the Local Paths 39 dialog (select the Settings | Local Paths menu option).

As well as generating code and reverse engineering, you can use local paths in version control, developing
XML schemas, and generating RTF and HTML reports.

Local paths take a bit of setting up, but if you want to work collaboratively on source and model concurrently,
the effort is well worth while.

For example: developer A stores their .java files in a C:\Java\Source directory, while developer B stores theirs
in D:\Source. Meanwhile, both developers want to generate and reverse engineer into the same Enterprise
Architect model located on a shared (or replicated) network drive.
Developer A might define a local path of:
JAVA_SOURCE = "C:\Java\Source"
All Classes generated and stored in the Enterprise Architect project are stored as:
%JAVA_SOURCE%\<xxx.java>.
Developer B now defines a local path as:
JAVA_SOURCE ="D:\Source".
Now, Enterprise Architect stores all java files in these directories as:
%JAVA_SOURCE%\<filename>
On each developer's machine, the filename is expanded to the correct local version.

© 1998-2010 Sparx Systems Pty Ltd

39 Code Engineering Settings | Local Paths Dialog

1.4.3 Local Paths Dialog

The Local Paths dialog enables you to set up local paths for a single user on a particular machine. For a
description of what Local Paths are used for, see the Local Paths| 38" topic. To open the Local Paths dialog,
select the Settings | Local Paths option.

Path: ChJavahSource @

ID: Java | Apply Path | | Bxpand Path |
Type: Java -

Relative Paths I New H Save H Delste I
Type n] Path

Java Java ChJavahSource

Version Cortrol SVN_Use... Y \Dev\Howard"4Review"_EAFuture Builds*C 0305
Version Cortrol SVM_corfig CANWC Worispaces' Subversion Roys Testing

4 (1 2

it [Cose J[b |

The Local Paths dialog enables you to define:

e Path - the local directory in the file system (for example, d:\java\source)

e ID - the shared ID that is substituted for the Local Path (for example, JAVA_SRC)

e Type - the language type (for example, Java).

And also to:

e Apply Path - Select a path and click on this button to update any existing paths in the model (with full path
names) to the shared relative path name (so d:\java\source\main.java might become %JAVA_SRC%\main.java)

e Expand Path - The opposite of Apply Path. This enables you to remove a relative path and substitute the
full path name.

Using the two options you can update and change existing paths.

Note:

You can also set up a hyperlink (see the UML Dictionary) on a diagram to access the Local Paths dialog, to
switch, update or expand your current Local Path.

1.4.4 Language Macros

When reverse engineering a language such as C++, you might find preprocessor directives scattered
throughout the code. This can make code management easier, but can hamper parsing of the underlying C++
language.

To help remedy this, you can include any number of macro definitions, which are ignored during the parsing
phase of the reverse engineering. It is still preferable, if you have the facility, to preprocess the code using the
appropriate compiler first; this way, complex macro definitions and defines are expanded out and can be
readily parsed. If you don't have this facility, then this option provides a convenient substitute.

Code Engineering Using UML Models

Code Engineering Settings | Language Macros 40

Note:

You can transport these language macro (or preprocessor macro) definitions between models, using the
Export Reference Data and Import Reference Data options on the Tools menu. The macros are exported
as a Macro List. See the Reference Data topic in UML Model Management.

Define a Macro
1. Select the Settings | Preprocessor Macros menu option. The Language Macros dialog displays.

Select Language I':H v]

Defined Macros [ikl bien] I Delete I

_AFX_NO_DEBUG_CRT L
“ARX_NO_OCC_SUPPORT
TAFX_OLD_EXCEPTIONS
“ARX_PACKING

“AFXDLL

“DEBUG

“MSC_VER

“UNICODE

AFX_CDECL
AFX_COMDAT

m

Close I l Help

2. Click on the Add New button.
3. Enter details for your macro.
4. Click on the OK button.

Macros Embedded Within Declarations
Macros are sometimes used within the declaration of Classes and operations, as in the following examples:
class __declspec Foo

{
I

If declspec is defined as a C++ macro, as outlined above, the imported Class and operation contain a Tagged
Value called DecIMacrol with value __declspec. (Subsequent macros would be defined as DeclMacro2,
DeclMacro3 and so on.) During forward engineering, these Tagged Values are used to regenerate the macros
in code.

int __declspec Bar(int p);

Define Complex Macros

It is sometimes useful to define rules for complex macros that can span multiple lines. Enterprise Architect
ignores the entire code section defined by the rule. Such macros can be defined in Enterprise Architect as in
the following two examples. Both types can be combined in one definition.

Block Macros
BEGIN_INTERFACE_PART "~ END_INTERFACE_PART
where the ~ symbol represents the body of the macro. This enables skipping from one macro to another.

Note:

The spaces surrounding the ~ symbol are required.

Function Macros
RTTI_EMULATION()

© 1998-2010 Sparx Systems Pty Ltd

41 Code Engineering Settings | Language Macros

where Enterprise Architect skips over the token including everything inside the parentheses.

1.4.5 Set Collection Classes

Enterprise Architect enables you to define Collection Classes for generating code from Association connectors
where the target role has a multiplicity setting greater than 1. There are two options for doing this:

1. On the Source Code Engineering section of the Options dialog (select the Tools | Options | Source
Code Engineering option), on each language page click on the Collection Classes button.

Collection class for 1..* assocdations: Collection Classes

The Collection Classes for Association Roles dialog displays.

Language: AS|

Static

Default Collection Class:

Collection Class for Ordered Multiplicity:
Collection Class for Qualfied Multiplicity:

0K || Cancel || Hebp

On this dialog, you can define:

e The default Collection Class for 1..* roles

e The ordered Collection Class to use for 1..* roles
e The qualified Collection Class to use for 1..* roles.

2. On the Detall tab of the Class Properties dialog (accessible from the right-click context menu of any
Class), click on the Collection Classes button.

Concumency

(71 Sequential

(7 Guanded

(7 Active

(7 Synchronous

Collection Classes. ..

The Collection Classes for Association Roles dialog again displays, but here you define for when only
this Class is used:

e The default Collection Class for 1..* roles
e The ordered Collection Class to use for 1..* roles
e The qualified Collection Class to use for 1..* roles.
When Enterprise Architect generates code for a connector that has a multiplicity role >1, the Collection Class
is calculated as follows:
1. If the Qualifier is set use the qualified collection:
o for the Class if set
e else use the code language qualified collection.
2. If the Order option is set use the ordered collection:
o for the Class if set

Code Engineering Using UML Models

Code Engineering Settings | Set Collection Classes 42

e else use the code language ordered collection.
3. Else use the default collection:

e for the Class if set

e else use the code language default collection.

Note:

You can include the marker #TYPE# in the collection name; Enterprise Architect replaces this with the name
of the Class being collected at source generation time (for example, Vector<#TYPE#> would become

Vector<foo>).

Additionally, on both the Source Role and Target Role tabs of the Association Property dialog (accessible from
the right-click context menu of any Association) there is a Member Type field. If you set this, the value you
enter overrides all the above options. The example below shows a defined PersonList; when code is
generated, because this has a Multiplicity greater than 1 and the Member Type is defined, the variable

created is of type PersonList.

Classt Role:
m_PersonList

Alias:

Role Motes:
A list of staff in order

["] Derived [T Derived Union
[Cvwvmed

Multiplicity
1.7 -

COrdered
[Allow Duplicates

Constrairnt(s):
Clualifien(z):
Stereotype:

Member Type: Personlist

| General | Constraints | Source Role | Target Role

-~

Containment:

Access: Protected -
Aggregation: nane -
Target Scope: instance -
MNavigability:
Changeable:

-]

oK

|| Cancel || Hebp

1.4.6 Language Options

You can set up various options for how Enterprise Architect handles a particular language when generating
code. These options are accessible on the Options dialog (select the Tools | Options menu option).

Under the Source Code Engineering option, select the required language. The following topics outline the

options available for each language.

o ActionScript/ 43

o Ada 200543 (in the System Engineering and Ultimate editions of Enterprise Architect)

e ANSI Cl4h
o C#las)
o Ct+[48)

© 1998-2010 Sparx Systems Pty Ltd

43 Code Engineering Settings | Language Options

e Delphil 47

« Delphi Properties| 48"
e Java[si

. w’?ﬁ

e Python[s%

e SystemC/s3"

e VB.Net[sH

e Verilog[ss

e VHDL/se}

e Visual Basicl 5™

e MDG Technology Languages| 58"

o Reset Options| 59

1.4.6.1 ActionScript Options

Configure options for ActionScript code generation using the ActionScript Specifications page of the Options
dialog (select the Tools | Options | Source Code Engineering | ActionScript menu option). The options you
can specify include the:

e Default ActionScript version to generate (AS2.0 or AS3.0)

o Default file extensions (header and source)

e Default source directory

o Editor for ActionScript code.

ActionScript Specifications
[Disable Language

= Options for the cument model
Default Version 20
Default Extension 83
= Options for the cument user
Default Source Directory
Editor

Collection dass for 1..* associations: Collection Classes

1.4.6.2 Ada 2005 Options

Note:

Ada 2005 support is available in the System Engineering and Ultimate editions of Enterprise Architect.

Configure options for Ada 2005 code generation using the Ada page of the Options dialog (select the Tools |

Code Engineering Using UML Models

Code Engineering Settings | Language Options 44

Options | Source Code Engineering | Ada menu option). The options you can specify include:

e Use Class Name for Tagged Record - to inform the reverse engineering process whether the name of the
Tagged Record is the same as the package name

e Alternate Tagged Record Name - to advise the engine of the alternate Tagged Record name to locate

¢ Define Reference for Tagged Record - to specify whether the engine should create a reference type for the
Tagged Record (if one is not defined)

o Reference Type Name - to supply the name of the reference type to be created (default is Ref)

o Ref Parameter Style - to specify the reference parameter of a Reference / Access type

e Ignore Reference Parameter Name - to tell the engine to ignore the name of the reference parameter
o Ref Parameter Name - to indicate the name of the reference parameter to locate

Ada

Disable Language

-1 Options for the cument wuser -
Generate Namespaces True
Default Source Directony
Import File Bxtensions ads;
Editor

m

IUse Class Mame for Tagged Record True
Atemate Tagged Record Name™ Typ
Define Reference for Tagged Record False

Reference Type Name™ Ref

Ref Parameter Style Access

lgnore Reference parameter name ... False

Ref Parameter Name™ this -
Collection dass for 1..* assodations: Collection Classes

1.4.6.3 C Options

Configure options for C code generation using the C Specifications page of the Options dialog (select the
Tools | Options | Source Code Engineering | C menu option). The options you can specify include:

e Support for Object Oriented coding

e Default file extensions (header and source)

e Default source directory

o Editor for C code

e Path that Enterprise Architect uses to search for the implementation file; the first path in the list is the
default path when generating.

© 1998-2010 Sparx Systems Pty Ltd

45

Code Engineering Settings | Language Options

C Spedfications

[Disable Language

= Options for the cument model -
Header Edension h
Source Extension c
Object Orented Suppart Falze =

Mamespace Delimiter _
Reference as Operation Parameter True

Reference Parameter Style Pointer (%) TR
Reference Parameter Name this
Default Constructor Mame new
Default Destructor Mame delete
= Options for the cument user
Default Attribute Type int
Import Hdefine Constants Falze -
Collection dass for 1..* assocations: Collection Classes

1.4.6.4 C# Options

Configure options for C# code generation using the C# Specifications page of the Options dialog (select the
Tools | Options | Source Code Engineering | C# menu option). The options you can specify include the
default:

¢ File extension

e 'Get' prefix

e 'Set prefix

o Directory for opening and saving C# source code.

Code Engineering Using UML Models

Code Engineering Settings | Language Options 46

C# Spedfications

["| Disable Language
=1 Options for the cument model
Default Exdension Il
-1 Options for the cument user
Default Attrbute Type int
Generate Namespaces True
Remowve hard breaks from summary... False
Generate Finalizer True
Generate Dispose True
Default Source Directony
Editor
Collection dass for 1..* assodations: Collection Classes

1.4.6.5 C++ Options

Configure options for C++ code generation using the C++ Specifications page of the Options dialog (select
the Tools | Options | Source Code Engineering | C++ menu option). The options you can specify include:

The version of C++ to generate; this controls the set of templates used and how properties are created
The default reference type used when a type is specified by reference

The default file extensions

Default Get/Set prefixes

Default source directory

The path that Enterprise Architect uses to search for the implementation file. The first path in the list is the
default path when generating new implementation files and parsing existing files; if you add further
directories, Enterprise Architect also searches these when parsing existing files.

For example, you have a directory inc that contains all of your headers, while the source code is mixed
through directories src, srca, and srcb. You therefore set the Source Path option to ../src/;../srcal;../srcb/.
This ensures that new implementation files are generated into src, but when parsing existing files
Enterprise Architect looks in all three source directories (but never in the inc directory). You must still
ensure that the implementation file name matches the header file name, and that the file extension
matches the extension specified in the options. If these conditions are not met, Enterprise Architect cannot
handle that code.

© 1998-2010 Sparx Systems Pty Ltd

a7

Code Engineering Settings | Language Options

C++ Spedifications
[Disable Language
= Options for the cument model -

C++ Version ANSI
Default Reference Type Pointer (%)
Header Edension h L
Source Bxdension cpp r
Get Prefic (Get
Set Prefic Set i
Options for the cument wser
Default Attribute Type irt
Generate Namespaces False
Comment Style Plain
Method Motes in Header False
Method Motes in Implementation True -

Collection dass for 1..* assodations: Collection Classes

1.4.6.6 Delphi Options

Configure options for Delphi code generation using the Delphi Specifications page of the Options dialog
(select the Tools | Options | Source Code Engineering | Delphi menu option). The options you can specify
include the:

o Default file extension

e Default source directory

You can also set a default directory for opening and saving Delphi source code.

Code Engineering Using UML Models

Code Engineering Settings | Language Options 48

Delphi Spedfications
[Disable Language

= Options for the cument model
Default Exdension pas
= Options for the current user
Default Attribute Type Imteger
Default Source Directony
Editor

Collection dass for 1..* associations: Collection Classes

You should also set Delphi Qroperties% within each Class element.

1.4.6.6.1 Delphi Properties

Enterprise Architect has comprehensive support for Delphi properties. These are implemented as Tagged
Values, with a specialized property editor to help create and modify Class properties. The Class image below
illustrates the appearance of a Delphi Class that has had properties added to it. These are stored as Tagged
Values, and by using the Feature Visibility element context menu option, you can display the 'tags'
compartment that contains the properties. Imported Delphi Classes with properties have this feature
automatically made visible for your convenience.

Show Element Compartments
[Responsibilities

[Inherited Responsibilities
Tags

Inherited Tags

[] Fully Qualfied Tags

[Crnstraint=

Note:

When you use the Create Property dialog from the Attribute screen, Enterprise Architect generates a pair of
Get and Set functions, together with the required property definition as Tagged Values. You can manually edit
these Tagged Values if required.

© 1998-2010 Sparx Systems Pty Ltd

49 Code Engineering Settings | Language Options

TTestClass2

- FTestField: Integer
- m_Mame: String

+ gpropery gets GetMame(): String

+ gpropery sets Sethame(String) ; void

- PrivateFrocedure Tesi{integer)

- gfunctions PrivateFunctionTest() : string

- gproperty gets GetPublicPropertyTest2(): string
aproperty sets SetPublicPropertyTest2(string)
ProtectedFunction Test() : boolean

giZonstructore TestCreate(TObject)

afunction= PublicFunctionTest() : Word

function= ProtectedFunctionTest() : Boolean
PublicProcedureTest(Double)

aproperty set: SetPublishedPropertyTestd() : Extended
zproperty gets GetPublishedPropertyTestd() | Extended
ProtectedProcedureTest(WideString)

gdestructors TestDestroy() : void

T EE R

tags
property = +PublicPropertyTestt:Integer read m_Mame write Gethame default "Jog’
property = +PublicPropertyTest2:String read GetPublicProperyTestz write setPublicProperyTestZ default 13
property = *PublishedPropertyTest3:Integer read FTestField write FTestField
property = *“PublishedPropertyTestd:Extended read GetP ublishedPropertyTestd write setPublishedPropertyTestd

To manually activate the property editor

1. Ensure the Class you have selected has the code generation language set to Delphi

2. Right-click on the Class and select the Delphi Properties context menu option to open the editor.
The Delphi Properties editor enables you to build properties in a simple and straightforward manner. From
here you can:
e Change the name and scope (only Public and Published are currently supported)
e Change the property type (the drop-down list includes all defined Classes in the project)

e Set the Read and Write information (the drop-down lists have all the attributes and operations from the
current Class; you can also enter free text)

e Set Stored to True or False
e Set the Implements information
e Set the Default value, if one exists.

Code Engineering Using UML Models

Code Engineering Settings | Language Options 50

Property Details

MName: PublishedProperty Test3 Published [Indexed
Type: Integer -

Read: FTestField -

Write: FTestField -

Stored: -

Implements:

Default:

Definition: “PublishedProperty Test3:Integer read FTestField write FTestField -

-

[New] [Sa\re] [Delete] [Duse]

Defined Properties

Property Details

+PublicProperty Test1:Integer read m_Name write GetMName default “Jog'
“Published Property Test4: Extended read GetPublished Property Testd write SetPubli...
“Published Property Test3:Integer read FTestField write FTestField

+PublicProperty TestZ:5tring read GetPublic Property Test2 write set PublicProperty T...
“PublicProperty Test 1:Integer read m_Name write GetName default ‘Joe’

Notes:
e Public properties are displayed with a '+' symbol prefix and published with a ''.

e When creating a property in the Create Property Implementation dialog (accessed through the Attributes
dialog), you can set the scope to Published if the property type is Delphi - see the example below.

Language Property Details

L Cas MName: FTestField

& Cancel
SeE Getter GetFTestField]
(1 Visual Basic

= CHf Setter: SetFTestField(Value: Integer)

i@ Delphi F [] Published
i1 VB Met Read

] Get Scope; | Public -
) PHP pe: |) VWrite
Set Scope: [F‘ublic - =
P

Limitations
e Only Public and Published are supported
e If you change the name of a property and forward engineer, a new property is added, but the old one must

© 1998-2010 Sparx Systems Pty Ltd

51 Code Engineering Settings | Language Options

be manually deleted from the source file.

1.4.6.7 Java Options

Configure options for Java code generation using the Java Specifications page of the Options dialog (select
the Tools | Options | Source Code Engineering | Java menu option). The options you can specify include
the:

o Default file extension

e Default 'Get' prefix

e Default 'Set' prefix

You can also set a default directory for opening and saving Java source code.

Java Spedifications

[Disable Language
= Options for the cument model
Default Bdension java
Get Prefic get
Set Prefic set

Default Collection Class
= Options for the cument user
Default Attibute Type int
Default Source Directony
Editor

Collection dass for 1..* assodations: Collection Classes

1.4.6.8 PHP Options

Configure options for PHP code generation using the PHP Specifications page of the Options dialog (select
the Tools | Options | Source Code Engineering | PHP menu option). The options you can specify include
the:

e Default source extension - specify the extension to be used when creating files for PHP source

e Default import extension - a semi-colon separated list of extensions to look at when doing a directory code
import/ 8" for PHP

e Default PHP version - the version of PHP to generate.
You can also set a default directory for opening and saving PHP source code.

Code Engineering Using UML Models

Code Engineering Settings | Language Options 52

PHP Spedifications
[Disable Language
= Options for the cument model
Default Version 40
Default Bdension php
Get Prefic get
Set Prefic set

= Options for the cument wuser
Defaultt Source Directany
Impart File BExtensions php; php4;inc;
Editor

Collection dass for 1..* assodations: Collection Classes

1.4.6.9 Python Options

Configure options for Python code generation using the Python Specifications page of the Options dialog
(select the Tools | Options | Source Code Engineering | Python menu option). The options you can specify
include the:

o Default file extension(s)

e Default source directory.

You can also set the editor for Python code.

© 1998-2010 Sparx Systems Pty Ltd

53 Code Engineering Settings | Language Options

Python Spedfications
[Disable Language

= Options for the cument model
Default Edension Py
= Options for the cument user
Default Source Directony
Editor

Collection dass for 1..* assodations: Collection Classes

1.4.6.10 SystemC Options

Configure options for SystemC code generation using the SystemC page of the Options dialog (select the
Tools | Options | Source Code Engineering | SystemC menu option). The options you can specify include
the:

o Default file extension(s)

e Default source directory

e Editor for changing code.

Code Engineering Using UML Models

Code Engineering Settings | Language Options 54

SystemC
[Disable Language

= Options for the cument model
Default BEdension sC

= Options for the curment user

Default Attribute Type

Defaultt Source Directony

Import File Extensions BC

Editar

Collection dass for 1..* assodations: Collection Classes

1.4.6.11 VB.Net Options

Configure options for VB.Net code generation using the VB.Net Specifications page of the Options dialog
(select the Tools | Options | Source Code Engineering | VB.Net menu option). The options you can specify
include the:

o Default file extension

e Default source directory.

© 1998-2010 Sparx Systems Pty Ltd

55 Code Engineering Settings | Language Options

VB.Met Spedifications
[| pisable Language

= Options for the cument model
Defautt Extension vb

= Options for the cument user
Default Attrbute Type Varart
Generate Namespaces True
Default Source Directony
Editor

Collection dass for 1..* assodations: Collection Classes

1.4.6.12 Verilog Options

Configure options for Verilog code generation using the Verilog page of the Options dialog (select the Tools |
Options | Source Code Engineering | Verilog menu option). The options you can specify include the:

o Default file extension(s)

e Default source directory

e Editor for changing code.

Code Engineering Using UML Models

Code Engineering Settings | Language Options 56

Verilog
[Dizable Language

= Options for the cument model
Default Extension N
= Options for the curmment user

Default Attribute Type
Default Source Directory

Import File Bxtensions v verlog
Editor

Collection dass for 1..* associations: Collection Classes

1.4.6.13 VHDL Options

Configure options for VHDL code generation using the VHDL page of the Options dialog (select the Tools |
Options | Source Code Engineering | VHDL menu option). The options you can specify include the:

o Default file extension(s)

e Default source directory

e Editor for changing code.

© 1998-2010 Sparx Systems Pty Ltd

57 Code Engineering Settings | Language Options

WHOL
|| Disable Language

= Options for the cument model
Default Extension wvhdl
= Options for the curmment user
Default Atribute Type
Default Source Directory
Import File Bxtensions whdl; vhd

Editor

Collection dass for 1..* associations: Collection Classes

1.4.6.14 Visual Basic Options

Configure options for Visual Basic code generation using the VB Specifications page of the Options dialog
(select the Tools | Options | Source Code Engineering | Visual Basic menu option). The options you can
specify include the:

o Default file extension when reading/writing

e Default Visual Basic version

e MTS transaction mode for MTS objects

e Multi use (true or false)

e Persistable

e Data binding

e Global namespace

e Exposed

e Data source behavior

e Creatable.

Code Engineering Using UML Models

Code Engineering Settings | Language Options 58

Collection dass for 1..* assodations:

VB Spedifications
[| pisable Language
= Options for the cument model
Default Version 6.0
Default BEdension cls
Muttiuse True
Persistable Falge
Data Binding Behavior Falze
Data Source Behavior False
Global Mamespace Falze
Creatable True
BExposed Falze
MT5 Transaction Made [- Mot AnMTSObject
= Options for the curmment user
Default Attribute Type Variart

m

Collection Classes

1.4.6.15 MDG Technology Language Options

If you have loaded an MDG Technology that specifies a code module into your Sparx Systems > EA > MDG
Technologies folder (see the MDG Technologies in SDK section of SDK For Enterprise Architect), the
language is included in the Source Code Engineering list on the Options dialog. The language is only listed on
the Options dialog if an MDG Technology file actually uses it in your model.

The options for each language are based on what is defined in the technology code module, but are limited to
the following:

Default Extension

o Default extension for generated source files

e Shown if the option is in the technology

e Saved per project.

Import File Extensions

o Default folder to import source files from

e Shown if there is a grammar set in the technology
e Saved once for all projects.

Generate Namespaces

e Option to generate namespaces or not

e Shown if the technology supports namespaces

e Saved once for all projects.

Default Source Directory

e The default directory to save generated source files
e Always shown

e Saved once for all projects.

Editor

e The editor that is loaded to edit the source files

e Always shown

e Saved once for all projects.

© 1998-2010 Sparx Systems Pty Ltd

59

Code Engineering Settings | Language Options

o AttType

o Default type for attributes

e Always shown

e Saved once for all projects.

