SIPARX

SYSTEMS

Enterprise

Automation

Work on a repository via code? Use Sparx Systems Enterprise Architect Automation Interface, a
set of objects, properties and methods used via a built-in scripting framework or external
scripting environments or to create Add-Ins in many code languages.

Author: Sparx Systems
Date: 7/08/2019

Version: 1.0

CREATED WITH @ ENTF_RPF“SE

Table of Contents

Automation 8
Hybrid Scripting 10
C# Example 12
Java Example 14
Scripting 16
Scripts Tab 18
Console Tab 20
Script Group Properties 22
Script Editor 24
Session Object 27
Script Debugging 28
Enterprise Architect Object Model 29
Using the Automation Interface 30
Connect to the Interface 31
Set References In Visual Basic 34
Examples and Tips 35
Call from Enterprise Architect 37
Available Resources 39
Reference 40
Interface Overview 41
App Object 43
Enumerations 44
ConstLayoutStyles 46
CreateBaselineFlag 47
CreateModelType 48
DocumentBreak 49
DocumentPageOrientation 50
DocumentType 51
EAEditionTypes 52
EnumRelationSetType 53
ExportPackageXMIFlag 54
MDGMenus 55
MessageFlag 56
ObjectType 57
PropType 59
ReloadType 60
ScenarioDiagramType 61
ScenarioStepType 62
ScenarioTestType 63
XMIType 64
Properties Tab Package 65
PropertiesTab Class 66
Repository Package 68
Author Class 69
Client Class 70
Collection Class 72

The AddNew Function 74

Datatype Class 78

EventProperties Class 81
EventProperty Class 82
ModelWatcher Class 83
Package Class 84
Projectlssues Class 93
ProjectResource Class 95
ProjectRole Class 97
PropertyType Class 99
Reference Class 101
Repository Class 103
SecurityUser Class 126
Stereotype Class 128
Task Class 130
Term Class 132
Element Package 134
Constraint Class 136
Effort Class 138
Element Class 140
ElementGrid Class 154
File Class 155
Issue (Maintenance) Class 157
Metric Class 159
Requirement Class 161
Resource Class 163
Risk Class 165
Scenario Class 167
ScenarioExtension Class 169
ScenarioStep Class 171
TaggedValue Class 173
Test Class 175
Element Features Package 177
Attribute Class 178
AttributeConstraint Class 183
AttributeTag Class 185
CustomProperties Collection 187
EmbeddedElements Collection 188
Method Class 189
MethodConstraint Class 193
MethodTag Class 195
Parameter Class 197
ParamTag Class 200
Partitions Collection 202
Properties Class 203
TemplateParameter Class 205
Transitions Collection 207
Connector Package 208
Connector Class 209
ConnectorConstraint Class 216
ConnectorEnd Class 218

ConnectorTag Class 221

RoleTag Class

223

TemplateBinding Class

Diagram Package

Diagram Class

DiagramLinks Class

DiagramObject Class

225
227
228
236
239

SwimlaneDef Class

245

Swimlanes Class

Swimlane Class

247
249

Project Interface Package

250

Project Class

Document Generator Interface Package
DocumentGenerator Class

251
268
269

Data Miner Package

275

DataMinerManager Class

276

DataMiner Class

278

DataSet Class

DMArray Class

279
280

DMAction Class

281

DMScript Class

DMConnection Class

TypelnfoProperties Package

282
283
284

TypelnfoProperties Class

285

TypelnfoProperty Class

286

Mail Interface Package

287

Maillnterface Class

Search Window Package

288
291

EAContext Class

292

EASelection Class

294

SearchWindow Class

Simulation Package

Simulation Class

Schema Composer Package

SchemaProperty Class

296
298
299
301
302

SchemaProfile Class

304

SchemaComposer Class

305

ModelTypeEnum Class

307

ModelType Class

308

SchemaTypeEnum Class

310

SchemaType Class

311

SchemaPropEnum Class

SearchType Enumeration

312
313

SchemaNamespace Class

SchemaNamespaceEnum Class

Code Samples

Open the Repository

Iterate Through a .EAP File

Add and Manage Packages

314
315
316
317
318
319

Add and Manage Elements

Add a Connector

Add and Manage Diagrams

321
322
324

Add and Delete Features 325

Element Extras 326
Repository Extras 330
Stereotypes 333
Work With Attributes 334
Work With Methods 336
Enterprise Architect Add-In Model 338
The Add-In Manager 339
Add-In Tasks 340
Create Add-Ins 341
Define Menu Items 342
Deploy Add-Ins 344
Tricks and Traps 346
Add-In Search 348
EA_SampleSearch 349
XML Format (Search Data) 350
Add-In Events 352
EA_OnAddinPropertiesTabChanging 353
EA_Connect 354
EA_Disconnect 355
EA_GetMenultems 356
EA_GetMenuState 357
EA_GetRibbonCategory 359
EA_MenuClick 360
EA_OnOutputltemClicked 362
EA_OnOutputltemDoubleClicked 363
EA_ShowHelp 364
Broadcast Events 365
Custom Table Events 367
EA_OnCustomTableBeginEdit 368
EA_OnCustomTableEndEdit 369
EA_OnCustomTableSelectionChanged 370
EA_OnCustomTableCellUpdated 371
Schema Composer Events 372
EA_GenerateFromSchema 373
EA_GetProfileInfo 374
EA_IsSchemaExporter 375
Add-In License Management Events 376
EA_AddinLicenseValidate 377
EA_AddinLicenseGetDescription 378
EA_GetSharedAddinName 379
Compartment Events 381
EA_QueryAvailableCompartments 382
EA_GetCompartmentData 384
Context Item Events 387
EA_OnContextltemChanged 388
EA_OnContextltemDoubleClicked 389
EA_OnNotifyContextltemModified 390
EA_FileClose 391
EA_FileNew 392

EA_FileOpen 393

EA_OnPostCloseDiagram

394

EA_OnPostlnitialized

395

EA_OnPostOpenDiagram

396

EA_OnPostTransform

397

EA_OnPreExitinstance

398

EA_OnRetrieveModelTemplate

399

EA_OnTabChanged

401

Model Validation Events

402

EA_OnlnitializeUserRules

403

EA_OnStartValidation

404

EA_OnEndValidation

EA_OnRunElementRule

405
406

EA_OnRunPackageRule

EA_OnRunDiagramRule

407
408

EA_OnRunConnectorRule

EA_OnRunAttributeRule

EA_OnRunMethodRule

409
410
411

EA_OnRunParameterRule

412

Model Validation Example

413

Post-New Events

419

EA_OnPostNewElement

420

EA_OnPostNewConnector

421

EA_OnPostNewDiagram

422

EA_OnPostNewDiagramObject

423

EA_OnPostNewAttribute

424

EA_OnPostNewMethod

EA_OnPostNewPackage

425
426

EA_OnPostNewGlossaryTerm

427

Pre-Deletion Events

EA_OnPreDeleteElement

EA_OnPreDeleteAttribute

428
429
430

EA_OnPreDeleteMethod

431

EA_OnPreDeleteConnector

432

EA_OnPreDeleteDiagram

EA_OnPreDeleteDiagramObject

EA_OnPreDeletePackage

433
434
435

EA_OnPreDeleteGlossaryTerm

Pre New-Object Events

436
437

EA_OnPreNewElement

438

EA_OnPreNewConnector

EA_OnPreNewDiagram

439
440

EA_OnPreNewDiagramObject

441

EA_OnPreDropFromTree

442

EA_OnPreNewAttribute

443

EA_OnPreNewMethod

444

EA_OnPreNewPackage

EA_OnPreNewGlossaryTerm

445
446

Tagged Value Events

447

EA_OnAttributeTagEdit

EA_OnConnectorTagEdit

EA_OnElementTagEdit

448
449
450

EA_OnMethodTagEdit 451
Technology Events 452
EA_OnlnitializeTechnologies 453
EA_OnPreActivateTechnology 454
EA_OnPostActivateTechnology 455
EA_OnPreDeleteTechnology 456
EA_OnDeleteTechnology 457
EA_OnlimportTechnology 458
Custom Views 459
Create a Custom View 460
Add a Portal 461
Custom Docked Window 462
MDG Add-Ins 463
MDG Events 464
MDG_BuildProject 465
MDG_Connect 466
MDG_Disconnect 467
MDG_GetConnectedPackages 468
MDG_GetProperty 469
MDG_Merge 470
MDG_NewClass 473
MDG_PostGenerate 474
MDG_PostMerge 475
MDG_PreGenerate 476
MDG_PreMerge 477
MDG_PreReverse 478
MDG_RunExe 479
MDG_View 480
Workflow Add-In Events 481
EA_AllowPropertyUpdate 482
EA_AllowTagUpdate 483
EA_CanEditProperty 484
EA_CanEditTag 485
Model Add-Ins 486
Create an Add-In 487
Responding to Events 489
Edit Add-In Code 490
Model Add-In Management 491
Signal Reference Library 492
Sample Add-Ins 493
Workflow Scripts 494
Workflow Script Functions 496
Functions - Validate and Control User Input 497
Functions - Create a Search With User Tasks 499
Filled Workflow Data Structures 500
Workflow Data Structures You Fill 502

Functions You Call

503

User Guide - Automation

Automation

7 August, 2019

Ibem01: Lineltern

Ord-2005-10-31-J0-01: Scrlptlng - g - tage
Order Scripts Console ette sage ceaae e ey
= . . e g

1 it . B e X (2]

:| JScript - MyAutomationScript

JScript - File 10 Example

Enterprise Architect has a formidable set of built-in features for working with models, but it also provides a range of
environments for accessing and manipulating the contents of a repository programmatically. This is an extremely
powerfully facility that gives you unlimited ability to query and manipulate models, add to the Enterprise Architect user
interface, generate reports, and even create support for new modeling languages. The Automation Interface gives you
access to the Object Model, which is an easy to use and well defined set of objects with properties and methods that can
be used to query and manipulate the repository and its contents, shielding the programmer from having to know the
underlying repository data structures.

The automation interface is available from a scripting framework built into the Enterprise Architect user interface,
through external scripting environments, or through Add-Ins that can be built in a wide range of programming languages.

Facilities
Facility

Scripting
| /

Object Model

Add-In Model

@
o

MDG Add-Ins

Code Samples and
Reference

(c) Sparx Systems 2019

Description

Learn about the flexible and easy-to-use scripting capability to programmatically
inspect and/or modify elements within your currently open model.

Discover the Enterprise Architect Object model. Write your own custom programs
that access the information stored in Enterprise Architect.

The Enterprise Architect Add-In model helps you build on the features provided by
the Automation Interface to enable you to extend the Enterprise Architect user
interface.

MDG Add-Ins are specialized types of Add-Ins that have additional features and
extra requirements. MDG Add-Ins are focused on generation, synchronization and
general processes concerned with converting models to code and code to models.

Access the wealth of knowledge and samples to help you complete your Add-In.

Page 8 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

(c) Sparx Systems 2019 Page 9 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Hybrid Scripting

Hybrid scripting extends the capabilities of the standard scripting environment to high level languages such as Java and
C#. Hybrid scripting provides a speed advantage over conventional scripting, and also allows script authors to leverage

existing skills in popular programming languages.

Access

E' Model Wizard

Model Patterns | Application Patterns | VEA Examples

Select a template from the list of applications, to add to your project.

Technology Mame
[&] java
B Microsoft c#
E Microsoft C++

. Repository

RepositoryInterface 3.5

RepositoryInterface 4.0

- Web

Web Application 20028
Web Application 2010

Windows

ConsoleApplication 2002
ConsolefApplication 2010
WindowsFormsApplication 2008
WindowsFormsApplication 2010

Sparx Systems, RepositoryInterface 3.5, C#, Microsoft NET Framewaork 3.5
C# project demonstrating the powerfull high lewvel language support provided by Enterprise Architect

othe model.

Destination folder: Use Local Path

Compiler command: "CAWindows\Microsoft. NET\Framework\w3.5\csc. Edit Lacal Paths
0K Cancel Help
Ribbon Design > Model > Add > Insert > Model Wizard > Application Patterns
Context Menu Right-click on Package | Add a Model using Wizard | Application Patterns

(c) Sparx Systems 2019 Page 10 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Keyboard Shortcuts Ctrl+Shift+M | Application Patterns
Other Browser window header bar menu | New Model from Pattern | Application Patterns
Features

e Superior execution speed
e Enhanced interoperability

e Full Visual Execution Analyzer support

(c) Sparx Systems 2019 Page 11 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

CH# Example

This sample program demonstrates how easy it is to navigate, query and report on the current model using any Microsoft
NET language. This example is written in C#.

When run, it will print the names of every Package in the model you are currently using.

Create the project

In the Browser window, select the Package in which to create the template and then use the ribbon or context menu to
display the Model Wizard; select the 'Application Patterns' tab.

On the 'Application Patterns' tab, select the Microsoft C# > Repositorylnterface template. (You can choose from either
the 3.5 or the 4.0 framework versions.) Specify the destination folder on the file system where the project template will
be created, and click on the OK button.

Open the project

A Package structure similar to this will be created for you.

Project Browser v & x

= Microsoft .MET 3.5 -4 %
A E AppPatterns
4 [2]Microsoft NET 3.5;
A |=:| Microsoft C#
4 [Repository Interface
T3 Repository Interface 3.5
4 [ConsoleApplication
A Program
Elu m_ProcessID

B¢ Repository

B¢ Main(string[])
i PrinthModel()

EIQ PrintPackage(EA.Package)
iy Programiint)

Expand the structure until you locate the Repository Interface n.n diagram and open it.

Overview:
This sample program demonstrates how easy it is to navigate, query and report on the current model using Build the project sl
any Microsoft .NET language. This example is written in C#. uil
When run, it will print the names of every Package in the model you are currently using.
Framework
The build uses the C# compiler from the Microsoft .NET framework. rogram
b int=0

Version: Repository = null
2.0 Runyour program

3

Run : void
Note: bool
The links on the right operate on the active Analyzer Script (EA.Package): void
To use these links make sure you have selected the 'Repository Interface 4.0' script. You can use this
Analyzer Scripts link to do this.
Debug the program It +pebughun
}k Analyzer Scripts

(c) Sparx Systems 2019 Page 12 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Build the script

The commands on this diagram will operate on the active build configuration. Before executing them, double-click on
the Analyzer Scripts link and select the checkbox next to the 'Repository Interface' build configuration.

Run the script

Double-click on the Run link to open the Console. The Console will pause after completion so you can read the output
from the program; this output will also be sent to the 'Script' tab of the System Output window. You can alter this by
changing the code.

Debug the script

Select the 'Program’ Class from the Browser window and press Ctrl+E to open the source code.

Place a breakpoint in one of the functions and then double-click on the DebugRun link. When the breakpoint is
encountered, the line of code will become highlighted in the editor, as shown:

A4 [ConsoleApplication 21 Console.WriteLine({msg);
= 22 }
4 e) 23 public Program{int pid)
¢ Repository 24 1
v m_ProcessID 25 m_ProcessID = pid;
3 Main() 26 Repository = SparxSystems.Services.GetRepository(m_ProcessIC
% PrintModel() 27 Trace{"Running C# Console Application AppPattern .NET 3.5");
_ 28 }
v PrintPackage() 29 private wvoid PrintPackage(EA.Package package)
w Program() 3@ {
3 Trace() 31 Trace(package.Name);
e 32 EA.Collection packages = package.Packages;
33 for (short ip = @; ip ¢ packages.Count; ip++)
34 {
35 EA.Package child = (EA.Package)packages.GetAt(ip);
36 PrintPackage(child);
37 1
38 1

(c) Sparx Systems 2019 Page 13 of 505 Created with Enterprise Architect

User Guide - Automation

Java Example

This sample program demonstrates how easy it is to navigate, query and report on the current model using a high-level

language such as Java.

When run, it will print the names of every Package in the currently-loaded model.

Create the project

In the Browser window, select the Package in which to create the template, then use the ribbon or context menu to

display the Model Wizard; click on the 'Application Patterns' tab.

From this tab, select the Java > RepositoryInterface template. Specify the destination folder on the file system in which

the project template will be created, and click on the OK button.

Open the project

A Package structure similar to this will be created for you.

Project Browser

= lava
| E AppPatterns
4 [Ehjaval
4 [Repository Interface
&3 Repository Interface
4 [SpanSystems
A Repositerylnterface
Iﬂv m_eapid
Iﬂu rm_repository
i Demo()
i finalize()
i main(5tring(])

v 0 X

R 4

& Repositorylnterface()

iy Repositorylnterface(ing)

Expand the structure until you locate the 'Repository Interface' diagram and open it.

D

Overview.

This sample program demonstrates how easy it is to navigate, query and report on the current model using a
high level language such as Java. When run, it will print the names of every Package in the currently loaded
model.

Framework:
‘The build uses the compiler from the Java JDK 1.7 x86 framework.

Note:

Inorder to use the Build, Run and Debug links, you must first locate the ‘Repository Interface' Analyzer Script
generated by the wizard, and make it the active script for the model

You can use the ‘Analyzer Scripts' link to do this.

Q@
2 Analyzer Scripts

7 August, 2019

Build the project Build
sitorylnterface
sparx Repository = null

Run your program —

Fun
d
()
efint)

Debug the program I *DebugRun

(c) Sparx Systems 2019

Page 14 of 505

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Build the script

The commands on the diagram will operate on the active build configuration. Before executing them, double-click on the
Analyzer Scripts link and select the checkbox next to the 'Repository Interface' build configuration.

Run the script

Double-click on the Run link; a Console will open. The Console will pause after completion so you can read the output.
The output from the program will also be output to the 'Script' tab of the System Output window. You can alter this by
changing the code.

Debug the script

Select the 'Program' Class from the Browser window and press Ctrl+E to open the source code.

Place a breakpoint in one of the functions and then double-click on the DebugRun link. When the breakpoint is
encountered the line of code will become highlighted in the editor, as shown.

4[] SparxSystems 35
4 H 36 public void Trace(String msg)
= : 37 {
m_eapid 38 // You can change the System Output Tab that receives the trace messages.
m_repository 39 m_repository.WriteOutput("Script”, msg, 8);
» Demo() 4a system.out.println(msg);
PrintPackage(org.sparx. i; 3
) n
» Repositorylnterface() 43 public woid PrintPackage(org.sparx.Package pkg)
v RepositoryInterfaceint] 44 {
Trace(String) 45 Trace(pkg.GetName());
s finalize() e 46 Collection<org.sparx.Package> packages = pkg.GetPackages();
- 47 for(short 1 = 8; i < packages.GetCount(); i++)
» main{5tring) 43
49 PrintPackage(packages.GetAt(i});
58 3
51 1

(c) Sparx Systems 2019 Page 15 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Scripting

TR

Enterprise Architect's scripting environment is a flexible and easy to use facility that supports both JavaScript and the
Microsoft scripting languages JScript and VBScript. When any script runs, it has access to a built-in 'Repository’ object.
Using this script object you can programmatically inspect and/or modify elements within your currently open model.
Enterprise Architect also provides feature rich editors, and tools to run, debug and manage your scripts. Scripts are
modular and can include other scripts by name using the /include directive. They can be used for a broad range of
purposes, from documentation to validation and refactoring, and they can be of enormous help with automating time
consuming tasks.

Script Engine Support

e Mozilla SpiderMonkey [version 1.8]
e Microsoft Scripting Engine

Script Languages

e JavaScript

e JScript
e VBScript
Benefits

e Inspecting and reporting on model and element composition

e Modifying and updating element properties

e Running queries to obtain extended model information

¢ Modifying diagram layouts

e Being called from report document templates to populate reports

e Creating and implementing process workflows

e Being included in MDG Technologies to augment domain specific languages
e Extensive Ul access to scripts through context menus

e Automation Server role for in-process and out-of-process COM clients (Scripting is itself an example of an
in-process client; Add-Ins are another)

e Element access governance through Workflow security

e Model Search integration

(c) Sparx Systems 2019 Page 16 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Script Groups

g_-?E - E b4 _|“‘ |:@:|
Mew Mormal Group
Mew Project Browser Group
Mew Diagram Group
MNew Workflow Group
MNew Search Group
Mew Model Search Group

Mew Diagram Filter Group
Help

Scripts are managed and contained in groups. Each group has an attribute called 'Type'. This attribute is used to help
Enterprise Architect decide how and where the script can be used and from which features it should be made available.
The properties of a script group can be viewed from its shortcut menu.

Script Storage

Built in scripts are file based and are installed with Enterprise Architect. They appear under the Local Scripts group.
You cannot edit or delete Local scripts, but you can copy the contents easily enough.

User defined scripts are model based and as such, can be shared by a community. They are listed in the group to which
they belong..

Using Scripts

The management interface for Scripting is the Scripting window, which contains the:
e Script Tree View ('Scripts' tab), which you use to review, create and edit scripts
e Script Console ('Console' tab), which you use to operate on an executing script

Other than the Local Scripts, which are file based and installed with Enterprise Architect, all other scripts are stored as
model assets and can be shared with its users. Script debuggers can help you with script development and script editors
can provide you with information on the automation interfaces available to you. Analyze the execution; for example, by
recording a Sequence diagram of the script execution, and halting execution to view local variables.

Notes
e This facility is available in the Corporate, Unified and Ultimate editions

e Ifyou intend to use the Scripting facility under Crossover/WINE, you must also install Internet Explorer version 6.0
or above

(c) Sparx Systems 2019 Page 17 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Scripts Tab

The 'Scripts' tab is composed of a toolbar and a view of all scripts according to group. The script groups and their scripts
also have context menus that provide some or all of these options:

e Group Properties - to display or edit script group properties in the 'Script Group Properties' dialog
e Run Script - to execute the selected script (or press Ctrl while you double-click on the script name)

e Edit Script - to update the selected script (or double-click on the script name to display the 'Script Editor', which
usually displays a script template, determined by the user group type as assigned on creation or on the 'Script Group
Properties' dialog)

e Rename Script - to change the name of the selected group or script
e New VBScript/JScript/JavaScript - add a new script to the selected user group

e Import Workflow Script - to display the 'Browser' dialog through which you locate and select a workflow script
source (.vbs) file to import into the Workflow script folder

e Delete Group/Script - to delete the selected user group or script
You can also move or copy a script from one user scripts folder to another; to:
e Move a script, highlight it in the 'Scripts' tab and drag it into the user scripts folder it now belongs to

e Copy a script, highlight it in the 'Scripts' tab and press Ctrl while you drag it into the user scripts folder in which to
duplicate it

Access
Ribbon Specialize > Tools > Scripting > Scripts
Script Toolbar
Icon Action

i - Create a new script group; this option displays a short menu of the types of script
group you can create, namely:

e Normal Group (E—EE)

e Browser window Group (g—g‘é)
e Diagram Group (%)

o Workflow Group (E‘E)

e Search Group (g:ﬁ)
e Model Search Group

The new group is added to the end of the list in the Scripting window, with the
'New group' text highlighted so that you can type in the group name.

=T Create a new script file in the selected script group; displays a short menu of the
types of script you can create, namely:

e VBScript (-='-':Bl)

(c) Sparx Systems 2019 Page 18 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

o IScript (i)

=y
e JavaScript ()

The new script is added to the end of the list in the selected group, with the New
script' text highlighted so that you can type in the script name.

k3 Refresh the script tree in the Scripting window; this icon also reloads any changes
made to a workflow script.

Compile and execute the selected script.

éﬂ

The output from the script is written to the 'Script' tab of the System Output
window, which you display using the View Script Output button.

Stop an executing script; the icon is disabled if no script is executing.

o Delete a script from the model; you cannot use this icon to delete a script group (see
the earlier 'Context Menu' item), scripts in the "Local Scripts' group, or a script that
is executing.

The system prompts you to confirm the deletion only if the 'Confirm Deletes'
checkbox is selected in the Project Browser' panel of the 'General' page of the
'Preferences' dialog; if this option is not selected, no prompt is displayed.

Script deletion is permanent - scripts cannot be recovered.

Display the System Output window with the results of the most recently executed
script displayed in the 'Script' tab.

Ll

Notes

e This facility is available in the Corporate, Unified and Ultimate editions
e Ifyou add, delete or change a script, you might have to reload the model in order for the changes to take effect

o Ifyou select to delete a script group that contains scripts, the system always prompts you to confirm the action
regardless of any system settings for delete operations; be certain that you intend to delete the group and its scripts
before confirming the deletion - deletion of script groups and scripts is permanent

(c) Sparx Systems 2019 Page 19 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Console Tab

The script console is a tab of the Scripting window; it is a command line interpreter through which you can quickly
enable a script engine and enter commands to act on the script.

You type the commands in the field at the bottom of the tab; when you press the Enter key, the script console executes
the commands and displays any output immediately.

You can input two types of command:
e Console commands

e Script commands

Access

Ribbon Specialize > Tools > Scripting > Console

Console Commands

Console commands are preceded by the ! character and instruct the console to perform an action.

The available console commands are provided here; to list these commands on the 'Console’ tab itself, type ? in the
console field (without the preceding ! character) and press the Enter key.

c(lear) - clears the console display

e sa(ve) - saves the console display to a file
e h(elp) - prints a list of commands, as for ?
e VB -opens a VBScript console

e JA - opens a JavaScript console

e]S - opens a JScript console

e st(op) - closes any script running console

e i(nclude) name - executes the named script item; name is of the format GroupName.ScriptName (spaces are allowed
in names)

e 7 - (without the !) lists commands

e 7name - Outputs the value of a variable name (only if a script console is opened).

Script Commands

A script command is script code that depends on the script engine. Script commands can be executed only once a script
console has been created.

Examples:

These lines, entered into the console, create a VBScript console and then execute the script '"MyScript' in the user group
'MyGroup":

>IVB
>1i MyGroup.MyScript

These lines, entered into the console, create a JScript console and then create a variable called x with the value 1:

(c) Sparx Systems 2019 Page 20 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

>1JS
>var x = 1

This image shows the result of entering this JScript example; remember that you can use ?<variable name> to get the
current value of any item you have created during the console session.

N

xlis

15cript console opened
=var k=1

=N

1

Console Tab Toolbar

The 'Console' tab has two operations available through the toolbar:

H
e Open Console (=) - click on the down-arrow and select to open a VBScript console, JScript console or JavaScript
console

e Stop Script () - click to stop an executing script and close the current console

Notes
e This facility is available in the Corporate, Unified and Ultimate editions

* You can save the output of the console to an external .txt file; right-click on the console window, select the 'Save As'
option, browse for an appropriate file location and specify the file name

(c) Sparx Systems 2019 Page 21 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Script Group Properties

MName: | Model Search Script Library

Group UID: | {ADEE2D24-E8F 3-4042-A9C2-076CECOCEF 79}

Source: | Repository

Group Type: |5eard’1

MNotes:

My script group for my personal lavascript model searches

When you create a script you develop it within a script group, the properties of which determine how that script is to be
made available to the user - through the Browser window context menu to operate on objects of a specific type, or
through a diagram context menu. You create a Script Group using the first icon on the 'Scripts' tab toolbar.

Access

Ribbon Specialize > Tools > Scripting > Scripts > right-click on [Group name] > Group
Properties

Define the Script Group Properties

Field/Button Action
Name Type in the name of the script group.
Group UID (Read only) The automatically assigned GUID for the group.
Source (Read only) The location of the template used to create the script.
Group Type Click on the drop-down arrow and select the type of script contained in the group;
this can be one of:

(c) Sparx Systems 2019 Page 22 of 505 Created with Enterprise Architect

User Guide - Automation

Notes

(c) Sparx Systems 2019

7 August, 2019

e Normal - (g—"El) General model scripts

e Browser window - (E‘é) Scripts that are listed in and can be executed from the
Browser window 'Scripts' context menu option

o Workflow - (g-g-y'f) Scripts executed by Enterprise Architect's workflow engine;
you can create only VB scripts of this type

e Secarch - (g-Elh) Scripts that can be executed as model searches; these scripts are
listed in the 'Search'’ field of the Model Search window, in the last category in
the list

e Diagram - (%) Scripts that can be executed from the 'Scripts' submenu of the
diagram context menu

e Find in Project - (EDQ) Scripts that can be executed from the 'Scripts' submenu
of a context menu within the Model Search view, on the results of a
successfully-executed SQL search that includes CLASSGUID and
CLASSTYPE, or a Query-built search

e Element - Scripts that can be executed from the 'Scripts' submenu of element
context menus; accessible from the Browser window, Diagram, Model Search,
Element List, Package Browser and Gantt views

e Package - Scripts that can be executed from the 'Scripts' submenu of Package
context menus; accessible from the Browser window

e Diagram - Scripts that can be executed from the 'Scripts' context menu option
for diagrams; accessible from the Browser window and diagrams

e Link - Scripts that can be executed from the 'Scripts' context menu option for
connectors; accessible from diagrams

Type in any comments you need regarding this script group.

Page 23 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Script Editor

Using the Script Editor you can perform a number of operations on an open script file, such as:

Save changes to the current script

Save the current script under a different name
Run the script

Debug the script

Stop the executing script

View the script output in the 'Scripts' tab of the System Output window

The editor is based on, and provides the facilities of, the common Code Editor in the application work area.

Access

Ribbon Specialize > Tools > Scripting > Scripts > right-click on [script name] > Edit Script
or
Specialize > Tools > Scripting > Scripts > double-click on [script name]

Facilities
Facility Detail

Scripting Objects Enterprise Architect adds to the available functionality and features of the editor
script language by providing inbuilt objects; these are either Type Libraries
providing Intelli-sense for editing purposes, or Runtime objects providing access to
objects of the types described in the Type Libraries.
The available Intelli-sense scripting objects are:
e EA
e MathLib
e System
The runtime scripting objects are:
e Repository (Type: IDualRepository, an instance of EA.Repository, the

Enterprise Architect Automation Interface)
e Maths (Type: IMath, an instance of MathLib; this exposes functions from the
Cephes mathematical library for use in scripts)

e Session (Type: ISession, an instance of System)

Script Editing Intelli-sense Intelli-sense is available not only in the 'Script Editor', but also in the 'Script

(Required Syntax) Console'; Intelli-sense at its most basic is presented for the inbuilt functionality of

the script engine.

For Intelli-sense on the additional Enterprise Architect scripting objects (as listed)
you must declare variables according to syntax that specifies a type; it is not
necessary to use this syntax to execute a script properly, it is only present so that
the correct Intelli-sense can be displayed for an item.

(c) Sparx Systems 2019 Page 24 of 505 Created with Enterprise Architect

User Guide - Automation

Keystrokes

Include script libraries

Using Inbuilt Math
Functions

Using COM / ActiveX
Objects

(c) Sparx Systems 2019

7 August, 2019

The syntax can be seen in, for example:
Dim e as EA.Element

Then when you type, in this case, e., the editor displays a list of member functions
and properties of e's type.

You select one of these to complete the line of script; you might, therefore, type:
VBTrace(e.

As you type the period, the editor presents the appropriate list and you might
double-click on, for example, Abstract; this is inserted in the line, and you continue
to type or select the rest of the statement, in this case adding the end space and
parenthesis:

VBTrace(e.Abstract)

In the Script Editor or Console, Intelli-sense is presented on these keystrokes.
e Press. (period) after an item to list any members for that item's type

e Press Ctrl+Space on a word to list any Intelli-sense items with a name starting
with the string at the point the keys were pressed

e Press Ctrl+Space when not on a word to display any available top level
Intelli-sense items - these are the Intelli-sense objects already described plus
any built-in methods and properties of the current scripting language

An Include statement (!INC) allows a script to reference constants, functions and
variables defined by another script accessible within the Scripting Window. Include
statements are typically used at the beginning of a script.

To include a script library, use this syntax:
IINC [Script Group Name].[Script Name]
For example:
IINC Local Scripts.EAConstants-VBScript

Various mathematical functions are available within the Script Editor, through the
use of the inbuilt Maths object.

You can access the Maths object within the Script Editor by typing "Maths'
followed by a period. The Intelli-sense feature displays a list of the available
mathematical functions provided by the Cephes Mathematical Library. For
example:

Session.Output "The square root of 9 is " & Maths.sqrt(9)
Session.Output "2°10 =" & Maths.pow(2,10)

The Maths object is available in the Unified and Ultimate editions of Enterprise
Architect.

VBScript, JScript and JavaScript can each create and work with ActiveX / COM
objects. This can help you to work with external libraries, or to interact with other
applications external to Enterprise Architect. For example, the
Scripting.FileSystemObject Class can be used to read and write files on the local
machine. The syntax for creating a new object varies slightly for each language, as
illustrated by these examples:

VBScript:

set fsObject = CreateObject("Scripting.FileSystemObject")
JScript:

fsObject = new ActiveXObject("Scripting.FileSystemObject");

JavaScript:

Page 25 of 505 Created with Enterprise Architect

User Guide - Automation

Using JavaScript with
out-of-process COM
servers

System Script Library

Notes

7 August, 2019

fsObject = new COMODbject("Scripting.FileSystemObject");

Users of JavaScript in Enterprise Architect can access out-of-process COM servers.
The application must be registered on the machine as providing local server
support. The syntax for creating or obtaining a reference to an out-of-process server
is:

var server = new COMObject(progiD, true);

where proglID is the registered program ID for the COM component
("Excel.Application', for example).

When Enterprise Architect is installed on your system, it includes a default script
library that provides a number of helpful scripting functions, varying from simple
string functions to functions for defining your own CSV or XMI import and export.

To use the script library you must enable it in the 'MDG Technologies' dialog
('Specialize > Technologies > Manage' ribbon option).

Scroll through the list of technologies, and select the 'Enabled' checkbox against
'EAScriptLib'.

e The Script Editor is available in the Corporate, Unified and Ultimate editions

e Enterprise Architect scripting supports declaring variables to match the Enterprise Architect types; this enables the
editor to present Intelli-sense, but is not necessary for executing the script

(c) Sparx Systems 2019

Page 26 of 505 Created with Enterprise Architect

User Guide - Automation

Session Object

7 August, 2019

The Session runtime object provides a common input/feedback mechanism across all script languages, giving access to
objects of the types described in the System Type library. It is available through both the 'Scripts' tab and the script
'Console' tab to any script run within Enterprise Architect.

Properties

Properties

Attributes

Methods

PromptType values

PromptResult values

Session.Prompt Example

(c) Sparx Systems 2019

Detail

UserName - Returns the current windows username (read only)

Version - Returns the version of this object (read only)

Input(string Prompt) - displays a dialog box prompting the user to input a
value; returns the string value that was entered by the user

Output(string Output) - writes text to the current default output location;
during:

- Normal script execution, output is written to the 'Script’ tab of the System
Output window

- Script Debugging, output is written to the Debug window

- Use of the Script Console, output is written to the Console

Prompt(string Prompt, long PromptType) - displays a modal dialog containing
the specified prompt text and button types; returns the 'PromptResult’ value
corresponding to the button that the user clicked

promptOK = 1
promptYESNO = 2
promptYESNOCANCEL =3
promptOKCANCEL =4

resultOK =1
resultCancel = 2
resultYes =3
resultNo = 4

(VBScript)
If (Session.Prompt("Continue?", promptYESNO) = resultYes) Then...

Page 27 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Script Debugging

Script debugging aids in the development and maintenance of model scripts, and monitoring their activity at the time of
execution. While debugging a script, you can:

Control execution flow using the 'Debug’, 'Step Over', 'Step Into', 'Step Out' and 'Stop Script' buttons on the Script
Editor toolbar

Set Breakpoints, Recording Markers and Tracepoint Markers
Use the Debug window to view output generated by the script
Use the Locals window to inspect values of variables, including objects from the Automation Interface

Use the Record & Analyze window to record a Sequence diagram of the script execution

Access
Ribbon Specialize > Tools > Scripting > Scripts > right-click on [script name] > Debug
Script
Other

Script Editor window toolbar : Click on the b toolbar icon

Begin debugging a model script

Step Action

1 Open a model script in the Script Editor.
2 Set any Breakpoints on the appropriate line(s) of code.
3 b
Click on the toolbar icon (Debug).
Notes

Script debugging is supported for VBScript, JScript and JavaScript

VBScript and JScript require the Microsoft Process Debug Manager to be installed on the local machine; this is
available through various Microsoft products including the free 'Microsoft Script Debugger'

Breakpoints are not saved for scripts and will not persist when the script is next opened

While debugging, script output is redirected to the Debug window

(c) Sparx Systems 2019 Page 28 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Enterprise Architect Object Model

OLE
Automation

S X

The Enterprise Architect Object Model gives the scripter or programmer access to the underlying objects that you can
use to query or manipulate the repository. The Object Model is accessible either from internal or external scripting
environments or through Add-Ins. This is a powerful feature that ensures that a programmer is insulated from the
underlying database where the repository is stored, protecting them from changes to the database structure or content.
The objects are grouped into Packages and contain a useful, extensive and well documented set of properties and
methods that are intuitive to use and allow access to elements, features, diagrams and project meta-data.

[,

Automation provides a way for other applications to access the information in an Enterprise Architect model using
Windows OLE Automation (ActiveX). Typically this involves scripting clients such as MS Word or Visual Basic, or
using scripts created within Enterprise Architect using the Scripting window.

The Automation Interface provides a way of accessing the internals of Enterprise Architect models. Examples of things
you can do using the Automation Interface include:

e Perform repetitive tasks, such as update the version number for all elements in a model
e Generate code from a StateMachine diagram
e Produce custom reports

e Perform ad hoc queries

Features
Feature Description

Connecting to the All development environments capable of generating ActiveX COM clients should

Automation Interface be able to connect to the Enterprise Architect Automation Interface. This guide
provides detailed instructions on connecting to the interface using Microsoft Visual
Basic 6.0, Borland Delphi 7.0, Microsoft C# and Java. There are also more detailed
steps on how to set-up Visual Basic; the principles are applicable to other
languages.

Examples and Tips Instruction on how to use the Automation Interface is provided by means of sample
code. See pointers to the samples and other available resources. Also, consult the
extensive Reference Section.

Calling Executables from Enterprise Architect can be set up to call an external application. You can pass

Enterprise Architect parameters on the current position selected in the Browser window to the

application being called. For instructions, go to the Call from Enterprise Architect
topic. A more sophisticated method is to create Add-Ins, which are discussed in a
separate section.

(c) Sparx Systems 2019 Page 29 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Using the Automation Interface

This section provides instructions on how to connect to and use the Automation Interface, including:
e Connecting to the interface
e Setting references in Visual Basic

e Examples and Tips

(c) Sparx Systems 2019 Page 30 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Connect to the Interface

All development environments capable of generating ActiveX Com clients can connect to the Enterprise Architect
Automation Interface.

By way of example, these sections describe how to connect using several such tools. The procedure might vary slightly
with different versions of these products.

Microsoft Visual Basic 6.0

Step Action

1 Create a new project.
2 Select the 'Project | References' menu option.
3 Select Enterprise Architect Object Model 2.0 from the list.

If this does not appear, go to the command line and re-register Enterprise Architect using:
EA.exe /unregister
then

EA.exe /register

4 See the general library documentation on the use of Classes. This example creates and opens a repository
object:

Public Sub ShowRepository()
Dim MyRep As New EA.Repository
MyRep.OpenFile "c:\eatest.eap"
End Sub

Borland Delphi 7.0

Step Action

1 Create a new project.
2 Select the 'Project | Import Type Library' menu option.
3 Select Enterprise Architect Object Model 2.0 from the list.

If this does not appear, go to the command line and re-register Enterprise Architect using:
EA.exe /unregister

then
EA.exe /register

4 Click on the Create Unit button.

(c) Sparx Systems 2019 Page 31 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

5 Include EA_TLB in Projectl's Uses clause.
6 See the general library documentation on the use of Classes. This example creates and opens a repository
object:
procedure TForm1.Button1Click(Sender: TObject);
var

r: TRepository;

b: boolean;

begin

r:= TRepository.Create(nil);
b:=r.OpenFile('c:\eatest.cap");

end;

Microsoft Cit

Step Action

1 Select the 'Visual Studio Project | Add Reference' menu option.
2 Click on the 'Browse' tab.
3 Navigate to the folder in which you installed Enterprise Architect; usually:
Program Files/Sparx Systems/EA
Select
Interop.EA.dI1
4 See the general library documentation on the use of Classes. This example creates and opens a repository
object:

private void buttonl Click(object sender, System.EventArgs e)

{
EA.Repository r = new EA.Repository();

r.OpenFile("c:\\eatest.cap");
}

Java

Step Action

1 Copy the file:
SSJavaCOM.dII
from the Java API subdirectory of your installed directory, usually:
Program Files/Sparx Systems/EA

(c) Sparx Systems 2019 Page 32 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

into any location within the Windows PATH

windows\system32 directory.

Note: Under 64-bit operating systems, the SSJavaCOM.dI file must be copied into
C:\Windows\SysWOW64.

Under 64-bit versions of Windows, the 'System32' directory is for 64-bit applications, and 'SysWOW64' is
for 32-bit applications.

2 Copy the file
eaapi.jar
from the Java API subdirectory of your installed directory, usually:
Program Files/Sparx Systems/EA

to a location in the Java CLASSPATH or where the Java class loader can find it at run time.

3 All of the Classes described in the documentation are in the Package org.sparx. See the general library
documentation for their use. This example creates and opens a repository object:

public void OpenRepository()
{

org.sparx.Repository r = new org.sparx.Repository();

r.OpenFile("c:\\eatest.cap");

}

(c) Sparx Systems 2019 Page 33 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Set References In Visual Basic

It is possible to use the Enterprise Architect ActiveX interface with Visual Basic (VB). Use is ensured for Visual Basic
version 6, but might vary slightly with versions other than version 6.

It is assumed that you have accessed VB through a Microsoft Application such as VB 6.0, MS Word or MS Access. If
the code is not called from within Word, the Word VB reference must also be set.

On creating a new VB project, you set a reference to an Enterprise Architect Type Library and a Word Type Library.

Set References

Step Action

1 Select the "Tools | References' menu option.
2 Select the 'Enterprise Architect Object Model 2.10' checkbox from the list.
3 Do the same for VB or VB Word: select the checkbox for the "Microsoft Word 10.0 Object Library'.
4 Click on the OK button.
Notes

e If'Enterprise Architect Object Model 2.10' does not appear in the list, go to the command line and manually re-enter
Enterprise Architect using:
- (To unregister Enterprise Architect) ea.exe /unregister
- (To register Enterprise Architect) ea.exe /register

e Visual Basic 5/6 users should also note that the version number of the Enterprise Architect interface is stored in the

VBP project file in a form similar to this:

Reference=*\G {64FB2BF4-9EFA-11D2-8307-C45586000000}#2.2#0#..\..\..\..\Program Files\

Sparx Systems\EA\EA.TLB#Enterprise Architect Object Model 2.02
If you experience problems moving from one version of Enterprise Architect to another, open the VBP file in a text
editor and remove this line, then open the project in Visual Basic and use Project-References to create a new
reference to the Enterprise Architect Object model
Reference to objects in Enterprise Architect and Word should now be available in the Object Browser, which can be
accessed from the main menu by pressing F2
The drop-down list on the top-left of the window should now include Enterprise Architect and Word; if MS-Project
is installed, also set this up

(c) Sparx Systems 2019 Page 34 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Examples and Tips
Points to consider

Subject Points

Examples Instructions for using the interface are provided through sample code. There are
several sets of examples:

e VB 6 and C# examples are available in the Code Samples folder under your
Enterprise Architect installation
(default: C:\Program Files\Sparx Systems\EA\Code Samples)

e Enterprise Architect can be set up to call an external application
e Several VB.NET code snippets are provided in the reference section

e A comprehensive example of using Visual Basic to create MS Word
documentation is available from the internet at
sparxsystems.com/resources/developers/autint_vb.html

e Additional samples are available from the Sparx Systems website; see the
Available Resources topic

Tips and Tricks Also note these tips and tricks:

e An instance of the Enterprise Architect (EA.exe) process is executed when you
initialize a new repository object - this process must remain running in order to
perform automation tasks; if the main window is visible, you can safely
minimize it, but it must remain running

o The Enterprise Architect ActiveX Interface is a functional interface rather than
a data interface; when you load data through the interface there is a noticeable
delay as Enterprise Architect user interface elements (such as Windows and
menus) are loaded and the specified database connection is established

e Collections use a zero-based index; for example, Repository.Models(0)
represents the first model in the repository

e During the development of your client software your program might terminate
unexpectedly and leave EA.exe running in such a state that it is unable to
support further interface calls; if your program terminates abnormally, ensure
that Enterprise Architect is not left running in the background (see the
Windows 'Task Manager / Process' tab)

e A handle to a currently running instance of Enterprise Architect can be
obtained through the use of a GetObject() call (see the reference page for the
App object); accessing your Enterprise Architect model via the App object
enables querying the current User Interface status, such as using
GetContextItem() on the Repository object to detect the current selection by
the user, allowing for rapid prototyping and testing

Enterprise Architect Not After all processing by an automation controller is complete, it is recommended to
Closing call CloseFile() and Exit() on the Repository object, then set all references to the
repository object to null.
repository.CloseFile();
repository.Exit();

repository = null;

If your automation controller was written using the .NET framework, Enterprise
Architect does not close even after you release all your references to it. To force the

(c) Sparx Systems 2019 Page 35 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

release of the COM pointers, call the memory management functions:
GC.Collect();
GC.WaitForPendingFinalizers();

There are additional concerns when controlling a running instance of Enterprise
Architect that loads Add-Ins - see the Tricks and Traps topic for details.

(c) Sparx Systems 2019 Page 36 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Call from Enterprise Architect

Enterprise Architect can be set up to call an external application. You can pass parameters on the current position
selected in the Browser window to the application being called. This helps you to:

e Add a command line for an application

e Define parameters to pass to this application

The parameters required for running the Autlnt executable are:
e The Enterprise Architect file parameter $f and

e The current PackagelD $p

Hence the arguments should simply contain: $f,$p.

Once this has been set up, the application can be called from the 'Extend' ribbon in Enterprise Architect using the 'Extend
> <YourApplication>' option.

Access

Ribbon Start > Desktop > Preferences > Other Options > Tools

Parameters to pass information to external applications

Parameter Description

$d Diagram ID

Notes: ID for accessing associated diagram.

$D Diagram GUID

Notes: GUID for accessing the associated diagram.

$e Comma separated list of element IDs

Notes: All elements selected in the current diagram.

$E Comma separated list of element GUIDs

Notes: All elements selected in the current diagram.

$f Project Name
Notes: For example: C:\projects\EAexample.eap.

$F Calling Application (Enterprise Architect)
Notes: 'Enterprise Architect'.

$p Current Package ID
Notes: For example: 144.

$p Package GUID

(c) Sparx Systems 2019 Page 37 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Notes: GUID for accessing this Package.

(c) Sparx Systems 2019 Page 38 of 505 Created with Enterprise Architect

User Guide - Automation

7 August, 2019

Available Resources

Resources

Available resources include:

Resource

Download Link

VB 6 Add-In for
generating MS Word
documentation.

sparxsystems.com/resources/developers/autint_vb.html

VB 6 Add-In to display a
custom ActiveX graph
control within the
Enterprise Architect
window as a new view.

sparxsystems.com/resources/developers/autint vb _custom view.html

A basic Add-In framework
written in C#. Useful as a
starting point for authoring
your own custom
Enterprise Architect
Add-In.

sparxsystems.com/bin/CS AddinFramework.zip

An extension on the
CS_AddinFramework
example showing how to
export Tagged Values to a
.csv file.

sparxsystems.com/bin/CS AddinTaggedCSV.zip

A basic Add-In skeleton
written in Delphi.

sparxsystems.com/bin/DelphiDemo.zip

A simple example Add-In
written in C#.

sparxsystems.com/bin/CS_Sample.zip

(c) Sparx Systems 2019

Page 39 of 505 Created with Enterprise Architect

https://sparxsystems.com/resources/developers/autint_vb.html
https://sparxsystems.com/resources/developers/autint_vb_custom_view.html
https://sparxsystems.com/bin/CS_AddinFramework.zip
https://sparxsystems.com/bin/CS_AddinTaggedCSV.zip
https://sparxsystems.com/bin/DelphiDemo.zip
https://sparxsystems.com/bin/CS_Sample.zip

User Guide - Automation

7 August, 2019

Reference

This section provides detailed information on all the objects available in the object model provided by the Automation

Interface, including:

Object Groups

Group

App Object

Enumerations

Repository Package

Element Package

Element Features Package

Connector Package

Diagram Package

Project Interface Package

Document Generator Interface Package

Mail Interface Package

Code Samples

(c) Sparx Systems 2019

Page 40 of 505

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Interface Overview

This section provides an overview of the main components of the Automation Interface.

Main Packages of Automation Interface

Package Detail
Repository Package Represents the model as a whole and provides entry to model Packages and
collections.
Element Package Identifies the basic structural units (such as Class, Use Case and Object).
Element Features Package Identifies the attributes and operations defined on an element.
Diagram Package Describes the visible drawings contained in the model.
Connector Package Defines the relationships between elements.

Packages and Contents

This diagram illustrates the main interface Packages and their associated contents. Each UML element in this User Guide
can be created by Automation and can be accessed either through the various collections that exist or, in some cases,
directly.

(c) Sparx Systems 2019 Page 41 of 505 Created with Enterprise Architect

User Guide - Automation

7 August, 2019

+ ProjectResource
+ Refarence

+ Repository

+ Ster=otype

+ Task

+ Term

1L T)) T) T T

+ Requirement
+ Resource

+ Risk

+ Scenano

+ TaggedValue
+ Tast

+ Element

Cwerview |
Repository | Element Element Features
+ Author + Constraint + Attribute
+ Client = .
© . + Effort + AttributeConstraint
+ Collection + File + AttributeTag
. = N
* Datatype + Issue + Method
+ Projectlssues + Matric
(=i
=]

+ Method Constreint
+ MethodTag

+ Parameter

Diagram

+ Disgram
+ DiagramLinks
+ DisgramOhject

Connector

Project Interface

+ ConnectorConstraint

+ ConnectorEnd
+ ConnectorTag
+ RoleTag

] + Connectar

+ Projact

The main padages in the Automation Interface

The Repository Class is the starting point for all use of the Automation Interface. It contains the high level system
objects and entry point into the model itself using the Models collection and the other system-level collections.

(c) Sparx Systems 2019

Page 42 of 505

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

App Object

The App object represents a running instance of Enterprise Architect. Its object provides access to the Automation
Interface.

Attributes
Attribute Type
Project Project
Notes: Read only
Provides a handle to the Project Interface.
Repository Repository
Notes: Read only
Provides a handle to the Repository object.
Visible Boolean

Notes: Read/Write

Whether or not the application is visible.

GetObject() Support

The App object is creatable and a handle can be obtained by creating one. In addition, clients can use the equivalent of
Visual Basic's GetObject() to obtain a reference to a currently running instance of Enterprise Architect.

Use this method to more quickly test changes to Add-Ins and external clients, as the Enterprise Architect application and
data files do not have to be constantly re-loaded.

For example:
Dim App as EA.App
Set App = GetObject(,"EA.App")
MsgBox App.Repository.Models.Count
Another example, which uses the App object without saving it to a variable:
Dim Rep as EA.Repository
Set Rep = GetObject(, "EA.App").Repository
MsgBox Rep.ConnectionString

(c) Sparx Systems 2019 Page 43 of 505 Created with Enterprise Architect

User Guide - Automation

7 August, 2019

Enumerations

These enumerations are defined by the Automation Interface:

Automation Interface Enumerations

Enumeration

Link

Constant Layout Styles

Constant Layout Styles

Create Baseline Flag

Create Baseline Flag

Create Model Type

Create Model Type

Document Break

Document Break

Document Page

Document Page Orientation

Orientation

Document Type Document Type

Enterprise Architect Enterprise Architect Edition Types
Edition Types

Enumeration Relation Set
Type

Enumeration Relation Set Type

Export Package XMI Flag Export Package XMI Flag
Mail Interface Message Mail Interface Message Flag
Flag

MDG Menus MDG Menus

Object Type Object Type

PropType PropType

Reload Type Reload Type

Scenario Diagram Type

Scenario Diagram Type

Scenario Step Type

Scenario Step Type

Scenario Test Type

Scenario Test Type

XMI Type

XMI Type

(c) Sparx Systems 2019

Page 44 of 505

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

(c) Sparx Systems 2019 Page 45 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

ConstLayoutStyles

The enum values defined here are used exclusively for the 'Lay Out a Diagram' method. You use these values to define
the layout options as provided by the "Layout > Tools > Diagram Layout ' ribbon option.

Enum Values

Value Meaning

IsCrossReduceAggressive Perform aggressive Cross-reduction in the layout process (time consuming).

IsCycleRemoveDFS
IsCycleRemoveGreedy
IsDiagramDefault
IsInitializeDFSIn
IsInitializeNaive
IsInitializeDFSOut
IsLayeringlongestPathSink

IsLayeringLongestPathSou
rce

IsLayeringOptimalLinkLen
gth

IsLayoutDirectionDown
IsLayoutDirectionLeft
IsLayoutDirectionRight
IsLayoutDirectionUp

IsProgramDefault

(c) Sparx Systems 2019

Use the Depth First Cycle Removal algorithm.

Use the Greedy Cycle Removal algorithm.

Use existing layout options specified for this diagram.

Initialize the layout using the Depth First Search Inward algorithm.
Initialize the layout using the Naive Initialize Indices algorithm.
Initialize the layout using the Depth First Search Outward algorithm.
Layer the diagram using the Longest Path Sink algorithm.

Layer the diagram using the Longest Path Source algorithm.

Layer the diagram using the Optimal Link Length algorithm.

Direct connectors to point down.
Direct connectors to point left.
Direct connectors to point right.
Direct connectors to point up.

Use factory default layout options as specified by Enterprise Architect.

Page 46 of 505

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

CreateBaselineFlag

The CreateBaselineFlag enumeration is used in Baseline Management, when creating a Baseline.

Enum Values

Value Meaning
cbSaveToStub Baseline this Package with only immediate children (child Packages are included as
stubs only).

(c) Sparx Systems 2019 Page 47 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

CreateModelType

The CreateModelType enumeration is used in the CreateModel method on the Repository Class.

Enum Values

Value Meaning
cmEAPFromBase Create a copy of the EABase model file to the specified file path.
cmEAPFromSQLRepositor Create a .eap file shortcut to an SQL-based repository; requires user interaction to
y provide SQL connection details.

(c) Sparx Systems 2019 Page 48 of 505 Created with Enterprise Architect

User Guide - Automation

7 August, 2019

DocumentBreak

The DocumentBreak enumeration is used in the InsertBreak method on the DocumentGenerator Class.

Enum Values

Value Meaning
breakPage Insert a page break in the document.
breakSection Insert a section break in the document.

(c) Sparx Systems 2019

Page 49 of 505

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

DocumentPageOrientation

The DocumentPageOrientation enumeration is used in the SetPageOrientation method on the DocumentGenerator Class.

Enum Values

Value Meaning
pagePortrait Sets the current page orientation to Portrait.
pageLandscpae Sets the current page orientation to Landscape.

(c) Sparx Systems 2019 Page 50 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

DocumentType

The DocumentType enumeration is used in the SaveDocument method on the DocumentGenerator Class.

Enum Values

Value Meaning
dtRTF Save the document file to disk as an RTF document.
dtHTML Save the document file to disk as a HTML document.
dtPDF Save the document file to disk as a PDF document.
dtDOCX Save the document file to disk as a DOCX document.

(c) Sparx Systems 2019 Page 51 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EAEditionTypes

The EAEditionTypes enumeration identifies the current level of licensed functionality available.
EAEditionTypes theEdition = theRepository.GetEAEdition();
if (theEdition == EAEditionTypes.piProfessional)

else if (theEdition == EAEditionTypes.piCorporate)

The enumeration defines these formal values:
e piLite

e piProfessional

e piCorporate

e piBusiness

e piSystemEng

e piUltimate

There is no separate value for the trial edition; the Repository.GetEAEdition() function returns the appropriate
EAEditionTypes value for whichever edition the user has selected to trial.

(c) Sparx Systems 2019 Page 52 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EnumRelationSetType

This enumeration represents values returned from the GetRelationSet method of the Element object.

Enum Values

Value Meaning
rsDependEnd List of elements that depend on the current element.
rsDependStart List of elements that the current element depends on.
rsGeneralizeEnd List of elements that are generalized by the current element.
rsGeneralizeStart List of elements that the current element generalizes.
rsParents List of all parent elements of the current element.
rsRealizeEnd List of elements that are realized by the current element.
rsRealizeStart List of elements that the current element realizes.

(c) Sparx Systems 2019 Page 53 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

ExportPackageXMiIFlag

The ExportPackageXMIFlag enumeration is used in Package control, when exporting to XMI.

Enum Values

Value Meaning
epExcludeEAExtensions Export this Package without any tool specific information.
epSaveToStub Export this Package with only immediate children (child Packages are included as
stubs only).

(c) Sparx Systems 2019 Page 54 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

MDGMenus

Use this enumeration when providing the 'HiddenMenus' property to MDG_ GetProperty.

These options are exclusive of one another and can be read or added to hide more than one menu.

Enum Values

Value Meaning
mgBuildProject 'Hide Build Project' menu option.
mgMerge 'Hide Merge' menu option.
mgRun 'Hide Run' menu option.

(c) Sparx Systems 2019 Page 55 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

MessageFlag

The MessageFlag enumeration is used in both the SendMailMessage and ComposeMailMessage methods of the
Maillnterface, to specify a flag to attach to the message.

Enum Values

Value Meaning
mfNone Do not flag the message.
mfComplete Flag the message as 'Complete'.
mfPurple Flag the message with a 'Purple’ flag.
mfOrange Flag the message with an 'Orange’ flag.
mfGreen Flag the message with a 'Green' flag.
mfYellow Flag the message with a 'Yellow' flag.
mfBlue Flag the message with a 'Blue' flag.
mfRed Flag the message with a 'Red' flag.

(c) Sparx Systems 2019 Page 56 of 505 Created with Enterprise Architect

User Guide - Automation

ObjectType

7 August, 2019

The ObjectType enumeration identifies Enterprise Architect object types even when referenced through a Dispatch

interface. For example:
var treeSelectedType = Repository.GetTreeSelectedItemType();
switch (treeSelectedType)
{

case otElement :
{
// Code for when an element is selected
var theElement as EA.Element;
theElement = Repository.GetTreeSelectedObject();
break;
H

case otPackage :
{
/I Code for when a Package is selected
var thePackage as EA.Package;
thePackage = Repository.GetTreeSelectedObject();
break;

Valid Enumeration Values

otAttribute
otAttributeConstraint
otAttributeTag
otAuthor

otClient

otCollection
otConnector
otConnectorConstraint
otConnectorEnd
otConnectorTag
otConstraint
otCustomProperty
otDatatype
otDiagram
otDiagramLink
otDiagramObject
otEffort

(c) Sparx Systems 2019 Page 57 of 505

Created with Enterprise Architect

User Guide - Automation

otElement
otEventProperties
otEventProperty
otFile

otlssue
otMaillnterface
otMethod
otMethodConstraint
otMethodTag
otMetric

otModel

otNone
otPackage
otParameter
otParamTag
otPartition
otProject
otProjectlssues
otProjectResource
otProperties
otProperty
otPropertyType
otReference
otRepository
otRequirement
otResource
otRisk

otRoleTag
otScenario
otScenarioExtension
otScenarioStep
otStereotype
otSwimlane
otSwimlaneDef
otSwimlanes
otTaggedValue
otTask

otTerm

otTest

otTransition

(c) Sparx Systems 2019

Page 58 of 505

7 August, 2019

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

PropType

The PropType enumeration gives the automation programmer an indication of what sort of data is going to be stored by
this property.

Enum Values

Value Meaning
ptArray An array containing values of any type.
ptBoolean True or False.
ptEnum A string being an entry in the semi-colon separated list specified in the validation
field of the Property.
ptFloatingPoint 4 or 8 byte floating point value.
ptinteger 16-bit or 32-bit signed integer.
ptString Unicode string.

(c) Sparx Systems 2019 Page 59 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

ReloadType

The ReloadType enumeration represents values returned from the GetReloadltem and PeekReloadltem methods of the
ModelWatcher Class. It has four possible values, which define the type of change that was made to a model.

Enum Values

Value Meaning
rtElement The Item parameter represents a particular element that must be reloaded.
rtEntireModel Entire model must be reloaded to ensure that all changes are reloaded.
rtNone No change in the model.
rtPackage The Item parameter represents a particular Package that must be reloaded.

(c) Sparx Systems 2019 Page 60 of 505 Created with Enterprise Architect

User Guide - Automation

7 August, 2019

ScenarioDiagramType

The ScenarioDiagramType enumeration provides these enumeration values to the
Project.GenerateDiagramFromScenario() method. They specify the type of diagram to generate.

Enum Values

Value
sdActivity
sdActivityWithAction
sdActivityWithActionPin

sdActivityWithActivityPar
ameter

sdRobustness
sdRuleFlow
sdSequence

sdState

(c) Sparx Systems 2019

Meaning

Generate an Activity diagram.
Generate an Activity diagram with an Action.
Generate an Activity diagram with an ActionPin.

Generate an Activity diagram with an ActivityParameter.

Generate a Robustness diagram.
Generate a RuleFlow diagram.
Generate a Sequence diagram.

Generate a StateMachine diagram.

Page 61 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

ScenarioStepType

The ScenarioStepType enumeration is used to identify the steps of a scenario, and the entity performing the step.

Enum Values

Value Meaning
stActor Identify that the step is an action performed by an actor.
stSystem Identify that the step is an action performed by the system.

