
Copyright © 1998-2010 Sparx Systems Pty Ltd

UML Dictionary

Enterprise Architect is an intuitive, flexible and powerful UML
analysis and design tool for building robust and maintainable

software.

This dictionary explains the way in which Enterprise Architect
represents the UML 2.1 diagrams, elements and connectors, and

its own extensions of UML.

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this document
or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be
liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or
indirectly by this document.

Printed: May 2010

Enterprise Architect - UML Dictionary

© 1998-2010 Sparx Systems Pty Ltd

Publisher
Special thanks to:

All the people who have contributed suggestions, examples, bug
reports and assistance in the development of Enterprise Architect.
The task of developing and maintaining this tool has been greatly
enhanced by their contribution.Managing Editor

Technical Editors

Sparx Systems

Geoffrey Sparks

Geoffrey Sparks

Neil Capey

IContents

© 1998-2010 Sparx Systems Pty Ltd

Table of Contents

Foreword 1

UML Dictionary 2

... 4UML Diagrams

.. 4Behavioral Diagrams

... 5Activity Diagram

... 7Use Case Diagram

... 9State Machine Diagrams

... 12Regions

... 13Pseudo-States

... 14State Machine Table

... 15State Machine Table Options

... 17State Machine Table Operations

... 18Change State Machine Table Position

... 18Change State Machine Table Size

... 18Insert New State

... 19Insert Trigger

... 19Insert/Change Transition

... 20Reposition State or Trigger Cells

... 20Add Legend

... 20Find Cell in State Machine Diagram

... 21State Machine Table Conventions

... 21Export State Table To CSV File

... 22Timing Diagram

... 23Create a Timing Diagram

... 23Set a Time Range

... 24Edit a Timing Diagram

... 24Add and Edit State Lifeline

... 25Edit States In State Lifeline

... 26Edit Transitions In State Lifeline

... 27Add and Edit Value Lifeline

... 28Add States In Value Lifeline

... 28Edit Transitions In Value Lifeline

... 29Configure Timeline - States

... 31Configure Timeline - Transitions

... 32Time Intervals

... 36Time Interval Operations

... 39Sequence Diagram

... 41Denote Lifecycle of an Element

... 42Layout of Sequence Diagrams

... 43Sequence Elements

... 44Sequence Diagrams and Version Control

... 45Sequence Element Activation

... 46Lifeline Activation Levels

... 48Sequence Message Label Visibility

... 48Change the Top Margin

... 49Inline Sequence Elements

... 49Communication Diagram

... 51Communication Diagrams in Color

... 52Interaction Overview Diagram

.. 54Structural Diagrams

... 55Package Diagram

... 56Class Diagram

ContentsII

UML Dictionary

... 58Object Diagram

... 59Composite Structure Diagram

... 61Properties

... 62Deployment Diagram

... 65Component Diagram

.. 67Extended Diagrams

... 67Analysis Diagram

... 69Custom Diagram

... 71Requirements Diagram

... 72Maintenance Diagram

... 73User Interface Diagram

... 75Database Schema

... 75Business Modeling/Interaction

... 78UML Elements

.. 78Behavioral Diagram Elements

... 79Action

... 81Action Notation

... 85Set Feature Dialog

... 86Action Expansion Node

... 87Action Pin

... 88Assign Action Pins

... 89Local Pre/Post Conditions

... 90Activity

... 91Activity Notation

... 91Activity Parameter Nodes

... 93Activity Partition

... 94Actor

... 95Central Buffer Node

... 95Choice

... 96Combined Fragment

... 98Create a Combined Fragment

... 99Interaction Operators

... 102Datastore

... 102Decision

... 104Diagram Frame

... 105Diagram Gate

... 106Endpoint

... 107Entry Point

... 107Exception

... 107Expansion Region

... 110Add Expansion Region

... 110Exit Point

... 110Final

... 111Flow Final

... 112Fork/Join

... 114Fork

... 115Join

... 116History

... 117Initial

... 118Interaction

... 119Interaction Occurrence

... 121Interruptible Activity Region

... 122Add Interruptible Activity Region

... 122Junction

... 123Lifeline

... 124Merge

... 124Message Endpoint

IIIContents

© 1998-2010 Sparx Systems Pty Ltd

... 125Message Label

... 126Note

... 126Partition

... 127Receive

... 128Region

... 129Send

... 129State

... 130Composite State

... 132State/Continuation

... 132Continuation

... 134State Invariant

... 135State Lifeline

... 136State Machine

... 136Structured Activity

... 138Structured and Sequential Nodes

... 139Loop and Conditional Nodes

... 142Synch

... 142System Boundary

... 144Boundary Element Settings

... 144Terminate

... 145Trigger

... 146Use Case

... 147Use Case Extension Points

... 148Rectangle Notation

... 149Value Lifeline

.. 150Structural Diagram Elements

... 151Artifact

... 152Class

... 153Active Classes

... 154Parameterized Classes (Templates)

... 156Collaboration

... 157Collaboration Occurrence

... 158Component

... 159Data Type

... 160Deployment Spec

... 161Device

... 161Document Artifact

... 162Enumeration

... 162Execution Environment

... 163Expose Interface

... 163Information Item

... 164Interface

... 165Node

... 165Object

... 166Run-time State

... 166Define a Run-time Variable

... 167Remove a Defined Variable

... 167Object State

... 168Package

... 168Part

... 169Add Property Value

... 169Port

... 170Add a Port to an Element

... 170Inherited and Redefined Ports

... 172The Property Tab

... 173Primitive

... 173Qualifiers

... 175Qualifiers Dialog

ContentsIV

UML Dictionary

... 178Signal

.. 178Inbuilt and Extension Stereotypes

... 179Analysis Stereotypes

... 179Boundary

... 180Create a Boundary

... 180Composite Elements

... 181Control

... 182Create a Control Element

... 182Entity

... 183Create an Entity

... 183Event

... 184Feature

... 184Hyperlinks

... 187N-Ary Association

... 188Packaging Component

... 189Process

... 189Requirements

... 190Screen

... 191Test Case

... 192Table

... 192UI Control Element

... 194Web Stereotypes

... 196UML Connectors

.. 198Aggregate

... 199Change Aggregation Connector Form

.. 199Assembly

.. 199Associate

.. 200Association Class

... 201Connect New Class to Association

.. 202Communication Path

.. 202Compose

.. 203Connector

.. 204Control Flow

.. 205Delegate

.. 205Dependency

... 206Apply a Stereotype

.. 206Deployment

.. 207Extend

.. 207Generalize

.. 208Include

.. 208Information Flow

... 210Convey Information on a Flow

... 210Realize an Information Flow

.. 211Interrupt Flow

.. 211Manifest

.. 212Message

... 212Message (Sequence Diagram)

... 215Self-Message

... 216Call

... 217Message Examples

... 218Change the Timing Details

... 220General Ordering

... 221Asynchronous Signal Message

... 223Message (Communication Diagram)

... 224Create a Communication Message

... 224Re-Order Messages

... 226Message (Timing Diagram)

VContents

© 1998-2010 Sparx Systems Pty Ltd

... 227Create a Timing Message

.. 229Nesting

.. 230Notelink

.. 230Object Flow

... 231Object Flows in Activity Diagrams

.. 232Occurrence

.. 232Package Import

.. 232Package Merge

.. 233Realize

.. 234Recursion

.. 234Role Binding

.. 235Represents

.. 235Representation

.. 236Trace

.. 236Transition

.. 238Use

Index 240

Foreword

This dictionary explains the way in which
Enterprise Architect represents the UML 2.1
diagrams, elements and connectors, and its

own extensions of UML.

Foreword1

UML Dictionary

 | | 2

© 1998-2010 Sparx Systems Pty Ltd

UML Dictionary

The Unified Modeling Language (UML)

Enterprise Architect's modeling platform is based on the Unified Modeling Language (UML) 2.1, a standard
that defines rules and notations for specifying business and software systems. The notation supplies a rich set
of graphic elements for modeling object oriented systems, and the rules state how those elements can be
connected and used. UML is not a tool for creating software systems; instead, it is a visual language for
communicating, modeling, specifying and defining systems.

UML is not a prescriptive process for modeling software systems; it does not supply a method or process,
simply the language. You can therefore use UML in a variety of ways to specify and develop your software
engineering project. This language is designed to be flexible, extendable and comprehensive, yet generic
enough to serve as a foundation for all system modeling requirements. With its specification, there is a wide
range of elements characterized by the kinds of diagrams they serve, and the attributes they provide. All can
be further specified by using stereotypes, Tagged Values and profiles. Enterprise Architect supports many
different kinds of UML elements (as well as some custom extensions). Together with the connectors between
elements, these form the basis of the model.

See:

· UML Diagrams

· UML Elements

· UML Connectors

Wide Range of Applications

Although initially conceived as a language for software development, UML can be used to model a wide range
of real world domains and processes (in business, science, industry, education and elsewhere), organizational
hierarchies, deployment maps and much more. Enterprise Architect also provides additional custom diagrams
and elements, to address further modeling interests. This topic is intended to provide an introduction to
Enterprise Architect's diagrams, elements and connectors. It also illustrates its alignment, when applicable, to
the Unified Modeling Language.

Extending UML for New Domains

Using UML Profiles, UML Patterns (see Extending UML with Enterprise Architect), Grammars, Data Types,
Constraints and other extensions, UML and Enterprise Architect can be tailored to address a particular
modeling domain not explicitly covered in the original UML specification. Enterprise Architect makes extending
UML simple and straightforward and, best of all, the extension mechanism is still part of the UML
Specification.

Find Out More

UML is an open modeling standard, defined and maintained by the Object Management Group. Further
information, including the full UML 2.1.1 documentation, can be found on the OMG website at http://www.omg.
org.

Tip:

If you are unfamiliar with UML, please explore the topics in this UML Dictionary and the Enterprise Architect
UML Toolbox descriptions in Using Enterprise Architect - UML Modeling Tool, and the EAExample project
supplied with Enterprise Architect. The online UML Tutorial (parts 1 and 2) and UML 2.0 Tutorial are also very
helpful.

4

78

196

http://www.omg.org
http://www.omg.org
http://www.sparxsystems.com/UML_Tutorial.htm
http://www.sparxsystems.com/resources/uml2_tutorial/index.html

 | | 3

UML Dictionary

Recommended Reading:

In addition to the UML Specification available from the OMG, two books that provide excellent introductions to
UML are:

· Schaum's Outlines: UML by Bennet, Skelton and Lunn. Published by McGraw Hill.
ISBN 0-07-709673-8

· Developing Software with UML by Bern Oestereich. Published by Addison Wesley.
ISBN 0-201-36826-5

UML Diagrams | | 4

© 1998-2010 Sparx Systems Pty Ltd

1 UML Diagrams

What is a UML Diagram?

A UML diagram is a representation of the components or elements of a system or process model and,
depending on the type of diagram, how those elements are connected or how they interact from a particular
perspective. For example, how and why an object changes state, or how requirements are realized by the
process or a system.

Types of Diagram

There are two major groupings of UML diagrams:

· Structural Diagrams which depict the structural elements composing a system or function, reflecting the
static relationships of a structure, or run-time architectures.

· Behavioral Diagrams which show a dynamic view of the model, depicting the behavioral features of a
system or business process.

Enterprise Architect provides the following additional diagram types that extend the core UML diagrams for
business process modeling, formal requirements specifications and other domain-specific models:

· Analysis diagrams

· Custom diagrams

· Requirements diagrams

· Maintenance diagrams

· User Interface diagrams

· Database diagrams

· Business Modeling and Business Interaction diagrams.

Enterprise Architect also supports diagram types specific to MDG Technologies, including integrated
technologies such as Archimate, BPMN, Data Flow Diagrams, Eriksson-Penker Extensions, Iconix and Mind
Mapping. For information on these MDG Technologies, see Extending UML with Enterprise Architect.

Work with Diagrams

Diagrams are developed in the main workspace in which you create and connect model elements. You create
them by right-clicking a package and selecting the New Diagram context menu option, or load them by
double-clicking their diagram icon in the Project Browser.

For full details on how to work with diagrams, see Diagram Tasks in UML Modeling with Enterprise Architect –
UML Modeling Tool.

1.1 Behavioral Diagrams

Behavioral diagrams depict the behavioral features of a system or business process. Behavioral diagrams
include the following diagram types:

Activity Diagrams

Activity diagrams model the behaviors of a system, and the way in which these behaviors are related in an
overall flow of the system.

54

4

67

69

71

72

73

75

75

5

UML Diagrams | Behavioral Diagrams | 5

UML Dictionary

Use Case Diagrams

Use Case diagrams capture Use Cases and relationships among Actors and the system; they describes
the functional requirements of the system, the manner in which external operators interact at the system
boundary, and the response of the system.

State Machine Diagrams

State Machine diagrams illustrate how an element can move between states, classifying its behavior
according to transition triggers and constraining guards.

Timing Diagrams

Timing diagrams define the behavior of different objects within a time-scale, providing a visual
representation of objects changing state and interacting over time.

Sequence Diagrams

Sequence diagrams are structured representations of behavior as a series of sequential steps over time.
They are used to depict work flow, message passing and how elements in general cooperate over time to
achieve a result.

Communication Diagrams

Communication diagrams show the interactions between elements at run-time, visualizing inter-object
relationships.

Interaction Overview Diagrams

Interaction Overview diagrams visualize the cooperation between other interaction diagrams (Timing,
Sequence, Communication and Interaction Overview diagrams) to illustrate a control flow serving an
encompassing purpose.

See Also

· Behavioral Modeling (in the Work With Elements section of UML Modeling With Enterprise Architect - UML
Modeling Tool)

· Code Generation from Behavioral Models (in Code Engineering Using UML Models)

1.1.1 Activity Diagram

Activity diagrams are used to model the behaviors of a system, and the way in which these behaviors are
related in an overall flow of the system. The logical paths a process follows, based on various conditions,
concurrent processing, data access, interruptions and other logical path distinctions, are all used to construct
a process, system or procedure.

Note:

You can create Analysis diagrams (Simplified Activity), containing the elements most useful for business
process modeling, using the New Diagram dialog (see Diagram Tasks in UML Modeling with Enterprise
Architect – UML Modeling Tool).

Example Diagram

The following diagram illustrates some of the features of Activity diagrams, including Activities, Actions, Start
Nodes, End Nodes and Decision points.

7

9

22

39

49

52

67

UML Diagrams | Behavioral Diagrams | Activity Diagram 6

© 1998-2010 Sparx Systems Pty Ltd

Toolbox Elements and Connectors

Select Activity diagram elements and connectors from the Activity pages of the Enterprise Architect UML
Toolbox; see Using Enterprise Architect – UML Modeling Tool.

Tip:

Click on the following elements and connectors for more information.

Activity Diagram Elements Activity Diagram Connectors

UML Diagrams | Behavioral Diagrams | Activity Diagram7

UML Dictionary

Activity Diagram Elements Activity Diagram Connectors

1.1.2 Use Case Diagram

A Use Case diagram captures Use Cases and relationships between Actors and the subject (system).
It describes the functional requirements of the system, the manner in which outside things (Actors) interact at
the system boundary, and the response of the system.

In developing a Use Case diagram, also consider:

· Use Case Extension Points

· Use Rectangle Notation

· Business Use Case (stereotyped Use Case)

Example Diagram

The following diagram illustrates some features of Use Case diagrams:

146 94

147

148

75

UML Diagrams | Behavioral Diagrams | Use Case Diagram 8

© 1998-2010 Sparx Systems Pty Ltd

Toolbox Elements and Connectors

Select Use Case diagram elements and connectors from the Use Case pages of the Enterprise Architect UML
Toolbox; see Using Enterprise Architect – UML Modeling Tool.

Tip:

Click on the following elements and connectors for more information.

Use Case Diagram Elements Use Case Diagram Connectors

Note:

Invokes and Precedes relationships are defined by the Open Modeling Language (OML). They are
stereotyped Dependency relationships; Invokes indicates that Use Case A, at some point, causes Use Case
B to happen, whilst Precedes indicates that Use Case C must complete before Use Case D can begin.

UML Diagrams | Behavioral Diagrams | State Machine Diagrams 9

UML Dictionary

1.1.3 State Machine Diagrams

Note:

State Machine diagrams were formerly known as State diagrams.

A State Machine diagram illustrates how an element (often a Class) can move between states, classifying its
behavior according to transition triggers and constraining guards. Other aspects of State Machine diagrams
further depict and explain movement and behavior; see the Working With Elements section of UML Modeling
With Enterprise Architect – UML Modeling Tool.

For information on code generation from State Machine diagrams, see the SW Code Generation - State
Machine Diagrams and State Machine Modeling for HDLs topics in Code Engineering Using UML Models.

State Machine representations in UML are based on the Harel State Chart Notation (see the OMG UML
Superstructure Specification 2.1.1, section 15.1), and therefore are sometimes referred to as State Charts.

You can display a State Machine as a diagram (as below) or as a table in one of three relationship
formats. In all formats, you use the same Enterprise Architect UML Toolbox elements and connectors; see
Using Enterprise Architect – UML Modeling Tool.

To select the display format, follow the steps below:

1. Right-click on the diagram background to display the context menu.

2. Select the Statechart Editor option.

3. Select the appropriate display option:

· Diagram

· Table (State-Next State)

· Table (State-Trigger)

· Table (Trigger-State).

Example Diagram

The following diagram illustrates some features of State Machine diagrams. The Saved State is a Composite
 State, and enclosed States are sub-states . Initial and final pseudo-states indicate the entry to and

exit from the State Machine. Composite States and sub-states are both State elements, a Composite State
being an expanded State element that encloses other State elements, which are then referred to as sub-
states. Composite States and State Machines can also contain Regions .

Note:

State elements can display either with or without a line across them. The line - as shown below - displays
when the element has features such as attributes (which could be hidden) or when the Show State
Compartment checkbox is selected in the Objects page of the Options dialog (see Using Enterprise Architect
- UML Modeling Tool).

14

130 130 13

129

12

UML Diagrams | Behavioral Diagrams | State Machine Diagrams 10

© 1998-2010 Sparx Systems Pty Ltd

You have two options for exposing the contents of a composite State, such as Saved. Firstly, you can double-
click on the element to display its child diagram separately, as shown below:

Alternatively, you can right-click on the composite element and select the Advanced | Show Composite
Diagram context menu option, which displays the child diagram in the context of the parent diagram.

UML Diagrams | Behavioral Diagrams | State Machine Diagrams 11

UML Dictionary

Toolbox Elements and Connectors

Select State Machine diagram elements and connectors from the State pages of the Enterprise Architect UML
Toolbox; see Using Enterprise Architect – UML Modeling Tool.

Tip:

Click on the following elements and connectors for more information.

State Machine Diagram Elements State Machine Diagram Connectors

UML Diagrams | Behavioral Diagrams | State Machine Diagrams 12

© 1998-2010 Sparx Systems Pty Ltd

State Machine Diagram Elements State Machine Diagram Connectors

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, Section 15.3.12, p. 560) states:

A state machine owns one or more regions, which in turn own vertices and transitions.

The behaviored classifier context owning a state machine defines which signal and call triggers are defined for
the state machine, and which attributes and operations are available in activities of the state machine. Signal
triggers and call triggers for the state machine are defined according to the receptions and operations of this
classifier.

As a kind of behavior, a state machine may have an associated behavioral feature (specification) and be the
method of this behavioral feature. In this case the state machine specifies the behavior of this behavioral
feature. The parameters of the state machine in this case match the parameters of the behavioral feature and
provide the means for accessing (within the state machine) the behavioral feature parameters.

A state machine without a context classifier may use triggers that are independent of receptions or operations
of a classifier, i.e. either just signal triggers or call triggers based upon operation template parameters of the
(parameterized) state machine.

1.1.3.1 Regions

Regions can be created in Composite States or State Machines on a State Machine diagram .
Regions indicate concurrency, such that a single State is active in each region. Multiple transitions can occur
from a single event dispatch, so long as similarly triggered transitions are divided by Regions.

To create a Region in a Composite State or State Machine element, follow the steps below:

1. Right-click on the element, and select the Advanced | Define Concurrent Substates context menu
option. The State Regions dialog displays.

130 129 9

UML Diagrams | Behavioral Diagrams | State Machine Diagrams 13

UML Dictionary

2. Create the Regions of a State, which can be named or anonymous.

3. Click on the OK button.

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 544) states:

A region is an orthogonal part of either a composite state or a state machine. It contains states and transitions.

1.1.3.2 Pseudo-States

Pseudo-states are a UML 2.1.1 abstraction for various types of transient vertices used in State Machine
diagrams. Pseudo-states are used to express complex transition paths. The following types of pseudo-state
are available:

· Initial

· Entry Point

· Exit Point

· Choice

· Junction

· History

· Terminate

· Final

· Fork

· Join

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 536) states:

A pseudostate is an abstraction that encompasses different types of transient vertices in the state machine
graph... Pseudostates are typically used to connect multiple transitions into more complex state transitions
paths. For example, by combining a transition entering a fork pseudostate with a set of transitions exiting the
fork pseudostate, we get a compound transition that leads to a set of orthogonal target states.

9

117

107

110

95

122

116

144

110

114

115

UML Diagrams | Behavioral Diagrams | State Machine Table 14

© 1998-2010 Sparx Systems Pty Ltd

1.1.4 State Machine Table

A State Machine table is one of two variants of a State Machine (the other is the State Machine diagram) . It
displays the information of the State Machine in table form, and is a method of specifying the discrete behavior
of a finite state-transition system; that is, what state the State Machine moves to and the conditions under
which the transition takes place.

You can display the state transition as one of two different relationships:

· State - Trigger: The rows indicate the current states and the columns indicate trigger events (or the other
way around if you prefer, in a Trigger - State format). The cell at the intersection of a row and column
identifies the target state in the transition if the trigger occurs, and the condition (or guard) of the transition.

· State - Next State: The rows and columns both indicate states, and the cell at the intersection of a row and
column indicates the event that triggers a transition from the current (row) state to the next (column) state,
the condition (or guard) of the event, and the effect of the transition.

9

UML Diagrams | Behavioral Diagrams | State Machine Table15

UML Dictionary

Select Format

You can display a State Machine as a diagram or table, and as a table in one of three relationship formats.

To select the display format, follow the steps below:

1. Right-click on the diagram background to display the context menu.

2. Select the Statechart Editor option.

3. Select the appropriate display option:

· Diagram

· Table (State-Next State)

· Table (State-Trigger)

· Table (Trigger-State)

To define the State Machine Table further, see:

· State Machine Table Options

· State Machine Table Operations

1.1.4.1 State Machine Table Options

You can choose the State Machine table layout and set other options from the State Machine Diagram:
Options dialog, which you display by either:

· Double-clicking on the State Machine table background or

· Right-clicking on the background and selecting the State Table Options context menu option.

15

17

14

UML Diagrams | Behavioral Diagrams | State Machine Table 16

© 1998-2010 Sparx Systems Pty Ltd

Option Use to

Table Format Select the required table format:

· State - Trigger: rows represent States, each state name in a left edge cell;
columns represent Triggers, each trigger name in a column header cell; the
intersection of a row and column identifies the Transition (if there is one);
the Transition cell displays information about the next State and the
condition (guard) of the Transition

· Trigger - State: as above, except that rows represent triggers and columns
represent states

· State - Next State: both rows and columns represent states; intersection of
row and column defines the transition (if there is one) from the row state to
the column state.

Cell Size

Transition Cell Width Specify the width of the transition cells (that is, the column width).

Transition Cell Height Specify the height of the transition cells (that is, the row height).

Left Edge Cell Width Specify the width of the left edge (row title) cells.

Top Edge Cell Height Specify the height of the top edge (column title) cells.

Cell Color

UML Diagrams | Behavioral Diagrams | State Machine Table17

UML Dictionary

Option Use to

State/Trigger Cell Select the color of the row and column title cells.

State/Trigger
Enumeration

Select the color of the enumeration (row/column numbering) cells.

Note:

You must select at least one of the Enable State Enumeration and Enable
Event Enumeration checkboxes to set this color.

Transition Cell Select the color of the transition cells (in the main body of the table).

Highlight Options

Highlight Zones Related
to Selected Transition

Highlight the cells for all elements involved in a selected transition - the initial
state, the target state, and the trigger.

Highlight Color Select the color of the highlight.

Use Different Color for
Target State

Highlight the cell for the target element in a transition in a different color to the
cell for the source element.

Target Zone Color Select the color of the highlight.

Display Options

Always Display an
Empty State Zone

Add an empty row (and, on a State - Next State table, an empty column) to the
end of the table.

The title cell contains an ellipsis (...). You can click twice (not double-click) on
the ellipsis to edit it and identify a new state. In this case, another empty state
zone is automatically added.

Enable State
Enumeration

Add a cell to each state title cell, to number the state. Numbering starts at 0.

Prefix If required, type a prefix for the state number or delete the default S to have no
prefix.

Enable Event
Enumeration

Add a cell to each event or trigger title cell, to number the event. Numbering
starts at 0.

Prefix If required, type a prefix for the event number or delete the default E to have no
prefix.

Sample State Table Display a preview of the table format as you define it.

Advanced Define diagram options. The State Machine Diagram Properties dialog displays.
(See UML Modeling with Enterprise Architect – UML Modeling Tool for
information on the Diagram Properties dialog.)

Restore Defaults Reapply the State Table diagram default values.

Apply Apply changed options to the State Table diagram.

1.1.4.2 State Machine Table Operations

Overview

As a State Machine table is a variant of a UML State Machine diagram , most of the operations for
manipulating the data are the same as for State Machine diagrams. These include operations to:

· Create new items by drag-and-dropping a specified object from the Enterprise Architect UML Toolbox to
the current diagram

14 9

UML Diagrams | Behavioral Diagrams | State Machine Table 18

© 1998-2010 Sparx Systems Pty Ltd

· Delete an item

· Apply to the diagram elements in the Project Browser

· Display or change the properties of the State, Trigger or Transition

· Apply to the diagram, such as Lock Diagram, Zoom, and in place editing of the element.

The operations specific to State Machine tables are described in the following topics:

· Change Position of State Machine Table

· Change Size of State Machine Table

· Insert New State (and Substate)

· Insert Trigger

· Insert/Change Transition

· Reposition State/Trigger Cells

· Add Legend

· Find Cell in State Machine Diagram

· State Machine Table Conventions

· Export State Table To CSV File

1.1.4.2.1 Change State Machine Table Position

If necessary, you can move the State Machine table around in the Diagram View. To change the position of
the State Machine table, follow the steps below:

1. Press [Ctrl]+[A] or double click on the top left cell to select the whole State Machine table.

2. Drag and drop the State Machine table to the required position. Alternatively, use [Shift]+["], [!], [#]
or [$] to move the State Machine table.

1.1.4.2.2 Change State Machine Table Size

There are three ways to change the size of the State Machine table:

· Change the cell size on the State Machine Diagram: Options dialog.

· Press [Ctrl]+[A] or double click on the top left cell to select the whole State Machine table, then press
[Ctrl]+["], [!], [#] or [$] to change the size.

· Select the State Machine table, then drag the shape handles to change the size.

1.1.4.2.3 Insert New State

You can insert a new State in the State Machine table, using one of following methods:

· In the top left cell in the State Machine table, move the cursor to the word State to display a + at the end of
the word; click on the + to create a new State

· Right-click in the top left cell in the State Machine table to display the context menu, and select the Add
State menu option

· Right-click on an existing State cell in the State Machine table to display the context menu, and select the

· Insert New State Before option to insert a new State before the current State, or

· Insert New State After option to insert a new State after the current State

· Click on an existing State cell in the State Machine table, and press [Insert] to create and insert a new
State above the selected State

· In the Enterprise Architect UML Toolbox, on the State Elements page, click on an element and then click
on:

· the diagram background to add a new State to the end of the table, or

· an existing State cell to add the new State just above it.

Note:

From the State Elements page of the Enterprise Architect UML Toolbox you can insert State, Initial, Final,
Entry, Exit and Terminate elements.

18

18

18

19

19

20

20

20

21

21

15

UML Diagrams | Behavioral Diagrams | State Machine Table19

UML Dictionary

Add a Substate

To add a Substate to a selected State, follow the steps below:

1. Right-click on the required State cell in the State Machine table. The context menu displays.

2. Select the Add Substate menu option. Enterprise Architect adds the Substate to the State.

Note:

If the selected State does not allow a Substate, then the Add Substate menu option is grayed out.

You can also drag one existing State over another. If the second State allows Substates, the dragged State
then becomes its Substate.

Similarly, you can change the parent State of a Substate by dragging the Substate from the original parent
State to a different State.

Remove Parent Relation of a Substate

To remove the parent relation of a Substate and make it a separate State, follow the steps below:

1. Right-click on the Substate in the State Machine table. The context menu displays.

2. Select the Remove Parent Relation menu option. The Substate cell becomes a State cell.

You can also drag and drop the Substate onto the top left cell of the State Machine table. The dragged
Substate again becomes a State cell.

1.1.4.2.4 Insert Trigger

If the State Machine table format is either State-Trigger or Trigger-State, you can use one of the following
methods to insert a new Trigger:

· In the top left cell in the State Machine table, move the cursor to the word Event to display a + at the end of
the word; click on the + to create a new Trigger

· In the top left cell in the State Machine table, right-click to display the context menu and select the Add
Trigger menu option to create a new Trigger

· Select an existing Trigger in the State Machine table, then press [Insert] to insert a new Trigger before the
existing Trigger

· Click on an existing Trigger in the State Machine table, right-click to display the context menu and select
either the:

· Insert New Trigger Before option to insert a new Trigger before the current Trigger, or

· Insert New Trigger After option to insert a new Trigger after the current Trigger.

1.1.4.2.5 Insert/Change Transition

You can insert a new Transition using one of the following methods:

· Right-click on the cell in which to create a Transition, to display the context menu

· If the State Machine table format is State-Trigger or Trigger-State, the context menu lists the States
you can choose as the target of the Transition; click on the required State name to create the
Transition

· If the State Machine table format is State-Next State, click on the Insert Transition menu option to
create the Transition.

· In the State Relationships page of the Enterprise Architect UML Toolbox, select the Transition element,
then click on the cell in the State Machine table in which to create the Transition. Double-click on the
Transition to define it in the Transition Properties dialog.

Change the Transition

As for the State Chart diagram, to change the properties of a Transition double-click the Transition cell and
edit the details on the Transition Properties dialog.

9

UML Diagrams | Behavioral Diagrams | State Machine Table 20

© 1998-2010 Sparx Systems Pty Ltd

Change Transition States

You can change the source and target of the Transition by right-clicking the Transition and selecting the
Advanced | Set Source and Target context menu option.

Alternatively, you can change the Transition source, target or Trigger by clicking on the Transition and
dragging it to a different cell.

If the State Machine table format is either State-Trigger or Trigger-State, you can change the target state of a
transition by:

1. Highlighting the target state name in the Transition cell and clicking on it to display a list of the states in
the table.

2. Clicking on the preferred target state name.

Highlight States and Trigger Related to Transition

You can select options to highlight the source State, target State and Trigger cells associated with a
Transition, using the Highlight Options panel on the State Machine Diagram Options dialog. When you
click on the Transition cell its associated State and Trigger cells are highlighted.

Alternatively, click on the Transition cell and press and hold [L].

1.1.4.2.6 Reposition State or Trigger Cells

You can change the position of a selected State or Trigger cell in one of the following ways:

· Right-click on the State or Trigger title cell and select the appropriate Order | Move xxx context menu
option

· Click on the cell and press [Shift]+["], [!], [#] or [$].

1.1.4.2.7 Add Legend

You can add a simple legend to any State Machine Table cell that has no transition. The two legend symbols
are:

· I - Ignore

· N - Never Happen

To assign a legend symbol to a State Machine Table cell, follow the steps below:

1. Right-click on the cell to which to assign the legend. The context menu displays.

2. Select the appropriate menu option:

· Legend | Ignore

· Legend | Never Happen.

The required symbol displays in the center of the cell.

To remove a legend symbol from a cell, right-click on the cell and select the Legend | Remove Legend
context menu option.

1.1.4.2.8 Find Cell in State Machine Diagram

On the State Machine table you can select a State or Trigger element and locate it in a State Machine
diagram, by selecting the Find | Locate in State Chart context menu option. Enterprise Architect switches to
the State Machine diagram and highlights the selected element. You can locate a Transition relationship in a
similar way, by selecting the Locate in State Chart context menu option.

Note:

A Trigger on a State Machine table might or might not exist on the corresponding State Machine diagram. If
the Trigger does not exist on the State Machine diagram, the Locate in State Chart option is disabled.

Conversely, on the State Machine diagram, you can select a State or Trigger element and locate it on the
corresponding State Machine table, by selecting the Find | Locate in State Table context menu option.

15

UML Diagrams | Behavioral Diagrams | State Machine Table21

UML Dictionary

Enterprise Architect switches to the State Machine table and highlights the selected element. You can locate a
Transition relationship in a similar way, by selecting the Locate in State Table context menu option.

1.1.4.2.9 State Machine Table Conventions

Trigger
· Deleting a Trigger removes it completely from the model, therefore you cannot UNDO a Trigger deletion

· There is a <None> column at the end of the Event heading row. This is for Transitions that have no Trigger
information.

State

From the Enterprise Architect UML Toolbox you can insert the following State element types only (although the
State Machine table might pick up and display other types, such as Submachine State):

· State

· Initial

· Final

· Entry

· Exit

· Terminate.

Transition

The Transition cell displays its properties in one of two ways, depending on the State Machine table format. If
the State Machine table format is State - Trigger or Trigger - State, the Transition cell displays the Guard and
Target as shown below:

If the State Machine table format is State - Next State, then the Transition cell displays the Trigger, Guard and
Effect as shown below:

The State Machine table enables you to edit the Guard and Effect in place. If the Guard or Effect is empty for
your selected Transition cell, the cell displays an ellipsis [...] instead. Click twice (not double-click) on the
ellipsis to type in the Guard and Effect names.

1.1.4.2.10 Export State Table To CSV File

To export a State Machine Table to a CSV file, follow the steps below:

1. Open the required State Machine Table.

2. Right-click on the diagram background and select the Export Statechart to CSV file context menu
option.

3. The Save As browser dialog displays. Select the appropriate directory location and type in the .CSV
filename.

4. Click on the Save button.

UML Diagrams | Behavioral Diagrams | Timing Diagram 22

© 1998-2010 Sparx Systems Pty Ltd

1.1.5 Timing Diagram

One of four types of Interaction diagram. (The other three are Sequence Diagrams , Interaction Overview
Diagrams and Communication Diagrams .)

A Timing diagram defines the behavior of different objects within a time-scale. It provides a visual
representation of objects changing state and interacting over time.

You can use Timing diagrams to define hardware-driven or embedded software components; for example,
those used in a fuel injection system or a microwave controller. You can also use Timing diagrams to specify
time-driven business processes.

To create and edit a Timing diagram, see the following topics:

· Create a Timing Diagram

· Set a Time Range

· State Lifeline

· Value Lifeline

· Edit a Timing Diagram

· Time Intervals

· Message (Timing Diagram)

Example Diagram

An example of a Timing diagram is shown below:

(See OMG UML Superstructure Specification, v2.1.1, p. 454, figures 14.30 and 14.31).

Toolbox Elements and Message

Select Timing diagram elements and connectors from the Timing pages of the Enterprise Architect UML
Toolbox; see Using Enterprise Architect – UML Modeling Tool.

Tip:

Click on the following elements and connectors for more information.

39

52 49

23

23

135

149

24

32

226

UML Diagrams | Behavioral Diagrams | Timing Diagram23

UML Dictionary

Timing Diagram Elements Timing Diagram Message

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 517) states:

Timing Diagrams are used to show interactions when a primary purpose of the diagram is to reason about
time. Timing diagrams focus on conditions changing within and among Lifelines along a linear time axis.

Timing diagrams describe behavior of both individual classifiers and interactions of classifiers, focusing
attention on time of occurrence of events causing changes in the modeled conditions of the Lifelines.

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 519) also states:

The primary purpose of the timing diagram is to show the change in state or condition of a lifeline
(representing a Classifier Instance or Classifier Role) over linear time. The most common usage is to show the
change in state of an object over time in response to accepted events or stimuli. The received events are
annotated as shown when it is desirable to show the event causing the change in condition or state.

1.1.5.1 Create a Timing Diagram

To create a Timing diagram, follow the steps below:

1. Right-click on a package in the Project Browser. The context menu displays.

2. Select the Add | Add Diagram menu option. The New Diagram dialog displays.

3. In the Select From panel, select UML Behavioral.

4. In the Diagram Types panel, select Timing.

5. Click on the OK button. The Diagram view displays, on which you create the Timing elements for the
diagram. See Set a Time Range and Edit a Timing Diagram .

1.1.5.2 Set a Time Range

Before adding Lifeline elements to your Timing diagram, set a time range. To do this, follow the steps below:

1. Right-click on the diagram. The context menu displays.

2. Select the Set Timeline Range option. The Set Timeline Range dialog displays.

3. In the Start Time and End Time fields, type the numeric values for the start and end points of the

23 24

UML Diagrams | Behavioral Diagrams | Timing Diagram 24

© 1998-2010 Sparx Systems Pty Ltd

timeline; for example, set the range 0 to 100.

Note:

The start time must be less than the end time.

4. In the Time Units field, type the unit in which the time is measured; for example, seconds or minutes.

5. If it is not necessary to show the time range on the diagram, select the Suppress In Diagram
checkbox.

6. Click on the OK button. If you have not suppressed it, the time range displays underneath the Lifeline
elements that you create on the diagram.

1.1.5.3 Edit a Timing Diagram

On a Timing Diagram, you can add State Lifeline elements and Value Lifeline elements. You can maintain the
states and transitions on these Lifeline elements either on the diagram itself or via the Configure Timeline
dialog. See the following topics:

· Add and Edit a State Lifeline Element

· Edit States in a State Lifeline Element

· Edit Transitions in a State Lifeline Element

· Add and Edit a Value Lifeline Element

· Add States in a Value Lifeline Element

· Edit Transitions in a Value Lifeline Element

· Configure Timeline dialog - States Tab

· Configure Timeline dialog - Transitions Tab

1.1.5.3.1 Add and Edit State Lifeline

From the Timing elements page of the Enterprise Architect UML Toolbox drag a State Lifeline element
onto your diagram. The element displays on the diagram.

