
Copyright © 1998-2010 Sparx Systems Pty Ltd

Version Control Within UML
Models Using Enterprise

Architect

Enterprise Architect is an intuitive, flexible and powerful UML
analysis and design tool for building robust and maintainable

software.

This booklet explains the Version Control feature of Enterprise
Architect.

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this document
or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be
liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or
indirectly by this document.

Printed: May 2010

Version Control Within UML Models Using Enterprise Architect

© 1998-2010 Sparx Systems Pty Ltd

Publisher
Special thanks to:

All the people who have contributed suggestions, examples, bug
reports and assistance in the development of Enterprise Architect.
The task of developing and maintaining this tool has been greatly
enhanced by their contribution.Managing Editor

Technical Editors

Sparx Systems

Geoffrey Sparks

Geoffrey Sparks
Howard Britten

IContents

© 1998-2010 Sparx Systems Pty Ltd

Table of Contents

Foreword 1

Version Control 2

... 5Version Control Basics

... 6Apply Version Control To Models

... 7Version Control & Team Deployment

... 8Version Control Menu

... 9Version Control Setup

.. 9Version Control Settings Dialog

... 11Version Control Nested Packages

.. 11Version Control with SCC

... 14Upgrade at Enterprise Architect 4.5

.. 15Version Control with CVS

... 15CVS with Remote Repositories

... 19CVS with Local Repositories

.. 22Version Control with Subversion

... 22Set up Subversion

... 23Create a new Repository Sub-tree

... 24Create a Local Working Copy

... 24Subversion Under WINE-Crossover

... 26Version Control Configuration

... 28TortoiseSVN

.. 28Version Control with TFS

... 29Connect an Enterprise Architect Model to Version Control using TFS

... 33Use Version Control

.. 33Package Version Control Menu

.. 36Configure Controlled Package

.. 37Use Existing Configuration

.. 37Validate Package Configurations

.. 38Check In and Check Out Packages

.. 40Include Other Users' Packages

.. 41Apply Version Control To Branches

.. 42Export Controlled Model Branch

.. 42Import Controlled Model Branch

.. 44Review Package History

.. 44Refresh View of Shared Project

.. 45Resynchronize the Status of Version Controlled Packages

... 46Offline Version Control

Index 48

Foreword

This user guide provides an introduction to the
Version Control feature of Enterprise Architect.

Foreword1

Version Control Within UML Models Using Enterprise Architect

 | 2

© 1998-2010 Sparx Systems Pty Ltd

Version Control

Enterprise Architect supports version control of packages and their component sub-packages to a central
version control repository. You can place any individual packages, View nodes or model root nodes under
version control.

Features

Version Control provides two key facilities:

· Coordinating sharing of packages between users

· Saving a history of changes to Enterprise Architect packages, including the ability to retrieve previous
versions.

System Requirements

Version controlled packages are packages that have been configured for use with version control software. To
use version control in Enterprise Architect, a third-party source-code control application is required that
controls access to and stores revisions of the controlled packages. Enterprise Architect supports the following
version control applications:

· Subversion, which is available from http://www.subversion.tigris.org/

· CVS, which is available from http://www.march-hare.com/cvspro/

· Microsoft Team Foundation Server

· SCC-compatible products; all version control products that provide a client that complies with the Microsoft
Common Source Code Control standard, version 1.1 or higher.

The following products are SCC-compatible and are known to successfully integrate with Enterprise
Architect:

- Accurev Tested by Sparx

- Borland Star Teams Users report success

- ClearCase Users report success

- MS Visual Source Safe Tested by Sparx

- MS TFS-SCC Tested by Sparx

- MKS Source Integrity Tested by Sparx

- Perforce Tested by Sparx

- Serena Dimensions Users report success

- Serena Change Manager Users report success

- Snapshot CM Tested by Sparx

- SourceGear Vault Tested by Sparx

- Source Offsite Tested by Sparx

Products that do not appear in the list should still integrate successfully with Enterprise Architect, if there is
a client available for that product that complies with the MS SCC API specification.

Set-Up

Before using Enterprise Architect's version control facility, your version control software must be installed on
each machine on which it is intended to be used.

http://subversion.tigris.org/
http://www.tortoisecvs.org/

 | 3

Version Control Within UML Models Using Enterprise Architect

Typically there are:

· A server component that manages a version control repository, and

· Client components on the workstations that Enterprise Architect uses to communicate with the server.

A version control client must be installed on every machine where you run Enterprise Architect and want to
access your version control system. Once the version control software has been installed and configured, you
must define a Version Control Configuration within Enterprise Architect, to use your installed version control
product.

Note:

Sparx Systems strongly urge you not to manipulate version controlled package files outside of Enterprise
Architect. It is possible to leave the package files in a state that Enterprise Architect cannot recognize.

Usage

There are four basic ways in which the version control facility might be used:

Use Description

Single Shared model Users share an Enterprise Architect model, stored in a central .EAP file or DBMS
repository. This configuration enables you to view changes to other users' packages
without explicitly having to check them out, but by simply refreshing your view of the
model.

· Version control regulates access to packages, and maintains package revision
history.

Multiple Private
models

An Enterprise Architect model is created by a single user who configures it for
version control. The model file is then distributed to other users, with each user
storing their own private copy of the model.

· Users update their model's packages through version control

· Version control regulates access to packages, and maintains package revision
history

· Other users' new packages are retrieved using the Get Package menu option.

Shared packages Individual users create separate Enterprise Architect models but share one or more
packages.

· Users share packages through version control.

Standard packages A company might have a standard set of packages which are broadly shared (on a
read-only basis).

· Individual users retrieve packages with the Get Package menu option.

For a discussion of how each of these arrangements might be used, see the Version Control white paper:
http://www.sparxsystems.com/resources/whitepapers/index.html.

Version Control Indicators

Packages under version control are identified in the Project Browser by icons that indicate the current status of
the package.

Icon Indicates that...

This package is controlled and is represented by an XMI file on disk. Version control
either is not being used or is not available. You can edit the package. (See the
Controlled Packages topic in UML Model Management.)

This package is version controlled and checked out to you, therefore you can
edit the package.

This package is version controlled and not checked out to you, therefore you cannot
edit the package (unless you check the package out).

38

http://www.sparxsystems.com/resources/whitepapers/index.html

 | 4

© 1998-2010 Sparx Systems Pty Ltd

Icon Indicates that...

This package is version controlled, but you checked it out whilst not connected to
the version control server. You can edit the package but there could be version
conflicts when you check the package in again.

For example, below, CVSOO and CVSPackage are configured for version control. CVSOO is checked out to
you, and CVSPackage is not.

See Also

· Version Control Basics

· Apply Version Control To Models

· Version Control and Team Deployment

· Version Control Menu

· Version Control Setup

· Use Version Control

· Offline Version Control

46

5

6

7

8

9

33

46

Version Control Basics | 5

Version Control Within UML Models Using Enterprise Architect

1 Version Control Basics

The Lock-Modify-Unlock Solution

Many version control systems use a lock-modify-unlock model to address the problem of different authors in a
shared source overwriting each other's work. In this model, the version control repository allows only one
person to change a file at a time, and access is managed using locks. Harry must lock a file before he can
begin making changes to it. If Harry has locked a file, Sally cannot also lock it, and therefore cannot make any
changes to that file. All she can do is read the file, and wait for Harry to finish his changes and release the
lock. After Harry unlocks the file, Sally can take her turn in locking and editing the file.

The Copy-Modify-Merge Solution

Subversion, CVS and a number of other version control systems use a copy-modify-merge model as an
alternative to locking. In this model, each user's client contacts the project repository and creates a personal
working copy—a local reflection of the repository's files and directories. Users then work simultaneously and
independently, modifying their private copies. In due course, the private copies are merged together into a
new, final version. The version control system often assists with the merging, but ultimately a person is
responsible for making it happen correctly.

When Locking is Necessary

While the lock-modify-unlock model is generally considered a hindrance to collaboration, there are still times
when locking is necessary.

The copy-modify-merge model is based on the assumption that files are contextually merge-able: that is, the
files in the repository are line-based text files (such as program source code). But for files with binary formats,
such as artwork or sound, it is often impossible to merge conflicting changes. In these situations, it really is
necessary for users to take strict turns in changing the file. Without serialized access, somebody ends up
wasting time on changes that are ultimately discarded.

Apply Version Control To Models | 6

© 1998-2010 Sparx Systems Pty Ltd

2 Apply Version Control To Models

All Enterprise Architect models are stored in databases - even the .EAP file is a database. In simple, version
control terms, the model is a single entity of binary data. It is not practical to apply version control to the
database as a whole. Being binary data, it would require the use of the lock-modify-unlock model of
version control, which would mean that only a single user at a time could work on any given (version
controlled) model.

To overcome this limitation, Enterprise Architect exports discreet units of the model - the packages - as XMI
package files, and it is these XMI files, not the .EAP file, that are placed under version control. The XMI file
format used by Enterprise Architect dictates that they too be treated as binary files (therefore it is not possible
to merge the XMI files either); however, by splitting the model into much smaller parts, this approach enables
many users to work on separate parts of the model simultaneously.

When a user checks-out a package, Enterprise Architect sends a command to the version control system
to check-out the equivalent XMI file. The version control system then puts the latest revision of the file into the
user's working copy directory, overwriting any previous revision of the file in that directory. Enterprise Architect
then imports the package file into the model, updating the contents of the existing package in the model.

When checking-in , Enterprise Architect exports the package as an XMI file, overwriting the existing local
working copy of the file. The new file is then checked-in to the version control system.

Nested Version Controlled Packages

Nested version controlled packages result in much smaller XMI files being exported for parent packages, as
the parent packages' XMI files do not contain any content for the version controlled child packages.

Version Control of nested packages together with a model structure having small individual packages also
provides greater scope for multiple users to work concurrently, as individual users are locking much smaller
parts of the model.

Notes:

· Do not place your .EAP files under version control, as this creates problems for you.

· Most version control systems mark their controlled files as read only, unless they are specifically
checked-out to you.

· The .EAP file is an MS Jet database, and Enterprise Architect must be able to open this file for read/write
access when you load your model. (Enterprise Architect displays an error message and fails to load the
model if it is read-only.)