(c) Sparx Systems 2019 Page 62 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

ScenarioTestType

The ScenarioTestType enumeration provides these enumeration values to the Project.GenerateTestFromScenario()
method, to specify the type of test to generate.

Enum Values

Value Meaning
stHorizontal TestSuite Generate a horizontal Test Suite diagram.
stVertical TestSuite Generate a vertical Test Suite diagram.
stExternal Generate an external Test Case element.
stInternal Generate an internal test.

(c) Sparx Systems 2019 Page 63 of 505 Created with Enterprise Architect

User Guide - Automation

XMIType

7 August, 2019

These enumeration values are used in the Project.ExportPackageXMI() and Project.ExportPackageXMIEx() methods, to

specify the XMI export type.
xmiEADefault = 0

(c) Sparx Systems 2019

xmiRoseDefault = 1

xmiEA10 =2
xmiEA11l =3
xmiEA12 =4
xmiRosel0 =5
xmiRosell =6
xmiRosel2 =7
xmiMOF13 =8
xmiMOF14 =9
xmiEA20 =10
xmiEA21 =11
xmiEA211 =12
xmiEA212 =13
xmiEA22 = 14
xmiEA23 =15
xmiEA24 =16
xmiEA241 =17
xmiEA242 = 18

xmiEcore = 19

xmiBPMN20 = 20

xmiXPDL22 =21
xmiEA251 =22
xmiARCGIS =23

xmiNative = 24

Page 64 of 505

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Properties Tab Package

The Properties Tab Package contains:

e A function to retrieve a pointer to the interface

e Functions to create or find a Properties tab

e Utility functions for modifying Properties values

You can get a pointer to this interface using the methods Repository.AddPropertiesTab and
Repository.GetPropertiesTab.

(c) Sparx Systems 2019 Page 65 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

PropertiesTab Class
PropertiesTab Attributes

Attribute Remarks

PropertiesTab Methods

Method Remarks
AddPropertiesTab (string Adds a Properties tab.
TabName, string Returns TRUE if the tab was added.
PropXML)
Parameters:
e TabName: String - The name of the Properties tab
e PropXML: String - An XML string defining the values in the tab
GetLastError () String

GetPropertiesTab (string
TabName)

GetPropertiesXML ()

GetProperty (long PropID)

RemovePropertiesTab ()

SetPropertiesXML (string
PropXML)

SetProperty (long ProplID,
string Value)

(c) Sparx Systems 2019

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Notes: Locates a Properties tab.
Returns TRUE if the tab is found.
Parameters:

e TabName: String - The name of the Properties tab
Notes: Returns the XML string of the properties.

Notes: Returns a string of the Property value.
Parameters:

e PropID: long - The ID value of the property

Notes: Removes a Properties tab.
Returns TRUE if the tab is removed.

Notes: Sets the Properties values in the tab.
Returns TRUE if the properties were set successfully.
Parameters:

e PropXML: String - An XML string defining the values in the tab

Notes: Returns TRUE if the value was set successfully.
Parameters:

e PropID: long - The ID value of the property to set
e Value: String - The value to set the property to

Page 66 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

(c) Sparx Systems 2019 Page 67 of 505 Created with Enterprise Architect

User Guide - Automation

Repository Package

7 August, 2019

The Repository Package contains the high level system objects and the entry point into the model itself, using the Models
collection and the other system level collections.

This diagram shows the collections of the Repository interface. Association Target roles correspond to member variable
names in the Repository interface. The associated Classes represent the object type used in each collection.

Repository

(c) Sparx Systems 2019

+Authors

a.-

+Clients

.-

+Datatypes

0.

+Models

0.*

+lzzues

a.-

+Resources

0.~

+ProjectRoles

a.-

+Property Types

0.-

+Sterectypes

+Tasks

0.*

+Terms

0.-

Author

Client

Datatype

Package

Projectlssues

ProjectResource

ProjectRole

PropertyType

0. Sterectype

Task

Term

Reference

Page 68 of 505

[N

To obtain a list of reference data, call the Repositony
method GetReferencelist{=tring Type),
where Type is one of the following striings:

Dizagram

Elernent
Constraint
Requirement
Connector

Status

Cardinality

Effort

Metric

Scenario

Status

Test

ListDifficulty Type
ListPricrity Type
ListTestStatusType
ListConstStatusType

Created with Ent

erprise Architect

User Guide - Automation

Author Class

7 August, 2019

An Author object represents a named model author. Authors can be accessed using the Repository Authors collection.

Associated table in .EAP file

t authors

Author Attributes

Attribute

Name

Notes

ObjectType

Roles

Author Methods

Method

GetLastError ()

Update ()

(c) Sparx Systems 2019

Remarks

String
Notes: Read/Write

The Author name.

String
Notes: Read/Write
Notes about the author.

ObjectType
Notes: Read only
Distinguishes objects referenced through a Dispatch interface.

String
Notes: Read/Write
Roles the author might play in this project.

Remarks

String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Boolean

Notes: Updates the current Author object after modification or appending a new
item.

If False is returned, check the 'GetLastError()' function for more information.

Page 69 of 505 Created with Enterprise Architect

User Guide - Automation

Client Class

7 August, 2019

A Client represents one or more people or organizations related to the project. Clients can be accessed using the

Repository Clients collection.

Associated table in .EAP file

t clients

Client Attributes

Attribute

EMail

Fax

Mobile

Name

Notes

ObjectType

Organization

Phonel

(c) Sparx Systems 2019

Remarks

String
Notes: Read/Write

The client's email address.

String
Notes: Read/Write

The client's fax number.

String
Notes: Read/Write

The client's mobile phone number, if available.

String
Notes: Read/Write

The client's name.

String
Notes: Read/Write

Notes about the client.

ObjectType
Notes: Read only
Distinguishes objects referenced through the Dispatch interface.

String
Notes: Read/Write

The client's associated organization.

String
Notes: Read/Write

The client's main phone number.

Page 70 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Phone2 String
Notes: Read/Write

The client's second phone number.

Roles String
Notes: Read/Write
Roles this client might play in the project.

Client Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Updates the current Client object after modification or appending a new
item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2019 Page 71 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Collection Class

Collection is the main collection Class used by all elements within the Automation Interface. It contains methods to
iterate through the collection, refresh the collection and delete an item from the collection.

It is important to realize that when the 'AddNew' function is called, the item is not automatically added to the current
collection. The typical steps are:

e (Call AddNew to add a new item

e Modify the item as required

e Call Update on the item to save it to the database

e Call Refresh on the collection to include it in the current set

Delete is the same; until Refresh is called, the collection still contains a reference to the deleted item, which should not
be called.

Each method can be used to iterate through the collection for languages that support this type of construct.

Collection Attributes
Attribute Remarks
Count Short
Notes: Read only
The number of objects referenced by this list.
ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Collection Methods

Method Remarks
AddNew(string Name, Object
string Type) Notes: Adds a new item to the current collection.

The interface is the same for all collections; you must provide a Name and Type
argument. What these arguments are used for depends on the actual collection being
accessed. For example, when adding a new element to the Elements collection, the
Type string can be either a basic UML element type or a fully qualified element
type (stereotype) defined by a profile, such as SysML::Requirement, differentiating
it from a standard requirement.

Also note that you must call Update() on the returned object to complete the
AddNew function. If Update() is not called the object is left in an indeterminate
state.

When an error occurs an exception will be thrown, including when the user does
not have Security permission to modify the specify type.

Parameters:

(c) Sparx Systems 2019 Page 72 of 505 Created with Enterprise Architect

User Guide - Automation

Delete(short index)

DeleteAt(short index,
boolean Refresh)

GetAt(short index)

GetByName(string Name)

GetLastError()

Refresh()

Update()

(c) Sparx Systems 2019

7 August, 2019

e Name: String

e Type: String (up to 30 characters long)

Void
Notes: Deletes the item at the selected reference.
Parameters:

e index: Short

Void

Notes: Deletes the item at the selected index. The second parameter is currently
unused.

Parameters:

e index: Short

e Refresh: Boolean

Object

Notes: Retrieves the array object using a numerical index. If the index is out of
bounds, an error occurs.

Parameters:

e index: Short

Object

Notes: Gets an item in the current collection by name. Supported for Model,
Package, Element, Diagram and element TaggedValue collections.

If the collection does not contain any items (or, for the Tagged Value collection, if
the collection contains items but the method cannot locate an object with the
specified name) the method returns a null value. For other collections, if the method
is unable to find an object with the specified name, it raises an exception.

Parameters:

e Name: String

String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Void

Notes: Refreshes the collection by re-querying the model and reloading the
collection. Should be called after adding a new item or after deleting an item.

Boolean

Notes: Updates the current Collection object after modification or appending a new
item.

If False is returned, check the 'GetLastError()' function for more information.

Page 73 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

The AddNew Function

The AddNew() function is used widely across the API to add new objects to a Collection. In all cases you must provide a
Name and Type argument, but what these arguments are used for depends on the actual collection being accessed. For
example, when adding a new element to the Elements collection, the "Type' string can be either a basic UML element
type or a fully qualified element type (stereotype) defined by a profile, such as SysML::Requirement differentiated from
a standard requirement.

AddNew Attribute Arguments

This table provides guidance in specifying the AddNew arguments for each of the object attributes.

Attribute Arguments

AttributeConstraints Name - The name of the constraint.

Type - The constraint type

Attributes Name - The name of the attribute.
Type - The attribute type.

AttributesEx Name - The name of the attribute.
Type - The attribute type.

AttributeTags Name - The fully-qualified name, or plain text.
Type - The value of the Tagged Value.

Authors Name - The author name.

Type - The author role.

Clients Name - The client name.

Type - The client role.

ConnectorConstraints Name - The name of the constraint.

Type - The constraint type.

ConnectorConveyedItems Name - The GUID of an element.
Type - Not used.

Note: This does not return an object.

Connectors Name - The name of the connector.

Type - The connector type (for example 'Realization').

ConnectorTags Name - The fully-qualified name, or plain text.

Type - The value of the Tagged Value.

Constraints Name - The name of the constraint.

Type - The constraint type.

ConstraintsEx Name - The name of the constraint.

(c) Sparx Systems 2019 Page 74 of 505 Created with Enterprise Architect

User Guide - Automation

CustomProperties

DataTypes

DiagramLinks

DiagramObjects

Diagrams

Efforts

Elements

Files

Issues

MethodPostConditions

MethodPreconditions

Methods

MethodsEx

(c) Sparx Systems 2019

7 August, 2019

Type - The constraint type.
You cannot create these.

Name - The datatype name.

Type - The datatype type.

Name - Not used.
Type - The style string (such as '1=200;r=400;t=200;b=600;")

(You might prefer to leave the Type empty and use the Functions on this interface
for size, colors and so on).

Name - This can either be an empty string, or it can specify the initial Left, Right,
Top and Bottom values for the new DiagramObject. For example:

diagram.DiagramObjects. AddNew("1=200;r=400;t=200;b=600;", ")

Note: Top and Bottom values should be specified here as positive numbers, but will
be set in the repository as negative values.

Type - Unused.

Name - The name of the diagram.

Type - This can be either a standard UML metaclass type (such as 'Class' or
'UseCase') or a fully-qualified metatype defined by an MDG Technology (such as
'BPMN?2.0::BusinessProcess' or 'SysML1.4::Block’).

Name - The name of the effort.

Type - The effort type.

Name - The name of the new element. If the repository has an auto-name counter
defined for the element type being created, pass an empty string to use the
auto-name counter instead.

Type - Can be either a standard UML metaclass type (such as 'Class' or 'UseCase')
or a fully-qualified metatype defined by an MDG Technology (such as
'BPMN?2.0::BusinessProcess' or 'SysML1.4::Block’).

Name - The full pathname of the file.
Type - The file type (such as "Local File' or 'Web Address').

Name - The name of the issue.

Type - The problem type, (such as 'Issue' or 'Defect’)

Name - The name of the constraint.

Type - The constraint type

Name - The name of the constraint.

Type - The constraint type.

Name - The name of the method.

Type - The return value of the method.

Name - The name of the method.

Page 75 of 505 Created with Enterprise Architect

User Guide - Automation

MethodTags

Metrics

Models

Packages

Parameters

ParamTags

Partitions

Projectlssues

ProjectResources

ProjectRole

PropertyTypes

Requirements

RequirementsEx

Resources

Risks

ScenarioExtension

(c) Sparx Systems 2019

Type - The return value of the method.

Name - The fully-qualified name, or plain text.

Type - The value of the Tagged Value.

Name - The name of the metric.

Type - The metric type.

Name - The name of the model.

Type - Unused.

Name - The name of the Package.

Type - Unused.

Name - The parameter name.

Type - The parameter type.

Name - The fully-qualified name or plain text.
Type - The value of the Tagged Value.

Name - The partition name.

Type - The partition note.

Name - The name of the issue.

Type - The issue type (such as 'Request’, 'Defect’, or 'Release’)

Name - The resource name.

Type - The resource role.

Name - The role name.

Type - Not used.

Name - The tag name.

Type - The description (limited to 50 characters).

Name - The name of the requirement.

Type - The requirement type.

Name - The name of the requirement.

Type - The requirement type.

Name - The resource name.

Type - The resource role.

Name - The name of the risk.

Type - The risk type.

Name - The extension name.

Type - The scenario type

Page 76 of 505

7 August, 2019

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

ScenarioStep Name - The step name.

Type - The ScenarioStep type value.

Scenarios Name - The name of the scenario.

Type - The scenario type.

Stereotypes Name - The stereotype name.
Type - The element this applies to.

Note: You can only support multiple elements from within a Profile.

Tasks Name - The task name.

Type - The task type.

TemplateBindings Name - The formal name of the binding.

Type - The actual name of the binding or element GUID.

TemplateParameters Name - The parameter name.

Type - The parameter type

Terms Name - The term name.

Type - The term type.

Tests Name - The name of the test.

Type - The test type.

Transitions Name - The transition name.

Type - The transition value.

(c) Sparx Systems 2019 Page 77 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Datatype Class

A Datatype is a named type that can be associated with attribute or method types. It typically is related to either code
engineering or database modeling. Datatypes also indicate which language or database system they relate to. Datatypes
can be accessed using the Repository Datatypes collection.

Associated table in .EAP file

t datatypes

Datatype Attributes

Attribute Remarks

DatatypelD Long
Notes: Read/Write

The instance ID for this datatype within the current model; this is system
maintained.

DefaultLen Long
Notes: Read/Write
The default length (DDL only).

DefaultPrec Long
Notes: Read/Write
The default precision (DDL only).

DefaultScale Long
Notes: Read/Write
The default scale (DDL only).

GenericType String
Notes: Read/Write
The associated generic type for this data type.

HasLength String
Notes: Read/Write

Indicates whether the datatype has a length component.

MaxLen Long
Notes: Read/Write
The maximum length (DDL only).

MaxPrec Long
Notes: Read/Write

(c) Sparx Systems 2019 Page 78 of 505 Created with Enterprise Architect

User Guide - Automation

MaxScale

Name

ObjectType

Product

Size

Type

UserDefined

Datatype Methods

Method

GetLastError()

Update()

(c) Sparx Systems 2019

7 August, 2019

The maximum precision (DDL only).

Long
Notes: Read/Write
The maximum scale (DDL only).

String
Notes: Read/Write

The datatype name (such as integer). This appears in the related drop-down
datatype lists where appropriate.

ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

String
Notes: Read/Write
The datatype product, such as Java, C++ or Oracle.

Long
Notes: Read/Write
The datatype size.

String
Notes: Read/Write
The type can be DDL for database datatypes or Code for language datatypes.

Long
Notes: Read/Write

Indicates if the datatype is a user defined type or system generated.

Datatypes distributed with Enterprise Architect are all system generated. Datatypes

created in the 'Datatype’ dialog are marked 1 (True).

Remarks

String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Boolean

Notes: Updates the current Datatype object after modification or appending a new

item.

If False is returned, check the 'GetLastError()' function for more information.

Page 79 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

(c) Sparx Systems 2019 Page 80 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EventProperties Class

An EventProperties object is passed to BroadcastFunctions to facilitate parameter passing.

EventProperties Attributes

Attribute Remarks

Count Long
Notes: Read only

The number of parameters being passed to this broadcast event.

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

EventProperties Methods

Method Remarks

Get(object Index) EventProperty Class

Notes: Read only
Returns an EventProperty in the list, raising an error if Index is out of range.
Parameters:

e Index: Variant - can either be a number representing a zero-based index into
the array, or a string representing the name of the EventProperty: for example,
Props.Get(3) or Props.Get("ObjectID")

(c) Sparx Systems 2019 Page 81 of 505 Created with Enterprise Architect

http://www.sparxsystems.com/enterprise_architect_user_guide/15.0/automation/eventproperty.html

User Guide - Automation 7 August, 2019

EventProperty Class

EventProperty objects are always part of an EventProperties collection, and are passed to Add-In methods responding to
broadcast events.

EventProperty Attributes

Attribute Remarks

Description String

Notes: An explanation of what this property represents.

Name String
Notes: A string distinguishing this property from others in the list.

ObjectType ObjectType
Notes: Distinguishes objects referenced through a Dispatch interface.

Value Variant

Notes: A string, number or object reference representing the property value.

(c) Sparx Systems 2019 Page 82 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

ModelWatcher Class

The ModelWatcher object enables an automation client to track changes in a particular model.

ModelWatcher Attributes

Attribute Remarks

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

ModelWatcher Methods
Methods Remarks
GetReloadltem (object ReloadType
Item)

Notes: The object that must be reloaded in order to see all changes is returned
through the Item parameter. If there are no changes or the entire model must be
reloaded, this value is returned as null (C#) or Nothing (VB).

Calling this method clears the records so that the next time it is called the return
values refer only to new changes.

Returns a value from the ReloadType enumeration that specifies which type of
change, if any, has occurred.

Parameters:

e [tem: Object

PeekReloadItem ReloadType

Notes: This method behaves identically to 'GetReloadItem()' but does not clear the
change record.

Notes

e After your model has been loaded, you only create the ModelWatcher once; if you reload the model, or load another
model, the created ModelWatcher is still valid

(c) Sparx Systems 2019 Page 83 of 505 Created with Enterprise Architect

http://www.sparxsystems.com/enterprise_architect_user_guide/15.0/automation/reloadtype_enum.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.0/automation/reloadtype_enum.html

User Guide - Automation 7 August, 2019

Package Class

A Package object corresponds to a Package element in the Enterprise Architect Browser window. Packages can be
accessed either through the Repository Models collection (a Model is a special form of Package) or through the Package
Packages collection.

Note that a Package has an Element object as an attribute; this corresponds to an Enterprise Architect Package element in
the t_object table and is used to associate additional information (such as scenarios and constraints) with the logical
Package.

To set additional information for a Package, reference the Element object directly. Also note that if you add a Package to
a diagram, you should add an instance of the element (not the Package itself) to the DiagramObject Class for a diagram.

Associated table in .EAP file

t_package

Package Attributes

Attribute Remarks

Alias String
Notes: Read only
Alias

BatchLoad Long
Notes: Read/Write

Flag to indicate that the Package is batch loaded during batch import from
controlled Packages.

Not currently used.

BatchSave Long
Notes: Read/Write

Boolean value to indicate whether the Package is included in the batch XMI export
list or not.

CodePath String
Notes: Read/Write
The path where associated source code is found.

Not currently used.

Connectors Collection
Notes: Read only

The collection of connectors.

Created Date
Notes: Read/Write

Date the Package was created.

(c) Sparx Systems 2019 Page 84 of 505 Created with Enterprise Architect

User Guide - Automation

Diagrams

Element

Elements

Flags

IsControlled

IsModel

IsNamespace

IsProtected

IsVersionControlled

LastLoadDate

LastSaveDate

LogXML

(c) Sparx Systems 2019

7 August, 2019

Collection
Notes: Read only

A collection of diagrams contained in this Package.

Element
Notes: Read only

The associated element object; use to get/set common information such as
Stereotype, Complexity, Alias, Author, Constraints, Tagged Values and Scenarios.

Collection
Notes: Read only

A collection of elements that belong to this Package.

String
Notes: Read/Write

Extended information about the Package.

Boolean
Notes: Read/Write

Indicates if the Package has been marked as Controlled.

Boolean
Notes: Read only

Indicates if the Package is a model or a Package.

Boolean
Notes: Read/Write
True indicates that 'Package is a Namespace root'.

Use 0 and 1 to set False and True.

Boolean
Notes: Read/Write

Indicates if the Package has been marked as 'Protected'.

Boolean
Notes: Read only

Indicates whether or not this Package is under Version Control.

Date
Notes: Read/Write
The date XML was last loaded for the Package.

Date
Notes: Read/Write
The date XML was last saved from the Package.

Boolean

Page 85 of 505

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Notes: Read/Write
Indicates if XMI export information is to be logged.

Modified Date
Notes: Read/Write
Date the Package was last modified.

Name String
Notes: Read/Write
The name of the Package.

Notes String
Notes: Read/Write
Notes about this Package.

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Owner String
Notes: Read/Write.

The Package owner when using controlled Packages.

PackageGUID Variant
Notes: Read only
The global Package ID; valid across models.

PackagelD Long
Notes: Read only
The local Package ID number.
Valid only in this model file.

Packages Collection
Notes: Read only
A collection of contained Packages that can be walked through.

ParentID Long
Notes: Read/Write
The ID of the Package that is the parent of this one.

0 indicates that this Package is a model (that is, it has no parent).

StereotypeEx String
Notes: Read/Write

All the applied stereotypes of the element in a comma-separated list. Reading the
value will provide the stereotype name only; assigning the value accepts either
fully-qualified or simple names.

When setting this attribute, LastError (from the GetLastError method) will be
non-empty on error.

(c) Sparx Systems 2019 Page 86 of 505 Created with Enterprise Architect

User Guide - Automation

TreePos

TypelnfoProperties

UMLVersion

UseDTD

Version

XMLPath

Package Methods

Method

ApplyGroupLock (string
aGroupName)

ApplyGroupLockRecursive
(string aGroupName,
boolean IncludeElements,
boolean IncludeDiagrams,
boolean
IncludeSubPackages)

(c) Sparx Systems 2019

7 August, 2019

Long
Notes: Read/Write

The relative position in the tree compared to other Packages (use to sort Packages).

Notes: Read only

Returns an interface pointer of TypelnfoProperties.

String
Notes: Read/Write
The UML version for XMI export purposes.

Boolean
Notes: Read/Write
Indicates if a DTD is to be used when exporting XMI.

String
Notes: Read/Write

The version of the Package.

String
Notes: Read/Write
The path to which the XML is saved when using controlled Packages.

Remarks

Boolean

Notes: Applies a group lock to the Package object, for the specified group, on
behalf of the current user. User Security applies to the use of this function; if the
user does not have permission to apply or release locks on elements, diagrams and
Packages, the operation will fail.

Returns True if the operation is successful; returns False if the operation is
unsuccessful. Use GetLastError() to retrieve error information.

Parameters:

e aGroupName: String - The name of the security group for which to apply the
lock

Boolean

Notes: Applies a group lock to the Package object, object, and all of the Package,
diagrams and elements contained within that Package, for the specified group, on
behalf of the current user. User Security applies to the use of this function; if the
user does not have permission to apply or release locks on elements, diagrams and
Packages, the operation will fail.

Returns True if the operation is successful; returns False if the operation is
unsuccessful. Use 'GetLastError()' to retrieve error information.

Page 87 of 505 Created with Enterprise Architect

User Guide - Automation

ApplyUserLock ()

ApplyUserLockRecursive
(boolean IncludeElements,

boolean IncludeDiagrams,

boolean
IncludeSubPackages)

Clone

FindObject (string
DottedID)

GetLastError ()

ReleaseUserLock ()

(c) Sparx Systems 2019

7 August, 2019

Parameters

e aGroupName: String - The name of the security group for which to apply the
lock

e IncludeElements: Boolean - Recursively apply group lock to child elements
e IncludeDiagrams: Boolean - Recursively apply group lock to child diagrams

e IncludeSubPackages: Boolean - Recursively apply group lock to child
Packages

Boolean

Notes: Applies a user lock to the Package object for the current user. User Security
applies to the use of this function; if the user does not have permission to apply or
release locks on elements, diagrams and Packages, the operation will fail.

Returns True if the operation is successful; returns False if the operation is
unsuccessful. Use 'GetLastError()' to retrieve error information.

Boolean

Notes: Applies user locks to the Package object, and all of the Packages, diagrams
and elements contained within that Package. User Security applies to the use of this
function; if the user does not have permission to apply or release locks on elements,
diagrams and Packages, the operation will fail.

Returns True if the operation is successful; returns False if the operation is
unsuccessful. Use GetLastError() to retrieve error information.

Parameters
e IncludeElements: Boolean - Recursively apply user lock to child elements
e IncludeDiagrams: Boolean - Recursively apply user lock to child diagrams

e IncludeSubPackages: Boolean - Recursively apply user lock to child Packages

LDISPATCH
Notes: Inserts a copy of the Package into the same parent as the original Package.

Returns the newly-created Package.

LPDISPATCH

Notes: Returns a Package, element, attribute or operation matching the parameter
DottedID.

If the DottedID is not found, an error is returned: Can't find matching object.
Parameters

e DottedID: String - Is in the form 'object.object.object' where object is replaced
by the name of a Package, element attribute or operation; examples include
MyNamespace.Class1, CStudent.m Name, MathClass.Doublelt(int)

String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Boolean

Notes: Releases user locks and group locks from the Package object, and all of the
Packages, diagrams and elements contained within that Package. User Security
applies to the use of this function; if the user does not have permission to apply or
release locks on elements, diagrams and Packages, the operation will fail.

Returns True if the operation is successful; returns False if the operation is

Page 88 of 505 Created with Enterprise Architect

User Guide - Automation

ReleaseUserLockRecursive
(boolean IncludeElements,

boolean IncludeDiagrams,

boolean
IncludeSubPackages)

SetReadOnly (boolean
ReadOnly, boolean
IncludeSubPkgs)

Update ()

VersionControlAdd (string
ConfigGuid, string

XMLFile, string Comment,
boolean KeepCheckedOut)

(c) Sparx Systems 2019

7 August, 2019

unsuccessful. Use GetLastError() to retrieve error information.

Boolean

Notes: Releases user locks from the Package object, and all of the Packages,
diagrams and elements contained within that Package. User Security applies to the
use of this function; if the user does not have permission to apply or release locks
on elements, diagrams and Packages, the operation will fail.

Returns True if the operation is successful; returns False if the operation is
unsuccessful. Use GetLastError() to retrieve error information.

Parameters
IncludeElements: Boolean - Recursively release user locks from child elements
IncludeDiagrams: Boolean - Recursively release user locks from child diagrams

IncludeSubPackages: Boolean - Recursively release user locks from child Packages

Void
Notes: Sets a Package Flag to mark a Package as ReadOnly=1.

If Project Security is enabled, the user must have 'Configure Packages' permission
to use this method.

Throws an exception if the operation fails due to the user not having 'Configure
Packages' permission; use 'GetLastError()' to retrieve error information.

Parameters

e ReadOnly: Boolean - Sets or clears the Read Only flag on the Package(s); if:
False, any Read Only flag is removed from the Package
True, a Read Only flag is applied to the Package

e IncludeSubPkgs: Boolean - Indicates whether to set/reset the Read Only flag
on just the object Package, or on the object Package and all of the nested
sub-Packages that it contains; if:

False, only the flag on the object Package is set or cleared

True, flags are set (or cleared, according to the ReadOnly
parameter) for the object Package plus all of the nested sub-Packages that it
contains

When working with Version Controlled Packages, the Read Only flag can be
applied to Packages whether they are checked-in or checked-out.

User Security applies to setting this flag - if you are prevented from editing the
Package, you are also prevented from setting the flag.

Boolean

Notes: Updates the current Package object after modification or appending a new
item.

If False is returned, check the 'GetLastError()' function for more information.

Note that a Package object also has an element component that must be taken into
account; the Package object contains information about the Package attributes such
as hierarchy or contents.

The element attribute contains information about, for example, Stereotypes,
Constraints or Files - all the attributes of a typical element.

Void
Notes: Places the Package under Version Control, using the specified Version
Control Configuration and the specified XMI filename.

Throws an exception if the operation fails; use GetLastError() to retrieve error

Page 89 of 505 Created with Enterprise Architect

User Guide - Automation

VersionControlCheckin
(string Comment)

VersionControlCheckinEx
(string Comment,

boolean
PreserveCrossPkgRefs)

VersionControlCheckout
(string Comment)

VersionControlGetLatest

(c) Sparx Systems 2019

7 August, 2019

information.

It is recommended that the Package be saved using Update() before calling
VersionControlAdd(), so that any outstanding changes are not lost.

Parameters

¢ ConfigGuid: String - Name corresponding to the Unique ID of the Version
Control configuration to use

e XMLFile: String - Name of the XML file to use for this Package; this filename
is relative to the Working Copy folder specified for the Config

e Comment: String - Log message that is added to the Version Controlled file's
history (where applicable)

e KeepCheckedOut: Boolean - Specify True to add to Version Control and keep
the Package checked-out

Void
Notes: Perform checkin of the Version Controlled Package (also see
VersionControlCheckinEx).

Throws an exception if the operation fails; use GetLastError() to retrieve error
information.

Parameters

e Comment: String - Log message that is added to the Version Controlled file's
history (where applicable)

Void
Notes: Perform check-in of the Version Controlled Package.

Throws an exception if the operation fails; use GetLastError() to retrieve error
information.

Parameters

e Comment: String - Log message that is added to the Version Controlled file's
history (where applicable)

e PreserveCrossPkgRefs: Boolean - Flag to indicate whether to preserve or
discard pre-existing Cross Package References when checking-in; this
parameter overrides the setting in the 'Preferences' dialog, 'XML Specifications'
page
Unsatisfied cross-Package references are preserved or discarded according to
this setting, without prompting the user; see Learn more

Void
Notes: Perform checkout of the Version Controlled Package.

Throws an exception if the operation fails; use GetLastError() to retrieve error
information.

Parameters:

e Comment: String - Log message that is added to the Version Controlled file's
history (where applicable)

When working in an environment that uses a Private Model deployment and your
model contains a significant number of cross-Package references, it is
recommended that you invoke the Repository.ScanXMIAndReconcile() method
from time to time, following the re-importation of controlled Packages - for
example, after using Package.VersionControlGetLatest() to update a number of
Packages, or after performing a number of Package check-outs.

Void

Page 90 of 505 Created with Enterprise Architect

User Guide - Automation

(boolean Forcelmport)

VersionControlGetStatus ()

(c) Sparx Systems 2019

7 August, 2019

Notes: Updates the local working copy of the Package file associated with the
object Package, before re-importing the Package data from the Package file.

Parameters:

e Forcelmport: Boolean - Used if the Package data in the model is found to be
up-to-date with respect to the Version Controlled Package file; if:
- False, the Package data that exists in the model is accepted as being
up-to-date and no
attempt is made to re-import data from the Package file
- True, the system re-imports the Package from the Package file regardless

See also the menu option "Version Control | Get Latest'.

When working in an environment that uses a Private Model deployment and your
model contains a significant number of cross-Package references, it is
recommended that you invoke the 'Repository.ScanXMIAndReconcile()' method
from time to time, following the re-importation of controlled Packages - for
example, after using 'Package. VersionControlGetLatest()' to update a number of
Packages, or after performing a number of Package check-outs.

Long

Notes: Returns the Version Control status of the Package, as recorded in the current
project database.

Throws an exception if the operation fails; use GetLastError() to retrieve error
information.

Return value maps to this enumerated type:
enum EnumCheckOutStatus
{
csUncontrolled = 0,
csCheckedln,
csCheckedOutToThisUser,
csReadOnlyVersion,
csCheckedOutToAnotherUser,
csOfflineCheckedIn,
csCheckedOutOfflineByUser,
csCheckedOutOfflineByOther,
csDeleted,
15
e csUncontrolled - Either unable to communicate with the Version Control

provider associated with the Package, or the Package file is unknown to the
provider

e csCheckedIn - The Package is not checked-out to anybody in the current
project database

e csCheckedOutToThisUser - The Package is marked as checked-out to the
current user, in the current project database

e csReadOnlyVersion - The Package is marked as read-only; an earlier revision
of the Packagehas been retrieved from Version Control

e csCheckedOutToAnotherUser - The Package is marked as checked-out in the
current project database, by a user other than the current user

e csOfflineCheckedIn - The Package is not checked-out to anybody in the
current project database; however, the Version Control configuration
associated with the Package was unable to connect to the VC server

o csCheckedOutOfflineByUser - The Package was 'checked out' in this database,

Page 91 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

by this user, whilst disconnected from Version Control

e csCheckedOutOfflineByOther - The Package was checked out in this project
database, by another user, whilst disconnected from Version Control

e csDeleted - The Package file has been deleted from Version Control

VersionControlPutLatest Void

(string CheckInComment) Notes: Perform a checkin of the Version Controlled Package, whilst keeping the
Package checked-out.

Throws an exception if the operation fails; use GetLastError() to retrieve error
information.

When a Package that was previously marked as Checked Out Offline, is
successfully 'Put' (checkedin) to Version Control, that Package's flags are updated
to clear the Checked Out Offline indicator.

Parameters:

e Comment: String - Log message added to the Version Controlled file's history
(where applicable)

VersionControlRemove () Void
Notes: Removes Version Control from the Package.

Throws an exception if the operation fails; use 'GetLastError()' to retrieve error
information.

VersionControlResynchPk Notes: Synchronizes the Version Control status of the single object Package

gStatus (boolean recorded in your current model with the Package status reported by your Version
ClearSettings) Control provider.
Parameters:

e C(ClearSettings: Boolean - used if the Package file associated with the specified
Package is reported by the Version Control provider as uncontrolled; if
ClearSettings is:

True, the Version Control settings are cleared from the Package

False, the Version Control settings remain unchanged

(c) Sparx Systems 2019 Page 92 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Projectissues Class

A Projectlssue is a system-level Issue that indicates a problem or risk associated with the system as a whole.
Projectlssues can be accessed using the Repository Issues collection.

Associated table in .EAP file

t issues

Projectlssues Attributes

Attribute Remarks

Category String
Notes: Read/Write
The category this issue belongs to.

Date Date
Notes: Read/Write

The date the issue item was created.

DateResolved Date
Notes: Read/Write

The date the issue was resolved.

Name String
Notes: Read/Write

The issue name (that is, the issue itself).

IssuelD Long
Notes: Read only
The ID of this issue.
Notes String

Notes: Read/Write

The associated description of the issue.

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Owner String
Notes: Read/Write

The owner of the issue.

(c) Sparx Systems 2019 Page 93 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Priority String
Notes: Read/Write
The issue priority - Low, Medium or High.

Resolution String
Notes: Read/Write

A description of the resolution.

Resolver String
Notes: Read/Write

The name of the person resolving the issue.

Severity String
Notes: Read/Write

The issue severity - Low, Medium or High.

Status String
Notes: Read/Write

The current status of the issue.

Projectissues Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean
Notes: Updates the current Issue object after modification or appending a new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2019 Page 94 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

ProjectResource Class

A Project Resource is a named person who is available to work on the current project in any capacity. ProjectResources
can be accessed using the Repository Resources collection.

Associated table in .EAP file

t_resources

ProjectResource Attributes

Attribute Remarks

Email String

Notes: The resource's email address.

Fax String

Notes: The resource's fax number.

Mobile Variant

Notes: The resource's mobile number, if available.

Name String

Notes: The name of the resource.

Notes String

Notes: A description of the resource, if appropriate.

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Organization Package Class: String
Notes: The organization the resource is associated with.

Phonel Variant

Notes: The resource's main telephone number.

Phone2 Variant

Notes: The resource's alternative telephone number.

Roles String

Notes: The roles this resource can play in the current project.

(c) Sparx Systems 2019 Page 95 of 505 Created with Enterprise Architect

http://www.sparxsystems.com/enterprise_architect_user_guide/15.0/automation/package_2.html

User Guide - Automation 7 August, 2019

ProjectResource Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Updates the current Resource object after modification or appending a new
item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2019 Page 96 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

ProjectRole Class

A ProjectRole object represents a named project role. ProjectRoles can be accessed using the Repository ProjectRole
collection.

Associated table in .EAP file

t_projectroles

ProjectRole Attributes

Attribute Remarks

Description String
Notes: Read/Write

The project role item description.

Notes String
Notes: Read/Write

Notes about the project role item.

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Role String
Notes: Read/Write

The project role item name.

ProjectRole Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Updates the current ProjectRole object after modification or appending a
new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2019 Page 97 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

(c) Sparx Systems 2019 Page 98 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

PropertyType Class

A PropertyType object represents a defined property that can be applied to UML elements as a Tagged Value.
PropertyTypes can be accessed using the Repository PropertyTypes collection.

Each PropertyType corresponds to one of the predefined Tagged Values for the model.

Associated table in .EAP file

t_propertytypes

PropertyType Attributes

Attribute Remarks

Description String
Notes: Read/Write
A short description of the property.

Detail String
Notes: Read/Write

Configuration information for the property.

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Tag String
Notes: Read/Write
The name of the property (Tag Name).

PropertyType Methods:

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Updates the current PropertyType object after modification or appending a
new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2019 Page 99 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

(c) Sparx Systems 2019 Page 100 of 505 Created with Enterprise Architect

User Guide - Automation

Reference Class

7 August, 2019

This Interface provides access to the various lookup tables within Enterprise Architect. Use the Repository
GetReferenceList() method to get a handle to a list.

Valid lists are:

e Diagram

e Element

e Constraint

e Requirement

e Connector

e Status

e Cardinality

o Effort

e Metric

e Scenario

e Status

e Test

e List:DifficultyType
e List:PriorityType

o List:TestStatusType
o List:ConstStatusType

Reference Attributes

Attribute

Count

ObjectType

Type

Reference Methods

Method

GetAt(short Index)

(c) Sparx Systems 2019

Remarks

Short

Notes: A count of items in the list.

ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

String

Notes: The list type (for example, DiagramTypes).

Remarks

String

Page 101 of 505

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Notes: Get the item at the specified index.
Parameters:

e Index: Short - The index of the item to retrieve from the list

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Refresh() Short

Notes: Refresh the current list and return the count of items.

(c) Sparx Systems 2019 Page 102 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Repository Class

The Repository is the main container of all structures such as models, Packages and elements. You can begin accessing
the model iteratively using the Models collection. The Repository also has some convenient methods to directly access
the structures without having to locate them in the hierarchy first.

Associated table in .EAP file

<none>

Repository Attributes

Attribute Remarks

Authors Collection
Notes: Read only

This is the system Authors collection containing 0 or more Author objects, each of
which can be associated with, for example, elements or diagrams as the item author
or owner.

Use AddNew(), Delete() and GetAt() to manage Authors.

BatchAppend Boolean
Notes: Read/Write

Set this property to True when your automation client has to rapidly insert many
elements, operations, attributes and/or operation parameters.

Set to False when work is complete.

This can result in 10- to 20-fold improvement in adding new elements in bulk.

Clients Collection
Notes: Read only

A list of Clients associated with the project. You can modify, delete and add new
Client objects using this collection.

ConnectionString String
Notes: Read only
The filename/connection string of the current Repository.

For a connection string, the DBMS repository type is identified by "DBType=n;"
where n is a number corresponding to the DBMS type, as shown:

0 - MYSQL
1 - SQLSVR

2 - ADOJET
3-ORACLE

4 - POSTGRES
5-ASA

8 - ACCESS2007

(c) Sparx Systems 2019 Page 103 of 505 Created with Enterprise Architect

User Guide - Automation

CurrentSelection

DataMinerManager

Datatypes

EAEdition

EAEditionEx

EnableCache

EnableUIUpdates

FlagUpdate

InstanceGUID

IsSecurityEnabled

(c) Sparx Systems 2019

7 August, 2019

9 - FIREBIRD

Notes: Read only

Provides information on what is selected, and in what location without making any
requests to the database.

Data Miner object

Notes: Returns a pointer to the EA.DataMinerManager interface.

Collection
Notes: Read only

The Datatypes collection. This contains a list of Datatype objects, each representing
a data type definition for either data modeling or code generation purposes.

EAEditionTypes

Notes: Read only

Returns the current level of core licensed functionality available.

This property returns Corporate when the edition is Unified or Ultimate.
Use 'EAEditionEx' to identify which of these extended editions is available.

EAEditionTypes
Notes: Read only

Returns the current level of extended licensed functionality available (Unified or
Ultimate).

Boolean
Notes: Read/Write

An optimization for pre-loading Package objects when dealing with large sets of
automation objects.

Boolean
Notes: Read/Write

Set this property to False to improve the performance of changes to the model; for
example, bulk addition of elements to a Package. To reveal changes to the user, call
'Repository.RefreshModel View()'.

Boolean
Notes: Read/Write
Instructs Enterprise Architect to update the Repository with the LastUpdate value.

String
Notes: Read only

The identifier string identifying the Enterprise Architect runtime session.

Boolean
Notes: Read only

Indicates whether User Security is enabled for the current repository.

Page 104 of 505 Created with Enterprise Architect

User Guide - Automation

Issues

LastUpdate

LibraryVersion

Models

ObjectType

ProjectGUID

ProjectRoles

PropertyTypes

Resources

SearchWindow

(c) Sparx Systems 2019

7 August, 2019

Collection
Notes: Read only

The System Issues list. Contains ProjectIssues objects, each detailing a particular
issue as it relates to the project as a whole.

String
Notes: Read only

The identifier string identifying the Enterprise Architect runtime session and the
timestamp for when it was set.

Long
Notes: Read only

The build number of the Enterprise Architect runtime.

Collection of type Package
Notes: Read only

Models are of type Package and belong to a collection of Packages. This is the top
level entry point to an Enterprise Architect project file. Each model is a root node in
the Browser window and can contain items such as Views and Packages.

A model is a special form of a Package; it has a ParentID of 0. By iterating through
all models, you can access all the elements within the project hierarchy.

You can also use the AddNew() function to create a new model. A model can be
deleted, but remember that everything contained in the model is deleted as well.

ObjectType
Notes: Read only

Distinguishes objects referenced through the Dispatch interface.

String
Notes: Read only
Returns the unique ID for the project.

Collection
Notes: Read only

The system Roles collection containing 0 or more Role objects, each of which can
be associated with, for example, elements or diagrams as the item author or owner.

Use AddNew(), Delete() and GetAt() to manage Roles.

Collection
Notes: Read only
Collection of Property Types available to the Repository.

Collection
Notes: Read only

Contains available ProjectResource objects to assign to work items within the
project.
Use the 'Add New()', 'Modify()' and 'Delete()' functions to manage resources.

Notes: Read only

Page 105 of 505 Created with Enterprise Architect

User Guide - Automation

SecurityUser

Stereotypes

SuppressEADialogs

SuppressSecurityDialog

Tasks

Terms

Repository Methods

Method

ActivateDiagram (long
DiagramID)

ActivatePerspective (string
long)

ActivateTab (string Name)

(c) Sparx Systems 2019

7 August, 2019

Returns a reference to the Enterprise Architect Search Window.

Notes: Read only

Provides information about the currently logged in security user.

Collection
Notes: Read only

The Stereotype collection. A list of Stereotype objects that contain information on a
stereotype and the elements it can be applied to.

Boolean
Notes: Read/Write

Set this property in the EA_OnPostNewElement broadcast event to control whether
Enterprise Architect should suppress showing the default 'Properties’ dialog to the
user when an element is created.

Boolean
Notes: Read/Write

Suppress the login prompt dialog that appears by default when username and
password parameters passed to OpenFile2 are invalid. For use by external
automation clients only.

Collection
Notes: Read only

A list of system tasks (to do list). Each entry is a Task Item; you can modify, delete
and add new tasks.

Collection
Notes: Read only

The Project Glossary Terms. Each Term object is an entry in the Glossary. Add,
modify and delete Terms to maintain the Glossary.

Remarks

Notes: Activates an already open diagram (that is, makes it the active tab) in the
main Enterprise Architect user interface.

Parameters:

e DiagramID: Long - the ID of the diagram to make active

Boolean

Notes: Deprecated - no longer in use.

Notes: Activates an open Enterprise Architect tabbed view.
Parameters:

e Name: String - the name of the view to activate

Page 106 of 505 Created with Enterprise Architect

User Guide - Automation

ActivateTechnology (string
TechnologyID)

ActivateToolbox (string
Toolbox, long Options)

AddDefinedSearches
(string sXML)

AddDocumentationPath
(string Name, string Path,
long Type)

AddPerspective (string
Perspective, long Options)

AddPropertiesTab (string
TabName, string
PropXML)

(c) Sparx Systems 2019

7 August, 2019

Notes: Activates an enabled MDG Technology.
Parameters:

e TechnologylD: String - the ID of the Technology to activate, as assigned in the
MDG Technology Wizard

Boolean

Notes: Activates a Toolbox page in the GUL

The returned value is reserved for future use.

Parameters:

e Toolbox: String - the name of the Toolbox page to activate

e Options: Long - reserved for future use

Notes: Used to enter a set of defined searches that last in Enterprise Architect for
the life of the application; when Enterprise Architect loads again they must be
inserted again by your Add-In.

Parameters:

e sXML: String - the XML of the defined searches; you can get this XML by
performing an export of the searches from the 'Manage Searches' dialog in
Enterprise Architect

Notes: Provides an Add-In with the ability to insert a book path into the Enterprise
Architect installation directory, to display Learning Center pages on user-authored
subjects (such as use of the Add-In).

Parameters:

e Name: String - the top-level (root) name for the Learning Center
documentation hierarchy for the Add-In (for example, Enterprise Architect)

e Path: String - the directory path to the folder to contain the Learning Center
documentation structure (for example,
C:\Program Files (86)\Sparx Systems\EA\Books

e Type: Long - reserved for future use; set to 0

Boolean

Notes: Deprecated - no longer in use.

Notes: Create a Properties tab.

Returns a PropertiesTab interface if a tab was created successfully, otherwise
NULL.

Parameters:
e TabName: String - Name of the Properties tab
e PropXML: String - An XML string defining the values in the tab

Example XML string.
<?xml version='1.0'?>
<properties>
<group name="theGroup1™>
<property id='1" type="text' default="readonly="false' >
<name>TestText</name>

<description>this has id=1</description>

Page 107 of 505

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

</property>
<property id="2' type="combobox' default="readonly="false' >
<name>TestCombo</name>
<value>Two</value>
<description>this has id=2</description>
<valuelist>
<item>One</item>
<item>Two</item>
<item>Three</item>
</valuelist>
</property>

<property id='3' type="date' default="currentdate' showcheckbox="false'
readonly="false' >

<name>TestDate</name>
<value></value>
<description>this has id=3</description>

</property>

<property id='4" type='checkbox' default="true' readonly="false' >
<name>TestCheckbox</name>
<description>this has id=4</description>

</property>

<property id='5' type="spin' default="1' min="0' max='100' readonly="false' >
<name>TestSpin</name>
<value>7</value>
<description>this has id=5</description>

</property>

<property id="6' type="int' default="1' readonly="false' >
<name>TestInt</name>
<value>100</value>
<description>this has id=6</description>

</property>

<property id="7' type="double' default="1' readonly="false' >
<name>TestDouble</name>
<value>3.333</value>
<description>this has id=7</description>

</property>

<property id='8' type='memo' default=" readonly='false' >
<name>TestMemo</name>
<value></value>
<description>this has id=8</description>

</property>

</group>
<group name="theGroup2"™>
<property id="22" type="text' default=" readonly="false' >

<name>Test]1</name>

(c) Sparx Systems 2019 Page 108 of 505 Created with Enterprise Architect

User Guide - Automation

AddTab (string TabName,
string ControlID)

AddWindow (string
WindowName, string
ControlID)

AdviseConnectorChange
(long ConnectorID)

AdviseElementChange
(long ObjectID)

CallSBPI (string
sbpiPrefix, string Method,
string packedParameters)

ChangeLoginUser (string
Name, string Password)

(c) Sparx Systems 2019

7 August, 2019

<value></value>
<description>this has id=22</description>
<valuelist>
<item></item>
</valuelist>
</property>
</group>

</properties>

activeX custom control

Notes: Adds an ActiveX custom control as a tabbed window. Enterprise Architect
creates a control and, if successful, returns its Unknown pointer, which can be used
by the caller to manipulate the control.

Parameters:
e TabName: String - used as the tab caption

e ControlID: String - the ProgID of the control; for example,
"CS_AddinFramework.UserControl1"

activeX custom control

Notes: Adds an ActiveX custom control as a window to the Add-Ins docked
window. Enterprise Architect creates a control and, if successful, returns its
Unknown pointer, which can be used by the caller to manipulate the control.

Parameters:
e WindowName: String - used as the window title

e ControlID: String - the ProgID of the control; for example,
"CS_AddinFramework.UserControl1"

Notes: Provides an Add-In or automation client with the ability to advise the
Enterprise Architect user interface that a particular connector has changed and, if it
is visible in any open diagram, to reload and refresh that connector for the user.

Parameters:

e ConnectorID: Long - the ID of the connector

Notes: Provides an Add-In or automation client with the ability to advise the
Enterprise Architect user interface that a particular element has changed and, if it is
visible in any open diagram, to reload and refresh that element for the user.

Parameters:
e ObjectID: Long - the ID of the element

Notes: Returns a JSON string with the result from the external server.
Parameters:

e sbpiPrefix: String - Prefix value of the external server

e Method: String - Name of the function to call on the external server

o packedParameters: String - The JOSN string to append the Name/Value to;
cannot be empty

Boolean

Notes: Sets the currently logged on user to be the one specified by a name and
password; this logs the user into the repository when security is enabled.

Page 109 of 505

Created with Enterprise Architect

User Guide - Automation

ClearAuditLogs (Object
StartDateTime, Object
EndDateTime)

ClearOutput (string Name)

CloseAddins ()

CloseDiagram (long
DiagramID)

CloseFile ()

CreateDocumentGenerator(

)

CreateModel
(CreateModelType
CreateType, string
FilePath, long ParentWnd)

(c) Sparx Systems 2019

7 August, 2019

If security is not enabled an exception (Security not enabled) is thrown.
Parameters:
e Name: String - the name of the user

e Password: String - the password of the user

Boolean
Notes: Clears all Audit Logs from the model.

If StartDateTime and EndDateTime are not null then only log items that fall into
this period are cleared.

Returns True for success, False for failure.

e This method cannot be undone; it is strongly advised that you call
'SaveAuditLogs' first to backup the logs

e This method might fail if the user logged into the model does not have the
correct access permission

Parameters:

e StartDateTime: Variant (DateTime) - the earliest date and time of log entries to
clear

e EndDateTime: Variant (DateTime) - the latest date and time of log entries to
clear

Notes: Removes all the text from a tab in the System Output window.
Parameters:

e Name: String - the name of the tab to remove text from

Notes: Called by automation controllers to ensure that Add-Ins created in .NET do
not linger after all controller references to Enterprise Architect have been cleared.

Notes: Closes a diagram in the current list of diagrams that Enterprise Architect has
open.

Parameters:

e DiagramID: Long - the ID of the diagram to close
Notes: Closes any open file.

Document Generator

Notes: Returns a pointer to the EA.DocumentGenerator interface.

Boolean

Notes: Creates a new .eap model file based on the standard Enterprise Architect
Base model, or a shortcut .eap based on a provided SQL connection.

Returns True when the new file is created, otherwise returns False.
Parameters:

e CreateType: CreateModelType - Specify whether to make a new copy of the
EABase.eap model, or create a .eap file shortcut to a DBMS repository; the
latter option requires a dialog to be opened for the user to provide SQL
connection details

e FilePath: String - Destination for new .eap file

e ParentWnd: Long - Window handle to act as the parent for the 'SQL
connection' dialog; only required when using cnEAPFromSQLRepository

Page 110 of 505 Created with Enterprise Architect

User Guide - Automation

CreateOutputTab (string
Name)

DeletePerspective (string
Perspective, long Options)

DeleteTechnology (string
ID)

EnsureOutputVisible
(string Name)

ExecutePackageBuildScrip
t (long ScriptOptions,
string PackageGuid)

Exit

ExtractImagesFromNote
(string Notes, string
WriteImagePath, string
RelativelmagePath)

(c) Sparx Systems 2019

7 August, 2019

Notes: Creates a tab in the System Output window.
Parameters:

e Name: String - the name of the tab to create

Boolean

Notes: Deprecated - no longer in use.

Boolean
Notes: Removes a specified MDG Technology resource from the repository.

Returns True if the technology is successfully removed from the model. Returns
False otherwise.

e This applies to technologies imported into pre-7.0 versions of Enterprise
Architect (imported technologies), not to technologies referenced in version 7.0
and later (referenced technologies)

Parameters:

e ID: String - the ID of the technology

Notes: Checks that a specified tab in the System Output window is visible to the
user. The System Output window is made visible if it is hidden.

Parameters:

e Name: String - the name of the tab to make visible

Notes: Helps you to run the active Package build script based on your current
selection in the Browser window. You can also run a script by passing in the
Package GUID.

Parameters:

e ScriptOptions: Long - the script type; can be any one of these numerical

values:
1 = Build
2 =Test
3=Run
4 = Create Workbench Instance
5 =Debug

e PackageGuid: String - the ID of the Package for which to run the script

Notes: Shuts down Enterprise Architect immediately. Used by .NET programmers
where the garbage collector does not immediately release all referenced COM
objects.

String
Notes: Writes any Image Manager links to the WriteImagePath directory.

Returns a modified notes text, which contains links to the images using the
RelativelmagePath parameter.

Parameters:
e Notes: String - the notes of the selected Package, diagram or element

e WriteImagePath: String - the path where the image file links will be stored; this
path must exist

e RelativelmagePath: String - the path to be inserted into the modified string
indicating where the images can be found (for example, "..\images\")

Page 111 of 505 Created with Enterprise Architect

User Guide - Automation

ExtractSBPIParameter
(string packedParameters,
string name)

GenerateMDGTechnology
(string Filename)

GetActivePerspective ()

GetAllDiagramImagesAnd
Map (string Directory)

GetAttributeByGuid (string
Guid)

GetAttributeByID (string
Id)

GetConnectorByGuid
(string Guid)

GetConnectorByID (long
ConnectorID)

(c) Sparx Systems 2019

7 August, 2019

Notes: Returns the value of the parameter name as a string.
Parameters:

e packedParameters: String - The JOSN string to append the Name/Value to;
cannot be empty

e name: String - The name of the parameter

Boolean

Notes: Generates an MDG Technology file using the settings in the given MTS file.
The returned value indicates success or failure.

Parameters:

e Filename: String - the name and path of the MTS file to use

String

Notes: Deprecated - no longer in use.

Boolean

Notes : Saves the image and image-map for every diagram in the model, in the
specified directory location.

The image files will be saved in PNG format and each will have the diagram GUID
as the image name. The image-map files will be saved as TXT files and each will
have the diagram GUID as the image map name.

The 'Auto Create Diagram Image and Image Map' option must be selected in the
model options for this function to save the images and image-maps.

Parameters:

e Directory — the location of the directory into which the images and image-maps
are to be saved

Attribute

Notes: Returns a pointer to an attribute in the repository, located by its GUID. This
is usually found using the AttributeGUID property of an attribute.

Parameters:

e Guid: String - the GUID of the attribute to locate

Attribute

Notes: Returns a pointer to an attribute in the repository, located by its ID. This is
usually found using the AttributeID property of an attribute.

Parameters:

e Id: String - the ID of the attribute to locate

Connector

Notes: Returns a pointer to a connector in the repository, located by its GUID. This
is usually found using the ConnectorGUID property of a connector.

Parameters:

e Guid: String - the GUID of the connector to locate

Connector
Notes: Searches the repository for a connector with a specific ID.

Parameters:

Page 112 of 505

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

e ConnectorID: Long - the ID of the connector to locate

GetContextItem (object ObjectType
Item) Notes: Sets a pointer to an item in context within Enterprise Architect.
Also returns the corresponding ObjectType.

For additional information about Contextltems and the supported ObjectTypes see
the 'GetContextltemType' method.

Parameters:

e [tem: Object - the item to point to

GetContextItemType () ObjectType

Notes: Returns the ObjectType of an item in context within Enterprise Architect. A
Contextltem is defined as an item selected anywhere within the Enterprise
Architect GUI including:

e Anitem selected in the Browser window

e An item selected in an open diagram

e Anitem selected in certain dialogs, such as the attribute 'Properties’ dialog
The supported ObjectTypes can be any one of these values:

e otElement

e otPackage

e otDiagram

e otAttribute

e otMethod

e otConnector

GetContextObject () Object

Notes: Returns the current context Object.

GetCounts () String

Notes: Returns a set of counts from a number of tables within the base Enterprise
Architect repository. These can be used to determine whether records have been
added or deleted from the tables for which information is retrieved.

GetCurrentDiagram () Diagram

Notes: Returns a selected diagram.

GetCurrentLoginUser String

(boolean GetGuid) Notes: If security is not enabled in the repository, an error is generated.

If 'GetGuid' is True, a GUID generated by Enterprise Architect representing the
user is returned; otherwise the text as entered in System Users/User Details/Login is
returned.

GetDiagramByGuid (string Diagram
Guid) Notes: Returns a pointer to a diagram using the global reference ID (global ID).
This is usually found using the diagram GUID property of an element, and stored

for later use to open a diagram without using the collection GetAt() function.
Parameters:
e Guid: String - the GUID of the diagram to locate

(c) Sparx Systems 2019 Page 113 of 505 Created with Enterprise Architect

User Guide - Automation

GetDiagramByID (long
DiagramID)

GetDiagramlmageAndMap
(string DiagramGUID,
string Directory)

GetElementByGuid (string
Guid)

GetElementByID (long
ElementID)

GetElementsByQuery
(string QueryName, string
SearchTerm)

GetElementSet (string
IDList, long Options)

(c) Sparx Systems 2019

7 August, 2019

Diagram

Notes: Gets a pointer to a diagram using an absolute reference number (local ID).
This is usually found using the DiagramID property of an element, and stored for
later use to open a diagram without using the collection GetAt() function.

Parameters:

e DiagramID: Long - the ID of the diagram to locate

Boolean

Notes: Saves the image and image-map for the diagram with the specified GUID, in
the specified directory location.

The image will be saved in PNG format and will have the DiagramGUID as the
image name. The image-map will be saved as a TXT file and will have the
DiagramGUID as the image-map name.

The 'Auto Create Diagram Image and Image Map' option must be selected in the
model-specific options for this function to save the image and image-map.

Parameters:

e DiagramGUID — the GUID of the diagram for which the image and image-map
are to be saved

e Directory — the directory into which the image and image-map are to be saved

Element

Notes: Returns a pointer to an element in the repository, using the element's GUID
reference number (global ID). This is usually found using the ElementGUID
property of an element, and stored for later use to open an element without using
the collection 'GetAt ()' function.

Parameters:

e Guid: String - the GUID of the element to locate

Element

Notes: Gets a pointer to an element using an absolute reference number (local ID).
This is usually found using the ElementID property of an element, and stored for
later use to open an element without using the collection GetAt () function.

Parameters:

e ElementID: Long - the ID of the element to locate

Collection (of type Element)

Notes: Helps you to run a search in Enterprise Architect, returning the result as a
collection.

For example: GetElementsByQuery('Simple','Class1'), where the results list
elements with 'Class1' in the 'Name' and 'Notes' fields.

Parameters:
e QueryName: String - the name of the search to run, for example 'Simple’'

e SearchTerm: String - the term to search for

Collection (of type Element)

Notes: Returns a set of elements as a collection based on a comma-separated list of
ElementID values. By default, if no values are provided in the IDList parameter, all
objects for the entire project are returned.

Parameters

e [DList: String - a comma-separated list of ElementID values

Page 114 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

e Options: Long - modifies default behavior of this method
1. Returns empty collection when empty IDList parameter is given.

2. Use IDList string as an SQL query to populate this collection.

GetFieldFromFormat String

(string Format, string Text) Notes: Converts a field from your preferred format to Enterprise Architect's internal

format; returns the field in that format.
Parameters:

e Format: String - The format to convert the field from; valid formats are:
- HTML - Full HTML
- RTF - Rich Text Format
- TXT - Plain text

e Text: String - The field to be converted

GetFormatFromField String

(string Format, string Text) Notes: After accessing a field that contains formatting, use this method to convert it

to your preferred format; returns the field in the format specified.
Parameters:

e Format: String - The format to convert the field to; valid formats are:
- HTML - Full HTML
- RTF - Rich Text Format
- TXT - Plain text

e Text: String - The field to be converted

GetFormattedName (string String
Guid, long Flaglnclude,

; Notes: Provides special formatting for the name of the specified object; for
string Separator, long

example, the fully qualified name of a specific element or feature.

FlagFormat)
Parameters:
e Guid: String - The GUID of the object to be formatted
e FlagInclude: Long - Items to be included in the formatted name:
- fiFeature = &HO1
- fiClass = &HO02
- fiParents = &H04
- fiPackage = &HO08
- fiRootNS = &H10
- fiHiddenNS = &H20
- fiDiagram = &H40
- fiElemAlias = &H80
e Separator: String - The string to use for separating each included item (such as
Packages or elements)
e FlagFormat: Long - Additional formatting options:
- ffReplaceSpaces = &HO1
- ffLowercase = &HO02
- ffURLEncode = &H04
Example:
FormattedName = Repository.GetFormattedName (Element.ElementGUID,
fiFeature Or fiClass Or fiParents Or fiPackage Or fiDiagram, "::", 0)
GetGapAnalysisMatrix () String

Notes: Read Only
Returns all Gap Analyses as an XML document.

