
Simulation and Behavior

Enterprise Architect

User Guide Series

Author: Sparx Systems & Stephen Maguire

Date: 2020-04-03

Version: 1.0

CREATED WITH

Table of Contents

Introduction 6
Dynamic Model Simulation 7

How it Looks 9
Simulation Windows 10
Set Up Simulation Script 13
Activate Simulation Script 15
Run Model Simulation 16
Simulation Breakpoints 18
Objects and Instances in Simulation 20

Create Objects in a Simulation 21
Destroy Objects in a Simulation 24

Dynamic Simulation with JavaScript 26
Call Behaviors 29
Interaction Operand Condition and Message Behavior 31
Guards and Effects 33
Triggers 35

Action Behavior By Type 37
Structured Activity Simulation 39
Activity Return Value Simulation 41
Simulation Events Window 44
Waiting Triggers 47
Re-Signal Triggers 48

Multi-threading - Forks and Joins 49
Trigger Parameters 50
Trigger Sets and Auto-Firing 52
Using Trigger Sets to Simulate an Event Sequence 54
Multi-threading - Concurrent State Regions 55
Using Composite Diagrams 56
Win32 User Interface Simulation 58

Supported Win32 UI Controls 60
Win32 Control Tagged Values 70

BPMN Simulation 71
Create a BPMN Simulation Model 72

Initialize Variables and Conditions 74
Comparison of UML Activities and BPMN Processes 76

Business Process Simulation (BPSim) 78
BPSim Configuration 81

BPSim - Configure Page 83
BPSim - Execute Page 93
BPSim - Step Page 95
BPSim - Review Page 100
Using the Parameter Value Dialog 102

The BPSim User Interface Components 105
The BPSim Control Perspective 108
The BPSim Resource Perspective 111
The BPSim Time Perspective 115
Configuration Inheritance 117

Using the MDG BPSim Execution Engine 118
BPSim Execution Engine - Simulation language 122
Tracking Property Parameter Values 125

Tracking Property Parameter Values - Examples 127
Compare BPSim Configurations 136
BPSim Charts 139
BPSim Examples 143

Help Desk Phone Support Simulation - Resource Perspective 144
Calendar-Based Help Desk Phone Support Simulation 153
Car Repair Process 157
BPMN2.0 Event Examples 163

Error Event 164
Escalation Event 168
Event Sub-Process 171
Fibonacci Number Generator with Link Event 176
Message Event 179
Signal Events 184
Timer Event - Boundary 192
Timer Event - Standalone Intermediate Event 195

Paint Wall Process Simulation (Call Activity) 198
BPSim Cost Parameters 203

Export a BPSim Configuration 209
DMN Modeling and Simulation 211

An Example of Decision Modeling 213
Building a Decision Model in Enterprise Architect 215
Components of Decision Requirements Diagrams 221
DMN Expression Editor 223

Decision Table 225
Toolbar for Decision Table Editor 230
Decision Table Hit Policy 232
Decision Table Validation 235

Literal Expression 238
Toolbar for Literal Expression Editor 241
Example - Loan Repayment 242

Boxed Context 244
Toolbar for Boxed Context Editor 247
Example - Loan Installment Calculation 248

Invocation 252
Toolbar for Invocation Editor 255
Example 1 - Bind Input Data to Business Knowledge Model 257
Example 2 - Bind Context Entry variables to Business Knowledge Model 259

Edit DMN Expression Dialog 260
DMN Expression Validation 263
DMN Expression Auto Completion 265

Decision 269
Business Knowledge Model 270

BKM Parameters 272
Input Parameter Values for Simulation 274

Decision Table Simulation Example 276
Literal Expression Simulation Example 278

InputData 280

InputData DMN Expression 281
ItemDefinition 283

Item Definition Toolbar 285
ItemDefinitions and Data Sets 286
Types of Component 289
Allowed Value Enumerations 291

Data Sets 292
Exchange Data Sets using DataObjects 295

Decision Service 299
Simulating a Decision Service 302

DMN Simulation 304
Simulate DMN Model 307
DMN Simulation Toolbar 311
Example DMN Simulation 313

DMN Module Code Generation and Test Module 315
Integrate a DMN Module Into BPSim for Simulation 318

Example: Integrate DMN Decision Service into BPSim Data Object and Property Parameter 323
Example: Integrate DMN Business Knowledge Model into BPSim Property Parameter 324

Integrate DMN Module Into UML Class Element 325
Importing DMN XML 331

Executable StateMachines 333
Executable StateMachine Artifact 335
Modeling Executable StateMachines 337
Code Generation for Executable StateMachines 341
Debugging Execution of Executable StateMachines 347
Execution and Simulation of Executable StateMachines 349
Example: Simulation Commands 350
Example: Simulation in HTML with JavaScript 358

CD Player 359
Regular Expression Parser 363

Entering a State 365
Example: Fork and Join 374
Example: Deferred Event Pattern 378
Example: Entry and Exit Points (Connection Point References) 384
Example: History Pseudostate 389
Example Executable StateMachine 397

Parametric Simulation using OpenModelica 401
Interfacing with OpenModelica 402

OpenModelica on Windows 403
OpenModelica on Linux 405

Creating a Parametric Model 408
Configure SysML Simulation Window 420
Model Analysis using Datasets 424
Modeling and Simulation with Modelica Library 426
SysML Simulation Examples 431

Electrical Circuit Simulation Example 432
Mass-Spring-Damper Oscillator Simulation Example 440
Water Tank Pressure Regulator 447

Troubleshooting OpenModelica Simulation 457

User Guide - Simulation and Behavior 3 April, 2020

(c) Sparx Systems 2020 Page 5 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Introduction

Enterprise Architect is a powerful platform that provides a unique set of developer tools integrated into a sophisticated
development environment. In addition to the standard facilities available to work with static code, there is a wide range
of facilities that support the simulation and automatic code generation from the models.

In an era dominated by digital disruption and the need for organizations to be agile and responsive to dynamic business
changes, these facilities provide a powerful insurance policy that will ensure an organization becomes a true digital
enterprise.

Enterprise Architect holds a unique position and, regardless of whether you use Enterprise Architect's powerful standard
code engineering features or another Integrated Development Environment such as Eclipse or Visual Studio, these
facilities provide productivity gains not matched in other tools.

Model Simulation brings your behavioral models to life with instant, real-time behavioral model execution. Coupled with
tools to manage triggers, events, guards, effects, breakpoints and simulation variables, plus the ability to visually track
execution at run-time, the Simulator is a powerful means of 'watching the wheels turn' and verifying the correctness of
your behavioral models. With Simulation you can explore and test the dynamic behavior of models. In the Corporate,
Unified and Ultimate editions, you can also use JavaScript as a run-time execution language for evaluating guards,
effects and other script-able pieces of behavior.

With extensive support for triggers, trigger sets, nested states, concurrency, dynamic effects and other advanced
simulation capabilities, Enterprise Architect provides a remarkable environment in which to build interactive and
working models that help explore, test and visually trace complex business, software and system behavior. With
JavaScript enabled, it is also possible to create embedded COM objects that will do the work of evaluating guards and
executing effects - allowing the simulation to be tied into a much larger set of dependent processes. For example, a COM
object evaluating a guard condition on a State Transition might query a locally running process, read and use a set of test
data, or even connect to an SOA web service to obtain some current information.

As Enterprise Architect uses a dynamic, script driven Simulation mechanism there is no need to generate code or
compile your model before running a simulation. It is even possible to update simulation variables in real time using the
Simulation console window. This is useful for testing alternate branches and conditions 'on the fly', either at a set
Simulation break point or when the Simulation reaches a point of stability (for example, when the Simulation is
'blocked').

In the Professional version of Enterprise Architect, you can manually walk through simulations - although no JavaScript
will execute - so all choices are manual decisions. This is useful for testing the flow of a behavioral model and
highlighting possible choices and processing paths.

(c) Sparx Systems 2020 Page 6 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Dynamic Model Simulation

Using the Model Simulator, you can simulate the execution of conceptual model designs containing behavior. When you
start a simulation, the current model Package is analyzed and a dynamic simulation process spawned to execute the
model. As the simulator analyzes and works with UML constructs directly, there is no requirement to generate
intermediary code or compile simulation 'executables'. This results in a very rapid and dynamic simulation environment
in which changes can be made and tested very rapidly.

To get up and running with simulation, the only steps required are:

Build a behavioral diagram (State or Activity for manual or dynamic execution, Sequence for manual interaction·
only)

Optional: load the 'Simulation Workspace' layout - a fast way of bringing up all the frequently used Simulation·
windows

Click on the simulator Play button·

If the diagram contains any external elements (those not in the same Package as the diagram) you will have to create an
Import connector from the diagram's Package to the Package containing the external elements. You can do this by
dragging both Packages from the Browser window onto a diagram and using the Quick Linker arrow to create the
connector between them.

The Professional edition provides a quick and simple way to verify your design's behavior for logical correctness by
manually stepping through a diagram. In the Corporate edition and above it is possible to:

Dynamically execute your behavioral models·

Assess guards and effects written in standard JavaScript·

Define and fire triggers into running simulations·

Define and use sets of triggers to simulate different event sequences·

Auto-fire trigger sets to simulate complex event histories without user intervention·

Update simulation variables 'on the fly' to change how simulations proceed·

Create and call COM objects during Simulation to extend the Simulation's reach and input/output possibilities·

Inspect Simulation variables at run time·

Set a script 'prologue' for defining variables, constants and functions prior to execution·

Use multiple Analyzer Scripts with differing 'prologues' for running the Simulation under widely differing·
conditions

In the Unified and Ultimate Editions it is also possible to simulate BPMN models.

Platforms and Editions Available

Platform/Edition Details

Models and Platforms
Supported

The Model Simulator currently supports the execution of UML Activity, Interaction
and StateMachine models and BPMN Business Processes on the simulation
platforms:

UML Basic·

BPMN·

Edition Support Model Simulation is available at different levels across the range of editions of
Enterprise Architect:

Professional - Manual Simulation only·

Corporate and above - Adds dynamic JavaScript evaluation·

(c) Sparx Systems 2020 Page 7 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Unified and Ultimate - Adds BPMN simulation·

(c) Sparx Systems 2020 Page 8 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

How it Looks

Enterprise Architect has a special way of displaying model information during simulation. This helps focus attention on
the executing or active nodes.

During a Simulation, Enterprise Architect will dynamically track and highlight the active nodes within your model. If a
node in another diagram is activated, that diagram will be automatically loaded and the current node highlighted. It is
possible to modify the diagram while the simulation is running; however, the changes made are not recognized until the
current simulation is ended and a new one begun.

Highlighting of the active node (s) during simulation

In the example here, the currently active node (VehiclesGreen) is highlighted in normal Enterprise Architect colors·

All possible transitions out of the current node are rendered at full strength·

The elements that are possible targets of the current active node's outgoing transitions are rendered in a semi-faded·
style so they are readable and clearly different to the other elements within the diagram

All other elements are rendered in a fully faded style to show they are not targets of the next Simulation step·

As the Simulation progresses (especially if automatically run), this highlighting helps focus the attention on the current
item and its visual context.

(c) Sparx Systems 2020 Page 9 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Simulation Windows

When executing a Simulation in Enterprise Architect it is possible to set break-points, fire triggers, examine variables,
record a trace of execution, set simulation speed, view the call stack and visually trace the active nodes as the simulation
proceeds.

When a Simulation runs, some aspects such as the output and console input are found in the Simulator window itself,
while others such as the local variables and call-stack use the standard Execution Analyzer windows. The table provides
an overview of the main Windows used during Simulation.

Access

Ribbon Simulate > Dynamic Simulation > Simulator > Open Simulation Window

Windows

Window Purpose

Execution and Console The Simulation window provides the main interface for starting, stopping and
stepping your Simulation. During execution it displays output relating to the
currently executing step and other important information. See the Run Model
Simulation topic for more information on the toolbar commands.

Note the text entry box just underneath the toolbar. This is the Console input area -
here you can type simple javascript commands such as: this.count = 4; to
dynamically change a Simulation variable named "count" to 4. In this way you can
dynamically influence simulation at run-time.

Breakpoints & Events
Window

The Simulation process also makes use of the 'Simulation Breakpoints' tab of the
Breakpoints & Markers window ('Simulate > Dynamic Simulation > Breakpoints').
Here you set execution breakpoints on specific elements and messages in a
Simulation. See the Simulation Breakpoints topic for more details.

(c) Sparx Systems 2020 Page 10 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Simulation Events Window The Simulation Events window ('Simulate > Dynamic Simulation > Events')
provides tools to manage and execute triggers. Triggers are used to control the
execution of StateMachine transitions.

Call Stack Window During the Simulation the Call Stack window ('Simulate > Dynamic Simulation >
Call Stack') displays information about the Threads and current execution context
of the Simulation.

The Simulator supports multi-threaded Simulations and will include a Thread entry
for every active and paused thread of execution. For each thread, the Call Stack
window will show the start or entry context (such as a StateMachine element) plus
the current active element within that thread. If the current active element is the
entry point of a composite activity or sub-machine state, the stack will also include
the current active element within that sub-context (and all further nested, active
composite, sub-states as well).

Simulation Local Variable
Window

The Simulator uses the standard Locals window ('Simulate > Dynamic Simulation
> Local Variables') to show all current Simulation variables when the simulation is
single stepping or paused at a break point. Note that it is possible to dynamically
update these variables using the Simulator Console.

(c) Sparx Systems 2020 Page 11 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Recording During execution of your Simulation, a recording is kept of all activity and
displayed in the Record & Analyze window ('Execute > Tools > Recorder > Open
Recorder'). This is similar to how the normal call recording works in the Visual
Execution Analyzer.

(c) Sparx Systems 2020 Page 12 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Set Up Simulation Script

You can use Simulation scripts to provide fine control over how a simulation starts. In general, you do not need to set up
a Simulation script unless:

You want to run an interpreted simulation that requires variables to be initialized before the simulation commences;·
this is useful for setting up global variables and defining functions

(In the Corporate Edition and above) You do not want to apply the default behavior of interpreting the Guards (that·
is, you prefer to use a Manual execution), or

You want to have multiple ways of running the same diagram·
For most diagrams it is possible to initialize a script for a simulation simply by setting variables in the first element or
connector after the Start element. For State Charts, this is the Transit connector exiting the initial element, and for
Activity models this is the first Action element.

As an alternative, you can use Simulation scripts to initialize settings before a simulation starts. This is useful for setting
up different sets of initial values using multiple Analyzer Scripts, so that you can run your simulation under a range of
pre-set conditions.

To configure a simulation execution script, first select the Package in the Browser window, Package Browser, Diagram
List or Model Search. You can then use the Execution Analyzer window to add a new Script for that selected Package.
You will use the 'Simulation' page of the 'Execution Analyzer' dialog to configure the relevant properties.

Access

Show the Execution Analyzer window using one of the methods outlined here.

On the Execution Analyzer window, either:

Locate and double-click on the required script and select the 'Simulation' page or·

Click on in the window Toolbar and select the 'Simulation' page·

Ribbon Develop > Preferences > Analyzer > Edit Analyzer Scripts

Execute > Tools > Analyzer

Context Menu Browser window | Right-click on Package | Execution Analyzer

Keyboard Shortcuts Shift+F12

Configure a Simulation Script

Option Action

Platform For UML Activity, Interaction or StateMachine simulation, click on the drop-down
arrow and select 'UML Basic'.

For BPMN diagrams, click on the drop-down arrow and select 'BPMN'.

Entry Point
Click on the button and select the:

Entry point for the simulation, and·

Activity, Interaction or StateMachine to simulate·

(c) Sparx Systems 2020 Page 13 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

If you do not specify an entry point, the simulator attempts to work through the
entire Package.

Evaluate Guards and
Effects using JavaScript

(In Corporate and higher editions) Leave the checkbox unselected to perform a
manual simulation, where you select the next State to transition to and the point
where a decision must be made.

Select the checkbox to execute the code for Effect behavior in the simulation. The
simulation executes JavaScript code in these places:

State entry/exit/do operations·

Transition guard/effect·

BPMN Activity Loop Conditions and Sequence Flow Condition Expressions·

With the exception of the guard, all of these should be one or more valid JavaScript
statements, including the semi-colon.

The guard must be a valid boolean expression, also terminated with a semi-colon.

Variables that are members of 'sim' or 'this' are listed in the Locals window when a
simulation breakpoint is reached.

 sim.count = 0;

Input When JavaScript is enabled, you can type script commands in this field that will
execute prior to the simulation being run.

Post Processing Script Using a Post Simulation Script, you can run JavaScript after the simulation ends.
Type in the qualified name of a script from the model script control.

For example, if you have a script named 'MyScript' in the Script Group 'MyGroup',
type in the value 'MyGroup.MyScript'.

OK Click on this button to save your changes.

Notes

Usually all simulation elements and relationships reside within the Package configured for simulation; however, you·
can simulate diagrams that include elements from different Packages, by creating Package Import connectors from
the configured Package to each 'external' Package (alternatively, for a BPSim model, create a Dependency connector
from the configured Package to each external element)

(c) Sparx Systems 2020 Page 14 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Activate Simulation Script

An Execution Script is configured for a model Package defining the simulation parameters. The most common reason for
activating an execution script is when multiple simulation scripts are configured against a Package and you want to run a
specific one.

Access

Ribbon Execute > Tools > Analyzer

Develop > Preferences > Analyzer

Analyzer Window Click the Analyzer Script checkbox to make it active

Keyboard Shortcuts Shift+F12

Activate a Simulation script for execution

Step Action

1 In the Execution Analyzer window, select the required execution script. This makes it the current default
for your open model, so that clicking on the Simulation Run button will automatically invoke this
Simulation script.

2 Click on the checkbox to the left of the script to activate it.

3 Select the 'Simulate > Simulator > Open Simulation Window' ribbon option to execute the simulation.

(c) Sparx Systems 2020 Page 15 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Run Model Simulation

A simulation executes the model step-by-step, enabling you to validate the logic of your behavioral model. The current
execution step is automatically highlighted in the model's diagram to make it easy to understand the various processes
and state changes as they occur during the simulation.

There are several ways to start a model simulation:

When the active diagram can be simulated, the Run button on the main Simulation window will process the current·
diagram, either by running an existing script or defining a new temporary one

When the active diagram can not be simulated, the Run button on the main Simulation window will run the·
simulation for the active Execution Analyzer script

By right-clicking on a Simulation script in the Execution Analyzer window and selecting the 'Start Simulation'·
option

By right-clicking on a suitable diagram and selecting one of the 'Execute Simulation' options·
There are visual cues during execution. When the simulation is running, Enterprise Architect will actively highlight each
active node for each executed step. In addition, all outgoing transitions and control flows will be highlighted, showing
the possible paths forward. Elements at the end of possible paths forward will be de-emphasized to half-strength and any
other remaining elements will be 90% 'grayed out'. This provides a very dynamic and easy to follow execution that
continually refocuses attention on the execution context.

