
Copyright © 1998-2010 Sparx Systems Pty Ltd

Code Engineering Using UML
Models

Enterprise Architect is an intuitive, flexible and powerful UML
analysis and design tool for building robust and maintainable

software.

This booklet describes the code engineering facilities of
Enterprise Architect.

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this document
or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be
liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or
indirectly by this document.

Printed: May 2010

Enterprise Architect - Code Engineering Using UML Models

© 1998-2010 Sparx Systems Pty Ltd

Publisher
Special thanks to:

All the people who have contributed suggestions, examples, bug
reports and assistance in the development of Enterprise Architect.
The task of developing and maintaining this tool has been greatly
enhanced by their contribution.Managing Editor

Technical Editors

Sparx Systems

Geoffrey Sparks

Geoffrey Sparks
Simon McNeilly
Vimal Kumar
Henk Dekker

IContents

© 1998-2010 Sparx Systems Pty Ltd

Table of Contents

Foreword 1

Code Engineering 2

... 4Reverse Engineering

.. 5Import Source Code

.. 6Notes on Source Code Import

.. 8Import a Directory Structure

.. 9Import Binary Module

.. 10MDG Integration and Code Engineering

.. 10Classes Not Found During Import

.. 10Synchronize Model and Code

... 12Generate Source Code

.. 13Generate a Single Class

.. 14Generate a Group of Classes

.. 15Generate a Package

.. 16Update Package Contents

.. 17Namespaces

... 19Code Generation From Behavioral Models

.. 19SW Code Generation - State Machine Diagrams

... 20Java Code Generated From State Machine Diagram

.. 23State Machine Modeling For HDLs

.. 26Code Generation - Interaction Diagrams

.. 27Code Generation - Activity Diagrams

... 32Code Engineering Settings

.. 32Source Code Engineering

... 32Source Code Options

... 33Import Component Types

... 34Options - Code Editors

... 35Options - Object Lifetimes

... 36Options - Attribute/Operations

... 37Code Page for Source Editing

.. 38Local Paths

.. 39Local Paths Dialog

.. 39Language Macros

.. 41Set Collection Classes

.. 42Language Options

... 43ActionScript Options

... 43Ada 2005 Options

... 44C Options

... 45C# Options

... 46C++ Options

... 47Delphi Options

... 48Delphi Properties

... 51Java Options

... 51PHP Options

... 52Python Options

... 53SystemC Options

... 54VB.Net Options

... 55Verilog Options

... 56VHDL Options

... 57Visual Basic Options

... 58MDG Technology Language Options

ContentsII

Code Engineering Using UML Models

... 59Reset Options

... 61Code Template Framework

.. 61Code Templates

... 62Base Templates

.. 64The Code Template Editor

.. 66Synchronize Code

... 67Synchronize Existing Sections

... 67Add New Sections

... 67Add New Features and Elements

... 68Modeling Conventions

.. 69ActionScript Conventions

.. 69Ada 2005

.. 71C Conventions

... 72Object Oriented Programming In C

.. 73C# Conventions

.. 75C++ Conventions

... 76Managed C++ Conventions

... 77C++/CLI Conventions

.. 78Delphi Conventions

.. 79Java Conventions

... 80AspectJ Conventions

.. 80PHP Conventions

.. 81Python Conventions

.. 81System C Conventions

.. 83VB.Net Conventions

.. 84Verilog Conventions

.. 85VHDL Conventions

.. 87Visual Basic Conventions

XML Technologies 88

... 89XML Schema (XSD)

.. 89Model XSD

... 91UML Profile for XSD

... 97XSD Datatypes Package

... 98Abstract XSD models

... 99Default UML to XSD Mappings

.. 100Generate XSD

... 101Generate Global Element

.. 102Import XSD

... 104Global Element and ComplexType

... 106Web Services (WSDL)

.. 106Model WSDL

... 108WSDL Namespace

... 110WSDL Document

... 111WSDL Service

... 112WSDL Port Type

... 113WSDL Message

... 113WSDL Binding

... 115WSDL Port Type Operation

... 116WSDL Message Part

.. 117Generate WSDL

.. 119Import WSDL

Data Modeling 120

... 122A Data Model Diagram

IIIContents

© 1998-2010 Sparx Systems Pty Ltd

... 123Create a Table

... 124Set Table Properties

.. 126Set Table Owner

.. 126Set MySQL Options

.. 127Set Oracle Table Properties

... 130Create Columns

... 133Create Oracle Packages

... 134Primary Key

.. 136SQL Server Non Clustered Keys

... 137Foreign Key

.. 137Create Foreign Key

.. 141Define Foreign Key Name Template

... 143Stored Procedures

.. 143Create Individual Class Procedure

... 145Views

... 147Index, Trigger, Check Constraint

... 149Generate DDL For a Table

... 151Generate DDL for a Package

... 155Data Type Conversion Procedure

... 156Data Type Conversion for a Package

... 158DBMS Datatypes

... 160Import Database Schema from ODBC

.. 162Select a Data Source

.. 163Select Tables

.. 163The Imported Class Elements

Index 165

Foreword

This user guide describes the code engineering
facilities of Enterprise Architect.

Foreword1

Code Engineering Using UML Models

 | 2

© 1998-2010 Sparx Systems Pty Ltd

1 Code Engineering

Code Engineering is a process that includes automated code generation, reverse engineering of source
code and synchronization between the source code and model.

Enterprise Architect also enables you to rapidly model, generate - or forward engineer - and reverse engineer:

· XML Technologies , namely XML Schema (XSD) and Web Service Definition Language (WSDL)

· Database schema , keys, triggers, constraints, RI and other relational database features, for and from a
range of database products.

Code Engineering is available in the Professional, Corporate, Business and Software Engineering, System
Engineering and Ultimate editions of Enterprise Architect.

Code Generation

Enterprise Architect enables you to generate source code from UML model elements, creating a source
code equivalent of the Class or Interface element for future elaboration and compilation. In particular you can
generate C, C++, C#, Delphi, Java, PHP, Python, ActionScript, Visual Basic and VB.NET source code. The
source code generated includes Class definitions, variables and function stubs for each attribute and method
in the UML Class. You can use the Source Code Viewer to view any source code you are opening (see the
Dockable Windows section of Using Enterprise Architect - UML Modeling Tool).

Note:

You view source code for an element by selecting it and pressing either [Ctrl]+[E] or [F12]. If the element
does not have a generation file (that is, code has not been or cannot be generated, such as for a Use Case),
Enterprise Architect checks whether the element has a link to either an operation or an attribute of another
element. If such a link exists, and that other element has source code, the code for that element displays.

You can also generate code from three UML behavioral modeling paradigms:

· State Machine diagrams

· Interaction diagrams

· Activity diagrams.

The Code Template Framework (CTF) enables you to customize the way Enterprise Architect generates
source code. It also enables you to generate languages that Enterprise Architect does not specifically support,
by helping you define the appropriate code generation templates for that language (this is discussed in SDK
for Enterprise Architect).

You can integrate the facilities of Enterprise Architect with other development environments. The MDG
Integration for Eclipse and MDG Integration for Visual Studio are standalone products that provide an
enhanced code engineering functionality between Enterprise Architect and the development environments.

Reverse Engineering

Reverse Engineering is the import of existing source code into model elements, mapping the source code
structures onto their UML representations. This enables you to examine legacy code and the functionality of
code libraries for reuse, or to bring the UML model up to date with the code. You can reverse engineer in the
same languages as you perform code generation with Enterprise Architect.

Enterprise Architect is also able to reverse engineer binary files, namely Java .jar files and .NET PE files.

Note:

Reverse Engineering of other languages including CORBA IDL is also currently available through the use of
the MDG Technologies. See www.sparxsystems.com/resources/mdg_tech/.

88

120

12

42

19

61

10

4

http://www.sparxsystems.com/resources/mdg_tech/

 | 3

Code Engineering Using UML Models

Synchronization

Synchronization is when changes in the model are exported to the source code and changes to source
code are imported into the model. This enables you to keep your model and source up to date as the project
develops.

Round-Trip Engineering

Round trip engineering is a combination of reverse and forward generation of code and includes
synchronization between the source code and the model in all but the most trivial of code engineering
projects. In order to get the most out of round trip engineering in Enterprise Architect, you should be familiar
with the modeling conventions used when generating and reverse engineering the languages you use.

10

68

Reverse Engineering | 4

© 1998-2010 Sparx Systems Pty Ltd

1.1 Reverse Engineering

Reverse Engineering in Enterprise Architect enables you to import existing source code from a variety of code
languages into a UML model. Existing source code structures are mapped into their UML representations, for
example a Java Class is mapped into a UML Class element with the variables being defined as attributes,
methods are modeled as operations and the interactions between the Java Classes being displayed in the
UML model Class diagram with the appropriate connectors.

Reverse Engineering enables users to examine legacy code and examine the functionality of code libraries for
reuse or to bring the UML model up to date with the code that has been developed as part of a process called
synchronization. Examining the code in a UML model enables user to identify the critical modules contained
the code, enabling a starting point for understanding of the business and system requirements of the pre-
existing system and to enable the developers to gain a better overall understanding of the source code.

To begin the process of importing existing code into Enterprise Architect, an existing source of code must be
imported into Enterprise Architect , which can be a single directory or a directory structure . Several
options are available when performing the reverse engineering process. The Source Code Engineering
Options topic contains several options that affect the reverse engineering process. These include:

· If comments are reverse engineered into notes fields, and how they are formatted if they are

· How property methods are recognized

· If dependencies should be created for operation return and parameter types.

It is important to note that when a legacy system is not well designed, simply importing the source into
Enterprise Architect does not create an easily understandable UML model. When working with a legacy
system that is poorly designed it is useful to break down the code into manageable components by examining
the code elements individually. This can be achieved by importing a specific Class of interest into a diagram
and then inserting the related elements (see UML Modeling with Enterprise Architect – UML Modeling Tool) at
one level to determine immediate relationship to other Classes. From this point it is possible to create Use
Cases that identify the interaction between the legacy Classes, enabling an overview of the legacy system's
operation.

Copyright ownership is an important issue to take into account when undertaking the process of reverse
engineering. In some cases, software might have specific limitations that prohibit the process of reverse
engineering. It is important that a user address the issue of copyright before beginning the process of reverse
engineering code. Situations that typically lend themselves to reverse engineering source code include source
code that:

· You have already developed

· Is part of a third-party library that you have obtained permission to use

· Is part of a framework that your organization uses

· Is being developed on a daily basis by your developers.

Enterprise Architect currently supports reverse engineering in the following programming languages:

· ActionScript

· Ada 2005 (Systems Engineering and Ultimate editions)

· C

· C#

· C++

· Delphi

· Java

· PHP

· Python

· SystemC (Systems Engineering and Ultimate editions)

· Verilog (Systems Engineering and Ultimate editions)

5 8

32

69

69

71

73

75

78

79

80

81

81

84

Reverse Engineering | 5

Code Engineering Using UML Models

· VHDL (Systems Engineering and Ultimate editions)

· Visual Basic

· Visual Basic .NET

Enterprise Architect is also able to reverse engineer certain types of binary files: Java .jar files and .NET PE
files. See Import Binary Module for more information.

Notes:

· Reverse Engineering of other languages is currently available through the use of MDG Technologies from
www.sparxsystems.com/resources/mdg_tech/.

· In the Corporate, Business and Software Engineering, System Engineering and Ultimate editions of
Enterprise Architect, if security is enabled you must have Reverse Engineer From DDL And Source
Code permission to reverse engineer source code and synchronize model elements against code. See
User Security in UML Models.

1.1.1 Import Source Code

To import source code (reverse engineer) follow the steps below:

1. In the Project Browser, select (or add) a diagram into which to import the Classes.

2. Right-click on the diagram background to open the context menu and either:

· Select the language to import from the Import from source file(s) submenu, or

· Click on the Import Language drop-down arrow in the Code Generation toolbar and select the
Import | Import xxx files menu option, where xxx represents the language to import.

3. From the file browser that appears, select one or more source code files to import.

4. Click on the Open button to start the import process.

As the import proceeds, Enterprise Architect provides progress information. When all files are imported,
Enterprise Architect makes a second pass to resolve associations and inheritance relationships between the
imported Classes.

85

87

83

9

6

http://sparxsystems.com/resources/mdg_tech/

Reverse Engineering | Import Source Code 6

© 1998-2010 Sparx Systems Pty Ltd

1.1.2 Notes on Source Code Import

Enterprise Architect enables you to import code into your project, in the following programming languages:

· ActionScript

· C

· C#

· C++

· Delphi

· Java

· PHP

· Python

· Visual Basic

· Visual Basic .NET

Enterprise Architect supports most constructs and keywords for each coding language.

If there is a particular feature you require support for that you feel is missing, please contact Sparx Systems.

You must select the appropriate type of source file for the language, as the source code to import.

ActionScript

Appropriate type of source file: .as.

C

Appropriate type of source file: .h header files and/or .c files.

When you select a header file Enterprise Architect automatically searches for the corresponding .c
implementation file to import based on the options for extension and search path specified in the C options
.

Enterprise Architect does not expand macros that have been used, these must be added into the internal list
of Language Macros .

C++

Appropriate type of source file: .h header file.

5

6

6

7

6

7

7

7

7

7

7

44

39

http://www.sparxsystems.com/feature_request.htm

Reverse Engineering | Notes on Source Code Import7

Code Engineering Using UML Models

Enterprise Architect automatically searches for the .cpp implementation file based on the extension and
search path set in the C++ options . When it finds the implementation file it can use it to resolve parameter
names and method notes as necessary.

When importing C++ source code, Enterprise Architect ignores function pointer declarations. To import them
into your model you could create a typedef to define a function pointer type, then declare function pointers
using that type. Function pointers declared in this way are imported as attributes of the function pointer type.

Enterprise Architect does not expand macros that have been used; these must be added into the internal list
of Language Macros .

C#

Appropriate type of source file: .cs.

Delphi

Appropriate type of source file: .pas.

Java

Appropriate type of source file: .java.

Enterprise Architect supports the AspectJ language extensions.

Aspects are modeled using Classes with the stereotype aspect. These aspects can then contain attributes and
methods as for a normal Class. If an intertype attribute or operation is required, you can add a tag className
with the value being the name of the Class it belongs to.

Pointcuts are defined as operations with the stereotype of pointcut. These can occur in any Java Class,
Interface or aspect. The details of the pointcut are included in the behavior field of the method.

Advice is defined as an operation with the stereotype advice. The pointcut this advice operates on is in the
behavior field and acts as part of the method's unique signature. After advice can also have one of the
Tagged Values returning or throwing.

PHP

Appropriate type of source file: .php, .php4, or .inc.

Python

Appropriate type of source file: .py.

Visual Basic

Appropriate type of source file: .cls Class file.

Visual Basic .NET

Appropriate type of source file: .vb Class file.

46

39

Reverse Engineering | Import a Directory Structure 8

© 1998-2010 Sparx Systems Pty Ltd

1.1.3 Import a Directory Structure

You can import from all source files in a complete directory structure. This process enables you to import or
synchronize multiple files in a directory tree in one pass. Enterprise Architect creates the necessary packages
and diagrams during the import process.

To import a directory structure, follow the steps below:

1. In the Project Browser, right-click on the target package for the import.

2. From the context menu, select the Code Engineering | Import Source Directory menu option. The
Import Source Directory dialog displays.

3. Select the options you require. You can configure:

· The source directory

· The source type

· The file extensions to look at

· Whether to recurse sub directories

· Whether to create a diagram for each package

· Whether to import additional files as described in the Import Component Types dialog

· Whether to exclude private members from libraries being imported from the model

· Whether to create a package for every directory, namespace or file; this might be restricted
depending on the source type selected

· Whether to Synchronize or Overwrite existing Classes when found (if a model Class is found
matching the one in code, Synchronize updates the model Class to include the details from the one
in code, which preserves information not represented in code such as the location of Classes in
diagrams; Overwrite deletes the model Class and generates a new one from code, which deletes
and does not replace the additional information)

· How to handle Classes not found during the import (Prompt for action enables you to review
Classes individually)

· What is shown on diagrams created by the import.

4. Click on the OK button to start.

10

Reverse Engineering | Import Binary Module9

Code Engineering Using UML Models

1.1.4 Import Binary Module

Enterprise Architect enables you to reverse-engineer certain types of binary modules. To import a binary
module, right-click on the target package in the Project Browser and select the Code Engineering | Import
Binary Module context menu option.

Currently the permitted types are as follows:

· Java Archive (.jar)

· .Net PE file (.exe, .dll); native Windows DLL and EXE files are not supported, only PE files containing .NET
assembly data

· Intermediate Language file (.il).

Enterprise Architect creates the necessary packages and diagrams during the import process. Selecting the
Do not import private members checkbox excludes private members from libraries from being imported into
the model.

When importing .Net files,you can import via reflection or via disassembly, or let Enterprise Architect decide
the best method - this might result in both types being used. The reflection-based importer relies on a .Net
program, and requires the .Net runtime environment to be installed. The disassembler-based importer relies
on a native Windows program called Ildasm.exe, which is a tool provided with the MS .Net SDK. The SDK can
be downloaded from the Microsoft website.

A choice of import methods is available because some files are not compatible with reflection (such as
mscorlib.dll) and can only be opened using the disassembler. However, the reflection-based importer is
generally much faster.

You can also configure:

· Whether to Synchronize or Overwrite existing Classes when found (if a model Class is found matching
the one in the file, Synchronize updates the model Class to include the details from the one in the file,
which preserves information not represented in the file such as the location of Classes in diagrams;
Overwrite deletes the model Class and generates a new one from the file, which deletes and does not
replace the additional information)

· Whether to create a diagram for each package

· What is shown on diagrams created by the import.

Reverse Engineering | MDG Integration and Code Engineering 10

© 1998-2010 Sparx Systems Pty Ltd

1.1.5 MDG Integration and Code Engineering

MDG Integration for Eclipse and MDG Integration for Visual Studio are standalone products that provide an
enhanced code engineering functionality between Enterprise Architect and the development environments.

The MDG Integration programs provide a lightweight bridge between Enterprise Architect and the
development environment, offering enhanced code generation, reverse engineering and synchronization
between code and the UML model. Merging changes can be achieved with minimal effort, and navigation
between model and source code is significantly enhanced.

A trial version of MDG Integration for Eclipse can be downloaded from www.sparxsystems.com/products/mdg/
int/eclipse/index.html and MDG Integration for Visual Studio can be downloaded from www.sparxsystems.com/
products/mdg/int/vs/index.html.

1.1.6 Classes Not Found During Import

When reverse synchronizing from your code, there are times when some Classes might be deliberately
removed from your source code. Enterprise Architect's import source directory functionality keeps track of the
Classes it expects to synchronize with and, on the Import Directory Structure dialog, provides options for how
to handle the Classes that weren't found. You can select the appropriate action so that, at the end of the
import, Enterprise Architect either ignores the missing Classes, automatically deletes them or prompts you to
handle them.

If you select the Prompt For Action radio button on the Import Directory Structure dialog, to manually
review missing Classes, the following dialog displays:

By default, all Classes are marked for deletion. To keep one or more Classes, select them and click on the
Ignore button.

1.1.7 Synchronize Model and Code

In addition to generating and importing code, Enterprise Architect provides the option to synchronize the
model and source code, creating a model that represents the latest changes in the source code and vice
versa. You can use either the model as the source, or the code as the source.

For example: you generated some source code, but made subsequent changes to the model. When you
generate code again, Enterprise Architect adds any new attributes or methods to the existing source code,
leaving intact what already exists. This means developers can work on the source code and then generate
additional methods as required from the model, without having their code overwritten or destroyed.

8

http://www.sparxsystems.com/products/mdg/int/eclipse/index.html
http://www.sparxsystems.com/products/mdg/int/eclipse/index.html
http://www.sparxsystems.com/products/mdg/int/vs/index.html
http://www.sparxsystems.com/products/mdg/int/vs/index.html

Reverse Engineering | Synchronize Model and Code11

Code Engineering Using UML Models

Note:

Code synchronization does not change method bodies. Behavioral code generation only works when
generating the entire file.

Similarly, you might have made changes to a source code file, but the model has detailed notes and
characteristics you do not want to lose. By synchronizing from the source code into the model, you import
additional attributes and methods but do not change other model elements.

Using the two synchronization methods above, it is simple to keep source code and model elements up to
date and synchronized.

Note:

In the Corporate, Business and Software Engineering, System Engineering and Ultimate editions of
Enterprise Architect, if security is enabled you must have Generate Source Code and DDL permission to
synchronize source code with model elements. See User Security in UML Models.

Synchronize Classes on Forward Generation

When there are features present in the code but not in the model you can use the following buttons during
forward synchronization:

Note:

These buttons are only available when the On forward synch, prompt to delete code features not in
model checkbox is selected in the Options - Attributes and Operations dialog.

· Delete: when you click on this button the selected code features are removed from the code.

· Reassign: when you click on this button the code elements are reassigned to elements in the model (this
is only possible when an appropriate model element is present that is not already defined in the code).

· Ignore: when you click on this button the code elements not present in the model are ignored completely.

· Reset to Default: when you click on this button the settings for synchronizing during forward generation
are set to Ignore, meaning that the elements present in the code but not in the model are ignored
completely.

19

36

Generate Source Code | 12

© 1998-2010 Sparx Systems Pty Ltd

1.2 Generate Source Code

Generating source code (forward engineering) takes the UML Class or Interface model elements and creates
a source code equivalent for future elaboration and compilation. By forward engineering code from the model,
the mundane work involved with having to key in Classes and attributes and methods is avoided, and
symmetry between model and code is ensured.

Code is generated from Class or Interface model elements, so you must create the required Class and
Interface elements to generate from. Add attributes (which become variables) and operations (which become
methods).

Before you generate code, you should ensure the default settings for code generation match your
requirements. The default generation settings are located in the Source Code Engineering page of the Options
dialog (select the Tools | Options | Source Code Engineering menu option). Set up the defaults to match
your required language and preferences. Preferences that you can define include default constructors and
destructors, methods for interfaces and the Unicode options for created languages. Languages such as Java
support namespaces and can be configured to specify a namespace root. In addition to the default
settings for generating code, Enterprise Architect supports the following code languages with their own
specific code generation options:

· ActionScript

· C

· C# (for both .NET 1.1 and .NET 2.0)

· C++ (standard, plus .NET managed C++ extensions)

· Delphi

· Java (including Java 1.5, Aspects and Generics)

· PHP

· Python

· Visual Basic

· Visual Basic .NET

The Code Template Framework (CTF) enables you to customize the way Enterprise Architect generates
source code and also enables generation of languages that are not specifically supported by Enterprise
Architect.

Before generating code, you should also familiarize yourself with the way Enterprise Architect handles local
path names. Local path names enable you to substitute tags for directory names (for example %SRC% = C:
\Source).

When you have completed the design of your Classes, you can generate source code.

Note:

In the Corporate, Business and Software Engineering, System Engineering and Ultimate editions of
Enterprise Architect, if security is enabled you must have Generate Source Code and DDL permission to
generate source code. See User Security in UML Models.

Use Live Code Generation

On the Package Build Scripts dialog, you have the option to update your source code instantly as you make
changes to your model. (See the Setup for Execution Analysis topic in Visual Execution Analyzer in Enterprise
Architect.)

Tasks

When you generate code, you perform one or more of the following tasks:

17

43

44

45

46

47

51

51

52

57

54

61

Generate Source Code | 13

Code Engineering Using UML Models

· Generate a Single Class

· Generate a Group of Classes

· Generate a Package

· Update Package Contents

1.2.1 Generate a Single Class

To generate code for a single Class, first ensure the design of the model element (Class or Interface) is
complete. Also ensure you have added Inheritance connectors to parents and associations to other Classes
that are used. Also add Inheritance connectors to Interfaces that your Class implements; Enterprise Architect
offers the option to generate function stubs for all interface methods that a Class implements. Once the design
is satisfactory, follow the steps below.

Generate Code for a Single Class

1. Open the diagram containing the Class or Interface for which to generate code.

2. Right-click on the required Class or Interface to display the context menu and select the Generate
Code menu option, or press [F11]. The Generate Code dialog displays, which enables you to control
how and where your source code is generated.

3. On the Path field, click on [...] (Browse) and select a path name for your source code to be generated
to.

4. In the Target Language field, click on the drop-down arrow and select the language to generate; this
becomes the permanent option for that Class, so change it back if you are only doing one pass in
another language.

5. Click on the Advanced button. The Object Options dialog displays.

13

14

15

16

Generate Source Code | Generate a Single Class 14

© 1998-2010 Sparx Systems Pty Ltd

6. Set any custom options (for this Class alone), then click on the Close button to return to the Generate
Code dialog.

7. In the Import(s) / Header(s) fields, type any import statements, #includes or other header information.
(Note that in the case of Visual Basic this information is ignored; in the case of Java the two import text
boxes are merged; and in the case of C++ the first import text area is placed in the header file and the
second in the body (.cpp) file.)

8. Click on the Generate button to create the source code.

9. When complete, click on the View button to see what has been generated. Note that you should set up
your default viewer/editor for each language type first (see the Source Code Viewer topic in Using
Enterprise Architect - UML Modeling Tool). You can also set up the default editor on the DDL page of
the Options dialog (Tools | Options | Source Code Engineering | Code Editors).

1.2.2 Generate a Group of Classes

In addition to being able to generate code for an individual Class, you can also select a group of Classes for
batch code generation. When you do this, you accept all the default code generation options for each Class in
the set.

To Generate Multiple Classes

1. Select a group of Classes and/or interfaces in a diagram.

2. Right-click on an element in the group to display the context menu.

3. Select the Code Generation | Generate Selected elements menu option. The Save As dialog
displays, on which you specify the file path and name for each code file. Enter this information and click
on the Save button.