(c) Sparx Systems 2019 Page 115 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

GetLastError () String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

GetLocalPath (string Type, String
string Path) Notes: Returns the expanded local file path for code generated from an element,
with reference to the Type and Path defined in the 'Local Paths' dialog.
Parameters:

e Type: String - the coding language for the element, such as Java, C or C++

e Path: String - the local path to be expanded; for example:
%Desk%\Javacode\Motor.java

For example:

Repository.GetLocalPath (Java, %Desk%\Javacode\Motor.java)
This could return:

C:\Users\fbloggs\Desktop\Javacode\Motor.java.

GetMaillnterface () Maillnterface

Notes: Returns an instance of the EA.Maillnterface; use this interface to automate
the process of creating and sending Model Mail messages.

GetMethodByGuid (string Method

Guid) Notes: Returns a pointer to a method in the repository; this is usually found using

the MethodGUID property of a method.
Parameters:

e Guid: String - the GUID of the method to look for

GetMethodByld (string Id) Method
Notes: Returns a pointer to a method in the repository; this is usually found using
the MethodID property of a method.
Parameters:

e Id: String - the ID of the method to look for

GetPackageByGuid (string Package

Guid) Notes: Returns a pointer to a Package in the repository using the Package's GUID
reference number (global ID). This is usually found using the PackageGUID

property of the Package.

Each Package in the model also has an associated element with the same GUID, so
if you have an element with Type="Package" then you can load the Package by
calling:

GetPackageByGuid(Element.ElementGUID)
Parameters:
e Guid: String - the GUID of the Package to look for

GetPackageByID (long Package

PackagelD) Notes: Get a pointer to a Package using an absolute reference number (local ID).

This is usually found using the PackagelD property of a Package, and stored for
later use to open a Package without using the collection GetAt () function.

Parameters:

e PackagelD: Long - the ID of the Package to locate

(c) Sparx Systems 2019 Page 116 of 505 Created with Enterprise Architect

User Guide - Automation

GetProjectlnterface ()

GetPropertiesTab (string
TabName)

GetReferenceList (string
Type)

GetRelationshipMatrix ()

GetTechnologyVersion
(string ID)

GetTreeSelectedElements

0

GetTreeSelectedItem
(object SelectedItem)

(c) Sparx Systems 2019

7 August, 2019

Project

Notes: Returns a pointer to the EA.Project interface (the XML-based automation
server for Enterprise Architect). Use this interface to work with Enterprise
Architect using XML, and also to access utility functions for loading diagrams,
running reports and so on.

Notes: Finds an existing Properties tab.
Returns a PropertiesTab interface if the tab exists, otherwise NULL.
Parameters:

e TabName: String - The name of the 'Properties' tab.

Reference
Notes: Uses the list type to get a pointer to a Reference List object.
Parameters:

e Type: String - specifies the list type to get; valid list types are:
- Diagram
- Element
- Constraint
- Requirement
- Connector
- Status
- Cardinality
- Effort
- Metric
- Scenario
- Status
- Test
- List:DifficultyType
- List:PriorityType
- List:TestStatusType
- List:ConstStatusType

String

Notes: Returns an XML document (as a string), containing definitions of all
Relationship Matrix profiles saved in the current model.

String
Notes: Returns the version of a specified MDG Technology resource.
Parameters:

e ID: String - the specified technology ID

Collection

Notes: Returns the set of elements currently selected in the Browser window as a
collection.

ObjectType

Notes: Gets an object variable and type corresponding to the currently selected item
in the tree view.

To use this function, create a generic object variable and pass this as the parameter.
Depending on the return type, cast it to a more specific type.

The object passed back through the parameter can be a Package, element, diagram,
attribute or operation object.

Page 117 of 505 Created with Enterprise Architect

User Guide - Automation

GetTreeSelectedltemType
0

GetTreeSelectedObject ()

GetTreeSelectedPackage ()

HasPerspective (string
Perspective)

HideAddinWindow ()

ImportPackageBuildScripts
(string PackageGuid, string
BuildScriptXML)

ImportRASAsset (string
PackageGUID, string
Protocol, string
ServerName, string Model,
string Storage, string
RASGUID, string
Password, string Version)

ImportTechnology (string
Technology)

(c) Sparx Systems 2019

7 August, 2019

Parameters:

e SelectedItem: Object - the object to get the variable and type for

ObjectType

Notes: Returns the type of the object currently selected in the tree. One of:
e otDiagram

e otElement

e otPackage

e otAttribute

otMethod

Object

Notes: The related method GetTreeSelectedItem () has an output parameter that is
inaccessible by some scripting languages. As an alternative, this method provides
the selected item through the return value.

Package
Notes: Returns the Package in which the currently selected tree view object is

contained.

String

Notes: Deprecated - no longer in use.
Notes: Hides the docked Add-In window.

Notes: Imports build scripts into a Package in Enterprise Architect.

Parameters:
e PackageGuid: String - the GUID of the Package into which to import the build
scripts

e BuildScriptXML: String - the build script XML data, which you can export
from within Enterprise Architect

Notes: Imports the specified RAS asset.

Returns True on success; check GetLastError on failure.

Parameters:

e PackageGUID: String - the GUID of the Package to import the asset to
e Protocol: String - the protocol the server is using

e ServerName: String - the name of the RAS server

e Model: String - the name of the RAS model to use

e Storage: String - the storage name of the RAS asset

e RASGUID: String - the GUID of the RAS asset

e Password: String - the password to access the RAS asset

e Version: String - the version of the RAS asset to import

Boolean
Notes: Installs a given MDG Technology resource into the repository.

Returns True if the technology is successfully loaded into the model. Otherwise
returns False.

Page 118 of 505

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

This applies to technologies imported into pre-7.0 versions of Enterprise Architect
(imported technologies), not to technologies referenced in version 7.0 and later
(referenced technologies).

Parameters:

e Technology: String - the contents of the technology resource file

InsertSBPIParameter Notes: Returns a JSON string.
(string packedParameters,

; ¢ Parameters:
string name, string value)

e packedParameters: String - The JOSN string to append the Name/Value to;
cannot be empty

e name: String - The name of the parameter

e value: String - The value of the parameter

InvokeConstructPicker String

(string ElementFilter) Notes: Invokes the 'Select <Item>' dialog with filters on the object type and,

optionally, stereotype. Returns the ElementID of the selected object, or 0 if no
object was selected when the dialog was closed.

For example:

elementid=Repository.InvokeConstructPicker
("IncludedTypes=Class,Component;StereoType=foo,bar")

In this example, the 'Select <item>' dialog will allow the user to select any Class or
Component element in the model that has a stereotype of 'foo' or 'bar'. The
'IncludedTypes' and 'StereoType' filters are separated by a semi-colon.

Parameters:

e ElementFilter: String - specifies which elements or Packages are to be made
available for selection, based on element types and stereotypes identified by
the IncludedTypes and SterecoType filters

- IncludedTypes - (mandatory) comma separated list of
element types that can be selected in the dialog; for
example:

Package,Class,Component
- MultiSelect - (optional) when set to True
("MultiSelect=True;") allows the Construct picker to select
multiple elements
- Selection (optional) - list of comma-separated element
GUIDs that will be selected by default

- GetNext (optional) - returns the next ID in the list of

selected elements, or 0 when no more are available; this
option will not display a dialog and assumes the first call
was made with MultiSelect=True;

- StereoType - (optional) comma separated list of
stereotypes that can be selected in this dialog

Do not use leading or trailing spaces between element type or stereotype values.
Parameter values must be written with the correct case; element type names are also
case sensitive.

Example:

val = Repository.InvokeConstructPicker ("IncludedTypes=Class;
MultiSelect=True;");

while(val !=0)
{

val = Repository.InvokeConstructPicker("GetNext=True;");

(c) Sparx Systems 2019 Page 119 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

InvokeFileDialog (string String
FilterString, long

Lo Notes: Opens a standard 'Open File' dialog and returns a string containing the full
Filterindex, long Flags)

path to the selected file on success. Returns an empty string if the dialog was

IsTabOpen (string
TabName)

IsTechnologyEnabled

(string ID)

(c) Sparx Systems 2019

canceled.

Parameters:

FilterString: String - list of file type filters.

Filterindex: Long - one-based index of the filter to be used by default

Flags: Long - additional bit flags used to initialize the file dialog; see
OPENFILENAME structure in MSDN documentation for accepted values

String

Notes: Checks whether a named Enterprise Architect tabbed view is open and
active. This includes open diagram windows or custom controls added using
'Repository.AddTab ()'.

Returns:

2 to indicate that a tab is open and active (top-most)

1 to indicate that it is open but not top-most, or

0 to indicate that it is not visible at all

Parameters:

TabName: String - the name of the tab to check for; TabName is case sensitive

Boolean

Notes: Checks whether the specified string matches the ID of an enabled MDG
Technology in Enterprise Architect.

Returns True if the string matches the ID of an enabled Technology. Otherwise
returns False.

Parameters:

ID: String - the technology ID to check for; built-in technology IDs include:

e ArcGIS ArcGIS

e BABOK BABOK

e BIZBOK BIZBOK Guide

e BPSim BPSim

e BRM Business Rule Model

e CMMN Case Management Model & Notation
e CODEENG Code Engineering

e Database Modeling Database Modeling

e DMNI.1 DMNI.1

o EAExtended Core Extensions

e ERD Entity Relationship Diagram
e GML GML

e MYSQLTECH MySqlTech

o EAReview Review

e SIMF SIMF Technology

e SOAML SOAML

e SysMLI1.1 SysML1.1

e SysML1.2 SysML1.2

e SysML1.3 SysML1.3

Page 120 of 505

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

e SysML1.4 SysML1.5

o UML2 Basic UML2 Technology

e SYSENG System Engineering

e 262139 MDG Technology Builder

e TOGAF TOGAF

e UAF UAF

e UPDM2 UPDM 2.0

e Win32UI Win 32 User Interface Modeling
e ZF Zachman Framework

Technically, any combination of technologies integrated with or added to
Enterprise Architect - including user-developed technologies - could appear in this
list. In practice you would only check for one or two technologies at a time.

IsTechnologyLoaded Boolean
(string ID) Notes: Checks whether a specified technology is loaded into the repository.

Returns True if the MDG Technology resource is loaded into the repository.
Otherwise returns False.

Parameters:

e ID: String - the technology ID to check for

LoadAddins () Notes: Loads all Add-Ins from a repository when Enterprise Architect is opened
from automation.

OpenDiagram (long Notes: Provides a method for an automation client or Add-In to open a diagram.
DiagramID) The diagram is added to the tabbed list of open diagrams in the main Enterprise
Architect view.

Parameters:

e DiagramID: Long - the ID of the diagram to open

OpenFile (string Filename) Boolean
Notes: This is the main point for opening an Enterprise Architect project file from
an automation client, and working with the contained objects.

If the required project is a DBMS or Cloud based repository, you will require a
valid Enterprise Architect connection string. This can be obtained in one of two
ways; both methods require you to first make and open a connection to the model in
question with Enterprise Architect:

1) Using the 'Save as Shortcut' menu item, create a shortcut .eap file containing the
database connection string; you can call this shortcut file to access the repository.

2) Alternatively, you can right-click on the model's connection entry in the 'Open
Project' screen and select 'Edit connection string', this connection string can then be
used direct by OpenFile.

Parameters:

e Filename: String - the filename (or connection string) of the Enterprise
Architect project to open

OpenFile2 (string FilePath, Boolean
string Username, string

Notes: As for 'OpenFile ()' except this provides for the specification of a password.
Password)

Parameters:

e Filepath: String - the file path of the Enterprise Architect project to open

(c) Sparx Systems 2019 Page 121 of 505 Created with Enterprise Architect

User Guide - Automation

RefreshModelView (long
PackagelD)

RefreshOpenDiagrams
(boolean FullReload)

ReloadDiagram (long
DiagramID)

ReloadPackage (long
PackagelD)

RemoveOutputTab (string
Name)

RemoveWindow (string
WindowName)

RepositoryType ()

RunModelSearch (string
sQueryName, string

(c) Sparx Systems 2019

7 August, 2019

e Username: String - the user login ID

e Password: String - the user password

Notes: Reloads a Package or the entire model, updating the user interface.
Parameters:

e PackagelD: Long - the ID of the Package to reload: if 0, the entire model is
reloaded; if a valid Package ID, only that Package is reloaded

Notes: Reloads the diagram contents for all open diagrams from the repository.
Parameters:

e FullReload: Boolean - if False only the contents of element compartments are
reloaded; if True the full content of each diagram is reloaded

Notes: Reloads a specified diagram. This would commonly be used to refresh a
visible diagram after code import/export or other batch process where the diagram
requires complete refreshing.

Calling this method within a call to EA_OnNotifyContextltemModified is not
supported

Parameters:

e DiagramID: Long - the ID of the diagram to be reloaded

Notes: Reloads a Package and its open child diagrams.
Parameters:

PackagelD: Long - The ID of the Package to reload; if a valid Package ID, only that
Package is reloaded.

Notes: Removes a specified tab from the System Output window.
Parameters:

e Name: String - the name of the tab to be removed

Boolean
Notes: Removes an Add-In window that matches the specified WindowName.
Parameters:

e WindowName: String - the name of the window to remove

String

Notes: Returns the currently open database/repository type.
Can return one of these values:

e JET (.EAP file, MS Access 97 to 2013 format)

e FIREBIRD

o ACCESS2007 (.accdb file, MS Access 2007+ format)
e ASA (Sybase SQL Anywhere)

e SQLSVR (Microsoft SQL Server)

e MYSQL (MySQL)

e ORACLE (Oracle)

e POSTGRES (PostgreSQL)

Notes: Runs a search, displaying the results in Enterprise Architect's Model Search

Page 122 of 505

Created with Enterprise Architect

User Guide - Automation

sSearchTerm, string
sSearchOptions, string
sSearchData)

SaveAllDiagrams ()

SaveAuditLogs (string
FilePath, object
StartDateTime, object
EndDateTime)

SaveDiagram (long
DiagramID)

SaveDiagramAsUMLProfil
e (string DiagramGUID,
string Filename)

SavePackage AsUMLProfil
e (string PackageGUID,
string Filename)

(c) Sparx Systems 2019

7 August, 2019

window.

Parameters:

e sQueryName: String - the name of the search to run, for example Simple
e sSearchTerm: String - the term to search for

e sSearchOptions: String - currently not being used

e sSearchData: String - a list of results in the form of XML, which is appended
onto the result list in Enterprise Architect - see the XML Format topic; this
parameter is not mandatory so pass in an empty string to run the search as per
normal

Notes: Saves all open diagrams.

Boolean
Notes: Saves the Audit Logs contained within a model to a specified file.

If 'StartDateTime' and 'EndDateTime' are not null then only log items that fall into
this period are saved.

Returns True for success, False for failure.

e This might fail if the user logged into the model does not have the correct
access permission

Parameters:
o FilePath: String - the file to save the Audit Logs to

e StartDateTime: Variant (DateTime) - the earliest date and time of log entries to
save

o EndDateTime; Variant (DateTime) - the latest date and time of log entries to
save

Notes: Saves an open diagram; assumes the diagram is open in the main user
interface Tab list.

Parameters:

e DiagramID: Long - the ID of the diagram to save

Boolean

Notes: Saves a given diagram as a UML Profile, using the settings from the
previous time that the specific diagram was saved manually.

The returned value indicates success or failure.
Parameters:
e DiagramGUID: String - the GUID of the Profile diagram to save

e Filename: String - the name and path of the file to create; if left blank, the
method will use the filename from the previous time the specified diagram was
saved

Boolean

Notes: Saves a given Package as a UML Profile, using the settings from the
previous time that the specific Package was saved manually.

The returned value indicates success or failure.
Parameters:
e PackageGUID: String - the GUID of the Profile Package to save

e Filename: String - the name and path of the file to create; if left blank, the
method will use the filename from the previous time the specified Package was

Page 123 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

saved

ScanXMIAndReconcile () Notes: Scans the Package XMI files associated with each of the project's controlled
Packages and restores any diagram objects or cross-references that are detected as
missing from the project.

This function is useful in team environments where each user maintains their own
private copy of the model database (that is, multiple private EAP files) and model
updates are propagated through the use of controlled Packages; it provides no
benefit when the model is hosted in a single shared database that is accessed by all
team members.

Each controlled Package is compared with its associated XMI file and, if the
cross-reference information in the model does not match the XMI, Enterprise
Architect updates the model with the information from the XMI and records the
update in the System Output window.

You can roll back such updates by right-clicking on the entry in the System Output
window and selecting the 'Rollback Update' option (or 'Rollback Selected Updates'
if multiple entries are selected).

Closing the model clears the entries in the System Output window; an entry in this
window is also cleared as and when you roll-back the update for it.

This functionality is invoked automatically as part of the 'Get All Latest' operation.

When working in an environment that uses a Private Model deployment and your
model contains a significant number of cross-Package references, it is
recommended that you invoke this function from time to time, following the
re-importation of controlled Packages - for example, after using 'Get Latest' to
update a number of Packages, or after performing a number of Package check-outs.

As a general rule, avoid running this function while you have uncommitted changes
in your model. Generally, you:

e Check-out a number of Packages
e Invoke 'ScanXMIAndReconcile'
e Make your modifications

e Commit any outstanding changes before you check-out more Packages and run
'ScanXMIAndReconcile' again

ShowAddinWindow (string Boolean

TabName) Notes: Shows the docked Add-In window on the specified page. Returns True if a
tab of the specified name is now displayed.
Parameters
e TabName: String - specifies the tab

ShowDynamicHelp (string Notes: Shows a Help topic as a view.

Topic) Parameters:

e Topic: String - specifies the Help topic

ShowInProjectView (object Notes: Selects a specified object in the Browser window.
Item) Accepted object types are Package, Element, Diagram, Attribute, and Method; an
exception is thrown if the object is of an invalid type.

Parameters:

e [tem: Object - the object to highlight

ShowWindow (long Show) Notes: Shows or hides the Enterprise Architect User Interface.

Parameters:

(c) Sparx Systems 2019 Page 124 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

e Show: Long

SQLQuery (string SQL) String
Notes: Enables execution of a SQL select statement against the current repository.
Returns an XML formatted string value of the resulting record set.
Parameters:

e SQL: String - contains the SQL Select statement

SynchProfile (string Boolean

Profile, string Stereotype) Notes: Synchronizes Tagged Values and constraints of a UML Profile item using

the 'Synch Profiled Elements' dialog.
Parameters:
e Profile: String - the name of the profile that contains the stereotype

e Stereotype: String - the name of the profile stereotype for which the default
tags and constraints are to be synchronized

VCRPS Type VersionControlResynchPkgStatuses (boolean ClearSettings)

Notes: Synchronizes the Version Control status of each Version Controlled Package
within the current model with the status reported by your Version Control provider.

Parameters:

e ClearSettings: Boolean
- if True, clear the Version Control settings from Packages
that are reported by the Version Control provider as
uncontrolled
- if False, leave the Version Control settings unchanged for
Packages reported as uncontrolled

WriteOutput (string Name, Notes: Writes text to a specified tab in the System Output window, and associates
string Output, long ID) the text with an ID.
Parameters:

e Name: String - specifies the tab on which to display the text
e Output: String - specifies the text to display

e ID: Long - specifies a numeric ID value to associate with this output item for
further handling by Add-Ins; can be set to 0 if no handling is required

(c) Sparx Systems 2019 Page 125 of 505 Created with Enterprise Architect

User Guide - Automation

7 August, 2019

SecurityUser Class

A SecurityUser object represents a named security user.

Associated table in .EAP file

None.

SecurityUser Attributes

Attribute

Remarks

Department

String
Notes: Read only

Returns the current user's department.

FirstName

String
Notes: Read only

Returns the current user's first name.

FullName

String
Notes: Read only

Returns the current user's full name.

Login

String
Notes: Read only

Returns the current user's login name.

ObjectType

ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Surname

String
Notes: Read only

Returns the current user's surname.

SecurityUser Methods

Method Remarks
IsMemberOf (string Boolean
Groupld) Returns True if the user is part of the specified security group.

(c) Sparx Systems 2019

Page 126 of 505

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Parameter:

e Groupld: String - Name of the security group to check.

(c) Sparx Systems 2019 Page 127 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Stereotype Class

The Stereotype element corresponds to a UML stereotype, which is an extension mechanism for varying the behavior
and type of a model element. Use the Repository Stereotypes collection to add new elements and delete existing ones.

Associated table in .EAP file

t stereotypes

Stereotype Attributes

Attribute Description

AppliesTo String
Notes: Read/Write

A reference to the stereotype Base Class; that is, which element it applies to.

MetafileLoadPath String
Notes: Read/Write

The path to an associated metafile. The Automation Interface does not yet support
loading metafiles. To do this you must use the 'Stereotype' tab of the 'UML Types'
dialog in Enterprise Architect.

Notes String
Notes: Read/Write.
Notes about the stereotype.

Name String
Notes: Read/Write

The stereotype name, which appears in the Stereotype drop list for elements that
match the AppliesTo attribute.

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

StereotypeGUID String
Notes: Read/Write

A unique identifier for stereotype, generally set and maintained by Enterprise
Architect.

Style String
Notes: Read/Write
An additional style specifier for the stereotype.

VisualType String

(c) Sparx Systems 2019 Page 128 of 505 Created with Enterprise Architect

User Guide - Automation

Stereotype Methods

Method

GetLastError()

Update()

(c) Sparx Systems 2019

7 August, 2019

Notes: Read/Write
Indicates an inbuilt visual style associated with a stereotype.

Not currently implemented.

Description

String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Boolean

Notes: Updates the current stereotype object after modification or appending a new
item.

If False is returned, check the 'GetLastError()' function for more information.

Page 129 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Task Class

A Task is an entry in the System Task list. Tasks can be accessed using the Repository Tasks collection.

Associated table in .EAP file

t tasks
Task Attributes
Attribute Remarks
ActualTime Long
Notes: Read/Write
The time already expended on the task, in hours, days or other units.
AssignedTo String
Notes: Read/Write
The person this task is assigned to; that is, the responsible resource.
EndDate Date
Notes: Read/Write
The date the task is scheduled to finish.
History String
Notes: Read/Write
A memo field to hold, for example, task history or notes.
Name Variant
Notes: Read/Write
The task name.
Notes Variant
Notes: Read/Write
A description of the task.
ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through a Dispatch interface.
Owner String
Notes: Read/Write
The task owner.
Percent Long

(c) Sparx Systems 2019 Page 130 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Notes: Read/Write

The percentage completion of the task.

Phase String
Notes: Read/Write
The phase of the project the task relates to.

Priority String
Notes: Read/Write
The priority of this task.

StartDate Date
Notes: Read/Write
The date the task is to start.

Status Variant
Notes: Read/Write

The current status of the task.

TaskID Long
Notes: Read only
The local ID of the task.

TotalTime Long
Notes: Read/Write

The total expected time the task might run, in hours, days or some other unit.

Type String
Notes: Read/Write

Sets or returns a string representing the type.

Task Methods

Method Type

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean
Notes: Updates the current Task object after modification or appending a new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2019 Page 131 of 505 Created with Enterprise Architect

User Guide - Automation

Term Class

7 August, 2019

A Term object represents one entry in the system glossary. Terms can be accessed using the Repository Terms collection.

Associated table in .EAP file

t_glossary

Term Attributes

Attribute

Meaning

ObjectType

Term

TermID

Type

Term Methods

Method

GetLastError()

Refresh

(c) Sparx Systems 2019

Remarks

String
Notes: Read/Write

The description of the term; its meaning.

ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

String
Notes: Read/Write

The glossary item name.

Long
Notes: Read only

A local ID number to identify the term in the model.

String
Notes: Read/Write

The type this term applies to (for example, business or technical).

Remarks

String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Void
Notes: Forces Enterprise Architect to reload the Glossary terms from the database.

If an element is selected, it will have to be re-selected before the 'Note' fields and

Page 132 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

windows reflect the updated Glossary terms.

Update() Boolean
Notes: Updates the current Term object after modification or appending a new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2019 Page 133 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Element Package

The Element Package contains information about an element and its associated extended properties such as testing and
project management information. An element is the basic item in an Enterprise Architect model. Classes, Use Cases and
Components are all different types of UML element.

This diagram illustrates the relationships between an element and its associated extended information. The related
information is accessed through the collections owned by the element (for example, Scenarios and Tests). It also includes
a full description of the element object (the basic model structural unit).

Example

(c) Sparx Systems 2019 Page 134 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

il Zeanario

= PMame 2ting
= Pobes: Sting -
+ ScenadoSUND: Sing -
=+8cenadios |+ Type Sting

= Author Swing . :
= ClassMeslc Long T dumignt Lomg

o = XMLContent Sting ~mrqurmmens |
- ClassiferType — 0 _
= Complexity: Sting < '31!"—&5_'?‘3 Stirg -

qmm g

= Conshalnts: Collacton [0*] = Updete]
= ConstrminisEx- Collection [0_*]

*RequimmentsEx |5

. [y

< ~Consiaings

o o=

+ Header]: Vadang e T e Tt =

= HeaderZ Vadank - -

= imActve Soglean o * -

= isLest Soglean -

= Mews Eoolean il

- isZpac Soglean ol

= Issies: Collection [0-%] -

= Locked Soglean -

+ Mefods: CollecHon 0] * -

+ MefhodsEx- CollecHon 0] _ * - =

= Mabics: Collacton [0_*] e B - adams
= Modfeo Qe - - werslon Sting
o F— o

o - P

o - P -

+ Fackagell Long -

= Pemlstence:
= Phase Vadant
= Prodby: Sting

= Regeimments: Collection [0.*]

Tect

= AcceptanceCibedac Shing

- FeguirementsEx- Collection (04 <Tesis |- creckeasy Swing
= Resoumes: Collection [0_*] = Class: Long

= Risks: Collection [0_*] ~ -

= Scenaros: Collection [0_*] - -

= Etemoipe Eving RS | = S

- EmleZi Seg + -

= SubType: Long o -

= Tagiespace ~ -

= Teg Swing - -

= Taggedvalses: Collection [0_*] -

+ TapgedvahsesEx: Collecion (0]

+ Tests: Collection (0.4 + GemasEme) 3

+ Updats]) : Boolear

- ~Ahanics
o o
~Taggedieives =TaggedyaivasEx -
[[sEEgooTas 4 0 -
Taggedvaiue N
= ElementiDc Long -
- B EZweg o
- Mgbes a -
— e = FropemyGEUD: Sting -
- = Propadyllc Long -
f— = ‘walse Swing -
= FamentCompiete: Long
- Mame Zuieg - (BefLastEmoe] Svng - Fuole Swing
= Pgtes = Update(- Soglean = Time Long
- Tipe
= Wieight Sting -
- (BeflastEmoe] B
= Updaste(- Sociean

(c) Sparx Systems 2019 Page 135 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Constraint Class
A Constraint is a condition imposed on an element. Constraints are accessed through the Element Constraints collection.

Associated table in .EAP file

t_objectconstraints

Constraint Attributes

Attribute Remarks

Name String
Notes: Read/Write

The name of the constraint (that is, the constraint).

Notes String
Notes: Read/Write

Notes about the constraint.

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

ParentID Long
Notes: Read only

The ElementID of the element to which this constraint applies.

Status String
Notes: Read/Write

The current status of the constraint.

Type String
Notes: Read/Write

The constraint type.

Weight Long
Notes: Read/Write
A weighting factor.

Constraint Methods

(c) Sparx Systems 2019 Page 136 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Update the current Constraint object after modification or appending a new
item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2019 Page 137 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Effort Class

An Effort is a named item with a weighting that can be associated with an element for purposes of building metrics about
the model. Efforts are accessed through the Element Efforts collection.

Associated table in .EAP file

t_objecteffort

Effort Attributes
Attribute Remarks
Name String
Notes: Read/Write
The name of the effort.
Notes String
Notes: Read/Write
Notes about the effort.
ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through a Dispatch interface.
Type String
Notes: Read/Write
The effort type.
Weight Long
Notes: Read/Write
A weighting factor.
Weight2 Float

Notes: Read/Write

A weighting factor.

Effort Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in

(c) Sparx Systems 2019 Page 138 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

relation to this object.

Update() Boolean
Notes: Update the current Effort object after modification or appending a new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2019 Page 139 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Element Class

An Element is the main modeling unit, corresponding to (for example) a Class, Use Case, Node or Component. You
create new elements by adding to the Package Elements collection. Once you have created an element, you can add it to
the DiagramObject Class of a diagram to include it in the diagram.

Elements also have a collection of connectors. Each entry in this collection indicates a relationship to another element.

There are also some extended collections for managing addition information about the element, including properties such
as Tagged Values, Issues, Constraints and Requirements.

Associated table in .EAP file

t_object
Element Attributes
Attribute Remarks
Abstract String
Notes: Read/Write
Indicates if the element is Abstract (1) or Concrete (0).
ActionFlags String
Notes: Read/Write
A structure to hold flags concerned with Action semantics.
Alias String

Notes: Read/Write

An optional alias for this element.

AssociationClassConnector Long
ID Notes: Read only

If the element is an AssociationClass, AssociationClassConnectorID contains the
Connector ID of the respective Association connector.

Attributes Collection
Notes: Read only

A collection of attribute objects for the current element; use the AddNew and
Delete functions to manage attributes.

AttributesEx Collection
Notes: Read only

A collection of attribute objects belonging to the current element and its parent
elements.

Author String
Notes: Read/Write

(c) Sparx Systems 2019 Page 140 of 505 Created with Enterprise Architect

User Guide - Automation

BaseClasses

ClassfierID

ClassifierID

ClassifierName

ClassifierType

Complexity

CompositeDiagram

Connectors

Constraints

ConstraintsEx

Created

(c) Sparx Systems 2019

7 August, 2019

The element author.

Collection
Notes: Read only

A list of Base Classes for this element, presented as a collection for convenience.

Long
Notes: Deprecated
See ClassifierID

Long
Notes: Read/Write
The ElementID of a Classifier associated with this element; that is, the base type.

Only valid for instance type elements (such as Object or Sequence).

String
Notes: Read/Write

Name of associated Classifier (if any).

String
Notes: Read only

Type of associated Classifier.

String
Notes: Read/Write

A complexity value indicating how complex the element is; used for metric
reporting and estimation.

Valid values are: 1 for Easy, 2 for Medium, 3 for Difficult.

Diagram
Notes: Read only

If the element is Composite, returns its associated diagram; otherwise returns null.

Collection
Notes: Read only

Returns a collection containing the connectors to other elements.

Collection
Notes: Read only

A collection of Constraint objects.

Collection
Notes: Read only

Collection of Constraint objects belonging to the current element and its parent
elements.

Date
Notes: Read/Write

Page 141 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

The date the element was created.

CustomProperties Collection
Notes: Read only
List of advanced properties for an element.

The collection of advanced properties differs depending on element type; for
example, an Action and an Activity have different advanced properties.

Currently only editable from the user interface.

Diagrams Collection
Notes: Read only

Returns a collection of sub-diagrams (child diagrams) attached to this element as
seen in the tree view.

Difficulty String
Notes: Read/Write

A difficulty level associated with this element for estimation/metrics; only useable
for Requirement, Change and Issue element types, otherwise ignored.

Valid values are: Low, Medium, High.

Efforts Collection
Notes: Read only
A collection of Effort objects.

ElementGUID String
Notes: Read only

A globally unique ID for this element; that is, unique across all model files.

ElementID Long
Notes: Read only
The local ID of the element; valid for this file only.

Elements Collection
Notes: Read only

Returns a collection of child elements (sub-elements) attached to this element as
seen in the tree view.

EmbeddedElements Collection
Notes: Read only

A list of elements that are embedded into this element, such as Ports, Parts, Pins
and Parameter Sets.

EventFlags String
Notes: Read/Write

A structure to hold a variety of flags to do with signals or events.

ExtensionPoints String
Notes: Read/Write

(c) Sparx Systems 2019 Page 142 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Optional extension points for a Use Case as a comma-separated list.

Files Collection
Notes: Read only

A collection of File objects.

FQName String
Notes: Read only

The fully-qualified name of the element, consisting of a dot-separated list of names
including all parent elements and Packages up to the first namespace root that is
encountered.

FQStereotype String
Notes: Read only

The fully-qualified stereotype name in the format "Profile::Stereotype". One or
more fully-qualified stereotype names can be assigned to StereotypeEx.

GenFile String
Notes: Read/Write

The file associated with this element for code generation and synchronization
purposes; can include macro expansion tags for local conversion to full path.

Genlinks String
Notes: Read/Write

Links to other Classes discovered at code reversing time; Parents and Implements
connectors only.

GenType String
Notes: Read/Write

The code generation type; for example, Java, C++, C#, VBNet, Visual Basic,
Delphi.

Headerl Variant
Notes: Read/Write

A user defined string for inclusion as header in the source files generated.

Header2 Variant
Notes: Read/Write

Same as for Headerl, but used in the CPP source file.

IsActive Boolean
Notes: Read/Write
Boolean value indicating whether the element is active or not.
1 = True, 0 = False.

IsComposite Boolean
Notes: Read/Write
Indicates whether the element is composite or not.
1 = True, 0 = False.

(c) Sparx Systems 2019 Page 143 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

IsLeaf Boolean
Notes: Read/Write

Indicates whether or not the element is a leaf node (and therefore cannot be a parent
for any other elements).

1 =True, 0 = False.

IsNew Boolean
Notes: Read/Write
Boolean value indicating whether the element is new or not.
1 = True, 0 = False.

IsRoot Boolean
Notes: Read/Write

Indicates whether or not the element is a root node (and therefore cannot be
descended from another element).

1 =True, 0 = False.

IsSpec Boolean
Notes: Read/Write
Boolean value indicating whether the element is a specification or not.
1 = True, 0 = False.

Issues Collection
Notes: Read only

Collection of Issue objects.

Locked Boolean
Notes: Read/Write

Indicates if the element has been locked against further change.

MetaType String
Notes: Read only

The element's domain-specific meta type, as defined by an applied stereotype from
an MDG Technology.

Methods Collection
Notes: Read only

Collection of Method objects for current element.

MethodsEx Collection
Notes: Read only

Collection of Method objects belonging to the current element and its parent
elements.

Metrics Collection
Notes: Read only

Collection of Metric elements for current element.

(c) Sparx Systems 2019 Page 144 of 505 Created with Enterprise Architect

User Guide - Automation

MiscData

Modified

Multiplicity

Name

Notes

ObjectType

PackagelD

ParentID

Partitions

Persistence

(c) Sparx Systems 2019

7 August, 2019

String
Notes: Read only

This low-level property provides information about the contents of the PData x
fields.

These database fields are not documented, and developers must gain understanding
of these fields through their own endeavors to use this property.

MiscData is zero based, therefore:
e MiscData(0) corresponds to PDatal
e MiscData(1) to PData2, and so on

Date
Notes: Read/Write

The date the element was last modified.

String
Notes: Read/Write

Multiplicity value for this element.

String
Notes: Read/Write

The element name; should be unique within the current Package.

String
Notes: Read/Write

Further descriptive text about the element.

ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Long
Notes: Read/Write

A local ID for the Package containing this element.

Long
Notes: Read/Write

If this element is a child of another, used to set or retrieve the ElementID of the
other element; if not, returns 0.

Collection
Notes: Read only
List of logical partitions into which an element can be divided.

Only valid for elements that support partitions, such as Activities and States.

String
Notes: Read/Write

The persistence associated with this element; can be Persistent or Transient.

Page 145 of 505 Created with Enterprise Architect

User Guide - Automation

Phase

Priority

Properties

PropertyType

PropertyTypeName

Realizes

Requirements

RequirementsEx

Resources

Risks

RunState

(c) Sparx Systems 2019

7 August, 2019

String
Notes: Read/Write

The phase this element is scheduled to be constructed in; any string value.

String
Notes: Read/Write

The priority of this element as compared to other project elements; only applies to
Requirement, Change and Issue types, otherwise ignored.

Valid values are: Low, Medium and High.

Properties

Notes: Returns a list of specialized properties that apply to the element that might
not be available using the automation model.

The properties are purposely undocumented because of their obscure nature and
because they are subject to change as progressive enhancements are made to them.

Long
Notes: Read/Write

The ElementID of a Type associated with this element; only valid for Port and Part
elements.

String
Notes: Read

The name of a Type associated with this element; only valid for Port and Part
elements.

Collection
Notes: Read only

List of Interfaces realized by this element for convenience.

Collection
Notes: Read only

Collection of Requirement objects.

Collection
Notes: Read only

Collection of Requirement objects belonging to the current element and its parent
elements.

Collection
Notes: Read only

Collection of Resource objects for current element.

Collection
Notes: Read only
Collection of Risk objects.

String
Notes: Read/Write

Page 146 of 505 Created with Enterprise Architect

User Guide - Automation

Scenarios

StateTransitions

Status

Stereotype

StereotypeEx

StyleEx

Subtype

(c) Sparx Systems 2019

7 August, 2019

The object's runstate list as a string.

The string consists of a set of statements in the form:
string = '@V AR;Variable=<string>; Value=<string>;Op=<string>;@ENDVAR}’'
Where:

Op — [vzv,v>v’|<v’v>:|,v<:|’ 1!:|,v<>|]

For example:

A set of run states can be created by looping through a set of attributes and forming
a concatenated string:

eRunState = eRunState + "@VAR;Variable="+ attrib.name + ";Value=" +
attrib.value +";Op==;@ENDVAR;";

Collection
Notes: Read only

Collection of Scenario objects for current element.

Collection
Notes: Read only

List of State Transitions that an element can support; applies in particular to Timing
elements.

String
Notes: Read/Write

Sets or gets the status, such as Proposed or Approved.

String
Notes: Read/Write

The primary element stereotype; the first of the list of stereotypes you can access
using the 'StereotypeEx' attribute.

When setting this attribute, LastError (for the GetLastError method) will be
non-empty if an error occurs.

String
Notes: Read/Write

All the applied stereotypes of the element in a comma-separated list. Reading the
value will provide the stereotype name only; assigning the value accepts either
fully-qualified or simple names.

When setting this attribute, LastError (for the GetLastError method) will be
non-empty if an error occurs.

String
Notes: Read/Write

Advanced style settings; reserved for the use of Sparx Systems.

Long
Notes: Read/Write

A numeric subtype that qualifies the Type of the main element

Page 147 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

e For Event: 0 = Receiver, 1 = Sender

e For Class: 1 = Parameterised, 2 = Instantiated, 3 = Both, 0 = Neither,
17 = Association Class

If 17, because an Association Class has been created through the user interface,
MiscData(3) contains the ID of the related Association; as MiscData is read-only,
you cannot create an Association Class through the Automation Interface.

e For Note: 1 = Note linked to connector, 2 = Constraint linked to connector
e For StateNode: 100 = ActivityIntitial, 101 = ActivityFinal

e For Activity: 0 = Activity, 8 = composite Activity (also set to 8 for other
composite elements such as Use Cases)

e For Synchronization: 0 = Horizontal, 1 = Vertical

Note that there are many more Types than indicated in these examples.

Tablespace String
Notes: Read/Write

Associated tablespace for a Table element.

Tag String
Notes: Read/Write

Corresponds to the 'Keywords' field in the Enterprise Architect user interface.

TaggedValues Collection
Notes: Read only

Returns a collection of TaggedValue objects.

TaggedValuesEx Collection
Notes: Read only

Returns a collection of TaggedValue objects belonging to the current element and
the elements specialized or realized by the current element.

TemplateParameters Collection
Notes: Read Only

A collection of TemplateParameter objects.

Tests Collection
Notes: Read only

A collection of Test objects for the current element.

TreePos Long
Notes: Read/Write

Sets or gets the tree position.

Type String
Notes: Read/Write
The element type (such as Class, Component).

Note that Type is case sensitive inside Enterprise Architect and should be provided
with an initial capital (proper case); valid types are:

e Action

(c) Sparx Systems 2019 Page 148 of 505 Created with Enterprise Architect

User Guide - Automation

(c) Sparx Systems 2019

Activity
ActivityPartition
ActivityRegion
Actor

Artifact

Association
Boundary

Change

Class

Collaboration
Component
Constraint

Decision
DeploymentSpecification
DiagramFrame
EmbeddedElement
Entity

EntryPoint

Event
ExceptionHandler
ExitPoint
ExpansionNode
ExpansionRegion
Feature
GUIElement
InteractionFragment
InteractionOccurrence
InteractionState

Interface

InterruptibleActivityRegion

Issue

Node

Note

Object

Package
Parameter

Part

Port
ProvidedInterface
Report
RequiredInterface
Requirement
Screen

Sequence

Page 149 of 505

7 August, 2019

Created with Enterprise Architect

User Guide - Automation

TypelnfoProperties

Version

Visibility

Element Methods

Method

ApplyGroupLock(string
aGroupName)

ApplyUserLock()

Clone ()

CreateAssociationClass(lon

g ConnectorID)

(c) Sparx Systems 2019

7 August, 2019

e State

e StateNode

e Synchronization
e Text

e TimeLine

e UMLDiagram

e UseCase

Notes: Read only

Returns an interface pointer of TypelnfoProperties.

String
Notes: Read/Write

The version of the element.

String
Notes: Read/Write
The Scope of this element within the current Package.

Valid values are: Public, Private, Protected or Package.

Remarks

Boolean

Notes: Applies a group lock to the element object, for the specified group, on behalf
of the current user.

Returns True if the operation is successful; returns False if the operation is
unsuccessful. Use 'GetLastError()' to retrieve error information.

Parameters:

e aGroupName: String - the name of the user group for which to set the group
lock

Boolean
Notes: Applies a user lock to the element object for the current user.

Returns True if the operation is successful; returns False if the operation is
unsuccessful. Use 'GetLastError()' to retrieve error information.

LDISPATCH

Notes: Inserts a copy of the selected element under the same parent as the selected
element.

Returns the newly-created element.
Boolean

Notes: Makes this element an AssociationClass of the Association with the
provided Connector ID; the return value indicates whether the function succeeded

Page 150 of 505 Created with Enterprise Architect

User Guide - Automation

DeleteLinkedDocument()

GetBusinessRules()

GetDecisionTable()

GetElementGrid()

GetLastError()

GetLinkedDocument()

GetRelationSet(EnumRelat
ionSetType Type)

GetStereotypeList()

(c) Sparx Systems 2019

7 August, 2019

in converting the element to an AssociationClass.

AssociationClasses are created only where:

e The current element is valid

e The current element is a Class

e The current element is not already an AssociationClass

e The specified connector exists

e The specified connector is an Association

e The specified connector is not already in an AssociationClass pair
e The current element is not at either end of the specified connector
Parameters:

e ConnectorID: Long - the Connector ID of an Association connector

Boolean

Notes: Removes the Linked Document for the element. This method does not
display a confirmatory prompt.

Returns True if a document was deleted.

String
Notes: Read Only.

Returns all the Business Rules for the element.

String
Notes: Provides read-only access to a Decision Table XML string.

Returns the XML data for the Decision Table as a string.

String
Notes: Returns an object of type ElementGrid (a Custom Table Artifact element).

String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

String

Notes: Returns a string value containing the element's Linked Document contents,
in Rich Text Format.

If the element contains no Linked Document, an empty string is returned.

String

Notes: Returns a string containing a comma-separated list of ElementIDs of
directly- and indirectly-related elements based on the given type.

Recurses using the same relation type on all elements it finds, retrieving all
dependencies and sub-dependencies of the current element; for example, Objectl
depends on Object2, which depends on Object3, therefore this method returns
Object2 and Object3.

To obtain only the direct relationships of the element, use the Connector collection
instead.

String

Notes: Returns a comma-separated list of stereotypes allied to this element.

Page 151 of 505 Created with Enterprise Architect

User Guide - Automation

HasStereotype(string
Stereotype)

IsAssociationClass

LoadLinkedDocument(stri
ng Filename)

Refresh()

ReleaseUserLock()

SaveLinkedDocument(strin
g Filename)

SetAppearance(long Scope,
long Item, long Value)

(c) Sparx Systems 2019

7 August, 2019

Boolean

Notes: Returns true if the current element has the specified stereotype applied to it.
Accepts either qualified or unqualified stereotype names; for example, 'block’ or
'SysML1.3::block'.

Parameters:

e Stereotype: String - the name of the stereotype to search for

Boolean

Notes: Returns whether or not the current element is an AssociationClass.

Boolean

Notes: Loads the document from the specified file into the element's Linked
Document.

Parameters:

e FileName: String - the name of the file from which to load the document; both
RTF and DOCX input formats are supported

Void
Notes: Refreshes the element features in the Browser window.

Usually called after adding or deleting attributes or methods, when the user
interface is required to be updated as well.

Boolean
Notes: Releases a user lock or group lock on the element object.

Returns True if the operation is successful; returns False if the operation is
unsuccessful. Use GetLastError() to retrieve error information.

Boolean

Notes: Saves the Linked Document for this element to the specified file. Returns
False if the element does not have a Linked document or fails to save the file.

Parameters:

e FileName: String - the name of the file to save to disk
The output format will be determined by the file's extension - currently rtf,
docx and pdf are supported; if an invalid extension is used, it will write the file
in RTF format regardless of the extension

Void
Notes: Sets the visual appearance of the element.
Parameters:

e Scope: Long - Scope of appearance set to modify
1 - Base (Default appearance across entire model)
To set appearance for the element (diagram object) in a selected diagram only,
see Setting The Style in the DiagramObject Class topic

e Item: Long - Appearance feature to modify
0 - Background color
1 - Font Color
2 - Border Color
3 - Border Width

e Value: Long - Value to set appearance to

Page 152 of 505 Created with Enterprise Architect

User Guide - Automation

SetCompositeDiagram()

SetCreated(Date NewVal)

SetModified(Date NewVal)

SynchConstraints(string
Profile, string Stereotype)

SynchTaggedValues(string
Profile, string Stereotype)

UnlinkFromAssociation

Update()

(c) Sparx Systems 2019

7 August, 2019

Boolean
Notes: Sets the composite diagram of the element.
Parameters:

e GUID: String - the GUID of the composite diagram; a blank GUID will
remove the link to the composite diagram

Void
Notes: Deprecated

This method is no longer supported.

Void
Notes: Deprecated

This method is no longer supported.

Boolean

Notes: Synchronizes the constraints of a UML Profile item for this element, only if
the specified stereotype has been applied.

Parameters:
e Profile: String - Name of the profile that contains the stereotype

e Stereotype: String - Name of the profile stereotype for which the default
constraints are to be synchronized

Boolean

Notes: Synchronizes the Tagged Values of a UML Profile item for this element,
only if the specified stereotype has been applied.

Parameters:
e Profile: String - Name of the profile that contains the stereotype

e Stereotype: String - Name of the profile stereotype for which the default tags
are to be synchronized

Boolean

Notes: Performs the opposite of CreateAssociationClass().

Boolean

Notes: Updates the current element object after modification or appending a new
item.

If False is returned, check the 'GetLastError()' function for more information.

Page 153 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

ElementGrid Class

The ElementGrid object represents a Custom Table, which is used to display custom data in tabular format on a diagram,
the data being provided by the user rather than generated by the system.

The ElementGrid object is accessible from an Element object, using the GetElementGrid() method.

Associated table in .EAP file

t_object

ElementGrid Methods

Method Remarks
GetCell (int nrow, int Variant
ncell) Notes: The cell value is return as a variant value.

Parameters:
e nRow: Integer - the number of the row containing the cell

e nCell: Integer - the number of the cell in the row (the column number)

GetColumnCount () Integer

Notes: Returns the number of columns in the grid.

GetRowCount () Integer

Notes: Returns the number of rows in the grid.

SetCell (int nRow, int Boolean
nCell, variant sValue) Notes: Sets a value in the specified cell.

Parameters:

e nRow: Integer - specifies the row into which to insert the value

e nCell: Integer - specifies the cell (column number) into which to insert the
value

e sValue: Variant - specifies the value to set in the cell

SetGridSize (int nRows, int Boolean
nColumns) Notes: Sets the size of the grid in rows and columns. The size can be set and reset;
any data outside the bounds of the new grid size will be lost on resize.
Parameters:

e nRows: Integer - the number of rows in the table grid

e nColumns: Integer - the number of columns in the table grid

(c) Sparx Systems 2019 Page 154 of 505 Created with Enterprise Architect

User Guide - Automation

7 August, 2019

File Class

A File represents an associated file for an element. Files are accessed through the Element Files collection.

Associated table in .EAP file

t_objectfiles

File Attributes
Attribute Remarks
FileDate String
Notes: Read/Write
The file date when the entry was created.
Name String
Notes: Read/Write
The file name can be a logical file or a reference to a web address (using http://).
Notes String
Notes: Read/Write
Notes about the file.
ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through a Dispatch interface.
Size String
Notes: Read/Write
The file size.
Type String
Notes: Read/Write
The file type.
File Methods
Method Remarks
GetLastError() String
Notes: Returns a string value describing the most recent error that occurred in

(c) Sparx Systems 2019

Page 155 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

relation to this object.

Update() Boolean
Notes: Updates the current File object after modification or appending a new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2019 Page 156 of 505 Created with Enterprise Architect

User Guide - Automation

7 August, 2019

Issue (Maintenance) Class

An Issue is either a Change or a Defect, is associated with the containing element, and is accessed through the Issues

collection of an element.

Associated table in .EAP file

t_objectproblems

Issue Attributes

Attribute

DateReported

DateResolved

ElementID

Name

Notes

ObjectType

Priority

Reporter

(c) Sparx Systems 2019

Remarks

Date
Notes: Read/Write

The date the issue was reported.

Date
Notes: Read/Write

The date the issue was resolved.

Long
Notes: Read/Write

The ID of the element associated with this issue.

String
Notes: Read/Write

The Issue name; that is, the Issue itself.

String
Notes: Read/Write

The Issue description.

ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

String
Notes: Read/Write
The priority of the Issue - Low, Medium or High.

String
Notes: Read/Write

The user ID of the person reporting the issue.

Page 157 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Resolver String
Notes: Read/Write

The user ID of the person resolving the issue.

ResolverNotes String
Notes: Read/Write

Notes entered by the resolver about resolution of the Issue.

Severity String
Notes: Read/Write

The Issue severity - Low, Medium or High.

Status String
Notes: Read/Write

The current status of the issue.

Type Variant
Notes: Read/Write
The Issue type - Defect, Change, Issue or Task.

Version String
Notes: Read/Write

The version associated with the issue. Note that this method is only available
through a Dispatch interface.

Object ob = Issue;

Print ob.Version;

Issue Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean
Notes: Updates the current Issue object after modification or appending a new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2019 Page 158 of 505 Created with Enterprise Architect

User Guide - Automation

Metric Class

7 August, 2019

A Metric is a named item with a weighting that can be associated with an element for purposes of building metrics about
the model. Metrics are accessed through the Element Metrics collection.

Associated table in .EAP file

t_objectmetrics

Metric Attributes

Attribute

Name

Notes

ObjectType

Type

Weight

Metric Methods

Method

GetLastError()

Update()

(c) Sparx Systems 2019

Remarks

String
Notes: Read/Write

The name of the metric.

String
Notes: Read/Write

Notes about this metric.

ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

String
Notes: Read/Write
The metric type.

Long
Notes: Read/Write

A user-defined weighting for estimation or metric purposes.

Remarks

String

Notes: Returns a string value describing the most recent error that occurred in

relation to this object.

Boolean

Notes: Updates the current Metric object after modification or appending a new

Page 159 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2019 Page 160 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Requirement Class

An Element Requirement object holds information about the requirements of an element in the context of the model.
Requirements can be accessed using the Element Requirements collection.

Associated table in .EAP file

t_objectrequires

Requirement Attributes

Attribute Remarks

Difficulty String
Notes: Read/Write

The estimated difficulty of implementing the requirement.

LastUpdate Date
Notes: Read/Write

The date the requirement was last updated.

Name String
Notes: Read/Write

The requirement itself.

Notes String
Notes: Read/Write

Further notes on the requirement.

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

ParentID Long
Notes: Read only

The ElementID of the element to which this requirement applies.

Priority String
Notes: Read/Write

The assigned priority of the requirement.

RequirementID Long
Notes: Read only

A local ID for this requirement.

(c) Sparx Systems 2019 Page 161 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Stability String
Notes: Read/Write
The estimated stability of the requirement.

This is an indication of the probability of the requirement - or understanding of the
requirement - changing. High stability indicates a low probability of the
requirement changing.

Status String
Notes: Read/Write

The current status of the requirement.

Type String
Notes: Read/Write

The requirement type.

Requirement Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Updates the current Requirement object after modification or appending a
new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2019 Page 162 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Resource Class

An Element Resource is a named person/task pair with timing constraints and percent complete indicators. Use this to
manage the work associated with delivering an Element.

Associated table in .EAP file

t_objectresources

Resource Attributes

Attribute Description

ActualHours Long
Notes: Read/Write

The time already expended on the task, in hours, days or other units.

DateEnd Date
Notes: Read/Write
The expected end date.

DateStart Date
Notes: Read/Write

The date to start work.

ExpectedHours Long
Notes: Read/Write

The total expected time the task might run, in hours, days or other units.

History String
Notes: Read/Write
Gets or sets history text.

Name String
Notes: Read/Write

The name of the resource (for example, a person's name).

Notes String
Notes: Read/Write

Descriptive notes.

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

(c) Sparx Systems 2019 Page 163 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

PercentComplete Long
Notes: Read/Write

The current percent complete figure.

Role String
Notes: Read/Write

The role the resource plays in implementing the element.

Time Long
Notes: Read/Write

The time expected to complete the task; a numeric indicating the number of days.

Resource Methods

Method Description

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error occurs.

Update() Boolean

Notes: Update the current Resource object after modification or appending a new
item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2019 Page 164 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Risk Class

A Risk object represents a named risk associated with an element, it is used for project management purposes. Risks can
be accessed through the Element Risks collection.

Associated table in .EAP file

t_objectrisks

Risk Attributes
Attribute Description
Name String
Notes: Read/Write
The name of the risk.
Notes String
Notes: Read/Write
Further notes describing the risk.
ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through a Dispatch interface.
Type String
Notes: Read/Write
The risk type associated with this element.
Weight Long
Notes: Read/Write
A weighting for estimation or metric purposes.
Risk Methods
Method Description
GetLastError() String
Notes: Returns a string value describing the most recent error that occurred in
relation to this object.
Update() Boolean

Notes: Update the current Risk object after modification or appending a new item.

(c) Sparx Systems 2019 Page 165 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2019 Page 166 of 505 Created with Enterprise Architect

User Guide - Automation

Scenario Class

7 August, 2019

A Scenario corresponds to a Collaboration or Use Case instance. Each Scenario is a path of execution through the logic
of a Use Case. Scenarios can be added to using the Element Scenarios collection.

Associated table in .EAP file

t_objectscenarios

Scenario Attributes

Attribute

Name

Notes

ObjectType

ScenarioGUID

Steps

Type

Weight

XMLContent

(c) Sparx Systems 2019

Description

String
Notes: Read/Write

The Scenario name.

String
Notes: Read/Write

A description of the Scenario, usually containing the steps to execute the scenario.

ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

String
Notes: Read/Write

A unique ID for the Scenario, used to identify the Scenario unambiguously within a
model.

Collection of ScenarioStep Class

Notes: Read only
A collection of step objects for this Scenario.

Use the 'AddNew' and 'Delete' functions to manage steps. 'AddNew' passes the step
name and 'l" as the type for an actor step.

String
Notes: Read/Write

The scenario type (for example, Basic Path).

Long
Notes: Read/Write

Currently used to position scenarios in the scenario list (that is, List Position).

String

Page 167 of 505 Created with Enterprise Architect

http://www.sparxsystems.com/enterprise_architect_user_guide/15.0/automation/scenariostep.html

User Guide - Automation

Scenario Methods

Method

GetLastError()

Update()

(c) Sparx Systems 2019

7 August, 2019

Notes: Read/Write

A structured field that can contain scenario details in XML format. It is
recommended that you use the 'Steps' collection to read or modify this field.

Description

String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Boolean

Notes: Update the current Scenario object after modification or appending a new
item.

If False is returned, check the 'GetLastError()' function for more information.

Page 168 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

ScenarioExtension Class
ScenarioExtension Attributes

Attribute Description

ExtensionGUID String
Notes: Read/Write
A unique GUID for this Extension.

Join String
Notes: Read/Write
The GUID of the step where this Extension rejoins the Scenario.

JoiningStep ScenarioStep
Notes: Read only

The actual step where this Extension rejoins the Scenario, if any.

Level String
Notes: Read only

The number of this Extension as shown in the scenario editor. This is derived from
the value of Pos for this object and the owning step.

Name String
Notes: Read/Write

The Extension name. This should match the name of the linked scenario.

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Pos Long
Notes: Read/Write

The position of the Extension in the Extensions list.

Scenario Scenario
Notes: Read only

The scenario that is executed as an alternative path for this Extension.

ScenarioExtension Methods

Method Description

(c) Sparx Systems 2019 Page 169 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Updates the current ScenarioExtension object after modification or
appending a new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2019 Page 170 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

ScenarioStep Class
ScenarioStep Attributes

Attribute Description

Extensions Collection of ScenarioExtension
Notes: Read only

A collection of ScenarioExtension objects that specify how the scenario is extended
from this step. The arguments to 'AddNew' should match the name and GUID of the
alternative scenario being linked to.

Level String
Notes: Read only

The number of this Step as shown in the scenario editor. This is derived from the
value of Pos.

Link String
Notes: Read/Write
The GUID of a Use Case that is relevant to this step.

LinkedElement Element
Notes: Read only
The actual element specified by Link, if any.

Name String
Notes: Read/Write

The step name.

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Pos Long
Notes: Read/Write
The position of the 'Step' in the 'Scenario Step' list.

Results String
Notes: Read/Write

Any results that are given from this step.

State String
Notes: Read/Write

A description of the state the system enters when this Step is executed.

StepGUID String

(c) Sparx Systems 2019 Page 171 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Notes: Read/Write
A unique GUID for this Step.

StepType ScenarioStepType
Notes: Read/Write

Identifies whether this step is being performed by a user or the system.

Uses String
Notes: Read/Write

The input and requirements that are relevant to this step.

UsesElementList Collection of Element
Notes: Read only

Indicates that the Scenarios view 'Uses' field is a linked element list.

ScenarioStep Methods

Method Description

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Updates the current ScenarioStep object after modification or appending a
new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2019 Page 172 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

TaggedValue Class

A TaggedValue is a named property and value associated with an element. Tagged Values can be accessed through the
TaggedValues collection.

Associated table in .EAP file

t_objectproperties

TaggedValue Attributes

Attribute Description

ElementID Long
Notes: Read/Write

The local ID of the associated element.

FQName String
Notes: Read only
The fully-qualified name of the tag.

Name String
Notes: Read/Write
The name of the tag.

Notes String
Notes: Read/Write
Further descriptive notes about this tag.

If 'Value' is set to '<memo>', then 'Notes' should contain the actual Tagged Value
content.

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

PropertyGUID String
Notes: Read/Write
The global ID of the tag.

PropertyID Long
Notes: Read only
The local ID of the tag.

Value String
Notes: Read/Write

(c) Sparx Systems 2019 Page 173 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

The value assigned to this tag.

This field has a 255 character limit. If the value is greater than 255 characters long,
set the value to "<memo>" and insert the body of text in the 'Notes' attribute.

When reading existing Tagged Values, if "Value" = "<memo>" then the developer
should read the actual body of text from the 'Notes' attribute.

TaggedValue Methods

Method Description
GetAttribute(string String
propName) Notes: Returns the text of a single named property within a structured Tagged
Value.
Parameters:

e propName: String - the name of the property for which the text is being
returned

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

HasAttributes() Boolean

Notes: Returns True if the Tagged Value is a structured Tagged Value with one or
more properties.

SetAttribute(string Boolean
propName, string Notes: Sets the text of a single named property within a structured Tagged Value.
propValue)
Parameters:
e propName: String - the name of the property for which the text is being set
e propValue: the value of the property
Update() Boolean
Notes: Updates the current TaggedValue object after modification or appending a
new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2019 Page 174 of 505 Created with Enterprise Architect

User Guide - Automation

Test Class

7 August, 2019

A Test is a single Test Case applied to an element. Tests are added and accessed through the Element Tests collection.

Associated table in .EAP file

t_objecttests

Test Attributes

Attribute

AcceptanceCriteria

CheckedBy

Class

DateRun

Input

Name

Notes

(c) Sparx Systems 2019

Description

String
Notes: Read/Write

The acceptance criteria for successful execution.

String
Notes: Read/Write

User ID of the person confirming the results.

Long

Notes: Read/Write
The test Class:

1 = Unit Test

2 = Integration Test
3 = System Test

4 = Acceptance Test
5 = Scenario Test

6 = Inspection Test

Date
Notes: Read/Write

The date the test was last run.

String
Notes: Read/Write
Input data for the test.

String
Notes: Read/Write

The test name.

String
Notes: Read/Write

Page 175 of 505

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Detailed notes about test to be carried out.

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

RunBy String
Notes: Read/Write
The user ID of the person conducting the test.

Status String
Notes: Read/Write

The current status of the test.

TestResults Variant
Notes: Read/Write
Results of test.

Type String
Notes: Read/Write

The test type, such as Load or Regression.

Test Methods

Method Description

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean
Notes: Update the current Test object after modification or appending a new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2019 Page 176 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Element Features Package

The ElementFeatures Package contains descriptions of the model interfaces that enable access to operations and
attributes, and their associated Tagged Values and constraints.

This diagram illustrates the components associated with element features. These include attributes and methods, and their
associated constraints and Tagged Values. It also includes the Parameter object that defines the arguments associated
with an operation (Method).

