
Scripting

ENTERPRISE ARCHITECT

User Guide Series

Author: Sparx Systems

Date: 2021-09-02

Version: 15.2

CREATED WITH

Table of Contents

Scripting 6
JavaScript Math Library 9

Arithmetic and Algebraic 10
sqrt 11
lsqrt 12
cbrt 13
polevl, p1evl 14
chbevl 16
round 17
floor 18
ceil 19
frexp 20
ldexp 21
fabs 22
signbit 23
isnan 24
isfinite 25
poladd 26
polsub 27
polmul 28
poldiv 29
polsbt 30
poleva 31
polclr 32
polmov 33

Exponential and Trigonometric 34
acos 35
acosh 36
asinh 37
atanh 38
asin 39
atan 40
atan2 41
cos 42
cosdg 43
exp 44
exp2 45
exp10 46
cosh 47
sinh 48
tanh 49
log 50
log2 51
log10 52
pow 53
powi 54
sin 55

sindg 56
tan 57
tandg 58

Exponential integral 59
expn 60
shichi 61
sici 63

Gamma 65
beta 66
lbeta 67
fac 68
gamma 69
lgam 70
incbet 71
incbi 73
igam 74
igamc 75
igami 76
psi 77
rgamma 79

Error function 80
erf 81
erfc 82
dawsn 83
fresnl 84

Bessel 86
airy 87
j0 89
j1 90
jn 91
jv 92
y0 93
y1 94
yn 95
yv 96
i0 97
i0e 98
i1 99
i1e 100
iv 101
k0 102
k0e 103
k1 104
k1e 105
kn 106

Hypergeometric 107
hyperg 108
hyp2f1 109
hyp2f0 111
onef2 112
threef0 113

Elliptic 114
ellpe 115
ellie 116
ellpk 117
ellik 119
ellpj 120

Probability 121
bdtr 122
bdtrc 124
bdtri 126
chdtr 127
chdtrc 128
chdtri 129
fdtr 130
fdtrc 131
fdtri 133
gdtr 135
gdtrc 136
nbdtr 137
nbdtrc 138
ndtr 139
ndtri 140
pdtr 141
pdtrc 142
pdtri 143
stdtr 144

Miscellaneous 146
polylog 147
spence 149
zetac 150
zeta 151
struve 153

Matrix 154
fftr 155
simq 156
minv 157
mmmpy 159
mvmpy 160
mtransp 161
eigens 162

Numerical Integration 165
simpsn 166

Complex Arithmetic 167
cadd 168
csub 170
cmul 172
cdiv 174
cabs 176
csqrt 177

Complex Exponential and Trigonometric 179
cexp 180

clog 181
ccos 182
cacos 183
csin 184
casin 185
ctan 186
catan 187
ccot 188

errors 189
Solvers Interface 190
Scripts Tab 191
Console Tab 193
JavaScript Console 195
Script Group Properties 197
Script Editor 199
Session Object 202
Script Debugging 203

Scripting 2 September, 2021

Scripting

Enterprise Architect's scripting environment is a flexible and easy to use facility that supports both JavaScript and the
Microsoft scripting languages JScript and VBScript. When any script runs, it has access to a built-in 'Repository' object.
Using this script object you can programmatically inspect and/or modify elements within your currently open model.
Enterprise Architect also provides feature rich editors, and tools to run, debug and manage your scripts. Scripts are
modular and can include other scripts by name using the !include directive. They can be used for a broad range of
purposes, from documentation to validation and refactoring, and they can be of enormous help with automating time
consuming tasks.

Script Engine Support

Mozilla SpiderMonkey [version 1.8]·
Microsoft Scripting Engine·

Script Languages

JavaScript·
JScript·
VBScript·

Benefits

Inspecting and reporting on model and element composition·
Modifying and updating element properties·
Running queries to obtain extended model information·
Modifying diagram layouts·
Being called from report document templates to populate reports·
Creating and implementing process workflows·
Being included in MDG Technologies to augment domain specific languages·
Extensive UI access to scripts through context menus·
Automation Server role for in-process and out-of-process COM clients (Scripting is itself an example of an·
in-process client; Add-Ins are another)

Element access governance through Workflow security·
Model Search integration·

(c) Sparx Systems 2021 Page 6 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

Script Groups

Scripts are managed and contained in groups. Each group has an attribute called 'Type'. This attribute is used to help
Enterprise Architect decide how and where the script can be used and from which features it should be made available.
The properties of a script group can be viewed from its shortcut menu.

Script Storage

Built in scripts are file based and are installed with Enterprise Architect. They appear under the Local Scripts group.

You cannot edit or delete Local scripts, but you can copy the contents easily enough.

User defined scripts are model based and as such, can be shared by a community. They are listed in the group to which
they belong..

Using Scripts

The management interface for Scripting is the Scripting window, which contains the:

Script Tree View ('Scripts' tab), which you use to review, create and edit scripts·
Script Console ('Console' tab), which you use to operate on an executing script·

Other than the Local Scripts, which are file based and installed with Enterprise Architect, all other scripts are stored as
model assets and can be shared with all users of the model. Script debuggers can help you with script development and
script editors can provide you with information on the automation interfaces available to you. Analyze the execution, for
example by recording a Sequence diagram of the script execution and halting execution to view local variables.

Using Solvers

Anywhere in Enterprise Architect that has JavaScript code, such as in Simulation, you can now use a JavaScript
construct called 'Solver' (the Solver Class) to integrate with external tools and have direct use of the functionality within
each tool to simply and intuitively perform complex maths and charting functions. The calls help you to easily
interchange variables between the built in JavaScript engine and each environment. Two Math Libraries that are
supported are MATLAB and Octave.

To use the Solver Class, you need to have a knowledge of the functions available in your preferred Math Library and the
parameters they use, as described in the product documentation.

Being part of the JavaScript engine, Solver Classes are also immediately accessible to Add-In writers creating model
based JavaScript Add-Ins.

Also see the Octave Solver, MATLAB Solver and Solvers Help topics.

(c) Sparx Systems 2021 Page 7 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

Notes

This facility is available in the Corporate, Unified and Ultimate Editions·
If you intend to use the Scripting facility under Crossover/WINE, you must also install Internet Explorer version 6.0·
or above

(c) Sparx Systems 2021 Page 8 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

JavaScript Math Library

The legendary Cephes Math Library is fully and tightly integrated with the JavaScript engine available within Enterprise
Architect. This library is a collection of more than 400 high-quality mathematical routines for scientific and engineering
applications, providing a huge range of mathematical potential for modelers wanting to take their engineering and
systems models to the next level.

The function library implements the IEEE Std 754 double-precision standard.

Arithmetic and Algebraic·
Exponential and Trigonometric·
Exponential integral·
Gamma·
Error function·
Bessel·
Hypergeometric·
Elliptic·
Probability·
Miscellaneous·
Matrix·
Numerical Integration·
Complex Arithmetic·
Complex Exponential and Trigonometric·
errors·

(c) Sparx Systems 2021 Page 9 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_aanda.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_eat.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_expintegral.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_gamma_group.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_errf.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_Bessel.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_Hypergeometric.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_elliptic.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_probability.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_misc.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_matrix.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_numintegration.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_ca.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_caeat.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_errors.htm

Scripting 2 September, 2021

Arithmetic and Algebraic

sqrt - square root·
lsqrt - integer square root·
cbrt - cube root·
polevl, p1evl - evaluate polynomial·
chbevl - evaluate Chebyshev series·
round - round to nearest integer value·
ceil - truncate upward to integer·
floor - truncate downward to integer·
frexp - extract exponent·
ldexp - add integer to exponent·
fabs - absolute value·
signbit - return sign bit as int·
isnan - number test·
isfinite - finite test·
poladd - add polynomials·
polsub - subtract polynomials·
polmul - multiply polynomials·
poldiv - divide polynomials·
polsbt - substitute polynomial variable·
poleva - evaluate polynomial·
polclr - set all coefficients to zero·
polmov - copy coefficients·

(c) Sparx Systems 2021 Page 10 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_sqrt.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_lsqrt.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_cbrt.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_po1.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_chbevl.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_round.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_ceil.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_floor.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_frexp.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_ldexp.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_fabs.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_signbit.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_isnan.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_isfinite.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_poladd.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_polsub.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_polmul.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_poldiv.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_polsbt.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_poleva.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_polclr.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_polmov.htm

Scripting 2 September, 2021

sqrt

Square root.

SYNOPSIS:

double x, y, sqrt();

y = sqrt(x);

DESCRIPTION:

Returns the square root of x.

Range reduction involves isolating the power of two of the argument and using a polynomial approximation to obtain a
rough value for the square root. Then Heron's iteration is used three times to converge to an accurate value.

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC 0, 10 60000 2.1e-17 7.9e-18

 IEEE 0,1.7e308 30000 1.7e-16 6.3e-17

ERROR MESSAGES:

message condition value returned

domain x < 0 0.0

(c) Sparx Systems 2021 Page 11 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

lsqrt

Integer square root.

SYNOPSIS:

long x, y;

long lsqrt();

y = lsqrt(x);

DESCRIPTION:

Returns a long integer square root of the long integer argument. The computation is by binary long division. The largest
possible result is lsqrt(2,147,483,647) = 46341.

If x < 0, the square root of |x| is returned, and an error message is available.

ACCURACY:

An extra, roundoff, bit is computed; hence the result is the nearest integer to the actual square root.

(c) Sparx Systems 2021 Page 12 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

cbrt

Cube root.

SYNOPSIS:

double x, y, cbrt();

y = cbrt(x);

DESCRIPTION:

Returns the cube root of the argument, which could be negative. Range reduction involves determining the power of 2 of
the argument. A polynomial of degree 2 applied to the mantissa, and multiplication by the cube root of 1, 2, or 4
approximates the root to within about 0.1%. Then Newton's iteration is used three times to converge to an accurate result.

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC -10,10 200000 1.8e-17 6.2e-18

 IEEE 0,1e308 30000 1.5e-16 5.0e-17

JavaScript:

//

//Plot of y = 3vx.

//

function plotYforX(x1, x2)

{

for(var x = x1; x <= x2; x++)

{

var y = cephes.cbrt(x);

Session.Output("plot of x for " + x + " gives y of " + y);

}

}

function main()

{

plotYforX(-1,6);

}

main();

(c) Sparx Systems 2021 Page 13 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

polevl, p1evl

Evaluate polynomial.

SYNOPSIS:

 int N;

 double x, y, coef[N+1], polevl[];

 y = polevl(x, coef, N);

DESCRIPTION:

Evaluates polynomial of degree N:

 2 N

 y = C + C x + C x +...+ C x

 0 1 2 N

 Coefficients are stored in reverse order:

 coef[0] = C , ..., coef[N] = C .

 N 0

The function p1evl() assumes that coef[N] = 1.0 and is omitted from the array. Its calling arguments are otherwise the
same as polevl().

SPEED:

In the interest of speed, there are no checks for out of bounds arithmetic. This routine is used by most of the functions in
the library. Depending on available equipment features, the user might want to rewrite the program in microcode or
assembly language.

JavaScript:

Example:

 function stirlingFormula(x)

 {

 var STIR = [7.87311395793093628397E-4, -2.29549961613378126380E-4,

 -2.68132617805781232825E-3, 3.47222221605458667310E-3,

 8.33333333333482257126E-2];

 var SQTPI = 2.50662827463100050242E0;

 var MAXSTIR = 143.01608;

 var w = 1.0 / x;

 var y = cephes.exp(x);

(c) Sparx Systems 2021 Page 14 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

 var w = 1.0 + w * cephes.polevl(w, STIR, 4);

 if (x > MAXSTIR) {

 var v = cephes.pow(x, 0.5 * x - 0.25);

 y = v * (v / y);

 } else {

 y = cephes.pow(x, x - 0.5) / y;

 }

 y = SQTPI * y * w;

 return y;

 }

(c) Sparx Systems 2021 Page 15 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

chbevl

Evaluate Chebyshev series.

SYNOPSIS:

 int N;

 double x, y, coef[N], chebevl();

 y = chbevl(x, coef, N);

DESCRIPTION:

Evaluates the series

 N-1

 - '

 y = > coef[i] T (x/2)

 - i

 i=0

of Chebyshev polynomials Ti at argument x/2.

Coefficients are stored in reverse order, i.e. the zero order term is last in the array. Note N is the number of coefficients,
not the order.

If coefficients are for the interval a to b, x must have been transformed to x -> 2(2x - b - a)/(b-a) before entering the
routine. This maps x from (a, b) to (-1, 1), over which the Chebyshev polynomials are defined.

If the coefficients are for the inverted interval, in which (a, b) is mapped to (1/b, 1/a), the transformation required is x ->
2(2ab/x - b - a)/(b-a). If b is infinity, this becomes x -> 4a/x - 1.

SPEED:

Taking advantage of the recurrence properties of the Chebyshev polynomials, the routine requires one more addition per
loop than evaluating a nested polynomial of the same degree.

JavaScript:

var y = cephes.chbevl(x, coef, N);

(c) Sparx Systems 2021 Page 16 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

round

Round double to nearest or even integer valued double

SYNOPSIS:

double x, y, round();

y = round(x);

DESCRIPTION:

Returns the nearest integer to x as a double precision floating point result. If x ends in 0.5 exactly, the nearest even
integer is chosen.

ACCURACY:

If x is greater than 1/(2*MACHEP), its closest machine representation is already an integer, so rounding does not change
it.

(c) Sparx Systems 2021 Page 17 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

floor

SYNOPSIS:

 double floor(x);

 double x,y;

 y = floor(x);

DESCRIPTION:

floor() returns the largest integer less than or equal to x. It truncates toward minus infinity.

(c) Sparx Systems 2021 Page 18 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

ceil

SYNOPSIS:

 double ceil(x);

 double x, y;

 y = ceil(x);

DESCRIPTION:

ceil() returns the smallest integer greater than or equal to x. It truncates toward plus infinity.

(c) Sparx Systems 2021 Page 19 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

frexp

Extract exponent.

SYNOPSIS:

 double frexp(x, expnt);

 double x;

 int expnt;

 y = frexp(x, &expnt);

DESCRIPTION:

frexp() extracts the exponent from x. It returns an integer power of two to expnt and the significand between 0.5 and 1 to
y. Thus x = y * 2**expn.

(c) Sparx Systems 2021 Page 20 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

ldexp

SYNOPSIS:

 double ldexp(x,n);

 double x;

 int n;

 y = ldexp(x, n);

DESCRIPTION:

ldexp() multiplies x by 2**n.

(c) Sparx Systems 2021 Page 21 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

fabs

Absolute value.

SYNOPSIS:

double x, y;

y = fabs(x);

DESCRIPTION:

Returns the absolute value of the argument.

(c) Sparx Systems 2021 Page 22 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

signbit

SYNOPSIS:

int signbit(x);

double x;

int n;

n = signbit(x);

DESCRIPTION:

signbit(x) returns 1 if the sign bit of x is 1, else 0.

(c) Sparx Systems 2021 Page 23 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

isnan

SYNOPSIS:

int isnan(x);

double x;

int n;

n = isnan(x);

DESCRIPTION:

Returns true if x is not a number.

(c) Sparx Systems 2021 Page 24 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

isfinite

SYNOPSIS:

int isfinite();

double x;

int n;

n = isfinite(x);

DESCRIPTION:

Return true if x is not infinite and is not a NaN

(c) Sparx Systems 2021 Page 25 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

poladd

Polynomial Addition

SYNOPSIS:

int maxpol, na, nb, nc;

double a[na], b[nb], c[nc];

nc = max(na, nb);

polini(nc);

poladd(a, na, b, nb, c);

DESCRIPTION:

poladd(a, na, b, nb, c); c = b + a, nc = max(na, nb)

In the following description a, b, c are polynomials of degree na, nb, nc respectively.

The degree of a polynomial cannot exceed a run-time value MAXPOL.

An operation that attempts to use or generate a polynomial of higher degree may produce a result that suffers truncation
at degree MAXPOL.

The value of MAXPOL is set by calling the function

polini(MAXPOL);

Each polynomial is represented by an array containing its coefficients, together with a separately declared integer equal
to the degree of the polynomial.

The coefficients appear in ascending order; that is,

 2 na

a(x) = a[0] + a[1] * x + a[2] * x + ... + a[na] * x .

(c) Sparx Systems 2021 Page 26 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

polsub

Polynomial Subtraction

SYNOPSIS:

int maxpol, na, nb, nc;

double a[], b[], c[];

nc = max(na, nb);

polini(nc);

polsub(a, na, b, nb, c);

DESCRIPTION:

polsub(a, na, b, nb, c); c = b - a, nc = max(na, nb)

a, b, c are polynomials of degree na, nb, nc respectively.

The degree of a polynomial cannot exceed a run-time value MAXPOL.

An operation that attempts to use or generate a polynomial of higher degree may produce a result that suffers truncation
at degree MAXPOL.

The value of MAXPOL is set by calling the function

polini(MAXPOL);

Each polynomial is represented by an array containing its coefficients, together with a separately declared integer equal
to the degree of the polynomial.

The coefficients appear in ascending order; that is,

 2 na

a(x) = a[0] + a[1] * x + a[2] * x + ... + a[na] * x .

(c) Sparx Systems 2021 Page 27 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

polmul

Polynomial Multiplication

SYNOPSIS:

int maxpol, na, nb, nc;

double a[], b[], c[];

nc = na + nb;

polini(nc);

polmul(a, na, b, nb, c);

DESCRIPTION:

polmul(a, na, b, nb, c); c = b * a, nc = na + nb

a, b, c are polynomials of degree na, nb, nc respectively.

The degree of a polynomial cannot exceed a run-time value MAXPOL.

An operation that attempts to use or generate a polynomial of higher degree may produce a result that suffers truncation
at degree MAXPOL.

The value of MAXPOL is set by calling the function

polini(MAXPOL);

Each polynomial is represented by an array containing its coefficients, together with a separately declared integer equal
to the degree of the polynomial.

The coefficients appear in ascending order; that is,

 2 na

a(x) = a[0] + a[1] * x + a[2] * x + ... + a[na] * x .