4. The Batch Generation dialog displays, showing the status of the process as it executes (the process
might be too fast to see this dialog).

Generate Source Code | Generate a Group of Classes15

Code Engineering Using UML Models

Note:

If any of the elements selected are not Classes or interfaces the option to generate code is not
available.

1.2.3 Generate a Package

In addition to generating source code from single Classes and groups of Classes, you can also generate code
from a package. This feature provides options to recursively generate child packages and automatically
generate directory structures based on the package hierarchy. This enables you to generate a whole branch of
your project model in one step.

Generate a Package

To generate a package, follow the steps below:

1. In the Project Browser, right-click on the package to generate code for. The context menu displays.

2. Select the Code Engineering | Generate Source Code menu option. The Generate Package Source
Code dialog displays.

3. In the Synchronize field, click on the drop-down arrow and select the appropriate synchronize option:

· Synchronize model and code: Classes with existing files are forward synchronized with that file;
Classes with no existing file are generated to the displayed target file

· Overwrite code: All selected target files are overwritten (forward generated)

· Do not generate: Only selected Classes that do not have an existing file are generated; all other
Classes are ignored.

4. Highlight the Classes to generate. Leave unselected any to not generate. If you want to display the
information in a more readable layout, you can resize the dialog and its columns.

5. To make Enterprise Architect automatically generate directories and filenames based on the package
hierarchy, select the Auto Generate Files checkbox. This then enables the Root Directory field, in
which you select a root directory under which the source directories are to be generated. By default,
the Auto Generate Files feature ignores any file paths that are already associated with a Class. You
can change this behavior by also selecting the Retain Existing File Paths checkbox.

6. To include all sub-packages in the output, select the Include Child Packages checkbox.

7. Click on the Generate button to start generating code.

Generate Source Code | Generate a Package 16

© 1998-2010 Sparx Systems Pty Ltd

As code generation proceeds Enterprise Architect displays progress messages. If a Class requires an output
filename Enterprise Architect prompts you to enter one at the appropriate time (assuming Auto Generate
Files is not selected). For example, if the selected Classes include partial Classes, a prompt displays to enter
the filename for the second partial Class.

For additional information on the options on the Generate Package Source Code dialog, see the following
table:

Option Use to

Root Package Check the name of the package to be generated.

Synchronize Select options that specify how existing files should be generated.

Auto Generate Files Specify whether Enterprise Architect should automatically generate file
names and directories, based on the package hierarchy.

Root Directory If Auto Generate Files is selected, display the path under which the
generated directory structures are created.

Retain Existing File Paths If Auto Generate Files is selected, specify whether to use existing file paths
associated with Classes. If unselected, Enterprise Architect generates
Classes to automatically determined paths, regardless of whether source
files are already associated with Classes.

Include all Child Packages Include all Classes from all sub-packages of the target package in the list.
This option facilitates recursive generation of a given package and its sub-
packages.

Select Objects to Generate List all Classes that are available for generation under the target packages.
Only selected (highlighted) Classes are generated. Classes are listed with
their target source file.

Select All Mark all Classes in the list as selected.

Select None Mark all Classes in the list as unselected.

Generate Start the generation of all selected Classes.

Cancel Exit the Generate Package Source Code dialog. No Classes are generated.

1.2.4 Update Package Contents

Enterprise Architect enables you to synchronize a directory tree. Follow the steps below:

1. In the Project Browser, right-click on the root package of the tree to synchronize. The context menu
displays.

2. Select the Code Engineering | Synchronize Package With Code menu option. The Synchronize
Package Contents dialog displays.

Generate Source Code | Update Package Contents17

Code Engineering Using UML Models

3. In the Update Type panel, select the radio button to Forward Engineer or Reverse Engineer the
package Classes.

4. To include child packages in the synchronization, select the Include child packages in generation
checkbox.

5. Click on the OK button to start.

Enterprise Architect uses the directory names specified when the project source was first imported/generated
and updates either the model or the source code depending on the option chosen.

1.2.5 Namespaces

Languages such as Java support package structures or namespaces. Enterprise Architect lets you specify a
package as a namespace root, which denotes where the namespace structure starts; all subordinate
packages below this point are generated as namespaces to code.

To define a package as a namespace root, right-click on the package in the Project Browser and select the
Code Engineering | Set as Namespace Root context menu option. The package icon in the Project Browser

changes to include a colored corner ().

When you have set the namespace root, the menu option changes to Clear Namespace Root; click on this
option to take the namespace root status off the package. (Also, see the context menu described below.)

Once you have set a namespace root, Java code generated beneath this root automatically adds a package
declaration at the head of the generated file indicating the current package location.

To view a list of namespaces, select the Settings | Namespaces menu option. The Namespaces dialog
displays.

Generate Source Code | Namespaces 18

© 1998-2010 Sparx Systems Pty Ltd

If you double-click on a namespace in the list, the package is highlighted in the Project Browser. Alternatively,
right-click on the namespace to display a context menu, and select the Locate Package in Browser menu
option.

You can also clear the selected namespace, by selecting the Clear Namespace Attribute option.

Code Generation From Behavioral Models | 19

Code Engineering Using UML Models

1.3 Code Generation From Behavioral Models

Notes:

· Software code generation from behavioral models is available in the Business and Software Engineering,
Systems Engineering and Ultimate editions of Enterprise Architect.

· Hardware code generation from State Machine models is available in the Systems Engineering and
Ultimate editions of Enterprise Architect.

· For C(OO), please ensure that, on the C Specifications page of the Options dialog, you have set the
Object Oriented Support option to True.

· To be able to generate code from behavioral models, all behavioral constructs should be contained within a
Class.

Enterprise Architect's system engineering capability facilitates code generation from each of the following UML
behavioral diagrams:

· State Machine diagrams (SW & HW)

· Interaction (Sequence) diagrams (SW)

· Activity diagrams (SW).

You can generate code in various software and hardware languages, including C(OO), C++, C#, Java,
VB.Net, VHDL, Verilog and SystemC.

To experiment with code generation from these diagrams, use the EAExample project provided with your
Enterprise Architect installer.

1.3.1 SW Code Generation - State Machine Diagrams

19

26

27

23

Code Generation From Behavioral Models | SW Code Generation - State Machine Diagrams 20

© 1998-2010 Sparx Systems Pty Ltd

Note:

To be able to generate code from behavioral models, all behavioral constructs should be contained within a
Class.

A State Machine (see the UML Dictionary) in a Class internally generates the following constructs in software
languages to enable effective execution of the States' behaviors (do, entry and exit) and also to code the
appropriate transition's effect when necessary.

Enumerations

· StateType - comprises an enumeration for each of the States contained within the State Machine

· TransitionType – comprises an enumeration for each transition that has a valid effect associated with it; for
example ProcessOrder_Delivered_to_ProcessOrder_Closed

· CommandType – comprises an enumeration for each of the behavior types that a State can contain (Do,
Entry, Exit).

Attributes

· currState:StateType - a variable to hold the current State's information

· nextState:StateType – a variable to hold the next State's information, set by each State's transitions
accordingly

· currTransition:TransitionType – a variable to hold the current transition information; this is set if the
transition has a valid effect associated with it

· transcend:Boolean - a flag used to advise if a transition is involved in transcending between different State
Machines (or Submachine states)

· xx_history:StateType – a history variable for each State Machine/Submachine State, to hold information
about the last State from which the transition took place.

Operations

· StatesProc - a States procedure, containing a map between a State's enumeration and its operation; it
de-references the current State's information to invoke the respective State's function

· TransitionsProc - a Transitions procedure, containing a map between the Transition's enumeration and its
effect; it invokes the respective effect

· <<State>> - an operation for each of the States contained within the State Machine; this renders a State's
behaviors based on the input CommandType, and also executes its transitions

· initializeStateMachine – a function that initializes all the framework-related attributes

· runStateMachine - a function that iterates through each State, and executes their behaviors and transitions
accordingly.

Click here to display an example of Java code generated from the State Machine diagram above.

1.3.1.1 Java Code Generated From State Machine Diagram

private enum StateType : int
{

ProcessOrder_Delivered,
ProcessOrder_Packed,
ProcessOrder_Closed,
ProcessOrder_Dispatched,
ProcessOrder_New,
ST_NOSTATE

}
private enum TransitionType : int
{

ProcessOrder_Delivered_to_ProcessOrder_Closed,
TT_NOTRANSITION

}
private enum CommandType
{

Do,
Entry,
Exit

}

20

Code Generation From Behavioral Models | SW Code Generation - State Machine Diagrams21

Code Engineering Using UML Models

private StateType currState;
private StateType nextState;
private TransitionType currTransition;
private boolean transcend;
private StateType ProcessOrder_history;
private void processOrder_Delivered(CommandType command)
{

switch(command)
{

case Do:
{

// Do Behaviors..
setStatus(Delivered);
// State's Transitions
if((status==Delivered))
{

nextState = StateType.ProcessOrder_Closed;
currTransition =

TransitionType.ProcessOrder_Delivered_to_ProcessOrder_Closed;
}
break;

}
default:
{

break;
}

}
}

private void processOrder_Packed(CommandType command)
{

switch(command)
{

case Do:
{

// Do Behaviors..
setStatus(Packed);
// State's Transitions
nextState = StateType.ProcessOrder_Dispatched;
break;

}
default:
{

break;
}

}
}

private void processOrder_Closed(CommandType command)
{

switch(command)
{

case Do:
{

// Do Behaviors..
// State's Transitions
break;

}
default:
{

break;
}

}
}

private void processOrder_Dispatched(CommandType command)
{

switch(command)
{

case Do:
{

// Do Behaviors..
setStatus(Dispatched);
// State's Transitions
nextState = StateType.ProcessOrder_Delivered;

Code Generation From Behavioral Models | SW Code Generation - State Machine Diagrams 22

© 1998-2010 Sparx Systems Pty Ltd

break;
}
default:
{

break;
}

}
}

private void processOrder_New(CommandType command)
{

switch(command)
{

case Do:
{

// Do Behaviors..
setStatus(new);
// State's Transitions
nextState = StateType.ProcessOrder_Packed;
break;

}
default:
{

break;
}

}
}
private void StatesProc(StateType currState, CommandType command)
{

switch(currState)
{

case ProcessOrder_Delivered:
{

processOrder_Delivered(command);
break;

}

case ProcessOrder_Packed:
{

processOrder_Packed(command);
break;

}

case ProcessOrder_Closed:
{

processOrder_Closed(command);
break;

}

case ProcessOrder_Dispatched:
{

processOrder_Dispatched(command);
break;

}

case ProcessOrder_New:
{

processOrder_New(command);
break;

}
default:

break;
}

}
private void TransitionsProc(TransitionType transition)
{

switch(transition)
{

case ProcessOrder_Delivered_to_ProcessOrder_Closed:
{

setStatus(closed);
break;

}
default:

break;

Code Generation From Behavioral Models | SW Code Generation - State Machine Diagrams23

Code Engineering Using UML Models

}
}
private void initalizeStateMachine()
{

currState = StateType.ProcessOrder_New;
nextState = StateType.ST_NOSTATE;
currTransition = TransitionType.TT_NOTRANSITION;

}

private void runStateMachine()
{

while(true)
{

if (currState == StateType.ST_NOSTATE)
{

break ;
}

currTransition = TransitionType.TT_NOTRANSITION;
StatesProc(currState, CommandType.Do);

// then check if there is any valid transition assigned after the do behavior
if (nextState == StateType.ST_NOSTATE)
{

break;
}

if (currTransition != TransitionType.TT_NOTRANSITION)
{

TransitionsProc(currTransition);
}
if (currState != nextState)
{

StatesProc(currState, CommandType.Exit);
StatesProc(nextState, CommandType.Entry);
currState = nextState ;

}
}

}

1.3.2 State Machine Modeling For HDLs

Note:

To be able to generate code from behavioral models, all behavioral constructs should be contained within a
Class.

For efficient code generation from State Machine models into Hardware Description Languages (HDL) such as
VHDL, Verilog and Systems C, apply the design practices outlined in this topic.

In an HDL State Machine model, the following are expected:

· Designate Driving Triggers

· Establish Port–Trigger Mapping

· Active State Logic

Designate Driving Triggers

The top level State Machine diagram should be used to model the different modes of a hardware component,
and the associated triggers that drive them, as shown in the following diagram.

Code Generation From Behavioral Models | State Machine Modeling For HDLs 24

© 1998-2010 Sparx Systems Pty Ltd

Asynchronous Triggers

Asynchronous triggers should be modeled according to the following pattern:

1. The trigger should be of type Change (specification: true / false)

2. The active state (Submachine State) should have a transition trigger by it.

3. The target state of the triggered transition should have a self transition with the same trigger

Clock

A trigger of type time, which triggers the transitions to the active state (Submachine State) is deemed as the
Clock. The specification of this trigger should be specific to the target language.

Clock Trigger Specifications

Trigger Type Language Specification

Positive Edge Triggered Negative Edge Triggered

Time

VHDL rising_edge falling_edge

Verilog posedge negedge

SystemC positive negative

Code Generation From Behavioral Models | State Machine Modeling For HDLs25

Code Engineering Using UML Models

Establish Port – Trigger Mapping

After successfully modeling the different operating modes of the component, and the triggers associated with
them, you must associate the triggers with the component's ports as shown in the following diagram.

A Dependency relationship from the Port to the associated trigger should be used to signify their association.

See Also:

· State Diagram } See the UML Dictionary

· Transition }

· SW Code Generation - State Machine Diagrams .

Active State Logic

The first two aspects, above, put in place the preliminaries required for efficient interpretation of the hardware
components. The actual State Machine logic is now modeled within the Active (Submachine) state.

Note:

The current code generation engine supports only one clock trigger for a component.

19

Code Generation From Behavioral Models | Code Generation - Interaction Diagrams 26

© 1998-2010 Sparx Systems Pty Ltd

1.3.3 Code Generation - Interaction Diagrams

Note:

To be able to generate code from behavioral models, all behavioral constructs should be contained within a
Class.

For an Interaction (Sequence) diagram, the behavioral code generation engine expects the Sequence
diagram and all its associated messages and interaction fragments to be encapsulated within an Interaction
element (see the UML Dictionary).

During code generation from Interaction (Sequence) diagrams (see the UML Dictionary) in a Class, Enterprise
Architect applies its system engineering graph optimizer to transform the Class constructs into programmatic
paradigms. Messages and Fragments are identified as one of the several action types based on their
functionality, and Enterprise Architect uses the EASL code generation templates to render their behavior
accordingly. For example:

· A Message that invokes an operation is identified as an Action Call and is rendered accordingly

· Combined Fragments are identified by their types and conditions; for instance, an Alt fragment is identified
as an Action If, and a loop fragment is identified as an Action Loop.

For more information on the EASL code generation macros and templates Enterprise Architect uses to
generate code from behavioral models see the EASL Code Generation Macros topic in the Code Template
Framework in SDK section of SDK for Enterprise Architect.

The above diagram contains:

· A Combined Fragment (alt), which is identified as an Action If (see the UML Dictionary)

· An Interaction Occurrence, which is identified as an Action Call with all argument information associated
with it (see the UML Dictionary), and

· A message (Action Opaque).

The Java code generated from this diagram resembles the following:

public void newTransaction()
{

// behavior is an Interaction
if (bValidUser) // Alt combined fragment
{

placeOrder(101); //Interaction Occurrence

Code Generation From Behavioral Models | Code Generation - Interaction Diagrams27

Code Engineering Using UML Models

}
else
{

return;
}

}

1.3.4 Code Generation - Activity Diagrams

Note:

To be able to generate code from behavioral models, all behavioral constructs should be contained within a
Class.

Code generation from an Activity diagram (see the UML Dictionary) in a Class requires a validation phase,
during which Enterprise Architect uses the system engineering graph optimizer to analyze the diagram and
render it into various code-generatable constructs. Enterprise Architect also transforms the constructs into one
of the various action types (if appropriate), similar to the Interaction diagram constructs. Enterprise Architect
then uses the EASL code generation macros to generate code from these constructs.

For more information on the EASL code generation macros and templates Enterprise Architect uses to
generate code from behavioral models see the EASL Code Generation Macros topic in the Code Template
Framework in SDK section of SDK for Enterprise Architect.

To provide a comprehensive analysis of these features several diagrams from the EAExample project are
shown as examples.

Conditional Statements

To model a conditional statement, you use Decision/Merge nodes. Alternatively, you can imply
Decisions/Merges internally. The graph optimizer expects an associated Merge node for each Decision node,
to facilitate efficient tracking of various branches and analysis of the code constructs within them.

The following diagram is interpreted as a nested IF statement.

Code Generation From Behavioral Models | Code Generation - Activity Diagrams 28

© 1998-2010 Sparx Systems Pty Ltd

The Java code that might be generated from this diagram is as follows:

public boolean doValidateUser(String Password,String UserName)
{

loadAccountDetails();
boolean bRet;
if (Username==name)
{

if (Password == password)
{

bRet = true;
bValidUser = true;

}
else
{

bRet = false;
}

}
else

Code Generation From Behavioral Models | Code Generation - Activity Diagrams29

Code Engineering Using UML Models

{
bRet = false;

}

return bRet;
}

Invocation Actions (Call Operation Action, Call Behavior Action)

Call Actions are handled more efficiently. Each action has arguments relating to the parameters of the
associated behavior (use the Synchronize button of the Arguments dialog to synchronize arguments and
parameters).

The following diagram demonstrates the use of a Call Behavior Action and a Call Operation Action
interspersed with a conditional statement.

The generated Java code might appear as follows:

public void doMarkAccountClosed()
{

doValidateUser(password,name);
if (bValiduser)
{

setClosed(true);

}
else
{

System.out.println("Invalid user");
}
return;

Code Generation From Behavioral Models | Code Generation - Activity Diagrams 30

© 1998-2010 Sparx Systems Pty Ltd

}

Loops

Enterprise Architect's system engineering graph optimizer is also capable of analyzing and identifying loops.
An identified loop is internally rendered as an Action Loop, which is translated by the EASL code generation
macros to generate the required code.

The following diagram demonstrates how a loop can be modeled.

The generated Java code might appear as follows:

public void doCheckForOutstandingOrders()
{

if (status != closed)
{

initializeStateMachine();
while (status != closed)
{

runStateMachine();

Code Generation From Behavioral Models | Code Generation - Activity Diagrams31

Code Engineering Using UML Models

}
}
else
{

//No Outstanding orders;
}
return;

}

Code Engineering Settings | 32

© 1998-2010 Sparx Systems Pty Ltd

1.4 Code Engineering Settings

You can set the default code options such as the editors for each of the programming languages available for
Enterprise Architect and special options for how source code is generated.

See Also

· General Options

· Local Paths

· Local Path Dialog

· Language Macros

· Setting Collection Classes

1.4.1 Source Code Engineering

The following topics describe general options that apply to all languages when generating code from
Enterprise Architect. These options are all available under the Source Code Engineering section of the
Options dialog (select the Tools | Options | Source Code Engineering menu option).

· Source Code Options

· Options - Code Editors

· Options - Object Lifetimes

· Options - Attribute/Operations

· Synchronize Model and Code

· Code Page for Source Editing

1.4.1.1 Source Code Options

When you generate code for a particular language, you can set certain options. These include:

· Create a default constructor

· Create a destructor

· Generate copy constructor

· Select default language

· Generate methods for implemented interfaces

· Set the unicode options for code generation.

These options are accessed the Source Code Engineering page of the Options dialog (select the Tools |
Options | Source Code Engineering menu option).

32

38

39

39

41

32

34

35

36

10

37

Code Engineering Settings | Source Code Engineering33

Code Engineering Using UML Models

Most of the settings are self-explanatory. The Remove prefixes when generating Get/Set properties field
enables you to specify prefixes used in your variable naming conventions, if those prefixes should be removed
in the variables' corresponding get/set functions.

Click on the Component Types button to configure what elements you would like to be created for files of
any extension found while importing a source code directory.

Note:

It is worthwhile to configure these settings, as they serve as the defaults for all Classes in the model. You can
override these on a per-Class basis using the custom settings (from the Code Generation dialog).

1.4.1.1.1 Import Component Types

The Import Component Types dialog enables you to configure what elements you would like to be created for
files of any extension found while importing a source code directory.

To access the Import Component Types dialog select the Tools | Options | Source Code Engineering menu
option to display the Source Code Engineering page of the Options dialog, and click on the Component
Types button.

33

Code Engineering Settings | Source Code Engineering 34

© 1998-2010 Sparx Systems Pty Ltd

For each extension you can specify:

· The element type to be created

· The stereotype to apply to these objects.

Note:

You can transport these import component types between models, using the Export Reference Data and
Import Reference Data options on the Tools menu. See the Reference Data topic in UML Model
Management.

1.4.1.2 Options - Code Editors

You access the source code editor options via the DDL page of the Options dialog (select the Tools | Options
| Source Code Engineering | Code Editors menu option). They enable you to configure options for
Enterprise Architect's internal editor, as well as the default editor for DDL scripts. You can configure external
editors for code languages on each language options page.

Code Engineering Settings | Source Code Engineering35

Code Engineering Using UML Models

The options for the inbuilt editor are:

Option Use to

Use inbuilt editor if no
external editor set

Specify the editor for code in a language if no external editor is defined for
that language.

Show Line Numbers Show line numbers in the editor.

Show Structure Tree Show a tree with the results of parsing the open file (requires that the file is
parsed successfully).

Don't parse files larger than Specify an upper limit on file size for parsing. Used to prevent performance
decrease due to parsing very large files.

1.4.1.3 Options - Object Lifetimes

This set of options enables you to configure:

· Constructor details when generating code

· Whether to create a copy constructor

· Destructor details.

These options are accessed via the Constructor page of the Options dialog (select the Tools | Options |
Source Code Engineering | Object Lifetimes menu option).

Code Engineering Settings | Source Code Engineering 36

© 1998-2010 Sparx Systems Pty Ltd

1.4.1.4 Options - Attribute/Operations

This set of options enables you to:

· Configure the default name generated from imported attributes

· Generate methods for implemented interfaces

· Delete model attributes not included in the code during reverse synchronization

· Delete model methods not included in the code during reverse synchronization

· Delete code from features contained in the model during forward synchronization

· Delete model associations and aggregations that correspond to attributes not included in the code during
reverse synchronization

· Define whether or not the bodies of methods are included and saved in the Enterprise Architect model
when reverse engineering

· Create attributes in quick succession, clearing the dialog when you click on Save so that you can enter
another attribute name.

These options are accessed via the Attribute Specifications page of the Options dialog (select the Tools |
Options | Source Code Engineering | Attribute/Operations menu option).

Code Engineering Settings | Source Code Engineering37

Code Engineering Using UML Models

1.4.1.5 Code Page for Source Editing

Enterprise Architect enables you to define the Unicode character set for code generation. To set the Unicode
character set follow the steps below:

1. Select the Tools | Options | Source Code Engineering menu option. The Source Code Engineering
page of the Options dialog displays.

Code Engineering Settings | Source Code Engineering 38

© 1998-2010 Sparx Systems Pty Ltd

2. In the Code page for source editing field, click on the drop-down arrow and select the appropriate
Unicode character set.

3. Click on the Close button.

1.4.2 Local Paths

Sometimes a team of developers could be working on the same Enterprise Architect model. Each developer
might store their version of the source code in their local file system, but not always at the same location as
their fellow developers. To handle this scenario, Enterprise Architect enables you to define local paths for each
Enterprise Architect user, using the Local Paths dialog (select the Settings | Local Paths menu option).

As well as generating code and reverse engineering, you can use local paths in version control, developing
XML schemas, and generating RTF and HTML reports.

Local paths take a bit of setting up, but if you want to work collaboratively on source and model concurrently,
the effort is well worth while.

For example: developer A stores their .java files in a C:\Java\Source directory, while developer B stores theirs
in D:\Source. Meanwhile, both developers want to generate and reverse engineer into the same Enterprise
Architect model located on a shared (or replicated) network drive.

Developer A might define a local path of:

JAVA_SOURCE = "C:\Java\Source"

All Classes generated and stored in the Enterprise Architect project are stored as:

%JAVA_SOURCE%\<xxx.java>.

Developer B now defines a local path as:

JAVA_SOURCE ="D:\Source".

Now, Enterprise Architect stores all java files in these directories as:

%JAVA_SOURCE%\<filename>

On each developer's machine, the filename is expanded to the correct local version.

39

Code Engineering Settings | Local Paths Dialog39

Code Engineering Using UML Models

1.4.3 Local Paths Dialog

The Local Paths dialog enables you to set up local paths for a single user on a particular machine. For a
description of what Local Paths are used for, see the Local Paths topic. To open the Local Paths dialog,
select the Settings | Local Paths option.

The Local Paths dialog enables you to define:

· Path - the local directory in the file system (for example, d:\java\source)

· ID - the shared ID that is substituted for the Local Path (for example, JAVA_SRC)

· Type - the language type (for example, Java).

And also to:

· Apply Path - Select a path and click on this button to update any existing paths in the model (with full path
names) to the shared relative path name (so d:\java\source\main.java might become %JAVA_SRC%\main.java)

· Expand Path - The opposite of Apply Path. This enables you to remove a relative path and substitute the
full path name.

Using the two options you can update and change existing paths.

Note:

You can also set up a hyperlink (see the UML Dictionary) on a diagram to access the Local Paths dialog, to
switch, update or expand your current Local Path.

1.4.4 Language Macros

When reverse engineering a language such as C++, you might find preprocessor directives scattered
throughout the code. This can make code management easier, but can hamper parsing of the underlying C++
language.

To help remedy this, you can include any number of macro definitions, which are ignored during the parsing
phase of the reverse engineering. It is still preferable, if you have the facility, to preprocess the code using the
appropriate compiler first; this way, complex macro definitions and defines are expanded out and can be
readily parsed. If you don't have this facility, then this option provides a convenient substitute.