These options are set in the technology inside the <CodeOptions> tag of a code module, as follows:
<CodeOption name="DefaultExtension">.rb</CodeOption>

Elﬂ Source Code Engineering

ﬂ Objects L
*., Links

-2 Communication Colors

-4y XML Specfications

DL

[] Disable Language

= Options for the cument model
Default Bdension

= Options for the cument user
Default Attribute Type
Generate Namespaces

----- |# Code Edtors
----- |# Object Lifetimes
----- @ o Attibute/Operations

Fal
----- {3 ActionScript =se

Default Source Directany
Impaort File Bdensions
Editor

m

48 Python
Visual Basic
i

3 VB Net

-1l VHDL

----- 1z [-

Collection dass for 1..* assocdations:

Collection Classes

1

[Close

| |

Hep |

1.4.6.16 Reset Options

Enterprise Architect stores some of the options for a Class when it is first created. Some are global; for
example $LinkClass is stored when you first create the Class, so it won't automatically pick up the global
change in the Options dialog in existing Classes. You must modify the options for the existing Class.

Modify Options for Single Class
To modify options for a single Class, follow the steps below:

1.

4.

Right-click on the Class to change, and select the Generate Code menu option from the context menu.
The Generate Code dialog displays.

Click on the Advanced button. The Object Options dialog displays.
Click on the Attributes/Operations button.
Change the options, and click on the Close button to apply changes.

Modify Options for All Classes

To modify options for all Classes within a package, follow the steps below:

1.
2.

Right-click on the package in the Project Browser. The context menu displays.

Select the Code Engineering | Reset Options for this Package menu option. The Manage Code
Generation dialog displays.

Code Engineering Using UML Models

Code Engineering Settings | Language Options

Convert Language

Where language is:

Options
Convert to:

Clear Filenames
Reset Default Options
Process Child Packages

[‘u"lsual Basic -]

| ActionScript v |

(]

Help

3. Reset the required defaults for each existing Class.
4. Click on the OK button to apply changes.

60

© 1998-2010 Sparx Systems Pty Ltd

61 Code Template Framework |

1.5 Code Template Framework

[1]] umL

The Code Template Framework (CTF) is used during forward engineering of UML models. The CTF enables

you to:

e Generate source code from UML models

e Customize the way in which Enterprise Architect generates source code

e Forward engineer languages not specifically supported by Enterprise Architect.

The CTF consists of:

o Default Code Templates! 65 which are built into Enterprise Architect for forward engineering supported
languages

e A Code Template Editor| 64 for creating and maintaining user-defined Code Templates (also see SDK for
Enterprise Architect)

e Code templates to synchronize code! 66,

1.5.1 Code Templates

Code templates enable you to customize code generation of existing languages. For example:

¢ Modify the file headers created when generating new files

e Change the style of the generated code (such as indenting or brace position) to match the required coding
standards

e Handle particular stereotypes to generate things like specialized method bodies and extra methods.

They also enable you to add code generation of entirely new languages that Enterprise Architect would
otherwise not be able to handle. In this situation it is most useful to combine code templates with an MDG
technology file that includes the datatypes, and options for default file extensions. See the Create MDG
Technologies topic in SDK for Enterprise Architect.

Enterprise Architect's base code templates| 62 specify the transformation from UML elements to the various
parts of a given programming language. The templates are written as plain text with a syntax that shares some
aspects of both mark-up languages and scripting languages. A simple example of a template used by
Enterprise Architect is the 'Class template'. It is used to generate source code from a UML Class:

%ClassNotes%

%ClassDeclaration%

%ClassBody%

The above template simply refers to three other templates, namely ClassNotes, ClassDeclaration and
ClassBody. The enclosing percent (%) signs indicate a macro. Code Templates consist of various types of
macros, each resulting in a substitution in the generated output. For a language such as C++, the result of
processing the above template might be:

/**

* This is an example class note generated using code templates

* @author Sparx Systems

*/
class ClassA: public ClassB

{

Execution of Code Templates

A reference to a template (such as the %ClassNotes% macro, from our example above) results in the
execution of that template.

Each template is designed for use with a particular element. For example the ClassNotes template is to be

Code Engineering Using UML Models

Code Template Framework | Code Templates 62

used with UML Class elements.

The element that is currently being generated is said to be in scope. If the element in scope is stereotyped
Enterprise Architect looks for a template that has been defined for that stereotype. If a match is found, the
specialized template is executed. Otherwise the default implementation of the base template is used.

Templates are processed sequentially, line by line, replacing each macro with its underlying text value from
the model.

1.5.1.1 Base Templates

The Code Template Framework consists of a hnumber of base templates. Each base template transforms
particular aspects of the UML to corresponding parts of object-oriented languages.

The following table lists and briefly describes the base templates used in the CTF.

Template

Description

Attribute

A top-level template to generate member variables from UML attributes.

Attribute Declaration

Used by the Attribute template to generate a member variable declaration.

Attribute Notes

Used by the Attribute template to generate member variable notes.

Class A top-level template for generating Classes from UML Classes.

Class Base Used by the Class template to generate a base Class name in the inheritance list
of a derived Class, where the base Class doesn't exist in the model.

Class Body Used by the Class template to generate the body of a Class.

Class Declaration

Used by the Class template to generate the declaration of a Class.

Class Interface

Used by the Class template to generate an interface name in the inheritance list
of a derived Class, where the interface doesn't exist in the model.

Class Notes

Used by the Class template to generate the Class notes.

File

A top-level template for generating the source file. For languages such as C++,
this corresponds to the header file.

Import Section

Used in the File template to generate external dependencies.

Linked Attribute

A top-level template for generating attributes derived from UML Associations.

Linked Attribute Notes

Used by the Linked Attribute template to generate the attribute notes.

Linked Attribute
Declaration

Used by the Linked Attribute template to generate the attribute declaration.

Linked Class Base

Used by the Class template to generate a base Class name in the inheritance list
of a derived Class, for a Class element in the model that is a parent of the
current Class.

Linked Class Interface

Used by the Class template to generate an Interface name in the inheritance list
of a derived Class, for an Interface element in the model that is a parent of the
current Class.

Namespace

A top-level template for generating namespaces from UML packages. (Although
not all languages have namespaces, this template can be used to generate an
equivalent construct, such as packages in Java.)

Namespace Body

Used by the Namespace template to generate the body of a namespace.

Namespace Declaration

Used by the Namespace template to generate the namespace declaration.

© 1998-2010 Sparx Systems Pty Ltd

63

Code Template Framework | Code Templates

Template

Description

Operation

A top-level template for generating operations from a UML Class's operations.

Operation Body

Used by the Operation template to generate the body of a UML operation.

Operation Declaration

Used by the Operation template to generate the operation declaration.

Operation Notes

Used by the Operation template to generate documentation for an operation.

Parameter

Used by the Operation Declaration template to generate parameters.

The second table lists templates used for generating code for languages that have separate interface and

implementation sections.

Template

Description

Class Impl

A top-level template for generating the implementation of a Class.

Class Body Impl

Used by the Class Impl template to generate the implementation of Class
members.

File Impl

A top-level template for generating the implementation file.

File Notes Impl

Used by the File Impl template to generate notes in the source file.

Import Section Impl

Used by the File Impl template to generate external dependencies.

Operation Impl

A top-level template for generating operations from a UML Class's operations.

Operation Body Impl

Used by the Operation template to generate the body of a UML operation.

Operation Declaration
Impl

Used by the Operation template to generate the operation declaration.

Operation Notes Impl

Used by the Operation template to generate documentation for an operation.

The base templates form a hierarchy, which varies slightly across different programming languages. A typical
template hierarchy relevant to a language like C# or Java (which do not have header files) is shown in the
example diagram below. In this diagram the templates are modeled as Classes (in reality they are just plain
text). This hierarchy would be slightly more complicated for languages like C++ and Delphi, which have
separate implementation templates.

Each of the base templates must be specialized to be of use in code engineering. In particular, each template
is specialized for the supported languages (or '‘products'’). For example, there is a ClassBody template defined
for C++, another for C#, another for Java, and so on. By specializing the templates, you can tailor the code
generated for the corresponding UML entity.

Once the base templates are specialized for a given language, they can be further specialized based on:

e A Class's stereotype

o A feature's stereotype (where the feature can be an operation or attribute)

This type of specialization enables, for example, a C# operation that is stereotyped as «property» to have a
different Operation Body template from an ordinary operation. The Operation Body template can then be
specialized further, based on the Class stereotype.

Code Engineering Using UML Models

Code Template Framework | Code Templates 64

aCodeTemplatex
File

0.~

0.7| «CodeTemplates «xCodeTemplatex

I; Class s Namespace 0.-

1 1 1

«CodeTemplate s wCodeTemplates «CodeTemplates
ClassNotes ClassDeclaration ClassBody
1
L 1
0.~ o= 0.*
«CodeTemplates «CodeTemplates «CodeTemplates
Attribute LinkedAttribute Cperation

1 «CodeTemplate »
OperaticnBody
1 0 1 1 1 1

i

1 1
1 1

i «CodeTemplate» «CodeTemplates
Ratel ermp iabe - [empiates OperationNotes OperationDeclaration
AttributeNotes LinkedAttributeNotes
1 1
«CodeTemplates «CodeTemplates
AttributeDeclaration LinkedAttributeDeclaration

«CodeTemplates
Parameter

Note:

The above Class Model shows the hierarchy of Code Generation templates for a language such as C# or
Java. The Aggregation connectors denote references between templates.

1.5.2 The Code Template Editor

The Code Template Editor provides the facilities of the Common Code Editor, including intellisense for the
various macros. For more information on intellisense and the Common Code Editor, see the Code Editors
topic in Using Enterprise Architect - UML Modeling Tool.

To access the Code Template Editor window, select the Settings | Code Generation Templates menu
option.

© 1998-2010 Sparx Systems Pty Ltd

65

Code Template Framework | The Code Template Editor

Language: Template:
Java Vl 1 $fbhases=%illassInherits:
2 %if $bases != ""g
i New Language] 3 Sbases=" " + Sbases
MName Modffied - 4 %endIf3
Fila Mo 5 £&generic=%list="ClassParameter" @separator=", "%
File: Impl No = & %1if %generic '= ""%
Namespace No T $generic="<" + fgeneric + ">"
Namespace Impl No - %EI_-ldIf%)
Namespace Bady No 9 ZFclassTag:"annotations™3%
10 T=m "
Namespace Body Impl No - L L
Namespace Declaration Mo 11 *CONVERT_ SCOFPE (classScope)*
Namespace Declaration | Nao 12 FeolassSterectype=="static"™ ? "static"” nny
Class No 13 %classIsLeaf == "T" 2 "final" LI
Class Impl No - . _
Class Notes Mo 15 %if elemType — "Interface™:
1 J=nm
Class Basze MNa o L ~
Class Intedace Mo 17 %claszsStereotype=="annotation™ ? "E"%
Class Body Nao 18 interface %fclassMameifgenericfhbases
Class Body Impl No 19 zendTemplatel
Class Declaration No -
Class Dedlaration Impl Mo - 21 ZFclassAbstract=="T" ? "abstract" Ty
* n b 22 ZFeclassStereotype——"enumeration"” ? "enum" "class™:
Sterectype Overid 23 %RclassNameiSfgenericfhases
ereotype Ovenides:
Class Feature Modfied
aspect Na
[Add Mew Custom Template] 4 1 s
| AddNewStereotyped Ovemde | Get Defaut Template | | Save | | Delete | Help
4 StartPage, ~ Code Template Editor | b
Option Use to
Language Select the programming language.

New Language

Display the Programming Languages Datatypes dialog (see the Reference Data
topic in UML Model Management), which enables you to include programming
languages other than those supported for Enterprise Architect, for which to create
or edit code templates.

Template Display the contents of the active template, and provides the editor for modifying
templates.
Templates List the base code templates. The active template is highlighted. The Modified

field indicates whether you have changed the default template for the current
language.

Stereotype Overrides

List the stereotyped templates, for the active base template.

The Modified field indicates whether you have modified a default stereotyped
template.

Add New Custom
Template

Invoke a dialog for creating a custom stereotyped template.

Add New Stereotyped
Override

Invoke a dialog for adding a stereotyped template, for the currently selected base
template.

Code Engineering Using UML Models

Code Template Framework | The Code Template Editor 66

Option Use to

Get Default Template | Update the editor display with the default version of the active template.

Save Overwrite the active templates with the contents of the editor.

Delete If you have overridden the active template, the override is deleted and replaced
by the corresponding default code template.

For information on creating and editing code templates using the Code Template Editor window, see SDK for
Enterprise Architect.

Note:

User-modified and user-defined Code Templates can be imported and exported as Reference Data (see the
Import and Export Reference Data topic in UML Model Management. The templates defined for each
language are indicated in the Export Reference Data dialog by the language name with the suffix
_Code_Templates. If no templates exist for a language, there is no entry for the language in the dialog.

1.5.3 Synchronize Code

Enterprise Architect uses code templates during the forward synchronization of the following programming
languages:

e ActionScript
e C

o C++

o C#

e Delphi

e Java

e PHP

e Python

e VB

e VB.Net

Only a subset of the code templates are used during synchronization. This subset corresponds to the distinct
sections that Enterprise Architect recognizes in the source code. The following table lists the code templates
and their corresponding code sections, which can be synchronized.

Code Template Code Section

Class Notes Comments preceding Class declaration.

Class Declaration Up to and including Class parents.

Attribute Notes Comments preceding Attribute declaration.

Attribute Declaration Up to and including terminating character.

Operation Notes

Comments preceding operation declaration.

Operation Notes Impl

As for Operation Notes.

Operation Declaration

Up to and including terminating character.

Operation Declaration Impl

Up to and including terminating character.

Operation Body

Everything between and including the braces.

Operation Body Impl

As for Operation Body.

Three types of change can occur in the source when it is synchronized with the UML model:

© 1998-2010 Sparx Systems Pty Ltd

67

Code Template Framework | Synchronize Code

» Synchronize Existing Sections| 671 for example, changing the return type in an operation declaration

o Add New Sections to Existing Features| 67 for example, adding notes to a Class declaration, where there
were previously none

o Add New Features and Elements|67: for example, adding a new operation to a Class.

Each of these changes must be handled differently by Enterprise Architect; their effect on the CTF is
described in the linked topics above.

1.5.3.1 Synchronize Existing Sections

When an existing section in the source code differs from the result generated by the corresponding template,
that section is replaced. Consider for example, the following C++ Class declaration:

[asm] class A: public B

Now assume you add an inheritance relationship from Class A to Class C; the entire Class declaration would
be replaced with something like:

[asm] class A: public B, public C

1.5.3.2 Add New Sections

The following can be added as new sections, to existing features in the source code:

¢ Class Notes

e Attribute Notes

e Operation Notes

e Operation Notes Impl
e Operation Body

e Operation Body Impl

Assume Class A from the previous example had no note when you originally generated the code. Now
assume that you specify a note in the model for Class A. Enterprise Architect attempts to add the new note
from the model during synchronization. It does this by executing the Class Notes template.

To make room for the new section to be inserted, you can specify how much white space to append to the
section via synchronization macros. These macros are described in SDK for Enterprise Architect.

1.5.3.3 Add New Features and Elements

The following features and elements can be added to the source code during synchronization:

e Attributes
e Inner Classes
e Operations.

These are added by executing the relevant templates for each new element or feature in the model. Enterprise
Architect attempts to preserve the appropriate indenting of new features in the code, by finding the indents
specified in list macros of the Class. For languages that make use of namespaces, the
synchNamespaceBodylndent macro is available. Classes defined within a (non-global) namespace are
indented according to the value set for this macro, during synchronization. This value is ignored for Classes
defined within a package setup as a root namespace, or if the Generate Namespace option is set to False in
the appropriate language page (C#, C++ or VB.Net) on the Options dialog (Tools | Options | Source Code
Engineering | <language>).

Code Engineering Using UML Models

Modeling Conventions | 68

1.6 Modeling Conventions

In order to get the most out of the round trip engineering in Enterprise Architect, you must be familiar with the
modeling conventions used when generating and reverse engineering the languages you use. This topic
describes the stereotypes, Tagged Values and other conventions used in code engineering in Enterprise
Architect for the following supported languages:

e ActionScript/ 69"
o Ada 200569 (for Systems Engineering and Ultimate editions of Enterprise Architect)

o Clmh

o C#[1H

o CHt[7h

o Delphil 78"

o Javal7s

. ﬂ@

e Python[s™
e System Cle1
e VB.Net[8
o Verilog[eh
e VHDL[&"

e Visual Basicl ™

Note:

Enterprise Architect incorporates a number of visibility indicators or scope values for its supported languages.
These include, for:

e All languages - Public (+), Protected (#) and Private (-)
e Java - Package (~)

e Delphi - Published (%)

e C# - Internal (~), Protected Internal (%)

e ActionScript - Internal (~)

e VB.NET - Friend (~), Protected Friend (*)

e PHP - Package (~)

e Python - Package (~)

e C - Package (~)

e C++ - Package (-).

© 1998-2010 Sparx Systems Pty Ltd

69 Modeling Conventions | ActionScript Conventions

1.6.1 ActionScript Conventions

Enterprise Architect supports round trip engineering of ActionScript 2 and 3, where the following conventions

are used.

Stereotypes
Stereotype Applies To Corresponds To
literal Operation A literal method referred to by a variable.
property get Operation A read property.
property set Operation A write property.
Tagged Values
Tag Applies To Corresponds To
attribute_name Operation with stereotype property | The name of the variable behind this
get or property set property.
dynamic Class or Interface The dynamic keyword.
final ActionScript 3: Operation The final keyword.
intrinsic ActionScript 2: Class The intrinsic keyword
namespace ActionScript 3: Class, Interface, The namespace of the current element.
Attribute, Operation
override ActionScript 3: Operation The override keyword.
prototype ActionScript 3: Attribute The prototype keyword.
rest ActionScript 3: Parameter The rest parameter (...).

Common Conventions

e Package qualifiers (ActionScript 2) and Packages (ActionScript 3) are generated when the current package

is not a namespace root/ 17
e An unspecified type is modeled as var or an empty Type field.

ActionScript 3 Conventions
e The Is Leaf property of a Class corresponds to the sealed keyword
e If a namespace tag is specified it overrides the Scope that is specified.

See Also

e Import Source Codel 55

e Generate Source Code[1%

e ActionScript Options/ 43

1.6.2 Ada 2005

Ada 2005 support is available in the System Engineering and Ultimate editions of Enterprise Architect.

Enterprise Architect supports round trip engineering of Ada 2005, where the following conventions are used.

Code Engineering Using UML Models

Modeling Conventions | Ada 2005 70

Stereotypes

Stereotype Applies To Corresponds To

adaPackage Class A package specification in Ada 2005 without a
tagged record.

adaProcedure Class A procedure specification in Ada 2005.

delegate Operation Access to a subprogram.

enumeration Inner Class An enum type.

struct Inner Class A record definition.

typedef Inner Class A type definition, subtype definition, access type
definition, renaming.

Tagged Values

Tag Applies To Corresponds To
Discriminant Inner Class with stereotype typedef | The type's discriminant.
IsAccess Parameter Determination of whether the parameter is an

access variable.

InstantiatedUnitTy | Inner Class with stereotype typedef | The instantiated unit's type (Package /

pe Procedure / Function).
PartType Inner Class with stereotype typedef | The part type (renames or new).
Type Inner Class with stereotype typedef | If Value = SubType, set subtype.

If Value = Access, set access type.

Other Conventions
e Appropriate type of source files: Ada specification file, .ads.

e Ada 2005 imports packages defined as either <<adaPackage>>Class or Class, based on the settings in
the Ada options| 43

e A package in the Ada specification file is imported as a Class if it contains a Tagged Record, the name of
which is governed by the options Use Class Name for Tagged Record and Alternate Tagged Record
Name. All attributes defined in that Tagged Record are absorbed as the Class's attributes.

e A procedure / function in an Ada specification file is considered as the Class's member function if its first

parameter satisfies the conditions specified in the options Ref Param Style, Ignore Reference parameter

name and Ref parameter name.

e The option Define Reference for Tagged Record, if enabled, creates a reference type for the Class, the
name of which is determined by the option Reference Type Name.

For example: HelloWorld.ads

package HellowWorld is
type HelloWorld is tagged record
Attl: Natural,
Att3: Integer;
end record,;

-- Public Functions

function MyPublicFunction (P: HellowWorld) return String;

procedure MyPublicFunction (P1: in out HelloWorld; AFlag: Boolean);
private

-- Private Functions

function MyPrivateFunction (P: HelloWorld) return String;

procedure MyPrivateFunction (P1: in out HelloWorld; AFlag: Boolean);

© 1998-2010 Sparx Systems Pty Ltd

71 Modeling Conventions | Ada 2005

end HelloWorld;

class Testbench

HelloWarld

+ Att1: Matural

+ At3: Integer

+ MyPublicFunction{HelloWorld) : String
+ MyPublicFunction{HellgWorld, Boolean) : void
My Private Functicn{Hel|

atypedefs
HelloWorld::Ref

See Also

e Import Source Code/ 5%

e Generate Source Code[12
e Ada 2005 Options| 43

1.6.3 C Conventions

Note:

Separate conventions apply to Object Oriented programming in C[723.

Enterprise Architect supports round trip engineering of C, where the following conventions are used:

Stereotype
Stereotype Applies To Corresponds To
enumeration Inner Class An enum type.
struct Inner Class A struct type.
Attribute A keyword struct in variable definition.
typedef Inner Class A typedef statement, where the parent is the
original type name.
union Inner Class A union type.
Attribute A keyword union in variable definition.
Tagged Values
Tag Applies To Corresponds To
anonymous Class also containing the The name of this class being defined only by

Code Engineering Using UML Models

Modeling Conventions | C Conventions 72

Tag Applies To Corresponds To
Tagged Value typedef the typedef statement.
bodyLocation Operation The location the method body is generated

to. Expected values are header, classDec
or classBody.

typedef

Class with stereotype other This Class being defined in a typedef
than typedef statement.

C Code Generation for UML Model

UML

C Code Notes

A Class

A pair of C files (.h + .c) File name is the same as Class name.

protected)

Operation (public &

Function declaration in .h file
and definition in .c file

Operation (private)

Function definition in .c file
only

Attribute (public & protected)

Variable definition in .h file

Attribute (private)

Variable definition in .c file

stereotype)

Inner Class (without

(N/A) This inner Class would be ignored

See Also

e Import Source Codel 55

e Generate Source Code[1%

e C Options/ 4"

1.6.3.1 Object Oriented Programming In C

The following conventions are used for Object-Oriented programming in C.

To configure Enterprise Architect to support Object-Oriented programming using C, you must set the Object
Oriented Support option to True on the C Specifications 44 page of the Options dialog.

Stereotype
Stereotype Applies To Corresponds To
enumeration | Class An enum type.
struct Class A struct type.
Attribute A keyword struct in variable definition.
typedef Class A typedef statement, where the parent is the original
type name.
union Class A union type.
Attribute A keyword union in variable definition.

© 1998-2010 Sparx Systems Pty Ltd

73

Modeling Conventions | C Conventions

Tagged Values

Tag Applies To Corresponds To
anonymous Class with stereotype of The name of this Class being defined only by the
enumeration, struct or union. typedef statement.
bodyLocation | Operation The location the method body is generated to.
Expected values are header, classDec or classBody.
define Attribute #define statement.
typedef Class with stereotype of This Class being defined in a typedef statement.

enumeration, struct or union.

Object-Oriented C Code Generation for UML Model

The basic idea of implementing a UML Class in C code is to group the data variable (UML attributes) into a
structure type. This structure is defined in a .h file so that it can be shared by other classes and by the client
that referred to it.

An operation in a UML Class is implemented in C code as a function. The name of the function must be a fully
qualified name that consists of the operation name, as well as the Class name to indicate that the operation is
for that Class. A delimiter (specified in the Namespace Delimiter option on the C Specifications [44 page) is
used to join the Class name and function (operation) name.

The function in C code must also have a reference parameter to the Class object. You can modify the
Reference as Operation Parameter, Reference Parameter Style and Reference Parameter Name options
on the C Specifications page to support this reference parameter.

Limitations of Object-Oriented Programming in C

1.6.4

1. No scope mapping for an attribute: an attribute in a UML Class is mapped to a structure variable in C
code, and its scope (private, protected or public) is ignored.

2. Currently an inner Class is ignored: if a UML Class is the inner Class of another UML Class, it is ignored
when generating C code.

3. Initial value is ignored: the initial value of an attribute in a UML Class is ignored in generated C code.

See Also

o Import Source Codel 51
e Generate Source Code[12%
e C Options/4H

C# Conventions

Enterprise Architect supports the round trip engineering of C#, where the following conventions are used.

Stereotypes
Stereotype Applies To Corresponds To
enumeration Class An enum type.
event Operation An event.
extension Operation A Class extension method, represented in code by a this
parameter in the signature.
indexer Operation A property acting as an index for this Class.
partial Operation The partial keyword on an operation.