MethodConstraint MethodTag AttributeTag AttributeConstraint

+ MethodID: Long + TaglD: Long + TaglD: Long + AftributelD: long

+ Mame: String + MethodID: Long + Aftributell: Long + Name: Siring

+ Type: String ~ Mame: String + Name: String + Type: String

+ Motes: String + Walue: String + Walue: String + MNotes: String
+ Motes: String + Notes: String

+ Update() . Boolean + TagGUID: String + TagGUID: String + Update() : Boolean

+ GetlLastError():String + GetLastError() \Variant
+ Update() . Boolean + GetlastError() String

0.* 0.* + GetlLastError() :String + lpdate() : Boolean
+PreConditions +PostConditions +Constraints | g

0.* / +TaggedValues +TaggedValues 0.*

[LHITET ; Element
+ Parameters: Colection[0..%] -
+ PreConditions: Collection[0..%] g bt
+ PostConditions: Collection[0. %] + Constraints: Collection]0..%]
+ MethodGUID: String + TaggedValues: Collection[0..%]
+ TaggedValues: Collection]0..*] + Mame: String
+ MethodID: _Il:lng + AftributeGUID: String
+ N:larpf?:. Strlng. 0.t + Visibilty: String
+ Visibility: Strlng_ + Containment: String
+ ReturnType: String + |sStatic: Boolean
+ ReturnisArray: Boolean +MethodsEx + IsCollection: Boolean
+ Stereotype: String + |sOrdered: Boolean
+ IsStatic: Boolean) + AllowDuplicates: Boolean
+ Concurrency: Variant . +Afttributes + LowerBound: String
: g:;;s‘:rinitrr.lngtrmg 0.%, + UpperBound: String

N x* H . i
+ Abstract: Boolean +Methods i meter . : ﬁgf;:?"g{ri.?;”ng
+ IsSynchronized: Boolean + Mame: String + |sDerived: Boolean
+ IsConst: Boolean + Type: Variant + AftributelD: Long
+ Style: String + Default: String + Pos: Long
+ IsPure: Boolean + ParameterGUID: String + Length: String
+ Throws: String + Position: Long + Precizion: String
+ ClassifieriD: String +Parameters | + IsConst. Boolean + Scale: String
+ StyleEx: String + Style: String + IsConst: Boolean
+ Code: String 0.7 |+ Kind: String + Style: String
+ I|sRoot: Boolean + ClassifieriD: String + StyleEx: String
+ |slLeaf Boolean + OperationlD: Long + ClassifieriD: Long
+ IsQuery: Boolean + Motes: String + Default: String
- StateFlags: String + StyleEx: String + Type: String
+ Update() : Boolean + Update() : Boolean + Update() : Boolean
+ GetlastError() : String + GetlastError() : String + GetlLastError() : String

(c) Sparx Systems 2019 Page 177 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Attribute Class

An attribute corresponds to a UML Attribute. It contains further collections for constraints and Tagged Values.
Attributes are accessed from the element Attributes collection.

Associated table in .EAP file

t attribute

Attribute Attributes

Attribute Remarks

Alias String
Notes: Read/Write

Contains the (optional) 'Alias' property for this attribute. This can be used
interchangeably with the Style attribute.

AllowDuplicates Boolean
Notes: Read/Write
Indicates if duplicates are allowed in the collection.

If the attribute represents a database column this, when set, represents the 'Not Null'
option.

AttributeGUID String
Notes: Read only
A globally unique ID for the current attribute. This attribute is system generated.

AttributeID Long
Notes: Read only
The local ID number of the attribute.

ClassifierID Long
Notes: Read/Write

The classifier ID, if appropriate, indicating the base type associated with the
attribute, if not a primitive type.

Constraints Collection
Notes: Read only

A collection of AttributeConstraint objects, used to access and manage constraints
associated with this attribute.

Container String
Notes: Read/Write

The container type.

(c) Sparx Systems 2019 Page 178 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Containment String
Notes: Read/Write
The type of containment - Not Specified, By Reference or By Value.

Default String
Notes: Read/Write

The initial value assigned to this attribute.

FQStereotype String
Notes: Read Only

The fully-qualified stereotype name in the format "Profile::Stereotype". One or
more fully-qualified stereotype names can be assigned to StereotypeEx.

IsCollection Boolean
Notes: Read/Write

Indicates if the current feature is a collection or not. If the attribute represents a
database column this, when set, represents a Foreign Key.

IsConst Boolean
Notes: Read/Write
A flag indicating if the attribute is Const or not.

IsDerived Boolean
Notes: Read/Write

Indicates if the attribute is derived (that is, a calculated value).

IsID Boolean
Notes: Read/Write

Indicates if the attribute uniquely identifies an instance of the containing Class, or
not.

IsOrdered Boolean
Notes: Read/Write

Indicates if a collection is ordered or not. If the attribute represents a database
column this, when set, represents a Primary Key.

IsStatic Boolean
Notes: Read/Write

Indicates if the current attribute is a static feature or not. If the attribute represents a
database column this, when set, represents the 'Unique' option.

Length String
Notes: Read/Write
The attribute length, where applicable.

LowerBound String
Notes: Read/Write

A value for the collection lower boundary.

(c) Sparx Systems 2019 Page 179 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Name String
Notes: Read/Write

The attribute name.

Notes String
Notes: Read/Write

Further notes on this attribute.

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

ParentID Long
Notes: Read only
Returns the ElementID of the element that this attribute is a part of.

Pos Long
Notes: Read/Write
The position of the attribute in the Class attribute list.

Precision String
Notes: Read/Write

The precision value.

RedefinedProperty String
Notes: Read/Write

Corresponds to the 'Redefined Property’' field on the 'Detail' page of the attribute
'Properties' dialog, or the UML redefinedProperty attribute.

Contains a comma separated list of GUIDs.

Scale String
Notes: Read/Write

The scale value.

Stereotype String
Notes: Read/Write
Sets or gets the stereotype for this attribute.

When setting this attribute, LastError (for the GetLastError method) will be
non-empty if an error occurs.

StereotypeEx String
Notes: Read/Write

Provides all the applied stereotypes of the attribute, in a comma-separated list.
Reading the value will provide the stereotype name only; assigning the value
accepts either fully-qualified or simple names.

When setting this attribute, LastError (for the GetLastError method) will be
non-empty if an error occurs.

(c) Sparx Systems 2019 Page 180 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Style String
Notes: Read/Write

Contains the (optional) Alias property for this attribute. This can be used
interchangeably with the Alias attribute.

StyleEx String
Notes: Read/Write

Advanced style settings, reserved for the use of Sparx Systems.

SubsettedProperty String
Notes: Read/Write

Corresponds to the 'Subsetted Property' field on the 'Detail' page of the attribute
'"Properties' dialog, or the UML subsettedProperty attribute.

Contains a comma separated list of GUIDs.

TaggedValues Collection of type AttributeTag
Notes: Read only

A collection of AttributeTag objects, used to access and manage Tagged Values
associated with this attribute.

TaggedValuesEx Collection of type TaggedValue
Notes: Read only

A collection of TaggedValue objects belonging to the current attribute and the
TaggedValuesEx property of its classifier.

Type String
Notes: Read/Write
The attribute type (by name; also see ClassifierID).

TypelnfoProperties Notes: Read only

Returns a interface pointer of TypelnfoProperties.

UpperBound String
Notes: Read/Write

A value for the collection upper boundary.
Visibility String

Notes: Read/Write
Identifies the scope of the attribute - Private, Protected, Public or Package.

Attribute Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in

(c) Sparx Systems 2019 Page 181 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

relation to this object.

Update() Boolean

Notes: Updates the current attribute object after modifying or appending a new
item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2019 Page 182 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

AttributeConstraint Class

An AttributeConstraint is a constraint associated with the current Attribute.

Associated table in .EAP file

t_attributeconstraints

AttributeConstraint Attributes

Attribute Remarks

AttributeID Long
Notes: Read/Write
The ID of the attribute this constraint applies to.

Name String
Notes: Read/Write

The name of the constraint.

Notes String
Notes: Read/Write

Descriptive notes about the constraint.

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Type String
Notes: Read/Write
The type of constraint.

AttributeConstraint Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Update the current AttributeConstraint object after modification or
appending a new item.

(c) Sparx Systems 2019 Page 183 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2019 Page 184 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

AttributeTag Class

An AttributeTag represents a Tagged Value associated with an attribute.

Associated table in .EAP file:

t_attributetag

AttributeTag Attributes:

Attribute Remarks

AttributelD Long
Notes: Read/Write
The local ID of the attribute associated with this Tagged Value.

FQName String
Notes: Read only
The fully-qualified name of the tag.

Name String
Notes: Read/Write
The name of the tag.

Notes String
Notes: Read/Write
Further descriptive notes about this tag.

If 'Value' is set to '<memo>', then 'Notes' should contain the actual Tagged Value
content.

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

TagGUID String
Notes: Read/Write
A globally unique ID for this Tagged Value.

TagID Long
Notes: Read only
The local ID to identify the Tagged Value.

Value String
Notes: Read/Write

The value assigned to this tag.

(c) Sparx Systems 2019 Page 185 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

This field has a 255 character limit. If the value is greater than 255 characters long,
set the value to "<memo>" and insert the body of text in the 'Notes' attribute.

When reading existing Tagged Values, if "Value' = "<memo>" then the developer
should read the actual body of text from the Notes' attribute.

AttributeTag Methods:

Method Remarks
GetAttribute(string String
propName) Notes: Returns the text of a single named property within a structured Tagged
Value.
GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error occurs.

HasAttributes() Boolean

Notes: Returns True if the Tagged Value is a structured Tagged Value with one or
more properties.

SetAttribute(string Boolean
propName, string Notes: Sets the text of a single named property within a structured Tagged Value.
propValue)
Update() Boolean
Notes: Updates the current AttributeTag object after modification or appending a
new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2019 Page 186 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

CustomProperties Collection

The CustomProperties collection contains 0 or more CustomProperties associated with the current element. These
properties provide advanced UML configuration options, and must not be added to or deleted. The value of each property
can be set.

CustomProperty

Attribute Remarks

Name String
Notes: Read only

The CustomProperty name.

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Value String
Notes: Read/Write
The value associated with this CustomProperty. This can be:
e Astring
e The boolean values True or False, or
e An enumeration value from a defined list

The UML 2.5 specification in general provides information on the kinds of
enumeration relevant here.

Notes

e The number and type of properties vary depending on the actual element

(c) Sparx Systems 2019 Page 187 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EmbeddedElements Collection

In UML 2.5 an element can have one or more embedded elements such as Ports, Pins, Parameters or ObjectNodes. These
are attached to the boundary of the host element and cannot be moved off the element. They are owned by their host
element. This collection gives easy access to the set of elements embedded on the surface of an element. Note that some
embedded elements can have their own embedded element collection (for example, Ports can have Interfaces embedded
on them).

The EmbeddedElements collection contains Element objects.

Example
Element
acollactions CustomProperty
CustomProperties
et - Mams: Sinng
1 0.7 - Walue: String
Partiticn
aCDll2ctions
Partiticns - Mamsa: Strng
- 0= Mote: Sthng
N Operator: Strng
Siz=: int
acollections Transition
StateTransitions
- DurstionConstraint: String
1 07 Event String
Mot=: String

TimeConstreint: String
TxState: String
TxTime: int

«collactions
1 EmbeddedElements

-

(c) Sparx Systems 2019 Page 188 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Method Class

A method represents a UML operation. It is accessed from the Element Methods collection and includes collections for
parameters, constraints and Tagged Values.

Associated table in .EAP file

t_operation

Method Attributes

Attribute Remarks

Abstract Boolean
Notes: Read/Write
A flag indicating if the method is abstract (1) or not (0).

Behavior String
Notes: Read/Write
Some further explanatory behavior notes (for example, pseudocode).

In earlier releases of Enterprise Architect this attribute had the UK/Australian
spelling 'Behaviour'; this is still present for backwards compatibility, but please
now use the 'Behavior' attribute for consistency.

ClassifierID String
Notes: Read/Write
The Classifier ID that applies to the ReturnType.

Code String
Notes: Read/Write
An optional field to hold the method code (used for the 'Initial Code' field).

Concurrency Variant
Notes: Read/Write

Indicates the concurrency type of the method.

FQStereotype String
Notes: Read Only

The fully-qualified stereotype name in the format "Profile::Stereotype". One or
more fully-qualified stereotype names can be assigned to StereotypeEx.

IsConst Boolean
Notes: Read/Write
A flag indicating that the method is Const.

IsLeaf Boolean

(c) Sparx Systems 2019 Page 189 of 505 Created with Enterprise Architect

User Guide - Automation

IsPure

IsQuery

IsRoot

IsStatic

IsSynchronized

MethodGUID

MethodID

Name

Notes

ObjectType

Parameters

(c) Sparx Systems 2019

7 August, 2019

Notes: Read/Write

A flag to indicate if the method is a Leaf (cannot be overridden).

Boolean
Notes: Read/Write
A flag indicating that the method is defined as 'Pure' in C++.

Boolean
Notes: Read/Write
A flag to indicate if the method is a query (that is, does not alter Class variables).

Boolean
Notes: Read/Write
A flag to indicate if the method is Root.

Boolean
Notes: Read/Write
A flag to indicate a static method.

Boolean
Notes: Read/Write
A flag indicating a Synchronized method call.

String
Notes: Read/Write
A globally unique ID for the current method. This is system generated.

Long
Notes: Read only
A local ID for the current method, only valid within this .eap file.

String
Notes: Read/Write

The method name.

String
Notes: Read/Write

Descriptive notes on the method.

ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Collection Class

Notes: Read only

The Parameters collection for the current method, used to add and access parameter

objects for the current method.

Page 190 of 505

Created with Enterprise Architect

http://www.sparxsystems.com/enterprise_architect_user_guide/15.0/automation/collection.html

User Guide - Automation 7 August, 2019

ParentID Long
Notes: Read only
Returns the ElementID of the element that this method belongs to.

Pos Long
Notes: Read/Write

Specifies the position of the method within the set of operations defined for a Class.

PostConditions Collection Class
Notes: Read only

The PostConditions (constraints) as they apply to this method. This returns a
MethodConstraint object of type 'post'.

PreConditions Collection Class
Notes: Read only

The PreConditions (constraints) as they apply to this method. This returns a
MethodConstraint object of type 'pre'.

ReturnlsArray Boolean
Notes: Read/Write

A flag to indicate that the return value is an array.

ReturnType String
Notes: Read/Write

The return type for the method; this can be a primitive data type or a Class or
Interface type.

StateFlags String
Notes: Read/Write

Some flags as applied to methods in State elements.

Stereotype String
Notes: Read/Write
The method stereotype (optional).

When setting this attribute, LastError (for the GetLastError method) will be
non-empty if an error occurs.

StereotypeEx String
Notes: Read/Write

All the applied stereotypes of the method in a comma-separated list. Reading the
value will provide the stereotype name only; assigning the value accepts either
fully-qualified or simple names.

When setting this attribute, LastError (for the GetLastError method) will be
non-empty if an error occurs.

Style String
Notes: Read/Write
Contains the Alias property for this method.

(c) Sparx Systems 2019 Page 191 of 505 Created with Enterprise Architect

http://www.sparxsystems.com/enterprise_architect_user_guide/15.0/automation/collection.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.0/automation/collection.html

User Guide - Automation

StyleEx

TaggedValues

Throws

TypelnfoProperties

Visibility

Method Methods

Method

GetLastError()

Update()

(c) Sparx Systems 2019

7 August, 2019

String
Notes: Read/Write

Advanced style settings, reserved for the use of Sparx Systems.

Collection Class of type MethodTag Class
Notes: Read only

The TaggedValues collection for the current method. This accesses a list of
MethodTag objects.

String
Notes: Read/Write
Exception information. Valid input for setting the Throws is:

e GUID String - the GUID of an element in the model or a comma-separated list
of element GUIDS

e <none> - removes the existing Throws set

Notes: Read only

Returns an interface pointer of TypelnfoProperties.

String
Notes: Read/Write
The method scope - Public, Protected, Private or Package.

Remarks

String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Boolean

Notes: Update the current method object after modification or appending a new
item.

If False is returned, check the 'GetLastError()' function for more information.

Page 192 of 505 Created with Enterprise Architect

http://www.sparxsystems.com/enterprise_architect_user_guide/15.0/automation/collection.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.0/automation/methodtag.html

User Guide - Automation 7 August, 2019

MethodConstraint Class

A MethodConstraint is a condition imposed on a method. It is accessed through either the Method PreConditions or
Method PostConditions collection.

Associated table in .EAP file

t operationpres and t operationposts

MethodConstraint Attributes

Attribute Remarks

MethodID Long
Notes: Read/Write
The local ID of the associated method.

Name String
Notes: Read/Write

The name of the constraint.

Notes String
Notes: Read/Write

Descriptive notes about this constraint.

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Type String
Notes: Read/Write

The constraint type.

MethodConstraint Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error occurs.

Update() Boolean

(c) Sparx Systems 2019 Page 193 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Notes: Update the current MethodConstraint object after modification or appending
a new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2019 Page 194 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

MethodTag Class

A MethodTag is a Tagged Value associated with a method.

Associated table in .EAP file:

t_operationtag

MethodTag Attributes:

Attribute Remarks

FQName String
Notes: Read only
The fully-qualified name of the tag.

MethodID Long
Notes: Read/Write
The ID of the associated method.

Name String
Notes: Read/Write
The tag or name of the property.

Notes String
Notes: Read/Write
Further descriptive notes about this tag.

If 'Value' is set to '<memo>', then 'Notes' should contain the actual Tagged Value
content.

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

TagGUID String
Notes: Read/Write
A unique GUID for this Tagged Value.

TagID Long
Notes: Read only
A unique ID for this Tagged Value.

Value String
Notes: Read/Write

The value assigned to this tag.

(c) Sparx Systems 2019 Page 195 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

This field has a 255 character limit. If the value is greater than 255 characters long,
set the value to "<memo>" and insert the body of text in the 'Notes' attribute.

When reading existing Tagged Values, if "Value' = "<memo>" then the developer
should read the actual body of text from the Notes' attribute.

MethodTag Methods:
Method Remarks

GetAttribute(string String

propName) Notes: Returns the text of a single named property within a structured Tagged
Value.

GetLastError() String
Notes: Returns a string value describing the most recent error that occurred in
relation to this object.
This function is rarely used as an exception is thrown when an error occurs.

HasAttributes() Boolean
Notes: Returns True if the Tagged Value is a structured Tagged Value with one or
more properties.

SetAttribute(string Boolean

propName, string Notes: Sets the text of a single named property within a structured Tagged Value.

propValue)

Update() Boolean
Notes: Updates the current MethodTag object after modification or appending a
new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2019 Page 196 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Parameter Class
A Parameter object represents a method argument and is accessed through the Method Parameters collection.

Associated table in .EAP file

t_operationparams

Parameter Attributes

Attribute Remarks

Alias String
Notes: Read/Write

An optional alias for this parameter.

Classifier]D String
Notes: Read/Write

A ClassifierID for the parameter, if known.

Default String
Notes: Read/Write

A default value for this parameter.

IsConst Boolean
Notes: Read/Write
A flag indicating that the parameter is Const (cannot be altered).

Kind String
Notes: Read/Write

The parameter kind - in, inout, out, or return.

Name String
Notes: Read/Write

The parameter name; this must be unique for a single method.

Notes String
Notes: Read/Write

Descriptive notes.

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

OperationID Long

(c) Sparx Systems 2019 Page 197 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Notes: Read only
The ID of the method associated with this parameter.

ParameterGUID String
Notes: Read/Write

A system generated, globally unique ID for the current Parameter.

Position Long
Notes: Read/Write

The position of the parameter in the argument list.

Stereotype String
Notes: Read/Write
The first stereotype of the parameter.

When setting this attribute, LastError (for the GetLastError method) will be
non-empty if an error occurs.

StereotypeEx String
Notes: Read/Write

All the applied stereotypes of the parameter in a comma-separated list. Reading the
value will provide the stereotype name only; assigning the value accepts either
fully-qualified or simple names.

When setting this attribute, LastError (for the GetLastError method) will be
non-empty if an error occurs.

Style String
Notes: Read/Write

Some style information.

StyleEx String
Notes: Read/Write

Advanced style settings, reserved for the use of Sparx Systems.

TaggedValues Collection Class of type ParamTag Class
Notes: Read/Write
The GUID of the parameter with which this ParamTag is associated.

Type Variant
Notes: Read/Write

The parameter type; can be a primitive type or a defined classifier.

TypelnfoProperties Notes: Read only

Returns a interface pointer of TypelnfoProperties.

Parameter Methods

(c) Sparx Systems 2019 Page 198 of 505 Created with Enterprise Architect

http://www.sparxsystems.com/enterprise_architect_user_guide/15.0/automation/collection.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.0/automation/paramtag.html

User Guide - Automation 7 August, 2019

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Update the current Parameter object after modifying or appending a new
item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2019 Page 199 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

ParamTag Class

A ParamTag is a Tagged Value associated with a method parameter.

Associated table in .EAP file

t taggedvalue

ParamTag Attributes
Attribute Remarks
ElementGUID String
Notes: Read/Write
The GUID of the parameter with which this ParamTag is associated.
FQName String
Notes: Read only
The fully qualified name of the tag.
ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through a Dispatch interface.
PropertyGUID String
Notes: Read/Write
A system generated GUID to identify the Tagged Value.
Tag String
Notes: Read/Write
The actual tag name.
Value String

Notes: Read/Write

The value associated with this tag.

ParamTag Methods

Method Remarks
GetAttribute(string String
propName)

Notes: Returns the text of a single named property within a structured Tagged

(c) Sparx Systems 2019 Page 200 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Value.

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

HasAttributes() Boolean

Notes: Returns True if the Tagged Value is a structured Tagged Value with one or
more properties.

SetAttribute(string Boolean
propName, string Notes: Sets the text of a single named property within a structured Tagged Value.
prop Value)
Update() Boolean
Notes: Updates the current ParamTag object after modifying or appending a new
item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2019 Page 201 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Partitions Collection

A collection of internal element partitions (regions). This is commonly seen in Activity, State, Boundary, Diagram Frame
and similar elements. Not all elements support partitions.

This collection contains a set of Partition elements. The set is read/write: information is not saved until the host element
is saved, so ensure that you call the Element.Save method after making changes to a Partition.

Partition Attributes

Attribute Remarks

Name String
Notes: Read/Write

The partition name; this can represent a condition or constraint in some cases.

Note String
Notes: Read/Write

A free text note associated with this partition.

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Operator String
Notes: Read/Write

An optional operator value that specifies the partition type.

Size String
Notes: Read/Write

The vertical or horizontal width of the partition in pixels.

(c) Sparx Systems 2019 Page 202 of 505 Created with Enterprise Architect

User Guide - Automation

Properties Class

Properties

Properties Attributes

Attribute

Count

ObjectType

Properties Methods

Property

Method

Item(object Index)

Property Attributes

Attribute

Name

ObjectType

(c) Sparx Systems 2019

7 August, 2019

Remarks

Long

Notes: The number of properties that are available for this object.

ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Remarks

Property
Notes: Returns a property either by name or by a zero-based integer offset into the
list of properties.

Parameter:

e Index: Variant - either a string representing the property name or an integer
representing the zero-based offset into the property list

Remarks

String
Notes: Read only
The name of the property.

The object to which the properties list applies can have an automation property with
the same name, in which case the data accessed through Value is identical to that
obtained through the automation property.

ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Page 203 of 505

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Type PropType
Notes: Read only

Provides an indication of what sort of data is going to be stored by this property.
This restriction can be further defined by the Validation attribute.

Validation String
Notes: Read only

An optional string that is used to validate any data that is passed to the Value
attribute. This string is used by the programmer at run time to provide an indication
of what is expected, and by Enterprise Architect to ensure that the submitted data is
appropriate.

Value Variant
Notes: Read/write
The value of the property as defined in the other fields.

(c) Sparx Systems 2019 Page 204 of 505 Created with Enterprise Architect

http://www.sparxsystems.com/enterprise_architect_user_guide/15.0/automation/proptype_enum.html

User Guide - Automation 7 August, 2019

TemplateParameter Class

A TemplateParameter for a template signature specifies a formal parameter that will be substituted by an actual
parameter (or the default) in a TemplateBinding relationship on a Class element.

Associated table in .EAP file

t xref

TemplateParameter Attributes

Attribute Remarks

Constraint String
Notes: Read/Write

The name of the Classifier that acts as the constraint value.

Default String
Notes: Read/Write

The name of the Classifier that acts as the default value.

Name String
Notes: Read/Write

The name of the Template Parameter.

ObjectType ObjectType
Notes: Read Only

Distinguishes objects referenced through a Dispatch interface.

TemplateParameterID String
Notes: Read Only

The Enterprise Architect Globally Unique ID (GUID) of the current Template
Parameter, in the XrefID column of t xref.

Type String
Notes: Read/Write
The Template Parameter type.

TemplateParameter Methods

Method Remarks

GetLastError() String

(c) Sparx Systems 2019 Page 205 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Updates the current TemplateParameter object after modifying or appending
a new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2019 Page 206 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Transitions Collection

The Transitions collection applies only to Timeline elements.

A Timeline element displays 0 or more state transitions at set times on its extent. This collection enables you to access
the transition set. You can also access additional information by referring to the connectors associated with the Timeline,
and by referencing messages passed between timelines. Note that any changes made to elements in this collection are
only saved when the main element is saved.

Transition Attributes

Attribute Remarks

DurationConstraint String
Notes: Read/Write

A constraint on the time duration of the transition.

Event String
Notes: Read/Write

The event (optional) that initiated the transition.

Note String
Notes: Read/Write

A free text note.

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

TimeConstraint String
Notes: Read/Write

A constraint on when the transition has to be completed.

TxState String
Notes: Read/Write

The state to transition to, as defined in the 'Timeline Properties' dialog.

TxTime String
Notes: Read/Write.

The time that the transition occurs. The value depends on a range set in the
diagram.

(c) Sparx Systems 2019 Page 207 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Connector Package

The Connector Package details how connectors between elements are accessed and managed.

This diagram shows the Connector Class, its collections and its relationships to the Element Class. Association Target
roles correspond to member variable names in the source interface. The associated Classes represent the object type used
in each collection.

+ConveyedItems

+Connectors | 0..*

+SupplierEnd

Connector

1 1 +TaggedValues

+ClientEnd 1 0.*

1 1

+TaggedValues

1 0..*

+TemplateBindings

1 0..*

+CustomProperties
1 0..*
+Properties
1 1

+Constraints

1 0..*

(c) Sparx Systems 2019 Page 208 of 505 Created with Enterprise Architect

User Guide - Automation

Connector Class

7 August, 2019

To represent the various kinds of connectors between UML elements, you use a Connector object. You can access this
from either the Client or Supplier element, using the Connectors collection of that element. When creating a new
connector you assign to it a valid type from this list:

Aggregation
Assembly
Association

Collaboration

CommunicationPath

Connector
ControlFlow
Delegate
Dependency
Deployment
ERLink
Generalization
InformationFlow
Instantiation
InterruptFlow
Manifest
Nesting
NoteLink
ObjectFlow
Package
Realization
Sequence
StateFlow
TemplateBinding

UseCase

Associated table in .EAP file

t connector

Connector Attributes

Attribute

Alias

(c) Sparx Systems 2019

Remarks

String
Notes: Read/Write

An optional alias for this connector.

Page 209 of 505

Created with Enterprise Architect

User Guide - Automation

AssociationClass

ClientEnd

ClientID

Color

ConnectorGUID

ConnectorID

Constraints

ConveyedItems

CustomProperties

DiagramID

Direction

(c) Sparx Systems 2019

7 August, 2019

Element
Notes: Read Only

Returns the Association Class element if the connector has one; otherwise NULL/.

ConnectorEnd
Notes: Read Only

A pointer to the ConnectorEnd object representing the source end of the
relationship.

Long
Notes: Read/Write

The ElementID of the element at the source end of this connector.

Long
Notes: Read/Write

Sets the color of the connector.

String
Notes: Read Only

A system generated, globally unique ID for the current connector.

Long
Notes: Read Only

A system generated local identifier for the current connector.

Collection
Notes: Read Only

A collection of constraint objects.

Collection of type Element
Notes: Read Only
Returns a collection of elements that have been conveyed.

To add another element to the conveyed Collection, use 'AddNew
(ElementGUID,NULL)', where 'ElementGUID' is the GUID of the element to be
added.

Collection
Notes: Read Only

Returns a collection of advanced properties associated with an element in the form
of CustomProperty objects.

Long
Notes: Read/Write

The DiagramID of the connector.

String
Notes: Read/Write

Page 210 of 505 Created with Enterprise Architect

User Guide - Automation

EndPointX

EndPointY

EventFlags

ForeignKeylInformation

FQStereotype

IsLeaf

IsRoot

IsSpec

MessageArguments

(c) Sparx Systems 2019

7 August, 2019

The connector direction, which can be set to one of:
e Unspecified

e Bi-Directional

e Source -> Destination or

e Destination -> Source

If the connector is non-navigable, set the 'sourceNavigability' and/or
'targetNavigability' attributes.

Long
Notes: Read/Write
The x-coordinate of the connector's end point.

Connector end points are specified in Cartesian coordinates with the origin to the
top left of the screen.

Long
Notes: Read/Write
The y-coordinate of the connector's end point.

Connector end points are specified in Cartesian coordinates with the origin to the
top left of the screen.

String
Notes: Read/Write

A structure to hold a variety of flags concerned with event signaling on messages.

String
Notes: Read Only

Returns the Foreign Key information.

String
Notes: Read Only

The fully-qualified stereotype name in the format "Profile::Stereotype". One or
more fully-qualified stereotype names can be assigned to StereotypeEx.

Boolean
Notes: Read/Write

A flag indicating that the connector is a leaf.

Boolean
Notes: Read/Write

A flag indicating that the connector is a root.

Boolean
Notes: Read/Write

A flag indicating that the connector is a specification.

String
Notes: Read Only

The connector Message arguments.

Page 211 of 505 Created with Enterprise Architect

User Guide - Automation

MetaType

MiscData

Name

Notes

ObjectType

Properties

ReturnValueAlias

RouteStyle

SequenceNo

StartPointX

(c) Sparx Systems 2019

7 August, 2019

String
Notes: Read Only

The connector's domain-specific meta type, as defined by an applied stereotype
from an MDG Technology.

String
Notes: Read Only

This low-level property returns an array providing information about the contents
of the PData x fields.

These database fields are not documented and developers must gain understanding
of these fields through their own endeavors to use this property.

MiscData is zero based, therefore:
e MiscData(0) corresponds to PDatal

e MiscData(1) corresponds to PData2, and so on

String
Notes: Read/Write

The connector name.

String
Notes: Read/Write

Descriptive notes about the connector.

ObjectType
Notes: Read Only

Distinguishes objects referenced through a Dispatch interface.

Properties

Notes: Returns a list of specialized properties applicable to the connector that might
not be available using the automation model.

The properties are purposely undocumented because of their obscure nature and
because they are subject to change as progressive enhancements are made to them.

String
Notes: Shows the 'Return Value Alias' field of the operation.

Long
Notes: Read/Write
The route style.

Long
Notes: Read/Write

The SequenceNo of the connector.

Long
Notes: Read/Write
The x-coordinate of the connector's start point.

Connector end points are specified in Cartesian coordinates with the origin to the

Page 212 of 505 Created with Enterprise Architect

User Guide - Automation

StartPointY

StateFlags

Stereotype

StereotypeEx

StyleEx

Subtype

SupplierEnd

SupplierID

TaggedValues

TemplateBindings

TransitionAction

(c) Sparx Systems 2019

7 August, 2019

top left of the screen.

Long
Notes: Read/Write
The y-coordinate of the connector's start point.

Connector end points are specified in Cartesian coordinates with the origin to the
top left of the screen.

String
Notes: Read/Write

A structure to hold a variety of flags concerned with State signaling on messages;
the list is delimited by semi-colons.

String
Notes: Read/Write

Sets or gets the stereotype for this connector end.

String
Notes: Read/Write

All the applied stereotypes of the connector in a comma-separated list. Reading the
value will provide the stereotype name only; assigning the value accepts either
fully-qualified or simple names.

String
Notes: Read/Write

Advanced style settings; reserved for the use of Sparx Systems.

String
Notes: Read/Write

A possible subtype to refine the meaning of the connector.

ConnectorEnd
Notes: Read Only

A pointer to the ConnectorEnd object representing the target end of the
relationship.

Long
Notes: Read/Write

The ElementID of the element at the target end of this connector.

Collection of type ConnectorTag
Notes: Read Only

The collection of ConnectorTag objects.

Collection of type TemplateBinding
Notes: Read Only
A collection of TemplateBinding objects.

String

Page 213 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Notes: Read/Write

See the Transition topic for appropriate values.

TransitionEvent String
Notes: Read/Write

See the Transition topic for appropriate values.

TransitionGuard String
Notes: Read/Write

See the Transition topic for appropriate values.

Type String
Notes: Read/Write

The connector type; valid types are held in the t connectortypes table in the .eap
file.

TypelnfoProperties Notes: Read only

Returns a interface pointer of TypelnfoProperties.

Virtuallnheritance String
Notes: Read/Write

For Generalization, indicates if the inheritance is virtual.

Width Long
Notes: Read/Write

Specifies the width of the connector.

Connector Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

IsConnectorValid() Boolean

Notes: Queries Enterprise Architect's internal relationship validation schema on the
current connector.

If False is returned, check the 'GetLastError()' function for more information.

Update() Boolean

Notes: Updates the current ConnectorObject after modification or appending a new
item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2019 Page 214 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

(c) Sparx Systems 2019 Page 215 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

ConnectorConstraint Class

A ConnectorConstraint holds information about special conditions that apply to a connector. It is accessed through the
Connector Constraints collection.

Associated table in .EAP file

t_connectorconstraints

ConnectorConstraint Attributes

Attribute Remarks

ConnectorID Long
Notes: Read/Write

A local ID value (long) - system generated.

Name String
Notes: Read/Write

The constraint name.

Notes String
Notes: Read/Write

Notes about this constraint.

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Type String
Notes: Read/Write

The constraint type.

ConnectorConstraint Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Update the current ConnectorConstraint object after modification or

(c) Sparx Systems 2019 Page 216 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

appending a new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2019 Page 217 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

ConnectorEnd Class

A ConnectorEnd contains information about a single end of a connector. A ConnectorEnd is accessed from the connector
as either the ClientEnd or SupplierEnd.

Associated table in .EAP file

derived from t connector

ConnectorEnd Attributes

Attribute Remarks

Aggregation Long
Notes: Read/Write
The type of Aggregation as it applies to this end; valid values are:
0 =None
1 = Shared
2 = Composite

Alias String
Notes: Read/Write

An optional alias for this connector end.

AllowDuplicates Boolean
Notes: Read/Write

For multiplicities greater than 1, indicates that duplicate entries are possible.

Cardinality String
Notes: Read/Write

The cardinality associated with this end.

Constraint String
Notes: Read/Write

A constraint that can be applied to this connector end.

Containment String
Notes: Read/Write

The containment type applied to this connector end.

Derived Boolean
Notes: Read/Write

Indicates that the value of this end is derived.

DerivedUnion Boolean

(c) Sparx Systems 2019 Page 218 of 505 Created with Enterprise Architect

User Guide - Automation

End

IsChangeable

IsNavigable

Navigable

ObjectType

Ordering

OwnedByClassifier

Qualifier

Role

RoleNote

RoleType

(c) Sparx Systems 2019

7 August, 2019

Notes: Read/Write

Indicates the value of this role derived from the union of all roles that subset this.

String
Notes: Read only
The end this ConnectorEnd object applies to - Client or Supplier.

String
Notes: Read/Write

Flag indicating whether this end is changeable or not - 'frozen', 'addOnly' or none.

Note: This property is not used

Boolean

Notes: Read/Write

A flag indicating this end is navigable from the other end.

String
Notes: Read/Write

Indicates whether this role of an association is navigable from the opposite
classifier - Navigable, Non-Navigable or Unspecified.

ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Long
Notes: Read/Write

Ordering for this connector end.

Boolean
Notes: Read/Write

Indicates that this Association end corresponds to an attribute on the opposite end
of the Association.

String
Notes: Read/Write
A qualifier that can apply to the connector end.

String
Notes: Read/Write

The connector end role.

String
Notes: Read/Write

Notes associated with the role of this connector end.

String
Notes: Read/Write

Page 219 of 505

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

The role type applied to this end of the connector.

Stereotype String
Notes: Read/Write

Sets or gets the stereotype for this connector end.

StereotypeEx String
Notes: Read/Write

All the applied stereotypes of the connector end in a comma-separated list. Reading
the value will provide the stereotype name only; assigning the value accepts either
fully qualified or simple names.

TaggedValues Collection of type RoleTag
Notes: Read only
A collection of RoleTag objects.

Visibility String
Notes: Read/Write

The Scope associated with this connector end - Public, Private, Protected or
Package.

ConnectorEnd Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Update the current ConnectorEnd object after modification or appending a
new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2019 Page 220 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

ConnectorTag Class
A ConnectorTag is a Tagged Value for a connector and is accessed through the Connector TaggedValues collection.

Associated table in .EAP file

t_connectortag

ConnectorTag Attributes

Attribute Remarks

ConnectorID Long
Notes: Read/Write

The local ID of the associated connector.

FQName String
Notes: Read only
The fully qualified name of the tag.

Name String
Notes: Read/Write

The tag or name.

Notes String
Notes: Read/Write
Further descriptive notes on this tag.

If 'Value' is set to '<memo>', then 'Notes' should contain the actual Tagged Value
content.

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

TagGUID String
Notes: Read/Write
A globally unique ID for this Tagged Value.

TagID Long
Notes: Read only
A local ID to identify the Tagged Value.

Value String
Notes: Read/Write

The value assigned to this tag.

(c) Sparx Systems 2019 Page 221 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

This field has a 255 character limit. If the value is greater than 255 characters long,
set the value to "<memo>" and insert the body of text in the 'Notes' attribute.

When reading existing Tagged Values, if "Value' = "<memo>" then the developer
should read the actual body of text from the Notes' attribute.

ConnectorTag Methods

Method Remarks
GetAttribute(string String
propName) Notes: Returns the text of a single named property within a Structured Tagged
Value.
GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

HasAttributes() Boolean

Notes: Returns True if the Tagged Value is a Structured Tagged Value with one or
more properties.

SetAttribute(string Boolean
propName, string Notes: Sets the text of a single named property within a Structured Tagged Value.
propValue)
Update() Boolean
Notes: Update the current ConnectorTag object after modification or appending a
new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2019 Page 222 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

RoleTag Class

The RoleTag interface provides access to an Association's Role Tagged Values. Each connector end has a RoleTag
collection that can be accessed to add, delete and access the RoleTags.

You might use this in creating code that resembles this fragment for accessing a RoleTag in VB.NET (where con is a
Connector Object):

client = con.ClientEnd

client.Role = "m_client"

client.Update()

tag = client. TaggedValues. AddNew("tag", "value")
tag.Update()

tag = client. TaggedValues. AddNew("tag2", "value2")
tag.Update()

client.TaggedValues.Refresh()

For idx = 0 To client.TaggedValues.Count - 1

tag = client. TaggedValues.GetAt(idx)
Console.WriteLine(tag.Tag)
client.TaggedValues.DeleteAt(idx, False)

Next

tag = Nothing

Associated table in .EAP file

t_taggedvalue

RoleTag Attributes
Attribute Description

BaseClass String
Notes: Read/Write
Indicates the role end; set to ASSOCIATION _SOURCE or
ASSOCIATION_TARGET.

ElementGUID String
Notes: Read/Write
The GUID of the connector with which this role tag is associated.

FQName String
Notes: Read only
The fully qualified name of the tag.

ObjectType ObjectType

(c) Sparx Systems 2019 Page 223 of 505 Created with Enterprise Architect

User Guide - Automation

PropertyGUID

Tag

Value

RoleTag Methods

Method

GetAttribute(string
propName)

GetLastError()

HasAttributes()

SetAttribute(string
propName, string
prop Value)

Update()

(c) Sparx Systems 2019

7 August, 2019

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

String
Notes: Read/Write
A system generated GUID to identify the Tagged Value.

String
Notes: Read/Write

The actual tag name.

String
Notes: Read/Write

The value associated with this tag.

Description

String

Notes: Returns the text of a single named property within a Structured Tagged
Value.

String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Boolean

Notes: Returns True if the Tagged Value is a Structured Tagged Value with one or
more properties.

Boolean

Notes: Sets the text of a single named property within a Structured Tagged Value.

Boolean
Notes: Update the RoleTag after changes or on initial creation.

If False is returned, check the 'GetLastError()' function for more information.

Page 224 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

TemplateBinding Class

A TemplateBinding defines the connector between a binding Class and a parameterized Class, and the binding
expression on that connector.

TemplateBinding Attributes

Attribute Remarks

ActualGUID String
Notes: Read/Write
The GUID of the element classifier set as the Actual Template Binding parameter.

If the Actual Template Binding parameter is set as a string expression only, this
will be an empty string.

Assigning a GUID value will automatically change the ActualName attribute after
Update() has been called.

ActualName String
Notes: Read/Write
The name of the Actual Template Binding parameter.

Assigning a new value will clear any current ActualGUID value.

BindingExpression String
Notes: Read only

The Binding Expression as shown in Enterprise Architect.

ConnectorGUID String
Notes: Read only
The Globally Unique ID of the associated connector.

ConnectorType String
Notes: Read only

The type of the associated connector.

FormalName String
Notes: Read/Write

The name of the Formal Template Binding parameter.

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch Interface.

Pos String
Notes: Read only

The position of the Template Binding in the list (as on the 'Bindings' page of the
connector "Properties' dialog).

(c) Sparx Systems 2019 Page 225 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

TemplateBindingID String
Notes: Read only
The Globally Unique ID of the current Template Binding.

TemplateBinding Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Update the current TemplateBinding object after modification or appending
a new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2019 Page 226 of 505 Created with Enterprise Architect

User Guide - Automation

Diagram Package

7 August, 2019

The Diagram Package has information on a diagram and on DiagramObject and DiagramLink, which are the instances of

elements within a diagram.

Package

+Elemants |[0..*

I% Element

CiagramObject

+DiagramChbjects

+Diagrams |0..*

Ciagram

o

+Connectors 0.~

Connector

] Link
i +DiagramlLinks

(c) Sparx Systems 2019

o

Page 227 of 505

<>

+Swimlanalef | 1

SwimlaneDef

+Swimlanes |1

Swimlanes

+ltems a.=

Swimlane

Created with Enterprise Architect

User Guide - Automation

Diagram Class

7 August, 2019

A Diagram corresponds to a single UML diagram. It is accessed through the Package Diagrams collection and in turn
contains a collection of diagram objects and diagram connectors. Adding to the DiagramObject Class adds an existing
element to the diagram. When adding a new diagram, you must set the diagram type to one of the valid types:

o Activity

e Analysis

e Component
e Custom

e Deployment
e Logical

e Sequence

e Statechart

e Use Case

For a Collaboration (Communication) diagram, use the Analysis type.

Associated table in .EAP file

t diagram

Diagram Attributes

Attribute

Author

CreatedDate

CcX

cy

DiagramGUID

(c) Sparx Systems 2019

Remarks

String
Notes: Read/Write

The name of the author.

Date
Notes: Read/Write

The date the diagram was created.

Long
Notes: Read/Write
The X dimension of the diagram (the default is 800).

Long
Notes: Read/Write

The Y dimension of the diagram (the default is 1100).

Variant
Notes: Read/Write
A globally unique ID for this diagram.

Page 228 of 505

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

DiagramID Long
Notes: Read only
A local ID for the diagram.

DiagramLinks Collection
Notes: Read only

A list of DiagramLink objects, each containing information about the display
characteristics of a connector in a diagram.

DiagramObjects Collection
Notes: Read only

A collection of references to DiagramObjects. A DiagramObject is an instance of
an element in a diagram, and includes size and display characteristics.

ExtendedStyle String
Notes: Read/Write
An extended style attribute.

FilterElements String
Notes: Read/Write

Applies a comma-separated list of object ids (from SelectedObjects) to the
currently-applied diagram filter, overriding the filter. The effect persists until
another filter is applied, or the diagram is closed.

HighlightImports Boolean
Notes: Read/Write

A flag to indicate that elements from other Packages should be highlighted.
Corresponds with the 'Show Namespace' option in the diagram 'Properties' dialog.

IsLocked Boolean
Notes: Read/Write

A flag indicating whether this diagram is locked or not.

MetaType String
Notes: Read/Write

The diagram's domain-specific meta type, as defined by an MDG Technology.
When writing, the meta type must be fully qualified and from an existing profile.

ModifiedDate Variant
Notes: Read/Write

The date the diagram was last modified.

Name String
Notes: Read/Write

The diagram name.

Notes String
Notes: Read/Write

Set or retrieve notes for this diagram.

(c) Sparx Systems 2019 Page 229 of 505 Created with Enterprise Architect

User Guide - Automation

ObjectType

Orientation

PackagelD

PageHeight

PageWidth

ParentID

Scale

SelectedConnector

SelectedObjects

ShowDetails

ShowPackageContents

(c) Sparx Systems 2019

7 August, 2019

ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

String
Notes: Read/Write

The page orientation: P for Portrait or L for Landscape.

Long
Notes: Read/Write
The ID of the Package that this diagram belongs to.

Long
Notes: Read
The number of pages high the diagram is.

Long
Notes: Read

The number of pages wide the diagram is.

Long
Notes: Read/Write

The optional ID of an element that 'owns' this diagram; for example, a Sequence
diagram owned by a Use Case.

Long
Notes: Read/Write
The zoom scale (the default is 100).

Connector
Notes: Read/Write

The currently selected connector on this diagram. Null if there is no currently
selected diagram.

Collection
Notes: Read only
Gets a collection representing the currently selected elements on the diagram.

You can remove objects from this collection to deselect them, and add elements to
the collection by passing the Object ID as a name to select them.

Long
Notes: Read/Write

A flag to indicate that the Diagram Details text should be shown: 1 = Show, 0 =
Hide.

Boolean
Notes: Read/Write

A flag to indicate that the Package contents should be shown in the current

Page 230 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

diagram.

ShowPrivate Boolean
Notes: Read/Write

A flag to show or hide Private features.

ShowProtected Boolean
Notes: Read/Write
A flag to show or hide Protected features.

ShowPublic Boolean
Notes: Read/Write
A flag to show or hide Public features.

Stereotype String
Notes: Read/Write

Sets or gets the stereotype for this diagram.

StyleEx String
Notes: Read/Write

Advanced style settings, reserved for the use of Sparx Systems.

Swimlanes String
Notes: Read/Write
Information on swimlanes contained in the diagram.

Please note that this property is superseded by SwimlaneDef.

SwimlaneDef SwimlaneDef
Notes: Read/Write

Information on swimlanes contained in the diagram.

Type String
Notes: Read only
The diagram type; see the t_diagramtypes table in the .eap file for more
information.

Version String
Notes: Read/Write
The version of the diagram.
Diagram Methods
Method Details

ApplyGroupLock (string Boolean

(c) Sparx Systems 2019 Page 231 of 505 Created with Enterprise Architect

User Guide - Automation

aGroupName)

ApplyUserLock ()

FindElementInDiagram
(long ElementID)

GetDiagramObjectByID
(long ID, string DUID)

GetLastError ()

ReadStyle (string
StyleName)

ReleaseUserLock ()

(c) Sparx Systems 2019

7 August, 2019

Notes: Applies a group lock to this diagram object, for the specified group, on
behalf of the current user.

Returns True if the operation is successful; returns False if the operation is
unsuccessful. Use GetLastError() to retrieve error information.

Parameter:

e aGroupName: String - the name of the user group for which to set the group
lock

Boolean
Notes: Applies a user lock to this diagram object, for the current user.

Returns True if the operation is successful; returns False if the operation is
unsuccessful. Use GetLastError() to retrieve error information.

Boolean

Notes: This function activates the Diagram View and displays the diagram with the
diagram object selected. If the diagram is too large to display all of it on the screen,
the portion of the diagram containing the object is displayed with the object shown
in the center of the screen. Diagram objects flagged as non-selected are shown but
are not selected

Returns True if the diagram object was found, the diagram displayed and the object
selected (or at least displayed) in the view. Returns False if the diagram object was
not found in the diagram and the diagram not displayed.

Parameter

e ElementID: Long - the element ID of the diagram object to locate

DiagramObject

Notes: Returns the DiagramObject object, if it exists on the diagram.
Parameters:

e ID: Long - the ElementID of the diagram object

e DUID: String - the optional Diagram Unique ID of the diagram object

String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

String

Notes: Returns the current value of the named diagram style.
Use GetLastError() to retrieve error information.
Parameters:

o StyleName: String - the name of the diagram style whose value is to be
retrieved; valid StyleNames are:
- Show Element Property String
- Show Connector Property String
- Show Feature Property String

Boolean
Notes: Releases a group lock or user lock on this diagram object.

Returns True if the operation is successful; returns False if the operation is
unsuccessful. Use GetLastError() to retrieve error information.

Page 232 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

ReorderMessages () Void
Notes: Resets the display order of Sequence and Collaboration messages.

This is typically used after inserting or deleting messages in the diagram.

SaveAsPDF (string Boolean

FileName) Notes: Export the diagram to a PDF document. Returns True on success.

Parameters:

e FileName: String - full path to file location

SavelmagePage(long x, Boolean
long y, long sizeX, long

X . Notes: Saves a page of the diagram to disk.
sizeY, string filename, long

flags) Returns True if the operation is successful; returns False if the operation is
unsuccessful.
Use GetLastError() to retrieve error information.
Parameters:
e x: Long - the horizontal page
e y: Long - the vertical page
e sizeX: Long - currently unused; pass a value of 0 to ensure behavior does not
change in a future build
e sizeY: Long - currently unused; pass a value of 0 to ensure behavior does not
change in a future build
e filename: String - the filename and path to save the image
e flags: Long - additional options, currently unused; pass a value of 0 to ensure
behavior does not change in a future build
The image type is determined by the extension of the filename. Currently only .emf,
.bmp and .png formats are supported.
ShowAsElementList (bool Boolean

ShowAsList, bool Persist) Notes: Toggles the diagram display between diagram format and Diagram List

depending on the value of ShowAsList.

If Persist is set, the display format is written to the database so the diagram always
opens in that format (diagram or list). Otherwise, the display format falls back to
the default (diagram) once the display is closed.

Parameters:
e ShowAsList: Boolean - indicates diagram or Diagram List

e Persist: Boolean - indicates set (maintain ShowAsList value) or not (revert to
default)

Update () Boolean
Notes: Updates this diagram object after modification or appending a new item.

If False is returned, use GetLastError() to retrieve error information.

VirtualizeConnector (int Boolean
ConnectorID, int Action,

)) Notes: Creates a virtual copy of the source or target element on a connector, and
int X, int Y)

sets its location on the diagram as a waypoint on the connector. If the source
element is being virtualized, the waypoint is created as the first on the connector,
and if the target element is being virtualized, the waypoint is created as the last on
the connector.

If called again on the same connector, removes the virtual element. However, the

(c) Sparx Systems 2019 Page 233 of 505 Created with Enterprise Architect

User Guide - Automation

WriteStyle (string
StyleName, string
StyleValue)

(c) Sparx Systems 2019

7 August, 2019

waypoint remains in place.

As waypoints and therefore virtual elements can only be created on connectors with
the Custom line style, if the connector does not have this line style the method sets
it. So, after this method executes, an Update function should be called for the
connector as well as for the diagram. All parameters are required for the function to
complete successfully.

Returns True if the operation is successful; returns False if the operation is
unsuccessful.

Parameters:

e ConnectorID - Integer: the ID of the connector on which to create the virtual
element

e Action - Integer: the element to be virtualized; 1 for the source element, 2 for
the target element

e X - Integer: the position on the X axis that the element's center point will be
aligned with

e Y - Integer: the position on the Y axis that the element's centre point will be
aligned with

For example, to virtualize the source element of the selected connector:
function main()
{
var diagram as EA.Diagram;
var conn as EA.Connector;
diagram = Repository.GetCurrentDiagram();
if(diagram != null)
{
var connector as EA.Connector.
connector = diagram.SelectedConnector;
diagram.VirtualizeConnector(connector.ConnectorID, 1, 100, 150);
connector.Update();
diagram.Update();
Repository.ReloadDiagram(diagram.DiagramID);
}

else

{

Session.Output("Script requires a diagram to be visible");

}

main();

Void

Notes: Sets the value of the named diagram style.
Use GetLastError() to retrieve error information.
Parameters:

e StyleName: String - the name of the diagram style whose value is to be
retrieved; valid StyleNames are:
- Show Element Property String
- Show Connector Property String

Page 234 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

- Show Feature Property String

e StyleValue: String - the value to be set in the named diagram style; valid
values for the StyleNames listed are 0 and 1

(c) Sparx Systems 2019 Page 235 of 505 Created with Enterprise Architect

User Guide - Automation

7 August, 2019

DiagramLinks Class

A DiagramLink is an object that holds display information on a connector between two elements in a specific diagram. It
includes, for example, the custom points and display appearance. It can be accessed from the Diagram DiagramLinks

collection.

Associated table in .EAP file

t diagramlinks

DiagramLinks Attributes

Attribute

ConnectorID

DiagramID

Geometry

HiddenLabels

InstancelD

IsHidden

LineColor

LineStyle

(c) Sparx Systems 2019

Remarks

Long
Notes: Read/Write

The ID of the associated connector.

Long
Notes: Read/Write

The local ID for the associated diagram.

String
Notes: Read/Write

The geometry associated with the current connector in this diagram.

Boolean

Notes: Indicates if this connector's labels are hidden on the diagram.

Long
Notes: Read only

The connector identifier for the current model.

Boolean
Notes: Read/Write

Indicates if this item is hidden or not.

Long
Notes: Sets the line color of the connector.

Set to -1 to reset to the default color in the model.

Long

Notes: Sets the line style of the connector.
1 = Direct

2 = Auto Routing

Page 236 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

3 = Custom Line

4 = Tree Vertical

5 = Tree Horizontal

6 = Lateral Vertical

7 = Lateral Horizontal

8 = Orthogonal Square

9 = Orthogonal Rounded

LineWidth Long

Notes: Sets the line width of the connector.

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Path String
Notes: Read/Write

The path of the connector in this diagram.

SourcelnstanceUID String
Notes: Read only

Returns the Unique Identifier of the source object.

SuppressSegment Boolean

Notes: Indicates whether the connector segments are suppressed.

Style String
Notes: Read/Write

Additional style information; for example, color or thickness.

TargetInstanceUID String
Notes: Read only
Returns the Unique Identifier of the target object.

DiagramLinks Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error occurs.

Update() Boolean

Notes: Update the current DiagramLink object after modification or appending a

(c) Sparx Systems 2019 Page 237 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2019 Page 238 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

DiagramObject Class

The DiagramObject Class stores presentation information that indicates what is displayed in a diagram and how it is
shown.

Associated table in .EAP file

t diagramobjects

DiagramObject Attributes

Attribute Remarks

BackgroundColor Long
Notes: The background color of the object on the diagram.

Set to -1 to re-set to the default color in the model.

BorderColor Long
Notes: The border line color of the object on the diagram.

Set to -1 to re-set to the default color in the model.

BorderLineWidth Long
Notes: The border line width of the object on the diagram.

Valid values are 1 (narrowest) to 5 (thickest); a default of 1 is applied if an invalid
value is passed in.

Bottom Long
Notes: Read/Write

The bottom edge position of the object on the diagram. Enterprise Architect uses a
cartesian coordinate system, with {0,0} being the top-left corner of the diagram.
For this reason, Y-axis values (Top and Bottom) should always be negative.

DiagramID Long
Notes: Read/Write
The ID of the associated diagram.

ElementDisplayMode Long
Notes: Indicates how to adjust the element features if the element is resized.
1 = Resize to longest feature
2 = Wrap features
3 = Truncate features

Defaults to 1 if an invalid value is supplied.

ElementID Long
Notes: Read/Write

(c) Sparx Systems 2019 Page 239 of 505 Created with Enterprise Architect

User Guide - Automation

FeatureStereotypesTo

Hide

FontBold

FontColor

Fontltalic

FontName

FontSize

FontUnderline

InstanceGUID

InstancelD

IsSelectable

Left

ObjectType

Right

Sequence

(c) Sparx Systems 2019

The ElementID of the object instance in this diagram.

String
Notes: Lists the stereotypes to hide on the object on the diagram.

Boolean

Notes: Get or Set the status of the object text font as Bold.

Long
Notes: The color of the font of the object text on the diagram.

Boolean
Notes: Get or Set the status of the object text font as Italic.

String
Notes: The name of the font used for the object text.

String
Notes: The size of the font used for the object text.

Boolean
Notes: Get or Set the status of the object text font as Underlined.

String
Notes: The instance GUID for the object on the diagram (the DUID).

Long
Notes: Read

Holds the connector identifier for the current model.

Boolean

Notes: Indicates whether this object on the diagram can be selected.

Long
Notes: Read/Write
The left edge position of the object on the diagram.

ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Long
Notes: Read/Write
The right edge position of the object on the diagram.

Long
Notes: Read/Write

7 August, 2019

The sequence position when loading the object into the diagram (this affects its Z

Page 240 of 505

Created with Enterprise Architect

User Guide - Automation

ShowComposedDiagram

ShowConstraints

ShowFormattedNotes

ShowFullyQualifiedTags

ShowInheritedAttributes

ShowInheritedConstraints

ShowInheritedOperations

ShowlInheritedResponsibili
ties

ShowInheritedTags

ShowNotes

ShowPackageAttributes

ShowPackageOperations

ShowPortType

ShowPrivateAttributes

ShowPrivateOperations

(c) Sparx Systems 2019

7 August, 2019

order).

The Z-order is one-based and the lowest value is in the foreground.

Boolean

Notes: Indicates whether the object's composite diagram should be displayed by
default when the object is selected.

Boolean

Notes: Show constraints for this object on the diagram.
Boolean
Notes: Show any formatting applied to the notes, for this object on the diagram.

ShowNotes must be True for the formatted notes to be displayed.

Boolean

Notes: Show fully qualified Tagged Values for this object on the diagram.

Boolean

Notes: Show inherited attributes for this object on the diagram.

Boolean

Notes: Show inherited constraints for this object on the diagram.

Boolean

Notes: Show inherited operations for this object on the diagram.
Boolean
Notes: Show the inherited requirements within the Requirements compartment for

this object on the diagram.

Boolean

Notes: Show inherited Tagged Values for this object on the diagram.

Boolean

Note: Show the notes for this object on the diagram.

Boolean

Notes: Show Package attributes for this object on the diagram.

Boolean

Notes: Show Package operations for this object on the diagram.

Boolean
Notes: Show the Port type.

Boolean

Notes: Show private attributes for this object on the diagram.

Boolean

Page 241 of 505

Created with Enterprise Architect

User Guide - Automation

ShowProtectedAttributes

ShowProtectedOperations

ShowPublicAttributes

ShowPublicOperations

ShowResponsibilities

ShowRunstates

ShowStructuredCompartm
ents

ShowTags

Style

TextAlign

Top

(c) Sparx Systems 2019

7 August, 2019

Notes: Show private operations for this object on the diagram.

Boolean

Notes: Show protected attributes for this object on the diagram.

Boolean

Notes: Show protected operations for this object on the diagram.

Boolean

Notes: Show public attributes for this object on the diagram.

Boolean

Notes: Show public operations for this object on the diagram.

Boolean

Notes: Show the requirements compartment for this object on the diagram.

Boolean

Notes: Show Runstates for this object on the diagram.

Boolean

Note: Indicates whether to display the Structure Compartments for this object on
the diagram.

Boolean

Notes: Show Tagged Values for this object on the diagram.

Variant
Notes: Read/Write

The style information for this object. Returns a semi-colon delimited string that
defines the current style settings. Changing a value will completely overwrite the
previously existing value, so caution is advised to avoid losing existing style
information that you want to keep.

See Setting the Style.

Long

Notes: Indicates the alignment of text on a Text element on the diagram.
1 = Left aligned
2 = Center aligned
3 = Right aligned

Defaults to 1 if an invalid value is supplied.

Long
Notes: Read/Write

The top edge position of the object on the diagram. Enterprise Architect uses a
cartesian coordinate system, with {0,0} being the top-left corner of the diagram.
For this reason, Y-axis values (Top and Bottom) should always be negative.

Page 242 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

DiagramObject Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

ResetFont Notes: Resets the font of the object text on the diagram back to the model default.
SetFontStyle(FontName, Boolean

Fonthe, Bold, Italic, Notes: Sets the font of the object text on the diagram to the specified values.
Underline)

SetStyleEx(string Void

Parameter, string Value) Notes: Sets an individual parameter of the Style string.

Parameters:

e Parameter: String - the name of the style parameter to modify; for example:
"BCol" = background color
"BFol" = font color
"LCol" = line color
"LWth" = line width

e Value: String - the new value for the style parameter

Update() Boolean

Notes: Updates the current DiagramObject after modification or appending a new
item

If False is returned, check the GetLastError function for more information.

Setting the Style

The Style attribute contains various settings that affect the appearance of a DiagramObject. However, it is not
recommended to directly edit this attribute string. Instead, use either the SetStyleEx method or one of the individual
DiagramObject attributes such as BackgroundColor, FontColor or BorderColor.

For example, the Style string might contain a series of values in a format such as:
BCol=n;BFol=n;LCol=n;LWth=n;

where:

e BCol = Background Color

e BFol =Font Color

e LCol = Line Color

e LWth = Line Width

The value assigned to each of the Style color properties is a decimal representation of the hex RGB value, where
Red=FF, Green=FF00 and Blue=FF0000.