To define the name of the State Lifeline, follow the steps below:

1. Right-click on the element. The context menu displays.

2. Select the Other Properties option. The Timeline <name> dialog displays, showing the General tab.

3. Overtype the Name field.

4. Click on the Apply button and the OK button.

Sizing and Scale

In the top left corner of a selected Lifeline element are the left and right quick sizing buttons (). These
buttons increase or decrease the width of the Lifeline element, which in turn controls the scale width of each
time unit. By increasing the width of the element you increase the resolution when adding transitions, which
makes them easier to edit.

Note:

In order to edit the State Lifeline element, you must click on it to select it.

Set Timeline Start Position

You might require more space at the start of your timelines; for example, to use long state names. To insert
this space in all the timelines on a diagram, follow the steps below:

1. Right-click on the diagram background to display the context menu.

2. Select the Set Timeline Start Position menu option. The Set Timeline Start Position dialog displays.

3. The Value 80 to 300 field defaults to 80 as the minimum distance in pixels between the start of the
timeline element and the start of the timeline itself. Type a new value up to 300 pixels and click on the
OK button to increase the space at the start of the timeline, as shown in the following diagrams.

24

25

26

27

28

28

29

31

135

UML Diagrams | Behavioral Diagrams | Timing Diagram25

UML Dictionary

 80 Pixels 150
Pixels

You now edit the states and transitions in the State Lifeline.

1.1.5.3.2 Edit States In State Lifeline

Add States

1. Click on the State Lifeline element. The New State button () and Edit States button () display at
the bottom left of the element.

2. Click on the New State button. The New State dialog displays.

3. In the State field, type the name of the state.

4. Click on the OK button.

Note:

You must add at least two states; for example, On and Off.

5. As you add states, increase the height of the element by dragging a handle-box () on the edge
of the element.

Note:

You can also add states using the States tab of the Configure Timeline dialog. Add either:

· Discrete states to the Timeline as described in Add a New State , or

· A continuous range of numeric states as described in Numeric Range Generator .

Edit States

1. Click on the State Lifeline element and click on the required state. The Edit State dialog displays.

2. In the State field, change the name as required.

3. Click on the OK button.

4. If necessary, change the order of the states by either:

· Clicking on the up or down arrows (and) beside each state name, or

25 26

30

30

UML Diagrams | Behavioral Diagrams | Timing Diagram 26

© 1998-2010 Sparx Systems Pty Ltd

· Right-clicking on the state name and selecting the Move Up or Move Down context menu options.

Note:

You can also edit the states using the States tab of the Configure Timeline dialog.

Delete States

1. Right-click on the state name. The context menu displays.

2. Select the Delete option.

Alternatively:

1. Click on the State Lifeline element.

2. Hold down [Ctrl] and move the cursor over the state name. The cursor changes form (7).

3. Click the mouse button. The state name is deleted.

1.1.5.3.3 Edit Transitions In State Lifeline

Add and Move Transitions

After you have added states, you can add transitions via the diagram. As you move the cursor over the
timeline, the cursor changes to one of three shapes:

· The move cursor () displays when it is directly over the timeline. Hold down the mouse button and drag
the line to move the timeline to a state above or below the current position. You can move the transition
more than one state up or down, if necessary.

· The new transition up cursor () displays when it is just below the timeline, and there is another state

above the line. Press and hold [Alt]; the cursor changes (). Click to create a new transition to the state
above the line. To push the transition up more than one state, then move the cursor onto the line and drag
it up. The transition is for one interval unit; to make it longer, see Change the Transition Time below.

If you do not hold [Alt], the cursor does not change and the whole timeline from the transition onwards
moves up.

· The new transition down cursor () displays when it is just above the transition line, and there is another

state below the line. Press and hold [Alt]; the cursor changes (). Click to create a new transition to the
state below the line. To push the transition down more than one state, then move the cursor onto the line
and drag it down. The transition is for one interval unit; to make it longer, see Change the Transition Time
below.

If you do not hold [Alt], the cursor does not change and the whole timeline from the transition onwards
moves down.

As you move the cursor over the vertical line of a transition, the time at which the transition occurs displays
next to the line.

Edit Transitions

Follow the steps below:

1. Click directly on the appropriate transition line, after the transition begins. Alternatively, right-click on the
transition line to display the context menu, and select the Edit menu option.

The Edit Transition dialog displays. The fields in this dialog are all optional.

29

UML Diagrams | Behavioral Diagrams | Timing Diagram27

UML Dictionary

2. In the At Time field, type the point on the timescale at which the transition occurs.

3. In the Transition To field, type the name of the state to which the transition occurs.

4. In the Event field, type the name of the event that the transition represents; this displays on the
Timeline element just above the transition line.

5. In the Duration Constraint field, type any constraint on the duration of the transition; this displays on
the Timeline element, along the top of the element over the transition.

6. In the Time Constraint field, type any constraint on the start of the transition. This displays on the
Timeline element at the start of the transition.

7. Click on the OK button.

Notes:

· Once Event, Duration Constraint or Time Constraint are displayed on the diagram, you can edit them
directly by clicking on them to display their specific dialog. You can also delete them by pressing and
holding [Ctrl] as you click on them; the cursor changes form when you press [Ctrl].

· You can also edit transitions using the Transitions tab of the Configure Timeline dialog.

Change the Transition Time

Move the cursor over one or other of the vertical transition lines and drag the line left or right to change the
time of the transition. While on the line, the cursor shape changes to the horizontal movement cursor ().

Merge Transitions

If necessary, you can 'push' a transition to merge it with the next or previous transition point on any Lifeline
element on the diagram.

Position the cursor off the appropriate side of the transition line; the cursor changes form (or). Click
the mouse button. The system locates the nearest transition in the required direction, on any element on the
diagram, and merges the current transition with that transition.

Delete Transitions

Transitions are automatically deleted when you move the transition to the same state as the previous
transition state, and release the cursor.

Alternatively, right-click on the transition line to display the context menu, and select the Delete menu option.

1.1.5.3.4 Add and Edit Value Lifeline

From the Enterprise Architect UML Toolbox drag a Value Lifeline element onto your diagram. The element
displays on the diagram.

To edit the Value Lifeline name, follow the steps below:

1. Right-click on the element. The context menu displays.

2. Select the Other Properties option. The Timeline <name> dialog displays, showing the General tab.

31

149

UML Diagrams | Behavioral Diagrams | Timing Diagram 28

© 1998-2010 Sparx Systems Pty Ltd

3. Overtype the Name field.

4. Click on the Apply button and the OK button.

Sizing and Scale

In the top left corner of a selected Lifeline element are the left and right quick sizing buttons (). These
buttons increase or decrease the width of the Lifeline element, which in turn controls the scale width of each
time unit. By increasing the width of the element you increase the resolution when adding transitions, which
makes them easier to edit.

Note:

In order to edit the Value Lifeline element, you must click on it to select it.

You now add states and edit transitions on the Value Lifeline.

1.1.5.3.5 Add States In Value Lifeline

Add States

This is similar to adding states to a State Lifeline element.

Notes:

· For a Value Lifeline, only the first state displays on the diagram. The other states are added to a list to
access when creating transitions; they only display on the Lifeline element as you create transitions to
those states.

· You can only edit or delete states in a Value Lifeline element using the States tab of the Configure
Timeline dialog.

1.1.5.3.6 Edit Transitions In Value Lifeline

Add Transitions

After you have added states to the Value Lifeline element, you can add transitions via the diagram. To do this,
follow the steps below:

1. Move the cursor above the transition line. The cursor changes form ().

2. Click the mouse button. The New Transition Event dialog displays.

3. In the Transition To field, click on the drop-down arrow and select a state from the list of available
states; this displays on the Lifeline element within the transition box. The remaining fields on the dialog
are optional.

4. In the Event field, type the name of the event that the transition represents; this displays on the Lifeline
element just below and at the start of the transition line.

28 28

25

29

UML Diagrams | Behavioral Diagrams | Timing Diagram29

UML Dictionary

5. In the Duration Constraint field, type any constraint on the duration of the transition; this displays on
the Lifeline element, along the top of the element over the transition.

6. In the Time Constraint field, type any constraint on the start of the transition. This displays on the
Lifeline element at the start of the transition, just after the Event name.

7. Click on the OK button to create the new transition.

Edit Transitions

To edit a transition, follow the steps below:

1. Click on the state name in the transition. Alternatively, right-click on the state name to display the
context menu, and select the Edit menu option.

The Edit Transition dialog displays; this is the same as the New Transition Event dialog, except that the
At Time field is enabled.

2. If necessary, overtype the At Time field to define a different start point.

Note:

You cannot change the At Time field for the first state in the timeline; this is always 0.

3. Edit the remaining fields as necessary.

4. Click on the OK button to save the changes.

Change the Transition Time

To change the start or end time of a transition, click on the start or end point of the transition and drag it to the

new position. While on the line, the cursor shape changes to the horizontal movement cursor ().

Delete Transitions

To delete a transition, press and hold [Ctrl] and click on the transition state name. While you hold [Ctrl] on the
transition state name, the cursor changes form (7).

Alternatively, right-click on the state name to display the context menu, and select the Delete menu option.

1.1.5.3.7 Configure Timeline - States

You can also manage states using the States tab of the Configure Timeline dialog. To display this, either:

· Double-click on the Lifeline element

· Right click on the Lifeline element and, from the context menu, select the Properties option, or

· On a Value Lifeline, click on the Edit States button ().

UML Diagrams | Behavioral Diagrams | Timing Diagram 30

© 1998-2010 Sparx Systems Pty Ltd

The Configure Timeline dialog defaults to the States tab.

All states currently defined for the Lifeline element are listed in the States panel.

Add a New State:

1. In the State Name field, type the name of the first new state in the Lifeline element; for example,
WaitState.

2. Click on the Save button. The state is added to the States panel and (for a State Lifeline Element) to the
diagram.

3. Click on the New button.

4. In the State Name field, type the name of the next state in the Lifeline element.

5. Repeat steps 2 to 5 until you have added all required states (you must add at least three to the Lifeline
element).

6. When you have added all the required states, click on the OK button to close the Configure Timeline
dialog.

Edit an Existing State:

1. Click on the state in the States: list.

2. In the State Name field, change the name of the state.

3. Click on the Save button.

Delete an Existing State:

1. Click on the state in the States: list.

2. Click on the Delete button.

Change the Order of States:

1. Click on the state in the States: list.

2. Click on the or buttons to move the state up or down the sequence.

Numeric Range Generator

You can also use the Configure Timeline dialog to create a range of states having numeric values to be
applied to the Timeline.

UML Diagrams | Behavioral Diagrams | Timing Diagram31

UML Dictionary

Important:

This operation deletes all existing states and transitions for the Timeline element.

1. Display the Configure Timeline dialog.

2. Click on the Create Continuous Numeric States button. The Numeric Range Generator dialog
displays.

3. In the High Value and Low Value fields, type the upper and lower values of the range.

4. In the Step Value field, type the increase interval.

Note:

Nonsense values do not parse; Low Value must be less than High Value, and Step Value must be a
positive value smaller than the total range.

5. In the Units field, type the name of the measurement unit; for example, minutes.

6. Click on the OK button. Enterprise Architect displays a warning that existing states and transitions will
be deleted.

7. Click on the Yes button. The Configure Timeline dialog redisplays, with the defined range of states
listed in the States panel.

8. Click on the OK button. For a:

· Value Lifeline, the first state is shown on the Timeline for the full time range of the Timeline.

· State Lifeline, the range of states is displayed as the y-axis of the Timeline.

1.1.5.3.8 Configure Timeline - Transitions

You can also manage transitions using the Transitions tab of the Configure Timeline dialog. To display this,
either:

· Double-click on the Lifeline element

· Right click on the Lifeline element and, from the context menu, select the Properties option, or

· On a Value Lifeline, click on the Edit States button ().

The Configure Timeline dialog defaults to the States tab. Click on the Transitions tab.

UML Diagrams | Behavioral Diagrams | Timing Diagram 32

© 1998-2010 Sparx Systems Pty Ltd

All transitions defined for the Timeline element are listed in the Transition Points panel.

Add a New Transition

1. Click on the New button.

2. In the New Transition panel, type the details of the transition.

3. Click on the Save button.

Edit a Transition

1. Click on a transition in the list.

2. In the Edit Transition panel, edit the fields for the transition as required.

3. Click on the Save button.

Delete a Transition

1. Click on a transition in the list.

2. Click on the Delete button. The transition is removed from the dialog and the Lifeline.

3. Click on the OK button.

1.1.5.4 Time Intervals

You create and manage Time Intervals using the Interval Bar (the pale line along the top of each selected
Lifeline element). Time Intervals enable you to perform various operations on transitions, such as copy and
paste. They also enable you to compress sections of the timeline so that they are not visible.

Each Time Interval displays across all Timeline elements down to the last element on the diagram.

Create Time Intervals

To create a Time Interval, follow one of the three sets of steps below:

UML Diagrams | Behavioral Diagrams | Timing Diagram33

UML Dictionary

Interval Bar - Context Menu

1. Right-click on the Interval Bar at approximately the point at which to start or finish the Time Interval.

The context menu displays.

2. Select the Create Time Interval option. The Time Interval displays down all the timeline elements, as a
narrow pale band with a blue compression box at the top.

3. Move the cursor to the edge of the Time Interval in the Interval Bar so that the cursor changes to the

drag form () and drag the edge to the correct start or end point.

Interval Bar - [Shift] key

1. Move the cursor over the Interval Bar and press [Shift]. The cursor changes shape ().

2. Click to create the Time Interval.

3. Move the cursor to the edge of the Time Interval in the Interval Bar so that the cursor changes to the

drag form () and drag the edge to the correct start or end point.

UML Diagrams | Behavioral Diagrams | Timing Diagram 34

© 1998-2010 Sparx Systems Pty Ltd

Timeline - Context menu

1. Right-click on the timeline just after a transition. The context menu displays.

2. Click on the Select menu option. Enterprise Architect creates a Time Interval covering the period from
the selected transition up to the next transition.

Notes:

· If there are other Time Intervals in this period, Enterprise Architect replaces them with the single Time
Interval for the transition state. You should consider this when creating the Time Interval, as it extends
across the other Timeline Elements in the diagram.

· A value of this method is that it creates a Time Interval for a period in which no transitions occur, which
could be lengthy. You can then compress this Time Interval (see below) to hide the period of inactivity. See
also Compress Timeline .

Compress Time Intervals

You can compress Time Intervals to conserve space on long timelines.

Uncompressed Time Intervals

Compressed Time Intervals

Notice:

37

UML Diagrams | Behavioral Diagrams | Timing Diagram35

UML Dictionary

Item Description

The compression toggle boxes:

· is expanded, click on this to compress the selected time interval

· is compressed, click on this to expand the selected time interval again.

The compressed sections of the timelines themselves, in all elements.

If there is space between the paired symbols, there are transitions within the
compressed section.

If the timeline continues through the paired symbols there are no transitions in the
compressed section.

25 ... 55 The compressed sections in the time range underneath the elements.

You can also compress and expand Time Intervals using context menu options; see Time Interval Operations
on Transitions .

Select Time Intervals
· To select a Time Interval across all elements on the diagram, click on the Interval Bar within the Time

Interval.

· To select a number of individual Time Intervals, press and hold [Ctrl] while clicking on the Interval Bar
within each Time Interval.

· To select all Time Intervals in a range, click on the Interval Bar within the first Time Interval in the range,
then press and hold [Shift] and click on the Interval Bar within the last Time Interval in the range. All Time
Intervals between the two are selected.

After you have selected one or more Time Intervals, you can modify the selection in the following ways:

· To exclude Lifeline elements from the selection, press and hold [Ctrl] and click on any part of the selection
within that element. In the diagram below, the Value Lifeline is excluded from selection.

Repeat the step to toggle the selection and re-include the element. See also Toggle Interval Selection .

· To select only one Lifeline element and exclude all others, press and hold [Shift] and click on any part of
the selection within that element.

Note:

Selection is useful for cutting, copying and pasting transitions.

Move and Resize Time Intervals

To move a Time Interval, move the cursor over the Interval bar within the Time Interval, hold down the mouse
button and drag the interval left or right.

To resize a Time Interval, move the cursor over the Interval Bar at the start or end edge of the Time Interval,

36

36

UML Diagrams | Behavioral Diagrams | Timing Diagram 36

© 1998-2010 Sparx Systems Pty Ltd

hold down the mouse button and move the edge left or right.

Note:

Time Intervals can meet, but cannot overlap.

Delete Time Intervals

Select each Time Interval to be deleted and press [Delete].

Note:

Deleting the Time Interval does not delete transitions within that interval.

1.1.5.4.1 Time Interval Operations

You can operate on selected Time Intervals , or all Time Intervals in the diagram.

Selected Intervals

Note:

The Copy, Cut and Delete operations act on all selected Time Intervals over the whole diagram, not just the
current one.

To select and update specific Time Intervals, right-click on the Interval Bar within an interval. The following
context menu displays.

Option Use to

Select Interval

Deselect Interval

Select the Time Interval or, if the interval is already selected, deselect it. You can
select several Time Intervals in this way, accessing the menu separately on each
interval.

Toggle Interval
Selection

Switch the selection or deselection of the Time Interval within the selected
Timeline element.

You select or deselect a Time Interval across all Timeline Elements, but the
Toggle option acts only on the element in which you access the menu. See also
Select Time Intervals .

35

32

35

UML Diagrams | Behavioral Diagrams | Timing Diagram37

UML Dictionary

Option Use to

Compress Interval Compress the Time Interval, and hide all transitions within that Time Interval.
This is also useful for hiding long sections of inactivity on the time line. Also see
Compress Timeline , below.

Remove Interval Delete the Time Interval.

Copy Copy the transitions for all selected Time Intervals.

Cut Copy and delete the selected transitions from the diagram.

Cut and Remove Time Copy and delete the transitions that lie in the selected Time Intervals from the
diagram.

This option also removes time from the timeline, the amount being the duration
of the Time Interval. All transitions and Time Intervals to the right of the selected
time interval are moved left.

Delete Delete the selected transitions from the diagram.

Delete and Remove
Time

Delete the transitions that lie in the selected Time Intervals from the diagram.

This option also removes time from the timeline, the amount being the duration
of the Time Interval. All transitions and Time Intervals to the right of the current
Time Interval are moved left.

Insert Time Add time to the timeline and move all transitions and time intervals to the right.
Also expand the duration of the current Time Interval.

Compress Timeline

The Compression toggle boxes and Compress Interval menu option operate on the Time Interval and
compress the timeline and all transitions within the Interval. You have an alternative option that operates on
the timeline and compresses a single transition state.

1. Right-click on the timeline (rather than the Interval Bar) just after a transition. The context menu
displays.

2. Click on the Compress menu option. Enterprise Architect creates a new Time Interval covering the
period from the selected transition up to the next transition, and then compresses that Time Interval.

Notes:

· If there are other Time Intervals in this period, Enterprise Architect replaces them with the single Time
Interval for the transition state. You should consider this when creating and compressing the Time Interval,
as it extends across the other Timeline elements in the diagram.

· A value of this method is that it creates a Time Interval for a period in which no transitions occur, which
could be lengthy, and then compresses this Time Interval to hide the period of inactivity.

All Time Intervals in the Diagram

To create a new Time Interval or work across all Time Intervals in the diagram, right-click on the Interval Bar
between Time Intervals. The following context menu displays.

37

UML Diagrams | Behavioral Diagrams | Timing Diagram 38

© 1998-2010 Sparx Systems Pty Ltd

Note:

The Paste menu options become active after transitions have been copied.

Menu Option Use to

Create Time Interval Create a single Time Interval .

Expand all Time Intervals Expand all Time Intervals over the whole diagram.

Compress all Time
Intervals

Compress all Time Intervals over the whole diagram.

Paste Combine Paste copied transitions over any existing transitions within the copied time
frame.

Note:

The diagram does not allow two consecutive transitions to the same state, and
removes the second transition automatically.

Paste Remove Delete all the transitions and then pastes the copied transition within the copied
time frame.

Paste Insert Insert time, moving all transitions and Time Intervals to the right to make room
to paste in the copied transitions.

Insert Time Add time to the timeline and move all transitions and Time Intervals to the right.
This option does not change the duration of any Time Interval.

Copy and Paste Transitions From One Timeline Element to Another

A special mode enables you to copy transitions from one Timeline element to another. Any states that don't
exist in the Timeline element you are pasting to are created.

1. Press and hold [Shift] and select the Timeline element within a Time Interval to copy or cut.

2. Right-click on the Interval Bar (it doesn't matter which element you select). The context menu displays.

3. Copy or cut the transitions. You can also cut and remove time.

4. Select the timeline to paste transitions to and right-click on the Interval Bar. The context menu displays.

5. Select one of the paste operations. Note that states are created if they don't already exist in the
timeline.

Note:

Any new states created might be in the wrong order. You can change the order via the diagram quick buttons
.

32

37

24

UML Diagrams | Behavioral Diagrams | Timing Diagram39

UML Dictionary

Shift Transitions Left or Right

You can move transitions within a selected Time Interval or multiple selected Time Intervals.

1. Select all the Time Intervals containing the transitions to be shifted; see Select Time Intervals .

2. Press and hold [Shift] and click on the Interval Bar (it doesn't matter which Timeline element you select)
and move the transition left or right.

Note:

You cannot drag transitions over other transitions; the move stops when the moved transition collides with a
stationary transition.

Tip:

If having collision problems, use [Shift]+select to shift transitions for a single Timeline element.

1.1.6 Sequence Diagram

A Sequence diagram is one of four types of Interaction diagram. (The other three are Timing Diagram ,
Interaction Overview Diagram and Communication Diagram .)

A Sequence diagram is a structured representation of behavior as a series of sequential steps over time. It is
used to depict work flow, message passing and how elements in general cooperate over time to achieve a
result.

· Each sequence element is arranged in a horizontal sequence, with messages passing back and
forward between elements.

· Messages on a Sequence diagram can be of several types; the Messages can also be configured to reflect
the operations and properties of the source and target elements (see the Notes in the Message topic).

· An Actor element can be used to represent the user initiating the flow of events.

· Stereotyped elements, such as Boundary , Control and Entity , can be used to illustrate screens,
controllers and database items, respectively.

· Each element has a dashed stem called a lifeline, where that element exists and potentially takes part in
the interactions.

To configure a Sequence diagram, see the following topics:

· Denote the Lifecycle of an Element

· Layout of Sequence Diagrams

· Sequence Element Activation

· Lifeline Activation Levels

· Message Label Visibility

· Change the Top Margin

· Change the Timing Details .

Also take note of the important information in the Sequence Diagrams and Version Control topic.

Robustness diagrams, used extensively in ICONIX, can be created as Sequence diagrams.

To toggle the numbering of messages on a Sequence diagram, select or deselect the Show Sequence
Numbering checkbox on the Options dialog; see Using Enterprise Architect – UML Modeling Tool.

Example Diagram

The following example Sequence diagram demonstrates several different elements:

35

22

52 49

43

212

179 181 182

41

42

45

46

48

48

218

44

UML Diagrams | Behavioral Diagrams | Sequence Diagram 40

© 1998-2010 Sparx Systems Pty Ltd

Toolbox Elements and Connectors

Select Sequence diagram elements and connectors from the Interaction pages of the Enterprise Architect
UML Toolbox; see Using Enterprise Architect – UML Modeling Tool.

Enterprise Architect also supports a number of stereotyped elements to represent various entities in
business modeling.

Tip:

Click on the following elements and connectors for more information.

Sequence Diagram Elements Sequence Diagram Connectors

75

UML Diagrams | Behavioral Diagrams | Sequence Diagram41

UML Dictionary

Sequence Diagram Elements Sequence Diagram Connectors

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 503) states:

A sequence diagram describes an Interaction by focusing on the sequence of Messages that are exchanged,
along with their corresponding OccurrenceSpecifications on the Lifelines.

1.1.6.1 Denote Lifecycle of an Element

You can capture element lifetimes using messages that are denoted as New or Delete message types. To do
this, follow the steps below:

1. Double-click on a message within a Sequence diagram to display the Message Properties dialog.

2. In the Lifecycle field, click on the drop-down arrow and select New or Delete.

3. Click on the OK button to save the changes.

The example below shows two elements that have specific creation and deletion times.

Note:

To show the termination X on the lifeline in the following example diagram, you must switch on garbage
collection: Tools | Options | Diagram | Sequence | Garbage Collect.

UML Diagrams | Behavioral Diagrams | Sequence Diagram 42

© 1998-2010 Sparx Systems Pty Ltd

1.1.6.2 Layout of Sequence Diagrams

You can modify the vertical height of sequence messages to get an attractive and effective layout. To offset
message positions, follow the steps below:

1. Select the appropriate message in a Sequence diagram.

2. Use the mouse to drag the message up or down as required.

As you drag a message up or down a lifeline, any messages or fragments below that message are shifted up
or down the same amount. However, be aware that if you drag up or down past the next or previous message,
Enterprise Architect interprets that as the requirement to swap positions, rather than simply offset a message
position.

The example below shows an economical use of space in a Sequence diagram.

UML Diagrams | Behavioral Diagrams | Sequence Diagram43

UML Dictionary

1.1.6.3 Sequence Elements

A Sequence diagram models a dynamic view of the interactions between model elements at runtime.

Sequence diagrams are commonly used as explanatory models for Use Case scenarios. By creating a
Sequence diagram with an Actor and elements involved in the Use Case, you can model the sequence of
steps the user and the system undertake to complete the required tasks. An element in a Sequence diagram
is usually either an Actor (the stimulus that starts the interaction) or a collaborating element.

Note:

A Sequence diagram is often attached directly under the Use Case to which it refers. This helps keep
elements together, both in the model and when documentation is produced. To do this, right-click the Use
Case on the diagram and select the Advanced | Make Composite context menu option.

The example below shows some possible elements of Sequence diagrams and their stereotyped display.

· Actor - An instance of an actor at runtime.

· Lifeline - An Object element with the stereotype Lifeline.

· Boundary - Represents a user interface screen or input/output device.

· Entity - A persistent element - typically implemented as a database table or element.

· Control - The active component that controls what work gets done, when and how.

39

UML Diagrams | Behavioral Diagrams | Sequence Diagram 44

© 1998-2010 Sparx Systems Pty Ltd

Tip:

Use Sequence diagrams early in analysis to capture the flow of information and responsibility throughout the
system. Messages between elements eventually become method calls in the Class model.

1.1.6.4 Sequence Diagrams and Version Control

You might create Sequence diagrams that use elements from other packages as the Lifelines within the
diagram. In such cases, the diagrams could be corrupted when the element packages are checked in and out
under version control. This is because during checkout the elements are first deleted from the model and then
re-imported, and although they are reinstated in the diagrams, any Messages connecting them are not.

So, if the diagram and its elements reside in different packages, a round-trip of the element package through
version control might damage the Sequence diagram.

The solution is to drag-and-drop each Class onto the Sequence diagram as an object - when you drop the
Class onto the Sequence diagram, in the Paste Element dialog select the as Instance of Element (Object)
option. This creates a new object in the diagram's parent package, based on the selected Class element. You
then create the Messages between the objects.

Therefore, to ensure that a Sequence diagram is not damaged by round-trips of other packages through
version control, remember that:

· The Lifelines must be objects (even though Enterprise Architect allows you to drop elements as Lifelines
onto a Sequence diagram, it is not a strictly UML compliant construct)

· The Lifelines must be in the same package as the diagram.

The following illustration shows the Project Browser with two packages: P1, containing the elements, and P2,
containing a Sequence diagram that uses those elements. The diagram itself is also shown.

UML Diagrams | Behavioral Diagrams | Sequence Diagram45

UML Dictionary

This diagram will not be damaged, because all the Lifelines are objects and these objects reside in the same
package as the Sequence diagram.

1.1.6.5 Sequence Element Activation

Sequence elements in a Sequence diagram have Activation rectangles drawn along their lifelines. These
rectangles describe the time the element is active during the overall period of processing. This visual
representation can be suppressed by right-clicking the Sequence diagram, and selecting the Suppress
Activations context menu option.

In general, Enterprise Architect calculates the period of activation for you, but in some cases you might want to
fine tune the rectangle length. There are several context menu options on a sequence message that you can
use to accomplish this. To access the following context menu, right-click on the message and select the
Activations context menu option.

· Start New Message Group: Starts off a new round of processing in the current diagram. This enables you
to describe more than one processing scenario in a single diagram.

· Extend Source Activation Down: Forces an element to stay active beyond the normal processing period.
This could be used to express an element that continues its own processing concurrently with other
processes.

39

UML Diagrams | Behavioral Diagrams | Sequence Diagram 46

© 1998-2010 Sparx Systems Pty Ltd

· Extend Source Activation Up: Forces an element's activation upwards.

· End Source Activation: Truncates the activation of the source element after the current message. This is
useful for expressing an asynchronous message after which the source element becomes idle.

· End Target Activation: Ends a Forced Activation started by the Extend Source Activation options.

The Raise Activation Level and Lower Activation Level options display on the context menu only where
their use is appropriate. For example, after a self-message the next message starts by default at a lower
activation level but the Raise Activation Level command displays on the context menu to enable you to raise
its level.

A more convenient way to change activation levels is directly on the diagram. Whenever appropriate, left and/
or right arrows display on specific connectors. In the following diagram, see connector 1.3. Click on the arrow
to raise or lower the activation level.

Note:

Program flow can more accurately be depicted with nested activation levels for callback messages.

1.1.6.6 Lifeline Activation Levels

Complicated processing systems can be easily negotiated and reflected in Sequence diagrams, by adding
activation layers on a single lifeline. For example, a Class invokes the method Sample A, which in turn calls
Sample A1. To produce the arrangement in the diagram, select the More tools | Interaction menu option,
click on the Self-message icon in the Interaction Relationships panel and then click on the lifeline.

UML Diagrams | Behavioral Diagrams | Sequence Diagram47

UML Dictionary

In order to raise the Activation level of Sample A1, click on the raise arrow of the selected connector. The
lifeline now visually depicts that method Sample A1 is called during the processing of Sample A.

In the example below, a few more self-messages have been added. The message Sample A2a is called from
Sample A2 which in turn is called from Sample A (not Sample A1). Sample A1 is called from Sample A.

UML Diagrams | Behavioral Diagrams | Sequence Diagram 48

© 1998-2010 Sparx Systems Pty Ltd

1.1.6.7 Sequence Message Label Visibility

On Sequence messages, you can control label visibility using the message context menu. To hide and show
the labels used in Sequence messages, follow the steps below:

1. Right-click on the message within the Sequence diagram. The message context menu displays.

2. Select the Set Label Visibility menu option. The Label Visibility dialog displays.

3. Select or clear the checkbox against each message label to display or hide, respectively.

4. Click on the OK button to save the settings.

1.1.6.8 Change the Top Margin

In order to change the top margin of a Sequence diagram from the default 50 units, right-click on the
diagram to display the context menu and select the Set Top Margin menu option. You can set the top margin
to any value between 30 and 250 units.

39

UML Diagrams | Behavioral Diagrams | Sequence Diagram49

UML Dictionary

1.1.6.9 Inline Sequence Elements

It is possible to represent Part and Port elements on a Sequence diagram . Child Parts and Ports
appear as inline sequence elements under their parent Class sequence element.

1. Right-click on the sequence elements containing the child Ports or Parts, to display the context menu.

2. Select the Embedded Elements | Embedded Elements menu option.

3. Select the checkbox against each Part or Port to show, and click on the Close button.

1.1.7 Communication Diagram

One of four types of Interaction diagram. (The other three are Timing Diagrams , Sequence Diagrams
and Interaction Overview Diagrams .)

A Communication diagram shows the interactions between elements at run-time in much the same manner as
a Sequence diagram. However, Communication diagrams are used to visualize inter-object relationships,
while Sequence diagrams are more effective at visualizing processing over time.

Communication diagrams employ ordered, labeled associations to illustrate processing. Numbering is
important to indicate the order and nesting of processing. A numbering scheme could be:

1
1.1
1.1.1
1.1.2
1.2, and so on.

A new number segment begins for a new layer of processing, and would be equivalent to a method invocation.

Robustness diagrams are simplified Communication diagrams, but can be created in any diagram type that
supports Boundary , Control and Entity elements.

Example Diagram

The example below illustrates a Communication diagram among cooperating object instances. Note the use of
message levels to capture related flows, and the different colors of the messages .

168 169 39

22 39

52

179 181 182

51 223

UML Diagrams | Behavioral Diagrams | Communication Diagram 50

© 1998-2010 Sparx Systems Pty Ltd

Toolbox Elements and Connectors

Select Communication diagram elements and connectors from the Communication pages of the Enterprise
Architect UML Toolbox; see Using Enterprise Architect – UML Modeling Tool.

Tip:

Click on the following elements and connectors for more information.

Communication Diagram Elements Communication Diagram Connectors

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 511) states:

UML Diagrams | Behavioral Diagrams | Communication Diagram51

UML Dictionary

Communication Diagrams focus on the interaction between Lifelines where the architecture of the internal
structure and how this corresponds with the message passing is central. The sequencing of Messages is
given through a sequence numbering scheme.

Communication Diagrams correspond to simple Sequence Diagrams that use none of the structuring
mechanisms such as InteractionUses and CombinedFragments. It is also assumed that message overtaking
(i.e., the order of the receptions are different from the order of sending of a given set of messages) will not
take place or is irrelevant.

Note:

Communication diagrams were known as Collaboration diagrams in UML 1.4.

1.1.7.1 Communication Diagrams in Color

Enterprise Architect enables you to highlight particular message flows in a Communication diagram using
different colors for each message set.

To highlight the colors in a Communication diagram, follow the steps below:

1. Select the Tools | Options | Communication Colors menu option. The Communication Message
Coloring page of the Options dialog displays.

2. Select the Use Communication Colorcheckbox.

3. Click on the drop-down arrow of each Message n field, and select the required color for each message
group.

4. Click on the Close button. On your Communication diagram, each sequence group of messages
displays in a different color as shown below.

49

UML Diagrams | Behavioral Diagrams | Interaction Overview Diagram 52

© 1998-2010 Sparx Systems Pty Ltd

1.1.8 Interaction Overview Diagram

One of four types of Interaction diagram. (The other three are Timing Diagrams , Sequence Diagrams
and Communication Diagrams .)

Interaction Overview diagrams visualize the cooperation between other interaction diagrams to illustrate a
control flow serving an encompassing purpose. As Interaction Overview diagrams are a variant of Activity
diagrams , most of the diagram notation is the same, as is the process of constructing the diagram.
Decision points, Forks, Joins, Start points and End points are the same. Instead of Activity elements,
however, rectangular elements are used. There are two types of these elements:

· Interaction elements display an inline Interaction diagram, which can be any one of the four types

· Interaction Occurrence elements are references to an existing Interaction diagram: they are visually
represented by a frame, with ref in the frame's title space; the diagram name is indicated in the frame
contents.

To create an Interaction Occurrence, simply drag an Interaction diagram from the Project Browser onto your
Interaction Overview diagram. The ref frame displays, encapsulating an instance of the Interaction diagram.

Example Diagram

The following example depicts a sample sale process, shown in an Interaction Overview diagram, with sub-
processes abstracted within Interaction Occurrences. The diagram appears very similar to an Activity diagram,
and is conceptualized the same way; as the flow moves into an interaction, the respective interaction's
process must be followed before the Interaction Overview's flow can advance.

22 39

49

5

90

119

UML Diagrams | Behavioral Diagrams | Interaction Overview Diagram53

UML Dictionary

Toolbox Elements and Connectors

Select Interaction Overview diagram elements and connectors from the Activity pages of the Enterprise
Architect UML Toolbox; see Using Enterprise Architect – UML Modeling Tool.

Tip:

Click on the following elements and connectors for more information.

UML Diagrams | Behavioral Diagrams | Interaction Overview Diagram 54

© 1998-2010 Sparx Systems Pty Ltd

Interaction Overview Diagram Elements Interaction Overview Diagram Connectors

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 514) states:

Interaction Overview Diagrams define Interactions (described in Chapter 14, "Interactions") through a variant
of Activity Diagrams (described in Chapter 6, "Activities") in a way that promotes overview of the control flow.

Interaction Overview Diagrams focus on the overview of the flow of control where the nodes are Interactions or
InteractionUses. The Lifelines and the Messages do not appear at this overview level.

1.2 Structural Diagrams

Structural diagrams depict the structural elements composing a system or function. These diagrams reflect the
static relationships of a structure, such as Class or Package diagrams, or run-time architectures such as
Object or Composite Structure diagrams.

Structural diagrams include the following diagram types:

Class Diagrams

Class diagrams capture the logical structure of the system, the Classes and objects that make up the
model, describing what exists and what attributes and behavior it has.

Composite Structure Diagrams

Composite Structure diagrams reflect the internal collaboration of Classes, Interfaces and Components
(and their properties) to describe a functionality.

56

59

UML Diagrams | Structural Diagrams | 55

UML Dictionary

Component Diagrams

Component diagrams illustrate the pieces of software, embedded controllers and such that make up a
system, and their organization and dependencies.

Deployment Diagrams

Deployment diagrams show how and where the system is to be deployed; that is, its execution
architecture.

Object Diagrams

Object diagrams depict object instances of Classes and their relationships at a point in time.

Package Diagrams

Package diagrams depict the organization of model elements into packages and the dependencies
amongst them.

1.2.1 Package Diagram

Package diagrams depict the organization of model elements into packages and the dependencies amongst
them, including package imports and package extensions. They also provide a visualization of the
corresponding namespaces.

The following example demonstrates a basic Package diagram.

The nesting connector between ConnSeq and Controller reflects what the package contents reveal. Package
contents can be listed by clicking on the diagram background to display the diagram's Properties dialog (see
UML Modeling with Enterprise Architect – UML Modeling Tool for information on the Diagram Properties
dialog), selecting the Elements tab and selecting the Package Contents checkbox.

The «import» connector indicates that the elements within the target Integer package, which in this example is
the single Class Integer, are imported into the package Controller. The Controller's namespace gains access
to the Integer Class; the Integer namespace is not affected.

The «merge» connector indicates that the package Controller's elements are imported into GenApply,
including Controller's nested and imported contents. If an element already exists within GenApply, such as
Loader and Time, these elements' definitions are expanded by those included in the package Controller. All
elements added or updated by the merge are noted by a generalization relationship back to that package.

65

62

58

55

UML Diagrams | Structural Diagrams | Package Diagram 56

© 1998-2010 Sparx Systems Pty Ltd

Notes:

· Private elements within a package cannot be imported or merged.