(c) Sparx Systems 2021 Page 28 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

poldiv

Polynomial Division

SYNOPSIS:

int maxpol, na, nb, nc;

double a[], b[], c[];

nc = na + nb

polini(MAXPOL);

i = poldiv(a, na, b, nb, c);

DESCRIPTION:

i = poldiv(a, na, b, nb, c); c = b / a, nc = MAXPOL

returns i = the degree of the first nonzero coefficient of a.

The computed quotient c must be divided by x^i.

An error message is printed if a is identically zero.

a, b, c are polynomials of degree na, nb, nc respectively.

The degree of a polynomial cannot exceed a run-time value MAXPOL.

An operation that attempts to use or generate a polynomial of higher degree may produce a result that suffers truncation
at degree MAXPOL.

The value of MAXPOL is set by calling the function

polini(MAXPOL);

Each polynomial is represented by an array containing its coefficients, together with a separately declared integer equal
to the degree of the polynomial.

The coefficients appear in ascending order; that is,

 2 na

a(x) = a[0] + a[1] * x + a[2] * x + ... + a[na] * x .

(c) Sparx Systems 2021 Page 29 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

polsbt

Substitute Polynomial Variable

SYNOPSIS:

int a, b;

double a[na], b[nb], c[nc];

polsbt(a, na, b, nb, c);

DESCRIPTION:

If a and b are polynomials, and t = a(x), then

 c(t) = b(a(x))

is a polynomial found by substituting a(x) for t.

The subroutine call for this is

polsbt(a, na, b, nb, c);

a, b, c are polynomials of degree na, nb, nc respectively.

The degree of a polynomial cannot exceed a run-time value MAXPOL.

An operation that attempts to use or generate a polynomial of higher degree may produce a result that suffers truncation
at degree MAXPOL.

The value of MAXPOL is set by calling the function

polini(MAXPOL);

Each polynomial is represented by an array containing its coefficients, together with a separately declared integer equal
to the degree of the polynomial.

The coefficients appear in ascending order; that is,

 2 na

a(x) = a[0] + a[1] * x + a[2] * x + ... + a[na] * x .

(c) Sparx Systems 2021 Page 30 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

poleva

Polynomial Evaluation

SYNOPSIS:

int na;

double sum, x;

double a[na];

sum = poleva(a, na, x);

DESCRIPTION:

Evaluate polynomial a(t) at t = x.

The polynomial is represented by an array containing its coefficients, together with a separately declared integer equal to
the degree of the polynomial.

The coefficients appear in ascending order; that is,

 2 na

a(x) = a[0] + a[1] * x + a[2] * x + ... + a[na] * x .

(c) Sparx Systems 2021 Page 31 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

polclr

Clear Polynomial

SYNOPSIS:

int na;

double a[na];

polclr(a, na);

DESCRIPTION:

Set all coefficients of polynomial a to zero, up to a[na].

The polynomial is represented by an array containing its coefficients, together with a separately declared integer equal to
the degree of the polynomial.

The coefficients appear in ascending order; that is,

 2 na

a(x) = a[0] + a[1] * x + a[2] * x + ... + a[na] * x .

(c) Sparx Systems 2021 Page 32 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

polmov

Move Polynomial

SYNOPSIS:

int na;

double a[na], b[na];

polmov(a, na, b);

DESCRIPTION:

Set b = a. Copies coefficients of polynomial a, to b.

The polynomial is represented by an array containing its coefficients, together with a separately declared integer equal to
the degree of the polynomial.

The coefficients appear in ascending order; that is,

 2 na

a(x) = a[0] + a[1] * x + a[2] * x + ... + a[na] * x .

(c) Sparx Systems 2021 Page 33 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

Exponential and Trigonometric

acos - Arc cosine·
acosh - Arc hyperbolic cosine·
asinh - Arc hyperbolic sine·
atanh - Arc hyperbolic tangent·
asin - Arcsine·
atan - Arctangent·
atan2 - Quadrant correct arctangent·
cos - Cosine·
cosdg - Cosine of arg in degrees·
exp - Exponential, base e·
exp2 - Exponential, base 2·
exp10 - Exponential, base 10·
cosh - Hyperbolic cosine·
sinh - Hyperbolic sine·
tanh - Hyperbolic tangent·
log - Logarithm, base e·
log2 - Logarithm, base 2·
log10 - Logarithm, base 10·
pow - Power·
powi - Integer power·
sin - Sine·
sindg - Sine of arg in degrees·
tan - Tangent·
tandg - Tangent of arg in degrees ·

(c) Sparx Systems 2021 Page 34 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_acos.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_acosh.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_asinh.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_atanh.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_asin.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_atan.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_atan2.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_cos.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_cosdg.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_exp.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_exp2.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_exp10.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_cosh.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_sinh.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_tanh.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_log.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_log2.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_log10.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_pow.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_powi.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_sin.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_sindg.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_tan.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_tandg.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_acos.htm

Scripting 2 September, 2021

acos

Inverse circular cosine.

SYNOPSIS:

double x, y, acos();

y = acos(x);

DESCRIPTION:

Returns radian angle between 0 and pi whose cosine is x.

Analytically, acos(x) = pi/2 - asin(x). However if |x| is near 1, there is cancellation error in subtracting asin(x) from pi/2.
Hence if x < -0.5, acos(x) = pi - 2.0 * asin(sqrt((1+x)/2)); or if x > +0.5, acos(x) = 2.0 * asin(sqrt((1-x)/2)).

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC -1, 1 50000 3.3e-17 8.2e-18

 IEEE -1, 1 10^6 2.2e-16 6.5e-17

ERROR MESSAGES:

 message condition value returned

 domain |x| > 1 NAN

(c) Sparx Systems 2021 Page 35 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

acosh

Inverse hyperbolic cosine.

SYNOPSIS:

 double x, y, acosh();

 y = acosh(x);

DESCRIPTION:

Returns the inverse hyperbolic cosine of an argument.

If 1 <= x < 1.5, a rational approximation:

sqrt(z) * P(z)/Q(z)

 where z = x-1, is used. Otherwise:

 acosh(x) = log(x + sqrt((x-1)(x+1)).

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC 1,3 30000 4.2e-17 1.1e-17

 IEEE 1,3 30000 4.6e-16 8.7e-17

ERROR MESSAGES:

message condition value returned

 domain |x| < 1 NAN

(c) Sparx Systems 2021 Page 36 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

asinh

Inverse hyperbolic sine.

SYNOPSIS:

double x, y, asinh();

y = asinh(x);

DESCRIPTION:

Returns the inverse hyperbolic sine of an argument.

If |x| < 0.5, the function is approximated by a rational form x + x**3 P(x)/Q(x).

Otherwise, asinh(x) = log(x + sqrt(1 + x*x)).

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC -3,3 75000 4.6e-17 1.1e-17

 IEEE -1,1 30000 3.7e-16 7.8e-17

 IEEE 1,3 30000 2.5e-16 6.7e-17

(c) Sparx Systems 2021 Page 37 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

atanh

Inverse hyperbolic tangent.

SYNOPSIS:

double x, y, atanh();

y = atanh(x);

DESCRIPTION:

Returns the inverse hyperbolic tangent of an argument in the range MINLOG to MAXLOG.

If |x| < 0.5, the rational form x + x**3 P(x)/Q(x) is employed. Otherwise:

 atanh(x) = 0.5 * log((1+x)/(1-x)).

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC -1,1 50000 2.4e-17 6.4e-18

 IEEE -1,1 30000 1.9e-16 5.2e-17

(c) Sparx Systems 2021 Page 38 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

asin

Inverse circular sine.

SYNOPSIS:

double x, y, asin();

y = asin(x);

DESCRIPTION:

Returns the radian angle between -pi/2 and +pi/2 whose sine is x.

A rational function of the form x + x**3 P(x**2)/Q(x**2) is used for |x| in the interval [0, 0.5]. If |x| > 0.5 it is
transformed by the identity:

 asin(x) = pi/2 - 2 asin(sqrt((1-x)/2)).

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC -1, 1 40000 2.6e-17 7.1e-18

 IEEE -1, 1 10^6 1.9e-16 5.4e-17

ERROR MESSAGES:

 message condition value returned

 domain |x| > 1 NAN

(c) Sparx Systems 2021 Page 39 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

atan

Inverse circular tangent (arctangent).

SYNOPSIS:

double x, y, atan();

y = atan(x);

DESCRIPTION:

Returns the radian angle between -pi/2 and +pi/2 whose tangent is x.

Range reduction is from three intervals into the interval from zero to 0.66. The approximant uses a rational function of
degree 4/5 of the form x + x**3 P(x)/Q(x).

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC -10, 10 50000 2.4e-17 8.3e-18

 IEEE -10, 10 10^6 1.8e-16 5.0e-17

(c) Sparx Systems 2021 Page 40 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

atan2

Quadrant correct inverse circular tangent.

SYNOPSIS:

double x, y, z, atan2();

z = atan2(y, x);

DESCRIPTION:

Returns the radian angle whose tangent is y/x.

Define compile time symbol ANSIC = 1 for ANSI standard, range -PI < z <= +PI, args (y,x);

else ANSIC = 0 for range 0 to 2PI, args (x,y).

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 IEEE -10, 10 10^6 2.5e-16 6.9e-17

(c) Sparx Systems 2021 Page 41 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

cos

Circular cosine.

SYNOPSIS:

 double x, y, cos();

 y = cos(x);

DESCRIPTION:

Range reduction is into intervals of pi/4. The reduction error is nearly eliminated by contriving an extended precision
modular arithmetic.

Two polynomial approximating functions are employed.

Between 0 and pi/4 the cosine is approximated by:

 1 - x**2 Q(x**2).

Between pi/4 and pi/2 the sine is represented as:

 x + x**3 P(x**2).

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17

 DEC 0,+1.07e9 17000 3.0e-17 7.2e-18

(c) Sparx Systems 2021 Page 42 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

cosdg

Circular cosine of angle in degrees.

SYNOPSIS:

double x, y, cosdg();

y = cosdg(x);

DESCRIPTION:

Range reduction is into intervals of 45 degrees. Two polynomial approximating functions are employed.

Between 0 and pi/4 the cosine is approximated by:

 1 - x**2 P(x**2).

Between pi/4 and pi/2 the sine is represented as:

 x + x**3 P(x**2).

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC +-1000 3400 3.5e-17 9.1e-18

 IEEE +-1000 30000 2.1e-16 5.7e-17

(c) Sparx Systems 2021 Page 43 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

exp

Exponential function.

SYNOPSIS:

double x, y, exp();

y = exp(x);

DESCRIPTION:

Returns e (2.71828...) raised to the x power.

Range reduction is accomplished by separating the argument into an integer k and fraction f such that:

 x k f

 e = 2 e

A Pade' form

 1 + 2x P(x**2)/(Q(x**2) - P(x**2)) of degree 2/3 is used to approximate exp(f) in the basic interval [-0.5, 0.5].

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC +- 88 50000 2.8e-17 7.0e-18

 IEEE +- 708 40000 2.0e-16 5.6e-17

Error amplification in the exponential function can be a serious matter. The error propagation involves:

exp(X(1+delta)) = exp(X) (1 + X*delta + ...)

This shows that a 1 lsb error in representing X produces a relative error of X times 1 lsb in the function. While the
routine gives an accurate result for arguments that are exactly represented by a double precision computer number, the
result contains an amplified roundoff error for large arguments not exactly represented.

ERROR MESSAGES:

 message condition value returned

 underflow x < MINLOG 0.0

 overflow x > MAXLOG INFINITY

(c) Sparx Systems 2021 Page 44 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

exp2

Base 2 exponential function.

SYNOPSIS:

double x, y, exp2();

y = exp2(x);

DESCRIPTION:

Returns 2 raised to the x power.

Range reduction is accomplished by separating the argument into an integer k and fraction f, such that:

 x k f

 2 = 2 2

A Pade' form:

1 + 2x P(x**2) / (Q(x**2) - x P(x**2))

approximates 2**x in the basic range [-0.5, 0.5].

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 IEEE -1022,+1024 30000 1.8e-16 5.4e-17

ERROR MESSAGES:

message condition value returned

underflow x < -MAXL2 0.0

overflow x > MAXL2 MAXNUM

For DEC arithmetic, MAXL2 = 127.

For IEEE arithmetic, MAXL2 = 1024.

(c) Sparx Systems 2021 Page 45 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

exp10

Base 10 exponential function. (Common antilogarithm.)

SYNOPSIS:

double x, y, exp10();

y = exp10(x);

DESCRIPTION:

Returns 10 raised to the x power.

Range reduction is accomplished by expressing the argument as 10**x = 2**n 10**f, with |f| < 0.5 log10(2).

The Pade' form:

 1 + 2x P(x**2)/(Q(x**2) - P(x**2))

is used to approximate 10**f.

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 IEEE -307,+307 30000 2.2e-16 5.5e-17

Test result from an earlier version (2.1):

 DEC -38,+38 70000 3.1e-17 7.0e-18

ERROR MESSAGES:

 message condition value returned

 underflow x < -MAXL10 0.0

 overflow x > MAXL10 MAXNUM

DEC arithmetic: MAXL10 = 38.230809449325611792.

IEEE arithmetic: MAXL10 = 308.2547155599167.

(c) Sparx Systems 2021 Page 46 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

cosh

Hyperbolic cosine.

SYNOPSIS:

double x, y, cosh();

y = cosh(x);

DESCRIPTION:

Returns the hyperbolic cosine of an argument in the range MINLOG to MAXLOG.

cosh(x) = (exp(x) + exp(-x))/2.

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC +- 88 50000 4.0e-17 7.7e-18

 IEEE +-MAXLOG 30000 2.6e-16 5.7e-17

ERROR MESSAGES:

message condition value returned

overflow |x| > MAXLOG MAXNUM

(c) Sparx Systems 2021 Page 47 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

sinh

Hyperbolic sine.

SYNOPSIS:

double x, y, sinh();

y = sinh(x);

DESCRIPTION:

Returns the hyperbolic sine of an argument in the range MINLOG to MAXLOG.

The range is partitioned into two segments. If |x| <= 1, a rational function of the form x + x**3 P(x)/Q(x) is employed.

Otherwise the calculation is sinh(x) = (exp(x) - exp(-x))/2.

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC +- 88 50000 4.0e-17 7.7e-18

 IEEE +-MAXLOG 30000 2.6e-16 5.7e-17

(c) Sparx Systems 2021 Page 48 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

tanh

Hyperbolic tangent.

SYNOPSIS:

double x, y, tanh();

y = tanh(x);

DESCRIPTION:

Returns the hyperbolic tangent of an argument in the range MINLOG to MAXLOG.

A rational function is used for |x| < 0.625. The form:

x + x**3 P(x)/Q(x) of Cody _& Waite

is employed.

Otherwise:

 tanh(x) = sinh(x)/cosh(x) = 1 - 2/(exp(2x) + 1).

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC -2,2 50000 3.3e-17 6.4e-18

 IEEE -2,2 30000 2.5e-16 5.8e-17

(c) Sparx Systems 2021 Page 49 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

log

Natural logarithm.

SYNOPSIS:

double x, y, log();

y = log(x);

DESCRIPTION:

Returns the base e (2.718...) logarithm of x.

The argument is separated into its exponent and fractional parts. If the exponent is between -1 and +1, the logarithm of
the fraction is approximated by:

 log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).

Otherwise, setting z = 2(x-1)/x+1),

 log(x) = z + z**3 P(z)/Q(z).

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 IEEE 0.5, 2.0 150000 1.44e-16 5.06e-17

 IEEE +-MAXNUM 30000 1.20e-16 4.78e-17

 DEC 0, 10 170000 1.8e-17 6.3e-18

In the tests over the interval [+-MAXNUM], the logarithms of the random arguments were uniformly distributed over
[0,MAXLOG].

ERROR MESSAGES:

singularity: x = 0; returns -INFINITY

domain: x < 0; returns NAN

(c) Sparx Systems 2021 Page 50 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

log2

Base 2 logarithm.

SYNOPSIS:

double x, y, log2();

y = log2(x);

DESCRIPTION:

Returns the base 2 logarithm of x.

The argument is separated into its exponent and fractional parts. If the exponent is between -1 and +1, the base e
logarithm of the fraction is approximated by:

 log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).

Otherwise, setting z = 2(x-1)/x+1),

 log(x) = z + z**3 P(z)/Q(z).

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 IEEE 0.5, 2.0 30000 2.0e-16 5.5e-17

 IEEE exp(+-700) 40000 1.3e-16 4.6e-17

In the tests over the interval [exp(+-700)], the logarithms of the random arguments were uniformly distributed.

ERROR MESSAGES:

singularity: x = 0; returns -INFINITY

domain: x < 0; returns NAN

(c) Sparx Systems 2021 Page 51 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

log10

Common logarithm.

SYNOPSIS:

double x, y, log10();

y = log10(x);

DESCRIPTION:

Returns logarithm to the base 10 of x.

The argument is separated into its exponent and fractional parts. The logarithm of the fraction is approximated by:

 log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 IEEE 0.5, 2.0 30000 1.5e-16 5.0e-17

 IEEE 0, MAXNUM 30000 1.4e-16 4.8e-17

 DEC 1, MAXNUM 50000 2.5e-17 6.0e-18

In the tests over the interval [1, MAXNUM], the logarithms of the random arguments were uniformly distributed over [0,
MAXLOG].

ERROR MESSAGES:

singularity: x = 0; returns -INFINITY

domain: x < 0; returns NAN

(c) Sparx Systems 2021 Page 52 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

pow

Power function

SYNOPSIS:

double x, y, z, pow();

z = pow(x, y);

DESCRIPTION:

Computes x raised to the yth power. Analytically:

 x**y = exp(y log(x)).

Following Cody and Waite, this program uses a lookup table of 2**-i/16 and pseudo extended precision arithmetic to
obtain an extra three bits of accuracy in both the logarithm and the exponential.

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 IEEE -26,26 30000 4.2e-16 7.7e-17

 DEC -26,26 60000 4.8e-17 9.1e-18

1/26 < x < 26, with log(x) uniformly distributed.

-26 < y < 26, y uniformly distributed.

 IEEE 0,8700 30000 1.5e-14 2.1e-15

0.99 < x < 1.01, 0 < y < 8700, uniformly distributed.

ERROR MESSAGES:

message condition value returned

overflow x**y > MAXNUM INFINITY

underflow x**y < 1/MAXNUM 0.0

domain x<0 and y noninteger 0.0

(c) Sparx Systems 2021 Page 53 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

powi

Real raised to integer power.