This code snippet shows how you might change the style settings for all of the objects in the current diagram, changing
the background color to red (FF=255) and the font and line colors to yellow (FFFF=65535):

For Each aDiagObj In aDiag.DiagramObjects

(c) Sparx Systems 2019 Page 243 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

aDiagObj.BackgroundColor=255

aDiagObj.FontColor=65535

aDiagObj.BorderColor=65535

aDiagObj.BorderLineWidth=1

aDiagObj.Update

aRepos.ReloadDiagram aDiagObj.DiagramID
Next

(c) Sparx Systems 2019 Page 244 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

SwimlaneDef Class

A SwimlaneDef object makes available attributes relating to a single row or column in a list of swimlanes.

SwimlaneDef Attributes

Attribute Description

Bold Boolean
Notes: Read/Write
Show the title text in bold.

FontColor Long
Notes: Read/Write
The RGB color used to draw the titles.

HideClassifier Boolean
Notes: Read/Write

Removes any classifier from the title display.

HideNames Boolean
Notes: Read/Write

Set to True to hide the swimlane titles.

LineColor Long
Notes: Read/Write

The RGB color used to draw swimlane borders.

LineWidth Long
Notes: Read/Write

The width, in pixels, of the line used to draw swimlanes. Valid values are 1, 2 or 3.

Locked Boolean
Notes: Read/Write

If set to True, disables user modification of the swimlanes via the diagram.

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Orientation String
Notes: Read/Write

Indicates whether the swimlanes are vertical or horizontal.

ShowInTitleBar Boolean
Notes: Read/Write

(c) Sparx Systems 2019 Page 245 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Enables vertical swimlane titles to be shown in the title bar.

Swimlanes Swimlanes
Notes: Read/Write

A list of individual swimlanes.

(c) Sparx Systems 2019 Page 246 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Swimlanes Class

A Swimlanes object is attached to a diagram's SwimlaneDef object and provides a mechanism to access individual
swimlanes.

Swimlanes Attributes

Attribute Description

Count Long
Notes: Read/Write

Gives the number of swimlanes.

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Swimlanes Methods

Method Description
Add(string Title, long Swimlane
Width)

Notes: Adds a new swimlane to the end of the list, and returns a swimlane object
representing the newly added entry.

Parameters:

e Title: String - The title text that appears at the top of the swimlane; this can be
the same as an existing swimlane title

e Width: Long - The width of the swimlane in pixels

Delete(object Index) Void
Notes: Deletes a selected swimlane.
If the string matches more than one entry, only the first entry is deleted.
Parameter:

e Index: Object - Either a string representing the title text or an integer
representing the zero-based index of the swimlane to delete

DeleteAll() Void

Notes: Removes all swimlanes.

Insert(long Index, string Swimlane
Title, long Width) Notes: Inserts a swimlane at a specific position, and returns a swimlane object
representing the newly added entry.

Parameters:

e Index: Long - The zero-based index of the existing Swimlane before which this

(c) Sparx Systems 2019 Page 247 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

new entry is inserted

e Title: String - The title text that appears at the top of the swimlane; this can be
the same as an existing swimlane title

e Width: Long - The width of the swimlane in pixels

Items(object Index) Swimlane collection
Notes: Accesses an individual swimlane.

If the string matches more than one swimlane title, the first matching swimlane is
returned.

Parameter:

e Index: Object - Either a string representing the title text or an integer
representing the zero-based index of the swimlane to get

(c) Sparx Systems 2019 Page 248 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Swimlane Class

A Swimlane object makes available attributes relating to a single row or column in a list of swimlanes.

Swimlane Attributes

Attribute Description

BackColor Long
Notes: Read/Write
The RGB color that the swimlane is filled with.

ClassifiedGuid String
Notes: Read/Write

The GUID of the classifier Class. This can be obtained from the corresponding
element object via the ElementGUID property.

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Title String
Notes: Read/Write

The text at the head of the swimlane.

Width Long
Notes: Read/Write

The width of the swimlane, in pixels.

(c) Sparx Systems 2019 Page 249 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Project Interface Package

The Enterprise Architect.Project interface. This is the interface to Enterprise Architect elements; it also includes some
utility functions. You can get a pointer to this interface using the Repository.GetProjectInterface method.

Example

Project

AN

This interface provides acoess to the methods defined in
the XML based automation interface. Altough this
interface can be loaded seperately, it is convenient to use
it from the Repository interface (using the
"GetProjectinterface™ method) - allowing acoess to the
XKML for elements. This interface also has some additicnal
utility metheods to copy a diagram to the dipboard, lcad a
diagram, run a report etc.

(c) Sparx Systems 2019 Page 250 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Project Class

The Project interface can be accessed from the Repository using GetProjectInterface(). The returned interface provides
access to the XML-based Enterprise Architect Automation Interface. Use this interface to get XML for the various
internal elements and to run some utility functions to perform tasks such as load diagrams or run reports.

Project Attributes
Attribute Remarks
ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Project Methods

Method Remarks

BuildExecutableStatemachi Boolean

ne (string ElementGUID, Notes: Builds Executable StateMachine code for an <<executable statemachine>>
string ExtraOptions) Artifact element.
Parameters:
e ElementGUID: String - the GUID (in XML format) of the element to generate
e ExtraOptions: String - enables extra options to be given to the command
(currently unused)
CancelValidation () Void
Notes: Cancels a validation process.
CanValidate () Boolean
Notes: Returns a value to indicate that the Model Validation component is loaded.
ExportReferenceData Boolean
(string FileName, string Notes: Exports Reference Data.
Tables)
Parameters:
e FileName: String - the name of the file to output the reference data to
e Tables: String - the list of reference data tables to be output; the data table
delimeter is ";"
If the string is empty, Enterprise Architect will prompt with a dialog to select
the tables to output
ImportReferenceData Boolean
(string FileName, string Notes: Imports Reference Data
DataSets)

Parameters:

(c) Sparx Systems 2019 Page 251 of 505 Created with Enterprise Architect

User Guide - Automation

GenerateBuildRunExecuta

bleStateMachine (string
ElementGUID, string
ExtraOptions)

CreateBaseline (string
PackageGUID, string
Version, string Notes)

CreateBaselineEx (string
PackageGUID, string
Version, string Notes,
EA.CreateBaselineFlag
Flags)

DefineRule (string
CategorylD,
EA.EnumMVErrorType
ErrorType, string
ErrorMessage)

(c) Sparx Systems 2019

7 August, 2019

e FileName: String - the name of the reference data file to import from

e DataSets: String - the list of reference data sets to import from; the data set

n.n

delimeter is ";
If the string is empty, Enterprise Architect displays a dialog prompt to select
the data sets to import

Boolean

Notes: Generates, builds and runs Executable StateMachine code for an
<<executable statemachine>> Artifact element, which will start simulation of the
StateMachine.

Parameters:
e ElementGUID: String - the GUID (in XML format) of the element to generate

e ExtraOptions: String - enables extra options to be given to the command
(currently unused)

Boolean

Notes: Creates a Baseline of a specified Package.

Parameters:

e PackageGUID: String - the GUID (in XML format) of the Package to Baseline
e Version: String - the version of the Baseline

e Notes: String - any notes concerning the Baseline

Boolean

Notes: Creates a Baseline of a specified Package, with a flag to exclude Package
contents below the first level.

Parameters:
e PackageGUID: String - the GUID (in XML format) of the Package to be
Baselined

e Version: String - the version of the Baseline
e Notes: String - any notes concerning the Baseline

e Flags: EA.CreateBaselineFlag - whether or not to exclude the Package contents
below the first level

String

Notes: Defines the individual rules that can be performed during model validation.
It must be called once for each rule from the EA_OnlnitializeUserRules broadcast
handler.

The return value is a Ruleld, which can be used for reference purposes when an
individual rule is executed by Enterprise Architect during model validation.

See the Model Validation Example for a detailed example of the use of this method.
Parameters:

e Categoryld: String - should be passed the return value from the
DefineRuleCategory method

e ErrorType: EA.EnumMVErrorType - depending on the severity of the error
being validated, can be:
- mvErrorCritical
- mvError
- mvWarning, or
- mvInformation

e ErrorMessage: String - can contain a default error string, although this is

Page 252 of 505

Created with Enterprise Architect

User Guide - Automation

DefineRuleCategory (string

CategoryName)

RunExecutableStatemachin

e (string ElementGUID,
string ExtraOptions)

DeleteBaseline (string
BaselineGUID)

DoBaselineCompare
(string PackageGUID,
string Baseline, string
ConnectString)

DoBaselineMerge (string
PackageGUID, string
Baseline, string
Mergelnstructions, string
ConnectString)

(c) Sparx Systems 2019

7 August, 2019

probably overridden by the PublishResult call

String

Notes: Defines a category of rules that can be performed during model validation
(there is typically one category per Add-In). It must be called once from the
EA_OnlnitializeUserRules broadcast handler.

The return value is a Categoryld that must to be passed to the DefineRule method.
See the Model Validation Example for a detailed example of the use of this method.
Parameters:

e CategoryName: String - a text string that is visible in the 'Model Validation
Configuration' dialog

Boolean

Notes: Runs Executable StateMachine code for an <<executable statemachine>>
Artifact element, which will start simulation of the StateMachine

Parameters:
e ElementGUID: String - the GUID (in XML format) of the element to generate

e ExtraOptions: String - enables extra options to be given to the command
(currently unused)

Boolean

Notes: Deletes a Baseline, identified by the BaselineGUID, from the repository.
Parameters:

e BaselineGUID: String - the GUID (in XML format) of the Baseline to delete

String
Notes: Performs a Baseline comparison using the supplied Package GUID and
Baseline GUID (obtained in the result list from GetBaselines).

Optionally you can include the connection string required to find the Baseline if it
exists in a different model file.

This method returns a log file of the status of all elements found and compared in
the difference procedure. You can use this log information as input to
DoBaselineMerge - automatically merging information from the Baseline.

Parameters:

e PackageGUID: String - the GUID (in XML format) of the Package to run the
comparison on

e Baseline: String - the GUID (in XML format) of the Baseline to run the
comparison on

e ConnectString: String - the location of the external .eap file or DBMS to
extract the Baseline from

String

Notes: Performs a batch merge based on instructions contained in an XML file
(Mergelnstructions). You can supply an optional connection string if the Baseline is
located in another model.

In the Mergelnstructions file, each Mergeltem node supplies the GUID of a
differenced item from the XML difference log. As the merge is uni-directional and
actioned in only one possible way, no additional arguments are required. Enterprise
Architect chooses the correct procedure based on the 'Difference’ results.

<Merge>

Page 253 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

<Mergeltem guid="{XXXXXX}" />

<Mergeltem guid="{XXXXXX}" />

</Merge>
Alternatively, you can supply a single Mergeitem with a GUID of RestoreAll. In
this case, Enterprise Architect batch-processes ALL differences.

<Merge>

<Mergeltem guid="RestoreAll" changed="true" baselineOnly="true"
modelOnly="true" moved="true" fullRestore="false" />

</Merge>
Parameters:

e PackageGUID: String - the GUID (in XML format) of the Package to merge
the Baseline into

e Baseline: String - the GUID of the Baseline (in XML format) to merge into the
Package

e Mergelnstructions: String - the file containing the GUID of each differenced
item from the XML difference log returned by DoBaselineCompare()

e ConnectString: String - the location of the EAP file or DBMS to get the
Baseline from, if not in the same model as the Package

EnumDiagramElements protected abstract: String

(string DiagramGUID) Notes: Gets an XML list of all elements in a diagram.

Parameters:

e DiagramGUID: String - the GUID (in XML format) of the diagram to get
elements for

EnumDiagrams (string protected abstract: String

PackageGUID) Notes: Gets an XML list of all diagrams in a specified Package.
Parameters:

e PackageGUID: String - the GUID (in XML format) of the Package to list
diagrams for

EnumElements (string protected abstract: String
PackageGUID) Notes: Gets an XML list of elements in a specified Package.
Parameters:

e PackageGUID: String - the GUID (in XML format) of the Package to get a list
of elements for

EnumLinks (string protected abstract: String
ElementGUID) Notes: Gets an XML list of connectors for a specified element.
Parameters:

e ElementGUID: String - the GUID (in XML format) of the element to get all
associated connectors for

EnumPackages (string protected abstract: String
PackageGUID) Notes: Gets an XML list of child Packages inside a parent Package.
Parameters:

e PackageGUID: String - the GUID (in XML format) of the parent Package

EnumProjects () protected abstract: String

(c) Sparx Systems 2019 Page 254 of 505 Created with Enterprise Architect

User Guide - Automation

EnumViews ()

EnumViewEx (string
ProjectGUID)

Exit ()

ExportPackageXMI (string
PackageGUID,
enumXMIType XMIType,
long DiagramXML, long
DiagramImage, long
FormatXML, long
UseDTD, string FileName)

ExportPackage XMIEx
(string PackageGUID,
enumXMIType XMIType,
long DiagramXML, long
DiagramImage,

long FormatXML, long
UseDTD, string FileName,
ea.ExportPackageXMIFlag
Flags)

(c) Sparx Systems 2019

7 August, 2019

Notes: Gets a list of projects in the current file; corresponds to Models in
Repository.

protected abstract: String

Notes: Enumerates the Views for a project. Returned as an XML document.

protected abstract: String

Notes: Gets a list of Views in the current project.

Parameters:
e ProjectGUID: String - the GUID (in XML format) of the project to get views
for

protected abstract: String

Notes: Exits the current instance of Enterprise Architect; this function is maintained
for backward compatibility and should never be called.

Enterprise Architect automatically exits when you are no longer using any of the
provided objects.

protected abstract: String
Notes: Exports XMI for a specified Package.

Parameters:
e PackageGUID: String - the GUID (in XML format) of the Package to be
exported

e XMIType: EnumXMIType - specifies the XMI type and version information;
see XMIType Enum for accepted values

e DiagramXML: Long - True if XML for diagrams is required; accepted values:
0 = Do not export diagrams
1 = Export diagrams
2 = Export diagrams along with alternate images

e DiagramImage: Long - the format for diagram images to be created at the same
time; accepted values:

-1 =NONE
0=EMF

1 =BMP
2=GIF
3=PNG
4=JPG

e FormatXML: Long - True if XML output should be formatted prior to saving
e UseDTD: Long - True if a DTD should be used

e FileName: String - the filename to output to

protected abstract: String

Notes: Exports XMI for a specified Package, with a flag to determine whether the
export includes Package content below the first level.

Parameters:
e PackageGUID: String - the GUID (in XML format) of the Package to be
exported

e XMIType: EnumXMIType - specifies the XMI type and version information;
see XMIType Enum for accepted values

e DiagramXML: Long - true if XML for diagrams is required; accepted values:
0 = Do not export diagrams

Page 255 of 505 Created with Enterprise Architect

User Guide - Automation

GenerateClass (string
ElementGUID, string
ExtraOptions)

GenerateDiagramFromSce
nario (string
ElementGUID,
EnumScenarioDiagramTyp
e DiagramType, long
OverwriteExistingDiagram

)

GenerateElementDDL

(string ElementGUID,

string FileName, string
ExtraOptions)

GenerateExecutableStatem
achine (string
ElementGUID, string
ExtraOptions)

(c) Sparx Systems 2019

7 August, 2019

1 = Export diagrams
2 = Export diagrams along with alternate images
e DiagramImage: Long - the format for diagram images to be created at the same
time; accepted values:
-1 =NONE
0 =EMF
1 =BMP
2 =GIF
3 =PNG
4 =JPG
e FormatXML: Long - True if XML output should be formatted prior to saving
e UseDTD: Long - True if a DTD should be used.
e FileName: String - the filename to output to

e Flags: ea.ExportPackageXMIFlag - specify whether or not to include Package
content below the first level (currently supported for xmiEADefault), whether
or not to exclude tool-specific information from export

Boolean

Notes: Generates the code for a single Class.

Parameters:

e ElementGUID: String - the GUID (in XML format) of the element to generate

e ExtraOptions: String - enables extra options to be given to the command;
currently unused

Boolean
Notes: Generates various diagrams from the scenario specification of an element.
Parameters:

e ElementGUID: String - the GUID (in XML format) of the element containing
the scenario specification

e DiagramType: EnumScenarioDiagramType - the type of diagram to generate;
see ScenarioDiagramType Enum for accepted values

e OverwriteExistingDiagram: Long - determines whether to overwrite the

existing diagram or synchronize the existing elements with the scenario steps

0 = Delete the existing diagram and elements, and create a new diagram and
elements

1 = Synchronize existing elements with the scenario steps and preserve the
diagram layout

2 = Synchronize existing elements with the scenario steps and re-cast the
diagram layout

3 = Do not generate a diagram if one already exists

Boolean

Notes: Generates DDL for an element using the options that are currently set on the
Generate DDL screen.

Boolean

Notes: Generates Executable StateMachine code for an <<executable
statemachine>> Artifact element.

Parameters:
e ElementGUID: String - the GUID (in XML format) of the element to generate

e ExtraOptions: String - enables extra options to be given to the command

Page 256 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

(currently unused)
GeneratePackage (string Boolean
PackageGUID, Notes: Generates the code for all Classes within a Package.
string ExtraOptions) For example:
recurse=1;overwrite=1;dir=C:\
Parameters:
e PackageGUID: String - the GUID (in XML format) of the Package to generate
code for
e ExtraOptions: String - enables extra options to be given to the command;
currently enables:
- Generation of all sub-Packages (recurse)
- Force overwrite of all files (overwrite) and
- Specification to auto generate all paths (dir)
GeneratePackageDDL Boolean
(st.rmg P ackageGUID ’ Notes: Generates DDL for all elements in a Package using the options that are
string F1I§Name, string currently set on the Generate DDL screen.
ExtraOptions)
GenerateTestFromScenario Boolean
(string ElementGUID, Notes: Generates a Vertical Test Suite, a Horizontal Test Suite, an Internal test or
EnumScenarioTestType an External test from the scenario specification of an element.
TestType)
Parameters:
e ElementGUID: String - the GUID (in XML format) of the element containing
the scenario specification
e TestType: EnumScenarioTestType - the type of test to generate; see
ScenarioTestType Enum for accepted values
GenerateWSDL(string Boolean
WSDLComponentGUID, Notes: Generates WSDL for the specified WSDL stereotyped Component.
string Filename, string
Encoding, string Parameters:
ExtraOptions) e WSDLComponentGUID: String - the GUID (in XML format) of the WSDL
stereotyped Component
e Filename: String - the target file path
e Encoding: String - the XML encoding for the code page instruction
e ExtraOptions: String - enables extra options to be given to the command;
currently unused
GenerateXSD (string Boolean
PackageGUID, Notes: Creates an XML schema for a Package, specified by its GUID. Returns True
string FileName, on success.
string Encoding, Parameters:
string Options) e PackageGUID: String - the GUID (in XML format) of the Package

e FileName: String - the target filepath
e Encoding: String - the XML encoding for the code page instruction

e Options: String - enables extra options to be given to the command, in a
comma-separated string; currently enables:
- GenGlobalElement - turn the generation of global elements for
all global ComplexTypes On or Off; for example:
GenGlobalElement=1

(c) Sparx Systems 2019 Page 257 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

- UseRelativePath - turns on or off the option to use a relative
path in the XSD import or XSD include statement when
referencing external Package, provided the schemalocation tag
is empty on the referenced Packages; for example:
UseRelativePath=1

GetBaselines (string String

PackageGUID, string Notes: Returns a list (in XML format) of Baselines associated with the supplied

ConnectString) Package GUID. Optionally, you can provide a connection string to get Baselines
from the same Package, but located in a different model file (or DBMS).
Parameters:
e PackageGUID: String - the GUID (in XML format) of the Package to get
Baselines for
e ConnectString: String - the location of the EAP file or DBMS to get the
Baselines from, if not in the same model as the Package
GetDiagram (string protected abstract: String
DiagramGUID) Notes: Gets the diagram details, in XML format.
Parameters:
e DiagramGUID: String - the GUID (in XML format) of the diagram to get
details for
GetElement (string protected abstract: String
ElementGUID) Notes: Gets XML for the specified element.
Parameters:
e ElementGUID: String - the GUID (in XML format) of the element to retrieve
XML for
GetElementConstraints protected abstract: String
(string ElementGUID) Notes: Gets constraints for an element, in XML format.
Parameters:
e ElementGUID: String - the GUID (in XML format) of the element
GetElementEffort (string protected abstract: String
ElementGUID) Notes: Gets efforts for an element, in XML format.
Parameters:
e ElementGUID: String - the GUID (in XML format) of the element
GetElementFiles (string protected abstract: String
ElementGUID) Notes: Gets metrics for an element, in XML format.

Parameters:
e ElementGUID: String - the GUID (in XML format) of the element

GetElementMetrics (string protected abstract: String

ElementGUID) Notes: Gets files for an element, in XML format.

Parameters:

e ElementGUID: String - the GUID (in XML format) of the element
GetElementProblems protected abstract: String

(c) Sparx Systems 2019 Page 258 of 505 Created with Enterprise Architect

User Guide - Automation

(string ElementGUID)

GetElementProperties
(string ElementGUID)

GetElementRequirements
(string ElementGUID)

GetElementResources
(string ElementGUID)

GetElementRisks (string
ElementGUID)

GetElementScenarios
(string ElementGUID)

GetElementTests (string
ElementGUID)

GetFileNameDialog (string
Filename, string
FilterString, long
FilterIndex, long Flags,
string InitialDirectory,

long OpenOrSave)

(c) Sparx Systems 2019

7 August, 2019

Notes: Gets a list of issues (problems) associated with an element, in XML format.
Parameters:
e ElementGUID: String - the GUID (in XML format) of the element

protected abstract: String

Notes: Gets Tagged Values for an element, in XML format.
Parameters:

e ElementGUID: String - the GUID (in XML format) of the element

protected abstract: String

Notes: Gets a list of requirements for an element, in XML format.
Parameters:

e ElementGUID: String -the GUID (in XML format) of the element

protected abstract: String

Notes: Gets a list of resources for an element, in XML format.
Parameters:

e ElementGUID: String - the GUID (in XML format) of the element

protected abstract: String

Notes: Gets a list of risks associated with an element, in XML format.
Parameters:

e ElementGUID: String - the GUID (in XML format) of the element

protected abstract: String

Notes: Gets a list of scenarios for an element, in XML format.
Parameters:

e ElementGUID: String - the GUID (in XML format) of the element

protected abstract: String

Notes: Gets a list of tests for an element, in XML format.

Parameters:

e ElementGUID: String - the GUID (in XML format) of the element

String

Notes: Opens a standard 'File Open' or 'Save As' dialog and returns a string
containing the full path to the selected file on success. Returns an empty string if
the dialog was canceled.

For example:
Filename =""
FilterString = "CSV Files (*.csv)|*.csv|All Files (¥.¥)[*.*||"
Filterindex = 1
Flags = &H2 'OFN_OVERWRITEPROMPT
InitialDirectory =""
OpenOrSave = 1

filepath = Project.GetFileNameDialog (Filename, FilterString, Filterindex,
Flags, InitialDirectory, OpenOrSave)

Page 259 of 505

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

In this example, the 'Save As' dialog will prompt for a CSV file.
Parameters:

e Filename: String - default filename specified in the dialog

o FilterString: String - delimited list of available file type filters

e Filterindex: Long - one-based index of the filter to be used by default

e Flags: Long - additional bit flags used to initialize the file dialog; see the
OPENFILENAME structure in MSDN documentation for accepted values

e InitialDirectory: String - directory path to open this dialog

e OpenOrSave: Long - show dialog as an 'Open’ or 'Save As' style dialog;
accepted values: 0 = Open, 1 = Save As

GetLastError () protected abstract: String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

GetLink (string protected abstract: String
LinkGUID) Notes: Gets connector details, in XML format.
Parameters:
e LinkGUID: String - the GUID (in XML format) of the connector to get details
of
GUIDtoXML (string String
GUID) Notes: Changes an internal GUID to the form used in XML.
Parameters:
e GUID: String - the Enterprise Architect style GUID to convert to XML format
ImportDirectory (string Boolean

PackageGUID, string

Language, string

DirectoryPath, string Parameters:

ExtraOptions) e PackageGUID: String - the GUID (in XML format) of the Package to reverse
engineer code into

Notes: Imports a source code directory into the model.

e Language: String - specifies the language of the code to be imported

e DirectoryPath: String - specifies the path where the code is found on the
computer

e ExtraOptions: String - enables extra options to be given to the command;
currently enables import of source from all child directories (recurse) - for
example: recurse=1

ImportFile (string Boolean
PackageGUID, string
Language, string
FileName, string
ExtraOptions) Parameters:
e PackageGUID: String - the GUID (in XML format) of the Package to reverse
engineer code into; this is expected to be a namespace root Package

Notes: Imports an individual file or binary module into the model, in a Package per
namespace style import.

e Language: String - specifies the language of the code to be imported
Use the value 'DNPE' to import a binary module; this imports a .NET assembly
or Java .class file, but not a .jar file

e Filename: String - specifies the path where the code or module is found on the
computer

(c) Sparx Systems 2019 Page 260 of 505 Created with Enterprise Architect

User Guide - Automation

ImportPackageXMI (string
PackageGUID, string
Filename, long
ImportDiagrams, long
StripGUID)

LayoutDiagram (string
DiagramGUID, long
LayoutStyle)

LayoutDiagramEx (string
DiagramGUID, long
LayoutStyle, long
Iterations, long
LayerSpacing, long
ColumnSpacing, boolean
SaveToDiagram)

(c) Sparx Systems 2019

7 August, 2019

e ExtraOptions: String - enables extra options to be given to the command;
currently unused

String

Notes: Imports an XMI file at a point in the tree. Returns an empty string if
successful, or returns an error message on failure.

Parameters:

e PackageGUID: String - the GUID (in XML format) of the target Package to
import the XMI file into (or overwrite with the XMI file)

e Filename or XMLText: String - the name of the XMI file; if the String is of
type filename it is interpreted as a source file, otherwise the String is imported
as XML text

e ImportDiagrams: Long - 1 for importing diagrams and 0 to skip importing
diagrams

e StripGUID: Long
- 1 to replace the element UniquelDs on import; if stripped, then
a copy of the Package could be imported into the same Enterprise
Architect model as two different versions
- 0 to retain the element UniquelDs on import; a duplicate copy of
the Package cannot be created in the same model of Enterprise
Architect

Boolean
Notes: Deprecated. Use LayoutDiagramEx.

Calls the function to automatically layout a diagram in hierarchical fashion. It is
only recommended for Class and Object diagrams.

Parameters:
e DiagramGUID: String - the GUID (in XML format) of the diagram to lay out
e LayoutStyle: Long - always ignored

Boolean

Notes: Calls the function to automatically layout a diagram in hierarchical fashion.
It is only recommended for Class and Object diagrams.

LayoutStyle accepts these options
e Default Options:
- IsDiagramDefault
- IsProgramDefault
e Cycle Removal Options:
- IsCycleRemoveGreedy
- IsCycleRemoveDFS
e Layering Options:
- IsLayeringlongestPathSink
- IsLayeringlongestPathSource
- IsLayeringOptimalLinkLength
e Initialize Options:
- IsInitializeNaive
- IsInitializeDFSOut
- IsInitializeDFSIn

e Crossing Reduction Option:

Page 261 of 505

Created with Enterprise Architect

User Guide - Automation

LoadControlledPackage
(string PackageGUID)

LoadDiagram (string
DiagramGUID)

LoadProject (string
FileName)

Migrate (string GUID,
string SourceType, string
DestinationType)

(c) Sparx Systems 2019

7 August, 2019

- IsCrossReduceAggressive
e Layout Options - Direction
- IsLayoutDirectionUp
- IsLayoutDirectionDown
- IsLayoutDirectionLeft
- IsLayoutDirectionRight
Parameters:
e DiagramGUID: String - the GUID (in XML format) of the diagram to lay out
e LayoutStyle: Long - the layout style

e [terations: Long - the number of layout iterations the Layout process should
take to perform cross reduction (Default value = 4)

e LayerSpacing: Long - the per-element layer spacing the Layout process should
use (Default value = 20)

e ColumnSpacing: Long - the per-element column spacing the Layout process
should use (Default value = 20)

e SaveToDiagram: Boolean - specifies whether or not Enterprise Architect
should save the supplied layout options as default to the diagram in question

String

Notes: Loads a Package that has been marked and configured as controlled. The
filename details are stored in the Package control data.

Parameters:
e PackageGUID: String - the GUID (in XML format) of the Package to load

protected abstract: Boolean
Notes: Loads a diagram by its GUID.
Parameter:

e DiagramGUID: String - the GUID (in XML format) of the diagram to load; if
you retrieve the GUID using the Diagram interface, use the GUIDtoXML
function to convert it to XML format

protected abstract: Boolean
Notes: Loads an Enterprise Architect project file.

Do not use this method if you have accessed the Project interface from the
Repository, which has already loaded a file.

Parameters:

e FileName: String - the name of the project file to load

Void

Notes: Migrates a model (or part of a model) from one BPMN, ArchiMate, UPDM
or SysML format to an upgraded format.

Parameters:

e GUID: String - the GUID of the Package or element for which the contents are
to be migrated

e SourceType: String - the type of model to be upgraded; accepted values:
- BPMN
- BPMNI.1
- UPDM
- SysMLI1.1
- SysML1.2

Page 262 of 505 Created with Enterprise Architect

User Guide - Automation

MigrateToBPMNI11 (string
GUID,

string Type)

ProjectTransfer (string
SourceFilePath,

string TargetFilePath,
string LogFilePath)

PublishResult (string
CategorylD,

EA.EnumMVErrorType
ErrorType,

string ErrorMessage)

(c) Sparx Systems 2019

7 August, 2019

SysML1.3
ArchiMate
ArchiMate2
- UPDM2

e DestinationType: String - the type of model to upgrade to; accepted values:
- BPMNI1.1
- BPMNI.1::BPEL
- BPMN2.0
- UPDM2
- SysML1.2
- SysML1.3
- SysML1.4
- ArchiMate2
- ArchiMate3
- UAF

Void

Notes: Migrates every BPMN 1.0 construct in a Package or an element (including
elements, attributes, diagrams and connectors) to BPMN 1.1.

Parameters

e GUID: String - the GUID of the Package or element for which the contents are
to be migrated to BPMN 1.1

e Type: String - the type of upgrade, either just to BPMN 1.1 or to BPMN 1.1
and BPEL. Accepted values are:
- BPMN = migrate to BPMN 1.1
- BPEL = migrate to BPMN 1.1 and update:
- any diagram with stereotype BPMN to BPEL
- any element with stereotype BusinessProcess to BPELProcess

Migrating to BPEL is possible in the Ultimate and Unified editions of Enterprise
Architect.

Boolean

Notes: Transfers the project from a .eap file or DBMS to a .eap file.
Parameters:

e SourceFilePath: String - the path of the source file to transfer

e TargetFilePath: String - the path of the target file; Enterprise Architect creates
a new Base project in this location

e LogFilePath: String - the path of the log file where the status of the transfer
process is updated

In automation, the target file does not have to exist; the file path is enough.
Enterprise Architect creates a new, empty Base.eap file and transfers the source
project into it.

String

Notes: Returns the results of each rule that can be performed during model
validation. It must be called once for each rule from the EA_OnlnitializeUserRules
broadcast handler.

The return value is a Ruleld, which can be used for reference purposes when an
individual rule is executed by Enterprise Architect during model validation.

See the Model Validation Example for a detailed example of the use of this method.
Parameters:

e (Categoryld: String - should be passed the return value from the
DefineRuleCategory method

Page 263 of 505 Created with Enterprise Architect

User Guide - Automation

PutDiagramImageOnClipb
oard (string DiagramGUID,

long Type)

PutDiagramImageToFile
(string Diagram GUID,

string FileName,

long Type)

ReloadProject ()

RunModelSearch (string
Search, string SearchTerm,
bool ShowInEA)

RunReport (string
PackageGUID,

string TemplateName,

string Filename)

(c) Sparx Systems 2019

7 August, 2019

e ErrorType: EA.EnumMVErrorType - depending on the severity of the error
being validated, can be:
- mvErrorCritical
- mvError
- mvWarning, or
- mvInformation

e ErrorMessage: String - contains an error string

protected abstract: Boolean

Notes: Copies an image of the specified diagram to the clipboard.

Parameters:

e DiagramGUID: String - the GUID (in XML format) of the diagram to copy

e Type: Long - the file type
- If Type = 0 then it is a metafile
- If Type = 1 then it is a Device Independent Bitmap

protected abstract: Boolean

Notes: Saves an image of the specified diagram to file.

Parameters:

e DiagramGUID: String - the GUID (in XML format) of the diagram to save
e FileName: String - the name of the file to save the diagram into

e Type: Long - the file type
- If type = 0 then it is a metafile
- Iftype = 1 then it uses the file type from the name extension
(that is, .bmp, .jpg, .gif, .png, .tga)

protected abstract: Boolean
Notes: Reloads the current project.

This is a convenient method to refresh the current loaded project (in case of outside
changes to the .cap file).

Void

Notes: Invokes the Model Search component.

Parameters:

e Search: String - the name of an Enterprise Architect defined search
e SearchTerm: String - the term to search for in the project

e ShowInEA: Boolean - execute the search and output in the Model Search
window

protected abstract: Void
Notes: Runs a named document report.
Parameters:

e PackageGUID: String - the GUID of the Package or master document to run
the report on

e TemplateName: String - the document report template to use; if the
PackageGUID has a stereotype of MasterDocument, the template is not
required

e FileName: String - the file name and path to store the generated report; the file
extension specified will determine the format of the generated document - for
example, RTF, PDF

Page 264 of 505 Created with Enterprise Architect

User Guide - Automation

RunHTMLReport (string
PackageGUID,

string ExportPath,
string ImageFormat,
string Style,

string Extension)

SaveControlledPackage
(string PackageGUID)

SaveDiagramImageToFile
(string Filename)

ShowWindow (long Show)

SynchronizeClass (string
ElementGUID,

string ExtraOptions)

SynchronizePackage
(string PackageGUID,

string ExtraOptions)

TransformElement (string
TransformName,

(c) Sparx Systems 2019

7 August, 2019

String
Notes: Runs an HTML report (as for 'Documentation | Publish as HTML' when you

click on a Package in the Browser window and onthe ~ icon).
Parameters:

e PackageGUID: String - the GUID (in XML format) of the Package or master
document to run the report on

e ExportPath: String - the directory path to store the generated report files
e ImageFormat: String - file format in which to store images - .png or .gif

e Style: String - name of the web style template to apply; use <default> for the
standard, system-provided template

e Extension: String - file extension for generated HTML files (example: .htm)

String

Notes: Saves a Package that has been configured as a controlled Package, to XMI.
Only the Package GUID is required, Enterprise Architect picks the rest up from the
Package control information.

Parameter:
e PackageGUID: String - the GUID (in XML format) of the Package to save

protected abstract: String
Notes: Saves a diagram image of the current diagram to file.
Parameters:

e FileName: String - the filename of the image to save

protected abstract: Void
Notes: Shows or hides the Enterprise Architect User Interface.
Parameters:

e Show: Long

Boolean

Notes: Synchronizes a Class with the latest source code.

Parameters:
e ElementGUID: String - the GUID (in XML format) of the element to update
from code

e ExtraOptions: String - enables extra options to be given to the command;
currently unused

Boolean
Notes: Synchronizes each Class in a Package with the latest source code.
Parameters:

e PackageGUID: String - the GUID (in XML format) of the Package containing
the elements to update from code

e ExtraOptions: String - enables extra options to be given to the command;
currently enables synchronization of all child Packages (children) - for
example: children=1

Boolean

Notes: Transforms an element into a Package.

Page 265 of 505

Created with Enterprise Architect

User Guide - Automation

string ElementGUID,
string TargetPackage,
string ExtraOptions)

TransformPackage (string
TransformName,

string SourcePackage,
string TargetPackage,
string ExtraOptions)

ValidateDiagram (string
DiagramGUID)

ValidateElement (string
ElementGUID)

ValidatePackage (string
PackageGUID)

(c) Sparx Systems 2019

7 August, 2019

Parameters:
e TransformName: String - specifies the transformation that should be executed
e ElementGUID: String - the GUID (in XML format) of the element to transform

e TargetPackageGUID: String - the GUID (in XML format) of the Package to
transform into

e ExtraOptions: String - enables extra options to be given to the command:
- GenCode=True / False - articulate code generation from the
transformed elements; this option supercedes the current
model setting

Boolean

Notes: Runs a transformation on the contents of a Package.

Parameters:

e TransformName: String - specifies the transformation that should be executed

e SourcePackageGUID: String - the GUID (in XML format) of the Package to
transform

e TargetPackageGUID: String - the GUID (in XML format) of the Package to
transform into

e ExtraOptions: String - enables extra options to be given to the command:
- GenCode=True/False - articulate code generation from the transformed
elements;
this option supercedes the current model setting
- SubPackages=True/False - specify if the child Packages are to be included
whilst
transforming a Package

Boolean

Notes: Invokes the Enterprise Architect Model Validation component, then
validates the diagram (for correctness) and the elements and connectors within the
diagram.

Output can be viewed through 'Start > Desktop > Design > System Output > Model
Validation'.

Returns a boolean value to indicate the success or failure of the process, regardless
of the results of the validation.

Parameters:
e DiagramGUID: String - the GUID of the Diagram Class object

Boolean

Notes: Invokes the Enterprise Architect Model Validation component, then
validates the element and all child elements, diagrams, connectors, attributes and
operations.

Output can be viewed through 'Start > Desktop > Design > System Output > Model
Validation'.

Returns a boolean value to indicate the success or failure of the process, regardless
of the results of the validation.

Parameters:
e ElementGUID: String - the GUID of the Element Class object

Boolean

Notes: Invokes the Enterprise Architect Model Validation component, then
validates the Package and all sub-Packages, elements, connectors and diagrams

Page 266 of 505 Created with Enterprise Architect

User Guide - Automation

XMLtoGUID (string
GUID)

Notes

7 August, 2019

within it.
Output can be viewed through ' > Desktop > Design > System Output > Model
Validation'.

Returns a boolean value to indicate the success or failure of the process, regardless
of the results of the validation.

Parameters:
e PackageGUID: String - the GUID of the Package Class object

String

Notes: Changes a GUID in XML format to the form used inside Enterprise
Architect.

Parameters:
e GUID: String - the XML style GUID to convert to Enterprise Architect internal
format

e These methods all require input GUIDs in XML format; use GUIDtoXML to change the Enterprise Architect GUID

to an XML GUID

(c) Sparx Systems 2019

Page 267 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Document Generator Interface Package

The DocumentGenerator Class provides an interface to the document and web reporting facilities, which you can use to
generate reports on specific Packages, diagrams and elements in your model.

Access
Repository Class You can create a pointer to this interface using the method
Repository.CreateDocumentGenerator.
Example

This diagram illustrates how you might use the Document Generator interface in generating a report through the
Automation Interface.

entGenerator

1| 1.0 CreateDocumentGenerator()

1.1 NewDocument()

loop)

1.2 DocumentElement()

1.3 SaveDocumenty()

J

S AN N AN N B

SV AU v S . SRR

Also look at the:

e Document Generation scripting example in the Scripting window ('Specialize > Tools > Scripting', then expand the
"Local Scripts' folder and double-click on 'JScript - Documentation Example')

e RunReport method in the Project Interface

(c) Sparx Systems 2019 Page 268 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

DocumentGenerator Class

The DocumentGenerator Class provides an interface to the document and web reporting facilities, which you can use to
generate reports on specific Packages, diagrams and elements in your model. This Class is accessed from the Repository
Class using the CreateDocumentGenerator() method.

DocumentGenerator Attributes

Attribute Remarks

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

DocumentGenerator Methods

Method Remarks

DocumentConnector (long Boolean
connectorlD, long nDepth,
string templateName)

Notes: Documents a connector.

Parameters:

e connectorld: Long - the ID of the connector

e nDepth: Long - the depth by which to adjust the heading level

e templateName: String - the name of a template to use when documenting
connectors; this can be blank

DocumentCustomData Boolean
(string XML, long nDepth,

. Notes: Documents information based on the data supplied.
string templateName)

Parameters:
e XML: String - the XML of the data to be documented
e nDepth: Long - the depth by which to adjust the heading level

e templateName: String - the name of a template to use when documenting
custom data; this can be blank

DocumentDiagram (long Boolean
diagramlID, long nDepth,

; Notes: Documents a diagram.
string templateName)

Parameters:
e diagramld: Long - the ID of the diagram
e nDepth: Long - the depth by which to adjust the heading level

e templateName: String - the name of a template to use when documenting
diagrams; this can be blank

DocumentElement (long Boolean

elementD, long nDepth, Notes: Documents an element.

(c) Sparx Systems 2019 Page 269 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

string templateName) Parameters:
e clementld: Long - the ID of the element
e nDepth: Long - the depth by which to adjust the heading level

e templateName: String - the name of a template to use when documenting
elements; this can be blank

DocumentModelAuthor Boolean
(string name, long nDepth,
string templateName)

Notes: Documents a model author.

Parameters:

e name: String - the name of the author

e nDepth: Long - the depth by which to adjust the heading level

e templateName: String - a template to use when documenting model authors;
this can be blank

DocumentModelClient Boolean
(string name, long nDepth,

. Notes: Documents a single model client.
string templateName)

Parameters:
e name: String - the name of the client
e nDepth: Long - the depth by which to adjust the heading level

e templateName: String - a template to use when documenting model clients; this
can be blank

DocumentModelGlossary Boolean
(long id, long nDepth,

. Notes: Documents a single model glossary term.
string templateName)

Parameters:
e id: Long - the ID of the term
e nDepth: Long - the depth by which to adjust the heading level

e templateName: String - a template to use when documenting model glossary
terms; this can be blank

DocumentModellssue Boolean
(long id, long nDepth,

. Notes: Documents a single model issue.
string templateName)

Parameters:
e id: Long - the ID of the issue
e nDepth: Long - the depth by which to adjust the heading level

e templateName: String - a template to use when documenting model issues; this
can be blank

DocumentModelResource Boolean
(string name, long nDepth,

. Notes: Documents a single model resource.
string templateName)

Parameters:
e name: String - the name of the resource
e nDepth: Long - the depth by which to adjust the heading level

e templateName: String - a template to use when documenting model resources;
this can be blank

DocumentModelRole Boolean

(string name, long nDepth, Notes: Documents a single model role.

(c) Sparx Systems 2019 Page 270 of 505 Created with Enterprise Architect

User Guide - Automation

string templateName)

DocumentModelTask (long
id, long nDepth, string
templateName)

DocumentPackage (long
packagelD,

long nDepth,

string templateName)

GetDocumentAsRTF()

GetProjectConstant (string
nameVal)

GetLastError ()

InsertBreak (long
breakType)

InsertCoverPageDocument
(string Name)

InsertHyperlink (string

(c) Sparx Systems 2019

7 August, 2019

Parameters:
e name: String - the name of the role
e nDepth: Long - the depth by which to adjust the heading level

e templateName: String - a template to use when documenting model roles; this
can be blank

Boolean

Notes: Documents a single model task.

Parameters:

e id: Long - the ID of the task

e nDepth: Long - the depth by which to adjust the heading level

e templateName: String - a template to use when documenting model tasks; this
can be blank

Boolean

Notes: Documents a Package.

Parameters:

e packageld: Long - the ID of the Package

e nDepth: Long - the depth by which to adjust the heading level

e templateName: String - a template to use when documenting Packages; this can
be blank

Read Only.

Returns a string value of the document in raw Rich Text Format.

String
Notes: Returns the value of a Project Constant.
Parameters:

e nameVal: String - the name of the Project Constant for which to extract the
value.

String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Boolean
Notes: Inserts a break into the report at the current location.
Parameters:

e DbreakType: Long - 0 = page break, 1 = section break

Boolean
Notes: Inserts the Coverpage into the document at the current location.

The style sheet is applied to the document before it is insert into the generated
document.

Parameters:

e Name: String - the name of the Cover page document found in the Resource
tree

Page 271 of 505

Created with Enterprise Architect

User Guide - Automation

Name, string URL)

InsertLinkedDocument
(string guid)

InsertTableOfContents

InsertTeamReviewPost
(string path)

InsertTemplate (string
templateName)

InsertText (string text,

string style)

InsertTOCDocument
(string name)

LoadDocument(string
FileName)

(c) Sparx Systems 2019

7 August, 2019

Boolean

Notes: Inserts a hyperlink at the current location. If you use a URL with the
#BOOKMARKNAME syntax, the hyperlink will link to another part of the
document.

Parameters:
e Name: String - the link text to insert into the report
e URL: String - The URL of the website to link to

Boolean
Notes: Inserts a Linked Document into the report at the current location.

A Linked Document can used to set the header and footer of the report. These are
taken from the first Linked Document added to the report.

Parameters:

e guid: String - the GUID of the element that has a Linked Document

Boolean

Notes: Inserts a Table of Contents at the current position.

Boolean
Notes: Inserts a Team Library posting into the report at the current location.
Parameters:

e path: String - the path of the Team Library post

Notes: Inserts the contents of the template directly into the report.
Parameters:

e templateName: String - the name of the template to use

Boolean

Notes: Inserts static text into the report at the current location.

A carriage return is not included; if you need to use one, you can add it manually.
Parameters:

e text: String - the static text to be inserted

e style: String - the name of the style in the template; defaults to Normal style

Boolean
Notes: Inserts the Table of Contents into the document at the current location.

Note: The stylesheet is applied to the document before it is insert into the generated
document.

Parameters:

e name: String - the name of the Table of Contents document found in the
Resource tree

Boolean
Notes: Inserts an external document into the currently generated file.
Parameters:

e FileName: String - the filename of an external document file to insert into the
document.

Page 272 of 505 Created with Enterprise Architect

User Guide - Automation

NewDocument (string
templateName)

ReplaceField (string
fieldname,

string fieldvalue)

SaveDocument (string
filename,

long nDocType)

SetPageOrientation (long
pageOrientation)

SetProjectConstant (string
newNameVal, string
new Value)

SetStyleSheetDocument
(string name)

SetSuppressProfile (name)

(c) Sparx Systems 2019

7 August, 2019

Boolean

Notes: Starts a new document; you call this before attempting to document anything
else.

Parameters:

e templateName: String - the name of a template to use when documenting
elements; this can be blank

Boolean

Notes: Replaces the 'Section' field identified by the fieldname parameter with the
value provided in fieldvalue. For example:

ReplaceField ("Element.Alias", "MyAlias")

If you call this function more than once with the same fieldname, the field only has
the most recent value set.

Parameters:
e fieldname: String - the field name to find (this does not include the {} braces)

e fieldvalue: String - the value to insert into the field; this can be a constant or a
derived value

Boolean

Notes: Saves the document to disk.

Parameters:

e filename: String - the filename to save the file to

e nDocType: Long - 0 =RTF, 1 = HTML, 2 = PDF,
3=DOCX

Boolean
Notes: Sets the current page orientation.
Parameters:

e pageOrientation: Long - 0 = Portrait, 1 = Landscape

Boolean

Notes: Sets a Project Constant for the documentation generator; this is saved in the
current model.

Parameters:
e newNameVal: String - the name of the Project Constant

e newValue: String - the value of the Project Constant

Boolean

Notes: Sets the Stylesheet to be used for TOC, Coverpage and templates used. This
can be called before NewDocument.

Parameters:

e name: String - the name of the stylesheet found in the Resource tree

Boolean
Notes: Sets the Suppress Profile to be used during report generation.
Parameters:

e Name: String - The name of the Suppress Profile, as created on the 'Suppress
Sections' tab of the 'Document Generation' dialog.

Page 273 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

(c) Sparx Systems 2019 Page 274 of 505 Created with Enterprise Architect

User Guide - Automation

7 August, 2019

Data Miner Package

The Data Miner Package provides the Automation Interface to the Data Miner elements. It contains these Classes:

aMinerManager

ataMinerAction

Data(): DMArray

r(string): DataMiner
(string): DMScript

): DataMinerAction
ata(string): DataMiner

ataMiner

Collection*

Connection): DataSet

DataSet

ay(DMArray): DMArray
String): String

%

DMArray

long, long): Variant

aMinerScript

For an overview of using the Data Miner see the Data Miner Help topic under the Model Exchange group of topics.

Notes

e The Data Miner is available in the Unified and Ultimate editions

(c) Sparx Systems 2019

Page 275 of 505

Created with Enterprise Architect

User Guide - Automation

7 August, 2019

DataMinerManager Class

DataMinerManager Attributes

Attribute

Actions

Connections

DataMiners

Scripts

Remarks

Collection
Notes: Returns a pointer to the EA.DMAction objects.

Collection

Notes: Returns a Collection of EA.DMConnection objects.

Collection

Notes: Returns a Collection of EA.DataMiner objects

Collection
Notes: Returns a Collection of EA.DMScript objects.

DataMinerManager Methods

Method

FindActiveDataMiner
(string guid)

FindDataMinerScript
(string guid)

GetActiveAction ()

GetActiveDataMiner ()

GetActiveVisualizerData

(c) Sparx Systems 2019

Remarks

DataMiner Object

Loads the DataMiner object from the model specified by it's guid.

Returns a EA.DataMiner object or NULL if current selected object isn't DataMiner.
Parameters:

e GUID: string - Guid of the Data Miner to lookup.

DMScript object

Returns an EA.DMScript object in the model.
Parameters:

e GUID: string - GUID of DMScript object.

DMAction Object

When you run an action (operation), from a diagram, this returns the EA.DMAction
object of it.

NOTE: This is generally used for a Action to workout what DataMiner and
DMConnection's it's linked to.

DataMiner Object

Returns a pointer to a EA.DataMiner object or NULL if current selected object isn't

a DataMiner.

DataSet Object

Page 276 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

(string name) Get the EA.DataSet of the currently open Visualizer.
Parameters:
e Name: string - Name of Open Visualizer.

NOTE: Passing in an blank name, will return the first Visualizer tab.

GetCurrentDBBuilderData DMArray Object

0 Get the current data from the Database Builder's latest SQL query. Returns the
current output of the SQL scratch window. Accessible via:

- Ribbon | Develop > Data Modeling > Database Builder > SQL Scratch Pad.
Return Type: DMArray

Returns a pointer to a EA.DMArray object, or NULL if there is not a current
Database Builder window with returned data.

See The Database Builder Help topic for more information on how to get data into
this window.

(c) Sparx Systems 2019 Page 277 of 505 Created with Enterprise Architect

http://www.sparxsystems.com/enterprise_architect_user_guide/15.0/model_domains/dbexplorer.html

User Guide - Automation

7 August, 2019

DataMiner Class

DataMiner Attributes
Attribute Remarks

Connections Collection
A collection of EA.DMConnection's,
Notes: Read Only

Name String
Name of the Script object.
Notes: Read Only

Query String
Query of the Data miner object
Notes: Read Only

Scripts Collection
A collection of EA.DMScript's,
Notes: Read Only

Type String

Type of the Data miner object
Notes: Read Only

DataMiner Methods

Method

Remarks

GetData (DMCconnection
Connection)

DataSet

Returns a EA.DataSet object that represents the query on the connection.

Parameters:

e connection: DMConnection - A DMConnection object

(c) Sparx Systems 2019

Page 278 of 505

Created with Enterprise Architect

User Guide - Automation

7 August, 2019

DataSet Class

DataSet Attributes

Attribute

Remarks

Type

long

Type of data contained in this data set.
1. Safe Array

2. Abstract Data type

3. JSon

4. Text

Notes: Read Only

DataSet Methods

Method Remarks
GetAST () Currently not supported
GetDMArray () DMArray
Returns an EA.DMArray object
NOTE: Only supported when Type = 1
GetString () String
Returns a string of the data.
NOTE: Only supported when Type = 3 or 4.

(c) Sparx Systems 2019

Page 279 of 505

Created with Enterprise Architect

User Guide - Automation

7 August, 2019

DMArray Class

DMArray Attributes
Attribute Remarks
ColumnCount long
Notes: Read Only
Number of Columns returned in this dataset
RowCount long
Notes: Read Only
Number of rows returned in this dataset
DMArray Methods

GetData (long row, long
column)

Variant

Notes: When the database returns a NULL value, this will return an empty string.
Return: Variant.

Parameters:

e row: Row number of data

e column: Column number of data

(c) Sparx Systems 2019

Page 280 of 505 Created with Enterprise Architect

User Guide - Automation

7 August, 2019

DMAction Class

DMAction Attributes
Attribute Remarks

Code String
The code on the Action
Notes: Read Only

DataMiners Collection
A Collection of DMDataminer objects
Notes: Read Only

Name String
Name of the Action.
Notes: Read Only

DMAction Methods

Run () Boolean

Returns TRUE if the script was run successfully.

(c) Sparx Systems 2019 Page 281 of 505

Created with Enterprise Architect

User Guide - Automation

7 August, 2019

DMScript Class

DMScript Attributes
Attribute Remarks

Actions Collection
returns a Collection of EA.DMAction's

GUID String
Guid of the Script object.
Notes: Read Only

Name String
Name of the Script object.
Notes: Read Only

(c) Sparx Systems 2019

Page 282 of 505

Created with Enterprise Architect

User Guide - Automation

7 August, 2019

DMConnection Class

DMConnection Attributes

String

Sets the type that the connect object is.

Notes: Read Only

Attribute Remarks

Name Type: String
Notes: Read Only
Name of the Connection object.

Path Type: String
Path to the data we are connecting to.
Notes: Read Only

Type Type: String

Notes: Read Only

Type of Connection. Options:
e ODBC

e EA Repository

e File

e URL

(c) Sparx Systems 2019

Page 283 of 505

Created with Enterprise Architect

User Guide - Automation

TypelnfoProperties Package

7 August, 2019

The TypelnfoProperties Package provides an interface to the properties of an object from the perspective of the
technology rather than the Enterprise Architect database, allowing read and write access to those properties. It effectively
shows the properties contained in the technology-specific and custom categories of the Properties window for the object
(and omits the Enterprise Architect specific properties such as the General and Project properties). The interface hides
the origin of the properties - whether they are from the base object directly, a Tagged Value, or are MOF properties.

You can see this interface in action in the EA.Example model ('Start > Help > Help > Open the Example Model'). When

you open this model:

1. Select the 'Specialize > Manage Addin' ribbon option.

2. Select the checkbox against 'Type Info' and click on the OK button. An icon for 'Type Info' displays on the right of

the Add-Ins panel.

3. Click on the drop-down arrow and select the 'Show Type Info' option. The Add-Ins window displays, showing the

type information (properties) for the currently-selected object.

4. Ifyou also want to display custom properties in the Add-Ins window, click on the 'Type-Info' icon again and select
the 'Include Custom Properties option'. The window resembles this illustration, which is for a UML Component

element.

Add-Ins

Type Info
isAbstract
isActive

isFinalspecialization

isIndirectlylnstantia...

isLeaf
name
visibility

Custom Properties

isIndirectlylnstantia...

isFinalSpecialization

Properties | Add-Ins

Product

Public

true

Toolbox

O =

5. Browse the EA.Example model, clicking on different types of object. You will see a different list of properties for,
say, an Action than for a Class. Then you can both read and write to those properties. Also compare the list with the

Properties window for the same objects.

(c) Sparx Systems 2019

Page 284 of 505

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

TypelnfoProperties Class
TypelnfoProperties Attributes

Attribute Remarks

Count long

Returns the number of Typelnfo Properties.

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

TypelnfoProperties Methods

Method Remarks

GetLastError () String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

GetProperty (String Returns the property value as a string.
PropName) Parameters:

e PropName : String - Name of the property

HasProperty (String Returns True if the object has the property.
PropName) Parameters:

e PropName : String - Name of the property

Items (object Index) TypelnfoProperty collection
Notes: Accesses an individual TypelnfoProperty.
Parameters:

e Index: Object - Either a string representing the title text or an integer
representing the zero-based index of the TypelnfoProperty to get

SetProperty (String Returns True if the property was set.
PropName, String Value) Parameters:
e PropName : String - Name of property

e Value : String - Value of property

(c) Sparx Systems 2019 Page 285 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

TypelnfoProperty Class

TypelnfoProperty Attributes

Attribute Remarks
Name String
Notes: Readonly.
Name of the property.
ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Value String

Get/Sets the Property value.

TypelnfoProperty Methods

<None.>

Method Remarks

(c) Sparx Systems 2019 Page 286 of 505 Created with Enterprise Architect

User Guide - Automation

Mail Interface Package

The Maillnterface Package contains:
e A function to retrieve a pointer to the interface
e Functions to create and send a mail message within the current mode

e Utility functions for creating hyperlinks to selected model elements

You can get a pointer to this interface using the method Repository.GetMaillnterface.

(c) Sparx Systems 2019 Page 287 of 505

7 August, 2019

Created with Enterprise Architect

User Guide - Automation

7 August, 2019

Mailinterface Class

The Maillnterface interface can be accessed from the Repository using GetMaillnterface(). The returned interface
provides access to the Enterprise Architect Model Mail Interface. Use this interface to automate the process of creating
and sending messages using Enterprise Architect's Model Mail system.

Maillnterface Attributes

Attribute

MessagingEnabled

ObjectType

Maillnterface Methods

Method

ComposeMailMessage(stri
ng InitialRecipientGUID,
string InitialSubject,
messageflag InitialFlag,
string InitialMessageText)

GetAttributeHyperlink(stri
ng AttributeGUID, string
LinkText)

(c) Sparx Systems 2019

Remarks

Boolean
Notes: Read Only

Advises whether messaging is enabled on the current model.

ObjectType
Notes: Read Only

Distinguishes objects referenced through a dispatch interface.

Remarks

Boolean

Notes: Creates a new mail message using the values specified in the input
parameters; the message is displayed in the composition window, ready for sending.

This method does NOT send the message.
Parameters:

e InitialRecipientGUID: String - Initial value for the GUID of the addressee user
(an Enterprise Architect user defined in the current model)

o InitialSubject: String - Initial value for the Subject text to display for this
message

o InitialFlag: MessageFlag - Initial value for the flag type/color to attach to this
message

o InitialMessageText: String - Initial value for the text that is the body of the
message

String

Notes: Returns a string containing a hyperlink to the attribute specified by the input
parameter AttributeGUID.

Parameters:
e AttributeGUID: String - The GUID of the attribute for which a hyperlink is
required

e LinkText: String - The text to display for the hyperlink (such as the attribute
name)

Page 288 of 505 Created with Enterprise Architect

User Guide - Automation

GetDiagramHyperlink
(string DiagramGUID,
string LinkText)

GetElementHyperlink
(string ElementGUID,
string LinkText)

GetFileHyperlink (string
FilePath, string LinkText)

GetLastError ()

GetMethodHyperlink
(string MethodGUID,
string LinkText)

GetPackageHyperlink
(string PackageGUID,
string LinkText)

GetRecipientGUID (string
UserName)

(c) Sparx Systems 2019

7 August, 2019

String

Notes: Returns a string containing a hyperlink to the diagram specified by the input
parameter DiagramGUID.

Parameters:

e DiagramGUID: String - The GUID of the diagram for which a hyperlink is
required

e LinkText: String - The text to display for the hyperlink (such as the diagram
name)

String

Notes: Returns a string containing a hyperlink to the element specified by the input
parameter ElementGUID.

Parameters:

e ElementGUID: String - The GUID of the element for which a hyperlink is
required

o LinkText: String - The text to display for the hyperlink (such as the element
name)

String

Notes: Returns a string containing a hyperlink to the file specified by the input
parameter FilePath.

Parameters:
e FilePath: String - The path name of the file for which a hyperlink is required
e LinkText: String - The text to display for the hyperlink (such as the file name)

String

Notes: Returns the last error message set for the Maillnterface.

String

Notes: Returns a string containing a hyperlink to the method specified by the input
parameter MethodGUID.

Parameters:

e MethodGUID: String - The GUID of the method for which a hyperlink is
required

e LinkText: String - The text to display for the hyperlink (such as the method
name)

String

Notes: Returns a string containing a hyperlink to the Package specified by the input
parameter PackageGUID.

Parameters:

e PackageGUID: String - The GUID of the Package for which a hyperlink is
required

e LinkText: String - The text to display for the hyperlink (such as the Package
name)

String

Notes: Returns the GUID of the specified Enterprise Architect user.

Parameters:

Page 289 of 505

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

o UserName: String - The name of a user defined in the current model

GetWebHyperlink (string String

URL, string LinkText) Notes: Returns a string containing a hyperlink to the URL specified by the input
parameter URL.
Parameters:

e URL: String - The URL of the item for which a hyperlink is required
e LinkText: String - The text to display for the hyperlink

SendMailMessage (string Boolean
RecipientGUID, string
Subject, messageflag Flag,
string MessageText)

Notes: Creates and sends a new mail message using the values specified in the input
parameters.

Parameters:

e RecipientGUID: String - The GUID of the addressee user (an Enterprise
Architect user defined in the current model)

e Subject: String - The Subject text to display for this message
e Flag: MessageFlag - The flag type/color to attach to this message
e MessageText: String - The text that is the body of the message

(c) Sparx Systems 2019 Page 290 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Search Window Package

The Search Window Package contains:
e The EAContext Class, which provides a description of a single selected item
e The EASelection Class, which provides optimized functions to access information about the current selection

e The SearchWindow Class, which provides a method for displaying the results of your operation using the Search
Window

(c) Sparx Systems 2019 Page 291 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EAContext Class

The EAContext Class provides a description of a single selected item. The fields with values depend on the location of
the selected item.

EAContext Attributes

Atttribute Remarks

Alias String
Notes: Read only

The Alias of the context item.

BaseType String
Notes: Read only
Returns the base UML type of the context item.