· If you click on an element listed in a package, and then double-click, you can display and edit the element
properties (see the Work With Elements section of UML Modeling with Enterprise Architect – UML
Modeling Tool).

Toolbox Elements and Connectors

Select Package diagram elements and connectors from the Class pages of the Enterprise Architect UML
Toolbox; see Using Enterprise Architect – UML Modeling Tool.

Tip:

Click on the following elements and connectors for more information.

Package Diagram Elements Package Diagram Connectors

1.2.2 Class Diagram

The Class diagram captures the logical structure of the system: the Classes - including Active and
Parameterized (template) Classes - and things that make up the model. It is a static model, describing
what exists and what attributes and behavior it has, rather than how something is done. Class diagrams are
most useful to illustrate relationships between Classes and Interfaces. Generalizations, Aggregations and
Associations are all valuable in reflecting inheritance, composition or usage, and connections, respectively.

Example Diagram

The pale Aggregation relationship indicates that the Class Account uses AddressBook, but does not
necessarily contain AddressBook. The dark Composite Aggregation connectors indicate ownership or
containment by the target Classes (at the diamond end) of the source Classes.

152 153

154

198

198

UML Diagrams | Structural Diagrams | Class Diagram57

UML Dictionary

Toolbox Elements and Connectors

Select Class diagram elements and connectors from the Class pages of the Enterprise Architect UML Toolbox
; see Using Enterprise Architect – UML Modeling Tool.

Enterprise Architect also supports a number of stereotyped Class elements to represent various entities in
web page modeling.

Tip:

Click on the following elements and connectors for more information.

Class Diagram Elements Class Diagram Connectors

75

UML Diagrams | Structural Diagrams | Class Diagram 58

© 1998-2010 Sparx Systems Pty Ltd

Class Diagram Elements Class Diagram Connectors

1.2.3 Object Diagram

An Object diagram is closely related to a Class diagram , with the distinction that it depicts object instances
of Classes and their relationships at a point in time. This might appear similar to a Composite Structure
diagram, which also models run-time behavior; the difference is that Object diagrams exemplify the static
Class diagrams, whereas Composite Structure diagrams reflect run-time architectures different from their
static counterparts. Object diagrams do not reveal architectures varying from their corresponding Class
diagrams, but reflect multiplicity and the roles instantiated Classes could serve. They are useful in
understanding a complex Class diagram, by creating different cases in which the relationships and Classes
are applied. An Object diagram can also be a kind of Communication diagram , which also models the
connections between objects, but additionally sequences events along each path.

Note:

Communication diagrams were known as Collaboration diagrams in UML 1.4.

Example Diagram

The following example first shows a simple Class diagram, with two Class elements connected.

The Classes above are instantiated below as Objects in an Object diagram. There are two instances of
Computer in this model, which can prove useful for considering the relationships and interactions Classes play
in practice, as Objects.

56

59

49

152

UML Diagrams | Structural Diagrams | Object Diagram59

UML Dictionary

Toolbox Elements and Connectors

Select Object diagram elements and connectors from the Object pages of the Enterprise Architect UML
Toolbox; see Using Enterprise Architect – UML Modeling Tool.

Enterprise Architect also supports a number of stereotyped Object elements to represent various entities in
business modeling.

Tip:

Click on the following elements and connectors for more information.

Object Diagram Elements Object Diagram Connectors

1.2.4 Composite Structure Diagram

A Composite Structure diagram reflects the internal collaboration of Classes , Interfaces or
Components (and their Properties) to describe a functionality. Composite Structure diagrams are
similar to Class diagrams , except that they model a specific usage of the structure. Class diagrams model
a static view of Class structures, including their attributes and behaviors. A Composite Structure diagram is
used to express run-time architectures, usage patterns and the participating elements' relationships, which
might not be reflected by static diagrams.

In a Composite Structure diagram, Classes are accessed as Parts or run-time instances fulfilling a
particular role. These Parts can have multiplicity, if the role filled by the Class requires multiple instances.
Ports defined by a Part's Class should be represented in the composite structure, maintaining that all

75

152 164

158 61

56

168

169

UML Diagrams | Structural Diagrams | Composite Structure Diagram 60

© 1998-2010 Sparx Systems Pty Ltd

connecting Parts provide the required interfaces specified by the Port. There is extensive flexibility, and an
ensuing complexity, that come with modeling composite structures. To optimize your modeling, consider
building Collaborations to represent reusable patterns responding to your design issues.

Example Diagram

The following diagram shows a Collaboration used in Composite Structure diagrams to model common
patterns. This particular example shows a relationship for performing an installation.

The following diagram uses the Install Collaboration in a Collaboration Occurrence , and applies it to the
UtilLoad Class via a «represents» relationship. This indicates that the classifier UtilLoad uses the collaboration
pattern within its implementation.

For further examples of Composite Structure diagrams, see the Toolbox elements listed below.

Toolbox Elements and Connectors

Select Composite Structure diagram elements and connectors from the Composite pages of the Enterprise
Architect UML Toolbox; see Using Enterprise Architect – UML Modeling Tool.

Enterprise Architect also supports a stereotyped Collaboration to represent a Business Use Case Realization
 in business modeling.

Tip:

Click on the following elements and connectors for more information.

Composite Structure Diagram Elements Composite Structure Diagram Connectors

156

157

75

UML Diagrams | Structural Diagrams | Composite Structure Diagram61

UML Dictionary

Composite Structure Diagram Elements Composite Structure Diagram Connectors

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 193) states:

A composite structure diagram depicts the internal structure of a classifier, as well as the use of a
collaboration in a collaboration use.

1.2.4.1 Properties

A property is a nested structure within a classifier, which is usually a Class or an Interface on a
Composite Structure diagram . The contained structure reflects instances and relationships reflected within
the containing classifier. Properties can have multiplicity.

To demonstrate properties, consider the following diagram, which demonstrates some properties of the Library
Class.

There are two Parts , libBooks and records, which are instances corresponding to the Classes Books and
Computer respectively. After dragging Parts from the Enterprise Architect UML Toolbox out to the workspace,
right-click on a Part and select the Advanced | Set Property Type context menu option to connect to a
classifier.

Note:

If Parts disappear when dragged onto the Class, adjust the Z-order of the Class (right-click on it and select
the Z-Order context menu option).

The relationship between the two Parts is indicated by the connector, reflecting that communication between
the Parts is via the barcode. This contained structure and its Parts are properties owned by the Library Class.
To indicate a property that is not owned by composition to the containing classifier, use a box symbol with a
dashed outline, indicating association. To do this, right-click on the Part and select the Advanced | Custom
Properties context menu option. Set the IsReference option to true.

152 164

59

168

UML Diagrams | Structural Diagrams | Composite Structure Diagram 62

© 1998-2010 Sparx Systems Pty Ltd

Properties can also be reflected using a normal composite structure (without containing it in a Class), with the
appropriate connectors, parts and relationships indicated through connections to the Class. This alternative
representation is shown in the following diagram. However, this depiction fails to express the ownership
immediately reflected by containing properties within a classifier.

1.2.5 Deployment Diagram

A Deployment diagram shows how and where the system is to be deployed; that is, its execution architecture.
Hardware devices, processors and software execution environments (system Artifacts) are reflected as
Nodes , and the internal construction can be depicted by embedding or nesting Nodes. Deployment
relationships indicate the deployment of Artifacts, and Manifest relationships reveal the physical
implementation of components. As Artifacts are allocated to Nodes to model the system's deployment, the
allocation is guided by the use of deployment specifications.

A simple Deployment diagram is shown below, representing the arrangement of servers at a head office. The
servers are represented by Nodes linked by either simple or aggregate Association relationships.

151

165 206

211

UML Diagrams | Structural Diagrams | Deployment Diagram63

UML Dictionary

Deployment diagrams are ideal for using alternative images for the objects that the elements represent; see
Modeling With Enterprise Architect – UML Modeling Tool. Such images can be substituted for the elements in
the above diagram, as shown below:

UML Diagrams | Structural Diagrams | Deployment Diagram 64

© 1998-2010 Sparx Systems Pty Ltd

Toolbox Elements and Connectors

Select Deployment diagram elements and connectors from the Deployment pages of the Enterprise Architect
UML Toolbox; see Using Enterprise Architect – UML Modeling Tool.

Tip:

Click on the following elements and connectors for more information.

UML Diagrams | Structural Diagrams | Deployment Diagram65

UML Dictionary

Deployment Diagram Elements Deployment Diagram Connectors

1.2.6 Component Diagram

A Component diagram illustrates the pieces of software, embedded controllers and such that make up a
system, and their organization and dependencies. A Component diagram has a higher level of abstraction
than a Class diagram ; usually a component is implemented by one or more Classes (or Objects) at
runtime. They are building blocks, built up so that eventually a component can encompass a large portion of a
system.

Example Diagram

The following diagram demonstrates some components and their inter-relationships. Assembly connectors
connect the provided interfaces supplied by Product and Customer to the required interfaces specified by
Order. A Dependency relationship maps a customer's associated account details to the required interface
Payment, indicated by Order.

56 152 165

199

205

UML Diagrams | Structural Diagrams | Component Diagram 66

© 1998-2010 Sparx Systems Pty Ltd

Toolbox Elements and Connectors

Select Component diagram elements and connectors from the Component pages of the Enterprise Architect
UML Toolbox; see Using Enterprise Architect – UML Modeling Tool.

Tip:

Click on the following elements and connectors for more information.

Component Diagram Elements Component Diagram Connectors

UML Diagrams | Structural Diagrams | Component Diagram67

UML Dictionary

Component Diagram Elements Component Diagram Connectors

1.3 Extended Diagrams

In addition to diagrams defined by the UML, Enterprise Architect provides some extended diagram platforms
to model business processes or develop custom diagrams.

· Analysis Diagram

· Custom Diagram

· Requirements Diagram

· Maintenance Diagram

· User Interface Diagram

· Database Schema

· Documentation (see Virtual Documents in Report Creation in UML Models)

· Business Modeling and Business Interaction

1.3.1 Analysis Diagram

An Analysis diagram is a simplified Activity diagram , which is used to capture high level business
processes and early models of system behavior and elements. It is less formal than some other diagrams, but
provides a good means of capturing the essential business characteristics and requirements.

Enterprise Architect supports some of the Eriksson-Penker Business Extensions that facilitate business
process modeling; see Extending UML With Enterprise Architect. The complete Eriksson-Penker Business
Extensions UML Profile can also be loaded into Enterprise Architect and used to create detailed process
models.

67

69

71

72

73

75

75

5

UML Diagrams | Extended Diagrams | Analysis Diagram 68

© 1998-2010 Sparx Systems Pty Ltd

Robustness diagrams, used extensively in ICONIX, can be created as Analysis diagrams.

Toolbox Elements and Connectors

Select Analysis diagram elements and connectors from the Analysis pages of the Enterprise Architect UML
Toolbox; see Using Enterprise Architect – UML Modeling Tool.

Tip:

Click on the following elements and connectors for more information. The Information element is a simple
flow-chart representation of data or input/output.

Analysis Diagram Elements Analysis Diagram Connectors

UML Diagrams | Extended Diagrams | Analysis Diagram69

UML Dictionary

Analysis Diagram Elements Analysis Diagram Connectors

1.3.2 Custom Diagram

A Custom diagram is an extended Class diagram that is used to capture requirements, user interfaces or
custom-design models.

The below example reflects a Requirements diagram . Requirement elements can be linked back to
Use Cases and Components in the system to illustrate how a particular system requirement is met.
Change and Defect (Issue) elements (see Project Management with Enterprise Architect) look the same as
Requirement elements and can be coded and managed in the same way.

Screen design is supported through a stereotyped Screen element and UI Controls . Use this model to
design high level system prototypes.

Custom models provide a few extensions to the UML model and enable some exploratory and non-rigorous
experimentation with model elements and diagrams.

56

71 189

146 158

190 192

UML Diagrams | Extended Diagrams | Custom Diagram 70

© 1998-2010 Sparx Systems Pty Ltd

Toolbox Elements and Connectors

Select Custom diagram elements and connectors from the Custom pages of the Enterprise Architect UML
Toolbox; see Using Enterprise Architect – UML Modeling Tool. Issue and Change elements are discussed in
Project Management With Enterprise Architect.

Tip:

Click on the following elements and connectors for more information.

Custom Diagram Elements Custom Diagram Connectors

UML Diagrams | Extended Diagrams | Custom Diagram 71

UML Dictionary

Custom Diagram Elements Custom Diagram Connectors

1.3.3 Requirements Diagram

A Requirements diagram is a custom diagram used to describe a system's requirements or features as a
visual model.

Requirements are defined using Requirement elements (Custom elements of type Requirement). To view
the detailed description of a Requirement, double-click on the element to display its properties. Requirement
elements can be linked back to Use Cases and Components in the system to illustrate how a particular
system requirement is met.

Requirements models provide extensions to the UML model and enable traceability between specifications
and design requirements, and the model elements that realize them. (See UML Model Management.)

Requirements can have relationships with other elements such as other Requirements and Use Cases. To
view the traceability of a requirement, use the Traceability window (see Using Enterprise Architect - UML
Modeling Tool), which you access using the View | Traceability menu option (or press [Ctrl]+[Shift]+[4]).

Toolbox Elements and Connectors

Select Requirements diagram elements and connectors from the Requirements pages of the Enterprise
Architect UML Toolbox; see Using Enterprise Architect – UML Modeling Tool.

Tip:

Click on the following elements and connectors for more information.

Requirements Diagram Elements Requirements Diagram Connectors

189

146 158

UML Diagrams | Extended Diagrams | Requirements Diagram 72

© 1998-2010 Sparx Systems Pty Ltd

Requirements Diagram Elements Requirements Diagram Connectors

1.3.4 Maintenance Diagram

A Maintenance diagram is a custom diagram used to describe change requests and issue items within a
system model.

An example Maintenance diagram is shown below. Change, Task and Issue elements can be linked back to
other model elements in the system to illustrate how they must be modified, fixed or updated.

Maintenance models provide extensions to the UML model and enable change management of change items,
and of the model elements that require the changes to be made to them.

Toolbox Elements and Connectors

Select Maintenance diagram elements and connectors from the Maintenance pages of the Enterprise Architect
UML Toolbox; see Using Enterprise Architect – UML Modeling Tool. Issue and Change elements are
discussed in Project Management With Enterprise Architect.

UML Diagrams | Extended Diagrams | Maintenance Diagram73

UML Dictionary

Tip:

Click on the following elements and connectors for more information.

Maintenance Diagram Elements Maintenance Diagram Connectors

1.3.5 User Interface Diagram

User Interface Diagrams are custom diagrams used to visually mock-up a system's user interface using forms,
controls and labels.

In the example User Interface diagram below, forms, controls and labels are arranged on the diagram to
describe its appearance. UI elements can also be traced to other model elements linking the UI with the
underlying implementation.

192

UML Diagrams | Extended Diagrams | User Interface Diagram 74

© 1998-2010 Sparx Systems Pty Ltd

Toolbox Elements and Connectors

Select User Interface diagram elements and connectors from the User Interface pages of the Enterprise
Architect UML Toolbox; see Using Enterprise Architect – UML Modeling Tool.

Note:

Click on the following elements and connectors for more information.

User Interface Diagram Elements User Interface Diagram Connectors

UML Diagrams | Extended Diagrams | Database Schema75

UML Dictionary

1.3.6 Database Schema

The following diagram shows an example Database Schema, used in Data Modeling. (See Code Engineering
Using UML Models.)

Toolbox Elements and Connectors

Select Database Schema diagram elements from the Data Modeling pages of the Enterprise Architect UML
Toolbox; see Using Enterprise Architect – UML Modeling Tool and Code Engineering Using UML Models.

Database Schema Diagram Elements

1.3.7 Business Modeling/Interaction

Business Modeling diagrams and Business Interaction diagrams enable you to model both the structure and
behavior of a business system.

Business Modeling diagrams are based on a Class (UML Structural) diagram, whilst Business Interaction
diagrams are based on a Sequence (UML Behavioral) diagram. Both diagram types have the same default
Enterprise Architect UML Toolbox, which consists of a Business Modeling element page. The available
elements include stereotyped Objects , and a stereotyped Actor (Business Actor), Use Case (
Business Use Case) and Collaboration (Business Use Case Realization).

165 94 146

156

UML Diagrams | Extended Diagrams | Business Modeling/Interaction 76

© 1998-2010 Sparx Systems Pty Ltd

The following diagram shows the appearance of the elements when dragged and dropped onto a Business
Modeling diagram:

The following diagram shows the appearance of the elements when dragged and dropped onto a Business
Interaction diagram:

UML Diagrams | Extended Diagrams | Business Modeling/Interaction77

UML Dictionary

UML Elements | | 78

© 1998-2010 Sparx Systems Pty Ltd

2 UML Elements

Models in UML are constructed from elements such as Classes , Objects , Interfaces , Use Cases
, Components and Nodes , each of which has a different purpose, different rules and different

notation. Model elements are used at different stages of the design process for different purposes.

This topic provides an introduction to elements defined by UML, which together compose the backbone of
modeling. Most conceivable modeling elements are stereotypes or extensions of the elements introduced in
this topic.

· During early analysis, Use Cases, Activities, Business Processes, Objects and Collaborations are used to
capture the problem domain

· During elaboration, Sequence diagrams, Objects, Classes and State Machines are used to refine the
system specification

· Components and Nodes are used to model larger parts of the system as well as the physical entities that
are created and deployed into a production environment.

UML elements can be divided into two categories: those used on Behavioral Diagrams and those used on
Structural Diagrams . This basic set can be extended almost without limit using Stereotypes and UML
Profiles (see Extending UML With Enterprise Architect).

2.1 Behavioral Diagram Elements

The following figure illustrates the main UML elements that are used in Behavioral Diagrams . For more
information on using each element, click on the element name in this list:

· Action , Activity , Actor

· Central Buffer Node, Choice , Collaboration , Combined Fragment

· Datastore , Decision , Diagram Frame , Diagram Gate

· Endpoint , Entry Point , Exception , Expansion Region , Exit Point

· Final , Flow Final , Fork

· History

· Initial , Interaction , Interaction Occurrence , Interruptible Activity Region

· Join , Junction

· Lifeline

· Note

· Object

· Package , Partition

· Receive , Region

· Send , State , State/Continuation , State Lifeline , State Machine , Structured Activity ,
Synch , System Boundary

· Terminate , Trigger

· Use Case

· Value Lifeline

Note:

Actor, Collaboration, Note, Object and Package elements are used in both Behavioral diagrams and
Structural diagrams.

152 165 164

146 158 165

78

150 178

78 4

79 90 94

95 95 156 96

102 102 104 105

106 107 107 107 110

110 111 112

116

117 118 119 121

112 122

123

126

165

168 126

127 128

129 129 132 135 136 138

142 142

144 145

146

149

UML Elements | Behavioral Diagram Elements | 79

UML Dictionary

2.1.1 Action

UML Elements | Behavioral Diagram Elements | Action 80

© 1998-2010 Sparx Systems Pty Ltd

An Action element describes a basic process or transformation that occurs within a system. It is the basic
functional unit within an Activity diagram . Actions can be thought of as children of Activities . Both
represent processes, but Activities can contain multiple steps or decomposable processes, each of which can
be embodied in an Action. An Action cannot be further broken down or decomposed.

An Action can be further defined with pre-condition and post-condition notes, and certain properties can
be graphically depicted on the Action (Enterprise Architect prompts you to define the type of Action you are
creating when you first drag the Action icon from the Toolbox). The data values passed out of and into an
Action can be represented by Action Pins . For a named Action (that is, other than a basic Action) you can
also assign Action Pins to represent specific properties.

For a basic (Atomic) Action, you can define the effect of the Action on the Effect tab of the element Properties
dialog, and select to display the effect on the diagram.

An Action can also be depicted as an Expansion Node to indicate that the Action comprises an Expansion
Region .

Class Operations in Activity Diagrams

Operations from Classes can be displayed on Activity diagrams as Actions. When an operation is shown as an
Action, the notation of the Action displays the name of the Class that features the operation. To add an
operation to an Activity diagram follow the steps below:

1. Open an Activity diagram.

2. From the Project Browser open a Class and locate the operation to be added to the Activity diagram.

3. Drag the operation on to the diagram.

4. When the operation has been added to the Activity diagram the Action displays the name of the Class
that features the operation.

If you right-click on the Action in the diagram, you can locate the behavior classifier (CallBehavior Activity) or
call operation (CallOperation Activity) in the Project Browser using the Find | Locate Classifier in Project
Browser and Find | Locate Operation in Project Browser context menu options.

If it becomes necessary to change the operation that this Action refers to, follow the steps below:

1. Right-click on the Action. The context menu displays.

5 90

89

81

87

88

86

107

UML Elements | Behavioral Diagram Elements | Action81

UML Dictionary

2. Select the Advanced | Set Operation menu option. The Set Operation dialog displays.

3. If necessary, in the In Namespace field, select the model that contains the required operation.

4. Double-click on the required operation. The Action updates to show the new classifier and operation.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 241) states:

An action is a named element that is the fundamental unit of executable functionality. The execution of an
action represents some transformation or processing in the modeled system, be it a computer system or
otherwise.

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 313) also states:

An action may have sets of incoming and outgoing activity edges that specify control flow and data flow from
and to other nodes. An action will not begin execution until all of its input conditions are satisfied. The
completion of the execution of an action may enable the execution of a set of successor nodes and actions
that take their inputs from the outputs of the action.

2.1.1.1 Action Notation

Some properties can be graphically depicted on an Action element, as shown in the examples below.

Action Notation Kind:
CallOperation

Action Notation
Kind:

CallBehavior

Action Notation Kind:
AcceptEvent

Action
Notation Kind:
AcceptEventTim

er

Action Notation
Kind:

SendSignal

When you drag the Action icon from the Activity page of the Toolbox onto your diagram, a selection list
displays showing the commonest types of Action to create. (If this list does not display, press [Ctrl] as you
drag the icon.)

85

79

UML Elements | Behavioral Diagram Elements | Action 82

© 1998-2010 Sparx Systems Pty Ltd

When you click on one of the specific types, that type of Action element displays on diagram. If you click on
the Other option, the New Action dialog displays:

You can again select to create a normal (Atomic) Action element, a CallOperation or a CallBehavior, or
you can select the Other radio button and click on the drop-down arrow in the blank field to select the Action
type from an extensive list.

If you later decide that the Action type is not appropriate, you can change it by right-clicking on the Action and
selecting the Advanced | Custom Properties context menu option, which displays the Custom Properties
dialog. Set the Action type by selecting a value from the Kind drop-down list. For a Value Specification Action,
you also set the value on this dialog.

79

UML Elements | Behavioral Diagram Elements | Action83

UML Dictionary

AcceptEvent Actions

For an Accept Event Action element, the Properties dialog contains a Triggers tab on which you define one or
more triggers to denote the type of events accepted by the Action, as defined in the following table:

Option Use to

Name Specify the name of the trigger.

Type Specify the type of trigger: Call, Change, Signal or Time.

· Call - specifies that the event is a CallEvent, which sends a message to the
associated object by invoking an operation.

· Change - specifies that the event is a ChangeEvent, which indicates that the
transition is the result of a change in value of an attribute.

· Signal - specifies that the event is a SignalEvent, which corresponds to the
receipt of an asynchronous signal instance.

· Time - corresponds to a TimeEvent; which specifies a moment in time.

Note:

Code generation for State Machines currently supports Change and Time trigger
events only, and expects a specification value.

Specification Specify the event instigating the Transition.

SendSignal Action & BroadcastSignal Action

For a SendSignal or BroadcastSignal Action element, you can model the signal to be sent and the associated
arguments to be conveyed, using the Signal tab of the element Properties dialog.

UML Elements | Behavioral Diagram Elements | Action 84

© 1998-2010 Sparx Systems Pty Ltd

To complete this tab, follow the steps below:

1. In the Signal field, click on the [...] button and select the required signal from the Select Signal dialog.

2. In the Attribute field, click on the drop-down arrow and select the attribute (as previously created in the
Signal element) with which the arguments are to be associated.

3. In the Value field, type the appropriate value for the attribute.

4. Identify the arguments (as ActionPins) for the Signal; click on the Add button under the Arguments
panel, and select the appropriate Pins from the Select Pin dialog.

Note:

To assign more than one Pin, press [Ctrl] whilst you select each Pin.

5. Click on the Save button.

Structural Feature Actions

Enterprise Architect supports the following types of Structural Feature Actions:

· AddStructuralFeatureValue

· ClearStructuralFeature

87

UML Elements | Behavioral Diagram Elements | Action85

UML Dictionary

· ReadStructuralFeature

· RemoveStructuralFeatureValue

· WriteStructuralFeature

These actions can take Ports, Parts or Attributes as the target structural feature. To set the appropriate
feature, follow the steps below:

1. Right-click on the Action element in the diagram, and select the Advanced | Set Structural Feature
context menu option. The Set Structural Feature dialog displays.

2. To locate the structural feature, click on the Add button. The Select Property dialog displays (a variant
of the Select <Item> dialog).

3. Browse or search for the appropriate structural feature, and double-click on it. The feature name and
location displays in the structuralFeature field of the Set Structural Feature dialog.

4. Click on the OK button to save the setting.

2.1.1.1.1 Set Feature Dialog

The Set Feature dialog is the Set Operation dialog used to change the operation represented by an Action
on an Activity diagram.

As the Set Operation or Set Attribute dialog, it is also used to set the Value operation or attribute for Tagged
Values of type RefGUID (see the SDK For Enterprise Architect) or for the target of a hyperlink in a
diagram.

To use this dialog, follow the steps below:

1. The Set Operation (or Set Attribute) dialog displays, with the model hierarchy opened at the point at
which you selected the original operation or attribute.

80

184

UML Elements | Behavioral Diagram Elements | Action 86

© 1998-2010 Sparx Systems Pty Ltd

2. If required, in the In Namespace field, click on the drop-down arrow and select another model that
contains the required operation or attribute. The package hierarchy for that model displays.

3. Browse through the hierarchy, or use the Search tab to locate the required operation or attribute, then
double-click on the item to select it.

2.1.1.2 Action Expansion Node

Representing an Action as an Expansion Node is a shorthand notation to indicate that the Action
comprises an Expansion Region .

To specify an Action as an Expansion Node, right-click on the Action to display the context menu and select
the Embedded Elements | Add Expansion Node menu option. After designating an Action as an Expansion
Node, you can modify or delete it using the Embedded Elements | Embedded Elements menu option.

79

107

UML Elements | Behavioral Diagram Elements | Action87

UML Dictionary

2.1.1.3 Action Pin

An Action Pin is used to define the data values passed out of and into an Action . An input pin provides
values to the Action, whereas an output pin contains the results from that Action.

Action Pins are used below to connect two Actions:

See UML Superstructure Specification, v2.1.1, Figure 12.110, p. 391.

Action Pins can be further characterized as defining exception parameters, streams, or states. Associating a
state with a Pin defines the state of input or output values. For instance, the Pin could be called Orders, but
the state could be Validated or Canceled.

To add an Action Pin to an Action, right-click on the Action to display the context menu and select the
Embedded Elements | Add Action Pin menu option. (You can also assign Action Pins, to define specific
properties of the Action.)

The Properties dialog of an Action Pin has a Pin tab on which you define the specific actions of the Pin.

A Pin serves as an argument for Call Behavior Actions and Call Operation Actions. When an Action is
associated with a valid behavior in the model, the associated behavior's parameters are listed in the
Parameter field drop-down list to facilitate a one-to-one mapping between the argument and the parameter.
The fields in the Argument panel are enabled only for Pins belonging to Call Actions, and only when the Action
is associated with a valid behavior with valid parameters.

You can also change certain properties of an Action Pin on the Custom Properties dialog: right-click on the Pin
and select the Advanced | Custom Properties context menu option. The following properties can be set:

79

88

UML Elements | Behavioral Diagram Elements | Action 88

© 1998-2010 Sparx Systems Pty Ltd

2.1.1.4 Assign Action Pins

Apart from adding Action Pins to any Action, you can assign specialized input or output Action Pins to Actions
that have a specific type (that is, those that are not Basic or Atomic Actions). These input/output Pins signify
various properties of the Action - they are not visible as structures on the diagram unless they have previously
been added , but are listed in the Project Browser as properties of the Action.

 You can only assign Pins that have already been added or assigned to the Action, or that are being created
specifically to be assigned to the Action.

To assign Pins to an Action, follow the steps below:

1. Right-click on the Action in the diagram, and select the Advanced | Assign Action Pins context menu
option. The Assign Action Pins to <ActionName> dialog displays.

The format of this dialog depends on the type of Action: for a SendObject Action the dialog has two
fields (request and target); for the above TestIdentity Action, three; and for a CallBehavior Action, one (
result). The fields are populated in exactly the same way.

2. The mandatory number and type of Pins are automatically selected (if they exist) or created. To change
or add a Pin in a field, click on the corresponding Add button. The Select Pins dialog displays (a variant
of the Select <Item> dialog), showing the selected Action and listing all the input Pins currently owned
by the Action.

3. Double-click on one of the Pins (or, depending on the multiplicity of the Pin, [Ctrl]+click on several
Pins). Alternatively, if no suitable Pin exists, click on the Add New button and then click on the
newly-created Pin. The selected Pin is identified in the field on the Assign Action Pins to <ActionName>
dialog.

4. Click on the OK button.

To check the exact location of an assigned Action Pin, you can right-click on the Pin name in the dialog and

87

UML Elements | Behavioral Diagram Elements | Action89

UML Dictionary

select the Find in Project Browser context menu option.

2.1.1.5 Local Pre/Post Conditions

Actions can be further defined with pre-condition and post-condition notes, which constrain an Action's
entry and exit. These notes can be added to an Action as defined below.

See UML Superstructure Specification, v2.1.1, Figure 12.32, p. 316.

Create a Constraint

To attach a constraint to an Action follow the steps below:

1. Right-click on the Action. The context menu displays:

2. Select the Add | Constraint menu option. A Note is created on the diagram, connected to the Action.

3. Right-click on the Note. The context menu displays.

4. Select the View Properties menu option. The Constraint dialog displays.

5. In the Constraint Type field, click on the drop-down arrow and select the required constraint type.

6. In the Constraint field, type the text for the constraint.

7. Click on the OK button to save the constraint.

79

UML Elements | Behavioral Diagram Elements | Activity 90

© 1998-2010 Sparx Systems Pty Ltd

2.1.2 Activity

An Activity organizes and specifies the participation of subordinate behaviors, such as sub-Activities or
Actions , to reflect the control and data flow of a process. Activities are used in Activity diagrams for
various modeling purposes, from procedural-type application development for system design, to business
process modeling of organizational structures or work flow.

The following simple diagram of an Activity contains Action elements and includes input parameters and
output parameters .

You can define an Activity as a composite element , either during creation or during later edits. When
creating a composite Activity element, it is simpler to apply the mechanism for creating Structured Activity
elements, which reduces the number of steps to work through. See the Structured Activity topic. If
converting an existing Activity element, right-click on the element and select the Advanced | Make
Composite context menu option.

Certain properties can be graphically depicted on an Activity. The Actions in an Activity can be further
organized by Activity Partitions .

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 318) states:

An activity specifies the coordination of executions of subordinate behaviors, using a control and data flow
model. The subordinate behaviors coordinated by these models may be initiated because other behaviors in
the model finish executing, because objects and data become available, or because events occur external to
the flow. The flow of execution is modeled as activity nodes connected by activity edges. A node can be the
execution of a subordinate behavior, such as an arithmetic computation, a call to an operation, or manipulation
of object contents. Activity nodes also include flow-of-control constructs, such as synchronization, decision,
and concurrency control. Activities may form invocation hierarchies invoking other activities, ultimately
resolving to individual actions. In an object-oriented model, activities are usually invoked indirectly as methods
bound to operations that are directly invoked.

Activities may describe procedural computation. In this context, they are the methods corresponding to
operations on classes. Activities may be applied to organizational modeling for business process engineering

79 5

91

180

138

91

93

UML Elements | Behavioral Diagram Elements | Activity91

UML Dictionary

and workflow. In this context, events often originate from inside the system, such as the finishing of a task, but
also from outside the system, such as a customer call. Activities can also be used for information system
modeling to specify system level processes. Activities may contain actions of various kinds:

· Occurrences of primitive functions, such as arithmetic functions.

· Invocations of behavior, such as activities.

· Communication actions, such as sending of signals.

· Manipulations of objects, such as reading or writing attributes or associations.

Actions have no further decomposition in the activity containing them. However, the execution of a single
action may induce the execution of many other actions. For example, a call action invokes an operation that is
implemented by an activity containing actions that execute before the call action completes.

2.1.2.1 Activity Notation

Certain properties can be graphically depicted on an Activity element, as shown below.

To define these properties, right-click on the Activity and select the Advanced | Custom Properties context
menu option. The following dialog displays:

2.1.2.2 Activity Parameter Nodes

An Activity Parameter Node accepts input to an Activity or provides output from an Activity.

The following example depicts two entry parameters and one output parameter defined for the Activity.

90

90

UML Elements | Behavioral Diagram Elements | Activity 92

© 1998-2010 Sparx Systems Pty Ltd

To define an Activity Parameter Node for an Activity, follow the steps below:

1. Right-click on the element and select the Embedded Elements | Add Activity Parameter context
menu option.

2. The Properties dialog displays, which prompts for the Name and other properties of the embedded
element.

3. After closing this dialog, you can further define the new Activity Parameter; right-click on it and select
the Advanced | Custom Properties context menu option. The following dialog displays:

Similar to characterizing Action Pins , Activity Parameter Nodes also have the isException and isStream
options. IsException indicates that a parameter can emit a value at the exclusion of other outputs, usually
because of some error. IsStream indicates whether or not a parameter can accept or post values during the
execution of the Activity.

The following example uses the above settings:

87

UML Elements | Behavioral Diagram Elements | Activity93

UML Dictionary

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 338) states:

An activity parameter node is an object node for inputs and outputs to activities.

... Activity parameter nodes are object nodes at the beginning and end of flows that provide a means to accept
inputs to an activity and provide outputs from the activity, through the activity parameters.

Activity parameters inherit support for streaming and exceptions from Parameter.

2.1.2.3 Activity Partition

Activity Partitions are used to logically organize an Activity . They do not affect the token flow of an Activity
diagram, but help structure the view or parts of an Activity. An example of a partitioned Activity is shown
below:

To define Partitions:

1. Right-click on the Activity element. The context menu displays.

2. Select the Advanced | Partition Activity menu option. The Activity Partitions dialog displays.

90

UML Elements | Behavioral Diagram Elements | Activity 94

© 1998-2010 Sparx Systems Pty Ltd

3. In the Name field, type the name of a partition. Click on the Save button.

4. Repeat step 3 for each partition to be created.

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 341) states:

Partitions divide the nodes and edges to constrain and show a view of the contained nodes. Partitions can
share contents. They often correspond to organizational units in a business model. They may be used to
allocate characteristics or resources among the nodes of an activity.

2.1.3 Actor

An Actor is a user of the system; user can mean a human user, a machine, or even another system or
subsystem in the model. Anything that interacts with the system from the outside or system boundary is
termed an Actor. Actors are typically associated with Use Cases .

Actors can use the system through a graphical user interface, through a batch interface or through some other
media. An Actor's interaction with a Use Case is documented in a Use Case scenario, which details the
functions a system must provide to satisfy the user requirements.

Actors also represent the role of a user in Sequence Diagrams . Enterprise Architect supports a
stereotyped Actor element for business modeling . The business modeling elements also represent Actors
as stereotyped Objects.

Toolbox Icon

146

39

75

UML Elements | Behavioral Diagram Elements | Actor95

UML Dictionary

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 584) states:

An actor models a type of role played by an entity that interacts with the subject (e.g. by exchanging signals
and data), but which is external to the subject. ... Actors may represent roles played by human users, external
hardware, or other subjects. Note that an actor does not necessarily represent a specific physical entity but
merely a particular facet (i.e., "role") of some entity that is relevant to the specification of its associated Use
Cases. Thus, a single physical instance may play the role of several different actors and, conversely, a given
actor may be played by multiple different instances.

2.1.4 Central Buffer Node

A Central Buffer Node is an object node for managing flows from multiple sources and destinations,
represented in an Activity diagram . It acts as a buffer for multiple in-flows and out-flows from other object
nodes, but does not connect directly to Actions.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 352) states:

A central buffer node is an object node for managing flows from multiple sources and destinations. ... A central
buffer node accepts tokens from upstream object nodes and passes them along to downstream object nodes.

2.1.5 Choice

The Choice pseudo-state is used to compose complex transitional paths in, for example, a State Machine
diagram , where the outgoing transition path is decided by dynamic, run-time conditions. The run-time
conditions are determined by the actions performed by the State Machine on the path leading to the
choice.

The following example depicts the Choice element. Upon reaching the Filter pseudo-state, a transition fires to
the appropriate state based on the run-time value passed to the Filter. Very similar in form to a Junction
pseudo-state, the Choice pseudo-state's distinction is in deciding transition paths at run-time.

5

13

9

129

122

UML Elements | Behavioral Diagram Elements | Choice 96

© 1998-2010 Sparx Systems Pty Ltd

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 538) states:

...choice vertices which, when reached, result in the dynamic evaluation of the guards of the triggers of its
outgoing transitions. This realizes a dynamic conditional branch. It enables splitting of transitions into multiple
outgoing paths such that the decision on which path to take may be a function of the results of prior actions
performed in the same run-to-completion step. If more than one of the guards evaluates to true, an arbitrary
one is selected. If none of the guards evaluates to true, then the model is considered ill-formed. (To avoid this,
it is recommended to define one outgoing transition with the predefined "else" guard for every choice vertex.)
Choice vertices should be distinguished from static branch points that are based on junction points.

2.1.6 Combined Fragment

A Combined Fragment reflects a piece or pieces of interaction (called interaction operands) controlled by an
interaction operator , whose corresponding boolean conditions are known as interaction constraints. It
displays as a transparent window, divided by horizontal dashed lines for each operand.

The following diagram illustrates the use of Combined Fragments, with a Sequence diagram modeling a

99

39

UML Elements | Behavioral Diagram Elements | Combined Fragment97

UML Dictionary

simplified purchasing process. A loop fragment is created to iterate through an unknown number of items for
purchase, after which the cashier requests payment. At this point, two payment options are considered and an
alternative fragment is created , divided to show the two operands: cash and credit card. After the fragment
completes its trace, the cashier gives a receipt to the customer, under the fulfilled condition that payment
requirements were met.

