
Enterprise Architect
Add-In Model
How do I create Add-Ins to extend the

Enterprise Architect User Interface? Use the
Add-In model to enhance the user interface by
adding new menus, windows and controls to

perform a variety of functions.

Enterprise Architect

User Guide Series

Author: Sparx Systems
Date: 21/12/2018

Version: 1.0

CREATED WITH

Table of Contents

Enterprise Architect Add-In Model 8
The Add-In Manager 11
Add-In Tasks 13
Create Add-Ins 15
Define Menu Items 17
Deploy Add-Ins 21
Tricks and Traps 25

Add-In Search 31
XML Format (Search Data) 33

Add-In Events 36
EA_Connect 38
EA_Disconnect 40
EA_GetMenuItems 41
EA_GetMenuState 44
EA_GetRibbonCategory 47
EA_MenuClick 49
EA_OnOutputItemClicked 52
EA_OnOutputItemDoubleClicked 55
EA_ShowHelp 58

Broadcast Events 61
Schema Composer Broadcasts 64
EA_GenerateFromSchema 65
EA_GetProfileInfo 67

EA_IsSchemaExporter 69
Add-In License Management Events 71
EA_AddinLicenseValidate 72
EA_AddinLicenseGetDescription 74
EA_GetSharedAddinName 76

Compartment Events 79
EA_QueryAvailableCompartments 80
EA_GetCompartmentData 83

Context Item Events 88
EA_OnContextItemChanged 89
EA_OnContextItemDoubleClicked 92
EA_OnNotifyContextItemModified 95

EA_FileClose 97
EA_FileNew 99
EA_FileOpen 101
EA_OnPostCloseDiagram 103
EA_OnPostInitialized 105
EA_OnPostOpenDiagram 107
EA_OnPostTransform 109
EA_OnPreExitInstance 111
EA_OnRetrieveModelTemplate 112
EA_OnTabChanged 115
Model Validation Broadcasts 117
EA_OnInitializeUserRules 119
EA_OnStartValidation 121
EA_OnEndValidation 123
EA_OnRunElementRule 125

EA_OnRunPackageRule 127
EA_OnRunDiagramRule 129
EA_OnRunConnectorRule 131
EA_OnRunAttributeRule 133
EA_OnRunMethodRule 135
EA_OnRunParameterRule 137
Model Validation Example 140

Post-New Events 151
EA_OnPostNewElement 153
EA_OnPostNewConnector 155
EA_OnPostNewDiagram 157
EA_OnPostNewDiagramObject 159
EA_OnPostNewAttribute 161
EA_OnPostNewMethod 163
EA_OnPostNewPackage 165
EA_OnPostNewGlossaryTerm 167

Pre-Deletion Events 169
EA_OnPreDeleteElement 171
EA_OnPreDeleteAttribute 173
EA_OnPreDeleteMethod 175
EA_OnPreDeleteConnector 177
EA_OnPreDeleteDiagram 179
EA_OnPreDeleteDiagramObject 181
EA_OnPreDeletePackage 183
EA_OnPreDeleteGlossaryTerm 185

Pre New-Object Events 187
EA_OnPreNewElement 189

EA_OnPreNewConnector 191
EA_OnPreNewDiagram 194
EA_OnPreNewDiagramObject 196
EA_OnPreDropFromTree 198
EA_OnPreNewAttribute 200
EA_OnPreNewMethod 202
EA_OnPreNewPackage 204
EA_OnPreNewGlossaryTerm 206

Tagged Value Broadcasts 208
EA_OnAttributeTagEdit 209
EA_OnConnectorTagEdit 211
EA_OnElementTagEdit 213
EA_OnMethodTagEdit 215

Technology Events 217
EA_OnInitializeTechnologies 218
EA_OnPreActivateTechnology 220
EA_OnPostActivateTechnology 222
EA_OnPreDeleteTechnology 224
EA_OnDeleteTechnology 227
EA_OnImportTechnology 230

Custom Views 233
Create a Custom View 234

Add a Portal 236
Custom Docked Window 238
MDG Add-Ins 241
MDG Events 242
MDG_Build Project 244

MDG_Connect 246
MDG_Disconnect 249
MDG_GetConnectedPackages 251
MDG_GetProperty 253
MDG_Merge 256
MDG_NewClass 262
MDG_PostGenerate 264
MDG_PostMerge 267
MDG_PreGenerate 269
MDG_PreMerge 271
MDG_PreReverse 273
MDG_RunExe 275
MDG_View 277

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Enterprise Architect Add-In Model

The Add-In facility provides a means of extending
Enterprise Architect, allowing the programmer to enhance
the user interface by adding new menus, sub menus,
windows and other controls to perform a variety of
functions. An Add-In is an ActiveX COM object that is
notified of events in the user interface, such as mouse clicks
and element selections, and has access to the repository
content through the Object Model. Add-Ins can also be
integrated with the license management system.

Using this powerful facility, you can extend Enterprise
Architect to create new features not available in the core
product, and these can be compiled and easily distributed to
a community of users within an organization, or more
broadly to an entire industry. Using the Add-In facility it is
even possible to create support for modeling languages and
frameworks not supported in the core product.

Add-Ins have several advantages over stand-alone
automation clients:

Add-Ins can (and should) be written as in-process (DLL)·
components; this provides lower call overhead and better
integration into the Enterprise Architect environment

Because a current version of Enterprise Architect is·

(c) Sparx Systems 2018 Page 8 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

already running there is no requirement to start a second
copy of Enterprise Architect via the automation interface

Because the Add-In receives object handles associated·
with the currently running copy of Enterprise Architect,
more information is available about the current user's
activity; for example, which diagram objects are selected

You are not required to do anything other than to install·
the Add-In to make it usable; that is, you do not have to
configure Add-Ins to run on your systems

Because Enterprise Architect is constantly evolving in·
response to customer requests, the Add-In interface is
flexible

The Add-In interface does not have its own version, rather·
it is identified by the version of Enterprise Architect it
first appeared in; for example, the current version of the
Enterprise Architect Add-In interface is version 2.1

When creating your Add-In, you do not have to subscribe·
to a type-library (Add-Ins created before 2004 are no
longer supported - if an Add-In subscribes to the
Addn_Tmpl.tlb interface (2003 style), it fails on load; in
this event, contact the vendor or author of the Add-In and
request an upgrade)

Add-Ins do not have to implement methods that they·
never use

Add-Ins prompt users via context menus in the tree view·
and the diagram

Menu check and disable states can be controlled by the·
Add-In

(c) Sparx Systems 2018 Page 9 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Add-Ins enhance the existing functionality of Enterprise
Architect through a variety of mechanisms, such as Scripts,
UML Profiles and the Automation Interface. Once an
Add-In is registered, it can be managed using the Add-In
Manager.

(c) Sparx Systems 2018 Page 10 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

The Add-In Manager

If you want to check what Add-Ins are available on your
system, and enable or disable them for use, you can review
the 'Add-In Manager' dialog. This dialog lists the Add-Ins
that have been registered on your system, and their current
status (Enabled or Disabled).

Access

Ribbon Specialize > Add-Ins > Manage

Enable/disable Add-Ins

Action Detail

Enable an
Add-In

To enable an Add-In so that it is available
for use, select the 'Load on Startup'
checkbox corresponding to the name.
Click on the OK button.

Any Add-In specific features, facilities·

and Help are made available through
the 'Specialize | <add-in name>' context

(c) Sparx Systems 2018 Page 11 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

menu option
Any defined Add-In windows are·

populated with information; select the
'Specialize > Add-Ins > Windows'
menu option

Disable an
Add-In

To disable an Add-In so that it is not
available for use, clear the 'Load on
Startup' checkbox corresponding to the
name.
Click on the OK button.
All menu options, features and facilities
specific to the Add-In are hidden and
made inactive.

Notes

When you enable or disable an Add-In, you must re-start·

Enterprise Architect to action the change

(c) Sparx Systems 2018 Page 12 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Add-In Tasks

This topic provides instructions on how to create, test,
deploy and manage Add-Ins.

Create an Add-In

Task

Create an Add-In.

Define Menu Items.

Respond to Menu Events.

Handle Add-In Events.

Deploy your Add-In

Task

Potential Pitfalls.

(c) Sparx Systems 2018 Page 13 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Manage Add-Ins

Task

Register an Add-In (developed in-house or brought-in).

The Add-In Manager.

(c) Sparx Systems 2018 Page 14 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Create Add-Ins

Before you start you must have an application development
tool that is capable of creating ActiveX COM objects
supporting the IDispatch interface, such as:

Borland Delphi·
Microsoft Visual Basic·
Microsoft Visual Studio .NET·

You should consider how to define menu items. To help
with this, you could review some examples of Automation
Interfaces - examples of code used to create Add-Ins for
Enterprise Architect - on the Sparx Systems web page.

Create an Enterprise Architect Add-In

Ste
p

Action

1 Use a development tool to create an ActiveX COM
DLL project.
Visual Basic users, for example, choose File-Create
New Project-ActiveX DLL.

2 Connect to the interface using the syntax appropriate
to the language.

(c) Sparx Systems 2018 Page 15 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

3 Create a COM Class and implement each of the
general Add-In Events applicable to your Add-In.
You only have to define methods for events to
respond to.

4 Add a registry key that identifies your Add-In to
Enterprise Architect, as described in the Deploy
Add-Ins topic.

(c) Sparx Systems 2018 Page 16 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Define Menu Items

Tasks

Task Detail

Define Menu
Items

Menu items are defined by responding to
the GetMenuItems event.
The first time this event is called,
MenuName is an empty string,
representing the top-level menu. For a
simple Add-In with just a single menu
option you can return a string.
 Function
EA_GetMenuItems(Repository as
EA.Repository, MenuLocation As String,
MenuName As String) As Variant
 EA_GetMenuItems = "&Joe's
Add-In"
 End Function

Define
Sub-Menus

To define sub-menus, prefix a parent
menu with a dash. Parent and sub-items
are defined in this way:
Function EA_GetMenuItems(Repository
as EA.Repository, MenuLocation As
String, MenuName As String) As Variant

(c) Sparx Systems 2018 Page 17 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

 Select Case MenuName
 Case ""
 'Parent Menu Item
 EA_GetMenuItems = "-&Joe's
Add-In"
 Case "-&Joe's Add-In"
 'Define Sub-Menu Items using the
Array notation.
 'In this example, "Diagram" and
"Treeview" compose the "Joe's Add-In"
sub-menu.
 EA_GetMenuItems =
Array("&Diagram", "&Treeview")
 Case Else
 MsgBox "Invalid Menu",
vbCritical
 End Select
End Function

Define
Further
Sub-Menus

Similarly, you can define further
sub-items:
Function EA_GetMenuItems(Repository
as EA.Repository, MenuLocation As
String, MenuName As String) As Variant
 Select Case MenuName
 Case ""
 EA_GetMenuItems = "-Joe's

(c) Sparx Systems 2018 Page 18 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Add-In"
 Case "-Joe's Add-In"
 EA_GetMenuItems =
Array("-&Diagram", "&TreeView")
 Case "-&Diagram"
 EA_GetMenuItems =
"&Properties"
 Case Else
 MsgBox "Invalid Menu",
vbCritical
 End Select
End Function

Enable/Disab
le menu
options

To enable or disable menu options by
default, you can use this method to show
particular items to the user:
Sub EA_GetMenuState(Repository As
EA.Repository, Location As String,
MenuName As String, ItemName As
String, IsEnabled As Boolean, IsChecked
As Boolean)
 Select Case Location
 Case "TreeView"
 'Always enable
 Case "Diagram"
 'Always enable
 Case "MainMenu"

(c) Sparx Systems 2018 Page 19 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

 Select Case ItemName
 Case "&Translate", "Save
&Project"
 If GetIsProjectSelected() Then
 IsEnabled = False
 End If
 End Select
 End Select
 IsChecked = GetIsCurrentSelection()
End Sub

(c) Sparx Systems 2018 Page 20 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Deploy Add-Ins

Deploy Add-Ins to users' sites

Step Action

1 Add the Add-In DLL file to an
appropriate directory on the user's
computer; that is:
 C:\Program Files\(new dir)

2 Register the DLL as appropriate to your
platform:

If compiled as a native Win32 DDL,·

such as VB6 or C++, register the DDL
using the regsvr32 command from the
command prompt
 regsvr32 "C:\Program
Files\MyCompany\EAAddin\EAAddin
.dll"
If compiled as a .NET DLL, such as C#·

or VB.NET, register the DLL using the
RegAsm command from the command
prompt

C:\WINDOWS\Microsoft.NET\Frame
work\v2.0.50727\RegAsm.exe
 "C:\Program

(c) Sparx Systems 2018 Page 21 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Files\MyCompany\EAAddin\EAAddin
.dll" /codebase

3 Place a new entry into the registry using
the registry editor (run regedit) so that
Enterprise Architect recognizes the
presence of your Add-In.

4 Add a new key 'EAAddIns' under one of
these locations:

For the current user only·

[HKEY_CURRENT_USER\Software\
Sparx Systems]
For multiple users on a machine·

 - Under 32-bit versions of Windows

[HKEY_LOCAL_MACHINE\Softwar
e\Sparx Systems]
 - Under 64-bit versions of Windows

[HKEY_LOCAL_MACHINE\Softwar
e\Wow6432Node\Sparx Systems]

5 Add a new key under this key with the
project name.

(c) Sparx Systems 2018 Page 22 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

(ProjectName) is not necessarily the
name of your DLL, but the name of the
Project; in Visual Basic, this is the value
for the property Name corresponding to
the project file.

6 Specify the default value by modifying
the default value of the key.

7 Enter the value of the key by typing in the
(project name).(class name), such as:
 EaRequirements.Requirements
where EaRequirements is the project
name, as shown in this example:

(c) Sparx Systems 2018 Page 23 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

(c) Sparx Systems 2018 Page 24 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Tricks and Traps

Considerations

Item Detail

Visual Basic
5/6 Users
Note

Visual Basic 5/6 users should note that
the version number of the Enterprise
Architect interface is stored in the VBP
project file in a form similar to this:
Reference=*\G{64FB2BF4-9EFA-11D2-
8307-C45586000000}#2.2#0#..\..\..\..\Pro
gram Files\Sparx
Systems\EA\EA.TLB#Enterprise
Architect Object Model 2.02
If you experience problems moving from
one version of Enterprise Architect to
another, open the VBP file in a text editor
and remove this line. Then open the
project in Visual Basic and use
Project-References to create a new
reference to the Enterprise Architect
Object model.

Add-In Fails
to Load

From Enterprise Architect release 7.0,
Add-Ins created before 2004 are no
longer supported. If an Add-In subscribes

(c) Sparx Systems 2018 Page 25 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

to the Addn_Tmpl.tlb interface (2003
style), it fails on load. In this event,
contact the vendor or author of the
Add-In and request an upgrade.

Holding State
Information

It is possible for an Add-In to hold state
information, meaning that data can be
stored in member variables in response to
one event and retrieved in another. There
are some dangers in doing this:

Enterprise Architect Automation·

Objects do not update themselves in
response to user activity, to activity on
other workstations, or even to the
actions of other objects in the same
automation client; retaining handles to
such objects between calls can result in
the second event querying objects that
have no relationship with the current
state of Enterprise Architect
When you close Enterprise Architect,·

all Add-Ins are asked to shut down; if
there are any external automation
clients Enterprise Architect must stay
active, in which case all the Add-Ins
are reloaded, losing all the data
Enterprise Architect acting as an·

automation client does not close if an
Add-In still holds a reference to it

(c) Sparx Systems 2018 Page 26 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

(releasing all references in the
Disconnect() event avoids this
problem)

It is recommended that unless there is a
specific reason for doing so, the Add-In
should use the repository parameter and
its method and properties to provide the
necessary data.

Enterprise
Architect Not
Closing

.NET Specific Issues
Automation checks the use of objects and
will not allow any of them to be
destroyed until they are no longer being
used.
As noted in the Automation Interface
topic, if your automation controller was
written using the .NET framework,
Enterprise Architect does not close even
after you release all your references to it.
To force the release of the COM pointers,
call the memory management functions
as shown:
 GC.Collect();
 GC.WaitForPendingFinalizers();
Additionally, because automation clients
hook into Enterprise Architect, which
creates Add-Ins that in turn hook back
into Enterprise Architect, it is possible to
get into a deadlock situation where

(c) Sparx Systems 2018 Page 27 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Enterprise Architect and the Add-Ins will
not let go of one another and keep each
other active. An Add-In might retain
hooks into Enterprise Architect because:

It keeps a private reference to an·

Enterprise Architect object (see the
earlier Holding State Information), or
It has been created by .NET and the·

GC mechanism has not yet released it
There are two actions required to avoid
deadlock situations:

Automation controllers must call·

Repository.CloseAddins() at some
point (perhaps at the end of processing)
Add-Ins must release all references to·

Enterprise Architect in the
Disconnect() event; see the Add-In
Events topic for details

It is possible that your Automation client
controls a running instance of Enterprise
Architect where the Add-Ins have not
complied with the rules. In this case you
could call Repository.Exit() to terminate
Enterprise Architect.