SYNOPSIS:

double x, y, powi();

int n;

y = powi(x, n);

DESCRIPTION:

Returns an argument x raised to the nth power. The routine efficiently decomposes n as a sum of powers of two. The
desired power is a product of two-to-the-kth powers of x. Thus to compute the 32767 power of x requires 28
multiplications instead of 32767 multiplications.

ACCURACY:

 Relative error:

arithmetic x domain n domain # trials peak rms

 DEC .04,26 -26,26 100000 2.7e-16 4.3e-17

 IEEE .04,26 -26,26 50000 2.0e-15 3.8e-16

 IEEE 1,2 -1022,1023 50000 8.6e-14 1.6e-14

Returns MAXNUM on overflow, zero on underflow.

(c) Sparx Systems 2021 Page 54 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

sin

Circular sine.

SYNOPSIS:

double x, y, sin();

y = sin(x);

DESCRIPTION:

Range reduction is into intervals of pi/4. The reduction error is nearly eliminated by contriving an extended precision
modular arithmetic.

Two polynomial approximating functions are employed.

Between 0 and pi/4 the sine is approximated by:

 x + x**3 P(x**2).

Between pi/4 and pi/2 the cosine is represented as:

 1 - x**2 Q(x**2).

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC 0, 10 150000 3.0e-17 7.8e-18

 IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17

ERROR MESSAGES:

 message condition value returned

 total loss x > 1.073741824e9 0.0

Partial loss of accuracy begins to occur at x = 2**30 = 1.074e9. The loss is not gradual, but jumps suddenly to about 1
part in 10e7. Results might be meaningless for x > 2**49 = 5.6e14. The routine as implemented flags a TLOSS error for
x > 2**30 and returns 0.0.

(c) Sparx Systems 2021 Page 55 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

sindg

Circular sine of an angle in degrees.

SYNOPSIS:

double x, y, sindg();

y = sindg(x);

DESCRIPTION:

Range reduction is into intervals of 45 degrees. Two polynomial approximating functions are employed.

Between 0 and pi/4 the sine is approximated by:

 x + x**3 P(x**2).

Between pi/4 and pi/2 the cosine is represented as:

 1 - x**2 P(x**2).

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC +-1000 3100 3.3e-17 9.0e-18

 IEEE +-1000 30000 2.3e-16 5.6e-17

ERROR MESSAGES:

 message condition value returned

 total loss x > 8.0e14 (DEC) 0.0

 x > 1.0e14 (IEEE)

(c) Sparx Systems 2021 Page 56 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

tan

Circular tangent.

SYNOPSIS:

double x, y, tan();

y = tan(x);

DESCRIPTION:

Returns the circular tangent of the radian argument x.

Range reduction is modulo pi/4.

A rational function:

 x + x**3 P(x**2)/Q(x**2)

is employed in the basic interval [0, pi/4].

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC +-1.07e9 44000 4.1e-17 1.0e-17

 IEEE +-1.07e9 30000 2.9e-16 8.1e-17

ERROR MESSAGES:

 message condition value returned

 total loss x > 1.073741824e9 0.0

(c) Sparx Systems 2021 Page 57 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

tandg

Circular tangent of argument in degrees.

SYNOPSIS:

double x, y, tandg();

y = tandg(x);

DESCRIPTION:

Returns the circular tangent of the argument x in degrees.

Range reduction is modulo pi/4. A rational function:

 x + x**3 P(x**2)/Q(x**2)

is employed in the basic interval [0, pi/4].

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC 0,10 8000 3.4e-17 1.2e-17

 IEEE 0,10 30000 3.2e-16 8.4e-17

ERROR MESSAGES:

message condition value returned

total loss x > 8.0e14 (DEC) 0.0

 x > 1.0e14 (IEEE)

singularity x = 180 k + 90 MAXNUM

(c) Sparx Systems 2021 Page 58 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

Exponential integral

expn - Exponential integral·
shichi - Hyperbolic sine and cosine integrals·
sici - Sine and cosine integrals ·

(c) Sparx Systems 2021 Page 59 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_expn.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_shichi.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_sici.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_expn.htm

Scripting 2 September, 2021

expn

Exponential integral En.

SYNOPSIS:

int n;

double x, y, expn();

y = expn(n, x);

DESCRIPTION:

Evaluates the exponential integral.

 inf.

 -

 | | -xt

 | e

 E (x) = | ---- dt.

 n | n

 | | t

 -

 1

Both n and x must be nonnegative.

The routine employs either a power series, a continued fraction, or an asymptotic formula depending on the relative
values of n and x.

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC 0, 30 5000 2.0e-16 4.6e-17

 IEEE 0, 30 10000 1.7e-15 3.6e-16

(c) Sparx Systems 2021 Page 60 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

shichi

Hyperbolic sine and cosine integrals.

SYNOPSIS:

double x, Chi, Shi, shichi();

shichi(x, &Chi, &Shi);

DESCRIPTION:

Approximates the integrals

 x

 -

 | | cosh t - 1

 Chi(x) = eul + ln x + | ----------- dt,

 | | t

 -

 0

 x

 -

 | | sinh t

 Shi(x) = | ------ dt

 | | t

 -

 0

where eul = 0.57721566490153286061 is Euler's constant. The integrals are evaluated by power series for x < 8 and by
Chebyshev expansions for x between 8 and 88. For large x, both functions approach exp(x)/2x. Arguments greater than
88 in magnitude return MAXNUM.

ACCURACY:

Test interval 0 to 88.

 Relative error:

arithmetic function # trials peak rms

 DEC Shi 3000 9.1e-17

 IEEE Shi 30000 6.9e-16 1.6e-16

(c) Sparx Systems 2021 Page 61 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

 Absolute error, except relative when |Chi| > 1:

 DEC Chi 2500 9.3e-17

 IEEE Chi 30000 8.4e-16 1.4e-16

(c) Sparx Systems 2021 Page 62 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

sici

Sine and cosine integrals.

SYNOPSIS:

double x, Ci, Si, sici();

sici(x, &Si, &Ci);

DESCRIPTION:

Evaluates the integrals:

 x

 -

 | cos t - 1

 Ci(x) = eul + ln x + | --------- dt,

 | t

 -

 0

 x

 -

 | sin t

 Si(x) = | ----- dt

 | t

 -

 0

where eul = 0.57721566490153286061 is Euler's constant. The integrals are approximated by rational functions. For x >
8 auxiliary functions f(x) and g(x) are employed such that

Ci(x) = f(x) sin(x) - g(x) cos(x)

Si(x) = pi/2 - f(x) cos(x) - g(x) sin(x)

ACCURACY:

Test interval = [0,50].

Absolute error, except relative when > 1:

arithmetic function # trials peak rms

(c) Sparx Systems 2021 Page 63 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

 IEEE Si 30000 4.4e-16 7.3e-17

 IEEE Ci 30000 6.9e-16 5.1e-17

 DEC Si 5000 4.4e-17 9.0e-18

 DEC Ci 5300 7.9e-17 5.2e-18

(c) Sparx Systems 2021 Page 64 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

Gamma

beta - beta·
lbeta - natural log of beta·
fac - factorial·
gamma - gamma·
lgam - logarithm of gamma function·
incbet - incomplete beta integral·
incbi - inverse of incomplete beta integral·
igam - incomplete gamma integral·
igamc - complemented gamma integral·
igami - inverse gamma integral·
psi - Psi (digamma) function·
rgamma - reciprocal Gamma ·

(c) Sparx Systems 2021 Page 65 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_beta.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_lbeta.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_fac.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_gamma.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_lgam.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_incbet.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_incbi.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_igam.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_igamc.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_igami.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_psi.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_rgamma.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_beta.htm

Scripting 2 September, 2021

beta

Beta function.

SYNOPSIS:

double a, b, y, beta();

y = beta(a, b);

DESCRIPTION:

 - -

 | (a) | (b)

beta(a, b) = -----------

 -

 | (a+b)

For large arguments the logarithm of the function is evaluated using lgam(), then exponentiated.

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC 0,30 1700 7.7e-15 1.5e-15

 IEEE 0,30 30000 8.1e-14 1.1e-14

ERROR MESSAGES:

message condition value returned

overflow log(beta) > MAXLOG 0.0

 a or b <0 integer 0.0

(c) Sparx Systems 2021 Page 66 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

lbeta

Natural log of |beta|.

Return the sign of beta in sgngam.

(c) Sparx Systems 2021 Page 67 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

fac

Factorial function.

SYNOPSIS:

double y, fac();

int i;

y = fac(i);

DESCRIPTION:

Returns factorial of i = 1 * 2 * 3 * ... * i.

fac(0) = 1.0.

Due to machine arithmetic bounds the largest value of i accepted is 33 in DEC arithmetic or 170 in IEEE arithmetic.
Greater values, or negative ones, produce an error message and return MAXNUM.

ACCURACY:

For i < 34 the values are simply tabulated, and have full machine accuracy. If i > 55, fac(i) = gamma(i+1);

Relative error:

arithmetic domain peak

 IEEE 0, 170 1.4e-15

 DEC 0, 33 1.4e-17

(c) Sparx Systems 2021 Page 68 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

gamma

Gamma function.

SYNOPSIS:

double x, y, gamma();

y = gamma(x);

DESCRIPTION:

Returns the gamma function of the argument. The result is correctly signed, and the sign (+1 or -1) is also returned in a
global (extern) variable named sgngam. This variable is also filled in by the logarithmic gamma function lgam().

Arguments |x| <= 34 are reduced by recurrence and the function approximated by a rational function of degree 6/7 in the
interval (2,3). Large arguments are handled by Stirling's formula. Large negative arguments are made positive using a
reflection formula.

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC -34, 34 10000 1.3e-16 2.5e-17

 IEEE -170,-33 20000 2.3e-15 3.3e-16

 IEEE -33, 33 20000 9.4e-16 2.2e-16

 IEEE 33, 171.6 20000 2.3e-15 3.2e-16

Error for arguments outside the test range will be larger owing to error amplification by the exponential function.

(c) Sparx Systems 2021 Page 69 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

lgam

Natural logarithm of gamma function.

SYNOPSIS:

double x, y, lgam();

y = lgam(x);

DESCRIPTION:

Returns the base e (2.718...) logarithm of the absolute value of the gamma function of the argument. The sign (+1 or -1)
of the gamma function is returned in a global (extern) variable named sgngam.

For arguments greater than 13, the logarithm of the gamma function is approximated by the logarithmic version of
Stirling's formula using a polynomial approximation of degree 4. Arguments between -33 and +33 are reduced by
recurrence to the interval [2,3] of a rational approximation. The cosecant reflection formula is employed for arguments
less than -33.

Arguments greater than MAXLGM return MAXNUM and an error message.

MAXLGM = 2.035093e36 for DEC arithmetic or 2.556348e305 for IEEE arithmetic.

ACCURACY:

arithmetic domain # trials peak rms

 DEC 0, 3 7000 5.2e-17 1.3e-17

 DEC 2.718, 2.035e36 5000 3.9e-17 9.9e-18

 IEEE 0, 3 28000 5.4e-16 1.1e-16

 IEEE 2.718, 2.556e305 40000 3.5e-16 8.3e-17

The error criterion was relative when the function magnitude was greater than one but absolute when it was less than
one.

This test used the relative error criterion, though at certain points the relative error could be much higher than indicated.

 IEEE -200, -4 10000 4.8e-16 1.3e-16

(c) Sparx Systems 2021 Page 70 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

incbet

Incomplete beta integral.

SYNOPSIS:

double a, b, x, y, incbet();

y = incbet(a, b, x);

DESCRIPTION:

Returns the incomplete beta integral of the arguments, evaluated from zero to x. The function is defined as:

 x

 - -

 | (a+b) | | a-1 b-1

 ----------- | t (1-t) dt.

 - - | |

 | (a) | (b) -

 0

The domain of definition is 0 <= x <= 1. In this implementation a and b are restricted to positive values. The integral
from x to 1 can be obtained by the symmetry relation:

 1 - incbet(a, b, x) = incbet(b, a, 1-x).

The integral is evaluated by a continued fraction expansion or, when b*x is small, by a power series.

ACCURACY:

Tested at uniformly distributed random points (a,b,x) with a and b in "domain" and x between 0 and 1.

 Relative error

arithmetic domain # trials peak rms

 IEEE 0,5 10000 6.9e-15 4.5e-16

 IEEE 0,85 250000 2.2e-13 1.7e-14

 IEEE 0,1000 30000 5.3e-12 6.3e-13

 IEEE 0,10000 250000 9.3e-11 7.1e-12

 IEEE 0,100000 10000 8.7e-10 4.8e-11

Outputs smaller than the IEEE gradual underflow threshold were excluded from these statistics.

ERROR MESSAGES:

 message condition value returned

 domain x<0, x>1 0.0

(c) Sparx Systems 2021 Page 71 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

 underflow 0.0

(c) Sparx Systems 2021 Page 72 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

incbi

Inverse of incomplete beta integral.

SYNOPSIS:

double a, b, x, y, incbi();

x = incbi(a, b, y);

DESCRIPTION:

Given y, the function finds x such that:

 incbet(a, b, x) = y .

The routine performs interval halving or Newton iterations to find the root of incbet(a,b,x) - y = 0.

ACCURACY:

 Relative error:

 x a,b

arithmetic domain domain # trials peak rms

 IEEE 0,1 .5,10000 50000 5.8e-12 1.3e-13

 IEEE 0,1 .25,100 100000 1.8e-13 3.9e-15

 IEEE 0,1 0,5 50000 1.1e-12 5.5e-15

 VAX 0,1 .5,100 25000 3.5e-14 1.1e-15

With a and b constrained to half-integer or integer values:

 IEEE 0,1 .5,10000 50000 5.8e-12 1.1e-13

 IEEE 0,1 .5,100 100000 1.7e-14 7.9e-16

With a = .5, b constrained to half-integer or integer values:

 IEEE 0,1 .5,10000 10000 8.3e-11 1.0e-11

/

(c) Sparx Systems 2021 Page 73 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

igam

Incomplete gamma integral.

SYNOPSIS:

double a, x, y, igam();

y = igam(a, x);

DESCRIPTION:

The function is defined by

 x

 -

 1 | | -t a-1

 igam(a,x) = ----- | e t dt.

 - | |

 | (a) -

 0

In this implementation both arguments must be positive. The integral is evaluated by either a power series or continued
fraction expansion, depending on the relative values of a and x.

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 IEEE 0,30 200000 3.6e-14 2.9e-15

 IEEE 0,100 300000 9.9e-14 1.5e-14

(c) Sparx Systems 2021 Page 74 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

igamc

Complemented incomplete gamma integral.

SYNOPSIS:

double a, x, y, igamc();

y = igamc(a, x);

DESCRIPTION:

The function is defined by

 igamc(a,x) = 1 - igam(a,x)

 inf.

 -

 1 | | -t a-1

 = ----- | e t dt

 - | |

 | (a) -

 x

In this implementation both arguments must be positive. The integral is evaluated by either a power series or continued
fraction expansion, depending on the relative values of a and x.

ACCURACY:

Tested at random a, x.

 a x Relative error:

arithmetic domain domain # trials peak rms

 IEEE 0.5,100 0,100 200000 1.9e-14 1.7e-15

 IEEE 0.01,0.5 0,100 200000 1.4e-13 1.6e-15

(c) Sparx Systems 2021 Page 75 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

igami

Inverse of complemented incomplete gamma integral.

SYNOPSIS:

double a, x, p, igami();

x = igami(a, p);

DESCRIPTION:

Given p, the function finds x such that

 igamc(a, x) = p.

Starting with the approximate value

 3

 x = a t

 where

 t = 1 - d - ndtri(p) sqrt(d)

and

 d = 1/9a,

the routine performs up to 10 Newton iterations to find the root of igamc(a,x) - p = 0.

ACCURACY:

Tested at random a, p in the intervals indicated.

 a p Relative error:

arithmetic domain domain # trials peak rms

 IEEE 0.5,100 0,0.5 100000 1.0e-14 1.7e-15

 IEEE 0.01,0.5 0,0.5 100000 9.0e-14 3.4e-15

 IEEE 0.5,10000 0,0.5 20000 2.3e-13 3.8e-14

(c) Sparx Systems 2021 Page 76 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

psi

Psi (digamma) function.

SYNOPSIS:

double x, y, psi();

y = psi(x);

DESCRIPTION:

 d -

 psi(x) = -- ln | (x)

 dx

is the logarithmic derivative of the gamma function.

For integer x:

 n-1

 -

psi(n) = -EUL + > 1/k.

 -

 k=1

This formula is used for 0 < n <= 10. If x is negative, it is transformed to a positive argument by the reflection formula
psi(1-x) = psi(x) + pi cot(pi x). For general positive x, the argument is made greater than 10 using the recurrence
psi(x+1) = psi(x) + 1/x. Then this asymptotic expansion is applied:

 inf. B

 - 2k

psi(x) = log(x) - 1/2x - > -------

 - 2k

 k=1 2k x

where the B2k are Bernoulli numbers.

ACCURACY:

Relative error (except absolute when |psi| < 1):

arithmetic domain # trials peak rms

 DEC 0,30 2500 1.7e-16 2.0e-17

 IEEE 0,30 30000 1.3e-15 1.4e-16

(c) Sparx Systems 2021 Page 77 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

 IEEE -30,0 40000 1.5e-15 2.2e-16

ERROR MESSAGES:

 message condition value returned

 singularity x integer <=0 MAXNUM

(c) Sparx Systems 2021 Page 78 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

rgamma

Reciprocal gamma function.

SYNOPSIS:

double x, y, rgamma();

y = rgamma(x);

DESCRIPTION:

Returns one divided by the gamma function of the argument.

The function is approximated by a Chebyshev expansion in the interval [0,1]. Range reduction is by recurrence for
arguments between -34.034 and +34.84425627277176174. 1/MAXNUM is returned for positive arguments outside this
range. For arguments less than -34.034 the cosecant reflection formula is applied; logarithms are employed to avoid
unnecessary overflow.

The reciprocal gamma function has no singularities, but overflow and underflow could occur for large arguments. These
conditions return either MAXNUM or 1/MAXNUM with the appropriate sign.