The order of interaction fragment conditions can be changed directly on the diagram. Select an interaction
fragment with more than one condition defined. Up and down arrows appear on the right hand side of the each
condition. Just click on the arrow to change the order.

Note:

In order to select an interaction fragment, you must click near the inside edge or drag a selection rectangle
around the fragment. This prevents accidental selection when moving connectors inside the interaction
fragment.

Tip:

Press and hold [Alt] to move a combined fragment independently of its contents.

98

UML Elements | Behavioral Diagram Elements | Combined Fragment 98

© 1998-2010 Sparx Systems Pty Ltd

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 467) states:

A combined fragment defines an expression of interaction fragments. A combined fragment is defined by an
interaction operator and corresponding interaction operands. Through the use of CombinedFragments the
user will be able to describe a number of traces in a compact and concise manner.

2.1.6.1 Create a Combined Fragment

Use the following guidelines to create a Combined Fragment in Enterprise Architect.

1. Drag the Fragment element from the Interaction Elements page of the Enterprise Architect UML
Toolbox. The following dialog displays:

96

UML Elements | Behavioral Diagram Elements | Combined Fragment99

UML Dictionary

2. In the Type field, click on the drop-down arrow and select the interaction operator. See the Interaction
Operators topic for an explanation of the various types of Combined Fragments.

3. In the Condition field, specify a condition or interaction constraint for each operand.

4. A rectangular frame displays, partitioned by dashed lines into segments for each operand.

5. Adjust the frame to encompass the required event occurrences for each operand.

2.1.6.2 Interaction Operators

When creating Combined Fragments , you must apply an appropriate interaction operator to characterize
the fragment. The following table provides guidance on the various operators, and their corresponding
descriptions.

Interaction Operator Use to

alt Divide up interaction fragments based on Boolean conditions.

opt Enclose an optional fragment of interaction.

par Indicate that operands operate in parallel.

loop Indicate that the operand repeats a number of times, as specified by interaction
constraints.

critical Indicate a sequence that cannot be interrupted by other processing.

neg Assert that a fragment is invalid, and implies that all other interaction is valid.

assert Specify the only valid fragment to occur. Often enclosed within a consider or ignore
operand.

strict Indicate that the behaviors of the operands must be processed in strict sequence.

seq Indicate that the Combined Fragment is weakly sequenced. This means that the
ordering within operands is maintained, but the ordering between operands is
undefined, so long as an event occurrence of the first operand precedes that of the
second operand, if the event occurrences are on the same lifeline.

ignore Indicate which messages should be ignored during execution, or can appear anywhere

99

96

UML Elements | Behavioral Diagram Elements | Combined Fragment 100

© 1998-2010 Sparx Systems Pty Ltd

Interaction Operator Use to

in the execution trace.

consider Specify which messages should be considered in the trace. This is often used to
specify the resulting event occurrences with the use of an assert operator.

ref Provide a reference to another diagram.

Note:

The ref fragment is not created using the method described in the Create a Combined
Fragment topic. To create a ref fragment, simply drag an existing diagram from
the Project Browser onto the current diagram.

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 468-471) states:

The semantics of a CombinedFragment is dependent upon the interactionOperator as explained below.

Alternatives

The interactionOperator alt designates that the CombinedFragment represents a choice of behavior. At most
one of the operands will be chosen. The chosen operand must have an explicit or implicit guard expression
that evaluates to true at this point in the interaction. An implicit true guard is implied if the operand has no
guard.

The set of traces that defines a choice is the union of the (guarded) traces of the operands.

An operand guarded by else designates a guard that is the negation of the disjunction of all other guards in
the enclosing CombinedFragment.

If none of the operands has a guard that evaluates to true, none of the operands are executed and the
remainder of the enclosing InteractionFragment is executed.

Option

The interactionOperator opt designates that the CombinedFragment represents a choice of behavior where
either the (sole) operand happens or nothing happens. An option is semantically equivalent to an alternative
CombinedFragment where there is one operand with non-empty content and the second operand is empty.

Break

The interactionOperator break designates that the CombinedFragment represents a breaking scenario in the
sense that the operand is a scenario that is performed instead of the remainder of the enclosing
InteractionFragment. A break operator with a guard is chosen when the guard is true and the rest of the
enclosing Interaction Fragment is ignored. When the guard of the break operand is false, the break operand
is ignored and the rest of the enclosing InteractionFragment is chosen. The choice between a break operand
without a guard and the rest of the enclosing InteractionFragment is done non-deterministically.

A CombinedFragment with interactionOperator break should cover all Lifelines of the enclosing
InteractionFragment.

Parallel

The interactionOperator par designates that the CombinedFragment represents a parallel merge between the
behaviors of the operands. The OccurrenceSpecifications of the different operands can be interleaved in any
way as long as the ordering imposed by each operand as such is preserved.

A parallel merge defines a set of traces that describes all the ways that OccurrenceSpecifications of the
operands may be interleaved without obstructing the order of the OccurrenceSpecifications within the
operand.

Weak Sequencing

The interactionOperator seq designates that the CombinedFragment represents a weak sequencing between
the behaviors of the operands.

98

UML Elements | Behavioral Diagram Elements | Combined Fragment101

UML Dictionary

Weak sequencing is defined by the set of traces with these properties:

1. The ordering of OccurrenceSpecifications within each of the operands is maintained in the result.

2. OccurrenceSpecifications on different lifelines from different operands may come in any order.

3. OccurrenceSpecifications on the same lifeline from different operands are ordered such that an
OccurrenceSpecification of the first operand comes before that of the second operand.

Thus weak sequencing reduces to a parallel merge when the operands are on disjunct sets of participants.
Weak sequencing reduces to strict sequencing when the operands work on only one participant.

Strict Sequencing

The interactionOperator strict designates that the CombinedFragment represents a strict sequencing between
the behaviors of the operands. The semantics of strict sequencing defines a strict ordering of the operands on
the first level within the CombinedIFragment with interactionOperator strict. Therefore
OccurrenceSpecifications within contained CombinedFragment will not directly be compared with other
OccurrenceSpecifications of the enclosing CombinedFragment.

Negative

The interactionOperator neg designates that the CombinedFragment represents traces that are defined to be
invalid.

The set of traces that defined a CombinedFragment with interactionOperator negative is equal to the set of
traces given by its (sole) operand, only that this set is a set of invalid rather than valid traces. All
InteractionFragments that are different from Negative are considered positive meaning that they describe
traces that are valid and should be possible.

Critical Region

The interactionOperator critical designates that the CombinedFragment represents a critical region. A critical
region means that the traces of the region cannot be interleaved by other OccurrenceSpecifications (on those
Lifelines covered by the region). This means that the region is treated atomically by the enclosing fragment
when determining the set of valid traces. Even though enclosing CombinedFragments may imply that some
OccurrenceSpecifications may interleave into the region, such as with par-operator, this is prevented by
defining a region.

Thus the set of traces of enclosing constructs are restricted by critical regions.

Ignore / Consider

(p. 473) The interactionOperator ignore designates that there are some message types that are not shown
within this combined fragment. These message types can be considered insignificant and are implicitly
ignored if they appear in a corresponding execution. Alternatively one can understand ignore to mean that the
messages that are ignored can appear anywhere in the traces.

Conversely the interactionOperator consider designates which messages should be considered within this
CombinedFragment. This is equivalent to defining every other message to be ignored.

Assertion

The interactionOperator assert designates that the CombinedFragment represents an assertion. The
sequences of the operand of the assertion are the only valid continuations. All other continuations result in an
invalid trace. Assertions are often combined with Ignore or Consider.

Loop

The interactionOperator loop designates that the CombinedFragment represents a loop. The loop operand
will be repeated a number of times.

The Guard may include a lower and an upper number of iterations of the loop as well as a Boolean
expression. The semantics is such that a loop will iterate minimum the 'minint' number of times (given by the
iteration expression in the guard) and at most the 'maxint' number of times. After the minimum number of
iterations have executed, and the boolean expression is false the loop will terminate. The loop construct
represent a recursive application of the seq operator where the loop operand is sequenced after the result of
earlier iterations.

The Semantics of Gates

UML Elements | Behavioral Diagram Elements | Combined Fragment 102

© 1998-2010 Sparx Systems Pty Ltd

The gates of a CombinedFragment represent the syntactic interface between the CombinedFragment and its
surroundings, which means the interface towards other InteractionFragments.

The only purpose of gates is to define the source and the target of messages.

2.1.7 Datastore

A Datastore is an element used to define permanently stored data. A token of data that enters into a Datastore
is stored permanently, updating tokens for data that already exists. A token of data that comes out of a
Datastore is a copy of the original data.

Use Object Flow connectors to connect elements (such as Activities) to Datastores, as values and
information are being passed between nodes. Selection and transformation behavior, together composing a
sort of query, can be specified as to the nature of data access. For instance, selection behavior determines
which objects are affected by the connection to the Datastore. Transformation behavior might then further
specify the value of an attribute pertaining to a selected object.

To define the behavior of access to a Datastore, attach a note to the Object Flow connector. To do this, right-
click on the Object Flow and select the Attach Note or Constraint context menu option. A dialog indicates
other flows in the Activity diagram , to which you can attach the note (if the behavior applies to multiple
flows). To comply with UML 2, preface behavior with the notation «selection» or «transformation».

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 360) states:

A data store node is a central buffer node for non-transient information... A data store keeps all tokens that
enter it, copying them when they are chosen to move downstream. Incoming tokens containing a particular
object replace any tokens in the object node containing that object.

2.1.8 Decision

A Decision is an element of an Activity diagram or Interaction Overview diagram that indicates a point
of conditional progression: if a condition is true, then processing continues one way; if not, then another.

This can also be used as a Merge node in that multiple alternative flows can be merged (but not
synchronized) to form one flow. The following examples show both of these modes of using the decision
element.

Used as a decision:

230 90

5

5 52

124

UML Elements | Behavioral Diagram Elements | Decision103

UML Dictionary

See UML Superstructure Specification, v2.1.1, figure 12.77, p. 363.

Used as a merge:

See UML Superstructure Specification, v2.1.1, figure 12.106, p. 388.

Note:

Moving a diagram generally does not affect the location of elements in packages. If you move a diagram out
of one package into another, all the elements in the diagram remain in the original package. However,
Decision elements are used only within one diagram, have no meaning outside that diagram, and are never
re-used in any other diagram. Therefore, if you move a diagram containing these elements, they are moved
to the new parent package with the diagram.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 361 (Decision symbol)) states:

A decision node is a control node that chooses between outgoing flows. A decision node has one incoming
edge and multiple outgoing activity edges.

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 387 (Merge symbol)) also states:

A merge node is a control node that brings together multiple alternate flows. It is not used to synchronize
concurrent flows but to accept one among several alternate flows... A merge node has multiple incoming
edges and a single outgoing edge.

UML Elements | Behavioral Diagram Elements | Diagram Frame 104

© 1998-2010 Sparx Systems Pty Ltd

2.1.9 Diagram Frame

A Diagram Frame element is a rendition of a diagram dropped from the Project Browser into another diagram.
It is a type of Combined Fragment with the Interaction Operator ref. However, it can be created on any
type of diagram, and is not created in the same way as other Combined Fragments.

When you drop the diagram from the Project Browser onto the open diagram, the following prompt displays:

If you click on the Diagram Frame radio button, a Diagram Frame is inserted into the diagram, containing an
image of the dropped diagram.

If you select the Diagram Reference option, an empty frame is inserted with the name of the dropped diagram
in the frame label. If you select the Hyperlink radio button, a diagram icon is inserted with no frame, and with
the parent package and diagram name next to it.

In all three cases, the object acts as a hyperlink to the real referenced diagram. You can also define properties
for the objects, as for other elements, by right-clicking on the object and selecting the element Properties
context menu option.

96 100

UML Elements | Behavioral Diagram Elements | Diagram Frame105

UML Dictionary

Notes:

· You can change the size of all three objects, but you cannot reduce a Diagram Frame to less than the size
of the enclosed diagram.

· You cannot change the diagram within a Diagram Frame. To edit the diagram, double-click within the
frame and edit the original diagram.

· The Diagram Frame element looks identical to but is not the same as a diagram frame border, which you
can set automatically on new images of diagrams using the Tools | Options | Diagram option, and
selecting the appropriate checkboxes in the Diagram Frames panel. These options set frames on print-outs
of diagrams, images of diagrams copied to file, and images of diagrams copied to the clipboard. If you
paste the image from the clipboard into another diagram, the image initially looks the same as the Diagram
Frame element but it is actually a discreet unit that you manipulate using the Image Manager see UML
Modeling With Enterprise Architect - UML Modeling Tool.

2.1.10 Diagram Gate

A Diagram Gate is a simple graphical way to indicate the point at which messages can be transmitted into and
out of interaction fragments. A fragment might be required to receive or deliver a message; internally, an
ordered message reflects this requirement, with a gate indicated on the boundary of the fragment's frame. Any
external messages 'synching' with this internal message must correspond appropriately. Gates can appear on
Interaction diagrams (Sequence , Timing , Communication or Interaction Overview), interaction
occurrences and combined fragments (to specify the expression).

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 480) states:

A Gate is a connection point for relating a Message outside an InteractionFragment with a Message inside the
InteractionFragment ... Gates are connected through Messages. A Gate is actually a representative of an
OccurrenceSpecification that is not in the same scope as the Gate. Gates play different roles: we have formal
gates on Interactions, actual gates on InteractionUses, expression gates on CombinedFragments.

41 22 49 52

119 96

UML Elements | Behavioral Diagram Elements | Endpoint 106

© 1998-2010 Sparx Systems Pty Ltd

2.1.11 Endpoint

An Endpoint is used in Interaction diagrams (Sequence , Timing , Communication or Interaction
Overview) to reflect a lost or found message in sequence. To model this, drag an Endpoint element onto
the workspace.

With Sequence diagrams , drag a message from the appropriate lifeline to the Endpoint. With Timing
diagrams , the message connecting the lifeline to the Endpoint requires some timing specifications to draw
the connection.

The following example depicts a lost message in a Sequence diagram.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 492) states:

A lost message is a message where the sending event occurrence is known, but there is no receiving event
occurrence. We interpret this to be because the message never reached its destination.

A found message is a message where the receiving event occurrence is known, but there is no (known)
sending event occurrence. We interpret this to be because the origin of the message is outside the scope of
the description. This may, for example, be noise or other activity that we do not want to describe in detail.

41 22 49

52

39

22

UML Elements | Behavioral Diagram Elements | Entry Point107

UML Dictionary

2.1.12 Entry Point

Entry Point pseudo-states are used to define the beginning of a State Machine . An Entry Point exists
for each region, directing the initial concurrent state configuration.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 471) states:

An entry point pseudostate is an entry point of a state machine or composite state. In each region of the state
machine or composite state it has a single transition to a vertex within the same region.

2.1.13 Exception

The Exception Handler element defines the group of operations to carry out when an exception occurs. In an
Activity diagram , the protected element can contain a set of operations and is connected to the exception
handler via an Interrupt Flow connector. Any defined error contained within an element's parts can trigger
the flow to move to an exception.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 364) states:

An exception handler is an element that specifies a body to execute in case the specified exception occurs
during the execution of the protected node.

2.1.14 Expansion Region

13 9

5

211

UML Elements | Behavioral Diagram Elements | Expansion Region 108

© 1998-2010 Sparx Systems Pty Ltd

You create an Expansion Region as one variant of a Region (the other is an Interruptible Activity
Region).

On an Activity diagram , an Expansion Region surrounds a process to be imposed multiple times on the
incoming data, once for every element in the input collection. If there are multiple inputs, the collection sizes
must match, and the elements within each collection must be of the same type. Similarly, any outputs must be
in the form of a collection matching the size of the inputs.

The concurrency of the Expansion Region's multiple executions can be specified as type parallel, iterative, or
stream. Parallel reflects that the elements in the incoming collections can be processed at the same time or
overlapping, whereas an iterative concurrency type specifies that execution must occur sequentially. A stream-
type Expansion Region indicates that the input and output come in and exit as streams, and that the
Expansion Region's process must have some method to support streams.

To modify the mode of an Expansion Region, right-click on it and select the Advanced | Custom Properties
context menu option.

110 128

121

5

UML Elements | Behavioral Diagram Elements | Expansion Region109

UML Dictionary

See UML Superstructure Specification, v2.1.1, figure 12.87, p. 372.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 367) states:

UML Elements | Behavioral Diagram Elements | Expansion Region 110

© 1998-2010 Sparx Systems Pty Ltd

An expansion region is a structured activity region that executes multiple times corresponding to elements of
an input collection.

2.1.14.1 Add Expansion Region

When you add a Region element to a diagram, the following prompt displays:

The Select type defaults to InterruptibleActivityRegion.

1. Select the type ExpansionRegion .

2. In the Kind field, click on the drop-down arrow and select the concurrency attribute.

2.1.15 Exit Point

Exit Points are used in Submachine states and State Machines to denote the point where the machine
is exited and the transition sourcing this exit point, for Submachines, is triggered. Exit points are a type of
pseudo-state used in the State Machine diagram.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1 p. 538) states:

An exit point pseudostate is an exit point of a state machine or composite state. Entering an exit point within
any region of the composite state or state machine referenced by a submachine state implies the exit of this
composite state or submachine state and the triggering of the transition that has this exit point as source in the
state machine enclosing the submachine or composite state.

2.1.16 Final

There are two nodes used to define a Final state in an Activity , both defined in UML 2.1 as of type Final
Node. The Activity Final element, shown above, indicates the completion of an Activity; upon reaching the
Final, all execution in the Activity diagram is aborted. The other type of final node, Flow Final , depicts

128

107

136 129

13 9

90

5 111

UML Elements | Behavioral Diagram Elements | Final111

UML Dictionary

an exit from the system that has no effect on other executing flows in the Activity.

The following example illustrates the development of an application. The process comes to a Flow Final node
when there are no more components to be built; note that the Fork element indicates a concurrent process
with the building of new components and installation of completed components. The Flow Final terminates
only the sub-process building components. Similarly, only those tokens entering the decision branch for the
installation of further components terminate with the connecting Flow Final (that is, stop installing this
component, but keep on installing other components). It is only after the Deliver Application activity is
completed, after the control flow reaches the Final node, that all flows stop.

The node that initiates a flow is the Initial node.

See UML Superstructure Specification, v2.1.1, figure 12.91, p. 374.

Note:

Moving a diagram generally does not affect the location of elements in packages. If you move a diagram out
of one package into another, all the elements in the diagram remain in the original package. However, Final
elements are used only within one diagram, have no meaning outside that diagram, and are never re-used in
any other diagram. Therefore, if you move a diagram containing these elements, they are moved to the new
parent package with the diagram.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 332) states:

An activity may have more than one activity final node. The first one reached stops all flows in the activity.

2.1.17 Flow Final

There are two nodes used to define a final state in an Activity, both defined in UML 2.1 as of type Final Node.
The Flow Final element depicts an exit from the system, as opposed to the Activity Final , which represents
the completion of the Activity. Only the flow entering the Flow Final node exits the Activity; other flows continue
undisturbed.

The following example Activity Diagram illustrates the development of an application. The process comes
to a Flow Final node when there are no more components to be built; note that the Fork element indicates
a concurrent process with the building of new components and installation of completed components. The
Flow Final terminates only the sub-process building components. Similarly, only those tokens entering the

114

117

110

5

114

UML Elements | Behavioral Diagram Elements | Flow Final 112

© 1998-2010 Sparx Systems Pty Ltd

decision branch for the installation of further components terminate with the connecting Flow Final (that is,
stop installing this component, but keep on installing other components). It is only after the Deliver Application
activity is completed, after the control flow reaches the Final node, that all flows stop.

See UML Superstructure Specification, v2.1.1, figure 12.91, p. 374.

Note:

Moving a diagram generally does not affect the location of elements in packages. If you move a diagram out
of one package into another, all the elements in the diagram remain in the original package. However, Flow
Final elements are used only within one diagram, have no meaning outside that diagram, and are never re-
used in any other diagram. Therefore, if you move a diagram containing these elements, they are moved to
the new parent package with the diagram.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 375) states:

A flow final destroys all tokens that arrive at it. It has no effect on other flows in the activity.

2.1.18 Fork/Join

The Fork/Join elements have different modes of use, as follows:

· To fork or split the flow into a number of concurrent flows.

· To join the flow of a number of concurrent flows.

· To both join and fork a number of incoming flows to a number of outgoing flows.

These elements are used in both Activity and State Machine diagrams. With respect to State Machine
diagrams, Forks and Joins are used as pseudo-states . Other pseudo-states include history states

, entry points and exit points . Forks are used to split an incoming transition into concurrent multiple
transitions leading to different target states. Joins are used to merge concurrent multiple transitions into a
single transition leading to a single target. They are semantic inverses. To learn more about these individual
elements see their specific topics.

Some examples of Fork/Join nodes include:

5 9

114 115 13

116 107 110

UML Elements | Behavioral Diagram Elements | Fork/Join113

UML Dictionary

Fork or split the flow into a number of concurrent flows:

See UML Superstructure Specification, v2.1.1, figure 12.95 p. 377.

Join the flow of a number of concurrent flows:

See UML Superstructure Specification, v2.1.1, figure 12.103, p. 384.

Join and Fork a number of incoming flows to a number of outgoing flows:

Toolbox Icon

OMG UML Specification

Fork
The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 376) states:

A fork node is a control node that splits a flow into multiple concurrent flows... A fork node has one incoming
edge and multiple outgoing edges.

Join
The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 381-382) states:

A join node is a control node that synchronizes multiple flows... A join node has multiple incoming edges and
one outgoing edge.

UML Elements | Behavioral Diagram Elements | Fork/Join 114

© 1998-2010 Sparx Systems Pty Ltd

2.1.18.1 Fork

See UML Superstructure Specification, v2.1.1, figure 12.95 p. 377.

These elements are used in both Activity and State Machine diagrams. With respect to State Machine
diagrams, a Fork pseudo-state signifies that its incoming transition comes from a single state, and it has
multiple outgoing transitions. These transitions must occur concurrently, requiring the use of concurrent
regions , as depicted below in the Composite State . Unlike Choice or Junction pseudo-states,
Forks must not have triggers or guards. The following diagram demonstrates a Fork pseudo-state dividing into
two concurrent regions, which then return to the End State via the Join pseudo-state.

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 538) states:

Fork vertices serve to split an incoming transition into two or more transitions terminating on orthogonal target
vertices (i.e. vertices in different regions of a composite state). The segments outgoing from a fork vertex must
not have guards or triggers.

5 9

13

128 130 95 122

115

UML Elements | Behavioral Diagram Elements | Fork/Join115

UML Dictionary

2.1.18.2 Join

See UML Superstructure Specification, v2.1.1, figure 12.103, p. 384.

The Join element is used by Activity and State Machine diagrams. The above example illustrates a
Join transition between Activities. With respect to State Machine diagrams, a Join pseudo-state indicates
multiple States concurrently transitioning into the Join and onto a single State. Unlike Choice or
Junction pseudo-states, Joins must not have triggers or guards. The following diagram demonstrates a
Fork pseudo-state dividing into two concurrent Regions , which then return to the End State via the
Join.

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 538) states:

Join vertices serve to merge several transitions emanating from source vertices in different orthogonal
regions. The transitions entering a join vertex cannot have guards or triggers.

5 9

13

129 95

122

114 128

UML Elements | Behavioral Diagram Elements | History 116

© 1998-2010 Sparx Systems Pty Ltd

2.1.19 History

There are two types of History pseudo-state defined in UML: shallow and deep history. A shallow History
sub-state is used to represent the most recently active sub-state of a Composite State ; this pseudo-state
does not recurse into this sub-state's active configuration, should one exist. A single connector can be used to
depict the default shallow History state, in case the Composite State has never been entered.

A deep History sub-state, in contrast, reflects the most recent active configuration of the Composite State. This
includes active sub-states of all regions, and recurses into those sub-states' active sub-states, should they
exist. At most one deep history and one shallow history can dwell within a composite state.

Toolbox Icon

13

130

UML Elements | Behavioral Diagram Elements | History117

UML Dictionary

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 537) states:

... deepHistory represents the most recent active configuration of the composite state that directly contains this
pseudostate (e.g., the state configuration that was active when the composite state was last exited). A
composite state can have at most one deep history vertex. At most one transition may originate from the
history connector to the default deep history state. This transition is taken in case the composite state had
never been active before. Entry actions of states entered on the path to the state represented by a deep
history are performed.

... shallowHistory represents the most recent active substate of its containing state (but not the substates of
that substate). A composite state can have at most one shallow history vertex. A transition coming into the
shallow history vertex is equivalent to a transition coming into the most recent active substate of a state. At
most one transition may originate from the history connector to the default shallow history state. This transition
is taken in case the composite state had never been active before. Entry actions of states entered on the path
to the state represented by a shallow history are performed.

2.1.20 Initial

The Initial element is used by Activity and State Machine diagrams. In Activity diagrams, it defines the
start of a flow when an Activity is invoked. With State Machines, the Initial element is a pseudo-state
used to denote the default state of a Composite State ; there can be one Initial vertex in each Region of
the Composite State.

This simple example shows the start of a flow to receive an order.

See UML Superstructure Specification, v2.1.1, Figure 12.97, p. 378.

The activity flow is completed by a Final or Flow Final node.

Note:

Moving a diagram generally does not affect the location of elements in packages. If you move a diagram out
of one package into another, all the elements in the diagram remain in the original package. However, Initial
elements are used only within one diagram, have no meaning outside that diagram, and are never re-used in
any other diagram. Therefore, if you move a diagram containing these elements, they are moved to the new
parent package with the diagram.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 537) states:

An initial pseudostate represents a default vertex that is the source for a single transition to the default state of
a composite state. There can be at most one initial vertex in a region. The outgoing transition from the initial

5 9

90 13

130 128

110 111

UML Elements | Behavioral Diagram Elements | Initial 118

© 1998-2010 Sparx Systems Pty Ltd

vertex may have a behavior, but not a trigger or guard.

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 378) also states:

An initial node is a control node at which flow starts when the activity is invoked.

2.1.21 Interaction

An Interaction element is used to describe a system, representing its interactions at varying levels of detail, for
review not only by design professionals but also by end users and stakeholders. An Interaction element can
contain the following types of diagram:

· Sequence

· Interaction Overview

· Communication

· Timing .

An Interaction element in Enterprise Architect is treated as a behavior of the classifier it is encapsulated within.
It can have parameters and return types, which are modeled using the Behavior tab of the Interaction
element's Properties dialog. The element is interpreted as a method of the containing Class in the generated
code (see the Code Generation From Behavioral Model topic in Code Generation from UML Models).

An Interaction element can also be set as the classifier for an Interaction Occurrence in a Sequence
diagram, or for a Call Behavior Action in an Activity diagram. Establishing such an association (between a
behavior and a behavior call) facilitates adding arguments that can be individually mapped to the associated
behavior's parameters (see the Behavioral Modeling section of UML Modeling With Enterprise Architect - UML
Modeling Tool).

39

52

49

22

119

81

UML Elements | Behavioral Diagram Elements | Interaction119

UML Dictionary

Note:

The behavioral code generation engine expects the Sequence diagram and all its associated messages and
interaction fragments to be encapsulated within an Interaction element (such as setupUSB in the example
below).

(The IO Class shown above is available in the EAExample model, under Systems Engineering Model |
Implementation Model | Software.)

2.1.22 Interaction Occurrence

An Interaction Occurrence (or InteractionUse) is a reference to an existing Interaction (Sequence)
diagram. Interaction Occurrences are visually represented by a frame, with ref in the frame's title space. The
diagram name is indicated in the frame contents. To create an Interaction Occurrence, simply open a
Sequence diagram (preferably contained within an Interaction element) and drag another Sequence
diagram (also preferably contained within an Interaction element) into its workspace. A dialog displays,
providing configuration options. The resulting Interaction Occurrence acts as an invocation of the original
Interaction. You use the Call tab of the element Properties dialog to set up the actual arguments of the
Interaction and also to change to a different associated Interaction element.

The following figure illustrates the use of an Interaction Occurrence in another Interaction (Sequence)
diagram. You can display the sequence represented by the Interaction Occurrence by double-clicking on the
element.

41

118

UML Elements | Behavioral Diagram Elements | Interaction Occurrence 120

© 1998-2010 Sparx Systems Pty Ltd

Note:

The behavioral code generation engine expects the Sequence diagram and all its associated messages and
interaction fragments to be encapsulated within an Interaction element (such as doReadUSB in the example
below).

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 423) refers to an Interaction
Occurrence as an InteractionUse, and states:

An InteractionUse refers to an Interaction. The InteractionUse is a shorthand for copying the contents of the
referred Interaction where the InteractionUse is. To be accurate the copying must take into account
substituting parameters with arguments and connect the formal gates with the actual ones.

It is common to want to share portions of an interaction between several other interactions. An InteractionUse
allows multiple interactions to reference an interaction that represents a common portion of their specification.

UML Elements | Behavioral Diagram Elements | Interruptible Activity Region121

UML Dictionary

2.1.23 Interruptible Activity Region

You create an Interruptible Activity Region as one variant of a Region (the other is an Expansion
Region).

In an Activity diagram , an Interruptible Activity Region surrounds a group of Activity elements, all
affected by certain interrupts in such a way that all tokens passing within the region are terminated should the
interruption(s) be raised. Any processing occurring within the bounds of an Interruptible Activity Region is
terminated when a flow is instigated across an interrupt flow to an external element.

The example below illustrates that an order cancellation kills any processing of the order at the receipt, filling
or shipping stage.

See UML Superstructure Specification, v2.1.1, figure 12.100, p. 381.

To create an Interruptible Activity Region, click on this Add an Interruptible Activity Region link.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 380) states:

An interruptible region contains activity nodes. When a token leaves an interruptible region via edges
designated by the region as interrupting edges, all tokens and behaviors in the region are terminated.

122 128

107

5 90

122

UML Elements | Behavioral Diagram Elements | Interruptible Activity Region 122

© 1998-2010 Sparx Systems Pty Ltd

2.1.23.1 Add Interruptible Activity Region

When you add a Region element to an Activity diagram, the following prompt displays:

The Select type panel defaults to InterruptibleActivityRegion and the Kind field is disabled. Click on the
OK button.

2.1.24 Junction

Junction pseudo-states are used to design complex transitional paths in State Machine diagrams. A
Junction can be used to combine or merge multiple paths into a shared transition path. Alternatively, a
Junction can split an incoming path into multiple paths, similar to a Fork pseudostate. Unlike Forks or
Joins , Junctions can apply guards to each incoming or outgoing transition, such that if the guard
expression is false, the transition is disabled.

The following example illustrates how guards can be applied to transitions coming into or out of a Junction
pseudo-state.

121

13 9

114

115

UML Elements | Behavioral Diagram Elements | Junction123

UML Dictionary

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 538) states:

... junction vertices are semantic-free vertices that are used to chain together multiple transitions. They are
used to construct compound transition paths between states. For example, a junction can be used to converge
multiple incoming transitions into a single outgoing transition representing a shared transition path (this is
known as a merge). Conversely, they can be used to split an incoming transition into multiple outgoing
transition segments with different guard conditions. This realizes a static conditional branch. (In the latter case,
outgoing transitions whose guard conditions evaluate to false are disabled. A predefined guard denoted "else"
may be defined for at most one outgoing transition. This transition is enabled if all the guards labeling the
other transitions are false.) Static conditional branches are distinct from dynamic conditional branches that are
realized by choice vertices.

2.1.25 Lifeline

UML Elements | Behavioral Diagram Elements | Lifeline 124

© 1998-2010 Sparx Systems Pty Ltd

A Lifeline is an individual participant in an interaction (that is, Lifelines cannot have multiplicity). A Lifeline
represents a distinct connectable element. To specify that representation within Enterprise Architect, right-click
on the Lifeline and select the Advanced | Instance Classifier context menu option. The Select <Item> dialog
displays which you use to locate the required project classifiers.

Lifelines are available in Sequence diagrams. There are different Lifeline elements for Timing diagrams
(State Lifeline and Value Lifeline) ; however, although the representation differs between the two
diagram types, the meaning of the Lifeline is the same.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p.489) states:

A lifeline represents an individual participant in the Interaction. While Parts and StructuralFeatures may have
multiplicity greater than 1, Lifelines represent only one interacting entity.

Lifeline is a specialization of NamedElement.

If the referenced ConnectableElement is multivalued (i.e. has a multiplicity > 1), then the Lifeline may have an
expression (the 'selector') that specifies which particular part is represented by this Lifeline. If the selector is
omitted this means that an arbitrary representative of the multivalued ConnectableElement is chosen.

2.1.26 Merge

A Merge Node brings together a number of alternative flow paths in Activity , Analysis and Interaction
Overview diagrams. For example, if a Decision is used after a Fork , the two flows coming out of the
Decision must be merged into one before going to a Join ; otherwise, the Join waits for both flows, only one
of which arrives.

A Merge Node has multiple incoming edges and a single outgoing edge. The edges coming into and out of a
Merge Node must be either all object flows or all control flows .

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 387) states:

A merge node is a control node that brings together multiple alternate flows. It is not used to synchronize
concurrent flows but to accept one among several alternate flows.

2.1.27 Message Endpoint

A Message Endpoint element defines the termination of a State or Value Lifeline in a Timing diagram

39 22

135 149 149

5 67

52 102 114

115

230 204

135 149

UML Elements | Behavioral Diagram Elements | Message Endpoint125

UML Dictionary

.

Toolbox Icon

2.1.28 Message Label

A Message Label is an alternative way of denoting Messages between Lifelines, which is useful for
'uncluttering' Timing diagrams strewn with messages. To indicate a Message between Lifelines, draw a
connector from the source Lifeline into a Message Label. Next, draw a connector from another Message Label
to the target Lifeline. Note that the label names must match to reflect that the message occurs between the
two Message Labels.

The following diagram illustrates how Message Labels are used to construct a message between Lifelines.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 518) states:

Labels are only notational shorthands used to prevent cluttering of the diagrams with a number of messages
crisscrossing the diagram between Lifelines that are far apart. The labels denote that a Message may be
disrupted by introducing labels with the same name.

22

226

22

UML Elements | Behavioral Diagram Elements | Note 126

© 1998-2010 Sparx Systems Pty Ltd

2.1.29 Note

A Note element is a textual annotation that can be attached to a set of elements of any other type. The
attachment is created separately, using a Notelink connector. Both Note and Notelink are available in any
Enterprise Architect diagram, through the Common pages of the Enterprise Architect UML Toolbox (see Using
Enterprise Architect - UML Modeling Tool).

A Note is also called a Comment.

A Constraint is a form of Note, identifying a constraint on other elements. As for a Note, you can connect the
Constraint element to other elements using a Notelink connector. This element is just a means of documenting
the fact that there are constraints; it has no impact on the other elements. You define the types of constraint in
the project reference data (see UML Model Management), apply them to the element in the element Properties
dialog (see UML Modeling with Enterprise Architect – UML Modeling Tool), and manage them through the
Scenarios & Requirements window (see Using Enterprise Architect - UML Modeling Tool).

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 59) states:

A comment gives the ability to attach various remarks to elements. A comment carries no semantic force, but
may contain information that is useful to a modeler.

A comment can be owned by any element.

2.1.30 Partition

Activity Partitions are used to logically organize an Activity . They do not affect the token flow of an
Activity diagram , but help structure all or parts of the view.

The following example depicts the partitioning between the Classes Process Payment and Order Processor.

230

93 90

5

UML Elements | Behavioral Diagram Elements | Partition127

UML Dictionary

The Partition orientation defaults to horizontal. To turn it into a vertical Partition, right-click on it and select the
Advanced | Vertical Partition context menu option.

You can neatly align and join the Activity Partitions on a diagram using the element context menu Dockable
option. For Partitions, the option defaults to selected (see UML Modeling with Enterprise Architect - UML
Modeling Tool).

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 341) states:

Partitions divide the nodes and edges to constrain and show a view of the contained nodes. Partitions can
share contents. They often correspond to organizational units in a business model. They may be used to
allocate characteristics or resources among the nodes of an activity.

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 341) also states:

An activity partition is a kind of activity group for identifying actions that have some characteristic in common.

2.1.31 Receive

A Receive element is used to define the acceptance or receipt of a request, in an Activity diagram .
Movement from a Receive element occurs only once receipt is fulfilled according to its specification. The
Receive element comes in two forms:

· Accept Event Action element (pennant shape)

· Accept Time Event Action element (hourglass shape)

The following example reflects a payment process on an order. Upon receiving the payment (from Request
Payments, a Send element), the payment is confirmed and the flow continues to ship the order.

5

129

UML Elements | Behavioral Diagram Elements | Receive 128

© 1998-2010 Sparx Systems Pty Ltd

See UML Superstructure Specification, v2.1.1, figure 12.26, p. 312.

To depict an Accept Time Event, use the standard Receive element from the Enterprise Architect UML
Toolbox. Right-click on this element, and select the Advanced | Accept Time Event context menu option.
The following example shows the hourglass-shaped Accept Time Event Action:

See UML Superstructure Specification, v2.1.1, figure 12.27, p. 312.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 239) states:

AcceptEventAction is an action that waits for the occurrence of an event meeting specified conditions.

2.1.32 Region

Enterprise Architect supports two types of Region element:

· Expansion Region

· Interruptible Activity Region

When you add a Region element to an Activity diagram , the following prompt appears. You use this to
select the Region type.

107

121

5

UML Elements | Behavioral Diagram Elements | Region129

UML Dictionary

Toolbox Icon

2.1.33 Send

The Send element is used to depict the action of sending a signal, in an Activity diagram . It is the opposite
of a Receive element.

The following example shows an order being processed, where a signal is sent to fill the processed order and,
upon creation of the resulting invoice, a notification is sent to the customer.

See UML Superstructure Specification, v2.1.1, figure 12.132, p. 408.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 285) states:

SendObjectAction is an action that transmits an object to the target object, where it may invoke behavior such
as the firing of state machine transitions or the execution of an activity. The value of the object is available to
the execution of invoked behaviors. The requestor continues execution immediately. Any reply message is
ignored and is not transmitted to the requestor.

2.1.34 State

A State represents a situation where some invariant condition holds; this condition can be static (waiting for an
event) or dynamic (performing a set of activities). State modeling is usually related to Classes , and
describes the enableable states a Class or element can be in and the transitions that enable the element to
move there. There are two types of State: Simple States and Composite States , both created from the
State element from the Enterprise Architect UML Toolbox.