5

38

38

11

Version Control & Team Deployment | 7

Version Control Within UML Models Using Enterprise Architect

3 Version Control & Team Deployment

Team deployment and the use of version control is discussed in two Sparx Systems white papers, available on
the Sparx Systems web site:

· http://www.sparxsystems.com/WhitePapers/Version_Control.pdf

· http://www.sparxsystems.com/downloads/whitepapers/EA_Deployment.pdf

A brief summary of the process is provided below:

1. Install your version control product.

2. Create a version control repository.

3. Create a version control project to be used with your Enterprise Architect project, and check-out a
working copy of the project into a local folder. (You must do this for every team member that is
accessing the version controlled packages, whether you are using a single shared model or each team
member stores his own private copy of the model.)

4. Within Enterprise Architect, define a version control configuration to provide access to the working
copy files. Again, each user must do this on their own workstation, as the details are stored within the
Windows registry.

5. Configure packages within the Enterprise Architect model for version control. That is, apply version
control to individual packages.

6. Check-out and check-in packages as required.

Note:

The name of the version control configuration must be the same across all machines. That is, all version
control access to a given Enterprise Architect package must be through version control configurations with
the same name, across all models and all users. (It is possible to use multiple version control configurations
within the same model, so different packages can still use different version control configurations within the
same model, as long as any given package is always accessed via the same version control configuration.)

The easiest way to perform step 4, (throughout the team), is to have one user set up version control on the
model and then share that model with the rest of the team.

· In Shared Model deployment, all users connect to a single instance of the model database, so the model is
shared automatically.

· In Private Model deployment, it is easiest to distribute copies of the original model (after version control has
been set up) to all other members of the team.

Whenever you open a model (Private or Shared) that uses a version control configuration that is not yet
defined on your workstation, Enterprise Architect prompts you to complete the definition for that configuration.
This typically means specifying the local working copy directory and maybe choosing the version control
project associated with this Enterprise Architect project.

Once this has been done, the version controlled packages that already exist in the model are ready for use.

Version Control Branching

Currently, Enterprise Architect does not support Version Control Branching. Work-arounds to achieve similar
results might be possible for certain version-control products; contact Sparx Support for advice:

· Registered users - http://www.sparxsystems.com/registered/reg_support.html

· Trial users - support@sparxsystems.com.

9

36

38

3

http://www.sparxsystems.com/WhitePapers/Version_Control.pdf
http://www.sparxsystems.com/downloads/whitepapers/EA_Deployment.pdf
http://www.sparxsystems.com/registered/reg_support.html
mailto:support@sparxsystems.com

Version Control Menu | 8

© 1998-2010 Sparx Systems Pty Ltd

4 Version Control Menu

You access the Version Control menu through the Project | Version Control menu option. It provides the
following options:

Menu Option & Function
Keys

Use to

Configure Current
Package
[Ctrl]+[Alt]+[P]

Display the Package Control Options dialog, which enables you to specify
whether this package (and its children) is version controlled, and which version
control configuration applies.

Version Control Settings Display the Version Control Settings dialog .

Validate Package
Configurations

Test the validity of the version control settings associated with each version
controlled package within your current model.

Re-Synch Statuses of All
Packages

Resynchronize the version control status of packages as recorded in your
Enterprise Architect project when they are out of synchronization with the
version control status reported by your version control provider.

The function acts on all version controlled packages within the Enterprise
Architect project, updating the values recorded in the project to match the
values reported by the version control provider, without performing any XMI
import or export.

Work Offline Work independently of the version control server , if it is unavailable to you.

36

9

37

45

46

Version Control Setup | 9

Version Control Within UML Models Using Enterprise Architect

5 Version Control Setup

Before using Enterprise Architect's version control facility, your version control product must be installed on
each machine where it is intended to be used. Version Control products supported by Enterprise Architect
include MS Team Foundation Server, Subversion, CVS or any other version control product that provides an
MS SCC-compliant interface.

· Subversion is available from http://www.subversion.tigris.org/

· CVS is available from http://www.wincvs.org/.

Note:

If you are using the Corporate, Business and Software Engineering, System Engineering or Ultimate editions
of Enterprise Architect with security enabled, you must also set up permissions to configure and use version
control. See the List of Available Permissions topic in User Security in UML Models for further information.

Typically there should be:

· A server component that manages a version control repository

· Client components on the workstations that Enterprise Architect uses to communicate with the server.

A version control client must be installed on every machine where you run Enterprise Architect and want to
access your version control system. Once the version control software has been installed and configured, to
use your installed version control product you must define a Version Control Configuration within Enterprise
Architect.

Version control can be assigned to individual packages, view nodes or root nodes in Enterprise Architect.
Each package can only be linked to one Version Control Configuration at a time, although it is possible to
connect multiple control configurations for each model. You can use the Version Control Settings dialog to set
up a connection to your version control application.

To set the Version Control Configuration, select the Project | Version Control | Version Control Settings
menu option, and see the Version Control Settings Dialog topic.

See Also

· Version Control with SCC

· Version Control with CVS

· Version Control with Subversion

· Version Control with TFS

5.1 Version Control Settings Dialog

The Version Control Settings dialog enables you to specify the information required to create a Version
Control Configuration, which can then be used to establish a connection to a version control provider.
Enterprise Architect supports version control through MS Team Foundation Server, Subversion, CVS or any
SCC-compliant version control product.

It is possible to use multiple version control configurations in the same Enterprise Architect model. It is also
possible to use the same version control configuration across different models, to facilitate sharing 'standard'
packages between those models, through the version control system.

Note:

In the Corporate, Business and Software Engineering, System Engineering and Ultimate editions of
Enterprise Architect, if security is enabled you must have Configure Version Control permission to set up
version control options for the current model. See User Security in UML Models.

Setting Up Version Control

When you display the Version Control Settings dialog for the first time in any given model, it appears as shown
below:

9

11

15

22

28

http://subversion.tigris.org/
http://www.wincvs.org/

Version Control Setup | Version Control Settings Dialog 10

© 1998-2010 Sparx Systems Pty Ltd

To begin defining a new version control configuration, follow the steps below:

1. Click on the New button.

2. In the Unique ID field, type a suitable name.

3. Against the Type field, click on the radio button for the version control product to connect to.

At this point, the middle section of the dialog changes to display a collection of fields relating to the type
of Version Control Configuration you are defining. Go to the relevant topic below:

· Version Control with SCC

· Version Control with CVS

· Version Control with Subversion

· Version Control with TFS

11

15

22

28

Version Control Setup | Version Control Settings Dialog11

Version Control Within UML Models Using Enterprise Architect

To import a previously defined configuration for use in the current model, follow the steps below:

1. Click on the New button.

2. In the Unique ID field, click on the drop-down arrow and select one of the previously defined version
control configurations.

3. Click on the Save button to save the selected version control configuration in this model.

See Also

· Version Control Nested Packages

5.1.1 Version Control Nested Packages

In releases of Enterprise Architect later than version 4.5, when you save a package to the version control
system only stub information is exported for any nested packages. This ensures that information in a nested
package is not inadvertently over-written by a top level package.

When checking out a package, Enterprise Architect does not modify or delete nested packages; only the top
level package is modified.

As a consequence of this behavior, if you check out or get a version controlled package with nested packages
not already in your model, you see stubs in the model for the nested packages only. If you select the Get All
Latest option from the version control menu, Enterprise Architect populates these new stubs from the version
control system.

Using the above technique you can populate a large and complex model from only the root packages, using
Get All Latest to recursively iterate through the attached and nested packages.

This is a powerful and efficient means of managing your project and simplifies handling very large models,
even in a distributed environment.

It is recommended you do not mix versions of Enterprise Architect later than version 4.5 with earlier versions
when sharing a version controlled model. If this is necessary it is best to go to the Version Control Settings
dialog and deselect the Save nested version controlled packages to stubs only checkbox, setting
Enterprise Architect to the pre-version 4.5 behavior (for the current model only).

5.2 Version Control with SCC

To set up an SCC version control configuration, you must:

· Set up the source code control provider with SCC, and

· Connect the Enterprise Architect model to version control with SCC.

See also, the topic on version control with SCC when Upgrading at Enterprise Architect 4.5 .

Set Up the Source Code Control Provider with SCC

To set up the third-party source code control provider, see the documentation provided with that application. A
repository must be set up using the SCC provider and access to that repository must be available to all
intended users.

Connect an Enterprise Architect Model to Version Control with SCC

To connect an Enterprise Architect model to version control, follow the steps below:

1. Open or create the Enterprise Architect model to place under version control.

2. Select the Project | Version Control | Version Control Settings menu option. The Version Control
Settings dialog displays.

11

9

14

Version Control Setup | Version Control with SCC 12

© 1998-2010 Sparx Systems Pty Ltd

.

3. Click on the New button.

4. In the Unique ID field, type a suitable name. Click on the SCC radio button.

5. To the right of the Local Project path field, click on the Select Path... button. The Browse for Folder
dialog displays.

Version Control Setup | Version Control with SCC13

Version Control Within UML Models Using Enterprise Architect

6. Locate and click on the local folder in which to keep local working copies of the XML files to be stored in
the Version Control repository.

7. Click on the OK button. The Select SCC Provider dialog displays.

Note:

All users of the shared database must specify the same SCC provider.

8. Click on an SCC provider, and click on the OK button to return to the Version Control Settings dialog.

9. Click on the Save button to save the configuration you have defined.

The SCC provider is likely to prompt you for various details including the name of the project to connect
to, and perhaps the user name to use when you log in.

10. The new configuration is added to the list in the Defined Configurations panel.

Version Control Setup | Version Control with SCC 14

© 1998-2010 Sparx Systems Pty Ltd

Note:

A new entry is also created in the Local Paths list, with the same ID as the new version control
configuration. The Local Path entry records the Local Project path, for use in subsequent path
substitutions. See the Local Paths Dialog topic in Code Engineering Using UML Models.

11. When you have finished defining your version control configurations, click on the Close button.

For further information on the fields on the Version Control Settings dialog, see the following table.

Field Use to

This model is
private

Specify whether all users connect to a single shared copy of the model (for example, a
DBMS) or each user connects to their own private copy of the model.

When unselected (for shared models), the option disables the File History - Retrieve
functionality when the selected package is checked out by another user. This prevents
modifications that might have been made by the other user from being discarded
through importing a prior revision from version control.