Miscellaneous
In developing Add-Ins using the .NET
framework you must select COM

(c) Sparx Systems 2018 Page 28 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Interoperability in the project's properties
in order for it to be recognized as an
Add-In.
Some development environments do not
automatically register COM DLLs on
creation. You might have to do that
manually before Enterprise Architect
recognizes the Add-In.
You can use your private Add-In key (as
required for Add-In deployment) to store
configuration information pertinent to
your Add-In.

Concurrent
Calls

In Enterprise Architect releases up to
release 7.0, there is a possibility that
Enterprise Architect could call two
Add-In methods concurrently if the
Add-In calls:

A message box·

A modal dialog·

VB DoEvents, .NET Application·

DoEvents or the equivalent in other
languages

In such cases, Enterprise Architect could
initiate a second Add-In method before
the first returns (re-entrancy). In release
7.0. and subsequent releases, Enterprise
Architect cannot make such concurrent

(c) Sparx Systems 2018 Page 29 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

calls.
If developing Add-Ins, ensure that the
Add-In users are running Enterprise
Architect release 7.0 or a later release to
avoid any risk of concurrent method
calls.

(c) Sparx Systems 2018 Page 30 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Add-In Search

Enterprise Architect enables Extensions to integrate with the
Model Search. Searches can be defined that execute a
method within your Add-In and display your results in an
integrated way.

The method that runs the search must be structured in this
way:

 Function <method name> (ByVal Rep As Repository,
ByVal SearchText As String, ByRef XMLResults As
String) As Variant

Rep - EA.Repository - IN - The current open repository·
SearchText - String - IN - An optional field that you can·
fill in through the Model Search

XMLResults - String - OUT - At completion of the·
method, this should contain the results for the search; the
results should be an XML string that conforms to the
Search Data Format

Return Value

The method must return any non-empty value for the results
to be displayed.

Advanced Usage

(c) Sparx Systems 2018 Page 31 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

In addition to the displayed results, two additional hidden
fields can be passed into the XML that provide special
functionality.

CLASSTYPE - Returning a field of CLASSTYPE,·

containing the Object_Type value from the t_object table,
displays the appropriate icon in the column in which you
place the field

CLASSGUID - Returning a field of CLASSGUID,·

containing an ea_guid value, enables the Model Search to
track the object in the Project Browser and open the
Properties window for the element by double-clicking in
the Model Search

(c) Sparx Systems 2018 Page 32 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

XML Format (Search Data)

This example XML provides the format for the sSearchData
parameter of the RunModelSearch method.

 <ReportViewData UID=\"MySearchID\">

 <!--

 //The UID attribute enables XML type searches to
persist column information. That is, if you run the search,
group by column or adjust

 //column widths, then close the window and run the
search again, the format/organization changes are retained.
To avoid persisting column

 //arrangements, leave the attribute value blank or
remove it altogether. Use this section to declare all possible
fields - columns that appear

 //in Enterprise Architect's Search window - that are
used below in <Rows/>. The order of the columns of
information to be appended here must

 //match the order that the search run in Enterprise
Architect would normally display. Furthermore, if you
append results onto a custom SQL

 //Search, then the order used in your Custom SQL
must match the order used here.

 -->

 <Fields>

 <Field name=""/>

(c) Sparx Systems 2018 Page 33 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

 <Field name=""/>

 <Field name=""/>

 <Field name=""/>

 </Fields>

 <Rows>

 <Row>

 <Field name="" value=""/>

 <Field name="" value=""/>

 <Field name="" value=""/>

 <Field name="" value=""/>

 </Row>

 <Row>

 <Field name="" value=""/>

 <Field name="" value=""/>

 <Field name="" value=""/>

 <Field name="" value=""/>

 </Row>

 <Row>

 <Field name="" value=""/>

 <Field name="" value=""/>

 <Field name="" value=""/>

 <Field name="" value=""/>

 </Row>

 </Rows>

</ReportViewData>

(c) Sparx Systems 2018 Page 34 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

(c) Sparx Systems 2018 Page 35 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Add-In Events

All Enterprise Architect Add-Ins can choose to respond to
general Add-In events.

Events

Event

EA_Connect - Add-Ins can use this to identify their type
and to respond to Enterprise Architect start up.

EA_Disconnect - Add-Ins can use this to respond to user
requests to disconnect the model branch from an external
project.

EA_GetMenuItems - Add-Ins can use this to provide the
Enterprise Architect user interface with additional Add-In
menu options in various context menus.

EA_GetMenuState - Add-Ins can use this to set a
particular menu option to either enabled or disabled.

EA_GetRibbonCategory - Add-Ins can use this to identify
the Ribbon panel in which to house their calling icon.

EA_MenuClick - received by an Add-In in response to

(c) Sparx Systems 2018 Page 36 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

user selection of a menu option.

EA_OnOutputItemClicked - informs Add-Ins that the user
has clicked on a list entry in the system tab or one of the
user defined output tabs.

EA_OnOutputItemDoubleClicked - informs Add-Ins that
the user has used the mouse to double-click on a list entry
in one of the user-defined output tabs.

EA_ShowHelp - Add-Ins can use this to show a Help
topic for a particular menu option.

(c) Sparx Systems 2018 Page 37 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_Connect

Add-Ins can use EA_Connect events to identify their type
and to respond to Enterprise Architect start up.

This event occurs when Enterprise Architect first loads your
Add-In. Enterprise Architect itself is loading at this time so
that while a Repository object is supplied, there is limited
information that you can extract from it.

The chief uses for EA_Connect are in initializing global
Add-In data and for identifying the Add-In as an MDG
Add-In.

Syntax

Function EA_Connect (Repository As EA.Repository) As
String

The EA_Connect function syntax has this parameter:

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2018 Page 38 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Return Value

A string identifying a specialized type of Add-In:

Type Details

"MDG" MDG Add-Ins receive MDG Events and
extra menu options.

"" A non-specialized Add-In.

(c) Sparx Systems 2018 Page 39 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_Disconnect

Add-Ins can use the EA_Disconnect event to respond to
user requests to disconnect the model branch from an
external project.

This function is called when Enterprise Architect closes. If
you have stored references to Enterprise Architect objects
(not recommended anyway), you must release them here.

In addition, .NET users must call memory management
functions as shown:

 GC.Collect();

 GC.WaitForPendingFinalizers();

Syntax

Sub EA_Disconnect()

Return Value

None.

(c) Sparx Systems 2018 Page 40 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_GetMenuItems

The EA_GetMenuItems event enables the Add-In to provide
the Enterprise Architect user interface with additional
Add-In menu options in various context menus. When a user
selects an Add-In menu option, an event is raised and passed
back to the Add-In that originally defined that menu option.

This event is raised just before Enterprise Architect has to
show particular menu options to the user, and its use is
described in the Define Menu Items topic.

Syntax

Function EA_GetMenuItems (Repository As
EA.Repository, MenuLocation As String, MenuName As
String) As Variant

The EA_GetMenuItems function syntax has these
parameters.

Parameter Type

MenuLocatio
n

String
Direction: IN
Description: A string representing the
part of the user interface that brought up
the menu. This can be TreeView,
MainMenu or Diagram.

(c) Sparx Systems 2018 Page 41 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

MenuName String
Direction: IN
Description: The name of the parent
menu for which sub-items are to be
defined. In the case of the top-level menu
this is an empty string.

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

One of these types:

A string indicating the label for a single menu option·

An array of strings indicating a multiple menu options·

Empty (Visual Basic/VB.NET) or null (C#) to indicate·

that no menu should be displayed

In the case of the top-level menu it should be a single string
or an array containing only one item, or empty/null.

(c) Sparx Systems 2018 Page 42 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

(c) Sparx Systems 2018 Page 43 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_GetMenuState

Add-Ins can use the EA_GetMenuState event to set a
particular menu option to either enabled or disabled. This is
useful when dealing with locked Packages and other
situations where it is convenient to show a menu option, but
not enable it for use.

This event is raised just before Enterprise Architect has to
show particular menu options to the user. Its use is further
described in the Define Menu Items topic.

Syntax

Sub EA_GetMenuState (Repository as EA.Repository,
MenuLocation As String, MenuName as String, ItemName
as String, IsEnabled as Boolean, IsChecked as Boolean)

The EA_GetMenuState function syntax has these
parameters.

Parameter Type

IsChecked Boolean
Direction: OUT
Description: Set to True to check this
particular menu option.

IsEnabled Boolean

(c) Sparx Systems 2018 Page 44 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Direction: OUT
Description: Set to False to disable this
particular menu option.

ItemName String
Direction: IN
Description: The name of the option
actually clicked; for example, 'Create a
New Invoice'.

MenuLocatio
n

String
Direction: IN
Description: A string representing the
part of the user interface that brought up
the menu. This can be TreeView,
MainMenu or Diagram.

MenuName String
Direction: IN
Description: The name of the parent
menu for which sub-items must be
defined. In the case of the top-level menu
it is an empty string.

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise

(c) Sparx Systems 2018 Page 45 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

None.

(c) Sparx Systems 2018 Page 46 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_GetRibbonCategory

Add-Ins can use EA_GetRibbonCategory events to identify
the Ribbon in which the Add-In should place its menu icon.

This event occurs when Enterprise Architect first loads your
Add-In. Enterprise Architect itself is loading at this time so
that while a Repository object is supplied, there is limited
information that you can extract from it.

The chief use for EA_GetRibbonCategory is in initializing
the Add-In access point.

Syntax

Function EA_GetRibbonCategory (Repository As
EA.Repository) As String

The EA_GetRibbonCategory function syntax has this
parameter:

Parameter Description

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2018 Page 47 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Return Value

A string matching the name of the selected ribbon (in
English if you are using a translated version). The possible
names are:

Start·

Design·

Layout·

Publish·

Specialize·

Construct·

Code·

Simulate·

Execute·

Manage·

It is not possible to include Add-Ins in the 'Specification -
Specify' ribbon or 'Documentation - Edit' ribbon.

If the function isn't implemented (or if an invalid name is
returned) the 'Add-In' menu will be available from the
'Specialize' ribbon, 'Add-Ins' panel.

(c) Sparx Systems 2018 Page 48 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_MenuClick

EA_MenuClick events are received by an Add-In in
response to user selection of a menu option.

The event is raised when the user clicks on a particular
menu option. When a user clicks on one of your non-parent
menu options, your Add-In receives a MenuClick event,
defined as:

 Sub EA_MenuClick(Repository As EA.Repository,
ByVal MenuLocation As String, ByVal MenuName As
String, ByVal ItemName As String)

This code is an example of use:

 If MenuName = "-&Diagram" And ItemName =
"&Properties" then

 MsgBox Repository.GetCurrentDiagram.Name,
vbInformation

 Else

 MsgBox "Not Implemented", vbCritical

 End If

Notice that your code can directly access Enterprise
Architect data and UI elements using Repository methods.

Syntax

Sub EA_MenuClick (Repository As EA.Repository,
MenuLocation As String, MenuName As String, ItemName

(c) Sparx Systems 2018 Page 49 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

As String)

The EA_GetMenuClick function syntax has these
parameters.

Parameter Type

ItemName String
Direction: IN
Description: The name of the option
actually clicked; for example, 'Create a
New Invoice'.

MenuLocatio
n

String
Direction: IN
Description: A string representing the
part of the user interface that brought up
the menu. This can be TreeView,
MainMenu or Diagram.

MenuName String
Direction: IN
Description: The name of the parent
menu for which sub-items are to be
defined. In the case of the top-level menu
this is an empty string.

Repository EA.Repository
Direction: IN

(c) Sparx Systems 2018 Page 50 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

None.

(c) Sparx Systems 2018 Page 51 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnOutputItemClicked

EA_OnOutputItemClicked events inform Add-Ins that the
user has clicked on a list entry in the system tab or one of
the user defined output tabs.

Usually an Add-In responds to this event in order to capture
activity on an output tab they had previously created
through a call to Repository.AddTab().

Note that every loaded Add-In receives this event for every
click on an output tab in Enterprise Architect, irrespective of
whether the Add-In created that tab. Add-Ins should
therefore check the TabName parameter supplied by this
event to ensure that they are not responding to other
Add-Ins' events.

Syntax

EA_OnOutputItemClicked (Repository As EA.Repository,
TabName As String, LineText As String, ID As Long)

The EA_OnOutputItemClicked function syntax has these
parameters.

Parameter Type

ID Long
Direction: IN
Description: The ID value specified in the

(c) Sparx Systems 2018 Page 52 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

original call to Repository.WriteOutput().

LineText String
Direction: IN
Description: The text that had been
supplied as the String parameter in the
original call to
'Repository.WriteOutput()'.

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

TabName String
Direction: IN
Description: The name of the tab that the
click occurred in. Usually this would
have been created through
'Repository.AddTab()'.

Return Value

(c) Sparx Systems 2018 Page 53 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

None.

(c) Sparx Systems 2018 Page 54 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnOutputItemDoubleClicked

EA_OnOutputItemDoubleClicked events inform Add-Ins
that the user has used the mouse to double-click on a list
entry in one of the user-defined output tabs.

Usually an Add-In responds to this event in order to capture
activity on an output tab they had previously created
through a call to Repository.AddTab().

Note that every loaded Add-In receives this event for every
double-click on an output tab in Enterprise Architect,
irrespective of whether the Add-In created that tab; Add-Ins
should therefore check the TabName parameter supplied by
this event to ensure that they are not responding to other
Add-Ins' events.

Syntax

EA_OnOutputItemDoubleClicked (Repository As
EA.Repository, TabName As String, LineText As String, ID
As Long)

The EA_OnOutputItemClicked function syntax contains
these parameters.

Parameter Type

ID Long
Direction: IN
Description: The ID value specified in the

(c) Sparx Systems 2018 Page 55 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

original call to Repository.WriteOutput().

LineText String
Direction: IN
Description: The text that had been
supplied as the String parameter in the
original call to
'Repository.WriteOutput()'.

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model; poll its members to
retrieve model data and user interface
status information.

TabName String
Direction: IN
Description: The name of the tab that the
click occurred in; usually this would have
been created through
'Repository.AddTab()'.

Return Value

(c) Sparx Systems 2018 Page 56 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

None.

(c) Sparx Systems 2018 Page 57 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_ShowHelp

Add-Ins can use the EA_ShowHelp event to show a Help
topic for a particular menu option. When the user has an
Add-In menu option selected, pressing F1 can be related to
the required Help topic by the Add-In and a suitable Help
message shown.

This event is raised when the user presses F1 on a menu
option that is not a parent menu.

Syntax

Sub EA_ShowHelp (Repository as EA.Repository,
MenuLocation As String, MenuName as String, ItemName
as String)

The EA_ShowHelp function syntax contains these
parameters.

Parameter Type

ItemName String
Direction:
Description: The name of the option
actually clicked; for example, 'Create a
New Invoice'.

MenuLocatio
n

String

(c) Sparx Systems 2018 Page 58 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Direction:
Description: A string representing the
part of the user interface that brought up
the menu. This can be Treeview,
MainMenu or Diagram.

MenuName String
Direction:
Description: The name of the parent
menu for which sub-items are to be
defined. In the case of the top-level menu
this is an empty string.

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

None.

(c) Sparx Systems 2018 Page 59 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

(c) Sparx Systems 2018 Page 60 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Broadcast Events

Overview

Broadcast events are sent to all loaded Add-Ins. For an
Add-In to receive the event, they must first implement the
required automation event interface. If Enterprise Architect
detects that the Add-In has the required interface, the event
is dispatched to the Add-In.

MDG Events add a number of additional events, but the
Add-In must first have registered as an MDG-style Add-In,
rather than as a generic Add-In.

Event Type

Add-In Licence Management Events

Compartment Events

Context Item Events

File Close Event

File New Event

File Open Event

Model Validation Broadcasts

(c) Sparx Systems 2018 Page 61 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

On Tab Changed Event

Post Close Diagram Event

Post Initialization Event

Post New Events

Post Open Diagram Event

Pre-Deletion Events

Pre-Exit Instance (not currently used)

On the creation of new objects

Retrieve Model Template Event

Schema Composer Broadcasts

Tagged Value Broadcasts

Technology Events

Transformation Event

(c) Sparx Systems 2018 Page 62 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

(c) Sparx Systems 2018 Page 63 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Schema Composer Broadcasts

Enterprise Architect Add-Ins can respond to events
associated with the Schema Composer to provide custom
schema export formats.

The requirements for an Add-In to participate consist of
implementing these three functions:

EA_IsSchemaExporter·

EA_GetProfileInfo·

EA_GenerateFromSchema·

(c) Sparx Systems 2018 Page 64 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_GenerateFromSchema

Respond to a 'Generate' request from the Schema Composer
when using the profile type specified by the
EA_IsSchemaExporter event. The SchemaComposer object
can be used to traverse the schema. Export formats that have
been requested by the user for generation will be listed in
the exports parameter.