Code Engineering Using UML Models

Modeling Conventions | C# Conventions 74

extension

Stereotype Applies To Corresponds To
property Operation A property possibly containing both read and write code.
struct Class A struct type.
Tagged Values
Tag Applies To Corresponds To
argumentName Operation with stereotype The name given to the this parameter.

attributeName

Operation with stereotype
property or event

The name of the variable behind this property or event.

className Operation with stereotype The Class that this method is being added to.
extension

const Attribute The const keyword.

definition Operation with stereotype Whether this is the declaration of the method, or the
partial definition.

delegate Operation The delegate keyword.

enumType Operation with stereotype The datatype that the property is represented as.
property

extern Operation The extern keyword.

fixed Attribute The fixed keyword.

generic Operation The generic parameters for this Operation.

genericConstraint
s

Templated Class or
Interface, Operation with
tag generic

The constraints on the generic parameters of this type
or operation.

Implements Operation The name of the method this implements, including the
interface name.

ItmplementsEprici Operation ;r;eth%rgsdeenctlzgrg{igf source interface name in this

initializer Operation A constructor initialization list.

new Class, Interface, Operation | The new keyword.

override Operation The override keyword.

params Parameter A parameter list using the params keyword.

partial Class, Interface The partial keyword.

readonly Sr?)%reitti; n with stereotype This property only defining read code.

sealed Operation The sealed keyword.

static Class The static keyword.

unsafe Class, Interface, Operation | The unsafe keyword.

© 1998-2010 Sparx Systems Pty Ltd

75

Modeling Conventions | C# Conventions

Tag Applies To Corresponds To
virtual Operation The virtual keyword.
writeonly Operation with stereotype This property only defining write code.

property

Other Conventions
Namespaces are generated for each package below a namespace root/ 17

The Const property of an attribute corresponds to the readonly keyword, while the tag const corresponds to
the const keyword

The value of inout for the Kind property of a parameter corresponds to the ref keyword
The value of out for the Kind property of a parameter corresponds to the out keyword
Partial Classes can be modeled as two separate Classes with the partial tag

The Is Leaf property of a Class corresponds to the sealed keyword.

See Also

Import Source Codel 5%

Generate Source Code[1%

C# Options| 45

1.6.5 C++ Conventions

Enterprise Architect supports round trip engineering of C++, including the Managed C++[76% and C++/CLI[77
extensions, where the following conventions are used.

Stereotypes
Stereotype Applies To Corresponds To
enumeration Class An enum type.
friend Operation The friend keyword.
property get Operation A read property.
property set Operation A write property.
struct Class A struct type.
typedef Class ﬁ;%p;def statement, where the parent is the original type
union Class A union type.
Tagged Values
Tag Applies To Corresponds To
afx_msg Operation The afx_msg keyword.
anonymous Class also containing the | The name of this class being only defined by the typedef

Tagged Value typedef

statement.

attribute_name

Operation with stereotype
property get or property
set

The name of the variable behind this property.

Code Engineering Using UML Models

Modeling Conventions | C++ Conventions 76

Tag Applies To Corresponds To
bitfield Attribute The size, in bits, allowed for storage of this attribute.
bodyLocation | Operation The location the method body is generated to; expected

values are header, classDec or classBody.

callback Operation A reference to the CALLBACK macro.
explicit Operation The explicit keyword.
initializer Operation A constructor initialization list.
inline Operation The inline keyword and inline generation of the method body.
mutable Attribute The mutable keyword.
throws Operation The exceptions that are thrown by this method.
typedef Class with stereotype This Class being defined in a typedef statement.
other than typedef
typeSynonyms | Class The typedef name and/or fields of this type.
volatile Operation The volatile keyword.

Other conventions
o Namespaces are generated for each package below a namespace root/17)
e By Reference attributes correspond to a pointer to the type specified
e The Transient property of an attribute corresponds to the volatile keyword
e The Abstract property of an attribute corresponds to the virtual keyword
e The Const property of an operation corresponds to the const keyword, specifying a constant return type

e The Is Query property of an operation corresponds to the const keyword, specifying the method doesn't
modify any fields

e The Pure property of an operation corresponds to a pure virtual method using the "= 0" syntax
e The Fixed property of a parameter corresponds to the const keyword.

See Also
o Import Source Codel 5%
e Generate Source Code[12%

e C++ Options| 463

1.6.5.1 Managed C++ Conventions

The following conventions are used for managed extensions to C++ prior to C++/CLI[7. In order to set
Enterprise Architect to generate managed C++ you must modify the C++ version in the C++ Options| 46",

Stereotypes
Stereotype Applies To Corresponds To
property Operation The __property keyword.
property get Operation The __ property keyword and a read property.
property set Operation The __property keyword and a write property.
reference Class The __gc keyword.

© 1998-2010 Sparx Systems Pty Ltd

77 Modeling Conventions | C++ Conventions

Stereotype Applies To Corresponds To
value Class The __value keyword.
Tagged Values
Tag Applies To Corresponds To
managedType Class with stereotype reference, The keyword used in declaration of this type.
value or enumeration; Interface Expected values are class or struct.

Other Conventions
e The typedef and anonymous tags from native C++ are not supported
e The Pure property of an operation corresponds to the keyword __abstract.

See Also
e Import Source Codel 55
e Generate Source Code[1%

1.6.5.2 C++/CLI Conventions

The following conventions are used for modeling C++/CLI extensions to C++. In order to set Enterprise
Architect to generate managed C++/CLI you must modify the C++ version in the C++ Options/ 46",

Stereotypes
Stereotype Applies To Description
event Operation Defines an event to provide access to the event handler for
this Class.
property Operation, Attribute This is a property possibly containing both read and write
code.
reference Class Corresponds to the ref class or ref struct keyword.
value Class Corresponds to the value class or value struct keyword.
Tagged Values
Tag Applies To Description

attribute_name Operation with
stereotype property or

event

The name of the variable behind this property or event.

generic

Operation

Defines the generic parameters for this Operation.

genericConstraint
s

Templated Class or
Interface, Operation
with tag generic

Defines the constraints on the generic parameters for this
Operation.

reference, value or
enumeration; Interface

initonly Attribute Corresponds to the initonly keyword.
literal Attribute Corresponds to the literal keyword.
managedType Class with stereotype Corresponds to either the class or struct keyword.

Code Engineering Using UML Models

Modeling Conventions | C++ Conventions 78

Other Conventions
e The typedef and anonymous tags are not used
e The property get/property set stereotypes are not used
e The Pure property of an operation corresponds to the keyword abstract.

See Also
e Import Source Code/ 5%
e Generate Source Code[12

1.6.6 Delphi Conventions

Enterprise Architect supports round trip engineering of Delphi, where the following conventions are used.

Stereotypes
Stereotype Applies To Corresponds To
constructor Operation A constructor.
destructor Operation A destructor.
dispinterface Class, Interface A dispatch interface.
enumeration Class An enumerated type.
metaclass Class A metaclass type.
object Class An object type.
operator Operation An operator.
property get Operation A read property.
property set Operation A write property.
struct Class A record type.

Tagged Values

Tag Applies To Corresponds To

attribute_name | Operation with stereotype The name of the variable behind this property.
property get or property set

overload Operation The overload keyword.

override Operation The override keyword.

packed Class The packed keyword.

property Class A property. See Delphi Properties| 48" for more

information.
reintroduce Operation The reintroduce keyword.

Other Conventions
e The Static property of an attribute or operation corresponds to the class keyword
e The Fixed property of a parameter corresponds to the const keyword
e The value of inout for the Kind property of a parameter corresponds to the Var keyword

© 1998-2010 Sparx Systems Pty Ltd

79

Modeling Conventions | Delphi Conventions

e The value of out for the Kind property of a parameter corresponds to the Out keyword.

See Also

e Import Source Codel 55

e Generate Source Codel 1%

 Delphi Options[47

1.6.7 Java Conventions

Enterprise Architect supports round trip engineering of Java - including AspectJ | sd) extensions - where the
following conventions are used.

Stereotypes
Stereotype Applies To Corresponds To
annotation Interface An annotation type.
enum Attributes within a Class stereotyped An enumerated option, distinguished from

enumeration

other attributes that have no stereotype.

enumeration Class An enum type.
operator Operation An operator.
property get Operation A read property.
property set Operation A write property.
static Class or Interface The static keyword.

Tagged Values

Tag

Applies To

Corresponds To

annotations

Anything

The annotations on the current code feature.

arguments

Attribute with stereotype enum

The arguments that apply to this
enumerated value.

attribute_name

Operation with stereotype property get or
property set

The name of the variable behind this
property.

dynamic Class or Interface The dynamic keyword.
generic Operation The generic parameters to this operation.
parameterList | Parameter A parameter list with the ... syntax.

. The exceptions that are thrown by this
throws Operation method.
transient Attribute The transient keyword.

Other Conventions
o Package statements are generated when the current package is not a namespace root/ 17
e The Const property of an attribute or operation corresponds to the final keyword

e The Transient property of an attribute corresponds to the volatile keyword

e The Fixed property of a parameter corresponds to the final keyword.

Code Engineering Using UML Models

Modeling Conventions | Java Conventions

See Also

o Import Source Code/ 5%

e Generate Source Code[12
o Java Options[51

1.6.7.1 AspectJ Conventions

The following are the conventions used for supporting AspectJ extensions to Java.

80

Stereotypes
Stereotype |Applies To Corresponds To
advice Operation A piece of advice in an AspectJ aspect.
aspect Class An Aspect] aspect.
pointcut Operation A pointcut in an AspectJ aspect.

Tagged Values

Tag Applies To Corresponds To

stereotyped aspect

className |Attribute or operation within a Class | The Classes this AspectJ intertype member belongs to.

Other Conventions

e The specifications of a pointcut are included in the Behavior field of the method.

See Also
o Import Source Code/ 5%
e Generate Source Code[124

1.6.8 PHP Conventions

Enterprise Architect supports the round trip engineering of PHP 4 and 5, where the following conventions are

used.
Stereotypes
Stereotype Applies To Corresponds To
property get Operation A read property.
property set Operation A write property.

Tagged Values

Tag Applies To

Corresponds To

attribute_name Operation with stereotype property
get or property set

The name of the variable behind this
property.

final Operations in PHP 5.

The final keyword.

Common Conventions
e An unspecified type is modeled as var

© 1998-2010 Sparx Systems Pty Ltd

81 Modeling Conventions | PHP Conventions

e Methods returning a reference are generated by setting the Return Type to var*
e Reference parameters are generated from parameters with the parameter Kind set to inout or out.

PHP 5 Conventions
e The final Class modifier corresponds to the Is Leaf property
e The abstract Class modifier corresponds to the Abstract property
e Parameter type hinting is supported by setting the Type of a parameter
e The value of inout or out for the Kind property of a parameter corresponds to a reference parameter.

See Also
e Import Source Codel 55
e Generate Source Code[1%

e PHP Options| st

1.6.9 Python Conventions

Enterprise Architect supports the round trip engineering of Python, where the following conventions are used.

Tagged values

Tag Applies To Corresponds To

decorators Class, Operation The decorators applied to this element in the source.

Other Conventions
¢ Model members with Private Scope correspond to code members with two leading underscores
e Attributes are only generated when the Initial value is not empty
e All types are reverse engineered as var.

See Also
e Import Source Code/ 5%
e Generate Source Code[12%

e Python Options[s3)

1.6.10 System C Conventions

Enterprise Architect supports round-trip engineering of SystemC, where the following conventions are used.

Stereotypes
Stereotype Applies To Corresponds To
delegate Method A delegate.
enumeration Inner Class An enum type.
friend Method A friend method.
property Method A property definition.
sc_ctor Method A SystemC constructor.
sc_module Class A SystemC module.
sc_port Attribute A port.
sc_signal Attribute A signal

Code Engineering Using UML Models

Modeling Conventions | System C Conventions 82

Stereotype Applies To Corresponds To
struct Inner Class A struct or union.
Tagged Values
Tag Applies To Corresponds To
kind Attribute (Port) Port kind (clocked, fifo, master, slave, resolved, vector).
mode Attribute (Port) Port mode (in, out, inout).
overrides Method The Inheritance list of a method declaration.
throw Method The exception specification of a method.

Other Conventions

e SystemC also inherits most of the stereotypes and Tagged Values of C++[75).

SystemC Toolbox Pages

To access the SystemC pages of the Enterprise Architect UML Toolbox, select the More tools | HDL |
SystemC Constructs menu option. Drag these icons onto a diagram to model a SystemC design.

Page

Item

Use To

SystemC

Module

Define a SystemC Module.

An sc_module-stereotyped Class element.

Enumeration

Define an Enumerated Type.

An enumeration-stereotyped Enumeration element.

Struct Define a Structure.
A struct-stereotyped Class element.
SystemC Features | Port Define a SystemC Port.
An sc_port-stereotyped attribute.
Signal Define a SystemC Signal.
An sc_signal-stereotyped attribute.
Constructor Define a SystemC Constructor.

An sc_ctor-stereotyped method.

See Also

e Import Source Codel 55

e Generate Source Code/ 1%

e SystemC Language Options/ 53,

© 1998-2010 Sparx Systems Pty Ltd

83

Modeling Conventions | VB.Net Conventions

1.6.11 VB.Net Conventions

Stereotypes
Stereotype Applies To Corresponds To
event Operation An event declaration.
import Operation An operation to be imported from another library.
module Class A module.
operator Operation An operator overload definition.
partial Operation The partial keyword on an operation.
property Operation A property possibly containing both read and
write code.
Tagged Values
Tag Applies To Corresponds To
Alias Operation with stereotype import The alias for this imported operation.

Enterprise Architect supports round-tri

engineering of Visual Basic.Net, where the following conventions are

used. Earlier versions of Visual Basic| 871 are supported as a different language.

attribute_name

Operation with stereotype property

The name of the variable behind this property.

Charset Operation with stereotype import The character set clause for this import. One of
the values Ansi, Unicode or Auto.

delegate Operation The Delegate keyword.

enumTag Operation with stereotype property | The datatype that this property is represented
as.

Handles Operation The handles clause on this operation.

Implements Operation The implements clause on this operation.

Lib Operation with stereotype import The library this import comes from.

MustOverride

Operation

The MustOverride keyword.

Narrowing Operation with stereotype operator | The Narrowing keyword.

NotOverrideable Operation The NotOverrideable keyword.

Overloads Operation The Overloads keyword.

Overrides Operation The Overrides keyword.

parameterArray Parameter A parameter list using the ParamArray keyword.
partial Class, Interface The Partial keyword.

readonly Operation with stereotype property | This property only defining read code.
shadows Class, Interface, Operation The Shadows keyword.

Shared Attribute The Shared keyword.

Code Engineering Using UML Models

Modeling Conventions | VB.Net Conventions 84

Tag Applies To Corresponds To
Widening Operation with stereotype operator | The Widening keyword.
writeonly Operation with stereotype property | This property only defining write code.

Other Conventions

Namespaces are generated for each package below a namespace root/ 17

The Is Leaf property of a Class corresponds to the NotInheritable keyword

The Abstract property of a Class corresponds to the Mustinherit keyword

The Static property of an attribute or operation corresponds to the Shared keyword

The Abstract property of an operation corresponds to the MustOverride keyword

The value of in for the Kind property of a parameter corresponds to the ByVal keyword

The value of inout or out for the Kind property of a parameter corresponds to the ByRef keyword.

See Also
Import Source Codel 5%
Generate Source Codel1

e VB.Net Options|[5#

1.6.12 Verilog Conventions

Enterprise Architect supports round-trip engineering of Verilog, where the following conventions are used.

Stereotypes
Stereotype Applies To Corresponds To
asynchronous Method A concurrent process.
enumeration Inner Class An enum type.
initializer Method An initializer process.
module Class A module.
part Attribute A component instantiation.
port Attribute A port.
synchronous Method A sequential process.
Tagged Values
Tag Applies To Corresponds To
kind Attribute (signal) | The signal kind (such as register, bus).
mode Attribute (port) The port mode (in, out, inout).
Portmap Attribute (part) The generic / port map of the component instantiated.
sensitivity Method The sensitivity list of a sequential process.
type Attribute The range or type value of an attribute.

© 1998-2010 Sparx Systems Pty Ltd

85 Modeling Conventions | Verilog Conventions

Verilog Toolbox Pages

To access the Verilog pages of the Enterprise Architect UML Toolbox, select the More tools | HDL | Verilog

Constructs menu option. Drag these icons onto a diagram to model a Verilog design.

Page Item

Use To

Verilog Module

Define a Verilog Module.

A module-stereotyped Class element.

Enumeration

Define an Enumerated Type.

An enumeration-stereotyped Class element.

e Concurrent
e Sequential
e [nitializer.

Verilog Features Port Define a Verilog Port.
A port-stereotyped attribute.
Part Define a Verilog component instantiation
A part-stereotyped attribute.
Attribute Define an attribute.
Procedure Define a Verilog process:

e An asynchronous-stereotyped method
e A synchronous-stereotyped method
e An initializer-stereotyped method.

See Also

e Import Source Codel 55

e Generate Source Code[124

e Verilog Language Options. [557

1.6.13 VHDL Conventions

Enterprise Architect supports round-trip engineering of VHDL, where the following conventions are used.

Stereotypes
Stereotype Applies To Corresponds To
architecture Class An architecture.
asynchronous Method An asynchronous process.
configuration Method A configuration.
enumeration Inner Class An enum type.
entity Interface An entity.
part Attribute A component instantiation.
port Attribute A port.
signal Attribute A signal declaration.
struct Inner Class A record definition.
synchronous Method A synchronous process.

Code Engineering Using UML Models

Modeling Conventions | VHDL Conventions 86

Stereotype Applies To Corresponds To
typedef Inner Class A type or subtype definition.
Tagged Values
Tag Applies To Corresponds To
isGeneric Attribute (port) The port declaration in a generic interface.
isSubType Inner Class A subtype definition.
(typedef)
kind Attribute (signal) | The signal kind (such as register, bus).
mode Attribute (port) The port mode (in, out, inout, buffer, linkage).
portmap Attribute (part) The generic / port map of the component instantiated.
sensitivity ('\gjm:?](:onous) The sensitivity list of a synchronous process.
type Inner Class The type indication of a type declaration.
(typedef)
typeNameSpace Attribute (part) The type namespace of the instantiated component.

VHDL Toolbox Pages

To access the VHDL pages of the Enterprise Architect UML Toolbox, select the More tools | HDL | VHDL
Constructs menu option. Drag these icons onto a diagram to model a VHDL design.

Page

Item

Use To

VHDL

Architecture

Define an architecture to be associated with a VHDL entity.

An architecture-stereotyped Class element.

Entity

Define a VHDL entity to contain the Port definitions.

An entity-stereotyped interface element.

Enumeration

Define an Enumerated Type.

An enumeration-stereotyped enumeration element.

Struct Define a VHDL record.
A struct-stereotyped Class element.
Typedef Define a VHDL type or subtype
A typedef-stereotyped Class element.
VHDL Features Port Define a VHDL Port.
A port-stereotyped attribute.
Part Define a VHDL component instantiation
A part-stereotyped attribute.
Signal Define a VHDL signal.
A signal-stereotyped attribute.
Procedure Define a VHDL process:

© 1998-2010 Sparx Systems Pty Ltd

87 Modeling Conventions | VHDL Conventions

Page Item Use To
e Concurrent e An asynchronous-stereotyped method
e Sequential e A synchronous-stereotyped method

e Configuration| e A configuration-stereotyped method.

See Also

e Import Source Codel 55

e Generate Source Code[124

e VHDL Language Options. 563

1.6.14 Visual Basic Conventions

Enterprise Architect supports the round trip engineering of Visual Basic 5 and 6, where the following
conventions are used. Visual Basic .Net| 837 is supported as a different language.

Stereotypes
Stereotype Applies To Corresponds To
global Attribute The Global keyword.
import Operation An operation to be imported from another
library.
property get Operation A property get.
property set Operation A property set.
property let Operation A property let.
with events Attribute The WithEvents keyword.
Tagged Values
Tag Applies To Corresponds To
Alias Operation with stereotype import The alias for this imported operation.

attribute_name | Operation with stereotype property get | The name of the variable behind this property.
, property set or property let

Lib Operation with stereotype import The library this import comes from.

New Attribute The New keyword.

Other Conventions

e The value of in for the Kind property of a parameter corresponds to the ByVal keyword
e The value of inout or out for the Kind property of a parameter corresponds to the ByRef keyword.

See Also

e Import Source Code/ 5"

e Generate Source Code[12)
e Visual Basic Options/57)

Code Engineering Using UML Models

2 XML Technologies

Enterprise Architect enables rapid modeling, forward engineering and reverse engineering of two key W3C
XML technologies:

e XML Schema (XSD)

e Web Service Definition Language (WSDL).

XSD and WSDL support is critical for the development of a complete Service Oriented Architecture (SOA),
and the coupling of UML 2.1 and XML provides the natural mechanism for specifying, constructing and
deploying XML-based SOA artifacts within an organization.

The following topics explain how to work with these technologies using Enterprise Architect.

e XML Schema (XSD)/8d
e Web Services (WSDL)[108

© 1998-2010 Sparx Systems Pty Ltd

http://www.w3.org/XML/Schema
http://www.w3.org/TR/wsdl

89 XML Schema (XSD) |

2.1 XML Schema (XSD)

Enterprise Architect supports Forward and Reverse engineering of W3C XML schemas (XSD). The following
topics explain how to use Enterprise Architect to model, generate and import XML schemas:

o Model XSDI 8

e Import XSD /103

o Generate XSD [106)

2.1.1 Model XSD

XML schemas are modeled using UML Class diagrams. The XML Schema pages of the Enterprise Architect
UML Toolbox (see Using Enterprise Architect - UML Modeling Tool) provide in-built support for the UML profile
for XSD. This enables an abstract UML Class model to be automatically generated as a W3C XML Schema
(XSD) file.

The following Class diagram models simple schema for an example Employee Details system, intended to
store a company's employee contact information. The Classes shown form the EmployeeDetails package. The
UML attributes of the Classes map directly to XML elements or attributes. Note that the Classes have no
methods, since there is no meaningful correspondence between Class methods and XSD constructs.

Code Engineering Using UML Models

http://www.sparxsystems.com/xml_schema_generation.htm
http://www.sparxsystems.com/xml_schema_generation.htm
http://www.w3.org/XML/Schema

XML Schema (XSD) | Model XSD 90

+ department: sting
+ jobTitle: stnng
+ startDate: date

«X5DcomplexTypes w5 DcomplexTypes
Person Contacfinfo
«X50complexTypes R i
EmployeeRecords ooslezis «XSDelements -
+ birthDate: string +contactDetgils |+ @meil: sting [1..3]
= firsiilama: string + homePhone: sting
tags CHELLEE S 1.1+ strzstéddress: string
modelGroup = all + surMame: strng
tags
membardames =
mixed = false
maodelGroup = all
«ASDcomplexTypes i
Employee
«XS5Dchoices
«XSDelemants PhoneChoice

maobilePhona: string
officePhone: stnng

string xenumearations
« XS DsimpleTypan Status
Gender
Attributes
+ FullTime: string
tags + Par-Time: stnng
dernvation = restriction + (Casual sthng
pattern = male|femals + Contract: strng

The following code shows the schema generated for the Employee Details package by default. Notice how
each UML Class corresponds to a complexType definition in the schema. The Class attributes are generated
as schema elements contained in a Sequence model group within the definition. The Enumeration Class is the
exception here - it maps directly to an XSD enumeration, contained within a simpleType definition.