Save nested
version controlled
packages to stubs
only

Set nested version controlled packages to stubs or fully expanded trees. Defaults to
selected.

For a full explanation of this option, see Version Control Nested Packages .

Unique ID Specify a configuration name that readily distinguishes this configuration from other
configurations. The unique ID is displayed as a selection in the list of Version Control
configurations a package can connect to.

You can also click on the drop-down arrow and select a previous version control
configuration, providing the configuration is not in the current model.

Local Project Path Specify the folder in which the XML files representing the packages are stored. This
folder should already exist before it is specified here.

Every PC using version control should have its own local SCC project folder, and this
should not be a shared network folder. Particularly bear this in mind if you are creating
a .EAP file that is to be shared (such as a SQL database).

Current User Read only. Shows your user name as the user currently logged into the SCC provider.

SCC Provider Read only. Shows the name of the provider specified in the database.

SCC Project Read only. Shows the project selected during the initial setup of the connection to the
SCC provider.

Note:

Sparx Systems strongly urge you not to manipulate version controlled package files outside of Enterprise
Architect. It is possible to leave the package files in a state that Enterprise Architect cannot recognize.

5.2.1 Upgrade at Enterprise Architect 4.5

When a version-controlled project created under a release of Enterprise Architect earlier than 4.5 is opened in
Enterprise Architect release 4.5 or later, you must identify the SCC connection with a new unique ID. You can
assign a name to the existing SCC configuration or associate the project with a configuration that has
previously been assigned a unique ID.

By having a unique ID for Version Control Configurations, you can assign a configuration quickly and
efficiently using configurations that have been created previously for other version controlled repositories. This
enables you to configure the many packages to use an existing version control repository; this can apply to
packages created for more than just one model enabling a great deal of flexibility.

To upgrade an existing SCC version control project created before release 4.5, in Enterprise Architect release
4.5 or later, follow the steps below.

1. Open the project that has an SCC Version Control Configuration created in Enterprise Architect earlier

11

Version Control Setup | Version Control with SCC15

Version Control Within UML Models Using Enterprise Architect

than version 4.5.

2. The Select or Create Unique ID for Version Control dialog prompts you to create an ID for an existing
configuration or to choose a previously created one from the Unique ID drop-down list.

3. The existing SCC configuration is the initial value, represented by SCC-XXXXX; this number is not
especially meaningful, therefore it is recommended that the configuration be given a meaningful name.

4. You can associate the version controlled package with a previously-defined configuration by selecting
an existing configuration from the Unique ID drop-down list (if one exists).

5. After you have assigned the unique ID, click on the OK button to load the model.

5.3 Version Control with CVS

CVS is used to manage files and directories and is an open source, version control system. In order to use
CVS version control with Enterprise Architect, you must install version control software on your local machine.
Also, you must create a working directory (using your version control software) before you can configure
Enterprise Architect. You can have as many working directories as you like on your local machine.

You must also connect to a repository, which can be either a remote repository or local to your
machine. If your repository is local, it must be created with your version control software.

Each working folder you create contains information on connection to a repository. This connection information
includes the path to the local or remote repository, the user name and password in order to make a
connection.

Note:

To see a video demonstration of setting up a CVS repository for version control, go to
http://www.sparxsystems.com.au/resources/demos/settingupCVS/CVS_Final_1.htm.

5.3.1 CVS with Remote Repositories

Before you can connect to a remote repository, you must:

· Have version control setup on your local machine

· Have version control setup on a remote server

15 19

http://www.sparxsystems.com.au/resources/demos/settingupCVS/CVS_Final_1.htm

Version Control Setup | Version Control with CVS 16

© 1998-2010 Sparx Systems Pty Ltd

· Have a working directory on your local machine that points to the repository on the server.

To set up CVS version control with a remote repository, follow the steps below:

1. Ask your system administrator to install CVS and create a remote repository with a module that you can
use to control your Enterprise Architect package files. Your administrator must create a username and
password for you before you can make a connection.

2. Open a command prompt window and navigate to, or create, a suitable directory to hold your CVS
working copy directory; for example:

C:\> cd myCVSWorkSpace

3. Connect to the remote CVS repository. An example connection command is:

C:\myCVSWorkSpace> cvs -d:pserver:myUserID@ServerName:/repositoryFolder login

Note:

Replace myUserID with your CVS username, replace ServerName with the name of your CVS server and
replace repositoryFolder with the path to the repository on the server.

4. Create a local CVS workspace, derived from the remote repository. An example command is:

C:\myCVSWorkSpace> cvs -d:pserver:myUserID@ServerName:/cvs checkout moduleName

Note:

The above command creates a subdirectory in your current working directory, called moduleName.
(Replace moduleName with the name of the module created by your system administrator). It creates
local copies of all files contained in the CVS module found at ServerName:/cvs.

It also creates a subdirectory beneath moduleName, called CVS. This subdirectory contains a file called
Root, that contains your CVS connection information. Enterprise Architect uses this file to obtain your
CVS user ID.

5. Verify that your CVS installation is working correctly.

6. Change directory to the one you specified as the working copy, in the cvs checkout command above; that
is, C:\myCVSWorkSpace\moduleName

7. Now create a test file, such as Test.txt, containing the text CVS Test. You can do this with the
command:

echo CVS Test > Test.txt

8. Execute the following CVS commands:

· cvs add Test.txt

· cvs commit -m"Commit comment" Test.txt

· cvs update Test.txt

· cvs edit Test.txt

· cvs editors Test.txt

9. The editors command should produce output resembling the following:

Test1.txt myUserID Tue Aug 9 10:08:43 2009 GMT myComputer C:\myCVSWorkSpace\moduleName

10. Take note of the userID that follows the filename. Enterprise Architect must find and use this user ID
when you create your version control configuration. (See the example dialog below.)

11. Launch Enterprise Architect and open or create the model containing the packages to place under
version control.

12. Select the Project | Version Control | Version Control Settings menu option. The Version Control
Settings dialog displays.

13. Click on the New button, enter a suitable name in the Unique ID field, then click on the CVS radio
button in the Type field.

18

Version Control Setup | Version Control with CVS17

Version Control Within UML Models Using Enterprise Architect

14. To specify the Working Copy path value, click on the Select Path button. Select the local folder in
which to keep local working copies of the XML files to be stored in the Version Control repository.

19

Version Control Setup | Version Control with CVS 18

© 1998-2010 Sparx Systems Pty Ltd

15. Click on the OK button to return to the Version Control Settings dialog.

16. The Current User field should display the user name used to log into the remote CVS repository. If
this does not happen, it indicates that Enterprise Architect cannot extract the user name from the file .
..\WorkingCopyPath\CVS\Root and the configuration does not work correctly.

17. If necessary, set the CVS Exe Path by clicking on the Select Path... button and browsing to the file
path for the for file cvs.exe, the CVS executable.

18. Click on the Save button to save the configuration you have defined. The new configuration is added to
the list of Defined Configurations.

Note:

A new entry is also created in the Local Paths list, with the same ID as the new version control configuration.
The Local Path entry records the Local Project path, for use in subsequent path substitutions. See the Local
Paths Dialog topic in Code Engineering Using UML Models.

Options Use to

This model is Private Specify whether all users connect to a single shared copy of the model (such as
a DBMS) or each user connects to their own private copy of the model.

When unselected (for shared models), the option disables the File History -
Retrieve functionality when the selected package is checked out by another
user. This prevents modifications that might have been made by the other user
from being discarded through importing a prior revision from version control.

Save nested version
controlled packages to
stubs only

Set nested version controlled packages to stubs or fully expanded trees.
Defaults to selected.

For a full explanation of this option, see the Version Control Nested Packages
 topic.

Unique ID Specify a configuration name that readily distinguishes it from other
configurations. The unique ID displays as a selection in a list of Version Control
configurations a package can connect to. In addition it is possible to select a
previous version control configuration from this drop-down menu providing the
configuration is not in use in the current model.

19

19

11

Version Control Setup | Version Control with CVS19

Version Control Within UML Models Using Enterprise Architect

Options Use to

Working Copy path Specify the folder where the XML files representing the packages are stored.
This folder should already exist before it is specified here.

Every version control configuration you define in Enterprise Architect, should
have its own local working copy folder in which to store working copies of the
XMI package files; this should not be a shared network folder. Particularly bear
this in mind if you are creating an Enterprise Architect project that is to be
shared (e.g. a SQL database).

Current User Specify the CVS user name associated with all CVS commands that are issued.
This name is used by Enterprise Architect, to determine who has a package
'checked-out'.

CVS EXE Path Specify the full path of the CVS client's executable file.

Note:

Sparx Systems strongly urge you not to manipulate version controlled package files outside of Enterprise
Architect. It is possible to leave the package files in a state that Enterprise Architect cannot recognize.

5.3.2 CVS with Local Repositories

Before you can set up Enterprise Architect, you must have a working directory that points to a local repository;
that is, one that is installed on your local machine. See your version control software help files for more
information.

To set up CVS version control follow the steps below:

1. Launch Enterprise Architect and open or create the Enterprise Architect model for which packages are
to be placed under version control.

2. Select the Project | Version Control | Version Control Settings menu option. The Version Control
Settings dialog displays.

3. Click on the New button.

4. In the Unique ID field, type a suitable name for the configuration.

5. Against the Type field, click on the CVS radio button.

Version Control Setup | Version Control with CVS 20

© 1998-2010 Sparx Systems Pty Ltd

6. Click on the Select Path... button to the right of the Working Copy path field and browse for and select
the local folder in which to keep local working copies of the XML files to be stored in the Version Control
repository.

7. If necessary, click on the Select Path... button to the right of the CVS Exe Path field and browse to the
file path for the file cvs.exe, the CVS executable.

Version Control Setup | Version Control with CVS21

Version Control Within UML Models Using Enterprise Architect

8. Click on the Save button to save the configuration you have defined.

9. The new configuration is added to the list in the Defined Configurations panel.

Note:

A new entry is also created in the Local Paths list, with the same ID as the new version control configuration.
The Local Path entry records the Local Project path, for use in subsequent path substitutions. See the Local
Paths Dialog topic in Code Engineering Using UML Models.

For further information on the fields in the Version Control Settings dialog, see the following table.