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC -30,+30 4000 1.2e-16 1.8e-17

 IEEE -30,+30 30000 1.1e-15 2.0e-16

For arguments less than -34.034 the peak error is in the order of 5e-15 (DEC), excepting overflow or underflow.

(c) Sparx Systems 2021 Page 79 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

Error function

erf - Error function·
erfc - Complemented error function·
dawsn - Dawson's integral·
fresnl - Fresnel integral ·

(c) Sparx Systems 2021 Page 80 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_erf.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_erfc.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_dawsn.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_fresnl.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_erf.htm

Scripting 2 September, 2021

erf

Error function.

SYNOPSIS:

double x, y, erf();

y = erf(x);

DESCRIPTION:

The integral is

 x

 -

 2 | | 2

 erf(x) = -------- | exp(- t) dt.

 sqrt(pi) | |

 -

 0

The magnitude of x is limited to 9.231948545 for DEC arithmetic; 1 or -1 is returned outside this range.

For 0 <= |x| < 1, erf(x) = x * P4(x**2)/Q5(x**2); otherwise erf(x) = 1 - erfc(x).

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC 0,1 14000 4.7e-17 1.5e-17

 IEEE 0,1 30000 3.7e-16 1.0e-16

(c) Sparx Systems 2021 Page 81 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

erfc

Complementary error function.

SYNOPSIS:

double x, y, erfc();

y = erfc(x);

DESCRIPTION:

 1 - erf(x) =

 inf.

 -

 2 | | 2

 erfc(x) = -------- | exp(- t) dt

 sqrt(pi) | |

 -

 x

For small x, erfc(x) = 1 - erf(x); otherwise rational approximations are computed.

A special function expx2.c is used to suppress error amplification in computing exp(-x^2).

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 IEEE 0,26.6417 30000 1.3e-15 2.2e-16

ERROR MESSAGES:

 message condition value returned

 underflow x > 9.231948545 (DEC) 0.0

(c) Sparx Systems 2021 Page 82 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

dawsn

Dawson's Integral.

SYNOPSIS:

double x, y, dawsn();

y = dawsn(x);

DESCRIPTION:

Approximates the integral

 x

 -

 2 | | 2

 dawsn(x) = exp(-x) | exp(t) dt

 | |

 -

 0

Three different rational approximations are employed, for the intervals 0 to 3.25; 3.25 to 6.25; and 6.25 up.

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 IEEE 0,10 10000 6.9e-16 1.0e-16

 DEC 0,10 6000 7.4e-17 1.4e-17

(c) Sparx Systems 2021 Page 83 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

fresnl

Fresnel integral.

SYNOPSIS:

double x, S, C;

void fresnl();

fresnl(x, _&S, _&C);

DESCRIPTION:

Evaluates the Fresnel integrals

 x

 -

 | |

C(x) = | cos(pi/2 t**2) dt,

 | |

 -

 0

 x

 -

 | |

S(x) = | sin(pi/2 t**2) dt.

 | |

 -

 0

The integrals are evaluated by a power series for x < 1. For x >= 1 auxiliary functions f(x) and g(x) are employed such
that:

C(x) = 0.5 + f(x) sin(pi/2 x**2) - g(x) cos(pi/2 x**2)

S(x) = 0.5 - f(x) cos(pi/2 x**2) - g(x) sin(pi/2 x**2)

ACCURACY:

 Relative error.

(c) Sparx Systems 2021 Page 84 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

Arithmetic function domain # trials peak rms

 IEEE S(x) 0, 10 10000 2.0e-15 3.2e-16

 IEEE C(x) 0, 10 10000 1.8e-15 3.3e-16

 DEC S(x) 0, 10 6000 2.2e-16 3.9e-17

 DEC C(x) 0, 10 5000 2.3e-16 3.9e-17

JavaScript:

var x= 2.5625;

var r = cephes.fresnl(x);

Session,Output(r.result);

Session,Output(r.ssa);

Session,Output(r.csa);

Return value: Object

Format: JSON

{

 "result" : int,

 "ssa" : double,

 "cca" : double

}

(c) Sparx Systems 2021 Page 85 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

Bessel

airy - Airy function·
j0 - Bessel, order 0·
j1 - Bessel, order 1·
jn - Bessel, order n·
jv - Bessel, noninteger order·
y0 - Bessel, second kind, order 0·
y1 - Bessel, second kind, order 1·
yn - Bessel, second kind, order n·
yv - Bessel, noninteger order·
i0 - modified Bessel, order 0·
i0e - exponentially scaled i0·
i1 - modified Bessel, order 1·
i1e - exponentially scaled i1·
iv - modified Bessel, nonint. order·
k0 - modified Bessel, 3rd kind, order 0·
k0e - exponentially scaled k0·
k1 - modified Bessel, 3rd kind, order 1·
k1e - exponentially scaled k1·
kn - modified Bessel, 3rd kind, order n ·

(c) Sparx Systems 2021 Page 86 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_airy.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_j0.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_j1.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_jn.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_jv.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_y0.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_y1.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_yn.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_yv.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_i0.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_i0e.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_i1.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_i1e.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_iv.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_k0.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_k0e.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_k1.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_k1e.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_kn.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_airy.htm

Scripting 2 September, 2021

airy

Airy function.

SYNOPSIS:

double x, ai, aip, bi, bip;

int airy();

airy(x, _&ai, _&aip, _&bi, _&bip);

DESCRIPTION:

Solution of the differential equation:

y"(x) = xy.

The function returns the two independent solutions Ai, Bi and their first derivatives Ai'(x), Bi'(x).

Evaluation is by power series summation for small x, by rational minimax approximations for large x.

ACCURACY:

Error criterion is absolute when function <= 1, relative when function > 1, except * denotes relative error criterion.

For large negative x, the absolute error increases as x^1.5.

For large positive x, the relative error increases as x^1.5.

Arithmetic domain function # trials peak rms

IEEE -10, 0 Ai 10000 1.6e-15 2.7e-16

IEEE 0, 10 Ai 10000 2.3e-14* 1.8e-15*

IEEE -10, 0 Ai' 10000 4.6e-15 7.6e-16

IEEE 0, 10 Ai' 10000 1.8e-14* 1.5e-15*

IEEE -10, 10 Bi 30000 4.2e-15 5.3e-16

IEEE -10, 10 Bi' 30000 4.9e-15 7.3e-16

DEC -10, 0 Ai 5000 1.7e-16 2.8e-17

DEC 0, 10 Ai 5000 2.1e-15* 1.7e-16*

DEC -10, 0 Ai' 5000 4.7e-16 7.8e-17

DEC 0, 10 Ai' 12000 1.8e-15* 1.5e-16*

DEC -10, 10 Bi 10000 5.5e-16 6.8e-17

DEC -10, 10 Bi' 7000 5.3e-16 8.7e-17

JavaScript:

var x = 9.50313909;

var a = cephes.airy(x);

(c) Sparx Systems 2021 Page 87 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

Return value: Object

Format: JSON

{

 "result" : integer,

 "ai" : double,

 "aip" : double.

 "bi" : double,

 "bip" : double

}

(c) Sparx Systems 2021 Page 88 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

j0

Bessel function of order zero.

SYNOPSIS:

double x, y, j0();

y = j0(x);

DESCRIPTION:

Returns a Bessel function of order zero of the argument. The domain is divided into the intervals [0, 5] and (5, infinity).
In the first interval this rational approximation is used:

 2 2

(w - r) (w - r) P (w) / Q (w)

 1 2 3 8

 2

where w = x and each r is a zero of the function.

In the second interval, the Hankel asymptotic expansion is employed with two rational functions of degree 6/6 and 7/7.

ACCURACY:

 Absolute error:

arithmetic domain # trials peak rms

 DEC 0, 30 10000 4.4e-17 6.3e-18

 IEEE 0, 30 60000 4.2e-16 1.1e-16

(c) Sparx Systems 2021 Page 89 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

j1

Bessel function of order one.

SYNOPSIS:

double x, y, j1();

y = j1(x);

DESCRIPTION:

Returns a Bessel function of order one of the argument.

The domain is divided into the intervals [0, 8] and (8, infinity). In the first interval a 24 term Chebyshev expansion is
used. In the second, the asymptotic trigonometric representation is employed, using two rational functions of degree 5/5.

ACCURACY:

 Absolute error:

arithmetic domain # trials peak rms

 DEC 0, 30 10000 4.0e-17 1.1e-17

 IEEE 0, 30 30000 2.6e-16 1.1e-16

(c) Sparx Systems 2021 Page 90 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

jn

Bessel function of integer order.

SYNOPSIS:

int n;

double x, y, jn();

y = jn(n, x);

DESCRIPTION:

Returns a Bessel function of order n, where n is a (possibly negative) integer.

The ratio of jn(x) to j0(x) is computed by backward recurrence. First the ratio jn/jn-1 is found by a continued fraction
expansion. Then the recurrence relating successive orders is applied until j0 or j1 is reached.

If n = 0 or 1 the routine for j0 or j1 is called directly.

ACCURACY:

 Absolute error:

arithmetic range # trials peak rms

 DEC 0, 30 5500 6.9e-17 9.3e-18

 IEEE 0, 30 5000 4.4e-16 7.9e-17

Not suitable for large n or x. Use jv() instead.

(c) Sparx Systems 2021 Page 91 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

jv

Bessel function of non-integer order.

SYNOPSIS:

double v, x, y, jv();

y = jv(v, x);

DESCRIPTION:

Returns a Bessel function of order v of the argument, where v is real. Negative x is allowed if v is an integer.

Several expansions are included: the ascending power series, the Hankel expansion, and two transitional expansions for
large v. If v is not too large, it is reduced by recurrence to a region of best accuracy. The transitional expansions give
12D accuracy for v > 500.

ACCURACY:

Results for integer v are indicated by *, where x and v both vary from -125 to +125. Otherwise, x ranges from 0 to 125,
v ranges as indicated by "domain." Error criterion is absolute, except relative when |jv()| > 1.

arithmetic v domain x domain # trials peak rms

 IEEE 0,125 0,125 100000 4.6e-15 2.2e-16

 IEEE -125,0 0,125 40000 5.4e-11 3.7e-13

 IEEE 0,500 0,500 20000 4.4e-15 4.0e-16

Integer v:

 IEEE -125,125 -125,125 50000 3.5e-15* 1.9e-16*

(c) Sparx Systems 2021 Page 92 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

y0

Bessel function of the second kind, order zero, of the argument.

SYNOPSIS:

double x, y, y0();

y = y0(x);

DESCRIPTION:

Returns a Bessel function of the second kind, of order zero, of the argument.

The domain is divided into the intervals [0, 5] and (5, infinity). In the first interval a rational approximation R(x) is
employed to compute:

 y0(x) = R(x) + 2 * log(x) * j0(x) / PI.

Thus a call to j0() is required.

In the second interval, the Hankel asymptotic expansion is employed with two rational functions of degree 6/6 and 7/7.

ACCURACY:

Absolute error, when y0(x) < 1; else relative error:

arithmetic domain # trials peak rms

 DEC 0, 30 9400 7.0e-17 7.9e-18

 IEEE 0, 30 30000 1.3e-15 1.6e-16

(c) Sparx Systems 2021 Page 93 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

y1

Bessel function of second kind of order one.

SYNOPSIS:

double x, y, y1();

y = y1(x);

DESCRIPTION:

Returns a Bessel function of the second kind of order one of the argument.

The domain is divided into the intervals [0, 8] and (8, infinity). In the first interval a 25 term Chebyshev expansion is
used, and a call to j1() is required. In the second, the asymptotic trigonometric representation is employed using two
rational functions of degree 5/5.

ACCURACY:

 Absolute error:

arithmetic domain # trials peak rms

 DEC 0, 30 10000 8.6e-17 1.3e-17

 IEEE 0, 30 30000 1.0e-15 1.3e-16

(error criterion relative when |y1| > 1).

(c) Sparx Systems 2021 Page 94 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

yn

Bessel function of second kind of integer order.

SYNOPSIS:

double x, y, yn();

int n;

y = yn(n, x);

DESCRIPTION:

Returns a Bessel function of order n, where n is a (possibly negative) integer.

The function is evaluated by forward recurrence on n, starting with values computed by the routines y0() and y1().

If n = 0 or 1 the routine for y0 or y1 is called directly.

ACCURACY:

 Absolute error, except relative

 when y > 1:

arithmetic domain # trials peak rms

 DEC 0, 30 2200 2.9e-16 5.3e-17

 IEEE 0, 30 30000 3.4e-15 4.3e-16

ERROR MESSAGES:

message condition value returned

singularity x = 0 MAXNUM

overflow MAXNUM

Spot checked against tables for x, n between 0 and 100.

(c) Sparx Systems 2021 Page 95 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

yv

Bessel function of noninteger order

SYNOPSIS:

double yv(v, x)

double v, x;

(c) Sparx Systems 2021 Page 96 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

i0

Modified Bessel function of order zero.

SYNOPSIS:

double x, y, i0();

y = i0(x);

DESCRIPTION:

Returns a modified Bessel function of order zero of the argument.

The function is defined as i0(x) = j0(ix).

The range is partitioned into the two intervals [0,8] and (8, infinity). Chebyshev polynomial expansions are employed in
each interval.

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC 0,30 6000 8.2e-17 1.9e-17

 IEEE 0,30 30000 5.8e-16 1.4e-16

(c) Sparx Systems 2021 Page 97 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

i0e

Modified Bessel function of order zero, exponentially scaled.

SYNOPSIS:

double x, y, i0e();

y = i0e(x);

DESCRIPTION:

Returns exponentially scaled modified Bessel function of order zero of the argument.

The function is defined as i0e(x) = exp(-|x|) j0(ix).

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 IEEE 0,30 30000 5.4e-16 1.2e-16

(c) Sparx Systems 2021 Page 98 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

i1

Modified Bessel function of order one.

SYNOPSIS:

double x, y, i1();

y = i1(x);

DESCRIPTION:

Returns the modified Bessel function of order one of the argument.

The function is defined as i1(x) = -i j1(ix).

The range is partitioned into the two intervals [0,8] and (8, infinity). Chebyshev polynomial expansions are employed in
each interval.

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC 0, 30 3400 1.2e-16 2.3e-17

 IEEE 0, 30 30000 1.9e-15 2.1e-16

(c) Sparx Systems 2021 Page 99 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

i1e

Modified Bessel function of order one, exponentially scaled.

SYNOPSIS:

double x, y, i1e();

y = i1e(x);

DESCRIPTION:

Returns the exponentially scaled modified Bessel function of order one of the argument.

The function is defined as i1(x) = -i exp(-|x|) j1(ix).

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 IEEE 0, 30 30000 2.0e-15 2.0e-16

(c) Sparx Systems 2021 Page 100 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

iv

Modified Bessel function of noninteger order.

SYNOPSIS:

double v, x, y, iv();

y = iv(v, x);

DESCRIPTION:

Returns the modified Bessel function of order v of the argument. If x is negative, v must be integer-valued.

The function is defined as Iv(x) = Jv(ix). Here, it is computed in terms of the confluent hypergeometric function,
according to the formula:

 v -x

 Iv(x) = (x/2) e hyperg(v+0.5, 2v+1, 2x) / gamma(v+1)

 If v is a negative integer, then v is replaced by -v.

ACCURACY:

Tested at random points (v, x), with v between 0 and 30, x between 0 and 28.

 Relative error:

 arithmetic domain # trials peak rms

 DEC 0,30 2000 3.1e-15 5.4e-16

 IEEE 0,30 10000 1.7e-14 2.7e-15

Accuracy is diminished if v is near a negative integer.

(c) Sparx Systems 2021 Page 101 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

k0

Modified Bessel function, third kind, order zero.

SYNOPSIS:

double x, y, k0();

y = k0(x);

DESCRIPTION:

Returns the modified Bessel function of the third kind of order zero of the argument.

The range is partitioned into the two intervals [0,8] and (8, infinity). Chebyshev polynomial expansions are employed in
each interval.

ACCURACY:

Tested at 2000 random points between 0 and 8. Peak absolute error (relative when K0 > 1) was 1.46e-14; rms, 4.26e-15.

 Relative error:

 arithmetic domain # trials peak rms

 DEC 0, 30 3100 1.3e-16 2.1e-17

 IEEE 0, 30 30000 1.2e-15 1.6e-16

ERROR MESSAGES:

 message condition value returned

 domain x <= 0 MAXNUM

(c) Sparx Systems 2021 Page 102 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

k0e

Modified Bessel function, third kind, order zero, exponentially scaled.

SYNOPSIS:

double x, y, k0e();

y = k0e(x);

DESCRIPTION:

Returns the exponentially scaled, modified Bessel function of the third kind of order zero of the argument.

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 IEEE 0, 30 30000 1.4e-15 1.4e-16

(c) Sparx Systems 2021 Page 103 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

k1

Modified Bessel function, third kind, order one.

SYNOPSIS:

double x, y, k1();

y = k1(x);

DESCRIPTION:

Computes the modified Bessel function of the third kind, of order one of the argument.

The range is partitioned into the two intervals [0,2] and (2, infinity). Chebyshev polynomial expansions are employed in
each interval.

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC 0, 30 3300 8.9e-17 2.2e-17

 IEEE 0, 30 30000 1.2e-15 1.6e-16

ERROR MESSAGES:

 message condition value returned

 domain x <= 0 MAXNUM

(c) Sparx Systems 2021 Page 104 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

k1e

Modified Bessel function, third kind, order one, exponentially scaled.

SYNOPSIS:

double x, y, k1e();

y = k1e(x);

DESCRIPTION:

Returns the exponentially scaled, modified Bessel function of the third kind of order one of the argument:

 k1e(x) = exp(x) * k1(x).

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 IEEE 0, 30 30000 7.8e-16 1.2e-16

(c) Sparx Systems 2021 Page 105 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

kn

Modified Bessel function, third kind, integer order.

SYNOPSIS:

double x, y, kn();

int n;

y = kn(n, x);

DESCRIPTION:

Returns the modified Bessel function of the third kind, of order n of the argument.

The range is partitioned into the two intervals [0,9.55] and (9.55, infinity). An ascending power series is used in the low
range, and an asymptotic expansion in the high range.

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC 0,30 3000 1.3e-9 5.8e-11

 IEEE 0,30 90000 1.8e-8 3.0e-10

Error is high only near the crossover point x = 9.55 between the two expansions used.