38

Code Engineering Settings | Language Macros 40

© 1998-2010 Sparx Systems Pty Ltd

Note:

You can transport these language macro (or preprocessor macro) definitions between models, using the
Export Reference Data and Import Reference Data options on the Tools menu. The macros are exported
as a Macro List. See the Reference Data topic in UML Model Management.

Define a Macro

1. Select the Settings | Preprocessor Macros menu option. The Language Macros dialog displays.

2. Click on the Add New button.

3. Enter details for your macro.

4. Click on the OK button.

Macros Embedded Within Declarations

Macros are sometimes used within the declaration of Classes and operations, as in the following examples:

class __declspec Foo
{

int __declspec Bar(int p);
};

If declspec is defined as a C++ macro, as outlined above, the imported Class and operation contain a Tagged
Value called DeclMacro1 with value __declspec. (Subsequent macros would be defined as DeclMacro2,
DeclMacro3 and so on.) During forward engineering, these Tagged Values are used to regenerate the macros
in code.

Define Complex Macros

It is sometimes useful to define rules for complex macros that can span multiple lines. Enterprise Architect
ignores the entire code section defined by the rule. Such macros can be defined in Enterprise Architect as in
the following two examples. Both types can be combined in one definition.

Block Macros

BEGIN_INTERFACE_PART ^ END_INTERFACE_PART

where the ^ symbol represents the body of the macro. This enables skipping from one macro to another.

Note:

The spaces surrounding the ^ symbol are required.

Function Macros

RTTI_EMULATION()

Code Engineering Settings | Language Macros41

Code Engineering Using UML Models

where Enterprise Architect skips over the token including everything inside the parentheses.

1.4.5 Set Collection Classes

Enterprise Architect enables you to define Collection Classes for generating code from Association connectors
where the target role has a multiplicity setting greater than 1. There are two options for doing this:

1. On the Source Code Engineering section of the Options dialog (select the Tools | Options | Source
Code Engineering option), on each language page click on the Collection Classes button.

The Collection Classes for Association Roles dialog displays.

On this dialog, you can define:

· The default Collection Class for 1..* roles

· The ordered Collection Class to use for 1..* roles

· The qualified Collection Class to use for 1..* roles.

2. On the Detail tab of the Class Properties dialog (accessible from the right-click context menu of any
Class), click on the Collection Classes button.

The Collection Classes for Association Roles dialog again displays, but here you define for when only
this Class is used:

· The default Collection Class for 1..* roles

· The ordered Collection Class to use for 1..* roles

· The qualified Collection Class to use for 1..* roles.

When Enterprise Architect generates code for a connector that has a multiplicity role >1, the Collection Class
is calculated as follows:

1. If the Qualifier is set use the qualified collection:

· for the Class if set

· else use the code language qualified collection.

2. If the Order option is set use the ordered collection:

· for the Class if set

Code Engineering Settings | Set Collection Classes 42

© 1998-2010 Sparx Systems Pty Ltd

· else use the code language ordered collection.

3. Else use the default collection:

· for the Class if set

· else use the code language default collection.

Note:

You can include the marker #TYPE# in the collection name; Enterprise Architect replaces this with the name
of the Class being collected at source generation time (for example, Vector<#TYPE#> would become
Vector<foo>).

Additionally, on both the Source Role and Target Role tabs of the Association Property dialog (accessible from
the right-click context menu of any Association) there is a Member Type field. If you set this, the value you
enter overrides all the above options. The example below shows a defined PersonList; when code is
generated, because this has a Multiplicity greater than 1 and the Member Type is defined, the variable
created is of type PersonList.

1.4.6 Language Options

You can set up various options for how Enterprise Architect handles a particular language when generating
code. These options are accessible on the Options dialog (select the Tools | Options menu option).

Under the Source Code Engineering option, select the required language. The following topics outline the
options available for each language.

· ActionScript

· Ada 2005 (in the System Engineering and Ultimate editions of Enterprise Architect)

· ANSI C

· C#

· C++

43

43

44

45

46

Code Engineering Settings | Language Options43

Code Engineering Using UML Models

· Delphi

· Delphi Properties

· Java

· PHP

· Python

· SystemC

· VB.Net

· Verilog

· VHDL

· Visual Basic

· MDG Technology Languages

· Reset Options

1.4.6.1 ActionScript Options

Configure options for ActionScript code generation using the ActionScript Specifications page of the Options
dialog (select the Tools | Options | Source Code Engineering | ActionScript menu option). The options you
can specify include the:

· Default ActionScript version to generate (AS2.0 or AS3.0)

· Default file extensions (header and source)

· Default source directory

· Editor for ActionScript code.

1.4.6.2 Ada 2005 Options

Note:

Ada 2005 support is available in the System Engineering and Ultimate editions of Enterprise Architect.

Configure options for Ada 2005 code generation using the Ada page of the Options dialog (select the Tools |

47

48

51

51

52

53

54

55

56

57

58

59

Code Engineering Settings | Language Options 44

© 1998-2010 Sparx Systems Pty Ltd

Options | Source Code Engineering | Ada menu option). The options you can specify include:

· Use Class Name for Tagged Record - to inform the reverse engineering process whether the name of the
Tagged Record is the same as the package name

· Alternate Tagged Record Name - to advise the engine of the alternate Tagged Record name to locate

· Define Reference for Tagged Record - to specify whether the engine should create a reference type for the
Tagged Record (if one is not defined)

· Reference Type Name - to supply the name of the reference type to be created (default is Ref)

· Ref Parameter Style - to specify the reference parameter of a Reference / Access type

· Ignore Reference Parameter Name - to tell the engine to ignore the name of the reference parameter

· Ref Parameter Name - to indicate the name of the reference parameter to locate

1.4.6.3 C Options

Configure options for C code generation using the C Specifications page of the Options dialog (select the
Tools | Options | Source Code Engineering | C menu option). The options you can specify include:

· Support for Object Oriented coding

· Default file extensions (header and source)

· Default source directory

· Editor for C code

· Path that Enterprise Architect uses to search for the implementation file; the first path in the list is the
default path when generating.

Code Engineering Settings | Language Options45

Code Engineering Using UML Models

1.4.6.4 C# Options

Configure options for C# code generation using the C# Specifications page of the Options dialog (select the
Tools | Options | Source Code Engineering | C# menu option). The options you can specify include the
default:

· File extension

· 'Get' prefix

· 'Set' prefix

· Directory for opening and saving C# source code.

Code Engineering Settings | Language Options 46

© 1998-2010 Sparx Systems Pty Ltd

1.4.6.5 C++ Options

Configure options for C++ code generation using the C++ Specifications page of the Options dialog (select
the Tools | Options | Source Code Engineering | C++ menu option). The options you can specify include:

· The version of C++ to generate; this controls the set of templates used and how properties are created

· The default reference type used when a type is specified by reference

· The default file extensions

· Default Get/Set prefixes

· Default source directory

· The path that Enterprise Architect uses to search for the implementation file. The first path in the list is the
default path when generating new implementation files and parsing existing files; if you add further
directories, Enterprise Architect also searches these when parsing existing files.

For example, you have a directory inc that contains all of your headers, while the source code is mixed
through directories src, srca, and srcb. You therefore set the Source Path option to ../src/;../srca/;../srcb/.
This ensures that new implementation files are generated into src, but when parsing existing files
Enterprise Architect looks in all three source directories (but never in the inc directory). You must still
ensure that the implementation file name matches the header file name, and that the file extension
matches the extension specified in the options. If these conditions are not met, Enterprise Architect cannot
handle that code.

Code Engineering Settings | Language Options47

Code Engineering Using UML Models

1.4.6.6 Delphi Options

Configure options for Delphi code generation using the Delphi Specifications page of the Options dialog
(select the Tools | Options | Source Code Engineering | Delphi menu option). The options you can specify
include the:

· Default file extension

· Default source directory

You can also set a default directory for opening and saving Delphi source code.

Code Engineering Settings | Language Options 48

© 1998-2010 Sparx Systems Pty Ltd

You should also set Delphi properties within each Class element.

1.4.6.6.1 Delphi Properties

Enterprise Architect has comprehensive support for Delphi properties. These are implemented as Tagged
Values, with a specialized property editor to help create and modify Class properties. The Class image below
illustrates the appearance of a Delphi Class that has had properties added to it. These are stored as Tagged
Values, and by using the Feature Visibility element context menu option, you can display the 'tags'
compartment that contains the properties. Imported Delphi Classes with properties have this feature
automatically made visible for your convenience.

Note:

When you use the Create Property dialog from the Attribute screen, Enterprise Architect generates a pair of
Get and Set functions, together with the required property definition as Tagged Values. You can manually edit
these Tagged Values if required.

48

Code Engineering Settings | Language Options49

Code Engineering Using UML Models

To manually activate the property editor

1. Ensure the Class you have selected has the code generation language set to Delphi

2. Right-click on the Class and select the Delphi Properties context menu option to open the editor.

The Delphi Properties editor enables you to build properties in a simple and straightforward manner. From
here you can:

· Change the name and scope (only Public and Published are currently supported)

· Change the property type (the drop-down list includes all defined Classes in the project)

· Set the Read and Write information (the drop-down lists have all the attributes and operations from the
current Class; you can also enter free text)

· Set Stored to True or False

· Set the Implements information

· Set the Default value, if one exists.

Code Engineering Settings | Language Options 50

© 1998-2010 Sparx Systems Pty Ltd

Notes:

· Public properties are displayed with a '+' symbol prefix and published with a '^'.

· When creating a property in the Create Property Implementation dialog (accessed through the Attributes
dialog), you can set the scope to Published if the property type is Delphi - see the example below.

Limitations

· Only Public and Published are supported

· If you change the name of a property and forward engineer, a new property is added, but the old one must

Code Engineering Settings | Language Options51

Code Engineering Using UML Models

be manually deleted from the source file.

1.4.6.7 Java Options

Configure options for Java code generation using the Java Specifications page of the Options dialog (select
the Tools | Options | Source Code Engineering | Java menu option). The options you can specify include
the:

· Default file extension

· Default 'Get' prefix

· Default 'Set' prefix

You can also set a default directory for opening and saving Java source code.

1.4.6.8 PHP Options

Configure options for PHP code generation using the PHP Specifications page of the Options dialog (select
the Tools | Options | Source Code Engineering | PHP menu option). The options you can specify include
the:

· Default source extension - specify the extension to be used when creating files for PHP source

· Default import extension - a semi-colon separated list of extensions to look at when doing a directory code
import for PHP

· Default PHP version - the version of PHP to generate.

You can also set a default directory for opening and saving PHP source code.

8

Code Engineering Settings | Language Options 52

© 1998-2010 Sparx Systems Pty Ltd

1.4.6.9 Python Options

Configure options for Python code generation using the Python Specifications page of the Options dialog
(select the Tools | Options | Source Code Engineering | Python menu option). The options you can specify
include the:

· Default file extension(s)

· Default source directory.

You can also set the editor for Python code.

Code Engineering Settings | Language Options53

Code Engineering Using UML Models

1.4.6.10 SystemC Options

Configure options for SystemC code generation using the SystemC page of the Options dialog (select the
Tools | Options | Source Code Engineering | SystemC menu option). The options you can specify include
the:

· Default file extension(s)

· Default source directory

· Editor for changing code.

Code Engineering Settings | Language Options 54

© 1998-2010 Sparx Systems Pty Ltd

1.4.6.11 VB.Net Options

Configure options for VB.Net code generation using the VB.Net Specifications page of the Options dialog
(select the Tools | Options | Source Code Engineering | VB.Net menu option). The options you can specify
include the:

· Default file extension

· Default source directory.

Code Engineering Settings | Language Options55

Code Engineering Using UML Models

1.4.6.12 Verilog Options

Configure options for Verilog code generation using the Verilog page of the Options dialog (select the Tools |
Options | Source Code Engineering | Verilog menu option). The options you can specify include the:

· Default file extension(s)

· Default source directory

· Editor for changing code.

Code Engineering Settings | Language Options 56

© 1998-2010 Sparx Systems Pty Ltd

1.4.6.13 VHDL Options

Configure options for VHDL code generation using the VHDL page of the Options dialog (select the Tools |
Options | Source Code Engineering | VHDL menu option). The options you can specify include the:

· Default file extension(s)

· Default source directory

· Editor for changing code.

Code Engineering Settings | Language Options57

Code Engineering Using UML Models

1.4.6.14 Visual Basic Options

Configure options for Visual Basic code generation using the VB Specifications page of the Options dialog
(select the Tools | Options | Source Code Engineering | Visual Basic menu option). The options you can
specify include the:

· Default file extension when reading/writing

· Default Visual Basic version

· MTS transaction mode for MTS objects

· Multi use (true or false)

· Persistable

· Data binding

· Global namespace

· Exposed

· Data source behavior

· Creatable.

Code Engineering Settings | Language Options 58

© 1998-2010 Sparx Systems Pty Ltd

1.4.6.15 MDG Technology Language Options

If you have loaded an MDG Technology that specifies a code module into your Sparx Systems > EA > MDG
Technologies folder (see the MDG Technologies in SDK section of SDK For Enterprise Architect), the
language is included in the Source Code Engineering list on the Options dialog. The language is only listed on
the Options dialog if an MDG Technology file actually uses it in your model.

The options for each language are based on what is defined in the technology code module, but are limited to
the following:

· Default Extension

· Default extension for generated source files

· Shown if the option is in the technology

· Saved per project.

· Import File Extensions

· Default folder to import source files from

· Shown if there is a grammar set in the technology

· Saved once for all projects.

· Generate Namespaces

· Option to generate namespaces or not

· Shown if the technology supports namespaces

· Saved once for all projects.

· Default Source Directory

· The default directory to save generated source files

· Always shown

· Saved once for all projects.

· Editor

· The editor that is loaded to edit the source files

· Always shown

· Saved once for all projects.

Code Engineering Settings | Language Options59

Code Engineering Using UML Models

· Att Type

· Default type for attributes

· Always shown

· Saved once for all projects.

These options are set in the technology inside the <CodeOptions> tag of a code module, as follows:

<CodeOption name="DefaultExtension">.rb</CodeOption>

1.4.6.16 Reset Options

Enterprise Architect stores some of the options for a Class when it is first created. Some are global; for
example $LinkClass is stored when you first create the Class, so it won't automatically pick up the global
change in the Options dialog in existing Classes. You must modify the options for the existing Class.

Modify Options for Single Class

To modify options for a single Class, follow the steps below:

1. Right-click on the Class to change, and select the Generate Code menu option from the context menu.
The Generate Code dialog displays.

2. Click on the Advanced button. The Object Options dialog displays.

3. Click on the Attributes/Operations button.

4. Change the options, and click on the Close button to apply changes.

Modify Options for All Classes

To modify options for all Classes within a package, follow the steps below:

1. Right-click on the package in the Project Browser. The context menu displays.

2. Select the Code Engineering | Reset Options for this Package menu option. The Manage Code
Generation dialog displays.

Code Engineering Settings | Language Options 60

© 1998-2010 Sparx Systems Pty Ltd

3. Reset the required defaults for each existing Class.

4. Click on the OK button to apply changes.

Code Template Framework | 61

Code Engineering Using UML Models

1.5 Code Template Framework

The Code Template Framework (CTF) is used during forward engineering of UML models. The CTF enables
you to:

· Generate source code from UML models

· Customize the way in which Enterprise Architect generates source code

· Forward engineer languages not specifically supported by Enterprise Architect.

The CTF consists of:

· Default Code Templates which are built into Enterprise Architect for forward engineering supported
languages

· A Code Template Editor for creating and maintaining user-defined Code Templates (also see SDK for
Enterprise Architect)

· Code templates to synchronize code .

1.5.1 Code Templates

Code templates enable you to customize code generation of existing languages. For example:

· Modify the file headers created when generating new files

· Change the style of the generated code (such as indenting or brace position) to match the required coding
standards

· Handle particular stereotypes to generate things like specialized method bodies and extra methods.

They also enable you to add code generation of entirely new languages that Enterprise Architect would
otherwise not be able to handle. In this situation it is most useful to combine code templates with an MDG
technology file that includes the datatypes, and options for default file extensions. See the Create MDG
Technologies topic in SDK for Enterprise Architect.

Enterprise Architect's base code templates specify the transformation from UML elements to the various
parts of a given programming language. The templates are written as plain text with a syntax that shares some
aspects of both mark-up languages and scripting languages. A simple example of a template used by
Enterprise Architect is the 'Class template'. It is used to generate source code from a UML Class:

%ClassNotes%
%ClassDeclaration%
%ClassBody%

The above template simply refers to three other templates, namely ClassNotes, ClassDeclaration and
ClassBody. The enclosing percent (%) signs indicate a macro. Code Templates consist of various types of
macros, each resulting in a substitution in the generated output. For a language such as C++, the result of
processing the above template might be:

/**
 * This is an example class note generated using code templates
 * @author Sparx Systems
 */
class ClassA: public ClassB
{
...
}

Execution of Code Templates

A reference to a template (such as the %ClassNotes% macro, from our example above) results in the
execution of that template.

Each template is designed for use with a particular element. For example the ClassNotes template is to be

61

64

66

62

Code Template Framework | Code Templates 62

© 1998-2010 Sparx Systems Pty Ltd

used with UML Class elements.

The element that is currently being generated is said to be in scope. If the element in scope is stereotyped
Enterprise Architect looks for a template that has been defined for that stereotype. If a match is found, the
specialized template is executed. Otherwise the default implementation of the base template is used.

Templates are processed sequentially, line by line, replacing each macro with its underlying text value from
the model.

1.5.1.1 Base Templates

The Code Template Framework consists of a number of base templates. Each base template transforms
particular aspects of the UML to corresponding parts of object-oriented languages.

The following table lists and briefly describes the base templates used in the CTF.

Template Description

Attribute A top-level template to generate member variables from UML attributes.

Attribute Declaration Used by the Attribute template to generate a member variable declaration.

Attribute Notes Used by the Attribute template to generate member variable notes.

Class A top-level template for generating Classes from UML Classes.

Class Base Used by the Class template to generate a base Class name in the inheritance list
of a derived Class, where the base Class doesn't exist in the model.

Class Body Used by the Class template to generate the body of a Class.

Class Declaration Used by the Class template to generate the declaration of a Class.

Class Interface Used by the Class template to generate an interface name in the inheritance list
of a derived Class, where the interface doesn't exist in the model.

Class Notes Used by the Class template to generate the Class notes.

File A top-level template for generating the source file. For languages such as C++,
this corresponds to the header file.

Import Section Used in the File template to generate external dependencies.

Linked Attribute A top-level template for generating attributes derived from UML Associations.

Linked Attribute Notes Used by the Linked Attribute template to generate the attribute notes.

Linked Attribute
Declaration

Used by the Linked Attribute template to generate the attribute declaration.

Linked Class Base Used by the Class template to generate a base Class name in the inheritance list
of a derived Class, for a Class element in the model that is a parent of the
current Class.

Linked Class Interface Used by the Class template to generate an Interface name in the inheritance list
of a derived Class, for an Interface element in the model that is a parent of the
current Class.

Namespace A top-level template for generating namespaces from UML packages. (Although
not all languages have namespaces, this template can be used to generate an
equivalent construct, such as packages in Java.)

Namespace Body Used by the Namespace template to generate the body of a namespace.

Namespace Declaration Used by the Namespace template to generate the namespace declaration.

Code Template Framework | Code Templates63

Code Engineering Using UML Models

Template Description

Operation A top-level template for generating operations from a UML Class's operations.

Operation Body Used by the Operation template to generate the body of a UML operation.

Operation Declaration Used by the Operation template to generate the operation declaration.

Operation Notes Used by the Operation template to generate documentation for an operation.

Parameter Used by the Operation Declaration template to generate parameters.

The second table lists templates used for generating code for languages that have separate interface and
implementation sections.

Template Description

Class Impl A top-level template for generating the implementation of a Class.

Class Body Impl Used by the Class Impl template to generate the implementation of Class
members.

File Impl A top-level template for generating the implementation file.

File Notes Impl Used by the File Impl template to generate notes in the source file.

Import Section Impl Used by the File Impl template to generate external dependencies.

Operation Impl A top-level template for generating operations from a UML Class's operations.

Operation Body Impl Used by the Operation template to generate the body of a UML operation.

Operation Declaration
Impl

Used by the Operation template to generate the operation declaration.

Operation Notes Impl Used by the Operation template to generate documentation for an operation.

The base templates form a hierarchy, which varies slightly across different programming languages. A typical
template hierarchy relevant to a language like C# or Java (which do not have header files) is shown in the
example diagram below. In this diagram the templates are modeled as Classes (in reality they are just plain
text). This hierarchy would be slightly more complicated for languages like C++ and Delphi, which have
separate implementation templates.

Each of the base templates must be specialized to be of use in code engineering. In particular, each template
is specialized for the supported languages (or 'products'). For example, there is a ClassBody template defined
for C++, another for C#, another for Java, and so on. By specializing the templates, you can tailor the code
generated for the corresponding UML entity.

Once the base templates are specialized for a given language, they can be further specialized based on:

· A Class's stereotype

· A feature's stereotype (where the feature can be an operation or attribute)

This type of specialization enables, for example, a C# operation that is stereotyped as «property» to have a
different Operation Body template from an ordinary operation. The Operation Body template can then be
specialized further, based on the Class stereotype.

Code Template Framework | Code Templates 64

© 1998-2010 Sparx Systems Pty Ltd

Note:

The above Class Model shows the hierarchy of Code Generation templates for a language such as C# or
Java. The Aggregation connectors denote references between templates.

1.5.2 The Code Template Editor

The Code Template Editor provides the facilities of the Common Code Editor, including intellisense for the
various macros. For more information on intellisense and the Common Code Editor, see the Code Editors
topic in Using Enterprise Architect - UML Modeling Tool.

To access the Code Template Editor window, select the Settings | Code Generation Templates menu
option.

Code Template Framework | The Code Template Editor65

Code Engineering Using UML Models

Option Use to

Language Select the programming language.

New Language Display the Programming Languages Datatypes dialog (see the Reference Data
topic in UML Model Management), which enables you to include programming
languages other than those supported for Enterprise Architect, for which to create
or edit code templates.

Template Display the contents of the active template, and provides the editor for modifying
templates.

Templates List the base code templates. The active template is highlighted. The Modified
field indicates whether you have changed the default template for the current
language.

Stereotype Overrides List the stereotyped templates, for the active base template.

The Modified field indicates whether you have modified a default stereotyped
template.

Add New Custom
Template

Invoke a dialog for creating a custom stereotyped template.

Add New Stereotyped
Override

Invoke a dialog for adding a stereotyped template, for the currently selected base
template.

Code Template Framework | The Code Template Editor 66

© 1998-2010 Sparx Systems Pty Ltd

Option Use to

Get Default Template Update the editor display with the default version of the active template.

Save Overwrite the active templates with the contents of the editor.

Delete If you have overridden the active template, the override is deleted and replaced
by the corresponding default code template.

For information on creating and editing code templates using the Code Template Editor window, see SDK for
Enterprise Architect.

Note:

User-modified and user-defined Code Templates can be imported and exported as Reference Data (see the
Import and Export Reference Data topic in UML Model Management. The templates defined for each
language are indicated in the Export Reference Data dialog by the language name with the suffix
_Code_Templates. If no templates exist for a language, there is no entry for the language in the dialog.

1.5.3 Synchronize Code

Enterprise Architect uses code templates during the forward synchronization of the following programming
languages:

· ActionScript

· C

· C++

· C#

· Delphi

· Java

· PHP

· Python

· VB

· VB.Net

Only a subset of the code templates are used during synchronization. This subset corresponds to the distinct
sections that Enterprise Architect recognizes in the source code. The following table lists the code templates
and their corresponding code sections, which can be synchronized.

Code Template Code Section

Class Notes Comments preceding Class declaration.

Class Declaration Up to and including Class parents.

Attribute Notes Comments preceding Attribute declaration.

Attribute Declaration Up to and including terminating character.

Operation Notes Comments preceding operation declaration.

Operation Notes Impl As for Operation Notes.

Operation Declaration Up to and including terminating character.

Operation Declaration Impl Up to and including terminating character.

Operation Body Everything between and including the braces.

Operation Body Impl As for Operation Body.

Three types of change can occur in the source when it is synchronized with the UML model:

Code Template Framework | Synchronize Code67

Code Engineering Using UML Models

· Synchronize Existing Sections : for example, changing the return type in an operation declaration

· Add New Sections to Existing Features : for example, adding notes to a Class declaration, where there
were previously none

· Add New Features and Elements : for example, adding a new operation to a Class.

Each of these changes must be handled differently by Enterprise Architect; their effect on the CTF is
described in the linked topics above.

1.5.3.1 Synchronize Existing Sections

When an existing section in the source code differs from the result generated by the corresponding template,
that section is replaced. Consider for example, the following C++ Class declaration:

[asm] class A: public B

Now assume you add an inheritance relationship from Class A to Class C; the entire Class declaration would
be replaced with something like:

[asm] class A: public B, public C

1.5.3.2 Add New Sections

The following can be added as new sections, to existing features in the source code:

· Class Notes

· Attribute Notes

· Operation Notes

· Operation Notes Impl

· Operation Body

· Operation Body Impl

Assume Class A from the previous example had no note when you originally generated the code. Now
assume that you specify a note in the model for Class A. Enterprise Architect attempts to add the new note
from the model during synchronization. It does this by executing the Class Notes template.

To make room for the new section to be inserted, you can specify how much white space to append to the
section via synchronization macros. These macros are described in SDK for Enterprise Architect.

1.5.3.3 Add New Features and Elements

The following features and elements can be added to the source code during synchronization:

· Attributes

· Inner Classes

· Operations.