Syntax

Sub EA_GenerateFromSchema (Repository as
EA.Repository, composer as EA.SchemaComposer, exports
as String)

Parameter Details

Repository Type: EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open model.
Poll its members to retrieve model data
and user interface status information.

composer Type: EA.SchemaComposer
Direction: IN
Description: Provides access to the types
defined in the schema currently being

(c) Sparx Systems 2018 Page 65 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

generated. Use the SchemaTypes attribute
to enumerate through the types and
output to the appropriate export format.

exports Type: String
Direction: IN
Description: Comma-separated list of
export formats that the user has requested
in the 'Generate' dialog.

Return Value

None.

(c) Sparx Systems 2018 Page 66 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_GetProfileInfo

Add-Ins can optionally implement this function to define the
capabilities of the Schema Composer when working with
the profile type specified by the EA_IsSchemaExporter
event.

Syntax

Sub EA_GetProfileInfo (Repository as EA.Repository,
profile as EA.SchemaProfile)

Parameter Details

Repository Type: EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open model.
Poll its members to retrieve model data
and user interface status information.

profile Type: EA.SchemaProfile
Direction: IN
Description: An EA.SchemaProfile object
representing the currently active profile
type. Call the SetCapability function to
enable or disable various capabilities of
the Schema Composer. Call the

(c) Sparx Systems 2018 Page 67 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

AddExportFormat function to define
additional export formats that this profile
will support.

Return Value

None.

(c) Sparx Systems 2018 Page 68 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_IsSchemaExporter

Enterprise Architect Add-Ins can integrate with the Schema
Composer by providing alternatives to offer users for the
generation of schemas and sub models.

The Add-In must implement this function to be listed in the
Schema Composer.

Syntax

Function EA_IsSchemaExporter(Repository as
EA.Repository, ByRef displayName as String) As Boolean

Parameter Details

Repository Type: EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open model.
Poll its members to retrieve model data
and user interface status information.

displayName Type: String
Direction: OUT
Description: The name of the custom
schema set that will be provided by this
Add-In.

(c) Sparx Systems 2018 Page 69 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Return Value

Return True to indicate that this Add-In will provide schema
export functionality and be listed as a Schema Set when
defining a new profile in the Schema Composer.

(c) Sparx Systems 2018 Page 70 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Add-In License Management Events

Enterprise Architect Add-Ins can respond to events
associated with Add-In License Management.

License Management Events

Event

EA_AddinLicenseValidate

EA_AddinLicenseGetDescription

EA_GetSharedAddinName

(c) Sparx Systems 2018 Page 71 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_AddinLicenseValidate

When a user directly enters into the 'License Management'
dialog a license key that doesn't match a Sparx Systems key,
EA_AddInLicenseValidate is broadcast to all Enterprise
Architect Add-Ins, providing them with a chance to use the
Add-In key to determine the level of functionality to
provide. When a key is retrieved from the Sparx Systems
Keystore only the target Add-In will be called with the key.

For the Add-In to validate itself against this key, the
Add-In's EA_AddinLicenseValidate handler should return
confirmation that the license has been validated. As the
EA_AddinLicenseValidate event is broadcast to all Add-Ins,
one license can validate many Add-Ins.

If an Add-In elects to handle a license key by returning a
confirmation to EA_AddinLicenseValidate, it is called upon
to provide a description of the license key through the
EA_AddinLicenseGetDescription event. If more than one
Add-In elects to handle a license key, the first Add-In that
returns a confirmation to EA_AddinLicenseValidate is
queried for the license key description.

Syntax

Function EA_AddInLicenseValidate (Repository As
EA.Repository, AddinKey As String) As Boolean

Parameter Type

(c) Sparx Systems 2018 Page 72 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

AddinKey String
Direction: IN
Description: The Add-In license key that
has been entered in the 'License
Management' dialog.

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

Returns True if the license key is validated for the current
Add-In. Returns False otherwise.

(c) Sparx Systems 2018 Page 73 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_AddinLicenseGetDescription

Before the Enterprise Architect 'License Management'
dialog is displayed, EA_AddInLicenseGetDescription is
sent once for each Add-In key to the first Add-In that
elected to handle that key.

The value returned by EA_AddinLicenseGetDescription is
used as the key's plain text description.

Syntax

Function EA_AddinLicenseGetDescription (Repository as
EA.Repository, AddinKey as String) As String

Parameter Type

AddinKey String
Direction: IN
Description: The Add-In license key that
Enterprise Architect requires a
description for.

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open model.
Poll its members to retrieve model data

(c) Sparx Systems 2018 Page 74 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

and user interface status information.

Return Value

A String containing a plain text description of the provided
AddinKey.

(c) Sparx Systems 2018 Page 75 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_GetSharedAddinName

As an Add-In writer you can distribute keys to your Add-In
via the Enterprise Architect Keystore, provided that your
keys are added using a prefix that allows the system to
identify the Add-In to which they belong.
EA_GetSharedAddinName is called to determine what
prefix the Add-In is using. If a matching key is found in the
keystore the 'License Management' dialog will display the
name returned by EA_AddinLicenseGetDescription to your
users. Finally, when the user selects a key, that key will be
passed to your Add-In to validate by calling
EA_AddinLicenseValidate.

Syntax

Function EA_GetSharedAddinName (Repository as
EA.Repository) As String

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open model.
Poll its members to retrieve model data
and user interface status information.

(c) Sparx Systems 2018 Page 76 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Return Value

A String containing a product name code for the provided
Add-In, such as MYADDIN. This will be shown in plain
text in any keys added to the keystore.

Notes

Shared Add-In keys have the format:

 EASK-YOURCODE-REALKEY

EASK - Constant string that identifies a shared key for an·

Enterprise Architect Add-In

YOURCODE - The code you select and verify with us:·

 - Displayed to the administrator of the keystore
 - Recommended length of 6-10 characters
 - Contains ASCII characters 33-126, except for '-' (45)

REALKEY - Encoding of the actual key or checksums·

 - Recommended length of 8-32 characters
 - Contains ASCII characters 33-126

We recommend that you contact Sparx Systems directly
with proposed values to ensure that you don't clash with any
other Add-Ins.

For example, these keys would all be interpreted as
belonging to an Add-In returning MYADDIN from this

(c) Sparx Systems 2018 Page 77 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

function:

EASK-MYADDIN-Test·

EASK-MYADDIN-{7AC4D426-9083-4fa2-93B7-25E2B·

7FB8DC5}

EASK-MYADDIN-7AC4D426-9083-4fa2-93B7·

EASK-MYADDIN-25E2B7FB8DC5·

EASK-MYADDIN-2hDfHKA5jf0GAjn92UvqAnxwC13·

dxQGJtH7zLHJ9Ym8=

(c) Sparx Systems 2018 Page 78 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Compartment Events

Enterprise Architect Add-Ins can respond to various events
associated with user-generated element compartments.

Compartment Broadcast Events

Event

EA_QueryAvailableCompartments

EA_GetCompartmentData

(c) Sparx Systems 2018 Page 79 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_QueryAvailableCompartments

This event occurs when Enterprise Architect's diagrams are
refreshed. It is a request for the Add-In to provide a list of
user-defined compartments.

The EA_GetCompartmentData event then queries each
object for the data to display in each user-defined
compartment.

Syntax

Function EA_QueryAvailableCompartments (Repository As
EA.Repository) As Variant

The EA_QueryAvailableCompartments function syntax
contains this parameter.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2018 Page 80 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Return Value

A String containing a comma-separated list of user-defined
compartments.

Example

Function EA_QueryAvailableCompartments(Repository As
EA.Repository) As Variant

 Dim sReturn As String

 sReturn = ""

 If m_FirstCompartmentVisible = True Then

 sReturn = sReturn + "first,"

 End If

 If m_SecondCompartmentVisible = True Then

 sReturn = sReturn + "second,"

 End If

 If m_ThirdCompartmentVisible = True Then

 sReturn = sReturn + "third,"

 End If

 If Len(sReturn) > 0 Then

 sReturn = Left(sReturn, Len(sReturn)-1)

 End If

(c) Sparx Systems 2018 Page 81 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

 EA_QueryAvailableCompartments = sReturn

End Function

(c) Sparx Systems 2018 Page 82 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_GetCompartmentData

This event occurs when Enterprise Architect is instructed to
redraw an element. It requests that the Add-In provide the
data to populate the element's compartment.

Syntax

Function EA_GetCompartmentData (Repository As
EA.Repository, sCompartment As String, sGUID As String,
oType As EA.ObjectType) As Variant

The EA_QueryAvailableCompartments function syntax
contains these parameters.

Parameter Type

oType ObjectType
Direction: IN
Description: The type of the element for
which data is being requested.

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface

(c) Sparx Systems 2018 Page 83 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

status information.

sCompartme
nt

String
Direction: IN
Description: The name of the
compartment for which data is being
requested.

sGUID String
Direction: IN
Description: The GUID of the element
for which data is being requested.

Return Value

A variant containing a formatted string. The format is
illustrated in this example:

Example

 Function EA_GetCompartmentData(Repository As
EA.Repository, sCompartment As String, sGUID As String,
oType As EA.ObjectType) As Variant

(c) Sparx Systems 2018 Page 84 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

 If Repository Is Nothing Then

 Exit Function

 End If

 Dim sCompartmentData As String

 Dim oXML As MSXML2.DOMDocument

 Dim Nodes As MSXML2.IXMLDOMNodeList

 Dim Node1 As MSXML2.IXMLDOMNode

 Dim Node As MSXML2.IXMLDOMNode

 Dim sData As String

 sCompartmentData = ""

 Set oXML = New MSXML2.DOMDocument

 sData = ""

 On Error GoTo ERR_GetCompartmentData

 oXML.loadXML
(Repository.GetTreeXMLByGUID(sGUID))

 Set Node1 = oXML.selectSingleNode("//ModelItem")

 If Node1 Is Nothing Then

 Exit Function

 End If

 sCompartmentData = sCompartmentData + "Name=" +
sCompartment + ";"

 sCompartmentData = sCompartmentData +

(c) Sparx Systems 2018 Page 85 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

"OwnerGUID=" + sGUID + ";"

 sCompartmentData = sCompartmentData +
"Options=SkipIfOnDiagram&_eq_^1&_sc_^"

 Select Case sCompartment

 Case "parts"

 Set Nodes =
Node1.selectNodes("ModelItem(@Metatype=""Part"")")

 For Each Node In Nodes

 sData = sData + "Data&_eq_^" +
Node.Attributes.getNamedItem("Name").nodeValue +
"&_sc_^"

 sData = sData + "GUID&_eq_^" +
Node.Attributes.getNamedItem("GUID").nodeValue +
"&_sc_^,"

 Next

 Case "ports"

 Set Nodes =
Node1.selectNodes("ModelItem(@Metatype=""Port"")")

 For Each Node In Nodes

 sData = sData + "Data&_eq_^" +
Node.Attributes.getNamedItem("Name").nodeValue +
"&_sc_^"

 sData = sData + "GUID&_eq_^" +
Node.Attributes.getNamedItem("GUID").nodeValue +
"&_sc_^,"

 Next

 End Select

(c) Sparx Systems 2018 Page 86 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

 If there is no data to display, then don't return any
compartment data

 If sData <> "" Then

 sCompartmentData = sCompartmentData +
"CompartmentData=" + sData + ";"

 Else

 sCompartmentData = ""

 End If

 EA_GetCompartmentData = sCompartmentData

 Exit Function

 ERR_GetCompartmentData:

 EA_GetCompartmentData = ""

 End Function

(c) Sparx Systems 2018 Page 87 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Context Item Events

Enterprise Architect Add-Ins can respond to events
associated with changing context.

Context Item Broadcast Events

Event

EA_OnContextItemChanged

EA_OnContextItemDoubleClicked

EA_OnNotifyContextItemModified

(c) Sparx Systems 2018 Page 88 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnContextItemChanged

EA_OnContextItemChanged notifies Add-Ins that a
different item is now in context.

This event occurs after a user has selected an item anywhere
in the Enterprise Architect GUI. Add-Ins that require
knowledge of the current item in context can subscribe to
this broadcast function. If ot = otRepository, then this
function behaves in the same way as EA_FileOpen.

Syntax

Sub EA_OnContextItemChanged (Repository As
EA.Repository, GUID As String, ot as EA.ObjectType)

The EA_OnContextItemChanged function syntax contains
these parameters.

Parameter Type

GUID String
Direction: IN
Description: Contains the GUID of the
new context item. The value corresponds
to these properties, depending on the
value of the ot parameter:

ot (ObjectType) - GUID value·

otElement - Element.ElementGUID·

(c) Sparx Systems 2018 Page 89 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

otPackage - Package.PackageGUID·

otDiagram - Diagram.DiagramGUID·

otAttribute - Attribute.AttributeGUID·

otMethod - Method.MethodGUID·

otConnector -·

Connector.ConnectorGUID
otRepository - NOT APPLICABLE,·

the GUID is an empty string

ot EA.ObjectType
Direction: IN
Description: Specifies the type of the new
context item.

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

None.

(c) Sparx Systems 2018 Page 90 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

(c) Sparx Systems 2018 Page 91 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnContextItemDoubleClicked

EA_OnContextItemDoubleClicked notifies Add-Ins that the
user has double-clicked the item currently in context.

This event occurs when a user has double-clicked (or
pressed the Enter key) on the item in context, either in a
diagram, in the Project Browser or in a custom
compartment. Add-Ins to handle events can subscribe to this
broadcast function.

Syntax

Function EA_OnContextItemDoubleClicked (Repository As
EA.Repository, GUID As String, ot as EA.ObjectType)

The EA_OnContextItemDoubleClicked function syntax
contains these parameters.

Parameter Type

GUID String
Direction: IN
Description: Contains the GUID of the
new context item. The value corresponds
to these properties, depending on the
value of the ot parameter:

otElement - Element.ElementGUID·

otPackage - Package.PackageGUID·

(c) Sparx Systems 2018 Page 92 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

otDiagram - Diagram.DiagramGUID·

otAttribute - Attribute.AttributeGUID·

otMethod - Method.MethodGUID·

otConnector -·

Connector.ConnectorGUID

ot EA.ObjectType
Direction: IN
Description: Specifies the type of the new
context item.

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

Return True to notify Enterprise Architect that the
double-click event has been handled by an Add-In.

Return False to enable Enterprise Architect to continue
processing the event.

(c) Sparx Systems 2018 Page 93 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

(c) Sparx Systems 2018 Page 94 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnNotifyContextItemModified

EA_OnNotifyContextItemModified notifies Add-Ins that
the current context item has been modified.

This event occurs when a user has modified the context
item. Add-Ins that require knowledge of when an item has
been modified can subscribe to this broadcast function.

Syntax

Sub EA_OnNotifyContextItemModified (Repository As
EA.Repository, GUID As String, ot as EA.ObjectType)

The EA_OnNotifyContextItemModified function syntax
contains these parameters.

Parameter Type

GUID String
Direction: IN
Description: Contains the GUID of the
new context item. The value corresponds
to these properties, depending on the
value of the ot parameter:

ot(ObjectType) - GUID value·

otElement - Element.ElementGUID·

otPackage - Package.PackageGUID·

otDiagram - Diagram.DiagramGUID·

(c) Sparx Systems 2018 Page 95 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

otAttribute - Attribute.AttributeGUID·

otMethod - Method.MethodGUID·

otConnector -·

Connector.ConnectorGUID

ot EA.ObjectType
Direction: IN
Description: Specifies the type of the new
context item.

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

None.

(c) Sparx Systems 2018 Page 96 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_FileClose

The EA_FileClose event enables the Add-In to respond to a
File Close event. When Enterprise Architect closes an
opened Model file, this event is raised and passed to all
Add-Ins implementing this method.

This event occurs when the model currently opened within
Enterprise Architect is about to be closed (when another
model is about to be opened or when Enterprise Architect is
about to shutdown).

Syntax

Sub EA_FileClose (Repository As EA.Repository)

The EA_FileClose function syntax contains this parameter:

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the Enterprise Architect
model about to be closed. Poll its
members to retrieve model data and user
interface status information.

(c) Sparx Systems 2018 Page 97 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Return Value

None.

(c) Sparx Systems 2018 Page 98 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_FileNew

The EA_FileNew event enables the Add-In to respond to a
File New event. When Enterprise Architect creates a new
model file, this event is raised and passed to all Add-Ins
implementing this method.

The event occurs when the model being viewed by the
Enterprise Architect user changes, for whatever reason
(through user interaction or Add-In activity).

Syntax

Sub EA_FileNew (Repository As EA.Repository)

The EA_FileNew function syntax contains this parameter.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2018 Page 99 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Return Value

None.

(c) Sparx Systems 2018 Page 100 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_FileOpen

The EA_FileOpen event enables the Add-In to respond to a
File Open event. When Enterprise Architect opens a new
model file, this event is raised and passed to all Add-Ins
implementing this method.