Access

Ribbon Simulate > Dynamic Simulation > Simulator > Open Simulation Window

Simulate > Run Simulation > Start

Edition Specific Details

In the Professional edition, if a branch is encountered in the execution, the simulator prompts you to choose the
appropriate path to take in your execution.

In the Corporate, Unified and Ultimate editions, in which JavaScript is enabled, the Simulation will automatically
evaluate all guards and effects and dynamically execute the Simulation without user intervention. If the Simulation
becomes blocked due to no possible paths forward evaluating to True (or multiple paths evaluating to True) you can
modify Simulation variables on the fly using the console input of the Simulation Execution window.

Run a Simulation Using the Toolbar

(c) Sparx Systems 2020 Page 16 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Icon Action

Start the simulator for the current diagram or, if the current diagram cannot be
simulated, run simulation using the activated simulation script.

Pause the simulation.

When the simulation is paused, step over, step in and step out to control the
simulator's execution at the required step in the model simulation.

Stop the simulation.

Click on the drop-down arrow and select the type of simulation to run:

'Interpreted' - Perform dynamic execution of a simulation (Corporate and·
Extended Editions)

'Manual' - Step through a simulation manually (the only option available in the·
Professional edition)

'Executable' - Select when running the simulation on an Executable·
StateMachine

Click on the drop-down arrow and select from a menu of options for performing
specific operations on the simulation script and output, such as Build, Run,
Generate and View Breakpoints.

Vary the execution rate of the simulation, between 0% and 100%; at:

100%, the simulation executes at the fastest possible rate·

0% the simulator breaks execution at every statement·

Notes

The Simulation tool only becomes active when a valid simulation Execution Script is activated·
You can set a Simulation script as the current default by setting its checkbox in the Execution Analyzer window·

(c) Sparx Systems 2020 Page 17 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Simulation Breakpoints

The 'Simulation Breakpoints' tab of the Breakpoints & Events window enables you to interrupt and inspect the simulation
process.

When dynamically executing a simulation (in the Corporate and above editions) the process will proceed automatically -
if you want to stop execution at some point to examine variables, inspect call stacks or otherwise interact with the
simulator, you can set a breakpoint on a model element in much the same way as you would with a line of source code.
When the simulator reaches the breakpoint execution is halted and control returned to Enterprise Architect.

Access

Ribbon Simulate > Dynamic Simulation > Breakpoints > Simulation Breakpoints

Breakpoints

The simulation executes the model step-by-step, enabling you to validate the logic of your behavior model; the
simulation halts when it reaches an element defined as a breakpoint.

The UML elements that can be defined as breakpoints include: Actions, Activities, States and most other behavioral
nodes (such as decision, initial, or final).

The UML relationships that can be defined as breakpoints include Interaction Messages.

The breakpoints are stored as Breakpoint Sets for a given Enterprise Architect project.

Elements that are included in a simulation and that have breakpoints are marked by a green circle off the top left corner
of the element, whilst the simulation is in progress. If the simulation is not running, the green circles are not displayed.

When JavaScript is enabled, all Simulation variables will be displayed in the Locals window - and it is possible to
modify Simulation variables using the Simulation window's console input field (underneath the Toolbar).

Toolbar Buttons

Item Description

Enables all breakpoints defined in the current Breakpoint Set for the simulation
session.

Deletes all breakpoints defined in the current Breakpoint Set for the simulation
session.

Disables all breakpoints defined in the current Breakpoint Set for the simulation
session.

Adds a breakpoint for the selected element or Sequence message to the current
Breakpoint Set.

Changes the selected Breakpoint Set for use in the simulation session.

(c) Sparx Systems 2020 Page 18 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Performs Breakpoint Set commands:

New Set: Create a new Breakpoint Set·

Save As Set: Saves the current Breakpoint Set under a new name·

Delete Selected Set: Deletes the current Breakpoint Set·

Delete All Sets: Deletes all Breakpoint Sets saved for the diagram·

(c) Sparx Systems 2020 Page 19 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Objects and Instances in Simulation

As a given business, system or mechanical process executes, the Activities and Actions within it might generate objects
of a specific type and perform operations on those objects, perhaps even consuming or destroying them. You can
simulate the creation, use and consumption of such objects using a simulation model that represents the objects and
actions with model elements such as Classes, Instance Objects, attributes, operations and Ports (ActionPins and
ObjectNodes). The model can also create, act on and destroy several different objects at different stages as part of the
same process. Representing model data or objects in simulation makes the simulation more accurately reflect the real
process.

Object Concepts

Term Description

SimType The type of simulation element, such as Class, Enumeration or Interface. These can
be classifiers of objects in a simulation.

SimObject An object that is an instance of (is classified by) a SimType element.

Attribute A property of a SimType element, or of a specified node such as an ActivityNode.

Operation A behavior of a SimType element, or of a specified node such as an ActivityNode.

Port A Port of a Class or Object, an ActionPin of an Action, or an ObjectNode of an
Activity. Ports of classifiers are a type, whilst a Port of an object is a realization of
the type.

Parameter/

Activity Parameter

Parameters of Operations; Activity Parameters are, specifically, parameters of
ActivityNodes.

Slot A realization of an attribute in an object. A Slot has a run time value that can be
initialized by the run state value of the Slot. If these values don't exist, the system
uses the initial values of the attributes.

Runtime Environment All objects exist in the JavaScript runtime environment, so you can use JavaScript
to create or change simulation objects and simulation variables.

Display Variables All simulation objects, simulation variables or events are identified on the Locals
window while they are in effect. In some cases, to show the variables you might
need to add break points to the model to pause processing while the variable exists.

As all objects and variables are shown, global variables that exist outside the
simulation but that are significant to it - such as the parent Class and Activity
elements within which a process is defined - are automatically also represented as
default object variables. So too is the anticipated output of the Activity, as a return
variable.

(c) Sparx Systems 2020 Page 20 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Create Objects in a Simulation

In a simulation model, you can create Classes and either create instances of them (Global Objects) to represent objects
that exist in the process, or define Actions to generate one or more Objects at any point during the process.

You have three options for creating Objects in a simulation model:

Manually create the Object·
Dynamically create an Object through a CreateObject Action element·
Use the JavaScript function sim.CreateObject ("name") as the 'Effect' of an Action element, to again create an Object·
dynamically

Having created an Object dynamically you can also instantiate any inner objects of that Object, such as an Activity on a
Class, and act on the properties of that inner object.

Manually Create an Object

Simply create an Object element on a diagram in the model, either by:

Dragging an Object element from the 'Object' pages of the Diagram Toolbox and setting its classifier, or·

Dragging a classifier element from the Browser window and pasting it into the diagram as an instance·

In the simulation model you can then set up the Object properties themselves (such as setting run-states to re-set the
initial value of an attribute) or the behaviors of Actions to act on the Object (such as passing it along a process flow) and
observe what happens to the Object in a simulation.

Create an Object through a CreateObject Action

If your process generates objects in runtime, you can simulate this using a CreateObject Action.

Step Action

1 On your Activity diagram, drag an 'Action' icon from the Diagram Toolbox, and select the 'Other |
CreateObject' context menu option to define it as a CreateObject Action element.

2 Set the classifier of the CreateObject Action to the Class of which the Object will be an instance.

(Advanced | Set Classifier).

Create an Action Pin on the CreateObject Action, of kind output.

3 Create or select the next Action in the processing sequence, and add an Action Pin of kind input.

Connect the two Actions with a Control Flow connector, and the two Action Pins with an Object Flow
connector.

4 Perform a Simulation on the diagram. When the CreateObject Action is executed, it creates an Object

(c) Sparx Systems 2020 Page 21 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

having the properties of the classifier, and stores it in its Output Pin. The Object itself is passed through
the Object Flow connection to the Input Pin of Action 2, where its properties can be listed in the Locals
window for the simulation.

Create Object Using JavaScript

You also can create simulation objects dynamically using a JavaScript command in the 'Effect' field of the Action
element. The command is:

 sim.newObject = sim.CreateObject("ClassName");

or

 sim.newObject = new SimObject("ClassName"); (natural JavaScript)

That is: 'Simulate the creation of an Object based on Class <name>'. The classifying Class would exist in the same
Package as the Action.

As for the CreateObject Action element, the Object is created during the simulation and can be passed down to and
processed by 'downstream' elements. In this example, the created Object is identified as sim.object1 and in Action 2 it is
accessed and one of its attributes given a different value (also by JavaScript as an Effect of the Action).

Instantiate Inner Objects

As described earlier, you can create an Object using either JavaScript or a CreateObject Action. Similarly, you can
instantiate inner objects using JavaScript or a CallBehavior Action.

In this example, using JavaScript, the simulation first creates a test object based on Class1. Class 1 has an Activity
element and diagram, with an Activity Parameter 1 set to the integer 5 and an Activity Parameter 2 set to the string 'test'.
The value of Activity Parameter 1 is captured as a buffer value 'buf'.

(c) Sparx Systems 2020 Page 22 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

(c) Sparx Systems 2020 Page 23 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Destroy Objects in a Simulation

Having created or generated Objects in your simulation model, you can define Actions to destroy those objects at any
point during the process. All simulation objects are destroyed automatically when the simulation completes.

You have two options for destroying the Objects in your simulation model:

Dynamically destroy the Objects through a DestroyObject Action element·

Dynamically destroy the Objects using JavaScript in an Action element·

The result of the deletion can be observed in the change of local variables, on the Local window.

Destroy an Object through a DestroyObject Action

Step Action

1 On your Activity diagram, drag an 'Action' icon from the Diagram Toolbox, and select the 'Other |
DestroyObject' context menu option to define it as a DestroyObject Action element.

2 Set the classifier of the DestroyObject Action to the Class of which the Object is an instance.

(Advanced | Set Classifier).

Create an Action Pin on the DestroyObject Action, of kind input.

3 Connect the Input Action Pin to an Object Flow connector from the last Action that operated on the
Object. In this example, the last Action that operated on the Object is the Action that created it.

4 Perform a Simulation on the diagram. The process passes the Object name or value into the Input Action
Pin as a parameter. When the DestroyObject Action is executed, it deletes the Object having that name or
value from the model.

In the example, the instance of Class1 is specifically destroyed before Action4 is processed, but the results

(c) Sparx Systems 2020 Page 24 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

of Action2 are unaffected.

Destroy an Object using JavaScript

In the 'Properties' dialog of the Action element, in the 'Effect' field on the 'Effect' page, type either:

 sim.DestroyObject ("objectname")

or

 delete sim.objectFullName

For example:

Notes

In either case, you can also destroy a global object (one that is created outside the process flow) by identifying the·
Object to the Action performing the destruction; in the case of the DestroyObject Action, by passing the Object
name from a Port on the Object to the Input Pin on the Action through an Object Flow connector

(c) Sparx Systems 2020 Page 25 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Dynamic Simulation with JavaScript

The Corporate and suite editions of Enterprise Architect have the capability of using JavaScript to evaluate guards,
effects and other aspects of behavior within the Simulation context. This provides for a fully automated, intelligent
execution of your State or Activity model, with fine control over breakpoints, execution speed and simulation variables.

JavaScript can be written that uses any variables. To enable you to display the variable values to the user interface, two
objects are defined that have their members shown in the Local Variables window. These are sim and this; for example:

sim.logger·

sim.Customer.name·

this.count·

this.Account.amount·

All these variables will be shown in the Locals window.

The recommended convention is to add any global or control variables not declared in the owning Class to the sim
object. In contrast it would be normal to add attributes of the owning classifier to the this object.

Some examples of where and how you can set Simulation behavior using JavaScript are shown here. See the
EAExample.eap model that comes with Enterprise Architect for further examples. Also see the Learning Center for
further information on setting up and working with JavaScript in Simulations.

Using JavaScript

Setting Action

Analyzer Script Input If you enter JavaScript code into the Execution Analyzer window 'Input' field, this
code will be injected into the Simulation and executed before the Simulation starts.
This is useful for establishing COM variables, global counters, functions and other
initialization.

Transition and Control
Flow Guards

This is the workhorse of the Simulation functionality. As Enterprise Architect
evaluates possible paths forward at each node in a Simulation, it tests the Guards on
outgoing transitions and control flows and will only move forward if there is a
single true path to follow - otherwise the Simulation is considered 'blocked' and
manual intervention is required. You must use the '==' operator to test for equality.

(c) Sparx Systems 2020 Page 26 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Element Behavior Entry and Exit behavior can be defined for States. Such code will execute at the
appropriate time and is useful for updating Simulation variables and making other
assignments.

You can also simulate the behavior of Classes via their Object Instances, and
Activities in your model.

Using COM One very important feature of the implementation of JavaScript in Enterprise
Architect's simulator is that it supports the creation of COM objects. This provides
the ability to connect the running Simulation with almost any other local or remote
process and either influence the Simulation based on external data, or potentially
change data or behavior in the external world based on the current Simulation state
(for example, update a mechanical model or software simulation external to
Enterprise Architect). The syntax for creating COM objects is shown here:

 this.name="Odd Even";

 var logger = new COMObject("MySim.Logger");

 logger.Show();

 logger.Log("Simulation started");

Signalled Actions It is possible to raise a signalled event (trigger) directly using JavaScript. The
BroadcastSignal() command is used to raise a named trigger that could influence
the current state of a simulation. For example, this fragment raises the signal
(trigger) named "CancelPressed".

 BroadcastSignal("CancelPressed");

Note that a trigger named CancelPressed must exist within the current simulation
environment and must uniquely have that name.

You can also call the signal using its GUID. For example:

 BroadcastSignal("{996EAF52-6843-41f7-8966-BCAA0ABEC41F}");

IS_IN() The IS_IN(state) operator returns True if the current simulation has an active state
in any thread matching the passed in name. For example, to conditionally control
execution it is possible to write code such as this:

(c) Sparx Systems 2020 Page 27 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

 if (IS_IN("WaitingForInput"))

 BroadcastSignal("CancelPressed")

Note that the name must be unique within all contexts.

Trace() The Trace(statement) method allows you to print out trace statements at any
arbitrary point in your simulation. This is an excellent means of supplementing the
Simulation log with additional output information during execution.

(c) Sparx Systems 2020 Page 28 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Call Behaviors

In the course of simulating a process, you can enact the behaviors defined in an operation of either a Class (through its
simulation Object) or an Activity in the model. In each case, you use JavaScript to call the behavior.

Invoke the Behavior of a Class

A Class in your model defines a behavior that you want to simulate. This behavior is defined in the Behavior page of an
Operation of the Class.

For example, the Class is intended to add two integers, through the Operation add. The integers in this case are
parameters of the operation, defined by attributes of the Class, operand1 and operand2.

Step Action

1 In the Properties window for the operation, select the 'Behavior' tab and edit the 'Behavior' field to apply
the JavaScript simulation objects (this or sim) to the behavior definition.

In the example:

 this.operand1=operand1;

 this.operand2=operand2;

 return operand1+operand2

2 Drag the Class onto your simulation Activity diagram and paste it as an Instance.

In the example, the Object is called 'calculator'. For clarity, the element shown here is set to display
inherited attributes and operations, and the behavior code, on the diagram.

3 On the simulation diagram, for the appropriate Action element, open the 'Properties' dialog and on the
'Effect' page type in the JavaScript to capture and simulate the Object's behavior.

In the example, the JavaScript defines a value that will be provided by simulating the behavior of the
operation from the Object, as performed on two provided integers. That is:

 sim.result=sim.calculator.add(7,9)

4 Run the simulation, and observe its progress in the Locals window. Ultimately the Class behavior is
reflected in the result of the simulation.

(c) Sparx Systems 2020 Page 29 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

In the example: result = 16.

Invoke the Behavior of an Activity

An Activity element can have a behavior, defined by an operation in that element. As a simple example, an Activity
might have an operation called Get Result, with the behavior return "ON";.

You can simulate this behavior in the Activity's child diagram (that is, internal to the Activity), with a JavaScript
statement in the appropriate Action element's 'Effect' field. In the example, this might be:

 sim.result=this.GetResult();

The statement invokes the parent Activity's operation GetResult and assigns the outcome of that operation's behavior to
sim.result. You can observe the progress of the simulation and the result of simulating the behavior in the Locals
window, where (in this example) the value result "ON" will ultimately display.

(c) Sparx Systems 2020 Page 30 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Interaction Operand Condition and Message Behavior

When you simulate the behavior of a Sequence diagram, you can use a Condition for the CombinedFragment Interaction
Operand, to control the flow during the course of the simulation.

A Message in Sequence diagram can link to an Operation, so the behavior of the Operation can also be used during the
course of the simulation.

Interaction Operand Conditions

Field/Column Description

Operand Condition Interaction Operand Conditions are conditional statements that are evaluated
whenever the simulator has to determine which path to take next. Operand
Conditions typically have these characteristics:

Defined in the 'Combined Fragment' dialog·

Written in JavaScript·

Can refer to variables defined during simulation·

Adding Operand
Conditions

To add an Operand Condition:

Double-click on the CombinedFragment element to open the 'Combined1.
Fragment' dialog.

Click on the New button.2.

In the 'Condition field', type the JavaScript for the condition.3.

Click on the Save button.4.

During execution the Simulator evaluates any Operand Condition within the

(c) Sparx Systems 2020 Page 31 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Evaluation Semantics CombinedFragment; the CombinedFragment type and the outcome of the
evaluation can determine the path that the simulation continues on.

(c) Sparx Systems 2020 Page 32 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Guards and Effects

Guards and Effects are used to control the flow of the simulation and to execute additional actions or effects during the
course of a simulation.

Guards and Effects

Concept Detail

Guards Guards are conditional statements that are evaluated whenever the simulator has to
determine the path to take next. Guards typically have these characteristics:

Defined on transitions and control flows to govern how simulation proceeds·

Written in JavaScript·

Can refer to variables defined during simulation·

Adding Guards Guards are defined on the Transition or Control Flow in the 'Properties' dialog for
the selected connector. A Guard is typically a piece of JavaScript that will evaluate
to either True or False. For example, here is a conditional statement that refers to a
current variable (Balance) being greater than zero. Note the use of the prefix this to
indicate that the variable is a member of the current Class context.

Evaluation Semantics During execution the Simulator will examine all possible paths forward and
evaluate any guard conditions. This evaluation could establish that:

A single valid path forward evaluates to True; the Simulator will follow that·
path

Two valid paths exist; the Simulator will block, waiting for some manual input·
via the console window to resolve the deadlock

No valid path exists; the same response as when two paths are found - the·
Simulator waits for the user to change the execution context using the console
window

No paths evaluate to True but a default (unguarded path) exists; the Simulator·
will take the unguarded path

Effects Effects are defined behaviors that are executed at special times:

On entry to a state·

On exit from a state·

When transitioning from one state to another (transition effect)·

Effects can either be a section of JavaScript code or a call to another Behavior
element in the current simulation.