Furthermore, there are pseudo-states , resembling some aspect of a State but with a pre-defined
implication. Pseudo-states model complex transitional paths, and classify common State Machine
behavior.

5

127

152

130

13

9

UML Elements | Behavioral Diagram Elements | State 130

© 1998-2010 Sparx Systems Pty Ltd

You can define entry, internal and exit actions for a State using operations (see UML Modeling with Enterprise
Architect - UML Modeling Tool).

If a State element has features such as attributes or operations, the depiction of the element in a diagram has
a line under the element name. This line persists if the features are hidden. The line also displays if the Show
State Compartment checkbox is selected on the Objects page of the Options dialog (Tools | Options |
Objects).

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 546) states:

A state models a situation during which some (usually implicit) invariant condition holds. The invariant may
represent a static situation such as an object waiting for some external event to occur. However, it can also
model dynamic conditions such as the process of performing some activity (i.e., the model element under
consideration enters the state when the activity commences and leaves it as soon as the activity is
completed).

2.1.34.1 Composite State

Composite States are composed within the State Machine diagram by expanding a State element,
adding Regions if applicable, and dragging further State elements, related elements and connectors within
its boundaries. The internal State elements are then referred to as Sub-states.

(You can also define a State element, as with many other types of element, as a composite element ; this
then has a hyperlink to a child diagram that can be another State Machine diagram or other type of diagram
elsewhere in the model.)

Composite States can be orthogonal, if Regions are created. If a Composite State is orthogonal, its entry
denotes that a single Sub-state is concurrently active in all Regions. The hierarchical nesting of Composite
States, coupled with Region use, generates a situation of multiple States concurrently active; this situation is
referred to as the active State configuration.

9 129

12

180

UML Elements | Behavioral Diagram Elements | State131

UML Dictionary

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 478) states:

A composite state either contains one region or is decomposed into two or more orthogonal regions. Each
region has a set of mutually exclusive disjoint subvertices and a set of transitions. A given state may only be
decomposed in one of these two ways.

Any state enclosed within a region of a composite state is called a substate of that composite state. It is called
a direct substate when it is not contained by any other state; otherwise it is referred to as an indirect substate.

Each region of a composite state may have an initial pseudostate and a final state. A transition to the
enclosing state represents a transition to the initial pseudostate in each region. A newly-created object takes
its topmost default transitions, originating from the topmost initial pseudostates of each region.

A transition to a final state represents the completion of activity in the enclosing region. Completion of activity
in all orthogonal regions represents completion of activity by the enclosing state and triggers a completion
event on the enclosing state. Completion of the topmost regions of an object corresponds to its termination.

UML Elements | Behavioral Diagram Elements | State/Continuation 132

© 1998-2010 Sparx Systems Pty Ltd

2.1.35 State/Continuation

The State/Continuation element serves two different purposes for Interaction (Sequence) diagrams, as
State Invariants and Continuations . Enterprise Architect prompts you to identify the purpose when you
create the element.

Toolbox Icon

2.1.35.1 Continuation

A Continuation is used in seq and alt Combined Fragments , to indicate the branches of continuation an
operand follows. To indicate a continuation, end an operand with a Continuation, and indicate the continuation
branch with a matching Continuation (same name) preceding the Interaction Fragment.

You create a Continuation by dragging the State/Continuation element onto the diagram from the
Interaction Elements page of the Enterprise Architect UML Toolbox.

For the following continuation example, an alt Combined Fragment has Continuations pathSucc and pathFail.
These Continuations are located within the Interaction Occurrence ConnHandler, which has subsequent
events based on the continuation.

39

134 132

96

132

119

UML Elements | Behavioral Diagram Elements | State/Continuation133

UML Dictionary

The following diagram shows the interaction referenced by the Interaction Occurrence.

UML Elements | Behavioral Diagram Elements | State/Continuation 134

© 1998-2010 Sparx Systems Pty Ltd

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 474) states:

A Continuation is a syntactic way to define continuations of different branches of an Alternative
CombinedFragment. Continuation is intuitively similar to labels representing intermediate points in a flow of
control.

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 474) also states:

Continuations have semantics only in connection with Alternative CombinedFragments and (weak)
sequencing.

If an InteractionOperand of an Alternative CombinedFragment ends in a Continuation with name (say) X, only
InteractionFragments starting with the Continuation X (or no continuation at all) can be appended.

2.1.35.2 State Invariant

A State Invariant is a condition applied to a Lifeline , which must be fulfilled for the Lifeline to exist. You
create a State Invariant by dragging the State/Continuation element onto the diagram from the Interaction
Elements page of the Enterprise Architect UML Toolbox.

The following diagram illustrates a State Invariant.

When a State Invariant is moved near to a Lifeline, it snaps to the center. If the sequence object is dragged
left or right, the State Invariant moves with it.

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 502) states:

A StateInvariant is a runtime constraint on the participants of the interaction. It may be used to specify a
variety of different kinds of constraints, such as values of attributes or variables, internal or external states,
and so on.

A StateInvariant is an InteractionFragment and it is placed on a Lifeline.

123

132

UML Elements | Behavioral Diagram Elements | State Lifeline135

UML Dictionary

2.1.36 State Lifeline

A Lifeline is the path an object takes across a measure of time, as indicated by the x-axis. There are two
sorts: State Lifelines (defined here) and Value Lifelines , both used in Timing diagrams .

A State Lifeline follows discrete transitions between states, which are defined along the y-axis of the timeline.
Any transition has optional attributes of timing constraints, duration constraints and observations. An example
of a State Lifeline is shown below:

See UML Superstructure Specification, v2.1.1, figure 14.29, p. 519.

A State Lifeline consists of a set of transition points. Each transition point can be defined with the following
properties:

Property Description

At time Specifies the starting time for a change of state.

Transition to Indicates the state to which the lifeline changes.

Event Describes the occurring event.

Timing constraints Refers to the time taken for a state to change within a lifeline, or the time taken to
transmit a message (e.g. t..t+3).

Timing observations Provides information on the time of a state change or sent message.

Duration constraints Pertains to a lifeline's period at a particular state. The constraint could be
instigated by a change of state within a lifeline, or that lifeline's receipt of a
message.

Duration observations Indicates the interval of a lifeline at a particular state, begun from a change in
state or message receipt.

In the example diagram above, the OK transition point has these properties:

149 22

UML Elements | Behavioral Diagram Elements | State Lifeline 136

© 1998-2010 Sparx Systems Pty Ltd

Property Value

At Time 18 ms

Transition to Idle

Event OK

Timing constraints t..t+3

Timing observations –

Duration constraints –

Duration observations –

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 518) states:

This is the state of the classifier or attribute, or some testable condition, such as an discrete enumerable
value.

It is also permissible to let the state-dimension be continuous as well as discrete. This is illustrative for
scenarios where certain entities undergo continuous state changes, such as temperature or density.

2.1.37 State Machine

A State Machine element is a container for groups of related State elements. You can create sections of a
State Machine diagram, showing the organization of the inter-related State elements, and enclose each
section in a State Machine element. You can also create Regions on a State Machine Element.

Toolbox Icon

2.1.38 Structured Activity

Structured Activity elements are used in Activity diagrams . A Structured Activity is an activity node that can
have subordinate nodes as an independent Activity Group. No other Activities or their side effects should
interfere with this Activity's processing.

12

5

UML Elements | Behavioral Diagram Elements | Structured Activity137

UML Dictionary

Enterprise Architect provides two forms of Structured Activity - basic and specialized. It also applies the
mechanism for creating Structured Activities to creating composite Activity elements quickly and simply.

The two basic Structured Activities are:

· Structured Activity Node - represents an ordered arrangement of executable Activity nodes (Actions,
Decisions, Merges and so on) that can include branched and nested nodes; this is the base element from
which the other types of Structured Activity are derived

· Sequential Node - represents a sequential arrangement of executable Activity nodes.

The two specialized Structured Activities are used to effectively model discreet patterns within an activity
graph, defined in Clauses or Partitions:

· Conditional node - represents an arrangement of Actions and Activities where choice determines which
Activities are performed

· Loop node - represents a sequence of Actions and Activities that are - or can be - repeated on the
same object.

Note:

All four Structured Activity Nodes are created as composite elements . However, for the Loop Node and
Conditional Node elements you must create the child element structure on the parent diagram within the
node element itself, as for a Composite State . You cannot develop the partitioned structure of the nodes
on a child diagram.

For this reason, the Show Composite Diagram facility is not available for the Loop Node and Conditional
Node. It is also not available on the Structured Activity Node, as this is the base element for the Loop and
Conditional Nodes. You can, however, use the two basic nodes as composite elements, and display the child
diagram structure on the parent Sequential node.

When you create a Structured Activity, by selecting the icon from the Activity page of the Enterprise Architect
UML Toolbox, the following context menu displays:

The first two options specifically create a Loop or Conditional Node. The Other option displays the New
Structured Activity dialog, on which you can select to create any of the four nodes, or a simple Composite
Activity element.

Toolbox Icon

90

138

138

139

139

180

130

UML Elements | Behavioral Diagram Elements | Structured Activity 138

© 1998-2010 Sparx Systems Pty Ltd

OMG UML Specification

Structured Activity Node

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 409) states:

A structured activity node is an executable activity node that may have an expansion into subordinate nodes
as an ActivityGroup. The subordinate nodes must belong to only one structured activity node, although they
may be nested.

A structured activity node represents a structured portion of the activity that is not shared with any other
structured node, except for nesting.

Sequential Node

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 408) states:

A sequence node is a structured activity node that executes its actions in order.

Loop Node

The OMG UML specification (UML Superstructure Specification, v2.1.1, pp. 384-385) states:

A loop node is a structured activity node that represents a loop with setup, test, and body sections.

Each section is a well-nested subregion of the activity whose nodes follow any predecessors of the loop and
precede any successors of the loop. The test section may precede or follow the body section. The setup
section is executed once on entry to the loop, and the test and body sections are executed repeatedly until the
test produces a false value. The results of the final execution of the test or body are available after completion
of execution of the loop.

Conditional Node

The OMG UML specification (UML Superstructure Specification, v2.1.1, p.355) states:

A conditional node is a structured activity node that represents an exclusive choice among some number of
alternatives.

A conditional node consists of one or more clauses. Each clause consists of a test section and a body section.
When the conditional node begins execution, the test sections of the clauses are executed. If one or more test
sections yield a true value, one of the corresponding body sections will be executed. If more than one test
section yields a true value, only one body section will be executed. The choice is nondeterministic unless the
test sequence of clauses is specified. If no test section yields a true value, then no body section is executed;
this may be a semantic error if output values are expected from the conditional node.

2.1.38.1 Structured and Sequential Nodes

On a diagram, Structured and Sequential Activity Nodes have broken borders and composite diagram icons,
as shown below:

To display the Activity diagram represented by a Structured or Sequential Activity Node element, double-click
on the element.

Structured Activity Node elements can point to child diagrams that themselves contain or consist of Structured
Activity elements; that is, the Structured Activity elements are nested, as shown in the section of Project
Browser below.

UML Elements | Behavioral Diagram Elements | Structured Activity139

UML Dictionary

2.1.38.2 Loop and Conditional Nodes

A Loop Structured Activity Node by default has Setup, Test and Body partitions. The Setup partition is
executed once on entry to the Loop, and the Test and Body partitions are executed repeatedly until the Test
produces a false value. The results of the final execution of the Test or Body are available after execution of
the Loop is complete.

A Conditional Structured Activity Node has a default Clause containing Test and Body partitions. Further
Clauses can be added if required.

The two elements are depicted on an Activity diagram as shown below:

You define the Loop or Condition nodes by dragging other Activity diagram elements from the Toolbox page
into the appropriate partition of the element, and linking and organizing the structure as required. The
elements are aligned on the top left of the partition, so that resizing the node maintains the organization of the
structure within and between the partitions. If you try to shrink the node below the structure size, the node
automatically defaults to the 'best fit' size.

Conditional Node

When you create a Conditional Node, the element Properties dialog displays. Much of this you can
complete as for any other element. However, for the Conditional Node the dialog also has a Condition tab, as
shown below:

136

UML Elements | Behavioral Diagram Elements | Structured Activity 140

© 1998-2010 Sparx Systems Pty Ltd

Add an Action Pin as the Result for the node, clicking on the Add button to display the Select Pins dialog
(a version of the Select <Item> dialog).

On creation, the Conditional Node automatically has one Clause containing a Decider and Body Output, and
a Test partition and a Body partition. You can add further Clauses as required. For each Clause you also add
an Action Pin for the Decider and for the Body Output. Click on the Save button to save the Clause definition.

The Select Pin dialog reveals only Output pins as appropriate to the context. If the required Action Pin does
not already exist, you can click on the Add New button on the dialog to automatically create an Output pin
under the appropriate parent node.

For the Result and Body Output entries, you can check on the exact location of each Action Pin by
right-clicking on the entry and selecting the Find in Project Browser context menu option.

The Nodes panel, by default, lists the Actions and Activities contained in the Test partition. Click on the Body
radio button to list the elements contained in the Body partition. An element must be completely contained in
the Body partition to be listed there - if it overlaps with the Test partition in any way, it is treated as being part
of the Test partition.

Add or Remove Clauses

To add another Clause, click on the Add button underneath the Clause(s) list. This inserts a new Clause in the
list, and identifies which is the preceding, or Predecessor, Clause and (if appropriate) which is the following, or

87

UML Elements | Behavioral Diagram Elements | Structured Activity141

UML Dictionary

Successor, Clause. The remaining fields in the Clause(s) panel are cleared to enable you to add Decider and
Body Output Action Pins. New Test and Body partitions are immediately added to the element on the
diagram, and you can populate these partitions with Activity elements, which are then identified in the Nodes
panel.

To remove a Clause, highlight it in the list and click on the Delete button. This immediately removes the
Clause's corresponding partitions from the diagram, along with all their contained Activity elements. Removing
a Clause from between two other Clauses adjusts the numerical order; for example, if Clause 2 is removed
from between Clause 1 and Clause 3, Clause 3 is renamed as Clause 2, and any further Clauses are also
moved up one place.

Loop Node

 When you create a Loop Node, the element Properties dialog displays. Much of this you can complete as
for any other element. However, for the Loop Node the dialog also has a Loop tab, as shown below:

Add an Action Pin for each of the Decider, Loop Variable Input, Loop Variable, Body Output and
Result fields for the node, in each case clicking on the Browse or Add button to display the Select Pins dialog
(a version of the Select <Item> dialog). The Select ActionPin dialog reveals only Input pins (Loop Variable
Input) or Output pins as appropriate to the context. If the required Action Pin does not already exist, you can
click on the Add New button on the dialog to automatically create the Input pin or an Output pin under the
appropriate parent node.

136

87

UML Elements | Behavioral Diagram Elements | Structured Activity 142

© 1998-2010 Sparx Systems Pty Ltd

You can also check on the exact location of an existing Action Pin by right-clicking on the pin name and
selecting the Find in Project Browser context menu option.

The Nodes panel, by default, lists the Actions and Activities contained in the Setup partition. Click on the
Body or Test radio buttons to list the elements contained in the corresponding partitions. An element must be
completely contained in a partition to be listed there - if it overlaps with the partition above in any way, it is
treated as being part of that partition.

2.1.39 Synch

A Synch state is useful for indicating that concurrent paths of a State Machine are synchronized. After
bringing the paths to a synch state, the emerging transition indicates unison.

Toolbox Icon

2.1.40 System Boundary

A System Boundary element is a non-UML element used to define conceptual boundaries. You can use
System Boundaries to help group logically related elements (from a visual perspective, not as part of the UML
model).

In the UML Superstructure Specification, v2.1.1, System Boundaries are described in the sections on Use
Cases , because the System Boundary is often used to indicate the application of a Use Case to another
entity. In this context, the System Boundary:

· encloses the Use Case, and

· is associated with a classifier such as a Class , Component or Sub-system (Actor) through the
Select <Item> dialog (see UML Modeling With Enterprise Architect - UML Modeling Tool).

By associating the System Boundary - and not the Use Case - with the classifier, the classifier is linked to the
Use Case as a user, but not as an owner.

9

142

146

152 158 94

UML Elements | Behavioral Diagram Elements | System Boundary143

UML Dictionary

You can also define a Use Case as the classifier of a System Boundary element, to link the elements
enclosed in the System Boundary (such as parts of an Activity diagram) to their representation in a logical
Use Case. See http://www.sparxsystems.com.au/resources/map_uc.html.

The following properties of a System Boundary can be set: the name, the border style , and the number of
horizontal or vertical swim lanes.

A System Boundary element can be marked as Selectable, using the element's context menu. When not
selectable, you can click within the System Boundary space without activating or selecting the Boundary itself.
This is useful when you have many elements within the Boundary and the Boundary makes their selection
difficult.

Note:

A System Boundary can have an associated image that it displays instead of its default format. Use the
Appearance | Alternate Image menu option to select an image. (See UML Modeling with Enterprise
Architect – UML Modeling Tool.)

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 594) states:

If a subject (or system boundary) is displayed, the Use Case ellipse is visually located inside the system
boundary rectangle. Note that this does not necessarily mean that the subject classifier owns the contained
Use Cases, but merely that the Use Case applies to that classifier.

144

http://www.sparxsystems.com.au/resources/map_uc.html

UML Elements | Behavioral Diagram Elements | System Boundary 144

© 1998-2010 Sparx Systems Pty Ltd

2.1.40.1 Boundary Element Settings

Configure Boundary Elements

Boundary elements can be configured to display in different ways. The main differences are:

· Solid border

· Dotted border

· With horizontal or vertical 'swim lanes'; swim lanes are used to group elements in a vertical or horizontal
context (for example, Client, Application and Database tiers could be represented in swim lanes).

2.1.41 Terminate

The Terminate pseudo-state indicates that upon entry of its pseudo-state, the State Machine's
execution ends.

Toolbox Icon

13 9

UML Elements | Behavioral Diagram Elements | Trigger145

UML Dictionary

2.1.42 Trigger

A Trigger indicates an event that initiates an action (and might arise from completion of a previous action).
You initially define a Trigger in one of four ways:

· As a property of a Transition relationship

· As a property of an Accept Event Action (on the Triggers tab of the element Properties dialog)

· As an event in a State Machine Table

· Directly, as a Trigger element, through the New Element dialog.

When you save the Trigger, it is added to the list of elements for the parent package in the Project Browser.
You can then right-click on it and select the Properties context menu option to view and, if required, edit its
properties as an element rather than as a property itself. Triggers created as events remain as Event
elements, whilst Triggers created in other ways are Trigger elements, with a Trigger tab in the Properties
dialog.

Option Use to

Type If necessary, edit the type of trigger:

· Call - specifies that the event is a CallEvent, which sends a message to the
associated object by invoking an operation.

· Change - specifies that the event is a ChangeEvent, which indicates that the
transition is the result of a change in value of an attribute.

· Signal - specifies that the event is a SignalEvent, which corresponds to the
receipt of an asynchronous signal instance.

· Time - corresponds to a TimeEvent; which specifies a moment in time.

Specification Either type in the event instigating the Trigger, or click on the [...] button and select
the event (depending on the Type value).

Ports Click on the Add button and select the appropriate Port from the Select Port dialog.

236

79

19

UML Elements | Behavioral Diagram Elements | Trigger 146

© 1998-2010 Sparx Systems Pty Ltd

Option Use to

Notes:

· To create new Ports using the Select Port dialog, the Trigger should be created
as a child of a Class or Component element.

· To add several Ports at once, press [Ctrl] as you select each Port.

· To check the exact location of a Port, right-click on the Port name and select the
Find in Project Browser context menu option.

You can also drag the Trigger element onto another diagram, although there are limited uses for the element
in that context.

This element is not the same as a Trigger Operation, which is an operation automatically executed as a result
of the modification of data in a database. (See Code Engineering Using UML Models.)

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 456) states:

Events may cause execution of behavior (e.g., the execution of the effect activity of a transition in a state
machine). A trigger specifies the event that may trigger a behavior execution as well as any constraints on the
event to filter out events not of interest.

2.1.43 Use Case

A Use Case is a UML modeling element that describes how a user of the proposed system interacts with the
system to perform a discrete unit of work. It describes and signifies a single interaction over time that has
meaning for the end user (person, machine or other system), and is required to leave the system in a
complete state: the interaction either completed or rolled back to the initial state. A Use Case:

· Typically has requirements and constraints that describe the essential features and rules under which it
operates

· Can have an associated Sequence diagram illustrating behavior over time; who does what to whom,
and when

· Typically has scenarios associated with it that describe the work flow over time that produces the end
result; alternative work flows (for example, to capture exceptions) are also enabled.

Note:

Use a Use Case diagram and model to build up the functional requirements and implementation details of the
system.

The following is an example Use Case model:

39

UML Elements | Behavioral Diagram Elements | Use Case147

UML Dictionary

If extending a Use Case, you can specify the points of extension with Use Case Extension Points . To
display the attributes, operations or constraints of a Use Case on a diagram, use Rectangle Notation .

Enterprise Architect also provides two stereotyped Use Cases - the Test Case and the Business Use Case
.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 592) states:

A UseCase is a kind of behaviored classifier that represents a declaration of an offered behavior. Each Use
Case specifies some behavior, possibly including variants, that the subject can perform in collaboration with
one or more actors.

2.1.43.1 Use Case Extension Points

Use extension points to specify the point of an extended Use Case where an extending Use Case's
behavior should be inserted. The specification text can be informal or precise to define the location of the
extension point.

Note:

Conditions to apply the extending Use Case, and the extension point to use, should be attached as a note to
the extend relationship.

147

148

191

75

146

UML Elements | Behavioral Diagram Elements | Use Case 148

© 1998-2010 Sparx Systems Pty Ltd

To work with extension points, follow the steps below:

1. Right-click on the Use Case element. The context menu displays.

2. Select the Advanced | Edit Extension Points... menu option. The Use Case Extension Points dialog
displays, listing defined points for that Use Case.

3. Select an extension point in the list and click on the appropriate button to edit or remove the extension
point, or to add a new one.

2.1.43.2 Rectangle Notation

You can display a Use Case using rectangle notation. This displays the Use Case in a rectangle, with an
oval in the top right-hand corner. Any attributes, operations or constraints belonging to the Use Case are
shown, in the same style as a Class .

To show a Use Case using rectangle notation, right-click on the Use Case object on the diagram and select
the Advanced | Use Rectangle Notation context menu option. This setting only applies to the selected Use
Case, and can be toggled on and off.

Note:

Actor elements can also be displayed using rectangle notation.

146

152

94

UML Elements | Behavioral Diagram Elements | Value Lifeline149

UML Dictionary

2.1.44 Value Lifeline

A Lifeline is the path an object takes across a measure of time, indicated by the x-axis. There are two sorts:
Value Lifelines (defined here) and State Lifelines , both used in Timing diagrams .

A Value Lifeline shows the Lifeline's state across the diagram, with parallel lines indicating a steady state. A
cross between the lines indicates a transition or change in state.

An example of a Value Lifeline is shown below:

See UML Superstructure Specification, v2.1.1, Figure 14.30, p. 520.

A Value Lifeline consists of a set of transition points. Each transition point can be defined with the following
properties:

Property Description

At time Specifies the starting time for a change of state.

Transition to Indicates the state to which the Lifeline will change.

Event Describes the occurring event.

Timing constraints Refers to the time taken for a state to change within a Lifeline, or the time taken to
transmit a message.

Timing observations Provides information on the time of a state change or sent message.

Duration constraints Pertains to a Lifeline's period at a particular state. The constraint could be
instigated by a change of state within a Lifeline, or that Lifeline's receipt of a
message.

Duration observations Indicates the interval of a Lifeline at a particular state, begun from a change in
state or message receipt.

In the example diagram above, the 10ms transition point has these properties:

Property Text

At Time 10ms

Transition to Waitcard

Event Switch

Timing constraints –

135 22

UML Elements | Behavioral Diagram Elements | Value Lifeline 150

© 1998-2010 Sparx Systems Pty Ltd

Property Text

Timing observations –

Duration constraints d..3*d

Duration observations –

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 518) states:

Shows the value of the connectable element as a function of time. Value is explicitly denoted as text. Crossing
reflects the event where the value changed.

2.2 Structural Diagram Elements

The following figure illustrates the main UML elements that are used in Structural Diagrams . For more
information on using each element, click on the element name in this list:

· Actor , Artifact

· Class , Collaboration , Collaboration Occurrence , Component

· Data Type , Deployment Specification , Document Artifact

· Enumeration , Execution Environment , Expose Interface

· Information Item , Interface

· Node , Note

· Object

· Package , Part , Port , Primitive

· Qualifiers

· Signal

Note:

Actor, Collaboration, Note, Object and Package elements are used in both Behavioral diagrams and
Structural diagrams.

78 54

94 151

152 156 157 158

159 160 161

162 162 163

163 164

165 126

165

168 168 169 173

173

178

UML Elements | Structural Diagram Elements | 151

UML Dictionary

2.2.1 Artifact

An Artifact is any physical piece of information used or produced by a system, represented in a Deployment
Diagram . Artifacts can have associated properties or operations, and can be instantiated or associated
with other Artifacts. Examples of Artifacts include model files, source files, database tables, development

62

UML Elements | Structural Diagram Elements | Artifact 152

© 1998-2010 Sparx Systems Pty Ltd

deliverables or support documents. The files represented by the Artifact are listed on the Files tab of the
element Properties dialog.

To open the files represented by the Artifact, click on the element on the diagram and press [Ctrl]+[E]. Each
file is opened either on a separate tab in the Diagram View workspace (if the file can be opened within
Enterprise Architect) or in the default Windows viewer/editor for the file type (if the file cannot be opened within
Enterprise Architect).

Files can also be launched individually from the Files tab (opening in the Windows default editor), as for
elements of any other type that have associated files.

Toolbox Icon

Create Artifact For External File

You can also create an Artifact element on a diagram from an external file, by clicking on the file in a file list
(such as Windows Explorer) or on your Desktop and dragging it onto the diagram. A short context menu
displays with two options - Hyperlink and Artifact.

Click on the Artifact option to create the element on the diagram. The Properties dialog displays, and you can
define the name or other properties as required. Click on the OK button, and then open the Properties dialog
again and click on the Files tab. The file pathname is listed in the Files panel.

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 201) states:

An Artifact defined by the user represents a concrete element in the physical world. A particular instance (or
'copy') of an artifact is deployed to a node instance. Artifacts may have composition associations to other
artifacts that are nested within it. For instance, a deployment descriptor artifact for a component may be
contained within the artifact that implements that component. In that way, the component and its descriptor are
deployed to a node instance as one artifact instance.

2.2.2 Class

A Class is a representation of objects that reflects their structure and behavior within the system. It is a
template from which actual running instances are created, although a Class can be defined either to control its
own execution or as a template or parameterized Class that specifies parameters that must be defined
by any binding Class.

A Class can have attributes (data) and methods (operations or behavior) - see UML Modeling with Enterprise
Architect – UML Modeling Tool. Classes can inherit characteristics from parent Classes and delegate behavior
to other Classes. Class models usually describe the logical structure of the system and are the building blocks
from which components are built.

The top section of a Class, as illustrated below, shows the attributes (or data elements) associated with the
Class. These hold the 'state' of an object at run-time. If the information is saved to a data store and can be
reloaded, it is termed 'persistent'. The lower section contains the Class operations (or methods at run-time).
Operations describe the behavior a Class offers to other Classes, and the internal behavior it has (private
methods).

Class elements are generally used in Class diagrams and Composite Structure diagrams .

Enterprise Architect also supports a number of stereotyped Class elements to represent various entities in

153 154

56 59

UML Elements | Structural Diagram Elements | Class153

UML Dictionary

web-page modeling . A Class can also be integrated with an Associate connector to form an
Association Class , to allow the Associate connector to have operations and attributes that define certain
types of UML relationship.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, pp. 52-53) states:

The purpose of a class is to specify a classification of objects and to specify the features that characterize the
structure and behavior of those objects.

Objects of a class must contain values for each attribute that is a member of that class, in accordance with the
characteristics of the attribute, for example its type and multiplicity.

When an object is instantiated in a class, for every attribute of the class that has a specified default, if an initial
value of the attribute is not specified explicitly for the instantiation, then the default value specification is
evaluated to set the initial value of the attribute for the object.

Operations of a class can be invoked on an object, given a particular set of substitutions for the parameters of
the operation. An operation invocation may cause changes to the values of the attributes of that object. It may
also return a value as a result, where a result type for the operation has been defined. Operation invocations
may also cause changes in value to the attributes of other objects that can be navigated to, directly or
indirectly, from the object on which the operation is invoked, to its output parameters, to objects navigable
from its parameters, or to other objects in the scope of the operation's execution. Operation invocations may
also cause the creation and deletion of objects.

2.2.2.1 Active Classes

An Active Class indicates that, when instantiated, the Class controls its own execution. Rather than being
invoked or activated by other objects, it can operate standalone and define its own thread of behavior.

To define an Active Class in Enterprise Architect, follow the steps below:

1. Highlight a Class, and display its Properties dialog.

2. Click on the Advanced button.

3. Select the Is Active checkbox.

4. Click on the OK button to save the details.

194 199

200

152

UML Elements | Structural Diagram Elements | Class 154

© 1998-2010 Sparx Systems Pty Ltd

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 438) states:

An active object is an object that, as a direct consequence of its creation, commences to execute its classifier
behavior, and does not cease until either the complete behavior is executed or the object is terminated by
some external object. (This is sometimes referred to as "the object having its own thread of control.") The
points at which an active object responds to communications from other objects is determined solely by the
behavior of the active object and not by the invoking object. If the classifier behavior of an active object
completes, the object is terminated.

2.2.2.2 Parameterized Classes (Templates)

Enterprise Architect supports template or parameterized Classes, which specify parameters that must be
defined by any binding Class . A template Class enables its functionality to be reused by any bound Class.
If a default value is specified for a parameter, and a binding Class doesn't provide a value for that parameter,
the default is used. Parameterized Classes are commonly implemented in C++.

Enterprise Architect imports and generates templated Classes for C++. Template Classes are shown with the
parameters in a dashed outline box in the upper right corner of a Class.

To create a parameterized Class, follow the steps below:

1. Display the Properties dialog for a Class.

2. Select the Details tab.

152

UML Elements | Structural Diagram Elements | Class155

UML Dictionary

3. In the Type field, click on the drop-down arrow and select Parameterized.

For an instantiated template, select Instantiated and add the arguments in the Arguments field.

4. Click on the Add button and define the required parameters in the Class Parameter dialog.

UML Elements | Structural Diagram Elements | Class 156

© 1998-2010 Sparx Systems Pty Ltd

Notation Example

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 622) states:

A template is a parameterized element that can be used to generate other model elements using
TemplateBinding relationships. The template parameters for the template signature specify the formal
parameters that will be substituted by actual parameters (or the default) in a binding.

2.2.3 Collaboration

A Collaboration defines a set of cooperating roles and their connectors. These are used to collectively
illustrate a specific functionality, in a Composite Structure diagram . A Collaboration should specify only the
roles and attributes required to accomplish a specific task or function. Although in practice a behavior and its
roles could involve many tangential attributes and properties, isolating the primary roles and their requisites
simplifies and clarifies the behavior, as well as providing for reuse. A Collaboration often implements a pattern
to apply to various situations.

The following example illustrates an Install Collaboration, with three roles (Objects) connected as shown.
The process for this Collaboration can be demonstrated by attaching an Interaction diagram (Sequence ,
Timing , Communication or Interaction Overview).

59

165

41

22 49 52

UML Elements | Structural Diagram Elements | Collaboration157

UML Dictionary

To understand referencing a Collaboration in a specific situation, see the Collaboration Occurrence topic.

Enterprise Architect supports a stereotyped Collaboration to represent a Business Use Case Realization in
business modeling.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 171) states:

A collaboration describes a structure of collaborating elements (roles), each performing a specialized function,
which collectively accomplish some desired functionality. Its primary purpose is to explain how a system works
and, therefore, it typically only incorporates those aspects of reality that are deemed relevant to the
explanation.

2.2.4 Collaboration Occurrence

Use a Collaboration Occurrence to apply a pattern defined by a Collaboration to a specific situation, in a
Composite Structure diagram .

The following example uses an occurrence, NWServer, of the Collaboration Install, to define the installation
process of a network scanner. This process can be defined by an interaction attached to the Collaboration.
(See the Collaboration topic for a representation of the Install Collaboration.)

157

75

59

156

UML Elements | Structural Diagram Elements | Collaboration Occurrence 158

© 1998-2010 Sparx Systems Pty Ltd

To create a Collaboration Occurrence, drag the required Collaboration from the Project Browser onto the
diagram and, on the Paste Element dialog, select the Paste as Link radio button.

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 173) refers to a Collaboration
Occurrence as a Collaboration Use, and states:

A collaboration use represents one particular use of a collaboration to explain the relationships between the
properties of a classifier. A collaboration use shows how the pattern described by a collaboration is applied in
a given context, by binding specific entities from that context to the roles of the collaboration. Depending on
the context, these entities could be structural features of a classifier, instance specifications, or even roles in
some containing collaboration. There may be multiple occurrences of a given collaboration within a classifier,
each involving a different set of roles and connectors. A given role or connector may be involved in multiple
occurrences of the same or different collaborations.

2.2.5 Component

A Component is a modular part of a system, whose behavior is defined by its provided and required interfaces;
the internal workings of the Component should be invisible and its usage environment-independent. Source
code files, DLLs, Java beans and other artifacts defining the system can be manifested in Components.

A Component can be composed of multiple Classes , or Components pieced together. As smaller
Components come together to create bigger Components, the eventual system can be modeled, building-
block style, in Component diagrams . By building the system in discrete Components, localization of data
and behavior enables decreased dependency between Classes and Objects , providing a more robust and
maintainable design.

152

65

165

UML Elements | Structural Diagram Elements | Component159

UML Dictionary

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 148) states:

A component represents a modular part of a system that encapsulates its contents and whose manifestation is
replaceable within its environment.

A component defines its behavior in terms of provided and required interfaces. As such, a component serves
as a type whose conformance is defined by these provided and required interfaces (encompassing both their
static as well as dynamic semantics).

2.2.6 Data Type

A Data Type is a specific kind of classifier, similar to a Class except that a Data Type cannot own sub Data
Types, and instances of a Data Type are identified only by their value. For example, an instance of a Person
Class is a Helen object, but an instance of an Integer Data Type is 12.

All copies of an instance of a Data Type, and any instances of that Data Type with the same value, are
considered to be the same instance. That is, instances of Helen are not necessarily the same Helen, but all 12
s are the same 12. For example, the 12 on a watch face is exactly the same integer as the number of months
in a year.

Instances of a Data Type that have attributes (that is, are instances of a structured Data Type) are considered
to be the same if the structure is the same and the values of the corresponding attributes are the same. If a
Data Type has attributes, instances of that Data Type contain attribute values matching the attributes.

A typical use of Data Types would be to represent programming language primitive types or CORBA basic
types. For example, integer and string types are often treated as Data Types.

A Data Type is denoted by a rectangle with the keyword «dataType», as above or, when it is referenced by (for
example) an attribute, by a string containing the name of the Data Type, as below:

Toolbox Icon

152

UML Elements | Structural Diagram Elements | Deployment Spec 160

© 1998-2010 Sparx Systems Pty Ltd

2.2.7 Deployment Spec

A Deployment Specification (spec) specifies parameters guiding deployment of an artifact, as is necessary
with most hardware and software technologies. A specification lists those properties that must be defined for
deployment to occur, as represented in a Deployment diagram . An instance of this specification specifies
the values for the parameters; a single specification can be instantiated for multiple artifacts.

These specifications can be extended by certain component profiles. Examples of standard Tagged Values
that a profile might add to a Deployment Specification are «concurrencyMode» with Tagged Values {thread,
process, none} or «transactionMode» with Tagged Values {transaction, nestedTransaction, none}.

The following example depicts the artifact RepositoryApp deployed on the server node, as per the
specifications of RepositoryApp, instantiated from the Deployment Specification SystemSpec.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 206) states:

A deployment specification specifies a set of properties that determine execution parameters of a component
artifact that is deployed on a node. A deployment specification can be aimed at a specific type of container. An
artifact that reifies or implements deployment specification properties is a deployment descriptor.

62

UML Elements | Structural Diagram Elements | Device161

UML Dictionary

2.2.8 Device

A Device is a physical electronic resource with processing capability upon which Artifacts can be deployed
for execution, as represented in a Deployment diagram . Complex Devices can consist of other devices;
that is, a Device can be a nested element, where a physical machine is decomposed into its elements either
through namespace ownership or through attributes that are typed by Devices.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, 10.3.7, v2.1.1, p. 207) states:

In the metamodel, a Device is a subclass of Node.

2.2.9 Document Artifact

A Document Artifact is an artifact having a stereotype of «document». You create the Document Artifact on
a Component, Documentation or Deployment diagram, and associate it with an RTF document. Double-click
on the element to display the Linked Document Editor. See Linked Documents in UML Modeling with
Enterprise Architect – UML Modeling Tool. When you have created the linked document, the Document
Artifact element on the diagram shows an A symbol in the bottom right corner.

Toolbox Icon

151

62

151

UML Elements | Structural Diagram Elements | Enumeration 162

© 1998-2010 Sparx Systems Pty Ltd

2.2.10 Enumeration

An Enumeration is a data type, whose instances can be any of a number of user-defined enumeration literals.
It is possible to extend the set of applicable enumeration literals in other packages or profiles. You create
Enumerations in Class or Package diagrams , and in diagrams developed from the Metamodel pages
of the Enterprise Architect UML Toolbox (see Using Enterprise Architect - UML Modeling Tool).

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 69) states:

An enumeration is a data type whose values are enumerated in the model as enumeration literals.

2.2.11 Execution Environment

An Execution Environment is a node that offers an execution environment for specific types of components
 that are deployed on it in the form of executable artifacts . This is depicted in a Deployment diagram
.

Execution Environments can be nested; for example, a database Execution Environment can be nested in an
operating system Execution Environment. Components of the appropriate type are then deployed to specific
Execution Environment nodes.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 210 states:

... an ExecutionEnvironment is ... usually part of a general Node, representing the physical hardware
environment on which the ExecutionEnvironment resides. In that environment, the ExecutionEnvironment
implements a standard set of services that Components require at execution time (at the modeling level these
services are usually implicit). For each component Deployment, aspects of these services may be determined
by properties in a DeploymentSpecification for a particular kind of ExecutionEnvironment.