<?xml version="1.0"?>

<xs:schema xmins:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="ContactInfo" type="Contactinfo"/>
<xs:complexType name="Contactinfo">
<xs:sequence>
<xs:element name="Contactlnfo.homePhone" type="xs:string" maxOccurs="1"/>
<xs:element name="ContactInfo.email" type="xs:string"/>
<xs:element name="ContactInfo.streetAddress" type="xs:string"/>
<xs:choice>
<xs:element name="ContactInfo.mobilePhone" type="xs:string"/>
<xs:element name="ContactInfo.officePhone" type="xs:string"/>
</xs:choice>
</xs:sequence>
</xs:complexType>
<xs:simpleType name="Gender">
<xs:restriction base="xs:string">
<xs:pattern value="male|female"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="Employee" type="Employee"/>
<xs:complexType name="Employee">
<xs:complexContent>

© 1998-2010 Sparx Systems Pty Ltd

91 XML Schema (XSD) | Model XSD

<xs:extension base="Person">
<xs:sequence>
<xs:element name="status" type="Status"/>
<xs:element name="jobTitle" type="xs:string"/>
<xs:element name="startDate" type="xs:date"/>
<xs:element name="department" type="xs:string"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="Person" type="Person"/>
<xs:complexType name="Person">
<xs:sequence>
<xs:element name="surName" type="xs:string" maxOccurs="1"/>
<xs:element name="firstName" type="xs:string" maxOccurs="1"/>
<xs:element name="birthDate" type="xs:string" maxOccurs="1"/>
<xs:element name="contactDetails" type="ContactInfo"/>
</xs:sequence>
<xs:attribute name="gender" use="optional" type="Gender"/>
</xs:complexType>
<xs:element name="EmployeeRecords" type="EmployeeRecords"/>
<xs:complexType name="EmployeeRecords">
<xs:all>
<xs:element name="Employee" type="Employee"/>
</xs:all>
</xs:complexType>
<xs:simpleType name="Status">
<xs:restriction base="xs:string">
<xs:enumeration value="Full-Time"/>
<xs:enumeration value="Part-Time"/>
<xs:enumeration value="Casual"/>
<xs:enumeration value="Contract"/>
</xs:restriction>
</xs:simpleType>
</xs:schema>

The following topics provide further explanation:

e UML Profile for XSD[e
e XSD Datatypes Package[7
e Abstract XSD Models| e&3

2.1.1.1 UML Profile for XSD

The UML Profile for XSD specifies a set of stereotypes, Tagged Values and constraints that can be applied to
the UML model in order to change particular aspects of the resulting schema. For example, you might have to
convert certain UML Class attributes to XSD attributes, or use a model group other than the default Sequence.

Enterprise Architect provides native support for the UML Profile for XSD via the XML schema pages of the
Enterprise Architect UML Toolbox (see Using Enterprise Architect - UML Modeling Tool). Alternatively, you can
use the profile via Enterprise Architect's generic profile mechanism by downloading the UML Profile for XSD.
See the Using Profiles topic in Extending UML With Enterprise Architect for details on importing UML profiles
into Enterprise Architect. The XSD profile used by Enterprise Architect is an adaptation of the profile defined

in Modeling XML Applications with UML (David Carlson).

The XSD stereotypes provide an explicit mapping from XSD to UML constructs. The Tagged Values further
define aspects of the mapping, such as whether the elements should be qualified. Full information on the
Tagged Values can be obtained from the W3C XML Schema recommendation. The constraints define any
conditions that must be satisfied for the stereotype to apply.

The following stereotypes are provided:

e XSDschemalo?
e XSDcomplexType! o3
e XSDsimpleType 93"

e XSDsequence! e
e XSDchoicel e

e XSDelement/ e
e XSDattributel 954

Code Engineering Using UML Models

http://www.sparxsystems.com/profile/XSDProfile.xml
http://www.w3.org/XML/Schema

XML Schema (XSD) | Model XSD 92

XSDany/ 957
XSDrestriction! 953

XSDgroup| 96"
XSDtopLevelElement/ 963

XSDtopLevelAttribute [963

XSDunion/ 97
XSDattributeGroup [¢7,

The following tables list the features of the UML Profile for XSD.

Note:

Tagged Value names are shown in bold followed by the allowed values.

If a default value is used by Enterprise Architect's schema generator, it is underlined.

«XSDschema»
UML Package
Construct
Description All Classes in a package are defined within one schema. This
stereotype can be used to specify schema-wide settings.
Tagged anonymousRole: Specifies if the role name is included in the element declaration

Values

(true | false)

for the UML attribute.

anonymousType:

(true | false)

Specifies whether the Class type is anonymous for attributes.

attributeFormDefault:

(qualified | unqualified)

Determines whether attribute instances must be qualified.

defaultNamespace:

The default namespace used in this schema. This value is used
to specify the default namespace attribute (xmins=), in the
schema element.

elementDerivation:

(true | false)

Determines whether inheritances are generated using XSD
extension or copy-down inheritance.

elementFormDefault:

(qualified | unqualified)

Determines whether element instances must be qualified.

memberNames:

(qualified | unqualified)

Determines whether elements generated from Class attributes
have their name qualified by the corresponding Class name.

modelGroup:
(all | sequence | choice)

Specifies the default XSD model group used to generate
complexType definitions.

schemal.ocation:

The URI that identifies the location of the schema. This value is
used in the import and include elements.

targetNamespace:

The URI that uniquely identifies this schema's namespace.

targetNamespacePrefix:

The prefix that abbreviates the targetNamespace.

version:

The version of this schema.

Constraints

None.

© 1998-2010 Sparx Systems Pty Ltd

93

XML Schema (XSD) | Model XSD

«XSDcomplexType»

UML Class

Construct

Description complexType definitions are created for generic UML Classes.
This stereotypes helps tailor the generation of a complexType
definition.

Tagged memberNames: Determines whether elements generated from the UML Class

Values (qualified | unqualified) attributes and associations have their name qualified by the

corresponding Class name for this complexType definition.

mixed:

(true | false)

Determines whether this element can contain mixed element
and character content. See the W3CXML Schema
recommendation.

modelGroup:

(all | sequence | choice)

Overrides the default XSD model for generating this
complexType definition.

mininclusive:

minExclusive:

maxInclusive:

maxExclusive:

totalDigits:

fractionDigits:

whiteSpace:

pattern:

Constraints None.
«XSDsimpleType»
UML Class
Construct
Description An XSD simpleType is generated for Classes with this
stereotype.
Tagged derivation: Specifies the derivation of the simpleType. See the W3C XML
Values (restriction | list) Schema recommendation.
length:
minLength:
maxLength:

See the W3C XML Schema recommendation.

Constraints

This Class can only participate in an inheritance relation with
another simpleType. It cannot have any attributes or own any
associations; they are ignored if present.

Code Engineering Using UML Models

XML Schema (XSD) | Model XSD 94

«XSDsequence»

UML Class

Construct

Description The schema generator creates a sequence model group as the
container for the attributes and associations owned by this
Class. The model group is in turn added to the model groups of
this Class respective owners.
Note:
Tagged values specified by owners of this Class persist through
to the child elements of this model group. Thus if
memberNames are unqualified for a complexType, so are the
children of this model group when added to that complexType.

Tagged None.

Values

Constraints This Class must be the destination of unidirectional associations.
If it is not, this Class and its connectors are ignored, possibly
invalidating other model group Classes.
Inheritance relations are ignored for this Class.

«XSDchoice»

UML Class

Construct

Description Creates an XSD choice element. See XSDsequence for more
details.

Tagged None.

Values

Constraints As for XSDsequence.

«XSDelement»

UML Attribute: AssociationEnd

Construct

Description By applying this stereotype to a UML Class attribute or
AssociationEnd, the corresponding UML entity is generated as
an element within the parent complexType and not as an XSD
attribute.

Tagged form: Overrides the schema's elementFormDefault value.

Values (qualified | unqualified)

position:

Causes the elements to be ordered within a sequence model
group of the containing complexType. Duplicated and invalid
position Tagged Values are ignored and result in undefined
ordering of the UML attributes. Missing position values cause the
defined positions to be allocated as specified, with the remaining
elements filling the missing positions in an undefined order.

anonymousRole:

(true | false)

Specifies if the role name is included in the element declaration
for the UML attribute.

© 1998-2010 Sparx Systems Pty Ltd

95

XML Schema (XSD) | Model XSD

anonymousType: Specifies whether the Class type is anonymous for attributes.
(true | false)
default
See the W3C XML Schema recommendation.
fixed

Constraints

None.

«XSDattribute»

UML Attribute: AssociationEnd

Construct

Description By applying this stereotype to a UML Class attribute or
AssociationEnd, the corresponding UML entity is generated as
an XSD attribute within the parent complexType and not as an
XSD element.

Tagged form: Overrides the schema's attributeFormDefault value.

Values (qualified | unqualified)

use:

(prohibited | optional |
required)

See the W3C XML Schema recommendation.

default
fixed
Constraints The attribute datatype should not see a Class specification,
otherwise it is ignored.
«XSDany»
UML Class: Attribute
Construct
Description If applied to a UML attribute, an XSD anyAttribute element is
generated. If applied to a UML Class, an XSD any element is
generated.
Tagged namespace:
palies See the W3C XML Schema recommendation.
processContents:
(skip | lax | strict)
Constraints None.

«XSDrestriction»

UML Generalization

Construct

Description Overrides the default use of XSD extension for inheritance and
generates the child as a complexType with a restriction element
instead.

Tagged None.

Code Engineering Using UML Models

XML Schema (XSD) | Model XSD 96

Values

Constraints

Applies only to UML Class parent-child relations.

«XSDgroup»
UML Class
Construct
Description An XSDgroup is generated for Classes with this stereotype.
Tagged modelGroup: Overrides the default XSD model for generating this group
Values (sequence | choice | all) | definition.

Constraints

A group Class can only associate itself to other group Classes.

A group Class can be associated by another group Class or a
complexType Class.

The association should be via an Association connector.

A group Class cannot be inherited/aggregated.

«XSDtopLevelElement»

UML Class
Construct
Description Creates an <xs:element> construct which acts as a container for
XSDcomplexType and XSDsimpleType Class.
Tagged default
Values See the W3C XML Schema recommendation.
fixed

Constraints

An XSDtopLevelElement Class can contain either an
XSDsimpleType or an XSDcomplexType as its child Class. When
such a Class is present as its child, all its inheritance is ignored.

This Class cannot be inherited.

«XSDtopLevelAttribute»

UML Class
Construct
Description Creates an <xs:attributr> construct which acts as a container for
XSDsimpleType Class.
Tagged use: _
ez (gptlp—nal | required | See the W3C XML Schema recommendation.
prohibited)
default
fixed

Constraints

An XSDtopLevelAttribute Class can contain only an
XSDsimpleType Class as its child Class. When such a Class is
present as its child, all its inheritance is ignored.

© 1998-2010 Sparx Systems Pty Ltd

97 XML Schema (XSD) | Model XSD

This Class can inherit from only one XSDsimpleType Class.

«XSDunion»

UML Class

Construct

Description Creates an <xs:union> construct which can act as a container for
XSDsimpleType Class.

Tagged None

Values

Constraints

An XSDunion Class can contain only XSDsimpleType as its child
Class and can generalize from other XSDsimpleType Classes
only.

All the Classes that this Class generalizes become the members
of the attribute memberTypes.

This Class cannot have any attributes or associations.

«XSDattributeGroup»

UML Class

Construct

Description Creates an <XSDattributeGroup> construct which can act as a
container for a set of elements for stereotype XSDattribute.

Tagged None

Values

Constraints

An XSDattributeGroup Class can contain only elements of
stereotype XSDattribute and can be associated only with other
XSDattributeGroup Classes.

Only XSDcomplexType Classes can associate with this Class.

This Class cannot be inherited.

2.1.1.2 XSD Datatypes Package

When modeling XSD constructs, it is often useful to have the XSD primitive types represented as UML
elements. In this way user-defined types, for example, can reference the datatype elements as part of

inheritance or association relationships.

Sparx Systems provides the set of primitive XSD data types as a UML package in the form of an XMl file. Each
of the XSD primitive types is represented by a UML Class in a package named XSDDatatypes. To import the
XSDDatatypes package into your model, follow the steps below:

1. Download the XSDDatatypes package using the following link: XSDDatatypes Package. The file

XSDDataTypes.xml is an XMl file.

2. Use Enterprise Architect's XMI import facility, which is available via the Project | Import/Export |
Import Package from XMI menu option. See the Import XMI topic in UML Model Management.

3. When the XMI import is complete, you have the UML package named XSDDatatypes in your model,
from which you can drag and drop the relevant types as required.

Code Engineering Using UML Models

http://www.sparxsystems.com/downloads/profiles/XSDDataTypes.xml

XML Schema (XSD) | Model XSD 98

2.1.1.3 Abstract XSD models

XML schemas can be modeled using simple, abstract Class models. This can be useful in enabling an
architect to start work at a higher level of abstraction, without concern for the implementation details of a
schema. Such an abstract model can be refined further using the XML Schema pages of the Enterprise
Architect UML Toolbox (see Using Enterprise Architect - UML Modeling Tool), or it can be generated directly
by Enterprise Architect's schema generator[108 In this case, a set of default mappings!/ 99 is assumed by the
schema generator to convert the abstract model to an XSD file.

The following is a simplified version of the Employee Details example model, which does not use XSD-specific
stereotypes or Tagged Values.

EmployeeRecords Person Contactinfo

- bithDwete: string +contactDetsils

- fistMame: string
- gender string
- surMame: string

- email string

1|- homePhone: string
- mobilePhone: string
- officePhane: string
& - strestiddress: string

«SnuUmMeration s

Status
Employee
o department: st Fuk-Timg
_:-_5 ment: string Pan-Time
- obTritke: stnng -
: Cesus
- starDste: Dats -
Contract
- status: Status

The following schema fragment would be generated by Enterprise Architect, given the above model.

<?xml version="1.0"?>
<xs:schema xmlIns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:simpleType name="Status">
<xs:restriction base="xs:string">
<xs:enumeration value="Full-Time"/>
<xs:enumeration value="Part-Time"/>
<xs:enumeration value="Casual"/>
<xs:enumeration value="Contract"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="Person" type="Person"/>
<xs:complexType name="Person">
<xs:sequence>
<xs:element name="firstName" type="xs:string"/>
<xs:element name="surName" type="xs:string"/>
<xs:element name="birthDate" type="xs:string"/>
<xs:element name="gender" type="xs:string"/>
<xs:element name="contactDetails" type="ContactInfo"/>
</xs:sequence>
</xs:complexType>
<xs:element name="Employee" type="Employee"/>
<xs:complexType name="Employee">
<xs:complexContent>
<xs:extension base="Person">
<xs:sequence>
<xs:element name="status" type="Status"/>
<xs:element name="jobTitle" type="xs:string"/>
<xs:element name="startDate" type="xs:date"/>
<xs:element name="department" type="xs:string"/>

© 1998-2010 Sparx Systems Pty Ltd

99 XML Schema (XSD) | Model XSD

</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="EmployeeRecords" type="EmployeeRecords"/>
<xs:complexType name="EmployeeRecords">
<xs:sequence>
<xs:element name="Employee" type="Employee" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:element name="ContactInfo" type="Contactinfo"/>
<xs:complexType name="Contactinfo">
<xs:sequence>
<xs:element name="homePhone" type="xs:string"/>
<xs:element name="mobilePhone" type="xs:string"/>
<xs:element name="officePhone" type="xs:string"/>
<xs:element name="email" type="xs:string"/>
<xs:element name="streetAddress" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:schema>

2.1.1.3.1 Default UML to XSD Mappings

The following table describes the default mapping of UML to XSD constructs. This set of mappings is useful
when defining simple schemas from abstract Class models. The defaults are also assumed by the schema
generator when generating unstereotyped elements in an abstract model. The XML Schema pages of the
Enterprise Architect UML Toolbox (and UML Profile for XSD) override these default mappings through the use
of stereotypes and Tagged Values.

UML Construct Default XSD Production Rules

Package A schema element is generated for the target package. If the target package includes
Classes from another package, which has the Tagged Values targetNamespace and
targetNamespacePrefix set, these are included as attributes of the schema element.

In addition, an import or include element is created for each referenced package. (An
include element is used if the external package shares the same targetNamespace
Tagged Value as the target package. An import element is used where the
targetNamespaces differ).

Class A root-level element declaration and complexType definition are generated. The
element name and type are the same as the Class name. An XSD sequence model
group is generated to contain UML attributes generated as elements.

Attribute An element is declared for each Class attribute. The element name is set to that of the
UML attribute name. This is prefixed with the Class name to make the element unique.
The minOccurs and maxOccurs attributes are set to reflect the attribute cardinality.
Note:

If left unspecified, minOccurs and maxOccurs default to 1.

If the attribute refers to another Class, the element declaration is followed a
complexType definition, which contains a reference to the appropriate complexType.

Association An element is declared for each association owned by a Class. The element name is
set to that of the association role. The minOccurs and maxOccurs reflect the
cardinality of the association.

Note:
If the direction of the association is unspecified, the owner is assumed to be the
source.
Generalization For single inheritances, an extension element is generated with the base attribute set
(Inheritance) to the base Classname. The UML attributes of the child Class are then appended to

an all model group within the extension element.

Code Engineering Using UML Models

XML Schema (XSD) | Model XSD

100

UML Construct

Default XSD Production Rules

«enumeration» (st
ereotype)

attributes is ignored by the schema generator.

A simpleType element is declared for the enumeration Class with the name attribute
set to the Classname. A restriction element is generated with base set to string. Each
of the Class attributes is appended to the restriction element as XSD enumeration
elements with value set to the UML attribute name. Any type specification for the UML

2.1.2 Generate XSD

The Generate XML Schema feature forward engineers a UML Class model to a W3C XML Schema (XSD) file.
An XML schema corresponds to a UML package in Enterprise Architect, therefore XML schema generation is
a package-level operation. To generate an XML schema from a package, follow the steps below:

1. Inthe Project Browser, right-click on the package to be converted to XSD. The context menu displays.

2. Select the Code Engineering | Generate XML Schema menu option. The Generate XML Schema
dialog displays, showing the name of the selected package in the Source Package field.

Source :
Package: Classlibrany2
Encoding: |50-3855-1
¥50 Stle Referenced Package Options
Generate global element for all Generate X50 for Referenced packages

global ComplexTypes

Child Package Options
Generate X500 for Child packages @ Include all packages

[Prompt when missing Filename

(7 Include <XSDschema: packages

Packaage

Classlibrany? ClasslibSchema xsd

Filename

Progress:

Wiew Sc:herna] [Generate] [Close] [Help

© 1998-2010 Sparx Systems Pty Ltd

101 XML Schema (XSD) | Generate XSD

3. Inthe Encoding field, set the required XML encoding.

In the XSD Style panel, the Generate global element for all global ComplexTypes checkbox is
selected by default to generate schema in the Garden of Eden style[10h,

5. Inthe Referenced Package Options panel, select the:

e Generate XSD for Referenced packages checkbox to generate schema for packages that are
referenced by any of the packages selected in the list box

o Prompt when missing Filename checkbox to enable Enterprise Architect to prompt for a filename
for a referenced package during schema generation, if the filename is missing.

6. Inthe Child Package Options panel, select the:

e Generate XSD for Child Packages checkbox to generate schema for child packages of the
selected package

¢ Include all packages radio button to list all child packages under the parent package in the list box

¢ Include <XSDschema> packages radio button to list only those packages that have the stereotype
«XSDschema.

The list box displays, for each package, the package name and the file path where the schema file is to
be generated.

7. Ifitis necessary to change the file path for a package, double-click on the entry in the list box and, on
the Select XML File dialog, type or select the appropriate file path.

8. Ensure that the checkbox is selected for each package required for generation.
Click on the Generate button to generate the schema for each of the selected packages.
10. The progress of the schema generator is shown in the Progress box.

11. When schema generation is complete, click on an entry in the list box and click on the View Schema
button to review the generated schema.

Tip:

The Generate XML Schema dialog can also be accessed from the active diagram by selecting the Project |
XML Schema | Generate XML Schema menu option.

2.1.2.1 Generate Global Element

Enterprise Architect, by default, generates XML Schema in the Garden of Eden style. For every global
XSDcomplexType stereotyped Class, Enterprise Architect generates a global element. For example, the
following model by default generates the XSD shown:

class GenXSDExample .~
=x5:element name="Contactinfo” type="Contactinfa™=

=xs:complexType name="Contactinfo™=
wXSDcomplexTypes X5 SEeqUEnces
i =x5:element name="email” type="¢xs:string™ minOccurs="1" max0ccurs="1"7=

=xs.element name="homePhone” type="xs.string” minOccurs="1" max0Occurs="1"=
=x5.element name="mobilePhone” type="xs:string” minOccurs="1" maxJccurs="1"=
=x5.element name="officePhone” type="xs:string” minOccurs="1" maxOccurs="1"=
=x5.element name="streetAddress” type="xs:string” minQccurs="1" maxOccurs="1"=

=h5sequences=

1 =5 complexType=

+ocontactDetsils

=x5.element name="Person” type="Person"/=
=xs.complexType name="Ferson™=
wXSDcomplexTypes =Xs.5equence= . . . L o .

Person =x5.element name="hirthDate” type="xs:string” minQccurs="1" maxDccurs="1"/=
=x5:element name="firsthlame” type="xs:string” minOccurs="1" maxOccurs="1"/=
=x5:element name="gender” type="xs:string” minOcours="1" maxOccurs="1"/=
=xs:element name="surMame” type="xs:string™ minOccurs="1" maxOccurs="1"=
=x5.element name="contactDetails™ type="Contactinfo™ minOccurs="1" maxOccurs="1"=

=5 sequUence=
=hscomplexType=

You can change this default behaviour by deselecting the Generate global element for all global
ComplexTypes checkbox on the Generate XML Schemal108) dialog. Then, the generated XSD no longer
contains the global element, as shown below:

Code Engineering Using UML Models

XML Schema (XSD) | Generate XSD| 102

class GenX SDExample / =xs:complexType name="Contactinfo™>
“¥SSequUence=
eXSDcomplexTypes =x5.element name="email” type="xs string™ minXccurs="1" maxJccurs="1"=
EriTE N =x5:element name="homeFhone” type="xs:5tring” minOccurs="1" max0ccurs="1"=
=xs.element name="rnobilePhone” type="xs:string” minOccurs="1" max0ccurs="1">
=xselement name="officePhone” type="xs:string” minOccurs="1" maxOccurs="17=
=x5:element name="streetAddress” type="xs:string™ minOccurs="1" maxOccurs="1"=
=S Sequence=
=fs.complexType=

+contactDetails

=¥s.complexType name="Ferson™=
<¥S.sequence=
=x5:element name="hithDate” type="xs:string” minOccurs="1" maxOccurs="1"/=
=5 element name="firstName” type="xs:5tring” minOccurs="1" maxOccurs="1"/=
=x5.element name="gender” type="xs:string” minOccurs="1" maxOcours="1"=
=xs.element name="surMName” type="xs:string” minOccurs="1" maxDccurs="1"=
=xs element name="contactDetails™ type="Contactinfo” minJccurs="1" maxOccurs="1"=
=S Sequence=
=fs.complexType=

aXSDcomplexTypes
Person

2.1.3 Import XSD

The XML Schema Import facility is used to reverse engineer a W3C XML Schema (XSD) file as a UML Class
model. An XSD file is imported into Enterprise Architect as a UML package. To import an XSD file, follow the
steps below:

1. Inthe Project Browser, right-click on the package to contain the imported XSD package. The context
menu displays.

2. Select the Code Engineering | Import XML Schema menu option. The Import XML Schema dialog
displays.

© 1998-2010 Sparx Systems Pty Ltd

103

XML Schema (XSD) | Import XSD

Root Package: Classlibraryl

Directory: | E

Selected File(s)

Import Options
[1mport global elements with "Type™ postfix [Import X5D Elements /Attributes as :
Import referenced XML Schemal(s) @ UML Assodations
Create Diagram for XML Schema(s) (71 UML Attributes
Progress:

[Impaort] [Close] [Help]

In the Directory field, click on the [...] (Browse) button. The Select XML Schema(s) dialog displays.

Click on the required input file. To select several individual files, press [Ctrl] as you click on each one.
To select a range of files, press [Shift] and click on the first and last file in the range.

Click on the Open button to return to the Import XML Schema dialog, which now shows the selected
files in the Selected File(s) field.

The Import global elements with "Type" postfix 105 checkbox defaults to unselected to import a
global element, and the ComplexType to which it refers, as a single ComplexType Class.

The Import referenced XML Schema(s) checkbox defaults to selected, to import any other Schema file
referenced by the selected input XML Schema file or files.

Note:

If an XML Schema file being imported already exists in the model, Enterprise Architect skips importing
the file.

The Create Diagram for XML Schema(s) checkbox defaults to selected, to display the imported
elements on the diagram. If necessary, deselect the checkbox.

For the Import XSD Elements/Attributes as: field, select the appropriate radio button to import
elements and attributes in the XML Schema as:

e UML Association connectors or
e UML Class attributes.

10. Click on the Import button to import the schema.
11. The progress of the schema import is shown in the Progress status bar.

Code Engineering Using UML Models

XML Schema (XSD) | Import XSD| 104

Tip:

The Import XML Schema dialog can also be accessed for the active diagram by selecting the Project | XML
Schema | Import XML Schema menu option.

Note:

Enterprise Architect uses the schemalocation attribute in the Import and Include elements of an XML
Schema to determine the dependencies between the files. Ensure that this attribute is set to a valid file path
(and not a URL) for the dependent XML Schema(s) to be imported correctly.