JavaScript Effects A JavaScript effect might resemble this example, in which the Balance variable is
decremented:

(c) Sparx Systems 2020 Page 33 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Call Behavior Effects In this example the effect is a call behavior effect. In this case, it calls into a model
the Activity named Decrement Balance that is defined elsewhere. The simulation
will then enter into that diagram/behavior and continue to execute until returning to
the point at which the effect was invoked.

Order of Execution of
Effects

In complex simulations that might involve transitioning out of deeply nested states
into other deeply nested states in a different parent context, it is important to
consider these rules concerning the order of execution:

All exit actions (effects) encountered leaving a nested context are executed in·
order of most deeply nested to least deeply nested

All actions (effects) defined on transitions are executed next·

Finally, all entry effects are executed from the least deeply nested context to·
the most deeply nested

So the basic rule is: all exit actions, followed by all transition actions, and finally all
entry actions.

Note on JavaScript
Variables

JavaScript variables to be accessed and referred to during Simulation execution
belong to either:

sim (for example, sim.pedestrianwaiting) - typically used for global simulation·
variables, or

this (for example, this.CustomerNumber) - typically used to refer to owning·
Class attributes

This is important to let the JavaScript engine know you are referring to a
Simulation variable and not a simple local variable used during, for example, basic
calculations. You can create Simulation variables of arbitrary scope and depth - for
example, this.customer.name is a legitimate qualified name.

(c) Sparx Systems 2020 Page 34 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Triggers

Triggers represent signals and events that can activate transitions leaving the current state(s). A trigger might represent a
real world signal or event such as:

A button being pressed·

A message being received·

A pedal being depressed·

A switch being thrown·

A state in a concurrent region being entered or exited·

For a trigger to have an effect

Transitions have to be defined that will fire when the simulation receives the signal / event·

The current simulation state(s) or its parent(s) must have an outgoing transition that accepts that trigger·

The transition activated must be unguarded or have a guard that will evaluate to true·

Managing Triggers

Action Detail

Creating Triggers Triggers are either created as an instance of a Signal element or as an anonymous
event. Triggers are connected to Transitions in the 'Transition Properties' dialog as
shown here. In this example a Trigger named 'Pushdown' has been defined based on
the Signal 'Signal_Pushdown'.

Omitting the Type and Specification details results in a simple anonymous·
Trigger.

If parameters are needed, these are defined on the Signal and must be supplied·
at the time the event fires

A trigger will appear in the 'Project' tab of the Browser window, as illustrated here:

Using Triggers Triggers are deployed by connecting them to transitions, as in the earlier example,
and are used during simulation by 'firing' them into the running simulation as
required.

(c) Sparx Systems 2020 Page 35 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

When using triggers these points should be taken into account:

A 'triggered' transition can not take place until its effective trigger is signalled·
or fired

When a trigger is received it will activate all current waiting transitions·
dependent on that trigger (that is, the trigger is broadcast)

Triggers are evaluated on all transitions for all parents of a current child state;·
this allows a parent state to exit all child states if necessary

Once used in a simulation, a trigger is consumed and must be re-fired if needed·
again

Sets of triggers can be saved and either manually or automatically fired to·
facilitate automated model simulation under different event models

Firing Triggers Firing triggers means to signal or activate a trigger within the current simulation.
This could activate zero, one or many waiting transitions depending on the state and
concurrency of the current simulation.

Firing triggers can be achieved in many ways. The most efficient is the 'Waiting
Triggers' list.

During the course of model simulation, if the simulator reaches an impasse due to
required triggers not being available (fired), the list of all possible candidate
triggers is shown in the 'Waiting Triggers' list of the Simulation Events window.

Double-clicking a trigger in this list will fire it into the simulation. Other ways to
fire a trigger include:

Double-click an un-signalled trigger in the Events window.1.

You can also use the context menu on these events to either signal an
un-signalled event, or to re-signal an event that has already been fired
previously.

Use the context menu of the Transition required to fire and select the 'Signal2.
Trigger in Simulation' menu option.

(c) Sparx Systems 2020 Page 36 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Action Behavior By Type

You can vary the behavior initiated by an Action element by defining (or even redefining) its type. In simulation, you
can apply and observe a number of different behaviors using the Actions in the types and groups described in this table.

Action Types

Type Description

Object Actions Object Actions operate on an object in a specific way, such as creating, destroying
or reading the object. They include:

CreateObject·

DestroyObject and·

Read Self·

Variable Actions Variable Actions have an association variable in the form of the Tagged Value
variable with the value of the name of an object in run-time. They provide the
variable not only as an object but also as a property (such as an attribute or Port) of
an object. They include:

ReadVariable·

WriteVariable·

ClearVariable·

AddVariableValue·

RemoveVariable·

StructuralFeature Actions StructuralFeature Actions operate on a structural feature, namely an attribute of an
Activity or of the classifier of an object. They include:

ReadStructuralFeature·

WriteStructuralFeature·

ClearStructuralFeature·

AddStructuralFeatureValue·

RemoveStructuralFeatureValue·

Invocation and Accept
Event Actions

Invocation and Accept Event actions define the Triggers and Signals of an event.
They include:

SendSignal·

BroadcastSignal·

AcceptEvent·

SendObject·

CallBehavior·

CallOperation·

AcceptCall·

Miscellaneous Actions The ValueSpecification Action evaluates a value; it must have an input value and
some evaluating code as its behavior or effect.

(c) Sparx Systems 2020 Page 37 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

(c) Sparx Systems 2020 Page 38 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Structured Activity Simulation

One of the more complex structures in a behavioral model is a Structured Activity, which models a series of actions
either in a nested structure or in a process of assessment and execution. The assessment types of Structured Activity are
the Conditional Node and Loop Node, both of which you can simulate quite easily.

Conditional Node

A Conditional Node essentially consists of one or more pairs of Test / Body partitions, each pair being referred to as a
Clause. The Test partition is composed of Activity diagram elements that test a condition, and if that condition is met
further Activity diagram elements in the Body partition are executed to produce a result.

If there is one Clause, the Conditional Node either outputs the result of the Body partition, or no result. If there is more
than one Clause, control flows from one Test to the next until either a condition is met and a Body partition is executed
to produce a result, or all Tests fail.

Simulation currently supports use of the 'Is Assured' checkbox setting in the 'Condition' tab of the Properties window.
The other two checkbox settings are ignored. If the 'Is Assured' checkbox is:

Selected, at least one Test must be satisfied, so its Body is executed and a result output; if no Test is satisfied and no·
result output, the Conditional Node is blocked and processing cannot continue beyond it

Not selected, a Test can be satisfied and a result output, but if no Test is satisfied and no result output, processing·
can still continue beyond the Condition Node

You can simulate a range of possible paths and outcomes by typing JavaScript sim. statements that define or lead to
specific Test results and Body results, in the 'Effect' fields of the Action elements within each partition of each Clause.
These sim. statements must identify the full path of the Conditional Node, Clause and Output Pin being set. For example,
in a test to see if a person qualifies as a senior citizen:

 if (sim.Person.age >=65)

 sim.AgeCondition.Clause1.Decider1=true;

 else

 sim.AgeCondition.Clause1.Decider1=false;

The Condition Node is called AgeCondition, the test is in Clause1 and the OutputPin for that test is Decider1.

Loop Node

A Loop Structured Activity Node commonly represents the modeling equivalents of While, Repeat and For loop
statements. Each Loop Node has three partitions:

Setup - which initiates variables to be used in the loop's exit-condition; it is executed once on entry to the loop·

Test - which defines the loop exit-condition·

Body - which is executed repeatedly until the Test produces a False value·

You define the Loop Nodes by dragging Activity diagram elements from the Toolbox pages into the Setup, Test and
Body partitions. The Body partition can contain quite complex element structures, defining what the Loop Node actually
produces in the process.

The Loop Node has a number of Action Pins:

Loop Variable (Input) - the initial value to be processed through the Loop·

Loop Variable (Output) - the changing variable on which the Test is performed·

Decider - an Output Pin within the Test partition, the value of which is examined after each execution of the Test to·
determine whether to execute the loop Body

Body Output - the output value of the processing in the Body partition, which updates the Loop Variable Output Pin·

(c) Sparx Systems 2020 Page 39 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

for the next iteration of the loop, and

Result - the value of the final execution of the Test partition (which is the value passed back from the last execution·
of the Body partition)

You can simulate the effects of different actions and outputs through the loop, by typing JavaScript sim. statements that
define or lead to specific Test results and Body results, in the 'Effect' fields of the Action elements within each partition.
These sim. statements must identify the path of the Loop Node and Output Pin being set. For example, in an Action in
the Test partition:

 sim.LoopNode1.decider = (sim.LoopNode1.loopVariable>0);

(c) Sparx Systems 2020 Page 40 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Activity Return Value Simulation

An Activity is likely to produce a return value as the output of the process it represents. You can simulate how that return
value is passed on to the next stage in the process, under three scenarios:

The Activity simply produces a return value, which is passed directly to the next Action·

The Activity has one or more Activity Parameters - represented on a diagram by Activity Nodes - that accept input·
values to or hold output values from the child Actions of the Activity, and the output Activity Parameter collects and
passes on the return value

The Activity is instantiated by a CallBehavior Action that replicates the behavior of the Activity and passes the·
return value onwards

Activity Return Value Pass Out

(This method is unique to Enterprise Architect simulation, mimicking the effect of an Activity Parameter without one
having to exist.)

The Activity has a return value, which is transferred from the Activity element to an Action Pin on the next Action in the
process via an Object Flow connector.

You can simulate this by setting a simple JavaScript statement to set the return value in the Activity's child element (such
as this.return=12;) and, running the simulation, see the value transferred to the Action Pin in the Locals window.

Activity Parameter Pass Out

If the Activity has an Activity Parameter, its value passes to the corresponding Activity Node and then, via an Object
Flow connector, to the Input ActionPin of the next Action in the process, as shown:

(c) Sparx Systems 2020 Page 41 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

In the Locals window, you can either observe the Parameter's default value pass through to the ActionPin, or you can use
JavaScript in the Activity's child Actions to simulate an update of the value within the Activity. For example:

 this.ActivityParameter1=20;

CallBehavior Action

An Activity might be used a number of times in a process, in which case you might want to generate a separate instance
of the Activity each time. You can do this using a CallBehavior Action to create an object of the Activity and execute its
behavior. The input and output Activity Parameters are bound to corresponding input and output Action Pins (arguments)
on the CallBehavior Action.

When you simulate the part of the process containing the Activity, you provide an input value (as in Action 1) that passes
into the input Action Pin on the CallBehavior Action, which creates an Object of the Activity. The CallBehavior
executes the behavior of the Activity, using the input Action Pin to act as the input Activity Parameter, and the Output
Action Pin to receive the return as the output Activity Parameter. The Activity return value is then passed to an Action
Pin on the next Action, using an Object Flow connector. You can provide JavaScript statements in the Actions of the

(c) Sparx Systems 2020 Page 42 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Activity to act on the input value and generate a return value, such as:

sim.buf=this.inParam; and

this.outParam=sim.buf + 11:

(c) Sparx Systems 2020 Page 43 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Simulation Events Window

The Simulation Events window is where you manage triggers and sets of events in a simulation. Its main functions are
to:

Add, delete and re-sequence a set of triggers for a simulation·

Display a list of fired, lost and waiting events for the current running simulation·

Provide options to fire any arbitrary trigger into the current simulation·

Provide a convenient 'Waiting Triggers' list of triggers that the simulation is waiting on·

Save trigger sets for later use in both manual and automated simulations·

Accept triggers dragged from the Browser window into the current list·

Enter trigger parameters for a waiting trigger prior to firing·

As triggers are consumed in the simulation, their status and position is logged in the main body of the Simulation Events
window.

You can save the log of fired triggers as a trigger set or event set to reapply in another Simulation run, which you can
execute manually or automatically. See the topic Trigger Sets and Auto-Firing for more information on building and
using Trigger sets.

This image illustrates the Simulation Events window during execution.

Access

Ribbon Simulate > Dynamic Simulation > Events

Column Details

Field/Column Action

Sequence During and after the simulation, indicates the position in the sequence in which a
trigger was fired or is expected to be fired. Note that if a trigger is fired out of
sequence, it will be moved to the bottom of the signalled events section.

Trigger The name of the trigger - identifies the Trigger used to initiate the event.

Status Indicates the status of the Trigger. Values can be:

used - the trigger has been fired and processing has passed on·

(c) Sparx Systems 2020 Page 44 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

lost - the trigger has been fired in the list, but it had no effect·

signalled - a trigger was fired and consumed by one or more transitions·

not signalled - the trigger has not yet been fired·

Type Indicates the type of trigger. Currently only supports:

Signal·

(no type) an anonymous trigger·

Parameters For a Signal Trigger, initially shows the parameters required for firing by the Signal
specification. For example a "Login" signal might include username and password
parameters - and each triggered invocation can use different parameters.

Each time the simulation fires the trigger, the system will prompt you for values.
You can also edit the values directly in the list when the trigger is set to not
signalled.

Parameters are very useful for testing the conditional logic in your simulation and
to simulate a variety of inputs and data coming in from outside the simulation.

Event For a:

Signal Trigger, identifies the Signal specification·

For anonymous Triggers has no value·

Time The simulation time at which the trigger was signalled. Note that this is an absolute
(real world) time, and not a relative simulation event time.

Waiting Triggers Lists the Triggers available for selection from the current state(s), including those
where more than one trigger is possible at a single transition. Double-click on a
trigger to add and signal it as the next trigger in the current event sequence.

You can show and hide this panel by clicking on the gray arrow just above the
panel.

Toolbar Items

Option Action

Use this drop list to select and work with previously defined trigger sets.

Before running a simulation, select a previously-defined trigger set to use for the
next simulation run. You elect to not use a trigger set by selecting the <no event
set> option.

Click to create and delete trigger sets:

Save Set - Save the current trigger list as a new trigger set; the system prompts·
you for a name for the new set

Save Set As - Create a copy of the current set under a new set name·

Delete Selected Set - Delete the current trigger set·

Delete All Sets for Diagram - Delete all saved trigger sets for the current·
diagram

Move the selected trigger one line down in the firing sequence of triggers.

(c) Sparx Systems 2020 Page 45 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

This option is not available if there are no signaled triggers below the selected line.

Move the selected trigger entry one line up in the firing sequence of triggers.

This option is not available if there are no signaled triggers above the selected line.

Click to fire the selected trigger. You can also fire the trigger by double-clicking on
it.

Click to toggle auto-firing on and off.

Auto-firing will fire the un-signalled triggers in your trigger set sequentially. If
your set matches a valid execution path, then the simulation will run automatically.
Out of sequence or unused triggers will be 'lost'.

A breakpoint pauses the auto-firing and you will need to click on the next trigger to
resume auto-firing the simulation.

Delete the selected trigger(s) from the list.

Context Menu Options

Option Action

Signal Selected Signal, or fire, the selected not signalled trigger.

Remove Selected Remove a not signalled trigger from the sequence.

Re-Signal Selected Fire a used or signalled trigger again.

Set All to Unsignalled Set all used or signalled triggers to not signalled.

Clear Trigger List Clear all triggers from the window, regardless of their status.

(c) Sparx Systems 2020 Page 46 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Waiting Triggers

When a simulation reaches a point where any change of state (for any thread) requires a Trigger to proceed, the
simulation is effectively paused and control returns to the system. The simulation is now effectively waiting for some
form of event (a real world signal) to proceed. The Waiting Triggers list is useful in helping to determine which Trigger
should be manually signaled.

Access

Ribbon Simulate > Dynamic Simulation > Events

The right hand side pane lists available Triggers.

The Waiting Triggers list on the Simulation Events window is:

Populated on each Simulation cycle with any Triggers that would have an immediate effect if signalled·

Populated with a discrete set (any duplicates are not shown as a Trigger is effectively broadcast to all transitions at·
once)

Activated by double-clicking on the Trigger of interest·

Includes all possible triggers - including those activating transitions on parents of currently nested states·

This example shows that the current simulation has hit a point where two possible Triggers can influence the flow of
execution.

Due to the nature of Triggers and their effects, the list can refer to each of these example situations equally validly:

A single state has two outgoing transitions that are respectively waiting for Hold and Pushdown; firing one of these·
will activate the associated transition in the simulation

A single state has two or more possible triggers for the same transition, such as a security camera being switched on·
by a motion detector, sound detector or heat detector

Two (or more) threads (concurrent regions) each have a state waiting on either Hold or Pushdown; firing one of·
these triggers will result in the thread(s) waiting on that trigger to proceed while the other thread(s) will remain
blocked

A child state is waiting on one of the triggers while a parent state is waiting on the other; firing a trigger will result·
in the associated transition being fired and either the child or parent proceeding accordingly

Any combination of these·

(c) Sparx Systems 2020 Page 47 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Re-Signal Triggers

It is possible to re-signal a Trigger as a shortcut of dragging in additional Trigger instances for signalling.

Access

Display the Simulation Events window, then right-click on a Trigger within that window and select the 'Re-Signal
Selected' option.

Ribbon Simulate > Dynamic Simulation > Events > right-click on existing trigger >
Re-Signal Selected

Untitled

The Simulation Events window contains a list of Triggers that have already fired. By right-clicking on a Trigger that you
want to signal again, you can use the context menu to cause the re-signal to happen.

This image demonstrates resignalling in action. When a signal is re-signalled, a new copy is made and placed at the end
of the signalled triggers list, where it is automatically fired again.

(c) Sparx Systems 2020 Page 48 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Multi-threading - Forks and Joins

The Model Simulator provides the ability to handle multi-threaded simulations using Fork and Join nodes.

In the example, the current execution point has forked into two threads, each with its own active node·

As this example progresses, the lower branch will wait at the Join node until the top branch has completed all its·
Actions

Once the two threads merge back into one, the Simulation will continue as a single thread until completion·

When automatically stepping, each thread will be seen to execute a single step during one simulation 'cycle' -·
although when single stepping or at a breakpoint, the behavior is to alternate step between threads as each thread
receives processing time

Note that the Call Stack window will show two active threads and one 'paused' thread in the example; once the·
threads merge there will be a return to single threaded execution

Also note that the Local variables are shared (global) between all threads; if you want to Simulate private variables·
on a thread you must create new Simulation variables at the start of each thread - pre-loading such variables with
existing global data

(c) Sparx Systems 2020 Page 49 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Trigger Parameters

Trigger parameters are arguments passed into the simulation along with a trigger when it is fired. They allow for
complex behavior to be specified decision to be made based on variables and data passed into a simulation at run-time by
a fired trigger (event).

Parameters

Parameter Detail

Introduction To use trigger parameters you:

First create a Signal element with the appropriate attributes that will become·
your parameters at run time

On a suitable transition in your diagram, create a trigger that is based on the·
signal created earlier

At run-time, will be prompted to enter suitable parameters - they are then·
passed in along with the trigger

Signals A Signal element is a template or specification from which actual triggers can be
built. This example has two arguments, a Name and a Password. These will be
filled in at execution time either manually or as part of a pre-defined trigger set.