56 55

165

158 151

62

UML Elements | Structural Diagram Elements | Expose Interface163

UML Dictionary

2.2.12 Expose Interface

The Expose Interface element is a graphical method of depicting the required or supplied interfaces of a
Component , Class or Part , in a Component or Composite Structure diagram. It just
identifies the fact that the element provides or requires an interface; to depict the fact that the provided
interface is used, or the required interface provided, by another element use the Assembly connector.

The Expose Interface element must be attached to the Class or Component element, and it becomes a child
element of that Class or Component; it cannot exist independently. You can attach more than one Expose
Element to another element.

When you create the Expose Interface element, a dialog displays in which you enter a name for the element
and specify whether it represents a required interface or a provided interface.

Toolbox Icon

2.2.13 Information Item

An Information Item represents an abstraction of data. It is used in Activity , Analysis and Object
diagrams. An Information Item is also represented by an Information Flow connector.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 608) states:

An information item is an abstraction of all kinds of information that can be exchanged between objects. It is a

164

158 152 168 65 59

199

5 67 58

208

UML Elements | Structural Diagram Elements | Information Item 164

© 1998-2010 Sparx Systems Pty Ltd

kind of classifier intended for representing information at a very abstract way, one which cannot be
instantiated.

One purpose of information items is to be able to define preliminary models, before having made detailed
modeling decisions on types or structures. One other purpose of information items and information flows is to
abstract complex models by a less precise but more general representation of the information exchanged
between entities of a system.

2.2.14 Interface

An Interface is a specification of behavior (or contract) that implementers agree to meet. By implementing an
Interface, Classes are guaranteed to support a required behavior, which enables the system to treat non-
related elements in the same way; that is, through the common interface. You also use Interfaces in a
Composite Structure diagram.

Interfaces are drawn in a similar way to a Class , with operations specified, as shown below. They can also
be drawn as a circle with no explicit operations detailed. Right-click on the element and select the Use Circle
Notation context menu option to switch between styles. Realization connectors to an Interface drawn as a
circle are drawn as a solid line without target arrows.

Note:

An Interface cannot be instantiated (that is, you cannot create an object from an Interface). You must create a
Class that 'implements' the Interface specification, and in the Class body place operations for each of the
Interface operations. You can then instantiate the Class.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 88) states:

An interface is a kind of classifier that represents a declaration of a set of coherent public features and
obligations. An interface specifies a contract; any instance of a classifier that realizes the interface must fulfill
that contract. The obligations that may be associated with an interface are in the form of various kinds of
constraints (such as pre- and post-conditions) or protocol specifications, which may impose ordering
restrictions on interactions through the interface.

Since interfaces are declarations, they are not instantiable. Instead, an interface specification is implemented
by an instance of an instantiable classifier, which means that the instantiable classifier presents a public
facade that conforms to the interface specification. Note that a given classifier may implement more than one
interface and that an interface may be implemented by a number of different classifiers.

56

59

152

233

UML Elements | Structural Diagram Elements | Node165

UML Dictionary

2.2.15 Node

A Node is a physical piece of equipment on which the system is deployed, such as a workgroup server or
workstation. A Node usually hosts components and other executable pieces of code, which again can be
connected to particular processes or execution spaces. Typical Nodes are client workstations, application
servers, mainframes, routers and terminal servers.

Nodes are used in Deployment diagrams to model the deployment of a system, and to illustrate the
physical allocation of implemented artifacts. They are also used in web modeling, from dedicated web
modeling pages in the Enterprise Architect UML Toolbox (see Using Enterprise Architect - UML Modeling Tool
).

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 213) states:

In the metamodel, a Node is a subclass of Class. It is associated with a Deployment of an Artifact. It is also
associated with a set of Elements that are deployed on it. This is a derived association in that these
PackageableElements are involved in a Manifestation of an Artifact that is deployed on the Node. Nodes may
have an internal structure defined in terms of parts and connectors associated with them for advanced
modeling applications.

2.2.16 Object

An Object is a particular instance of a Class at run time. For example a car with the license plate AAA-001
is an instance of the general class of cars with a license plate number attribute. Objects are often used in
analysis to represent the numerous artifacts and items that exist in any business, such as pieces of paper,
faxes and information. To model the varying behavior of Objects at run-time, use run-time states .

Early in analysis, Objects can be used to quickly capture all the things that are of relevance within the system
domain, in an Object , Composite Structure or Communication diagram. As the model progresses
these analysis Objects are refined into generic Classes from which instances can be derived to represent
common business items. Once Classes are defined, Objects can be typed; that is they can have a classifier
set that indicates their base type. See the Object Classifiers topic in UML Modeling with Enterprise Architect –
UML Modeling Tool.

Enterprise Architect also supports a number of stereotyped Object elements to represent various entities in
business modeling.

62

152

166

58 59 49

75

UML Elements | Structural Diagram Elements | Object 166

© 1998-2010 Sparx Systems Pty Ltd

Toolbox Icon

2.2.16.1 Run-time State

At run-time, an Object instance can have specific values for its attributes, or exist in a particular state. To
model the varying behavior of Objects at run-time, use instance values selected from the Select <Item> dialog
(see UML Modeling with Enterprise Architect – UML Modeling Tool) and run-time states or run-states.

Typically there is interest in the run-time behavior of Objects that already have a classifier set. You can select
from the classifier's attribute list and apply specific values for your Object instance. If the classifier has a child
State Machine , its States propagate to a list where the run-time state for the Object can be defined. To
do this, see the following topics:

· Define a Run-Time Variable

· Remove a Defined Variable

· Object State

The following example defines run-time values for the listed variables, which are attributes of the instances'
classifier AccountItem.

2.2.16.1.1 Define a Run-time Variable

To add run-time state instance variables to an Object, follow the steps below:

1. Right-click on the Object. The context menu displays.

2. If Instance Variables are supported, select the Advanced | Set Run State menu option (or press [Ctrl]
+[Shift]+[R]). The Set Run State dialog displays.

165

9 129

166

167

167

166

UML Elements | Structural Diagram Elements | Object167

UML Dictionary

3. In the Variable field, click on the drop-down arrow and select the variable, or type in the new variable
name.

4. Set the Operator, the Value and optionally type in a Note.

5. Click on the OK button to save the variable.

2.2.16.1.2 Remove a Defined Variable

To delete a run-time state variable for an Object:

1. Right-click on the required Object. The context menu displays.

2. Select the Set Run State option. The Run State dialog displays.

3. In the Variable field, click on the drop-down arrow and select the variable to delete.

4. Clear the Value field.

5. Click on the OK button.

2.2.16.2 Object State

To set the Object state for a Class instance, follow the steps below:

1. Right-click on the required Object and select the Advanced | Set Object State context menu option.
The Set Instance State dialog displays.

2. In the State field, either type the required State (such as Awaiting Approval) or select a State from the
drop-down list.

Note:

The drop-down list for the State field is populated with:

1. Any States owned by the object's classifier.

2. Any States owned by any superclasses of the object's classifier.

3. Any States owned by State Machines owned by the object's classifier.

4. Any States owned by State Machines owned by any superclasses of the object's classifier.

3. Click on the OK button to apply the State. The object now shows the run-time state in square brackets
below the object name.

166

UML Elements | Structural Diagram Elements | Object 168

© 1998-2010 Sparx Systems Pty Ltd

2.2.17 Package

A Package is a namespace as well as an element that can be contained in other Package's namespaces. A
Package can own or merge with other Packages, and its elements can be imported into a Package's
namespace. In addition to using Packages in the Project Browser to organize your project contents, you can
drag these Packages onto a diagram workspace (most diagram types, both standard and extended) for
structural or relational depictions, including Package imports or merges.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 109) states:

A package is a namespace for its members, and may contain other packages. Only packageable elements
can be owned members of a package. By virtue of being a namespace, a package can import either individual
members of other packages, or all the members of other packages. In addition a package can be merged with
other packages.

2.2.18 Part

Parts are run-time instances of Classes or Interfaces . Multiplicity can be specified for a Part, using the
notation:

[x{...y}]

where x specifies the initial or set amount of instances when the composite structure is created, and y
indicates the maximum amount of instances at any time.

Parts are used to express composite structures , or modeling patterns that can be invoked by various
objects to accomplish a specific purpose. When illustrating the composition of structures, Parts can be
embedded as properties of other Parts. When embedded as properties , Parts can be bordered by a solid
outline, indicating the surrounding Part owns the Part by composition. Alternatively, a dashed outline indicates
that the property is referenced and used by the surrounding Part, but is not composed within it.

You can also set properties and property values for Parts.

152 164

59

61

172 169

UML Elements | Structural Diagram Elements | Part169

UML Dictionary

Toolbox Icon

2.2.18.1 Add Property Value

To add property value variables to a Part, follow the steps below:

1. Right-click on the Part. The context menu displays.

2. Select the Advanced | Set Property Values menu option (or press [Ctrl]+[Shift]+[R]). The Set
Property Values dialog displays.

3. In the Variable field, click on the drop-down arrow and select the variable, or type in the new variable
name.

4. Set the Operator, the Value and optionally type in a Note.

5. Click on the OK button to save the variable.

A Part with a property value resembles the following figure.

2.2.19 Port

Ports define the interaction between a classifier and its environment. Interfaces controlling this interaction can
be depicted using the Interface element . Any connector to a Port must provide the required interface, if
defined. Ports can appear on a contained Part , a Class , or the boundary of a Composite element .

A Port is a typed structural feature or property of its containing classifier. Ports are typically created in
Class diagrams , Object diagrams and Composite Structure diagrams .

164

168 152 180

170

56 58 59

UML Elements | Structural Diagram Elements | Port 170

© 1998-2010 Sparx Systems Pty Ltd

You can expose an inherited Port, or redefine a Port . You also define specific properties for a Port
element.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 182) states:

A port is a property of a classifier that specifies a distinct interaction point between that classifier and its
environment or between the (behavior of the) classifier and its internal parts. Ports are connected to properties
of the classifier by connectors through which requests can be made to invoke the behavioral features of a
classifier. A Port may specify the services a classifier provides (offers) to its environment as well as the
services that a classifier expects (requires) of its environment.

2.2.19.1 Add a Port to an Element

To add a new Port to an element, use one of the following steps:

1. Click on the Port symbol in the Composite Elements page of the Enterprise Architect UML Toolbox and
drag it to (or click on) the target host element. This creates an untyped, simple Port on the boundary,
near the cursor position.

2. On the context menu of a suitable Class, Part or Composite element , select the Embedded
Elements | Add Port menu option to add a new Port at the cursor position.

3. Drag a suitable classifier from the Project Browser onto a Class or Part. Enterprise Architect prompts
you to add a typed Port or Part at the cursor position. The new Port is typed by the original dragged
classifier.

4. Use the Embedded Elements dialog to add a new Port to the currently selected element.

2.2.19.2 Inherited and Redefined Ports

A Port is a redefinable and re-useable property of a composite classifier. So, as for attributes, any Class
can inherit Ports from its parent and realized interfaces. If you have an inheritance hierarchy with Ports defined
in the parent Classes, when you open the Embedded Elements window the inherited Ports and their named
owners are listed there.

It is possible to expose, for design purposes, an inherited Port (that is, the child Class is re-using the parent
Port). In this case, Enterprise Architect creates a clone of the re-used Port and marks it as read-only in the
child Class. This is convenient for modeling Port interactions in child Classes where the Ports are defined in
the parent elements.

It is also possible to redefine a Port in a child Class, so that the name is the same but the child is a modifiable
clone of the original. This is useful where a child Class places additional restrictions or behavior on the Port.
The Embedded Elements window enables you to highlight an inherited Port and mark it as redefined; this
creates a new Port on the child Class, which is editable but still logically related to the initial Port.

The Embedded Elements window below illustrates Port inheritance. The Port removableHD is owned by the
child Class. The Ports eth0 and USB are owned by the Computer Class. The Port firewire has been added to
PC. If any of the inherited Ports are made visible, they are considered re-use Ports and appear on the child in
read-only format. Using the Redefine button, the inherited Port can be copied down and made writeable.

170 172

169

180

170

169

UML Elements | Structural Diagram Elements | Port171

UML Dictionary

UML Elements | Structural Diagram Elements | Port 172

© 1998-2010 Sparx Systems Pty Ltd

2.2.19.3 The Property Tab

The element Properties dialog for Ports and Parts has a Property tab in place of the Class element Details
tab.

This tab defines the type, initial value, Qualifiers , multiplicity, and redefined and subsetted properties of the
Port or Part.

You set the Qualifiers by clicking on the Qualifiers button, to display the Qualifiers dialog.

You add Redefined and Subsetted Properties by clicking on the appropriate Add button, to display the
Select Property dialog.

173

175

UML Elements | Structural Diagram Elements | Primitive173

UML Dictionary

2.2.20 Primitive

A Primitive element identifies a predefined data type, without any relevant substructure (that is, it has no parts
in the context of UML). It could be regarded as a conceptual Data Type .

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 124) states:

A primitive data type may have an algebra and operations defined outside of UML, for example,
mathematically ... The run-time instances of a primitive type are data values. The values are in many-to-one
correspondence to mathematical elements defined outside of UML (for example, the various integers).
Instances of primitive types do not have identity. If two instances have the same representation, then they are
indistinguishable.

2.2.21 Qualifiers

Qualifiers are ordered sets of properties of an Association end point, a Part , a Port , or an Attribute, that
limit the nature of the relationship between two classifiers or objects. You define a qualifier on the Qualifiers

 dialog, which you display by clicking on the [...] button at the end of the Qualifiers field on the
Association, Part, Port or Attribute Properties dialog.

Some examples of qualified Associations are shown in the following diagram:

159

168 169

175

UML Elements | Structural Diagram Elements | Qualifiers 174

© 1998-2010 Sparx Systems Pty Ltd

Notes:

· When typing multiple Qualifiers into the Qualifier(s) field on a Properties dialog, separate them with a
semi-colon; each Qualifier then displays on a separate line. For example, in the diagram the Qualifier 'rank:
Rank;file:File' has been rendered in two lines, with a line break at the ; character.

· You can enable or disable Qualifier rectangles in the Diagram page of the Options dialog (select the Tools
| Options | Diagram menu option). If disabled, the old style text Qualifiers are used. It is not recommended
that you disable Qualifiers as they are an integral part of the UML.

· You can enable or disable a mild shading on the Qualifier rectangles in the Links page of the Options
dialog.

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 129) states:

A qualifier declares a partition of the set of associated instances with respect to an instance at the qualified
end (the qualified instance is at the end to which the qualifier is attached). A qualifier instance comprises one
value for each qualifier attribute. Given a qualified object and a qualifier instance, the number of objects at the
other end of the association is constrained by the declared multiplicity. In the common case in which the
multiplicity is 0..1, the qualifier value is unique with respect to the qualified object, and designates at most one
associated object. In the general case of multiplicity 0..*, the set of associated instances is partitioned into
subsets, each selected by a given qualifier instance. In the case of multiplicity 1 or 0..1, the qualifier has both
semantic and implementation consequences. In the case of multiplicity 0..*, it has no real semantic
consequences but suggests an implementation that facilitates easy access of sets of associated instances
linked by a given qualifier value.

UML Elements | Structural Diagram Elements | Qualifiers175

UML Dictionary

2.2.21.1 Qualifiers Dialog

The Qualifiers dialog is used to define the Qualifiers of an Association connector end, Port , Part or
Attribute.

General Tab

Review, edit or complete the fields as indicated in the following table.

Field Use to

Name Display the name of the Qualifier. For a new Qualifier, type the name (with no spaces).

Alias Display an optional alias for the Qualifier. If necessary, type in a new alias.

Type Display the Qualifier type.

The type can be defined by the code language (data type) or by a classifier element.
When you click on the drop-down arrow, the set of values in the list provides the
appropriate data types.

To select or define possible classifiers, either click on the Select Type option in the list,
or click on the [...] (Select) button to display the Select <Item> dialog.

To add new code language data types that can be displayed in this list, see the Data
Types topic in UML Model Management.

173 169 168

UML Elements | Structural Diagram Elements | Qualifiers 176

© 1998-2010 Sparx Systems Pty Ltd

Field Use to

Scope Define the Qualifier as Public, Protected, Private or Package. If necessary, click on the
drop-down arrow and select a different scope.

Stereotype Define the optional stereotype of the Qualifier. If necessary, either type a different
stereotype name or click on the drop-down arrow and select a stereotype.

Derived Indicate that the Qualifier is a calculated value. If you select this checkbox, the Qualifier
name on the element has the derived symbol (/) as a prefix.

Static Indicate that the Qualifier is a static member.

Const Indicate that the Qualifier is a constant.

Initial Display an optional initial value. If necessary, type in a new initial value.

Notes Enter any free text notes associated with the Qualifier. You can format the notes text
using the Rich Text Notes toolbar at the top of the field (see Using Enterprise Architect -
UML Modeling Tool).

To change the position of a Qualifier in the list in the Qualifiers panel, click on the Scroll Up or Scroll Down
(hand) buttons.

Detail Tab

Use the Detail tab to model additional properties of a selected Qualifier, such as its multiplicity, redefined
properties and subsetted properties.

UML Elements | Structural Diagram Elements | Qualifiers177

UML Dictionary

Select a Qualifier on the General tab, then review, edit or complete the Detail tab fields as indicated in the
following table.

Field Use to

Multiplicity

Lower bound Define a lower limit to the number of elements allowed in the
collection.

Upper bound Define an upper limit to the number of elements allowed in the
collection.

Allow Duplicates Indicate that duplicates are allowed.

Maps to the UML property isUnique, value FALSE).

Multiplicity is Ordered Indicate that the collection is ordered.

Redefined Property Review the redefined properties for the Qualifier.

Add redefined properties by clicking on the Add button to
display the Select Property dialog.

Subsetted Property Review the subsetted properties for the qualifier.

Add subsetted properties by clicking on the Add button to
display the Select Property dialog.

UML Elements | Structural Diagram Elements | Signal 178

© 1998-2010 Sparx Systems Pty Ltd

2.2.22 Signal

A Signal is a specification of Send request instances communicated between objects, typically in a Class
 or Package diagram. The receiving object handles the Received request instances as specified by

its receptions. The data carried by a Send request is represented as attributes of the Signal. A Signal is
defined independently of the classifiers handling the signal occurrence.

To define a reception, create an operation in the receiving object and assign the stereotype <<signal>> to it.
The reception has the same name as the signal that the object can receive.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 450) states:

A signal triggers a reaction in the receiver in an asynchronous way and without a reply. The sender of a signal
will not block waiting for a reply but continue execution immediately. By declaring a reception associated to a
given signal, a classifier specifies that its instances will be able to receive that signal, or a subtype thereof,
and will respond to it with the designated behavior.

And (UML Superstructure Specification, v2.1.1, p. 447 - 448):

A reception is a declaration stating that a classifier is prepared to react to the receipt of a signal. A reception
designates a signal and specifies the expected behavioral response. The details of handling a signal are
specified by the behavior associated with the reception or the classifier itself. ...Receptions are shown using
the same notation as for operations with the keyword <signal>

2.3 Inbuilt and Extension Stereotypes

There are many other UML elements that you can also work with in Enterprise Architect, most of which are
basic elements extended by the use of stereotypes. This topic gives a brief introduction to some of these
elements.

· Analysis Stereotypes

· Boundary Element

· Composite Elements

· Control Element

· Entity Element

· Event Elements

· Hyperlinks

· N-Ary Association

· Process

· Requirements

· Screen

· Table

· UI Control Element

· Web Stereotypes

For more information on the use of stereotypes in Enterprise Architecture, see the UML Stereotypes topic in

129

56 55 127

179

179

180

181

182

183

184

187

189

189

190

192

192

194

UML Elements | Inbuilt and Extension Stereotypes | 179

UML Dictionary

Extending UML With Enterprise Architect.

2.3.1 Analysis Stereotypes

Enterprise Architect has some built in stereotypes that you can assign to an element during analysis. The
effect of these stereotypes is to display a different icon from the normal element icon, providing a visual key to
the element purpose. The Robustness diagram below illustrates the main types of inbuilt icons for elements:

The stereotypes used are:

· Boundary - for a system boundary (for example, a Login screen)

· Control - to specify an element is a controller of some process (as in the Model-View-Controller pattern)

· Entity - the element is a persistent or data element

Also see the Business Modeling elements, used in Business Modeling and Business Interaction diagrams.

2.3.2 Boundary

 or

A Boundary is a stereotyped Object that models some system boundary, typically a user interface screen.
You can also create a Boundary as a stereotyped Class . See the Create a Boundary topic.

A Boundary is used in the conceptual phase to capture users interacting with the system at a screen level (or
some other boundary interface type). It is often used in Sequence and Robustness (Analysis)
diagrams. It is the View in the Model-View-Controller pattern.

Tip:

Use Boundary elements in analysis to capture user interactions, screen flows and element interactions (or
'collaborations').

179

181

182

75

165

152 180

39 67

180

UML Elements | Inbuilt and Extension Stereotypes | Boundary 180

© 1998-2010 Sparx Systems Pty Ltd

Toolbox Icon

 or

2.3.2.1 Create a Boundary

Using the Toolbox

To create a Boundary element on a diagram as an Object, follow the steps below:

1. In the Enterprise Architect UML Toolbox, select the More Tools | Analysis menu option.

2. From the Analysis Elements page, drag the Boundary element onto the diagram.

Using the Properties Dialog

To create a Boundary element as a stereotyped Class, using the Class Properties dialog, follow the steps
below:

1. Insert a new Class.

2. Right-click on the element and select the Properties context menu option; the Properties dialog
displays.

3. In the Stereotype field, type the value boundary.

4. Click on the Apply and OK buttons.

5. Save the diagram ([Ctrl]+[S]).

The following illustration shows an Actor interacting with a Boundary (in this case, a Login screen).

Note:

The Model-View-Controller (MVC) pattern is a design pattern for building a wide range of applications that
have a user interface, business or application logic and persistent data.

2.3.3 Composite Elements

Enterprise Architect supports Composite elements for Classes, Objects, Use Cases and such. A Composite
element is a pointer to a child diagram.

Create a Composite Element

To set Composite elements from the element context menu, follow the steps below:

1. Create the element to set as a Composite element.

2. Right-click on the element in the diagram and select the Advanced | Make Composite context menu
option.

179

94

UML Elements | Inbuilt and Extension Stereotypes | Composite Elements181

UML Dictionary

Note:

If the Make Composite option is not listed in the context menu, the option is not available for the type
of element you have selected.

The element displays as follows:

Note the small icon in the bottom right hand corner indicating that this is now a Composite element.

3. Double-click on the Composite element to access the child diagram that it points to.

The Composite element and its child diagram are represented in the Project Browser as follows:

Note that ClassX, ClassY and ClassZ are elements in the child diagram.

Alternative Notation

Composite elements can show their contents instead of their usual notation. To enable this, right-click on the
element to open the context menu, then select the Advanced | Show Composite Diagram option.

The Automation Interface

Automation support is available for Composite elements. Element has an Elements collection and a Diagrams
collection. See SDK for Enterprise Architect.

2.3.4 Control

 or

A Control is a stereotyped Object that models a controlling entity or manager. A Control organizes and
schedules other activities and elements, typically in Analysis (including Robustness), Sequence and
Communication diagrams. It is the controller of the Model-View-Controller pattern.

You can also create a Control as a stereotyped Class . See the Create a Control Element topic.

Toolbox Icon

 or

165

67 39

49 182

152 182

UML Elements | Inbuilt and Extension Stereotypes | Control 182

© 1998-2010 Sparx Systems Pty Ltd

2.3.4.1 Create a Control Element

Using the Toolbox

To create a Control element on a diagram as an Object, follow the steps below:

1. In the Enterprise Architect UML Toolbox, select the More Tools | Analysis menu option.

2. From the Analysis Elements page, drag the Control element onto the diagram.

Using the Properties Dialog

To create a Control element as a stereotyped Class, using the Class Properties dialog, follow the steps below:

1. Insert a new Class.

2. Right-click on the element and select the Properties context menu option; the Properties dialog
displays.

3. In the Stereotype field, type the value control.

4. Click on the Apply and OK buttons.

5. Save the diagram ([Ctrl]+[S]).

The appearance changes as illustrated in the following diagram (for the Security Controller element):

Note:

The Model-View-Controller (MVC) pattern is a design pattern for building a wide range of applications that
have a user interface, business or application logic and persistent data.

2.3.5 Entity

From: Sequence Diagram Communication , Object , Analysis
(including Robustness) Diagrams

An Entity is a stereotyped Object that models a store or persistence mechanism that captures the
information or knowledge in a system. It is the Model in the Model-View-Controller pattern.

You can also create an Entity as a stereotyped Class . See the Create an Entity topic.

181

39 49 58 67

165

182

152 183

UML Elements | Inbuilt and Extension Stereotypes | Entity183

UML Dictionary

Toolbox Icon

 or

2.3.5.1 Create an Entity

Using the Toolbox

To create an Entity element on a diagram as an Object, follow the steps below:

1. In the Enterprise Architect UML Toolbox, select the More Tools | Analysis menu option.

2. From the Analysis Elements page, drag the Entity element onto the diagram.

Using the Properties Dialog

To create an Entity element as a stereotyped Class, using the Class Properties dialog, follow the steps below:

1. Insert a new Class.

2. Right-click on the element and select the Properties context menu option; the Properties dialog
displays.

3. In the Stereotype field, type the value entity.

4. Click on the Apply and OK buttons.

5. Save the diagram ([Ctrl]+[S]).

2.3.6 Event

The UML includes two elements that are used to model Events. The first element is the Send Event. This
element models the generation of a stimulus in the system and the passing of that stimulus to other elements,
either within the system or external to the system.

The second element is the Receive Event, which is depicted as a rectangle with a recessed 'V' on the left side.
This element indicates that an event occurs in the system due to some external or internal stimulus. Typically
this invokes further activities and processing.

Send and Receive Events can be added from the Analysis and Activity Element pages of the Enterprise
Architect UML Toolbox (see Using Enterprise Architect - UML Modeling Tool).

If you should select the wrong type of event, or otherwise want to change the type, right-click on the Event and
select the Advanced | Make Sender or Advanced | Make Receiver context menu option, as appropriate.

Toolbox Icons

182

UML Elements | Inbuilt and Extension Stereotypes | Feature 184

© 1998-2010 Sparx Systems Pty Ltd

2.3.7 Feature

A Feature is a small, granular function or characteristic expressed in client-valued terms as a satisfaction of a
requirement; for example: 'context-sensitive Help', or 'ability to reverse-engineer VB.Net'.

Features are the primary requirements-gathering artifact of the Feature-Driven Design (FDD) methodology.
They define the product feature that satisfies what a Requirement element has formalized as a contractual,
testable, expected deliverable (for example: requirement - 'every element must provide context-sensitive Help';
feature - 'every element provides context-sensitive Help'). One Feature might realize one or more
Requirements, and one Requirement might be realized by more than one Feature.

Features also have relationships with Use Cases . A Use Case defines the interaction a user has with the
system in order to satisfy one or more Requirements. The Feature identifies the facility that provides the
means for that interaction.

Feature elements are non-UML and are not related to UML-defined features, which are either
BehavioralFeatures (operations, or methods) or StructuralFeatures (Ports , Parts and attributes) (see
Using Enterprise Architect - UML Modeling Tool).

Feature elements are available from the Requirements page of the Enterprise Architect UML Toolbox.

Note:

Feature elements can be created with or without an identifying F in the top right corner of the element. To
toggle the display of this letter, select or deselect the Show stereotype icon for requirements checkbox on
the Options dialog, Objects page. (See Using Enterprise Architect - UML Modeling Tool.)

Toolbox Icon

2.3.8 Hyperlinks

You can place a Hyperlink element onto a diagram. This element is a type of text element, but one that can
contain a pointer to a range of objects such as associated document files, web pages, Help, model features
and even other Enterprise Architect model files. When you double-click on the element, Enterprise Architect
executes the link. To add a Hyperlink element, drag the Hyperlink icon from the Common page of the
Enterprise Architect UML Toolbox onto the diagram.

(Alternatively, click on the Hyperlink icon in the UML Elements toolbar and then click on the diagram.)

Configure the Hyperlink

When you add the Hyperlink to the diagram, the Hyperlink Details dialog displays. If you want to display the
information in a more readable layout, you can resize the dialog.

189

146

169 168

http://en.wikipedia.org/wiki/Feature_Driven_Development

UML Elements | Inbuilt and Extension Stereotypes | Hyperlinks185

UML Dictionary

You first select the type of object to link to, by clicking on the drop-down arrow in the Hyperlink Type field.
The Hyperlink Details dialog displays the appropriate fields, prompts or dialog to enable you to specify the
object to link to. For example, if you intend to hyperlink to:

· an attribute, the Set Attribute dialog displays to enable you to select that attribute.

· a file, the Action field displays to enable you to specify whether to Open the file in read only mode, or Edit
the file; in either case the file is opened within Enterprise Architect if possible, or, if not possible, with the
Windows default viewer/editor for the file type. For example, if you hyperlink to a .rtf file, you can view it in
whichever viewer is appropriate; however, you cannot edit .rtf files in Enterprise Architect, so the file always
opens in the Windows default .rtf editor.

· a diagram, the Select a Diagram dialog displays, which enables you to select the diagram from anywhere in
the project; you can filter the selection to diagrams of certain types.

If you select EA Command, the Hyperlink Address field changes to a drop-down list of Enterprise Architect
commands. You can select LocalPath and click on the [...] (Browse) button to display the Local Paths dialog
(see Code Engineering Using UML Models), which you complete as required. Subsequently, when you click
on the hyperlink the Local Paths dialog immediately displays and you can apply, switch, expand or update the
current path.

Once you have defined the object and its location, you can change the location either by overtyping the
Hyperlink Address field or by clicking on the [...] (Browse) button.

In the Alias field, type the text to display in the hyperlink. If you do not provide an alias, either the text defaults
to the link itself, or (for certain link targets such as a matrix profile) the dialog generates a simple text
instruction.

If you prefer to display only the hyperlink text, without the icon, select the Hide Icon checkbox.

Notes:

· If required, you can create a number of empty hyperlinks to complete later. If you then double-click on an
empty hyperlink, the Hyperlink Details dialog displays and you can enter the details.

· Once you have created the hyperlink, you can also edit the hyperlink text by clicking once on the field and
once on the text, then right-clicking and selecting the Edit Selected context menu option.

Note that you can add notes to the hyperlink, which display in the Hyperlink Details dialog when you right-click
on the hyperlink and select the Properties context menu option. You can format these notes using the Rich
Text Notes toolbar (see Using Enterprise Architect - UML Modeling Tool).

There are three alternative methods of creating a hyperlink, as explained in the following sections.

85

UML Elements | Inbuilt and Extension Stereotypes | Hyperlinks 186

© 1998-2010 Sparx Systems Pty Ltd

Create Hyperlink To File

You can create a hyperlink on a diagram to an external file simply by clicking on the file in a file list (such as
Windows Explorer) or on your Desktop and dragging it onto the diagram. A short context menu displays with
two options - Hyperlink and Artifact. Click on the Hyperlink option to create the hyperlink on the diagram.
The link is effective immediately, and you can right-click on it to add or change properties as described above.

Create Action As Hyperlink

You can create an Action element to represent a wide range of behaviors and actions, including a
hyperlink. To do this, follow the steps below:

1. Drag an Action element from the Activity page of the Toolbox onto the diagram. A context menu
immediately displays.

2. Select the Other menu option. The New Action dialog displays, with the Other radio button selected.

3. Click on the drop down arrow on the field in the Select kind panel, and click on Hyperlink.

4. Click on the OK button. The Hyperlink Action element displays on the diagram.

5. Right click on the element and select the Advanced | Set Hyperlink menu option. The Hyperlink
Details dialog displays.

6. Set the hyperlinks properties as described above.

Create Hyperlink Between Diagrams

To create a hyperlink between diagrams, follow the steps below.

Note:

If the hyperlink appears as a Sub Activity, select the Tools | Options | Diagram | Behavior menu option and
deselect the Use Automatic SubActivities checkbox.

1. Open the diagram in which to display the hyperlink to another diagram. From the Project Browser select
the diagram you want to create a hyperlink to.

2. Drag the diagram on to the current diagram. The Select Type dialog displays.

3. Select the Hyperlink option and click on the OK button. The final hyperlinked diagram should resemble
the diagram below, where the Class diagram is the diagram to which the Product Order diagram
hyperlinks (notice that the hyperlink icon is different).

81

UML Elements | Inbuilt and Extension Stereotypes | Hyperlinks187

UML Dictionary

2.3.9 N-Ary Association

An n-Ary Association element is used to model complex relationships between three or more elements,
typically in a Class diagram . It is not a commonly-employed device, but can be used to good effect where
there is a dependant relationship between several elements. It is generally used with the Associate
connector, but the relationships can include other types of connector.

56

199

UML Elements | Inbuilt and Extension Stereotypes | N-Ary Association 188

© 1998-2010 Sparx Systems Pty Ltd

In the example above there is a relationship between a Company, an Employee and a Salary.

Toolbox Icon

2.3.10 Packaging Component

 (compare with and)

A Packaging Component is an element that appears very similar to a Component in a diagram but
behaves as a Package in the Project Browser (that is, it can be version controlled and can contain other
Packages and elements). It is typically used in Component diagrams .

In the Project Browser, the three elements display as shown below:

The Component element cannot contain child Packages or Packaging Components.

158

168

65

UML Elements | Inbuilt and Extension Stereotypes | Packaging Component189

UML Dictionary

Toolbox Icon

2.3.11 Process

A Process is an Activity element with the stereotype process, which expresses the concept of a business
process. Typically this involves inputs, outputs, work flows, goals and connections with other Processes. The
Process element is typically used in Analysis diagrams .

Business processes typically range across many parts of the organization and span one or more systems.

Toolbox Icon

2.3.12 Requirements

As an analysis step, often it is desirable to capture simple system requirements. These are eventually realized
by Use Cases .

In the initial requirement gathering phase, cataloging requirements can be achieved using the Requirement
extension on a Custom diagram .

Requirements can also be aggregated to create a hierarchy. The diagram below illustrates how this might be
done.

90

67

146

69

UML Elements | Inbuilt and Extension Stereotypes | Requirements 190

© 1998-2010 Sparx Systems Pty Ltd

A requirement that a user can log into a website is implemented by the Login Use Case, which in turn is
implemented by the Business Logic, ASP Pages and Login Web Page. Using this approach, you can easily
model quite detailed and complex dependencies and implementation relationships.

Notes:

· External requirements can be created with or without an identifying E in the top right corner of the element.
To toggle the display of this letter, select or deselect the Show stereotype icon for requirements
checkbox on the Options dialog, Objects page. (See Using Enterprise Architect - UML Modeling Tool.)

· The colors on Requirement elements identify the status of the requirement. You change the status - and
hence color - on the element Properties dialog. You set the color for each status on the Status Types
dialog. (See Requirements Management.)

Toolbox Icon

2.3.13 Screen

A Screen is used to prototype User Interface screen flow. By using UML features such as requirements,
constraints and scenarios against User Interface diagram elements, you can build up a solid and detailed
understanding of user interface behavior without having to use code. This becomes an excellent means of
establishing the precise behavior the system has from a user perspective, and in conjunction with the Use
Case model (see Using Enterprise Architect - UML Modeling Tool), defines exactly how a user gets work done.

Web pages can also be prototyped and specified rigorously using Enterprise Architect's custom interface
extensions.

The example diagram below illustrates some features of Enterprise Architect's screen modeling extensions
that support web page prototyping. By adding requirements, rules, scenarios and notes to each element, a
detailed model is built up of the form or web page, without having to resort to GUI builders or HTML.

73

UML Elements | Inbuilt and Extension Stereotypes | Screen191

UML Dictionary

Note:

Enterprise Architect displays UI Controls as a range of special icons, depending on the stereotype used;
for example, a Control stereotyped as a «list» displays with a vertical scroll bar.

Toolbox Icon

2.3.14 Test Case

A Test Case is a stereotyped Use Case element. You might use it to extend the facilities of the Testing
window (see Project Management With Enterprise Architect), by applying element properties and capabilities
to the tests of a feature represented by another element or - more appropriately - set of elements. That is, you
can define in one go - in the Testing window for the Test Case element - the details of the tests that apply to
each of several elements, instead of recording the details separately in each element.

Within the Test Case element properties you can define test requirements and constraints, and associate the
test with test files. You can also link the element to Document Artifacts or (in the Corporate, Business and
Software Engineering, System Engineering and Ultimate editions) directly to linked documents, such as a Test
Plan.

The Test Case element enables you to give greater visibility to tests, in the Project Browser, Element List,

192

146

UML Elements | Inbuilt and Extension Stereotypes | Test Case 192

© 1998-2010 Sparx Systems Pty Ltd

Model Search, Relationship Matrix, Traceability window and reports.

The Test Case element is available through the Use Case and Maintenance pages of the Enterprise Architect
UML Toolbox.

2.3.15 Table

A Table is a stereotyped Class . It is drawn with a small table icon in the upper right corner. You typically
use this element in Data Modeling and Class diagrams.

A Table element has a special Properties dialog, with settings for database type and the ability to set column
information and data-related operations such as triggers and indexes. When setting up a Table, make sure
you set the default database type for that Table, otherwise you do not have any data types to choose from
when creating columns. (See Code Engineering Using UML Models.)

Toolbox Icon

2.3.16 UI Control Element

A UI Control element represents a user interface control element (such as an edit box). It is used for capturing
the components of a screen layout and requirements in a Custom or User Interface diagram.

There are a number of UI Control elements available in the User Interface page of the Enterprise Architect
UML Toolbox (see Using Enterprise Architect - UML Modeling Tool). These include:

· List

· Table

· Text Box

· Label

· Form

· Panel

· Button

· Combobox

· Checkbox

· Checkbox (left hand side)

· Radio button

· Radio button (left hand side)

· Vertical Line

· Horizontal Line.

The icons can be combined on a Screen icon to represent the appearance of a user interface screen, as
shown:

152

75 56

190 69 73

UML Elements | Inbuilt and Extension Stereotypes | UI Control Element193

UML Dictionary

You can also extend the available icons by selecting other stereotypes in the UI Control Element Properties
dialog. The full set of available stereotypes is shown below; type or select the text in the Stereotype field to
create the corresponding icon.