Field Use to

This model is Private Specify whether all users connect to a single shared copy of the model (e.g. a
DBMS) or each user connects to their own private copy of the model.

When unselected (for shared models), the option disables the File History -
Retrieve functionality when the selected package is checked out by another
user. This prevents modifications that might have been made by the other user
from being discarded through importing a prior revision from version control.

Save nested version
controlled packages to
stubs only

Set nested version controlled packages to stubs or fully expanded trees.
Defaults to selected.

For a full explanation of this option, see Version Control Nested Packages .

Unique ID Specify a name that readily distinguishes the configuration from other
configurations. The Unique ID is displayed as a selection in the list of Version
Control configurations a package can connect to. In addition it is possible to
select a previous version control configuration from the drop-down menu
providing the configuration is not in use in the current model.

Working Copy path The folder where the XML files representing the packages are stored. This folder
should already exist before it is specified here.

Every version control configuration you define in Enterprise Architect, should
have its own local Working Copy Folder in which to store working copies of the
XMI package files - this should not be a shared network folder. Particularly bear
this in mind if you are creating an Enterprise Architect project that is to be

11

Version Control Setup | Version Control with CVS 22

© 1998-2010 Sparx Systems Pty Ltd

Field Use to

shared (for example, a SQL database).

Current User The CVS user name associated with all CVS commands that are issued. This
name is used by Enterprise Architect, to determine who has a package
'checked-out'.

CVS EXE Path The full path name of the CVS client's executable file.

Note:

Sparx Systems strongly urge you not to manipulate version controlled package files outside of Enterprise
Architect. It is possible to leave the package files in a state that Enterprise Architect cannot recognize.

5.4 Version Control with Subversion

Subversion is used to manage files and directories and is an open source version control system. To make
use of Subversion control you must have Enterprise Architect version 6.0 or greater.

Tasks in setting up version control with Subversion include:

· Set up Subversion

· Create a new Repository Sub-Tree

· Create a Local Working Copy

· Subversion Under WINE-Crossover

· Version Control Configuration

· TortoiseSVN

Note:

To see a video demonstration of setting up a Subversion repository for version control, go to
http://www.sparxsystems.com.au/resources/demos/settingupsubversion/svn_final.htm.

5.4.1 Set up Subversion

Obtain and Install Subversion

Note:

Enterprise Architect relies on exclusive file locking when applying version control to its packages. File locking
was not introduced into Subversion until version 1.2. Enterprise Architect does not work with Subversion
releases earlier than Subversion 1.2.

Before Enterprise Architect can be used with Subversion, the appropriate software must be installed by a
Subversion administrator. Ask your system administrator to obtain and install the Subversion server and client
applications.

Enterprise Architect must use the Subversion command line client to communicate with the Subversion server;
it cannot use other clients such as TortoiseSVN .

22

23

24

24

26

28

28

http://www.sparxsystems.com.au/resources/demos/settingupsubversion/svn_final.htm

Version Control Setup | Version Control with Subversion23

Version Control Within UML Models Using Enterprise Architect

Important:

Before you attempt to use Subversion through Enterprise Architect, you must first verify that you can use the
Subversion command line client to access and operate on files within the working copy folder that Enterprise
Architect will use. Your environment must be set up such that you can perform these operations without ever
being prompted for user ID or password. For further information, please see the topic Caching Client
Credentials in the official Subversion documentation.

The official Subversion documentation can be found at: http://www.svnbook.red-bean.com/en/1.4/index.html,
while executable files for Subversion can be obtained from: http://www.subversion.tigris.org/
project_packages.html#binary-packages.

You require the Windows executables for your client machines running Enterprise Architect in the windows
environment. If you plan to run your Subversion server on a non-windows platform, you must download a
binary suitable for that platform as well.

Chapter 6 in the Subversion documentation provides guidance on how to configure the server for different
methods of access by the client. Secure connection methods are also covered in this chapter.

Your administrator should set up user IDs and passwords for every person who is to access the repository.
Your administrator should then provide all users with the path to the repository, and ensure that they can all
connect.

Before users can make use of Subversion, they must create local working copies from the repository by
checking-out a repository sub-tree .

Steps for setting up a repository and creating a local working copy can be found at:
http://www.svnbook.red-bean.com/en/1.4/svn.basic.in-action.html#svn.advanced.reposurls.

Note:

Sparx Systems recommend that each new Enterprise Architect model being added to version control with
Subversion should have a separate repository sub-tree created for it, and users should create a new local
working copy from the sub-tree to be used with that model.

Repository URLs

Subversion repositories can be accessed using many different methods, on local disk or through various
network protocols. A repository location, however, is always a URL. The table below describes how different
URL schemas map to the available access methods.

Schema Access Method

file:/// Direct repository access (on local disk).

http:// Access via WebDAV protocol to a Subversion-aware Apache server.

https:// Same as http://, but with SSL encryption.

svn:// Access via custom protocol to an svnserve server.

svn+ssh:// Same as svn://, but through an SSH tunnel.

For more information on how Subversion parses URLs, see
http://www.svnbook.red-bean.com/en/1.4/svn.basic.in-action.html#svn.advanced.reposurls.

See Also

· Configure Version Control with Subversion

5.4.2 Create a new Repository Sub-tree

If a repository sub-tree has already been created for your Enterprise Architect model, skip this topic and see
the Create a Local Working Copy topic. If your Enterprise Architect model has not previously been added
to version control, create a sub-tree for it in your SVN repository by following the steps below:

1. Create a temporary directory structure to import into the SVN repository, which initializes the repository

24

23

26

24

http://svnbook.red-bean.com/en/1.4/index.html
http://subversion.tigris.org/project_packages.html#binary-packages
http://subversion.tigris.org/project_packages.html#binary-packages
http://svnbook.red-bean.com/en/1.4/svn.basic.in-action.html#svn.advanced.reposurls
http://svnbook.red-bean.com/en/1.4/svn.basic.in-action.html#svn.advanced.reposurls

Version Control Setup | Version Control with Subversion 24

© 1998-2010 Sparx Systems Pty Ltd

sub-tree for this Enterprise Architect model. The directory structure should look like this:

 tempDir
 |
 +--<EA_Model_Name>
 |
 +--trunk
 |
 +--branches
 |
 +--tags

2. Open a command prompt, navigate to tempDir and issue the command:

 svn import. <repositoryURL> --message "A Comment of your choice"

Note:

After the import is finished, the original tree is not converted into a working copy. To start working, you
must still svn checkout a fresh working copy of the tree.

3. Delete the directory tempDir and all its contents.

For further information see http://www.svnbook.red-bean.com/en/1.4/svn.reposadmin.basics.html.

5.4.3 Create a Local Working Copy

Once you have created a sub-tree in the repository for this model, or if one already exists, you are ready to
create the local Working Copy for use with this model. Follow the steps below:

1. Choose a suitable directory on your system, in which to create your Subversion Working Copy. The
directory that contains your model's .EAP file is probably a good choice.

2. Open a command line window, navigate to the directory to hold your Working Copy directory and check-
out the model's sub-tree from the repository, with the following command:

 svn checkout <repositoryURL>/<EA_Model_Name>,

where <EA_Model_Name> is the directory name that you used in setting up the repository sub-tree
above.

After you have created your working copy, you should verify everything is working correctly before you attempt
to use it from within Enterprise Architect. You must be able to commit files to the repository, without being
prompted for ID or passwords.

Enterprise Architect interacts with Subversion using its command line client. Firstly, create a file in your
working copy folder then, from a command prompt, add and commit the file to the repository. Use the following
commands:

svn add <fileName>
svn commit <fileName> -m"A meaningful comment."

Now, update the file from the repository, lock the file, edit it and commit once more. Use the following
commands:

svn update <fileName>
svn lock <fileName>

Then edit and save the file using your preferred editor:

svn commit <fileName> -m"A meaningful comment."

5.4.4 Subversion Under WINE-Crossover

When running Enterprise Architect under WINE/CrossOver, you can use either a Windows-based Subversion
client or a Linux-based Subversion client.

If you intend to use the HTTP or HTTPS protocols you must use the Unix-like client, as the Windows client

http://svnbook.red-bean.com/en/1.4/svn.reposadmin.basics.html

Version Control Setup | Version Control with Subversion25

Version Control Within UML Models Using Enterprise Architect

cannot access the libraries necessary to create the required network connections. It is also easier to set up
your working copy folder using the native Unix-like Subversion client and then continue using that same client
from within Enterprise Architect.

However, to make use of the Unix-like client under CrossOver, you must also download and install a bridging
utility called SVN_gate, which is available from the CodeWeavers' (CrossOver) web site:

http://www.codeweavers.com/support/wiki/EAsvn

When using the Windows Subversion client, you simply install the Win32 Subversion client under CrossOver.
Once you have set up your working copy directory, you are ready to use Subversion with Enterprise Architect.
However, setting up your working copy is more difficult when using Win32 Subversion under CrossOver.
Because you cannot see any output from Subversion commands run under CrossOver, the best way to run the
commands is to create a Windows batch file containing the command to run, and to run that batch file as a
Windows command under CrossOver. (See the example batch file below.)

If you are running directly under WINE, launch the Windows batch file from a Unix shell script such as follows;

/home/user/cxoffice/bin/wine --bottle "ea" --untrusted
--workdir "/home/user/.cxoffice/ea""/drive_c"
-- "/home/user/.cxoffice/ea/drive_c/batfile.bat"

Enterprise Architect uses the Subversion command line client to communicate with your Subversion server. In
order for Enterprise Architect to work successfully with Subversion, your Subversion working copy
environment must be set up such that you can issue commands to Subversion from the command line, without
ever being prompted for user input such as username or password.

By default, whenever the Subversion command-line client successfully responds to a server's authentication
challenge, it saves the credentials in the user's private runtime configuration area, which is:

· ~/.subversion/auth/ on Unix-like systems or

· %APPDATA%/Subversion/auth/ on Windows (which translates to .../drive_c/windows/profiles/crossover/Application
Data/Subversion/auth/ under CrossOver).