Trigger Parameters The Trigger parameters 'prompt' that asks for suitable values for each parameter.
Note that you need to enclose strings in double quotes, otherwise the interpreter
will think you are referring to other variables.

Example Diagram This is an example diagram that makes use of trigger parameters. At the Evaluate
Login state, the simulation examines the variables passed in as trigger parameters
and makes a decision to either accept the credentials or deny them.

(c) Sparx Systems 2020 Page 50 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

(c) Sparx Systems 2020 Page 51 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Trigger Sets and Auto-Firing

Trigger Sets are a powerful means of automating and streamlining the execution, testing and validation of simulation
models. By re-using sets of triggers (with or without parameters) it is possible to quickly and efficiently walk through
many simulation scenarios, either manually or automatically using the 'auto-firing' tool.

Access

Ribbon Simulate > Dynamic Simulation > Events

About Trigger Sets

Aspect Details

Trigger Sets Stored with an associated diagram·

Made up of a list of Triggers in a set sequence·

Can include Trigger parameters where necessary·

Can be used manually by double-clicking Triggers to fire as required·

Can be used as part of the 'auto-fire' behavior to automate execution·

Managed from the Simulation Events Window·

Managing Sets Trigger sets can be created by manually dragging triggers into the active triggers
list and then using the 'Manage Trigger Sets' drop menu to save a new set.

It is also possible to save a set of triggers built up during a single simulation setting
as a new set. This is convenient for creating multiple test paths through a
simulation, based on saving the manually fired triggers for each test case.

You can also delete a set and delete all sets for the current diagram.

It is also possible to load a set, modify parameters and/or order of firing and save
the set with a new name. This is a convenient method for rapidly creating a suite of
simulation test scripts.

Using Sets To use a trigger set you first select it by name from the trigger set drop list as in this
example image. Once selected it loads the Trigger List window with the defined
trigger set.

Note that the special item <no event set> means no set is currently selected. At the
start of each simulation, if a set is selected, it will be loaded afresh for the next run.

(c) Sparx Systems 2020 Page 52 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

If <no event set> is selected, the trigger list will be cleared.

Once you have selected a trigger set and the list of triggers loaded you have two
options:

Fire the triggers as required manually·

Use the auto-fire feature to fully automate the simulation·

Auto-Firing Auto-firing is a convenient way of streamlining your simulations. Once you have
loaded a trigger set, if you select the Auto-fire button then Enterprise Architect will
automatically pick up waiting triggers when it reaches an impasse in the simulation.
In practice, this means that trigger sets matching exactly a path through the
simulation will automatically run without your intervention.

As you can save any number of trigger sets with different pathways and trigger
parameters, you can effectively and quickly test and work with many different
scenarios.

Auto-Firing Rules When a simulation runs with auto-firing enabled, Enterprise Architect will wait
until a point is reached where the simulation is 'blocked' or stable, waiting on one or
more triggers to advance the simulation. At that time, the first unfired trigger in the
list will be picked up and fired into the simulation. The outcome depends on the
relevance and perhaps on the parameters of the trigger.

If the trigger matches a 'waiting' trigger it is immediately consumed and the·
simulation advances

If the trigger matches no 'waiting' trigger or possible parent transition, then the·
trigger is 'lost' and the simulation remains in the current state; this corresponds
to a scenario such as a user pressing an 'on' button several times in succession -
there is no effect other than that occasioned by the first press

(c) Sparx Systems 2020 Page 53 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Using Trigger Sets to Simulate an Event Sequence

As a simple example of how useful trigger sets are, consider this example trigger set and associated diagram.

In this example we simulate a simple "three strikes and you are out" login process, taking a user name and password. The
success path is waiting for the name "Joe" and the password "secret" (note - it is very important that parameters
referencing strings are enclosed in quotes, otherwise the interpreter thinks the name refers to another variable within the
simulation).

Pass 1 tries Joe and guess1 - which fails·

Pass 2 tries Joe and secret, but as they are referring to variables, not strings - this fails as well·

Pass 3 shows the correct way of referencing trigger parameters and the simulation will succeed·

Here is a simple diagram simulating a login process requiring a username and password pair.

(c) Sparx Systems 2020 Page 54 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Multi-threading - Concurrent State Regions

Concurrent regions within a State represent state changes and processing that occurs in parallel inside one overall parent
State. This is especially useful when one region raises events or modifies simulation variables that another region is
dependent on. For example, one region could contain a simulated timer which raised events on set intervals that invoked
state changes in the States within other regions.

Concurrent regions are essentially the same as Forks and Joins with similar logic and processing rules.

In the example:

When the transition to SalesProcess is taken, each region is concurrently activated·

Credit is checked, the order totaled and the goods required packed up·

However, in the event that the Credit Check fails, this triggers the transition to the Sale Cancelled state; note that·
when this occurs, the entire parent state and all owned regions are immediately exited, regardless of their processing
state

If the Credit Check succeeds, the region moves to the final state and once the other regions have all reached their·
own final state, the parent state can then be exited

(c) Sparx Systems 2020 Page 55 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Using Composite Diagrams

If you want to simulate processing that includes a branch represented on a different diagram (for example, to reduce
complexity on the main diagram, or to hide areas of processing that are only actioned under an exception), you can use a
Composite element to represent and access the branch on its child Composite diagram. When you run the simulation and
it reaches the Composite element, it opens the child diagram and processes it before returning (if appropriate) to the main
processing path. This is an excellent method of following the processing path in a complex process, representing sections
of the process with Composite Activity elements that expand the actual processing in their respective child diagrams.
You can have several Composite elements representing different stages or branches of the process.

One aspect to watch for (and that would be revealed by a failure in the simulation) is to have multiple threads that
process simultaneously on separate diagrams. The simulation cannot pass to a new diagram if it is also following another
thread on the current diagram.

This diagram provides an overview of an ATM cash withdrawal process:

The ATM Withdrawal Activity is a Composite element. If you double-click on it, you open and display the child
diagram, which is a more detailed breakdown of the withdrawal process. Similarly, a simulation will open and process
the child diagram.

(c) Sparx Systems 2020 Page 56 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

(c) Sparx Systems 2020 Page 57 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Win32 User Interface Simulation

Enterprise Architect supports the simulation of dialogs and screens created with the Win32® User Interface profile, to
integrate user interface design with defined system behavior. Dialogs can be programmatically referenced and invoked
using JavaScript commands within a behavioral model such as a StateMachine, providing a fully customizable and fully
interactive execution of your behavioral model.

Button controls can be used to broadcast signals, firing a trigger when the button is clicked. Signal arguments can be
filled from the dialog input fields; for example, to capture and send a username and password for evaluation.

Dialogs designed using the Win32 User Interface profile (and existing within the same Package branch as the behavioral
model being executed) will be created as new windows in the background at the beginning of simulation. Various
properties that can affect the appearance and behavior of each dialog and control can be customized at design time via
Tagged Values provided by the Win32 User Interface profile.

To interact with a dialog via JavaScript during simulation, the 'dialog' simulation-level keyword is used, followed by a
period and the name of the dialog. Properties and methods can then be accessed; for example, to show the dialog, or to
set the text value of an 'Edit Control':

 dialog.Login.Show=true;

 dialog.Login.Username.Text="admin";

Examples

To view an example of the Win32 User Interface Simulation, open the EAExample model and locate the diagram:

 Example Model > Model Simulation > State Machine Models > Customer Login > Customer > Customer Login

Common Properties

These common properties and methods are available on most supported Win32 UI Control types.

Property/Method Description

Enable Boolean

Enables or disables user interaction.

Move To (x,y,width,height) Move the window to the specified coordinates and set the window height and
width.

Show Boolean

Show or hide the dialog. When this property is set to False, the dialog is moved
off-screen.

Text String

Set the title of the dialog or window.

JavaScript Functions

(c) Sparx Systems 2020 Page 58 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Function Description

BroadcastSignal (string
Signal)

Sends a signal to the simulation event queue.

Parameters:

Signal: String – the name of the Signal to be broadcast·

UIBroadcastSignal (string
Signal, array Parameters)

Sends a signal with additional parameters to the simulation event queue.

Parameters:

Signal: String – the name of the Signal to be broadcast·

Parameters: Array – additional parameters to be supplied for this Signal·

Example:

 UIBroadcastSignal("Login",{Name: dialog.Login.Username.Text, Password:
dialog.Login.Password.Text});

ShowInterface (string
InterfaceName, boolean
Show)

Deprecated. See the Show property on the 'Dialog' control. For example:

 dialog.HelloWorld.Show = true;

InterfaceOperation (string
InterfaceName, string
ControlName, string
OperationName,[string
arg1],[string arg2])

Deprecated. Operations can be referenced directly from the control. For example:

 dialog.HelloWorld.ListControl.InsertItem("Test", 2);

GetInterfaceValue (string
InterfaceName, string
ControlName, string
OperationName,[string
arg1],[string arg2])

Deprecated. Properties can be referenced directly from the control. For example:

 dialog.HelloWorld.EditControl.Text;

Notes

Controls must be within a dialog; any controls outside a dialog will not be interpreted·

Dialogs and controls must be on a Win32 User Interface diagram·

Simple UI controls and Basic UI controls can also be used in a simulation, but are limited in functionality compared·
to Win32 UI controls

Dialog names and Control names must be unique; if multiple controls of the same name exist, the simulation will not·
be able to differentiate between them

Spaces in dialog names and Control names are treated as underscores·

Dialog names and Control names are case sensitive·

(c) Sparx Systems 2020 Page 59 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Supported Win32 UI Controls

This table identifies all of the Win32 UI Controls available in Enterprise Architect for user interface design and
simulation.

Access

Ribbon
Design > Diagram > Toolbox : > Specify 'User Interface - Win32' in the 'Find
Toolbox Item' dialog

Keyboard Shortcuts
Ctrl+Shift+3 : > Specify 'User Interface - Win32' in the 'Find Toolbox Item'
dialog

Win32 UI Controls

Control Description

Button Button controls are a common way to allow user interaction during runtime; for
example, an OK button in a login screen. A Button can respond to a click event,
defined by adding an 'OnClick' Tagged Value.

In response to a click event, a button can be used to, for example, send a signal,
causing a trigger to fire during runtime.

Customizable design properties:

Client Edge·

Default Button·

Disabled·

Flat·

Horizontal Alignment·

Modal Frame·

Multiline·

Right Align Text·

Right To Left Reading Order·

Static Edge·

Tabstop·

Transparent·

Vertical Alignment·

Visible·

Tagged Values:

OnClick – specifies a JavaScript command to be executed in response to a·
click event on this Button

Properties:

Enable·

(c) Sparx Systems 2020 Page 60 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Show·

Text·

Operations:

MoveTo·

Check Box Customizable design properties:

Auto·

Client Edge·

Disabled·

Flat·

Horizontal Alignment·

Left Text·

Modal Frame·

Multiline·

Right Align Text·

Right To Left Reading Order·

Static Edge·

Tabstop·

Vertical Alignment·

Visible·

Tagged Values:

OnCheck – specifies a JavaScript command to be executed in response to a·
change in the value of this checkbox

Properties:

Checker – integer value [0|1]·

Enable·

Show·

Text·

Combo Box Customizable design properties:

Auto·

Client Edge·

Data – semi-colon delimited string of values to populate the combo box at·
runtime; for example, "yes;no;maybe"

Disabled·

Has Strings·

Lowercase·

Modal Frame·

Right Align Text·

Right To Left Reading Order·

Sort·

Static Edge·

Tabstop·

Type·

Uppercase·

Vertical Scroll·

(c) Sparx Systems 2020 Page 61 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Visible·

Operations

AddString (string)·

DeleteAll ()·

DeleteItem (number) – delete item at specified index·

DeleteString (string) – deletes all items matching string·

GetCount ()·

GetString (number)·

InsertItem (number, string)·

InsertString (number, string)·

SetString (number, string)·

Properties:

Enable·

Selection – index of the currently selected item·

Show·

Dialog Customizable design properties:

Absolute Align·

Application Window·

Border - Resizing or Dialog Frame only·

Center·

Client Edge·

Center Mouse·

Clip Siblings·

Disabled·

Horizontal Scrollbar·

Left Scrollbar·

Local Edit·

Maximize Box·

Minimise Box·

No Activate·

Overlapped Window·

Palette Window·

Right Align Text·

Right To Left Reading Order·

Set Foreground·

System Menu·

System Modal·

Title Bar·

Tool Window·

Topmost·

Transparent·

Vertical Scrollbar·

Visible·

Window Edge·

(c) Sparx Systems 2020 Page 62 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Properties:

Enable·

Show·

Text·

Operations:

MoveTo·

Edit Control / Rich Edit
Control

Customizable design properties

Align Text·

Auto HScroll·

Auto VScroll·

Border·

Client Edge·

Disabled·

Lowercase (Edit Control only)·

Modal Frame·

Multiline·

Number·

Password·

Read Only·

Right Align Text·

Right To Left Reading Order·

Static Edge·

Tabstop·

Transparent·

Uppercase (Edit Control only)·

Visible·

Want Return·

Properties:

Enable·

Show·

Text·

Group Box Customizable design properties:

Client Edge·

Disabled·

Flat·

Horizontal Alignment·

Modal Frame·

Right Align Text·

Static Edge·

Tabstop·

Visible·

Properties:

Enable·

(c) Sparx Systems 2020 Page 63 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Show·

Text·

List Box Customizable design properties:

Border·

Client Edge·

Disable No Scroll·

Disabled·

Left Scrollbar·

Modal Frame·

Right Align Text·

Selection·

Sort·

Static Edge·

Tabstop·

Vertical Scroll·

Visible·

Operations:

AddString (string)·

DeleteAll ()·

DeleteItem (number) – delete item at specified index·

DeleteString (string) – deletes all items matching string·

GetCount ()·

GetString (number)·

InsertItem (number, string)·

InsertString (number, string)·

SetString (number, string)·

Properties:

Enable·

Selection – index of the currently selected item·

Show·

List Control Customizable design properties:

Alignment·

Always Show Selection·

Border·

Client Edge·

Disabled·

Edit Labels·

Left Scrollbar·

Modal Frame·

No Column Header·

No Scroll·

Single Selection·

Sort·

(c) Sparx Systems 2020 Page 64 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Static Edge·

Tabstop·

View·

Visible·

Tagged Values:

Columns – string to initialize column names and sizes for this List Control,·
separated by semi-colons: for example, "Column1;100;Column2;150;"

Operations:

AddString (string)·

DeleteAll ()·

DeleteItem (number) – delete item at specified index·

DeleteString (string) – deletes all items matching the string·

GetCount ()·

GetString (number, number)·

InsertItem (number, string)·

InsertString (number, string)·

SetString (number, number, string)·

Properties:

Enable·

Selection – index of the currently selected item·

Show·

Progress Control Customizable design properties:

Border·

Client Edge·

Disabled·

Marquee·

Modal Frame·

Smooth·

Static Edge·

Tabstop·

Vertical·

Visible·

Tagged Values:

Range – string specifying minimum and maximum values for this control,·
separated by a semi-colon: for example, "1;100"

Properties:

Enable·

Pos·

Range·

Show·

Step·

Radio Button Customizable design properties:

Auto·

Client Edge·

(c) Sparx Systems 2020 Page 65 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Disabled·

Flat·

Group·

Horizontal Alignment·

Left Text·

Modal Frame·

Multiline·

Static Edge·

Tabstop·

Vertical Alignment·

Visible·

Tagged Values:

OnChangeSelection – specifies a JavaScript command to be executed in·
response to a change in selection of this radio button

Properties:

Checker – integer value [0|1]·

Enable·

Selection – integer value·

Show·

Slider Control Customizable design properties:

Auto Tick·

Border·

Client Edge·

Disabled·

Enable Selection Range·

Modal Frame·

Orientation·

Point·

Static Edge·

Tabstop·

Tick Marks·

Transparent·

Transparent Background·

Tooltips·

Visible·

Tagged Values:

Range – string specifying minimum and maximum values for this control,·
separated by a semi-colon: for example, "1;100"

Properties:

Enable·

PageSize·

Pos·

Range·

Show·

(c) Sparx Systems 2020 Page 66 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Spin Control Customizable design properties:

Alignment·

Arrow Keys·

Auto Buddy·

Client Edge·

Disabled·

Modal Frame·

No Thousands·

Orientation·

Set Buddy Integer·

Static Edge·

Tabstop·

Visible·

Wrap·

Tagged Values:

Range – string specifying minimum and maximum values for this control,·
separated by a semi-colon: for example, "1;100"

Properties:

Enable·

Pos·

Range·

Show·

Static Text / Label Customizable design properties:

Align Text·

Border·

Client Edge·

Disabled·

End Ellipsis·

Modal Frame·

Path Ellipsis·

No Wrap·

Notify·

Path Ellipsis·

Right Align Text·

Simple·

Static Edge·

Sunken·

Tabstop·

Visible·

Word Ellipsis·

Properties:

Enable·

Show·

Text·

(c) Sparx Systems 2020 Page 67 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Tab Control Customizable design properties:

Border·

Bottom·

Buttons·

Client Edge·

Disabled·

Flat Buttons·

Focus·

Hot Track·

Model Frame·

Multiline·

Right Align Text·

Static Edge·

Style·

Tabstop·

Tooltips·

Visible·

Tagged Values:

Tabs – string specifying names of each tab for this control, separated by a·
semi-colon: for example, "Tab 1;Tab 2;Tab 3;"

Properties:

Enable·

Show·

Tree Control Customizable design properties:

Always Show Selection·

Border·

Check Boxes·

Client Edge·

Disable Drag Drop·

Disabled·

Edit Labels·

Full Row Select·

Has Buttons·

Has Lines·

Horizontal Scroll·

Left Scrollbar·

Lines At Root·

Modal Frame·

Right Align Text·

Right To Left Reading Order·

Scroll·

Single Expand·

Static Edge·

(c) Sparx Systems 2020 Page 68 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Tabstop·

Tooltips·

Track Select·

Visible·

Operations:

Delete () - delete the specified TreeItem·

InsertItem (string) - dotted path of the new tree item to be inserted; any parent·
items in this dotted path that do not yet exist will be created automatically

InsertString (string) - See InsertItem·

TreeItem (string) - dotted path of the tree item to be accessed; use the Text·
property to set text for this tree item, or use the Delete operation to delete this
item from the tree

Properties:

Enable·

Selection – string containing dotted path of the selected tree item·

Show·

Text – get or set text for a specified TreeItem·

Examples:

 dialog.MyDialog.MyTreeControl.InsertItem("Root.Parent.Child");

 dialog.MyDialog.MyTreeControl.TreeItem("Root.Parent.Child").Text =
"Modified";

 dialog.MyDialog.MyTreeControl.Selection = "Root.Parent";

 dialog.MyDialog.MyTreeControl.TreeItem("Root.Parent.Modified").Delete();

(c) Sparx Systems 2020 Page 69 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Win32 Control Tagged Values

Various properties that can affect the appearance and behavior of each Win32 dialog and control can be customized at
design time via Tagged Values provided by the Win32 User Interface profile.