ContextType ContextType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

ElementGUID String
Notes: Read only

The Element GUID of the current element; empty if an element isn't selected.

ElementID Long
Notes: Read only

The Element ID of the current element; 0 if an element isn't selected.

Locked Boolean
Notes: Read only

Indicates if the context item is locked.

MetaType String
Notes: Read only

Returns the metatype of the context item.

Name String
Notes: Read only

The name of the context item.

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

(c) Sparx Systems 2019 Page 292 of 505 Created with Enterprise Architect

User Guide - Automation

EAContext Methods

Method

HasStereotype (String
stereo)

(c) Sparx Systems 2019

Remarks

Boolean

Returns: True if the stereotype is applied to an object.

Parameters

7 August, 2019

stereo: String - the stereotype to check against the context object, to see if has

been applied

Page 293 of 505

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EASelection Class

The EASelection Class provides optimized functions to access information on the current selection. It should be used
when building Add-In menus and setting the menu state, as almost all properties can be used without any database
queries being made.

EASelection Attributes

Attribute Remarks
Context EAContext
Notes:

Describes the currently focused element without requiring any database calls.

ElementSet Collection
Notes:

When the selection consists of one or more objects of type otElement, this provides
a collection giving optimized access to all of those elements.

List Collection
Notes:

For any window where multiple selection is supported, this provides a list
describing the types of all selected elements without requiring any database calls.

Location String
Notes:
Provides the type of window that contains the current selection.
Possible values are:
e Calendar
e Diagram
e Dialog
o Element List
e QGantt
e Model View
e Browser window
e Project View
e Relationship Matrix
e Reviews
e Search

e Specification Manager

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

(c) Sparx Systems 2019 Page 294 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EASelection Methods

None.

(c) Sparx Systems 2019 Page 295 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

SearchWindow Class

The SearchWindow Class provides a method for displaying the results of your operation using the Search Window.

SearchWindow Attributes

Attribute Remarks

FieldChooserVisible Boolean
Shows or hides the search Field Chooser.

FiltersVisible Boolean

Shows or hides the search filters.

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

SearchWindow Methods

Method Remarks
AddColumn (string Name, Adds the column into the current Search window.
long Width) Returns the column number, or -1 on error.

Parameters:
e Name: String - Name of the column
e Width: Long - Width of the column

AddRow (ObjectType ot, Returns the row inserted into the search.
String ElementGUID, Long

) Parameters:
ElementID, String . .
ClassType, VARIANT e ot: ObjectType - the Object Type
Values) e ElementGUID: String - GUID of the element

e ElementID: long - Object ID of the element
o ClassType: String - the type of object

e Values: an array of values

ClearGrouping () Clear all groupings in the search.
Returns FALSE on error.

ClearSorting () Clear all column sorting in the search.
Returns FALSE on error.

EnsureVisible () Make the Search window visible.

(c) Sparx Systems 2019 Page 296 of 505 Created with Enterprise Architect

User Guide - Automation

GetCell (long Row, long
Column)

GroupByColumn (long
Column)

LoadLayout (string
LayoutGUID)

NewLayout (string
LayoutGUID)

SetCellString (long Row,
long Column, String Data)

SetCellVariant (long Row,
long Column, VARIANT
Data)

SortByColumn (long
Column)

(c) Sparx Systems 2019

Returns FALSE, if the Search window isn't open.

Returns the value of the cell.
Parameters:
e Row: long - Row number

e Column: long - Column number

Sets the group order by column.
Returns FALSE if it cannot group by the specified column.
Parameters:

e Column: Long - Column number

Set the layout of the Search window.
Returns FALSE if the layout cannot be set.
Parameters:

e LayoutGUID: String - Layout GUID

Saves the layout of the Search window.
Parameters:
e LayoutGUID: String - Layout GUID

Sets a value in a cell.

Parameters:

e Row: long - Row number

e Column: long - Column number

e Data: String - Value to set the cell to

Sets an alternative value in a cell.
Parameters:

e Row: long - Row number

e Column : long - Column number

e Data: Value to set the cell to

Sets the column to sort by.
Returns FALSE if it cannot sort by the specified column.
Parameters:

e Column: Long - Column number

Page 297 of 505

7 August, 2019

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Simulation Package

The Simulation Package contains:

e An attribute to set, increase and decrease the speed of the simulation

e A function to check if a simulation is currently running

e Functions to Start, Stop, Step Into, Step Out of, Step Over and Pause a simulation

e A function to send a broadcast signal to the simulation that is currently running

(c) Sparx Systems 2019 Page 298 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Simulation Class

The Simulation Class provides an interface to the Enterprise Architect Model Simulation facilities.

Simulation Attributes

Attribute Description

ObjectType ObjectType
Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Speed Long
Notes: Read/Write

Retrieve or set the current simulation running speed.

Simulation Methods

Method Description
BroadcastSignal(string Boolean
sSignalName,

Notes: Send a signal into the running simulation. If the simulation is stopped, do
string sParameters) nothing.

Parameters:
e sSignalName: String - the name of the signal OR the GUID of the Signal
element

e sParameters: String - a string of one or more signal parameters, in this format:

{parameterl: 5, parameter2: "test", parameter3: 3.2}

IsSimulatorRunning() Boolean
Notes: Check the state of the simulation.

Returns True if the simulation is running; returns False if the simulation is stopped.

Pause() Boolean

Notes: Pause the simulation if it is running.
Start() Boolean
Notes: Start the simulation based on the current selection. If the current simulation

is in a paused state, then the simulation is resumed.

Stepln() Boolean

Notes: Step In to the routine in the current simulation.

StepOut() Boolean

(c) Sparx Systems 2019 Page 299 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Notes: Step Out of the routine in the current simulation.

StepOver() Boolean

Notes: Step Over the routine in the current simulation.

Stop() Boolean

Notes: Stop the simulation.

(c) Sparx Systems 2019 Page 300 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Schema Composer Package

The Schema Composer can be accessed from the Enterprise Architect automation interface. A client (script or Add-In)
can obtain access to the interface using the SchemaComposer property of the Repository object. This interface is
available when a Schema Composer has a profile loaded.

(c) Sparx Systems 2019 Page 301 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

SchemaProperty Class

SchemaProperty Attributes

Attribute Description

TypelD long
Notes: Read only
The classifier ID of the property.

PropID long
Notes: Read only
The property ID.
Guid string

Notes: Read only
The unique model GUID of the property.

Name string
Notes: Read only
The name of the property.

Cardinality string
Notes: Read only

The cardinality of the element.

UMLType string
Notes: Read only
The UML type, such as attribute, association or aggregation.

Parent long
Notes: Read only

The classifier of the owner Class.

PrimitiveType string
Notes: Read only
The property's primitive type if property represents a simple type.

Annotation string
Notes: Read only
The model notes for the property.

Stereotype string
Notes: Read only
The stereotype of the property.

(c) Sparx Systems 2019 Page 302 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Choices SchemaTypeEnum

Returns an iterator allowing navigation of choice elements in model, defined for
this property in the Schema Composer. Combine with SchemaChoices attribute to
obtain all available choices.

SchemaChoices SchemaTypeEnum

Returns an iterator allowing navigation of choice elements in schema, defined for
this property in the Schema Composer. Combine with Choices attribute to obtain all
available choices.

TypeName string
Returns a string naming the type of the property

Type SchemaType

Returns an interface to the property's type for complex types.

SchemaProperty Methods

Method Description

IsInline boolean

If true, the property is marked as 'Inline’. XML schema generators would emit an
inline definition when detecting this attribute.

IsPrimitive boolean
Returns true for a property whose type is maps to a built in type such as xs:integer,

xs:string, xs:date or other XML Schema built-in type.

IsByReference boolean

Returns true for a property marked as 'By Reference' in the profile.

(c) Sparx Systems 2019 Page 303 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

SchemaProfile Class
The interface representing the technology governing the naming and design rules on which the schema is built.

SchemaProfile Methods

Method Description
AddExportFormat(string void
description) Notes: Use this function to add entries that are offered by the Schema Composer

when the user clicks on the Generate button.
Parameters:

e description: describes the export format provided by the Add-In

SetCapability(string void
name,boolean enabled) Notes: Use this function to enable/disable capabilities.
Parameters:

e name: name of the capability

e enabled: True or False

Capabilities:

'allowCardinality' - allows/denies restrictions to cardinality
'allowRootElement' - allows/denies setting root element
'allowPropByRef' - allows/denies By Reference restriction

'allowRedefine' - allows/denies ability to redefine an element

SetProperty(string name, void
string value) Notes: Sets properties displayed in the Schema Composer.
Parameters:

e name: property name

e value: property value

Properties:
'Namespace' - Target namespace for XML schema
'Namespace Prefix' - Namespace prefix for XML schema

'Qualifier' - string qualifier that prepends schema type names

(c) Sparx Systems 2019 Page 304 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

SchemaComposer Class

The SchemaComposer Class provides the interface to the Enterprise Architect Schema Composer facility.

SchemaComposer Attributes

Attribute Description

ModelReference String

Notes: The model ref listed in the Schema Composer for the current profile.

Namespace String

Notes: The namespace listed in the Schema Composer for the current profile.

NamespacePrefix String

Notes: The namespace prefix listed in the Schema Composer for the current profile.

TargetDirectory String
Notes: The target directory selected by the user after clicking on the Generate
button.

SchemaName String

Notes: Returns the name of the schema profile currently being generated.

SchemaSet String

Notes: Returns the schema set used when the schema was created.
SchemaType String
Notes: The schema type listed in the Schema Composer for the current profile,

either 'schema' or 'transform'.

SchemaTypes SchemaTypeEnum
Notes: Read only

Enumerator for the type collection represented in the currently open schema.

Namespaces SchemaNamespaceEnum
Notes: Read only

Enumerator for the namespaces referenced by schema

SchemaComposer Methods

Method Description

FindInSchema(long SchemaType

(c) Sparx Systems 2019 Page 305 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

typelD) Notes: Obtains an interface to a Class as represented in the schema for a given
model Class ID.

Parameters:
e typelD: the model Class ID

FindInModel(long typelD) ModelType

Notes: Obtains an interface to a Class as represented in the UML model for a given
model Class ID

Parameters:
e typelD: the model Class ID

FindSchemaTypeByName(SchemaType
string typename) Notes: Returns an interface to the schema type that matches the type specified or
null if no type exists.

Parameters:

e name : the name of the type

GetNamespacePrefixForTy String

pe(long typelD) Notes: Returns the schema namespace prefix for a given type
Parameters:
e typelD: the model Class ID

GetNamespaceForPrefix(String
string prefix) Notes: Returns the URI for a given schema namespace prefix
Parameters:

e name: the namespace prefix

(c) Sparx Systems 2019 Page 306 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

ModelTypeEnum Class

An enumerator interface for schema types as represented in the UML model.

ModelTypeEnum Methods

Method Description

GetCount() long
Returns the number of types present in the collection.

GetFirst() ModelType

Returns the first type interface in a collection of types.

GetNext() ModelType

Returns the next type in the collection of types or null if end is reached.

(c) Sparx Systems 2019 Page 307 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

ModelType Class
Provides an interface to the Class of a schema type as represented in the model.

ModelType Attributes

Attribute Description

PropertyCount long
Notes: Read only

The total number of properties for this Class available in the Properties collection.

Properties SchemaPropEnum
Notes: Enumerator

Collection of properties for the Class as defined in the model.

TypelD long
Notes: Read only
The Class ID of the type.

Guid string
Notes: Read only
A GUID that uniquely identifies a type in the model.

Typename string
Notes: Read only

The name of the type as represented in the model.

ClassifierPath string
Notes: Read only
The qualified path of the type in the model.

ClassifierPathID string
Notes: Read only
A GUID that uniquely identifies a ClassifierPath in the model.

Stereotype string
Notes: Read only
The stereotype of the Class as defined in the model.

Annotation string
Notes: Read only

Any notes present in the model describing the Class.

(c) Sparx Systems 2019 Page 308 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

ModelType Methods

Method Description

GetSuperClassEnum(Searc ModelTypeEnum
hType searchtype) Notes: Enumerator

Returns an enumerator that can be used to traverse the Class ancestry.
Parameters:

e searchtype: the type of traversal to use, breadth first or depth first

GetSubClassEnum(Search ModelTypeEnum
Type searchType) Notes: Enumerator

Returns an enumerator that can be used to iterate over any descendents of the Class.
Parameters:

e searchtype: the type of traversal to use, breadth first or depth first

IsEnumeration True where type represents an enumeration element

(c) Sparx Systems 2019 Page 309 of 505 Created with Enterprise Architect

User Guide - Automation

7 August, 2019

SchemaTypeEnum Class

An enumerator interface for schema types as represented in XML schema.

Methods
Method Description
GetCount() Returns the number of properties for an element.
GetFirst() Returns the first property for the element in alphabetical order.
GetNext() Returns the first property for the element in alphabetical order or null if no more are
present.

(c) Sparx Systems 2019

Page 310 of 505

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

SchemaType Class

Represents a type as it is defined in the schema.

Methods
Method Description
GetFacet(BSTR name) Returns the value of the named facet. 'Root', for example' returns a value indicating

whether a type is a root element.

GetRestriction(BSTR guid) Returns the restriction as a string for the property having the supplied guid.

IsRoot() True if Class is marked as 'root' in the Composer.
IsEnumeration() True if the type represents an enumeration element
Properties
Property Description

PropertyCount [type: long] Returns the number of properties held by 'type'.

Properties [type: Returns an enumerator for 'type's' properties.

IEASchemaPropEnum]

TypelD The model Class ID.

Guid The unique model GUID of the type.

Typename The type's name.

Parent The parent type - if any - that this Class extends. Could be null depending on

composition method.

(c) Sparx Systems 2019 Page 311 of 505 Created with Enterprise Architect

User Guide - Automation

7 August, 2019

SchemaPropEnum Class

An enumerator for properties of a UML model type or XML schema type.

Methods
Method Description
GetCount() Returns the number of properties for an element.
GetFirst() Returns the first property for the element in alphabetical order.
GetNext() Returns the first property for the element in alphabetical order or null if no more are
present.

(c) Sparx Systems 2019

Page 312 of 505

Created with Enterprise Architect

User Guide - Automation

7 August, 2019

SearchType Enumeration

SearchType Attributes
Attribute Description
searchDepthFirst Navigate children before siblings.
searchBreadthFirst Navigate siblings before children.

(c) Sparx Systems 2019 Page 313 of 505

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

SchemaNamespace Class

An interface presenting namespace information

SchemaNamespace Attributes

Name string
Notes: Read only

The namespace prefix.

URI string
Notes: Read only
The URI of the namespace.

(c) Sparx Systems 2019 Page 314 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

SchemaNamespaceEnum Class

An enumerator interface for namespaces referenced by schema.

SchemaNamespaceEnum Methods

GetFirst() SchemaNamespace

Returns the first namespace interface in a collection of namespaces.

GetNext() SchemaNamespace

Returns an the next namespace interface in a collection of namespaces

(c) Sparx Systems 2019 Page 315 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Code Samples

As you write or edit code for using the Automation Interface, you might want to review these public Object examples,
written in VB.Net.

Examples

Name

Open the Repository

Iterate Through a .eap File

Add and Manage Packages

Add and Manage Elements

Add a Connector

Add and Manage Diagrams

Add and Delete Features

Element Extras

Repository Extras

Stereotypes

Work with Attributes

Work with Methods

(c) Sparx Systems 2019 Page 316 of 505 Created with Enterprise Architect

User Guide - Automation

Open the Repository

This is an example of the VB.Net code to open an Enterprise Architect repository.

Public Class AutomationExample
"Class level variable for Repository

Public m_Repository As Object

Public Sub Run()
try
"create the repository object

m_Repository = CreateObject("EA.Repository")

"open an EAP file
m_Repository.OpenFile("F:\Test\EAAuto.EAP")

"use the Repository in any way required
"DumpModel

"close the repository and tidy up
m_Repository.Exit()
m_Repository = Nothing

catch e as exception
Console.WriteLine(e)
End try
End Sub

end Class

(c) Sparx Systems 2019 Page 317 of 505

7 August, 2019

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Iterate Through a .EAP File

This is an example of the VB.Net code to iterate through a .eap file starting at the Model level, after the repository has
been opened.

Sub DumpModel()
Dim idx as Integer
For idx=0 to m_Repository.Models.Count-1
DumpPackage("",m_Repository.Models.GetAt(idx))
Next
End Sub

"output Package name, then element contents, then process child Packages
Sub DumpPackage(Indent as String, Package as Object)

Dim idx as Integer

Console.WriteLine(Indent + Package.Name)

DumpElements(Indent + "", Package)

For idx = 0 to Package.Packages.Count-1
DumpPackage(Indent + "", Package.Packages.GetAt(idx))
Next
End Sub

"dump element name
Sub DumpElements(Indent as String, Package as Object)
Dim idx as Integer
For idx = 0 to Package.Elements.Count-1
Console.WriteLine(Indent + "::" + Package.Elements.GetAt(idx).Name)
Next
End Sub

(c) Sparx Systems 2019 Page 318 of 505 Created with Enterprise Architect

User Guide - Automation

Add and Manage Packages

This example illustrates how to add a Model or a Package to the project.

Sub TestPackageLifecycle
Dim idx as integer
Dim idx2 as integer
Dim package as object
Dim model as object

Dim o as object
"first add a new Model

model = m_Repository.Models.AddNew("AdvancedModel","")

If not model.Update() Then
Console.WriteLine(model.GetLastError())

End If

"refresh the models collection

m_Repository.Models.Refresh
"now work through models collection and add a package

For idx = 0 to m_Repository.Models.Count -1

o =m_Repository.Models.GetAt(idx)

Console.WriteLine(o.Name)

If 0.Name = "AdvancedModel" Then
package = o.Packages. Addnew("Subpackage","Nothing")
If not package.Update() Then

Console.WriteLine(package.GetLastError())

End If

package.Element.Stereotype = "system"

package.Update

"for testing purposes just delete the

"newly created Model and its contents

"m_Repository.Models.Delete(idx)
End If

Next

(c) Sparx Systems 2019 Page 319 of 505

7 August, 2019

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

End Sub

(c) Sparx Systems 2019 Page 320 of 505 Created with Enterprise Architect

User Guide - Automation

Add and Manage Elements

This is an example of the code for adding and deleting elements in a Package.

Sub ElementLifeCycle
Dim package as Object

Dim element as Object

package = m_Repository.GetPackageByID(2)

element = package.elements.AddNew("Login to Website","UseCase")
element.Stereotype = "testcase"

element.Update

package.elements.Refresh()

Dim idx as integer

"Note the repeated calls to "package.clements.GetAt."

"In general you should make this call once and assign to a local
"variable - in this example, Enterprise Architect loads the

"element required every time a call is made - rather than loading once

"and keeping a local reference.

For idx = 0 to package.elements.count-1
Console.WriteLine(package.elements.GetAt(idx).Name)
If (package.elements.GetAt(idx).Name = "Login to Website" and _

package.elements.GetAt(idx). Type = "UseCase") Then
package.elements.deleteat(idx, false)

End If

Next

End Sub

(c) Sparx Systems 2019 Page 321 of 505

7 August, 2019

Created with Enterprise Architect

User Guide - Automation

Add a Connector

This is an example of code to add a connector and set its values.

Sub ConnectorTest
Dim source as object
Dim target as object
Dim con as object

Dim o as object

Dim client as object

Dim supplier as object

"Use ElementIDs to quickly load an element in this example

"... you must find suitable IDs in your model

source = m_Repository.GetElementByID(129)
target = m_Repository.GetElementByID(169)

con = source.Connectors.AddNew ("test link 2", "Association")

"again, replace ID with a suitable one from your model

con.SupplierID = 169

If not con.Update Then
Console.WriteLine(con.GetLastError)
End If

source.Connectors.Refresh
Console.WriteLine("Connector Created")

o = con.Constraints. AddNew ("constraint2","type")

If not 0.Update Then
Console.WriteLine(o.GetLastError)

End If

o = con.TaggedValues.AddNew ("Tag","Value")

If not 0.Update Then
Console.WriteLine(o.GetLastError)

End If

(c) Sparx Systems 2019 Page 322 of 505

7 August, 2019

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

"Use the client and supplier ends to set

"additional information

client = con.ClientEnd
client.Visibility = "Private"
client.Role = "m_client"
client.Update

supplier = con.SupplierEnd
supplier.Visibility = "Protected"
supplier.Role = "m_supplier"

supplier.Update

Console.WriteLine("Client and Supplier set")

Console.WriteLine(client.Role)

Console.WriteLine(supplier.Role)

End Sub

(c) Sparx Systems 2019 Page 323 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Add and Manage Diagrams

This is an example of the code for creating a diagram and adding an element to it. Note the optional use of the element
rectangle setting, using left, right, top and bottom dimensions in the AddNew call.

Sub DiagramLifeCycle
Dim diagram as object
Dim v as object
Dim o as object

Dim package as object

Dim idx as Integer

Dim idx2 as integer

package = m_Repository.GetPackageByID(5)

diagram = package.Diagrams.AddNew("Logical Diagram","Logical")

If not diagram.Update Then
Console.WriteLine(diagram.GetLastError)

End if

diagram.Notes = "Hello there this is a test"

diagram.update()

o = package.Elements. AddNew("ReferenceType","Class")
o.Update

" add element to diagram - supply optional rectangle co-ordinates

v = diagram.DiagramObjects. AddNew("1=200;r=400;t=200;b=600;","")
v.ElementID = o.ElementID

v.Update

Console.WriteLine(diagram.DiagramID)

End Sub

(c) Sparx Systems 2019 Page 324 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Add and Delete Features

An example of code to add and delete Features of an object.

Dim element as object
Dim idx as integer
Dim attribute as object

Dim method as object

Yjust load an element by ID - you must
'substitute a valid ID from your model

element = m_Repository.GetElementByID(246)

"create a new method
method = element.Methods. AddNew("newMethod", "int")
method.Update
element.Methods.Refresh
'now loop through methods for Element - and delete our addition
For idx = 0 to element.Methods.Count-1
method =element.Methods.GetAt(idx)
Console.Writeline(method.Name)
If(method.Name = "newMethod") Then
element.Methods.Delete(idx)
End if
Next

'create an attribute
attribute = element.attributes. AddNew("NewAttribute", "int")
attribute.Update

element.attributes.Refresh

'loop through and delete our new attribute

For idx = 0 to element.attributes.Count-1
attribute =element.attributes.GetAt(idx)
Console.Writeline(attribute.Name)
If(attribute.Name = "NewAttribute") Then

element.attributes.Delete(idx)

End If

Next

(c) Sparx Systems 2019 Page 325 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Element Extras

These are examples of code to access and use element extras, such as scenarios, constraints and requirements.
Sub ElementExtras

Dim element as object
Dim o as object

Dim idx as Integer
Dim bDel as boolean

bDel = true

try
element = m_Repository.GetElementByID(129)

'manage constraints for an element
'demonstrate addnew and delete
o = element.Constraints. AddNew(" Appended","Type")
If not 0.Update Then
Console.WriteLine("Constraint error:" + 0.GetLastError())
End if
element.Constraints.Refresh
For idx = 0 to element.Constraints.Count -1
o = element.Constraints. GetAt(idx)
Console.WriteLine(o.Name)
If(o.Name="Appended") Then
If bDel Then element.Constraints.Delete (idx)
End if
Next

'efforts
o = element.Efforts. AddNew("Appended","Type")
If not 0.Update Then
Console.WriteLine("Efforts error:" + 0.GetLastError())
End if
element.Efforts.Refresh
For idx = 0 to element.Efforts.Count -1
o = element.Efforts.GetAt(idx)
Console.WriteLine(o.Name)
If(o.Name="Appended") Then
If bDel Then element.Efforts.Delete (idx)

(c) Sparx Systems 2019 Page 326 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

End if
Next

'Risks
o = element.Risks. AddNew("Appended","Type")
If not 0.Update Then
Console.WriteLine("Risks error:" + 0.GetLastError())
End if
element.Risks.Refresh
For idx = 0 to element.Risks.Count -1
o = element.Risks.GetAt(idx)
Console.WriteLine(o.Name)
If(o.Name="Appended") Then
If bDel Then element.Risks.Delete (idx)
End if
Next

'Metrics
o = element.Metrics. AddNew(" Appended","Change")
If not 0.Update Then
Console.WriteLine("Metrics error:" + 0.GetLastError())
End if
element.Metrics.Refresh
For idx = 0 to element.Metrics.Count -1
o = element.Metrics.GetAt(idx)
Console.WriteLine(o.Name)
If(o.Name="Appended") Then
If bDel Then element.Metrics.Delete (idx)
End if
Next

'"TaggedValues
o = element.TaggedValues.AddNew("Appended","Change")
If not 0.Update Then

Console.WriteLine("TaggedValues error:" + 0.GetLastError())
End if
element. TaggedValues.Refresh
For idx = 0 to element.TaggedValues.Count -1

o = element.TaggedValues.GetAt(idx)

Console.WriteLine(o.Name)

If(o.Name="Appended") Then

If bDel Then element. TaggedValues.Delete (idx)

(c) Sparx Systems 2019 Page 327 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

End if
Next

'Scenarios
o = element.Scenarios. AddNew(" Appended","Change")
If not 0.Update Then
Console.WriteLine("Scenarios error:" + 0.GetLastError())
End if
element.Scenarios.Refresh
For idx = 0 to element.Scenarios.Count -1
o = element.Scenarios.GetAt(idx)
Console.WriteLine(o.Name)
If(o.Name="Appended") Then
If bDel Then element.Scenarios.Delete (idx)
End if
Next

'Files

o = element.Files. AddNew("MyFile","doc")

If not 0.Update Then
Console.WriteLine("Files error:" + 0.GetLastError())

End if

element.Files.Refresh

For idx = 0 to element.Files.Count -1
o = element.Files.GetAt(idx)
Console.WriteLine(o.Name)
If(o.Name="MyFile") Then

If bDel Then element.Files.Delete (idx)

End if

Next

"Tests
o = element.Tests. AddNew("TestPlan","Load")
If not 0.Update Then
Console.WriteLine("Tests error:" + 0.GetLastError())
End if
element.Tests.Refresh
For idx = 0 to element.Tests.Count -1
o = element.Tests.GetAt(idx)
Console.WriteLine(o.Name)
If(0.Name="TestPlan") Then
If bDel Then element. Tests.Delete (idx)

(c) Sparx Systems 2019 Page 328 of 505 Created with Enterprise Architect

User Guide - Automation

End if
Next

'Defect

o = element.Issues. AddNew("Broken","Defect™)

If not 0.Update Then
Console.WriteLine("Issues error:" + 0.GetLastError())

End if

element.Issues.Refresh

For idx = 0 to element.Issues.Count -1
o = element.Issues.GetAt(idx)
Console.WriteLine(o.Name)
If(0.Name="Broken") Then

If bDel Then element.Issues.Delete (idx)

End if

Next

'Change
o = element.Issues.AddNew("Change","Change")
If not 0.Update Then
Console.WriteLine("Issues error:" + 0.GetLastError())
End if
element.Issues.Refresh
For idx = 0 to element.Issues.Count -1
o = element.Issues.GetAt(idx)
Console.WriteLine(o.Name)
If(o.Name="Change") Then
If bDel Then element.Issues.Delete (idx)
End if
Next

catch e as exception
Console.WriteLine(element.Methods.GetLastError())
Console.WriteLine(e)

End try

End Sub

(c) Sparx Systems 2019 Page 329 of 505

7 August, 2019

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Repository Extras

These are examples of code for accessing repository collections for system-level information.
Sub RepositoryExtras

Dim o as object

Dim idx as integer

'issues
o =m_Repository.Issues.AddNew("Problem","Type")
If(0.Update=false) Then
Console.WriteLine (0.GetLastError())
End if
o = nothing
m_Repository.Issues.Refresh
For idx = 0 to m_Repository.Issues.Count-1
Console.Writeline(m_Repository.Issues.GetAt(idx).Name)
If(m_Repository.Issues.GetAt(idx).Name = "Problem") then
m_Repository.Issues.Delete At(idx,false)
Console.WriteLine("Delete Issues")
End if
Next

"tasks
o =m_Repository.Tasks.AddNew("Task 1","Task type")
If(0.Update=false) Then
Console.WriteLine ("error - " + 0.GetLastError())
End if
o = nothing
m_Repository.Tasks.Refresh
For idx = 0 to m_Repository.Tasks.Count-1
Console.Writeline(m_Repository.Tasks.GetAt(idx).Name)
If(m_Repository.Tasks.GetAt(idx).Name = "Task 1") then
m_Repository.Tasks.DeleteAt(idx,false)
Console.WriteLine("Delete Tasks")
End if
Next

"glossary

o =m_Repository.Terms.AddNew("Term 1","business")

(c) Sparx Systems 2019 Page 330 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

If(0.Update=false) Then
Console.WriteLine ("error - " + 0.GetLastError())
End if
o = nothing
m_Repository.Terms.Refresh
For idx = 0 to m_Repository.Terms.Count-1
Console.Writeline(m_Repository.Terms.GetAt(idx). Term)
If(m_Repository. Terms.GetAt(idx).Term = "Term 1") then
m_Repository.Terms.DeleteAt(idx,false)
Console.WriteLine("Delete Terms")
End if
Next

'authors
o =m_Repository.Authors.AddNew("Joe B","Writer")
If(0.Update=false) Then
Console.WriteLine (0.GetLastError())
End if
o = nothing
m_Repository.Authors.Refresh
For idx = 0 to m_Repository.authors.Count-1
Console.Writeline(m_Repository.Authors.GetAt(idx).Name)
If(m_Repository.authors.GetAt(idx).Name = "Joe B") then
m_Repository.authors.Delete At(idx, false)
Console.WriteLine("Delete Authors")
End if
Next

o =m_Repository.Clients. AddNew("Joe Sphere","Client")
If(0.Update=false) Then
Console.WriteLine (0.GetLastError())
End if
o = nothing
m_Repository.Clients.Refresh
For idx = 0 to m_Repository.Clients.Count-1
Console.Writeline(m_Repository.Clients.GetAt(idx).Name)
If(m_Repository.Clients.GetAt(idx).Name = "Joe Sphere") then
m_Repository.Clients.DeleteAt(idx,false)
Console.WriteLine("Delete Clients")
End if
Next

(c) Sparx Systems 2019 Page 331 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

o =m_Repository.Resources. AddNew("Joe Worker","Resource")
If(0.Update=false) Then
Console.WriteLine (0.GetLastError())
End if
o = nothing
m_Repository.Resources.Refresh
For idx = 0 to m_Repository.Resources.Count-1
Console.Writeline(m_Repository.Resources.GetAt(idx).Name)
If(m_Repository.Resources.GetAt(idx).Name = "Joe Worker") then
m_Repository.Resources.Delete At(idx,false)
Console.WriteLine("Delete Resources")
End if
Next

End Sub

(c) Sparx Systems 2019 Page 332 of 505 Created with Enterprise Architect

User Guide - Automation

Stereotypes

This is some example code for adding and deleting stereotypes.
Sub TestStereotypes

Dim o as object

Dim idx as integer

"add a new stereotype to the Stereotypes collection
o =m_Repository.Stereotypes. AddNew("funky","class")
If(0.Update=false) Then
Console.WriteLine (0.GetLastError())
End if

o = nothing

"make sure you refresh

m_Repository.Stereotypes.Refresh

"then iterate through - deleting our new entry in the process
For idx = 0 to m_Repository.Stereotypes.Count-1
Console.Writeline(m_Repository.Stereotypes.GetAt(idx).Name)
If(m_Repository.Stereotypes.GetAt(idx).Name = "funky") then
m_Repository.Stereotypes.Delete At(idx,false)
Console.WriteLine("Delete element")
End if
Next

End Sub

(c) Sparx Systems 2019 Page 333 of 505

7 August, 2019

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Work With Attributes

This is an example of code for working with attributes.
Sub AttributeLifecycle

Dim element as object
Dim o as object
Dim t as object
Dim idx as Integer
Dim idx2 as integer
try
element = m_Repository.GetElementByID(129)

For idx = 0 to element.Attributes.Count -1
Console.WriteLine("attribute=" + element. Attributes.GetAt(idx).Name)

o = element.Attributes. GetAt(idx)

t = 0.Constraints. AddNew("> 123","Precision")

t.Update()

o0.Constraints.Refresh

For idx2 = 0 to o.Constraints.Count-1
t = 0.Constraints.GetAt(idx2)
Console.WriteLine("Constraint: " + t.Name)
If(t. Name="> 123") Then

o.Constraints.DeleteAt(idx2, false)

End if

Next

For idx2 = 0 to 0.TaggedValues.Count-1
t = 0.TaggedValues.GetAt(idx2)
If(t.Name = "Type2") Then
'Console.WriteLine("deleteing")
o.TaggedValues.DeleteAt(idx2, true)
End if
Next

t=o0.TaggedValues.AddNew("Type2","Number")

t.Update
o.TaggedValues.Refresh

(c) Sparx Systems 2019 Page 334 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

For idx2 = 0 to 0.TaggedValues.Count-1
t=o0.TaggedValues.GetAt(idx2)
Console.WriteLine("Tagged Value: " + t.Name)

Next

If(element. Attributes.GetAt(idx).Name = "m_Tootle") Then
Console.WriteLine("delete attribute™)
element. Attributes.Delete At(idx, false)

End If

Next

catch e as exception
Console.WriteLine(element. Attributes.GetLastError())
Console.WriteLine(e)
End try
End Sub

(c) Sparx Systems 2019 Page 335 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Work With Methods

This is an example of code for working with the Methods collection of an element and with Method collections.
Sub MethodLifeCycle

Dim element as object
Dim method as object
Dim t as object

Dim idx as Integer

Dim idx2 as integer

try
element = m_Repository.GetElementByID(129)

For idx = 0 to element.Methods.Count -1
method = element.Methods.GetAt(idx)
Console.WriteLine(method.Name)

t = method.PreConditions. AddNew("TestConstraint","something")
If t.Update = false Then

Console.WriteLine("PreConditions: " + t.GetLastError)
End if

method.PreConditions.Refresh

For idx2 = 0 to method.PreConditions.Count-1
t = method.PreConditions.GetAt(idx2)
Console.WriteLine("PreConditions: " + t.Name)
If t Name = "TestConstraint" Then

method.PreConditions.Delete At(idx2,false)

End If

Next

t = method.PostConditions. AddNew("TestConstraint","something")
If t.Update = false Then

Console.WriteLine("PostConditions: " + t.GetLastError)
End if

method.PostConditions.Refresh

For idx2 = 0 to method.PostConditions.Count-1
t = method.PostConditions.GetAt(idx2)

(c) Sparx Systems 2019 Page 336 of 505 Created with Enterprise Architect

User Guide - Automation

Console.WriteLine("PostConditions: " + t.Name)
If t Name = "TestConstraint" Then
method.PostConditions.Delete At(idx2, false)
End If
Next

t = method.TaggedValues.AddNew("TestTaggedValue","something")
If t.Update = false Then

Console.WriteLine("Tagged Values: " + t.GetLastError)
End if

For idx2 = 0 to method.TaggedValues.Count-1
t = method.TaggedValues.GetAt(idx2)
Console.WriteLine("Tagged Value: " + t.Name)
If(t.Name= "TestTaggedValue") Then
method.TaggedValues.Delete At(idx2,false)
End If
Next

t = method.Parameters. AddNew(" TestParam","string")
If t.Update = false Then
Console.WriteLine("Parameters: " + t.GetLastError)

End if

method.Parameters.Refresh

For idx2 = 0 to method.Parameters.Count-1
t = method.Parameters.GetAt(idx2)
Console.WriteLine("Parameter: " + t.Name)
If(t. Name="TestParam") Then

method.Parameters.DeleteAt(idx2, false)

End If

Next

method = nothing
Next
catch e as exception
Console.WriteLine(element.Methods.GetLastError())
Console.WriteLine(e)
End try

End Sub

(c) Sparx Systems 2019 Page 337 of 505

7 August, 2019

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Enterprise Architect Add-In Model

The Add-In facility provides a means of extending Enterprise Architect, allowing the programmer to enhance the user
interface by adding new menus, sub menus, windows and other controls to perform a variety of functions. An Add-In is
an ActiveX COM object that is notified of events in the user interface, such as mouse clicks and element selections, and
has access to the repository content through the Object Model. Add-Ins can also be integrated with the license
management system.

Using this powerful facility, you can extend Enterprise Architect to create new features not available in the core product,
and these can be compiled and easily distributed to a community of users within an organization, or more broadly to an
entire industry. Using the Add-In facility it is even possible to create support for modeling languages and frameworks not
supported in the core product.

Add-Ins have several advantages over stand-alone automation clients:

e Add-Ins can (and should) be written as in-process (DLL) components; this provides lower call overhead and better
integration into the Enterprise Architect environment

e Because a current version of Enterprise Architect is already running there is no requirement to start a second copy of
Enterprise Architect via the automation interface

e Because the Add-In receives object handles associated with the currently running copy of Enterprise Architect, more
information is available about the current user's activity; for example, which diagram objects are selected

e You are not required to do anything other than to install the Add-In to make it usable; that is, you do not have to
configure Add-Ins to run on your systems

e Because Enterprise Architect is constantly evolving in response to customer requests, the Add-In interface is flexible

e The Add-In interface does not have its own version, rather it is identified by the version of Enterprise Architect it
first appeared in; for example, the current version of the Enterprise Architect Add-In interface is version 2.1

e When creating your Add-In, you do not have to subscribe to a type-library (Add-Ins created before 2004 are no
longer supported - if an Add-In subscribes to the Addn_Tmpl.tlb interface (2003 style), it fails on load; in this event,
contact the vendor or author of the Add-In and request an upgrade)

e Add-Ins do not have to implement methods that they never use
e Add-Ins prompt users via context menus in the tree view and the diagram
e Menu check and disable states can be controlled by the Add-In

Add-Ins enhance the existing functionality of Enterprise Architect through a variety of mechanisms, such as Scripts,
UML Profiles and the Automation Interface. Once an Add-In is registered, it can be managed using the Add-In Manager.

(c) Sparx Systems 2019 Page 338 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

The Add-In Manager

If you want to check what Add-Ins are available on your system, and enable or disable them for use, you can review the
'Add-In Manager' dialog. This dialog lists the Add-Ins that have been registered on your system, and their current status
(Enabled or Disabled).

Access

Ribbon Specialize > Add-Ins > Manage-Addin

Enable/disable Add-Ins

Action Detail
Enable an Add-In To enable an Add-In so that it is available for use, select the "Load on Startup'
checkbox corresponding to the name.
Click on the OK button.

* Any Add-In specific features, facilities and Help are made available through
the 'Specialize | <add-in name>' context menu option

e Any defined Add-In windows are populated with information; select the
'Specialize > Add-Ins > Windows' menu option

Disable an Add-In To disable an Add-In so that it is not available for use, clear the 'Load on Startup'
checkbox corresponding to the name.
Click on the OK button.
All menu options, features and facilities specific to the Add-In are hidden and made
inactive.
Notes

e When you enable or disable an Add-In, you must re-start Enterprise Architect to action the change

(c) Sparx Systems 2019 Page 339 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Add-In Tasks

This topic provides instructions on how to create, test, deploy and manage Add-Ins.

Create an Add-In

Task

Create an Add-In.

Define Menu Items.

Respond to Menu Events.

Handle Add-In Events.

Deploy your Add-In

Task

Potential Pitfalls.

Manage Add-Ins

Task

Register an Add-In (developed in-house or brought-in).

The Add-In Manager.

(c) Sparx Systems 2019 Page 340 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Create Add-Ins

Before you start you must have an application development tool that is capable of creating ActiveX COM objects
supporting the IDispatch interface, such as:

e Borland Delphi
e Microsoft Visual Basic
e Microsoft Visual Studio .NET

You should consider how to define menu items. To help with this, you could review some examples of Automation
Interfaces - examples of code used to create Add-Ins for Enterprise Architect - on the Sparx Systems web page.

Create an Enterprise Architect Add-In

Step Action

1 Use a development tool to create an ActiveX COM DLL project.

Visual Basic users, for example, choose File-Create New Project-ActiveX DLL.
2 Connect to the interface using the syntax appropriate to the language.

3 Create a COM Class and implement each of the general Add-In Events applicable to your Add-In. You
only have to define methods for events to respond to.

4 Add a registry key that identifies your Add-In to Enterprise Architect, as described in the Deploy Add-Ins
topic.

(c) Sparx Systems 2019 Page 341 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Define Menu Iltems
Tasks

Task Detail

Define Menu Items Menu items are defined by responding to the GetMenultems event.

The first time this event is called, MenuName is an empty string, representing the
top-level menu. For a simple Add-In with just a single menu option you can return
a string.

Function EA_GetMenultems(Repository as EA.Repository, MenuLocation As
String, MenuName As String) As Variant

EA_GetMenultems = "&Joe's Add-In"

End Function

Define Sub-Menus To define sub-menus, prefix a parent menu with a dash. Parent and sub-items are
defined in this way:

Function EA GetMenultems(Repository as EA.Repository, MenuLocation As
String, MenuName As String) As Variant

Select Case MenuName
Case ""

'Parent Menu Item

EA_GetMenultems = "-&Joe's Add-In"
Case "-&Joe's Add-In"

'Define Sub-Menu Items using the Array notation.

'In this example, "Diagram" and "Treeview" compose the "Joe's Add-In"

sub-menu.
EA_ GetMenultems = Array("&Diagram", "&Treeview")
Case Else
MsgBox "Invalid Menu", vbCritical
End Select

End Function

Define Further Sub-Menus Similarly, you can define further sub-items:

Function EA_GetMenultems(Repository as EA.Repository, MenuLocation As
String, MenuName As String) As Variant

Select Case MenuName
Case ""

EA_GetMenultems = "-Joe's Add-In"
Case "-Joe's Add-In"

EA_GetMenultems = Array("-&Diagram", "&TreeView")
Case "-&Diagram"

EA_ GetMenultems = "&Properties”
Case Else

MsgBox "Invalid Menu", vbCritical

End Select

(c) Sparx Systems 2019 Page 342 of 505 Created with Enterprise Architect

User Guide - Automation

End Function

7 August, 2019

Enable/Disable menu To enable or disable menu options by default, you can use this method to show

options particular items to the user:

Sub EA GetMenuState(Repository As EA.Repository, Location As String,
MenuName As String, [temName As String, IsEnabled As Boolean, IsChecked As

Boolean)
Select Case Location
Case "TreeView"
'Always enable
Case "Diagram"
'Always enable
Case "MainMenu"
Select Case ItemName
Case "&Translate", "Save &Project"
If GetlsProjectSelected() Then
IsEnabled = False
End If
End Select
End Select
IsChecked = GetlsCurrentSelection()
End Sub

(c) Sparx Systems 2019 Page 343 of 505

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Deploy Add-Ins

Deploy Add-Ins to users' sites

Step Action

1 Add the Add-In DLL file to an appropriate directory on the user's computer; that is:
C:\Program Files\(new dir)

2 Register the DLL as appropriate to your platform:

e If compiled as a native Win32 DDL, such as VB6 or C++, register the DDL
using the regsvr32 command from the command prompt
regsvr32 "C:\Program Files\MyCompany\EAAddin\EAAddin.dll"

e Ifcompiled as a NET DLL, such as C# or VB.NET, register the DLL using the
RegAsm command from the command prompt
CA\WINDOWS\Microsoft. NET\Framework\v2.0.50727\RegAsm.exe
"C:\Program Files\MyCompany\EAAddin\EAAddin.dIl" /codebase

3 Place a new entry into the registry using the registry editor (run regedit) so that
Enterprise Architect recognizes the presence of your Add-In.

4 Add a new key 'EAAddIns' under one of these locations:

e For the current user only
[HKEY_ CURRENT_USER\Software\Sparx Systems]

e For multiple users on a machine
- Under 32-bit versions of Windows
[HKEY LOCAL MACHINE\Software\Sparx Systems]
- Under 64-bit versions of Windows
[HKEY LOCAL MACHINE\Software\Wow6432Node\Sparx Systems]

| Sparx Systems

W EA
. EAAddins
5 Add a new key under this key with the project name.
i
[Temp
= | EAAddins |
(L] RaQuest Expand |
Qeien | W
A veandvBAPr Find... _
(] WinCvs String value
(] WinZip Compu Delete Binary Value
3 Yahoo Fename DWORD Value
([Zicom Systems Expart Multi-5tring Value
([UNICODE Frograr S Expandable String Value

([volatile Environme
I:I Windows 3.1 Migrz Copy kKey Mame
HKEY LOCAL MACHIME

(c) Sparx Systems 2019 Page 344 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

(ProjectName) is not necessarily the name of your DLL, but the name of the
Project; in Visual Basic, this is the value for the property Name corresponding to

the project file.
6 Specify the default value by modifying the default value of the key.
MName Twpe Data

nes S

(value not set)

Maodify Binary Daka

Delete
Renarne

7 Enter the value of the key by typing in the (project name).(class name), such as:
EaRequirements.Requirements

where EaRequirements is the project name, as shown in this example:
Walue namme:

Walue data:

E aFiequirements. P equirements] [k‘

L OF. J [Cancel

(c) Sparx Systems 2019 Page 345 of 505 Created with Enterprise Architect

User Guide - Automation

Tricks and Traps

Considerations

Item

Visual Basic 5/6 Users
Note

Add-In Fails to Load

Holding State Information

Enterprise Architect Not
Closing

(c) Sparx Systems 2019

7 August, 2019

Detail

Visual Basic 5/6 users should note that the version number of the Enterprise
Architect interface is stored in the VBP project file in a form similar to this:

Reference=*\G{64FB2BF4-9EFA-11D2-8307-C45586000000}#2.2#0#..\..\..\..\Pro
gram Files\Sparx Systems\EA\EA.TLB#Enterprise Architect Object Model 2.02

If you experience problems moving from one version of Enterprise Architect to
another, open the VBP file in a text editor and remove this line. Then open the
project in Visual Basic and use Project-References to create a new reference to the
Enterprise Architect Object model.

From Enterprise Architect release 7.0, Add-Ins created before 2004 are no longer
supported. If an Add-In subscribes to the Addn_Tmpl.tlb interface (2003 style), it
fails on load. In this event, contact the vendor or author of the Add-In and request
an upgrade.

It is possible for an Add-In to hold state information, meaning that data can be
stored in member variables in response to one event and retrieved in another. There
are some dangers in doing this:

e Enterprise Architect Automation Objects do not update themselves in response
to user activity, to activity on other workstations, or even to the actions of other
objects in the same automation client; retaining handles to such objects
between calls can result in the second event querying objects that have no
relationship with the current state of Enterprise Architect

e When you close Enterprise Architect, all Add-Ins are asked to shut down; if
there are any external automation clients Enterprise Architect must stay active,
in which case all the Add-Ins are reloaded, losing all the data

e Enterprise Architect acting as an automation client does not close if an Add-In
still holds a reference to it (releasing all references in the Disconnect() event
avoids this problem)

It is recommended that unless there is a specific reason for doing so, the Add-In
should use the repository parameter and its method and properties to provide the
necessary data.

NET Specific Issues

Automation checks the use of objects and will not allow any of them to be
destroyed until they are no longer being used.

As noted in the Automation Interface topic, if your automation controller was
written using the .NET framework, Enterprise Architect does not close even after
you release all your references to it. To force the release of the COM pointers, call
the memory management functions as shown:

GC.Collect();
GC.WaitForPendingFinalizers();

Additionally, because automation clients hook into Enterprise Architect, which
creates Add-Ins that in turn hook back into Enterprise Architect, it is possible to get
into a deadlock situation where Enterprise Architect and the Add-Ins will not let go
of one another and keep each other active. An Add-In might retain hooks into

Page 346 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Enterprise Architect because:

e [t keeps a private reference to an Enterprise Architect object (see the earlier
Holding State Information), or

e It has been created by .NET and the GC mechanism has not yet released it
There are two actions required to avoid deadlock situations:

e Automation controllers must call Repository.CloseAddins() at some point
(perhaps at the end of processing)

e Add-Ins must release all references to Enterprise Architect in the Disconnect()
event; see the Add-In Events topic for details

It is possible that your Automation client controls a running instance of Enterprise
Architect where the Add-Ins have not complied with the rules. In this case you
could call Repository.Exit() to terminate Enterprise Architect.

Miscellaneous

In developing Add-Ins using the .NET framework you must select COM
Interoperability in the project's properties in order for it to be recognized as an
Add-In.

Some development environments do not automatically register COM DLLs on
creation. You might have to do that manually before Enterprise Architect
recognizes the Add-In.

You can use your private Add-In key (as required for Add-In deployment) to store
configuration information pertinent to your Add-In.

Concurrent Calls In Enterprise Architect releases up to release 7.0, there is a possibility that
Enterprise Architect could call two Add-In methods concurrently if the Add-In
calls:

e A message box
e A modal dialog

e VB DoEvents, .NET Application DoEvents or the equivalent in other
languages

In such cases, Enterprise Architect could initiate a second Add-In method before
the first returns (re-entrancy). In release 7.0. and subsequent releases, Enterprise
Architect cannot make such concurrent calls.

If developing Add-Ins, ensure that the Add-In users are running Enterprise
Architect release 7.0 or a later release to avoid any risk of concurrent method calls.

(c) Sparx Systems 2019 Page 347 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Add-In Search

Enterprise Architect enables Extensions to integrate with the Model Search. Searches can be defined that execute a
method within your Add-In and display your results in an integrated way.

Details

Item

The method that runs the search must be structured in this way.
Defines the XML structure expected by Enterprise Architect to specify search results.

In addition to the displayed results, two additional hidden fields can be passed into the XML that provide special
functionality.

e CLASSTYPE - Returning a field of CLASSTYPE, containing the Object Type value from the t object table,
displays the appropriate icon in the column in which you place the field

e CLASSGUID - Returning a field of CLASSGUID, containing an ea_guid value, enables the Model Search to
track the object in the Browser window and open the Properties window for the element by double-clicking in
the Model Search

(c) Sparx Systems 2019 Page 348 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_SampleSearch

This defines the signature required for the function EA calls when executing an add-in search. The name can be changed
to any valid function name in your target programming language.

Syntax
Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object representing the Enterprise Architect model
about to be closed. Poll its members to retrieve model data and user interface status
information.

SearchText String
Direction: IN
Description: Provides the value (if any) entered by the user in the search term field
in the model search window.

XMLResults String

Direction: OUT

Description: Provides the value (if any) entered by the user in the search term field
in the model search window.

Return Value

The method must return any non-empty value for the results to be displayed.

(c) Sparx Systems 2019 Page 349 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

XML Format (Search Data)

This example XML provides the format for the sSearchData parameter of the RunModelSearch method.
<ReportViewData UID=\"MySearchID\">

<I--

//The UID attribute enables XML type searches to persist column information. That is, if you run the search, group
by column or adjust

//column widths, then close the window and run the search again, the format/organization changes are retained. To
avoid persisting column

//arrangements, leave the attribute value blank or remove it altogether. Use this section to declare all possible
fields - columns that appear

//in Enterprise Architect's Search window - that are used below in <Rows/>. The order of the columns of
information to be appended here must

//match the order that the search run in Enterprise Architect would normally display. Furthermore, if you append
results onto a custom SQL

//Search, then the order used in your Custom SQL must match the order used here.
>
<Fields>
<Field name=""/>
<Field name=""/>
<Field name=""/>
<Field name=""/>
</Fields>
<Rows>
<Row>

—nn

<Field name="" value=""/>

<Field name="" value=""/>

<Field name="" value=""/>
<Field name="" value=""/>

</Row>

<Row>
<Field name="" value=""/>
<Field name="" value=""/>
<Field name="" value=""/>
<Field name="" value=""/>

</Row>

<Row>

—nn

<Field name="" value=""/>

—nm

<Field name="" value=""/>

<Field name="" value=""/>
<Field name="" value=""/>
</Row>

</Rows>

(c) Sparx Systems 2019 Page 350 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

</ReportViewData>

(c) Sparx Systems 2019 Page 351 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Add-In Events

All Enterprise Architect Add-Ins can choose to respond to general Add-In events.

Events

Event

EA_Connect - Add-Ins can use this to identify their type and to respond to Enterprise Architect start up.

EA_Disconnect - Add-Ins can use this to respond to user requests to disconnect the model branch from an external
project.

EA GetMenultems - Add-Ins can use this to provide the Enterprise Architect user interface with additional Add-In
menu options in various context menus.

EA_GetMenuState - Add-Ins can use this to set a particular menu option to either enabled or disabled.
EA_GetRibbonCategory - Add-Ins can use this to identify the Ribbon panel in which to house their calling icon.
EA MenuClick - received by an Add-In in response to user selection of a menu option.

EA_OnOutputltemClicked - informs Add-Ins that the user has clicked on a list entry in the system tab or one of the
user defined output tabs.

EA_OnOutputltemDoubleClicked - informs Add-Ins that the user has used the mouse to double-click on a list entry
in one of the user-defined output tabs.

EA ShowHelp - Add-Ins can use this to show a Help topic for a particular menu option.

(c) Sparx Systems 2019 Page 352 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnAddinPropertiesTabChanging

Indicates that a value in a properties list added via Repository.AddPropertiesTab has been changed by the user.

Syntax
Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN
Description: Contains these EventProperty objects describing the field changed:

TabName: The name of the Add-Ins window tab changing

PropID: Unique ID assign to Property item within the xml definition.

ChangeValue: The value the Property is changing to.

OriginalValue: The original value assigned to the Property

Return Value

Return false to indicate that this change was rejected.

Return true to indicate that the change is accepted.

(c) Sparx Systems 2019 Page 353 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_Connect

Add-Ins can use EA_Connect events to identify their type and to respond to Enterprise Architect start up.

This event occurs when Enterprise Architect first loads your Add-In. Enterprise Architect itself is loading at this time so
that while a Repository object is supplied, there is limited information that you can extract from it.

The chief uses for EA_Connect are in initializing global Add-In data and for identifying the Add-In as an MDG Add-In.

Syntax
Function EA_Connect (Repository As EA.Repository) As String
The EA_Connect function syntax has this parameter:

Parameter Type
Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Return Value

A string identifying a specialized type of Add-In:

Type Details
"MDG" MDG Add-Ins receive MDG Events and extra menu options.
"Workflow" Workflow add-ins receive additional events to control user ability to change
specific fields.

" A non-specialized Add-In.

(c) Sparx Systems 2019 Page 354 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA Disconnect

Add-Ins can use the EA_Disconnect event to respond to user requests to disconnect the model branch from an external
project.

This function is called when Enterprise Architect closes. If you have stored references to Enterprise Architect objects
(not recommended anyway), you must release them here.

In addition, .NET users must call memory management functions as shown:
GC.Collect();
GC.WaitForPendingFinalizers();

Syntax

Sub EA Disconnect()

Return Value

None.

(c) Sparx Systems 2019 Page 355 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_GetMenultems

The EA_GetMenultems event enables the Add-In to provide the Enterprise Architect user interface with additional
Add-In menu options in various context menus. When a user selects an Add-In menu option, an event is raised and
passed back to the Add-In that originally defined that menu option.

This event is raised just before Enterprise Architect has to show particular menu options to the user, and its use is
described in the Define Menu Items topic.

Syntax

Function EA_GetMenultems (Repository As EA.Repository, MenuLocation As String, MenuName As String) As
Variant

The EA_GetMenultems function syntax has these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

MenuLocation String
Direction: IN

Description: A string representing the part of the user interface that brought up the
menu. This can be TreeView, MainMenu or Diagram.

MenuName String
Direction: IN

Description: The name of the parent menu for which sub-items are to be defined. In
the case of the top-level menu this is an empty string.

Return Value

One of these types:

e A string indicating the label for a single menu option

e An array of strings indicating a multiple menu options

e Empty (Visual Basic/VB.NET) or null (C#) to indicate that no menu should be displayed

In the case of the top-level menu it should be a single string or an array containing only one item, or empty/null.

(c) Sparx Systems 2019 Page 356 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_GetMenuState

Add-Ins can use the EA_GetMenuState event to set a particular menu option to either enabled or disabled. This is useful
when dealing with locked Packages and other situations where it is convenient to show a menu option, but not enable it
for use.

This event is raised just before Enterprise Architect has to show particular menu options to the user. Its use is further
described in the Define Menu Items topic.

Syntax

Sub EA_GetMenuState (Repository as EA.Repository, MenuLocation As String, MenuName as String, ItemName as
String, IsEnabled as Boolean, IsChecked as Boolean)

The EA_GetMenuState function syntax has these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

MenuLocation String
Direction: IN

Description: A string representing the part of the user interface that brought up the
menu. This can be TreeView, MainMenu or Diagram.

MenuName String
Direction: IN

Description: The name of the parent menu for which sub-items must be defined. In
the case of the top-level menu it is an empty string.

ItemName String
Direction: IN

Description: The name of the option actually clicked; for example, 'Create a New
Invoice'.

IsEnabled Boolean
Direction: OUT

Description: Set to False to disable this particular menu option.

IsChecked Boolean
Direction: OUT

Description: Set to True to check this particular menu option.

Return Value

(c) Sparx Systems 2019 Page 357 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

None.

(c) Sparx Systems 2019 Page 358 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_GetRibbonCategory

Add-Ins can use EA_GetRibbonCategory events to identify the Ribbon in which the Add-In should place its menu icon.

This event occurs when Enterprise Architect first loads your Add-In. Enterprise Architect itself is loading at this time so
that while a Repository object is supplied, there is limited information that you can extract from it.

The chief use for EA_GetRibbonCategory is in initializing the Add-In access point.

Syntax

Function EA_GetRibbonCategory (Repository As EA.Repository) As String
The EA_GetRibbonCategory function syntax has this parameter:

Parameter Description

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Return Value

A string matching the name of the selected ribbon (in English if you are using a translated version). The possible names
are:

e Start

e Design
e Layout
e Publish

e Specialize

e Construct

e Code

e Simulate

e Execute

e Manage

It is not possible to include Add-Ins in the 'Specification - Specify' ribbon or 'Documentation - Edit' ribbon.

If the function isn't implemented (or if an invalid name is returned) the 'Add-In' menu will be available from the
'Specialize' ribbon, 'Add-Ins' panel.

(c) Sparx Systems 2019 Page 359 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_MenuClick

EA_ MenuClick events are received by an Add-In in response to user selection of a menu option.

The event is raised when the user clicks on a particular menu option. When a user clicks on one of your non-parent menu
options, your Add-In receives a MenuClick event, defined as:

Sub EA MenuClick(Repository As EA.Repository, ByVal MenuLocation As String, ByVal MenuName As String,
ByVal ItemName As String)

This code is an example of use:
If MenuName = "-&Diagram" And ItemName = "&Properties" then
MsgBox Repository.GetCurrentDiagram.Name, vbInformation
Else
MsgBox "Not Implemented", vbCritical
End If

Notice that your code can directly access Enterprise Architect data and Ul elements using Repository methods.

Syntax

Sub EA_MenuClick (Repository As EA.Repository, MenuLocation As String, MenuName As String, temName As
String)

The EA_GetMenuClick function syntax has these parameters.

Parameter Type

Repository EA .Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

MenuLocation String
Direction: IN

Description: A string representing the part of the user interface that brought up the
menu. This can be TreeView, MainMenu or Diagram.

MenuName String
Direction: IN

Description: The name of the parent menu for which sub-items are to be defined. In
the case of the top-level menu this is an empty string.

ItemName String
Direction: IN

Description: The name of the option actually clicked; for example, 'Create a New
Invoice'.

Return Value

(c) Sparx Systems 2019 Page 360 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

None.

(c) Sparx Systems 2019 Page 361 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnOutputitemClicked

EA_OnOutputltemClicked events inform Add-Ins that the user has clicked on a list entry in the system tab or one of the
user defined output tabs.

Usually an Add-In responds to this event in order to capture activity on an output tab they had previously created through
a call to Repository. AddTab().

Note that every loaded Add-In receives this event for every click on an output tab in Enterprise Architect, irrespective of
whether the Add-In created that tab. Add-Ins should therefore check the TabName parameter supplied by this event to
ensure that they are not responding to other Add-Ins' events.

Syntax

EA_OnOutputltemClicked (Repository As EA.Repository, TabName As String, LineText As String, ID As Long)
The EA_OnOutputltemClicked function syntax has these parameters.

Parameter Type

Repository EA .Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

TabName String
Direction: IN

Description: The name of the tab that the click occurred in. Usually this would have
been created through 'Repository. AddTab()'".

LineText String
Direction: IN

Description: The text that had been supplied as the String parameter in the original
call to 'Repository. WriteOutput()'.

ID Long
Direction: IN

Description: The ID value specified in the original call to
Repository. WriteOutput().

Return Value

None.

(c) Sparx Systems 2019 Page 362 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnOutputitemDoubleClicked

EA_OnOutputltemDoubleClicked events inform Add-Ins that the user has used the mouse to double-click on a list entry
in one of the user-defined output tabs.

Usually an Add-In responds to this event in order to capture activity on an output tab they had previously created through
a call to Repository. AddTab().

Note that every loaded Add-In receives this event for every double-click on an output tab in Enterprise Architect,
irrespective of whether the Add-In created that tab; Add-Ins should therefore check the TabName parameter supplied by
this event to ensure that they are not responding to other Add-Ins' events.

Syntax

EA_OnOutputlitemDoubleClicked (Repository As EA.Repository, TabName As String, LineText As String, ID As Long)

The EA_OnOutputltemClicked function syntax contains these parameters.

Parameter Type

Repository EA .Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model; poll its members to retrieve model data and user interface status
information.