For this reason, Sparx Systems recommend that when you checkout a working copy from the Subversion
repository, you specify your username and password on the command line, such that your credentials are
cached from the outset. Use a Subversion command such as:

· Using a Unix-like client (run the command from the command line):

svn checkout --username "UserName" --password "myPassword" "svn://myServerName:3690/myProject"
"/.../drive_c/workingCopyDirectory"

· Using a Win32 client (run the command within a batch file run under CrossOver):

"C:\Program Files\Subversion\bin\svn.exe" checkout --username "UserName" --password "myPassword"
"svn://myServerName:3690/myProject" "C:\SVN-test\workcopy" >"C:\SVN-test\stdout.txt" &2>"C:\SVN-test\stderr.txt"

It is a good idea to checkout your Subversion working copy into a folder within the WINE bottle where
Enterprise Architect is to run. In this way, the pathnames used for your version controlled package files are
much shorter.

If you intend to use the Win32 Subversion client with Enterprise Architect, you should create the local working
copy that Enterprise Architect is to use, by performing a Subversion checkout command using the Win32
client under WINE/CrossOver. Similarly, if you plan to use the Unix-like Subversion client with Enterprise
Architect, you should perform the initial checkout using that client. In this way, your user credentials are
cached in the correct location for the client that Enterprise Architect is using.

It is important to verify that your command line client for Subversion is working correctly before attempting to
connect from Enterprise Architect. For guidance on verifying your set up, see the Create a Local Working
Copy topic.

The following is an example of a Windows batch file that can be used under CrossOver to run Subversion
commands. Simply uncomment the command to execute. Each command should be a single line - the '\' is
intended as a continuation character.

 rem "C:\Program Files\Subversion\bin\svn.exe" checkout --username "UserName" --password "myPassword" \
 "svn://myServerName:3690/myProject" "C:\SVN-test\workcopy"
 >"C:\SVN-test\stdout.txt" &2>"C:\SVN-test\stderr.txt"

25

24

http://www.codeweavers.com/support/wiki/EAsvn

Version Control Setup | Version Control with Subversion 26

© 1998-2010 Sparx Systems Pty Ltd

 rem "C:\Program Files\Subversion\bin\svn.exe" add "C:\SVN-test\workcopy\myTestFile.xml" \
 >"C:\SVN-test\stdout.txt" &2>"C:\SVN-test\stderr.txt"

 rem "C:\Program Files\Subversion\bin\svn.exe" commit -m"a message" "C:\SVN-test\workcopy\myTestFile.xml" \
 >"C:\SVN-test\stdout.txt" &2>"C:\SVN-test\stderr.txt"

 rem "C:\Program Files\Subversion\bin\svn.exe" lock "C:\SVN-test\workcopy\myTestFile.xml" \
 >"C:\SVN-test\stdout.txt" &2>"C:\SVN-test\stderr.txt"

5.4.5 Version Control Configuration

This topic assumes that you have already installed Subversion (both the server and the client parts), and that
you have a local working copy , derived from a repository sub-tree , already set up for use with your
Enterprise Architect model. If this is not the case, please see the Set up Subversion topic.

Once you have set up and tested the Local Working Copy, you are ready to define a Version Control
configuration for use with the Enterprise Architect model to place under version control.

To apply version control to your Enterprise Architect model using the Subversion working copy that you have
set up, follow the steps below:

1. Launch Enterprise Architect and open the model for which this Working Copy was created.

2. Select the Project | Version Control | Version Control Settings menu option.

3. Click on the New button, enter a suitable name in the Unique ID field, then click on the Type:
Subversion radio button.

24 23

22

Version Control Setup | Version Control with Subversion27

Version Control Within UML Models Using Enterprise Architect

4. To the right of the Working Copy path field, click on the Select Path button and select the local folder
in which to keep local working copies of the XML files to be stored in the Version Control repository.

5. In the Workstation Settings panel, click on the Select Path button to specify the path for your
Subversion client executable.

6. Click on the Save button to save the configuration you have defined; the new configuration is added to
the Defined Configurations list.

Note:

A new entry is also created in the Local Paths list, with the same ID as the new version control
configuration. The Local Path entry records the Local Project path, for use in subsequent path
substitutions. See the Local Paths Dialog topic in Code Engineering Using UML Models.

7. When you have finished defining your version control configurations, click on the Close button.

Version Control Setup | Version Control with Subversion 28

© 1998-2010 Sparx Systems Pty Ltd

Additional Information on the dialog fields:

Option Use to

This model is private Specify whether all users connect to a single shared copy of the model (such as a
DBMS) or each user connects to their own private copy of the model.

When unselected (for shared models), the option disables the File History -
Retrieve functionality when the selected package is checked out by another user.
This prevents modifications that might have been made by the other user from
being discarded through importing a prior revision from version control.

Save nested version
controlled packages
to stubs only

Set nested version controlled packages to stubs or fully expanded trees. Defaults
to selected.

For a full explanation of this option, see the Using Nested Version Control
Packages topic.

Unique ID Specify a configuration name that readily distinguish this configuration from other
configurations. The Unique ID displays as a selection in the list of Version Control
configurations a package can connect to. In addition you can select a previous
version control configuration from this drop-down menu, providing the
configuration is not in the current model.

Working Copy path Specify the folder where the XML files representing the packages are stored. This
folder should already exist before it is specified here.

Every PC using Subversion version control should have its own Subversion
working copy folder in which to store working copies of the XMI package files; this
should not be a shared network folder. Particularly bear this in mind if you are
creating a .EAP file that is to be shared (for example, a SQL database).

Subversion Exe Path Specify the full path name of the Subversion client executable file.

Note:

Sparx Systems strongly urge you not to manipulate version controlled package files outside of Enterprise
Architect. It is possible to leave the package files in a state that Enterprise Architect cannot recognize.

5.4.6 TortoiseSVN

TortoiseSVN is a Windows shell extension for Subversion.

Enterprise Architect cannot use TortoiseSVN to communicate with the Subversion server; it must use the
Subversion command line client.

TortoiseSVN provides icon overlays in Windows Explorer that are useful as a tool for observing the status of
your Subversion controlled files. It enables you to create your repository sub-trees and check out local working
copies from within Windows Explorer using simple menu commands.

Note:

· Sparx Systems recommend that you test your local working copies, by adding and committing a dummy file
from the command prompt window.

· Manipulating Enterprise Architect's package files, using tools that are external to Enterprise Architect,
could leave those files in a state that Enterprise Architect cannot use.

You can download TortoiseSVN from: http://www.tortoisesvn.tigris.org/.

5.5 Version Control with TFS

In order to use Team Foundation Server (TFS) for version control with Enterprise Architect, all users must
have either the TFS command line client (tf.exe) or Microsoft's Team Foundation Server MSSCCI installed on
their local machine. Each intended user must also have an account that provides read/write access to a

11

http://tortoisesvn.tigris.org/

Version Control Setup | Version Control with TFS29

Version Control Within UML Models Using Enterprise Architect

workspace on the server.

This topic covers configuring version control using the TFS command line client. To configure version control
with the TFS MSSCCI client, please follow the instructions in the Version Control with SCC topic.

The following preliminary steps should be performed within TFS on each PC and for each user, before making
any attempt to define a Version Control Configuration within Enterprise Architect that uses TFS.

Each user must set up a separate workspace for use in version control in Enterprise Architect, containing a
single local working folder on their own machine that is mapped to a Source Control folder on the server.

When initializing the connection to TFS, Enterprise Architect issues the command tf get. If the Local Working
Copy path specified in Enterprise Architect's version control configuration is mapped through a TFS
workspace that also maps many other working folders to their corresponding Source Control folders, TFS can
take a long time as it proceeds to update the files in all of those folders. Enterprise Architect might appear to
freeze when it initializes the connection to TFS, whilst it waits for TFS to complete the tf_get command and
hand back program control.

Note:

To see a video demonstration of setting up a TFS project for version control, go to
http://www.sparxsystems.com.au/resources/demos/settinguptfs/TFS%20Project-Workspace%20Setup.htm.

5.5.1 Connect an Enterprise Architect Model to Version Control using TFS

Having set up TFS and created or otherwise opened your model, you can configure the model for version
control under TFS. To do this, follow the steps below:

1. Open or create the Enterprise Architect model to place under version control.

2. Select the Project | Version Control | Version Control Settings menu option. The Version Control
Settings dialog displays.

3. Click on the New button, in the Unique ID field enter a suitable name, then select the TFS radio button.

11

29

http://www.sparxsystems.com.au/resources/demos/settinguptfs/TFS%20Project-Workspace%20Setup.htm

Version Control Setup | Version Control with TFS 30

© 1998-2010 Sparx Systems Pty Ltd

4. Click on the Select Path... button to the right of the Working Copy path field, and select the local folder
in which to keep local working copies of the XML files to be stored in the Version Control repository.

Note:

Enterprise Architect queries TFS to retrieve the Server and Workspace names associated with this
folder, when attempting to save the configuration data.

5. In the User Name and Password fields, type values that enable access to the TFS workspace
associated with the Working Copy path specified above.

Version Control Setup | Version Control with TFS31

Version Control Within UML Models Using Enterprise Architect

Note:

Users who automatically log in to TFS through means external to Enterprise Architect (for example,
through MS Integrated Security) can leave the User Name and Password fields blank. If the
Password field is blank, Enterprise Architect retrieves the current user's Windows username and uses
that value when determining whether a package is checked out to them or to some other user.

6. The TFS Exe Path field displays the default installation path. Click on the Select Path... button if it is
necessary to modify this field.

7. Click on the Save button to save the configuration you have defined.

8. The new configuration is added to the list in the Defined Configurations panel.

Note:

A new entry is also created in the Local Paths list, with the same ID as the new version control
configuration. The Local Path entry records the Local Project path, for use in subsequent path
substitutions. See the Local Paths Dialog topic in Code Engineering Using UML Models.

9. When you have finished defining your version control configurations, click on the Close button.

Additional Information on the Dialog Fields

Option Use to

This model is private Specify whether all users connect to a single shared copy of the model (such
as a DBMS) or each user connects to their own private copy of the model.

When unselected (for shared models), the option disables the File History -
Retrieve functionality when the selected package is checked out by another
user. This prevents modifications that might have been made by the other
user from being discarded through importing a prior revision from version
control.

Save nested version
controlled packages to
stubs only

Set nested version controlled packages to stubs or fully expanded trees.
Defaults to selected.

For a full explanation of this option, see Use Nested Version Control
Packages .

Unique ID Specify a configuration name that readily distinguishes it from other
configurations.