These are added by executing the relevant templates for each new element or feature in the model. Enterprise
Architect attempts to preserve the appropriate indenting of new features in the code, by finding the indents
specified in list macros of the Class. For languages that make use of namespaces, the
synchNamespaceBodyIndent macro is available. Classes defined within a (non-global) namespace are
indented according to the value set for this macro, during synchronization. This value is ignored for Classes
defined within a package setup as a root namespace, or if the Generate Namespace option is set to False in
the appropriate language page (C#, C++ or VB.Net) on the Options dialog (Tools | Options | Source Code
Engineering | <language>).

67

67

67

Modeling Conventions | 68

© 1998-2010 Sparx Systems Pty Ltd

1.6 Modeling Conventions

In order to get the most out of the round trip engineering in Enterprise Architect, you must be familiar with the
modeling conventions used when generating and reverse engineering the languages you use. This topic
describes the stereotypes, Tagged Values and other conventions used in code engineering in Enterprise
Architect for the following supported languages:

· ActionScript

· Ada 2005 (for Systems Engineering and Ultimate editions of Enterprise Architect)

· C

· C#

· C++

· Delphi

· Java

· PHP

· Python

· System C

· VB.Net

· Verilog

· VHDL

· Visual Basic

Note:

Enterprise Architect incorporates a number of visibility indicators or scope values for its supported languages.
These include, for:

· All languages - Public (+), Protected (#) and Private (-)

· Java - Package (~)

· Delphi - Published (^)

· C# - Internal (~), Protected Internal (^)

· ActionScript - Internal (~)

· VB.NET - Friend (~), Protected Friend (^)

· PHP - Package (~)

· Python - Package (~)

· C - Package (~)

· C++ - Package (~).

69

69

71

73

75

78

79

80

81

81

83

84

85

87

Modeling Conventions | ActionScript Conventions69

Code Engineering Using UML Models

1.6.1 ActionScript Conventions

Enterprise Architect supports round trip engineering of ActionScript 2 and 3, where the following conventions
are used.

Stereotypes

Stereotype Applies To Corresponds To

literal Operation A literal method referred to by a variable.

property get Operation A read property.

property set Operation A write property.

Tagged Values

Tag Applies To Corresponds To

attribute_name Operation with stereotype property
get or property set

The name of the variable behind this
property.

dynamic Class or Interface The dynamic keyword.

final ActionScript 3: Operation The final keyword.

intrinsic ActionScript 2: Class The intrinsic keyword

namespace ActionScript 3: Class, Interface,
Attribute, Operation

The namespace of the current element.

override ActionScript 3: Operation The override keyword.

prototype ActionScript 3: Attribute The prototype keyword.

rest ActionScript 3: Parameter The rest parameter (...).

Common Conventions

· Package qualifiers (ActionScript 2) and Packages (ActionScript 3) are generated when the current package
is not a namespace root

· An unspecified type is modeled as var or an empty Type field.

ActionScript 3 Conventions
· The Is Leaf property of a Class corresponds to the sealed keyword

· If a namespace tag is specified it overrides the Scope that is specified.

See Also

· Import Source Code

· Generate Source Code

· ActionScript Options

1.6.2 Ada 2005

Ada 2005 support is available in the System Engineering and Ultimate editions of Enterprise Architect.

Enterprise Architect supports round trip engineering of Ada 2005, where the following conventions are used.

17

5

12

43

Modeling Conventions | Ada 2005 70

© 1998-2010 Sparx Systems Pty Ltd

Stereotypes

Stereotype Applies To Corresponds To

adaPackage Class A package specification in Ada 2005 without a
tagged record.

adaProcedure Class A procedure specification in Ada 2005.

delegate Operation Access to a subprogram.

enumeration Inner Class An enum type.

struct Inner Class A record definition.

typedef Inner Class A type definition, subtype definition, access type
definition, renaming.

Tagged Values

Tag Applies To Corresponds To

Discriminant Inner Class with stereotype typedef The type's discriminant.

IsAccess Parameter Determination of whether the parameter is an
access variable.

InstantiatedUnitTy
pe

Inner Class with stereotype typedef The instantiated unit's type (Package /
Procedure / Function).

PartType Inner Class with stereotype typedef The part type (renames or new).

Type Inner Class with stereotype typedef If Value = SubType, set subtype.

If Value = Access, set access type.

Other Conventions
· Appropriate type of source files: Ada specification file, .ads.

· Ada 2005 imports packages defined as either <<adaPackage>>Class or Class, based on the settings in
the Ada options .

· A package in the Ada specification file is imported as a Class if it contains a Tagged Record, the name of
which is governed by the options Use Class Name for Tagged Record and Alternate Tagged Record
Name. All attributes defined in that Tagged Record are absorbed as the Class's attributes.

· A procedure / function in an Ada specification file is considered as the Class's member function if its first
parameter satisfies the conditions specified in the options Ref Param Style, Ignore Reference parameter
name and Ref parameter name.

· The option Define Reference for Tagged Record, if enabled, creates a reference type for the Class, the
name of which is determined by the option Reference Type Name.

For example: HelloWorld.ads

package HelloWorld is
type HelloWorld is tagged record

Att1: Natural;
Att3: Integer;

end record;

-- Public Functions
function MyPublicFunction (P: HelloWorld) return String;
procedure MyPublicFunction (P1: in out HelloWorld; AFlag: Boolean);

private
-- Private Functions
function MyPrivateFunction (P: HelloWorld) return String;
procedure MyPrivateFunction (P1: in out HelloWorld; AFlag: Boolean);

43

Modeling Conventions | Ada 200571

Code Engineering Using UML Models

end HelloWorld;

See Also

· Import Source Code

· Generate Source Code

· Ada 2005 Options

1.6.3 C Conventions

Note:

Separate conventions apply to Object Oriented programming in C .

Enterprise Architect supports round trip engineering of C, where the following conventions are used:

Stereotype

Stereotype Applies To Corresponds To

enumeration Inner Class An enum type.

struct Inner Class A struct type.

Attribute A keyword struct in variable definition.

typedef Inner Class A typedef statement, where the parent is the
original type name.

union Inner Class A union type.

Attribute A keyword union in variable definition.

Tagged Values

Tag Applies To Corresponds To

anonymous Class also containing the The name of this class being defined only by

5

12

43

72

Modeling Conventions | C Conventions 72

© 1998-2010 Sparx Systems Pty Ltd

Tag Applies To Corresponds To

Tagged Value typedef the typedef statement.

bodyLocation Operation The location the method body is generated
to. Expected values are header, classDec
or classBody.

typedef Class with stereotype other
than typedef

This Class being defined in a typedef
statement.

C Code Generation for UML Model

UML C Code Notes

A Class A pair of C files (.h + .c) File name is the same as Class name.

Operation (public &
protected)

Function declaration in .h file
and definition in .c file

Operation (private) Function definition in .c file
only

Attribute (public & protected) Variable definition in .h file

Attribute (private) Variable definition in .c file

Inner Class (without
stereotype)

(N/A) This inner Class would be ignored

See Also

· Import Source Code

· Generate Source Code

· C Options

1.6.3.1 Object Oriented Programming In C

The following conventions are used for Object-Oriented programming in C.

To configure Enterprise Architect to support Object-Oriented programming using C, you must set the Object
Oriented Support option to True on the C Specifications page of the Options dialog.

Stereotype

Stereotype Applies To Corresponds To

enumeration Class An enum type.

struct Class A struct type.

Attribute A keyword struct in variable definition.

typedef Class A typedef statement, where the parent is the original
type name.

union Class A union type.

Attribute A keyword union in variable definition.

5

12

44

44

Modeling Conventions | C Conventions73

Code Engineering Using UML Models

Tagged Values

Tag Applies To Corresponds To

anonymous Class with stereotype of
enumeration, struct or union.

The name of this Class being defined only by the
typedef statement.

bodyLocation Operation The location the method body is generated to.
Expected values are header, classDec or classBody.

define Attribute #define statement.

typedef Class with stereotype of
enumeration, struct or union.

This Class being defined in a typedef statement.

Object-Oriented C Code Generation for UML Model

The basic idea of implementing a UML Class in C code is to group the data variable (UML attributes) into a
structure type. This structure is defined in a .h file so that it can be shared by other classes and by the client
that referred to it.

An operation in a UML Class is implemented in C code as a function. The name of the function must be a fully
qualified name that consists of the operation name, as well as the Class name to indicate that the operation is
for that Class. A delimiter (specified in the Namespace Delimiter option on the C Specifications page) is
used to join the Class name and function (operation) name.

The function in C code must also have a reference parameter to the Class object. You can modify the
Reference as Operation Parameter, Reference Parameter Style and Reference Parameter Name options
on the C Specifications page to support this reference parameter.

Limitations of Object-Oriented Programming in C

1. No scope mapping for an attribute: an attribute in a UML Class is mapped to a structure variable in C
code, and its scope (private, protected or public) is ignored.

2. Currently an inner Class is ignored: if a UML Class is the inner Class of another UML Class, it is ignored
when generating C code.

3. Initial value is ignored: the initial value of an attribute in a UML Class is ignored in generated C code.

See Also

· Import Source Code

· Generate Source Code

· C Options

1.6.4 C# Conventions

Enterprise Architect supports the round trip engineering of C#, where the following conventions are used.

Stereotypes

Stereotype Applies To Corresponds To

enumeration Class An enum type.

event Operation An event.

extension Operation A Class extension method, represented in code by a this
parameter in the signature.

indexer Operation A property acting as an index for this Class.

partial Operation The partial keyword on an operation.

44

5

12

44

Modeling Conventions | C# Conventions 74

© 1998-2010 Sparx Systems Pty Ltd

Stereotype Applies To Corresponds To

property Operation A property possibly containing both read and write code.

struct Class A struct type.

Tagged Values

Tag Applies To Corresponds To

argumentName Operation with stereotype
extension

The name given to the this parameter.

attributeName Operation with stereotype
property or event

The name of the variable behind this property or event.

className Operation with stereotype
extension

The Class that this method is being added to.

const Attribute The const keyword.

definition Operation with stereotype
partial

Whether this is the declaration of the method, or the
definition.

delegate Operation The delegate keyword.

enumType Operation with stereotype
property

The datatype that the property is represented as.

extern Operation The extern keyword.

fixed Attribute The fixed keyword.

generic Operation The generic parameters for this Operation.

genericConstraint
s

Templated Class or
Interface, Operation with
tag generic

The constraints on the generic parameters of this type
or operation.

Implements Operation The name of the method this implements, including the
interface name.

ImplementsExplici
t

Operation
The presence of the source interface name in this
method declaration.

initializer Operation A constructor initialization list.

new Class, Interface, Operation The new keyword.

override Operation The override keyword.

params Parameter A parameter list using the params keyword.

partial Class, Interface The partial keyword.

readonly
Operation with stereotype
property

This property only defining read code.

sealed Operation The sealed keyword.

static Class The static keyword.

unsafe Class, Interface, Operation The unsafe keyword.

Modeling Conventions | C# Conventions75

Code Engineering Using UML Models

Tag Applies To Corresponds To

virtual Operation The virtual keyword.

writeonly
Operation with stereotype
property

This property only defining write code.

Other Conventions
· Namespaces are generated for each package below a namespace root

· The Const property of an attribute corresponds to the readonly keyword, while the tag const corresponds to
the const keyword

· The value of inout for the Kind property of a parameter corresponds to the ref keyword

· The value of out for the Kind property of a parameter corresponds to the out keyword

· Partial Classes can be modeled as two separate Classes with the partial tag

· The Is Leaf property of a Class corresponds to the sealed keyword.

See Also

· Import Source Code

· Generate Source Code

· C# Options

1.6.5 C++ Conventions

Enterprise Architect supports round trip engineering of C++, including the Managed C++ and C++/CLI
extensions, where the following conventions are used.

Stereotypes

Stereotype Applies To Corresponds To

enumeration Class An enum type.

friend Operation The friend keyword.

property get Operation A read property.

property set Operation A write property.

struct Class A struct type.

typedef Class
A typedef statement, where the parent is the original type
name.

union Class A union type.

Tagged Values

Tag Applies To Corresponds To

afx_msg Operation The afx_msg keyword.

anonymous Class also containing the
Tagged Value typedef

The name of this class being only defined by the typedef
statement.

attribute_name Operation with stereotype
property get or property
set

The name of the variable behind this property.

17

5

12

45

76 77

Modeling Conventions | C++ Conventions 76

© 1998-2010 Sparx Systems Pty Ltd

Tag Applies To Corresponds To

bitfield Attribute The size, in bits, allowed for storage of this attribute.

bodyLocation Operation The location the method body is generated to; expected
values are header, classDec or classBody.

callback Operation A reference to the CALLBACK macro.

explicit Operation The explicit keyword.

initializer Operation A constructor initialization list.

inline Operation The inline keyword and inline generation of the method body.

mutable Attribute The mutable keyword.

throws Operation The exceptions that are thrown by this method.

typedef Class with stereotype
other than typedef

This Class being defined in a typedef statement.

typeSynonyms Class The typedef name and/or fields of this type.

volatile Operation The volatile keyword.

Other conventions
· Namespaces are generated for each package below a namespace root

· By Reference attributes correspond to a pointer to the type specified

· The Transient property of an attribute corresponds to the volatile keyword

· The Abstract property of an attribute corresponds to the virtual keyword

· The Const property of an operation corresponds to the const keyword, specifying a constant return type

· The Is Query property of an operation corresponds to the const keyword, specifying the method doesn't
modify any fields

· The Pure property of an operation corresponds to a pure virtual method using the "= 0" syntax

· The Fixed property of a parameter corresponds to the const keyword.

See Also

· Import Source Code

· Generate Source Code

· C++ Options

1.6.5.1 Managed C++ Conventions

The following conventions are used for managed extensions to C++ prior to C++/CLI . In order to set
Enterprise Architect to generate managed C++ you must modify the C++ version in the C++ Options .

Stereotypes

Stereotype Applies To Corresponds To

property Operation The __property keyword.

property get Operation The __property keyword and a read property.

property set Operation The __property keyword and a write property.

reference Class The __gc keyword.

17

5

12

46

77

46

Modeling Conventions | C++ Conventions77

Code Engineering Using UML Models

Stereotype Applies To Corresponds To

value Class The __value keyword.

Tagged Values

Tag Applies To Corresponds To

managedType Class with stereotype reference,
value or enumeration; Interface

The keyword used in declaration of this type.
Expected values are class or struct.

Other Conventions
· The typedef and anonymous tags from native C++ are not supported

· The Pure property of an operation corresponds to the keyword __abstract.

See Also

· Import Source Code

· Generate Source Code

1.6.5.2 C++/CLI Conventions

The following conventions are used for modeling C++/CLI extensions to C++. In order to set Enterprise
Architect to generate managed C++/CLI you must modify the C++ version in the C++ Options .

Stereotypes

Stereotype Applies To Description

event Operation Defines an event to provide access to the event handler for
this Class.

property Operation, Attribute This is a property possibly containing both read and write
code.

reference Class Corresponds to the ref class or ref struct keyword.

value Class Corresponds to the value class or value struct keyword.

Tagged Values

Tag Applies To Description

attribute_name Operation with
stereotype property or
event

The name of the variable behind this property or event.

generic Operation Defines the generic parameters for this Operation.

genericConstraint
s

Templated Class or
Interface, Operation
with tag generic

Defines the constraints on the generic parameters for this
Operation.

initonly Attribute Corresponds to the initonly keyword.

literal Attribute Corresponds to the literal keyword.

managedType Class with stereotype
reference, value or
enumeration; Interface

Corresponds to either the class or struct keyword.

5

12

46

Modeling Conventions | C++ Conventions 78

© 1998-2010 Sparx Systems Pty Ltd

Other Conventions
· The typedef and anonymous tags are not used

· The property get/property set stereotypes are not used

· The Pure property of an operation corresponds to the keyword abstract.

See Also

· Import Source Code

· Generate Source Code

1.6.6 Delphi Conventions

Enterprise Architect supports round trip engineering of Delphi, where the following conventions are used.

Stereotypes

Stereotype Applies To Corresponds To

constructor Operation A constructor.

destructor Operation A destructor.

dispinterface Class, Interface A dispatch interface.

enumeration Class An enumerated type.

metaclass Class A metaclass type.

object Class An object type.

operator Operation An operator.

property get Operation A read property.

property set Operation A write property.

struct Class A record type.

Tagged Values

Tag Applies To Corresponds To

attribute_name Operation with stereotype
property get or property set

The name of the variable behind this property.

overload Operation The overload keyword.

override Operation The override keyword.

packed Class The packed keyword.

property Class A property. See Delphi Properties for more
information.

reintroduce Operation The reintroduce keyword.

Other Conventions
· The Static property of an attribute or operation corresponds to the class keyword

· The Fixed property of a parameter corresponds to the const keyword

· The value of inout for the Kind property of a parameter corresponds to the Var keyword

5

12

48

Modeling Conventions | Delphi Conventions79

Code Engineering Using UML Models

· The value of out for the Kind property of a parameter corresponds to the Out keyword.

See Also

· Import Source Code

· Generate Source Code

· Delphi Options

1.6.7 Java Conventions

Enterprise Architect supports round trip engineering of Java - including AspectJ extensions - where the
following conventions are used.

Stereotypes

Stereotype Applies To Corresponds To

annotation Interface An annotation type.

enum Attributes within a Class stereotyped
enumeration

An enumerated option, distinguished from
other attributes that have no stereotype.

enumeration Class An enum type.

operator Operation An operator.

property get Operation A read property.

property set Operation A write property.

static Class or Interface The static keyword.

Tagged Values

Tag Applies To Corresponds To

annotations Anything The annotations on the current code feature.

arguments Attribute with stereotype enum The arguments that apply to this
enumerated value.

attribute_name Operation with stereotype property get or
property set

The name of the variable behind this
property.

dynamic Class or Interface The dynamic keyword.

generic Operation The generic parameters to this operation.

parameterList Parameter A parameter list with the ... syntax.

throws Operation
The exceptions that are thrown by this
method.

transient Attribute The transient keyword.

Other Conventions

· Package statements are generated when the current package is not a namespace root

· The Const property of an attribute or operation corresponds to the final keyword

· The Transient property of an attribute corresponds to the volatile keyword

· The Fixed property of a parameter corresponds to the final keyword.

5

12

47

80

17

Modeling Conventions | Java Conventions 80

© 1998-2010 Sparx Systems Pty Ltd

See Also

· Import Source Code

· Generate Source Code

· Java Options

1.6.7.1 AspectJ Conventions

The following are the conventions used for supporting AspectJ extensions to Java.

Stereotypes

Stereotype Applies To Corresponds To

advice Operation A piece of advice in an AspectJ aspect.

aspect Class An AspectJ aspect.

pointcut Operation A pointcut in an AspectJ aspect.

Tagged Values

Tag Applies To Corresponds To

className Attribute or operation within a Class
stereotyped aspect

The Classes this AspectJ intertype member belongs to.

Other Conventions
· The specifications of a pointcut are included in the Behavior field of the method.

See Also

· Import Source Code

· Generate Source Code

1.6.8 PHP Conventions

Enterprise Architect supports the round trip engineering of PHP 4 and 5, where the following conventions are
used.

Stereotypes

Stereotype Applies To Corresponds To

property get Operation A read property.

property set Operation A write property.

Tagged Values

Tag Applies To Corresponds To

attribute_name Operation with stereotype property
get or property set

The name of the variable behind this
property.

final Operations in PHP 5. The final keyword.

Common Conventions

· An unspecified type is modeled as var

5

12

51

5

12

Modeling Conventions | PHP Conventions81

Code Engineering Using UML Models

· Methods returning a reference are generated by setting the Return Type to var*

· Reference parameters are generated from parameters with the parameter Kind set to inout or out.

PHP 5 Conventions
· The final Class modifier corresponds to the Is Leaf property

· The abstract Class modifier corresponds to the Abstract property

· Parameter type hinting is supported by setting the Type of a parameter

· The value of inout or out for the Kind property of a parameter corresponds to a reference parameter.

See Also

· Import Source Code

· Generate Source Code

· PHP Options

1.6.9 Python Conventions

Enterprise Architect supports the round trip engineering of Python, where the following conventions are used.

Tagged values

Tag Applies To Corresponds To

decorators Class, Operation The decorators applied to this element in the source.

Other Conventions

· Model members with Private Scope correspond to code members with two leading underscores

· Attributes are only generated when the Initial value is not empty

· All types are reverse engineered as var.

See Also

· Import Source Code

· Generate Source Code

· Python Options

1.6.10 System C Conventions

Enterprise Architect supports round-trip engineering of SystemC, where the following conventions are used.

Stereotypes

Stereotype Applies To Corresponds To

delegate Method A delegate.

enumeration Inner Class An enum type.

friend Method A friend method.

property Method A property definition.

sc_ctor Method A SystemC constructor.

sc_module Class A SystemC module.

sc_port Attribute A port.

sc_signal Attribute A signal

5

12

51

5

12

52

Modeling Conventions | System C Conventions 82

© 1998-2010 Sparx Systems Pty Ltd

Stereotype Applies To Corresponds To

struct Inner Class A struct or union.

Tagged Values

Tag Applies To Corresponds To

kind Attribute (Port) Port kind (clocked, fifo, master, slave, resolved, vector).

mode Attribute (Port) Port mode (in, out, inout).

overrides Method The Inheritance list of a method declaration.

throw Method The exception specification of a method.

Other Conventions
· SystemC also inherits most of the stereotypes and Tagged Values of C++ .

SystemC Toolbox Pages

To access the SystemC pages of the Enterprise Architect UML Toolbox, select the More tools | HDL |
SystemC Constructs menu option. Drag these icons onto a diagram to model a SystemC design.

Page Item Use To

SystemC Module Define a SystemC Module.

An sc_module-stereotyped Class element.

Enumeration Define an Enumerated Type.

An enumeration-stereotyped Enumeration element.

Struct Define a Structure.

A struct-stereotyped Class element.

SystemC Features Port Define a SystemC Port.

An sc_port-stereotyped attribute.

Signal Define a SystemC Signal.

An sc_signal-stereotyped attribute.

Constructor Define a SystemC Constructor.

An sc_ctor-stereotyped method.

See Also

· Import Source Code

· Generate Source Code

· SystemC Language Options .

75

5

12

53

Modeling Conventions | VB.Net Conventions83

Code Engineering Using UML Models

1.6.11 VB.Net Conventions

Enterprise Architect supports round-trip engineering of Visual Basic.Net, where the following conventions are
used. Earlier versions of Visual Basic are supported as a different language.

Stereotypes

Stereotype Applies To Corresponds To

event Operation An event declaration.

import Operation An operation to be imported from another library.

module Class A module.

operator Operation An operator overload definition.

partial Operation The partial keyword on an operation.

property Operation A property possibly containing both read and
write code.

Tagged Values

Tag Applies To Corresponds To

Alias Operation with stereotype import The alias for this imported operation.

attribute_name Operation with stereotype property The name of the variable behind this property.

Charset Operation with stereotype import The character set clause for this import. One of
the values Ansi, Unicode or Auto.

delegate Operation The Delegate keyword.

enumTag Operation with stereotype property The datatype that this property is represented
as.

Handles Operation The handles clause on this operation.

Implements Operation The implements clause on this operation.

Lib Operation with stereotype import The library this import comes from.

MustOverride Operation The MustOverride keyword.

Narrowing Operation with stereotype operator The Narrowing keyword.

NotOverrideable Operation The NotOverrideable keyword.

Overloads Operation The Overloads keyword.

Overrides Operation The Overrides keyword.

parameterArray Parameter A parameter list using the ParamArray keyword.

partial Class, Interface The Partial keyword.

readonly Operation with stereotype property This property only defining read code.

shadows Class, Interface, Operation The Shadows keyword.

Shared Attribute The Shared keyword.

87

Modeling Conventions | VB.Net Conventions 84

© 1998-2010 Sparx Systems Pty Ltd

Tag Applies To Corresponds To

Widening Operation with stereotype operator The Widening keyword.

writeonly Operation with stereotype property This property only defining write code.

Other Conventions
· Namespaces are generated for each package below a namespace root

· The Is Leaf property of a Class corresponds to the NotInheritable keyword

· The Abstract property of a Class corresponds to the MustInherit keyword

· The Static property of an attribute or operation corresponds to the Shared keyword

· The Abstract property of an operation corresponds to the MustOverride keyword

· The value of in for the Kind property of a parameter corresponds to the ByVal keyword

· The value of inout or out for the Kind property of a parameter corresponds to the ByRef keyword.

See Also

· Import Source Code

· Generate Source Code

· VB.Net Options

1.6.12 Verilog Conventions

Enterprise Architect supports round-trip engineering of Verilog, where the following conventions are used.

Stereotypes

Stereotype Applies To Corresponds To

asynchronous Method A concurrent process.

enumeration Inner Class An enum type.

initializer Method An initializer process.

module Class A module.

part Attribute A component instantiation.

port Attribute A port.

synchronous Method A sequential process.

Tagged Values

Tag Applies To Corresponds To

kind Attribute (signal) The signal kind (such as register, bus).

mode Attribute (port) The port mode (in, out, inout).

Portmap Attribute (part) The generic / port map of the component instantiated.

sensitivity Method The sensitivity list of a sequential process.

type Attribute The range or type value of an attribute.

17

5

12

54

Modeling Conventions | Verilog Conventions85

Code Engineering Using UML Models

Verilog Toolbox Pages

To access the Verilog pages of the Enterprise Architect UML Toolbox, select the More tools | HDL | Verilog
Constructs menu option. Drag these icons onto a diagram to model a Verilog design.

Page Item Use To

Verilog Module Define a Verilog Module.

A module-stereotyped Class element.

Enumeration Define an Enumerated Type.

An enumeration-stereotyped Class element.

Verilog Features Port Define a Verilog Port.