TabName String
Direction: IN

Description: The name of the tab that the click occurred in; usually this would have
been created through 'Repository. AddTab()'".

LineText String
Direction: IN

Description: The text that had been supplied as the String parameter in the original
call to 'Repository. WriteOutput()'.

ID Long
Direction: IN

Description: The ID value specified in the original call to
Repository. WriteOutput().

Return Value

None.

(c) Sparx Systems 2019 Page 363 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_ShowHelp

Add-Ins can use the EA_ShowHelp event to show a Help topic for a particular menu option. When the user has an
Add-In menu option selected, pressing F1 can be related to the required Help topic by the Add-In and a suitable Help
message shown.

This event is raised when the user presses F1 on a menu option that is not a parent menu.

Syntax

Sub EA_ShowHelp (Repository as EA.Repository, MenuLocation As String, MenuName as String, IltemName as String)

The EA_ShowHelp function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

MenuLocation String
Direction:

Description: A string representing the part of the user interface that brought up the
menu. This can be Treeview, MainMenu or Diagram.

MenuName String
Direction:

Description: The name of the parent menu for which sub-items are to be defined. In
the case of the top-level menu this is an empty string.

ItemName String
Direction:

Description: The name of the option actually clicked; for example, 'Create a New
Invoice'.

Return Value

None.

(c) Sparx Systems 2019 Page 364 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Broadcast Events

Overview

Broadcast events are sent to all loaded Add-Ins. For an Add-In to receive the event, they must first implement the
required automation event interface. If Enterprise Architect detects that the Add-In has the required interface, the event is
dispatched to the Add-In.

MDG Events add a number of additional events, but the Add-In must first have registered as an MDG-style Add-In,
rather than as a generic Add-In.

Event Type

Add-In Licence Management Events

Custom Table Events

Compartment Events

Context Item Events

File Close Event

File New Event

File Open Event

Model Validation Events

On Tab Changed Event

Post Close Diagram Event

Post Initialization Event

Post New Events

Post Open Diagram Event

Pre-Deletion Events

Pre-Exit Instance (not currently used)

On the creation of new objects

Retrieve Model Template Event

Schema Composer Events

Tagged Value Events

(c) Sparx Systems 2019 Page 365 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Technology Events

Transformation Event

(c) Sparx Systems 2019 Page 366 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Custom Table Events

The Custom Table element has an Operation called 'script', reserved for script execution, that can be used in two
different, mutually exclusive ways, either:

e To contain a script in JavaScript that can be executed from the element context menu; see the Custom Table Artifact
Help topic, or

e To contain RaiseEvent broadcast calls to trigger actions from an Add-In written to read or update the Custom Table

Broadcasts

There are four reserved Add-In broadcast events that can only be enabled by listing the event in the 'script' Operation of
the Custom Table element. To raise the broadcast events, list any or all of these broadcast calls in the operation named
'script’.

Syntax:
RaiseEvent::EA_OnCustomTableBeginEdit
REE- -8 A8 axEE ;
4 myCustomnTable 1 RaiseEvent::EA_OnCustomTableBeginEdit -
B data 2 RaiseEvent::EA_OnCustomTableEndEdit
3 RaiseEvent::EA_OnCustomTableSelectionChanged
(B dataFormat 4 RaiseEvent::EA_OnCustomTableTableCellUpdated
¢ sCript
-
4 4

(c) Sparx Systems 2019 Page 367 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnCustomTableBeginEdit

EA_OnCustomTableBeginEdit notifies Add-Ins that the Custom Table is beginning edit mode. This broadcast event can
only be enabled by the Custom Table's operation 'script' behavior.

Syntax

Function EA_OnCustomTableBeginEdit (Repository As EA.Repository, Info As EA.EventProperties)
The EA_OnCustomTableBeginEdit function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN

Description: Contains this EventProperty object for the Custom Table that is under
edit:

e ObjectID - A long value corresponding to the ElementID of the object

(c) Sparx Systems 2019 Page 368 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnCustomTableEndEdit

EA_OnCustomTableEndEdit notifies Add-Ins that a Custom Table element is ending edit mode. This broadcast event
can only be enabled by the Custom Table's operation 'script' behavior.

Syntax

Function EA_OnCustomTableEndEdit (Repository As EA.Repository, Info As EA.EventProperties)

The EA_OnCustomTableEndEdit function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN

Description: Contains this EventProperty object for the Custom Table that is under
edit:

e ObjectID - A long value corresponding to the ElementID of the object

Return Value

This function allows validation of the table data, and returns a Boolean value:
e true to save the current data in the grid, or

e false to abandon the current data

(c) Sparx Systems 2019 Page 369 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnCustomTableSelectionChanged

EA_ OnCustomTableSelectionChanged notifies Add-Ins that a cell of the Custom Table has changed. This broadcast
event can only be enabled by the Custom Table's operation 'script' behavior.

Syntax

Function EA_OnCustomTableSelectionChanged (Repository As EA.Repository, Info As EA.EventProperties)

The EA_OnCustomTableSelectionChanged function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN

Description: Contains these EventProperty objects for the Custom Table that has
been changed:

e ObjectID - A long value corresponding to the ElementID of the object
e RowlD - A long value corresponding to the selected row id

e ColID - A long value corresponding to the selected column id

(c) Sparx Systems 2019 Page 370 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnCustomTableCellUpdated

EA_OnCustomTableCellUpdated notifies Add-Ins that a cell value has been updated. This broadcast event can only be
enabled by the Custom Table's operation 'script' behavior.

Syntax

Function EA_OnCustomTableCellUpdated (Repository As EA.Repository, Info As EA.EventProperties)
The EA_OnCustomTableCellUpdated function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN

Description: Contains these EventProperty objects for the Custom Table cell that
has been changed:

e ObjectID - A long value corresponding to the ElementID of the object
e RowlD - A long value corresponding to the selected row id
e ColID - A long value corresponding to the selected column id

e Value - A variant value of the changed cell data

(c) Sparx Systems 2019 Page 371 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Schema Composer Events

Enterprise Architect Add-Ins can respond to events associated with the Schema Composer to provide custom schema
export formats.

The requirements for an Add-In to participate consist of implementing these three functions:
e EA IsSchemaExporter
e EA GetProfileInfo

e EA GenerateFromSchema

(c) Sparx Systems 2019 Page 372 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_GenerateFromSchema

Respond to a 'Generate' request from the Schema Composer when using the profile type specified by the
EA_IsSchemaExporter event. The SchemaComposer object can be used to traverse the schema. Export formats that have
been requested by the user for generation will be listed in the exports parameter.

Syntax

Sub EA_GenerateFromSchema (Repository as EA.Repository, composer as EA.SchemaComposer, exports as String)

Parameter Details

Repository Type: EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open model. Poll
its members to retrieve model data and user interface status information.

composer Type: EA.SchemaComposer
Direction: IN

Description: Provides access to the types defined in the schema currently being
generated. Use the SchemaTypes attribute to enumerate through the types and
output to the appropriate export format.

exports Type: String
Direction: IN

Description: Comma-separated list of export formats that the user has requested in
the 'Generate' dialog.

Return Value

None.

(c) Sparx Systems 2019 Page 373 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_GetProfilelnfo

Add-Ins can optionally implement this function to define the capabilities of the Schema Composer when working with
the profile type specified by the EA_IsSchemaExporter event.

Syntax

Sub EA GetProfileInfo (Repository as EA.Repository, profile as EA.SchemaProfile)

Parameter Details

Repository Type: EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open model. Poll
its members to retrieve model data and user interface status information.

profile Type: EA.SchemaProfile
Direction: IN

Description: An EA.SchemaProfile object representing the currently active profile

type. Call the SetCapability function to enable or disable various capabilities of the
Schema Composer. Call the AddExportFormat function to define additional export
formats that this profile will support.

Return Value

None.

(c) Sparx Systems 2019 Page 374 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_IsSchemaExporter

Enterprise Architect Add-Ins can integrate with the Schema Composer by providing alternatives to offer users for the
generation of schemas and sub models.

The Add-In must implement this function to be listed in the Schema Composer.

Syntax

Function EA_IsSchemaExporter(Repository as EA.Repository, ByRef displayName as String) As Boolean

Parameter Details

Repository Type: EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open model. Poll
its members to retrieve model data and user interface status information.

displayName Type: String

Direction: OUT

Description: The name of the custom schema set that will be provided by this
Add-In.

Return Value

Return True to indicate that this Add-In will provide schema export functionality and be listed as a Schema Set when
defining a new profile in the Schema Composer.

(c) Sparx Systems 2019 Page 375 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Add-In License Management Events

Enterprise Architect Add-Ins can respond to events associated with Add-In License Management.

License Management Events

Event

EA AddinLicenseValidate

EA_AddinLicenseGetDescription

EA_GetSharedAddinName

(c) Sparx Systems 2019 Page 376 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_AddinLicenseValidate

When a user directly enters into the 'License Management' dialog a license key that doesn't match a Sparx Systems key,
EA_AddInLicenseValidate is broadcast to all Enterprise Architect Add-Ins, providing them with a chance to use the
Add-In key to determine the level of functionality to provide. When a key is retrieved from the Sparx Systems Keystore
only the target Add-In will be called with the key.

For the Add-In to validate itself against this key, the Add-In's EA_AddinLicenseValidate handler should return
confirmation that the license has been validated. As the EA AddinLicenseValidate event is broadcast to all Add-Ins, one
license can validate many Add-Ins.

If an Add-In elects to handle a license key by returning a confirmation to EA_AddinLicenseValidate, it is called upon to
provide a description of the license key through the EA_AddinLicenseGetDescription event. If more than one Add-In
elects to handle a license key, the first Add-In that returns a confirmation to EA AddinLicenseValidate is queried for the
license key description.

Syntax

Function EA_AddInLicenseValidate (Repository As EA.Repository, AddinKey As String) As Boolean

Parameter Type

Repository EA .Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

AddinKey String
Direction: IN

Description: The Add-In license key that has been entered in the 'License
Management' dialog.

Return Value

Returns True if the license key is validated for the current Add-In. Returns False otherwise.

(c) Sparx Systems 2019 Page 377 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_AddinLicenseGetDescription

Before the Enterprise Architect 'License Management' dialog is displayed, EA_AddInLicenseGetDescription is sent once
for each Add-In key to the first Add-In that elected to handle that key.

The value returned by EA_AddinLicenseGetDescription is used as the key's plain text description.

Syntax

Function EA_AddinLicenseGetDescription (Repository as EA.Repository, AddinKey as String) As String
Parameter Type
Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open model. Poll
its members to retrieve model data and user interface status information.

AddinKey String
Direction: IN

Description: The Add-In license key that Enterprise Architect requires a description
for.

Return Value

A String containing a plain text description of the provided AddinKey.

(c) Sparx Systems 2019 Page 378 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_GetSharedAddinName

As an Add-In writer you can distribute keys to your Add-In via the Enterprise Architect Keystore, provided that your
keys are added using a prefix that allows the system to identify the Add-In to which they belong.
EA_GetSharedAddinName is called to determine what prefix the Add-In is using. If a matching key is found in the
keystore the 'License Management' dialog will display the name returned by EA_AddinLicenseGetDescription to your
users. Finally, when the user selects a key, that key will be passed to your Add-In to validate by calling
EA_AddinLicenseValidate.

Syntax

Function EA_GetSharedAddinName (Repository as EA.Repository) As String

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open model. Poll
its members to retrieve model data and user interface status information.

Return Value

A String containing a product name code for the provided Add-In, such as MYADDIN. This will be shown in plain text
in any keys added to the keystore.

Notes

Shared Add-In keys have the format:
EASK-YOURCODE-REALKEY
e EASK - Constant string that identifies a shared key for an Enterprise Architect Add-In

e YOURCODE - The code you select and verify with us:
- Displayed to the administrator of the keystore
- Recommended length of 6-10 characters
- Contains ASCII characters 33-126, except for '-' (45)

e REALKEY - Encoding of the actual key or checksums
- Recommended length of 8-32 characters
- Contains ASCII characters 33-126

We recommend that you contact Sparx Systems directly with proposed values to ensure that you don't clash with any
other Add-Ins.

For example, these keys would all be interpreted as belonging to an Add-In returning MYADDIN from this function:
e EASK-MYADDIN-Test

e EASK-MYADDIN-{7AC4D426-9083-4fa2-93B7-25E2B7FB8DC5}

e EASK-MYADDIN-7AC4D426-9083-4fa2-93B7

e EASK-MYADDIN-25E2B7FB8DC5

e EASK-MYADDIN-2hDfHKASjf0GAjn92UvqAnxwC13dxQGJtH7zLHI9Y m&=

(c) Sparx Systems 2019 Page 379 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

(c) Sparx Systems 2019 Page 380 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Compartment Events

Enterprise Architect Add-Ins can respond to various events associated with user-generated element compartments.

Compartment Broadcast Events

Event

EA QueryAvailableCompartments

EA GetCompartmentData

(c) Sparx Systems 2019 Page 381 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_QueryAvailableCompartments

This event occurs when Enterprise Architect's diagrams are refreshed. It is a request for the Add-In to provide a list of
user-defined compartments.

The EA_GetCompartmentData event then queries each object for the data to display in each user-defined compartment.

Syntax

Function EA_QueryAvailableCompartments (Repository As EA.Repository) As Variant

The EA_QueryAvailableCompartments function syntax contains this parameter.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Return Value

A String containing a comma-separated list of user-defined compartments.

Example

Function EA_QueryAvailableCompartments(Repository As EA.Repository) As Variant
Dim sReturn As String
sReturn =""
If m_FirstCompartmentVisible = True Then
sReturn = sReturn + "first,"
End If
If m_SecondCompartmentVisible = True Then
sReturn = sReturn + "second,"
End If
If m_ThirdCompartmentVisible = True Then

sReturn = sReturn + "third,"

End If
If Len(sReturn) > 0 Then

sReturn = Left(sReturn, Len(sReturn)-1)
End If

EA_QueryAvailableCompartments = sReturn

End Function

(c) Sparx Systems 2019 Page 382 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

(c) Sparx Systems 2019 Page 383 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_GetCompartmentData

This event occurs when Enterprise Architect is instructed to redraw an element. It requests that the Add-In provide the
data to populate the element's compartment.

Syntax

Function EA_GetCompartmentData (Repository As EA.Repository, sCompartment As String, sGUID As String, oType
As EA.ObjectType) As Variant

The EA_QueryAvailableCompartments function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

sCompartment String
Direction: IN

Description: The name of the compartment for which data is being requested.

sGUID String
Direction: IN
Description: The GUID of the element for which data is being requested.

oType ObjectType
Direction: IN
Description: The type of the element for which data is being requested.

Return Value

A variant containing a formatted string. The format is illustrated in this example:

Example

Function EA_GetCompartmentData(Repository As EA.Repository, sCompartment As String, sGUID As String,
oType As EA.ObjectType) As Variant

If Repository Is Nothing Then

Exit Function

End If

(c) Sparx Systems 2019 Page 384 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Dim sCompartmentData As String

Dim o XML As MSXML2.DOMDocument
Dim Nodes As MSXML2.IXMLDOMNodeList
Dim Nodel As MSXML2.IXMLDOMNode
Dim Node As MSXML2.IXMLDOMNode
Dim sData As String

sCompartmentData = ""
Set o XML = New MSXML2.DOMDocument
sData =""
On Error GoTo ERR_GetCompartmentData
oXML.loadXML (Repository.GetTreeXMLByGUID(sGUID))
Set Nodel = oXML.selectSingleNode("//Modelltem")
If Nodel Is Nothing Then
Exit Function

End If

sCompartmentData = sCompartmentData + "Name=" + sCompartment + ";"

sCompartmentData = sCompartmentData + "OwnerGUID=" + sGUID + ";"

sCompartmentData = sCompartmentData + "Options=SkipIfOnDiagram& eq "“1& sc_ "

Select Case sCompartment

Case "parts"

Set Nodes = Nodel.selectNodes("Modelltem(@Metatype=""Part"")")

For Each Node In Nodes
sData = sData + "Data& eq_"" + Node.Attributes.getNamedItem("Name").nodeValue + "& sc_ "
sData = sData + "GUID& _eq_"" + Node.Attributes.getNamedItem("GUID").nodeValue + "& sc_","
Next

Case "ports"

Set Nodes = Nodel.selectNodes("Modelltem(@Metatype=""Port"")")

For Each Node In Nodes
sData = sData + "Data& eq "" + Node.Attributes.getNamedItem("Name").nodeValue + "& sc_""
sData = sData + "GUID& _eq_"" + Node.Attributes.getNamedItem("GUID").nodeValue + "& sc_*,"
Next

End Select

If there is no data to display, then don't return any compartment data

If sData <>"" Then
sCompartmentData = sCompartmentData + "CompartmentData=" + sData + ";"

Else
sCompartmentData =

End If

EA_GetCompartmentData = sCompartmentData

"nn

Exit Function

(c) Sparx Systems 2019 Page 385 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

ERR_GetCompartmentData:
EA_GetCompartmentData = ""

End Function

(c) Sparx Systems 2019 Page 386 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Context Item Events

Enterprise Architect Add-Ins can respond to events associated with changing context.

Context Item Broadcast Events

Event

EA_OnContextltemChanged

EA_OnContextltemDoubleClicked

EA_OnNotifyContextltemModified

(c) Sparx Systems 2019 Page 387 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnContextltemChanged

EA_OnContextltemChanged notifies Add-Ins that a different item is now in context.

This event occurs after a user has selected an item anywhere in the Enterprise Architect GUI. Add-Ins that require
knowledge of the current item in context can subscribe to this broadcast function. If ot = otRepository, then this function
behaves in the same way as EA_FileOpen.

Syntax

Sub EA_OnContextltemChanged (Repository As EA.Repository, GUID As String, ot as EA.ObjectType)

The EA_OnContextltemChanged function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

GUID String
Direction: IN

Description: Contains the GUID of the new context item. The value corresponds to
these properties, depending on the value of the ot parameter:

e ot (ObjectType) - GUID value

e otElement - Element.ElementGUID

e otPackage - Package.PackageGUID

e otDiagram - Diagram.DiagramGUID

e otAttribute - Attribute. AttributeGUID

e otMethod - Method.MethodGUID

e otConnector - Connector.ConnectorGUID

e otRepository - NOT APPLICABLE, the GUID is an empty string

ot EA.ObjectType
Direction: IN

Description: Specifies the type of the new context item.

Return Value

None.

(c) Sparx Systems 2019 Page 388 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnContextitemDoubleClicked

EA_OnContextltemDoubleClicked notifies Add-Ins that the user has double-clicked the item currently in context.

This event occurs when a user has double-clicked (or pressed the Enter key) on the item in context, either in a diagram,
in the Browser window or in a custom compartment. Add-Ins to handle events can subscribe to this broadcast function.

Syntax

Function EA_OnContextltemDoubleClicked (Repository As EA.Repository, GUID As String, ot as EA.ObjectType)

The EA_OnContextltemDoubleClicked function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

GUID String
Direction: IN

Description: Contains the GUID of the new context item. The value corresponds to
these properties, depending on the value of the ot parameter:

e otElement - Element.ElementGUID

e otPackage - Package.PackageGUID

e otDiagram - Diagram.DiagramGUID
e otAttribute - Attribute.AttributeGUID
e otMethod - Method.MethodGUID

e otConnector - Connector.ConnectorGUID

ot EA.ObjectType
Direction: IN

Description: Specifies the type of the new context item.

Return Value

Return True to notify Enterprise Architect that the double-click event has been handled by an Add-In.

Return False to enable Enterprise Architect to continue processing the event.

(c) Sparx Systems 2019 Page 389 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnNotifyContextitemModified

EA_OnNotifyContextltemModified notifies Add-Ins that the current context item has been modified.

This event occurs when a user has modified the context item. Add-Ins that require knowledge of when an item has been
modified can subscribe to this broadcast function.

Syntax

Sub EA_OnNotifyContextltemModified (Repository As EA.Repository, GUID As String, ot as EA.ObjectType)
The EA_OnNotifyContextltemModified function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

GUID String
Direction: IN

Description: Contains the GUID of the new context item. The value corresponds to
these properties, depending on the value of the ot parameter:

ot(ObjectType) - GUID value
otElement - Element.ElementGUID
e otPackage - Package.PackageGUID

e otDiagram - Diagram.DiagramGUID
e otAttribute - Attribute. AttributeGUID
e otMethod - Method.MethodGUID

e otConnector - Connector.ConnectorGUID

ot EA.ObjectType
Direction: IN

Description: Specifies the type of the new context item.

Return Value

None.

(c) Sparx Systems 2019 Page 390 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_FileClose

The EA_FileClose event enables the Add-In to respond to a File Close event. When Enterprise Architect closes an
opened Model file, this event is raised and passed to all Add-Ins implementing this method.

This event occurs when the model currently opened within Enterprise Architect is about to be closed (when another
model is about to be opened or when Enterprise Architect is about to shutdown).

Syntax

Sub EA_FileClose (Repository As EA.Repository)

The EA_FileClose function syntax contains this parameter:

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the Enterprise Architect model
about to be closed. Poll its members to retrieve model data and user interface status
information.

Return Value

None.

(c) Sparx Systems 2019 Page 391 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_FileNew

The EA_FileNew event enables the Add-In to respond to a File New event. When Enterprise Architect creates a new
model file, this event is raised and passed to all Add-Ins implementing this method.

The event occurs when the model being viewed by the Enterprise Architect user changes, for whatever reason (through
user interaction or Add-In activity).

Syntax

Sub EA_FileNew (Repository As EA.Repository)

The EA_FileNew function syntax contains this parameter.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Return Value

None.

(c) Sparx Systems 2019 Page 392 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_FileOpen

The EA_FileOpen event enables the Add-In to respond to a File Open event. When Enterprise Architect opens a new
model file, this event is raised and passed to all Add-Ins implementing this method.

The event occurs when the model being viewed by the Enterprise Architect user changes, for whatever reason (through
user interaction or Add-In activity).

Syntax

Sub EA_FileOpen (Repository As EA.Repository)

The EA_FileOpen function syntax contains this parameter.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Return Value

None.

(c) Sparx Systems 2019 Page 393 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnPostCloseDiagram

EA_OnPostCloseDiagram notifies Add-Ins that a diagram has been closed.

Syntax

Function EA_OnPostCloseDiagram (Repository As EA.Repository, DiagramID As Integer)

The EA_OnPostCloseDiagram function syntax contains these parameters.

Parameter Type
Repository EA Repository

Direction: IN

Description: An EA.Repository object representing the Enterprise Architect model
about to be closed. Poll its members to retrieve model data and user interface status
information.

DiagramID Integer
Direction: IN

Description: Contains the Diagram ID of the diagram that was closed.

Return Value

None.

(c) Sparx Systems 2019 Page 394 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnPostinitialized

EA_OnPostlnitialized notifies Add-Ins that the Repository object has finished loading and any necessary initialization
steps can now be performed on the object.

For example, the Add-In can create an 'Output’ tab using Repository.CreateOutputTab.

Syntax

Sub EA_OnPostlnitialized (Repository As EA.Repository)

The EA_OnPostlnitialized function syntax contains this parameter.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Return Value

None.

(c) Sparx Systems 2019 Page 395 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnPostOpenDiagram

EA_OnPostOpenDiagram notifies Add-Ins that a diagram has been opened.

Syntax

Function EA_OnPostOpenDiagram (Repository As EA.Repository, DiagramID As Integer)

The EA_OnPostOpenDiagram function syntax contains these parameters.

Parameter Type
Repository EA Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

DiagramID Integer
Direction: IN

Description: Contains the Diagram ID of the diagram that was opened.

Return Value

None.

(c) Sparx Systems 2019 Page 396 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnPostTransform

EA_OnPostTransform notifies Add-Ins that an MDG transformation has taken place with the output in the specified
target Package.

This event occurs when a user runs an MDG transform on one or more target Packages; the notification is provided for
each transform/target Package immediately after all transform processes have completed.

Syntax

Function EA_OnPostTransform (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostTransform function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN
Description: Contains these EventProperty Objects for the transform performed:
e Transform: A string value corresponding to the name of the transform used

e PackagelD: A long value corresponding to Package.PackagelD of the
destination Package

Return Value

Reserved for future use.

(c) Sparx Systems 2019 Page 397 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnPreExitinstance

EA_OnPreExitInstance is not currently used.

Syntax

Sub EA OnPreExitInstance (Repository As EA.Repository)

The EA_OnPreExitInstance function syntax contains this parameter.

Parameter Type

Repository EA Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Return Value

None.

(c) Sparx Systems 2019 Page 398 of 505 Created with Enterprise Architect

User Guide - Automation

EA_OnRetrieveModelTemplate

7 August, 2019

EA_OnRetrieveModelTemplate requests that an Add-In pass a model template to Enterprise Architect. This event occurs
when a user executes the 'Add a New Model Using Wizard' command to add a model that has been defined by an MDG

Technology.

Syntax

Function EA_OnRetrieveModelTemplate (Repository As EA.Repository, sLocation As String) As String

The EA_OnRetrieveModelTemplate function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status

information.

sLocation String

Direction: IN

Description: The name of the template requested; this should match the location
attribute in the <ModelTemplates> section of an MDG Technology File.

Return Value

Return a string containing the XMI export of the model that is being used as a template. Return an empty string if access

to the template is denied; the Add-In is to handle user notification of the error.

Example

Public Function EA_OnRetrieveModel Template(ByRef Rep As EA.Repository, ByRef sLocation As String) As String

Dim sTemplate As String

Select Case sLocation

Case "Templates\Templatel.xml"
sTemplate = My.Resources. Templatel
Case "Templates\Template2.xml"
sTemplate = My.Resources.Template2
Case "Templates\Template3.xml"
sTemplate = My.Resources. Template3
Case Else

MsgBox("Path for " & sLocation & " not found")
sTemplate =""

End Select

(c) Sparx Systems 2019 Page 399 of 505

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnRetrieveModelTemplate = sTemplate

End Function

(c) Sparx Systems 2019 Page 400 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnTabChanged

EA_OnTabChanged notifies Add-Ins that the currently open tab has changed.

Diagrams do not generate the message when they are first opened - use the broadcast event EA_OnPostOpenDiagram for
this purpose.

Syntax

Function EA_OnTabChanged (Repository As EA.Repository, TabName As String, DiagramID As Integer)

The EA_OnTabChanges function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

TabName String
Direction: IN

Description: The name of the tab to which focus has been switched.

DiagramID Long
Direction: IN
Description: The diagram ID, or 0 if switched to an Add-In tab.

Return Value

None

(c) Sparx Systems 2019 Page 401 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Model Validation Events

Perform Model Validation from an Add-In

Using Enterprise Architect broadcasts, it is possible to define a set of rules that are evaluated when the user instructs
Enterprise Architect to perform model validation. An Add-In that performs model validation would involve these
broadcast events.

Command Detail
EA OnlnitializeUserRules EA OnlnitializeUserRules is intercepted in order to define rule categories and
rules.
EA_OnStartValidation EA_OnStartValidation can be intercepted to perform any required processing prior

to validation.

EA_OnEndValidation EA_OnEndValidation can be intercepted to perform any required clean-up after
validation has completed.

Validate Request These functions intercept each request to validate an individual element, Package,
diagram, connector, attribute and method.

Validate Element EA_OnRunElementRule
Validate Package EA_OnRunPackageRule
Validate Diagram EA OnRunDiagramRule
Validate Connector EA_OnRunConnectorRule
Validate Attribute EA_OnRunAttributeRule
Validate Method EA_ OnRunMethodRule
Validate Parameter EA_OnRunParameterRule

(c) Sparx Systems 2019 Page 402 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnlnitializeUserRules

EA_OnlnitializeUserRules is called on Enterprise Architect start-up and requests that the Add-In provide Enterprise
Architect with a rule category and list of rule IDs for model validation.

This function must be implemented by any Add-In that is to perform its own model validation. It must call
Project.DefineRuleCategory once and Project.DefineRule for each rule; these functions are described in the Project
Interface topic.

Syntax

Sub EA_OnlnitializeUserRules (Repository As EA.Repository)

The EA_OnlnitializeUserRules function syntax contains this parameter.

Parameter Type

Repository EA .Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

(c) Sparx Systems 2019 Page 403 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnStartValidation

EA_OnStartValidation notifies Add-Ins that a user has invoked the model validation command from Enterprise
Architect.

Syntax

Sub EA OnStartValidation (Repository As EA.Repository, ParamArray Args() as Variant)

The EA_OnStartValidation function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Args ParamArray of Variant
Direction: IN

Description: Contains a list of Rule Categories that are active for the current
invocation of model validation.

(c) Sparx Systems 2019 Page 404 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnEndValidation

EA_OnEndValidation notifies Add-Ins that model validation has completed.

Use this event to arrange any clean-up operations arising from the validation.

Syntax

Sub EA OnEndValidation (Repository As EA.Repository, ParamArray Args() as Variant)

The EA_OnEndValidation function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA .Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Args ParamArray of Variant
Direction: IN

Description: Contains a list of Rule Categories that were active for the invocation
of model validation that has just completed.

(c) Sparx Systems 2019 Page 405 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnRunElementRule

This event is triggered once for each rule defined in EA_OnlnitializeUserRules to be performed on each element in the
selection being validated.

If you don't want to perform the rule defined by RulelD on the given element, then simply return without performing any
action.

On performing any validation, if a validation error is found, use the Repository.ProjectInterface.PublishResult method to
notify Enterprise Architect.

Syntax

Sub EA_OnRunElementRule (Repository As EA.Repository, RuleID As String, Element As EA.Element)

The EA_OnRunElementRule function syntax contains these parameters.

Parameter Type

Repository EA .Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

RuleID String
Direction: IN

Description: The ID that was passed into the 'Project.DefineRule' command.

Element EA Element
Direction: IN

Description: The element to potentially perform validation on.

(c) Sparx Systems 2019 Page 406 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnRunPackageRule

This event is triggered once for each rule defined in EA_OnlnitializeUserRules to be performed on each Package in the
selection being validated.

If you don't want to perform the rule defined by RulelD on the given Package, then simply return without performing any
action.

On performing any validation, if a validation error is found, use the Repository.ProjectInterface.PublishResult method to
notify Enterprise Architect.

Syntax

Sub EA_OnRunPackageRule (Repository As EA.Repository, RulelD As String, PackagelD As Long)

The EA_OnRunElementRule function syntax contains these parameters.

Parameter Type

Repository EA .Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

RuleID String
Direction: IN
Description: The ID that was passed into the 'Project.DefineRule' method.

PackagelD Long
Direction: IN

Description: The ID of the Package to potentially perform validation on. Use the
'Repository.GetPackageByID' method to retrieve the Package object.

(c) Sparx Systems 2019 Page 407 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnRunDiagramRule

This event is triggered once for each rule defined in EA_OnlnitializeUserRules to be performed on each diagram in the
selection being validated.

If you don't want to perform the rule defined by RulelD on the given diagram, then simply return without performing any
action.

On performing any validation, if a validation error is found, use the Repository.ProjectInterface.PublishResult method to
notify Enterprise Architect.

Syntax

Sub EA_OnRunDiagramRule (Repository As EA.Repository, RuleID As String, DiagramID As Long)

The EA_OnRunDiagramRule function syntax contains these parameters.

Parameter Type

Repository EA .Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

RuleID String
Direction: IN

Description: The ID that was passed into the 'Project.DefineRule' command.

DiagramID Long
Direction: IN
Description: The ID of the diagram to potentially perform validation on.

Use the Repository.GetDiagramByID method to retrieve the diagram object.

(c) Sparx Systems 2019 Page 408 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnRunConnectorRule

This event is triggered once for each rule defined in EA_OnlnitializeUserRules to be performed on each connector in the
selection being validated.

If you don't want to perform the rule defined by RulelD on the given connector, then simply return without performing
any action.

On performing any validation, if a validation error is found, use the Repository.ProjectInterface.PublishResult method to
notify Enterprise Architect.

Syntax

Sub EA_OnRunConnectorRule (Repository As EA.Repository, RuleID As String, ConnectorID As Long)

The EA_OnRunConnectorRule function syntax contains these parameters.

Parameter Type

Repository EA .Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

RuleID String
Direction: IN

Description: The ID that was passed into the 'Project.DefineRule' command.

ConnectorID Long
Direction: IN
Description: The ID of the connector to potentially perform validation on.

Use the 'Repository.GetConnectorByID' method to retrieve the connector object.

(c) Sparx Systems 2019 Page 409 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnRunAttributeRule

This event is triggered once for each rule defined in EA_OnlnitializeUserRules to be performed on each attribute in the
selection being validated.

If you don't want to perform the rule defined by RulelD on the given attribute, then simply return without performing any
action.

On performing any validation, if a validation error is found, use the Repository.ProjectInterface.PublishResult method to
notify Enterprise Architect.

Syntax

Sub EA_OnRunAttributeRule (Repository As EA.Repository, RuleID As String, AttributeGUID As String, ObjectID As
Long)

The EA_OnRunAttributeRule function syntax contains these parameters.

Parameter Type

Repository EA .Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

RuleID String
Direction: IN

Description: The ID that was passed into the 'Project.DefineRule' command.

AttributeGUID String
Direction: IN
Description: The GUID of the attribute to potentially perform validation on.
Use the 'Repository.GetAttributeByGuid' method to retrieve the attribute object.

ObjectID Long
Direction: IN

Description: The ID of the object that owns the given attribute. Use the
'Repository.GetElementByID' method to retrieve the object.

(c) Sparx Systems 2019 Page 410 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnRunMethodRule

This event is triggered once for each rule defined in EA_OnlnitializeUserRules to be performed on each method in the
selection being validated.

If you don't want to perform the rule defined by RulelD on the given method, then simply return without performing any
action.

On performing any validation, if a validation error is found, use the Repository.ProjectInterface.PublishResult method to
notify Enterprise Architect.

Syntax

Sub EA_OnRunMethodRule (Repository As EA.Repository, RuleID As String, MethodGUID As String, ObjectID As
Long)

The EA_OnRunMethodRule function syntax contains these parameters.

Parameter Type

Repository EA .Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

RuleID String
Direction: IN

Description: The ID that was passed into the 'Project.DefineRule' command.

MethodGUID String
Direction: IN

Description: The GUID of the method to potentially perform validation on. Use the
'Repository.GetMethodByGuid' method to retrieve the method object.

ObjectID Long
Direction: IN

Description: The ID of the object that owns the given method. Use the
'Repository.GetElementByID' method to retrieve the object.

(c) Sparx Systems 2019 Page 411 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnRunParameterRule

This event is triggered once for each rule defined in EA_OnlnitializeUserRules to be performed on each parameter in the
selection being validated.

If you don't want to perform the rule defined by RulelD on the given parameter, then simply return without performing
any action.

On performing any validation, if a validation error is found, use the Repository.ProjectInterface.PublishResult method to
notify Enterprise Architect.

Syntax

Sub EA_OnRunParameterRule (Repository As EA.Repository, RuleID As String, ParameterGUID As String,
MethodGUID As String, ObjectID As Long)

The EA_OnRunMethodRule function syntax contains these parameters.

Parameter Type

Repository EA .Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

RuleID String
Direction: IN

Description: The ID that was passed into the 'Project.DefineRule' command.

ParameterGUID String
Direction: IN

Description: The GUID of the parameter to potentially perform validation on. Use
this to retrieve the parameter by iterating through the 'Method.Parameters'
collection.

MethodGUID String
Direction: IN

Description: The GUID of the method that owns the given parameter. Use the
'Repository.GetMethodByGuid' method to retrieve the method object.

ObjectID Long
Direction: IN

Description: The ID of the object that owns the given parameter. Use the
'Repository.GetElementByID' method to retrieve the object.

(c) Sparx Systems 2019 Page 412 of 505 Created with Enterprise Architect

User Guide - Automation

Model Validation Example

7 August, 2019

This example code is written in C# and provides a skeleton model validation implementation that you might want to use

as a starting point in writing your own model validation rules.

Main.cs

using System;

namespace myAddin

{

public class Main

{

(c) Sparx Systems 2019

public Rules theRules;
public Main()
{

theRules = new Rules();

}
public string EA_Connect(EA.Repository Repository)

{

return ",

H
public void EA_Disconnect()

{
GC.Collect();
GC.WaitForPendingFinalizers();
H
private bool IsProjectOpen(EA.Repository Repository)
{
try
{
EA.Collection ¢ = Repository.Models;
return true;

}

catch

{

return false;

}

public object EA_GetMenultems(EA.Repository Repository, string MenuLocation, string MenuName)

{

switch (MenuName)

{

Page 413 of 505

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

nn,

case
return "-&myAddin";
case "-&myAddin":
string() ar = { "&Test" };
return ar;

}

return ",

H
public void EA_GetMenuState(EA.Repository Repository, string MenuLocation, string MenuName,

string ItemName, ref bool IsEnabled, ref bool IsChecked)
{
// if no open project, disable all menu options
if (IsProjectOpen(Repository))
IsEnabled = true;
else
IsEnabled = false;

}

public void EA_MenuClick(EA.Repository Repository, string MenuLocation, string MenuName, string
ItemName)

{

switch (ItemName)

{

case "&Test";
DoTest(Repository);
break;

}
public void EA_OnlnitializeUserRules(EA.Repository Repository)

{
if (Repository !=null)
{
theRules.ConfigureCategories(Repository);
theRules.ConfigureRules(Repository);

}
public void EA_OnRunElementRule(EA.Repository Repository, string RuleID, EA.Element element)

{
theRules.RunElementRule(Repository, RulelD, element);

H
public void EA_OnRunDiagramRule(EA.Repository Repository, string RulelD, long 1DiagramID)

{
theRules.RunDiagramRule(Repository, RulelD, IDiagramID);

(c) Sparx Systems 2019 Page 414 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

H
public void EA_OnRunConnectorRule(EA.Repository Repository, string RulelD, long 1ConnectorID)

{
theRules.RunConnectorRule(Repository, RuleID, IConnectorID);

H
public void EA_OnRunAttributeRule(EA.Repository Repository, string RulelD, string AttGUID, long 10bjectID)

{

return;

H
public void EA_OnDeleteTechnology(EA.Repository Repository, EA.EventProperties Info)

{

return;

i
public void EA_OnlImportTechnology(EA.Repository Repository, EA.EventProperties Info)

{

return;
H
private void DoTest(EA.Repository Rep)
{
// TODO: insert test code here
H
}
H
Rules.cs

using System;
using System.Collections;
namespace myAddin

{

public class Rules

{
private string m_sCategorylD;
private System.Collections.ArrayList m_RulelDs;
private System.Collections.ArrayList m_RuleIDEXx;
private const string cRule01 = "Rule01";
private const string cRule02 = "Rule02";
private const string cRule03 = "Rule03";
// TODO: expand this list as much as necessary
public Rules()
{

m_RuleIDs = new System.Collections.ArrayList();

(c) Sparx Systems 2019 Page 415 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

m_RuleIDEx = new System.Collections.ArrayList();

}
private string LookupMap(string sKey)

{
return DoLookupMap(sKey, m RuleIDs, m_RuleIDEx);

}
private string LookupMapEx(string sRule)

{
return DoLookupMap(sRule, m_RuleIDEx, m_RulelDs);

}
private string DoLookupMap(string sKey, ArrayList arrValues, ArrayList arrKeys)

{
if (arrKeys.Contains(sKey))
return arrValues(arrKeys.IndexOf(sKey)). ToString();
else

"nn,

return "";

H
private void AddToMap(string sRulelD, string sKey)

{
m_RuleIDs.Add(sRuleID);
m_RuleIDEx.Add(sKey);

}
private string GetRuleStr(string sRuleID)

{
switch (sRuleID)

{
case cRule01:
return "Error Message 01";
case cRule02:
return "Error Message 02";
case cRule03:
return "Error Message 03";
// TODO: add extra cases as much as necessary

}

return ",

}
public void ConfigureCategories(EA.Repository Repository)

{
EA Project Project = Repository.GetProjectInterface();

m_sCategorylD = Project.DefineRuleCategory("Enterprise Collaboration Architecture (ECA) Rules");

H
public void ConfigureRules(EA.Repository Repository)

(c) Sparx Systems 2019 Page 416 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA.Project Project = Repository.GetProjectInterface();

AddToMap(Project.DefineRule(m_sCategorylD, EA.EnumMVErrorType.mvError, GetRuleStr(cRule01)),
cRule01);

AddToMap(Project.DefineRule(m_sCategorylD, EA.EnumMVErrorType.mvError, GetRuleStr(cRule02)),
cRule02);

AddToMap(Project.DefineRule(m_sCategorylD, EA.EnumMVErrorType.mvError, GetRuleStr(cRule03)),
cRule03);

// TODO: expand this list

}
public void RunConnectorRule(EA.Repository Repository, string sRulelD, long 1ConnectorID)

{
EA.Connector Connector = Repository.GetConnectorByID((int)|ConnectorID);
if (Connector != null)

{
switch (LookupMapEx(sRulelD))

{
case cRule02:
// TODO: perform rule 2 check
break;
// TODO: add more cases

}
public void RunDiagramRule(EA.Repository Repository, string sRuleID, long 1DiagramID)

{
EA.Diagram Diagram = Repository.GetDiagramByID((int)IDiagramID);
if (Diagram != null)
{
switch (LookupMapEx(sRulelD))
{
case cRule03:
// TODO: perform rule 3 check
break;
// TODO: add more cases

}
public void RunElementRule(EA.Repository Repository, string sRulelD, EA.Element Element)

{
if (Element != null)

{
switch (LookupMapEx(sRulelD))

(c) Sparx Systems 2019 Page 417 of 505 Created with Enterprise Architect

User Guide - Automation

case cRule01:
DoRule01(Repository, Element);
break;

// TODO: add more cases

H
private void DoRule01(EA.Repository Repository, EA.Element Element)

{
if (Element.Stereotype != "myStereotype")
return;
// TODO: validation logic here
// report validation errors

EA .Project Project = Repository.GetProjectInterface();

7 August, 2019

Project.PublishResult(LookupMap(cRule01), EA. EnumMVErrorType.mvError, GetRuleStr(cRule01));

(c) Sparx Systems 2019 Page 418 of 505

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Post-New Events

Enterprise Architect Add-Ins can respond to the creation of new elements, connectors, objects, attributes, methods and
Packages using these broadcast events:

Post-New Broadcast Events

Event

EA_OnPostNewElement

EA OnPostNewConnector

EA_OnPostNewDiagram

EA_OnPostNewDiagramObject

EA_OnPostNewAttribute

EA_OnPostNewMethod

EA_OnPostNewPackage

EA OnPostNewGlossaryTerm

(c) Sparx Systems 2019 Page 419 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnPostNewElement

EA_OnPostNewElement notifies Add-Ins that a new element has been created on a diagram. It enables Add-Ins to
modify the element upon creation.

This event occurs after a user has dragged a new element from the Toolbox or Resources window onto a diagram. The
notification is provided immediately after the element is added to the model.

Set Repository.SuppressEADialogs to True to suppress Enterprise Architect from showing its default 'Properties’ dialog.

Syntax

Function EA_OnPostNewElement (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostNewElement function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty object for the new element:

e ElementID: A long value corresponding to Element.ElementID

Return Value

Return True if the element has been updated during this notification. Return False otherwise.

(c) Sparx Systems 2019 Page 420 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnPostNewConnector

EA_OnPostNewConnector notifies Add-Ins that a new connector has been created on a diagram. It enables Add-Ins to
modify the connector upon creation.

This event occurs after a user has dragged a new connector from the Toolbox or Resources window onto a diagram. The
notification is provided immediately after the connector is added to the model.

Syntax

Function EA_OnPostNewConnector (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostNewConnector function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty object for the new connector:

e ConnectorID: A long value corresponding to Connector.ConnectorID

Return Value

Return True if the connector has been updated during this notification. Return False otherwise.

(c) Sparx Systems 2019 Page 421 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnPostNewDiagram

EA_OnPostNewDiagram notifies Add-Ins that a new diagram has been created. It enables Add-Ins to modify the
diagram upon creation.

Syntax

Function EA_OnPostNewDiagram (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostNewDiagram function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty object for the new diagram:

e DiagramID: A long value corresponding to Diagram.PackagelD

Return Value

Return True if the diagram has been updated during this notification. Return False otherwise.

(c) Sparx Systems 2019 Page 422 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnPostNewDiagramObject

EA_OnPostNewDiagramObject notifies Add-Ins that a new object has been created on a diagram. It enables Add-Ins to
modify the object upon creation.

This event occurs after a user has dragged a new object from the Browser window or Resources window onto a diagram.
The notification is provided immediately after the object is added to the diagram.

Syntax

Function EA_OnPostNewDiagramObject (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostNewDiagramObject function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN
Description: Contains these EventProperty objects for the new element:

e ID: A long value corresponding to the ElementID of the object that has been
added to the diagram

e DiagramID: A long value corresponding to the DiagramID of the diagram to
which the object has been added

e DUID: A string value for the DUID; can be used with
Diagram.GetDiagramObjectByID to retrieve the new DiagramObject

Return Value

Return True if the element has been updated during this notification. Return False otherwise.

(c) Sparx Systems 2019 Page 423 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnPostNewAttribute

EA_OnPostNewAttribute notifies Add-Ins that a new attribute has been created on a diagram. It enables Add-Ins to
modify the attribute upon creation.

This event occurs when a user creates a new attribute on an element by either drag-and-dropping from the Browser
window, using the 'Attributes' tab of the Features window, or using the in-place editor on the diagram. The notification is
provided immediately after the attribute is created.

Syntax

Function EA_OnPostNewAttribute (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostNewAttribute function syntax contains these parameters.

Parameter Type

Repository EA .Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty object for the new attribute:
e AttributeID: A long value corresponding to Attribute. AttributeID

Return Value

Return True if the attribute has been updated during this notification. Return False otherwise.

(c) Sparx Systems 2019 Page 424 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnPostNewMethod

EA_OnPostNewMethod notifies Add-Ins that a new method has been created on a diagram. It enables Add-Ins to modify
the method upon creation.

This event occurs when a user creates a new method on an element by either drag-dropping from the Browser window,
using the method's 'Properties' dialog, or using the in-place editor on the diagram. The notification is provided
immediately after the method is created.

Syntax

Function EA_OnPostNewMethod (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostNewMethod function syntax contains these parameters.

Parameter Type

Repository EA .Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty object for the new method:
e MethodID: A long value corresponding to Method.MethodID

Return Value

Return True if the method has been updated during this notification. Return False otherwise.

(c) Sparx Systems 2019 Page 425 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnPostNewPackage

EA_OnPostNewPackage notifies Add-Ins that a new Package has been created on a diagram. It enables Add-Ins to
modify the Package upon creation.

This event occurs when a user drags a new Package from the Toolbox or Resources window onto a diagram, or by
selecting the New Package icon from the Browser window.

Syntax

Function EA_OnPostNewPackage (Repository As EA Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostNewPackage function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty object for the new Package:

e PackagelD: A long value corresponding to Package.PackagelD

Return Value

Return True if the Package has been updated during this notification. Return False otherwise.

(c) Sparx Systems 2019 Page 426 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnPostNewGlossaryTerm

EA_OnPostNewGlossaryTerm notifies Add-Ins that a new glossary term has been created. It enables Add-Ins to modify
the glossary term upon creation.

The notification is provided immediately after the glossary term is added to the model.

Syntax

Function EA_OnPostNewGlossaryTerm (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostNewGlossaryTerm function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN
Description: Contains these EventProperty objects for the new glossary term:
e TermlD: A string value corresponding to Term.TermID

e Term: A string value corresponding to the name of the glossary term being
created

e Meaning: A string value corresponding to meaning of the glossary term being
created

Return Value

Return True if the glossary term has been updated during this notification. Return False otherwise.

(c) Sparx Systems 2019 Page 427 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Pre-Deletion Events

Enterprise Architect Add-Ins can respond to requests to delete elements, attributes, methods, connectors, diagrams,
Packages and glossary terms using these broadcast events:

Pre-Deletion Broadcast Events

Event

EA_OnPreDeleteElement

EA_OnPreDeleteAttribute

EA_OnPreDeleteMethod

EA_OnPreDeleteConnector

EA_OnPreDeleteDiagram

EA_OnPreDeletePackage

EA_OnPreDeleteGlossaryTerm

EA_OnPreDeleteTechnology (Deprecated)

(c) Sparx Systems 2019 Page 428 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnPreDeleteElement

EA_OnPreDeleteElement notifies Add-Ins that an element is to be deleted from the model. It enables Add-Ins to permit
or deny deletion of the element.

This event occurs when a user deletes an element from the Browser window or on a diagram. The notification is
provided immediately before the element is deleted, so that the Add-In can disable deletion of the element.

Syntax

Function EA_OnPreDeleteElement (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeleteElement function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty object for the element to be deleted:

e ElementID: A long value corresponding to Element.ElementID

Return Value

Return True to enable deletion of the element from the model. Return False to disable deletion of the element.

(c) Sparx Systems 2019 Page 429 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnPreDeleteAttribute

EA_OnPreDeleteAttribute notifies Add-Ins that an attribute is to be deleted from the model. It enables Add-Ins to permit
or deny deletion of the attribute.

This event occurs when a user attempts to permanently delete an attribute from the Browser window. The notification is
provided immediately before the attribute is deleted, so that the Add-In can disable deletion of the attribute.

Syntax

Function EA_OnPreDeleteAttribute (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeleteAttribute function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty object for the attribute to be deleted:
o AttributeID: A long value corresponding to Attribute. AttributeID

Return Value

Return True to enable deletion of the attribute from the model. Return False to disable deletion of the attribute.

(c) Sparx Systems 2019 Page 430 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnPreDeleteMethod

EA_OnPreDeleteMethod notifies Add-Ins that a method (operation) is to be deleted from the model. It enables Add-Ins
to permit or deny deletion of the method.

This event occurs when a user attempts to permanently delete a method from the Browser window. The notification is
provided immediately before the method is deleted, so that the Add-In can disable deletion of the method.

Syntax

Function EA_OnPreDeleteMethod (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeleteMethod function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty object for the method to be deleted:
e MethodID: A long value corresponding to Method.MethodID

Return Value

Return True to enable deletion of the method from the model. Return False to disable deletion of the method.

(c) Sparx Systems 2019 Page 431 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnPreDeleteConnector

EA_OnPreDeleteConnector notifies Add-Ins that a connector is to be deleted from the model. It enables Add-Ins to
permit or deny deletion of the connector.

This event occurs when a user attempts to permanently delete a connector on a diagram. The notification is provided
immediately before the connector is deleted, so that the Add-In can disable deletion of the connector.

Syntax

Function EA_OnPreDeleteConnector (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeleteConnector function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty object for the connector to be deleted:

e ConnectorID: A long value corresponding to Connector.ConnectorID

Return Value

Return True to enable deletion of the connector from the model. Return False to disable deletion of the connector.

(c) Sparx Systems 2019 Page 432 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnPreDeleteDiagram

EA_OnPreDeleteDiagram notifies Add-Ins that a diagram is to be deleted from the model. It enables Add-Ins to permit
or deny deletion of the diagram.

This event occurs when a user attempts to permanently delete a diagram from the Browser window. The notification is
provided immediately before the diagram is deleted, so that the Add-In can disable deletion of the diagram.

Syntax

Function EA_OnPreDeleteDiagram (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeleteDiagram function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA Repository object representing the currently-open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty object for the diagram to be deleted:

e DiagramID: A long value corresponding to Diagram.DiagramID

Return Value

Return True to enable deletion of the diagram from the model. Return False to disable deletion of the diagram.

(c) Sparx Systems 2019 Page 433 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnPreDeleteDiagramObject

EA_OnPreDeleteDiagramObject notifies Add-Ins that a diagram object is to be deleted from the model. It enables
Add-Ins to permit or deny deletion of the element.

This event occurs when a user attempts to permanently delete an element from a diagram. The notification is provided
immediately before the element is deleted, so that the Add-In can disable deletion of the element.

Syntax

Function EA_OnPreDeleteDiagramObject (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeleteDiagramObject function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA Repository object representing the currently-open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty object for the element to be deleted:

e ID: A long value corresponding to DiagramObject.ElementID

Return Value

Return True to enable deletion of the element from the model. Return False to disable deletion of the element.

(c) Sparx Systems 2019 Page 434 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnPreDeletePackage

EA_OnPreDeletePackage notifies Add-Ins that a Package is to be deleted from the model. It enables Add-Ins to permit
or deny deletion of the Package.

This event occurs when a user attempts to permanently delete a Package from the Browser window. The notification is
provided immediately before the Package is deleted, so that the Add-In can disable deletion of the Package.

Syntax

Function EA_OnPreDeletePackage (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeletePackage function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty object for the Package to be deleted:
e PackagelD: A long value corresponding to Package.PackagelD

Return Value

Return True to enable deletion of the Package from the model. Return False to disable deletion of the Package.

(c) Sparx Systems 2019 Page 435 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnPreDeleteGlossaryTerm

EA_OnPreDeleteGlossaryTerm notifies Add-Ins that a glossary term is to be deleted from the model. It enables Add-Ins
to permit or deny deletion of the glossary term.

The notification is provided immediately before the glossary term is deleted, so that the Add-In can disable deletion of
the glossary term.

Syntax

Function EA_OnPreDeleteGlossaryTerm (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeleteGlossaryTerm function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty object for the glossary term to be deleted:

e TermlID: A long value corresponding to Term.TermID

Return Value

Return True to enable deletion of the glossary term from the model. Return False to disable deletion of the glossary term.

(c) Sparx Systems 2019 Page 436 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Pre New-Object Events

When you create an Add-In, you can include broadcast events to intercept and respond to requests to create new objects,
including elements, connectors, diagram objects, attributes, methods and Packages.

Events to intercept

Event

Creation of a new element

Creation of a new connector

Creation of a new diagram

Creation of a new diagram object

Creation of a new element by dropping onto a diagram from the Browser window.

Creation of a new attribute

Creation of a new method

Creation of a new Package

Creation of a new glossary term

(c) Sparx Systems 2019 Page 437 of 505 Created with Enterprise Architect

User Guide - Automation

7 August, 2019

EA_OnPreNewElement

EA_OnPreNewElement notifies Add-Ins that a new element is about to be created on a diagram. It enables Add-Ins to
permit or deny creation of the new element.

This event occurs when a user drags a new element from the Toolbox or Resources window onto a diagram. The
notification is provided immediately before the element is created, so that the Add-In can disable addition of the element.

Syntax

Function EA_OnPreNewElement (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreNewElement function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN

Description: Contains these EventProperty objects for the element to be created:

Return Value

Type: A string value corresponding to Element. Type

FQStereotype: A string value corresponding to Element. FQStereotype
Stereotype: A string value corresponding to Element.Stereotype
ParentID: A long value corresponding to Element.ParentID

DiagramID: A long value corresponding to the ID of the diagram to which the
element is being added

Return True to enable addition of the new element to the model. Return False to disable addition of the new element.

(c) Sparx Systems 2019

Page 438 of 505 Created with Enterprise Architect

User Guide - Automation

7 August, 2019

EA_OnPreNewConnector

EA_OnPreNewConnector notifies Add-Ins that a new connector is about to be created on a diagram. It enables Add-Ins
to permit or deny creation of a new connector.

This event occurs when a user drags a new connector from the Toolbox or Resources window, onto a diagram. The
notification is provided immediately before the connector is created, so that the Add-In can disable addition of the

connector.

Syntax

Function EA_OnPreNewConnector (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreNewConnector function syntax contains these elements:

Parameter Type

Repository EA .Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN

Description: Contains these EventProperty objects for the connector to be created:

Return Value

Type: A string value corresponding to Connector. Type

Subtype: A string value corresponding to Connector.Subtype
Stereotype: A string value corresponding to Connector.Stereotype
ClientID: A long value corresponding to Connector.ClientID
SupplierID: A long value corresponding to Connector.SupplierID

DiagramID: A long value corresponding to Connector.DiagramID

Return True to enable addition of the new connector to the model. Return False to disable addition of the new connector.

(c) Sparx Systems 2019

Page 439 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnPreNewDiagram

EA_OnPreNewDiagram notifies Add-Ins that a new diagram is about to be created. It enables Add-Ins to permit or deny
creation of the new diagram.

The notification is provided immediately before the diagram is created, so that the Add-In can disable addition of the
diagram.

Syntax

Function EA_OnPreNewDiagram (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreNewDiagram function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN
Description: Contains these EventProperty objects for the diagram to be created:
e Type: A string value corresponding to Diagram.Type
e ParentID: A long value corresponding to Diagram.ParentID

e PackagelD: A long value corresponding to Diagram.PackagelD

Return Value

Return True to enable addition of the new diagram to the model. Return False to disable addition of the new diagram.

(c) Sparx Systems 2019 Page 440 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnPreNewDiagramObject

EA_OnPreNewDiagramObject notifies Add-Ins that a new diagram object is about to be dropped on a diagram. It
enables Add-Ins to permit or deny creation of the new object.

This event occurs when a user drags an object from the Enterprise Architect Browser window or Resources window onto
a diagram. The notification is provided immediately before the object is created, so that the Add-In can disable addition
of the object.

Syntax

Function EA_OnPreNewDiagramObject (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreNewDiagramObject function syntax contains these parameters.

Parameter Type

Repository EA .Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN
Description: Contains these EventProperty objects for the object to be created:

e Type: A string value corresponding to the Type of object being added to the
diagram

e Stereotype: A string value corresponding to the Stereotype of the object being
added to the diagram

e ID: A long value corresponding to the ID of the Element, Package or Diagram
being added to the diagram

e DiagramID: A long value corresponding to the ID of the diagram to which the
object is being added

Return Value

Return True to enable addition of the object to the model. Return False to disable addition of the object.

(c) Sparx Systems 2019 Page 441 of 505 Created with Enterprise Architect

User Guide - Automation

7 August, 2019

EA_OnPreDropFromTree

When a user drags any kind of element from the Browser window onto a diagram, EA_OnPreDropFromTree notifies the
Add-In that a new item is about to be dropped onto a diagram. The notification is provided immediately before the
element is dropped, so that the Add-In can override the default action that would be taken for this drag.

Syntax

Function EA_OnPreDropFromTree (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDropFromTree function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN

Description: Contains these EventProperty objects for the element to be created:

Return Value

ID: A long value of the type being dropped
Type: A string value corresponding to type of element being dropped

DiagramID: A long value corresponding to the ID of the diagram to which the
element is being added

PositionX: The X coordinate into which the element is being dropped
PositionY: The Y coordinate into which the element is being dropped

DroppedID: A long value corresponding to the ID of the element the item has
been dropped onto

Return True to allow the default behavior to be executed. Return False if you are overriding this behavior.

(c) Sparx Systems 2019

Page 442 of 505 Created with Enterprise Architect

User Guide - Automation

7 August, 2019

EA_OnPreNewAttribute

EA_OnPreNewAttribute notifies Add-Ins that a new attribute is about to be created on an element. It enables Add-Ins to
permit or deny creation of the new attribute.

This event occurs when a user creates a new attribute on an element by either drag-dropping from the Browser window,
using the 'Attributes' tab of the Features window, or using the in-place editor on the diagram. The notification is provided
immediately before the attribute is created, so that the Add-In can disable addition of the attribute.

Syntax

Function EA_OnPreNewAttribute (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreNewAttribute function syntax contains these parameters.

Parameter Type

Repository EA .Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN

Description: Contains these EventProperty objects for the attribute to be created:

Return Value

Type: A string value corresponding to Attribute.Type

Stereotype: A string value corresponding to Attribute.Stereotype
ParentID: A long value corresponding to Attribute.ParentID
ClassifierID: A long value corresponding to Attribute.ClassifierID

Return True to enable addition of the new attribute to the model. Return False to disable addition of the new attribute.

(c) Sparx Systems 2019

Page 443 of 505 Created with Enterprise Architect

User Guide - Automation

7 August, 2019

EA_OnPreNewMethod

EA_OnPreNewMethod notifies Add-Ins that a new method is about to be created on an element. It enables Add-Ins to
permit or deny creation of the new method.

This event occurs when a user creates a new method on an element by either drag-dropping from the Browser window,
using the 'Operations' tab of the Features window, or using the in-place editor on the diagram. The notification is
provided immediately before the method is created, so that the Add-In can disable addition of the method.

Syntax

Function EA_OnPreNewMethod (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreNewMethod function syntax contains these parameters.

Parameter Type

Repository EA .Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN

Description: Contains these EventProperty objects for the method to be created:

Return Value

ReturnType: A string value corresponding to Method.ReturnType
Stereotype: A string value corresponding to Method.Stereotype
ParentID: A long value corresponding to Method.ParentID
ClassifierID: A long value corresponding to Method.ClassifierID

Return True to enable addition of the new method to the model. Return False to disable addition of the new method.

(c) Sparx Systems 2019

Page 444 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnPreNewPackage

EA_OnPreNewPackage notifies Add-Ins that a new Package is about to be created in the model. It enables Add-Ins to
permit or deny creation of the new Package.

This event occurs when a user drags a new Package from the Toolbox or Resources window onto a diagram, or by
selecting the New Package icon from the Browser window. The notification is provided immediately before the Package
is created, so that the Add-In can disable addition of the Package.

Syntax

Function EA_OnPreNewPackage (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreNewPackage function syntax contains these parameters.

Parameter Type

Repository EA .Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN
Description: Contains these EventProperty objects for the Package to be created:
e Stereotype: A string value corresponding to Package.Stercotype
e ParentID: A long value corresponding to Package.ParentID

e DiagramID: A long value corresponding to the ID of the diagram to which the
Package is being added

Return Value

Return True to enable addition of the new Package to the model. Return False to disable addition of the new Package.