The Unique ID is added to the list of Version Control configurations a
package can connect to. In addition it is possible to select a previous version
control configuration from this drop-down menu providing the configuration is
not in the current model.

Working Copy Path Specify the folder where the XML files representing the packages are stored.
This folder should already exist before it is specified.

Every PC using TFS version control should have its own TFS Local Folder in
which to store working copies of the XMI package files - this should not be a
shared network folder. Particularly bear this in mind if you are creating a
.EAP file which is to be shared (for example, a SQL database).

Server Name Specify the name of the Team Foundation Server to connect to.

Workspace Name Specify the name of a pre-defined TFS workspace that you are using.

User Name Specify the user name that you use to connect to the Team Foundation
Server. The user name that you specify should give you read/write
permissions in the specified workspace.

Password Specify the password associated with the user name you specify. Enterprise
Architect stores this password, in encrypted form, as part of the version
control configuration data.

11

Version Control Setup | Version Control with TFS 32

© 1998-2010 Sparx Systems Pty Ltd

Option Use to

TFS Exe Path Browse to and select the full path name of the TFS command line client's
executable file.

Notes:

· Sparx Systems strongly urge you not to manipulate version controlled package files outside of Enterprise
Architect. It is possible to leave the package files in a state that Enterprise Architect cannot recognize.

· Visual Studio Integration (MDG Integration for Visual Studio 2005 or 2008) enhances TFS support by
providing access to, for example, work items and bugs within both Enterprise Architect and the MDG
Integration product.

Use Version Control | 33

Version Control Within UML Models Using Enterprise Architect

6 Use Version Control

The following topics describe the most common activities using the version control features of Enterprise
Architect, accessed through the Package Version Control Menu :

· Configure Controlled Package

· Use Existing Configuration

· Validate Package Configurations (Project | Version Control menu)

· Check In and Check out Packages

· Include Other Users Packages

· Apply Version Control to Branches

· Export Controlled Model Branch

· Import Controlled Model Branch

· Review Package History

· Refresh View of Shared Project

General Notes

· The export/import facility is not fast and submitting packages containing many sub-nodes to version control
should be avoided. It is recommended version control is applied to individual packages. See the Version
Control Nested Packages topic for more information.

· Replication should not be combined with version controlled packages. (See the Replication topic in UML
Model Management.)

· Sparx Systems strongly urge you not to manipulate version controlled package files outside of Enterprise
Architect. It is possible to leave the package files in a state that Enterprise Architect cannot recognize.

6.1 Package Version Control Menu

To display the Version Control menu, right-click on a version controlled package in the Project Browser and
select the Package Control context menu option. (This menu displays a number of different options if the
selected package is not under version control - see the Controlled Package Menu topic in UML Model
Management.

33

36

37

37

38

40

41

42

42

44

44

11

Use Version Control | Package Version Control Menu 34

© 1998-2010 Sparx Systems Pty Ltd

Menu Option & Function
Keys

Use to

Configure
[Ctrl]+[Alt]+[P]

Display the Package Control Options dialog which enables you to
specify whether this package (and its children) is controlled, which file it is
controlled through, and which version control configuration to use.

Manage Baselines
[Ctrl]+[Alt]+[B]

Create a Baseline of the current package, or compare the current package
with a previous Baseline.

Check In Branch For the selected branch of the model, (that is, the selected package and all
of its child packages) display the Select Packages to Check In dialog,
listing all version controlled packages within that branch that are checked
out to you. You can then select packages in the displayed list, to be
submitted for check-in.

Check Out Branch For the selected package, check out the package and recursively check out
all of its contained sub-packages . Retrieves the latest version of the
packages from the central repository, overwriting the current packages.
After check out, the packages are available for editing.

Check In Submit the currently selected package to the central repository. Enterprise
Architect prompts you to enter optional comments describing changes to
the packages.

Check Out Retrieve the latest version of the currently selected package from the
central repository, overwriting the current packages. After check out the

36

39

40

Use Version Control | Package Version Control Menu35

Version Control Within UML Models Using Enterprise Architect

Menu Option & Function
Keys

Use to

packages are available for editing.

Undo Check Out Cancel all changes you have made to the currently selected package. This
restores the model to the state it was in before the package was checked
out, leaving the select package and sub-packages locked.

Get Latest Retrieve the latest revision of the package from the repository. Available
only for packages that are checked in.

Get All Latest Retrieve the latest revision of all version controlled packages in the project.
Only retrieves packages that are checked in.

Put Latest Update the central repository with the currently selected package (which
you have checked out), while retaining checkout status on the package.
This is equivalent to checking a package in and immediately checking it
back out again.

File Properties Ask the version control provider to show the version control properties
associated with the XML export file pertaining to the currently selected
package. This also identifies who has checked out the package.

File History Where the controlling package has been configured by an SCC provider,
this provider shows a change history for the package. See your provider's
documentation for details on how to use the control. Otherwise, if the
version control is CVS, the history is shown via Enterprise Architect's
internal CVS history menu.

Compare with version on
disk

Compare the current package with the XMI version on disk.

Add Branch to Version
Control

Apply version control to all packages within a selected model branch, in a
single operation. In this context, a model branch is a package that is
currently selected in the Project Browser, and all of the packages contained
within it.

Export as Model Branch Export a newly created model branch from your own private copy of a
model.

Import a Model Branch Retrieve a model branch and import it into either the source model or
another model.

Get Package Access packages in the version control repository that are not currently
available in your model.

Re-synch Status With VC
Provider

Update the version control status value recorded for the selected package
in the Enterprise Architect project to match the value reported by the
version control provider , without performing an XMI import or export.

Use this function when the package's version control status recorded in
your Enterprise Architect project is out of synchrony with the version control
status reported by your version control provider.

Version Control Settings Display the Version Control Settings dialog .

Update Package Status Provide a bulk update on the status of a package, including status options
such as Proposed, Validate and Mandatory.

Note:

This option is a generic package option not specific to version control.

42

42

45

9

Use Version Control | Configure Controlled Package 36

© 1998-2010 Sparx Systems Pty Ltd

6.2 Configure Controlled Package

Before working on a package under version control, you must define it as a controlled package and specify the
version control configuration to use.

Note:

In the Corporate, Business and Software Engineering, System Engineering and Ultimate editions of
Enterprise Architect, if security is enabled you must have Configure Packages permission to configure
packages for version control. See User Security in UML Models.

Configure a Version Controlled Package

To configure a version controlled package, follow the steps below:

1. In the Project Browser, right-click on the package to place under version control. The context menu
displays.

2. Click on the Package Control | Configure menu option. The Package Control Options dialog displays.

3. Select the Control Package checkbox to indicate that this is a controlled package.

4. Click on the Version Control drop-down arrow and select the version control repository; this connects
the package to a specific version control configuration.

The XMI Filename field then displays the version control configuration default path.

5. The Version ID field defaults to 1.0; if necessary, change this to the appropriate reference.

6. The Owner field defaults to your user name; if necessary, type or select the name of the user who owns
the package.

7. Click on the OK button to set the version control options. The Add Package to Version Control dialog
displays.

Use Version Control | Configure Controlled Package37

Version Control Within UML Models Using Enterprise Architect

8. If you do not want to check-out the package immediately, clear the Keep checked out checkbox.

9. Click on the OK button. The Add Comment window displays.

This window displays the date and time at which the package was put under version control.

10. If required, type any further comments in the window. Click on the OK button.

Enterprise Architect places the package under the version control configuration you selected, and marks the
package in the Project Browser with the version controlled checked out or not checked out icons, as
appropriate.

6.3 Use Existing Configuration

Once a version control configuration has been defined in one model it is possible to add the configuration to
other models. To use this feature follow the steps below:

1. Open the model that is to have the predefined version control configuration added to it.

2. Right-click on any package in the Project Browser and select the Package Control | Version Control
Settings context menu option. The Version Control Settings dialog displays.

3. Click on the New button.

4. In the Unique ID field, click on the drop-down arrow and select one of the previously-defined version
control configurations.

5. Click on the Save button to confirm the version control configuration.

6.4 Validate Package Configurations

You can test the validity of the version control settings associated with each version controlled package within
your current model. To do this, select:

 Project | Version Control | Validate Package Configurations

The validation process scans the model database and verifies that the version control configuration associated
with each version controlled package is fully specified in the current model. It also queries the corresponding
version control provider to find the status of the package file associated with each version controlled package.

The results of the validation process are sent to the Enterprise Architect Output window, as shown below:

4

9

Use Version Control | Validate Package Configurations 38

© 1998-2010 Sparx Systems Pty Ltd

Depending on the results, you can then complete the definition of any invalid or missing version control
configurations, or correct problems with individual packages or their associated package files.

Click on an error message to highlight, in the Project Browser, the package that is in error.

6.5 Check In and Check Out Packages

To work on a version controlled package you must have the package checked out. When a package is
checked out to a specific user, a write lock is set on the package and other users cannot make changes to it
until it has been checked in again.

Note:

In the Corporate, Business and Software Engineering, System Engineering and Ultimate editions of
Enterprise Architect, if security is enabled you must have Use Version Control permission to check files in
and out using version control. See User Security in UML Models.

Check In/Check Out

1. In the Project Browser, right-click on the package icon.

2. Select the Package Control | Check In, Check Out or Undo Checkout context menu options, as
appropriate.

3. If required, enter a comment when prompted to do so.

If you are working in a private model and you select the Check Out menu option, the Import Package
dialog displays (in shared models, this dialog only has default values and therefore does not display).

Option Use to

Force reload from XMI Reload the package content from the XMI file in the central repository, even
though the package and XMI file are synchronized. This ensures that links and
dependencies that might not have been refreshed are updated as well.

Accept current
package

(The default.) Leave the package content in its current state.

3

Use Version Control | Check In and Check Out Packages39

Version Control Within UML Models Using Enterprise Architect

Option Use to

Refresh model view Refresh the model view to show any changes from other checked out packages.

Always apply above
settings

Apply the settings in the above three fields every time you check out a package
that is found to be up to date, and therefore do not display this dialog again.

Note:

To display the dialog if, for example, you want to change the settings, press [Ctrl]
while you select the Package Control | Check Out menu option.