2.1.3.1 Global Element and ComplexType

Some XML Schemas have ComplexType elements with the same name as the referring global elements, but
with the suffix Type as shown below:

<xs:element name="Address" type="AddressType"/>

<xs:complexType name="AddressType">
<xs:sequence/>

</xs:complexType>

On XSD import, Enterprise Architect treats this global element and its bounding ComplexType as a single
entity and creates a single XSDcomplexType stereotyped Class with the same name as the global element as
shown below:

aXSDcomplexTypes
Address

You can change this default behaviour by selecting the Import global elements with "Type" postfix
checkbox. When you select this option, Enterprise Architect treats the global element and the ComplexType it
is referring to as two separate entities. So, for the above example, Enterprise Architect creates an
XSDtopLevelElement stereotyped Class for the global element and an XSDcomplexType stereotyped Class
for the ComplexType, and connects them as follows:

wXSDcomplexTypes
AddressType

wXSMopLlevelElements
Address

© 1998-2010 Sparx Systems Pty Ltd

105 | XML Schema (XSD) | Import XSD

Note:

Enterprise Architect treats the following as two separate entities irrespective of whether the Import global
elements with "Type" postfix checkbox is selected or unselected:

<xs:element name="HomeAddress" type="AddressType"/>
<xs:complexType name="AddressType">

<xs:sequence/>
</xs:complexType>

Code Engineering Using UML Models

Web Services (WSDL) | 106

2.2 Web Services (WSDL)

221

WSDL ¢

Enterprise Architect supports Forward and Reverse Engineering of the W3C Web Service Definition Language
(WSDL). The following topics explain how to use Enterprise Architect to model, generate and import WSDL
files:

e Model WSDL [108)
e Import WSDL [116)
e Generate WSDL[11%

Model WSDL

The WSDL pages of the Enterprise Architect UML Toolbox (see Using Enterprise Architect - UML Modeling
Tool) can be used to conveniently model WSDL documents. WSDL documents are represented as
components marked with the stereotype WSDL. WSDL documents are contained in a package hierarchy
representing the target WSDL namespace and its constituent XSD Types, Messages, PortTypes, Bindings
and Services. The top-level package is stereotyped as a WSDLnhamespace. The figure below shows a WSDL
namespace package structure:

© 1998-2010 Sparx Systems Pty Ltd

107 |Web Services (WSDL) | Model WSDL

[} OnlineBookstore PSM

El Iil OnlineBookstore

- #3 OnlineBookstere

= El Types

&3 Types

; Address

Cart

Cartitem

Id

Invoice

Price

Searchparams
Stockitemn

Stockitemlist

Url

Meszages

5 Messages
CartAdditemRequest
Cart&dditernResponse
CartCheckoutRequest
CartCheckoutResponse
CartCreateRequest
CartCreateResponse
StockfternDetailsRequest
StocklternDetailsResponse
StocklternPriceRequest
StockltermnPriceResponse
StockltermnSearchRequest
: StocklternSearchResponse
=] PortTypes

%g PortTypes

- @ OnlineBookstoreServices
= |=:| Bindings

&3 Bindings

B OnlineBookstoreServices
= Iil Services

- 73 Services

.. =& OnlineBookstore

7 2] OnlineBookstere

A WSDLnamespace package can contain one or more WSDL components. Each WSDL component can be
automatically generated to a WSDL file using Enterprise Architect's built in WSDL generator|117. The following
topics describe the various WSDL elements and features supported by Enterprise Architect:

e WSDL Namespace[108)

e WSDL Document/118)

e WSDL Service[11h

e WSDL Port Type /115
e WSDL Message [115)

e WSDL Binding[113
e WSDL Port Type Operation[115

Code Engineering Using UML Models

Web Services (WSDL) | Model WSDL| 108

e WSDL Message Part[116)

2.2.1.1 WSDL Namespace

The WSDL namespace in Enterprise Architect represents the top-level container for the WSDL elements,
including WSDL documents. Conceptually it maps to the targetNamespace in a WSDL definition element. A
given WSDL namespace can reuse its schema Types, Messages, Port Types, Bindings and Service across

multiple physical WSDL documents.

The figure below shows an example WSDL namespace (OnlineBookstore PSM, which has a red margin to the

bottom right corner), including a single WSDL document:

[} OnlineBookstore PSM
E| D OnlineBookstore
%g OnlineBookstore
= Iil Types

- B3 Types

; Address

S Cart
Cartitern

Id

Invoice
Price

Stockitem
Stockitemlist
Url
Messages

%g Messages

= PortTypes
- T3 PortTypes

= |=:| Bindings
%g Bindings

= El Services
%g Services

& =] OnlineBookstore

Searchparams

CartAdditernRequest
CartAddltemResponse

= CartCheckoutRequest

= CartCheckoutResponse
CartCreateRequest
CartCreateResponse
StocklternDetailsRequest
StocklternDetailsResponse
StocklternPriceRequest
StocklternPriceResponse
StocklternSearchRequest
: StockltermnSearchResponse

& =& OnlineBookstoreServices

& OnlineBookstoreservices

‘. =@ OnlineBookstore

© 1998-2010 Sparx Systems Pty Ltd

109

Web

Services (WSDL) | Model WSDL

To create a new WSDL namespace in your model, follow the steps below.

1. Open or create the appropriate diagram.

2. Se

lect the More Tools | WSDL menu option from the Enterprise Architect UML Toolbox.

3. Drag the Namespace element from the Toolbox onto the diagram. The WSDL Namespace Properties
dialog displays:

WSDL Package Name : [JEBILZTE =TS

Target Namespace : http:/fwvw exampleURI, com/MSDLPackage 1

[oK H Cancel ” Help

Type in a WSDL Package Name and Target Namespace name. You can edit these values later.

5. Click on the OK button to create a package stereotyped as WSDLnamespace. This contains the
following sub-packages and an Overview diagram to navigate between the sub-packages:

Types: Contains the XSD types used by the WSDL Message elements; this package is modeled as
an XML Schema /893, and you drag XSDelement| 943, XSDsimpleType 93" and XSDcomplexType| 93"
elements onto the Types diagram from the XML Schema page of the Enterprise Architect UML
Toolbox (see Using Enterprise Architect - UML Modeling Tool)

Messages: Contains the WSDL Messages, modeled as UML Classes marked with the stereotype
WSDLmessage

PortTypes: Contains the WSDL Port Types, modeled as UML interfaces marked with the stereotype
WSDLportType

Bindings: Contains the WSDL Bindings, modeled as UML Classes that realize the PortTypes

Services: Contains the WSDL Services, modeled as UML interfaces with associations to each
exposed Binding.

6. Use the Overview diagram to navigate between the subpackages, by double-clicking the relevant
packages. You can edit the sample WSDL elements created in the previous step, or drag new items
from the WSDL pages of the Toolbox onto the relevant diagrams.

TODO: Add your WSDOL Types, Messages, Portypes, Binding and Services by dragging elements from the
WSDL toolbox. Double-clidk the padkages below to nevigate between the relevant diagrams.

You can automatically generate WSDLs fram this model. Drag WSDL components from the toolbox onte
this diagram and specify which services should be exposed.

wXSDschemaxs Messages PortTypes Bindings Services
Types
Les + SamplzInput «p + SsmpiePorTypeHTTR + SampleBindingHTTP =@ + SsmpleSenice
+ InputParametars + SamplaCutput @ + SampieForType S04F + SampleBindingSOAP
+ QutputParametars

Genersate this WSDL by selecting

«WSDL» = * == ==-=<dthe WSDLnamespace in the
SampleW 5DLFile Project View and using the
‘SampleSernvice menu opticn Project | Web

Servioes | Generate WSDL

You can edit the WSDL-specific properties of the namespace later by double-clicking the package in the
Project Browser. Alternatively, on the WSDL Namespace Properties dialog, click on the UML button to invoke
the standard Properties dialog for a package. (This button does not display on the initial WSDL Namespace
Properties dialog for a new Namespace element.)

Code Engineering Using UML Models

Web Services (WSDL) | Model WSDL| 110

2.2.1.2 WSDL Document

WSDL documents are represented in Enterprise Architect by UML components stereotyped as «WSDL».
These components are modeled as direct child elements of the top-level WSDL namespace package. You can
create multiple WSDL documents for a single namespace, thus enabling the services for that namespace to
be reused and exposed as required across multiple WSDLs.

To define new WSDL document components for your namespace, follow the steps below:

1. Open the Overview diagram defined for your WSDL namespace package, and drag the WSDL element
from the Toolbox onto the diagram. The WSDL Document Properties dialog displays.

Marne:

File Mame:

SampleVWSOLFile

C:\Temp\MyWSDLFile. wsdl E]

Documentation: B [1 #Al = ézl st X, %1

¥MLMNS
Prefix Mamespace it
tns http: /v, examplelURI. com/MWSDLPackage 1 i
wadl http: ffschemas. xmisoap, orgfwsdlf 5
s0ap http:/fschemas. xmisoap, org/wsdl/soap/
http http: /fschemas. xmisoap. orgfwsdlhttp/
e R Shananar w2 mra OO0V Crbams -
Services:
Service Name
SampleService
e | [ok || caneel || el

2. Type in the Name and File Name for the document.

3. The XMLNS panel lists the default XML namespaces used by the document. If required, click on the
New button to add further namespaces.

Note:

You can also delete any namespace entries that you add. It is recommended that you do not delete
any of the default entries, as it may cause an invalid WSDL document to be generated.

4. Select one or more services that should be exposed by this document. The list of available services is
populated from the Services package 111

5. Click on the OK button.

© 1998-2010 Sparx Systems Pty Ltd

111 |Web Services (WSDL) | Model WSDL

You can edit the WSDL-specific properties of the document later by double-clicking the component in the
diagram or the Project Browser. Alternatively, click on the UML button in the WSDL Document Properties
dialog to invoke the standard Properties dialog for a package. (This button does not display on the initial
WSDL Document Properties dialog for a new WSDL element.)

2.2.1.3 WSDL Service

WSDL services are represented in Enterprise Architect by UML interfaces, stereotyped as WSDLservice.
Services should be defined under the Services packages in the WSDL namespace structure.

To define new WSDLservice elements for your namespace, follow the steps below:

1. Open the Overview diagram defined for your WSDL namespace package, and double-click on the
Services package element to open the Services diagram.

2. Drag the Service element from the Toolbox onto the diagram. The WSDL Service dialog displays.

MName: ampleService,

Documentation: B I 1 ﬁhl P P [x, %

Ports
[Mew] [Delete]
Port Mame Binding Location
SamplePortHTTP SampleBindingHTTP http: /o examplel
SamplePortSOAP SampleBindingSOAP http: /o examplel
4| 1 | P
ML | ok || cancel || Hebp

3. Inthe Name field, type the service name.
4. Click on the New button to add Service Ports. The WSDL Port dialog displays.

Code Engineering Using UML Models

Web Services (WSDL) | Model WSDL| 112

Port Mame: Partl

Binding: SampleBindingHT TP -
Location: www, exampleLocation, comPaort 1

Documentation: T

[Ok][Cancel][Help

5. Type in the Port Name and Location, and select a Binding. The list of Bindings is taken from those
defined in the Bindings package 113\

6. Click on the OK button to close the WSDL Port dialog. For each Port defined in this way, Enterprise
Architect creates an Association relationship between the Service and corresponding Binding element.

7. Click on the OK button to close the WSDL Service dialog.

You can edit the WSDL-specific properties of the service later by double-clicking the Service interface in the
diagram or Project Browser. Alternatively, click on the UML button in the WSDL Service dialog to invoke the
standard Properties dialog for an interface. (This button does not display on the initial WSDL Service dialog for
a new Service element.)

2.2.1.4 WSDL Port Type

WSDL Port Types are represented in Enterprise Architect by UML interfaces stereotyped as WSDLportType.
PortTypes should be defined under the PortTypes packages in the WSDL namespace structure.

To define new WSDLportType elements for your namespace, follow the steps below:

1. Open the Overview diagram defined for your WSDL namespace package, and double-click on the
PortTypes package to open the PortTypes diagram.

2. Drag the Port Type element from the Toolbox onto the diagram. The WSDL PortType dialog displays.

Mame: amplePortl ype!

Documentation: B f U #A| EE ézl st xz %

uML ok || cancel || Hel

3. Type in the name for the portType.
4. Click on the OK button to close the WSDL PortType dialog.

5. Define operations for the portType by dragging the Port Type Operation (1151 item from the WSDL page
of the Enterprise Architect UML Toolbox onto the portType interface.

© 1998-2010 Sparx Systems Pty Ltd

113 |Web Services (WSDL) | Model WSDL

You can edit the WSDL-specific properties of the portType later by double-clicking the interface in the diagram
or Project Browser. Alternatively, in the WSDL PortType dialog, click on the UML button to invoke the
standard Properties dialog for an interface. (This button does not display on the initial WSDL PortType dialog
for a new PortType element.)

2.2.1.5 WSDL Message

WSDL messages are represented in Enterprise Architect by UML Classes stereotyped as WSDLmessage.
Messages should be defined under the Messages package in the WSDL namespace structure.

To define new WSDLmessage elements for your namespace, follow the steps below:

1. Open the Overview diagram defined for your WSDL namespace package, and double-click on the
Messages package to open the Messages diagram.

2. Drag the Message element from the Toolbox onto the diagram. The WSDL Message dialog displays.

Mame: m

Documentation: B J U ‘J'A| i il X, %
== i— 31—

UML | ok || cancel || Heb

3. Type in the Name for the message.
4. Click on the OK button to close the WSDL Message dialog.

5. You can define parts for the message by dragging the Message Part[1161 element from the WSDL
Elements page of the Enterprise Architect UML Toolbox onto the Message element.

You can edit the WSDL-specific properties of the message later by double-clicking the Message element in
the diagram or Project Browser. Alternatively, on the WSDL Message dialog, click on the UML button to
invoke the standard Properties dialog for a Class. (This button does not display on the initial WSDL Message
dialog for a new Message element.)

2.2.1.6 WSDL Binding

WSDL bindings are represented in Enterprise Architect by UML Classes stereotyped as WSDLbinding.
Bindings should be defined under the Bindings package in the WSDL namespace structure. Each
WSDLbinding Class implements the operations specified by a particular WSDLportType interface. Therefore,
WSDLportTypes should be defined before 115 creating WSDLbindings.

To define new WSDLbinding elements for your namespace, follow the steps below:

1. Open the Overview diagram defined for your WSDL namespace package, and double-click on the
Bindings package to open the Bindings diagram.

2. Drag the Binding element from the Toolbox onto the diagram. The WSDL Binding dialog displays.

Code Engineering Using UML Models

Web Services (WSDL) | Model WSDL| 114

Mame: ampleBindingSOAP

PortType: SamplePortTypeSOAF

Protocol; s0ap

Transport: http://schemas. xmlsoap.org/soap/hitp
Style: document -

Verb: GET

Documentation:

e | | ok || cancel |[Heb

Type in a Name for the Binding.

Select the PortType for the Binding; the drop-down list of PortTypes is taken from those defined in the
PortTypes package.

Select the Protocol for the Binding, either http or soap.
For SOAP Bindings, enter the Transport URL and select the Style. For http Bindings, select the Verb.

Click on the OK button to close the WSDL Binding dialog and create the binding. A realization
connector is created between the binding and the corresponding Port Type interface.

To specify the Binding operations, select and double-click on an Operation in the Binding element. The
WSDL Binding Operation Details dialog displays.

© 1998-2010 Sparx Systems Pty Ltd

115 |Web Services (WSDL) | Model WSDL

Operation Mame: GetSampleSOAR

Action: b SmO

Style: document -
Location:

Documentation: B f U {&| EE éE - xa %

Parameters...

UML | ok || cancel |[Hel

9. Type in or select the Binding Operation details.

10. Click on the Parameters button. The WSDL Binding Operation Parameters dialog displays. For each
input, output and fault, click on the Details button and enter the details.

11. Click on the OK button on each of the WSDL Binding Parameter Details, WSDL Binding Operation
Parameters and WSDL Binding Operation Details dialogs to close them.

You can edit the WSDL-specific properties of the binding later by double-clicking the binding Class in the
diagram or Project Browser. Alternatively, on the WSDL Binding dialog, click on the UMLbutton to invoke the

standard Properties dialog for a Class. (This button does not display on the initial WSDL Binding dialog for a
new Binding element.)

2.2.1.7 WSDL Port Type Operation

WSDL portType operations are represented in Enterprise Architect by operations defined as part of a
WSDLportType interface (see the WSDL Port Type|112] topic).

To add portType operations to your WSDLportType interfaces, follow the steps below.

1. Open the Overview diagram defined for your WSDL namespace package, and double-click on the
PortTypes package to open the PortTypes diagram.

2. Drag the PortType Operation item onto a WSDLPortType stereotyped interface. The WSDL PortType
Operation dialog displays.

Code Engineering Using UML Models

Web Services (WSDL) | Model WSDL| 116

Mame: m

Documentation: B /] U ffAl H e X, *
o= i— 3 —

Operation Type: Request-Response -
Input
Mame: Request
Message: Samplelnput -
Documentation: -
Cutput
Mame: Response
Message: SampleQuiput -
Documentation: a
Faults

[Mew H Delete]
Fault Mame Type
uML | ok || cancel || Heb

3. Type in the Name for the operation.
Select the Operation Type.

5. Type in or select the Input, Output and Fault details for the operation. The Message drop-down list is
taken from the WSDLmessage elements defined under the Messages package.

6. Click on the OK button to close the WSDL PortType Operation dialog and create the operation.

You can edit the WSDL-specific properties of the portType operation later by double-clicking the operation in
the diagram or Project Browser. Alternatively, on the WSDL PortType Operation dialog, click on the UML
button to invoke the standard Properties dialog for an operation. (This button does not display on the initial
WSDL PortType Operation dialog for a new PortType Operation.)

2.2.1.8 WSDL Message Part

WSDL message parts are represented in Enterprise Architect by UML attributes defined as part of a
WSDLmessage Class (see the WSDL Message [113) topic).

To add message parts to your WSDLmessage Classes, follow the steps below:

1. Open the Overview diagram defined for your WSDL namespace package, and double-click on the

© 1998-2010 Sparx Systems Pty Ltd

117 |Web Services (WSDL) | Model WSDL

Messages package to open the Messages diagram.

2. Drag the Message Part element onto a WSDLmessage stereotyped Class. The WSDL Message Part
dialog displays.

Mame: elemed

Type: string - E]

[Ok][Cancel H Help]

3. Type in a Name and Type for the message part. The type should be selected from the drop-down list of
primitive XSD types or from the types defined under the Types package.

4. Click on the OK button.
You can edit the WSDL-specific properties of the message part later by double-clicking the attribute in the
diagram or Project Browser. Alternatively, on the WSDL Message Part dialog, click on the UML button to

invoke the standard Properties dialog for an attribute. (This button does not display on the initial WSDL
Message Part dialog for a new message part attribute.)

2.2.2 Generate WSDL

The Generate WSDL feature forward engineers a UML model to a Web Service Definition Language (WSDL)
file. The Generate WSDL feature acts on a package stereotyped with WSDLnhamespace. It is used to generate
any or all of the WSDL stereotyped components owned by the target WSDLnamespace structure. To generate
one or more WSDL files from a WSDLnamespace, follow the steps below:

1. Inthe Project Browser, right-click on the target WSDLnamespace package to display the context menu.
2. Select the Code Engineering | Generate WSDL menu option. The Generate WSDL dialog displays.

Code Engineering Using UML Models

Web Services (WSDL) | Generate WSDL| 118

WSDL OnlineBookstore
Package:
View WSDL
Enmding: UTF-3
Select Components To Generate
Component WSDL Prefix ~ Target File
OnlineBookstore wadl C:\Documents and Settings'boonstable'Des. ..
1| 1] [F
Select All] [Select None
Progress:

3. For each WSDL component, set the required output file using the Target File column.
4. Using the Encoding field, set the required XML encoding.
5. Click on the Generate button to generate the WSDL files.
6. The progress of the WSDL generator is shown in the Progress edit box.
Tip:

The Generate WSDL dialog can also be accessed from the active diagram by selecting the Project |
Generate WSDL menu option.

© 1998-2010 Sparx Systems Pty Ltd

119 |Web Services (WSDL) | Import WSDL

2.2.3 Import WSDL

The WSDL Import facility is used to reverse engineer WSDL files into UML Class models.

Note:

Enterprise Architect cannot import a WSDL file that references WSDL constructs existing outside the target
file. For example, Enterprise Architect can import a WSDL as shown in

http://www.w3.org/TR/wsdl.html# examplel but not a file as shown in http://www.w3.orqg/TR/wsdl.html#_style.
Attempting to import the second WSDL file would result in the following error message:

Cannot Import Split Files.

To avoid this limitation, combine the split WSDL files into a single file and then import it into Enterprise
Architect.

To import a WSDL file, follow the steps below:

1. Inthe Project Browser, right-click on the package to contain the imported WSDL package. The context
menu displays.

2. Select the Code Engineering | Import WSDL menu option. The Import WSDL dialog displays.

Filenarne: | E
Root g
Package: OnlineBookstore
Package:
Progress:

A

3. Inthe Filename field, select the input file.

The Target Package field is automatically set to the name of the selected input file. If required, change
this name.

5. Click on the Import button to import the schema.
6. The progress of the WSDL import is shown in the Progress status bar.

Code Engineering Using UML Models

http://www.w3.org/TR/wsdl.html#_example1
http://www.w3.org/TR/wsdl.html#_style

|| 120

3 Data Modeling

You perform database modeling and database design in Enterprise Architect using the UML Data Modeling
Profile. This profile provides easy-to-use and easy-to-understand extensions to the UML standard, mapping
the database concepts of tables and relationships onto the UML concepts of Classes and associations. These
extensions also enable you to model database keys, triggers, constraints, Rl and other relational database
features.

Note:

The UML Data Modeling Profile is not currently a ratified standard; however it has wide industry support and
is a useful method for bridging the gap between the UML and conventional relational database modeling.

Typical data modeling tasks you might perform are listed at the end of this topic.

Tables and Columns

The basic modeling structure of a relational database is the table, which represents a set of records, or rows,
with the same structure. The basic organizational element of a relational database is the column. Every
individual item of data entered into a relational database is represented by a value in a column of a row in a
table.

The UML Data Modeling Profile represents:

e Tables as stereotyped Classes; that is, Class elements with a stereotype of table

e Columns as stereotyped attributes; that is, attributes with a stereotype of column.

Enterprise Architect can generate simple DDL scripts to create the tables in your model. You can also perform
Model Driven Architecture (MDA) Transformations to DDL - Enterprise Architect provides a template
specifically for DDL transformations (see the MDA Transformations User Guide).

To help you map Class attributes to Table fields, you can create connectors between specific attributes in the
Class element and the column attributes in the Table element. See the Connect to Element Feature topic (see
the Work With Connectors section of UML Modeling With Enterprise Architect - UML Modeling Tool).

Database Keys
Two types of key are used to access tables: Primary Keys and Foreign Keys. A Primary Key uniquely identifies
arecord in a table, while a Foreign Key accesses data in some other related table via its Primary Key.

A Primary Key consists of one or more columns; a simple Primary Key (single column) is defined as the
attribute of a stereotyped operation. A complex Primary Key (several columns) is defined as the stereotyped
operation itself.

A Foreign Key is a collection of columns (attributes) that together have some operational meaning (they
enforce a relationship to a Primary Key in another table). Foreign keys are represented in Enterprise Architect
as operations with the stereotype FK; the operation parameters become the columns involved in the key.

Supported Databases
Enterprise Architect supports import of database schema from these databases:

e DB2

e Firebird/InterBase

e Informix

e Ingres

e MS Access 97, 2000, 2003

© 1998-2010 Sparx Systems Pty Ltd

121 | |

e Access 2007

e MS SQL Server 2000, 2005, 2008

e MySQL

e Oracle 9i, 10g and 11g

e PostgreSQL

e Sybase Adaptive Server Anywhere (Sybase ASA)
e Sybase Adaptive Server Enterprise (Sybase ASE).

Notes:

e You can download SQL Server 2005 data types and SQL Server 2008 data types from the Resources page
of the Sparx Systems web site.

e Firebird 1.5 database tables can be modeled and generated as InterBase tables. Firebird tables can be
imported but are treated as InterBase tables.

Typical Tasks
Typical tasks you can perform when modeling or designing databases include:

e Create a Data Model Diagram [125)

e Create a Table[12h

e Set Properties of a Table[123)

e Create Columns/130)

o Create Oracle Packages/[133)

e Create Primary Keys[13h

o Create Foreign Keys[13h

e Create Stored Procedures[143)

o Create Views[148)

o Create Indexes, Check Constraints and Triggers[147

e Generate DDL for a Table[14%

e Generate DDL for a Package[151), and compare with the database
o Convert Datatypes for a Table[155)

o Convert Datatypes for a Package [156)

e Customize Datatypes for a DBMS [158)

o Import a Database Schema from an ODBC Data Source [166)

Code Engineering Using UML Models

http://www.sparxsystems.com/resources/index.html

A Data Model Diagram | 122

3.1 A Data Model Diagram

An example of a Data Model diagram is provided below, showing three tables that are linked on primary to
foreign key pairs with associated multiplicity.