(c) Sparx Systems 2021 Page 106 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

Hypergeometric

hyperg - confluent hypergeometric·
hyp2f1 - Gauss hypergeometric function·
hyp2f0 - 2F0·
onef2 - 1F2·
threef0 - 3F0 ·

(c) Sparx Systems 2021 Page 107 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_hyperg.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_hyp2f1.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_hyp2f0.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_onef2.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_threef0.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_hyperg.htm

Scripting 2 September, 2021

hyperg

Confluent hypergeometric function.

SYNOPSIS:

double a, b, x, y, hyperg();

y = hyperg(a, b, x);

DESCRIPTION:

Computes the confluent hypergeometric function

 1 2

 a x a(a+1) x

 F (a,b;x) = 1 + ---- + --------- + ...

 1 1 b 1! b(b+1) 2!

Many higher transcendental functions are special cases of this power series.

As is evident from the formula, b must not be a negative integer or zero unless a is an integer with 0 >= a > b.

The routine attempts both a direct summation of the series and an asymptotic expansion. In each case error due to
roundoff, cancellation and nonconvergence is estimated. The result with smaller estimated error is returned.

ACCURACY:

Tested at random points (a, b, x), all three variables ranging from 0 to 30.

 Relative error:

arithmetic domain # trials peak rms

 DEC 0,30 2000 1.2e-15 1.3e-16

qtst1:

21800 max = 1.4200E-14 rms = 1.0841E-15 ave = -5.3640E-17

ltstd:

25500 max = 1.2759e-14 rms = 3.7155e-16 ave = 1.5384e-18

 IEEE 0,30 30000 1.8e-14 1.1e-15

Larger errors can be observed when b is near a negative integer or zero. Certain combinations of arguments yield serious
cancellation errors in the power series summation and also are not in the region of near convergence of the asymptotic
series. An error message is printed if the self-estimated relative error is greater than 1.0e-12.

(c) Sparx Systems 2021 Page 108 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

hyp2f1

Gauss hypergeometric function 2F1.

SYNOPSIS:

double a, b, c, x, y, hyp2f1();

y = hyp2f1(a, b, c, x);

DESCRIPTION:

 hyp2f1(a, b, c, x) = F (a, b; c; x)

 2 1

 inf.

 - a(a+1)...(a+k) b(b+1)...(b+k) k+1

 = 1 + > ----------------------------- x .

 - c(c+1)...(c+k) (k+1)!

 k = 0

 Cases addressed are:

Tests and escapes for negative integer a, b, or c

Linear transformation if c - a or c - b negative integer

Special case c = a or c = b

Linear transformation for x near +1

Transformation for x < -0.5

Psi function expansion if x > 0.5 and c - a - b integer Conditionally, a recurrence on c to make c-a-b > 0

|x| > 1 is rejected.

The parameters a, b, c are considered to be integer valued if they are within 1.0e-14 of the nearest integer (1.0e-13 for
IEEE arithmetic).

ACCURACY:

 Relative error (-1 < x < 1):

arithmetic domain # trials peak rms

 IEEE -1,7 230000 1.2e-11 5.2e-14

Several special cases also tested with a, b, c in the range -7 to 7.

ERROR MESSAGES:

A "partial loss of precision" message is printed if the internally estimated relative error exceeds 1^-12.

(c) Sparx Systems 2021 Page 109 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

A "singularity" message is printed on overflow or in cases not addressed (such as x < -1).

(c) Sparx Systems 2021 Page 110 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

hyp2f0

See the hyperg Help topic.

(c) Sparx Systems 2021 Page 111 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_hyperg.htm

Scripting 2 September, 2021

onef2

See the struve Help topic.

(c) Sparx Systems 2021 Page 112 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_struve.htm

Scripting 2 September, 2021

threef0

See the struve Help topic.

(c) Sparx Systems 2021 Page 113 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_struve.htm

Scripting 2 September, 2021

Elliptic

ellpe - complete elliptic integral (E)·
ellie - incomplete elliptic integral (E)·
ellpk - complete elliptic integral (K)·
ellik - incomplete elliptic integral (K)·
ellpj - Jacobian elliptic functions ·

(c) Sparx Systems 2021 Page 114 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_ellpe.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_ellie.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_ellpk.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_ellik.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_ellpj.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_ellpe.htm

Scripting 2 September, 2021

ellpe

Complete elliptic integral of the second kind.

SYNOPSIS:

double m1, y, ellpe();

y = ellpe(m1);

DESCRIPTION:

Approximates the integral

 pi/2

 -

 | | 2

E(m) = | sqrt(1 - m sin t) dt

 | |

 -

 0

Where m = 1 - m1, using the approximation:

 P(x) - x log x Q(x).

Though there are no singularities, the argument m1 is used rather than m, for compatibility with ellpk().

E(1) = 1; E(0) = pi/2.

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC 0, 1 13000 3.1e-17 9.4e-18

 IEEE 0, 1 10000 2.1e-16 7.3e-17

ERROR MESSAGES:

 message condition value returned

 domain x<0, x>1 0.0

(c) Sparx Systems 2021 Page 115 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

ellie

Incomplete elliptic integral of the second kind.

SYNOPSIS:

double phi, m, y, ellie();

y = ellie(phi, m);

DESCRIPTION:

Approximates the integral:

 phi

 -

 | |

 | 2

E(phi_\m) = | sqrt(1 - m sin t) dt

 |

 | |

 -

 0

of amplitude phi and modulus m, using the arithmetic - geometric mean algorithm.

ACCURACY:

Tested at random arguments with phi in [-10, 10] and m in [0, 1].

 Relative error:

arithmetic domain # trials peak rms

 DEC 0,2 2000 1.9e-16 3.4e-17

 IEEE -10,10 150000 3.3e-15 1.4e-16

(c) Sparx Systems 2021 Page 116 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

ellpk

Complete elliptic integral of the first kind.

SYNOPSIS:

double m1, y, ellpk();

y = ellpk(m1);

DESCRIPTION:

Approximates the integral:

 pi/2

 -

 | |

 | dt

K(m) = | ------------------

 | 2

 | | sqrt(1 - m sin t)

 -

 0

where m = 1 - m1, using the approximation:

 P(x) - log x Q(x).

The argument m1 is used rather than m, so that the logarithmic singularity at m = 1 will be shifted to the origin; this
preserves maximum accuracy.

K(0) = pi/2.

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC 0,1 16000 3.5e-17 1.1e-17

 IEEE 0,1 30000 2.5e-16 6.8e-17

ERROR MESSAGES:

 message condition value returned

(c) Sparx Systems 2021 Page 117 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

 domain x<0, x>1 0.0

(c) Sparx Systems 2021 Page 118 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

ellik

Incomplete elliptic integral of the first kind.

SYNOPSIS:

double phi, m, y, ellik();

y = ellik(phi, m);

DESCRIPTION:

Approximates the integral:

 phi

 -

 | |

 | dt

F(phi_\m) = | ------------------

 | 2

 | | sqrt(1 - m sin t)

 -

 0

of amplitude phi and modulus m, using the arithmetic - geometric mean algorithm.

ACCURACY:

Tested at random points with m in [0, 1] and phi as indicated.

 Relative error:

arithmetic domain # trials peak rms

(c) Sparx Systems 2021 Page 119 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

ellpj

Jacobian Elliptic Functions.

SYNOPSIS:

double u, m, sn, cn, dn, phi;

int ellpj();

ellpj(u, m, _&sn, _&cn, _&dn, _&phi);

DESCRIPTION:

Evaluates the Jacobian elliptic functions sn(u|m), cn(u|m), and dn(u|m) of parameter m between 0 and 1, and real
argument u.

These functions are periodic, with quarter-period on the real axis equal to the complete elliptic integral ellpk(1.0-m).

Relation to incomplete elliptic integral:

If u = ellik(phi,m), then sn(u|m) = sin(phi), and cn(u|m) = cos(phi).

Phi is called the amplitude of u.

Computation is by means of the arithmetic-geometric mean algorithm, except when m is within 1e-9 of 0 or 1.

In the latter case with m close to 1, the approximation applies only for phi < pi/2.

ACCURACY:

Tested at random points with u between 0 and 10, m between 0 and 1.

 Absolute error (* = relative error):

arithmetic function # trials peak rms

 DEC sn 1800 4.5e-16 8.7e-17

 IEEE phi 10000 9.2e-16* 1.4e-16*

 IEEE sn 50000 4.1e-15 4.6e-16

 IEEE cn 40000 3.6e-15 4.4e-16

 IEEE dn 100000 3.9e-15 1.7e-16

Larger errors occur for m near 1.

Peak error observed in consistency check using addition theorem for sn(u+v) was 4e-16 (absolute). Also tested by the
earlier relation to the incomplete elliptic integral. Accuracy deteriorates when u is large.

(c) Sparx Systems 2021 Page 120 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

Probability

bdtr - Binomial distribution·
bdtrc - Complemented binomial·
bdtri - Inverse binomial·
chdtr - Chi square distribution·
chdtrc - Complemented Chi square·
chdtri - Inverse Chi square·
fdtr - F distribution·
fdtrc - Complemented F·
fdtri - Inverse F distribution·
gdtr - Gamma distribution·
gdtrc - Complemented gamma·
nbdtr - Negative binomial distribution·
nbdtrc - Complemented negative binomial·
ndtr - Normal distribution·
ndtri - Inverse normal distribution·
pdtr - Poisson distribution·
pdtrc - Complemented Poisson·
pdtri - Inverse Poisson distribution·
stdtr - Student's t distribution ·

(c) Sparx Systems 2021 Page 121 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_bdtr.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_bdtri.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_chdtr.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_chdtrc.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_chdtri.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_fdtr.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_fdtrc.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_fdtri.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_gdtr.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_gdtrc.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_nbdtr.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_nbdtrc.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_ndtr.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_ndtri.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_pdtr.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_pdtrc.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_pdtri.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_stdtr.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_bdtr.htm

Scripting 2 September, 2021

bdtr

Binomial distribution.

SYNOPSIS:

int k, n;

double p, y, bdtr();

y = bdtr(k, n, p);

DESCRIPTION:

Returns the sum of the terms 0 through k of the Binomial probability density:

 k

 -- (n) j n-j

 > () p (1-p)

 -- (j)

 j=0

The terms are not summed directly; instead the incomplete beta integral is employed, according to the formula:

y = bdtr(k, n, p) = incbet(n-k, k+1, 1-p).

The arguments must be positive, with p ranging from 0 to 1.

ACCURACY:

Tested at random points (a,b,p), with p between 0 and 1.

 a,b Relative error:

arithmetic domain # trials peak rms

 For p between 0.001 and 1:

 IEEE 0,100 100000 4.3e-15 2.6e-16

ERROR MESSAGES:

 message condition value returned

 domain k < 0 0.0

 n < k

 x < 0, x > 1

(c) Sparx Systems 2021 Page 122 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

(c) Sparx Systems 2021 Page 123 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

bdtrc

Complemented binomial distribution.

SYNOPSIS:

int k, n;

double p, y, bdtrc();

y = bdtrc(k, n, p);

DESCRIPTION:

Returns the sum of the terms k+1 through n of the Binomial

probability density:

 n

 -- (n) j n-j

 > () p (1-p)

 -- (j)

 j=k+1

The terms are not summed directly; instead the incomplete beta integral is employed, according to the formula:

y = bdtrc(k, n, p) = incbet(k+1, n-k, p).

The arguments must be positive, with p ranging from 0 to 1.

ACCURACY:

Tested at random points (a,b,p).

 a,b Relative error:

arithmetic domain # trials peak rms

 For p between 0.001 and 1:

 IEEE 0,100 100000 6.7e-15 8.2e-16

 For p between 0 and .001:

 IEEE 0,100 100000 1.5e-13 2.7e-15

ERROR MESSAGES:

 message condition value returned

(c) Sparx Systems 2021 Page 124 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

 domain x<0, x>1, n<k 0.0

(c) Sparx Systems 2021 Page 125 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

bdtri

Inverse binomial distribution.

SYNOPSIS:

int k, n;

double p, y, bdtri();

p = bdtr(k, n, y);

DESCRIPTION:

Finds the event probability p such that the sum of the terms 0 through k of the Binomial probability density is equal to
the given cumulative probability y.

This is accomplished using the inverse beta integral function and the relation:

1 - p = incbi(n-k, k+1, y).

ACCURACY:

Tested at random points (a,b,p).

 a,b Relative error:

arithmetic domain # trials peak rms

 For p between 0.001 and 1:

 IEEE 0,100 100000 2.3e-14 6.4e-16

 IEEE 0,10000 100000 6.6e-12 1.2e-13

 For p between 10^-6 and 0.001:

 IEEE 0,100 100000 2.0e-12 1.3e-14

 IEEE 0,10000 100000 1.5e-12 3.2e-14

See the incbi Help topic.

ERROR MESSAGES:

 message condition value returned

 domain k < 0, n <= k 0.0

 x < 0, x > 1

(c) Sparx Systems 2021 Page 126 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_incbi.htm

Scripting 2 September, 2021

chdtr

Chi-square distribution.

SYNOPSIS:

double df, x, y, chdtr();

y = chdtr(df, x);

DESCRIPTION:

Returns the area under the left hand tail (from 0 to x) of the Chi square probability density function, with v degrees of
freedom.

 x

 -

 1 | | v/2-1 -t/2

 P(x | v) = ----------- | t e dt

 v/2 - | |

 2 | (v/2) -

 0

where x is the Chi-square variable.

The incomplete gamma integral is used, according to the formula:

y = chdtr(v, x) = igam(v/2.0, x/2.0).

The arguments must both be positive.

ACCURACY:

See the igam() Help topic.

ERROR MESSAGES:

message condition value returned

domain x < 0 or v < 1 0.0

(c) Sparx Systems 2021 Page 127 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_igam.htm

Scripting 2 September, 2021

chdtrc

Complemented Chi-square distribution.

SYNOPSIS:

double v, x, y, chdtrc();

y = chdtrc(v, x);

DESCRIPTION:

Returns the area under the right hand tail (from x to infinity) of the Chi square probability density function with v
degrees of freedom:

 inf.

 -

 1 | | v/2-1 -t/2

 P(x | v) = ----------- | t e dt

 v/2 - | |

 2 | (v/2) -

 x

where x is the Chi-square variable.

The incomplete gamma integral is used, according to the formula:

y = chdtr(v, x) = igamc(v/2.0, x/2.0).

The arguments must both be positive.

ACCURACY:

See the igamc() Help topic.

ERROR MESSAGES:

 message condition value returned

 domain x < 0 or v < 1 0.0

(c) Sparx Systems 2021 Page 128 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_igamc.htm

Scripting 2 September, 2021

chdtri

Inverse of complemented Chi-square distribution.

SYNOPSIS:

double df, x, y, chdtri();

x = chdtri(df, y);

DESCRIPTION:

Finds the Chi-square argument x, such that the integral from x to infinity of the Chi-square density is equal to the given
cumulative probability y.

This is accomplished using the inverse gamma integral function and the relation:

 x/2 = igami(df/2, y);

ACCURACY:

See the igami Help topic.

ERROR MESSAGES:

 message condition value returned

 domain y < 0 or y > 1 0.0

 v < 1

(c) Sparx Systems 2021 Page 129 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_igami.htm

Scripting 2 September, 2021

fdtr

F distribution.

SYNOPSIS:

int df1, df2;

double x, y, fdtr();

y = fdtr(df1, df2, x);

DESCRIPTION:

Returns the area from zero to x under the F density function (also known as Snedcor's density, or the variance ratio
density).

This is the density of x = (u1/df1)/(u2/df2), where u1 and u2 are random variables having Chi square distributions with
df1 and df2 degrees of freedom, respectively.

The incomplete beta integral is used, according to the formula

P(x) = incbet(df1/2, df2/2, (df1*x/(df2 + df1*x)).

The arguments a and b are greater than zero, and x is nonnegative.

ACCURACY:

Tested at random points (a,b,x).

 x a,b Relative error:

arithmetic domain domain # trials peak rms

 IEEE 0,1 0,100 100000 9.8e-15 1.7e-15

 IEEE 1,5 0,100 100000 6.5e-15 3.5e-16

 IEEE 0,1 1,10000 100000 2.2e-11 3.3e-12

 IEEE 1,5 1,10000 100000 1.1e-11 1.7e-13

See the incbet Help topic.

ERROR MESSAGES:

 message condition value returned

 domain a<0, b<0, x<0 0.0

(c) Sparx Systems 2021 Page 130 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_incbet.htm

Scripting 2 September, 2021

fdtrc

Complemented F distribution.

SYNOPSIS:

int df1, df2;

double x, y, fdtrc();

y = fdtrc(df1, df2, x);

DESCRIPTION:

Returns the area from x to infinity under the F density function (also known as Snedcor's density or the variance ratio
density).

 inf.

 -

 1 | | a-1 b-1

1-P(x) = ------ | t (1-t) dt

 B(a,b) | |

 -

 x

The incomplete beta integral is used, according to the formula

P(x) = incbet(df2/2, df1/2, (df2/(df2 + df1*x)).

ACCURACY:

Tested at random points (a,b,x) in the indicated intervals.

 x a,b Relative error:

arithmetic domain domain # trials peak rms

 IEEE 0,1 1,100 100000 3.7e-14 5.9e-16

 IEEE 1,5 1,100 100000 8.0e-15 1.6e-15

 IEEE 0,1 1,10000 100000 1.8e-11 3.5e-13

 IEEE 1,5 1,10000 100000 2.0e-11 3.0e-12

ERROR MESSAGES:

message condition value returned

domain a<0, b<0, x<0 0.0

(c) Sparx Systems 2021 Page 131 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

(c) Sparx Systems 2021 Page 132 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

fdtri

Inverse of complemented F distribution.

SYNOPSIS:

int df1, df2;

double x, p, fdtri();

x = fdtri(df1, df2, p);

DESCRIPTION:

Finds the F density argument x, such that the integral from x to infinity of the F density is equal to the given probability
p.

This is accomplished using the inverse beta integral function and the relations:

 z = incbi(df2/2, df1/2, p)

 x = df2 (1-z) / (df1 z).

Note: These relations hold for the inverse of the uncomplemented F distribution:

 z = incbi(df1/2, df2/2, p)

 x = df2 z / (df1 (1-z)).