The event occurs when the model being viewed by the
Enterprise Architect user changes, for whatever reason
(through user interaction or Add-In activity).

Syntax

Sub EA_FileOpen (Repository As EA.Repository)

The EA_FileOpen function syntax contains this parameter.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2018 Page 101 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Return Value

None.

(c) Sparx Systems 2018 Page 102 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnPostCloseDiagram

EA_OnPostCloseDiagram notifies Add-Ins that a diagram
has been closed.

Syntax

Function EA_OnPostCloseDiagram (Repository As
EA.Repository, DiagramID As Integer)

The EA_OnPostCloseDiagram function syntax contains
these parameters.

Parameter Type

DiagramID Integer
Direction: IN
Description: Contains the Diagram ID of
the diagram that was closed.

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the Enterprise Architect
model about to be closed. Poll its
members to retrieve model data and user
interface status information.

(c) Sparx Systems 2018 Page 103 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Return Value

None.

(c) Sparx Systems 2018 Page 104 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnPostInitialized

EA_OnPostInitialized notifies Add-Ins that the Repository
object has finished loading and any necessary initialization
steps can now be performed on the object.

For example, the Add-In can create an 'Output' tab using
Repository.CreateOutputTab.

Syntax

Sub EA_OnPostInitialized (Repository As EA.Repository)

The EA_OnPostInitialized function syntax contains this
parameter.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

(c) Sparx Systems 2018 Page 105 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

None.

(c) Sparx Systems 2018 Page 106 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnPostOpenDiagram

EA_OnPostOpenDiagram notifies Add-Ins that a diagram
has been opened.

Syntax

Function EA_OnPostOpenDiagram (Repository As
EA.Repository, DiagramID As Integer)

The EA_OnPostOpenDiagram function syntax contains
these parameters.

Parameter Type

DiagramID Integer
Direction: IN
Description: Contains the Diagram ID of
the diagram that was opened.

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2018 Page 107 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Return Value

None.

(c) Sparx Systems 2018 Page 108 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnPostTransform

EA_OnPostTransform notifies Add-Ins that an MDG
transformation has taken place with the output in the
specified target Package.

This event occurs when a user runs an MDG transform on
one or more target Packages; the notification is provided for
each transform/target Package immediately after all
transform processes have completed.

Syntax

Function EA_OnPostTransform (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostTransform function syntax contains these
parameters.

Parameter Type

Info EA.EventProperties
Direction: IN
Description: Contains these
EventProperty Objects for the transform
performed:

Transform: A string value·

corresponding to the name of the
transform used

(c) Sparx Systems 2018 Page 109 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

PackageID: A long value·

corresponding to Package.PackageID
of the destination Package

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

Reserved for future use.

(c) Sparx Systems 2018 Page 110 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnPreExitInstance

EA_OnPreExitInstance is not currently used.

Syntax

Sub EA_OnPreExitInstance (Repository As EA.Repository)

The EA_OnPreExitInstance function syntax contains this
parameter.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

None.

(c) Sparx Systems 2018 Page 111 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnRetrieveModelTemplate

EA_OnRetrieveModelTemplate requests that an Add-In
pass a model template to Enterprise Architect. This event
occurs when a user executes the 'Add a New Model Using
Wizard' command to add a model that has been defined by
an MDG Technology.

Syntax

Function EA_OnRetrieveModelTemplate (Repository As
EA.Repository, sLocation As String) As String

The EA_OnRetrieveModelTemplate function syntax
contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

sLocation String
Direction: IN
Description: The name of the template

(c) Sparx Systems 2018 Page 112 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

requested; this should match the location
attribute in the <ModelTemplates>
section of an MDG Technology File.

Return Value

Return a string containing the XMI export of the model that
is being used as a template. Return an empty string if access
to the template is denied; the Add-In is to handle user
notification of the error.

Example

Public Function EA_OnRetrieveModelTemplate(ByRef Rep
As EA.Repository, ByRef sLocation As String) As String

Dim sTemplate As String

Select Case sLocation

Case "Templates\Template1.xml"

sTemplate = My.Resources.Template1

Case "Templates\Template2.xml"

sTemplate = My.Resources.Template2

Case "Templates\Template3.xml"

sTemplate = My.Resources.Template3

(c) Sparx Systems 2018 Page 113 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Case Else

MsgBox("Path for " & sLocation & " not found")

sTemplate = ""

End Select

EA_OnRetrieveModelTemplate = sTemplate

End Function

(c) Sparx Systems 2018 Page 114 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnTabChanged

EA_OnTabChanged notifies Add-Ins that the currently open
tab has changed.

Diagrams do not generate the message when they are first
opened - use the broadcast event EA_OnPostOpenDiagram
for this purpose.

Syntax

Function EA_OnTabChanged (Repository As
EA.Repository, TabName As String, DiagramID As Integer)

The EA_OnTabChanges function syntax contains these
parameters.

Parameter Type

DiagramID Long
Direction: IN
Description: The diagram ID, or 0 if
switched to an Add-In tab.

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to

(c) Sparx Systems 2018 Page 115 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

retrieve model data and user interface
status information.

TabName String
Direction: IN
Description: The name of the tab to
which focus has been switched.

Return Value

None

(c) Sparx Systems 2018 Page 116 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Model Validation Broadcasts

Perform Model Validation from an Add-In

Using Enterprise Architect broadcasts, it is possible to
define a set of rules that are evaluated when the user
instructs Enterprise Architect to perform model validation.
An Add-In that performs model validation would involve
these broadcast events.

Command Detail

EA_OnInitial
izeUserRules

EA_OnInitializeUserRules is intercepted
in order to define rule categories and
rules.

EA_OnStart
Validation

EA_OnStartValidation can be intercepted
to perform any required processing prior
to validation.

EA_OnEndV
alidation

EA_OnEndValidation can be intercepted
to perform any required clean-up after
validation has completed.

Validate
Request

These functions intercept each request to
validate an individual element, Package,
diagram, connector, attribute and method.

(c) Sparx Systems 2018 Page 117 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Validate
Element

EA_OnRunElementRule

Validate
Package

EA_OnRunPackageRule

Validate
Diagram

EA_OnRunDiagramRule

Validate
Connector

EA_OnRunConnectorRule

Validate
Attribute

EA_OnRunAttributeRule

Validate
Method

EA_OnRunMethodRule

Validate
Parameter

EA_OnRunParameterRule

(c) Sparx Systems 2018 Page 118 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnInitializeUserRules

EA_OnInitializeUserRules is called on Enterprise Architect
start-up and requests that the Add-In provide Enterprise
Architect with a rule category and list of rule IDs for model
validation.

This function must be implemented by any Add-In that is to
perform its own model validation. It must call
Project.DefineRuleCategory once and Project.DefineRule
for each rule; these functions are described in the Project
Interface topic.

Syntax

Sub EA_OnInitializeUserRules (Repository As
EA.Repository)

The EA_OnInitializeUserRules function syntax contains this
parameter.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2018 Page 119 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

(c) Sparx Systems 2018 Page 120 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnStartValidation

EA_OnStartValidation notifies Add-Ins that a user has
invoked the model validation command from Enterprise
Architect.

Syntax

Sub EA_OnStartValidation (Repository As EA.Repository,
ParamArray Args() as Variant)

The EA_OnStartValidation function syntax contains these
parameters.

Parameter Type

Args ParamArray of Variant
Direction: IN
Description: Contains a list of Rule
Categories that are active for the current
invocation of model validation.

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface

(c) Sparx Systems 2018 Page 121 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

status information.

(c) Sparx Systems 2018 Page 122 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnEndValidation

EA_OnEndValidation notifies Add-Ins that model
validation has completed.

Use this event to arrange any clean-up operations arising
from the validation.

Syntax

Sub EA_OnEndValidation (Repository As EA.Repository,
ParamArray Args() as Variant)

The EA_OnEndValidation function syntax contains these
parameters.

Parameter Type

Args ParamArray of Variant
Direction: IN
Description: Contains a list of Rule
Categories that were active for the
invocation of model validation that has
just completed.

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise

(c) Sparx Systems 2018 Page 123 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2018 Page 124 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnRunElementRule

This event is triggered once for each rule defined in
EA_OnInitializeUserRules to be performed on each element
in the selection being validated.

If you don't want to perform the rule defined by RuleID on
the given element, then simply return without performing
any action.

On performing any validation, if a validation error is found,
use the Repository.ProjectInterface.PublishResult method to
notify Enterprise Architect.

Syntax

Sub EA_OnRunElementRule (Repository As
EA.Repository, RuleID As String, Element As EA.Element)

The EA_OnRunElementRule function syntax contains these
parameters.

Parameter Type

Element EA.Element
Direction: IN
Description: The element to potentially
perform validation on.

Repository EA.Repository

(c) Sparx Systems 2018 Page 125 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

RuleID String
Direction: IN
Description: The ID that was passed into
the 'Project.DefineRule' command.

(c) Sparx Systems 2018 Page 126 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnRunPackageRule

This event is triggered once for each rule defined in
EA_OnInitializeUserRules to be performed on each Package
in the selection being validated.

If you don't want to perform the rule defined by RuleID on
the given Package, then simply return without performing
any action.

On performing any validation, if a validation error is found,
use the Repository.ProjectInterface.PublishResult method to
notify Enterprise Architect.

Syntax

Sub EA_OnRunPackageRule (Repository As
EA.Repository, RuleID As String, PackageID As Long)

The EA_OnRunElementRule function syntax contains these
parameters.

Parameter Type

PackageID Long
Direction: IN
Description: The ID of the Package to
potentially perform validation on. Use the
'Repository.GetPackageByID' method to
retrieve the Package object.

(c) Sparx Systems 2018 Page 127 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

RuleID String
Direction: IN
Description: The ID that was passed into
the 'Project.DefineRule' method.

(c) Sparx Systems 2018 Page 128 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnRunDiagramRule

This event is triggered once for each rule defined in
EA_OnInitializeUserRules to be performed on each diagram
in the selection being validated.

If you don't want to perform the rule defined by RuleID on
the given diagram, then simply return without performing
any action.

On performing any validation, if a validation error is found,
use the Repository.ProjectInterface.PublishResult method to
notify Enterprise Architect.

Syntax

Sub EA_OnRunDiagramRule (Repository As
EA.Repository, RuleID As String, DiagramID As Long)

The EA_OnRunDiagramRule function syntax contains these
parameters.

Parameter Type

DiagramID Long
Direction: IN
Description: The ID of the diagram to
potentially perform validation on.
Use the Repository.GetDiagramByID
method to retrieve the diagram object.

(c) Sparx Systems 2018 Page 129 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

RuleID String
Direction: IN
Description: The ID that was passed into
the 'Project.DefineRule' command.

(c) Sparx Systems 2018 Page 130 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnRunConnectorRule

This event is triggered once for each rule defined in
EA_OnInitializeUserRules to be performed on each
connector in the selection being validated.

If you don't want to perform the rule defined by RuleID on
the given connector, then simply return without performing
any action.

On performing any validation, if a validation error is found,
use the Repository.ProjectInterface.PublishResult method to
notify Enterprise Architect.

Syntax

Sub EA_OnRunConnectorRule (Repository As
EA.Repository, RuleID As String, ConnectorID As Long)

The EA_OnRunConnectorRule function syntax contains
these parameters.

Parameter Type

ConnectorID Long
Direction: IN
Description: The ID of the connector to
potentially perform validation on.
Use the 'Repository.GetConnectorByID'
method to retrieve the connector object.

(c) Sparx Systems 2018 Page 131 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

RuleID String
Direction: IN
Description: The ID that was passed into
the 'Project.DefineRule' command.

(c) Sparx Systems 2018 Page 132 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnRunAttributeRule

This event is triggered once for each rule defined in
EA_OnInitializeUserRules to be performed on each attribute
in the selection being validated.

If you don't want to perform the rule defined by RuleID on
the given attribute, then simply return without performing
any action.

On performing any validation, if a validation error is found,
use the Repository.ProjectInterface.PublishResult method to
notify Enterprise Architect.

Syntax:

Sub EA_OnRunAttributeRule (Repository As
EA.Repository, RuleID As String, AttributeGUID As
String, ObjectID As Long)

The EA_OnRunAttributeRule function syntax contains
these parameters.

Parameter Type

AttributeGUI
D

String
Direction: IN
Description: The GUID of the attribute to
potentially perform validation on.
Use the 'Repository.GetAttributeByGuid'

(c) Sparx Systems 2018 Page 133 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

method to retrieve the attribute object.

ObjectID Long
Direction: IN
Description: The ID of the object that
owns the given attribute. Use the
'Repository.GetElementByID' method to
retrieve the object.

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

RuleID String
Direction: IN
Description: The ID that was passed into
the 'Project.DefineRule' command.

(c) Sparx Systems 2018 Page 134 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnRunMethodRule

This event is triggered once for each rule defined in
EA_OnInitializeUserRules to be performed on each method
in the selection being validated.

If you don't want to perform the rule defined by RuleID on
the given method, then simply return without performing
any action.

On performing any validation, if a validation error is found,
use the Repository.ProjectInterface.PublishResult method to
notify Enterprise Architect.

Syntax

Sub EA_OnRunMethodRule (Repository As EA.Repository,
RuleID As String, MethodGUID As String, ObjectID As
Long)

The EA_OnRunMethodRule function syntax contains these
parameters.

Parameter Type

MethodGUI
D

String
Direction: IN
Description: The GUID of the method to
potentially perform validation on. Use the
'Repository.GetMethodByGuid' method

(c) Sparx Systems 2018 Page 135 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

to retrieve the method object.

ObjectID Long
Direction: IN
Description: The ID of the object that
owns the given method. Use the
'Repository.GetElementByID' method to
retrieve the object.

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

RuleID String
Direction: IN
Description: The ID that was passed into
the 'Project.DefineRule' command.

(c) Sparx Systems 2018 Page 136 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnRunParameterRule

This event is triggered once for each rule defined in
EA_OnInitializeUserRules to be performed on each
parameter in the selection being validated.

If you don't want to perform the rule defined by RuleID on
the given parameter, then simply return without performing
any action.

On performing any validation, if a validation error is found,
use the Repository.ProjectInterface.PublishResult method to
notify Enterprise Architect.

Syntax

Sub EA_OnRunParameterRule (Repository As
EA.Repository, RuleID As String, ParameterGUID As
String, MethodGUID As String, ObjectID As Long)

The EA_OnRunMethodRule function syntax contains these
parameters.

Parameter Type

MethodGUI
D

String
Direction: IN
Description: The GUID of the method
that owns the given parameter. Use the
'Repository.GetMethodByGuid' method

(c) Sparx Systems 2018 Page 137 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

to retrieve the method object.

ObjectID Long
Direction: IN
Description: The ID of the object that
owns the given parameter. Use the
'Repository.GetElementByID' method to
retrieve the object.

ParameterGU
ID

String
Direction: IN
Description: The GUID of the parameter
to potentially perform validation on. Use
this to retrieve the parameter by iterating
through the 'Method.Parameters'
collection.

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

RuleID String
Direction: IN
Description: The ID that was passed into

(c) Sparx Systems 2018 Page 138 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

the 'Project.DefineRule' command.

(c) Sparx Systems 2018 Page 139 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Model Validation Example

This example code is written in C# and provides a skeleton
model validation implementation that you might want to use
as a starting point in writing your own model validation
rules.