(c) Sparx Systems 2019 Page 445 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnPreNewGlossaryTerm

EA_OnPreNewGlossaryTerm notifies Add-Ins that a new glossary term is about to be created. It enables Add-Ins to
permit or deny creation of the new glossary term.

The notification is provided immediately before the glossary term is created, so that the Add-In can disable addition of
the element.

Syntax

Function EA_OnPreNewGlossaryTerm (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreNewGlossaryTerm function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN

Description: Contains these EventProperty objects for the glossary term to be
created:

e TermlD: A string value corresponding to Term.TermID

e Term: A string value corresponding to the name of the glossary term being
created

e Meaning: A string value corresponding to meaning of the glossary term being
created

Return Value

Return True to enable addition of the new glossary term to the model. Return False to disable addition of the new
glossary term.

(c) Sparx Systems 2019 Page 446 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Tagged Value Events

Enterprise Architect includes the Addin Broadcast Tagged Value type that allows an Add-In to respond to attempts to
edit it. The function that is called depends on the type of object the Tagged Value is on.

Tagged Value Events

Event

EA_OnAttributeTagEdit

EA_OnConnectorTagEdit

EA_OnElementTagEdit

EA OnMethodTagEdit

(c) Sparx Systems 2019 Page 447 of 505 Created with Enterprise Architect

User Guide - Automation

7 August, 2019

EA_OnAttributeTagEdit

EA_OnAttributeTagEdit is called when the user clicks the l_J button for a Tagged Value of type AddinBroadcast on an

attribute.

The Add-In displays fields to show and change the value and notes; this function provides the initial values for the
Tagged Value notes and value, and takes on any changes on exit of the function.

Syntax

Sub EA_OnAttributeTagEdit (Repository As EA.Repository, AttributeID As Long, String TagName, String TagValue,

String TagNotes)

The EA_OnAttributeTagEdit function syntax contains these parameters.

Parameter

Repository

AttributeID

TagName

TagValue

TagNotes

(c) Sparx Systems 2019

Type

EA Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Long
Direction: IN
Description: The ID of the attribute that this Tagged Value is on.

String
Direction: IN
Description: The name of the Tagged Value to edit.

String
Direction: INOUT

Description: The current value of the tag; if the value is updated, the new value is
stored in the repository on exit of the function.

String
Direction: INOUT

Description: The current value of the Tagged Value notes; if the value is updated,
the new value is stored in the repository on exit of the function.

Page 448 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnConnectorTagEdit

EA_OnConnectorTagEdit is called when the user clicks the l_J button for a Tagged Value of type AddinBroadcast on a
connector.

The Add-In displays fields to show and change the value and notes; this function provides the initial values for the
Tagged Value notes and value, and takes on any changes on exit of the function.

Syntax

Sub EA_OnConnectorTagEdit (Repository As EA.Repository, ConnectorID As Long, String TagName, String
TagValue, String TagNotes)

The EA_OnConnectorTagEdit function syntax contains these parameters.

Parameter Type

Repository EA Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model.

Poll its members to retrieve model data and user interface status information.

ConnectorID Long
Direction: IN
Description: The ID of the connector that this Tagged Value is on.

TagName String
Direction: IN
Description: The name of the Tagged Value to edit.

TagValue String
Direction: INOUT

Description: The current value of the tag; if the value is updated, the new value is
stored in the repository on exit of the function.

TagNotes String
Direction: INOUT

Description: The current value of the Tagged Value notes; if the value is updated,
the new value is stored in the repository on exit of the function.

(c) Sparx Systems 2019 Page 449 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnElementTagEdit

EA_OnElementTagEdit is called when the user clicks the l_J button for a Tagged Value of type AddinBroadcast on an
element.

The Add-In displays fields to show and change the value and notes; this function provides the initial values for the
Tagged Value notes and value, and takes on any changes on exit of the function.

Syntax

Sub EA_OnElementTagEdit (Repository As EA.Repository, ObjectID As Long, String TagName, String TagValue,
String TagNotes)

The EA_OnElementTagEdit function syntax contains these elements:

Parameter Type

Repository EA Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

ObjectID Long
Direction: IN
Description: The ID of the object (element) that this Tagged Value is on.

TagName String
Direction: IN
Description: The name of the Tagged Value to edit.

TagValue String
Direction: INOUT

Description: The current value of the tag; if the value is updated, the new value is
stored in the repository on exit of the function.

TagNotes String
Direction: INOUT

Description: The current value of the Tagged Value notes; if the value is updated,
the new value is stored in the repository on exit of the function.

(c) Sparx Systems 2019 Page 450 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnMethodTagEdit

EA_OnMethodTagEdit is called when the user clicks the l_J button for a Tagged Value of type AddinBroadcast on an
operation.

The Add-In displays fields to show and change the value and notes; this function provides the initial values for the
Tagged Value notes and value, and takes on any changes on exit of the function.

Syntax

Sub EA_OnMethodTagEdit (Repository As EA.Repository, MethodID As Long, String TagName, String TagValue,
String TagNotes)

The EA_OnMethodTagEdit function syntax contains these elements:

Parameter Type

Repository EA Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

MethodID Long
Direction: IN
Description: The ID of the method that this Tagged Value is on.

TagName String
Direction: IN
Description: The name of the Tagged Value to edit.

TagValue String
Direction: INOUT

Description: The current value of the tag; if the value is updated, the new value is
stored in the repository on exit of the function.

TagNotes String
Direction: INOUT

Description: The current value of the Tagged Value notes; if the value is updated,
the new value is stored in the repository on exit of the function.

(c) Sparx Systems 2019 Page 451 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Technology Events

Enterprise Architect Add-Ins can respond to events associated with the use of MDG Technologies.

Technology Broadcast Events

Event

EA OnlnitializeTechnologies

EA_OnPreActivateTechnology

EA_OnPostActivateTechnology

EA_OnPreDeleteTechnology (Deprecated)

EA_OnDeleteTechnology (Deprecated)

EA_OnlmportTechnology (Deprecated)

(c) Sparx Systems 2019 Page 452 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnlinitializeTechnologies

EA_OnlnitializeTechnologies requests that an Add-In pass an MDG Technology to Enterprise Architect for loading.

This event occurs on Enterprise Architect startup. Return your technology XML to this function and Enterprise Architect
loads and enables it.

Syntax

Function EA_OnlnitializeTechnologies (Repository As EA.Repository) As Object

The EA_OnlnitializeTechnologies function syntax contains this parameter:

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Return Value

Return the MDG Technology as a single XML string.

Example

Public Function EA_OnlnitializeTechnologies(ByVal Repository As EA.Repository) As Object
EA OnlnitializeTechnologies = My.Resources.MyTechnology

End Function

(c) Sparx Systems 2019 Page 453 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnPreActivateTechnology

EA_OnPreActivateTechnology notifies Add-Ins that an MDG Technology resource is about to be activated in the model.

This event occurs when a user selects to activate an MDG Technology resource in the model (by clicking on the Set
Active button on the 'MDG Technologies' dialog or by selecting the technology in the list box in the Default Tools
toolbar).

The notification is provided immediately after the user attempts to activate the MDG Technology, so that the Add-In can
permit or disable activation of the Technology.

Syntax

Function EA_OnPreActivateTechnology (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreActivateTechnology function syntax contains these parameters.

Parameter Type

Repository EA .Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN

Description: Contains these EventProperty objects for the MDG Technology to be
activated:

e TechnologylD: A string value corresponding to the MDG Technology ID

Return Value

Return True to enable activation of the MDG Technology resource in the model. Return False to disable activation of the
MDG Technology resource.

(c) Sparx Systems 2019 Page 454 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnPostActivateTechnology

EA_OnPostActivateTechnology notifies Add-Ins that an MDG Technology resource has been activated in the model.

This event occurs when a user activates an MDG Technology resource in the model (by clicking on the Set Active button
on the '"MDG Technologies' dialog, or by selecting the technology in the list box in the Default Tools toolbar).

The notification is provided immediately after the user succeeds in activating the MDG Technology, so that the Add-In
can update the Technology if necessary.

Syntax

Function EA_OnPostActivateTechnology (Repository As EA.Repository, Info As EA.EventProperties)

The EA_OnPostActivateTechnology function syntax contains these parameters:

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN

Description: Contains these EventProperty objects for the MDG Technology to be
activated:

e TechnologylD: A string value corresponding to the MDG Technology ID

Return Value

Return True if the MDG Technology resource is updated during this notification. Return False otherwise.

(c) Sparx Systems 2019 Page 455 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnPreDeleteTechnology

Deprecated - refers to deleting a technology through the Resources window; this process is no longer recommended. See
Deploy An MDG Technology for information on recommended methods for using technologies.

EA_OnPreDeleteTechnology notifies Add-Ins that an MDG Technology resource is about to be deleted from the model.
This event occurs when a user deletes an MDG Technology resource from the model.

The notification is provided immediately after the user confirms their request to delete the MDG Technology, so that the
Add-In can disable deletion of the MDG Technology.

Related Broadcast Events

Event

EA OnlnitializeTechnologies
EA_OnPreActivateTechnology

EA_OnPostActivateTechnology

Syntax

Function EA_OnPreDeleteTechnology (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeleteTechnology function syntax contains these elements:

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN

Description: Contains this EventProperty object for the MDG Technology to be
deleted:

e TechnologylID: A string value corresponding to the MDG Technology ID

Return Value

Return True to enable deletion of the MDG Technology resource from the model. Return False to disable deletion of the
MDG Technology resource.

(c) Sparx Systems 2019 Page 456 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnDeleteTechnology

Deprecated - refers to deleting a technology through the Resources window; this process is no longer recommended. See
Deploy An MDG Technology for information of recommended methods for using technologies.

EA_OnDeleteTechnology notifies Add-Ins that an MDG Technology resource has been deleted from the model.

This event occurs after a user has deleted an MDG Technology resource from the model. Add-Ins that require an MDG
Technology resource to be loaded can catch this event to disable certain functionality.

Related Events

Event

EA_OnlnitializeTechnologies
EA_OnPreActivateTechnology

EA_OnPostActivateTechnology

Syntax

Sub EA OnDeleteTechnology (Repository As EA.Repository, Info As EA.EventProperties)

The EA_OnDeleteTechnology function syntax contains these parameters.

Parameter Type

Repository EA Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN
Description: Contains these EventProperty objects:

e TechnologylD: A string value corresponding to the MDG Technology ID

Return Value

None.

(c) Sparx Systems 2019 Page 457 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_OnimportTechnology

Deprecated - refers to importing a technology into the Resources window; this process is no longer recommended. See
Deploy An MDG Technology for information of recommended methods for using technologies.

EA_OnlmportTechnology notifies Add-Ins that you have imported an MDG Technology resource into the model.

This event occurs after you have imported an MDG Technology resource into the model. Add-Ins that require an MDG
Technology resource to be loaded can catch this Add-In to enable certain functionality.

Related Events

Event

EA_OnlnitializeTechnologies
EA_OnPreActivateTechnology

EA_OnPostActivateTechnology

Syntax

Sub EA OnlmportTechnology (Repository As EA.Repository, Info As EA.EventProperties)

The EA_OnlmportTechnology function syntax contains these parameters.

Parameter Type

Repository EA Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN
Description: Contains these EventProperty objects:

e TechnologylD: A string value corresponding to the MDG Technology ID

Return Value

None.

(c) Sparx Systems 2019 Page 458 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Custom Views

Enterprise Architect enables custom windows to be inserted as a Diagram Tab within the Diagram View that appears at
the center of the Enterprise Architect frame.

Creating a custom view helps you to easily display a custom interface within Enterprise Architect, alongside other
diagrams and built-in views for quick and easy access.

Uses for this facility include:

e Reports and graphs showing summary data of the model
e Alternative views of a diagram

e Alternative views of the model

e Views of external data related to model data

e Documentation tools

Bear in mind that the 'Open Diagrams in Single Window' option in the 'Application Look' dialog will swap diagrams in
the Diagram View rather than open more diagram tabs.

(c) Sparx Systems 2019 Page 459 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Create a Custom View

A custom view must be designed as an ActiveX Custom Control and inserted via the Automation Interface. ActiveX
Custom Controls can be created using most well-known programming tools, including Microsoft Visual Studio. See the
documentation provided by the relevant vendor on how to create a custom control to produce an OCX file.

Once the custom control has been created and registered on the target system, it can be added through the AddTab()
method of the Repository object. While it is possible to call AddTab() from any automation client, it is likely that you
would call it from an Add-In, and that the Add-In is defined in the same OCX that provides the custom view.

This is a C# code example:
public class Addin
{
UserControll m_MyControl;
public void EA_Connect(EA.Repository Rep)
{
}
public object EA_GetMenultems(EA.Repository Repository, string Location, string MenuName)
{
if(MenuName =="")
return "-&C# Control Demo";
else
{
String() ret = {"Show Custom View", "Show Button"};

return ret;

H
public void EA_MenuClick(EA.Repository Rep, string Location, string MenuName, string [temName)

{
if(ItemName == "Show Custom View")
m_MyControl = (UserControl1l) Rep.AddTab("C# Demo","ContDemo.UserControl1");
else if(ItemName == "Show Button")

m_MyControl.ShowButton();

(c) Sparx Systems 2019 Page 460 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Add a Portal

Enterprise Architect provides a set of Portals, each of which is a collection of shortcuts and information on performing
specific areas of work on a project. The Portals help both new and experienced users quickly identify and set up the
facilities they most often use in their assigned tasks.

You can add your own Portal to the system-installed set, to provide a convenient and concise call-up of one or more
groups of facilities available in your Add-In.

Example Code

public String EA LoadWindowManager(EA.Repository Repository)
{

return Resourcel.WindowManager;
}
Where Resourcel.WindowManager is a resource file with these contents:
<?xml version="1.0" encoding="UTF-8"7>
<perspectives>
<perspective name="Add-In">
<category name="Add-In" type="commandlist" projectrequired="true">
<item name="Hello World" command="CallAddin" addin="CS_AddinFramework" function="HelloWorld"/>

<item name="Model Dump" command="CallScript" group="Local Scripts" script="JScript - Recursive Model Dump
Example"/>

</category>

<category name="Open Diagrams" type="currentdiagramlist" state = "open"/>
<category name="Recent Diagrams" type="recentdiagramlist" state = "open"/>
<category name="Other Windows" type="otherwindowlist" state = "open"/>
</perspective>

</perspectives>

Note that the Add-In cannot specify the icon used.

(c) Sparx Systems 2019 Page 461 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Custom Docked Window

Custom docked windows can be added into the Enterprise Architect user interface. Once added, they can be shown and
docked in the same way as other built-in Enterprise Architect docked windows.

A custom docked window must be designed as an ActiveX Custom Control and inserted via the Automation Interface.
ActiveX Custom Controls can be created using most well-known programming tools, including Microsoft Visual Studio.
See the documentation provided by the relevant vendor on how to create a custom control to produce an OCX file.

Once the custom control has been created and registered on the target system, it can be added using the AddWindow()
method of the Repository object. While it is possible to call AddWindow() from any automation client, it is likely that
you would call it from an Add-In, and that the Add-In is defined in the same OCX that provides the custom view.

To view custom docked windows that have been added, select the 'Specialize > Add-Ins > Windows' ribbon option.

Custom docked windows can also be made visible by the automation client or Add-In using the ShowAddinWindow()
method, or hidden by using the HideAddinWindow() method.

This is an example in C# code:
public class Addin
{
UserControll m_MyControl;
public void EA_Connect(EA.Repository Rep)
{
m_MyControl = (UserControl1) Rep.AddWindow
("C# Demo","ContDemo.UserControl1");

}
public object EA_GetMenultems(EA.Repository Repository, string Location, string MenuName)

{
if(MenuName == "")

return "-&C# Control Demo";

else
{
String() ret = {"Show Window", "Show Button"};
return ret;
}
}
public void EA_MenuClick(EA.Repository Rep, string Location, string MenuName, string I[temName)
{

if(ItemName == "Show Window")
Rep.ShowAddinWindow("C# Demo");
else if(ItemName == "Show Button")

m_MyControl.ShowButton();

(c) Sparx Systems 2019 Page 462 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

MDG Add-Ins

MDG Add-Ins are specialized types of Add-Ins that have additional features and extra requirements, for Add-In authors
who want to contribute to Enterprise Architect's goal of Model Driven Generation.

One of the additional responsibilities of an MDG Add-In is to take ownership of a branch of an Enterprise Architect
model, which is done through the MDG_Connect event. Unlike general Add-In events, MDG Add-In events are only
sent to the Add-In that has taken ownership of an Enterprise Architect model branch on a particular workstation.

MDG Add-Ins identify themselves as such during EA Connect by returning the string 'MDG'.

Unlike ordinary Add-Ins, responding to MDG Add-In events is not optional, and methods must be published for each of
the MDG Events.

(c) Sparx Systems 2019 Page 463 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

MDG Events

An MDG Add-In must respond to all MDG Events. These events usually identify processes such as Build, Run,
Synchronize, PreMerge and PostMerge, amongst others.

An MDG Link Add-In is expected to implement some form of forward and reverse engineering capability within
Enterprise Architect, and as such requires access to a specific set of events, all to do with generation, synchronization
and general processes concerned with converting models to code and code to models.

MDGAdd-In Events

Event

MDG BuildProject

MDG_Connect

MDG_Disconnect

MDG_GetConnectedPackages

MDG_GetProperty

MDG_Merge

MDG NewClass

MDG PostGenerate

MDG PostMerge

MDG_PreGenerate

MDG_PreMerge

MDG_PreReverse

MDG_RunExe

MDG_View

(c) Sparx Systems 2019 Page 464 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

MDG_BuildProject

Add-Ins can use MDG_BuildProject to handle file changes caused by generation. This function is called in response to a
user selecting the "Execute > Source > Build > Build' ribbon option.

Respond to this event by compiling the project source files into a running application.

Syntax

Sub MDG_BuildProject (Repository As EA.Repository, PackageGuid As String)

The MDG_BuildProject function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

PackageGuid String
Direction: IN

Description: The GUID identifying the Enterprise Architect Package sub-tree that is
controlled by the Add-In.

Return Value

None.

(c) Sparx Systems 2019 Page 465 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

MDG_Connect

An Add-In uses MDG_Connect to handle a user driven request to connect a model branch to an external application. The
function is called when the user attempts to connect a particular Enterprise Architect Package to an as yet unspecified
external project. The Add-In calls the event to interact with the user to specify such a project.

The Add-In is responsible for retaining the connection details, which should be stored on a per-user or per-workstation
basis. That is, users who share a common Enterprise Architect model over a network should be able to connect and
disconnect to external projects independently of one another.

The Add-In should therefore not store connection details in an Enterprise Architect repository. A suitable place to store
such details would be:

SHGetFolderPath(..CSIDL_APPDATA..)\AddinName

The PackageGuid parameter is the same identifier as is required for most events relating to the MDG Add-In. Therefore
it is recommended that the connection details be indexed using the PackageGuid value.

The PackagelD parameter is provided to aid fast retrieval of Package details from Enterprise Architect, should this be
required.

Syntax

Function MDG_Connect (Repository As EA.Repository, PackagelD as Long, PackageGuid As String) As Long

The MDG_Connect function syntax contains these parameters.

Parameter Type

Repository EA .Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

PackagelD Long
Direction: IN

Description: The PackagelD of the Enterprise Architect Package the user has
requested to have connected to an external project.

PackageGuid String
Direction: IN

Description: The unique ID identifying the project provided by the Add-In when a
connection to a project branch of an Enterprise Architect model was first
established.

Return Value

Returns a non-zero to indicate that a connection has been made; a zero indicates that the user has not nominated a project
and connection should not proceed.

(c) Sparx Systems 2019 Page 466 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

MDG_Disconnect

Add-Ins can use MDG_Disconnect to respond to user requests to disconnect the model branch from an external project.

This function is called when the user attempts to disconnect an associated external project. The Add-In is required to
delete the details of the connection.

Syntax

Function MDG_Disconnect (Repository As EA.Repository, PackageGuid As String) As Long

The MDG_Disconnect function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

PackageGuid String
Direction: IN

Description: The GUID identifying the Enterprise Architect Package sub-tree that is
controlled by the Add-In.

Return Value

Returns a non-zero to indicate that a disconnection has occurred enabling Enterprise Architect to update the user
interface. A zero indicates that the user has not disconnected from an external project.

(c) Sparx Systems 2019 Page 467 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

MDG_GetConnectedPackages

Add-Ins can use MDG_GetConnectedPackages to return a list of current connections between Enterprise Architect and
an external application.

This function is called when the Add-In is first loaded, and is expected to return a list of the available connections to
external projects for this Add-In.

Syntax

Function MDG_GetConnectedPackages (Repository As EA.Repository) As Variant

The MDG_ GetConnectedPackages function syntax contains this parameter.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Return Value

Returns an array of GUID strings representing individual Enterprise Architect Packages.

(c) Sparx Systems 2019 Page 468 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

MDG_GetProperty

MDG_ GetProperty provides miscellaneous Add-In details to Enterprise Architect.

This function is called by Enterprise Architect to poll the Add-In for information relating to the PropertyName. This
event should occur in as short a duration as possible, as Enterprise Architect does not cache the information provided by
the function.

Values corresponding to these PropertyNames must be provided:

e IconlD - Return the name of a DLL and a resource identifier in the format #ResID, where the resource ID indicates
an icon
c:\program files\myapp\myapp.dlll#101

e Language - Return the default language that Classes should be assigned when they are created in Enterprise
Architect

e HiddenMenus - Return one or more values from the MDGMenus enumeration to hide menus that do not apply to
your Add-In
if(PropertyName == "HiddenMenus")

return mgBuildProject + mgRun;

Syntax

Function MDG_ GetProperty (Repository As EA.Repository, PackageGuid As String, PropertyName As String) As
Variant

The MDG_ GetProperty function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently-open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

PackageGuid String
Direction: IN

Description: The GUID identifying the Enterprise Architect Package sub-tree that is
controlled by the Add-In.

PropertyName String
Direction: IN

Description: The name of the property that is used by Enterprise Architect. See the
start of this topic for the possible values.

Return Value

See the start of this topic.

(c) Sparx Systems 2019 Page 469 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

MDG_Merge

Add-Ins can use MDG_Merge to jointly handle changes to both the model branch and the code project that the model
branch is connected to.

This event should be called whenever the user has asked to merge their model branch with its connected code project, or
whenever the user has established a new connection to a code project.

The purpose of this event is to make the Add-In interact with the user to perform a merge between the model branch and
the connected project.

Syntax

Function MDG_Merge (Repository As EA.Repository, PackageGuid As String, SynchObjects As Variant, SynchType
As String, ExportObjects As Variant, ExportFiles As Variant, ImportFiles As Variant, IgnoreLocked As String,
Language As String) As Long

The MDG Merge function syntax contains these parameters.

Parameter Type

Repository EA Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

PackageGuid String
Direction: IN

Description: The GUID identifying the Enterprise Architect Package sub-tree that is
controlled by the Add-In.

SynchObjects Variant
Direction: OUT

Description: A string array containing a list of objects (Object ID format) to be
jointly synchronized between the model branch and the project.

See Object ID Format for the format of the Object IDs.

SynchType String
Direction: OUT

Description: The value determining the user-selected type of synchronization to
take place.

See Synchronize Type for a list of valid values.

ExportObjects Variant
Direction: OUT

Description: The string array containing the list of new model objects (in Object ID
format) to be exported by Enterprise Architect to the code project.

ExportFiles Variant
Direction: OUT

Description: A string array containing the list of files for each model object chosen

(c) Sparx Systems 2019 Page 470 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

for export by the Add-In.

Each entry in this array must have a corresponding entry in the ExportObjects
parameter at the same array index, so ExportFiles(2) must contain the filename of
the object by ExportObjects(2).

ImportFiles Variant
Direction: OUT

Description: A string array containing the list of code files made available to the
code project to be newly imported to the model.

Enterprise Architect imports each file listed in this array for import into the
connected model branch.

IgnoreLocked String
Direction: OUT

Description: A value indicating whether to ignore any files locked by the code
project (that is, "True' or False').

Language String
Direction: OUT

Description: The string value containing the name of the code language supported
by the code project connected to the model branch.

Object ID Format

Each of the Object IDs listed in the 'SynchObjects' string arrays should have this format:
(@namespace)*(#class)*(Sattribute|%operation|:property)*

Return Value

Return a non-zero if the merge operation completed successfully and a zero value when the operation has been
unsuccessful.

Merge

A merge consists of three major operations:
e Export: where newly created model objects are exported into code and made available to the code project
e Import: where newly created code objects, Classes and such things are imported into the model

e Synchronize: where objects available both to the model and in code are jointly updated to reflect changes made in
either the model, code project or both

Synchronize Type

The Synchronize operation can take place in one of four different ways. Each of these ways corresponds to a value
returned by 'SynchType":

(c) Sparx Systems 2019 Page 471 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

e None: (SynchType' = 0) No synchronization is to be performed
e Forward: ('SynchType' = 1) Forward synchronization, between the model branch and the code project is to occur
e Reverse: ('SynchType = 2) Reverse synchronization, between the code project and the model branch is to occur

e Both: ('SynchType' = 3) Reverse, then Forward synchronizations are to occur

(c) Sparx Systems 2019 Page 472 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

MDG_NewClass

Add-Ins can use MDG_NewClass to alter details of a Class before it is created.

This method is called when Enterprise Architect generates a new Class, and requires information relating to assigning the
language and file path. The file path should be passed back as a return value and the language should be passed back via
the language parameter.

Syntax

Function MDG_NewClass (Repository As EA.Repository, PackageGuid As String, CodelD As String, Language As
String) As String

The MDG_NewClass function syntax contains these parameters.

Parameter Type

Repository EA .Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

PackageGuid String
Direction: IN

Description: The GUID identifying the Enterprise Architect Package sub-tree that is
controlled by the Add-In.

CodelD String
Direction: IN

Description: A string used to identify the code element before it is created.

Language String
Direction: OUT

Description: A string used to identify the programming language for the new Class.
The language must be supported by Enterprise Architect.

Return Value

Returns a string containing the file path that should be assigned to the Class.

(c) Sparx Systems 2019 Page 473 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

MDG_PostGenerate

Add-Ins can use MDG_PostGenerate to handle file changes caused by generation.

This event is called after Enterprise Architect has prepared text to replace the existing contents of a file. Responding to
this event enables the Add-In to write to the linked application's user interface rather than modify the file directly.

When the contents of a file are changed, Enterprise Architect passes FileContents as a non-empty string. New files
created as a result of code generation are also sent through this mechanism, so the Add-Ins can add new files to the
linked project's file list.

When new files are created Enterprise Architect passes FileContents as an empty string. When a non-zero is returned by
this function, the Add-In has successfully written the contents of the file. A zero value for the return indicates to
Enterprise Architect that the file must be saved.

Syntax

Function MDG_PostGenerate (Repository As EA.Repository, PackageGuid As String, FilePath As String, FileContents
As String) As Long

The MDG_PostGenerate function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

PackageGuid String
Direction: IN

Description: The GUID identifying the Enterprise Architect Package sub-tree that is
controlled by the Add-In.

FilePath String
Direction: IN
Description: The path of the file Enterprise Architect intends to overwrite.

FileContents String
Direction: IN

Description: A string containing the proposed contents of the file.

Return Value

The return value depends on the type of event that this function is responding to (see introduction). This function is
required to handle two separate and distinct cases.

(c) Sparx Systems 2019 Page 474 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

MDG_PostMerge

MDG_PostMerge is called by Enterprise Architect after a merge process has been completed.

File save checking should not be performed with this function, but should be handled by MDG_PreGenerate,
MDG PostGenerate and MDG_PreReverse.

Syntax

Function MDG_PostMerge (Repository As EA.Repository, PackageGuid As String) As Long

The MDG_PostMerge function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

PackageGuid String
Direction: IN

Description: The GUID identifying the Enterprise Architect Package sub-tree that is
controlled by the Add-In.

Return Value

Return a zero value if the post-merge process has failed. A non-zero return indicates that the post-merge has been
successful. Enterprise Architect assumes a non-zero return if this method is not implemented.

(c) Sparx Systems 2019 Page 475 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

MDG_PreGenerate

Add-Ins can use MDG_PreGenerate to deal with unsaved changes.

This function is called immediately before Enterprise Architect attempts to generate files from the model. A possible use
of this function would be to prompt the user to save unsaved source files.

Return Value

Return a zero value to abort generation. Any other value enables the generation to continue.

Syntax

Function MDG_PreGenerate (Repository As EA.Repository, PackageGuid As String) As Long

The MDG_PreGenerate function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

PackageGuid String
Direction: IN

Description: The GUID identifying the Enterprise Architect Package sub-tree that is
controlled by the Add-In.

(c) Sparx Systems 2019 Page 476 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

MDG_PreMerge

MDG_PreMerge is called after a merge process has been initiated by the user and before Enterprise Architect performs
the merge process.

This event is called after a user has performed their interactions with the merge screen and has confirmed the merge with
the OK button, but before Enterprise Architect performs the merge process using the data provided by the MDG_Merge
call, before any changes have been made to the model or the connected project.

This event is made available to provide the Add-In with the opportunity to generally set internal Add-In flags to augment
the MDG_PreGenerate, MDG_PostGenerate and MDG_PreReverse events.

File save checking should not be performed with this function, but should be handled by MDG_PreGenerate,
MDG _PostGenerate and MDG_PreReverse.

Syntax

Function MDG_PreMerge (Repository As EA.Repository, PackageGuid As String) As Long

The MDG_PreMerge function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model.

Poll its members to retrieve model data and user interface status information.

PackageGuid String
Direction: IN

Description: The GUID identifying the Enterprise Architect Package sub-tree that is
controlled by the Add-In.

Return Value

A return value of zero indicates that the merge process can not occur. If the value is not zero the merge process proceeds.

If this method is not implemented then it is assumed that a merge process is used.

(c) Sparx Systems 2019 Page 477 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

MDG_PreReverse

Add-Ins can use MDG_PreReverse to save file changes before they are imported into Enterprise Architect.

This function operates on a list of files that are about to be reverse-engineered into Enterprise Architect. If the user is
working on unsaved versions of these files in an editor, you could either prompt the user or save automatically.

Syntax

Sub MDG_PreReverse (Repository As EA.Repository, PackageGuid As String, FilePaths As Variant)

The MDG_PreReverse function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

PackageGuid String
Direction: IN

Description: The GUID identifying the Enterprise Architect Package sub-tree that is
controlled by the Add-In.

FilePaths String array
Direction: IN

Description: An array of filepaths pointed to the files that are to be reverse
engineered.

Return Value

None.

(c) Sparx Systems 2019 Page 478 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

MDG_RunExe

Add-Ins can use MDG_RunExe to run the target application.
This function is called when the user selects the 'Execute > Run > Start > Run' ribbon option.

Respond to this event by launching the compiled application.

Syntax

Sub MDG_RunExe (Repository As EA.Repository, PackageGuid As String)

The MDG_RunExe function syntax contains these parameters.

Parameter Type

Repository EA .Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

PackageGuid String
Direction: IN

Description: The GUID identifying the Enterprise Architect Package sub-tree that is
controlled by the Add-In.

Return Value

None.

(c) Sparx Systems 2019 Page 479 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

MDG_View

Add-Ins can use MDG_View to display user specified code elements.

This function is called by Enterprise Architect when the user asks to view a particular code element. The Add-In can then
present that element in its own way, usually in a code editor.

Syntax

Function MDG_View (Repository As EA.Repository, PackageGuid As String, CodelD as String) As Long

The MDG_View function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN

Description: An EA Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

PackageGuid String
Direction: IN

Description: The GUID identifying the Enterprise Architect Package sub-tree that is
controlled by the Add-In.

CodelD String

Direction: IN

Description: Identifies the code element in this format:
<type>ElementPart<type>ElementPart...

where each element is proceeded with a token identifying its type:
@ -namespace
- Class
$ - attribute
% - operation

For example, if a user has selected the m_Name attribute of Class! located in
namespace Namel, the Class ID would be passed through in this format:

@Namel#Class1%m_Name

Return Value

Return a non-zero value to indicate that the Add-In has processed the request. Returning a zero value results in
Enterprise Architect employing the standard viewing process, which is to launch the associated source file.

(c) Sparx Systems 2019 Page 480 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Workflow Add-In Events

Enterprise Architect provides this set of four additional events that are sent only to workflow Add-Ins.

Workflow Add-In Events

Event

EA_AllowPropertyUpdate

This event is sent to workflow Add-Ins after a user has changed a built-in property value.

EA_AllowTagUpdate

This event is sent to workflow Add-Ins after a user has changed a Tagged Value.

EA_CanEditProperty

This event is sent to workflow Add-Ins when a property is being displayed that allows the property to block all
edits.

EA CanEditTag

This event is sent to workflow Add-Ins when a Tagged Value is being displayed that allows the property to block all
edits.

(c) Sparx Systems 2019 Page 481 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_AllowPropertyUpdate

This event is sent to workflow Add-Ins after a user has changed a built-in property value.

Syntax

Function EA_AllowPropertyUpdate (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

Parameter Type

Repository EA .Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN

Description: Contains these EventProperty objects describing the requested
property update:

e Type: A string value corresponding to Element.Type

e Stereotype: A string value corresponding to Element.Stereotype

e PropertyName: The name of the property field to enable or disable
e OldValue: The previous value of the property

e NewValue: The new value of the property

Return Value

Return False to prevent this change to the described property.

Return True to allow this change.

(c) Sparx Systems 2019 Page 482 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_AllowTagUpdate

This event is sent to Workflow Add-Ins after a user has changed a Tagged Value.

Syntax

Function EA_AllowTagUpdate (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

Parameter Type

Repository EA .Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN

Description: Contains these EventProperty objects describing the requested Tagged
Value update:

e Type: A string value corresponding to Element.Type

e Stereotype: A string value corresponding to Element.Stereotype

e TagName: The name of the Tagged Value field to enable or disable
e OldValue: The previous value of the tag

e NewValue: The new value of the tag

Return Value

Return False to prevent this change to the described Tagged Value.

Return True to allow this change.

(c) Sparx Systems 2019 Page 483 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_CanEditProperty

This event is sent to Workflow Add-Ins when a property is being displayed that allows the property to block all edits.

Syntax

Function EA_CanEditProperty (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

Parameter Type

Repository EA .Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties
Direction: IN
Description: Contains these EventProperty objects describing the property:
o Type: A string value corresponding to Element.Type
e Stereotype: A string value corresponding to Element.Stereotype

e PropertyName: The name of the property field to enable or disable

Return Value

Return False to prevent all edits to the described property.

Return True to allow changes.

(c) Sparx Systems 2019 Page 484 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

EA_CanEditTag

This event is sent to Workflow Add-Ins when a Tagged Value is being displayed that allows the property to block all
edits.

Syntax

Function EA CanEditTag (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

Parameter Type

Repository EA .Repository
Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA .EventProperties
Direction: IN
Description: Contains these EventProperty objects describing the Tagged Value:
e Type: A string value corresponding to Element.Type
e Stereotype: A string value corresponding to Element.Stereotype

e TagName: The name of the tag to enable or disable

Return Value

Return False to prevent all edits to the described Tagged Value.

Return True to allow changes.

(c) Sparx Systems 2019 Page 485 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Model Add-Ins

Enterprise Architect offers the function of developing and deploying Add-Ins completely within your model.

When to use a model Add-In

High Deployment Costs In organizations where installing new or updated software is expensive, model
Add-Ins can offer a workaround. New functionality can be added to Enterprise
Architect without the need for new software to be installed on user machines.

Required for all users When all users of a model need an Add-In to use the model as intended it can be
difficult to ensure that the Add-In is installed and updated on all user machines.
Model based Add-Ins are loaded by all required users automatically on model load.

Alternative deployments allow users to opt-in to using an Add-In, with access
controlled by security group.

Model Specific Behavior For users regularly using multiple models, there will likely be some functions that
are only required in some models but not others. By using model based Add-Ins,
these functions can be added freely without requiring explicit coding based on the
model.

Self Documenting By modeling your Add-In directly, the documentation describing it is always
accurate.

When not to use a model Add-In

Complex User Interface The User Interface that model Add-Ins can create is currently not as expressive as
Add-Ins written in a traditional IDE. If you need to show your users complex
dialogs or forms, you might be better off using an alternative technology.

Use across many models Add-In functionality that is required across multiple models might not be a good fit
for model Add-Ins. In this situation you might need to consider the relative costs of
a traditional Add-In vs deploying a model Add-In using XMI, controlled Packages
or a re-usable asset service.

Notes

e This feature is available in the Corporate, Unified and Ultimate editions of Enterprise Architect, from Release 15.0

(c) Sparx Systems 2019 Page 486 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Create an Add-In

Model Based Add-Ins are defined within the model, using Classes that are stereotyped as 'JavascriptAddin'. Using these
stereotyped Classes, you can specify Receptions, Methods and Properties that together define the behaviors of the
Add-In, and how it responds to the various events occurring within the system.

Receptions are defined for the Class, by specifying a signal that will be received. The Receptions allow you to specify
JavaScript code that will be executed in response to receipt of the corresponding signal. Signals that are relevant to your
Model Based Add-In should be included within the model in which you are defining or using Model Based Add-Ins. The
Model Wizard offers a pattern that contains all of the signals relevant to Model Based Add-Ins, providing an easy means
by which to include these signals in your model.

Functions defined as methods of the Class can be called by the Receptions code, while the Class attributes can be used to
define global variables that are available to the executing code.

Create a Javascript Add-In

Step Action

|
Click on the b icon and select the 'Management > Model Add-Ins' Perspective.

2 Create or open a (class) diagram on which to work, then open the Model Add-Ins toolbox.
(Use the toolbox menu to select the Model Add-ins toolbox.)

3 Create a JavascriptAddin by dropping the JavascriptAddin icon from the toolbox onto a diagram.

The name of your JavascriptAddin class will be used in generated Javascript code. It needs to be a valid
Javascript identifier.

4 Locate the Signal Library. Signals are used to define the entry points into your Add-In.

If not already in your model, the Signal Library is available for import as a model pattern.

5 Open the receptions list. Add a reception for any Signal that you want to receive. A reasonable starting
point would be to include:

e EA Connect
e EA GetMenultems
e EA MenuClick

6 Open the Behavior window for your Class ('‘Develop > Source Code > Behavior').

This shows all the available behavioral features that you can add code to, including the receptions created
previously.

Examples for the signals discussed earlier are:

EA_Connect

nn,

return "";

EA_GetMenultems
if(MenuName == "-Example Add-in")
return ["Item 1", "Ttem 2", "-", "About"];

else

(c) Sparx Systems 2019 Page 487 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

return "-Example Add-in";

EA_MenuClick
Session.Prompt("You clicked " + ItemName);

7 Enable your Add-In using the 'Manage Add-Ins' dialog.

If security is enabled in your model, this requires model administration rights.

8 You can now test and further develop your Add-In.

(c) Sparx Systems 2019 Page 488 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Responding to Events

In order for your model add-in to respond to events, you must define Receptions on the add-in class, corresponding to the
signals (or events) that you wish to handle. You can then define handler code, using Javascript, for each of the defined
Receptions.

You can also define additional functions as Operations on the class, again using Javascript. These functions can then be
called from the Reception handler code.

Define Receptions

Step Description
1 Select a JavascriptAddin on a diagram.
2 From the ribbon, select the option "Design > Element > Behavior".

The 'Behavior' code editor window is displayed.

3 Ensure that the Structure Tree is visible.

Click on the o icon to toggle display of the Structure Tree.

4 Right-click on the class at the top of the Structure Tree.
Choose the option 'Add Reception'. The 'Select Signal' dialog is displayed

5 Navigate to where you imported the Signal Reference Library - select the Signal for
which you want to add a Reception.
Click on OK.

6 In the right hand panel, enter Javascript code to define the required behavior.

7 Repeat steps 4 through 6 for any other signals that you wish to handle.

(c) Sparx Systems 2019 Page 489 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Edit Add-In Code

The Class 'Behavior' view provides a convenient view for editing the code associated with the behavioral features of your
Class.

Access

Ribbon Develop > Source Code > Behavior

Syntax Highlighting

The Class 'Behavior' view highlights code using the language assigned to the Class. For Model Add-Ins, this should be
Javascript.

Adding Operations

Right click on the Class node at the top of the Structure Tree to add a new operation.
All operations should be given names that are valid for Javascript functions.

All code written will be generated to a function on a Javascript object. Therefore, to call any function you have written,
you will need to prefix it with: this.

(c) Sparx Systems 2019 Page 490 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Model Add-In Management

Access

Ribbon Specialize > Add-Ins > Manage-Addin

Listed Add-Ins

Columns

Column Name Description

Groups For projects in which security is enabled, this column allows you to select the list of
security groups that will be able to access each Add-In.

Only users with 'Configure Model Add-Ins' permission can change this column.

Status This column allows you to select the behavior of each Add-In for users within
included security groups.

e Disabled means that the Add-In can not be used by any users

e Enabled means that the Add-In is loaded and run for all users in the selected
security groups

e Optional means that each user can choose to enable the Add-In themselves; by
default any Add-Ins will be disabled until users enable them

Only users with 'Configure Model Add-Ins' permission can change this column.
Load on Startup This column allows each user to specify that they want to use any optional Add-Ins

that are available to their group.

If users are not part of a listed group, or the status is not optional, this has no effect.

(c) Sparx Systems 2019 Page 491 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Signal Reference Library

All the broadcasts EA can send to an add-in are defined in a self-contained pattern that provides an easy way to
implement each signal in your model add-ins.

Import the Broadcast Types Pattern

Step Action

1

® Perspective 7

Click on the icon and select the '"Management > Model Add-Ins' Perspective.

This automatically opens the Model Wizard on the 'Model Patterns' tab at the Model Add-Ins Perspective

page.
2 Click on the target Package in the Browser window.
3 Click on the 'Broadcast Types' pattern.

4 Click on the Create Pattern(s) button.

(c) Sparx Systems 2019 Page 492 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Sample Add-Ins

There are two working examples of Model Add-Ins in the EA Example Model.
These samples demonstrate how to:

e add code to Receptions

e call Functions defined as class operations from Reception code

e use class Attributes as global variables

e create menus and menu items in an Add-in

e respond to selection of Add-in menu items

To open the Example Model, select the ribbon option "Start > Help > Help > Open the Example Model". Once the
Example Model has loaded, search for "Model Based Add-Ins".

(c) Sparx Systems 2019 Page 493 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Workflow Scripts

Workflow scripts validate user work and actions against the policy and procedures within your model, providing a robust
approach to applying company policy and strengthening project development guidelines.

Project Administrators can write workflow scripts to manage the way users interact with a model, such as managing
security, staff compliance and model access, and monitoring changes made by users. Administrators can also use the
scripts to control a user's capacity to change a model element, taking into account factors such as access rights, group
membership and even the value of a proposed change.

Access

Open the Scripting window using one of the methods outlined here, then click on the New Group button to create a new
Workflow script group, before clicking on the New Script button to create a new script.

Ribbon Specialize > Tools > Scripting

Application of Workflow scripts

Consideration Description

Project Governance Good corporate governance relies on well written and transparent project
development guidelines and company policy.

A project might be compromised if the appropriate policies and procedures are
poorly understood and not followed correctly - effective governance can be
hampered by human error and the costs of recovering from the inadequate
compliance of developers.

Policies, Procedures and Company policy and procedures can be integrated with the development process to
Development manage workflows, determine access rights, extend role based security permissions
and respond to property change events.

This approach reduces compliance costs, enhances collaborative development and
gives you confidence that projects are being developed correctly the first time
around.

Development teams can adhere to best practice guidelines that govern model
validation, change management, access controls and general development
principles.

Script Implementation When a model is launched, the Workflow Engine is initialized with the current user
and group memberships; this information determines who can access and modify
parts of a given model.

When a selected event occurs, the script engine is initialized with values including
the author's name and access rights, and the element name and version details.

The workflow script implements rules governing change management, access
control and model validation; if a user attempts to make changes in violation of
company policy, the script denies the update.

The user is notified why the validation failed and the activity is logged.

These reminders help to reinforce company policy, reduce human error and provide
management with valuable project feedback.

(c) Sparx Systems 2019 Page 494 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Notes

o Workflow Scripting is available in the Corporate, Unified and Ultimate editions of Enterprise Architect
o Workflow Scripting requires User Security to be enabled in order to function

e Youneed 'Admin Workflow' permission to develop and manage Workflow Scripts

(c) Sparx Systems 2019 Page 495 of 505 Created with Enterprise Architect

User Guide - Automation

Workflow Script Functions

7 August, 2019

Workflow scripts are created in the Scripting window, under the Workflow group type as VBScripts. They are executed

by the Enterprise Architect workflow engine, to manage user input.

You can make use of a range of functions and data structures to develop your scripts.

Access

Ribbon Specialize > Tools > Scripting

Workflow functions and data structures

Function Description
Functions for User Input These are functions that Enterprise Architect calls to validate and control user
input.

For each of the functions that Enterprise Architect calls, a set of objects are filled.

Functions to create a These are functions that Enterprise Architect calls to create a search with user tasks.
Search
Workflow Data Structures These are workflow data structure objects that Enterprise Architect fills.

Enterprise Architect fills

Workflow Data Structures These are Workflow data structure objects that you can fill.

you fill

Functions you call These are functions that Enterprise Architect provides for you to call.
Notes

e Ifyou make changes to a workflow script listed in the Scripting window, click on the Refresh Scripts button in the

Scripting window toolbar to reload the script with the changes

(c) Sparx Systems 2019 Page 496 of 505

Created with Enterprise Architect

User Guide - Automation

7 August, 2019

Functions - Validate and Control User Input

Enterprise Architect calls a number of functions to validate and control user input. For each function a set of objects is

filled.

Validate/Control User Input

Function

AllowPhaseUpdate(OldVal
ue,

NewValue)

AllowStatusUpdate(OldVal
ue,

NewValue)

AllowTagUpdate(TagNam
c,

OldValue,
NewValue)

AllowVersionUpdate(OldV
alue,

NewValue)

CanEditPhase()

CanEditStatus()

CanEditTag(TagName)

CanEditVersion()

(c) Sparx Systems 2019

Action

Validate a change a user has made to a phase.
Return Value:
e True to allow this user to make this change

o False to disallow the change and revert to the previous value

Validate a change a user has made to a status.
Return Value:
e True to allow this user to make this change

e False to disallow the change and revert to the previous value

Validate a change a user has made to a Tagged Value.
Return Value:
e True to allow this user to make this change

e False to disallow the change and revert to the previous value

Validate a change a user has made to a version.
Return Value:
e True to allow this user to make this change

e False to disallow the change and revert to the previous value

Enable or disable the control for editing a phase
Return Value:
e True to allow this user to make changes by enabling the control

e False to completely disable edit of this property by disabling the control

Enable or disable the control for editing a status.
Return Value:
e True to allow this user to make changes by enabling the control

e False to completely disable edit of this property by disabling the control

Enable or disable the control for editing a Tagged Value.
Return Value:
e True to allow this user to make changes by enabling the control

e False to completely disable edit of this property by disabling the control

Enable or disable the control for editing a version.

Return Value:

Page 497 of 505

Created with Enterprise Architect

User Guide - Automation

OnPreNewElement(Eleme
ntType,

ElementStereotype)

OnPreNewConnector(Conn
ectorType,

ConnectorSubType,

ConnectorStereotype)

PreAllowPhaseUpdate(Old
Value,

NewValue)

PreAllowStatusUpdate(Old
Value,

NewValue)

PreAllowTagUpdate(TagN
ame,

OldValue,
NewValue)

PreAllowVersionUpdate(O
IdValue,

NewValue)

(c) Sparx Systems 2019

7 August, 2019

e True to allow this user to make changes by enabling the control

e False to completely disable edit of this property by disabling the control

Allow or disallow the creation of the specified element.
Return Value:
e True to allow this user to create the element/connector

e False to prevent this user from creating the element

Allow or disallow the creation of the specified connector.
Return Value:
e True to allow this user to create the element/connector

e False to prevent this user from creating the element

Determine what information is required to validate this change.

Return Value: Semi-colon separated list of additional data required in order to
validate this change.

Supported Data Type:
e Tests - fill the Tests array in the WorkflowContext object

Determine what information is required to validate this change.

Return Value: Semi-colon separated list of additional data required in order to
validate this change.

Supported Data Type:
Tests - fill the Tests array in the WorkflowContext object

Determine what information is required to validate this change.

Return Value: Semi-colon separated list of additional data required in order to
validate this change.

Supported Data Type:
Tests - fill the Tests array in the WorkflowContext object

Determine what information is required to validate this change.

Return Value: Semi-colon separated list of additional data required in order to
validate this change.

Supported Data Type:
Tests - fill the Tests array in the WorkflowContext object

Page 498 of 505

Created with Enterprise Architect

User Guide - Automation

7 August, 2019

Functions - Create a Search With User Tasks

These are functions that Enterprise Architect calls to create a search with user tasks.

Functions
Function Action
GetWorkflowTasks Describe the searches that this user must run.
Return Value: Ignored

(c) Sparx Systems 2019

Page 499 of 505

Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Filled Workflow Data Structures

These are the workflow data structures (objects) that Enterprise Architect fills.

Data Structures

Workflow Data Structure Description

WorkflowUser This object provides information about the user currently logged in to the model.

It is filled by Enterprise Architect before any function is called by Enterprise
Architect; it has these properties:

e Username - the username for login to the system (if using Windows
Authentication, this matches the Windows username)

e Firstname - as found in the 'Security Users' dialog
e Surname - as found in the 'Security Users' dialog

e Fullname - the combination <Firstname> <Surname> (the form Enterprise
Architect uses for 'Author’ fields and similar)

e Department - the department in which the user works, as found in the 'Security
Users' dialog

Calls: This object calls the IsMemberOf(GroupName) function.

WorkflowContext This object provides information about the object currently in context.

It is filled by Enterprise Architect before any searches except GetWorkflowTasks
are run; it has these properties:

e MetaType - the type of the current object, either an Enterprise Architect core
type or a profile-specified metatype

e Name - as found in the object 'Properties' dialog

e Status - as found in the object 'Properties’ dialog

e Phase - as found in the object 'Properties' dialog

e Version - as found in the object 'Properties' dialog

e Stereotypes - an array of strings for the stereotypes applied to this object

e Tags - an array of Tagged Values, providing:
- Name - the Tagged Value name
- Value - the Tagged Value value

e Tests - an array of tests; only filled during an Allow* call after the PreAllow*
call has specified that tests are required; provides these details, as found in the
Testing window:

- Name

- Status

- RunBy

- CheckedBy
- TestClass

- TestType

Calls: This object calls the TagValue(TagName) function.

Functions

(c) Sparx Systems 2019 Page 500 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Function Action

IsMemberOf(GroupName) Check the group membership of the current user.

Return Value: Returns the value True if the current user is a member of the group
with the specified name.

TagValue(TagName) Get the value from a named tag.

Return Value: Returns the value of the first Tagged Value with that name, or an
empty string if no Tagged Value with that name exists.

(c) Sparx Systems 2019 Page 501 of 505 Created with Enterprise Architect

User Guide - Automation

7 August, 2019

Workflow Data Structures You Fill

These are the workflow data structures (objects) that you can fill.

Data Structures

Workflow Data Structure

WorkflowStatus

WorkflowSearches

(c) Sparx Systems 2019

Description

Use this data structure to provide information on the status of the object.

e LogEntry - set to True or False to indicate whether or not a log item should be
recorded

e Reason - indicate what reason should be recorded in the log

e Action - indicate how to display the log message; valid values are:
MessageBox, StatusBar and Output (default)

Use this data structure to provide an array of searches.

Use Redim WorkflowSearches(x) to specify the number of searches being
provided.

Each search has these attributes:
e Name - the name of this search

e Group - the name of the group that this search should appear under in the
'Search' combo box

e ID - the GUID for this search

e Tasks - the array of tasks that this search looks for; an entry describes how to
find all objects required to meet a particular task:
- Name - the name of the task, as displayed in the Model Search
view; workflow searches are grouped by this field by default
- Conditions - an array of conditions, all of which must be matched for
an object to be included in this task; a condition is a comparison of
a single field to a value:
- Column - the name of the field
- Operator - operator types, either = (provide matching values only)
or <> (provide non-matching values only)
- Value - if this contains a comma, the string is treated as a
comma separated list of values to compare against;
otherwise the string is a single value to compare against

Page 502 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Functions You Call

These are functions that Enterprise Architect provides for you to call.

Functions
Function Action
NewSearch(name, group, Create a new search object to be included in WorkflowSearches.

guid, taskcount) Initialize each member.

Return Value: The created search

NewTask(name, Create a new task object to be included in a search.

conditioncount) Initialize each member.

Return Value: The created task

NewCondition(column, Create a new condition object to be included in a task.

operator, value) Initialize each member.

Return Value: The created condition

SetLastError(message, Called on user input to these element properties:
outputMethod) e Status
e Phase

e Version, and

e Tagged Values

It logs and/or reports the provided message to the user. It can be called within the
functions:

o AllowPhaseUpdate

o AllowStatusUpdate

o AllowTagUpdate

o AllowVersionUpdate

e preAllowPhaseUpdate

e preAllowStatusUpdate

e preAllowTagUpdate

o preAllowVersionUpdate

For example:
public function AllowPhaseUpdate(OldValue, NewValue)
AllowPhaseUpdate = false
SetLastError "No updating to phase allowed", "messagebox"
end function

Parameters:

e message: Text

nn

e outputMethod: can be "messagebox", "statusbar" or "outputwindow"; this
parameter is case sensitive

(c) Sparx Systems 2019 Page 503 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

Return Value: The message

(c) Sparx Systems 2019 Page 504 of 505 Created with Enterprise Architect

User Guide - Automation 7 August, 2019

(c) Sparx Systems 2019 Page 505 of 505 Created with Enterprise Architect

	Automation
	Hybrid Scripting
	C# Example
	Java Example

	Scripting
	Scripts Tab
	Console Tab
	Script Group Properties
	Script Editor
	Session Object
	Script Debugging

	Enterprise Architect Object Model
	Using the Automation Interface
	Connect to the Interface
	Set References In Visual Basic

	Examples and Tips
	Call from Enterprise Architect
	Available Resources

	Reference
	Interface Overview
	App Object
	Enumerations
	ConstLayoutStyles
	CreateBaselineFlag
	CreateModelType
	DocumentBreak
	DocumentPageOrientation
	DocumentType
	EAEditionTypes
	EnumRelationSetType
	ExportPackageXMIFlag
	MDGMenus
	MessageFlag
	ObjectType
	PropType
	ReloadType
	ScenarioDiagramType
	ScenarioStepType
	ScenarioTestType
	XMIType

	Properties Tab Package
	PropertiesTab Class

	Repository Package
	Author Class
	Client Class
	Collection Class
	The AddNew Function

	Datatype Class
	EventProperties Class
	EventProperty Class
	ModelWatcher Class
	Package Class
	ProjectIssues Class
	ProjectResource Class
	ProjectRole Class
	PropertyType Class
	Reference Class
	Repository Class
	SecurityUser Class
	Stereotype Class
	Task Class
	Term Class

	Element Package
	Constraint Class
	Effort Class
	Element Class
	ElementGrid Class
	File Class
	Issue (Maintenance) Class
	Metric Class
	Requirement Class
	Resource Class
	Risk Class
	Scenario Class
	ScenarioExtension Class
	ScenarioStep Class
	TaggedValue Class
	Test Class

	Element Features Package
	Attribute Class
	AttributeConstraint Class
	AttributeTag Class
	CustomProperties Collection
	EmbeddedElements Collection
	Method Class
	MethodConstraint Class
	MethodTag Class
	Parameter Class
	ParamTag Class
	Partitions Collection
	Properties Class
	TemplateParameter Class
	Transitions Collection

	Connector Package
	Connector Class
	ConnectorConstraint Class
	ConnectorEnd Class
	ConnectorTag Class
	RoleTag Class
	TemplateBinding Class

	Diagram Package
	Diagram Class
	DiagramLinks Class
	DiagramObject Class
	SwimlaneDef Class
	Swimlanes Class
	Swimlane Class

	Project Interface Package
	Project Class

	Document Generator Interface Package
	DocumentGenerator Class

	Data Miner Package
	DataMinerManager Class
	DataMiner Class
	DataSet Class
	DMArray Class
	DMAction Class
	DMScript Class
	DMConnection Class

	TypeInfoProperties Package
	TypeInfoProperties Class
	TypeInfoProperty Class

	Mail Interface Package
	MailInterface Class

	Search Window Package
	EAContext Class
	EASelection Class
	SearchWindow Class

	Simulation Package
	Simulation Class

	Schema Composer Package
	SchemaProperty Class
	SchemaProfile Class
	SchemaComposer Class
	ModelTypeEnum Class
	ModelType Class
	SchemaTypeEnum Class
	SchemaType Class
	SchemaPropEnum Class
	SearchType Enumeration
	SchemaNamespace Class
	SchemaNamespaceEnum Class

	Code Samples
	Open the Repository
	Iterate Through a .EAP File
	Add and Manage Packages
	Add and Manage Elements
	Add a Connector
	Add and Manage Diagrams
	Add and Delete Features
	Element Extras
	Repository Extras
	Stereotypes
	Work With Attributes
	Work With Methods

	Enterprise Architect Add-In Model
	The Add-In Manager
	Add-In Tasks
	Create Add-Ins
	Define Menu Items
	Deploy Add-Ins
	Tricks and Traps

	Add-In Search
	EA_SampleSearch
	XML Format (Search Data)

	Add-In Events
	EA_OnAddinPropertiesTabChanging
	EA_Connect
	EA_Disconnect
	EA_GetMenuItems
	EA_GetMenuState
	EA_GetRibbonCategory
	EA_MenuClick
	EA_OnOutputItemClicked
	EA_OnOutputItemDoubleClicked
	EA_ShowHelp

	Broadcast Events
	Custom Table Events
	EA_OnCustomTableBeginEdit
	EA_OnCustomTableEndEdit
	EA_OnCustomTableSelectionChanged
	EA_OnCustomTableCellUpdated

	Schema Composer Events
	EA_GenerateFromSchema
	EA_GetProfileInfo
	EA_IsSchemaExporter

	Add-In License Management Events
	EA_AddinLicenseValidate
	EA_AddinLicenseGetDescription
	EA_GetSharedAddinName

	Compartment Events
	EA_QueryAvailableCompartments
	EA_GetCompartmentData

	Context Item Events
	EA_OnContextItemChanged
	EA_OnContextItemDoubleClicked
	EA_OnNotifyContextItemModified

	EA_FileClose
	EA_FileNew
	EA_FileOpen
	EA_OnPostCloseDiagram
	EA_OnPostInitialized
	EA_OnPostOpenDiagram
	EA_OnPostTransform
	EA_OnPreExitInstance
	EA_OnRetrieveModelTemplate
	EA_OnTabChanged
	Model Validation Events
	EA_OnInitializeUserRules
	EA_OnStartValidation
	EA_OnEndValidation
	EA_OnRunElementRule
	EA_OnRunPackageRule
	EA_OnRunDiagramRule
	EA_OnRunConnectorRule
	EA_OnRunAttributeRule
	EA_OnRunMethodRule
	EA_OnRunParameterRule
	Model Validation Example

	Post-New Events
	EA_OnPostNewElement
	EA_OnPostNewConnector
	EA_OnPostNewDiagram
	EA_OnPostNewDiagramObject
	EA_OnPostNewAttribute
	EA_OnPostNewMethod
	EA_OnPostNewPackage
	EA_OnPostNewGlossaryTerm

	Pre-Deletion Events
	EA_OnPreDeleteElement
	EA_OnPreDeleteAttribute
	EA_OnPreDeleteMethod
	EA_OnPreDeleteConnector
	EA_OnPreDeleteDiagram
	EA_OnPreDeleteDiagramObject
	EA_OnPreDeletePackage
	EA_OnPreDeleteGlossaryTerm

	Pre New-Object Events
	EA_OnPreNewElement
	EA_OnPreNewConnector
	EA_OnPreNewDiagram
	EA_OnPreNewDiagramObject
	EA_OnPreDropFromTree
	EA_OnPreNewAttribute
	EA_OnPreNewMethod
	EA_OnPreNewPackage
	EA_OnPreNewGlossaryTerm

	Tagged Value Events
	EA_OnAttributeTagEdit
	EA_OnConnectorTagEdit
	EA_OnElementTagEdit
	EA_OnMethodTagEdit

	Technology Events
	EA_OnInitializeTechnologies
	EA_OnPreActivateTechnology
	EA_OnPostActivateTechnology
	EA_OnPreDeleteTechnology
	EA_OnDeleteTechnology
	EA_OnImportTechnology

	Custom Views
	Create a Custom View

	Add a Portal
	Custom Docked Window
	MDG Add-Ins
	MDG Events
	MDG_BuildProject
	MDG_Connect
	MDG_Disconnect
	MDG_GetConnectedPackages
	MDG_GetProperty
	MDG_Merge
	MDG_NewClass
	MDG_PostGenerate
	MDG_PostMerge
	MDG_PreGenerate
	MDG_PreMerge
	MDG_PreReverse
	MDG_RunExe
	MDG_View

	Workflow Add-In Events
	EA_AllowPropertyUpdate
	EA_AllowTagUpdate
	EA_CanEditProperty
	EA_CanEditTag

	Model Add-Ins
	Create an Add-In
	Responding to Events
	Edit Add-In Code

	Model Add-In Management
	Signal Reference Library
	Sample Add-Ins

	Workflow Scripts
	Workflow Script Functions
	Functions - Validate and Control User Input
	Functions - Create a Search With User Tasks
	Filled Workflow Data Structures
	Workflow Data Structures You Fill
	Functions You Call