ACCURACY:

Tested at random points (a,b,p).

 a,b Relative error:

arithmetic domain # trials peak rms

 For p between .001 and 1:

 IEEE 1,100 100000 8.3e-15 4.7e-16

 IEEE 1,10000 100000 2.1e-11 1.4e-13

 For p between 10^-6 and 10^-3:

 IEEE 1,100 50000 1.3e-12 8.4e-15

 IEEE 1,10000 50000 3.0e-12 4.8e-14

See the fdtrc Help topic.

ERROR MESSAGES:

 message condition value returned

(c) Sparx Systems 2021 Page 133 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_fdtrc.htm

Scripting 2 September, 2021

 domain p <= 0 or p > 1 0.0

 v < 1

(c) Sparx Systems 2021 Page 134 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

gdtr

Gamma distribution function.

SYNOPSIS:

double a, b, x, y, gdtr();

y = gdtr(a, b, x);

DESCRIPTION:

Returns the integral from zero to x of the gamma probability density function:

 x

 b -

 a | | b-1 -at

y = ----- | t e dt

 - | |

 | (b) -

 0

The incomplete gamma integral is used, according to the relation:

y = igam(b, ax).

ACCURACY:

See the igam() Help topic.

ERROR MESSAGES:

 message condition value returned

 domain x < 0 0.0

(c) Sparx Systems 2021 Page 135 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_igam.htm

Scripting 2 September, 2021

gdtrc

Complemented gamma distribution function.

SYNOPSIS:

double a, b, x, y, gdtrc();

y = gdtrc(a, b, x);

DESCRIPTION:

Returns the integral from x to infinity of the gamma probability density function:

 inf.

 b -

 a | | b-1 -at

y = ----- | t e dt

 - | |

 | (b) -

 x

The incomplete gamma integral is used, according to the relation:

y = igamc(b, ax).

ACCURACY:

See the igamc() Help topic.

ERROR MESSAGES:

 message condition value returned

 domain x < 0 0.0

(c) Sparx Systems 2021 Page 136 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_igamc.htm

Scripting 2 September, 2021

nbdtr

Negative binomial distribution.

SYNOPSIS:

int k, n;

double p, y, nbdtr();

y = nbdtr(k, n, p);

DESCRIPTION:

Returns the sum of the terms 0 through k of the negative binomial distribution:

 k

 -- (n+j-1) n j

 > () p (1-p)

 -- (j)

 j=0

In a sequence of Bernoulli trials, this is the probability that k or fewer failures precede the nth success.

The terms are not computed individually; instead the incomplete beta integral is employed, according to the formula:

y = nbdtr(k, n, p) = incbet(n, k+1, p).

The arguments must be positive, with p ranging from 0 to 1.

ACCURACY:

Tested at random points (a,b,p), with p between 0 and 1.

 a,b Relative error:

arithmetic domain # trials peak rms

 IEEE 0,100 100000 1.7e-13 8.8e-15

See the incbet Help topic.

(c) Sparx Systems 2021 Page 137 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_incbet.htm

Scripting 2 September, 2021

nbdtrc

Complemented negative binomial distribution.

SYNOPSIS:

int k, n;

double p, y, nbdtrc();

y = nbdtrc(k, n, p);

DESCRIPTION:

Returns the sum of the terms k+1 to infinity of the negative binomial distribution:

 inf

 -- (n+j-1) n j

 > () p (1-p)

 -- (j)

 j=k+1

The terms are not computed individually; instead the incomplete beta integral is employed, according to the formula:

y = nbdtrc(k, n, p) = incbet(k+1, n, 1-p).

The arguments must be positive, with p ranging from 0 to 1.

ACCURACY:

Tested at random points (a,b,p), with p between 0 and 1.

 a,b Relative error:

arithmetic domain # trials peak rms

 IEEE 0,100 100000 1.7e-13 8.8e-15

See the incbet Help topic.

(c) Sparx Systems 2021 Page 138 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_incbet.htm

Scripting 2 September, 2021

ndtr

Normal distribution function.

SYNOPSIS:

double x, y, ndtr();

y = ndtr(x);

DESCRIPTION:

Returns the area under the Gaussian probability density function, integrated from minus infinity to x:

 x

 -

 1 | | 2

 ndtr(x) = --------- | exp(- t /2) dt

 sqrt(2pi) | |

 -

 -inf.

 = (1 + erf(z)) / 2

 = erfc(z) / 2

where z = x/sqrt(2).

Computation is via the functions erf and erfc, with care to avoid error amplification in computing exp(-x^2).

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 IEEE -13,0 30000 1.3e-15 2.2e-16

ERROR MESSAGES:

 message condition value returned

 underflow x > 37.519379347 0.0

(c) Sparx Systems 2021 Page 139 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

ndtri

Inverse of Normal distribution function.

SYNOPSIS:

double x, y, ndtri();

x = ndtri(y);

DESCRIPTION:

Returns the argument, x, for which the area under the Gaussian probability density function (integrated from minus
infinity to x) is equal to y.

For small arguments 0 < y < exp(-2), the program computes z = sqrt(-2.0 * log(y)); then the approximation is x = z -
log(z)/z - (1/z) P(1/z) / Q(1/z).

There are two rational functions P/Q, one for 0 < y < exp(-32) and the other for y up to exp(-2).

For larger arguments, w = y - 0.5, and x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)).

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC 0.125, 1 5500 9.5e-17 2.1e-17

 DEC 6e-39, 0.135 3500 5.7e-17 1.3e-17

 IEEE 0.125, 1 20000 7.2e-16 1.3e-16

 IEEE 3e-308, 0.135 50000 4.6e-16 9.8e-17

ERROR MESSAGES:

 message condition value returned

 domain x <= 0 -MAXNUM

 domain x >= 1 MAXNUM

(c) Sparx Systems 2021 Page 140 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

pdtr

Poisson distribution.

SYNOPSIS:

int k;

double m, y, pdtr();

y = pdtr(k, m);

DESCRIPTION:

Returns the sum of the first k terms of the Poisson distribution:

 k j

 -- -m m

 > e --

 -- j!

 j=0

The terms are not summed directly; instead the incomplete gamma integral is employed, according to the relation:

y = pdtr(k, m) = igamc(k+1, m).

The arguments must both be positive.

ACCURACY:

See the igamc Help topic.

(c) Sparx Systems 2021 Page 141 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_igamc.htm

Scripting 2 September, 2021

pdtrc

Complemented poisson distribution.

SYNOPSIS:

int k;

double m, y, pdtrc();

y = pdtrc(k, m);

DESCRIPTION:

Returns the sum of the terms k+1 to infinity of the Poisson distribution:

 inf. j

 -- -m m

 > e --

 -- j!

 j=k+1

The terms are not summed directly; instead the incomplete gamma integral is employed, according to the formula:

y = pdtrc(k, m) = igam(k+1, m).

The arguments must both be positive.

ACCURACY:

See the igam Help topic.

(c) Sparx Systems 2021 Page 142 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_igam.htm

Scripting 2 September, 2021

pdtri

Inverse Poisson distribution.

SYNOPSIS:

int k;

double m, y, pdtr();

m = pdtri(k, y);

DESCRIPTION:

Finds the Poisson variable x such that the integral from 0 to x of the Poisson density is equal to the given probability y.

This is accomplished using the inverse gamma integral function and the relation

 m = igami(k+1, y).

ACCURACY:

See the igami Help topic.

ERROR MESSAGES:

 message condition value returned

 domain y < 0 or y >= 1 0.0

 k < 0

(c) Sparx Systems 2021 Page 143 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_igami.htm

Scripting 2 September, 2021

stdtr

Student's t distribution.

SYNOPSIS:

double t, stdtr();

short k;

y = stdtr(k, t);

DESCRIPTION:

Computes the integral from minus infinity to t of the Student t distribution with integer k > 0 degrees of freedom:

 t

 -

 | |

 - | 2 -(k+1)/2

 | ((k+1)/2) | (x)

 ----------------- | (1 + ---) dx

 - | (k)

 sqrt(k pi) | (k/2) |

 | |

 -

 -inf.

Relation to incomplete beta integral:

 1 - stdtr(k,t) = 0.5 * incbet(k/2, 1/2, z)

where

 z = k/(k + t**2).

For t < -2, this is the method of computation.

For higher t, a direct method is derived from integration by parts.

Since the function is symmetric about t=0, the area under the right tail of the density is found by calling the function with
-t instead of t.

ACCURACY:

Tested at random 1 <= k <= 25. The 'domain' refers to t.

 Relative error:

(c) Sparx Systems 2021 Page 144 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

arithmetic domain # trials peak rms

 IEEE -100,-2 50000 5.9e-15 1.4e-15

 IEEE -2,100 500000 2.7e-15 4.9e-17

(c) Sparx Systems 2021 Page 145 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

Miscellaneous

polylog - Polylogarithms·
spence - Dilogarithm·
zetac - Riemann Zeta function·
zeta - Two-argument zeta function·
struve - Struve function ·

(c) Sparx Systems 2021 Page 146 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_polylog.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_spence.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_zetac.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_zeta.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_struve.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_polylog.htm

Scripting 2 September, 2021

polylog

Polylogarithms.

SYNOPSIS:

 double x, y, polylog();

 int n;

 y = polylog(n, x);

The polylogarithm of order n is defined by the series:

 inf k

 - x

 Li (x) = > --- .

 n - n

 k=1 k

For x = 1,

 inf

 - 1

 Li (1) = > --- = Riemann zeta function (n).

 n - n

 k=1 k

When n = 2, the function is the dilogarithm, related to Spence's integral:

 x 1-x

 - -

 | | -ln(1-t) | | ln t

 Li (x) = | -------- dt = | ------ dt = spence(1-x) .

 2 | | t | | 1 - t

 - -

 0 1

References:

 Lewin, L., Polylogarithms and Associated Functions,

 North Holland, 1981.

(c) Sparx Systems 2021 Page 147 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

 Lewin, L., ed., Structural Properties of Polylogarithms,

 American Mathematical Society, 1991.

ACCURACY:

 Relative error:

 arithmetic domain n # trials peak rms

 IEEE 0, 1 2 50000 6.2e-16 8.0e-17

 IEEE 0, 1 3 100000 2.5e-16 6.6e-17

 IEEE 0, 1 4 30000 1.7e-16 4.9e-17

 IEEE 0, 1 5 30000 5.1e-16 7.8e-17

(c) Sparx Systems 2021 Page 148 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

spence

Dilogarithm.

SYNOPSIS:

double x, y, spence();

y = spence(x);

DESCRIPTION:

Computes the integral:

 x

 -

 | | log t

spence(x) = - | ----- dt

 | | t - 1

 -

 1

for x >= 0. A rational approximation gives the integral in the interval (0.5, 1.5). Transformation formulas for 1/x and
1-x are employed outside the basic expansion range.

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 IEEE 0,4 30000 3.9e-15 5.4e-16

 DEC 0,4 3000 2.5e-16 4.5e-17

(c) Sparx Systems 2021 Page 149 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

zetac

Riemann zeta function.

SYNOPSIS:

double x, y, zetac();

y = zetac(x);

DESCRIPTION:

 inf.

 - -x

 zetac(x) = > k , x > 1,

 -

 k=2

Is related to the Riemann zeta function by:

Riemann zeta(x) = zetac(x) + 1.

Extension of the function definition for x < 1 is implemented.

Zero is returned for x > log2(MAXNUM).

An overflow error might occur for large negative x, due to the gamma function in the reflection formula.

ACCURACY:

Tabulated values have full machine accuracy.

 Relative error:

arithmetic domain # trials peak rms

 IEEE 1,50 10000 9.8e-16 1.3e-16

 DEC 1,50 2000 1.1e-16 1.9e-17

(c) Sparx Systems 2021 Page 150 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

zeta

Riemann zeta function of two arguments.

SYNOPSIS:

double x, q, y, zeta();

y = zeta(x, q);

DESCRIPTION:

 inf.

 - -x

 zeta(x,q) = > (k+q)

 -

 k=0

where x > 1 and q is not a negative integer or zero.

The Euler-Maclaurin summation formula is used to obtain the expansion

 n

 - -x

zeta(x,q) = > (k+q)

 -

 k=1

 1-x inf. B x(x+1)...(x+2j)

 (n+q) 1 - 2j

 + --------- - ------- + > --------------------

 x-1 x - x+2j+1

 2(n+q) j=1 (2j)! (n+q)

where the B2j are Bernoulli numbers.

Note that zeta(x,1) = zetac(x) + 1.

(see zetac)

ACCURACY:

REFERENCE:

Gradshteyn, I. S., and I. M. Ryzhik, Tables of Integrals, Series, and Products, p. 1073; Academic Press, 1980.

(c) Sparx Systems 2021 Page 151 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_zetac.htm

Scripting 2 September, 2021

(c) Sparx Systems 2021 Page 152 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

struve

Struve function.

SYNOPSIS:

double v, x, y, struve();

y = struve(v, x);

DESCRIPTION:

Computes the Struve function Hv(x) of order v, argument x. Negative x is rejected unless v is an integer.

This module also contains the hypergeometric functions 1F2 and 3F0, and a routine for the Bessel function Yv(x) with
noninteger v.

ACCURACY:

Not accurately characterized, but spot checked against tables.

(c) Sparx Systems 2021 Page 153 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

Matrix

fftr - Fast Fourier transform·
simq - Simultaneous linear equations·
minv - Matrix inversion·
mmmpy - Matrix multiply·
mvmpy - Matrix times vector·
mtransp - Matrix transpose·
eigens - Eigenvectors (symmetric matrix) ·

(c) Sparx Systems 2021 Page 154 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_fftr.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_simq.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_minv.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_mmmpy.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_mvmpy.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_mtransp.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_eigens.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_fftr.htm

Scripting 2 September, 2021

fftr

FFT of Real Valued Sequence.

SYNOPSIS:

double x[], sine[];

int m;

fftr(x, m, sine);

DESCRIPTION:

Computes the (complex valued) discrete Fourier transform of the real valued sequence x[]. The input sequence x[]
contains n = 2**m samples. The program fills array sine[k] with n/4 + 1 values of sin(2 PI k / n).

Data format for complex valued output is real part followed by imaginary part. The output is developed in the input
array x[].

The algorithm takes advantage of the fact that the FFT of an n point real sequence can be obtained from an n/2 point
complex FFT.

A radix 2 FFT algorithm is used.

Execution time on an LSI-11/23 with floating point chip is 1.0 sec for n = 256.

REFERENCE:

E. Oran Brigham, The Fast Fourier Transform; Prentice-Hall, Inc., 1974

(c) Sparx Systems 2021 Page 155 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

simq

Solution of simultaneous linear equations AX = B by Gaussian elimination with partial pivoting.

SYNOPSIS:

double A[n*n], B[n], X[n];

int n, flag;

int IPS[];

int simq();

ercode = simq(A, B, X, n, flag, IPS);

DESCRIPTION:

B, X, IPS are vectors of length n.

A is an n x n matrix (i.e. a vector of length n*n), stored row-wise; that is, A(i,j) = A[ij], where ij = i*n + j, which is the
transpose of the normal column-wise storage.

The contents of matrix A are destroyed.

Set flag=0 to solve.

Set flag=-1 to do a new back substitution for a different B vector using the same A matrix previously reduced when
flag=0.

The routine returns nonzero on error; messages are printed.

ACCURACY:

Depends on the conditioning (range of eigenvalues) of matrix A.

REFERENCE:

Computer Solution of Linear Algebraic Systems

by George E. Forsythe and Cleve B. Moler; Prentice-Hall, 1967.

(c) Sparx Systems 2021 Page 156 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

minv

Matrix inversion.

SYNOPSIS:

int n, errcod;

double A[n*n], X[n*n];

double B[n];

int IPS[n];

int minv();

errcod = minv(A, X, n, B, IPS);

DESCRIPTION:

Finds the inverse of the n by n matrix A. The result goes to X. B and IPS are scratch-pad arrays of length n. The contents
of matrix A are destroyed.

The routine returns nonzero on error; error messages are printed by the subroutine simq().

JavaScript:

function test_minv()

{

/*

* Finds the inverse of the n by n matrix A. The result goes

* to X. B and IPS are scratch pad arrays of length n.

* The contents of matrix A are destroyed

*/

Session.Output("calling cephes.minv(A,X,n,B,IPS) where:");

var n = 10; // n x n matrix A (10x10)

var A = [

[0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9],

[0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9],

[0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9],

[0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9],

[0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9],

[0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9],

[0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9],

[0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9],

[0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9],

(c) Sparx Systems 2021 Page 157 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

[0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]

];

var X = new Array(10); // output

var B = new Array(10); // scratch pad

var IPS = new Array(10); // scratch pad

Session.Output(" n = " + n);

Session.Output(" length of A is" + n*n);

Session.Output("A is matrix of " + dimensionsOfArray(A));

var ir = cephes.minv(A,X,n,B,IPS);

var s = cephes.geterrormsg();

if(s.length>0)

{

Session.Output("error output by minv: " + s);

}

else

{

Session.Output("minv returned " + ir);

Session.Output("X is matrix of " + dimensionsOfArray(X));

printMatrix("X",X,10,10);
}

}

(c) Sparx Systems 2021 Page 158 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

mmmpy

Matrix-Matrix multiply

SYNOPSIS

int r, c;

double A[r*c], B[c*r], Y[r*r];

mmmpy(r, c, A, B, Y);

DESCRIPTION

Multiply an r (rows) by c (columns) matrix A on the left by a c (rows) by r (columns) matrix B on the right to produce an
r by r matrix Y.

(c) Sparx Systems 2021 Page 159 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

mvmpy

Matrix-Vector multiply

SYNOPSIS

int r, c;

double A[r*c], V[c], Y[r];

mvmpy(r, c, A, V, Y);

DESCRIPTION

Multiply r (rows) by c (columns) matrix A on the left by column vector V of dimension c on the right to produce a
(column) vector Y output of dimension r.

(c) Sparx Systems 2021 Page 160 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

mtransp

Matrix Transpose

SYNOPSIS

int n;

double A[n*n], T[n*n];

mtransp(n, A, T)

DESCRIPTION

Transpose the n by n square matrix A and put the result in T.

T may occupy the same storage as A.

(c) Sparx Systems 2021 Page 161 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

eigens

Eigenvalues and eigenvectors of a real symmetric matrix.