Main.cs

using System;

namespace myAddin

{

 public class Main

 {

 public Rules theRules;

 public Main()

 {

 theRules = new Rules();

 }

 public string EA_Connect(EA.Repository Repository)

 {

 return "";

 }

 public void EA_Disconnect()

 {

(c) Sparx Systems 2018 Page 140 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

 GC.Collect();

 GC.WaitForPendingFinalizers();

 }

 private bool IsProjectOpen(EA.Repository Repository)

 {

 try

 {

 EA.Collection c = Repository.Models;

 return true;

 }

 catch

 {

 return false;

 }

 }

 public object EA_GetMenuItems(EA.Repository
Repository, string MenuLocation, string MenuName)

 {

 switch (MenuName)

 {

 case "":

 return "-&myAddin";

 case "-&myAddin":

 string() ar = { "&Test" };

 return ar;

(c) Sparx Systems 2018 Page 141 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

 }

 return "";

 }

 public void EA_GetMenuState(EA.Repository
Repository, string MenuLocation, string MenuName,

 string ItemName, ref bool IsEnabled, ref bool
IsChecked)

 {

 // if no open project, disable all menu options

 if (IsProjectOpen(Repository))

 IsEnabled = true;

 else

 IsEnabled = false;

 }

 public void EA_MenuClick(EA.Repository
Repository, string MenuLocation, string MenuName, string
ItemName)

 {

 switch (ItemName)

 {

 case "&Test";

 DoTest(Repository);

 break;

 }

 }

(c) Sparx Systems 2018 Page 142 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

 public void EA_OnInitializeUserRules(EA.Repository
Repository)

 {

 if (Repository != null)

 {

 theRules.ConfigureCategories(Repository);

 theRules.ConfigureRules(Repository);

 }

 }

 public void EA_OnRunElementRule(EA.Repository
Repository, string RuleID, EA.Element element)

 {

 theRules.RunElementRule(Repository, RuleID,
element);

 }

 public void EA_OnRunDiagramRule(EA.Repository
Repository, string RuleID, long lDiagramID)

 {

 theRules.RunDiagramRule(Repository, RuleID,
lDiagramID);

 }

 public void EA_OnRunConnectorRule(EA.Repository
Repository, string RuleID, long lConnectorID)

 {

 theRules.RunConnectorRule(Repository, RuleID,
lConnectorID);

(c) Sparx Systems 2018 Page 143 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

 }

 public void EA_OnRunAttributeRule(EA.Repository
Repository, string RuleID, string AttGUID, long lObjectID)

 {

 return;

 }

 public void EA_OnDeleteTechnology(EA.Repository
Repository, EA.EventProperties Info)

 {

 return;

 }

 public void EA_OnImportTechnology(EA.Repository
Repository, EA.EventProperties Info)

 {

 return;

 }

 private void DoTest(EA.Repository Rep)

 {

 // TODO: insert test code here

 }

 }

}

Rules.cs

(c) Sparx Systems 2018 Page 144 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

using System;

using System.Collections;

namespace myAddin

{

 public class Rules

 {

 private string m_sCategoryID;

 private System.Collections.ArrayList m_RuleIDs;

 private System.Collections.ArrayList m_RuleIDEx;

 private const string cRule01 = "Rule01";

 private const string cRule02 = "Rule02";

 private const string cRule03 = "Rule03";

 // TODO: expand this list as much as necessary

 public Rules()

 {

 m_RuleIDs = new System.Collections.ArrayList();

 m_RuleIDEx = new
System.Collections.ArrayList();

 }

 private string LookupMap(string sKey)

 {

 return DoLookupMap(sKey, m_RuleIDs,
m_RuleIDEx);

 }

(c) Sparx Systems 2018 Page 145 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

 private string LookupMapEx(string sRule)

 {

 return DoLookupMap(sRule, m_RuleIDEx,
m_RuleIDs);

 }

 private string DoLookupMap(string sKey, ArrayList
arrValues, ArrayList arrKeys)

 {

 if (arrKeys.Contains(sKey))

 return
arrValues(arrKeys.IndexOf(sKey)).ToString();

 else

 return "";

 }

 private void AddToMap(string sRuleID, string sKey)

 {

 m_RuleIDs.Add(sRuleID);

 m_RuleIDEx.Add(sKey);

 }

 private string GetRuleStr(string sRuleID)

 {

 switch (sRuleID)

 {

 case cRule01:

 return "Error Message 01";

(c) Sparx Systems 2018 Page 146 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

 case cRule02:

 return "Error Message 02";

 case cRule03:

 return "Error Message 03";

 // TODO: add extra cases as much as necessary

 }

 return "";

 }

 public void ConfigureCategories(EA.Repository
Repository)

 {

 EA.Project Project =
Repository.GetProjectInterface();

 m_sCategoryID =
Project.DefineRuleCategory("Enterprise Collaboration
Architecture (ECA) Rules");

 }

 public void ConfigureRules(EA.Repository
Repository)

 {

 EA.Project Project =
Repository.GetProjectInterface();

 AddToMap(Project.DefineRule(m_sCategoryID,
EA.EnumMVErrorType.mvError, GetRuleStr(cRule01)),
cRule01);

 AddToMap(Project.DefineRule(m_sCategoryID,

(c) Sparx Systems 2018 Page 147 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA.EnumMVErrorType.mvError, GetRuleStr(cRule02)),
cRule02);

 AddToMap(Project.DefineRule(m_sCategoryID,
EA.EnumMVErrorType.mvError, GetRuleStr(cRule03)),
cRule03);

 // TODO: expand this list

 }

 public void RunConnectorRule(EA.Repository
Repository, string sRuleID, long lConnectorID)

 {

 EA.Connector Connector =
Repository.GetConnectorByID((int)lConnectorID);

 if (Connector != null)

 {

 switch (LookupMapEx(sRuleID))

 {

 case cRule02:

 // TODO: perform rule 2 check

 break;

 // TODO: add more cases

 }

 }

 }

 public void RunDiagramRule(EA.Repository
Repository, string sRuleID, long lDiagramID)

 {

(c) Sparx Systems 2018 Page 148 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

 EA.Diagram Diagram =
Repository.GetDiagramByID((int)lDiagramID);

 if (Diagram != null)

 {

 switch (LookupMapEx(sRuleID))

 {

 case cRule03:

 // TODO: perform rule 3 check

 break;

 // TODO: add more cases

 }

 }

 }

 public void RunElementRule(EA.Repository
Repository, string sRuleID, EA.Element Element)

 {

 if (Element != null)

 {

 switch (LookupMapEx(sRuleID))

 {

 case cRule01:

 DoRule01(Repository, Element);

 break;

 // TODO: add more cases

 }

(c) Sparx Systems 2018 Page 149 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

 }

 }

 private void DoRule01(EA.Repository Repository,
EA.Element Element)

 {

 if (Element.Stereotype != "myStereotype")

 return;

 // TODO: validation logic here

 // report validation errors

 EA.Project Project =
Repository.GetProjectInterface();

 Project.PublishResult(LookupMap(cRule01),
EA.EnumMVErrorType.mvError, GetRuleStr(cRule01));

 }

 }

}

(c) Sparx Systems 2018 Page 150 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Post-New Events

Enterprise Architect Add-Ins can respond to the creation of
new elements, connectors, objects, attributes, methods and
Packages using these broadcast events:

Post-New Broadcast Events

Event

EA_OnPostNewElement

EA_OnPostNewConnector

EA_OnPostNewDiagram

EA_OnPostNewDiagramObject

EA_OnPostNewAttribute

EA_OnPostNewMethod

EA_OnPostNewPackage

EA_OnPostNewGlossaryTerm

(c) Sparx Systems 2018 Page 151 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

(c) Sparx Systems 2018 Page 152 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnPostNewElement

EA_OnPostNewElement notifies Add-Ins that a new
element has been created on a diagram. It enables Add-Ins
to modify the element upon creation.

This event occurs after a user has dragged a new element
from the Toolbox or Resources window onto a diagram. The
notification is provided immediately after the element is
added to the model.

Set Repository.SuppressEADialogs to True to suppress
Enterprise Architect from showing its default 'Properties'
dialog.

Syntax

Function EA_OnPostNewElement (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostNewElement function syntax contains these
parameters.

Parameter Type

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty
object for the new element:

ElementID: A long value·

(c) Sparx Systems 2018 Page 153 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

corresponding to Element.ElementID

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

Return True if the element has been updated during this
notification. Return False otherwise.

(c) Sparx Systems 2018 Page 154 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnPostNewConnector

EA_OnPostNewConnector notifies Add-Ins that a new
connector has been created on a diagram. It enables Add-Ins
to modify the connector upon creation.

This event occurs after a user has dragged a new connector
from the Toolbox or Resources window onto a diagram. The
notification is provided immediately after the connector is
added to the model.

Syntax

Function EA_OnPostNewConnector (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostNewConnector function syntax contains
these parameters.

Parameter Type

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty
object for the new connector:

ConnectorID: A long value·

corresponding to
Connector.ConnectorID

(c) Sparx Systems 2018 Page 155 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

Return True if the connector has been updated during this
notification. Return False otherwise.

(c) Sparx Systems 2018 Page 156 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnPostNewDiagram

EA_OnPostNewDiagram notifies Add-Ins that a new
diagram has been created. It enables Add-Ins to modify the
diagram upon creation.

Syntax

Function EA_OnPostNewDiagram (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostNewDiagram function syntax contains these
parameters.

Parameter Type

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty
object for the new diagram:

DiagramID: A long value·

corresponding to Diagram.PackageID

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to

(c) Sparx Systems 2018 Page 157 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

retrieve model data and user interface
status information.

Return Value

Return True if the diagram has been updated during this
notification. Return False otherwise.

(c) Sparx Systems 2018 Page 158 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnPostNewDiagramObject

EA_OnPostNewDiagramObject notifies Add-Ins that a new
object has been created on a diagram. It enables Add-Ins to
modify the object upon creation.

This event occurs after a user has dragged a new object from
the Project Browser or Resources window onto a diagram.
The notification is provided immediately after the object is
added to the diagram.

Syntax

Function EA_OnPostNewDiagramObject (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostNewDiagramObject function syntax
contains these parameters.

Parameter Type

Info EA.EventProperties
Direction: IN
Description: Contains these
EventProperty objects for the new
element:

ID: A long value corresponding to the·

ElementID of the object that has been
added to the diagram

(c) Sparx Systems 2018 Page 159 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

DiagramID: A long value·

corresponding to the DiagramID of the
diagram to which the object has been
added
DUID: A string value for the DUID;·

can be used with
Diagram.GetDiagramObjectByID to
retrieve the new DiagramObject

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

Return True if the element has been updated during this
notification. Return False otherwise.

(c) Sparx Systems 2018 Page 160 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnPostNewAttribute

EA_OnPostNewAttribute notifies Add-Ins that a new
attribute has been created on a diagram. It enables Add-Ins
to modify the attribute upon creation.

This event occurs when a user creates a new attribute on an
element by either drag-and-dropping from the Project
Browser, using the 'Attributes' tab of the Features window,
or using the in-place editor on the diagram. The notification
is provided immediately after the attribute is created.

Syntax

Function EA_OnPostNewAttribute (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostNewAttribute function syntax contains
these parameters.

Parameter Type

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty
object for the new attribute:

AttributeID: A long value·

corresponding to Attribute.AttributeID

(c) Sparx Systems 2018 Page 161 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

Return True if the attribute has been updated during this
notification. Return False otherwise.

(c) Sparx Systems 2018 Page 162 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnPostNewMethod

EA_OnPostNewMethod notifies Add-Ins that a new method
has been created on a diagram. It enables Add-Ins to modify
the method upon creation.

This event occurs when a user creates a new method on an
element by either drag-dropping from the Project Browser,
using the method's 'Properties' dialog, or using the in-place
editor on the diagram. The notification is provided
immediately after the method is created.

Syntax

Function EA_OnPostNewMethod (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostNewMethod function syntax contains these
parameters.

Parameter Type

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty
object for the new method:

MethodID: A long value corresponding·

to Method.MethodID

(c) Sparx Systems 2018 Page 163 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

Return True if the method has been updated during this
notification. Return False otherwise.

(c) Sparx Systems 2018 Page 164 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnPostNewPackage

EA_OnPostNewPackage notifies Add-Ins that a new
Package has been created on a diagram. It enables Add-Ins
to modify the Package upon creation.

This event occurs when a user drags a new Package from
the Toolbox or Resources window onto a diagram, or by
selecting the New Package icon from the Project Browser.

Syntax

Function EA_OnPostNewPackage (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostNewPackage function syntax contains these
parameters.

Parameter Type

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty
object for the new Package:

PackageID: A long value·

corresponding to Package.PackageID

Repository EA.Repository
Direction: IN

(c) Sparx Systems 2018 Page 165 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

Return True if the Package has been updated during this
notification. Return False otherwise.

(c) Sparx Systems 2018 Page 166 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnPostNewGlossaryTerm

EA_OnPostNewGlossaryTerm notifies Add-Ins that a new
glossary term has been created. It enables Add-Ins to modify
the glossary term upon creation.

The notification is provided immediately after the glossary
term is added to the model.

Syntax

Function EA_OnPostNewGlossaryTerm (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostNewGlossaryTerm function syntax contains
these parameters.

Parameter Type

Info EA.EventProperties
Direction: IN
Description: Contains these
EventProperty objects for the new
glossary term:

TermID: A string value corresponding·

to Term.TermID
Term: A string value corresponding to·

the name of the glossary term being
created

(c) Sparx Systems 2018 Page 167 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Meaning: A string value corresponding·

to meaning of the glossary term being
created

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

Return True if the glossary term has been updated during
this notification. Return False otherwise.

(c) Sparx Systems 2018 Page 168 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Pre-Deletion Events

Enterprise Architect Add-Ins can respond to requests to
delete elements, attributes, methods, connectors, diagrams,
Packages and glossary terms using these broadcast events:

Pre-Deletion Broadcast Events

Event

EA_OnPreDeleteElement

EA_OnPreDeleteAttribute

EA_OnPreDeleteMethod

EA_OnPreDeleteConnector

EA_OnPreDeleteDiagram

EA_OnPreDeletePackage

EA_OnPreDeleteGlossaryTerm

EA_OnPreDeleteTechnology (Deprecated)

(c) Sparx Systems 2018 Page 169 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

(c) Sparx Systems 2018 Page 170 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnPreDeleteElement

EA_OnPreDeleteElement notifies Add-Ins that an element
is to be deleted from the model. It enables Add-Ins to permit
or deny deletion of the element.

This event occurs when a user deletes an element from the
Project Browser or on a diagram. The notification is
provided immediately before the element is deleted, so that
the Add-In can disable deletion of the element.

Syntax

Function EA_OnPreDeleteElement (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeleteElement function syntax contains
these parameters.

Parameter Type

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty
object for the element to be deleted:

ElementID: A long value·

corresponding to Element.ElementID

Repository EA.Repository

(c) Sparx Systems 2018 Page 171 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

Return True to enable deletion of the element from the
model. Return False to disable deletion of the element.

(c) Sparx Systems 2018 Page 172 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnPreDeleteAttribute

EA_OnPreDeleteAttribute notifies Add-Ins that an attribute
is to be deleted from the model. It enables Add-Ins to permit
or deny deletion of the attribute.

This event occurs when a user attempts to permanently
delete an attribute from the Project Browser. The
notification is provided immediately before the attribute is
deleted, so that the Add-In can disable deletion of the
attribute.

Syntax

Function EA_OnPreDeleteAttribute (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeleteAttribute function syntax contains
these parameters.

Parameter Type

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty
object for the attribute to be deleted:

AttributeID: A long value·

corresponding to Attribute.AttributeID

(c) Sparx Systems 2018 Page 173 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

Return True to enable deletion of the attribute from the
model. Return False to disable deletion of the attribute.

(c) Sparx Systems 2018 Page 174 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnPreDeleteMethod

EA_OnPreDeleteMethod notifies Add-Ins that a method
(operation) is to be deleted from the model. It enables
Add-Ins to permit or deny deletion of the method.

This event occurs when a user attempts to permanently
delete a method from the Project Browser. The notification
is provided immediately before the method is deleted, so
that the Add-In can disable deletion of the method.

Syntax

Function EA_OnPreDeleteMethod (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeleteMethod function syntax contains these
parameters.

Parameter Type

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty
object for the method to be deleted:

MethodID: A long value corresponding·

to Method.MethodID

Repository EA.Repository

(c) Sparx Systems 2018 Page 175 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

Return True to enable deletion of the method from the
model. Return False to disable deletion of the method.

(c) Sparx Systems 2018 Page 176 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnPreDeleteConnector

EA_OnPreDeleteConnector notifies Add-Ins that a
connector is to be deleted from the model. It enables
Add-Ins to permit or deny deletion of the connector.

This event occurs when a user attempts to permanently
delete a connector on a diagram. The notification is
provided immediately before the connector is deleted, so
that the Add-In can disable deletion of the connector.

Syntax

Function EA_OnPreDeleteConnector (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeleteConnector function syntax contains
these parameters.

Parameter Type

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty
object for the connector to be deleted:

ConnectorID: A long value·

corresponding to
Connector.ConnectorID

(c) Sparx Systems 2018 Page 177 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

Return True to enable deletion of the connector from the
model. Return False to disable deletion of the connector.

(c) Sparx Systems 2018 Page 178 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnPreDeleteDiagram

EA_OnPreDeleteDiagram notifies Add-Ins that a diagram is
to be deleted from the model. It enables Add-Ins to permit
or deny deletion of the diagram.

This event occurs when a user attempts to permanently
delete a diagram from the Project Browser. The notification
is provided immediately before the diagram is deleted, so
that the Add-In can disable deletion of the diagram.

Syntax

Function EA_OnPreDeleteDiagram (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeleteDiagram function syntax contains
these parameters.

Parameter Type

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty
object for the diagram to be deleted:

DiagramID: A long value·

corresponding to Diagram.DiagramID

Repository EA.Repository

(c) Sparx Systems 2018 Page 179 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Direction: IN
Description: An EA.Repository object
representing the currently-open
Enterprise Architect model. Poll its
members to retrieve model data and user
interface status information.

Return Value

Return True to enable deletion of the diagram from the
model. Return False to disable deletion of the diagram.

(c) Sparx Systems 2018 Page 180 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnPreDeleteDiagramObject

EA_OnPreDeleteDiagramObject notifies Add-Ins that a
diagram object is to be deleted from the model. It enables
Add-Ins to permit or deny deletion of the element.