Tagged Values

Some control types support the addition of special Tagged Values that modify their behavior.

Controls such as Buttons, Check Boxes and Radio Buttons can react to GUI events and execute a JavaScript command.
To allow a control to respond to an event, create a new Tagged Value with an appropriate name; for example, 'OnClick',
then type the JavaScript command into the value.

Tab Controls can use a 'Tabs' Tagged Value to define the tabs that will appear within this control when it is simulated.

Slider Controls, Spin Controls and Progress Controls can use a 'Range' Tagged Value to define the default minimum and
maximum values accepted by the control during simulation.

Tag Description

Columns Applies to: List Control

Use: Initializes column names and widths for a List Control. Each column name
and width is separated by a semi-colon; for example,
"Column1;100;Column2;150;".

OnClick Applies to: Button

Use: Identifies the JavaScript command to be executed in response to a click event
on a Button control.

OnCheck Applies to: Check Box

Use: Identifies the JavaScript command to be executed in response to a change in
the value of a Check Box control.

OnChangeSelection Applies to: Radio Button

Use: Identifies the JavaScript command to be executed in response to a change in
the value of a Radio Button control.

Range Applies to: Slider Control, Spin Control, Progress Control

Use: Specifies the default minimum and maximum values for the control, separated
by a semi-colon: for example, "1;100".

Tabs Applies to: Tab Control

Use: Specifies the name of each tab to be created for the Tab Control, separated by
a semi-colon: for example, "Tab 1;Tab 2;Tab 3;".

(c) Sparx Systems 2020 Page 70 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

BPMN Simulation

BPMN simulation is a method for visualizing and validating the behavior of your BPMN Business Process diagrams.
With visual indications of all currently executing activities and the possible activities that can be executed next, you will
easily be able to identify and resolve potential issues with the process you have modeled.

Simulating BPMN models is similar to simulating standard UML Behavioral models, except that BPMN:

Uses some different element types (such as Gateway instead of Decision) and·

Operates on scripting placed, generally, in the appropriate 'Tagged Value' field associated with the connectors and·
elements, instead of in the 'Properties' fields (and, if you prefer, rather than in the 'Execution Analyzer Build Scripts'
dialog); the scripting is written in JavaScript

Working with BPMN Simulation

Activity Detail

Create a BPMN Simulation
Model

When you create a BPMN model suitable for simulation, you take into
consideration how you represent the start point, the flow and the conditions to be
tested.

Compare UML Activities
to BPMN Processes

The simulation of BPMN Business Process models has a number of differences to
the simulation of UML Activity diagrams.

Notes

BPMN simulation is available in the Unified and Ultimate editions of Enterprise Architect·

(c) Sparx Systems 2020 Page 71 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Create a BPMN Simulation Model

As part of the process of developing a simulation model, consider which of the three options for performing the
simulation you prefer to apply:

Execute a simulation script to initialize the variables for the diagram - select 'BPMN' as the Platform, execute the·
simulation as 'As Script' and select the script; you would then define the conditions and decisions as JavaScript
declarations within the Tagged Values of the elements and connectors on the diagram, either before you start the
simulation or during the simulation

Do not use a script, but initialize the variables within the first Activity and, again, modify the conditions and·
decisions within the Tagged Values of the elements and connectors, then execute the simulation as 'Interpreted'; you
can then re-initialize the variables during simulation, as well as the conditions

Execute the simulation as 'Manual' and manage the flow and conditions manually at each step·

Create a BPMN diagram suitable for simulation

Step Action

1 Create a Business Process or BPEL diagram from the BPMN 2.0 technology. If you create a BPEL
diagram Enterprise Architect displays specialized dialogs to streamline the creation of compliant models.

2 We recommend that you create a Start Event to clearly show where your simulation starts. You have
several choices for the Event Type; the choice does not influence the simulation of your model. If no Start
Events are defined, the simulation will start from an Activity that has no incoming Sequence Flows.

3 Add all of the Activities that are involved in the Process being modeled. You have several choices for the
Task Type; the choice does not influence the simulation of your model. The behavior of Activities can be
further decomposed by specifying an Activity Type of Sub-Process and selecting Embedded or
CallActivity. Standard Loops are also supported.

4 Add Sequence Flows between your activities. In the 'BPEL properties' dialog you can enter the condition
that must be satisfied (True) before the Sequence Flow will be followed. You can also set the
conditionType to 'Default' to ensure that this flow will be taken if all other branches fail the condition
specified.

If you are not working with a BPEL diagram, you use the conditionExpression and conditionType Tagged
Values.

5 Add End Events for any conditions that will cause the process or active execution path to end. You have
several choices for the Event Type; of these only the Terminate type will influence the execution. In
simulations with multiple active nodes, it causes the entire process to terminate instead of just the thread
that reaches that node.

Notes

To include Activities that are in Packages external to the Package being simulated, either draw a:·
 - Package Import connector from the Package containing the diagram
 being simulated to each external Package, or
 - Dependency connector from the Package containing the diagram
 being simulated to each Activity in the external Packages

(c) Sparx Systems 2020 Page 72 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

(c) Sparx Systems 2020 Page 73 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Initialize Variables and Conditions

For a BPMN simulation model, you can initialize your variables in an Execution Analyzer script. You can also initialize
these variables in the Tagged Values of the first Activity element of the process, which gives you greater flexibility in
adding and changing variables as the simulation proceeds. Similarly, you can define the conditions and values to apply at
the various decision points (Gateways) in the process, in the Tagged Values of the Sequence Flow connectors.

If you want to incorporate a user-interface into your simulation process, using Win32, you again use Tagged Values to
identify the dialog or prompt to display, in the Activity element just prior to the point at which the value or decision is
processed.

For the simulation of UML diagrams, variables inside the 'sim' object and 'this' object are displayed in the Local
Variables window.

Access

Display the 'Tags' tab of the Properties window, using one of the methods outlined here.

Ribbon Explore > Portals > Windows > Properties > Properties > Tags

Keyboard Shortcuts Ctrl+2 > 'Tags' tab of the Properties window

Initialize Variables

On the diagram, click on the first Activity element in the process.1.

In the 'Tags' tab of the Properties window, click on the drop-down arrow of the taskType 'value' field, and select2.
'Script'.

In the script 'value' field, type in the appropriate JavaScript code, such as:3.

sim.loan=true; sim.status="undefined';

Define Conditions

On the diagram, click on a Sequence Flow connector that issues from a Gateway element.1.

In the 'Tags' tab of the Properties window, click on the drop-down arrow of the conditionType 'Value' field, and2.
select 'Expression'.

In the conditionExpression 'Value' field (<memo>*) click on the button to display the Tagged Value Note3.
window. Type in the appropriate JavaScript code, such as:
 sim.status=="Hold"

Click on the OK button. The statement text displays as a label of the connector.4.

Incorporate Win32 User Interface

On the diagram, click on the Activity element that represents where the decision is made.1.

In the 'Tags' tab of the Properties window, click on the drop-down arrow of the 'taskType value' field, and select2.
'Script'.

(c) Sparx Systems 2020 Page 74 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

In the 'script value' field, type in the appropriate JavaScript code, such as:3.
 dialog.Screen1.Show=True;
(This statement displays the dialog Screen1. You can temporarily hide the dialog by changing 'Show' to False.)

(c) Sparx Systems 2020 Page 75 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Comparison of UML Activities and BPMN Processes

The execution and simulation of BPMN models have a number of differences from the execution and simulation of UML
Activity diagrams. The mapping of similar concepts, and the differences between the two methods of expressing the
behavior of a system, are presented here.

Comparison of UML Activities and BPMN Processes

UML Activity BPMN Business Process

The starting point is
defined by an Initial Node.
No method of specifying
why the Activity was
started is available.

The starting point is defined by a Start Event. This implies a specific cause for the
Activity to start, although it could be unspecified.

The basic behavior unit in
an Activity is the Action
element. UML provides
many different forms of
Actions, although the
simulation makes use of a
small subset of these.

The basic behavior unit in an Activity is the Activity element. A number of
different Task Types are available. These typically describe different methods of
execution (for example Manual) as opposed to what happens.

A Control Flow is used to
connect the elements on an
Activity diagram. A
distinguishing feature is
that only a single Control
Flow can be followed from
any node, except for an
explicit Fork Node. To
restrict flow on a Control
Flow, add a Guard.

A Sequence Flow is used to connect the elements on a Business Process diagram.
These differ from UML Activity diagrams in that all valid sequence flows are taken
by default. To restrict flow on a Sequence Flow set the conditionType Tagged
Value to 'Expression' and create the script in the conditionExpression Tagged
Value.

A Decision node is used to
explicitly model a decision
being made. A Merge
node, which uses the same
syntax is used when the
potential flows are
combined back into one.

A Gateway node set to 'Exclusive' is used when a single path must be selected. It is
also used to combine the potential flows again. A direction can be specified as
'Converging' or 'Diverging' to explicitly select between the two modes.

A Fork node is used to
concurrently execute
multiple nodes, while a
Join node, using the same
syntax is used to wait for
all incoming flows to
become available and leave
with a single flow.

A Gateway node set to 'Parallel' is used to explicitly model concurrent execution of
multiple nodes. It is also used to wait for all incoming flows to become available
and leave with a single flow. A direction can be specified as 'Converging' or
'Diverging' to explicitly select between the two modes.

There is no allowance for
concurrently executing

A Gateway node set to Inclusive is used to explicitly model the situation where all
outgoing flows with a true condition are executed concurrently.

(c) Sparx Systems 2020 Page 76 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

only some outputs from a
node for UML Activities. If
you needed this you add
later Control Flows with
the appropriate Guards.

A Call Behavior Action is
used when behavior needs
to be further decomposed
by referring to an external
activity.

Activity elements are set as a CallActivity Sub-Process when behavior needs to be
further decomposed by referring to an external activity.

Activity Action Call
Behavior Action.

Activity elements are set as an Embedded Sub-Process when behavior needs to be
further decomposed without referring to an external activity.

(c) Sparx Systems 2020 Page 77 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Business Process Simulation (BPSim)

The open BPSim specification provides a rich set of material on how to configure and assign resources to activities/tasks,
how to raise events, decision making and other real-world capabilities. Once configured according to the BPSim
specification, a business process model (constructed in BPMN) can be sent to a suitable BPSim simulation engine and
run according to the process defined in the BPMN model, using the configuration data attached in the BPSim
information.

The BPSim specification is very detailed and offers the interested modeler and business strategist an unprecedented
flexibility in assigning operating information to a model and then assessing the quality of the solution based on
information received back from the Simulation engine. This section describes in detail the various screens and options
available when configuring a model for BPSim execution.

Sparx Systems provide a BPSim-capable simulator (for separate purchase) - the MDG BPSim Execution Engine. This
Add-In integrates with the BPSim and BPMN models defined in Enterprise Architect, providing the capability to run and
store the results from multiple simulations and to perform convenient comparisons across each configuration's result set.

Installing the Sparx Systems MDG BPSim Execution Engine and registering the licence for it are pre-requisites for
accessing and using the built-in BPSim configuration facilities. Once you have set up a BPSim configuration, you can
export the BPMN model along with its BPSim data in a standard form that can be consumed by the Sparx Systems
BPSim Execution Engine and by any other standards-compliant BPSim engines.

BPMN Model with BPSim Configuration

The BPMSim configuration screens have been divided into multiple Perspectives, each of which focuses on one aspect of
the set up process at a time. The three Perspectives are:

Control Perspective, which examines how activity flows through the process, moderated by the likelihood of a·
sequence of events and the priorities of certain events

Time (Temporal) Perspective, which examines how the duration of one or more phases in the processing of an·

(c) Sparx Systems 2020 Page 78 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Activity influences the business process

Resource Perspective, which examines the involvement of types and roles of workers and other resources, their·
required numbers, their costs and their availability

A fourth Perspective (<All>) presents all of the options of the other three Perspectives.

You can also maintain multiple versions of a configuration and easily compare the differences between versions to see
how each configuration will vary the flow of the proposed simulation or process execution. You might, for example,
establish a baseline configuration and then create multiple 'what-if?' configurations that vary one or more parameters.
Once run through a simulation engine you can examine each result and decide on the relative merits of each
configuration. One useful facility to apply here is the simple inheritance of common, unchanged data in one
configuration by another configuration that contains only the data being varied.

Users can combine the BPSim and Charting facilities to quickly vary, simulate and compare aspects of a Business
Process model, and show the differences between the simulations in one of the many Chart formats.

If you are working across multiple projects, you can export and import the BPSim configurations between them. The
configuration automatically carries with it the BPMN 2.0 model on which it is based.

The Enterprise Architect Business Process Simulation configuration tool is based on the BPSim Framework developed
by the Workflow Management Coalition (WfMC).

Install the BPSim Execution Engine

You can purchase and download the MDG BPSim Execution Engine from the 'Products' page of the Sparx Systems
website (sparxsystems.com/products). As part of this process, you will receive a registration key by email, to enable you
to use the system beyond a 14-day trial period.

The MDG BPSim Execution Engine installer does not include JRE or JDK, therefore you must install JRE version 1.7 or
higher to use the simulation and, if your BPSim Configuration contains any property parameters, you must also install
JDK version 1.7 or higher.

You do not need to do any further configuration of the engine unless you have multiple versions of JRE/JDK on your
system and you want to specify which version the execution engine should use. In this case, apply these environment
variables as shown:

Click on the Windows 'Start' icon and select the 'Computer' option.1.

From the banner menu, select the 'System properties' option.2.

From the side panel, select the 'Advanced system settings' option.3.

On the 'Advanced' tab of the 'System Properties' dialog, click on the Environment Variables button.4.

On the 'Environment Variables' dialog, in the 'System variables' panel, click on the New button.5.

On the 'New System Variable' dialog, complete the fields with the values shown:6.

For JRE: Variable name: MDG_BPSIM_JRE_HOME
 Variable value: C:\Program Files\Java\jre7

For JDK: Variable name: MDG_BPSIM_JDK_HOME
 Variable value: C:\Program Files\Java\jdk1.7.0_51

Click on the OK button.7.

You must re-start your machine for the new variables to take effect.8.

Notes

If you click on a business process element or connector in a diagram or in the Browser window, it is highlighted and·
selected in the Configure BPSim window

The Business Process that you simulate can contain elements from more than one Package; to include the external·
elements in the simulation, you must create a Package diagram containing the 'parent' Package and either the

(c) Sparx Systems 2020 Page 79 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

'external' Packages containing the external elements, or the external elements themselves; create a:
 - Package Import connector from the parent Package to each external Package, or
 - Dependency connector from the parent Package to each external element

(c) Sparx Systems 2020 Page 80 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

BPSim Configuration

A Business Process Simulation (BPSim) configuration is represented and contained in a Business Process Simulation
Artifact element, which you can create on a diagram in any Package in the same project as the BPMN model that you are
working with.

Create a Business Process Model

Each BPSim configuration is created specifically for and from an existing Business Process, defined in BPMN.
Therefore you will need to create or import the BPMN model on which the configuration is to be based, before you use
the Business Process Simulation Artifact.

This example diagram can be found and worked on in the EAExample model, in:

 Analysis and Business Modeling > BPMN 2.0 Examples > Process Diagrams > Shipment Process of a hardware
retailer

Ha
rd

w
ar

e
Re

ta
ile

r

Lo
gi

sti
cs

 M
an

ag
er

Cl
er

k
W

ar
eh

ou
se

 W
or

ke
r

Goods to
ship

Describe if normal post or
special shipment

Check if extra insurance is
nessary

Request quotes from
carriers

Fill in a Post label

Assign a carrier &
prepare paperwork

Take out extra insurance

Add paperwork and
move package to pick

area Goods available
for pickInsurance is included

in carrier service

Package goods

Mode of delievery

Always

Special Carrier

Normal Post

Create a Business Process Simulation Artifact

Open a diagram in which to create the Artifact, and display the Diagram Toolbox (press Ctrl+Shift+3). Expand the
common 'Artifacts' page, and drag the 'Business Process Simulation' icon onto the diagram.

When you set up the Artifact, consider whether you might create separate Artifacts and use Generalization connectors
between them so that one Artifact inherits the data you have defined in another Artifact. This way, you do not have to
keep re-defining the whole configuration in every Artifact you create.

Double-click on the element and give it an appropriate name, such as (for the example) 'Shipment Process - Resource'.

Configure BPSim Window Overview

Right-click on the Artifact element (either in the diagram or in the Browser window) and select the 'Configure BPSim'
option. The Configure BPSim window displays for the Artifact.

(c) Sparx Systems 2020 Page 81 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

This window contains four tabs: Configure, Executive, Step and Review.

Configure: Configure BPSim parameters for each BPMN Element; Define Property Parameters, Calendars and·
Scenario Parameters.

Execute: Execute the BPMN model with BPSim configuration.·

Step: Step Over / Step In to provide an insight look to the execution process, including token status, property values·
and resource allocations per time/step.

Review: Review / Compare configuration artifact(s), Standard / Customized simulation result report(s)·

(c) Sparx Systems 2020 Page 82 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

BPSim - Configure Page

The BPSim Artifact will be configured to a Package. All BPMN elements under this Package or its sub-Packages will be
loaded. By default, the Package containing this Artifact will be configured when loaded into this window.

This window is context sensitive. When an element is selected on a diagram or the Browser window, the list will show
current configurations for the element; also, the combo boxes will only show available parameters for the element.

When the BPSim Artifact is the context element, the list will show the ScenarioParameters.

Access

Ribbon Simulate > Process Analysis > BPSIM > Open BPSIM Manager > Configure Page

Toolbar Options

Option Description

Click on this button to select or create a DMNSimConfiguration element.

Click on this button to set a Package for the BPSim Artifact. All BPMN elements
under this Package or its sub-Packages will be loaded.

Click on this button to reload BPMN elements from the configured Packages. For
example, when some BPMN elements are modified, run this command to reload the
Package so that the changes will be taken into account for BPSim Simulation.

Click on this button to define Properties, which can be used as Property Parameters
on BPMN elements.

Click on this button to define Calendars, which can be used to configure element
parameters.

Click on this button to show or hide the 'Result Request' column. Result Request
configuration is required for a Custom simulation. The execution report will only
contain results that are requested.

Click on this button to save the BPSim Simulation window information to a BPSim
Artifact element.

Click on this button to validate the BPMN model and the BPSim Configurations.
Error or Warning messages might display in the System Output window if they are
generated.

Click on this button to export the BPMN model with the BPSim configuration. This
exported BPMN file conforms to the BPMN and BPSim specifications and can be
used by third-party BPSim Execution engines.

(c) Sparx Systems 2020 Page 83 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Scenario Parameters

A scenario is composed of a collection of element parameters. The scenario itself defines parameters used by all
elements as global settings.

Name Description

Start The date and time at which the process starts to take effect.

You can edit this by overtyping the values or, for the date, by selection from a
drop-down calendar.

Duration The length of time the process takes.