SYNOPSIS:

int n;

double A[n*(n+1)/2], EV[n*n], E[n];

void eigens(A, EV, E, n);

DESCRIPTION:

The algorithm is due to J. vonNeumann.

 - -

A[] is a symmetric matrix stored in lower triangular form. That is, A[row, column] = A[(row*row+row)/2 + column] or
the equivalent with row and column interchanged. The indices row and column run from 0 through n-1.

EV[] is the output matrix of eigenvectors stored columnwise. That is, the elements of each eigenvector appear in
sequential memory order. The jth element of the ith eigenvector is EV[n*i+j] = EV[i][j].

E[] is the output matrix of eigenvalues. The ith element of E corresponds to the ith eigenvector (the ith row of EV).

On output, the matrix A will have been diagonalized and its original contents are destroyed.

ACCURACY:

The error is controlled by an internal parameter called RANGE which is set to 1e-10. After diagonalization, the
off-diagonal elements of A will have been reduced by this factor.

ERROR MESSAGES:

None.

JavaScript:

function test_eigens()

{

var A = [

[0.1,0.2,0.3,0.4],

[0.5,0.6,0.7,0.8],

[0.9,0.8,0.7,0.6],

[0.5,0.4,0.3,0.2]

(c) Sparx Systems 2021 Page 162 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

];

var EV = new Array();

var E = new Array();

var N = 4;

Session.Output("calling cephes.eigens(A, EV, E, N) where:");

Session.Output(" A is NxN input matrix and N = " + N);

printMatrix("A",A,N,N);

cephes.eigens(A, EV, E, N);

Session.Output(" EV is matrix of " + dimensionsOfArray(EV));

printMatrix("Y",EV,N,N);

Session.Output(" ");

Session.Output(" E is matrix of " + dimensionsOfArray(E));

printMatrix("Y",E,N,N);

Session.Output(" ");

}

function printMatrix(name, M, rows, cols)

{

for(var r = 0; r < rows; r++)

{

for(var c = 0; c < cols; c++)

{

Session.Output(name + "[" + r + "][" + c + "] = " +M[r][c]);

}

}

}

var str="";

function dimensionsOfArrayX(v)

{

str += v.length;

if(v.length)

{

var e = v[0];

if(Array.isArray(e))

{

str += " x ";

dimensionsOfArrayX(e);

}

}

(c) Sparx Systems 2021 Page 163 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

}

function dimensionsOfArray(v)

{
str = "";
dimensionsOfArrayX(v);
return str;

}

(c) Sparx Systems 2021 Page 164 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

Numerical Integration

simpsn - Simpson's rule ·

(c) Sparx Systems 2021 Page 165 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_simpsn.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_simpsn.htm

Scripting 2 September, 2021

simpsn

Simpson Numerical Integration

SYNOPSIS

double simpsn(f, delta)

double f[]; /* tabulated function */

double delta; /* spacing of arguments */

double simpsn(f, delta);

DESCRIPTION

Numerical integration of function tabulated at equally spaced arguments

Uses 8th order Cote integration formula.

(c) Sparx Systems 2021 Page 166 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

Complex Arithmetic

cadd - Complex addition·
csub - Subtraction·
cmul - Multiplication·
cdiv - Division·
cabs - Absolute value·
csqrt - Square root ·

(c) Sparx Systems 2021 Page 167 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_cadd.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_csub.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_cmul.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_cdiv.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_cabs.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_csqrt.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_cadd.htm

Scripting 2 September, 2021

cadd

Addition.

SYNOPSIS:

typedef struct {

 double r; real part

 double i; imaginary part

 }cmplx;

cmplx *a, *b, *c;

cadd(a, b, c); c = b + a

DESCRIPTION:

 c.r = b.r + a.r

 c.i = b.i + a.i

ACCURACY:

In DEC arithmetic, the test (1/z) * z = 1 had peak relative error 3.1e-17, rms 1.2e-17. The test (y/z) * (z/y) = 1 had peak
relative error 8.3e-17, rms 2.1e-17.

Tests in the rectangle {-10,+10}:

 Relative error:

arithmetic function # trials peak rms

 DEC cadd 10000 1.4e-17 3.4e-18

 IEEE cadd 100000 1.1e-16 2.7e-17

 DEC csub 10000 1.4e-17 4.5e-18

 IEEE csub 100000 1.1e-16 3.4e-17

 DEC cmul 3000 2.3e-17 8.7e-18

 IEEE cmul 100000 2.1e-16 6.9e-17

 DEC cdiv 18000 4.9e-17 1.3e-17

 IEEE cdiv 100000 3.7e-16 1.1e-16

JavaScript:

var a = {"r":0.5,"i",0.5};

(c) Sparx Systems 2021 Page 168 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

var b = {"r":0.5,"i",0.5};

var c = cephes.cadd(a,b);

Session.Output("c.r=" + c.r + ", c.i=" + c.i);

(c) Sparx Systems 2021 Page 169 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

csub

Subtraction.

SYNOPSIS:

typedef struct {

 double r; real part

 double i; imaginary part

 }cmplx;

cmplx *a, *b, *c;

csub(a, b, c); c = b - a

DESCRIPTION:

 c.r = b.r - a.r

 c.i = b.i - a.i

ACCURACY:

In DEC arithmetic, the test (1/z) * z = 1 had peak relative error 3.1e-17, rms 1.2e-17. The test (y/z) * (z/y) = 1 had peak
relative error 8.3e-17, rms 2.1e-17.

Tests in the rectangle {-10,+10}:

 Relative error:

arithmetic function # trials peak rms

 DEC cadd 10000 1.4e-17 3.4e-18

 IEEE cadd 100000 1.1e-16 2.7e-17

 DEC csub 10000 1.4e-17 4.5e-18

 IEEE csub 100000 1.1e-16 3.4e-17

 DEC cmul 3000 2.3e-17 8.7e-18

 IEEE cmul 100000 2.1e-16 6.9e-17

 DEC cdiv 18000 4.9e-17 1.3e-17

 IEEE cdiv 100000 3.7e-16 1.1e-16

JavaScript:

var a = {"r":0.5,"i",0.5};

var b = {"r":0.5,"i",0.5};

var c = cephes.csub(a,b);

(c) Sparx Systems 2021 Page 170 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

Session.Output("c.r=" + c.r + ", c.i=" + c.i);

(c) Sparx Systems 2021 Page 171 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

cmul

Multiplication.

SYNOPSIS:

typedef struct {

 double r; real part

 double i; imaginary part

 }cmplx;

cmplx *a, *b, *c;

cmul(a, b, c); c = b * a

DESCRIPTION:

 c.r = b.r * a.r - b.i * a.i

 c.i = b.r * a.i + b.i * a.r

ACCURACY:

In DEC arithmetic, the test (1/z) * z = 1 had peak relative error 3.1e-17, rms 1.2e-17. The test (y/z) * (z/y) = 1 had peak
relative error 8.3e-17, rms 2.1e-17.

Tests in the rectangle {-10,+10}:

 Relative error:

arithmetic function # trials peak rms

 DEC cadd 10000 1.4e-17 3.4e-18

 IEEE cadd 100000 1.1e-16 2.7e-17

 DEC csub 10000 1.4e-17 4.5e-18

 IEEE csub 100000 1.1e-16 3.4e-17

 DEC cmul 3000 2.3e-17 8.7e-18

 IEEE cmul 100000 2.1e-16 6.9e-17

 DEC cdiv 18000 4.9e-17 1.3e-17

 IEEE cdiv 100000 3.7e-16 1.1e-16

JavaScript:

var a = {"r":0.5,"i",0.5};

var b = {"r":0.5,"i",0.5};

var c = cephes.cmul(a,b);

(c) Sparx Systems 2021 Page 172 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

Session.Output("c.r=" + c.r + ", c.i=" + c.i);

(c) Sparx Systems 2021 Page 173 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

cdiv

Division.

SYNOPSIS:

typedef struct {

 double r; real part

 double i; imaginary part

 }cmplx;

cmplx *a, *b, *c;

cdiv(a, b, c); c = b / a

DESCRIPTION:

 d = a.r * a.r + a.i * a.i

 c.r = (b.r * a.r + b.i * a.i)/d

 c.i = (b.i * a.r - b.r * a.i)/d

ACCURACY:

In DEC arithmetic, the test (1/z) * z = 1 had peak relative error 3.1e-17, rms 1.2e-17. The test (y/z) * (z/y) = 1 had peak
relative error 8.3e-17, rms 2.1e-17.

Tests in the rectangle {-10,+10}:

 Relative error:

arithmetic function # trials peak rms

 DEC cadd 10000 1.4e-17 3.4e-18

 IEEE cadd 100000 1.1e-16 2.7e-17

 DEC csub 10000 1.4e-17 4.5e-18

 IEEE csub 100000 1.1e-16 3.4e-17

 DEC cmul 3000 2.3e-17 8.7e-18

 IEEE cmul 100000 2.1e-16 6.9e-17

 DEC cdiv 18000 4.9e-17 1.3e-17

 IEEE cdiv 100000 3.7e-16 1.1e-16

JavaScript:

var a = {"r":0.5,"i",0.5};

(c) Sparx Systems 2021 Page 174 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

var b = {"r":0.5,"i",0.5};

var c = cephes.cdiv(a,b);

Session.Output("c.r=" + c.r + ", c.i=" + c.i);

(c) Sparx Systems 2021 Page 175 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

cabs

Complex absolute value.

SYNOPSIS:

double cabs();

cmplx z;

double a;

a = cabs(&z);

DESCRIPTION:

If z = x + iy

then

 a = sqrt(x**2 + y**2).

Overflow and underflow are avoided by testing the magnitudes of x and y before squaring. If either is outside half of the
floating point full scale range, both are rescaled.

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC -30,+30 30000 3.2e-17 9.2e-18

 IEEE -10,+10 100000 2.7e-16 6.9e-17

JavaScript:

var z = {"r":3.14,"i":3.14};

var a = cephes.cabs(z);

where a is an object of schema

{

 "r" : double,

 "i" : double

}

(c) Sparx Systems 2021 Page 176 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

csqrt

Complex square root.

SYNOPSIS:

void csqrt();

cmplx z, w;

csqrt(&z, &w);

DESCRIPTION:

If z = x + iy, r = |z|, then

 1/2

Im w = [(r - x)/2] ,

Re w = y / 2 Im w.

Note that -w is also a square root of z. The root chosen is always in the upper half plane.

Because of the potential for a cancellation error in r - x, the result is sharpened by doing a Heron iteration (see sqrt) in
complex arithmetic.

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC -10,+10 25000 3.2e-17 9.6e-18

 IEEE -10,+10 100000 3.2e-16 7.7e-17

JavaScript:

var x = {"r":4.5,"i":3.14} ;

var a = cephes.csqrt(x);

returns a, complex object of schema

{

"r" : double,

(c) Sparx Systems 2021 Page 177 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_sqrt.htm

Scripting 2 September, 2021

"i": double

}

(c) Sparx Systems 2021 Page 178 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

Complex Exponential and Trigonometric

cexp - Exponential·
clog - Logarithm·
ccos - Cosine·
cacos - Arc cosine·
csin - Sine·
casin - Arc sine·
ctan - Tangent·
catan - Arc tangent·
ccot - Cotangent ·

(c) Sparx Systems 2021 Page 179 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_cexp.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_clog.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_ccos.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_cacos.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_csin.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_casin.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_ctan.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_catan.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_ccot.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_cexp.htm

Scripting 2 September, 2021

cexp

Complex exponential function.

SYNOPSIS:

void cexp();

cmplx z, w;

cexp(&z, &w);

DESCRIPTION:

Returns the exponential of the complex argument z into the complex result w.

If

 z = x + iy,

 r = exp(x),

then

 w = r cos y + i r sin y.

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC -10,+10 8700 3.7e-17 1.1e-17

 IEEE -10,+10 30000 3.0e-16 8.7e-17

(c) Sparx Systems 2021 Page 180 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

clog

Complex natural logarithm.

SYNOPSIS:

void clog();

cmplx z, w;

clog(&z, &w);

DESCRIPTION:

Returns a complex logarithm to the base e (2.718...) of the complex argument x.

If z = x + iy, r = sqrt(x**2 + y**2),

then

 w = log(r) + i arctan(y/x).

The arctangent ranges from -PI to +PI.

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC -10,+10 7000 8.5e-17 1.9e-17

 IEEE -10,+10 30000 5.0e-15 1.1e-16

Larger relative errors can be observed for z near 1 +i0. In IEEE arithmetic the peak absolute error is 5.2e-16, rms
absolute error 1.0e-16.

(c) Sparx Systems 2021 Page 181 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

ccos

Complex circular cosine.

SYNOPSIS:

void ccos();

cmplx z, w;

ccos(&z, &w);

DESCRIPTION:

If

 z = x + iy,

then

 w = cos x cosh y - i sin x sinh y.

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC -10,+10 8400 4.5e-17 1.3e-17

 IEEE -10,+10 30000 3.8e-16 1.0e-16

(c) Sparx Systems 2021 Page 182 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

cacos

Complex circular arc cosine.

SYNOPSIS:

void cacos();

cmplx z, w;

cacos(&z, &w);

DESCRIPTION:

w = arccos z = PI/2 - arcsin z.

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC -10,+10 5200 1.6e-15 2.8e-16

 IEEE -10,+10 30000 1.8e-14 2.2e-15

(c) Sparx Systems 2021 Page 183 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

csin

Complex circular sine.

SYNOPSIS:

void csin();

cmplx z, w;

csin(&z, &w);

DESCRIPTION:

If

 z = x + iy,

then

 w = sin x cosh y + i cos x sinh y.

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC -10,+10 8400 5.3e-17 1.3e-17

 IEEE -10,+10 30000 3.8e-16 1.0e-16

(c) Sparx Systems 2021 Page 184 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

casin

Complex circular arc sine.

SYNOPSIS:

void casin();

cmplx z, w;

casin(&z, &w);

DESCRIPTION:

Inverse complex sine:

 2

w = -i clog(iz + csqrt(1 - z)).

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC -10,+10 10100 2.1e-15 3.4e-16

 IEEE -10,+10 30000 2.2e-14 2.7e-15

Larger relative error can be observed for z near zero. Also tested by csin(casin(z)) = z.

(c) Sparx Systems 2021 Page 185 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

ctan

Complex circular tangent.

SYNOPSIS:

void ctan();

cmplx z, w;

ctan(&z, &w);

DESCRIPTION:

If

 z = x + iy,

then

 sin 2x + i sinh 2y

 w = --------------------.

 cos 2x + cosh 2y

On the real axis the denominator is zero at odd multiples of PI/2. The denominator is evaluated by its Taylor series near
these points.

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC -10,+10 5200 7.1e-17 1.6e-17

 IEEE -10,+10 30000 7.2e-16 1.2e-16

Also tested by ctan * ccot = 1 and catan(ctan(z)) = z.

(c) Sparx Systems 2021 Page 186 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

catan

Complex circular arc tangent.

SYNOPSIS:

void catan();

cmplx z, w;

catan(&z, &w);

DESCRIPTION:

If

 z = x + iy,

then

 1 (2x)

Re w = - arctan(-----------) + k PI

 2 (2 2)

 (1 - x - y)

 (2 2)

 1 (x + (y+1))

Im w = - log(------------)

 4 (2 2)

 (x + (y-1))

Where k is an arbitrary integer.

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC -10,+10 5900 1.3e-16 7.8e-18

 IEEE -10,+10 30000 2.3e-15 8.5e-17

The check catan(ctan(z)) = z, with |x| and |y| < PI/2, had peak relative error 1.5e-16, rms relative error 2.9e-17. See also
clog().

(c) Sparx Systems 2021 Page 187 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

ccot

Complex circular cotangent.

SYNOPSIS:

void ccot();

cmplx z, w;

ccot(&z, &w);

DESCRIPTION:

If

 z = x + iy,

then

 sin 2x - i sinh 2y

 w = --------------------.

 cosh 2y - cos 2x

On the real axis, the denominator has zeros at even multiples of PI/2. Near these points it is evaluated by a Taylor series.

ACCURACY:

 Relative error:

arithmetic domain # trials peak rms

 DEC -10,+10 3000 6.5e-17 1.6e-17

 IEEE -10,+10 30000 9.2e-16 1.2e-16

Also tested by ctan * ccot = 1 + i0.

(c) Sparx Systems 2021 Page 188 of 204 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_sin.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_sinh.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_cosh.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_cos.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/cephes_ctan.htm

Scripting 2 September, 2021

errors

Printing an error message

var cephes_errors = [

"'unknown'", /* error code 0 */

"'domain'", /* error code 1 */

"'singularity'", /* et seq. */

"'overflow'",

"'underflow'",

"'total loss of precision'",

"'partial loss of precision'"];

function printError()

{

var er = cephes.geterror();

if(er>0)

{

Session.Output("cephes error " + err + " " + cephes_errors[er]);

}

}

Testing for error

if(cephes.inerror())

{

 printError();

}

(c) Sparx Systems 2021 Page 189 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

Solvers Interface

The Solvers Interface enables you to invoke a set of commands in JavaScript that define and enact a Solver Class to
perform mathematical operations on data. The principle function of the Solver Class is to provide integration with
external tools such as MATLAB and Octave during a simulation, and either expose the results in Octave or MATLAB,
or bring them back into Enterprise Architect for representation there, perhaps in a Dynamic Chart. More generally, the
Solvers interface can be used in model-based Add-Ins and custom scripts.

To call functions from Octave or MATLAB, you need to be familiar with the functions available in the appropriate
product library, as described in the product documentation.

Solver Constructor

Constructor Description

Solver(string solverName) Creates a new Solver connected to a new instance of the specified helper
application.

Solver Methods

Method Description

get(string name) Retrieves a named value from within the Solver environment.

set(string name, object
value)

Assigns a new value to a named variable in the Solver environment.

exec(string name, string
arguments, int
returnValues)

Executes a named function. The actual functions will depend on the type of Solver
being used.