Note the use of stereotyped operations for Primary (PK) and Foreign (FK) keys. Operations could also be
added for:

e Triggers|i4
e Constraints|147 (check, unique)

e Indexes|14h

Warehouse D
Data modeling is performed using
acolumns | - ---===-=-|sterectyped classes. Add a table to the
*PK WarehouselD: VARCHARZ(10) diagram by dragging from the Class
Location: VARCHAR2({20) Elements toolbox.
Capacity: NUMBER(8,2)

aPKax
+ PH_WarhouseWARCHARZ)

+PH_Warehouse 1

[(WarehouseID =
Warehouse|D)

+FK_Inventory_Warehousa a.n i D
& COILIMN
Inventory D “PK ISBM: VARCHARZ(15)
FK InwventorylD: VARCHAR2{10)
wcolumn . . AuthorlD: VARCHAR2{30)
+ = =
*PH InwentorylD: WVARCHARZ(10) FK._Boak_Imventary PublisheriD: VARCHARZ2{20)
FE. Warehousa|D: VARCHAR2{10) +PE_InventorylD Cost: HUMBER(E)
CumentStock: MUMBER(E) Stock: MUMBER{S)
OnOrder. NUMBER(E) 1 (Inventoryld = InventarylD} g.n] e
aP K
aFKs + PK_Book{VARCHARZ)
+ FE_Inventory_\Warshouse(\VARCHARZ)
- - n t(FKI;
aPHx + FK_Book_Inventory(VARCHARZ)
+ PE_Inventory[WVARCHARZ)

Associations between tables are based on the Primary to
Foreign key relationship. These examples show how to
define this.

A Data Model diagram is represented in Enterprise Architect as a Class diagram, and is created in exactly the
same way as other diagrams (see the Working With Diagrams topic in UML Modeling With Enterprise
Architect - UML Modeling Tool).

© 1998-2010 Sparx Systems Pty Ltd

123 Create a Table |

3.2 Create a Table

What is a Table?
The basic modeling structure of a relational database is the Table. A Table represents a set of records, or
rows, with the same structure.

The UML Data Modeling Profile represents a Table as a stereotyped Class; that is, a Class element with a
stereotype of table applied to it. A table icon is shown in the upper right corner of the image when it is shown
on a Data Model diagram.

Create a Table
To create a Table, follow the steps below:

1. Select a diagram.
2. Select the More Tools | Data Modeling menu option on the Enterprise Architect UML Toolbox.
3. Click on the Table element in the list of elements, then click on the diagram. The Table element is
displayed on the diagram.
L
Inventory D

woolumns

*PK InventorylD: VARCHAR2{10)

FK ‘WarehouseI|D: VARCHARZ({10) 4
CumentStock: MUMBER(E) =
OnOrder: NIUMBERI(E) i

wFHw
+ FE_Inventory_WarehouseWVARCHARZ)
wPEa

+ PE_Inventory(VARCHARZ)

4. |If the Class: Table n Properties dialog does not display, double-click on the Table to display it.
5. In the Name field, type a name for the Table and set any other properties|124 as required.
6. Click on the OK button.

Code Engineering Using UML Models

Set Table Properties | 124

3.3 Set Table Properties

Once you have created your table, you can set its properties. Most table properties can be set from the
Properties dialog, as described below. However, some properties must be entered as Tagged Values as
described for setting the value of the Table Owner /128 and, for MySQL% and Oracle[12h databases, setting
the table options.

Set the Database Type

The most important property to set for a table (after its name) is the database type. This defines the list of
datatypes that are available for defining columns, and also declares which dialect of DDL is generated.
Enterprise Architect supports the following databases:

e DB2

e Informix

e Ingres

e InterBase

e MS Access 97, 2000, 2003

e Access 2007

e MySQL

e Oracle 9i, 10g and 11g

e PostgreSQL

e SQL Server 2000, 2005 and 2008

e SQLServer7

e Sybase Adaptive Server Anywhere (Sybase ASA)
e Sybase Adaptive Server Enterprise (Sybase ASE).
To set the database type, follow the steps below:

1. Double-click on the table element in a diagram to open the Properties dialog.
2. Select the General tab.

© 1998-2010 Sparx Systems Pty Ltd

125 |Set Table Properties |

General |Tab|& Dietail | Fequirements I Constraints I Links I Scenarios | Files * I ’
Mame:

Stereotype: table - [[C] Abstract

Author: The Administrator w Status: [Pmpcmd v]
Scope: | Public » | Complexity: | Easy -]
Hias: Database: [w5q| v]
F‘ersistenc:e:[v] Keywords:

Phase: 10 Version: 1.0 [Advanced]
Motes:

| ok || cameel || oot || Hep

3. In the Database field, click on the drop-down arrow and select the database type.
4. Click on the Apply button to save changes.

Fxﬁclicking on the Table Detail tab on this dialog, you can access the Columns dialog[13% or Operations dialog
147), or you can Generate DDL[143) for this table.

Code Engineering Using UML Models

Set Table Properties | 126

General | Table Detail | Require I Congtraints I Linkz I Scenario | Filez I Tagged Values

DB Version; |MySgl 10.2.10

Table Space: LUSERS|

[Columns/Atributes ..]

[Operations. ..]

| Generste DDL.. |

3.3.1 Set Table Owner
To define the owner of a table, follow the steps below:

1. Select the Tagged Values tab of the table Properties dialog. The Tagged Values tab shows the tags for
the table.

2. Click on the New Tag button @} . The Tagged Value dialog displays.

Tag:

Value: |

| oKk || cancel || Hebp

3. Inthe Tag field, type the tag name Owner. In the Value field, type a value for the Owner tag.

Note:
For a PostgreSQL database, to define the owner name:

¢ In the Tag field, type the tag name OWNER TO

¢ In the Value field, type Owner_Name.

4. Click on the OK button to confirm the operation. Generated DDL includes the table owner in the SQL
script.

3.3.2 Set MySQL Options
In MySQL, to make use of foreign keys you must declare the table type as InnoDB. To do this, follow the steps
below:
1. Select the Tagged Values tab of the table Properties dialog. The Tagged Values tab shows the tags for
the table.

2. Click on the New Tag button . The Tagged Value dialog displays.

© 1998-2010 Sparx Systems Pty Ltd

127

Set Table Properties | Set MySQL Options

Tag:

Value: | A

| oKk || cancel || Hebp

In the Tag field, type the tag name Type. In the Value field, type InnoDB as the value for the Type tag.

Click on the OK button to confirm the operation. Generated DDL includes the table type in the SQL
script.

To allow for later versions of MySQL, additional table options that can be added in the same manner
include:

Tag Value (Example)

ENGINE InnoDB

CHARACTER SET latinl

CHARSET latinl

COLLATE latinl_german2_ci

3.3.3 Set Oracle Table Properties

For Oracle, you can set table properties using the table's Tagged Values. Follow the steps below:

1.

Select the Tagged Values tab of the table Properties dialog. The Tagged Values tab shows the tags for
the table.
Click on the New Tag button < . The Tagged Value dialog displays.

Define the table properties as shown in the examples below:

Tag: INITIAL -

Value: £5R3A A

| oK || Cancel || Hebp

Tag: PCTFREE -

Value: 1q o

| ok || cancel || Hebp

4. Click on the OK button to save the Tagged Value.
All available properties for an Oracle table are listed below.

Code Engineering Using UML Models

Set Table Properties | Set Oracle Table Properties| 128

Note:

The same properties can be added to indexes and constraints[147. Highlight the index or constraint and add
the properties as Tagged Values.

Property/Tag Value
BUFFER_POOL DEFAULT
CACHE NOCACHE
DBVERSION 9.0.111
FREELISTS 1

GRANT OWNER1 SELECT

GRANT OWNER2

DELETE, INSERT, SELECT, UPDATE

INITIAL 65536

INITRANS 1

LOGGING LOGGING
MAXEXTENTS 2147483645
MAXTRANS 255

MINEXTENTS 1

MONITORING MONITORING
OWNER OWNER1
PARALLEL NOPARALLEL
PCTFREE 10
PCTINCREASE 0

PCTUSED 0

SYNONYMS PUBLIC:TABLE_PUB;OWNER2:TABLE_OWNER2
TABLESPACE MY_TABLESPACE
TEMPORARY YES

The properties defined for a given table are listed on the Tagged Values tab, as illustrated by the following
typical Tagged Value list:

© 1998-2010 Sparx Systems Pty Ltd

129 Set Table Properties | Set Oracle Table Properties

Bs 8l & | £ f2

-l Account [Class)
BUFFER_POOL DEFALULT
CACHE NOCACHE
COMPRESSION DISABLED
DBVERSICON 10.2.10
INITIAL 62536
INITRANS 1
LOGGING LOGGING
MAXEXTENTS 2147483645
MAXTRAMS 255
MIMEXTENTS 1
MONITORING MOMITORING
CWHNER PLSGL
PARALLEL NOPARALLEL
PCTFREE 10
PCTINCREASE 1]
PCTUSED 1]
TABLESPACE UISERS

Code Engineering Using UML Models

Create Columns | 130

3.4 Create Columns

What is a Column?

The basic organizational element of a relational database is the column. Every individual item of data entered
into a relational database is represented as a value in a column of a row in a table. Columns are represented
in the UML Data Modeling Profile as a stereotyped attribute; that is, an attribute with the Column stereotype.

Create Columns

Note:

For MySQL, before creating columns first add ENUM and SET datatypes. Select the Settings | Database
Datatypes menu option and, on the Database Datatypes dialog, in the Product Name field select MySQL.

Add the datatypes ENUM and SET.

To create columns, follow the steps below:

1. Right-click on the Table in a diagram to open the context menu, and select the Attributes menu option.

2. The <Tablename> Columns dialog displays.

General |Tagged ‘ufaluesl
Mame: m_deliverny
Data Type: |INTEGER v | [Primary Key
[Mat Mul

Sterectype: input element + [l Unique
Initial: | Column Properties... |
Access: |F‘ri'u'at& v] Alias:
Motes: B 7 1J* = i= X,
Colurmns
PK Mame Type Mot Mull Unique

m_delivery INTEGER Mo Mo
PK Order fes Mo

BillingAddress BIGINT Mo Mo

Basket BIGINT Mo Mo

DelivenrAddress BIGINT Mo Mo

Cose || Cancel || Hep

3. In the Name field, type the column name.

4. In the Data Type field, click on the drop-down arrow and select the data type, and click on the Save

button.

© 1998-2010 Sparx Systems Pty Ltd

131 Create Columns |

Tip:

If the drop-down list of datatypes is empty, this means that you have not selected a target database for
the table. Close the Columns dialog and re-open the Table Properties dialog to set a database type
before continuing. To prevent this recurring, set the default database type| 347

5. The following fields for each column are optional:

Primary Key - select the checkbox if the column represents the primary key/[13% for this table
Not Null - select the checkbox if empty values are forbidden for this column

Unique - select the checkbox if it is forbidden for any two values of this column to be identical
Initial - type a value that can be used as a default value for this column, if required

Access - click on the drop-down arrow and select a scope of Private, Protected or Public (the field
defaults to Public)

Alias - type an alternative name for the field (for display purposes), if any

Notes - type any other information necessary to document the column; you can format the text using
the Rich Text Notes toolbar at the top of the field.

Notes:

e The unique characteristic applied to a single column ensures that no two data values in the
column can be identical. The unique stereotype applied to an index /14" ensures that no two
combinations of values across a set of columns can be identical.

e Some datatypes, such as the Oracle NUMBER type, require a precision and scale. These fields
are displayed where required and should be filled in as appropriate. For example, for Oracle:

create NUMBER by setting Precision = 0 and Scale =0
create NUMBER(8) by setting Precision = 8 and Scale =0
create NUMBER(8,2) by setting Precision = 8 and Scale = 2.

e Oracle VARCHAR2(15 CHAR) and VARCHAR2(50 BYTE) datatypes can be created by adding the

tag LengthType with the value CHAR or BYTE.

e For MySQL ENUM and SET datatypes, in the Initial field type the values as a comma-separated list,

in the format (‘'one’,'two’,'three") or, if one value is the default, in the format: (‘one','two’,'three’) default
'three’.

5. Click on the Column Properties button. The Database Columns Properties dialog displays.

Basket BIGINT
=] Column Properties
AutoMum False
StartMum 1
Increment 1
Zerfill Falze
|Unsigned Falze
oK] | Cancel

If you require a sequence, such as an Oracle sequence, select the AutoNum property, set the value to
True and, if necessary, define the start number and increment. Click on the OK button to return to the
<Tablename> Columns dialog.

Code Engineering Using UML Models

Create Columns | 132

6. Click on the Save button and on either the New button to define another column or the Close button to
exit from the dialog.

Change the Column Order
To change the column order, follow the steps below:

1. On the Columns dialog, highlight a column name in the Columns panel.
2. Click on the:

. lﬁl button to move the column up one position

. lﬂl button to move the column down one position.

© 1998-2010 Sparx Systems Pty Ltd

133 Create Oracle Packages |

3.5 Create Oracle Packages

To create an Oracle package, follow the steps below:
1. Open the project in the Project Browser and create an Enterprise Architect package (and, if required, a
Class diagram).
Add a Class element to either the package or the diagram.
Open the Properties dialog for the element and, in the Stereotype field, type the value Package.
For the package specification, create an Operation with the name Specification and with no return type.

Open the Properties dialog for the Specification Operation and, on the Behavior tab, type the entire
package specification into the Initial Code field.

For the package body, create an Operation with the name Body and with no return type.

7. Open the Properties dialog for the Body Operation and, on the Behavior tab, type the entire package
body into the Initial Code field.

o M wn

o

For information on the objects mentioned above, see the Work With Elements section of UML Modeling With
Enterprise Architect - UML Modeling Tool.

Code Engineering Using UML Models

Primary Key | 134

3.6 Primary Key

What is a Primary Key?

Keys are used to access tables, and come in two varieties: Primary Keys and Foreign Keys. A Primary Key
uniquely identifies a record in a table, while a Foreign Key[13# accesses data in some other related table via its
Primary Key.

Define a Simple Primary Key
If a Primary Key consists of a single column, it is very easy to define.

1. Right-click on the table in a diagram to display the context menu. Select the Attributes menu option.
2. Inthe Attributes dialog, select the column that makes up the Primary Key.
3. Select the Primary Key checkbox and click on the Save button.

A stereotyped operation is automatically created. It is this operation that defines the Primary Key for the table.
To remove a Primary Key, simply delete this operation.

Define a Complex Primary Key

Often, a Primary Key consists of more than one column. For example, a column LastName might not be
unique within a table, so a Primary Key is created from the LastName, FirstName and DateOfBirth columns.
Perform the following steps to create a complex Primary Key:
1. Follow the steps above to create a Simple Primary Key. It doesn't matter which column you choose.
2. Right-click on the table in a diagram to open the context menu. Select the Operations menu option.
3. Select the Primary Key operation (its name begins with PK_) and then click on the Column tab.
4

To add a column to the Primary Key, click on the New button, select a column from the Column Name
list box, and then click on the Save button.

5. Click on the Hand buttons (up and down arrow) to change the order of columns in the Primary Key, if
necessary.

(See also the SQL Server Non-Clustered Primary Keys [138) topic).

Define a Primary Key Name Template
To define the name template for a Primary Key, follow the steps below:

1. Select the Tools | Options | Source Code Engineering | Code Editors menu option. The DDL page of
the Options dialog displays.

© 1998-2010 Sparx Systems Pty Ltd

135 |Primary Key |

I% General
-y Standard Colors L
-4 Diagram i
~{_1 Appearance DOL Editor: E]
i[9 Behavior Default Database: MySql -
?_E Sequence
E Objects DDL Mame Templates: E]
e Links
& Communication Colors Internal Source Editor
-{J» XML Spedifications
Use inbuilt editor if no external editor set

EE Source Code Engineering

Code Editors Show Line Mumbers

- Object Lifetimes Show Structure Tree
""" fﬁ Attribute Operations Don't parse files larger than:

Always Parse -

..... ¥y Visual Basic
48 VB.Net

----- W verilog
41| vHDL

I Close I [Help

2. Click on the DDL Name Templates button. The DDL Name Template dialog displays, showing the
default name templates.

Foreign Key Name Template: i, Seforeigntablename e Seprimar ytablename %!

PK_%etablenamess

Primary Key Name Template:

Unigue Constraint Mame Template: UQ_%tablename %_Ycolumnname %

I Save I | Close

3. Edit or replace the template in the Primary Key Name Template field.
Note:

If you want to display the Primary Key description as PK_tablename_columnname then change the
Primary Key Name Template field to PK_%tablename%_%columnname%.

4. Click on the Save button.

Code Engineering Using UML Models

Primary Key | SQL Server Non Clustered Keys| 136

3.6.1 SQL Server Non Clustered Keys

To define a primary key as non-clustered for a SQL Server table, follow the steps below:

1. Right-click on the table in a diagram to open the context menu.
2. Select the Operations menu option. The Table Operations dialog displays.

3. Highlight the Primary Key Operation and select Extended Properties. The Database Operation
Properties dialog displays.

Index Properties

NIy

edaldUs UpUalc

Primary Key Properties

S0L Server Mon Clustered Primary Key

[Cancel] [Save] [Smre&[luse

4. Select the SQL Server Non Clustered Primary Key checkbox.
5. Click on the Save & Close button.

© 1998-2010 Sparx Systems Pty Ltd

137 |Foreign Key |

3.7 Foreign Key

What is a Foreign Key?

Two types of key are used to access tables: Primary Keys[13% and Foreign Keys. A Primary Key uniquely
identifies a record in a table, while a Foreign Key accesses data in some other related table via its Primary
Key.

Foreign keys are represented in Enterprise Architect UML using stereotyped operations. A Foreign Key is a
collection of columns (attributes) that together have some operational meaning (they enforce a relationship to
a Primary Key in another table). A Foreign Key is modeled as an operation stereotyped with the FK
stereotype; the operation parameters become the columns involved in the key.

Note:

It isn't necessary to define a Foreign Key in order to access another table through its Primary Key. Foreign
Keys are a feature of some database management systems, providing ‘extras' such as referential integrity
checking that prevents the deletion of a record if its Primary Key value exists in some other table's Foreign
Key. The same thing can be achieved programmatically.

To create a Foreign Key[137, click on the link.

You might also have to define a Name Template[141 for Foreign Keys.

3.7.1 Create Foreign Key

To create a Foreign Key, follow the steps below:

1. Locate the required Tables in a diagram. Both tables must have defined database types/[123.
2. Select an Associate connector in the Class Relationships page of the Enterprise Architect UML Toolbox

3. Click on the Table to contain the Foreign Key (source) and draw the connector to the other Table
(target).

4. Right-click on the connector to display the context menu, and select the Foreign Keys option. The
Foreign Key Constraint dialog displays.

Code Engineering Using UML Models

Foreign Key | Create Foreign Key| 138

Name FK_Inventory_Warehouse [V Qverride Tempiate
Source: Inventory Target: Warehouse
Key Column Type Key Column Type
PE InventoryID VARCHARZ PKE WarehouseID VARCHARZ
WarehouselD VARCHARZ Location VARCHAR2Z
CurrentStock MUMEBER Capacity MLMEER.
OnCrder MUMBER.
Source 0T - Target 1 -

Referential Integrity

[Delete Cascade
4] [B]

Column Type Column Type

o
m
m

=

5. The default foreign key name is set by the Foreign Key Name Template. To change the name to
something other than the default provided by the template, select the Override Template checkbox and
edit the foreign key name.

6. Highlight the columns involved in the Foreign Key relationship.
7. Click on the Save button to automatically generate the Foreign Key operations.
You have created the Foreign Key. The example below shows how this looks in a diagram:

© 1998-2010 Sparx Systems Pty Ltd

139 |Foreign Key | Create Foreign Key

Warehouse D

zcolumns

*PKE. WarehouselD: YARCHARZ(10)
Location: VARCHARZ(30)
Capacity. NUMBERI(E,2)

zPK= Tl Data modeling isperformed using

+ PK_Warehouse(VARCHARZ) “~.. | dereotyped clases Add atable tothe
diagram by dragging from the Class
Elementstool box.

+PE_Warehouse | 1

(WarehouselD = WarehouselD)

+FE_Inventory_Warehouse o.n

Inventory |:| +PE_InventorylD

acolUumne 1

*PK InventorylD: VARCHAR2(10) (Inventoryld = InventorylD)

FK WarehouselD: VARCHARZ(10)
CurrentStock: NUMBERI(S)
OnCrder: NUMBER(8)

= +FK_Book_Inventory | g
+ FK_Inventory_Warehouse(VARCHARZ) — E

=P Kz
+ PE_Inventory(VARCHARZ)

zcolumns

*PK ISBN: WARCHARZ2(15)

FK InventorylD: VARCHARZ(10)
AuthorlD: VARCHARZ(30)
PublisherlD: VARCHARZ(Z20)
Cost MUMBER(S)

Stock: NUMBER(8)

Associations between tablesare based on
the Primary to Foreign key relationship.
These examples show how to define this

=P Kz

+ PK_Book(VARCHARZ)

«FK=

+ FK_Book_Inventory(VARCHARZ)

Composite Foreign Key

To create a composite Foreign Key, select the appropriate columns and click on the Save button. The Foreign
Key columns are sorted according to datatype to match the datatypes of the targeted composite Primary Key.

If required, you can change the order of the key columns by clicking on the lﬁ] and lﬂ] buttons.
Tip:

If you are defining a MySQL database and want to use Foreign Keys, you must set the table type [128) to
enable this.

Code Engineering Using UML Models

Foreign Key | Create Foreign Key

140

Name FK_Table2 Tablel ["] override Template
Source: Table2 Target: Tablel
Key Column Type Key Column Type
t2_date datetime PE unique t1_id
t2_id int PK,unigue t1_name warchar
PK,unigue t2 pk int PK,unigue tI data cr... datetime
t2_name varchar
Source Qs - Target 1 v.
Referential Inteqrity
[7] Delete Cascade [] Update Cascade Save Delete
Column Type Column Type
t2 id int t1 id int
t2_name warchar t1_name varchar
tZ?_date datetime t1_data_created datetime
i | m [» 14 | 0 [»

This creates the composite Foreign Key. The example below shows how this looks in a diagram:

© 1998-2010 Sparx Systems Pty Ltd

141 |Foreign Key | Create Foreign Key

Table1 =

woolumns

*PK t1_id: int

*PK t1_name: warchar50)
*PK t1_data_created: datetime

wP K

w

+ PK_Table1(int, varchar, datetime)

2PK_Tabled | 1

Composite key columns are

[t2_id =t1_id e me——a sorted so the foreign key
t2_name = t1_name «FFon datatypes match the primary
t2_dete =t1_deta_created) key datatypes.

#FK_Table2_Tabled |0.*

Table2 H

acolumns

FK t2_date: datstime
FK t2_id: int

*PK t2 pk: int

FK t2_name: varcharb0)

aFKn
+ FE_TableZ_Table1(int, varchar, datatime)
P

:+ PK_Table2(int)

3.7.2 Define Foreign Key Name Template

To define the name template for a Foreign Key, follow the steps below:

1. Select the Tools | Options | Source Code Engineering | Code Editors menu option. The DDL page of
the Options dialog displays.

Code Engineering Using UML Models

Foreign Key | Define Foreign Key Name Template, 142

I% General

-y Standard Colors
=-L_3 Diagram
_1 Appearance
_'I Behavior
'1_'1;:]_" Sequence
ﬂ Objects
.....*-._J Links
i Communication Colors
-{J» XML Spedifications
I’ﬂﬂ Source Code Engineering

|# Object Lifetimes

..... ¥y Visual Basic
48 VB.Net

----- W verilog
41| vHDL

DDL

DDL Editor: [1as)

Default Database: MySal -

DDL Mame Templates: E]

Internal Source Editor

Use inbuilt editor if no external editor set

Shaow Line Mumbers

Show Structure Tree

Don't parse files larger than: Always Parse -

I Close I [Help]

2. Click on the DDL Name Template button. The DDL Name Template dialog displays, showing the

default name templates.

Foreign Key Mame Template:

Primary Key Name Template:

Unigue Constraint Mame Template: UQ_%tablename %_Ycolumnname %

i, Seforeigntablename e Seprimar ytablename %!

PK_%etablenamess

[Save] | Close

3. Edit or replace the name template in the Foreign Key Name Template field.

4.

Note:

If you want to display the Foreign Key description as
FK_foreigntablename_FKcolumnname_primarytablename_PKcolumnname then change the Foreign
Key Name Template field to FK_%foreigntablename%_%fkcolumnname%_%primarytablename%_%

pkcolumnname%.