UML Elements | Inbuilt and Extension Stereotypes | UI Control Element 194

© 1998-2010 Sparx Systems Pty Ltd

Toolbox Icon

 (where UI Control is the name of the user interface element type)

2.3.17 Web Stereotypes

Enterprise Architect supports a number of stereotypes for web page modeling, the graphical elements for
which display with a graphical icon instead of the usual «stereotype» format. These stereotypes are only
supported for Class elements. The image below indicates the various graphical icons and their associated
stereotypes.

A similar set of web modeling elements and their relationships are also available through dedicated Web
Modeling pages in the Enterprise Architect UML Toolbox (see Using Enterprise Architect - UML Modeling Tool

152

UML Elements | Inbuilt and Extension Stereotypes | Web Stereotypes195

UML Dictionary

).

Set a Web Icon

To set a web icon, follow the steps below:

1. Create a new Class element in a diagram.

2. Display the Class Properties dialog.

3. In the Stereotype field, either type in the required stereotype name or click on the drop-down arrow and
select the required stereotype (as named above).

4. Click on the OK button. The Class displays as in one of the examples above.

UML Connectors | | 196

© 1998-2010 Sparx Systems Pty Ltd

3 UML Connectors

What is a Connector?

A connector is a logical or functional relationship between model elements. There are several different
connector types, each having a particular purpose and syntax. Enterprise Architect supports all of the UML
connectors as well as some custom ones of its own. Together with the UML Elements , these form the
basis of UML models.

For more information on using these connectors, consult the appropriate topic by clicking on the required
connector icon in the table below.

Notes:

· Invokes and Precedes relationships are defined by the Open Modeling Language (OML). They are
stereotyped Dependency relationships; Invokes indicates that Use Case A, at some point, causes Use
Case B to happen, whilst Precedes indicates that Use Case C must complete before Use Case D can
begin.

· An Extension relationship shows that a stereotype extends one or more metaclasses. All stereotypes must
extend either one or more Metaclasses, or another stereotype that extends a stereotype (that itself extends
a stereotype, and so on).

· A Tagged Value relationship defines a reference-type (that is, RefGUID) Tagged Value owned by the
source stereotype. The Tagged Value is named for the target role of this association, and is limited to
referencing elements with the stereotype by the association target element.

· The Application and Redefinition relationships are deprecated.

Behavioral Diagram Connectors Structural Diagram Connectors Inbuilt and Extended
Connectors

Activity Diagrams Composite Structure Diagrams Analysis Diagrams

Use Case Diagrams

Common Connectors

Package and Class Diagrams

78

UML Connectors | | 197

UML Dictionary

Behavioral Diagram Connectors Structural Diagram Connectors Inbuilt and Extended
Connectors

Profile

State Diagrams

Timing Diagrams

Component Diagrams

Metamodel

Sequence Diagrams

Deployment Diagrams Custom

Communication Diagrams

UML Connectors | | 198

© 1998-2010 Sparx Systems Pty Ltd

Behavioral Diagram Connectors Structural Diagram Connectors Inbuilt and Extended
Connectors

Interaction Overview Diagrams

Requirements

User Interface

Maintenance

WSDL

XML Schema No special connectors

Object Documentation

No special connectors

Data Modeling

3.1 Aggregate

An Aggregation connector is a type of association that shows that an element contains or is composed of
other elements. It is used in Class models , Package models and Object models to show how more
complex elements (aggregates) are built from a collection of simpler elements (component parts; for example,
a car from wheels, tires, motor and so on).

A stronger form of aggregation, known as Composite Aggregation, is used to indicate ownership of the whole
over its parts. The part can belong to only one Composite Aggregation at a time. If the composite is deleted,
all of its parts are deleted with it.

After drawing an Aggregation association, its form can be changed .

56 55 58

199

UML Connectors | Aggregate | 199

UML Dictionary

Toolbox Icon

3.1.1 Change Aggregation Connector Form

In Enterprise Architect, the default Aggregation relationship is the weak form of the relationship,
represented by a hollow diamond. To change the form of an Aggregation connector from weak to strong,
follow the steps below.

1. Right-click on an Aggregation connector to display the context menu.

2. Select Set Aggregation to Composite. The diamond is shown as filled.

Note:

If the connector is already a Strong (Composition) connector, the context menu option changes to Set
Aggregation to Shared.

3.2 Assembly

An Assembly connector bridges a component's required interface (Component1) with the provided
interface of another component (Component2), typically in a Component diagram .

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 156) states:

An assembly connector is a connector between two components that defines that one component provides the
services that another component requires. An assembly connector is a connector that is defined from a
required interface or port to a provided interface or port.

3.3 Associate

198

163

65

UML Connectors | Associate | 200

© 1998-2010 Sparx Systems Pty Ltd

An Association implies two model elements have a relationship, usually implemented as an instance variable
in one Class . This connector can include named roles at each end, multiplicity, direction and constraints.
Association is the general relationship type between elements. To connect more than two elements in an
association, you can use the N-Ary Association element.

When code is generated for Class diagrams , Associations become instance variables in the target Class.
The relationship is also used in Package, Object, Communication , Data Modeling and
Deployment diagrams.

An Associate connector can also be integrated with a Class element to form an Association Class , to allow
the Associate connector to have operations and attributes that define certain types of UML relationship.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 41) states:

An association specifies a semantic relationship that can occur between typed instances. It has at least two
ends represented by properties, each of which is connected to the type of the end. More than one end of the
association may have the same type.

An end property of an association that is owned by an end class or that is a navigable owned end of the
association indicates that the association is navigable from the opposite ends; otherwise, the association is
not navigable from the opposite ends.

3.4 Association Class

An Association Class connector is a UML construct that enables an Associate connector to have attributes
and operations (features - see UML Modeling With Enterprise Architect - UML Modeling Tool). This results in a
hybrid relation with the characteristics of a connection and a Class . It is used to model particular types of
connections in UML (see the OMG UML Specification for more details).

When you add an Association Class connection, Enterprise Architect also creates a Class that is automatically
connected to the Association. When you hide or delete the Association, the Class is also hidden or deleted.

To add an Association Class to a Class or Deployment diagram, click on the Association Class icon in

152

187

56

55 58 49 75

62

200

199

152

201

56 62

UML Connectors | Association Class | 201

UML Dictionary

the Enterprise Architect UML Toolbox. Click and hold on the source object in the diagram while you drag the
line to the target element, then release the mouse button. Enterprise Architect draws the connector and adds
the Class, then prompts you to add the Class name. Note that the names of the Class and the connector are
the same. You can also connect a new Class to an existing Association .

The following diagram illustrates an Association Class between model elements. Note the dotted line from the
Class to the Association. You cannot move or delete this line.

Note:

If you are applying a stereotype with a Shape Script to an Association Class (see SDK for Enterprise
Architect), be aware that the Shape Script is applied to both the Class part and the Association part.
Therefore, you might have to include logic in the shape main that tests the type of the element so that you
can give separate drawing instructions for Class and for Association. Such logic is not necessary in the:

· shape source or shape target, which are ignored by Classes, or the

· decoration shapes, which are ignored by Associate connectors.

If you dis-associate the Class from the Associate connector, both parts keep their Shape Scripts until the
stereotypes are removed.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 49) states:

A model element that has both association and class properties. An AssociationClass can be seen as an
association that also has class properties, or as a class that also has association properties. It not only
connects a set of classifiers but also defines a set of features that belong to the relationship itself and not to
any of the classifiers.

3.4.1 Connect New Class to Association

To connect a new Class to an existing Association, follow the steps below:

1. Create a Class in the diagram containing the Association to connect.

2. Right-click on the new Class. The context menu displays.

3. Select the Advanced | Association Class menu option. The Create Association Class dialog
displays.

201

200

UML Connectors | Association Class | Connect New Class to Association 202

© 1998-2010 Sparx Systems Pty Ltd

4. Select the connector to connect to.

5. Click on the OK button.

3.5 Communication Path

A Communication Path defines the path through which two DeploymentTargets are able to exchange signals
and messages. Communication Path is a specialization of Association . A DeploymentTarget is the target
for a deployed Artifact and can be a Node , Property or InstanceSpecification in a Deployment
diagram .

Toolbox Icon

3.6 Compose

A Composite Aggregation is used to depict an element that is made up of smaller components, typically in
a Class or Package diagram. A component - or part instance - can be included in a maximum of one
composition at a time. If a composition is deleted, usually all of its parts are deleted with it; however, a part
can be individually removed from a composition without having to delete the entire composition. Compositions
are transitive, asymmetric relationships and can be recursive.

199

151 165 160

62

198

56 55

UML Connectors | Compose | 203

UML Dictionary

See the example below.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 43) states:

Composite aggregation is a strong form of aggregation that requires a part instance be included in at most one
composite at a time. If a composite is deleted, all of its parts are normally deleted with it.

3.7 Connector

Connectors illustrate communication links between parts to fulfill the structure's purpose, typically in a
Composite Structure diagram. Each Connector end is distinct, controlling the communication pertaining to
its connecting element. These elements can define constraints specifying this behavior. Connectors can have
multiplicity.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 177) states:

Specifies a link that enables communication between two or more instances. This link may be an instance of
an association, or it may represent the possibility of the instances being able to communicate because their
identities are known by virtue of being passed in as parameters, held in variables or slots, or because the
communicating instances are the same instance. The link may be realized by something as simple as a
pointer or by something as complex as a network connection. In contrast to associations, which specify links
between any instance of the associated classifiers, connectors specify links between instances playing the
connected parts only.

59

UML Connectors | Control Flow | 204

© 1998-2010 Sparx Systems Pty Ltd

3.8 Control Flow

The Control Flow is a connector connecting two nodes in an Activity diagram . Control Flow connectors
bridge the flow between Activity nodes, by directing the flow to the target node once the source node's activity
is completed.

Control Flows and Object Flows can define a Guard and a Weight condition.

A Guard defines a condition that must be true before control passes along that activity edge. A practical
example of this is where two or more activity edges (Control Flows) exit from a Decision element. Each
flow should have a Guard condition that is exclusive of the other and defines which edge is taken under what
conditions. The Control Flow Properties dialog enables you to set up Guard conditions on Control Flows and
on Object Flows.

A Weight defines the number of tokens that can flow along a Control or Object Flow connection when that
edge is traversed. Weight can also be defined on the Control Flow and Object Flow Properties dialogs.

Toolbox Icon

OMG UML specification:

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 356) states:

A control flow is an edge that starts an activity node after the previous one is finished.

5

102

UML Connectors | Delegate | 205

UML Dictionary

3.9 Delegate

A Delegate connector defines the internal assembly of a component's external Ports and Interfaces , on
a Component diagram . Using a Delegate connector wires the internal workings of the system to the
outside world, by a delegation of the external interfaces' connections.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 156) states:

A delegation connector is a connector that links the external contract of a component (as specified by its ports)
to the internal realization of that behavior by the component's parts. It represents the forwarding of signals
(operation requests and events): a signal that arrives at a port that has a delegation connector to a part or to
another port will be passed on to that target for handling.

3.10 Dependency

Dependency relationships are used to model a wide range of dependent relationships between model
elements in Use Case , Activity and Structural diagrams, and even between models themselves.
You can create the Dependency from the Common page of the Enterprise Architect UML Toolbox. The
Dependencies package as defined in UML 2.1 has many derivatives, such as Realization , Deployment
and Use . Once you create a Dependency you can further refine its meaning by applying a specialized
stereotype .

169 164

65

7 90 54

233 206

238

206

UML Connectors | Dependency | 206

© 1998-2010 Sparx Systems Pty Ltd

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 64) states:

A dependency is a relationship that signifies that a single or a set of model elements requires other model
elements for their specification or implementation. This means that the complete semantics of the depending
elements is either semantically or structurally dependent on the definition of the supplier element(s).

3.10.1 Apply a Stereotype

To apply a stereotype to a Dependency relationship, follow the steps below:

1. Select the Dependency relationship to change.

2. Right-click on the connector and, from the context menu, select the Dependency Properties option.
The Dependency Properties dialog displays.

3. In the Stereotype field, either type in the required stereotype name or click on the drop-down arrow and
select the stereotype from the list.

4. Click on the OK button.

Alternatively, you can right-click on the Dependency relationship and select the Advanced | Dependency
Stereotypes context menu option, then select from a shorter list of standard stereotypes.

3.11 Deployment

A Deployment is a type of Dependency relationship that indicates the deployment of an artifact onto a
node or executable target, typically in a Deployment diagram . A Deployment can be made at type and
instance levels. At the type level, a Deployment would be made for every instance of the node. Deployment
can also be specified for an instance of a node, so that a node's instances can have varied deployed artifacts.
With composite structures modeled with nodes defined as Parts , Parts can also serve as targets of a
Deployment relationship.

Toolbox Icon

205

205

62

168

UML Connectors | Extend | 207

UML Dictionary

3.12 Extend

An Extend connection is used to indicate that an element extends the behavior of another. Extensions are
used in Use Case models to indicate that one Use Case (optionally) extends the behavior of another.
An extending Use Case often expresses alternative flows.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 587) states:

This relationship specifies that the behavior of a Use Case may be extended by the behavior of another
(usually supplementary) Use Case. The extension takes place at one or more specific extension points
defined in the extended Use Case. Note, however, that the extended Use Case is defined independently of
the extending Use Case and is meaningful independently of the extending Use Case. On the other hand, the
extending Use Case typically defines behavior that may not necessarily be meaningful by itself. Instead, the
extending Use Case defines a set of modular behavior increments that augment an execution of the extended
Use Case under specific conditions.

Note that the same extending Use Case can extend more than one Use Case. Furthermore, an extending Use
Case may itself be extended.

3.13 Generalize

A Generalization is used to indicate inheritance. Drawn from the specific classifier to a general classifier, the
generalize implication is that the source inherits the target's characteristics. It is used typically in Class ,
Component , Object , Package , Use Case and Requirements diagrams.

7 146

56

65 58 55 7 71

UML Connectors | Generalize | 208

© 1998-2010 Sparx Systems Pty Ltd

Toolbox Icon

 (and)

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 73) states:

A generalization is a taxonomic relationship between a more general classifier and a more specific classifier.
Each instance of the specific classifier is also an indirect instance of the general classifier. Thus, the specific
classifier inherits the features of the more general classifier.

3.14 Include

An Include connection indicates that the source element includes the functionality of the target element.
Include connections are used in Use Case models to reflect that one Use Case includes the behavior
of another. Use an Include relationship to avoid having the same subset of behavior in many Use Cases; this
is similar to delegation used in Class models .

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 591) states:

Include is a DirectedRelationship between two Use Cases, implying that the behavior of the included Use
Case is inserted into the behavior of the including Use Case. It is also a kind of NamedElement so that it can
have a name in the context of its owning Use Case. The including Use Case may only depend on the result
(value) of the included Use Case. This value is obtained as a result of the execution of the included Use Case.

3.15 Information Flow

An Information Flow represents information items or classifiers flowing between two elements in any
diagram. The connector is available from the Common toolbox page and from every Quick Link menu.

You can have more than one Information Flow connector between the same two elements, identifying which
items flow between the two under differing conditions.

Example of Use

1. Open a diagram and add two elements (for example, Nodes on a Deployment diagram).

7 146

205 56

163

UML Connectors | Information Flow | 209

UML Dictionary

2. Click on the Information Flow connector in the Common toolbox page and drag between the two
elements. The Information Items Conveyed dialog displays.

3. Add the classifier or information item element(s) to the Information Flow. The diagram now resembles
the following.

4. Add another connector between the same two elements (for example, a Communication Path
connector).

5. Right-click the connector and select the Advanced | Information Flows Realized context menu option.
The Information Flows Realized dialog displays.

6. Tick the checkbox against the required classifier element and click on the OK button. The combined
connector now resembles the following:

Notes:

· Once the connectors are combined, you cannot access the Information Items Conveyed dialog directly.
You add or delete information items on the connector using the Information Items Realized dialog. If
you have more than one Information Flow connector between the elements, they form part of the same
combined connector; you can again work on them separately through the Information Items Realized
dialog.

· If you have information flows in a diagram that you use as the source for a Pattern, the Information Items
Conveyed and Information Flows Realized data is not copied into the Pattern.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 606) states:

An InformationFlow specifies that one or more information items circulates from its sources to its targets.

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 607) also states:

An information flow is an abstraction of the communication of an information item from its sources to its
targets. It is used to abstract the communication of information between entities of a system. Sources or
targets of an information flow designate sets of objects that can send or receive the conveyed information
item.

210

210

210

UML Connectors | Information Flow | Convey Information on a Flow 210

© 1998-2010 Sparx Systems Pty Ltd

3.15.1 Convey Information on a Flow

As you create an Information Flow connector between two elements, you can specify which Information
Items or classifiers are conveyed on this flow.

To specify these Information Items or classifiers, right-click on the connection and select the Advanced |
Information Item Conveyed context menu option. The Information Items Conveyed dialog displays.

Button Use to

Add Display the Select <Item> dialog, from which you select the required Information
or Classifier element(s) (see UML Modeling With Enterprise Architect - UML
Modeling Tool).

Remove Remove the selected item.

Note:

 If you select more than one element, they are listed in one entry for the Information Flow connector.

3.15.2 Realize an Information Flow

The Information Flows Realized dialog displays all flows that can be realized on the selected connector. To

208

163

UML Connectors | Information Flow | Realize an Information Flow211

UML Dictionary

realize an Information Flow on this connector, select the corresponding checkbox and click on the OK
button.

If you want to change the information items conveyed on an information flow, click on the flow text and click on
the Items button. The Information Items Conveyed dialog displays, and you can add or remove items as
required. When you click on the OK button, the Information Items Realized dialog redisplays and you can
realize the selected flow or flows as above.

3.16 Interrupt Flow

The Interrupt Flow is a connection used to define the two UML concepts of connectors for Exception Handler
 and Interruptible Activity Region . An Interrupt Flow is also known as an activity edge. It is typically

used in an Activity diagram .

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 327) states:

An activity edge is an abstract class for directed connections between two activity nodes.

3.17 Manifest

A Manifest relationship indicates that the Artifact source embodies the target model element, typically in
Component and Deployment diagrams. Stereotypes can be added to Enterprise Architect to classify
the type of manifestation of the model element (see Extending UML With Enterprise Architect).

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 212) states:

An artifact embodies or manifests a number of model elements. The artifact owns the manifestations, each
representing the utilization of a packageable element.

Specific profiles are expected to stereotype the manifestation relationship to indicate particular forms of
manifestation, e.g. «tool generated» and «custom code» might be two manifestations for different classes

208

210

107 121

5

151

65 62

UML Connectors | Manifest | 212

© 1998-2010 Sparx Systems Pty Ltd

embodied in an artifact.

3.18 Message

Messages indicate a flow of information or transition of control between elements. Messages can be used by
Timing Diagrams , Sequence Diagrams and Communication Diagrams (but not Interaction
Overview diagrams) to reflect system behavior. If between Classes or classifier instances, the
associated list of operations is available to specify the event.

Moving a Message can disrupt the organization of other features on the diagram. To avoid this, and move only
the Message, press [Alt] while you move the Message.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 491) states:

A Message defines a particular communication between Lifelines of an Interaction.

A Message is a NamedElement that defines one specific kind of communication in an Interaction. A
communication can be, for example, raising a signal, invoking an Operation, creating or destroying an
Instance. The Message specifies not only the kind of communication given by the dispatching
ExecutionSpecification, but also the sender and the receiver.

A Message associates normally two OccurrenceSpecifications - one sending OccurrenceSpecification and one
receiving OccurrenceSpecification.

Note:

Communication diagrams were known as Collaboration diagrams in UML 1.4.

3.18.1 Message (Sequence Diagram)

226 212 212

52 152

UML Connectors | Message | Message (Sequence Diagram)213

UML Dictionary

Sequence diagrams depict work flow or activity over time using Messages passed from element to
element. These Messages correspond in the software model to Class operations and behavior. They are
semantically similar to the Messages passed between elements in a Communication diagram, and can be of
many different types .

To create a Message on a Sequence diagram, follow the steps below:

1. Access the Sequence diagram. The Interaction pages of the Enterprise Architect UML Toolbox display.

2. In the Interaction Relationships page, click on the Message icon, click on the source object and drag
the cursor to the destination (target) object. The Message Properties dialog displays (if not, right-click
on the Message and select the Message Properties context menu option).

3. In the Message field, type the Message name.

39

217

UML Connectors | Message | Message (Sequence Diagram) 214

© 1998-2010 Sparx Systems Pty Ltd

Notes:

· If the Message flow is towards a Class element (dropped in from a Class diagram) or a Lifeline
 element having a classifier, and the destination Class has defined operations, you can click on

the drop-down arrow and select an appropriate operation name. The Message then reflects the
destination Class operations.

· If the available operations are not appropriate, you can click on the Operations button and define a
new operation in the target element, using the Operations dialog.

· If you create a Message without making reference to the target Class operations, no new operation
is added to the target Class.

4. In the Parameters field, type any parameters that the Message has, as a comma-separated list. If
required, in the Parameter Values field type the actual value for each parameter, again as a comma-
separated list.

5. If the Message is a return message, in the Return Value field enter the returned value or type.

Note:

It is possible to depict returns from a Self Message . Simply create a second Self Message at the
end of execution and select the Is Return checkbox in the Control Flow Type panel.

6. If the Message flow is from a Class element or Lifeline element with classifier that has defined attributes
, click on the drop-down arrow in the Assign to field and select an appropriate attribute name. The
Message reflects the attributes from the source Class. You cannot add further attributes to the source
Class here - if no appropriate attribute is listed, open the element Properties dialog and add the
required attribute.

Otherwise, if required, type the name of the object to assign the message flow to.

7. In the Stereotype field, type or select an optional stereotype for the connector (this is displayed on the
diagram, if entered).

8. If required, in the Alias field type an alias for the name of the Message.

Note:

On the diagram, the alias displays if the Use Alias if Available checkbox is selected on the Diagram
tab of the Diagram Properties dialog. The Alias displays instead of or as well as the Message name,
depending on the setting selected in the Alias Usage panel of the Diagram Behavior page of the
Options dialog.

9. In the Condition field, type any conditions that must be true in order for the message to be sent.

10. In the Synch: field in the Control Flow Type panel, select Synchronous or Asynchronous as
appropriate.

11. In the Lifecycle field, select New to create a new element at the end of the Message, or Delete to
terminate the message flow at the end of the Message. If neither case applies, leave the field at the
default of <none>.

12. If required, in the Notes field type any explanatory notes. You can format the notes using the Rich Text
Notes toolbar at the top of the field.

13. Click on the OK button to save the Message definition.

Notes:

· You can change the timing details of a message on the Timing Details dialog, and emphasize the
sequence of closely-ordered messages using General Ordering .

· To toggle the numbering of messages on a Sequence diagram, select or deselect the Show Sequence
Numbering checkbox on the Options dialog.

Co-Region Notation

Co-Region notation can be used as a short hand for parallel combined fragments. To access the Co-Region
submenu, right-click on a connector in a Sequence diagram and select the Co-Region context menu option.
There are four sub-options available:

· Start at head

152

123

215

221

218

220

UML Connectors | Message | Message (Sequence Diagram)215

UML Dictionary

· End at head

· Start at tail

· End at tail.

Toolbox Icon

3.18.1.1 Self-Message

A Self-Message reflects a new process or method invoked within the calling lifeline's operation. It is a
specification of a Message , typically in a Sequence diagram .

Self-Message as Return

It is possible to depict a return from a Self Message call.

To create a Self Message return:

1. Create a second Self Message at the end of execution.

2. Double-click on the Message name to open the Message Properties dialog.

3. Select the Is Return checkbox.

4. Raise the Activation level of the return.

Self-Message Calls indicate a nested invocation; new activation levels are added with each Call.

Toolbox Icon

212 39

46

216

UML Connectors | Message | Message (Sequence Diagram) 216

© 1998-2010 Sparx Systems Pty Ltd

3.18.1.2 Call

A Call is a type of Message connector that extends the level of activation from the previous Message. All
Self-Messages create a new activation level, but this focus of control usually ends with the next Message
(unless activation levels are manually adjusted). Self-Message Calls, as depicted above by the first Call,
indicate a nested invocation; new activation levels are added with each Call. Unlike a regular Message
between elements, a Call between elements continues the existing activation in the source element, implying
that the Call was initiated within the previous Message's activation scope.

Toolbox Icon

212

215

45

UML Connectors | Message | Message (Sequence Diagram)217

UML Dictionary

3.18.1.3 Message Examples

The following are different types of Messages available on Sequence Diagrams . Note that Messages
on Sequence diagrams can also be modified with Shape Scripts (see SDK for Enterprise Architect).

Other Sequence Messages

The following are examples of Messages that are not part of the sequence described by the diagram.

212 39

UML Connectors | Message | Message (Sequence Diagram) 218

© 1998-2010 Sparx Systems Pty Ltd

3.18.1.4 Change the Timing Details

It is possible to change the timing details of a Message in a Sequence diagram by right-clicking on the
Message connector and selecting the Timing Details context menu option. The Timing Details dialog
displays.

Complete the fields on this dialog as follows:

Option Use to

Duration Constraint Indicate the minimum and maximum limits on how long a message can last.

39

212

UML Connectors | Message | Message (Sequence Diagram)219

UML Dictionary

Option Use to

Duration Constraint
Between Messages

Indicate the minimum and maximum interval between sending or receipt of the
previous message at the current message's source Lifeline, and sending the current
message.

Duration
Observation

Capture the duration of a message.

Timing Constraint Indicate the minimum and maximum time at which the message should arrive at the
target.

Timing Observation Capture the point at which the message was sent.

See the OMG UML specification (UML Superstructure Specification, v2.1.1, p. 511).

In the diagram below, on the Open Order Message:

· Duration Constraint has been set to 0...13.

On the Get Cart Message:

· Duration Constraint Between Messages has been set to d...d*3

· Duration Observation has been set to d=duration

· Timing Constraint has been set to t...t+3

· Timing Observation has been set to t=now.

By typing a value in the Duration Constraint field, you enable the Message angle to be adjusted. After
clicking on the OK button on the Timing Details dialog, click on the head of the Message connector and drag
the connector up or down to change the angle. You cannot extent the angle beyond the life line of the
connecting sequence object or create an angle of less than 5 degrees.

You can also create the Duration Constraint Between Messages line by dragging the General Ordering
arrow up to the point at which the previous message joins the source Lifeline for the current message. A dialog
displays on which you enter the value for the constraint. Having created the line, you can move it to any point
within half way along the current message and half way along the previous message, to avoid overlap with
other message timing details. You can edit or delete the value either through the Timing Details dialog or by
right-clicking on the line itself and selecting the appropriate context menu option.

220

UML Connectors | Message | Message (Sequence Diagram) 220

© 1998-2010 Sparx Systems Pty Ltd

3.18.1.5 General Ordering

In a Sequence diagram , the workflow is represented by the sequence of Messages down the diagram.
Messages near the top of the diagram are passed before Messages lower down the diagram.

Consider the following diagram.

Message 1 is earlier than Message 2. However, in a complex diagram, or when representing finely timed
operations or parallel processing, this might not be apparent. You can reinforce the sequence using a General
Ordering arrow.

Click on the Message arrow. A small arrow displays at the source anchor point.

Click on this arrow and drag it to the start of the next Message in sequence (Message 2 in the example). The
General Ordering arrow displays, indicating that the second Message follows the first.

The General Ordering arrow is exaggerated in the above figure. You would normally have the arrow running
almost horizontal across the diagram.

39

UML Connectors | Message | Message (Sequence Diagram)221

UML Dictionary

You can have more than one General Ordering arrow issuing from or targeting a Message, if necessary.

3.18.1.6 Asynchronous Signal Message

You define a Message as an asynchronous signal message by displaying the Message Properties dialog
and setting the Synch field to Asynchronous and the Kind field to Signal. (A synchronous message cannot
be used to convey signals, so setting the Synch field to Synchronous disables the Kind field.)

Note:

Return Value, Assign To and the Operations button, which are not applicable to asynchronous signals, are
disabled.

The Operations button changes to a Signal button, which you click on to associate the asynchronous signal
message with a Signal element in the model. You can type the arguments corresponding to the Signal
attributes into the Argument(s) field.

212

UML Connectors | Message | Message (Sequence Diagram) 222

© 1998-2010 Sparx Systems Pty Ltd

When you click on the Signal button, the Select *Signal dialog displays, through which you locate and select
the required Signal element. (The Select *Signal dialog is a variation of the Select <Item> dialog.)

UML Connectors | Message | Message (Sequence Diagram)223

UML Dictionary

3.18.2 Message (Communication Diagram)

A Message in a Communication diagram is equivalent in meaning to a Message in a Sequence diagram. It
implies that one object uses the services of another object, or sends a message to that object. Communication
Messages in Enterprise Architect are always associated with an Association connector between object
instances. Always create the Association connector first, then add a Message to the connector .

Messages can be dragged into a suitable position by clicking and dragging on the message text.

Communication Messages are ordered to reflect the sequencing of the diagram. The numbering scheme
should reflect the nesting of each event. A sequencing scheme could be:

1
2, 2.1, 2.2, 2.3
3.

This would indicate the single sequence of events 2.1, 2.2 and 2.3 occurs within an operation initiated by
event 2. This is the default pattern applied by Enterprise architect

Alternatively, the sequence could be:

1
2, 2.1, 2.1.1, 2.1.1.1
 2.2, 2.2.1, 2.2.1.1
3

This would indicate that two sequences of events can be initiated by event 2, and 2.1 and 2.2 are separate
sequences, not consecutive events in one sequence. You can set the sequence pattern and order using

49

199

224

224

UML Connectors | Message | Message (Communication Diagram) 224

© 1998-2010 Sparx Systems Pty Ltd

the Message Properties dialog and the Sequence Communications dialog.

If the target object is a Class or has its instance classifier set, the drop-down list of possible message names
includes the exposed operations for the base type.

3.18.2.1 Create a Communication Message

To create a Communication Message , follow the steps below:

1. Open a diagram (one of: Communication, Analysis, Interaction Overview, Object, Activity or State
Machine).

2. Add the required objects.

3. Add an Association relationship between each pair of objects that communicate.

4. Right-click on an Association to display the context menu.

5. Select the option to add a Message from one object to the other.

6. When the Message Properties dialog displays, type in a name and any other required details.

7. Click on the OK button. The Message is added, connected to the Association and Object instances.

8. Move the Message to the required position.

3.18.2.2 Re-Order Messages

When constructing your Communication diagram, it is frequently necessary to create or delete Message
'groups' and to re-order the sequence of Messages. There are two dialogs that help you perform these tasks:
the Message Properties dialog and the Sequence Communications dialog.

Organize Message Groups

If you have several Messages in the form 1.1, 1.2, 1.3, 1.4, for example, but would like to start a new
numbering group on, say, the third Message (that is, 1.1, 1.2, 2.1, 2.2, 2.3), you can change a Message in the
series to a Start Group message.

To reorganize message groups, follow the steps below:

1. Double-click on a Message name. The Message Properties dialog displays.

223

199

212

223

UML Connectors | Message | Message (Communication Diagram)225

UML Dictionary

2. To make the selected Message the start of a new group, select the Start New Group checkbox.

3. If required, in the Notes field, type an explanatory note. You can format the text using the Rich Text
Notes toolbar at the top of the field.

4. Click on the OK button to save changes.

Sequence Messages

In larger and more complex diagrams, you might have to use deeper levels of Messages in a group; for
example, 1, 1.2, 1.2.1, 1.2.1.1. You might also have to change the sequence of Messages, making Message
1.3, for example, into Message 1.1.

To change the sequence or level of Messages, follow the steps below:

1. Either:

· Select the Diagram | Sequence Messages menu option

· Click on the diagram background and select the Sequence Communication Messages context
menu option or

· Right-click on a Message and select the Sequence Communication Messages context menu
option.

The Communication Messages dialog displays.

UML Connectors | Message | Message (Communication Diagram) 226

© 1998-2010 Sparx Systems Pty Ltd

2. Click on the Message to adjust and, at the bottom of the dialog, click on the:

· 'Up Hand' or 'Down Hand' buttons to move the Message up or down the sequence (e.g. Message 1.2
to Message 1.1 or 1.3)

· 'Left Hand' or 'Right Hand' buttons to move the Message up or down a level (e.g. Message 1.2.1 to
Message 1.2 or Message 1.2.1.1).

3. Repeat step 2 until the Message sequence and levels match your requirements. You might have to
adjust other Message numbers (in group, sequence or level) to accommodate the changes you have
made.

4. Click on the OK button to save changes.

Note:

Communication diagrams were known as Collaboration diagrams in UML 1.4.

3.18.3 Message (Timing Diagram)

UML Connectors | Message | Message (Timing Diagram)227

UML Dictionary

Messages are the communication links between Lifelines in a Timing diagram . In the case of a
Timeline, a Message is a connection between two Timeline objects.

See UML Superstructure Specification, v2.1.1, figures 14.30 and 14.31, p. 520.

Toolbox Icon

3.18.3.1 Create a Timing Message

To create a Message in a Timing diagram , at least two Lifeline objects (State or Value) must be
created first, each with existing transition points. To create a Message between lifelines, follow the steps
below:

1. Click on one of the Lifelines in the Timing diagram.

2. Select the Message icon from the Timing Relationships page of the Enterprise Architect UML Toolbox (
More tools | Timing).

3. Drag the cursor onto the Lifeline at the point at which the Message originates. The Timing Message
dialog displays. (If not, double-click on the Message.)

135 22

226 22 129 149

UML Connectors | Message | Message (Timing Diagram) 228

© 1998-2010 Sparx Systems Pty Ltd

The dialog consists of a set of transition points. Each transition point can be defined with the following
properties:

Property Description

Start Defines the lifeline where the message originates.

End Defines the lifeline where the message terminates.

These are set by default when a Message is created by dragging the cursor between two Lifelines.

Property Description

Start Time Specifies the start time for a message.

End Time Specifies the end time for a message.

Name The name of the message.

Time Observation Provides information on the time of a sent message.

Duration Observation Indicates the interval of a Lifeline at a particular state, begun from a
message receipt.

Transition To The state in the target Lifeline that the Message points to.

Event The occurring event.

Time Constraint The time taken to transmit a message.

Duration Constraint Pertains to a lifeline's period at a particular state. The constraint
could be instigated by that Lifeline's receipt of a message.

UML Connectors | Message | Message (Timing Diagram)229

UML Dictionary

The following diagram shows the Message configured by the above dialog snapshot.

See UML Superstructure Specification, v2.1.1, figures 14.30 and 14.31, p. 520.

Note:

You can move the source end of the Message freely along the source timeline. However, the target end
(arrow head) must attach to a transition. If you create a new Message and do not give it a target transition, it
automatically finds and attaches to the nearest transition. If you move the target end, it drags the transition
with it.

3.19 Nesting

The Nesting Connector is an alternative graphical notation for expressing containment or nesting of elements
within other elements. It is most appropriately used for displaying Package nesting in a Package diagram

.

Toolbox Icon

168

55

UML Connectors | Notelink | 230

© 1998-2010 Sparx Systems Pty Ltd

3.20 Notelink

A Notelink connector connects a Note to one or more other elements of any other type.

Both Note and Notelink are available in any category of the Enterprise Architect UML Toolbox, in the Common
pages. You can also select them from the UML Elements toolbar (see Using Enterprise Architect - UML
Modeling Tool).

Toolbox Icon

3.21 Object Flow

Object Flows are used in Activity diagrams and State Machine diagrams . When used in an Activity
diagram, an Object Flow connects two elements, with specific data passing through it. To view sample Activity
diagrams using Object Flows, see the Object Flows in Activity Diagrams topic.

In State Machine diagrams, an Object Flow is a specification of a state flow or transition. It implies the passing
of an Object instance between elements at run-time.

You can insert an Object Flow from the State or Activity pages of the Enterprise Architect UML Toolbox, or
from the drop-down list of all relationships located in the header toolbar. You can also modify a transition
connection to an Object Flow by selecting the ObjectFlow checkbox on the connection Properties dialog.

See the Control Flow topic for information on setting up Guards and Weights on Object Flows.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 389) states:

An object flow is an activity edge that only passes object and data tokens.

126

5 9

231

165

204

UML Connectors | Object Flow | Object Flows in Activity Diagrams231

UML Dictionary

3.21.1 Object Flows in Activity Diagrams

In Activity diagrams , there are several ways to define the flow of data between objects.

The following diagram depicts a simple Object Flow between two actions, Fill Order and Ship Order, both
accessing order information.

See UML Superstructure Specification, v2.1.1, figure 12.110, p. 391.

This explicit portrayal of the data object Order, connected to the Activities by two Object Flows, can be refined
by using the following format. Here, Action Pins are used to reflect the order.

See UML Superstructure Specification, v2.1.1, figure 12.110, p. 391.

The following diagram is an example of multiple Object Flows exchanging data between two actions.

See UML Superstructure Specification, v2.1.1, figure 12.111, p. 391.

Selection and transformation behavior, together composing a sort of query, can specify the nature of the
Object Flow's data access. Selection behavior determines which objects are affected by the connection.
Transformation behavior might then further specify the value of an attribute pertaining to a selected object.

Selection and transformation behaviors can be defined by attaching a note to the Object Flow. To do this,
right-click on the Object Flow and select the Attach Note or Constraint context menu option. A dialog lists
other flows in the diagram, to which you can select to attach the note, if the behavior applies to multiple flows.
To comply with UML 2, preface the behavior with the notation «selection» or «transformation».

See UML Superstructure Specification, v2.1.1, figure 12.112, p. 392.

5

230

87

UML Connectors | Occurrence | 232

© 1998-2010 Sparx Systems Pty Ltd

3.22 Occurrence

An Occurrence relationship indicates that a Collaboration represents a classifier, in a Composite Structure
diagram . An Occurrence connector is drawn from the Collaboration to the classifier.

Toolbox Icon

3.23 Package Import

A Package Import relationship is drawn from a source Package to a Package whose contents are to be
imported. Private members of a target Package cannot be imported. The relationship is typically used in a
Package diagram .

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 112) states:

A package import is a relationship between an importing namespace and a package, indicating that the
importing namespace adds the names of the members of the package to its own namespace. Conceptually, a
package import is equivalent to having an element import to each individual member of the imported
namespace, unless there is already a separately-defined element import.