A port-stereotyped attribute.

Part Define a Verilog component instantiation

A part-stereotyped attribute.

Attribute Define an attribute.

Procedure

· Concurrent

· Sequential

· Initializer.

Define a Verilog process:

· An asynchronous-stereotyped method

· A synchronous-stereotyped method

· An initializer-stereotyped method.

See Also

· Import Source Code

· Generate Source Code

· Verilog Language Options.

1.6.13 VHDL Conventions

Enterprise Architect supports round-trip engineering of VHDL, where the following conventions are used.

Stereotypes

Stereotype Applies To Corresponds To

architecture Class An architecture.

asynchronous Method An asynchronous process.

configuration Method A configuration.

enumeration Inner Class An enum type.

entity Interface An entity.

part Attribute A component instantiation.

port Attribute A port.

signal Attribute A signal declaration.

struct Inner Class A record definition.

synchronous Method A synchronous process.

5

12

55

Modeling Conventions | VHDL Conventions 86

© 1998-2010 Sparx Systems Pty Ltd

Stereotype Applies To Corresponds To

typedef Inner Class A type or subtype definition.

Tagged Values

Tag Applies To Corresponds To

isGeneric Attribute (port) The port declaration in a generic interface.

isSubType Inner Class
(typedef)

A subtype definition.

kind Attribute (signal) The signal kind (such as register, bus).

mode Attribute (port) The port mode (in, out, inout, buffer, linkage).

portmap Attribute (part) The generic / port map of the component instantiated.

sensitivity
Method
(synchronous)

The sensitivity list of a synchronous process.

type Inner Class
(typedef)

The type indication of a type declaration.

typeNameSpace Attribute (part) The type namespace of the instantiated component.

VHDL Toolbox Pages

To access the VHDL pages of the Enterprise Architect UML Toolbox, select the More tools | HDL | VHDL
Constructs menu option. Drag these icons onto a diagram to model a VHDL design.

Page Item Use To

VHDL Architecture Define an architecture to be associated with a VHDL entity.

An architecture-stereotyped Class element.

Entity Define a VHDL entity to contain the Port definitions.

An entity-stereotyped interface element.

Enumeration Define an Enumerated Type.

An enumeration-stereotyped enumeration element.

Struct Define a VHDL record.

A struct-stereotyped Class element.

Typedef Define a VHDL type or subtype

A typedef-stereotyped Class element.

VHDL Features Port Define a VHDL Port.

A port-stereotyped attribute.

Part Define a VHDL component instantiation

A part-stereotyped attribute.

Signal Define a VHDL signal.

A signal-stereotyped attribute.

Procedure Define a VHDL process:

Modeling Conventions | VHDL Conventions87

Code Engineering Using UML Models

Page Item Use To

· Concurrent

· Sequential

· Configuration
.

· An asynchronous-stereotyped method

· A synchronous-stereotyped method

· A configuration-stereotyped method.

See Also

· Import Source Code

· Generate Source Code

· VHDL Language Options.

1.6.14 Visual Basic Conventions

Enterprise Architect supports the round trip engineering of Visual Basic 5 and 6, where the following
conventions are used. Visual Basic .Net is supported as a different language.

Stereotypes

Stereotype Applies To Corresponds To

global Attribute The Global keyword.

import Operation An operation to be imported from another
library.

property get Operation A property get.

property set Operation A property set.

property let Operation A property let.

with events Attribute The WithEvents keyword.

Tagged Values

Tag Applies To Corresponds To

Alias Operation with stereotype import The alias for this imported operation.

attribute_name Operation with stereotype property get
, property set or property let

The name of the variable behind this property.

Lib Operation with stereotype import The library this import comes from.

New Attribute The New keyword.

Other Conventions
· The value of in for the Kind property of a parameter corresponds to the ByVal keyword

· The value of inout or out for the Kind property of a parameter corresponds to the ByRef keyword.

See Also

· Import Source Code

· Generate Source Code

· Visual Basic Options

5

12

56

83

5

12

57

 | 88

© 1998-2010 Sparx Systems Pty Ltd

2 XML Technologies

Enterprise Architect enables rapid modeling, forward engineering and reverse engineering of two key W3C
XML technologies:

· XML Schema (XSD)

· Web Service Definition Language (WSDL).

XSD and WSDL support is critical for the development of a complete Service Oriented Architecture (SOA),
and the coupling of UML 2.1 and XML provides the natural mechanism for specifying, constructing and
deploying XML-based SOA artifacts within an organization.

The following topics explain how to work with these technologies using Enterprise Architect.

· XML Schema (XSD)

· Web Services (WSDL)

89

106

http://www.w3.org/XML/Schema
http://www.w3.org/TR/wsdl

XML Schema (XSD) | 89

Code Engineering Using UML Models

2.1 XML Schema (XSD)

Enterprise Architect supports Forward and Reverse engineering of W3C XML schemas (XSD). The following
topics explain how to use Enterprise Architect to model, generate and import XML schemas:

· Model XSD

· Import XSD

· Generate XSD

2.1.1 Model XSD

XML schemas are modeled using UML Class diagrams. The XML Schema pages of the Enterprise Architect
UML Toolbox (see Using Enterprise Architect - UML Modeling Tool) provide in-built support for the UML profile
for XSD. This enables an abstract UML Class model to be automatically generated as a W3C XML Schema
(XSD) file.

The following Class diagram models simple schema for an example Employee Details system, intended to
store a company's employee contact information. The Classes shown form the EmployeeDetails package. The
UML attributes of the Classes map directly to XML elements or attributes. Note that the Classes have no
methods, since there is no meaningful correspondence between Class methods and XSD constructs.

89

102

100

http://www.sparxsystems.com/xml_schema_generation.htm
http://www.sparxsystems.com/xml_schema_generation.htm
http://www.w3.org/XML/Schema

XML Schema (XSD) | Model XSD 90

© 1998-2010 Sparx Systems Pty Ltd

The following code shows the schema generated for the Employee Details package by default. Notice how
each UML Class corresponds to a complexType definition in the schema. The Class attributes are generated
as schema elements contained in a Sequence model group within the definition. The Enumeration Class is the
exception here - it maps directly to an XSD enumeration, contained within a simpleType definition.

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="ContactInfo" type="ContactInfo"/>
<xs:complexType name="ContactInfo">

<xs:sequence>
<xs:element name="ContactInfo.homePhone" type="xs:string" maxOccurs="1"/>
<xs:element name="ContactInfo.email" type="xs:string"/>
<xs:element name="ContactInfo.streetAddress" type="xs:string"/>
<xs:choice>

<xs:element name="ContactInfo.mobilePhone" type="xs:string"/>
<xs:element name="ContactInfo.officePhone" type="xs:string"/>

</xs:choice>
</xs:sequence>

</xs:complexType>
<xs:simpleType name="Gender">

<xs:restriction base="xs:string">
<xs:pattern value="male|female"/>

</xs:restriction>
</xs:simpleType>
<xs:element name="Employee" type="Employee"/>
<xs:complexType name="Employee">

<xs:complexContent>

XML Schema (XSD) | Model XSD91

Code Engineering Using UML Models

<xs:extension base="Person">
<xs:sequence>

<xs:element name="status" type="Status"/>
<xs:element name="jobTitle" type="xs:string"/>
<xs:element name="startDate" type="xs:date"/>
<xs:element name="department" type="xs:string"/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<xs:element name="Person" type="Person"/>
<xs:complexType name="Person">

<xs:sequence>
<xs:element name="surName" type="xs:string" maxOccurs="1"/>
<xs:element name="firstName" type="xs:string" maxOccurs="1"/>
<xs:element name="birthDate" type="xs:string" maxOccurs="1"/>
<xs:element name="contactDetails" type="ContactInfo"/>

</xs:sequence>
<xs:attribute name="gender" use="optional" type="Gender"/>

</xs:complexType>
<xs:element name="EmployeeRecords" type="EmployeeRecords"/>
<xs:complexType name="EmployeeRecords">

<xs:all>
<xs:element name="Employee" type="Employee"/>

</xs:all>
</xs:complexType>
<xs:simpleType name="Status">

<xs:restriction base="xs:string">
<xs:enumeration value="Full-Time"/>
<xs:enumeration value="Part-Time"/>
<xs:enumeration value="Casual"/>

` <xs:enumeration value="Contract"/>
</xs:restriction>

</xs:simpleType>
</xs:schema>

The following topics provide further explanation:

· UML Profile for XSD

· XSD Datatypes Package

· Abstract XSD Models

2.1.1.1 UML Profile for XSD

The UML Profile for XSD specifies a set of stereotypes, Tagged Values and constraints that can be applied to
the UML model in order to change particular aspects of the resulting schema. For example, you might have to
convert certain UML Class attributes to XSD attributes, or use a model group other than the default Sequence.

Enterprise Architect provides native support for the UML Profile for XSD via the XML schema pages of the
Enterprise Architect UML Toolbox (see Using Enterprise Architect - UML Modeling Tool). Alternatively, you can
use the profile via Enterprise Architect's generic profile mechanism by downloading the UML Profile for XSD.
See the Using Profiles topic in Extending UML With Enterprise Architect for details on importing UML profiles
into Enterprise Architect. The XSD profile used by Enterprise Architect is an adaptation of the profile defined
in Modeling XML Applications with UML (David Carlson).

The XSD stereotypes provide an explicit mapping from XSD to UML constructs. The Tagged Values further
define aspects of the mapping, such as whether the elements should be qualified. Full information on the
Tagged Values can be obtained from the W3C XML Schema recommendation. The constraints define any
conditions that must be satisfied for the stereotype to apply.

The following stereotypes are provided:

· XSDschema

· XSDcomplexType

· XSDsimpleType

· XSDsequence

· XSDchoice

· XSDelement

· XSDattribute

91

97

98

92

93

93

94

94

94

95

http://www.sparxsystems.com/profile/XSDProfile.xml
http://www.w3.org/XML/Schema

XML Schema (XSD) | Model XSD 92

© 1998-2010 Sparx Systems Pty Ltd

· XSDany

· XSDrestriction

· XSDgroup

· XSDtopLevelElement

· XSDtopLevelAttribute

· XSDunion

· XSDattributeGroup .

The following tables list the features of the UML Profile for XSD.

Note:

Tagged Value names are shown in bold followed by the allowed values.

If a default value is used by Enterprise Architect's schema generator, it is underlined.

«XSDschema»

UML
Construct

Package

Description All Classes in a package are defined within one schema. This
stereotype can be used to specify schema-wide settings.

Tagged
Values

anonymousRole:
(true | false)

Specifies if the role name is included in the element declaration
for the UML attribute.

anonymousType:
(true | false)

Specifies whether the Class type is anonymous for attributes.

attributeFormDefault:
(qualified | unqualified)

Determines whether attribute instances must be qualified.

defaultNamespace: The default namespace used in this schema. This value is used
to specify the default namespace attribute (xmlns=), in the
schema element.

elementDerivation:
(true | false)

Determines whether inheritances are generated using XSD
extension or copy-down inheritance.

elementFormDefault:
(qualified | unqualified)

Determines whether element instances must be qualified.

memberNames:
(qualified | unqualified)

Determines whether elements generated from Class attributes
have their name qualified by the corresponding Class name.

modelGroup:
(all | sequence | choice)

Specifies the default XSD model group used to generate
complexType definitions.

schemaLocation: The URI that identifies the location of the schema. This value is
used in the import and include elements.

targetNamespace: The URI that uniquely identifies this schema's namespace.

targetNamespacePrefix: The prefix that abbreviates the targetNamespace.

version: The version of this schema.

Constraints None.

95

95

96

96

96

97

97

XML Schema (XSD) | Model XSD93

Code Engineering Using UML Models

«XSDcomplexType»

UML
Construct

Class

Description complexType definitions are created for generic UML Classes.
This stereotypes helps tailor the generation of a complexType
definition.

Tagged
Values

memberNames:
(qualified | unqualified)

Determines whether elements generated from the UML Class
attributes and associations have their name qualified by the
corresponding Class name for this complexType definition.

mixed:
(true | false)

Determines whether this element can contain mixed element
and character content. See the W3CXML Schema
recommendation.

modelGroup:
(all | sequence | choice)

Overrides the default XSD model for generating this
complexType definition.

Constraints None.

«XSDsimpleType»

UML
Construct

Class

Description An XSD simpleType is generated for Classes with this
stereotype.

Tagged
Values

derivation:
(restriction | list)

Specifies the derivation of the simpleType. See the W3C XML
Schema recommendation.

length:

See the W3C XML Schema recommendation.

minLength:

maxLength:

minInclusive:

minExclusive:

maxInclusive:

maxExclusive:

totalDigits:

fractionDigits:

whiteSpace:

pattern:

Constraints This Class can only participate in an inheritance relation with
another simpleType. It cannot have any attributes or own any
associations; they are ignored if present.

XML Schema (XSD) | Model XSD 94

© 1998-2010 Sparx Systems Pty Ltd

«XSDsequence»

UML
Construct

Class

Description The schema generator creates a sequence model group as the
container for the attributes and associations owned by this
Class. The model group is in turn added to the model groups of
this Class respective owners.

Note:

Tagged values specified by owners of this Class persist through
to the child elements of this model group. Thus if
memberNames are unqualified for a complexType, so are the
children of this model group when added to that complexType.

Tagged
Values

None.

Constraints This Class must be the destination of unidirectional associations.
If it is not, this Class and its connectors are ignored, possibly
invalidating other model group Classes.

Inheritance relations are ignored for this Class.

«XSDchoice»

UML
Construct

Class

Description Creates an XSD choice element. See XSDsequence for more
details.

Tagged
Values

None.

Constraints As for XSDsequence.

«XSDelement»

UML
Construct

Attribute: AssociationEnd

Description By applying this stereotype to a UML Class attribute or
AssociationEnd, the corresponding UML entity is generated as
an element within the parent complexType and not as an XSD
attribute.

Tagged
Values

form:
(qualified | unqualified)

Overrides the schema's elementFormDefault value.

position: Causes the elements to be ordered within a sequence model
group of the containing complexType. Duplicated and invalid
position Tagged Values are ignored and result in undefined
ordering of the UML attributes. Missing position values cause the
defined positions to be allocated as specified, with the remaining
elements filling the missing positions in an undefined order.

anonymousRole:
(true | false)

Specifies if the role name is included in the element declaration
for the UML attribute.

XML Schema (XSD) | Model XSD95

Code Engineering Using UML Models

anonymousType:
(true | false)

Specifies whether the Class type is anonymous for attributes.

default
See the W3C XML Schema recommendation.

fixed

Constraints None.

«XSDattribute»

UML
Construct

Attribute: AssociationEnd

Description By applying this stereotype to a UML Class attribute or
AssociationEnd, the corresponding UML entity is generated as
an XSD attribute within the parent complexType and not as an
XSD element.

Tagged
Values

form:
(qualified | unqualified)

Overrides the schema's attributeFormDefault value.

use:
(prohibited | optional |
required)

See the W3C XML Schema recommendation.

default

fixed

Constraints The attribute datatype should not see a Class specification,
otherwise it is ignored.

«XSDany»

UML
Construct

Class: Attribute

Description If applied to a UML attribute, an XSD anyAttribute element is
generated. If applied to a UML Class, an XSD any element is
generated.

Tagged
Values

namespace:

See the W3C XML Schema recommendation.

processContents:
(skip | lax | strict)

Constraints None.

«XSDrestriction»

UML
Construct

Generalization

Description Overrides the default use of XSD extension for inheritance and
generates the child as a complexType with a restriction element
instead.

Tagged None.

XML Schema (XSD) | Model XSD 96

© 1998-2010 Sparx Systems Pty Ltd

Values

Constraints Applies only to UML Class parent-child relations.

«XSDgroup»

UML
Construct

Class

Description An XSDgroup is generated for Classes with this stereotype.

Tagged
Values

modelGroup:
(sequence | choice | all)

Overrides the default XSD model for generating this group
definition.

Constraints A group Class can only associate itself to other group Classes.

A group Class can be associated by another group Class or a
complexType Class.

The association should be via an Association connector.

A group Class cannot be inherited/aggregated.

«XSDtopLevelElement»

UML
Construct

Class

Description Creates an <xs:element> construct which acts as a container for
XSDcomplexType and XSDsimpleType Class.

Tagged
Values

default
See the W3C XML Schema recommendation.

fixed

Constraints An XSDtopLevelElement Class can contain either an
XSDsimpleType or an XSDcomplexType as its child Class. When
such a Class is present as its child, all its inheritance is ignored.

This Class cannot be inherited.

«XSDtopLevelAttribute»

UML
Construct

Class

Description Creates an <xs:attributr> construct which acts as a container for
XSDsimpleType Class.

Tagged
Values

use:
(optional | required |
prohibited)

See the W3C XML Schema recommendation.

default

fixed

Constraints An XSDtopLevelAttribute Class can contain only an
XSDsimpleType Class as its child Class. When such a Class is
present as its child, all its inheritance is ignored.

XML Schema (XSD) | Model XSD97

Code Engineering Using UML Models

This Class can inherit from only one XSDsimpleType Class.

«XSDunion»

UML
Construct

Class

Description Creates an <xs:union> construct which can act as a container for
XSDsimpleType Class.

Tagged
Values

None

Constraints An XSDunion Class can contain only XSDsimpleType as its child
Class and can generalize from other XSDsimpleType Classes
only.

All the Classes that this Class generalizes become the members
of the attribute memberTypes.

This Class cannot have any attributes or associations.

«XSDattributeGroup»

UML
Construct

Class

Description Creates an <XSDattributeGroup> construct which can act as a
container for a set of elements for stereotype XSDattribute.

Tagged
Values

None

Constraints An XSDattributeGroup Class can contain only elements of
stereotype XSDattribute and can be associated only with other
XSDattributeGroup Classes.

Only XSDcomplexType Classes can associate with this Class.

This Class cannot be inherited.

2.1.1.2 XSD Datatypes Package

When modeling XSD constructs, it is often useful to have the XSD primitive types represented as UML
elements. In this way user-defined types, for example, can reference the datatype elements as part of
inheritance or association relationships.

Sparx Systems provides the set of primitive XSD data types as a UML package in the form of an XMI file. Each
of the XSD primitive types is represented by a UML Class in a package named XSDDatatypes. To import the
XSDDatatypes package into your model, follow the steps below:

1. Download the XSDDatatypes package using the following link: XSDDatatypes Package. The file
XSDDataTypes.xml is an XMI file.

2. Use Enterprise Architect's XMI import facility, which is available via the Project | Import/Export |
Import Package from XMI menu option. See the Import XMI topic in UML Model Management.

3. When the XMI import is complete, you have the UML package named XSDDatatypes in your model,
from which you can drag and drop the relevant types as required.

http://www.sparxsystems.com/downloads/profiles/XSDDataTypes.xml

XML Schema (XSD) | Model XSD 98

© 1998-2010 Sparx Systems Pty Ltd

2.1.1.3 Abstract XSD models

XML schemas can be modeled using simple, abstract Class models. This can be useful in enabling an
architect to start work at a higher level of abstraction, without concern for the implementation details of a
schema. Such an abstract model can be refined further using the XML Schema pages of the Enterprise
Architect UML Toolbox (see Using Enterprise Architect - UML Modeling Tool), or it can be generated directly
by Enterprise Architect's schema generator . In this case, a set of default mappings is assumed by the
schema generator to convert the abstract model to an XSD file.

The following is a simplified version of the Employee Details example model, which does not use XSD-specific
stereotypes or Tagged Values.

The following schema fragment would be generated by Enterprise Architect, given the above model.

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:simpleType name="Status">
<xs:restriction base="xs:string">

<xs:enumeration value="Full-Time"/>
<xs:enumeration value="Part-Time"/>
<xs:enumeration value="Casual"/>
<xs:enumeration value="Contract"/>

</xs:restriction>
</xs:simpleType>
<xs:element name="Person" type="Person"/>
<xs:complexType name="Person">

<xs:sequence>
<xs:element name="firstName" type="xs:string"/>
<xs:element name="surName" type="xs:string"/>
<xs:element name="birthDate" type="xs:string"/>
<xs:element name="gender" type="xs:string"/>
<xs:element name="contactDetails" type="ContactInfo"/>

</xs:sequence>
</xs:complexType>
<xs:element name="Employee" type="Employee"/>
<xs:complexType name="Employee">

<xs:complexContent>
<xs:extension base="Person">

<xs:sequence>
<xs:element name="status" type="Status"/>
<xs:element name="jobTitle" type="xs:string"/>
<xs:element name="startDate" type="xs:date"/>
<xs:element name="department" type="xs:string"/>

100 99

XML Schema (XSD) | Model XSD99

Code Engineering Using UML Models

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<xs:element name="EmployeeRecords" type="EmployeeRecords"/>
<xs:complexType name="EmployeeRecords">

<xs:sequence>
<xs:element name="Employee" type="Employee" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
<xs:element name="ContactInfo" type="ContactInfo"/>
<xs:complexType name="ContactInfo">

<xs:sequence>
<xs:element name="homePhone" type="xs:string"/>
<xs:element name="mobilePhone" type="xs:string"/>
<xs:element name="officePhone" type="xs:string"/>
<xs:element name="email" type="xs:string"/>
<xs:element name="streetAddress" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:schema>

2.1.1.3.1 Default UML to XSD Mappings

The following table describes the default mapping of UML to XSD constructs. This set of mappings is useful
when defining simple schemas from abstract Class models. The defaults are also assumed by the schema
generator when generating unstereotyped elements in an abstract model. The XML Schema pages of the
Enterprise Architect UML Toolbox (and UML Profile for XSD) override these default mappings through the use
of stereotypes and Tagged Values.

UML Construct Default XSD Production Rules

Package A schema element is generated for the target package. If the target package includes
Classes from another package, which has the Tagged Values targetNamespace and
targetNamespacePrefix set, these are included as attributes of the schema element.

In addition, an import or include element is created for each referenced package. (An
include element is used if the external package shares the same targetNamespace
Tagged Value as the target package. An import element is used where the
targetNamespaces differ).

Class A root-level element declaration and complexType definition are generated. The
element name and type are the same as the Class name. An XSD sequence model
group is generated to contain UML attributes generated as elements.

Attribute An element is declared for each Class attribute. The element name is set to that of the
UML attribute name. This is prefixed with the Class name to make the element unique.
The minOccurs and maxOccurs attributes are set to reflect the attribute cardinality.

Note:

If left unspecified, minOccurs and maxOccurs default to 1.

If the attribute refers to another Class, the element declaration is followed a
complexType definition, which contains a reference to the appropriate complexType.

Association An element is declared for each association owned by a Class. The element name is
set to that of the association role. The minOccurs and maxOccurs reflect the
cardinality of the association.

Note:

If the direction of the association is unspecified, the owner is assumed to be the
source.

Generalization
(Inheritance)

For single inheritances, an extension element is generated with the base attribute set
to the base Classname. The UML attributes of the child Class are then appended to
an all model group within the extension element.

XML Schema (XSD) | Model XSD 100

© 1998-2010 Sparx Systems Pty Ltd

UML Construct Default XSD Production Rules

«enumeration» (st
ereotype)

A simpleType element is declared for the enumeration Class with the name attribute
set to the Classname. A restriction element is generated with base set to string. Each
of the Class attributes is appended to the restriction element as XSD enumeration
elements with value set to the UML attribute name. Any type specification for the UML
attributes is ignored by the schema generator.

2.1.2 Generate XSD

The Generate XML Schema feature forward engineers a UML Class model to a W3C XML Schema (XSD) file.
An XML schema corresponds to a UML package in Enterprise Architect, therefore XML schema generation is
a package-level operation. To generate an XML schema from a package, follow the steps below:

1. In the Project Browser, right-click on the package to be converted to XSD. The context menu displays.

2. Select the Code Engineering | Generate XML Schema menu option. The Generate XML Schema
dialog displays, showing the name of the selected package in the Source Package field.

XML Schema (XSD) | Generate XSD101

Code Engineering Using UML Models

3. In the Encoding field, set the required XML encoding.

4. In the XSD Style panel, the Generate global element for all global ComplexTypes checkbox is
selected by default to generate schema in the Garden of Eden style .

5. In the Referenced Package Options panel, select the:

· Generate XSD for Referenced packages checkbox to generate schema for packages that are
referenced by any of the packages selected in the list box

· Prompt when missing Filename checkbox to enable Enterprise Architect to prompt for a filename
for a referenced package during schema generation, if the filename is missing.

6. In the Child Package Options panel, select the:

· Generate XSD for Child Packages checkbox to generate schema for child packages of the
selected package

· Include all packages radio button to list all child packages under the parent package in the list box

· Include <XSDschema> packages radio button to list only those packages that have the stereotype
«XSDschema».

The list box displays, for each package, the package name and the file path where the schema file is to
be generated.

7. If it is necessary to change the file path for a package, double-click on the entry in the list box and, on
the Select XML File dialog, type or select the appropriate file path.

8. Ensure that the checkbox is selected for each package required for generation.

9. Click on the Generate button to generate the schema for each of the selected packages.

10. The progress of the schema generator is shown in the Progress box.

11. When schema generation is complete, click on an entry in the list box and click on the View Schema
button to review the generated schema.

Tip:

The Generate XML Schema dialog can also be accessed from the active diagram by selecting the Project |
XML Schema | Generate XML Schema menu option.