Click on the Save button.

© 1998-2010 Sparx Systems Pty Ltd

143 Stored Procedures |

3.8 Stored Procedures

What is a Stored Procedure?

A stored procedure is a group of SQL statements that form a logical unit and perform a particular task. Stored
procedures are used to encapsulate a set of operations or queries to execute on a database server. You can

compile and execute stored procedures with different parameters and results, and they can have any
combination of input, output and input/output parameters.

Enterprise Architect models stored procedures as individual Classes|[1431.

Note:

Stored procedures are currently supported for: DB2; SQL Server; Firebird/Interbase; Informix; Ingres; Oracle

9i, 10g and 11g; MySQL; PostgreSQL; Sybase Adaptive Server Enterprise (ASE) and Sybase Adaptive
Server Anywhere (ASA).

3.8.1 Create Individual Class Procedure

To create a stored procedure as an individual Class, follow the steps below:

1. Open the required diagram.
2. From the Data Modeling page of the Enterprise Architect UML Toolbox (More tools | Data Modeling)
drag the Procedure icon onto the diagram.

If the Properties dialog does not automatically display, double-click on the element.

Code Engineering Using UML Models

Stored Procedures | Create Individual Class Procedure| 144

Database:

bt -

Procedure definition:

[ok | [cancel | [tieb

4. In the Database field click on the drop-down arrow and select the target DBMS to model. (The field
displays the default database if it has already been set.)

. In the Procedure definition field, type the entire procedure text.
6. Click on the OK button.

wprocedures
Employee Sales By Country

To define a name for the stored procedure, click on the element, click on the name (Class<n>) and click
again. This highlights the text for editing. Type in the required name. (For further details, see the In-Place
Editing section in UML Modeling With Enterprise Architect - UML Modeling Tool.)

© 1998-2010 Sparx Systems Pty Ltd

145 |Views |

3.9 Views

Note:

Views are currently supported for: DB2; SQL Server; Firebird/Interbase; Informix; Ingres; Oracle 9i, 10g and
11g; MySQL; PostgreSQL; Sybase Adaptive Server Enterprise (ASE) and Sybase Adaptive Server Anywhere
(ASA).

Create a View
To create a database View, follow the steps below:
1. On the Data Modeling page of the Enterprise Architect UML Toolbox (More tools | Data Modeling),
drag the View icon onto your Data Modeling diagram.
2. If the View Properties dialog does not immediately display, double-click on the element.

Database: Dependencies:

View definition:

3. From the Database drop-down list, select the target DBMS to model. The default database displays if it
has already been set.

4. Click on the OK button.

To define a name for the View, click on the element, click on the name (Class<n>) and click again. This
highlights the text for editing. Type in the required name. (For further details, see the In-Place Editing section
in UML Modeling With Enterprise Architect - UML Modeling Tool.)

Define View Properties
1. Create a Dependency connector from the View to the table or tables on which the View depends.

2. Double-click on the View to display the Properties dialog. The tables are now listed in the
Dependencies field.

3. Inthe View definition field, type the full view definition. (The code editor provides intellisense for basic
SQL keywords and functions - see Using Enterprise Architect - UML Modeling Tool).

4. Click on the OK button to save your definition.

The View definition and certain other parameters are held as Tagged Values. The View definition is held in
the viewdef memo Tagged Value, as shown in the following example diagram. You can select and view the
viewdef Tagged Value in the Tagged Values window, and include it in RTF reports by inserting the
valueOf(viewdef) field in the Package::Element or Element::Tagged Values sections (see Report Creation in
UML Models).

Code Engineering Using UML Models

Categories D

woolumine

*PK. categorylD: int

= CategoryName: nvarchar{15)
Desoription: ntest
FPicture: image

wPHKa

+ PK_Categories{int)

windes

+

CategoryMame({nvarchar)

1

wiEws
Alphabetical list of preducts

tags
DBVERSION = 3.4
OWHNER =
TABLESPACE =
viewdef = <memo>=

Views |

+PH_Categories

{categorylD = categorylD)

wF ko

+FK_Product_Categories 0.

Product

woolumne

*PK productiD: int

- ProductMame: nvarchar40)

FK supplierlD: int

FK. categorylD: int
CQuantityPerUnit: nvarchar{20}
UnitPrice: money = (0)
UnitsinStoc: smallint = {0)
UnitsCOnOrder: smallint = (D)
ReorderLevel: smallint = {0}
Discontinued: bit = (0}

o
+ PE_Product{int)
windeom
CategoriesProducts{int)
CategoriesID{int)
ProductMame{nvarchar)
Supplier Djint)
SuppliersProducts{int)

Chetis

+ o+

CK_ReorderLevel{)
CH_Products UnitPrice()
CHK_UnitsInStook()
CKE_UnitsOnOrder)

«F K

¥
-

+ 4+ o+ s

FK._Product Categories{int)
FK_Product_Supplier|int)

© 1998-2010 Sparx Systems Pty Ltd

147 Index, Trigger, Check Constraint |

3.10 Index, Trigger, Check Constraint

What is an Index?

An index is a sorted look-up for a table. When it is known in advance that a table must be sorted in a specific
order, it is usually worth the small processing overhead to always maintain a sorted look-up list rather than sort
the table every time it is required. In Enterprise Architect, an index is modeled as a stereotyped operation. On
generating DDL, the necessary instructions for generating indexes are written to the DDL output.

The unique characteristic applied to a single column ensures that no two data values in the column can be
identical. The unique stereotype applied to an index ensures that no two combinations of values across a set
of columns can be identical.

What is a Trigger?

A trigger is an operation automatically executed as a result of the modification of data in the database, and
usually ensures consistent behavior of the database. For example, a trigger might be used to define
validations that must be performed every time a value is modified, or might perform deletions in a secondary
table when a record in the primary table is deleted. In Enterprise Architect, a trigger is modeled as a
stereotyped operation. Currently Enterprise Architect does not generate DDL for triggers, but nonetheless they
aid in describing and specifying the table structure in detail.

What is a Check Constraint?
A Check Constraint enforces domain integrity by limiting the values that are accepted by a column.

Create an Index
Ensure that the column(s) to be used in the index have already been defined[13% in the table.

1. Right-click on the required table either in a diagram or in the Project Browser.
2. Select the Operations context menu option. The Operations dialog displays.

3. Add an operation (with a name such as IDX_CustomerID; the IDX_ prefix is optional but it helps identify
the operation).

4. In the Stereotype field for the operation, select index (check and unique are also supported).
5. Click on the Column tab.

Select the required columns from the Columns drop-down list in the required order, then click on the
Save button to save changes.

Create a Check Constraint or Trigger
1. Locate the required table in either a diagram or the Project Browser.
2. Use the context menu to open the Operations dialog.

3. Add an operation (such as CHK_ColumnName or TRG_OnCustomerUpdate; the CHK_ and TRG_
prefixes are optional but help identify the operation).

4. In the Stereotype field for the constraint, select check or trigger as appropriate and click on the Save
button to save changes.

5. Select the constraint operation, then the Behavior tab.

6. Enter the entire check constraint clause (for example, coll < 1000), or the entire trigger code (including
the CREATE_TRIGGER statement) in the Initial Code field and click on the Save button to save
changes.

The example below shows how an index looks in a diagram (in the Order element):

Code Engineering Using UML Models

Index, Trigger, Check Constraint |

148

Company El

wcolumns
sddrasz
Mame: varchar(50})
*PK companylD: Integer

wP K
+ PK_Company(integer)

+PH_Compa n}':’\ 1

[companylD = companylD)
aFka

+FK_Crder_Company [0..*

Crder

wcolumns
Amount

FK companylD: Integer

FK customerlD: Integer

*PK orderlD: Integer

Customer

wcolumns
Age
Mame: varchar(50})
*PK customeriD: Integer

wP K
+ PK_Customer{integer)

+F'K_Cu5t:-mer?‘l\ 1

[customerD = customer DY)

wFKa

+FK_Order_Customer

o P '{I—

+ PKE_Crder(lnteger)

wFkw

+ FE_Order_Company(integer)
+ FE_Order_Customer(integer)

windexs
+ DX _Order)

o.=

© 1998-2010 Sparx Systems Pty Ltd

149 Generate DDL For a Table |

3.11 Generate DDL For a Table

Note:

In the Corporate, Business and Software Engineering, System Engineering and Ultimate editions of
Enterprise Architect, if security is enabled you must have Generate Source Code and DDL permission to
generate DDL. See User Security in UML Models.

To generate simple DDL scripts to create the tables in your model, follow the steps below:

1. In the diagram, right-click on the table for which to generate DDL. The context menu displays.
2. Select the Generate DDL option. The Generate DDL dialog displays.

Table: |Ta|:u|e 2
Pat:)
Options

Comment Level IUse and as comment

[| Create Primary/Foreign Key Constraints [] Generate Packages (Orade)
[Generate Index/Constraints
[7] Generate Triggers

[] Generate Stored Procedures
D Generate Views |:| Generate Sequences

|| Generate Table Properties (Orade)
[Generate Functions

|:| Create Drop SQL

Use ; as SGL Terminator [on the same line.
[use and around names
[] Generate Table Owner

IUse Database
[use Alias if Available

[use MULL for nullable columns

[View][Generate ” Close ” Help

3. Inthe Path field, use the [...] (Browse) button to select the filename of the script to create.
4. To include comments in the DDL, in the Comment Level field select the appropriate level. For
example, Column for comments on columns, or All for comments on all structures.

5. Select the checkboxes for the appropriate inclusions. For example, to include a 'drop table' command in
the script, select the Create Drop SQL checkbox. Deselect the checkboxes for inclusions you do not
require.

Code Engineering Using UML Models

Generate DDL For a Table | 150

Notes:

e Some checkboxes display only if the appropriate database is defined for the table. For example, IF
EXISTS displays only if the database for the table is PostgreSQL.

o If generating Oracle sequences, you must always select the Generate Triggers and Generate
Sequences checkboxes; this ensures that a pre-insert trigger is generated to select the next

sequence value to populate the column. Also select the Auto Numbering 136 checkbox[1361 in the
column properties.

6. To create the DDL, click on the Generate button.

7. To view the output, click on the View button (you must configure a DDL viewer in the Local Settings
dialog first).

Note:

You can transport these DDL scripts between models, using the Export Reference Data and Import
Reference Data options on the Tools menu. See the Reference Data topic in UML Model Management.

© 1998-2010 Sparx Systems Pty Ltd

151 Generate DDL for a Package |

3.12 Generate DDL for a Package

Note:

In the Corporate, Business and Software Engineering, System Engineering and Ultimate editions of

Enterprise Architect, if security is enabled you must have Generate Source Code and DDL permission to
generate DDL. See User Security in UML Models.

In this procedure, you can generate DDL for a package, and also compare the DDL with the database.

Generate DDL
To generate DDL for a package, follow the steps below:

1. Right-click on the required package in the Project Browser. The context menu displays.

2. Select the Code Engineering | Generate DDL menu option. The Generate Package DDL dialog
displays.

Code Engineering Using UML Models

Generate DDL for a Package | 152

Root Package: DOL

Compare
Options

Create Primary Foreign Key Constraints
Generate Index/Constraints

Generate Triggers Generate Packages (Orade)
Generate Stored Procedures Generate Table Properties (Orade)
Generate Views Generate Functions

Create Drop 50L Generate Sequences

Use as SOL Terminator on the same line.

lze and around names

Generate Table Owner
lIse Database

IUse alias if Available
Use NULL for nullable columneg

File Generation

© SrgeFie

(™) Individual file for each table

Select Objects to Generate Incude all Child Packages

Object Type Target File

OrderStatus

ShoppingBasket
StockItem
Transaction

Select All | | Select None Delete TargetFiles | | Cancel

Note:
Alternatively you can select the Project | Database Engineering | Generate Package DDL menu
option.

Select the checkbox against each inclusion required. Deselect the checkboxes for inclusions you do not
require.

© 1998-2010 Sparx Systems Pty Ltd

153 Generate DDL for a Package |

Notes:

e Some checkboxes display only if the appropriate database is defined for the tables in the package.
For example, IF EXISTS displays only if the database for the tables is PostgreSQL.

¢ If generating Oracle sequences, you must always select the Generate Triggers and Generate
Sequences checkboxes; this ensures that a pre-insert trigger is generated to select the next

sequence value to populate the column. Also select the Auto Numbering[138) checkbox [130) in the
column properties.

4. To recursively generate DDL, select the Include All Child Packages checkbox.

5. Click on the Generate button to proceed. Enterprise Architect prompts you for file names as the
process executes.

Compare DDL For a Database
When you have generated the DDL, you can compare it with the database. To do this, follow the steps below:

1. Onthe Generate Package DDL dialog, click on the Compare button. The Compare With Database
dialog displays.

Database Mame:

SchemafOwner:

| Cancel | [View]

Click on the [...] button and locate the required database on the Select Data Source dialog.
For an Oracle database, if required you can also specify the Owner in the Schema/Owner field.

Click on the View button to perform the comparison. The Comparison Database dialog displays with the
results of the comparison. Click on each table name to review information on that table.

Code Engineering Using UML Models

Generate DDL for a Package | 154

Type | Mame | Owner | Status | Suggest Action m
Table OrderStatus 1= CREATE TAEBLE OrderStatus(dosed Integer MULL, orderst, D
Table Order 1= CREATE TABLE Order({date DATE NOT MULL, lineltemID In..
Table LineItem 1= CREATE TABLE LineItem{JineltemID Integer MOT MULL, qu..

able Account E
Table usystables 1= DROP TABLE usystables
Table usysqueries 1= DROP TABLE usysgueries
Table usysoldtables 1= DROP TABLE usysoldtables
Tabie usys_system 1= DROP TABLE usys_system -
4 T 3

| Compare Current Item Columns |

ODEBC GenDDL
Status | Item | Datatype | Nullable| Default ‘ Status | Item Datatype | Nullable | Default |
) o 1= i
There are no ikems to show in thiz view,) deliveryAd... VARCHAR2 (50) NULL
1= closed Boolean MIULL

1= emailAddress MVARCHARZ (... MULL
1= bilingAddr... VARCHARZ {50) MULL

1= shoppingB... Integer MIJLL
1= orderID Integer MULL
I= name VARCHAR2 (50) MULL
I= PK accountID Integer MNOT MULL

© 1998-2010 Sparx Systems Pty Ltd

155 |Data Type Conversion Procedure |

3.13 Data Type Conversion Procedure

Once a database schema has been set up on an Enterprise Architect diagram (either by importing through
ODBC or manually setting up the tables), the DBMS can be changed to another type and the column
datatypes are mapped accordingly.

To map the DBMS type of a table to another DBMS type, follow the steps below:

1. Double-click on the table element in a diagram to open the table Properties dialog.
2. The Database field shows the current DBMS for this table.

3. To map the column datatypes to another DBMS, select the target from the Database drop-down and
click on the Apply button.

4. The datatypes are converted to match those of the new DBMS, and these are reflected in any DDL
generated from this table.

General |Table Detail | Reguiremerts | Conatraints | Links | Scenarios I Files I Tagged Values

Mame: Accournt

Stersotype: + [[7] Abstract

Author: - Status: [Pmpused v]
Scope: | Public » | Complexity: | Easy -
Alias: Database: [w5q| v]
F'ersistence:[v] Keywords:

Phase: 1.0 Version: 1.0 [Advanced]
Motes:

B [U /== %

Code Engineering Using UML Models

Data Type Conversion for a Package | 156

3.14 Data Type Conversion for a Package

The DBMS Package procedure or mapper enables you to convert a package of database tables from one
DBMS type to another DBMS type, as well as providing the ability to change the ownership of tables.
To map the DBMS types of a package to another DBMS type, follow the steps below:

1. Right-click on the package in the Project Browser to display the context menu.

2. Select the Code Engineering | Reset DBMS Options menu option. The Manage DBMS Options dialog
displays.

Convert DBEMS Type

Cument DBMS: | MSAccess v
_E.a el
New DBMS: |Oracle - [G]
[] Change Table Cwrer
Cument Cwner; [v]
New Cwner:

[Process Child Packages

3. Inthe Current DBMS field, click on the drop-down arrow and select the current DBMS. In the New
DBMS field click on the drop-down arrow and select the target DBMS.

4. Select the Convert DBMS Type checkbox.
5. If there are child packages that also require changing, select the Process Child Packages checkbox.
6. Click on the OK button. All tables in the selected packages are mapped to the new DBMS.

To change the owner of the table or all of the tables in a package, follow the steps below:

1. Right-click on the package in the Project Browser to display the context menu.

2. Select the Code Engineering | Reset DBMS Options menu option. The Manage DBMS Options dialog
displays.

© 1998-2010 Sparx Systems Pty Ltd

157

Data Type Conversion for a Package |

[] Convert DBMS Type

Cument DBMS: | Oracle

]

New DBMS: |

Change Table Owner

Cument Cwner: [::AII::

Mew Chwner: Andrew Uoyd|

[Process Child Packages

3. Inthe New Owner field, type the name for the new table owner.

In the Current Owner field, click on the drop-down arrow and select the current owner to change, or
select <All> to change the ownership of all tables in the package to the name you typed in the New

Owner field.

5. Select the Change Table Owner checkbox.
If there are child packages that also require changing, select the Process Child Packages checkbox.
Click on the OK button. The ownership changes for all Tables in the selected packages with the

specified current owner.

For more information on setting the table owner see the Set Table Owner|125) topic. To display the table owner
in the current diagram see the Diagram Properties topic in UML Modeling with Enterprise Architect — UML

Modeling Tool.

Code Engineering Using UML Models

DBMS Datatypes | 158

3.15 DBMS Datatypes

When setting up your data modeling profile, you can customize the datatypes associated with a particular
DBMS using the Database Datatypes screen. This screen enables you to add and configure custom data
types. For some data types you must add the size and precision, defaults and maximum values.

To access the Database Datatypes screen, select the Settings | Database Datatypes menu option. You can
also add a DBMS product and configure the inbuilt data types.

Product Name: | MySql v | [Add Product | [7] Set as Defaul
Datatype: Size
@ None Default: Max:
Common Type: () Length
- (7} Precision & Scale
Defined Datatypes for Databases Save Delete
Praduct Datatype Size Unit Default Max n
MySal BIGINT
MySal BIT 5
MySal BLOB
MySal BOOL
MhySal CHAR Length 10 255
MySql DATE
MySql DATETIME
My Sql DECIMAL Precision and Scale (10,0) 24
My Sql DOLUBLE Precision and Scale (10.2) 53
WhySql DOUELE PRE... Precision and Scale (10.2) % -
Datatype Map] [Close] [Help

You can also map database datatype sizes between products. To do this, follow the steps below:

1. Onthe Database Datatypes dialog, click on the Datatype Map button. The Database Datatypes
Mapping dialog displays.

© 1998-2010 Sparx Systems Pty Ltd

159

DBMS Datatypes |

From Product Mame: [— To Product Name: [v]
Datatype: Datatype: [v]
Comman Type: Comman Type:
Size
@ Mone
(71 Length

(7} Precision & Scale
Defined Datatypes for Databases

Product Datatype Size Unit Default Max

Close] [Help

(2]
]
a¢]

In the From Product Name field, click on the drop-down arrow and select the DBMS product to map
datatypes from. The Defined Datatypes for Databases panel displays all the defined datatypes for the
product and, where appropriate, their sizes and values.

Click on the datatype to map (this must have a defined size unit and value). The Datatype and
Common type fields under the From Product Name field display this datatype.

In the To Product Name field, click on the drop-down arrow and select the DBMS product to map
datatypes to. The Datatype and Common Type fields under this field display the corresponding values
to those in the fields for the from product.

In the Size panel, click on the radio button for the appropriate size unit and type the default values in the
corresponding data fields.

Click on the Save button to save the mapping.
To map further datatypes, repeat this process from step 3.

When you have finished mapping datatypes, click on the Close button, and again on the Database
Datatypes dialog.

Code Engineering Using UML Models

Import Database Schema from ODBC | 160

3.16 Import Database Schema from ODBC

(-

[1] umL

Analysis of legacy database systems is possible using Enterprise Architect’s reverse engineering! 4
capabilities. By connecting to a live database via ODBC, you can import the database schema into a standard
UML model. Subsequent imports enable you to maintain synchronization between the data model and the live
database.

Enterprise Architect supports importing database tables from an ODBC data source. Tables are imported as
stereotyped Classes with suitable data definitions for the source DBMS.

Notes:

e Import of stored procedures and views is supported for: DB2; SQL Server; Firebird/Interbase; Informix;
Ingres; Oracle 9i, 10g and 11g; MySQL; PostgreSQL; Sybase Adaptive Server Enterprise (ASE) and
Sybase Adaptive Server Anywhere (ASA).

e If you are importing database schema from an MS Access Jet 4.0 database, please ensure that you have
selected the Use Jet 4.0 checkbox on the General page of the Options dialog (see Using Enterprise
Architect - UML Modeling Tool). Otherwise, the Jet 3.5 routines are loaded. You must restart Enterprise
Architect after selecting the checkbox.

e The ODBC connection should use the ODBC driver available from the DBMS vendor. For example,
MySQL's ODBC driver for MySQL, and Oracle's ODBC driver for Oracle. Drivers provided by third-party
vendors are not supported - this includes the Microsoft ODBC driver for Oracle.

o [f setting up a ODBC connection for reverse engineering, the default settings are sufficient.

o Additional data types are available from the Datamodeling Data Types section of the Resources page on
the Sparx Systems website.

Import Database Tables and Stored Procedures
To import database tables and stored procedures, follow the steps below:

1. Select any package in the Logical View.
2. To import into:

e The package only, right-click on the package to display the context menu, and select the Code
Engineering | Import DB Schema from ODBC menu option.

e A diagram, right-click on the diagram in the selected package to open the context menu, and select
the Import DB schema from ODBC menu option.

Note:

Alternatively you can select the Project | Database Engineering | Import DB Schema from ODBC
menu option.

The Import DB Schema from ODBC Source dialog displays.

© 1998-2010 Sparx Systems Pty Ltd

http://www.sparxsystems.com/resources/index.html

161

Import Database Schema from ODBC |

3.

Import DB schema from QDBC source @
Database; Orade.ORA11.ORA1L_SCOTT E]
Ciptions | Import |

Schema/Owner: scott (r—
Close

[]indude System Objects [| Indude User Packages (Orade)

[indude User Views [¥] Indude Length Semantics {Orade) Help |
[7]1ndude Triggers [Default Constraints (SQL Server)

[¥] Indude User Stored Procedures...
(71 Import as individual dasses

@ Import as dass operations

[¥] Indude User Functions. ..

(71 Import as individual dasses
@) Import as dass operations
[¥] Indude User Seguences. ..

(") Import as individual cdlasses

@ Import as dass operations

Synchronization

i@ Synchronize existing classes
[¥] synchronize Table/Column Comments
[¥] synchronize Column Default Values

[¥]5ynchronize Chedk Constraints:

(71 Import as Mew objects

Import To...
@ Diagram & Package (7)) Package Only

In the Database field, click on the [...] (Browse) button and select a suitable ODBC data source [162)
from the ODBC dialog (ODBC must be installed and configured on your machine for this to work
correctly).

When you have selected the data source, the Database field shows the DBMS, the database server ID
and the database name, separated by full stops; that is:
dbms.dbserver.database.

If importing from Oracle, to restrict the import to a specific owner, type the owner name in the
Schema/Owner field. By default, Enterprise Architect inserts the Oracle user name in this field.

For imports from other types of database, leave this field blank.
In the Filter panel, select the appropriate checkboxes for additional items to include in the import.

Select the appropriate checkboxes to import system tables and views, user views, triggers and/or
Oracle packages.

If you select to import User Functions and/or User Sequences as individual Classes, then they are
imported as separate elements and the Properties dialog is solely concerned with the Function or
Sequence definition. For Stored Procedures, always select this option

Code Engineering Using UML Models

Import Database Schema from ODBC | 162

If you select to import User Functions and/or User Sequences as Class operations, then they are
imported as operations (methods) and you view and edit them through the Operations Properties dialog
of the parent Class.

6. When synchronizing existing Classes, select the appropriate checkbox in the Synchronization panel to
determine whether the model comments, default values or constraints are to be synchronized with the
ODBC tables, or as new objects.

Note:

It is only possible to import into a diagram if it is in the selected package. If a diagram from another
package is open, a message displays to give the option to cancel the import or to continue importing
into the package only. The Import DB Schema from ODBC Source dialog includes checkbox options to
import into the diagram and package, or into the package only.

If no diagram is open, the Package Only radio button defaults to selected and the options are
disabled. If the open diagram is in the selected package, you can select either option.
7. Click on the Import button to start the import.