The 'Duration' parameter is a required value. It must be long enough to
accommodate a complete simulation; for example, if a process (and hence its
simulation) takes three hours to complete, the 'Duration' parameter must be set to a
value greater than three hours.

You can edit this by overtyping the appropriate segment in the format 'days
hours:minutes:seconds'.

Time Unit The base unit in which periods of time are expressed in this scenario. All numeric
and floating values representing time should be considered as being expressed in
this unit, unless overridden locally.

You can edit this by clicking on the drop-down arrow and selecting the unit.

(c) Sparx Systems 2020 Page 84 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Cost Unit The currency unit of any costs recorded in the process. All numeric and floating
values representing a cost should be considered as being expressed in that currency
code, unless overridden locally.

You can edit this by clicking on the drop-down arrow and selecting the unit
abbreviation.

Replication The number of replications of the scenario to be executed. Defaults to 1.

You can edit this by simply typing a value in.

Seed A random seed to be used to initialize a pseudo-random number generator.

You can edit this by simply typing a value in.

Expression Language XPath 1.0 and Java - XPath 1.0 is the default language. If Java is specified as the
expression language, JDK Home must be set.

You can edit this by clicking on the drop-down arrow and selecting the language.

DMN Module When business rule tasks are used in the BPMN Model, you can implement these
tasks as a DMN Model.

You might first create a DMN Model and generate a DMN Server in Java, then

click on the button to specify the generated DMN Server file.

JRE Home The Enterprise Architect BPSim Execution Engine runs in a Java Environment,

therefore a JRE Home has to be specified. Click on the button to choose a
directory; for example, C:\Program Files\Java\jre7.

You can edit this by clicking on the button again to browse the directory.

JDK Home When the expression language is Java, the Enterprise Architect BPSim Execution
Engine will generate Java code and compile with javac as the vendor extension. So

a JDK Home must be specified. Use the button to choose a directory (such as
C:\Program Files\Java\jdk1.7.0_80).

You can edit this by again clicking on the button to browse the directory.

Port The Port number that Enterprise Architect used to communicate with the BPSim
Execution Engine. The default Port number is 1799.

Created Read only field. The timestamp when the BPSim Artifact was created.

Modified Read only field. The timestamp when the BPSim Artifact was last modified.

Control Parameters

To begin defining Control Parameters:

Select the element on the diagram, then choose 'Control' in the 'Category' column in the list·

(c) Sparx Systems 2020 Page 85 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

After the category selection, the combo box in the 'Parameter' column will be filled with all the available parameters·
for the selected element

After the parameter selection, you can enter the parameter value in the field or use the button to open the·
'Parameter Value' dialog

(c) Sparx Systems 2020 Page 86 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Temporal Parameters

To begin defining Time Parameters:

Select the element on the diagram, then choose 'Time' from the 'Category' column in the list·

After you select the category, the combo box in the 'Parameter' column will be filled with the available parameters·
for the selected element

After you select the parameter, you can enter the value in the field or use the button to open the 'Parameter·
Value' dialog

You can toggle the 'Result Request' column by clicking on the min/max button on the toolbar to customize the·
simulation result by requiring certain results

(c) Sparx Systems 2020 Page 87 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Resource Parameters

To begin defining the Resource Parameters:

Select the BPMN Task element on the diagram, then choose 'Resource' from the 'Category' column and 'Selection'·
from the 'Parameter' column

Click on the button to open the 'Edit Resource Selection' dialog·

The top left list will be filled with the defined Resource elements; use the Add Selection By Resource(s) button to·
confirm the selection

The top right list will be filled with the defined Roles on the resource elements; use the Add Selection By Role(s)·
button to confirm the selection

Edit the numbers in the 'Quantity Required' column·

Click on the appropriate radio button to set the logical relationship to AND or OR for the selection·

The final expression for Resource selection is composed and displayed in the text field·

Property Parameters

To begin defining the Property Parameters:

Click on the Property button on the toolbar·

(c) Sparx Systems 2020 Page 88 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

The defined properties and their references are listed.

You can add a new property, delete the selected property, or update a property's name and type.

With the defined properties, you can set property parameters on BPMN elements:·

Choose 'Property' as a category and a defined property for 'Parameter'.

Click on the button on the 'Values' column to display the 'Parameter Value' dialog·

(c) Sparx Systems 2020 Page 89 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Navigate to the 'Expression' tab; all the defined properties are listed and you can double-click on an item to enclose the
property in curly brackets and append it to the edit control. In this example, we compose '{noOfIssues} + 1'

Calendars

With calendars, you can define any number of special periods of time that can influence the process, such as working
days, shifts, holidays or periodic events (for example, stock-taking, inventory or auditing).

To begin defining the Calendars:

Click on the Calendar button on the toolbar; the defined calendars will be listed·

You can add a new calendar, or edit or delete a selected calendar; to add a new calendar period:

Click on the New button to display the 'Event Recurrence' dialog.1.

(c) Sparx Systems 2020 Page 90 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

In the 'Event time' panel, the 'Start' and 'End' fields both default to the current time. The 'Start' field is the anchor; a2.
change to either the 'End' field or the 'Duration' field automatically updates the other field, in reference to the 'Start'
field. Click on the hour and minute segments of each field (and, for the 'Duration' field, the 'Day(s)' segment)
separately, and use the 'spin' arrows to set the start time and the end time or duration of the period.

In the 'Recurrence pattern' panel, select the radio button for the interval at which the calendar period recurs. Each3.
option displays an appropriate set of fields in the right of the panel for refining that interval to every
day/week/month or every two/three/four days/weeks/months, on a particular day of the week, or day or date of the
month, or day or date in the year. Select the checkboxes or values in drop-down lists as appropriate.

In the 'Range of recurrence' panel, select the date on which the calendar period takes effect and select the appropriate4.
radio button to define when the period ceases to apply - never, after a set number of occurrences, or on a specific
date. You can select an end date either from a drop-down calendar or using the 'spin' arrows on each segment of the
date.

Click on the OK button to set the calendar period.5.

As you define calendar periods, they are listed in order of the start date and/or time, earliest first.

With defined calendars, you can configure parameters on a selected calendar·

Validation

After configuring BPSim parameters for some BPMN Elements, run the Validation model. Any BPMN or BPSim

(c) Sparx Systems 2020 Page 91 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

errors/warnings will be displayed in the System Output window. Fix the issues according to messages.

Then we are ready for the next topic: BPSim Execute Page.

(c) Sparx Systems 2020 Page 92 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

BPSim - Execute Page

After the configuration, you can choose a Standard simulation or a Customized simulation. The execution will generate a
result report and a list of records used to replay (step through) the simulation.

Access

Ribbon Simulate > Process Analysis > BPSIM > Open BPSIM Manager > Execute page

Toolbar Options

Option Description

Click on this button to execute the BPMN file with the BPSim configuration and
generate a standard report.

Click on this button to execute the BPMN file with the BPSim configuration and
generate a customized report based on the 'Result Request' settings.

Click on this button to stop the execution and exit the simulation mode.

Click on this button open the generated report in the 'Review' page.

Execution

When you click on the Standard / Customized Execute button, the BPMN model with BPSim Configuration will be
exported and loaded into the Execution engine.

(c) Sparx Systems 2020 Page 93 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

The token status list will flash with runtime values·

The diagram will flash with runtime token counts·

In this example, BPMN elements under the Process 'Car Repair' and sub-process 'Repair Car' get triggered as new
customers arrive at regular intervals.

(c) Sparx Systems 2020 Page 94 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

BPSim - Step Page

After successfully running the execution, you get an execution report that tells you the process status in general, such as
the average time of a task, the total waiting time of customers and how many issues are repaired.

In addition, you can inspect the process from various angles. For example:

From the timestamp - what was the status of this process at 9:30 AM?·

From the token - what did the 3rd customer do in the shop?·

From the property - how does the number of issues decrease and increase for the 2nd car?·

From multiple threads - can I see customers walk in and simulate automatically on the diagram?·

From the resources - when is a support busy or idle? Why is a customer waiting for 40 minutes?·

All of these kinds of question can be answered on the 'Step Simulation' page.

Access

Ribbon Simulate > Process Analysis > BPSIM > Open BPSIM Manager > Step tab

Toolbar Options

Option Description

Click on this button to simulate the process automatically based on the execution
result.

Click on the menu option 'Set Speed for Replay' and adjust the simulation speed.
For example, input '60' means 60 times faster than actual; 1 minute in real life will
be simulated in 1 second.

Click on this button to pause the auto-replay simulation.

Click on this button to exit the simulation mode.

Click on this button to 'Step over' to the next timestamp. Each 'Step over' can
contain multiple 'steps'.

Click on this button to play a single step. This represents a single movement of a
token in the process.

Click on this button to generate a Timing Diagram for the simulation.

You can choose from the menu, either 'Generate a single timeline for each token' or
'Generate multiple timelines for each token'.

Click on this button to export the filtered records on this step page to a CSV file.
You can choose which tab to export.

(c) Sparx Systems 2020 Page 95 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Tokens Page

After running the execution, this page will be filled with token information during the simulation; the sequence of entries
is in order of triggering time.

'Apply Filter' in the 'Token ID' column will only show records for a specific token·

One click on the Step in button will play one record in the list·

Double-clicking on a record is equivalent to 'Step to' that record from the beginning·

If time parameters are set on the elements, 'Step over' will run to the last record of the next time event·

When a record in the list is played, the simulation snapshot will show on the diagram·

Property Parameters Page

While the records on the 'Tokens' page are played, the 'Property Parameters' page will show the runtime value of
properties at the timestamp.

For example, a BPMN process to calculate Fibonacci numbers might be modeled in this way:

After defining property parameters, configuring BPSim parameters for each element and executing the model, we are
ready for the step simulation:

(c) Sparx Systems 2020 Page 96 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

The 'Message' column indicates that properties 'N, first, n, second' are initialized.

Keep clicking on the Step in button; the properties in the list will change their values. This figure shows that on entering
task 'next = first + second', the value of property 'next' changes from 89 to 144.

Resources Page

While the records on the 'Tokens' page are played, the 'Resources' page will show the runtime resource available,
quantities and allocation/release events at the timestamp.

(c) Sparx Systems 2020 Page 97 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Generate Timing Diagram

When the time parameters are configured on the BPMN elements, Enterprise Architect will be able to generate a Timing
diagram for the simulation process.

Generate a single timeline for each token·

Use this option for a 'single threaded' process; for example, no parallel gateway or event sub processes

Generate multiple timelines for each token·

Use this option in cases when the 'Generate a single timeline for each token' option does not apply.

For example:

Execute this model and click on 'Generate multiple timelines for each token' the generated Timing diagram resembles

(c) Sparx Systems 2020 Page 98 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

this:

(c) Sparx Systems 2020 Page 99 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

BPSim - Review Page

This review page contains three tabs:

Configuration Summary·

Standard Results Report·

Custom Results Report·

These tabs work in a similar way: add one Artifact for review or multiple Artifacts for comparison. This makes it easy
for you to do what-if analyses.

Access

Ribbon Simulate > Process Analysis > BPSIM > Open BPSIM Manager | Review Page

What-If Analysis

In the Help Desk Support example, we can compare two Artifacts and their corresponding results.

We only show the different parameter values.

(c) Sparx Systems 2020 Page 100 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

In this example, we see that when the number of support staff decreases from 3 to 2, the average time waiting for
resources increases from 11.4 minutes to 27 minutes.

(c) Sparx Systems 2020 Page 101 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Using the Parameter Value Dialog

The 'Parameter Value' dialog helps you to define values for a wide range of parameters throughout the BPSim
Configuration. It supports the definition of simple fixed values through to distributions and expressions that yield a
derived value. Not all types of value or derivation are appropriate to all types of parameter.

The dialog name is taken from the object name and the name of the parameter being defined; for example, Configure
'Processing' for 'Activity1'.

Access

With a BPSim Artifact loaded in the Configure BPSim window, select a BPMN Element on the diagram or Browser

window, then click on in the 'Values' field. (If the parameter is not already created, choose Category and Parameter
in the list to create a new one.)

Constant Tab

Use this tab to define a specific value for the parameter - a numeral, text string or time, for example.

In the 'Constant' panel, select the type of constant:

Floating·

Numeric·

String·

DateTime·

Boolean, or·

Duration·

Appropriate fields display to the right of the panel; type the value and, if required, the unit in which the value is
expressed (for example, a unit of time or of currency). For some types of parameter a drop-down list is available from
which you can select a value.

(c) Sparx Systems 2020 Page 102 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Distribution Tab

On this tab, you can apply a statistical sampling method to obtain the parameter value; for each type of distribution
available, the appropriate fields display for you to enter the parameters of the distribution. All distributions require you to
identify the unit of expression.

The distribution parameters are not necessary for the business process you are developing, but (if you are deriving values
from a distribution) are required for the simulation.

You can select from these types of distribution:

Beta - a continuous probability distribution providing 'real' values within a short range, commonly 0 to 1·

Weibull - a continuous probability distribution providing 'real' values, commonly used for object lifetime analysis·

Gamma - a continuous probability distribution providing 'real' values, useful for modeling exponentially distributed·
random variables

Binomial - an 'integer' distribution, providing values based on the number of trials and the probability of a certain·
outcome

Erlang - provides 'real' values based on the Erlang K value and the mean of the distribution·

Normal - provides 'real' values based on the mean and standard deviation of the distribution·

LogNormal - a continuous probability distribution of 'real', random variables whose logarithm is normally·
distributed

Poisson - a discrete ('integer') probability distribution that expresses the probability of a given number of events·
occurring independently in a fixed interval of time or space (volume, distance or area)

NegativeExponential - provides 'real' values based on the mean of the distribution·

Triangular - provides 'real' values based on the mode of the distribution and the minimum and maximum values of·
a range

TruncatedNormal - provides 'real' values based on the mean and standard deviation of points within the minimum·
and maximum values of a range

Uniform - provides 'real' values between the minimum and maximum values in a range·

Expression Tab

On this tab, you type in an XPATH 1.0 expression to combine explicit values, operators and functions to be processed at
runtime to provide a value. Each property parameter of an expression must be enclosed in braces - {xxx}.

Example 1: In order to represent c = a + b + 10, we assign this expression to a property 'c':

{a} + {b} + 10

where 'a' and 'b' are properties defined in the BPSim model.

Example 2: In order to represent c = t - p * (a - b)2, we assign this expression to a property 'c':

{t} - {p} * Math.pow({a} - {b}, 2.0)

Note: When simulating a model with this expression, please select 'Java' as the language in order to use the java built-in
function Math.pow().

Enumeration Tab

On the 'Enumeration' tab, you can define an enumeration to supply a collection of constant values. You would have
obtained these values from real-world, historical data or from analysis and simulation of a model. Every time the
parameter is evaluated, the next enumeration value is returned.

(c) Sparx Systems 2020 Page 103 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

As you define each numeration value, click on the Save button to add it to the list of possible values, and click on the
New button to clear the data fields ready to enter another value. For some types of enumeration value you might be asked
to define the unit in which the value is expressed. The types of enumeration you can define include:

String·

Floating·

Numeric·

Duration·

DateTime·

Boolean·

(c) Sparx Systems 2020 Page 104 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

The BPSim User Interface Components

The BPSim Perspectives have four pages, or tabs, of data in common. These are the 'Scenario', 'Calendars', 'Properties'
and 'Review' tabs, the first three of which are also reflected in the data hierarchy on the left of the window. The data
specific to each Perspective is discussed in separate topics.

The Save button, Validate Button, Export button and Run button are also available across the configuration, to save all
changes made, to validate the configuration, to export the configuration and to execute the Sparx Systems Business
Process Simulation engine (if available) on the current configuration.

Because these tabs are in common, you might prefer to populate them with data in a 'base' version of the configuration
and use inheritance to make that data available to other configurations. This helps reduce the work in defining the data in
the first place, and avoids errors in repeatedly entering the same information in different configurations - you only have
to enter it once.

The Scenario Tab

This tab defines the general characteristics of the scenario that the configuration represents, such as:

The date and time at which the process takes effect; you set and edit this by overtyping the values or, for the date, by·
selection from a drop-down calendar

The length of time the process takes; overtype the appropriate segment with the number of·
years:days:hours:minutes:seconds:milliseconds

The base unit in which periods of time are expressed in this scenario (unless overridden); click on the drop-down·
arrow and select the unit

The currency unit of any costs recorded in the process; click on the drop-down arrow and select the unit abbreviation·

The number of times the scenario as a whole will be repeated in an execution cycle, which you simply type in·

The 'seed' or starting number for any sequence of randomly-generated numbers in the process, which you simply·
type in

The date and time on which the scenario was created·

The date and time at which the scenario was last modified·

The JRE Home directory, which you can browse for and select·

The JDK Home directory, which you can browse for and select·

The number of the Port through which Enterprise Architect communicates with the BPSim Execution Engine; this·
defaults to 1799

The Properties Tab

This tab is used for defining global properties; that is, properties of the scenario, or properties that have even broader
application, such as 'Number of Issues' or 'Net Cost'.

(c) Sparx Systems 2020 Page 105 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

A number of objects throughout the configuration have their own 'Property' tab, for features specific to that object.

To create a global property

Click on the New Property text and type in the name of the property.1.

Click on the icon in the 'Value' field. The 'Parameter Value' dialog displays, from which you select the2.
appropriate tab to define the value itself or the expression to derive the value. When you have defined the value,
click on the OK button.

In the 'Unit' field, if necessary, type the unit of expression of the value you have defined. For example, Hours or $K.3.

In the 'Calendar' field, if this property can be modified by a defined calendar period, click on the drop-down arrow4.
and select the appropriate period.

Result Requests

In the lower panel of the 'Properties' tab, and of the object parameter tabs throughout the configuration, most of the
possible types of parameter appropriate to the tab are listed. For many of these parameters, you can click on the
drop-down arrow in the 'Result Request' column and select the type of processing of that parameter you want to check
for in the simulation results, such as a count of the number of times it was used, or the sum, mean, minimum or
maximum value used, in the context of a specific activity or of the Business Process as a whole. Certain parameters, such
as 'Priority' and 'Probability', would not have any meaning in this context and either are not listed or cannot be set in the
'Result Request'.

You would then execute a customized simulation, which will only show the parameters you have selected to review.

You can also specify whether the parameter is a 'Key Performance Indicator' (KPI) or part of a 'Service Level Agreement'
(SLA), by selecting the appropriate checkbox against the parameter.

(c) Sparx Systems 2020 Page 106 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

The Review Tab

The 'Review' tab presents a summary of the saved changes that have been made to the object parameters and properties in
the configuration, during the current work session. You cannot change the data captured on this tab.

BPMN Validation

It is possible to validate your BPMN Model and BPSim Configuration. Click on the Validate button in the configuration
to validate the model and configuration; all errors and warnings will be reported in the System Output window.

Alternatively, you can select a root Package containing a BPMN model and BPSim Configuration, and then select the
'Design > Model > Manage > Validate > Validate Current Package' ribbon option.