2.1.2.1 Generate Global Element

Enterprise Architect, by default, generates XML Schema in the Garden of Eden style. For every global
XSDcomplexType stereotyped Class, Enterprise Architect generates a global element. For example, the
following model by default generates the XSD shown:

You can change this default behaviour by deselecting the Generate global element for all global
ComplexTypes checkbox on the Generate XML Schema dialog. Then, the generated XSD no longer
contains the global element, as shown below:

101

100

XML Schema (XSD) | Generate XSD 102

© 1998-2010 Sparx Systems Pty Ltd

2.1.3 Import XSD

The XML Schema Import facility is used to reverse engineer a W3C XML Schema (XSD) file as a UML Class
model. An XSD file is imported into Enterprise Architect as a UML package. To import an XSD file, follow the
steps below:

1. In the Project Browser, right-click on the package to contain the imported XSD package. The context
menu displays.

2. Select the Code Engineering | Import XML Schema menu option. The Import XML Schema dialog
displays.

XML Schema (XSD) | Import XSD103

Code Engineering Using UML Models

3. In the Directory field, click on the [...] (Browse) button. The Select XML Schema(s) dialog displays.

4. Click on the required input file. To select several individual files, press [Ctrl] as you click on each one.
To select a range of files, press [Shift] and click on the first and last file in the range.

5. Click on the Open button to return to the Import XML Schema dialog, which now shows the selected
files in the Selected File(s) field.

6. The Import global elements with "Type" postfix checkbox defaults to unselected to import a
global element, and the ComplexType to which it refers, as a single ComplexType Class.

7. The Import referenced XML Schema(s) checkbox defaults to selected, to import any other Schema file
referenced by the selected input XML Schema file or files.

Note:

If an XML Schema file being imported already exists in the model, Enterprise Architect skips importing
the file.

8. The Create Diagram for XML Schema(s) checkbox defaults to selected, to display the imported
elements on the diagram. If necessary, deselect the checkbox.

9. For the Import XSD Elements/Attributes as: field, select the appropriate radio button to import
elements and attributes in the XML Schema as:

· UML Association connectors or

· UML Class attributes.

10. Click on the Import button to import the schema.

11. The progress of the schema import is shown in the Progress status bar.

104

XML Schema (XSD) | Import XSD 104

© 1998-2010 Sparx Systems Pty Ltd

Tip:

The Import XML Schema dialog can also be accessed for the active diagram by selecting the Project | XML
Schema | Import XML Schema menu option.

Note:

Enterprise Architect uses the schemaLocation attribute in the Import and Include elements of an XML
Schema to determine the dependencies between the files. Ensure that this attribute is set to a valid file path
(and not a URL) for the dependent XML Schema(s) to be imported correctly.

2.1.3.1 Global Element and ComplexType

Some XML Schemas have ComplexType elements with the same name as the referring global elements, but
with the suffix Type as shown below:

<xs:element name="Address" type="AddressType"/>
<xs:complexType name="AddressType">

 <xs:sequence/>
</xs:complexType>

On XSD import, Enterprise Architect treats this global element and its bounding ComplexType as a single
entity and creates a single XSDcomplexType stereotyped Class with the same name as the global element as
shown below:

You can change this default behaviour by selecting the Import global elements with "Type" postfix
checkbox. When you select this option, Enterprise Architect treats the global element and the ComplexType it
is referring to as two separate entities. So, for the above example, Enterprise Architect creates an
XSDtopLevelElement stereotyped Class for the global element and an XSDcomplexType stereotyped Class
for the ComplexType, and connects them as follows:

XML Schema (XSD) | Import XSD105

Code Engineering Using UML Models

Note:

Enterprise Architect treats the following as two separate entities irrespective of whether the Import global
elements with "Type" postfix checkbox is selected or unselected:

<xs:element name="HomeAddress" type="AddressType"/>
<xs:complexType name="AddressType">

 <xs:sequence/>
</xs:complexType>

Web Services (WSDL) | 106

© 1998-2010 Sparx Systems Pty Ltd

2.2 Web Services (WSDL)

Enterprise Architect supports Forward and Reverse Engineering of the W3C Web Service Definition Language
(WSDL). The following topics explain how to use Enterprise Architect to model, generate and import WSDL
files:

· Model WSDL

· Import WSDL

· Generate WSDL

2.2.1 Model WSDL

The WSDL pages of the Enterprise Architect UML Toolbox (see Using Enterprise Architect - UML Modeling
Tool) can be used to conveniently model WSDL documents. WSDL documents are represented as
components marked with the stereotype WSDL. WSDL documents are contained in a package hierarchy
representing the target WSDL namespace and its constituent XSD Types, Messages, PortTypes, Bindings
and Services. The top-level package is stereotyped as a WSDLnamespace. The figure below shows a WSDL
namespace package structure:

106

119

117

Web Services (WSDL) | Model WSDL107

Code Engineering Using UML Models

A WSDLnamespace package can contain one or more WSDL components. Each WSDL component can be
automatically generated to a WSDL file using Enterprise Architect's built in WSDL generator . The following
topics describe the various WSDL elements and features supported by Enterprise Architect:

· WSDL Namespace

· WSDL Document

· WSDL Service

· WSDL Port Type

· WSDL Message

· WSDL Binding

· WSDL Port Type Operation

117

108

110

111

112

113

113

115

Web Services (WSDL) | Model WSDL 108

© 1998-2010 Sparx Systems Pty Ltd

· WSDL Message Part

2.2.1.1 WSDL Namespace

The WSDL namespace in Enterprise Architect represents the top-level container for the WSDL elements,
including WSDL documents. Conceptually it maps to the targetNamespace in a WSDL definition element. A
given WSDL namespace can reuse its schema Types, Messages, Port Types, Bindings and Service across
multiple physical WSDL documents.

The figure below shows an example WSDL namespace (OnlineBookstore PSM, which has a red margin to the
bottom right corner), including a single WSDL document:

116

Web Services (WSDL) | Model WSDL109

Code Engineering Using UML Models

To create a new WSDL namespace in your model, follow the steps below.

1. Open or create the appropriate diagram.

2. Select the More Tools | WSDL menu option from the Enterprise Architect UML Toolbox.

3. Drag the Namespace element from the Toolbox onto the diagram. The WSDL Namespace Properties
dialog displays:

4. Type in a WSDL Package Name and Target Namespace name. You can edit these values later.

5. Click on the OK button to create a package stereotyped as WSDLnamespace. This contains the
following sub-packages and an Overview diagram to navigate between the sub-packages:

· Types: Contains the XSD types used by the WSDL Message elements; this package is modeled as
an XML Schema , and you drag XSDelement , XSDsimpleType and XSDcomplexType
elements onto the Types diagram from the XML Schema page of the Enterprise Architect UML
Toolbox (see Using Enterprise Architect - UML Modeling Tool)

· Messages: Contains the WSDL Messages, modeled as UML Classes marked with the stereotype
WSDLmessage

· PortTypes: Contains the WSDL Port Types, modeled as UML interfaces marked with the stereotype
WSDLportType

· Bindings: Contains the WSDL Bindings, modeled as UML Classes that realize the PortTypes

· Services: Contains the WSDL Services, modeled as UML interfaces with associations to each
exposed Binding.

6. Use the Overview diagram to navigate between the subpackages, by double-clicking the relevant
packages. You can edit the sample WSDL elements created in the previous step, or drag new items
from the WSDL pages of the Toolbox onto the relevant diagrams.

You can edit the WSDL-specific properties of the namespace later by double-clicking the package in the
Project Browser. Alternatively, on the WSDL Namespace Properties dialog, click on the UML button to invoke
the standard Properties dialog for a package. (This button does not display on the initial WSDL Namespace
Properties dialog for a new Namespace element.)

89 94 93 93

Web Services (WSDL) | Model WSDL 110

© 1998-2010 Sparx Systems Pty Ltd

2.2.1.2 WSDL Document

WSDL documents are represented in Enterprise Architect by UML components stereotyped as «WSDL».
These components are modeled as direct child elements of the top-level WSDL namespace package. You can
create multiple WSDL documents for a single namespace, thus enabling the services for that namespace to
be reused and exposed as required across multiple WSDLs.

To define new WSDL document components for your namespace, follow the steps below:

1. Open the Overview diagram defined for your WSDL namespace package, and drag the WSDL element
from the Toolbox onto the diagram. The WSDL Document Properties dialog displays.

2. Type in the Name and File Name for the document.

3. The XMLNS panel lists the default XML namespaces used by the document. If required, click on the
New button to add further namespaces.

Note:

You can also delete any namespace entries that you add. It is recommended that you do not delete
any of the default entries, as it may cause an invalid WSDL document to be generated.

4. Select one or more services that should be exposed by this document. The list of available services is
populated from the Services package .

5. Click on the OK button.

111

Web Services (WSDL) | Model WSDL111

Code Engineering Using UML Models

You can edit the WSDL-specific properties of the document later by double-clicking the component in the
diagram or the Project Browser. Alternatively, click on the UML button in the WSDL Document Properties
dialog to invoke the standard Properties dialog for a package. (This button does not display on the initial
WSDL Document Properties dialog for a new WSDL element.)

2.2.1.3 WSDL Service

WSDL services are represented in Enterprise Architect by UML interfaces, stereotyped as WSDLservice.
Services should be defined under the Services packages in the WSDL namespace structure.

To define new WSDLservice elements for your namespace, follow the steps below:

1. Open the Overview diagram defined for your WSDL namespace package, and double-click on the
Services package element to open the Services diagram.

2. Drag the Service element from the Toolbox onto the diagram. The WSDL Service dialog displays.

3. In the Name field, type the service name.

4. Click on the New button to add Service Ports. The WSDL Port dialog displays.

Web Services (WSDL) | Model WSDL 112

© 1998-2010 Sparx Systems Pty Ltd

5. Type in the Port Name and Location, and select a Binding. The list of Bindings is taken from those
defined in the Bindings package .

6. Click on the OK button to close the WSDL Port dialog. For each Port defined in this way, Enterprise
Architect creates an Association relationship between the Service and corresponding Binding element.

7. Click on the OK button to close the WSDL Service dialog.

You can edit the WSDL-specific properties of the service later by double-clicking the Service interface in the
diagram or Project Browser. Alternatively, click on the UML button in the WSDL Service dialog to invoke the
standard Properties dialog for an interface. (This button does not display on the initial WSDL Service dialog for
a new Service element.)

2.2.1.4 WSDL Port Type

WSDL Port Types are represented in Enterprise Architect by UML interfaces stereotyped as WSDLportType.
PortTypes should be defined under the PortTypes packages in the WSDL namespace structure.

To define new WSDLportType elements for your namespace, follow the steps below:

1. Open the Overview diagram defined for your WSDL namespace package, and double-click on the
PortTypes package to open the PortTypes diagram.

2. Drag the Port Type element from the Toolbox onto the diagram. The WSDL PortType dialog displays.

3. Type in the name for the portType.

4. Click on the OK button to close the WSDL PortType dialog.

5. Define operations for the portType by dragging the Port Type Operation item from the WSDL page
of the Enterprise Architect UML Toolbox onto the portType interface.

113

115

Web Services (WSDL) | Model WSDL113

Code Engineering Using UML Models

You can edit the WSDL-specific properties of the portType later by double-clicking the interface in the diagram
or Project Browser. Alternatively, in the WSDL PortType dialog, click on the UML button to invoke the
standard Properties dialog for an interface. (This button does not display on the initial WSDL PortType dialog
for a new PortType element.)

2.2.1.5 WSDL Message

WSDL messages are represented in Enterprise Architect by UML Classes stereotyped as WSDLmessage.
Messages should be defined under the Messages package in the WSDL namespace structure.

To define new WSDLmessage elements for your namespace, follow the steps below:

1. Open the Overview diagram defined for your WSDL namespace package, and double-click on the
Messages package to open the Messages diagram.

2. Drag the Message element from the Toolbox onto the diagram. The WSDL Message dialog displays.

3. Type in the Name for the message.

4. Click on the OK button to close the WSDL Message dialog.

5. You can define parts for the message by dragging the Message Part element from the WSDL
Elements page of the Enterprise Architect UML Toolbox onto the Message element.

You can edit the WSDL-specific properties of the message later by double-clicking the Message element in
the diagram or Project Browser. Alternatively, on the WSDL Message dialog, click on the UML button to
invoke the standard Properties dialog for a Class. (This button does not display on the initial WSDL Message
dialog for a new Message element.)

2.2.1.6 WSDL Binding

WSDL bindings are represented in Enterprise Architect by UML Classes stereotyped as WSDLbinding.
Bindings should be defined under the Bindings package in the WSDL namespace structure. Each
WSDLbinding Class implements the operations specified by a particular WSDLportType interface. Therefore,
WSDLportTypes should be defined before creating WSDLbindings.

To define new WSDLbinding elements for your namespace, follow the steps below:

1. Open the Overview diagram defined for your WSDL namespace package, and double-click on the
Bindings package to open the Bindings diagram.

2. Drag the Binding element from the Toolbox onto the diagram. The WSDL Binding dialog displays.

116

112

Web Services (WSDL) | Model WSDL 114

© 1998-2010 Sparx Systems Pty Ltd

3. Type in a Name for the Binding.

4. Select the PortType for the Binding; the drop-down list of PortTypes is taken from those defined in the
PortTypes package.

5. Select the Protocol for the Binding, either http or soap.

6. For SOAP Bindings, enter the Transport URL and select the Style. For http Bindings, select the Verb.

7. Click on the OK button to close the WSDL Binding dialog and create the binding. A realization
connector is created between the binding and the corresponding Port Type interface.

8. To specify the Binding operations, select and double-click on an Operation in the Binding element. The
WSDL Binding Operation Details dialog displays.

Web Services (WSDL) | Model WSDL115

Code Engineering Using UML Models

9. Type in or select the Binding Operation details.

10. Click on the Parameters button. The WSDL Binding Operation Parameters dialog displays. For each
input, output and fault, click on the Details button and enter the details.

11. Click on the OK button on each of the WSDL Binding Parameter Details, WSDL Binding Operation
Parameters and WSDL Binding Operation Details dialogs to close them.

You can edit the WSDL-specific properties of the binding later by double-clicking the binding Class in the
diagram or Project Browser. Alternatively, on the WSDL Binding dialog, click on the UMLbutton to invoke the
standard Properties dialog for a Class. (This button does not display on the initial WSDL Binding dialog for a
new Binding element.)

2.2.1.7 WSDL Port Type Operation

WSDL portType operations are represented in Enterprise Architect by operations defined as part of a
WSDLportType interface (see the WSDL Port Type topic).

To add portType operations to your WSDLportType interfaces, follow the steps below.

1. Open the Overview diagram defined for your WSDL namespace package, and double-click on the
PortTypes package to open the PortTypes diagram.

2. Drag the PortType Operation item onto a WSDLPortType stereotyped interface. The WSDL PortType
Operation dialog displays.

112

Web Services (WSDL) | Model WSDL 116

© 1998-2010 Sparx Systems Pty Ltd

3. Type in the Name for the operation.

4. Select the Operation Type.

5. Type in or select the Input, Output and Fault details for the operation. The Message drop-down list is
taken from the WSDLmessage elements defined under the Messages package.

6. Click on the OK button to close the WSDL PortType Operation dialog and create the operation.

You can edit the WSDL-specific properties of the portType operation later by double-clicking the operation in
the diagram or Project Browser. Alternatively, on the WSDL PortType Operation dialog, click on the UML
button to invoke the standard Properties dialog for an operation. (This button does not display on the initial
WSDL PortType Operation dialog for a new PortType Operation.)

2.2.1.8 WSDL Message Part

WSDL message parts are represented in Enterprise Architect by UML attributes defined as part of a
WSDLmessage Class (see the WSDL Message topic).

To add message parts to your WSDLmessage Classes, follow the steps below:

1. Open the Overview diagram defined for your WSDL namespace package, and double-click on the

113

Web Services (WSDL) | Model WSDL117

Code Engineering Using UML Models

Messages package to open the Messages diagram.

2. Drag the Message Part element onto a WSDLmessage stereotyped Class. The WSDL Message Part
dialog displays.

3. Type in a Name and Type for the message part. The type should be selected from the drop-down list of
primitive XSD types or from the types defined under the Types package.

4. Click on the OK button.

You can edit the WSDL-specific properties of the message part later by double-clicking the attribute in the
diagram or Project Browser. Alternatively, on the WSDL Message Part dialog, click on the UML button to
invoke the standard Properties dialog for an attribute. (This button does not display on the initial WSDL
Message Part dialog for a new message part attribute.)

2.2.2 Generate WSDL

The Generate WSDL feature forward engineers a UML model to a Web Service Definition Language (WSDL)
file. The Generate WSDL feature acts on a package stereotyped with WSDLnamespace. It is used to generate
any or all of the WSDL stereotyped components owned by the target WSDLnamespace structure. To generate
one or more WSDL files from a WSDLnamespace, follow the steps below:

1. In the Project Browser, right-click on the target WSDLnamespace package to display the context menu.

2. Select the Code Engineering | Generate WSDL menu option. The Generate WSDL dialog displays.

Web Services (WSDL) | Generate WSDL 118

© 1998-2010 Sparx Systems Pty Ltd

3. For each WSDL component, set the required output file using the Target File column.

4. Using the Encoding field, set the required XML encoding.

5. Click on the Generate button to generate the WSDL files.

6. The progress of the WSDL generator is shown in the Progress edit box.

Tip:

The Generate WSDL dialog can also be accessed from the active diagram by selecting the Project |
Generate WSDL menu option.

Web Services (WSDL) | Import WSDL119

Code Engineering Using UML Models

2.2.3 Import WSDL

The WSDL Import facility is used to reverse engineer WSDL files into UML Class models.

Note:

Enterprise Architect cannot import a WSDL file that references WSDL constructs existing outside the target
file. For example, Enterprise Architect can import a WSDL as shown in
http://www.w3.org/TR/wsdl.html#_example1 but not a file as shown in http://www.w3.org/TR/wsdl.html#_style.
Attempting to import the second WSDL file would result in the following error message:

Cannot Import Split Files.

To avoid this limitation, combine the split WSDL files into a single file and then import it into Enterprise
Architect.

To import a WSDL file, follow the steps below:

1. In the Project Browser, right-click on the package to contain the imported WSDL package. The context
menu displays.

2. Select the Code Engineering | Import WSDL menu option. The Import WSDL dialog displays.

3. In the Filename field, select the input file.

4. The Target Package field is automatically set to the name of the selected input file. If required, change
this name.

5. Click on the Import button to import the schema.

6. The progress of the WSDL import is shown in the Progress status bar.

http://www.w3.org/TR/wsdl.html#_example1
http://www.w3.org/TR/wsdl.html#_style

 | 120

© 1998-2010 Sparx Systems Pty Ltd

3 Data Modeling

You perform database modeling and database design in Enterprise Architect using the UML Data Modeling
Profile. This profile provides easy-to-use and easy-to-understand extensions to the UML standard, mapping
the database concepts of tables and relationships onto the UML concepts of Classes and associations. These
extensions also enable you to model database keys, triggers, constraints, RI and other relational database
features.

Note:

The UML Data Modeling Profile is not currently a ratified standard; however it has wide industry support and
is a useful method for bridging the gap between the UML and conventional relational database modeling.

Typical data modeling tasks you might perform are listed at the end of this topic.

Tables and Columns

The basic modeling structure of a relational database is the table, which represents a set of records, or rows,
with the same structure. The basic organizational element of a relational database is the column. Every
individual item of data entered into a relational database is represented by a value in a column of a row in a
table.

The UML Data Modeling Profile represents:

· Tables as stereotyped Classes; that is, Class elements with a stereotype of table

· Columns as stereotyped attributes; that is, attributes with a stereotype of column.

Enterprise Architect can generate simple DDL scripts to create the tables in your model. You can also perform
Model Driven Architecture (MDA) Transformations to DDL - Enterprise Architect provides a template
specifically for DDL transformations (see the MDA Transformations User Guide).

To help you map Class attributes to Table fields, you can create connectors between specific attributes in the
Class element and the column attributes in the Table element. See the Connect to Element Feature topic (see
the Work With Connectors section of UML Modeling With Enterprise Architect - UML Modeling Tool).

Database Keys

Two types of key are used to access tables: Primary Keys and Foreign Keys. A Primary Key uniquely identifies
a record in a table, while a Foreign Key accesses data in some other related table via its Primary Key.

A Primary Key consists of one or more columns; a simple Primary Key (single column) is defined as the
attribute of a stereotyped operation. A complex Primary Key (several columns) is defined as the stereotyped
operation itself.

A Foreign Key is a collection of columns (attributes) that together have some operational meaning (they
enforce a relationship to a Primary Key in another table). Foreign keys are represented in Enterprise Architect
as operations with the stereotype FK; the operation parameters become the columns involved in the key.

Supported Databases

Enterprise Architect supports import of database schema from these databases:

· DB2

· Firebird/InterBase

· Informix

· Ingres

· MS Access 97, 2000, 2003

 | 121

Code Engineering Using UML Models

· Access 2007

· MS SQL Server 2000, 2005, 2008

· MySQL

· Oracle 9i, 10g and 11g

· PostgreSQL

· Sybase Adaptive Server Anywhere (Sybase ASA)

· Sybase Adaptive Server Enterprise (Sybase ASE).

Notes:

· You can download SQL Server 2005 data types and SQL Server 2008 data types from the Resources page
of the Sparx Systems web site.

· Firebird 1.5 database tables can be modeled and generated as InterBase tables. Firebird tables can be
imported but are treated as InterBase tables.

Typical Tasks

Typical tasks you can perform when modeling or designing databases include:

· Create a Data Model Diagram

· Create a Table

· Set Properties of a Table

· Create Columns

· Create Oracle Packages

· Create Primary Keys

· Create Foreign Keys

· Create Stored Procedures

· Create Views

· Create Indexes, Check Constraints and Triggers

· Generate DDL for a Table

· Generate DDL for a Package , and compare with the database

· Convert Datatypes for a Table

· Convert Datatypes for a Package

· Customize Datatypes for a DBMS

· Import a Database Schema from an ODBC Data Source

122

123

124

130

133

134

137

143

145

147

149

151

155

156

158

160

http://www.sparxsystems.com/resources/index.html

A Data Model Diagram | 122

© 1998-2010 Sparx Systems Pty Ltd

3.1 A Data Model Diagram

An example of a Data Model diagram is provided below, showing three tables that are linked on primary to
foreign key pairs with associated multiplicity.

Note the use of stereotyped operations for Primary (PK) and Foreign (FK) keys. Operations could also be
added for:

· Triggers

· Constraints (check, unique)

· Indexes

A Data Model diagram is represented in Enterprise Architect as a Class diagram, and is created in exactly the
same way as other diagrams (see the Working With Diagrams topic in UML Modeling With Enterprise
Architect - UML Modeling Tool).

147

147

147

Create a Table | 123

Code Engineering Using UML Models

3.2 Create a Table

What is a Table?

The basic modeling structure of a relational database is the Table. A Table represents a set of records, or
rows, with the same structure.

The UML Data Modeling Profile represents a Table as a stereotyped Class; that is, a Class element with a
stereotype of table applied to it. A table icon is shown in the upper right corner of the image when it is shown
on a Data Model diagram.

Create a Table

To create a Table, follow the steps below:

1. Select a diagram.

2. Select the More Tools | Data Modeling menu option on the Enterprise Architect UML Toolbox.

3. Click on the Table element in the list of elements, then click on the diagram. The Table element is
displayed on the diagram.

4. If the Class: Table n Properties dialog does not display, double-click on the Table to display it.

5. In the Name field, type a name for the Table and set any other properties as required.

6. Click on the OK button.

124

Set Table Properties | 124

© 1998-2010 Sparx Systems Pty Ltd

3.3 Set Table Properties

Once you have created your table, you can set its properties. Most table properties can be set from the
Properties dialog, as described below. However, some properties must be entered as Tagged Values as
described for setting the value of the Table Owner and, for MySQL and Oracle databases, setting
the table options.

Set the Database Type

The most important property to set for a table (after its name) is the database type. This defines the list of
datatypes that are available for defining columns, and also declares which dialect of DDL is generated.
Enterprise Architect supports the following databases:

· DB2

· Informix

· Ingres

· InterBase

· MS Access 97, 2000, 2003

· Access 2007

· MySQL

· Oracle 9i, 10g and 11g

· PostgreSQL

· SQL Server 2000, 2005 and 2008

· SQLServer7

· Sybase Adaptive Server Anywhere (Sybase ASA)

· Sybase Adaptive Server Enterprise (Sybase ASE).

To set the database type, follow the steps below:

1. Double-click on the table element in a diagram to open the Properties dialog.

2. Select the General tab.

126 126 127

Set Table Properties | 125

Code Engineering Using UML Models

3. In the Database field, click on the drop-down arrow and select the database type.

4. Click on the Apply button to save changes.

By clicking on the Table Detail tab on this dialog, you can access the Columns dialog or Operations dialog
, or you can Generate DDL for this table.

130

147 149

Set Table Properties | 126

© 1998-2010 Sparx Systems Pty Ltd

3.3.1 Set Table Owner

To define the owner of a table, follow the steps below:

1. Select the Tagged Values tab of the table Properties dialog. The Tagged Values tab shows the tags for
the table.

2. Click on the New Tag button . The Tagged Value dialog displays.

3. In the Tag field, type the tag name Owner. In the Value field, type a value for the Owner tag.

Note:

For a PostgreSQL database, to define the owner name:

· In the Tag field, type the tag name OWNER TO

· In the Value field, type Owner_Name.

4. Click on the OK button to confirm the operation. Generated DDL includes the table owner in the SQL
script.

3.3.2 Set MySQL Options

In MySQL, to make use of foreign keys you must declare the table type as InnoDB. To do this, follow the steps
below:

1. Select the Tagged Values tab of the table Properties dialog. The Tagged Values tab shows the tags for
the table.

2. Click on the New Tag button . The Tagged Value dialog displays.

Set Table Properties | Set MySQL Options127

Code Engineering Using UML Models

3. In the Tag field, type the tag name Type. In the Value field, type InnoDB as the value for the Type tag.

4. Click on the OK button to confirm the operation. Generated DDL includes the table type in the SQL
script.

5. To allow for later versions of MySQL, additional table options that can be added in the same manner
include:

Tag Value (Example)

ENGINE InnoDB

CHARACTER SET latin1

CHARSET latin1

COLLATE latin1_german2_ci

3.3.3 Set Oracle Table Properties

For Oracle, you can set table properties using the table's Tagged Values. Follow the steps below:

1. Select the Tagged Values tab of the table Properties dialog. The Tagged Values tab shows the tags for
the table.

2. Click on the New Tag button . The Tagged Value dialog displays.

3. Define the table properties as shown in the examples below:

4. Click on the OK button to save the Tagged Value.

All available properties for an Oracle table are listed below.