This event occurs when a user attempts to permanently
delete an element from a diagram. The notification is
provided immediately before the element is deleted, so that
the Add-In can disable deletion of the element.

Syntax

Function EA_OnPreDeleteDiagramObject (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeleteDiagramObject function syntax
contains these parameters.

Parameter Type

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty
object for the element to be deleted:

ID: A long value corresponding to·

DiagramObject.ElementID

Repository EA.Repository

(c) Sparx Systems 2018 Page 181 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Direction: IN
Description: An EA.Repository object
representing the currently-open
Enterprise Architect model. Poll its
members to retrieve model data and user
interface status information.

Return Value

Return True to enable deletion of the element from the
model. Return False to disable deletion of the element.

(c) Sparx Systems 2018 Page 182 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnPreDeletePackage

EA_OnPreDeletePackage notifies Add-Ins that a Package is
to be deleted from the model. It enables Add-Ins to permit
or deny deletion of the Package.

This event occurs when a user attempts to permanently
delete a Package from the Project Browser. The notification
is provided immediately before the Package is deleted, so
that the Add-In can disable deletion of the Package.

Syntax

Function EA_OnPreDeletePackage (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeletePackage function syntax contains
these parameters.

Parameter Type

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty
object for the Package to be deleted:

PackageID: A long value·

corresponding to Package.PackageID

Repository EA.Repository

(c) Sparx Systems 2018 Page 183 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

Return True to enable deletion of the Package from the
model. Return False to disable deletion of the Package.

(c) Sparx Systems 2018 Page 184 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnPreDeleteGlossaryTerm

EA_OnPreDeleteGlossaryTerm notifies Add-Ins that a
glossary term is to be deleted from the model. It enables
Add-Ins to permit or deny deletion of the glossary term.

The notification is provided immediately before the glossary
term is deleted, so that the Add-In can disable deletion of
the glossary term.

Syntax

Function EA_OnPreDeleteGlossaryTerm (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeleteGlossaryTerm function syntax
contains these parameters.

Parameter Type

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty
object for the glossary term to be deleted:

TermID: A long value corresponding to·

Term.TermID

Repository EA.Repository
Direction: IN

(c) Sparx Systems 2018 Page 185 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

Return True to enable deletion of the glossary term from the
model. Return False to disable deletion of the glossary term.

(c) Sparx Systems 2018 Page 186 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Pre New-Object Events

When you create an Add-In, you can include broadcast
events to intercept and respond to requests to create new
objects, including elements, connectors, diagram objects,
attributes, methods and Packages.

Events to intercept

Event

Creation of a new element

Creation of a new connector

Creation of a new diagram

Creation of a new diagram object

Creation of a new element by dropping onto a diagram
from the Project Browser.

Creation of a new attribute

Creation of a new method

Creation of a new Package

(c) Sparx Systems 2018 Page 187 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Creation of a new glossary term

(c) Sparx Systems 2018 Page 188 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnPreNewElement

EA_OnPreNewElement notifies Add-Ins that a new element
is about to be created on a diagram. It enables Add-Ins to
permit or deny creation of the new element.

This event occurs when a user drags a new element from the
Toolbox or Resources window onto a diagram. The
notification is provided immediately before the element is
created, so that the Add-In can disable addition of the
element.

Syntax

Function EA_OnPreNewElement (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreNewElement function syntax contains these
parameters.

Parameter Type

Info EA.EventProperties
Direction: IN
Description: Contains these
EventProperty objects for the element to
be created:

Type: A string value corresponding to·

Element.Type

(c) Sparx Systems 2018 Page 189 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

FQStereotype: A string value·

corresponding to
Element.FQStereotype
Stereotype: A string value·

corresponding to Element.Stereotype
ParentID: A long value corresponding·

to Element.ParentID
DiagramID: A long value·

corresponding to the ID of the diagram
to which the element is being added

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

Return True to enable addition of the new element to the
model. Return False to disable addition of the new element.

(c) Sparx Systems 2018 Page 190 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnPreNewConnector

EA_OnPreNewConnector notifies Add-Ins that a new
connector is about to be created on a diagram. It enables
Add-Ins to permit or deny creation of a new connector.

This event occurs when a user drags a new connector from
the Toolbox or Resources window, onto a diagram. The
notification is provided immediately before the connector is
created, so that the Add-In can disable addition of the
connector.

Syntax

Function EA_OnPreNewConnector (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreNewConnector function syntax contains
these elements:

Parameter Type

Info EA.EventProperties
Direction: IN
Description: Contains these
EventProperty objects for the connector
to be created:

Type: A string value corresponding to·

Connector.Type

(c) Sparx Systems 2018 Page 191 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Subtype: A string value corresponding·

to Connector.Subtype
Stereotype: A string value·

corresponding to Connector.Stereotype
ClientID: A long value corresponding·

to Connector.ClientID
SupplierID: A long value·

corresponding to Connector.SupplierID
DiagramID: A long value·

corresponding to
Connector.DiagramID

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

Return True to enable addition of the new connector to the
model. Return False to disable addition of the new
connector.

(c) Sparx Systems 2018 Page 192 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

(c) Sparx Systems 2018 Page 193 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnPreNewDiagram

EA_OnPreNewDiagram notifies Add-Ins that a new
diagram is about to be created. It enables Add-Ins to permit
or deny creation of the new diagram.

The notification is provided immediately before the diagram
is created, so that the Add-In can disable addition of the
diagram.

Syntax

Function EA_OnPreNewDiagram (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreNewDiagram function syntax contains these
parameters.

Parameter Type

Info EA.EventProperties
Direction: IN
Description: Contains these
EventProperty objects for the diagram to
be created:

Type: A string value corresponding to·

Diagram.Type
ParentID: A long value corresponding·

to Diagram.ParentID

(c) Sparx Systems 2018 Page 194 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

PackageID: A long value·

corresponding to Diagram.PackageID

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

Return True to enable addition of the new diagram to the
model. Return False to disable addition of the new diagram.

(c) Sparx Systems 2018 Page 195 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnPreNewDiagramObject

EA_OnPreNewDiagramObject notifies Add-Ins that a new
diagram object is about to be dropped on a diagram. It
enables Add-Ins to permit or deny creation of the new
object.

This event occurs when a user drags an object from the
Enterprise Architect Project Browser or Resources window
onto a diagram. The notification is provided immediately
before the object is created, so that the Add-In can disable
addition of the object.

Syntax

Function EA_OnPreNewDiagramObject (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreNewDiagramObject function syntax contains
these parameters.

Parameter Type

Info EA.EventProperties
Direction: IN
Description: Contains these
EventProperty objects for the object to be
created:

Type: A string value corresponding to·

the Type of object being added to the

(c) Sparx Systems 2018 Page 196 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

diagram
Stereotype: A string value·

corresponding to the Stereotype of the
object being added to the diagram
ID: A long value corresponding to the·

ID of the Element, Package or Diagram
being added to the diagram
DiagramID: A long value·

corresponding to the ID of the diagram
to which the object is being added

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

Return True to enable addition of the object to the model.
Return False to disable addition of the object.

(c) Sparx Systems 2018 Page 197 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnPreDropFromTree

When a user drags any kind of element from the Project
Browser onto a diagram, EA_OnPreDropFromTree notifies
the Add-In that a new item is about to be dropped onto a
diagram. The notification is provided immediately before
the element is dropped, so that the Add-In can override the
default action that would be taken for this drag.

Syntax

Function EA_OnPreDropFromTree (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDropFromTree function syntax contains
these parameters.

Parameter Type

Info EA.EventProperties
Direction: IN
Description: Contains these
EventProperty objects for the element to
be created:

ID: A long value of the type being·

dropped
Type: A string value corresponding to·

type of element being dropped

(c) Sparx Systems 2018 Page 198 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

DiagramID: A long value·

corresponding to the ID of the diagram
to which the element is being added
PositionX: The X coordinate into·

which the element is being dropped
PositionY: The Y coordinate into·

which the element is being dropped
DroppedID: A long value·

corresponding to the ID of the element
the item has been dropped onto

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

Return True to allow the default behavior to be executed.
Return False if you are overriding this behavior.

(c) Sparx Systems 2018 Page 199 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnPreNewAttribute

EA_OnPreNewAttribute notifies Add-Ins that a new
attribute is about to be created on an element. It enables
Add-Ins to permit or deny creation of the new attribute.

This event occurs when a user creates a new attribute on an
element by either drag-dropping from the Project Browser,
using the 'Attributes' tab of the Features window, or using
the in-place editor on the diagram. The notification is
provided immediately before the attribute is created, so that
the Add-In can disable addition of the attribute.

Syntax

Function EA_OnPreNewAttribute (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreNewAttribute function syntax contains these
parameters.

Parameter Type

Info EA.EventProperties
Direction: IN
Description: Contains these
EventProperty objects for the attribute to
be created:

Type: A string value corresponding to·

(c) Sparx Systems 2018 Page 200 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Attribute.Type
Stereotype: A string value·

corresponding to Attribute.Stereotype
ParentID: A long value corresponding·

to Attribute.ParentID
ClassifierID: A long value·

corresponding to Attribute.ClassifierID

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

Return True to enable addition of the new attribute to the
model. Return False to disable addition of the new attribute.

(c) Sparx Systems 2018 Page 201 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnPreNewMethod

EA_OnPreNewMethod notifies Add-Ins that a new method
is about to be created on an element. It enables Add-Ins to
permit or deny creation of the new method.

This event occurs when a user creates a new method on an
element by either drag-dropping from the Project Browser,
using the 'Operations' tab of the Features window, or using
the in-place editor on the diagram. The notification is
provided immediately before the method is created, so that
the Add-In can disable addition of the method.

Syntax

Function EA_OnPreNewMethod (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreNewMethod function syntax contains these
parameters.

Parameter Type

Info EA.EventProperties
Direction: IN
Description: Contains these
EventProperty objects for the method to
be created:

ReturnType: A string value·

(c) Sparx Systems 2018 Page 202 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

corresponding to Method.ReturnType
Stereotype: A string value·

corresponding to Method.Stereotype
ParentID: A long value corresponding·

to Method.ParentID
ClassifierID: A long value·

corresponding to Method.ClassifierID

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

Return True to enable addition of the new method to the
model. Return False to disable addition of the new method.

(c) Sparx Systems 2018 Page 203 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnPreNewPackage

EA_OnPreNewPackage notifies Add-Ins that a new Package
is about to be created in the model. It enables Add-Ins to
permit or deny creation of the new Package.

This event occurs when a user drags a new Package from
the Toolbox or Resources window onto a diagram, or by
selecting the New Package icon from the Project Browser.
The notification is provided immediately before the Package
is created, so that the Add-In can disable addition of the
Package.

Syntax

Function EA_OnPreNewPackage (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreNewPackage function syntax contains these
parameters.

Parameter Type

Info EA.EventProperties
Direction: IN
Description: Contains these
EventProperty objects for the Package to
be created:

Stereotype: A string value·

(c) Sparx Systems 2018 Page 204 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

corresponding to Package.Stereotype
ParentID: A long value corresponding·

to Package.ParentID
DiagramID: A long value·

corresponding to the ID of the diagram
to which the Package is being added

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

Return True to enable addition of the new Package to the
model. Return False to disable addition of the new Package.

(c) Sparx Systems 2018 Page 205 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnPreNewGlossaryTerm

EA_OnPreNewGlossaryTerm notifies Add-Ins that a new
glossary term is about to be created. It enables Add-Ins to
permit or deny creation of the new glossary term.

The notification is provided immediately before the glossary
term is created, so that the Add-In can disable addition of
the element.

Syntax

Function EA_OnPreNewGlossaryTerm (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreNewGlossaryTerm function syntax contains
these parameters.

Parameter Type

Info EA.EventProperties
Direction: IN
Description: Contains these
EventProperty objects for the glossary
term to be created:

TermID: A string value corresponding·

to Term.TermID
Term: A string value corresponding to·

the name of the glossary term being

(c) Sparx Systems 2018 Page 206 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

created
Meaning: A string value corresponding·

to meaning of the glossary term being
created

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

Return True to enable addition of the new glossary term to
the model. Return False to disable addition of the new
glossary term.

(c) Sparx Systems 2018 Page 207 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Tagged Value Broadcasts

Enterprise Architect includes the Addin Broadcast Tagged
Value type that allows an Add-In to respond to attempts to
edit it. The function that is called depends on the type of
object the Tagged Value is on.

Tagged Value Broadcast Events

Event

EA_OnAttributeTagEdit

EA_OnConnectorTagEdit

EA_OnElementTagEdit

EA_OnMethodTagEdit

(c) Sparx Systems 2018 Page 208 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnAttributeTagEdit

EA_OnAttributeTagEdit is called when the user clicks the
 button for a Tagged Value of type AddinBroadcast on an

attribute.

The Add-In displays fields to show and change the value
and notes; this function provides the initial values for the
Tagged Value notes and value, and takes on any changes on
exit of the function.

Syntax

Sub EA_OnAttributeTagEdit (Repository As
EA.Repository, AttributeID As Long, String TagName,
String TagValue, String TagNotes)

The EA_OnAttributeTagEdit function syntax contains these
parameters.

Parameter Type

AttributeID Long
Direction: IN
Description: The ID of the attribute that
this Tagged Value is on.

Repository EA.Repository
Direction: IN

(c) Sparx Systems 2018 Page 209 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

TagName String
Direction: IN
Description: The name of the Tagged
Value to edit.

TagNotes String
Direction: INOUT
Description: The current value of the
Tagged Value notes; if the value is
updated, the new value is stored in the
repository on exit of the function.

TagValue String
Direction: INOUT
Description: The current value of the tag;
if the value is updated, the new value is
stored in the repository on exit of the
function.

(c) Sparx Systems 2018 Page 210 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnConnectorTagEdit

EA_OnConnectorTagEdit is called when the user clicks the
 button for a Tagged Value of type AddinBroadcast on a

connector.

The Add-In displays fields to show and change the value
and notes; this function provides the initial values for the
Tagged Value notes and value, and takes on any changes on
exit of the function.

Syntax

Sub EA_OnConnectorTagEdit (Repository As
EA.Repository, ConnectorID As Long, String TagName,
String TagValue, String TagNotes)

The EA_OnConnectorTagEdit function syntax contains
these parameters.

Parameter Type

ConnectorID Long
Direction: IN
Description: The ID of the connector that
this Tagged Value is on.

Repository EA.Repository
Direction: IN

(c) Sparx Systems 2018 Page 211 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Description: An EA.Repository object
representing the currently open Enterprise
Architect model.
Poll its members to retrieve model data
and user interface status information.

TagName String
Direction: IN
Description: The name of the Tagged
Value to edit.

TagNotes String
Direction: INOUT
Description: The current value of the
Tagged Value notes; if the value is
updated, the new value is stored in the
repository on exit of the function.

TagValue String
Direction: INOUT
Description: The current value of the tag;
if the value is updated, the new value is
stored in the repository on exit of the
function.

(c) Sparx Systems 2018 Page 212 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnElementTagEdit

EA_OnElementTagEdit is called when the user clicks the
button for a Tagged Value of type AddinBroadcast on an
element.

The Add-In displays fields to show and change the value
and notes; this function provides the initial values for the
Tagged Value notes and value, and takes on any changes on
exit of the function.

Syntax

Sub EA_OnElementTagEdit (Repository As EA.Repository,
ObjectID As Long, String TagName, String TagValue,
String TagNotes)

The EA_OnElementTagEdit function syntax contains these
elements:

Parameter Type

ObjectID Long
Direction: IN
Description: The ID of the object
(element) that this Tagged Value is on.

Repository EA.Repository
Direction: IN

(c) Sparx Systems 2018 Page 213 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

TagName String
Direction: IN
Description: The name of the Tagged
Value to edit.

TagNotes String
Direction: INOUT
Description: The current value of the
Tagged Value notes; if the value is
updated, the new value is stored in the
repository on exit of the function.

TagValue String
Direction: INOUT
Description: The current value of the tag;
if the value is updated, the new value is
stored in the repository on exit of the
function.

(c) Sparx Systems 2018 Page 214 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnMethodTagEdit

EA_OnMethodTagEdit is called when the user clicks the
button for a Tagged Value of type AddinBroadcast on an
operation.

The Add-In displays fields to show and change the value
and notes; this function provides the initial values for the
Tagged Value notes and value, and takes on any changes on
exit of the function.

Syntax

Sub EA_OnMethodTagEdit (Repository As EA.Repository,
MethodID As Long, String TagName, String TagValue,
String TagNotes)

The EA_OnMethodTagEdit function syntax contains these
elements:

Parameter Type

MethodID Long
Direction: IN
Description: The ID of the method that
this Tagged Value is on.

Repository EA.Repository
Direction: IN

(c) Sparx Systems 2018 Page 215 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

TagName String
Direction: IN
Description: The name of the Tagged
Value to edit.

TagNotes String
Direction: INOUT
Description: The current value of the
Tagged Value notes; if the value is
updated, the new value is stored in the
repository on exit of the function.