(c) Sparx Systems 2020 Page 107 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

The BPSim Control Perspective

The Control Perspective targets how activity flows through the process, moderated by the likelihood of a sequence of
events and the priorities of certain events when they occur.

When you initially select 'Control' in the 'Perspective' field, the hierarchy on the left of the screen groups all elements in
the Business Process (including the Business Process itself) by type and, for each element that has one or more
connections to other elements, lists those connections by name and/or by the name of the target element. The Configure
BPSim window also initially displays the 'Trigger Count' tab.

Access

Use one of the methods outlined in this table to open the Configure BPSim window and load a Business Process
Simulation Artifact element, using the 'Control' perspective.

Ribbon Simulate > Process Analysis > BPSim > Open BPSim Manager > click toolbar icon

 > Select Artifact > [select a Business Process Simulation Artifact] > Set
'Perspective' to 'Control'

Simulate > Process Analysis > BPSim > Open BPSim Manager > click toolbar icon

 > [select a Package] > Create Artifact : Add New > [provide a name] > Set
'Perspective' to 'Control'

Simulate > Process Analysis > BPSim > Find BPSim Configuration Artifacts >
double-click an Artifact in search results > Set 'Perspective' to 'Control'

Context Menu In the Browser window or a diagram | Right-click Business Process Simulation
Artifact | Configure BPSim | Set 'Perspective' to 'Control'

The Control Tab

The 'Control' tab displays when you click on the name of a Start Event, Intermediate Event or connector in the hierarchy.
Through this tab you can define a small number of parameters, dependent on the nature of the object; some objects
cannot take control parameters, some can take only certain types, and others a wider range.

To define a control parameter, click on the drop-down arrow after the New Parameter text in the 'Type' column and
select from the list of available parameters. An object that cannot take parameters has the text No parameter items in the
'Type' column.

If you have set any applicable calendar periods, for each parameter you can click on the drop-down arrow in the
'Calendar' field and select the period during which the parameter takes effect. You can set multiple parameters of one
type if the value varies according to time or chronological event.

The Trigger Count Tab

The 'Trigger Count' tab lists the elements in the Business Process, grouped by stereotype. Against each element, in the
'Trigger Count' column, is a checkbox that you can select to capture the number of times the element is accessed during a
simulation. It provides a quick and simple way to specify the actions to specifically monitor in a customized simulation.
You can also use the 'Result Request' column in the 'Properties' or 'Control' tabs to capture the count of accesses for each
element individually (and those settings update and are updated by the 'Trigger Count' tab), but the tab helps you set or
clear the count requests in one place. You do need to use the 'Result Request' column to capture the number of times a
pathway (connector) between elements is accessed.

(c) Sparx Systems 2020 Page 108 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

On the 'Trigger Count' tab you can, if you prefer, use the arrows in the column heads and/or the Filter bar to list the
elements in a different sequence by Stereotype, Name or selected/cleared 'Trigger Count' checkbox.

Control Parameters

Parameter Description

Condition This parameter simply defines some type of condition that must be satisfied before
processing continues. It can be either a simple constant, a statistically-derived
value, a value calculated from an expression, or an enumerated value. In the 'Value'

field, click on the button and work on the 'Value' dialog.

Probability This parameter assigns a weighting to the object or connector so that when there is
a choice of paths, the simulation will process that object or connector a fixed
proportion of the times. Probability is expressed as a decimal portion of 1.0, so in
the 'Value' field you type a value such as 0.25 (25% of the time, the simulation will
process this object). You should check that the probabilities of all paths in the same
choice add up to 1.0.

InterTriggerTimer This parameter defines the time interval between triggers for the action that the
object or connector represents. This interval can be either a simple constant, a
statistically-derived value, a value calculated from an expression, or an enumerated

value. In the 'Value' field, click on the button and work on the value dialog as
for a global property.

TriggerCount The TriggerCount sets the number of times the object or connector should be
processed during one execution of the simulation, so that the processing cycle
imitates the typical demand for a particular chain of actions. It is generally set for
Start Event elements.

Note that this TriggerCount sets the number of times the element or connector is to
be processed in a normal or customized simulation, whilst the TriggerCount in the
'Trigger Count' tab and 'Result Requests' gets the number of times the element or
connector has been processed in a customized simulation.

The Priority Tab

The 'Priority' tab displays when you select an Activity element. The tab identifies whether the activity can be interrupted
by another activity, and what the relative priority is of the activity if there is a choice as to which activity is executed
first.

Parameter Description

Interruptable This parameter defines whether the activity can be interrupted, and takes a value of
True or False. You can create more than one instance with different values for
different calendar periods.

Priority This parameter defines the priority of the activity relative to other activities that

might be executed at the same time. In the 'Value' field, click on the button
and work on the value dialog to set either a simple constant or a derived value for
the priority. Take into consideration whether the competing activities are

(c) Sparx Systems 2020 Page 109 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

interruptable and what their priority values are.

You can set different priorities for the same activity, corresponding to different
calendar periods.

(c) Sparx Systems 2020 Page 110 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

The BPSim Resource Perspective

The 'Resource Perspective' targets the involvement of types and roles of workers and other resources in a process,
reviewing the required numbers, combinations, costs and availability. Before you define how the resources can be
deployed in the process, you must create the appropriate BPMN 2.0 Resource elements within your model. These are
then listed in the 'Resource' folder in the Configure BPSim window hierarchy. You can also use ResourceRoles that you
might have defined in your model, but it is quicker and easier to create and use any roles you require within the BPSim
configuration.

Access

Use one of the methods outlined in this table to open the Configure BPSim window and load a Business Process
Simulation Artifact element, using the 'Resource' perspective.

Ribbon Simulate > Process Analysis > BPSim > Open BPSim Manager > click toolbar icon

 > Select Artifact > [select a Business Process Simulation Artifact] > Set
'Perspective' to 'Resource'

Simulate > Process Analysis > BPSim > Open BPSim Manager > click toolbar icon

 > [select a Package] > Create Artifact : Add New > [provide a name] > Set
'Perspective' to 'Resource'

Simulate > Process Analysis > BPSim > Find BPSim Configuration Artifacts >
double-click an Artifact in search results > Set 'Perspective' to 'Resource'

Context Menu In the Browser window or diagram | Right-click Business Process Simulation
Artifact | Configure BPSim | Set 'Perspective' to 'Resource'

The Resource Tab

The 'Resource' tab is available when you click on a Resource element in the 'Resource' folder. On this tab, you define
how many instances of each resource are available for each calendar period that you have defined, and any roles the
resource might be specialized into. You can provide multiple instances of each resource parameter, depending on how
the resource availability varies across any defined calendar periods.

When you have finished defining the resource availability, click on the Save button. The 'Resource' tab has no 'Result
Request' facility.

Parameter Description

Availability In the 'Type' column, select this parameter.

In the 'Value' column, click on the drop-down arrow and select either 'True' (the
resource is available) or 'False' (this resource is not available). You can also define
mechanisms for establishing availability, using the 'Parameter Value' dialog, as long
as they result in a value of True or False.

In the 'Calendar' column, click on the drop-down arrow and select the calendar
period to which this availability applies.

Quantity In the 'Type' column, click on the drop-down arrow and select this parameter.

In the 'Value' column, either type in a simple numerical value or click on the
drop-down arrow and use the 'Parameter Value' dialog to define a constant or
derived value for the quantity of this resource that is available for assignment.

(c) Sparx Systems 2020 Page 111 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

In the 'Calendar' column, click on the drop-down arrow and select the calendar
period during which this quantity of the resource is available.

Role To add a role to the panel, click on the New Role text and type in the role name. At
this point the new roles remain as parameters within the BPSim configuration and
are not reproduced in the model.

The Cost Tab

The 'Cost' tab is available when you select an Activity element or a Resource element in the Configure BPSim window
hierarchy. To add a parameter, click on the drop-down arrow after the 'New Parameter' text in the 'Type' column. You
can have multiple costs if the cost varies according to the calendar period in which it is incurred.

Parameter Description

Fixed Cost This parameter defines the fixed cost of calling the resource or activity into use,
automatically expressed in the unit of currency defined on the 'Scenario' tab. For
example, the call-out fee for an electrician.

In the 'Value' column, either type in the cost or click on the drop-down arrow and
define how the cost is derived. A derived cost must resolve to a floating or numeric
value.

If necessary, in the 'Calendar' column click on the drop-down arrow and select the
calendar period during which the fixed cost applies.

Unit Cost This parameter defines the unit cost of using the resource or running the activity,
automatically expressed in the unit of currency and per the unit of time defined on
the 'Scenario' tab. For example, the hourly rate of the electrician.

In the 'Value' column, either type in the cost or click on the drop-down arrow and
define how the cost is derived. A derived cost must resolve to a floating or numeric
value.

If necessary, in the 'Calendar' column click on the drop-down arrow and select the
calendar period during which the unit cost applies.

The ResourceRole Tab

The 'ResourceRole' tab is available when you select an Activity element or Business Process element in the 'BPSim
Configuration' hierarchy. Its main purpose is to define the resources for an Activity, but if necessary you can assign
resources that act within the Business Process definition itself.

You can apply the resources as defined within the model. Alternatively, you can define a combination of resources and
roles that is not identified in the model, which overrides the original definition. For example, the model might show that
an Activity 'Take Customer Call' is associated with the resource 'Front Office'. In the BPSim configuration you can
qualify that relationship to indicate that the Activity actually uses 50 Front Office staff. But you might instead override
the model relationship to indicate that the work can be done by 50 resources from either Front Office or Support, if (for
example) the Support resources have the role of Switchboard Operators.

The resource selection for the Activity is also displayed as an expression, at the bottom of the tab.

Panel Description

Resource Roles defined in In this panel, you assign a resource to the selected Activity in the BPMN model, as

(c) Sparx Systems 2020 Page 112 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

BPMN shown:

Click on the Add button, which adds a ResourceRole element to the 'Type'1.
column and to the Activity in the model.

Click on the 'BPMN Resource' column and on the button, and select a2.
Resource from the Tagged Values browser (which assigns the resource to the
'ResourceRef' Tagged Value of the new ResourceRole element).

If necessary, type a role for the resource in the 'Role(Name)' column3.
(preferably using the roles you defined for the resource on the 'Resource' tab).
This value is reflected in the ResourceRole element defined for this Activity.

In the 'Quantity' column, the quantity of this resource that the Activity uses on4.
each iteration defaults to 1. If necessary, overtype this number with a different
value.

Click on the Save button. Note that the quantity is reflected in the 'Advanced5.
Override for Single Resource Role' panel.

If you need to add another type of resource, or a different role of the same6.
resource, you can repeat steps 1 to 5 or (preferred) use the Advanced Override.
Note that the quantity reflected in the 'Advanced Override for Single Resource
Role' panel is for one selected ResourceRole entry.

Advanced Override for
Single Resource Role

In this panel, you can define a combination of resources to use in place of a
relationship defined in the model. All resources currently defined in the model are
automatically listed in the panel. The override applies to a single selected
ResourceRole entry in the 'Resource Roles defined in BPMN' panel; if you have
more than one entry in this panel, set the 'Quantity' value for the other entries to 0.

Select the radio button to indicate whether the combination of resources you1.
are defining is an AND relationship (so many of Resource X and so many of
Resource Y at the same time), or an OR relationship (0 to n of Resource X OR
0 to n of Resource Y at any time).

Double-click in the 'Quantity Required' column and type the required number2.
of each resource for the activity.

Click on the Save button. Note that the 'Resource Selection Expression for3.
Activity' panel at the foot of the tab shows the expression that will apply this
combination of resources.

If a resource is defined in the 'Resource Roles defined in BPMN' panel, a change to
the quantity of that resource is reflected in that panel, but the addition of a
subsequent resource in the 'Advanced Override for Single Resource Role' panel
changes the value of the 'Quantity' field to 'Override'.

If you want to make the role of a resource significant in the combination, you must
have at least one resource identified in the upper panel. This adds a 'Role' item to
the end of the list in the 'Advanced Override for Single Resource Role' panel.

Click on the 'Role' item and on the icon in the 'Resource or Role' column.1.
The 'Roles for Selection' dialog displays, listing the roles available for each
resource in the configuration (as you defined on the 'Resource' tab, previously).

Select the checkbox against the required role (or more than one role, if2.
appropriate) and click on the Save button. The roles are shown in the 'Resource
or Role' column.

In the 'Quantity Required' column, type in the required number of resources of3.
this role or these roles.

Click on the Save button. The 'Role' item moves underneath the appropriate4.
resource name, and another empty 'Role' item is added to the end of the list.
The 'Resource Selection Expression for Activity' panel is updated to show the
resource roles you have specified.

If you do not want to keep a resource or role in the defined combination, set its

(c) Sparx Systems 2020 Page 113 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

'Quantity Required' value to 0. It will remain at this value while you remain on this
Activity, but when you return to the Activity after working elsewhere the field is
clear.

(c) Sparx Systems 2020 Page 114 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

The BPSim Time Perspective

The 'Time' (or 'Temporal') Perspective helps you to examine how the duration of one or more phases in the processing of
an Activity influences the business process. In this Perspective you only set parameters on Activity elements, but you can
monitor (through the 'Result Request' column) the occurrence, minimum, maximum, mean and sum duration of a
parameter for the Business Process as a whole or for the Activities involving a defined Resource.

Access

Use one of the methods outlined in this table to open the Configure BPSim window and load a Business Process
Simulation Artifact element, using the 'Temporal' perspective.

Ribbon Simulate > Process Analysis > BPSim > Open BPSim Manager > click toolbar icon

 > Select Artifact > [select a Business Process Simulation Artifact] > Set
'Perspective' to 'Temporal'

Simulate > Process Analysis > BPSim > Open BPSim Manager > click toolbar icon

 > [select a Package] > Create Artifact : Add New > [provide a name] > Set
'Perspective' to 'Temporal'

Simulate > Process Analysis > BPSim > Find BPSim Configuration Artifacts >
double-click an Artifact in search results > Set 'Perspective' to 'Temporal'

Context Menu In the Browser window or diagram | Right-click Business Process Simulation
Artifact | Configure BPSim | Set 'Perspective' to 'Temporal'

The Time Tab

On this tab, for a selected Activity element, you define the duration of a number of stages through which the Activity
might pass. For each stage you:

Click on the drop-down arrow in the 'Type' field and select the type as a parameter·

Click on the button in the 'Value' field and define the duration (either as a fixed value or as a derived value) and·
unit of measurement, and

If appropriate, click on the drop-down arrow in the 'Calendar' field and select a calendar period to which this·
duration applies

Parameter Description

Processing Time The time spent actually performing the Activity. This can be strictly defined, or
more broadly set to represent the duration of the Activity (the duration being the
time it takes to complete the Activity; in strict use, the sum of the 'Setup Time',
'Processing Time', 'Validation Time' and 'Rework Time').

For this and the other six parameters, you use the 'Parameter Value' dialog to define
a constant or derived value in the appropriate unit of time; a derived value must
resolve to a NumericParameter, a FloatingParameter or a DurationParameter.

Queue Time The delay between the Activity being offered and the Activity being processed; a
refinement of the lag time.

The time spent redoing or correcting the work of the Activity; a refinement of the

(c) Sparx Systems 2020 Page 115 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Rework Time duration.

Setup Time The time expended between the element being offered and the element being
allocated to perform the actual work; a refinement of the duration.

Transfer Time The time spent traveling from the previous processing step; a refinement of the lag
time.

Validation Time The time taken to review or inspect the work done; a refinement of the duration.

Wait Time The time between the element being allocated and its action actually starting. This
can be strictly defined, or more broadly used to represent the lag time of the
Activity (the lag time being the time between the action of one Activity stopping
and the action of the next Activity starting; in strict use the sum of the 'Transfer
Time', 'Queue Time' and 'Wait Time').

Notes

In the BPSim configuration you can set values for seven different time parameters; however, the BPSim Simulation·
engine, during a simulation, amalgamates the values of these parameters into one ProcessingTime parameter
You can vary the initial values and value generation methods of the individual parameters to observe the effect each
has on the eventual processing time, or to define a simulation to be exported into a different tool for analysis and/or
execution

An example of the behavior of the Time parameters during simulation is provided in the EAExample model·

(c) Sparx Systems 2020 Page 116 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Configuration Inheritance

When you define a BPSim configuration it can contain a lot of data, some relating to each of the three separate
Perspectives, and some being base data for the configuration grouped on three pages or tabs of the 'Configuration' dialog.
A major objective of performing simulations of a business process using BPSim is to observe the effects of varying the
values of certain parameters, whilst leaving others unchanged. It would be very useful, then, to maintain all of the
standard data in a single place where it is created only once, and work on the variable data in one or more separate places
that refer back to the base data. This would also mean that if you changed any of the standard data, the changes would be
reflected in all the configurations that refer to it.

In BPSim, you can achieve this arrangement using inheritance between configuration Artifact elements.

In essence, you would define the standard data in a base configuration, and the data you are manipulating (and only that
data) in configurations called, say, Resource Scenario 1, Resource Scenario 2, Timing Scenario A, or Control Scenario
B. You would then create Generalize connectors from the scenario configuration Artifacts (the sources) to the base
configuration Artifact (the target).

«BPSim»
All Base Data

«BPSim»
Control Scenario B

«BPSim»
Resource Scenario 1

«BPSim»
Timing Scenario A

«BPSim»
Resource Scenario 2

When you run a simulation on a scenario configuration, it will inherit the data defined in the base configuration and the
simulation will perform as if it were processing a single configuration containing all the data. If the scenario
configuration contains data that is also defined in the base, the (changed) values in the scenario take precedence.

Comparisons

To keep track of how the base and scenario configurations have been set up, and what the differences are between them,
you would run a 'BPMN Simulation Configuration' report on one of them and drag the other(s) into the same report.

Whether or not you select the 'Show Only Different Items' option or the 'Highlight Different Items' option, you will see
all the base configuration data in one column and a much smaller volume of scenario data in another. Where the data
occurs in both columns, you can compare values and check what the scenario values have been changed to.

Similarly, when you run simulations on both configurations, you can display the 'BPMN Simulation Report View' and
compare the results of the simulations. In this case if you select either the 'Show Only Different Items' or the 'Highlight
Different Items' option, you will see a much smaller data set where the scenario values differ from the base configuration
values, because in the simulation the scenario will have inherited all of the base configuration data and will produce
substantially the same output.

(c) Sparx Systems 2020 Page 117 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Using the MDG BPSim Execution Engine

The MDG BPSim Execution Engine is an Add-In that you can purchase to execute the simulations that you have defined
using the Business Process Simulation (BPSim) facility in Enterprise Architect. Installation of the Engine is a
prerequisite for accessing and using the facilities of BPSim.

Access

Open the Configure BPSim window, load a Business Process Simulation Artifact and click on on the toolbar.