3.24 Package Merge

156

59

168

55

UML Connectors | Package Merge | 233

UML Dictionary

In a Package diagram , a Package Merge indicates a relationship between two Packages whereby the
contents of the target Package are merged with those of the source Package. Private contents of a target
Package are not merged. The applicability of a Package Merge addresses any situation where multiple
packages contain identically-named elements, representing the same thing. A Package Merge merges all
matching elements across its merged Packages, along with their relationships and behaviors. Note that a
Package Merge essentially performs generalizations and redefinitions of all matching elements, but the
merged Packages and their independent element representations still exist and are not affected.

The Package Merge serves a graphical purpose in Enterprise Architect, but creates an ordered Package
relationship applied to related Packages (which can be seen under the Link tab in the Package's Properties
dialog). Such relationships can be reflected in XMI exports or Enterprise Architect Automation Interface scripts
for code generation or other Model Driven Architecture (MDA) interests.

Package Merge relationships are useful to reflect situations where existing architectures contain functionalities
involving like elements, which are merged in a developing architecture. Merging doesn't affect the merged
objects, and supports the common situation of product progression.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 113-114) states:

A package merge is a directed relationship between two packages that indicates that the contents of the two
packages are to be combined. It is very similar to Generalization in the sense that the source element
conceptually adds the characteristics of the target element to its own characteristics resulting in an element
that combines the characteristics of both.

This mechanism should be used when elements defined in different packages have the same name and are
intended to represent the same concept. Most often it is used to provide different definitions of a given concept
for different purposes, starting from a common base definition. A given base concept is extended in
increments, with each increment defined in a separate merged package. By selecting which increments to
merge, it is possible to obtain a custom definition of a concept for a specific end. Package merge is particularly
useful in meta-modeling and is extensively used in the definition of the UML metamodel.

Conceptually, a package merge can be viewed as an operation that takes the contents of two packages and
produces a new package that combines the contents of the packages involved in the merge. In terms of model
semantics, there is no difference between a model with explicit package merges, and a model in which all the
merges have been performed.

3.25 Realize

A source object implements or Realizes its destination object. Realize connectors are used in a Use Case ,
Component or Requirements diagram to express traceability and completeness in the model. A
business process or Requirement is realized by one or more Use Cases , which in turn are realized by

55 168

7

65 71

189 146

UML Connectors | Realize | 234

© 1998-2010 Sparx Systems Pty Ltd

some Classes , which in turn are realized by a Component , and so on. Mapping Requirements, Classes
and such across the design of your system, up through the levels of modeling abstraction, ensures the big
picture of your system remembers and reflects all the little pictures and details that constrain and define it.
(See UML Model Management.)

Toolbox Icon

 (and)

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 131) states:

A Realization signifies that the client set of elements are an implementation of the supplier set, which serves
as the specification. The meaning of 'implementation' is not strictly defined, but rather implies a more refined
or elaborate form in respect to a certain modeling context. It is possible to specify a mapping between the
specification and implementation elements, although it is not necessarily computable.

3.26 Recursion

A Recursion is a type of Message used in Sequence diagrams to indicate a recursive function.

Toolbox Icon

3.27 Role Binding

Role Binding is the mapping between a Collaboration Occurrence's internal roles and the respective Parts
 required to implement a specific situation, typically in a Composite Structure diagram . The associated

Parts can have properties defined to enable the binding to occur, and the Collaboration to take place.

A Role Binding connector is drawn between a Collaboration and the classifier's fulfilling roles, with the
Collaboration's internal binding roles labeled on the classifier end of the connector.

152 158

212 39

157

168 59

156

UML Connectors | Role Binding | 235

UML Dictionary

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 174) states:

A mapping between features of the collaboration type and features of the classifier or operation. This mapping
indicates which connectable element of the classifier or operation plays which role(s) in the collaboration. A
connectable element may be bound to multiple roles in the same collaboration occurrence (that is, it may play
multiple roles).

3.28 Represents

The Represents connector indicates that a Collaboration is used in a classifier, typically in a Composite
Structure diagram . The connector is drawn from the Collaboration to its owning classifier.

Toolbox Icon

3.29 Representation

The Representation relationship is a specialization of a Dependency , connecting Information Item
elements that represent the same idea across models, typically in an Analysis diagram . For example,
Bonus and Salary are both a representation of the Information Item Wage.

156

59

205 163

67

UML Connectors | Representation | 236

© 1998-2010 Sparx Systems Pty Ltd

Toolbox Icon

3.30 Trace

The Trace relationship is a specialization of a Dependency , connecting model elements or sets of
elements that represent the same concept across models. Traces are often used to track requirements and
model changes, typically in a Traceability diagram (see UML Model Management), or in a Class , Use Case

, Object or Composite Structure diagram.

As changes can occur in both directions, the order of this Dependency is usually ignored. The relationship's
properties can specify the trace mapping, but the trace is usually bi-directional, informal and rarely
computable.

Toolbox Icon

3.31 Transition

A Transition defines the logical movement from one State to another, in a State Machine diagram . The
Transition can be controlled through the following connector Properties dialog:

205

56

7 58 59

129 9

UML Connectors | Transition | 237

UML Dictionary

Option Use to

Guard Type in an expression that is evaluated after an Event is dispatched, but before the
corresponding Transition is triggered. If the guard is true at that time, the Transition
is enabled; otherwise, it is disabled.

Effect is a Behavior Convert the Effect field from a free-text field to the definition of a specific Activity or
behavior.

Enterprise Architect displays the Select <Item> dialog to prompt you to select the
Activity or behavior element from the model (see UML Modeling With Enterprise
Architect - UML Modeling Tool).

Effect Either:

· Type a description of the effect of the Transition, or

· If you have selected the Effect is a Behavior check box, select an Activity or
behavior to be performed during the Transition (to change this subsequently,
click on the [...] button to redisplay the Select <Item> dialog).

Trigger

Name Specify the name of the trigger.

Type Specify the type of trigger: Call, Change, Signal or Time.

· Call - specifies that the event is a CallEvent, which sends a message to the
associated object by invoking an operation.

· Change - specifies that the event is a ChangeEvent, which indicates that the
transition is the result of a change in value of an attribute.

· Signal - specifies that the event is a SignalEvent, which corresponds to the

UML Connectors | Transition | 238

© 1998-2010 Sparx Systems Pty Ltd

Option Use to

receipt of an asynchronous signal instance.

· Time - corresponds to a TimeEvent; which specifies a moment in time.

Note:

Code generation for State Machines currently supports Change and Time trigger
events only, and expects a specification value.

Specification Specify the event instigating the Transition.

Save Save the current trigger.

Add Select triggers from the model using the Select Trigger dialog.

Note:

To add multiple triggers, press [Ctrl] while selecting each trigger.

Delete Remove the selected trigger from the list.

Triggers List the current triggers for the Transition.

Note:

Fork and Join segments can have neither triggers nor guards.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 568) states:

A transition is a directed relationship between a source vertex and a target vertex. It may be part of a
compound transition, which takes the state machine from one state configuration to another, representing the
complete response of the state machine to an occurrence of an event of a particular type.

3.32 Use

A Use relationship indicates that one element requires another to perform some interaction. The Use (or
Usage) relationship does not specify how the target supplier is used, other than that the source client uses it in
definition or implementation. A Use relationship is a sub-typed Dependency relationship.

You typically use the Use relationship in Use Case diagrams to model how Actors use system
functionality (Use Cases), or to illustrate usage dependencies between Classes or Components .

205

7 94

146 152 158

UML Connectors | Use | 239

UML Dictionary

Notes:

· It is more usual (and correct UML) to have an Association Connector between an Actor and a Use
Case.

· To depict a usage dependency on a Class or Component diagram, draw a Dependency connector.
Right-click on the Dependency, and select the Dependency Stereotypes | Use context menu option.

Toolbox Icon

OMG UML Specification

The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 138) states:

A usage is a relationship in which one element requires another element (or set of elements) for its full
implementation or operation. In the metamodel, a Usage is a Dependency in which the client requires the
presence of the supplier.

199

56 65

Index 240

© 1998-2010 Sparx Systems Pty Ltd

Index
- A -
Abstract

Complex Models 163

AcceptEvent Action

Triggers Tab 81

Action

AcceptEvent, Triggers Tab 81

BroadcastSignal, Signal Tab 81

Element 79

Expansion Node 86

Local Pre/Post Conditions 89

Notation 81

Operations 79

SendSignal, Signal Tab 81

StructuralFeature 81

Trigger, AcceptEvent 81

Type, Set 81

Update Operation 79

Action Pin

Add To Action 87

As Action Property 88

As Argument For Call Action 87

Assign To Action 88

Properties 87

Activation

End 45

Extend Down 45

Extend Up 45

Lower 45

Raise 45

Sequence Element 45

Suppress 45

Activation Layer

Sequence Diagram Lifelines 46

Activation Levels

Sequence Diagram Lifeline Self Messages 46

Active

Classes 153

State Configuration 130

Activity

Element 90

Instance 236

Notation 91

Parameter Nodes 91

Partition 93, 126

Process Element 189

Region Element 128

Structured 138

Structured, Conditional Node 136, 139

Structured, Loop Node 136, 139

Structured, Sequential 136

Activity Diagram

Description 5

Elements And Connectors 5

Example 5

Object Flows 231

Operations 79

Activity Edge

Connector 211

Relationship 211

Activity Final

Element 110

Activity Partition

Docking 126

Element 126

Horizontal 126

Vertical 126

Actor

Element 94

Add

Expansion Region 110

Instance Variable 166

Interruptible Activity Region 122

Port To Element 170

Property Value to Part 169

Aggregate

Connector 198

Relationship 198

Aggregation Connector

Change Form 199

Analysis

Stereotypes 179

Analysis Diagram

Description 67

Diagram 67

Elements And Connectors 67

Example 67

Apply

Stereotype To Dependency Relationship 206

Artifact

Element 151

Assembly

Connector 199

Relationship 199

Associate

Connector 199

Relationship 199

Index241

UML Dictionary

Association

Class 187

Connector 199

N-Ary 187

Relationship 199

Association Class

Connector 200

Link New Class To Association 201

Relationship 200

Association End

Qualifiers 173, 175

Asynchronous Signal Message

Associate With Signal 221

Connector 221

Relationship 221

Attribute

Qualifiers 175

- B -
Behavior

Instance 236

Behavioral Diagram

Elements 78

Overview 4

Boundary

Element 179

Element Settings 144

Element, Create 180

Object Settings 144

Properties 144

BroadcastSignal Action

Signal Tab 81

Business Interaction Diagram

Description 75

Elements And Connectors 75

Example 75

Business Modeling Diagram

Description 75

Elements And Connectors 75

Example 75

Business Process Modeling 67

- C -
Call

Self Message 216

Call Action

Pin As Argument 87

Central Buffer Node

Element 95

Change

Form Of Aggregation Connector 199

Choice

Element 95

Class

Active Classes 153

Element 152

Make Into Association Class 201

Parameterized Classes (Templates) 154

Class Diagram

Description 56

Elements And Connectors 56

Example 56

Classifier

Behavior 118

Item Conveyed 210

Properties 61

Collaboration

Element 156

Message 224

Collaboration Diagram

Description 49

Elements And Connectors 49

Example 49

Message Colors 51

Collaboration Occurrence

Element 157

Combined Fragment

Create 98

Element 96

Interaction Operator 99

Communication

Connector 203

Message 223

Message, Create 224

Message, Level 224

Message, Properties 224

Message, Sequence 224

Relationship 203

Communication Diagram

Description 49

Elements And Connectors 49

Example 49

Labelled Associations 49

Message Colors 51

Numbering In 49

Communication Path

Connector 202

Relationship 202

Component

Description 65

Index 242

© 1998-2010 Sparx Systems Pty Ltd

Component

Diagram 65

Element 158

Elements And Connectors 65

Example 65

Compose

Connector 202

Relationship 202

Composite

Elements 180

State 129, 130

State Regions 12

Composite Aggregation

Connector 202

Relationship 202

Composite Structure Diagram

Description 59

Elements And Connectors 59

Example 59

Compress

Timeline 36

Transition 36

Concurrent Substate

Regions 12

Conditional Node

Structured Activity 136, 139

Configure Timeline Dialog

States Tab 29

Transitions Tab 31

Connector

Activity Edge 211

Aggregate 198

Assembly 199

Associate 199

Association 199

Association Class 200

Asynchronous Signal Message 221

Communication 203

Communication Path 202

Compose 202

Composite Aggregation 202

Connector 203

Control Flow 204

Delegate 205

Dependency 205

Dependency, Apply Stereotype 206

Deployment 206

Extend 207

Generalization 207

Generalize 207

Implements 233

Include 208

Information Flow 208

Inheritance 207

Interrupt Flow 211

Manifest 211

Message 212

Nesting 229

Notelink 230

Object Flow 230

Occurrence 232

Overview 196

Package Import 232

Package Merge 232

Pkg Import 232

Pkg Merge 232

Realize 233

Recursion 234

Relationship 203

Representation 235

Represents 235

Role Binding 234

Self-Message 215

Trace 236

Transition 236

Usage 238

Use 238

What Is A? 196

Constraint

Note, Element 126

Post Condition On Actions 89

Precondition On Actions 89

Continuation

Element 132

Control

Create 182

Element 181

Control Flow

Connector 204

Guard 204

Relationship 204

Weight 204

Convey

Information Item 210

Co-Region Notation 212

Create

Boundary Element 180

Combined Fragment 98

Communication Messages 224

Control Element 182

Entity 183

Timing Diagram 23

Index243

UML Dictionary

Create

Timing Message 227

CSV

Export State Machine Table To 21

Custom

Diagram 71, 72, 73

Custom Diagram

Description 69

Elements And Connectors 69

Example 69

Model 69

- D -
Data Type

Element 159

Instance 159

Referenced 159

Database Schema

Description 75

Diagram 75

Elements And Connectors 75

Example 75

Datastore

Element, Activity Diagram 102

Decision

Element 102

Define

Run-Time Variable 166

Delegate

Connector 205

Relationship 205

Delete

Instance Variable 167

Dependency

Connector 205

Relationship 205

Relationship, Apply Stereotype 206

Deployment

Connector 206

Diagram 62

Relationship 206

Deployment Diagram

Description 62

Elements And Connectors 62

Example 62

Deployment Spec

Element 160

Device

Element 161

Diagram

Activity, Description 5

Analysis 67

Behavioral, Overview 4

Business Interaction 75

Business Modeling 75

Class 56

Collaboration 49

Communication 49

Component 65

Composite Structure 59

Custom 69, 71, 72, 73

Database Schema 75

Deployment 62

Diagram 179, 181, 182

Extended 4

Extended UML 67

Frame 104

Frame (Border) 104

Hyperlink 104

Interaction 22, 39, 49, 52

Interaction Overview 52

Logical 56

Maintenance 72

MDG Technology 4

Move, Impact On Element 102, 110, 111, 117

Object 58

Overview 4

Package 55

Reference 104

Requirements 71

Robustness 39, 49, 67, 179, 181, 182

Schema Diagram 75

Sequence 39

State 9

State Machine 9

Structural, Overview 54

Timing 22

Types 4

UML 4

Use Case 7

User Interface 73

User Interface Design 69

What Is A? 4

Diagram Frame 104

Diagram Gate

Element 105

Dialog

New Action 81

Qualifiers 175

Set Attribute 85

Set Feature 85

Index 244

© 1998-2010 Sparx Systems Pty Ltd

Dialog

Set Operation 85

Document Artifact

Element 161

Duration

Constraint 218

Constraint Between Messages 218

Observation 218

- E -
Element

Action 79

Activity 90

Activity Final 110

Activity Partition 126

Activity Region 128

Actor 94

Artifact 151

Behavioral Diagram 78

Boundary 179

Boundary, Settings 144

Central Buffer Node 95

Choice 95

Class 152

Collaboration 156

Collaboration Occurrence 157

Combined Fragment 96

Component 158

Composite 180

Constraint Note 126

Continuation 132

Continutaion 132

Control 181, 182

Data Type 159

Datastore, Activity Diagram 102

Decision 102

Deployment Spec 160

Device 161

Diagram Frame 104

Diagram Gate 105

Document Artifact 161

Endpoint 106

Entity 182

Entry Point 107

Enumeration 162

Event 183

Exception 107

Execution Environment 162

Exit Point 110

Expansion Region 107

Expose Interface 163

Extended By Stereotype 178

Feature 184

Flow Final 111

Fork 112, 114

Fragment 96

History 116

Hyperlink 184

Information Item 163

Initial 117

Instance 165

Interaction 118

Interaction Occurrence 119

InteractionUse 119

Interface 164

Interruptible Activity Region 121

Join 112, 115

Junction 122

Lifeline 123

Merge 102

Merge Node 124

N-Ary Association 187

Node 165

Note (Constraint, Comment) 126

Object 165

Occurrence 119

Package 168

Packaging Component 188

Part 168

Partition 126

Port 169

Primitive 173

Process 189

Properties, Edit From Package 55

Pseudo-State 13

Receive 127

Receive Event 183

Region 128

Region, Expansion 107

Region, Interruptible Activity 121

Requirement 189

Screen 190

Send 129

Send Event 183

Sequence Diagram 43

Sequence, Lifecycle 41

Signal 178

State 129

State Invariant 132, 134

State Lifeline 135

State Machine 136

Index245

UML Dictionary

Element

State/Continuation 132

Structural Diagram 150

Structured Activity, Conditional Node 136, 139

Structured Activity, Loop Node 136, 139

Structured Activity, Sequential Node 136, 138

Structured Activity, Structured Node 136, 138

Sub-Activity 90

Sub-Activity, Conditional Node 136, 139

Sub-Activity, Loop Node 136, 139

Sub-Activity, Sequential Node 136, 138

Sub-Activity, Structured Node 136, 138

Submachine State 129, 136

Synch 142

System Boundary 142

Table 192

Terminate 144

Test Case 191

Trigger 145

UI Control 192

UML 78

Use Case 146

User Interface 192

Value Lifeline 149

Endpoint

Element 106

Enterprise Architect

Alignment With UML 2

Connectors 196

Entity

Create 183

Element 182

Entry Point

Element 107

Enumeration

Element 162

Literal 162

Eriksson-Penker Business Extensions 67

Event

Element 183

Receive 183

Send 183

Exception

Element 107

Execution Environment

Element 162

Exit Point

Element 110

Expansion Node

Action 86

Expansion Region

Add 110

Element 107

Export

State Machine Table To CSV 21

Expose Interface

Element 163

Extend

Connector 207

Relationship 207

Extended Elements 178

Extended UML Diagrams 67

Extension Points

Use Case 147

Extension Stereotypes 178

- F -
FDD Methodology 184

Feature

Element 184

Feature Driven Design Methodology 184

File

Hyperlink To 184

Flow Final

Element 111

Fork

Element 112, 114

Pseudo-State 112, 114

Fork/Join

Element 112

Fragment

Element 96

- G -
General Ordering

Sequence Diagram Messages 220

Generalize

Connector 207

Relationship 207

- H -
Help

Topic, Hyperlink To 184

History

Element 116

Hyperlink

As Sub Activities 184

Diagrams 184

Index 246

© 1998-2010 Sparx Systems Pty Ltd

Hyperlink

Element 184

To External Files 184

To Help Topics 184

To Internet Facilities 184

To Matrix Profiles 184

To Model Search 184

To Team Review 184

- I -
Implements

Connector 233

Relationship 233

Inbuilt Stereotypes 178

Include

Connector 208

Relationship 208

Information Flow

And Patterns 208

Connector 208

In Combination 208

Realized 210

Relationship 208

Information Item

Conveyed 210

Element 163

Inheritance

Connector 207

Relationship 207

Inherited Port

Manage 170

Initial

Element 117

Inline Sequence Elements

Part And Port 49

Insert

Boundary Element 144

Instantiated Template 154

Interaction

Diagram 22, 49, 52

Element 118

Interaction Diagram

Description 39

Diagram 39

Elements And Connectors 39

Example 39

Interaction Occurrence

Element 119

Interaction Operator

Combined Fragment 99

Interaction Overview Diagram

Description 52

Elements And Connectors 52

Example 52

InteractionUse

Element 119

Interface

Element 164

Expose Element 163

Provided 163

Required 163

Internet Facilities

Hyperlink To 184

Interrupt Flow

Connector 211

Relationship 211

Interruptible Activity Region

Add 122

Element 121

Interval Bar

Context Menu 32

Timing Diagram Time Interval 32

Introduction

To UML Objects 78

- J -
Join

Element 112, 115

Pseudo-State 112, 115

Junction

Element 122

- L -
Label Visibility

On Sequence Messages 48

Layout

Sequence Diagram 42

Legend

Add To State Machine Table 20

Remove From State Machine Table 20

Lifecycle

Of A Sequence Element 41

Lifeline

Element 123

Objects In Sequence Diagrams 44

Sequence Element, Termination 41

Local

Pre/Post Conditions 89

Logical Diagram

Index247

UML Dictionary

Logical Diagram

Class Diagram 56

Loop Node

Structured Activity 136, 139

- M -
Maintenance Diagram

Description 72

Elements And Connectors 72

Example 72

Manage

Inherited Ports 170

Redefined Ports 170

Manifest

Connector 211

Relationship 211

Matrix Profile

Hyperlink To 184

Merge

Element 102, 124

Node 124

Merge Packages

Relationship 232

Message

Asynchronous Signal 221

Collaboration 224

Colors In Communication Diagrams 51

Communication 223

Communication, Create 224

Connector 212

Create On Timing Diagram 227

Endpoint 124

Group, Start New 224

Label 125

Level 224

Move 212

Recursion 234

Relationship 212

Self Message 215

Self Message Call 216

Sequence Communication 224

Sequence Diagram, Asyncronous Signal 221

Sequence Diagram, Examples 217

Sequence Diagram, General Ordering 220

Sequence Diagram, Self Message 215

Sequence, Create 212

Sequence, Label Visibility 48

Sequencing 224

Timing Diagram 226

Message Angle

Adjust With Duration Constraint 218

Methodology

FDD 184

Feature-Driven Design 184

Model Search

Hyperlink To 184

Model-View-Controller Pattern 182

MVC Pattern 182

- N -
N-Ary

Association Element 187

Nesting

Connector 229

Relationship 229

New Action Dialog 81

New Structured Activity Dialog 136

Node

Element 165

Notation

Co-Region 212

Note

Element 126

Notelink

Connector 230

Relationship 230

Numeric Range Generator

Timeline Element States 29

- O -
Object

Element 165

Instance 165

State, Set 167

Object Diagram

Description 58

Elements And Connectors 58

Example 58

Object Flow

Connector 230

In Activity Diagram 231

In State Machine Diagram 230

Multiple 231

Relationship 230

Selection Behavior 231

Simple 231

Transformation Behavior 231

With Action Pins 231

Occurrence

Index 248

© 1998-2010 Sparx Systems Pty Ltd

Occurrence

Connector 232

Element 119

Relationship 232

Operation

As Action 79

- P -
Package

Element 168

Package Diagram

Description 55

Elements And Connectors 55

Example 55

Package Import

Connector 232

Relationship 232

Package Merge

Connector 232

Relationship 232

Packaging Component

Element 188

Parameterized Classes (Templates) 154

Part

Add Property Value 169

Element 168

Property Tab 172

Qualifiers 175

Represent On Sequence Diagram 49

Partition

Activity 126

Docking 126

Element 126

Horizontal 126

Vertical 126

Pattern

Model-View-Controller 182

MVC 182

Pin

Action 87

Add To Action 87

As Action Property 88

As Argument For Call Action 87

Assign To Action 87, 88

Properties 87

Pkg Import

Connection 232

Relationship 232

Pkg Merge

Connector 232

Relationship 232

Port

Add To Element 170

Element 169

For Trigger Element 145

Inherited 170

Property Tab 172

Qualifiers 175

Redefined 170

Represent On Sequence Diagram 49

Pre/Post Conditions

Constraints 89

Local 89

Notes 89

On Actions 89

Primitive

Element 173

Process

Element 189

Properties

Effect Tab 79

Element, Trigger Tab 145

Of Classifiers, Composite Structure Diagram
61

Properties,

Part, Property Tab 172

Port, Property Tab 172

Property Value

Part, Add To 169

Pseudo-State

Elements 13

Fork 112, 114

In State Machine Diagram 13

Join 112, 115

- Q -
Qualified Association 173

Qualifier

Association End 175

Association Property 173

Attribute 175

Attribute Property 173

Dialog 175

Part 175

Part Property 173

Port 175

Port Property 173

Set Properties 175

Index249

UML Dictionary

- R -
Realize

An Information Flow 210

Connector 233

Relationship 233

Receive

Element 127

Event 183

Reception

Definition 178

Of Signal 178

Rectangle Notation

For Use Cases 148

Recursion

Connector 234

Message 234

Relationship 234

Redefined Port

Manage 170

Region

Composite State 12

Concurrent Substate 12

Element 128

Expansion, Element 107

Interruptible Activity, Element 121

On Composite State 130

State Machine 12

Relationship

Activity Edge 211

Aggregate 198

Assembly 199

Associate 199

Association 199

Association Class 200

Asynchronous Signal 221

Communication 203

Communication Path 202

Compose 202

Composite Aggregation 202

Connector 203

Control Flow 204

Delegate 205

Dependency 205

Dependency, Apply Stereotype 206

Deployment 206

Extend 207

Generalization 207

Generalize 207

Implements 233

Include 208

Information Flow 208

Inheritance 207

Interrupt Flow 211

Manifest 211

Message 212

Nesting 229

Notelink 230

Object Flow 230

Occurrence 232

Package Import 232

Package Merge 232

Pkg Import 232

Pkg Merge 232

Realize 233

Recursion 234

Representation 235

Represents 235

Role Binding 234

Self Message 215

Trace 236

Transition 236

Usage 238

Use 238

Re-Order

Messages 224

Representation

Connector 235

Relationship 235

Represents

Connector 235

Relationship 235

Requirement

Element 189

Hide Stereotype Letter 189

Show Stereotype Letter 189

Requirements Diagram

Description 71

Elements And Connectors 71

Example 71

Robustness Diagram 179

Role Binding

Connector 234

Relationship 234

Run State 166

Add Instance Variable 166

Run-Time

Variable, Define 166

Run-Time State

Add Instance Variable 166

Delete Instance Variable 167

Index 250

© 1998-2010 Sparx Systems Pty Ltd

Run-Time State

Introduction 166

- S -
Scenario

Use Case 43

Schema

Database 75

Screen

Element 190

Self Message

Calls 216

Self-Message

Connector 215

Hierarchy, Sequence Diagram 46

Relationship 215

Return 215

Send

Element 129

Event 183

SendSignal Action

Signal Tab 81

Sequence

Communication Messages 224

Message, Change Timing Details 218

Message, Create 212

Message, Timing Details 218

Sequence Diagram

Activation Levels 46

And Version Control 44

Damage To 44

Description 39

Element Activation 45

Elements 43

Elements And Connectors 39

Example 39

Layout 42

Lifeline Activation Level 46

Messages, Asynchronous Signal 221

Messages, Self Message 215

Self-Message Hierarchy 46

Top Margin, Change 48

Sequence Diagram Message

Examples 217

External To Sequence 217

General Ordering 220

Sequence Element

Inline, Part And Port 49

Sequence Message

Label Visibility 48

Modify Height 42

Sequential Node

Structured Activity 136, 138

Set

Object State 167

Set Attribute Dialog 85

Set Feature Dialog 85

Set Operation Dialog 85

Signal

Element 178

Reception 178

State

Add To State Lifeline Element 25

Chart 9

Composite 129, 130

Delete On State Lifeline Element 25

Diagram 9

Edit On State Lifeline Element 25

Element 129

Entry And Exit Actions 129

In Timeline Element 29

Locate In State Machine Diagram 20

Locate In State Machine Table 20

Reposition In State Machine Table 20

Simple 129

State Machine Table Conventions 21

State Invariant

Element 132, 134

State Lifeline

Element 135

State Lifeline Element

Add State 25

Add To Timing Diagram 24

Add Transition 26

Change Transition Time 26

Define Name 24

Delete State 25

Delete Transition 26

Edit State 25

Edit Transition 26

Merge Transitions 26

Move Transition 26

Set Timeline Start Position 24

Sizing and Scale 24

Synchronize Transition 26

State Machine

Element 136

Regions 12

State Machine Diagram

Description 9

Display Format 9

Index251

UML Dictionary

State Machine Diagram

Elements And Connectors 9

Example 9

Locate State In State Machine Table 20

Locate Transition In State Machine Table 20

Locate Trigger In State Machine Table 20

State Machine Table

Add States 18

Add Substates 18

Add Triggers 19

Cell Color 15

Cell Enumeration 15

Cell Highlights 15

Cell Size 15

Change Position In Diagram View 18

Change Size 18

ChangeTransitions 19

Conventions 21

Description 14

Export To CSV 21

Format 14

Insert Transitions 19

Legend, Add 20

Legend, Remove 20

Locate State In State Machine Diagram 20

Locate Transition In State Machine Diagram
20

Locate Trigger In State Machine Diagram 20

Operations, Overview 17

Options 15

Remove Substate Parent Relation 18

Reposition States 20

Reposition Substates 20

Reposition Triggers 20

State-Next State 14

State-Trigger 14

Table Format 15

Trigger-State 14

State Region

Composite 12

State/Continuation

Element 132

Stereotype

Analysis 179

Apply To Dependency Relationship 206

Extension 178

Inbuilt 178

Stereotyped Element

Table 192

Structural Diagram

Elements 150

Structural Diagrams

Overview 54

StructuralFeature Action

Set Structural Feature 81

Structured Activity

Conditional Node 136, 139

Element 136, 138, 139

Loop Node 136, 139

Nested 136

Node 136, 138

Sequential Node 136, 138

Structured Activity Node 138

Sub-Activity

Conditional Node 136, 139

Element 90, 136, 138

Loop Node 136, 139

Submachine State

Element 129, 136

Substate

Reposition In State Machine Table 20

Sub-State 130

Synch

Element 142

System Boundary

Element 142

- T -
Table

Detail 192

Element 192

Properties 192

State Machine 14

Team Review

Hyperlink To 184

Template

Instantiated 154

Parameterized Classes 154

Terminate

Element 144

Test Case

Element 191

Time Event 127

Time Interval

Compress 32, 36

Context Menu 32

Copy and Paste 36

Create 32

Delete 32

Description 32

Move 32

Operations 36

Index 252

© 1998-2010 Sparx Systems Pty Ltd

Time Interval

Resize 32

Select 32

Shift Left Or Right 36

Transitions 36

Time Range

Set For Timing Diagram 23

Timeline Element States

Add Via Configure Timeline Dialog 29

Delete via Configure Timeline Dialog 29

Edit Via Configure Timeline Dialog 29

Maintain 29

Numeric Range Generator 29

Timeline Range

Set For Timing Diagram 23

Timeline Start Position

Set For State Lifeline Element 24

Timing

Constraint 218

Details, Change 218

Message 226

Message, Create 227

Observation 218

Timing Diagram

Add Value Lifeline Element 27

Create 23

Description 22

Edit Options 24

Edit Value Lifeline Element 27

Elements And Connectors 22

Example 22

Set Time Range 23

Top Margin

Sequence Diagram, Change 48

Trace

Connector 236

Relationship 236

Traceability

In Requirements Models 71

Transition

Add To State Lifeline Elements 26

Add Via Configure Timeline Dialog 31

Change In State Machine Table 19

Change Time, State Lifeline Element 26

Connector 236

Delete On State Lifeline Element 26

Delete Via Configure Timeline Dialog 31

Edit In Time Intervals 36

Edit On State Lifeline Elements 26

Edit Via Configure Timeline Dialog 31

Effect 236

Guard 236

Highlight Associated Trigger or State 19

Insert In State Machine Table 19

Locate In State Machine Diagram 20

Locate In State Machine Table 20

Merge On State Lifeline Element 26

Move On State Lifeline Elements 26

Properties 236

Relationship 236

State Machine Table Conventions 21

Trigger 236

Trigger

Create 145

Create In State Machine Table 19

Create In Transition Properties 236

Element 145

For Transition 236

Locate In State Machine Diagram 20

Locate In State Machine Table 20

Ports 145

Properties Tab 145

Reposition In State Machine Table 20

State Machine Table Conventions 21

Type 236

- U -
UI Control

Element 192

UML

Connectors 196

Definition 2

Dictionary 2

Elements 78

Extend 2

Recommended Reading 2

UML Behavioral Diagram

Overview 4

UML Diagram

Extended 4, 67

MDG Technology 4

Overview 4

Types 4

What Is A? 4

UML Element

Behavioral Diagram Elements 78

Structural Diagram Elements 150

UML Structural Diagram

Overview 54

UML Toolbox

Business Modeling Group 75

Index253

UML Dictionary

Unified Modeling Language 2

Usage

Connector 238

Relationship 238

Use

Connector 238

Relationship 238

Use Case

Element 146

Extension Points 147

Rectangle Notation 148

Scenarios 43

Use Case Diagram

Description 7

Elements And Connectors 7

Example 7

User Interface

Control Element 192

Element 192

Screen Prototype 190

User Interface Design 69

User Interface Diagram

Description 73

Elements And Connectors 73

Example 73

- V -
Value Lifeline Element 149

Add States 28

Add To Timing Diagram 27

Add Transitions 28

Change Transition Time 28

Delete Transitions 28

Edit Transitions 28

Sizing and Scale 27

States 27

Transitions 27

Version Control

And Sequence Diagram 44

- W -
Web

Page Modeling 194

Stereotypes 194

Web Page

Prototype 190

What Is

A Connector? 196

UML Dictionary
www.sparxsystems.com

	UML Dictionary
	UML Diagrams
	Behavioral Diagrams
	Activity Diagram
	Use Case Diagram
	State Machine Diagrams
	Regions
	Pseudo-States

	State Machine Table
	State Machine Table Options
	State Machine Table Operations
	Change State Machine Table Position
	Change State Machine Table Size
	Insert New State
	Insert Trigger
	Insert/Change Transition
	Reposition State or Trigger Cells
	Add Legend
	Find Cell in State Machine Diagram
	State Machine Table Conventions
	Export State Table To CSV File

	Timing Diagram
	Create a Timing Diagram
	Set a Time Range
	Edit a Timing Diagram
	Add and Edit State Lifeline
	Edit States In State Lifeline
	Edit Transitions In State Lifeline
	Add and Edit Value Lifeline
	Add States In Value Lifeline
	Edit Transitions In Value Lifeline
	Configure Timeline - States
	Configure Timeline - Transitions

	Time Intervals
	Time Interval Operations

	Sequence Diagram
	Denote Lifecycle of an Element
	Layout of Sequence Diagrams
	Sequence Elements
	Sequence Diagrams and Version Control
	Sequence Element Activation
	Lifeline Activation Levels
	Sequence Message Label Visibility
	Change the Top Margin
	Inline Sequence Elements

	Communication Diagram
	Communication Diagrams in Color

	Interaction Overview Diagram

	Structural Diagrams
	Package Diagram
	Class Diagram
	Object Diagram
	Composite Structure Diagram
	Properties

	Deployment Diagram
	Component Diagram

	Extended Diagrams
	Analysis Diagram
	Custom Diagram
	Requirements Diagram
	Maintenance Diagram
	User Interface Diagram
	Database Schema
	Business Modeling/Interaction

	UML Elements
	Behavioral Diagram Elements
	Action
	Action Notation
	Set Feature Dialog

	Action Expansion Node
	Action Pin
	Assign Action Pins
	Local Pre/Post Conditions

	Activity
	Activity Notation
	Activity Parameter Nodes
	Activity Partition

	Actor
	Central Buffer Node
	Choice
	Combined Fragment
	Create a Combined Fragment
	Interaction Operators

	Datastore
	Decision
	Diagram Frame
	Diagram Gate
	Endpoint
	Entry Point
	Exception
	Expansion Region
	Add Expansion Region

	Exit Point
	Final
	Flow Final
	Fork/Join
	Fork
	Join

	History
	Initial
	Interaction
	Interaction Occurrence
	Interruptible Activity Region
	Add Interruptible Activity Region

	Junction
	Lifeline
	Merge
	Message Endpoint
	Message Label
	Note
	Partition
	Receive
	Region
	Send
	State
	Composite State

	State/Continuation
	Continuation
	State Invariant

	State Lifeline
	State Machine
	Structured Activity
	Structured and Sequential Nodes
	Loop and Conditional Nodes

	Synch
	System Boundary
	Boundary Element Settings

	Terminate
	Trigger
	Use Case
	Use Case Extension Points
	Rectangle Notation

	Value Lifeline

	Structural Diagram Elements
	Artifact
	Class
	Active Classes
	Parameterized Classes (Templates)

	Collaboration
	Collaboration Occurrence
	Component
	Data Type
	Deployment Spec
	Device
	Document Artifact
	Enumeration
	Execution Environment
	Expose Interface
	Information Item
	Interface
	Node
	Object
	Run-time State
	Define a Run-time Variable
	Remove a Defined Variable

	Object State

	Package
	Part
	Add Property Value

	Port
	Add a Port to an Element
	Inherited and Redefined Ports
	The Property Tab

	Primitive
	Qualifiers
	Qualifiers Dialog

	Signal

	Inbuilt and Extension Stereotypes
	Analysis Stereotypes
	Boundary
	Create a Boundary

	Composite Elements
	Control
	Create a Control Element

	Entity
	Create an Entity

	Event
	Feature
	Hyperlinks
	N-Ary Association
	Packaging Component
	Process
	Requirements
	Screen
	Test Case
	Table
	UI Control Element
	Web Stereotypes

	UML Connectors
	Aggregate
	Change Aggregation Connector Form

	Assembly
	Associate
	Association Class
	Connect New Class to Association

	Communication Path
	Compose
	Connector
	Control Flow
	Delegate
	Dependency
	Apply a Stereotype

	Deployment
	Extend
	Generalize
	Include
	Information Flow
	Convey Information on a Flow
	Realize an Information Flow

	Interrupt Flow
	Manifest
	Message
	Message (Sequence Diagram)
	Self-Message
	Call
	Message Examples
	Change the Timing Details
	General Ordering
	Asynchronous Signal Message

	Message (Communication Diagram)
	Create a Communication Message
	Re-Order Messages

	Message (Timing Diagram)
	Create a Timing Message

	Nesting
	Notelink
	Object Flow
	Object Flows in Activity Diagrams

	Occurrence
	Package Import
	Package Merge
	Realize
	Recursion
	Role Binding
	Represents
	Representation
	Trace
	Transition
	Use