TagValue String
Direction: INOUT
Description: The current value of the tag;
if the value is updated, the new value is
stored in the repository on exit of the
function.

(c) Sparx Systems 2018 Page 216 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Technology Events

Enterprise Architect Add-Ins can respond to events
associated with the use of MDG Technologies.

Technology Broadcast Events

Event

EA_OnInitializeTechnologies

EA_OnPreActivateTechnology

EA_OnPostActivateTechnology

EA_OnPreDeleteTechnology (Deprecated)

EA_OnDeleteTechnology (Deprecated)

EA_OnImportTechnology (Deprecated)

(c) Sparx Systems 2018 Page 217 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnInitializeTechnologies

EA_OnInitializeTechnologies requests that an Add-In pass
an MDG Technology to Enterprise Architect for loading.

This event occurs on Enterprise Architect startup. Return
your technology XML to this function and Enterprise
Architect loads and enables it.

Syntax

Function EA_OnInitializeTechnologies (Repository As
EA.Repository) As Object

The EA_OnInitializeTechnologies function syntax contains
this parameter:

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2018 Page 218 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Return Value

Return the MDG Technology as a single XML string.

Example

Public Function EA_OnInitializeTechnologies(ByVal
Repository As EA.Repository) As Object

 EA_OnInitializeTechnologies =
My.Resources.MyTechnology

End Function

(c) Sparx Systems 2018 Page 219 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnPreActivateTechnology

EA_OnPreActivateTechnology notifies Add-Ins that an
MDG Technology resource is about to be activated in the
model.

This event occurs when a user selects to activate an MDG
Technology resource in the model (by clicking on the Set
Active button on the 'MDG Technologies' dialog or by
selecting the technology in the list box in the Default Tools
toolbar).

The notification is provided immediately after the user
attempts to activate the MDG Technology, so that the
Add-In can permit or disable activation of the Technology.

Syntax

Function EA_OnPreActivateTechnology (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreActivateTechnology function syntax
contains these parameters.

Parameter Type

Info EA.EventProperties
Direction: IN
Description: Contains these
EventProperty objects for the MDG

(c) Sparx Systems 2018 Page 220 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Technology to be activated:
TechnologyID: A string value·

corresponding to the MDG Technology
ID

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

Return True to enable activation of the MDG Technology
resource in the model. Return False to disable activation of
the MDG Technology resource.

(c) Sparx Systems 2018 Page 221 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnPostActivateTechnology

EA_OnPostActivateTechnology notifies Add-Ins that an
MDG Technology resource has been activated in the model.

This event occurs when a user activates an MDG
Technology resource in the model (by clicking on the Set
Active button on the 'MDG Technologies' dialog, or by
selecting the technology in the list box in the Default Tools
toolbar).

The notification is provided immediately after the user
succeeds in activating the MDG Technology, so that the
Add-In can update the Technology if necessary.

Syntax

Function EA_OnPostActivateTechnology (Repository As
EA.Repository, Info As EA.EventProperties)

The EA_OnPostActivateTechnology function syntax
contains these parameters:

Parameter Type

Info EA.EventProperties
Direction: IN
Description: Contains these
EventProperty objects for the MDG
Technology to be activated:

(c) Sparx Systems 2018 Page 222 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

TechnologyID: A string value·

corresponding to the MDG Technology
ID

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

Return True if the MDG Technology resource is updated
during this notification. Return False otherwise.

(c) Sparx Systems 2018 Page 223 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnPreDeleteTechnology

Deprecated - refers to deleting a technology through the
Resources window; this process is no longer recommended.
See Deploy An MDG Technology for information on
recommended methods for using technologies.

EA_OnPreDeleteTechnology notifies Add-Ins that an MDG
Technology resource is about to be deleted from the model.

This event occurs when a user deletes an MDG Technology
resource from the model.

The notification is provided immediately after the user
confirms their request to delete the MDG Technology, so
that the Add-In can disable deletion of the MDG
Technology.

Related Broadcast Events

Event

EA_OnInitializeTechnologies

EA_OnPreActivateTechnology

EA_OnPostActivateTechnology

(c) Sparx Systems 2018 Page 224 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Syntax

Function EA_OnPreDeleteTechnology (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeleteTechnology function syntax contains
these elements:

Parameter Type

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty
object for the MDG Technology to be
deleted:

TechnologyID: A string value·

corresponding to the MDG Technology
ID

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2018 Page 225 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Return Value

Return True to enable deletion of the MDG Technology
resource from the model. Return False to disable deletion of
the MDG Technology resource.

(c) Sparx Systems 2018 Page 226 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnDeleteTechnology

Deprecated - refers to deleting a technology through the
Resources window; this process is no longer recommended.
See Deploy An MDG Technology for information of
recommended methods for using technologies.

EA_OnDeleteTechnology notifies Add-Ins that an MDG
Technology resource has been deleted from the model.

This event occurs after a user has deleted an MDG
Technology resource from the model. Add-Ins that require
an MDG Technology resource to be loaded can catch this
event to disable certain functionality.

Related Events

Event

EA_OnInitializeTechnologies

EA_OnPreActivateTechnology

EA_OnPostActivateTechnology

Syntax

(c) Sparx Systems 2018 Page 227 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Sub EA_OnDeleteTechnology (Repository As
EA.Repository, Info As EA.EventProperties)

The EA_OnDeleteTechnology function syntax contains
these parameters.

Parameter Type

Info EA.EventProperties
Direction: IN
Description: Contains these
EventProperty objects:

TechnologyID: A string value·

corresponding to the MDG Technology
ID

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

(c) Sparx Systems 2018 Page 228 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

None.

(c) Sparx Systems 2018 Page 229 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

EA_OnImportTechnology

Deprecated - refers to importing a technology into the
Resources window; this process is no longer recommended.
See Deploy An MDG Technology for information of
recommended methods for using technologies.

EA_OnImportTechnology notifies Add-Ins that you have
imported an MDG Technology resource into the model.

This event occurs after you have imported an MDG
Technology resource into the model. Add-Ins that require an
MDG Technology resource to be loaded can catch this
Add-In to enable certain functionality.

Related Events

Event

EA_OnInitializeTechnologies

EA_OnPreActivateTechnology

EA_OnPostActivateTechnology

Syntax

(c) Sparx Systems 2018 Page 230 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Sub EA_OnImportTechnology (Repository As
EA.Repository, Info As EA.EventProperties)

The EA_OnImportTechnology function syntax contains
these parameters.

Parameter Type

Info EA.EventProperties
Direction: IN
Description: Contains these
EventProperty objects:

TechnologyID: A string value·

corresponding to the MDG Technology
ID

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

(c) Sparx Systems 2018 Page 231 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

None.

(c) Sparx Systems 2018 Page 232 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Custom Views

Enterprise Architect enables custom windows to be inserted
as a Diagram Tab within the Diagram View that appears at
the center of the Enterprise Architect frame.

Creating a custom view helps you to easily display a custom
interface within Enterprise Architect, alongside other
diagrams and built-in views for quick and easy access.

Uses for this facility include:

Reports and graphs showing summary data of the model·

Alternative views of a diagram·

Alternative views of the model·

Views of external data related to model data·

Documentation tools·

(c) Sparx Systems 2018 Page 233 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Create a Custom View

A custom view must be designed as an ActiveX Custom
Control and inserted via the Automation Interface. ActiveX
Custom Controls can be created using most well-known
programming tools, including Microsoft Visual Studio. See
the documentation provided by the relevant vendor on how
to create a custom control to produce an OCX file.

Once the custom control has been created and registered on
the target system, it can be added through the AddTab()
method of the Repository object. While it is possible to call
AddTab() from any automation client, it is likely that you
would call it from an Add-In, and that the Add-In is defined
in the same OCX that provides the custom view.

This is a C# code example:

 public class Addin

 {

 UserControl1 m_MyControl;

 public void EA_Connect(EA.Repository Rep)

 {

 }

 public object EA_GetMenuItems(EA.Repository
Repository, string Location, string MenuName)

 {

 if(MenuName == "")

 return "-&C# Control Demo";

(c) Sparx Systems 2018 Page 234 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

 else

 {

 String() ret = {"Show Custom View", "Show
Button"};

 return ret;

 }

 }

 public void EA_MenuClick(EA.Repository Rep,
string Location, string MenuName, string ItemName)

 {

 if(ItemName == "Show Custom View")

 m_MyControl = (UserControl1)
Rep.AddTab("C# Demo","ContDemo.UserControl1");

 else if(ItemName == "Show Button")

 m_MyControl.ShowButton();

 }

 }

(c) Sparx Systems 2018 Page 235 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Add a Portal

Enterprise Architect provides a set of Portals, each of which
is a collection of shortcuts and information on performing
specific areas of work on a project. The Portals help both
new and experienced users quickly identify and set up the
facilities they most often use in their assigned tasks.

You can add your own Portal to the system-installed set, to
provide a convenient and concise call-up of one or more
groups of facilities available in your Add-In.

Example Code

 public String EA_LoadWindowManager(EA.Repository
Repository)

 {

 return Resource1.WindowManager;

 }

Where Resource1.WindowManager is a resource file with
these contents:

 <?xml version="1.0" encoding="UTF-8"?>

 <perspectives>

 <perspective name="Add-In">

 <category name="Add-In" type="commandlist"
projectrequired="true">

 <item name="Hello World" command="CallAddin"

(c) Sparx Systems 2018 Page 236 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

addin="CS_AddinFramework" function="HelloWorld"/>

 <item name="Model Dump" command="CallScript"
group="Local Scripts" script="JScript - Recursive Model
Dump Example"/>

 </category>

 <category name="Open Diagrams"
type="currentdiagramlist" state = "open"/>

 <category name="Recent Diagrams"
type="recentdiagramlist" state = "open"/>

 <category name="Other Windows"
type="otherwindowlist" state = "open"/>

 </perspective>

 </perspectives>

Note that the Add-In cannot specify the icon used.

(c) Sparx Systems 2018 Page 237 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Custom Docked Window

Custom docked windows can be added into the Enterprise
Architect user interface. Once added, they can be shown and
docked in the same way as other built-in Enterprise
Architect docked windows.

A custom docked window must be designed as an ActiveX
Custom Control and inserted via the Automation Interface.
ActiveX Custom Controls can be created using most
well-known programming tools, including Microsoft Visual
Studio. See the documentation provided by the relevant
vendor on how to create a custom control to produce an
OCX file.

Once the custom control has been created and registered on
the target system, it can be added using the AddWindow()
method of the Repository object. While it is possible to call
AddWindow() from any automation client, it is likely that
you would call it from an Add-In, and that the Add-In is
defined in the same OCX that provides the custom view.

To view custom docked windows that have been added,
select the 'Specialize > Add-Ins > Windows' ribbon option.

Custom docked windows can also be made visible by the
automation client or Add-In using the ShowAddinWindow()
method, or hidden by using the HideAddinWindow()
method.

This is an example in C# code:

 public class Addin

(c) Sparx Systems 2018 Page 238 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

 {

 UserControl1 m_MyControl;

 public void EA_Connect(EA.Repository Rep)

 {

 m_MyControl = (UserControl1)
Rep.AddWindow

 ("C# Demo","ContDemo.UserControl1");

 }

 public object EA_GetMenuItems(EA.Repository
Repository, string Location, string MenuName)

 {

 if(MenuName == "")

 return "-&C# Control Demo";

 else

 {

 String() ret = {"Show Window", "Show
Button"};

 return ret;

 }

 }

 public void EA_MenuClick(EA.Repository Rep,
string Location, string MenuName, string ItemName)

 {

 if(ItemName == "Show Window")

 Rep.ShowAddinWindow("C# Demo");

(c) Sparx Systems 2018 Page 239 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

 else if(ItemName == "Show Button")

 m_MyControl.ShowButton();

 }

 }

(c) Sparx Systems 2018 Page 240 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

MDG Add-Ins

MDG Add-Ins are specialized types of Add-Ins that have
additional features and extra requirements, for Add-In
authors who want to contribute to Enterprise Architect's goal
of Model Driven Generation.

One of the additional responsibilities of an MDG Add-In is
to take ownership of a branch of an Enterprise Architect
model, which is done through the MDG_Connect event.
Unlike general Add-In events, MDG Add-In events are only
sent to the Add-In that has taken ownership of an Enterprise
Architect model branch on a particular workstation.

MDG Add-Ins identify themselves as such during
EA_Connect by returning the string 'MDG'.

Unlike ordinary Add-Ins, responding to MDG Add-In
events is not optional, and methods must be published for
each of the MDG Events.

(c) Sparx Systems 2018 Page 241 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

MDG Events

An MDG Add-In must respond to all MDG Events. These
events usually identify processes such as Build, Run,
Synchronize, PreMerge and PostMerge, amongst others.

An MDG Link Add-In is expected to implement some form
of forward and reverse engineering capability within
Enterprise Architect, and as such requires access to a
specific set of events, all to do with generation,
synchronization and general processes concerned with
converting models to code and code to models.

MDGAdd-In Events

Event

MDG_BuildProject

MDG_Connect

MDG_Disconnect

MDG_GetConnectedPackages

MDG_GetProperty

MDG_Merge

(c) Sparx Systems 2018 Page 242 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

MDG_NewClass

MDG_PostGenerate

MDG_PostMerge

MDG_PreGenerate

MDG_PreMerge

MDG_PreReverse

MDG_RunExe

MDG_View

(c) Sparx Systems 2018 Page 243 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

MDG_Build Project

Add-Ins can use MDG_BuildProject to handle file changes
caused by generation. This function is called in response to
a user selecting the 'Execute > Run > Build > Build' ribbon
option.

Respond to this event by compiling the project source files
into a running application.

Syntax

Sub MDG_BuildProject (Repository As EA.Repository,
PackageGuid As String)

The MDG_BuildProject function syntax contains these
parameters.

Parameter Type

PackageGuid String
Direction: IN
Description: The GUID identifying the
Enterprise Architect Package sub-tree
that is controlled by the Add-In.

Repository EA.Repository
Direction: IN
Description: An EA.Repository object

(c) Sparx Systems 2018 Page 244 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

None.

(c) Sparx Systems 2018 Page 245 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

MDG_Connect

An Add-In uses MDG_Connect to handle a user driven
request to connect a model branch to an external application.
The function is called when the user attempts to connect a
particular Enterprise Architect Package to an as yet
unspecified external project. The Add-In calls the event to
interact with the user to specify such a project.

The Add-In is responsible for retaining the connection
details, which should be stored on a per-user or
per-workstation basis. That is, users who share a common
Enterprise Architect model over a network should be able to
connect and disconnect to external projects independently of
one another.

The Add-In should therefore not store connection details in
an Enterprise Architect repository. A suitable place to store
such details would be:

 SHGetFolderPath(..CSIDL_APPDATA..)\AddinName

The PackageGuid parameter is the same identifier as is
required for most events relating to the MDG Add-In.
Therefore it is recommended that the connection details be
indexed using the PackageGuid value.

The PackageID parameter is provided to aid fast retrieval of
Package details from Enterprise Architect, should this be
required.

Syntax

(c) Sparx Systems 2018 Page 246 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Function MDG_Connect (Repository As EA.Repository,
PackageID as Long, PackageGuid As String) As Long

The MDG_Connect function syntax contains these
parameters.

Parameter Type

PackageGuid String
Direction: IN
Description: The unique ID identifying
the project provided by the Add-In when
a connection to a project branch of an
Enterprise Architect model was first
established.

PackageID Long
Direction: IN
Description: The PackageID of the
Enterprise Architect Package the user has
requested to have connected to an
external project.

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface

(c) Sparx Systems 2018 Page 247 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

status information.

Return Value

Returns a non-zero to indicate that a connection has been
made; a zero indicates that the user has not nominated a
project and connection should not proceed.

(c) Sparx Systems 2018 Page 248 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

MDG_Disconnect

Add-Ins can use MDG_Disconnect to respond to user
requests to disconnect the model branch from an external
project.

This function is called when the user attempts to disconnect
an associated external project. The Add-In is required to
delete the details of the connection.

Syntax

Function MDG_Disconnect (Repository As EA.Repository,
PackageGuid As String) As Long

The MDG_Disconnect function syntax contains these
parameters.

Parameter Type

PackageGuid String
Direction: IN
Description: The GUID identifying the
Enterprise Architect Package sub-tree
that is controlled by the Add-In.

Repository EA.Repository
Direction: IN
Description: An EA.Repository object

(c) Sparx Systems 2018 Page 249 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

Returns a non-zero to indicate that a disconnection has
occurred enabling Enterprise Architect to update the user
interface. A zero indicates that the user has not disconnected
from an external project.

(c) Sparx Systems 2018 Page 250 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

MDG_GetConnectedPackages

Add-Ins can use MDG_GetConnectedPackages to return a
list of current connections between Enterprise Architect and
an external application.

This function is called when the Add-In is first loaded, and
is expected to return a list of the available connections to
external projects for this Add-In.