Set Table Properties | Set Oracle Table Properties 128

© 1998-2010 Sparx Systems Pty Ltd

Note:

The same properties can be added to indexes and constraints . Highlight the index or constraint and add
the properties as Tagged Values.

Property/Tag Value

BUFFER_POOL DEFAULT

CACHE NOCACHE

DBVERSION 9.0.111

FREELISTS 1

GRANT OWNER1 SELECT

GRANT OWNER2 DELETE, INSERT, SELECT, UPDATE

INITIAL 65536

INITRANS 1

LOGGING LOGGING

MAXEXTENTS 2147483645

MAXTRANS 255

MINEXTENTS 1

MONITORING MONITORING

OWNER OWNER1

PARALLEL NOPARALLEL

PCTFREE 10

PCTINCREASE 0

PCTUSED 0

SYNONYMS PUBLIC:TABLE_PUB;OWNER2:TABLE_OWNER2

TABLESPACE MY_TABLESPACE

TEMPORARY YES

The properties defined for a given table are listed on the Tagged Values tab, as illustrated by the following
typical Tagged Value list:

147

Set Table Properties | Set Oracle Table Properties129

Code Engineering Using UML Models

Create Columns | 130

© 1998-2010 Sparx Systems Pty Ltd

3.4 Create Columns

What is a Column?

The basic organizational element of a relational database is the column. Every individual item of data entered
into a relational database is represented as a value in a column of a row in a table. Columns are represented
in the UML Data Modeling Profile as a stereotyped attribute; that is, an attribute with the Column stereotype.

Create Columns

Note:

For MySQL, before creating columns first add ENUM and SET datatypes. Select the Settings | Database
Datatypes menu option and, on the Database Datatypes dialog, in the Product Name field select MySQL.
Add the datatypes ENUM and SET.

To create columns, follow the steps below:

1. Right-click on the Table in a diagram to open the context menu, and select the Attributes menu option.

2. The <Tablename> Columns dialog displays.

3. In the Name field, type the column name.

4. In the Data Type field, click on the drop-down arrow and select the data type, and click on the Save
button.

Create Columns | 131

Code Engineering Using UML Models

Tip:

If the drop-down list of datatypes is empty, this means that you have not selected a target database for
the table. Close the Columns dialog and re-open the Table Properties dialog to set a database type
before continuing. To prevent this recurring, set the default database type .

5. The following fields for each column are optional:

· Primary Key - select the checkbox if the column represents the primary key for this table

· Not Null - select the checkbox if empty values are forbidden for this column

· Unique - select the checkbox if it is forbidden for any two values of this column to be identical

· Initial - type a value that can be used as a default value for this column, if required

· Access - click on the drop-down arrow and select a scope of Private, Protected or Public (the field
defaults to Public)

· Alias - type an alternative name for the field (for display purposes), if any

· Notes - type any other information necessary to document the column; you can format the text using
the Rich Text Notes toolbar at the top of the field.

Notes:

· The unique characteristic applied to a single column ensures that no two data values in the
column can be identical. The unique stereotype applied to an index ensures that no two
combinations of values across a set of columns can be identical.

· Some datatypes, such as the Oracle NUMBER type, require a precision and scale. These fields
are displayed where required and should be filled in as appropriate. For example, for Oracle:

create NUMBER by setting Precision = 0 and Scale = 0
create NUMBER(8) by setting Precision = 8 and Scale = 0
create NUMBER(8,2) by setting Precision = 8 and Scale = 2.

· Oracle VARCHAR2(15 CHAR) and VARCHAR2(50 BYTE) datatypes can be created by adding the
tag LengthType with the value CHAR or BYTE.

· For MySQL ENUM and SET datatypes, in the Initial field type the values as a comma-separated list,
in the format ('one','two','three') or, if one value is the default, in the format: ('one','two','three') default
'three'.

5. Click on the Column Properties button. The Database Columns Properties dialog displays.

If you require a sequence, such as an Oracle sequence, select the AutoNum property, set the value to
True and, if necessary, define the start number and increment. Click on the OK button to return to the
<Tablename> Columns dialog.

34

134

147

Create Columns | 132

© 1998-2010 Sparx Systems Pty Ltd

6. Click on the Save button and on either the New button to define another column or the Close button to
exit from the dialog.

Change the Column Order

To change the column order, follow the steps below:

1. On the Columns dialog, highlight a column name in the Columns panel.

2. Click on the:

· button to move the column up one position

· button to move the column down one position.

Create Oracle Packages | 133

Code Engineering Using UML Models

3.5 Create Oracle Packages

To create an Oracle package, follow the steps below:

1. Open the project in the Project Browser and create an Enterprise Architect package (and, if required, a
Class diagram).

2. Add a Class element to either the package or the diagram.

3. Open the Properties dialog for the element and, in the Stereotype field, type the value Package.

4. For the package specification, create an Operation with the name Specification and with no return type.

5. Open the Properties dialog for the Specification Operation and, on the Behavior tab, type the entire
package specification into the Initial Code field.

6. For the package body, create an Operation with the name Body and with no return type.

7. Open the Properties dialog for the Body Operation and, on the Behavior tab, type the entire package
body into the Initial Code field.

For information on the objects mentioned above, see the Work With Elements section of UML Modeling With
Enterprise Architect - UML Modeling Tool.

Primary Key | 134

© 1998-2010 Sparx Systems Pty Ltd

3.6 Primary Key

What is a Primary Key?

Keys are used to access tables, and come in two varieties: Primary Keys and Foreign Keys. A Primary Key
uniquely identifies a record in a table, while a Foreign Key accesses data in some other related table via its
Primary Key.

Define a Simple Primary Key

If a Primary Key consists of a single column, it is very easy to define.

1. Right-click on the table in a diagram to display the context menu. Select the Attributes menu option.

2. In the Attributes dialog, select the column that makes up the Primary Key.

3. Select the Primary Key checkbox and click on the Save button.

A stereotyped operation is automatically created. It is this operation that defines the Primary Key for the table.
To remove a Primary Key, simply delete this operation.

Define a Complex Primary Key

Often, a Primary Key consists of more than one column. For example, a column LastName might not be
unique within a table, so a Primary Key is created from the LastName, FirstName and DateOfBirth columns.
Perform the following steps to create a complex Primary Key:

1. Follow the steps above to create a Simple Primary Key. It doesn't matter which column you choose.

2. Right-click on the table in a diagram to open the context menu. Select the Operations menu option.

3. Select the Primary Key operation (its name begins with PK_) and then click on the Column tab.

4. To add a column to the Primary Key, click on the New button, select a column from the Column Name
list box, and then click on the Save button.

5. Click on the Hand buttons (up and down arrow) to change the order of columns in the Primary Key, if
necessary.

(See also the SQL Server Non-Clustered Primary Keys topic).

Define a Primary Key Name Template

To define the name template for a Primary Key, follow the steps below:

1. Select the Tools | Options | Source Code Engineering | Code Editors menu option. The DDL page of
the Options dialog displays.

137

136

Primary Key | 135

Code Engineering Using UML Models

2. Click on the DDL Name Templates button. The DDL Name Template dialog displays, showing the
default name templates.

3. Edit or replace the template in the Primary Key Name Template field.

Note:

If you want to display the Primary Key description as PK_tablename_columnname then change the
Primary Key Name Template field to PK_%tablename%_%columnname%.

4. Click on the Save button.

Primary Key | SQL Server Non Clustered Keys 136

© 1998-2010 Sparx Systems Pty Ltd

3.6.1 SQL Server Non Clustered Keys

To define a primary key as non-clustered for a SQL Server table, follow the steps below:

1. Right-click on the table in a diagram to open the context menu.

2. Select the Operations menu option. The Table Operations dialog displays.

3. Highlight the Primary Key Operation and select Extended Properties. The Database Operation
Properties dialog displays.

4. Select the SQL Server Non Clustered Primary Key checkbox.

5. Click on the Save & Close button.

Foreign Key | 137

Code Engineering Using UML Models

3.7 Foreign Key

What is a Foreign Key?

Two types of key are used to access tables: Primary Keys and Foreign Keys. A Primary Key uniquely
identifies a record in a table, while a Foreign Key accesses data in some other related table via its Primary
Key.

Foreign keys are represented in Enterprise Architect UML using stereotyped operations. A Foreign Key is a
collection of columns (attributes) that together have some operational meaning (they enforce a relationship to
a Primary Key in another table). A Foreign Key is modeled as an operation stereotyped with the FK
stereotype; the operation parameters become the columns involved in the key.

Note:

It isn't necessary to define a Foreign Key in order to access another table through its Primary Key. Foreign
Keys are a feature of some database management systems, providing 'extras' such as referential integrity
checking that prevents the deletion of a record if its Primary Key value exists in some other table's Foreign
Key. The same thing can be achieved programmatically.

To create a Foreign Key , click on the link.

You might also have to define a Name Template for Foreign Keys.

3.7.1 Create Foreign Key

To create a Foreign Key, follow the steps below:

1. Locate the required Tables in a diagram. Both tables must have defined database types .

2. Select an Associate connector in the Class Relationships page of the Enterprise Architect UML Toolbox
.

3. Click on the Table to contain the Foreign Key (source) and draw the connector to the other Table
(target).

4. Right-click on the connector to display the context menu, and select the Foreign Keys option. The
Foreign Key Constraint dialog displays.

134

137

141

125

Foreign Key | Create Foreign Key 138

© 1998-2010 Sparx Systems Pty Ltd

5. The default foreign key name is set by the Foreign Key Name Template. To change the name to
something other than the default provided by the template, select the Override Template checkbox and
edit the foreign key name.

6. Highlight the columns involved in the Foreign Key relationship.

7. Click on the Save button to automatically generate the Foreign Key operations.

You have created the Foreign Key. The example below shows how this looks in a diagram:

Foreign Key | Create Foreign Key139

Code Engineering Using UML Models

Composite Foreign Key

To create a composite Foreign Key, select the appropriate columns and click on the Save button. The Foreign
Key columns are sorted according to datatype to match the datatypes of the targeted composite Primary Key.

If required, you can change the order of the key columns by clicking on the and buttons.

Tip:

If you are defining a MySQL database and want to use Foreign Keys, you must set the table type to
enable this.

126

Foreign Key | Create Foreign Key 140

© 1998-2010 Sparx Systems Pty Ltd

This creates the composite Foreign Key. The example below shows how this looks in a diagram:

Foreign Key | Create Foreign Key141

Code Engineering Using UML Models

3.7.2 Define Foreign Key Name Template

To define the name template for a Foreign Key, follow the steps below:

1. Select the Tools | Options | Source Code Engineering | Code Editors menu option. The DDL page of
the Options dialog displays.

Foreign Key | Define Foreign Key Name Template 142

© 1998-2010 Sparx Systems Pty Ltd

2. Click on the DDL Name Template button. The DDL Name Template dialog displays, showing the
default name templates.

3. Edit or replace the name template in the Foreign Key Name Template field.

Note:

If you want to display the Foreign Key description as
FK_foreigntablename_FKcolumnname_primarytablename_PKcolumnname then change the Foreign
Key Name Template field to FK_%foreigntablename%_%fkcolumnname%_%primarytablename%_%
pkcolumnname%.

4. Click on the Save button.

Stored Procedures | 143

Code Engineering Using UML Models

3.8 Stored Procedures

What is a Stored Procedure?

A stored procedure is a group of SQL statements that form a logical unit and perform a particular task. Stored
procedures are used to encapsulate a set of operations or queries to execute on a database server. You can
compile and execute stored procedures with different parameters and results, and they can have any
combination of input, output and input/output parameters.

Enterprise Architect models stored procedures as individual Classes .

Note:

Stored procedures are currently supported for: DB2; SQL Server; Firebird/Interbase; Informix; Ingres; Oracle
9i, 10g and 11g; MySQL; PostgreSQL; Sybase Adaptive Server Enterprise (ASE) and Sybase Adaptive
Server Anywhere (ASA).

3.8.1 Create Individual Class Procedure

To create a stored procedure as an individual Class, follow the steps below:

1. Open the required diagram.

2. From the Data Modeling page of the Enterprise Architect UML Toolbox (More tools | Data Modeling)
drag the Procedure icon onto the diagram.

3. If the Properties dialog does not automatically display, double-click on the element.

143

Stored Procedures | Create Individual Class Procedure 144

© 1998-2010 Sparx Systems Pty Ltd

4. In the Database field click on the drop-down arrow and select the target DBMS to model. (The field
displays the default database if it has already been set.)

5. In the Procedure definition field, type the entire procedure text.

6. Click on the OK button.

To define a name for the stored procedure, click on the element, click on the name (Class<n>) and click
again. This highlights the text for editing. Type in the required name. (For further details, see the In-Place
Editing section in UML Modeling With Enterprise Architect - UML Modeling Tool.)

Views | 145

Code Engineering Using UML Models

3.9 Views

Note:

Views are currently supported for: DB2; SQL Server; Firebird/Interbase; Informix; Ingres; Oracle 9i, 10g and
11g; MySQL; PostgreSQL; Sybase Adaptive Server Enterprise (ASE) and Sybase Adaptive Server Anywhere
(ASA).

Create a View

To create a database View, follow the steps below:

1. On the Data Modeling page of the Enterprise Architect UML Toolbox (More tools | Data Modeling),
drag the View icon onto your Data Modeling diagram.

2. If the View Properties dialog does not immediately display, double-click on the element.

3. From the Database drop-down list, select the target DBMS to model. The default database displays if it
has already been set.

4. Click on the OK button.

To define a name for the View, click on the element, click on the name (Class<n>) and click again. This
highlights the text for editing. Type in the required name. (For further details, see the In-Place Editing section
in UML Modeling With Enterprise Architect - UML Modeling Tool.)

Define View Properties

1. Create a Dependency connector from the View to the table or tables on which the View depends.

2. Double-click on the View to display the Properties dialog. The tables are now listed in the
Dependencies field.

3. In the View definition field, type the full view definition. (The code editor provides intellisense for basic
SQL keywords and functions - see Using Enterprise Architect - UML Modeling Tool).

4. Click on the OK button to save your definition.

The View definition and certain other parameters are held as Tagged Values. The View definition is held in
the viewdef memo Tagged Value, as shown in the following example diagram. You can select and view the
viewdef Tagged Value in the Tagged Values window, and include it in RTF reports by inserting the
valueOf(viewdef) field in the Package::Element or Element::Tagged Values sections (see Report Creation in
UML Models).

Views | 146

© 1998-2010 Sparx Systems Pty Ltd

Index, Trigger, Check Constraint | 147

Code Engineering Using UML Models

3.10 Index, Trigger, Check Constraint

What is an Index?

An index is a sorted look-up for a table. When it is known in advance that a table must be sorted in a specific
order, it is usually worth the small processing overhead to always maintain a sorted look-up list rather than sort
the table every time it is required. In Enterprise Architect, an index is modeled as a stereotyped operation. On
generating DDL, the necessary instructions for generating indexes are written to the DDL output.

The unique characteristic applied to a single column ensures that no two data values in the column can be
identical. The unique stereotype applied to an index ensures that no two combinations of values across a set
of columns can be identical.

What is a Trigger?

A trigger is an operation automatically executed as a result of the modification of data in the database, and
usually ensures consistent behavior of the database. For example, a trigger might be used to define
validations that must be performed every time a value is modified, or might perform deletions in a secondary
table when a record in the primary table is deleted. In Enterprise Architect, a trigger is modeled as a
stereotyped operation. Currently Enterprise Architect does not generate DDL for triggers, but nonetheless they
aid in describing and specifying the table structure in detail.

What is a Check Constraint?

A Check Constraint enforces domain integrity by limiting the values that are accepted by a column.

Create an Index

Ensure that the column(s) to be used in the index have already been defined in the table.

1. Right-click on the required table either in a diagram or in the Project Browser.

2. Select the Operations context menu option. The Operations dialog displays.

3. Add an operation (with a name such as IDX_CustomerID; the IDX_ prefix is optional but it helps identify
the operation).

4. In the Stereotype field for the operation, select index (check and unique are also supported).

5. Click on the Column tab.

6. Select the required columns from the Columns drop-down list in the required order, then click on the
Save button to save changes.

Create a Check Constraint or Trigger

1. Locate the required table in either a diagram or the Project Browser.

2. Use the context menu to open the Operations dialog.

3. Add an operation (such as CHK_ColumnName or TRG_OnCustomerUpdate; the CHK_ and TRG_
prefixes are optional but help identify the operation).

4. In the Stereotype field for the constraint, select check or trigger as appropriate and click on the Save
button to save changes.

5. Select the constraint operation, then the Behavior tab.

6. Enter the entire check constraint clause (for example, col1 < 1000), or the entire trigger code (including
the CREATE_TRIGGER statement) in the Initial Code field and click on the Save button to save
changes.

The example below shows how an index looks in a diagram (in the Order element):

130

Index, Trigger, Check Constraint | 148

© 1998-2010 Sparx Systems Pty Ltd

Generate DDL For a Table | 149

Code Engineering Using UML Models

3.11 Generate DDL For a Table

Note:

In the Corporate, Business and Software Engineering, System Engineering and Ultimate editions of
Enterprise Architect, if security is enabled you must have Generate Source Code and DDL permission to
generate DDL. See User Security in UML Models.

To generate simple DDL scripts to create the tables in your model, follow the steps below:

1. In the diagram, right-click on the table for which to generate DDL. The context menu displays.

2. Select the Generate DDL option. The Generate DDL dialog displays.

3. In the Path field, use the [...] (Browse) button to select the filename of the script to create.

4. To include comments in the DDL, in the Comment Level field select the appropriate level. For
example, Column for comments on columns, or All for comments on all structures.

5. Select the checkboxes for the appropriate inclusions. For example, to include a 'drop table' command in
the script, select the Create Drop SQL checkbox. Deselect the checkboxes for inclusions you do not
require.

Generate DDL For a Table | 150

© 1998-2010 Sparx Systems Pty Ltd

Notes:

· Some checkboxes display only if the appropriate database is defined for the table. For example, IF
EXISTS displays only if the database for the table is PostgreSQL.

· If generating Oracle sequences, you must always select the Generate Triggers and Generate
Sequences checkboxes; this ensures that a pre-insert trigger is generated to select the next
sequence value to populate the column. Also select the Auto Numbering checkbox in the
column properties.

6. To create the DDL, click on the Generate button.

7. To view the output, click on the View button (you must configure a DDL viewer in the Local Settings
dialog first).

Note:

You can transport these DDL scripts between models, using the Export Reference Data and Import
Reference Data options on the Tools menu. See the Reference Data topic in UML Model Management.

130 130

Generate DDL for a Package | 151

Code Engineering Using UML Models

3.12 Generate DDL for a Package

Note:

In the Corporate, Business and Software Engineering, System Engineering and Ultimate editions of
Enterprise Architect, if security is enabled you must have Generate Source Code and DDL permission to
generate DDL. See User Security in UML Models.

In this procedure, you can generate DDL for a package, and also compare the DDL with the database.

Generate DDL

To generate DDL for a package, follow the steps below:

1. Right-click on the required package in the Project Browser. The context menu displays.

2. Select the Code Engineering | Generate DDL menu option. The Generate Package DDL dialog
displays.

Generate DDL for a Package | 152

© 1998-2010 Sparx Systems Pty Ltd

Note:

Alternatively you can select the Project | Database Engineering | Generate Package DDL menu
option.

3. Select the checkbox against each inclusion required. Deselect the checkboxes for inclusions you do not
require.

Generate DDL for a Package | 153

Code Engineering Using UML Models

Notes:

· Some checkboxes display only if the appropriate database is defined for the tables in the package.
For example, IF EXISTS displays only if the database for the tables is PostgreSQL.

· If generating Oracle sequences, you must always select the Generate Triggers and Generate
Sequences checkboxes; this ensures that a pre-insert trigger is generated to select the next
sequence value to populate the column. Also select the Auto Numbering checkbox in the
column properties.

4. To recursively generate DDL, select the Include All Child Packages checkbox.

5. Click on the Generate button to proceed. Enterprise Architect prompts you for file names as the
process executes.

Compare DDL For a Database

When you have generated the DDL, you can compare it with the database. To do this, follow the steps below:

1. On the Generate Package DDL dialog, click on the Compare button. The Compare With Database
dialog displays.

2. Click on the [...] button and locate the required database on the Select Data Source dialog.

3. For an Oracle database, if required you can also specify the Owner in the Schema/Owner field.

4. Click on the View button to perform the comparison. The Comparison Database dialog displays with the
results of the comparison. Click on each table name to review information on that table.

130 130

Generate DDL for a Package | 154

© 1998-2010 Sparx Systems Pty Ltd

Data Type Conversion Procedure | 155

Code Engineering Using UML Models

3.13 Data Type Conversion Procedure

Once a database schema has been set up on an Enterprise Architect diagram (either by importing through
ODBC or manually setting up the tables), the DBMS can be changed to another type and the column
datatypes are mapped accordingly.

To map the DBMS type of a table to another DBMS type, follow the steps below:

1. Double-click on the table element in a diagram to open the table Properties dialog.

2. The Database field shows the current DBMS for this table.

3. To map the column datatypes to another DBMS, select the target from the Database drop-down and
click on the Apply button.

4. The datatypes are converted to match those of the new DBMS, and these are reflected in any DDL
generated from this table.

Data Type Conversion for a Package | 156

© 1998-2010 Sparx Systems Pty Ltd

3.14 Data Type Conversion for a Package

The DBMS Package procedure or mapper enables you to convert a package of database tables from one
DBMS type to another DBMS type, as well as providing the ability to change the ownership of tables.

To map the DBMS types of a package to another DBMS type, follow the steps below:

1. Right-click on the package in the Project Browser to display the context menu.

2. Select the Code Engineering | Reset DBMS Options menu option. The Manage DBMS Options dialog
displays.

3. In the Current DBMS field, click on the drop-down arrow and select the current DBMS. In the New
DBMS field click on the drop-down arrow and select the target DBMS.

4. Select the Convert DBMS Type checkbox.

5. If there are child packages that also require changing, select the Process Child Packages checkbox.

6. Click on the OK button. All tables in the selected packages are mapped to the new DBMS.

To change the owner of the table or all of the tables in a package, follow the steps below:

1. Right-click on the package in the Project Browser to display the context menu.

2. Select the Code Engineering | Reset DBMS Options menu option. The Manage DBMS Options dialog
displays.

Data Type Conversion for a Package | 157

Code Engineering Using UML Models

3. In the New Owner field, type the name for the new table owner.

4. In the Current Owner field, click on the drop-down arrow and select the current owner to change, or
select <All> to change the ownership of all tables in the package to the name you typed in the New
Owner field.

5. Select the Change Table Owner checkbox.

6. If there are child packages that also require changing, select the Process Child Packages checkbox.

7. Click on the OK button. The ownership changes for all Tables in the selected packages with the
specified current owner.

For more information on setting the table owner see the Set Table Owner topic. To display the table owner
in the current diagram see the Diagram Properties topic in UML Modeling with Enterprise Architect – UML
Modeling Tool.

126

DBMS Datatypes | 158

© 1998-2010 Sparx Systems Pty Ltd

3.15 DBMS Datatypes

When setting up your data modeling profile, you can customize the datatypes associated with a particular
DBMS using the Database Datatypes screen. This screen enables you to add and configure custom data
types. For some data types you must add the size and precision, defaults and maximum values.

To access the Database Datatypes screen, select the Settings | Database Datatypes menu option. You can
also add a DBMS product and configure the inbuilt data types.

You can also map database datatype sizes between products. To do this, follow the steps below:

1. On the Database Datatypes dialog, click on the Datatype Map button. The Database Datatypes
Mapping dialog displays.

DBMS Datatypes | 159

Code Engineering Using UML Models

2. In the From Product Name field, click on the drop-down arrow and select the DBMS product to map
datatypes from. The Defined Datatypes for Databases panel displays all the defined datatypes for the
product and, where appropriate, their sizes and values.

3. Click on the datatype to map (this must have a defined size unit and value). The Datatype and
Common type fields under the From Product Name field display this datatype.

4. In the To Product Name field, click on the drop-down arrow and select the DBMS product to map
datatypes to. The Datatype and Common Type fields under this field display the corresponding values
to those in the fields for the from product.

5. In the Size panel, click on the radio button for the appropriate size unit and type the default values in the
corresponding data fields.

6. Click on the Save button to save the mapping.

7. To map further datatypes, repeat this process from step 3.

8. When you have finished mapping datatypes, click on the Close button, and again on the Database
Datatypes dialog.

Import Database Schema from ODBC | 160

© 1998-2010 Sparx Systems Pty Ltd

3.16 Import Database Schema from ODBC

Analysis of legacy database systems is possible using Enterprise Architect’s reverse engineering
capabilities. By connecting to a live database via ODBC, you can import the database schema into a standard
UML model. Subsequent imports enable you to maintain synchronization between the data model and the live
database.

Enterprise Architect supports importing database tables from an ODBC data source. Tables are imported as
stereotyped Classes with suitable data definitions for the source DBMS.

Notes:

· Import of stored procedures and views is supported for: DB2; SQL Server; Firebird/Interbase; Informix;
Ingres; Oracle 9i, 10g and 11g; MySQL; PostgreSQL; Sybase Adaptive Server Enterprise (ASE) and
Sybase Adaptive Server Anywhere (ASA).