8. Select the tables[163)and - if appropriate - stored procedures to import.
This completes the procedure. See the Imported Class Elements|163) topic.

3.16.1 Select a Data Source

To import DDL from existing data sources, you must have a suitable ODBC connection installed and
configured (see UML Model Management). From the Import DB Schema from ODBC Source dialog you can
select the ODBC data source using the standard windows ODBC set-up dialog. Click on the data source name
and then click on the OK button.

File Data Source | Machine Data Source

Data Source Mame Type Description
dBASE Files |zer

Excel Files Iser

MS Access Database |ser
mysgl_help_file_diags System

Rearession |ser

A Machine Data Source is specific to this machine, and cannot be shared.
"User" data sources are specific to a user on this machine. "System” data
sources can be used by all users on this machine, or by a system-wide service.

OK || Cancel || Hep

© 1998-2010 Sparx Systems Pty Ltd

163

Import Database Schema from ODBC | Select Tables

3.16.2 Select Tables

When you have opened the ODBC data source, Enterprise Architect acquires a list of tables and stored
procedures suitable for importing. This is presented in a list form for you to select from.

Awailable Objects Salect All I I Select Mone

TABLE: t_attibute -
TAELE: t_attibuteconstraints
TABLE: t_attributetag
TAELE: t_authors

TABLE: t_cardinality

TABLE: t_cateqaory

TAELE: t_clients

TABLE: t_complexitytypes
TABLE: t_connector

TAELE: t_connectorconstraint
TABLE: t_connectortag
TAELE: t_connectortypes
TABLE:t_constants

TABLE: t_constrainttypes
TAELE: t_datatypes

TABLE: t_diagram

TAELE: t_diagramlinks
TABLE: t_diagramobjects
TABLE: t_diagramtypes
TAELE: t_document
TABLE:t_ecf

TAEBLE: t_efforttypes
TABLE:t_files

TABLE: t_genopt
TARI F-t nlneezns

m

0K || Cancel

Highlight the tables and stored procedures to import and clear those you do not require.
Selection shortcuts:

e To select all tables and procedures, click on the Select All button

e To clear all tables and procedures, click on the Select None button

e Hold down [Ctrl] while clicking on tables and procedures to select multiple objects
e Hold down [Shift] and click on tables and procedures to select a range.

When you have selected the tables and procedures, click on the OK button.

3.16.3 The Imported Class Elements

When you import DDL table definitions they are converted to stereotyped Classes according the UML Data
Modeling Profile.

The image below shows some example tables imported into the model using an ODBC data connection.

Code Engineering Using UML Models

Import Database Schema from ODBC | The Imported Class Elements| 164

t_attribute

acolumne
Ohject_ID: Long
Mame: Text{255)
Scope: Text{50)
Stereotype: Text(50)

Containment: Text{50)

IsStatic: Long
Default: Text{255)
IsCaollection: Long
sCOrdared: Long
AllowDuplhicates: Long

LowerBound: Text{50)
UpperBound: Text{50)

Container. Text(50)
Motzs: Memo
Derved: Text{1)
I0: Long

Pos: Long
GenOption: Memo
Length: Long
Precision: Long
Scele: Long
Const: Long

t_attributeconstraints

E

acolumns
Ohject ID: Long
Caonstraint: Text(50)
AttMame: Text(50)
Type: Text(G0)
Motzs: Memo
I0: Long

t clients

wcolumne
Mame: Text(50)
Organisation: Text{50)
Phone1: Text{E0)
Phone2: Text(50)
Maobilke: Text{50)
Fax: Text(50)
Emagil: Text(50)
Roles: Text{255)
Motes: Text(255)

© 1998-2010 Sparx Systems Pty Ltd

165 Index

Index
A -

Abstract
XSD Models 98
ActionScript
Code Generation Language Options
Import, Reverse Engineering 6
Modeling Conventions 69
Options 43
Versions Supported 43
Active State Logic
Model State Machine For HDL 23
Activity Diagram
Generate Code From
Ada 2005
Code Generation Language Options
Modeling Conventions 69

19, 27

43

43

Options 43
Add

New Code Sections To Existing Features
ANSIC 44

Modeling Conventions 71
Association

Connector, Set Collection Class 41
Attribute
Create Fast, Option 36

Delete If Not In Code In Reverse Synchronization

36

Imported, Default Name Generated From

Message Part, WSDL 116

Stereotyped, For Columns 130
- B -
Behavioral Models

Generate Code From 19
Binary Module

Import, Reverse Engineering 9
Binding

WSDL Diagram 113

WSDL Element 113

_C-

C
Code Generation Language Options
Import, Reverse Engineering 6

44

C#

Modeling Conventions 71, 72
Object Oriented Programmiing 72
Options 44

Code Generation Language Options
Import, Reverse Engineering 6
Modeling Conventions 73
Options 45

C++

Code Generation 46
Implementation Files 46

Import, Reverse Engineering 6
Language Options 46

Modeling Conventions 75

Modeling Conventions, CLI Extensions
Modeling Conventions, Managed 76

Check Constraint

Create 147
What Is A? 147
Class

Collection, Set 41
Elements, Imported
Partial 73

Partial, Generate 15
Reset Options 59
Source Code Generation 12

163

CLI Extensions

C++ Modeling Conventions 77

Code

Delete From Features In Model In Fwd
Synchronization 36

Generated From State Machine 20
Synchronize 66

Code Engineering

And MDG Integration 10

Code, Reverse Engineer 4

Eclipse 10

Generate Code For Single Class 13
Generate Group of Classes 14
Generate Package 15

Generate Package Source Code 15
Generate Source Code 12
Introduction 2

Namespaces 17

Package Contents, Update 16
Referenced XML Schema 102
Reverse Engineer Source Code 4
Settings 32

Settings, Attribute/Operation Options

Settings, Code Generation
Constructor/Destructor Options 35

Settings, Code Page for Source Editing

45

77

36

37

Code Engineering Using UML Models

Index 166

Code Engineering
Settings, General Code Options 32
Settings, Import Component Types 33
Settings, Source Code Options 32
Synchronization 4
Synchronize Model And Code 10
Synchronize Package Tree 16
UML Profile For XSD 91
Update Package Contents 16
Visual Studio 10
XML Schema 89

XML Schema (XSD), Default UML To XSD

Mappings 99
XML Schema, Abstract XSD Models 98
XML Schema, Generate XSD 100
XML Schema, Import XSD 102
XML Schema, Model XSD 89
XSD 89
XSD Datatype Packages 97
Code Generation
ActionScript Language Options 43
Ada 2005 Language Options 43
C Language Options 44
C# Language Options 45
C++ Language Options 46
Delphi Language Options 47
From Activity Diagrams 19, 27
From Behavioral Models 19
From Interaction Diagrams 19, 26
From Sequence Diagrams 19, 26
From State Machine Diagrams 19
Java Language Options 51
Language Options 42
MDG Technology Language Options 58
PHP Language Options 51
Python Language Options 52
SystemC Language Options 53
VB.NET Language Options 54
Verilog Language Options 55
VHDL Language Options 56
Visual Basic Language Options 57
Code Sections
Synchronize 67
Code Template
Base Templates 62
Editor 64
Framework, Overview 61
Overview 61
Collaborative Development 38
Collection Classes
Set 41
Column

Create In Data Modeling 130
Definition 130

In UML Data Modeling Profile 130
Order, Change 130

Properties 130

Sequence Entries 130
Stereotyped Attribute 130
Unique 130

Compare

DDL With Database 151

Composite

Foreign Key 137

Create

Check Constraint 147
Columns In Data Modeling 130
Foreign Key 137

Index (Data Modeling) 147
Primary Key 134

Primary Key Name Template 134
Sorted Lookup Table 147
Table in Data Modeling 123
Trigger Operation 147

Unique Constraint 147

View 145

CTF

Overview 61

D -

Data Modeling

Check Constraint 147

Compare DDL With Database 151
Create Columns 130

Create Table 123

Data Model Diagram 122

Data Type Conversion Procedures 155
DBMS Conversion Procedure Package 156
DBMS Data Types 158

DDL, Generate 149

Foreign Keys 137

Generate DDL 149

Generate DDL For A Package 151
Index 147

Introduction 120

Primary Key Extended Properties 136
Primary Key, Create 134

Profile (UML) 120

Set MySQL Table Type 126

Set Oracle Table Properties 127

Set Schema Owner 126

Set Table Owner 126

© 1998-2010 Sparx Systems Pty Ltd

167 Index

Data Modeling
Set Table Properties
Sorted Lookup Table
Stored Procedure
Trigger Operation
Typical Tasks 120
Unique Constraint

Data Source
Select

Data Type
Conversion Procedures
DBMS 158

Database
Compare Package DDL With
Default 34
Design 120
Keys 120
Modeling 120
Schema, Import Of
Supported Types 120
View, Report On 145

Database Operation Properties
Dialog 136

Database Table

124

147
143
147
147
162

155

151

120

Select From ODBC Data Source 163
DBMS

Conversion Procedures 155

Data Type Conversion Procedures 155

DBMS Conversion

Mapper 156

Procedure 156

Table Conversion Between DBMS Types
DDL

Compare With Database 151
Data Modeling 149

Default Script Editor 34
Generate For Package 151

Generate For Table 149

Import Schema From ODBC

Schema, Import From ODBC

Scripts And Generated Tables
Default

Database 34

DDL Script Editor 34

UML To XSD Mappings 99
Define

Foreign Key Name Template
Delphi

Code Generation 47

Import, Reverse Engineering 6

Language Options 47

Limitations 48

160
160
120

141

156

Modeling Conventions 78
Properties 48

Designate Driving Triggers
Model State Machine For HDL 23

Diagram
Data Model, Example 122
WSDL Binding 113
WSDL Message 113
WSDL Overview 108
WSDL Port Type 112
WSDL Service 111
WSDL Types 108

Dialog

Database Operation Properties 136

Directory Structure
Import, Reverse Engineering 8
Document

WSDL Element 110
-E -
Element
Stored Procedure 143
View 145
WSDL Binding 113
WSDL Message 113
WSDL Namespace 108
WSDL Service 111
WSDL, Document 110
WSDL, Port Type 112

Enterprise Architect
Editor 34
Enterprise Architect Toolbox
SystemC Group 81
Verilog Group 84
VHDL Group 85
Establish Port-Trigger Mappng
Model State Machine For HDL 23

_F -

Foreign Key
Composite 137
Constraint 137
Create 137
Description 137

141
137

Name Template, Define
Representation In Diagram

Forward Engineering
Introduction 2

Forward Synchronization

Code Engineering Using UML Models

Index 168

Forward Synchronization
Delete Code From Features In Model 36

-G -

Garden Of Eden Style 101

Generate
Global Element For Global ComplexTypes
Global Element In XSD 101
wWsDL 117

XML Schema For Referenced Packages 100

XML Schema, For Child Packages 100
XSD 100
Generate Code
From Activity Diagrams 19, 27
From Behavioral Models 19
From Interaction Diagrams 19, 26
From Sequence Diagrams 19, 26
From State Machine Diagrams 19
Generate Source Code
Overview 12
Global Element
Generate For Global ComplexTypes 100
Generate In XSD 101
Import XSD 104
Global Elements
Import 102

_H -

Hardware Description Languages
Model State Machine For 23
HDL
Model State Machine For 23

Implemented Interfaces
Generate/Disable Methods For 36
Import
ActionScript, Reverse Engineering 6
Binary Module, Reverse Engineering 9
C#, Reverse Engineering 6
C, Reverse Engineering 6
C++, Reverse Engineering 6
Component Types 33
Database Schema from ODBC 160
DDL Schema from ODBC 160
Delphi, Reverse Engineering 6
Directory Structure, Reverse Engineering 8
Global Elements 102

100

Handle Classes Not Found 10
Java, Reverse Engineering 6
PHP, Reverse Engineering 6
Python, Reverse Engineering 6
Referenced XML Schema 102
Source Code, Reverse Engineering 5, 10
Visual Basic, Reverse Engineering 6
Visual Basic.Net, Reverse Engineering 6
WSDL 119
XSD 102
Imported Class Elements 163
Index
Create in Data Modeling 147
Unique 147
What Is An? 147
Interaction Diagram
Generate Code From
Interface
Source Code Generation 12
Internal Editor 34
Introduction
To Code Engineering 2
To Forward Engineering 2
To Reverse Engineering 2
To Round-trip Engineering 2
To Synchronization 2

_J -

Java
AspectJ Extensions 6

Code Generated From State Machine Diagram
20

Code Generation 51

Import, Reverse Engineering 6
Language Options 51

Modeling Conventions 79

Modeling Conventions, AspectJ Extensions

_ K -

Keys
Foreign, Definition 120
Primary, Definition 120

S L -

Language
Macros 39
Language Options
ActionScript 43

19, 26

© 1998-2010 Sparx Systems Pty Ltd

169 Index

Language Options
Ada 2005 43
C 44
C# 45
C++ 46
Code Generation 42
Delphi 47
Java 51
MDG Technology 58
PHP 51

Python 52

SystemC 53

VB.NET 54

Verilog 55

VHDL 56

Visual Basic 57
Local

Directories 39
Path Dialog 39
Paths 38

M -

Macro

Language 39

Preprocessor 39
Managed C++

Modeling Conventions 76
Mapper

Data Type Conversion Procedures

MDG Technology

Code Generation 58

Language Options 58
Message

WSDL Diagram 113

WSDL Element 113
Message Part

WSDL Attribute 116
Method

Delete If Not In Code In Reverse Synchronization

36
Implemented Interfaces 36

Include Bodies In Model When Reverse

Engineering 36

Model
Databases 120
WSDL 106

WSDL, Binding 113
WSDL, Document 110
WSDL, Message 113
WSDL, Message Part 116
WSDL, Namepace 108

WSDL, Port Type 112
WSDL, Port Type Operation 115
WSDL, Service 111
XSD 89
Model State Machine
Active State Logic 23
Designate Driving Triggers 23
Establish Port-Trigger Mapping 23
For Hardware Description Languages
Modeling Conventions 68
ActionScript2and 3 69

Ada 2005 69
ANSIC 71
c 7
C# 73

C, Object Oriented Programming 72

C++ 75

C++, Managed 76

C++/CLI Extensions 77

Delphi 78

Java 79

Java AspectJ Extensions 80
Object Oriented Programming in C
PHP 80

Python 81

SystemC 81

VB.Net 83

Verilog 84

VHDL 85

Visual Basic 87
MySQL

Table Type, Set 126

- N -

Name Template
Foreign Key 141
Primary Key 134
Namespace
Clear 17
Dialog 17
Explanation 17
List 17
Locate In Project Browser 17
Root 17
Set 17
WSDL Element 108
New Code Sections
Add To Existing Features 67

72

23

Code Engineering Using UML Models

Index 170

_0 -

Object Oriented Programming
C Code Generation For UML Model 72
Limitations 72
ODBC
Data Modeling 149
ODBC Data Source
Select 162
ODBC Source
Select Stored Procedures From 163
Select Tables From 163
Operation
WSDL Port Type Operation 115
Options
Reset For A Class 59
Options Dialog
ActionScript 43
Ada 2005 43
Attribute/Operation Specifications 36
C 44
C# 45
C++ 46
Delphi 47
Java 51
MDG Technology 58
PHP 51
Python 52
SystemC 53
VB.NET 54
Verilog 55
VHDL 56
Visual Basic 57
Oracle
Package, Create 133
Sequence 130
Sequence Options, DDL For Packages
Sequence Options, DDL For Table 149
Tables, Set Properties 127
Tables, Tagged Values 127
Temporary Table 127

_P-

Package
Body, For Oracle 133
Create Oracle Packages 133
Specification, For Oracle 133
Synchronize Contents 16
Update Contents 16

Partial Class
Generate 15
PHP
Code Generation 51
Import, Reverse Engineering 6
Language Options 51
Modeling Conventions 80
Port Type
WSDL Diagram 112
WSDL Element 112
Port Type Operation
WsSDL 115
Preprocessor Macros 39
Primary Key
Complex 134
Create 134
Description 134
Extended Properties 136
Name Template, Define 134

Simple 134
SQL Server, Non-Clustered 136
Python

Code Generation 52

Import, Reverse Engineering 6
Language Options 52
Modeling Conventions 81

R -

Referenced XML Schema
Import 102
Reset Options
For A Class 59
For All Classes 59
Source Code Language 59
Reverse Engineer
Source Code 4
Reverse Engineering
And MDG Integration 10
Directory Structure 8
Eclipse 10
Handling Classes Not Found During Import 10
Import ActionScript 6
Import Binary Module 9
ImportC 6
Import C# 6
Import C++ 6
Import Delphi 6
Import Java 6
Import PHP 6
Import Python 6

© 1998-2010 Sparx Systems Pty Ltd

171 Index

Reverse Engineering
Import Source Code 5, 10
Import Visual Basic 6
Import Visual Basic.Net 6
Introduction 2
ODBC Data Sources 160
Source Code, Import Directory Structure
Synchronize Model And Code 10
Visual Studio 10

Reverse Synchronization
Delete Attribute If Not In Code 36
Delete Method If Not In Code 36

Delete Model Aggregations For Attributes Not In

Code 36

Delete Model Associations For Attributes Not In

Code 36

Include Method Bodies In Model 36
Round-Trip Engineering

Introduction 2

_S -

Schema
Database, Import From ODBC 160
DDL, Import From ODBC 160
Owner Tagged Value 126
Set Owner 126

Scope

Values 68
Select

ODBC Data Source 162
Sequence

Oracle, DDL Options 149

Oracle, DDL Options For Packages 151

Sequence Diagram
Generate Code From
Service
WSDL Diagram 111
WSDL Element 111
Service Oriented Architecture 88
Set
Collection Classes 41
Single User 39
SOA 88
SOAP Binding 113
Sorted Lookup Table
Create In Data Modeling 147
Source Code
Add New Features And Elements 67
Import, Reverse Engineering 5
Internal Editor Options 34
Reset Language 59

19, 26

Reverse Engineer 4
Synchronize 4
Source Code Generation
Class 12
Interface 12
Overview 12
SQL Server
Non-Clustered Primary Key 136
State Machine

Model For Hardware Description Languages

23
State Machine Diagram

Code Generated From 20

Generate Code From 19
Stereotype

XSD In UML Profile 91
Stored Procedure

As Individual Class 143

Definition 143

Element 143

Select From ODBC Data Source

Supported Databases 143
Synchronization

Introduction 2

Of Source Code And Model 4
Synchronize

Code 66
Existing Code Sections 67
SystemC

Code Generation 53

Enterprise Architect Toolbox Pages
Language Options 53

Modeling Conventions 81

ST -

Table

DDL Script For 120

Owner Tagged Value 126

Set Owner 126

Set Properties 124
Tagged Value

For Oracle Table Properties 127

For Schema Owner 126

For Table Owner 126
Template

Editor, Code Templates 64
Trigger

Operation, What Is A? 147
Trigger Operation

Create 147

What Is A? 147

163

81

Code Engineering Using UML Models

Index 172

_U -

UML
Data Modeling Profile 120
Mappings To XSD 99
UML Profile
XSD, Stereotypes 91
UML Toolbox
SystemC Group 81
Verilog Group 84
VHDL Group 85
Unique
Constraint 147
Index 147
User
Settings 39

_V -

VB.Net
Code Generation 54
Language Options 54
Modeling Conventions 83
Verilog
Code Generation 55
Enterprise Architect Toolbox Pages 84
Language Options 55
Modeling Conventions 84
VHDL
Code Generation 56
Enterprise Architect Toolbox Pages 85
Language Options 56
Modeling Conventions 85

View
Create 145
Database 145
Element 145

Report On 145
Visibility Indicators
Values 68
Visual Basic
Code Generation 57
Import, Reverse Engineering 6
Language Options 57
Modeling Conventions 87
Visual Basic.Net
Import, Reverse Engineering 6

W -

W3C XML

Technologies, Introduction 88

Web Service Definition Language 106
Web Services (WSDL) 106

Generate WSDL 117

Import WSDL 119

Model WSDL 106

Model WSDL, Binding 113
Model WSDL, Document 110
Model WSDL, Message 113
Model WSDL, Message Part 116
Model WSDL, Namepaces 108
Model WSDL, Port Type 112
Model WSDL, Port Type Operation 115
Model WSDL, Service 111

What Is

A Check Constraint? 147
A Foreign Key? 137

A Primary Key? 134

A Stored Procedure? 143
A Trigger Operation? 147
An Index? 147

WSDL

Binding Diagram 113
Binding Element 113
Document Element 110
Import 117,119
Message Diagram 113
Message Element 113
Model 106

Namespace Element 108
Overview Diagram 108
Port Type Diagram 112
Port Type Element 112
Port Type Operation 115
Service Diagram 111
Service Element 111
UML Toolbox Pages 106
Web Services 106

WSDL Support

Introduction 106

_X -

XML

Import Referenced Schema 102
Technologies, Introduction 88

XML Schema

© 1998-2010 Sparx Systems Pty Ltd

173 Index

XML Schema

Generate In Garden Of Eden Style

UML Profile For XSD 91

XSD 89
XSD

Abstract Models 98

Datatype Packages 97

Generate 100

Import 102

Import, Global Element Behaviour

Model 89

XML Schema 89
XSDany 91
XSDattribute 91
XSDattributeGroup 91
XSDchoice 91
XSDcomplexType 91
XSDelement 91
XSDgroup 91
XSDrestriction 91
XSDschema 91
XSDsequence 91
XSDsimpleType 91
XSDtopLevelAttribute 91
XSDtopLevelElement 91
XSDunion 91

101

104

Code Engineering Using UML Models

Code Engineering Using UML Models

WWW.Sparxsystems.com

	Code Engineering
	Reverse Engineering
	Import Source Code
	Notes on Source Code Import
	Import a Directory Structure
	Import Binary Module
	MDG Integration and Code Engineering
	Classes Not Found During Import
	Synchronize Model and Code

	Generate Source Code
	Generate a Single Class
	Generate a Group of Classes
	Generate a Package
	Update Package Contents
	Namespaces

	Code Generation From Behavioral Models
	SW Code Generation - State Machine Diagrams
	Java Code Generated From State Machine Diagram

	State Machine Modeling For HDLs
	Code Generation - Interaction Diagrams
	Code Generation - Activity Diagrams

	Code Engineering Settings
	Source Code Engineering
	Source Code Options
	Import Component Types

	Options - Code Editors
	Options - Object Lifetimes
	Options - Attribute/Operations
	Code Page for Source Editing

	Local Paths
	Local Paths Dialog
	Language Macros
	Set Collection Classes
	Language Options
	ActionScript Options
	Ada 2005 Options
	C Options
	C# Options
	C++ Options
	Delphi Options
	Delphi Properties

	Java Options
	PHP Options
	Python Options
	SystemC Options
	VB.Net Options
	Verilog Options
	VHDL Options
	Visual Basic Options
	MDG Technology Language Options
	Reset Options

	Code Template Framework
	Code Templates
	Base Templates

	The Code Template Editor
	Synchronize Code
	Synchronize Existing Sections
	Add New Sections
	Add New Features and Elements

	Modeling Conventions
	ActionScript Conventions
	Ada 2005
	C Conventions
	Object Oriented Programming In C

	C# Conventions
	C++ Conventions
	Managed C++ Conventions
	C++/CLI Conventions

	Delphi Conventions
	Java Conventions
	AspectJ Conventions

	PHP Conventions
	Python Conventions
	System C Conventions
	VB.Net Conventions
	Verilog Conventions
	VHDL Conventions
	Visual Basic Conventions

	XML Technologies
	XML Schema (XSD)
	Model XSD
	UML Profile for XSD
	XSD Datatypes Package
	Abstract XSD models
	Default UML to XSD Mappings

	Generate XSD
	Generate Global Element

	Import XSD
	Global Element and ComplexType

	Web Services (WSDL)
	Model WSDL
	WSDL Namespace
	WSDL Document
	WSDL Service
	WSDL Port Type
	WSDL Message
	WSDL Binding
	WSDL Port Type Operation
	WSDL Message Part

	Generate WSDL
	Import WSDL

	Data Modeling
	A Data Model Diagram
	Create a Table
	Set Table Properties
	Set Table Owner
	Set MySQL Options
	Set Oracle Table Properties

	Create Columns
	Create Oracle Packages
	Primary Key
	SQL Server Non Clustered Keys

	Foreign Key
	Create Foreign Key
	Define Foreign Key Name Template

	Stored Procedures
	Create Individual Class Procedure

	Views
	Index, Trigger, Check Constraint
	Generate DDL For a Table
	Generate DDL for a Package
	Data Type Conversion Procedure
	Data Type Conversion for a Package
	DBMS Datatypes
	Import Database Schema from ODBC
	Select a Data Source
	Select Tables
	The Imported Class Elements