Syntax

Function MDG_GetConnectedPackages (Repository As
EA.Repository) As Variant

The MDG_GetConnectedPackages function syntax contains
this parameter.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2018 Page 251 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Return Value

Returns an array of GUID strings representing individual
Enterprise Architect Packages.

(c) Sparx Systems 2018 Page 252 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

MDG_GetProperty

MDG_GetProperty provides miscellaneous Add-In details
to Enterprise Architect.

This function is called by Enterprise Architect to poll the
Add-In for information relating to the PropertyName. This
event should occur in as short a duration as possible, as
Enterprise Architect does not cache the information
provided by the function.

Values corresponding to these PropertyNames must be
provided:

IconID - Return the name of a DLL and a resource·

identifier in the format #ResID, where the resource ID
indicates an icon
 c:\program files\myapp\myapp.dlll#101

Language - Return the default language that Classes·

should be assigned when they are created in Enterprise
Architect

HiddenMenus - Return one or more values from the·

MDGMenus enumeration to hide menus that do not apply
to your Add-In
 if(PropertyName == "HiddenMenus")

 return mgBuildProject + mgRun;

Syntax

Function MDG_GetProperty (Repository As EA.Repository,

(c) Sparx Systems 2018 Page 253 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

PackageGuid As String, PropertyName As String) As
Variant

The MDG_GetProperty function syntax contains these
parameters.

Parameter Type

PackageGuid String
Direction: IN
Description: The GUID identifying the
Enterprise Architect Package sub-tree
that is controlled by the Add-In.

PropertyNam
e

String
Direction: IN
Description: The name of the property
that is used by Enterprise Architect. See
the start of this topic for the possible
values.

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently-open
Enterprise Architect model. Poll its
members to retrieve model data and user
interface status information.

(c) Sparx Systems 2018 Page 254 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Return Value

See the start of this topic.

(c) Sparx Systems 2018 Page 255 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

MDG_Merge

Add-Ins can use MDG_Merge to jointly handle changes to
both the model branch and the code project that the model
branch is connected to.

This event should be called whenever the user has asked to
merge their model branch with its connected code project, or
whenever the user has established a new connection to a
code project.

The purpose of this event is to make the Add-In interact
with the user to perform a merge between the model branch
and the connected project.

Syntax

Function MDG_Merge (Repository As EA.Repository,
PackageGuid As String, SynchObjects As Variant,
SynchType As String, ExportObjects As Variant,
ExportFiles As Variant, ImportFiles As Variant,
IgnoreLocked As String, Language As String) As Long

The MDG_Merge function syntax contains these
parameters.

Parameter Type

ExportFiles Variant
Direction: OUT
Description: A string array containing the

(c) Sparx Systems 2018 Page 256 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

list of files for each model object chosen
for export by the Add-In.
Each entry in this array must have a
corresponding entry in the ExportObjects
parameter at the same array index, so
ExportFiles(2) must contain the filename
of the object by ExportObjects(2).

ExportObject
s

Variant
Direction: OUT
Description: The string array containing
the list of new model objects (in Object
ID format) to be exported by Enterprise
Architect to the code project.

IgnoreLocke
d

String
Direction: OUT
Description: A value indicating whether
to ignore any files locked by the code
project (that is, 'True' or False').

ImportFiles Variant
Direction: OUT
Description: A string array containing the
list of code files made available to the
code project to be newly imported to the
model.
Enterprise Architect imports each file

(c) Sparx Systems 2018 Page 257 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

listed in this array for import into the
connected model branch.

Language String
Direction: OUT
Description: The string value containing
the name of the code language supported
by the code project connected to the
model branch.

PackageGuid String
Direction: IN
Description: The GUID identifying the
Enterprise Architect Package sub-tree
that is controlled by the Add-In.

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

SynchObjects Variant
Direction: OUT
Description: A string array containing a
list of objects (Object ID format) to be

(c) Sparx Systems 2018 Page 258 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

jointly synchronized between the model
branch and the project.
See Object ID Format for the format of
the Object IDs.

SynchType String
Direction: OUT
Description: The value determining the
user-selected type of synchronization to
take place.
See Synchronize Type for a list of valid
values.

Object ID Format

Each of the Object IDs listed in the 'SynchObjects' string
arrays should have this format:

(@namespace)*(#class)*($attribute|%operation|:property)*

Return Value

Return a non-zero if the merge operation completed
successfully and a zero value when the operation has been
unsuccessful.

(c) Sparx Systems 2018 Page 259 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Merge

A merge consists of three major operations:

Export: where newly created model objects are exported·

into code and made available to the code project

Import: where newly created code objects, Classes and·

such things are imported into the model

Synchronize: where objects available both to the model·

and in code are jointly updated to reflect changes made in
either the model, code project or both

Synchronize Type

The Synchronize operation can take place in one of four
different ways. Each of these ways corresponds to a value
returned by 'SynchType':

None: (SynchType' = 0) No synchronization is to be·

performed

Forward: ('SynchType' = 1) Forward synchronization,·

between the model branch and the code project is to occur

Reverse: ('SynchType = 2) Reverse synchronization,·

between the code project and the model branch is to occur

Both: ('SynchType' = 3) Reverse, then Forward·

synchronizations are to occur

(c) Sparx Systems 2018 Page 260 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

(c) Sparx Systems 2018 Page 261 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

MDG_NewClass

Add-Ins can use MDG_NewClass to alter details of a Class
before it is created.

This method is called when Enterprise Architect generates a
new Class, and requires information relating to assigning the
language and file path. The file path should be passed back
as a return value and the language should be passed back via
the language parameter.

Syntax

Function MDG_NewClass (Repository As EA.Repository,
PackageGuid As String, CodeID As String, Language As
String) As String

The MDG_NewClass function syntax contains these
parameters.

Parameter Type

CodeID String
Direction: IN
Description: A string used to identify the
code element before it is created.

Language String
Direction: OUT

(c) Sparx Systems 2018 Page 262 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Description: A string used to identify the
programming language for the new Class.
The language must be supported by
Enterprise Architect.

PackageGuid String
Direction: IN
Description: The GUID identifying the
Enterprise Architect Package sub-tree
that is controlled by the Add-In.

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

Returns a string containing the file path that should be
assigned to the Class.

(c) Sparx Systems 2018 Page 263 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

MDG_PostGenerate

Add-Ins can use MDG_PostGenerate to handle file changes
caused by generation.

This event is called after Enterprise Architect has prepared
text to replace the existing contents of a file. Responding to
this event enables the Add-In to write to the linked
application's user interface rather than modify the file
directly.

When the contents of a file are changed, Enterprise
Architect passes FileContents as a non-empty string. New
files created as a result of code generation are also sent
through this mechanism, so the Add-Ins can add new files to
the linked project's file list.

When new files are created Enterprise Architect passes
FileContents as an empty string. When a non-zero is
returned by this function, the Add-In has successfully
written the contents of the file. A zero value for the return
indicates to Enterprise Architect that the file must be saved.

Syntax

Function MDG_PostGenerate (Repository As
EA.Repository, PackageGuid As String, FilePath As String,
FileContents As String) As Long

The MDG_PostGenerate function syntax contains these
parameters.

(c) Sparx Systems 2018 Page 264 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Parameter Type

FileContents String
Direction: IN
Description: A string containing the
proposed contents of the file.

FilePath String
Direction: IN
Description: The path of the file
Enterprise Architect intends to overwrite.

PackageGuid String
Direction: IN
Description: The GUID identifying the
Enterprise Architect Package sub-tree
that is controlled by the Add-In.

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2018 Page 265 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Return Value

The return value depends on the type of event that this
function is responding to (see introduction). This function is
required to handle two separate and distinct cases.

(c) Sparx Systems 2018 Page 266 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

MDG_PostMerge

MDG_PostMerge is called by Enterprise Architect after a
merge process has been completed.

File save checking should not be performed with this
function, but should be handled by MDG_PreGenerate,
MDG_PostGenerate and MDG_PreReverse.

Syntax

Function MDG_PostMerge (Repository As EA.Repository,
PackageGuid As String) As Long

The MDG_PostMerge function syntax contains these
parameters.

Parameter Type

PackageGuid String
Direction: IN
Description: The GUID identifying the
Enterprise Architect Package sub-tree
that is controlled by the Add-In.

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise

(c) Sparx Systems 2018 Page 267 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

Return a zero value if the post-merge process has failed. A
non-zero return indicates that the post-merge has been
successful. Enterprise Architect assumes a non-zero return if
this method is not implemented.

(c) Sparx Systems 2018 Page 268 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

MDG_PreGenerate

Add-Ins can use MDG_PreGenerate to deal with unsaved
changes.

This function is called immediately before Enterprise
Architect attempts to generate files from the model. A
possible use of this function would be to prompt the user to
save unsaved source files.

Return Value

Return a zero value to abort generation. Any other value
enables the generation to continue.

Syntax

Function MDG_PreGenerate (Repository As
EA.Repository, PackageGuid As String) As Long

The MDG_PreGenerate function syntax contains these
parameters.

Parameter Type

PackageGuid String
Direction: IN
Description: The GUID identifying the

(c) Sparx Systems 2018 Page 269 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Enterprise Architect Package sub-tree
that is controlled by the Add-In.

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2018 Page 270 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

MDG_PreMerge

MDG_PreMerge is called after a merge process has been
initiated by the user and before Enterprise Architect
performs the merge process.

This event is called after a user has performed their
interactions with the merge screen and has confirmed the
merge with the OK button, but before Enterprise Architect
performs the merge process using the data provided by the
MDG_Merge call, before any changes have been made to
the model or the connected project.

This event is made available to provide the Add-In with the
opportunity to generally set internal Add-In flags to
augment the MDG_PreGenerate, MDG_PostGenerate and
MDG_PreReverse events.

File save checking should not be performed with this
function, but should be handled by MDG_PreGenerate,
MDG_PostGenerate and MDG_PreReverse.

Syntax

Function MDG_PreMerge (Repository As EA.Repository,
PackageGuid As String) As Long

The MDG_PreMerge function syntax contains these
parameters.

Parameter Type

(c) Sparx Systems 2018 Page 271 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

PackageGuid String
Direction: IN
Description: The GUID identifying the
Enterprise Architect Package sub-tree
that is controlled by the Add-In.

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model.
Poll its members to retrieve model data
and user interface status information.

Return Value

A return value of zero indicates that the merge process can
not occur. If the value is not zero the merge process
proceeds.

If this method is not implemented then it is assumed that a
merge process is used.

(c) Sparx Systems 2018 Page 272 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

MDG_PreReverse

Add-Ins can use MDG_PreReverse to save file changes
before they are imported into Enterprise Architect.

This function operates on a list of files that are about to be
reverse-engineered into Enterprise Architect. If the user is
working on unsaved versions of these files in an editor, you
could either prompt the user or save automatically.

Syntax

Sub MDG_PreReverse (Repository As EA.Repository,
PackageGuid As String, FilePaths As Variant)

The MDG_PreReverse function syntax contains these
parameters.

Parameter Type

FilePaths String array
Direction: IN
Description: An array of filepaths pointed
to the files that are to be reverse
engineered.

PackageGuid String
Direction: IN
Description: The GUID identifying the

(c) Sparx Systems 2018 Page 273 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

Enterprise Architect Package sub-tree
that is controlled by the Add-In.

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

None.

(c) Sparx Systems 2018 Page 274 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

MDG_RunExe

Add-Ins can use MDG_RunExe to run the target
application.

This function is called when the user selects the 'Execute >
Run > Start > Run' ribbon option.

Respond to this event by launching the compiled
application.

Return Value

None.

Syntax:

Sub MDG_RunExe (Repository As EA.Repository,
PackageGuid As String)

The MDG_RunExe function syntax contains these
parameters.

Parameter Type

PackageGuid String
Direction: IN
Description: The GUID identifying the
Enterprise Architect Package sub-tree

(c) Sparx Systems 2018 Page 275 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

that is controlled by the Add-In.

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2018 Page 276 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

MDG_View

Add-Ins can use MDG_View to display user specified code
elements.

This function is called by Enterprise Architect when the user
asks to view a particular code element. The Add-In can then
present that element in its own way, usually in a code editor.

Syntax

Function MDG_View (Repository As EA.Repository,
PackageGuid As String, CodeID as String) As Long

The MDG_View function syntax contains these parameters.

Parameter Type

CodeID String
Direction: IN
Description: Identifies the code element
in this format:

<type>ElementPart<type>ElementPart...
where each element is proceeded with a
token identifying its type:
 @ -namespace
 # - Class
 $ - attribute

(c) Sparx Systems 2018 Page 277 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

 % - operation
For example, if a user has selected the
m_Name attribute of Class1 located in
namespace Name1, the Class ID would
be passed through in this format:
 @Name1#Class1%m_Name

PackageGuid String
Direction: IN
Description: The GUID identifying the
Enterprise Architect Package sub-tree
that is controlled by the Add-In.

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

Return a non-zero value to indicate that the Add-In has
processed the request. Returning a zero value results in
Enterprise Architect employing the standard viewing

(c) Sparx Systems 2018 Page 278 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

process, which is to launch the associated source file.

(c) Sparx Systems 2018 Page 279 of 280

User Guide - Enterprise Architect Add-In Model 21 December, 2018

(c) Sparx Systems 2018 Page 280 of 280

	Enterprise Architect Add-In Model
	The Add-In Manager
	Add-In Tasks
	Create Add-Ins
	Define Menu Items
	Deploy Add-Ins
	Tricks and Traps

	Add-In Search
	XML Format (Search Data)

	Add-In Events
	EA_Connect
	EA_Disconnect
	EA_GetMenuItems
	EA_GetMenuState
	EA_GetRibbonCategory
	EA_MenuClick
	EA_OnOutputItemClicked
	EA_OnOutputItemDoubleClicked
	EA_ShowHelp

	Broadcast Events
	Schema Composer Broadcasts
	EA_GenerateFromSchema
	EA_GetProfileInfo
	EA_IsSchemaExporter

	Add-In License Management Events
	EA_AddinLicenseValidate
	EA_AddinLicenseGetDescription
	EA_GetSharedAddinName

	Compartment Events
	EA_QueryAvailableCompartments
	EA_GetCompartmentData

	Context Item Events
	EA_OnContextItemChanged
	EA_OnContextItemDoubleClicked
	EA_OnNotifyContextItemModified

	EA_FileClose
	EA_FileNew
	EA_FileOpen
	EA_OnPostCloseDiagram
	EA_OnPostInitialized
	EA_OnPostOpenDiagram
	EA_OnPostTransform
	EA_OnPreExitInstance
	EA_OnRetrieveModelTemplate
	EA_OnTabChanged
	Model Validation Broadcasts
	EA_OnInitializeUserRules
	EA_OnStartValidation
	EA_OnEndValidation
	EA_OnRunElementRule
	EA_OnRunPackageRule
	EA_OnRunDiagramRule
	EA_OnRunConnectorRule
	EA_OnRunAttributeRule
	EA_OnRunMethodRule
	EA_OnRunParameterRule
	Model Validation Example

	Post-New Events
	EA_OnPostNewElement
	EA_OnPostNewConnector
	EA_OnPostNewDiagram
	EA_OnPostNewDiagramObject
	EA_OnPostNewAttribute
	EA_OnPostNewMethod
	EA_OnPostNewPackage
	EA_OnPostNewGlossaryTerm

	Pre-Deletion Events
	EA_OnPreDeleteElement
	EA_OnPreDeleteAttribute
	EA_OnPreDeleteMethod
	EA_OnPreDeleteConnector
	EA_OnPreDeleteDiagram
	EA_OnPreDeleteDiagramObject
	EA_OnPreDeletePackage
	EA_OnPreDeleteGlossaryTerm

	Pre New-Object Events
	EA_OnPreNewElement
	EA_OnPreNewConnector
	EA_OnPreNewDiagram
	EA_OnPreNewDiagramObject
	EA_OnPreDropFromTree
	EA_OnPreNewAttribute
	EA_OnPreNewMethod
	EA_OnPreNewPackage
	EA_OnPreNewGlossaryTerm

	Tagged Value Broadcasts
	EA_OnAttributeTagEdit
	EA_OnConnectorTagEdit
	EA_OnElementTagEdit
	EA_OnMethodTagEdit

	Technology Events
	EA_OnInitializeTechnologies
	EA_OnPreActivateTechnology
	EA_OnPostActivateTechnology
	EA_OnPreDeleteTechnology
	EA_OnDeleteTechnology
	EA_OnImportTechnology

	Custom Views
	Create a Custom View

	Add a Portal
	Custom Docked Window
	MDG Add-Ins
	MDG Events
	MDG_Build Project
	MDG_Connect
	MDG_Disconnect
	MDG_GetConnectedPackages
	MDG_GetProperty
	MDG_Merge
	MDG_NewClass
	MDG_PostGenerate
	MDG_PostMerge
	MDG_PreGenerate
	MDG_PreMerge
	MDG_PreReverse
	MDG_RunExe
	MDG_View