· If you are importing database schema from an MS Access Jet 4.0 database, please ensure that you have
selected the Use Jet 4.0 checkbox on the General page of the Options dialog (see Using Enterprise
Architect - UML Modeling Tool). Otherwise, the Jet 3.5 routines are loaded. You must restart Enterprise
Architect after selecting the checkbox.

· The ODBC connection should use the ODBC driver available from the DBMS vendor. For example,
MySQL's ODBC driver for MySQL, and Oracle's ODBC driver for Oracle. Drivers provided by third-party
vendors are not supported - this includes the Microsoft ODBC driver for Oracle.

· If setting up a ODBC connection for reverse engineering, the default settings are sufficient.

· Additional data types are available from the Datamodeling Data Types section of the Resources page on
the Sparx Systems website.

Import Database Tables and Stored Procedures

To import database tables and stored procedures, follow the steps below:

1. Select any package in the Logical View.

2. To import into:

· The package only, right-click on the package to display the context menu, and select the Code
Engineering | Import DB Schema from ODBC menu option.

· A diagram, right-click on the diagram in the selected package to open the context menu, and select
the Import DB schema from ODBC menu option.

Note:

Alternatively you can select the Project | Database Engineering | Import DB Schema from ODBC
menu option.

The Import DB Schema from ODBC Source dialog displays.

4

http://www.sparxsystems.com/resources/index.html

Import Database Schema from ODBC | 161

Code Engineering Using UML Models

3. In the Database field, click on the [...] (Browse) button and select a suitable ODBC data source
from the ODBC dialog (ODBC must be installed and configured on your machine for this to work
correctly).

When you have selected the data source, the Database field shows the DBMS, the database server ID
and the database name, separated by full stops; that is:
dbms.dbserver.database.

4. If importing from Oracle, to restrict the import to a specific owner, type the owner name in the
Schema/Owner field. By default, Enterprise Architect inserts the Oracle user name in this field.

For imports from other types of database, leave this field blank.

5. In the Filter panel, select the appropriate checkboxes for additional items to include in the import.

Select the appropriate checkboxes to import system tables and views, user views, triggers and/or
Oracle packages.

If you select to import User Functions and/or User Sequences as individual Classes, then they are
imported as separate elements and the Properties dialog is solely concerned with the Function or
Sequence definition. For Stored Procedures, always select this option

162

Import Database Schema from ODBC | 162

© 1998-2010 Sparx Systems Pty Ltd

If you select to import User Functions and/or User Sequences as Class operations, then they are
imported as operations (methods) and you view and edit them through the Operations Properties dialog
of the parent Class.

6. When synchronizing existing Classes, select the appropriate checkbox in the Synchronization panel to
determine whether the model comments, default values or constraints are to be synchronized with the
ODBC tables, or as new objects.

Note:

It is only possible to import into a diagram if it is in the selected package. If a diagram from another
package is open, a message displays to give the option to cancel the import or to continue importing
into the package only. The Import DB Schema from ODBC Source dialog includes checkbox options to
import into the diagram and package, or into the package only.

If no diagram is open, the Package Only radio button defaults to selected and the options are
disabled. If the open diagram is in the selected package, you can select either option.

7. Click on the Import button to start the import.

8. Select the tables and - if appropriate - stored procedures to import.

This completes the procedure. See the Imported Class Elements topic.

3.16.1 Select a Data Source

To import DDL from existing data sources, you must have a suitable ODBC connection installed and
configured (see UML Model Management). From the Import DB Schema from ODBC Source dialog you can
select the ODBC data source using the standard windows ODBC set-up dialog. Click on the data source name
and then click on the OK button.

163

163

Import Database Schema from ODBC | Select Tables163

Code Engineering Using UML Models

3.16.2 Select Tables

When you have opened the ODBC data source, Enterprise Architect acquires a list of tables and stored
procedures suitable for importing. This is presented in a list form for you to select from.

Highlight the tables and stored procedures to import and clear those you do not require.

Selection shortcuts:

· To select all tables and procedures, click on the Select All button

· To clear all tables and procedures, click on the Select None button

· Hold down [Ctrl] while clicking on tables and procedures to select multiple objects

· Hold down [Shift] and click on tables and procedures to select a range.

When you have selected the tables and procedures, click on the OK button.

3.16.3 The Imported Class Elements

When you import DDL table definitions they are converted to stereotyped Classes according the UML Data
Modeling Profile.

The image below shows some example tables imported into the model using an ODBC data connection.

Import Database Schema from ODBC | The Imported Class Elements 164

© 1998-2010 Sparx Systems Pty Ltd

Index165

Code Engineering Using UML Models

Index
- A -
Abstract

XSD Models 98

ActionScript

Code Generation Language Options 43

Import, Reverse Engineering 6

Modeling Conventions 69

Options 43

Versions Supported 43

Active State Logic

Model State Machine For HDL 23

Activity Diagram

Generate Code From 19, 27

Ada 2005

Code Generation Language Options 43

Modeling Conventions 69

Options 43

Add

New Code Sections To Existing Features 67

ANSI C 44

Modeling Conventions 71

Association

Connector, Set Collection Class 41

Attribute

Create Fast, Option 36

Delete If Not In Code In Reverse Synchronization
 36

Imported, Default Name Generated From 36

Message Part, WSDL 116

Stereotyped, For Columns 130

- B -
Behavioral Models

Generate Code From 19

Binary Module

Import, Reverse Engineering 9

Binding

WSDL Diagram 113

WSDL Element 113

- C -
C

Code Generation Language Options 44

Import, Reverse Engineering 6

Modeling Conventions 71, 72

Object Oriented Programmiing 72

Options 44

C#

Code Generation Language Options 45

Import, Reverse Engineering 6

Modeling Conventions 73

Options 45

C++

Code Generation 46

Implementation Files 46

Import, Reverse Engineering 6

Language Options 46

Modeling Conventions 75

Modeling Conventions, CLI Extensions 77

Modeling Conventions, Managed 76

Check Constraint

Create 147

What Is A? 147

Class

Collection, Set 41

Elements, Imported 163

Partial 73

Partial, Generate 15

Reset Options 59

Source Code Generation 12

CLI Extensions

C++ Modeling Conventions 77

Code

Delete From Features In Model In Fwd
Synchronization 36

Generated From State Machine 20

Synchronize 66

Code Engineering

And MDG Integration 10

Code, Reverse Engineer 4

Eclipse 10

Generate Code For Single Class 13

Generate Group of Classes 14

Generate Package 15

Generate Package Source Code 15

Generate Source Code 12

Introduction 2

Namespaces 17

Package Contents, Update 16

Referenced XML Schema 102

Reverse Engineer Source Code 4

Settings 32

Settings, Attribute/Operation Options 36

Settings, Code Generation
Constructor/Destructor Options 35

Settings, Code Page for Source Editing 37

Index 166

© 1998-2010 Sparx Systems Pty Ltd

Code Engineering

Settings, General Code Options 32

Settings, Import Component Types 33

Settings, Source Code Options 32

Synchronization 4

Synchronize Model And Code 10

Synchronize Package Tree 16

UML Profile For XSD 91

Update Package Contents 16

Visual Studio 10

XML Schema 89

XML Schema (XSD), Default UML To XSD
Mappings 99

XML Schema, Abstract XSD Models 98

XML Schema, Generate XSD 100

XML Schema, Import XSD 102

XML Schema, Model XSD 89

XSD 89

XSD Datatype Packages 97

Code Generation

ActionScript Language Options 43

Ada 2005 Language Options 43

C Language Options 44

C# Language Options 45

C++ Language Options 46

Delphi Language Options 47

From Activity Diagrams 19, 27

From Behavioral Models 19

From Interaction Diagrams 19, 26

From Sequence Diagrams 19, 26

From State Machine Diagrams 19

Java Language Options 51

Language Options 42

MDG Technology Language Options 58

PHP Language Options 51

Python Language Options 52

SystemC Language Options 53

VB.NET Language Options 54

Verilog Language Options 55

VHDL Language Options 56

Visual Basic Language Options 57

Code Sections

Synchronize 67

Code Template

Base Templates 62

Editor 64

Framework, Overview 61

Overview 61

Collaborative Development 38

Collection Classes

Set 41

Column

Create In Data Modeling 130

Definition 130

In UML Data Modeling Profile 130

Order, Change 130

Properties 130

Sequence Entries 130

Stereotyped Attribute 130

Unique 130

Compare

DDL With Database 151

Composite

Foreign Key 137

Create

Check Constraint 147

Columns In Data Modeling 130

Foreign Key 137

Index (Data Modeling) 147

Primary Key 134

Primary Key Name Template 134

Sorted Lookup Table 147

Table in Data Modeling 123

Trigger Operation 147

Unique Constraint 147

View 145

CTF

Overview 61

- D -
Data Modeling

Check Constraint 147

Compare DDL With Database 151

Create Columns 130

Create Table 123

Data Model Diagram 122

Data Type Conversion Procedures 155

DBMS Conversion Procedure Package 156

DBMS Data Types 158

DDL, Generate 149

Foreign Keys 137

Generate DDL 149

Generate DDL For A Package 151

Index 147

Introduction 120

Primary Key Extended Properties 136

Primary Key, Create 134

Profile (UML) 120

Set MySQL Table Type 126

Set Oracle Table Properties 127

Set Schema Owner 126

Set Table Owner 126

Index167

Code Engineering Using UML Models

Data Modeling

Set Table Properties 124

Sorted Lookup Table 147

Stored Procedure 143

Trigger Operation 147

Typical Tasks 120

Unique Constraint 147

Data Source

Select 162

Data Type

Conversion Procedures 155

DBMS 158

Database

Compare Package DDL With 151

Default 34

Design 120

Keys 120

Modeling 120

Schema, Import Of 120

Supported Types 120

View, Report On 145

Database Operation Properties

Dialog 136

Database Table

Select From ODBC Data Source 163

DBMS

Conversion Procedures 155

Data Type Conversion Procedures 155

DBMS Conversion

Mapper 156

Procedure 156

Table Conversion Between DBMS Types 156

DDL

Compare With Database 151

Data Modeling 149

Default Script Editor 34

Generate For Package 151

Generate For Table 149

Import Schema From ODBC 160

Schema, Import From ODBC 160

Scripts And Generated Tables 120

Default

Database 34

DDL Script Editor 34

UML To XSD Mappings 99

Define

Foreign Key Name Template 141

Delphi

Code Generation 47

Import, Reverse Engineering 6

Language Options 47

Limitations 48

Modeling Conventions 78

Properties 48

Designate Driving Triggers

Model State Machine For HDL 23

Diagram

Data Model, Example 122

WSDL Binding 113

WSDL Message 113

WSDL Overview 108

WSDL Port Type 112

WSDL Service 111

WSDL Types 108

Dialog

Database Operation Properties 136

Directory Structure

Import, Reverse Engineering 8

Document

WSDL Element 110

- E -
Element

Stored Procedure 143

View 145

WSDL Binding 113

WSDL Message 113

WSDL Namespace 108

WSDL Service 111

WSDL, Document 110

WSDL, Port Type 112

Enterprise Architect

Editor 34

Enterprise Architect Toolbox

SystemC Group 81

Verilog Group 84

VHDL Group 85

Establish Port-Trigger Mappng

Model State Machine For HDL 23

- F -
Foreign Key

Composite 137

Constraint 137

Create 137

Description 137

Name Template, Define 141

Representation In Diagram 137

Forward Engineering

Introduction 2

Forward Synchronization

Index 168

© 1998-2010 Sparx Systems Pty Ltd

Forward Synchronization

Delete Code From Features In Model 36

- G -
Garden Of Eden Style 101

Generate

Global Element For Global ComplexTypes 100

Global Element In XSD 101

WSDL 117

XML Schema For Referenced Packages 100

XML Schema, For Child Packages 100

XSD 100

Generate Code

From Activity Diagrams 19, 27

From Behavioral Models 19

From Interaction Diagrams 19, 26

From Sequence Diagrams 19, 26

From State Machine Diagrams 19

Generate Source Code

Overview 12

Global Element

Generate For Global ComplexTypes 100

Generate In XSD 101

Import XSD 104

Global Elements

Import 102

- H -
Hardware Description Languages

Model State Machine For 23

HDL

Model State Machine For 23

- I -
Implemented Interfaces

Generate/Disable Methods For 36

Import

ActionScript, Reverse Engineering 6

Binary Module, Reverse Engineering 9

C#, Reverse Engineering 6

C, Reverse Engineering 6

C++, Reverse Engineering 6

Component Types 33

Database Schema from ODBC 160

DDL Schema from ODBC 160

Delphi, Reverse Engineering 6

Directory Structure, Reverse Engineering 8

Global Elements 102

Handle Classes Not Found 10

Java, Reverse Engineering 6

PHP, Reverse Engineering 6

Python, Reverse Engineering 6

Referenced XML Schema 102

Source Code, Reverse Engineering 5, 10

Visual Basic, Reverse Engineering 6

Visual Basic.Net, Reverse Engineering 6

WSDL 119

XSD 102

Imported Class Elements 163

Index

Create in Data Modeling 147

Unique 147

What Is An? 147

Interaction Diagram

Generate Code From 19, 26

Interface

Source Code Generation 12

Internal Editor 34

Introduction

To Code Engineering 2

To Forward Engineering 2

To Reverse Engineering 2

To Round-trip Engineering 2

To Synchronization 2

- J -
Java

AspectJ Extensions 6

Code Generated From State Machine Diagram
20

Code Generation 51

Import, Reverse Engineering 6

Language Options 51

Modeling Conventions 79

Modeling Conventions, AspectJ Extensions 80

- K -
Keys

Foreign, Definition 120

Primary, Definition 120

- L -
Language

Macros 39

Language Options

ActionScript 43

Index169

Code Engineering Using UML Models

Language Options

Ada 2005 43

C 44

C# 45

C++ 46

Code Generation 42

Delphi 47

Java 51

MDG Technology 58

PHP 51

Python 52

SystemC 53

VB.NET 54

Verilog 55

VHDL 56

Visual Basic 57

Local

Directories 39

Path Dialog 39

Paths 38

- M -
Macro

Language 39

Preprocessor 39

Managed C++

Modeling Conventions 76

Mapper

Data Type Conversion Procedures 155

MDG Technology

Code Generation 58

Language Options 58

Message

WSDL Diagram 113

WSDL Element 113

Message Part

WSDL Attribute 116

Method

Delete If Not In Code In Reverse Synchronization
 36

Implemented Interfaces 36

Include Bodies In Model When Reverse
Engineering 36

Model

Databases 120

WSDL 106

WSDL, Binding 113

WSDL, Document 110

WSDL, Message 113

WSDL, Message Part 116

WSDL, Namepace 108

WSDL, Port Type 112

WSDL, Port Type Operation 115

WSDL, Service 111

XSD 89

Model State Machine

Active State Logic 23

Designate Driving Triggers 23

Establish Port-Trigger Mapping 23

For Hardware Description Languages 23

Modeling Conventions 68

ActionScript 2 and 3 69

Ada 2005 69

ANSI C 71

C 71

C# 73

C, Object Oriented Programming 72

C++ 75

C++, Managed 76

C++/CLI Extensions 77

Delphi 78

Java 79

Java AspectJ Extensions 80

Object Oriented Programming in C 72

PHP 80

Python 81

SystemC 81

VB.Net 83

Verilog 84

VHDL 85

Visual Basic 87

MySQL

Table Type, Set 126

- N -
Name Template

Foreign Key 141

Primary Key 134

Namespace

Clear 17

Dialog 17

Explanation 17

List 17

Locate In Project Browser 17

Root 17

Set 17

WSDL Element 108

New Code Sections

Add To Existing Features 67

Index 170

© 1998-2010 Sparx Systems Pty Ltd

- O -
Object Oriented Programming

C Code Generation For UML Model 72

Limitations 72

ODBC

Data Modeling 149

ODBC Data Source

Select 162

ODBC Source

Select Stored Procedures From 163

Select Tables From 163

Operation

WSDL Port Type Operation 115

Options

Reset For A Class 59

Options Dialog

ActionScript 43

Ada 2005 43

Attribute/Operation Specifications 36

C 44

C# 45

C++ 46

Delphi 47

Java 51

MDG Technology 58

PHP 51

Python 52

SystemC 53

VB.NET 54

Verilog 55

VHDL 56

Visual Basic 57

Oracle

Package, Create 133

Sequence 130

Sequence Options, DDL For Packages 151

Sequence Options, DDL For Table 149

Tables, Set Properties 127

Tables, Tagged Values 127

Temporary Table 127

- P -
Package

Body, For Oracle 133

Create Oracle Packages 133

Specification, For Oracle 133

Synchronize Contents 16

Update Contents 16

Partial Class

Generate 15

PHP

Code Generation 51

Import, Reverse Engineering 6

Language Options 51

Modeling Conventions 80

Port Type

WSDL Diagram 112

WSDL Element 112

Port Type Operation

WSDL 115

Preprocessor Macros 39

Primary Key

Complex 134

Create 134

Description 134

Extended Properties 136

Name Template, Define 134

Simple 134

SQL Server, Non-Clustered 136

Python

Code Generation 52

Import, Reverse Engineering 6

Language Options 52

Modeling Conventions 81

- R -
Referenced XML Schema

Import 102

Reset Options

For A Class 59

For All Classes 59

Source Code Language 59

Reverse Engineer

Source Code 4

Reverse Engineering

And MDG Integration 10

Directory Structure 8

Eclipse 10

Handling Classes Not Found During Import 10

Import ActionScript 6

Import Binary Module 9

Import C 6

Import C# 6

Import C++ 6

Import Delphi 6

Import Java 6

Import PHP 6

Import Python 6

Index171

Code Engineering Using UML Models

Reverse Engineering

Import Source Code 5, 10

Import Visual Basic 6

Import Visual Basic.Net 6

Introduction 2

ODBC Data Sources 160

Source Code, Import Directory Structure 8

Synchronize Model And Code 10

Visual Studio 10

Reverse Synchronization

Delete Attribute If Not In Code 36

Delete Method If Not In Code 36

Delete Model Aggregations For Attributes Not In
Code 36

Delete Model Associations For Attributes Not In
Code 36

Include Method Bodies In Model 36

Round-Trip Engineering

Introduction 2

- S -
Schema

Database, Import From ODBC 160

DDL, Import From ODBC 160

Owner Tagged Value 126

Set Owner 126

Scope

Values 68

Select

ODBC Data Source 162

Sequence

Oracle, DDL Options 149

Oracle, DDL Options For Packages 151

Sequence Diagram

Generate Code From 19, 26

Service

WSDL Diagram 111

WSDL Element 111

Service Oriented Architecture 88

Set

Collection Classes 41

Single User 39

SOA 88

SOAP Binding 113

Sorted Lookup Table

Create In Data Modeling 147

Source Code

Add New Features And Elements 67

Import, Reverse Engineering 5

Internal Editor Options 34

Reset Language 59

Reverse Engineer 4

Synchronize 4

Source Code Generation

Class 12

Interface 12

Overview 12

SQL Server

Non-Clustered Primary Key 136

State Machine

Model For Hardware Description Languages
23

State Machine Diagram

Code Generated From 20

Generate Code From 19

Stereotype

XSD In UML Profile 91

Stored Procedure

As Individual Class 143

Definition 143

Element 143

Select From ODBC Data Source 163

Supported Databases 143

Synchronization

Introduction 2

Of Source Code And Model 4

Synchronize

Code 66

Existing Code Sections 67

SystemC

Code Generation 53

Enterprise Architect Toolbox Pages 81

Language Options 53

Modeling Conventions 81

- T -
Table

DDL Script For 120

Owner Tagged Value 126

Set Owner 126

Set Properties 124

Tagged Value

For Oracle Table Properties 127

For Schema Owner 126

For Table Owner 126

Template

Editor, Code Templates 64

Trigger

Operation, What Is A? 147

Trigger Operation

Create 147

What Is A? 147

Index 172

© 1998-2010 Sparx Systems Pty Ltd

- U -
UML

Data Modeling Profile 120

Mappings To XSD 99

UML Profile

XSD, Stereotypes 91

UML Toolbox

SystemC Group 81

Verilog Group 84

VHDL Group 85

Unique

Constraint 147

Index 147

User

Settings 39

- V -
VB.Net

Code Generation 54

Language Options 54

Modeling Conventions 83

Verilog

Code Generation 55

Enterprise Architect Toolbox Pages 84

Language Options 55

Modeling Conventions 84

VHDL

Code Generation 56

Enterprise Architect Toolbox Pages 85

Language Options 56

Modeling Conventions 85

View

Create 145

Database 145

Element 145

Report On 145

Visibility Indicators

Values 68

Visual Basic

Code Generation 57

Import, Reverse Engineering 6

Language Options 57

Modeling Conventions 87

Visual Basic.Net

Import, Reverse Engineering 6

- W -
W3C XML

Technologies, Introduction 88

Web Service Definition Language 106

Web Services (WSDL) 106

Generate WSDL 117

Import WSDL 119

Model WSDL 106

Model WSDL, Binding 113

Model WSDL, Document 110

Model WSDL, Message 113

Model WSDL, Message Part 116

Model WSDL, Namepaces 108

Model WSDL, Port Type 112

Model WSDL, Port Type Operation 115

Model WSDL, Service 111

What Is

A Check Constraint? 147

A Foreign Key? 137

A Primary Key? 134

A Stored Procedure? 143

A Trigger Operation? 147

An Index? 147

WSDL

Binding Diagram 113

Binding Element 113

Document Element 110

Import 117, 119

Message Diagram 113

Message Element 113

Model 106

Namespace Element 108

Overview Diagram 108

Port Type Diagram 112

Port Type Element 112

Port Type Operation 115

Service Diagram 111

Service Element 111

UML Toolbox Pages 106

Web Services 106

WSDL Support

Introduction 106

- X -
XML

Import Referenced Schema 102

Technologies, Introduction 88

XML Schema

Index173

Code Engineering Using UML Models

XML Schema

Generate In Garden Of Eden Style 101

UML Profile For XSD 91

XSD 89

XSD

Abstract Models 98

Datatype Packages 97

Generate 100

Import 102

Import, Global Element Behaviour 104

Model 89

XML Schema 89

XSDany 91

XSDattribute 91

XSDattributeGroup 91

XSDchoice 91

XSDcomplexType 91

XSDelement 91

XSDgroup 91

XSDrestriction 91

XSDschema 91

XSDsequence 91

XSDsimpleType 91

XSDtopLevelAttribute 91

XSDtopLevelElement 91

XSDunion 91

Code Engineering Using UML Models

www.sparxsystems.com

	Code Engineering
	Reverse Engineering
	Import Source Code
	Notes on Source Code Import
	Import a Directory Structure
	Import Binary Module
	MDG Integration and Code Engineering
	Classes Not Found During Import
	Synchronize Model and Code

	Generate Source Code
	Generate a Single Class
	Generate a Group of Classes
	Generate a Package
	Update Package Contents
	Namespaces

	Code Generation From Behavioral Models
	SW Code Generation - State Machine Diagrams
	Java Code Generated From State Machine Diagram

	State Machine Modeling For HDLs
	Code Generation - Interaction Diagrams
	Code Generation - Activity Diagrams

	Code Engineering Settings
	Source Code Engineering
	Source Code Options
	Import Component Types

	Options - Code Editors
	Options - Object Lifetimes
	Options - Attribute/Operations
	Code Page for Source Editing

	Local Paths
	Local Paths Dialog
	Language Macros
	Set Collection Classes
	Language Options
	ActionScript Options
	Ada 2005 Options
	C Options
	C# Options
	C++ Options
	Delphi Options
	Delphi Properties

	Java Options
	PHP Options
	Python Options
	SystemC Options
	VB.Net Options
	Verilog Options
	VHDL Options
	Visual Basic Options
	MDG Technology Language Options
	Reset Options

	Code Template Framework
	Code Templates
	Base Templates

	The Code Template Editor
	Synchronize Code
	Synchronize Existing Sections
	Add New Sections
	Add New Features and Elements

	Modeling Conventions
	ActionScript Conventions
	Ada 2005
	C Conventions
	Object Oriented Programming In C

	C# Conventions
	C++ Conventions
	Managed C++ Conventions
	C++/CLI Conventions

	Delphi Conventions
	Java Conventions
	AspectJ Conventions

	PHP Conventions
	Python Conventions
	System C Conventions
	VB.Net Conventions
	Verilog Conventions
	VHDL Conventions
	Visual Basic Conventions

	XML Technologies
	XML Schema (XSD)
	Model XSD
	UML Profile for XSD
	XSD Datatypes Package
	Abstract XSD models
	Default UML to XSD Mappings

	Generate XSD
	Generate Global Element

	Import XSD
	Global Element and ComplexType

	Web Services (WSDL)
	Model WSDL
	WSDL Namespace
	WSDL Document
	WSDL Service
	WSDL Port Type
	WSDL Message
	WSDL Binding
	WSDL Port Type Operation
	WSDL Message Part

	Generate WSDL
	Import WSDL

	Data Modeling
	A Data Model Diagram
	Create a Table
	Set Table Properties
	Set Table Owner
	Set MySQL Options
	Set Oracle Table Properties

	Create Columns
	Create Oracle Packages
	Primary Key
	SQL Server Non Clustered Keys

	Foreign Key
	Create Foreign Key
	Define Foreign Key Name Template

	Stored Procedures
	Create Individual Class Procedure

	Views
	Index, Trigger, Check Constraint
	Generate DDL For a Table
	Generate DDL for a Package
	Data Type Conversion Procedure
	Data Type Conversion for a Package
	DBMS Datatypes
	Import Database Schema from ODBC
	Select a Data Source
	Select Tables
	The Imported Class Elements