(c) Sparx Systems 2021 Page 190 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

Scripts Tab

The 'Scripts' tab is composed of a toolbar and a view of all scripts according to group. The script groups and their scripts
also have context menus that provide some or all of these options:

Group Properties - to display or edit script group properties in the 'Script Group Properties' dialog·
Run Script - to execute the selected script (or press Ctrl while you double-click on the script name)·
Edit Script - to update the selected script (or double-click on the script name to display the 'Script Editor', which·
usually displays a script template, determined by the user group type as assigned on creation or on the 'Script Group
Properties' dialog)

Rename Script - to change the name of the selected group or script·
New VBScript/JScript/JavaScript - add a new script to the selected user group·
Import Workflow Script - to display the 'Browser' dialog through which you locate and select a workflow script·
source (.vbs) file to import into the Workflow script folder

Delete Group/Script - to delete the selected user group or script·
You can also move or copy a script from one user scripts folder to another; to:

Move a script, highlight it in the 'Scripts' tab and drag it into the user scripts folder it now belongs to·
Copy a script, highlight it in the 'Scripts' tab and press Ctrl while you drag it into the user scripts folder in which to·
duplicate it

Access

Ribbon Specialize > Tools > Scripting > Scripts

Script Toolbar

Icon Action

Create a new script group; this option displays a short menu of the types of script
group you can create, namely:

Normal Group ()·

Browser window Group ()·

Diagram Group ()·

Workflow Group ()·

Search Group ()·
Model Search Group·

The new group is added to the end of the list in the Scripting window, with the
'New group' text highlighted so that you can type in the group name.

Create a new script file in the selected script group; this displays a short menu of
the types of script you can create, namely:

VBScript ()·

(c) Sparx Systems 2021 Page 191 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

JScript ()·

JavaScript ()·
The new script is added to the end of the list in the selected group, with the 'New
script' text highlighted so that you can type in the script name.

Refresh the script tree in the Scripting window; this icon also reloads any changes
made to a workflow script.

Compile and execute the selected script.

The output from the script is written to the 'Script' tab of the System Output
window, which you display using the View Script Output button.

Stop an executing script; the icon is disabled if no script is executing.

Delete a script from the model; you cannot use this icon to delete a script group (see
the earlier 'Context Menu' item), scripts in the 'Local Scripts' group, or a script that
is executing.

The system prompts you to confirm the deletion only if the 'Confirm Deletes'
checkbox is selected in the 'Project Browser' panel of the 'General' page of the
'Preferences' dialog; if this option is not selected, no prompt is displayed.

Script deletion is permanent - scripts cannot be recovered.

Display the System Output window with the results of the most recently executed
script displayed in the 'Script' tab.

Notes

This facility is available in the Corporate, Unified and Ultimate Editions·
If you add, delete or change a script, you might have to reload the model in order for the changes to take effect·
If you select to delete a script group that contains scripts, the system always prompts you to confirm the action·
regardless of any system settings for delete operations; be certain that you intend to delete the group and its scripts
before confirming the deletion - deletion of script groups and scripts is permanent

(c) Sparx Systems 2021 Page 192 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

Console Tab

The script console is a tab of the Scripting window; it is a command line interpreter through which you can quickly
enable a script engine and enter commands to act on the script.

You type the commands in the field at the bottom of the tab; when you press the Enter key, the script console executes
the commands and displays any output immediately.

You can input two types of command:

Console commands·
Script commands·

Access

Ribbon Specialize > Tools > Script Library > Console

Console Commands

Console commands are preceded by the ! character and instruct the console to perform an action.

The available console commands are provided here; to list these commands on the 'Console' tab itself, type ? in the
console field (without the preceding ! character) and press the Enter key.

c(lear) - clears the console display·
sa(ve) - saves the console display to a file·
h(elp) - prints a list of commands, as for ?·
VB - opens a VBScript console·
JA - opens a JavaScript console·
JS - opens a JScript console·
st(op) - closes any script running console·
i(nclude) name - executes the named script item; name is of the format GroupName.ScriptName (spaces are allowed·
in names)

? - (without the !) lists commands·
?name - Outputs the value of a variable name (only if a script console is opened).·

Script Commands

A script command is script code that depends on the script engine. Script commands can be executed only once a script
console has been created.

Examples:

These lines, entered into the console, create a VBScript console and then execute the script 'MyScript' in the user group
'MyGroup':

 >!VB

 >!i MyGroup.MyScript

These lines, entered into the console, create a JScript console and then create a variable called x with the value 1:

(c) Sparx Systems 2021 Page 193 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

 >!JS

 >var x = 1

This image shows the result of entering this JScript example; remember that you can use ?<variable name> to get the
current value of any item you have created during the console session.

Console Tab Toolbar

The 'Console' tab has two operations available through the toolbar:

Open Console () - click on the down-arrow and select to open a VBScript console, JScript console or JavaScript·
console

Stop Script () - click to stop an executing script and close the current console·

Notes

This facility is available in the Corporate, Unified and Ultimate Editions·
You can save the output of the console to an external .txt file; right-click on the console window, select the 'Save As'·
option, browse for an appropriate file location and specify the file name

(c) Sparx Systems 2021 Page 194 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

JavaScript Console

The JavaScript console is a command line interpreter that accepts single line JavaScript commands that will be executed
one at a time. You type the commands into the bottom text entry panel and, when you press the Enter key to execute the
command, it is added to the upper, output window with any output from the command.

This feature is available in the Corporate, Unified and Ultimate editions of Enterprise Architect.

Access

Ribbon Specialize > Tools > JavaScript

Simulate > Console > JavaScript

Console Commands

Console commands are preceded by the ! character and instruct the console to perform an action.

The available console commands include:

!clear - clears the console display·
!save - saves the console display to a file·
!help - prints a list of commands·
!close - closes the console·
!include <scriptname> - executes the named script item; scriptname is of the format GroupName.ScriptName·
(spaces are allowed in names)

? - lists commands (same as !help)·
? <variable or function name> - outputs the value.·

To list these commands on the 'Console' tab itself, type ? in the lower panel (without the preceding ! character) and press
the Enter key.

(c) Sparx Systems 2021 Page 195 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

If you intend to execute scripts, you might want to have the Script Library (Scripting window) open as well, so that you
can see the scripts available to call. Select the 'Specialize > Tools > Script Library' ribbon option.

Videos

Sparx Systems provide a YouTube video of using the JavaScript Console to create a JavaScript Solver. See:

 Matlab and Simulink Integration in Enterprise Architect 15.2: Part 1 JavaScript Solver

(c) Sparx Systems 2021 Page 196 of 204 Created with Enterprise Architect

https://www.youtube.com/watch?v=2LvC70P0-b4&list=PLsiYAecFNMTxUD-FRSvzRi_OhW2JfZ2hk&index=3

Scripting 2 September, 2021

Script Group Properties

When you create a script you develop it within a script group, the properties of which determine how that script is to be
made available to the user - through the Browser window context menu to operate on objects of a specific type, or
through a diagram context menu. You create a Script Group using the first icon on the 'Scripts' tab toolbar.

Access

Ribbon Specialize > Tools > Scripting > Scripts > right-click on [Group name] > Group
Properties

Define the Script Group Properties

Field/Button Action

Name Type in the name of the script group.

Group UID (Read only) The automatically assigned GUID for the group.

Source (Read only) The location of the template used to create the script.

Group Type Click on the drop-down arrow and select the type of script contained in the group;
this can be one of:

(c) Sparx Systems 2021 Page 197 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

Normal - () General model scripts·

Browser window - () Scripts that are listed in and can be executed from the·
Browser window 'Scripts' context menu option

Workflow - () Scripts executed by Enterprise Architect's workflow engine;·
you can create only VB scripts of this type

Search - () Scripts that can be executed as model searches; these scripts are·
listed in the 'Search' field of the Model Search window, in the last category in
the list

Diagram - () Scripts that can be executed from the 'Scripts' submenu of the·
diagram context menu

Find in Project - () Scripts that can be executed from the 'Scripts' submenu·
of a context menu within the Model Search view, on the results of a
successfully-executed SQL search that includes CLASSGUID and
CLASSTYPE, or a Query-built search

Element - Scripts that can be executed from the 'Scripts' submenu of element·
context menus; accessible from the Browser window, Diagram, Model Search,
Element List, Package Browser and Gantt views

Package - Scripts that can be executed from the 'Scripts' submenu of Package·
context menus; accessible from the Browser window

Diagram - Scripts that can be executed from the 'Scripts' context menu option·
for diagrams; accessible from the Browser window and diagrams

Link - Scripts that can be executed from the 'Scripts' context menu option for·
connectors; accessible from diagrams

Notes Type in any comments you need regarding this script group.

(c) Sparx Systems 2021 Page 198 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

Script Editor

Using the Script Editor you can perform a number of operations on an open script file, such as:

Save changes to the current script·
Save the current script under a different name·
Run the script·
Debug the script·
Stop the executing script·
View the script output in the 'Scripts' tab of the System Output window·

The editor is based on, and provides the facilities of, the common Code Editor in the application work area.

Access

Ribbon Specialize > Tools > Scripting > Scripts > right-click on [script name] > Edit
Script or

Specialize > Tools > Scripting > Scripts > double-click on [script name]

Facilities

Facility Detail

Scripting Objects Enterprise Architect adds to the available functionality and features of the editor
script language by providing inbuilt objects; these are either Type Libraries
providing Intelli-sense for editing purposes, or Runtime objects providing access to
objects of the types described in the Type Libraries.

The available Intelli-sense scripting objects are:

EA·
MathLib·
System·

The runtime scripting objects are:

Repository (Type: IDualRepository, an instance of EA.Repository, the·
Enterprise Architect Automation Interface)

Maths (Type: IMath, an instance of MathLib; this exposes functions from the·
Cephes mathematical library for use in scripts)

Session (Type: ISession, an instance of System)·

Script Editing Intelli-sense
(Required Syntax)

Intelli-sense is available not only in the 'Script Editor', but also in the 'Script
Console'; Intelli-sense at its most basic is presented for the inbuilt functionality of
the script engine.

For Intelli-sense on the additional Enterprise Architect scripting objects (as listed)
you must declare variables according to syntax that specifies a type; it is not
necessary to use this syntax to execute a script properly, it is only present so that
the correct Intelli-sense can be displayed for an item.

(c) Sparx Systems 2021 Page 199 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

The syntax can be seen in, for example:

 Dim e as EA.Element

Then when you type, in this case, e., the editor displays a list of member functions
and properties of e's type.

You select one of these to complete the line of script; you might, therefore, type:

 VBTrace(e.

As you type the period, the editor presents the appropriate list and you might
double-click on, for example, Abstract; this is inserted in the line, and you continue
to type or select the rest of the statement, in this case adding the end space and
parenthesis:

 VBTrace(e.Abstract)

Keystrokes In the Script Editor or Console, Intelli-sense is presented on these keystrokes.

Press . (period) after an item to list any members for that item's type·
Press Ctrl+Space on a word to list any Intelli-sense items with a name starting·
with the string at the point the keys were pressed

Press Ctrl+Space when not on a word to display any available top level·
Intelli-sense items - these are the Intelli-sense objects already described plus
any built-in methods and properties of the current scripting language

Include script libraries An Include statement (!INC) allows a script to reference constants, functions and
variables defined by another script accessible within the Scripting Window.
Include statements are typically used at the beginning of a script.

To include a script library, use this syntax:

 !INC [Script Group Name].[Script Name]

For example:

 !INC Local Scripts.EAConstants-VBScript

Using Inbuilt Math
Functions

Various mathematical functions are available within the Script Editor, through the
use of the inbuilt Maths object.

You can access the Maths object within the Script Editor by typing 'Maths'
followed by a period. The Intelli-sense feature displays a list of the available
mathematical functions provided by the Cephes Mathematical Library. For
example:

 Session.Output "The square root of 9 is " & Maths.sqrt(9)

 Session.Output "2^10 = " & Maths.pow(2,10)

The Maths object is available in the Unified and Ultimate Editions of Enterprise
Architect.

Using COM / ActiveX
Objects

VBScript, JScript and JavaScript can each create and work with ActiveX / COM
objects. This can help you to work with external libraries, or to interact with other
applications external to Enterprise Architect. For example, the
Scripting.FileSystemObject Class can be used to read and write files on the local
machine. The syntax for creating a new object varies slightly for each language, as
illustrated by these examples:

VBScript:

 set fsObject = CreateObject("Scripting.FileSystemObject")

JScript:

 fsObject = new ActiveXObject("Scripting.FileSystemObject");

JavaScript:

(c) Sparx Systems 2021 Page 200 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

 fsObject = new COMObject("Scripting.FileSystemObject");

Using JavaScript with
out-of-process COM
servers

Users of JavaScript in Enterprise Architect can access out-of-process COM servers.
The application must be registered on the machine as providing local server
support. The syntax for creating or obtaining a reference to an out-of-process server
is:

 var server = new COMObject(progID, true);

where progID is the registered program ID for the COM component
('Excel.Application', for example).

System Script Library When Enterprise Architect is installed on your system, it includes a default script
library that provides a number of helpful scripting functions, varying from simple
string functions to functions for defining your own CSV or XMI import and export.

To use the script library you must enable it in the 'MDG Technologies' dialog
('Specialize > Technologies > Manage-Tech' ribbon option).

Scroll through the list of technologies, and select the 'Enabled' checkbox against
'EAScriptLib'.

Notes

The Script Editor is available in the Corporate, Unified and Ultimate Editions·
Enterprise Architect scripting supports declaring variables to match the Enterprise Architect types; this enables the·
editor to present Intelli-sense, but is not necessary for executing the script

(c) Sparx Systems 2021 Page 201 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

Session Object

The Session runtime object provides a common input/feedback mechanism across all script languages, giving access to
objects of the types described in the System Type library. It is available through both the 'Scripts' tab and the script
'Console' tab to any script run within Enterprise Architect.

Properties

Properties Detail

Attributes UserName - Returns the current windows username (read only)·
Version - Returns the version of this object (read only)·

Methods Input(string Prompt) - displays a dialog box prompting the user to input a·
value; returns the string value that was entered by the user

Output(string Output) - writes text to the current default output location;·
during:
 - Normal script execution, output is written to the 'Script' tab of the System
Output window
 - Script Debugging, output is written to the Debug window
 - Use of the Script Console, output is written to the Console

Prompt(string Prompt, long PromptType) - displays a modal dialog containing·
the specified prompt text and button types; returns the 'PromptResult' value
corresponding to the button that the user clicked

PromptType values promptOK = 1·
promptYESNO = 2·
promptYESNOCANCEL = 3·
promptOKCANCEL = 4·

PromptResult values resultOK = 1·
resultCancel = 2·
resultYes = 3·
resultNo = 4·

Session.Prompt Example (VBScript)

If (Session.Prompt("Continue?", promptYESNO) = resultYes) Then...

(c) Sparx Systems 2021 Page 202 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

Script Debugging

Script debugging aids in the development and maintenance of model scripts, and monitoring their activity at the time of
execution. While debugging a script, you can:

Control execution flow using the 'Debug', 'Step Over', 'Step Into', 'Step Out' and 'Stop Script' buttons on the Script·
Editor toolbar

Set Breakpoints, Recording Markers and Tracepoint Markers·
Use the Debug window to view output generated by the script·
Use the Locals window to inspect values of variables, including objects from the Automation Interface·
Use the Record & Analyze window to record a Sequence diagram of the script execution·

Access

Ribbon Specialize > Tools > Scripting > Scripts > right-click on [script name] > Debug
Script

Other
Script Editor window toolbar : Click on the toolbar icon

Begin debugging a model script

Step Action

1 Open a model script in the Script Editor.

2 Set any Breakpoints on the appropriate line(s) of code.

3
Click on the toolbar icon (Debug).

Notes

Script debugging is supported for VBScript, JScript and JavaScript·
VBScript and JScript require the Microsoft Process Debug Manager to be installed on the local machine; this is·
available through various Microsoft products including the free 'Microsoft Script Debugger'

Breakpoints are not saved for scripts and will not persist when the script is next opened·
While debugging, script output is redirected to the Debug window·

(c) Sparx Systems 2021 Page 203 of 204 Created with Enterprise Architect

Scripting 2 September, 2021

(c) Sparx Systems 2021 Page 204 of 204 Created with Enterprise Architect

	Scripting
	JavaScript Math Library
	Arithmetic and Algebraic
	sqrt
	lsqrt
	cbrt
	polevl, p1evl
	chbevl
	round
	floor
	ceil
	frexp
	ldexp
	fabs
	signbit
	isnan
	isfinite
	poladd
	polsub
	polmul
	poldiv
	polsbt
	poleva
	polclr
	polmov

	Exponential and Trigonometric
	acos
	acosh
	asinh
	atanh
	asin
	atan
	atan2
	cos
	cosdg
	exp
	exp2
	exp10
	cosh
	sinh
	tanh
	log
	log2
	log10
	pow
	powi
	sin
	sindg
	tan
	tandg

	Exponential integral
	expn
	shichi
	sici

	Gamma
	beta
	lbeta
	fac
	gamma
	lgam
	incbet
	incbi
	igam
	igamc
	igami
	psi
	rgamma

	Error function
	erf
	erfc
	dawsn
	fresnl

	Bessel
	airy
	j0
	j1
	jn
	jv
	y0
	y1
	yn
	yv
	i0
	i0e
	i1
	i1e
	iv
	k0
	k0e
	k1
	k1e
	kn

	Hypergeometric
	hyperg
	hyp2f1
	hyp2f0
	onef2
	threef0

	Elliptic
	ellpe
	ellie
	ellpk
	ellik
	ellpj

	Probability
	bdtr
	bdtrc
	bdtri
	chdtr
	chdtrc
	chdtri
	fdtr
	fdtrc
	fdtri
	gdtr
	gdtrc
	nbdtr
	nbdtrc
	ndtr
	ndtri
	pdtr
	pdtrc
	pdtri
	stdtr

	Miscellaneous
	polylog
	spence
	zetac
	zeta
	struve

	Matrix
	fftr
	simq
	minv
	mmmpy
	mvmpy
	mtransp
	eigens

	Numerical Integration
	simpsn

	Complex Arithmetic
	cadd
	csub
	cmul
	cdiv
	cabs
	csqrt

	Complex Exponential and Trigonometric
	cexp
	clog
	ccos
	cacos
	csin
	casin
	ctan
	catan
	ccot

	errors

	Solvers Interface
	Scripts Tab
	Console Tab
	JavaScript Console
	Script Group Properties
	Script Editor
	Session Object
	Script Debugging