The package icon in the Project Browser should change. When you check out a package this is represented
by a figure 8 to the left of the package icon. When you check in a package the package icon is overlaid with a
colored rectangle and key. In the example below, the upper package is checked out whilst the lower package
is checked in.

Notes:

· If you check out a version controlled package whilst offline, the package icon has a red figure 8 in front of
it. See Offline Version Control .

· If the packages under version control contain any alternative images (See UML Modeling With Enterprise
Architect - UML Modeling Tool) and those images are subject to frequent change, you can set the Export
alternate images option on the Options dialog (See Using Enterprise Architect - UML Modeling Tool)to
export the images to the version control repository when you check in the packages. If the images are not
subject to frequent change, do not select this option and instead use Export/Import Reference Data to
manage alternative images (See UML Model Management).

Check In Branch

1. In the Project Browser, right-click on the package icon at the root of the model branch that is to be
checked in and select the Package Control | Check In Branch context menu option. The Select
Packages to Check-in dialog displays, listing all version controlled packages within the branch that you
have checked out.

46

Use Version Control | Check In and Check Out Packages 40

© 1998-2010 Sparx Systems Pty Ltd

2. Click on the package to check in, or use:

· [Ctrl]+click to add or remove several individual packages

· [Shift]+click to select a range of packages

· All to select all packages listed

· None to clear all selected packages.

3. Click on the OK button to check-in the selected packages.

4. If required, enter a comment when prompted to do so. (This comment applies to all packages that you
have checked in.)

5. Each package icon changes to indicate that the packages have been checked-in.

Check Out Branch

1. In the Project Browser, right-click on the name of the root package of the model branch to be checked
out and select the Package Control | Check Out Branch context menu option. The selected package
and all of its contained sub-packages are recursively checked out.

2. Any packages that cannot be checked-out are listed in a message box, with a brief description of the
problem. For example: The package is already checked out by user 'Fred'.

3. When Project Security is enabled in Lock to Edit mode, Enterprise Architect prompts you to apply a
User Lock throughout the selected model branch before proceeding.

6.6 Include Other Users' Packages

You can retrieve packages that have been created by other users, or by you in another model, from version
control and import them into your current model.

Other users might be creating packages to use in your model. If you are not sharing a SQL database or .EAP
file, those packages do not automatically become part of your model. If the packages have been placed into
version control, you can retrieve them and import them into your model as children of an existing package,
using the Get Package command.

1. You must have access to the package files through the version control system and you must define a
Version Control Configuration through which to access those files. The version control configuration
must use the same unique ID that was originally used to add the package to version control.

2. In the Project Browser, right-click on the package to use as the parent of the incoming package.

3. Select the Package Control | Get Package context menu option. The Get Shared File dialog displays.

Use Version Control | Include Other Users' Packages41

Version Control Within UML Models Using Enterprise Architect

4. In the Select a Version Control Configuration field, click on the drop-down arrow and select the
version control configuration associated with the package to retrieve. The file list is populated with the
names of files available through that configuration, for retrieval and import into your model.

5. Select the package file to import into your model and click on the OK button.

6.7 Apply Version Control To Branches

Enterprise Architect enables you to apply version control to all packages within a selected model branch, in a
single operation. In this context, a model branch is a package that is currently selected in the Project Browser,
and all of the packages contained within it.

The Version Control Configuration to be used in this operation must be defined within the model before
selecting this command.

To apply version control to a model branch, follow the steps below:

1. Right-click on the required package and select the Add Branch to Version Control context menu
option. The Apply VC to Branch dialog displays.

2. In the Select a Version Control Configuration field, click on the drop-down arrow and select the
Version Control Configuration to use.

3. If required, select the Export as Model Branch checkbox to export the selected package (and
sub-packages) as a Model Branch .

9

33

42

Use Version Control | Apply Version Control To Branches 42

© 1998-2010 Sparx Systems Pty Ltd

4. Click on the OK button. Enterprise Architect creates a number of sub-folders within the version control
working copy folder, before exporting all of the packages within the selected model branch. Enterprise
Architect generates package filenames using the package GUIDs, before adding the resulting files to
version control.

If you have selected the Export as Model Branch checkbox, once the version control operation is complete
Enterprise Architect also creates a Model Branch file (.EAB file). You can subsequently import the
version-controlled Model Branch .

6.8 Export Controlled Model Branch

You might want to export a newly created model branch from your own private copy of a model so that, for
example:

· Another user can import that branch into their own private copy of the same model, or

· It can be imported for inclusion as a common branch in a number of different models.

Applying version control to an Enterprise Architect model can result in many XMI files placed under version
control. It could then be hard to locate and import the file corresponding to the root of a particular model
branch. Enterprise Architect's Model Branch Files (.EAB files) overcome this problem by simplifying the
retrieval of model hierarchies for use in other models.

The facility is only enabled for packages that are already under version control. The exported Model Branch
File is also placed under version control, using the same version control configuration that is controlling the
selected package.

To export a model branch, follow the steps below:

1. Right-click on the version controlled package to export as a model branch.

2. Select the Package Control | Export as Model Branch context menu option. The Export as Model
Branch dialog displays.

3. In the EAB Filename field, type a name for your Model Branch File. Alternatively, click on [...] and
browse for the file location.

Note that the package name is supplied as a default.

You can specify any file name, including sub-folder names, as long as the file is contained in or below the
working folder of your version control configuration.

6.9 Import Controlled Model Branch

It might be necessary to either:

· Retrieve a model branch created by another user in a private copy of a model, to import it into your own
private copy of the same model or

· Retrieve a model branch that is common in many models, for inclusion in a new model.

Applying version control to an Enterprise Architect model can result in many XMI files placed under version
control. It could then be hard to locate and import the file corresponding to the root of a particular model
branch. Enterprise Architect's Model Branch files overcome this problem by simplifying the retrieval of model
hierarchies for use in other models.

The Import a Model Branch context menu option uses Enterprise Architect's Model Branch Files, of which
there are few, to retrieve information about the root package file and import the model branch. The Model

42

Use Version Control | Import Controlled Model Branch43

Version Control Within UML Models Using Enterprise Architect

Branch File records information such as the name and type of the version control configuration for the
selected package, and the relative filename of the version controlled XMI file associated with the package.

Before attempting to import a model branch, you must have access to the version controlled XMI files that
represent the model branch to be imported. That is, there must be a working copy folder, accessible from the
machine on which Enterprise Architect is running, that is associated with the Version Control repository
containing those XMI files.

It is not necessary to have the relevant Version Control Configuration set up within Enterprise Architect before
issuing this command - Enterprise Architect prompts you to complete specification of the configuration if
necessary.

The Import a Model Branch context menu option is only enabled for packages that you (the current user) are
able to edit, as the imported model branch is inserted into the model under the selected package.

To import a model branch, follow the steps below:

1. Right-click on the package into which the model branch is to be imported.

2. Select the Package Control | Import a Model Branch context menu option. The Import VC Model
Branch dialog displays.

3. Either:

· Click on the Find a Model Branch (.EAB) file button and browse for the Model Branch File. If the
version control configuration used by the file has not been fully set up, Enterprise Architect prompts
you to complete and save the configuration. The model branch import then proceeds. OR

· If the version control configuration used by the file has been fully set up in the current model, click on
the drop-down arrow in the Select a Version Control Configuration field and select the
configuration, then select the Model Branch File from the Select a Model Branch (.EAB) file list.
Click on the OK button to import the model branch.

Enterprise Architect imports the root package specified in the Model Branch File and recursively imports and
populates all the sub-packages contained in the root package.

Use Version Control | Review Package History 44

© 1998-2010 Sparx Systems Pty Ltd

6.10 Review Package History

Reviewing package history enables you to view the history of checked in package revisions. It also enables
you to import selected prior revisions of the package into your model. The package revision is retrieved in
read-only form, enabling you to view the package contents but not make any changes to the package.

To review package history follow the steps below:

1. In the Project Browser, right-click on the package configured for version control. The context menu
displays.

2. Select the Package Control | File History menu option.

· If the package has been configured through SCC, you access the history through the mechanism
offered by the third party SCC provider.

· If the package has been configured for CVS, Subversion or TFS, Enterprise Architect's File Version
History dialog displays and the following steps apply.

3. In the Revisions field, click on a revision number to view the log entries for that revision.

4. To view the package history select a revision and then click on the Retrieve button. A warning dialog
displays, indicating that the package is being opened in read-only mode.

5. Click on the Yes button to continue or the No button to cancel the action. The package is retrieved in
read only mode, enabling you to view the history of the package at the specified version.

6. To go back to the latest version, in the Project Browser right-click on the package and select either the
Package Control | Check Out.. context menu option or the Package Control | Get Latest context
menu option.

6.11 Refresh View of Shared Project

When a user of a shared model checks out a package and makes changes, other users can see those
changes by refreshing their view of the package or the changed diagram within the package.

You can refresh your view of the Project Browser in the following ways:

· Right-click on the package name in the Project Browser and select the Contents | Reload Current
Package context menu option

· Select the File | Reload Current Project menu option (or select the Reload Project icon in the Project
toolbar, or press [Ctrl]+[Shift]+[F11])

· Close the project and reopen it.

You can refresh the current diagram in the following ways:

· Select the Window | Reload Current View menu option

· Right-click on the opened diagram tab in the diagram view, and select the Reload <diagram name>
context menu option.

Use Version Control | Refresh View of Shared Project45

Version Control Within UML Models Using Enterprise Architect

(For further information on these methods, see Using Enterprise Architect - UML Modeling Tool.)

6.12 Resynchronize the Status of Version Controlled Packages

Enterprise Architect enables you to re-synchronize the version control status of either a single version
controlled package or all version controlled packages within your current model with the status reported by
your version control provider. This can be useful when you give a copy of a .EAP file configured for version
control to a new team member.

· For a single package, right-click on the package name in the Project Browser and select the Package
Control | Re-synch Status With VC Provider menu option.

· For all version controlled packages within the project, click on the Project | Version Control | Re-synch
Statuses of All Packages menu option.

For a given package, the re-synchronization process queries the corresponding version control provider to find
the status of the package file associated with the version-controlled package. If necessary, the process then
updates the package flags within the model database, to synchronize the package status recorded in the
model with the value reported by the version control provider.

The results of the re-synchronization process are sent to the Enterprise Architect Output window, as shown
below:

Double-click on any result message to select, in the Project Browser, the corresponding package.

Note:

This process does not cause any package data to be:

· exported from your model to the associated package file, or

· imported from a package file into your model's package data.

If a package has been checked-out and modified with Enterprise Architect, but your version control provider
reports the package file as checked-in, running this process marks the package within Enterprise Architect as
being checked-in, without exporting and committing the pending changes. Subsequently checking-out the
package imports the latest revision of the package file from version control, effectively discarding the
uncommitted modifications from the model.

Similarly, if a package file is checked-out in the version control system, but not in the Enterprise Architect
model, running this process marks the package within the model as checked-out, but it does not import the
associated package file from the version control system. Consequently, it is possible to check-in a package
from Enterprise Architect that is potentially out of date, compared to the latest revision of the package file
within the version control system.

Offline Version Control | 46

© 1998-2010 Sparx Systems Pty Ltd

7 Offline Version Control

When loading a model that uses version control, Enterprise Architect normally initializes a connection to the
version control system for each Version Control Configuration defined in the model. If Enterprise Architect is
unable to connect a Version Control Configuration for any reason, it displays warning messages to notify you
and provides 'offline' version control functionality for all packages associated with the failed connection.

You can prevent Enterprise Architect from attempting to make any version control connections by selecting
the Project | Version Control | Work Offline menu option before loading a model. This is useful if you know
that Enterprise Architect cannot connect to your version control system. For example, if you are working on a
laptop computer that is disconnected from your network and you have an Enterprise Architect model that uses
a large number of Version Control Configurations, choosing to work offline before you load the model enables
you to avoid all the error messages that Enterprise Architect would normally display as each version control
connection attempt fails.

You can switch between working offline and working online at any time, either before or after a model is
loaded. Toggle the Project | Version Control | Work Offline menu option. Enterprise Architect disconnects or
reconnects version control (depending on connection availability) according to your selection.

Use Version Control Whilst Disconnected From Your Version Control Server

Enterprise Architect 'remembers' the status of a model’s version controlled packages. Packages that were
checked out to you prior to disconnecting from the server are still shown as checked out to you, even
though you are no longer connected to the server. You can still edit these packages as you normally would.

Packages that were not checked out to you prior to disconnecting from the server are shown as version
controlled and locked. You cannot edit these packages until you check them out.

Offline Check Out

In releases of Enterprise Architect from release 6.0 onwards, you can 'check-out' and edit a version controlled
package even when your machine is disconnected from the version control server. In the example below, the
colored 'figure 8' icon for DFD indicates that you have checked it out whilst offline (the gray 'figure 8' icon
shown against Logical View indicates that you have checked out a version-controlled package online).

Important:

You should be aware that the version control system - and therefore other users - have no way of knowing
that you have 'checked-out' a package whilst offline. It is not possible to merge changes to an XMI file that
result from two users editing the same package at the same time. If an offline checkout leads to two people
editing the same package at the same time, when the changes are brought back online the first-saved set of
changes is lost.

Check in a Package That Was Checked Out Offline

Once you reconnect your machine to the version control server, if the package you checked out offline is not
currently checked out by another user, you can check in that package. However, before Enterprise Architect
checks in such a package, it compares the local working copy of the package file with the latest revision in the
repository. (These package files remain unchanged in your work area until Enterprise Architect exports the
package again before checking in.) If the repository version remains unchanged from when you last updated
your local copy, Enterprise Architect exports and checks in your package without further prompting.

On the other hand, if the repository now contains a file that has changed since you last updated your local
copy, checking in your package overwrites whatever those changes might be. Enterprise Architect displays a
message warning you of the pending data loss and giving you the opportunity to abort the check in. At this
point, you must decide whether to discard your own changes, using the Undo Check Out command, or
continue with your check in and overwrite the changes that have been committed to the repository since you
last updated your local copy from the repository.

You can use the File Properties command to determine who checked in the last changes to this package.

38

4

Offline Version Control | 47

Version Control Within UML Models Using Enterprise Architect

This might help you to discover what changes have been uploaded and decide whose changes take
precedence.

Update Before You Disconnect

Whenever you are connected to the version control server, you are always working with the latest version of a
package. This is because you cannot modify a package until you check it out from version control, and
checking it out loads the latest revision from the repository into your model.

These rules do not apply when you are disconnected from the version control server. You are working on
whatever versions you have on your machine, dating back to the last time you updated your local copy of each
version controlled package. So, if you are planning to work on a model whilst disconnected from version
control, it is a very good idea to make sure that you have the latest versions of all packages before you
disconnect. The Get All Latest option makes this a simple task.33

Index 48

© 1998-2010 Sparx Systems Pty Ltd

Index
- C -
Check In

Branch 38

Explanation 33

Offline Packages 46

Packages Online 38

Project Browser Icon 38

Check Out

Branch 38

Explanation 33

Packages Offline 38, 46

Project Browser Icon 38

Configure

Package For Version Control 36

Version Control, Subversion 26

Controlled Package 36

CVS

Remote Repository 15

Version Control Options 15, 19

Version Control With Local Repositories 19

- E -
EAB File

Export 42

Import 42

Model Branch File 42

Export

.EAB File 42

Version Controlled Model Branch 42

- F -
File

.EAB 42

- I -
Import

.EAB File 42

Version Controlled Model Branch 42

- M -
Menu

Version Control 33

Model

Connect To Version Control Using TFS 29

Model Branch

.EAB File 42

Apply Version Control 41

Check In 38

Check Out 38

Export 42

File 42

Import 42

- N -
Nested Version Control Packages 6, 11

- O -
Offline

Checkout 46

Version Control 46

- P -
Package

Apply Version Control To Model Branch 41

Check In 38

Check Out 38

Configure For Version Control 36

Controlled 36

Export Version Controlled Model Branch 42

Import Version Controlled Model Branch 42

Nested in Version Control 11

Resynchronize Package Version Control Status
 45

Review Version Control History 44

Validate Version Control Configuration 37

Version Control 2

Private Model

And Version Control Using TFS 29

Project Branch

Check In 38

Check Out 38

Project Browser

Version Control Indicators 2

- R -
Refresh

Diagram 44

Index49

Version Control Within UML Models Using Enterprise Architect

Refresh

Project 44

View Of Shared Model 44

Reload

Diagram 44

Model (Shared) 44

Project 44

View 44

Resynchronize

Package Version Control Status 45

Review

Package Version Control History 44

- S -
SCC

Providers Dialog 11

Version Control Options 11

Version Control, Upgrade For Enterprise
Architect 4.5 14

Source Code

Control 2

Subversion

Caching Client Credentials 22

Configure Version Control 26

Documentation 22

Executables 22

Repository URLs 22

Setting Up 22

TortoiseSVN 28

UNIX-Based Client 24

Using With Enterprise Architect Under WINE
Crossover 24

Version Control Options 22

Version Control, Create Local Working Copy
24

Version Control, Create Repository Subtree 23

Windows-Based Client 24

- T -
Team Deployment

And Version Control 7

Version Control Branching 7

Team Foundation Server

Connect Enterprise Architect Model For Version
Control 29

Version Control Option 28

TFS

Connect Enterprise Architect Model For Version
Control 29

Version Control Option 28

Working Folder For Enterprise Architect Version
Control 28

Workspace For Enterprise Architect Version
Control 28

TortoiseSVN

In Version Control 28

- V -
Validate

Package Configuration For Version Control 37

Version Control

Apply To Enterprise Architect Model 6

Apply To Model Branch 41

Basics 5

Branching 7

Check In and Check Out Packages 38

Configuration 9, 42

Configuration, Team Deployment 7

Configuration, Use Previously-Defined 37

Configure Current Package 8

Configure In Subversion 26

Configure Package 36

Connect Model Using TFS 29

Copy-Modify-Merge Policy 5

CVS Options 15, 19

CVS Remote Repository 15

Discussion Of File Control 6

Export Model Branch 42

File History 33

File Properties 33

Import Model Branch 42

In Team Deployment 7

Include Other Users' Packages 40

Introduction 2

Locking - Necessary? 5

Lock-Modify-Unlock Policy 5

Menu 33

Nested Packages 6

Offline 46

Package Configuration, Validate 37

Policies 5

Project Browser Indicators 2

Recommendations 33

Refresh View Of Shared Model 44

Resynchronize Package Version Control Status
 45

Resynchronize Status Of All Packages 8

Review Version Control History 44

SCC Options 11

SCC, Providers DialogSCC, Providers Dialog
11

Index 50

© 1998-2010 Sparx Systems Pty Ltd

Version Control

SCC, Upgrade For Enterprise Architect 4.5 14

Set Up 9

Settings 8, 9

Setup Menu 8

Subversion Options 22

Subversion, Create Local Working Copy 24

Subversion, Create New Repository Subtree
23

Subversion, Setting Up 22

Subversion, TortoiseSVN 28

Subversion, Using With Enterprise Architect
Under WINE Crossover 24

Tasks 33

TFS Option 28

Use Nested Version Control Packages 11

Using 33

Validate Package Configurations 8

Who Has Checked Out A Package? 33

Work Offline 8

- W -
WINE-Crossover

Using Subversion With Enterprise Architect
Under 24

Version Control Within UML Models
Using Enterprise Architect

www.sparxsystems.com

	Version Control
	Version Control Basics
	Apply Version Control To Models
	Version Control & Team Deployment
	Version Control Menu
	Version Control Setup
	Version Control Settings Dialog
	Version Control Nested Packages

	Version Control with SCC
	Upgrade at Enterprise Architect 4.5

	Version Control with CVS
	CVS with Remote Repositories
	CVS with Local Repositories

	Version Control with Subversion
	Set up Subversion
	Create a new Repository Sub-tree
	Create a Local Working Copy
	Subversion Under WINE-Crossover
	Version Control Configuration
	TortoiseSVN

	Version Control with TFS
	Connect an Enterprise Architect Model to Version Control using TFS

	Use Version Control
	Package Version Control Menu
	Configure Controlled Package
	Use Existing Configuration
	Validate Package Configurations
	Check In and Check Out Packages
	Include Other Users' Packages
	Apply Version Control To Branches
	Export Controlled Model Branch
	Import Controlled Model Branch
	Review Package History
	Refresh View of Shared Project
	Resynchronize the Status of Version Controlled Packages

	Offline Version Control