Ribbon
Simulate > Process Analysis > BPSim > Open BPSim Manager : click on the
toolbar > Select Artifact > [select a Business Process Simulation Artifact] : click on

Simulate > Process Analysis > BPSim > Open BPSim Manager : click on the
toolbar > [select a Package] > Create Artifact : Add New > [provide a name] : click

on

Simulate > Process Analysis > BPSim > Find BPSim Configuration Artifacts >

double-click an Artifact in search results : click on

Context Menu Right-click on a Business Process Simulation Artifact element | Configure BPSim :

Other Right-click on a Business Process Simulation Artifact element | Simulate BPMN
with BPSim

Execute and Control a Simulation

Click on the Run button and select either:

'Standard Simulation' or·

'Customized Simulation'·

These options trigger the same processing, except that while 'Standard Simulation' generates a report on all built-in
parameters set in the simulation, 'Customized Simulation' extracts results for only the parameters you have specifically
flagged using the 'Result Request' columns in the configuration.

The simulation executes, displaying processing messages in the top section of the dialog, and the elements and
parameters processed with the runtime values used from the configuration.

(c) Sparx Systems 2020 Page 118 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

While the simulation is in progress, you can use the Pause button and Resume button to temporarily halt processing and
then resume, or you can click on the Stop button to cancel the simulation altogether.

The results of the simulation are written to an Artifact element added to the Business Process parent Package. A Standard
simulation writes to a <<BPSimReport>>-stereotyped Artifact, whilst a Customized simulation writes to a
<<BPSimCustomReport>>-stereotyped Artifact.

Track Property Values

As well as the built-in parameters, you can define your own process-specific Property parameters (attributes) in the
configuration. When the simulation has finished, and if you have defined property parameters, the Attributes button is
enabled. When you click on this button the 'BPSim PropertyParameter Values' dialog displays, through which you can
track how the run-time values of all the property parameters accrue or change through the business process.

(c) Sparx Systems 2020 Page 119 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Review a Simulation

When the simulation has finished processing, click on the Open Result button. The 'BPMN Simulation Report View' tab
opens in the main work area, showing the results for the built-in parameters in the current simulation (but not for the
user-defined property parameters). If you have already run a simulation of another configuration based on the same
business process, that is also displayed in the report as an additional column. Otherwise, you can click on the report
Artifact element and drag it onto the report tab, to compare the runtime values of the built-in parameters under two (or
more) configurations.

To make it easier to view the data from the report, you can drag the 'BPMN Simulation Report View' tab out of the main
view so that it becomes a floating window, and enlarge the window to a suitable size.

(c) Sparx Systems 2020 Page 120 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Click on the expansion boxes against the parameters you want to check. You can also expose and filter the information
using right-click context menu options.

You can represent specific differences between the results from separate simulations as Charts. The simulation result
Artifacts (<<BPSimReport>>name - Result elements) must exist before you can set up the Chart Artifacts. There is a
template Chart Artifact for Standard simulations and one for Customized simulations.

BPMN Simulation Report Options

Option Description

Collapse All Select this option to collapse the parameter hierarchy down to just the parent tab
names.

Expand All Select this option to expand the parameter hierarchy out to the lowest value type.

Show Only Different items (When you have two or more simulations shown.) Select this option to restrict the
display to those parameters where the values differ between the simulations. Click
on the option again to deselect it.

Highlight Different Items (When you have two or more simulations shown and where some of their parameter
values are different.) Displays the differing parameter values in red. This option is
disabled if you select the 'Show Only Different Items' option.

Show Only Non Empty
Items

Select this option to filter the display to show only parameters that have a specific
value other than 0.

Remove Model (When you have selected a specific result, which identifies the simulation in the
report.) Select this option to remove the simulation column from the report.

(c) Sparx Systems 2020 Page 121 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

BPSim Execution Engine - Simulation language

The MDG BPSim Execution Engine supports simulation on XPath 1.0 or Java, where the appropriate language is defined
as the Expression Language in the simulation configuration. It also supports the use of process instance data in BPSim
Property Parameters, where the actual value is only determined during execution.

XPath 1.0 Operators

These operators can be used in BPSim expression parameters.

Operator Description

| The Union operator, used for resource acquisition.

Example: getResource('w1',1) | getResource('w2',1)

+ Addition.

Example: 4 + 6

- Subtraction.

Example: 6 - 4

* Multiplication.

Example: 6 * 4

div Division.

Example: 8 div 4

= Equality.

Example: 4 = 4 (True)

!= Not Equal.

Example: 5 != 3

< Less than.

Example: 6 < 9

<= Less than or equal to.

Example: x <= 6

> Greater than.

Example: 9 > 6

>= Greater than or equal to.

Example: n >= 7

or Alternative.

Example: n = 6 or n <= 6

(c) Sparx Systems 2020 Page 122 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

and Combination.

Example: n = 5 and m < 8

mod Modulus division.

Example: 5 mod 2

getProperty Get a property value.

Example: getProperty ("amount")

getResource Get a resource assignment.

Example: getResource ('w1',1)

Note

The Expression Language can be set in the Configure BPSim window, on the 'Scenario' tab; the two options 'XPath 1.0'
and 'Java' are available.

If you select 'Java', you must set the property 'JDK Home' to a valid JDK directory.

Tip: You can use {PropertyParameterName} as a short form of getProperty('PropertyParameterName'), which is useful
when writing the value for the expressions; for example:

 {n} < {N} instead of getProperty('n') < getProperty('N')

The short form of the getProperty operator can be used in both XPath 1.0 and Java.

BPSim Property Parameters

In Enterprise Architect release 13.0 and higher, BPSim property parameters can hold process instance data to which no
value is assigned until run time. You can define the property parameter type on the 'Properties' page of the Configure
BPSim window; the supported types are 'int', 'double' and 'string'.

(c) Sparx Systems 2020 Page 123 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

(c) Sparx Systems 2020 Page 124 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Tracking Property Parameter Values

The Business Process Simulator (BPSim) helps you to model and test the operating details of a business process, such as
the resourcing of activities and tasks, the intervention of events, and the impact of decision points and the decisions made
at those points. You add these process-specific property parameters, or attributes, to the BPSim configuration and, as you
run simulations on the model according to the configuration, the BPSim engine helps you to capture the run-time values
of the property parameters for every iteration of the simulation, and to filter the results to examine specific pathways or
decision points. This gives you an incredibly detailed insight into what might actually happen in your business process
under a specific condition or combination of conditions, either to generate a result or to show what processing path
produces that result.

Access

Context Menu Right-click on a defined Business Process Simulation configuration Artifact
|Simulate BPMN with BPSim... : Run (select simulation type) : Attributes

(The Attributes button is not available if the simulation configuration does not
contain any property parameters)

BPSim PropertyParameter Values dialog fields

Option Action

Property This table lists the properties defined for the process, and shows the minimum and
maximum possible values for each property for the whole process.

If you click on the expansion box for a property, the table shows the minimum and
maximum values for the property at each activity or event (element) during the
process.

Token Number Type the number of the 'token' to examine; this number must lie within the range
shown to the right of the field. A 'token' is an independent trigger, such as a
customer or an order entering a business and initiating the business process under
review. There can be any number of customers or orders each having no
relationship with any other customer or order, and each potentially following a

(c) Sparx Systems 2020 Page 125 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

different route through the business process.

Where there is only one possible instance of one possible trigger event, such as an
on/off switch being thrown, the token is regarded as being 0.

Query Click on this button to initiate a query on the token simulation, to populate the
'Group by Element' and 'Group by Property' tabs.

Group by Element Displays the results from the perspective of how a property parameter's value
changes within a selected element. The tab shows a list of the elements in the
process and, for each element, the value of each property applied in the element on
each iteration of the simulation. Using the 'Toggle Filter Bar' option on the header
bar, you can refine the display to show only a particular property and see how often
it is used by the element and with what values.

Group by Property Displays the results from the perspective of how the value of each property changes
during the whole process. The tab shows a list of properties that are applied during
the process and, for each property, the value in each activity (element) on each
iteration of the process.

Examples

In the EAExample Model, you can study two examples of generating information on property parameters from a
simulation of a BPMN business process model. These will demonstrate how you define property parameters in the
configuration, based on the model. You can initially just run a simulation on each example, and examine the output as
described here. You can then examine the business processes and configurations themselves, and change or add to the
property parameters provided.

The examples are described in the Tracking Property Values - Examples topic. Briefly, they are:

'Fibonacci' - a very simple recursive business process that calculates a series of Fibonacci numbers through ten·
iterations; you can see how the property parameters increment in each iteration through the elements of the process
(in Example Model > Model Simulation > BPSim Models > Fibonacci)

'Car Repair' - a more complex and realistic process that represents what might happen when a series of individual·
'walk-in' customers bring vehicles into a car repair shop for estimation and repair (in Example Model > Model
Simulation > BPSim Models > Car Repair Process)

There is also a small example of the behavior of the Time Parameters (in Example Model > Model Simulation > BPSim
Models > Time Parameter).

Notes

If a BPSim configuration contains result requests and a Custom simulation is performed on it, the 'BPMN·
Simulation Report' shows only the built-in parameters requested in the configuration; in contrast, the 'BPSim
PropertyParameter Values' dialog lists all property parameters regardless of any result request settings or type of
simulation

(c) Sparx Systems 2020 Page 126 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Tracking Property Parameter Values - Examples

To help you learn about the facility for generating information on property parameters from a simulation of a BPMN
business process model, Sparx Systems provide two examples that you can explore in the EAExample model. These are
the:

Fibonacci process - a very simple example to help you become familiar with the parameter tracking facilities·

Car Repair process - a more complex example that you can manipulate to see how a real-life process might be·
investigated

At the end of this topic is a section that briefly discusses how you might work with an integer-based process containing
parameters that are initialized by 'real' distributions, and a section describing the example of the behavior of the Time
Parameters.

The Fibonacci Example

This is a very simple recursive business process that calculates a series of Fibonacci numbers through ten iterations; you
can see how the property parameters increment in each iteration through the elements of the process. Open Example
Model > Model Simulation > BPSim Models > Fibonacci.

The pseudocode of the process is shown in the Notes element on the diagram. The statement 'print(next)' will output the
number series 2, 3, 5, 8, 13, 21, 34, 55, 89, 144.

The BPSim configuration for this process is set up as described here.

Step Action

1

(c) Sparx Systems 2020 Page 127 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

On the 'Control' tab for the StartEvent element, set 'TriggerCount' to '1', and on the
'Properties' tab create and initialize the properties:

'N' as '10'·

'first' as '1'·

'second' as '1'·

'n' as '0'·

2
Now define the properties for each of the Activities in the process, on the
'Properties' tab. Note that the values for these properties are derived from
Expressions, the components of which must be enclosed in braces - {xxx}. For the
Activity:

next=first+second - set the property 'next' and define the value as the·
Expression {first} + {second}

(c) Sparx Systems 2020 Page 128 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

first=second - set the property 'first' and define the value as the Expression·
{second}

second=next - set the property 'second' and define the value as the Expression·
{next}

n++ - set the property 'n' and define the value as the Expression {n} + 1·

3
Set the 'Condition' property parameters for the two Sequenceflow connectors
issuing from the 'loopNode' Gateway element, on the 'Control' tab.

Expand the Gateway | loopNode element and for the link to:

next=first+second - set the Control parameter to 'Condition' and define the·
value as the Expression {n}<{N}

EndEvent1 - set the Control parameter to 'Condition' and define the value as·
the Expression {n}=>{N}

4
Having completed the configuration, click on the Run button on the Configure
BPSim window and on the 'BPSim Simulation Controller' dialog, selecting a
Standard simulation.

When the simulation is complete, click on the Attributes button.

(c) Sparx Systems 2020 Page 129 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

On the 'BPSim PropertyParameter Values' dialog, set the 'Token number' field to '0'
and click on the Query button.

5
Now examine the values of the 'next' property on entering the first=second Activity
in each iteration of the simulation. Click on the 'Group by Property' tab and expand
the 'next' item.

The list of values is long, so right-click on the column headers and select the
'Toggle Filter Bar' option. Under the 'Property' column heading, type 'first='. This
filters the list to show only the property parameter values on entering the
first=second Activity.

The Car Repair Example

This more complex example is based on a realistic model of a car repair process, where a number of individual customers
request an estimate for repair and either proceed with the repair or decline to continue; you can see how the property
parameters vary as different decisions are made during the process. Open Example Model > Model Simulation > BPSim
Models > Car Repair Process.

The overall process is represented by this diagram:

The Repair Car Activity is a composite element that contains this sub process diagram:

(c) Sparx Systems 2020 Page 130 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Step Action

1 In the Browser window, expand the 'BPSim' child Package underneath the 'Car Repair Process' Package,
and double-click on the 'Scenario 1: Main Flow' Artifact. The Configure BPSim window displays. On the
'Scenario' tab look at the 'Duration' field; this has been set to 2 days and 12 hours (that is, 60 hours).

2 In the process hierarchy on the left of the window, expand the 'Start Event' category and click on
'Customer Arrives'. Select the 'Control' tab and look at the 'InterTriggerTimer' parameter, which has the
value 24 minutes; that is, a customer arrives every 24 minutes (so over the 60 hour duration, 150
customers pass through the repair shop).

Each customer enters the repair shop with one or more issues to be evaluated and repaired. The number of
issues each customer presents can be randomly generated using one of the Distributions supported by
BPSim. As the issue number is counted in discrete units (rather than measured on a continuous scale) we
would use an 'integer' distribution. If you select the 'Properties' tab for the 'Customer Arrives' Start Event,
you will see that the 'noOfIssues' property value is initialized from a Poisson distribution with a mean of
3.

3 Now expand the decision Gateway 'Accepted?' and its connectors, in the process hierarchy. 'Initial
Estimate Accepted' has a Control parameter 'Probability', set to 0.67. The alternative connector, 'Initial
Estimate Not Accepted' has a similar Control parameter 'Probability' set to 0.33. That is, we expect an
average of one issue in three to be withdrawn - or not pursued - by the customer.

4 Further into the process, when an issue is being assessed on the vehicle, there is a possibility of another
issue being discovered.

In the list of Gateway elements, the last 'unnamed element' has two paths: 'New Issue Found' and 'No
Added Issue Found'. Click on each of these and look at the 'Control' tab; the 'Probability' parameter for
'New Issue Found' is set to 0.25 and, for 'No Added Issue Found', to 0.75. So on average, for every four
issues reported and assessed, one new one is discovered.

The 'New Issue Found' path takes the process to the 'Handle New Found Issue' Activity, which adds 1 to
the number of issues to be processed for the current customer. Expand the Activity group, and click on the
'Handle New Found Issue' element and on the 'Property' tab. You will see that the property 'noOfIssues'
here has the Expression value {noOfIssues} + 1.

5 When a problem with the vehicle is resolved, the 'Repair Issue' Activity deducts 1 from the number of
issues to be repaired for the current customer. Click on the 'Repair Issue' element in the Activity group
and on the 'Property' tab. You will see that the property 'noOfIssues' here has the Expression value
{noOfIssues} - 1.

6 The value from the 'Repair Issue' Activity is tested at the 'Have Further Issues?' Gateway.

Click on the 'More Issues to Repair' connector and on the 'Control' tab; the Condition parameter for
following this path is set to the Expression value {noOfIssues} > 0; flow passes to the Gateway prior to
the 'Inspect for Issue' Activity.

Similarly, if you click on the 'No More Issues to Repair' connector and on the 'Control' tab, the Condition
parameter for following that path is set to the Expression value {noOfIssues} =< 0, and flow passes to the

(c) Sparx Systems 2020 Page 131 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

'Repairs Completed' End Event.

Now that you have examined the process flow and configuration settings, you can run a simulation and
review the results.

7 On the Configure BPSim window, click on the Run button, and then on the 'BPSim Simulation Controller'
dialog click again on the Run button, selecting the 'Standard' simulation (however, the type of simulation
makes no difference for reviewing property parameters).

On the 'BPSim Simulation Controller' dialog, you can review the Token status (and see that an additional
customer manages to enter the shop at the very last minute) but it is difficult to see exactly how this
summary data resulted. Click on the Attributes button to obtain the detailed property parameter values
information on the 'BPSim PropertyParameter Values' dialog.

8 On the left hand side of the dialog is a summary of the minimum and maximum values for the property
parameter (attribute) for each element in the process. For example, for the 'Customer Arrives' element the
'noOfIssues' parameter has a minimum of 0 and a maximum of 8, as generated by the Poisson (3)
distribution.

In the 'Token Number' field, type in a number (N) between 0 and 150 to select for the Nth customer who
entered the repair shop. Click on the Query button to obtain the property parameter values used in the
process for that customer. Review the results on each of the two tabs:

On the 'Group by Element' tab, see how the attribute's value changes in each element; for example,·
for customer 24 the 'noOfIssues' parameter is initialized with a value of 4 by the random distribution,
and the 'Inspect for Issue' Activity is called six times with the parameter value being adjusted to 3 for
three of those calls before cycling to 1, and the 'Handle New Found Issue' Activity is called twice
with the parameter value at 3 both times

On the 'Group by Property' tab see how the parameter value changes as the process cycles through the·
Activities to completion, starting at 4, being adjusted between 3 and 4 a number of times and then
decrementing to 0 at the end

9 Continue to explore the results as required, selecting different customers (Tokens). You can also return to
the BPSim configuration and change the parameter initializations and add new ones, or change the
decision points, to experiment with the process.

Responding to real numbers in the simulation of an integer-based process

In some cases, you might need to generate property parameter values using a distribution that returns 'real' numbers when
the activities in the process operate with integers, or when you want to see what impact forcing integer values has on the
process.

One mechanism to apply in such cases is to set conditions to avoid absolute numbers. So, for example, you might have a
counter that decrements by 1, that is initialized to a 'real' number. If you set a condition to 'value==0' (equals 0) or 'value
!=0' (does not equal 0), the two conditions might never be True or might always be True, respectively, causing an infinite
loop. To avoid that, in the conditions you would use operators such as:

 'value > 0'

 'value < 0'

 'value >= 0'

 'value <= 0'

Another mechanism is to edit the code template used by the BPSim engine, to intercept and replace the real numbers
provided to specific parameters with integers, as shown:

Select the 'Develop > Preferences > Options > Edit Code Templates' ribbon option.1.

In the Code Template Editor, in the 'Language' field, click on the drop-down arrow and select2.
'MDGBPSimExecutionEngineExtension'.

(c) Sparx Systems 2020 Page 132 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

In the list of (Java) templates, click on 'MDGBPSimExecutionEngineExtension Compute Value'. The template3.
contents display in the 'Template' panel.

Find this line:4.

 double %bpsimPropertyParameterName% = (double) distribution.next();

Change it to:

 %if bpsimPropertyParameterName == "noOfIssues" or bpsimPropertyParameterName == "noOfVisitors"%
 double %bpsimPropertyParameterName% = (int) distribution.next();
 //double %bpsimPropertyParameterName% = Math.ceil(distribution.next());
 //double %bpsimPropertyParameterName% = Math.floor(distribution.next());
 //double %bpsimPropertyParameterName% = Math.round(distribution.next());
 %else%
 double %bpsimPropertyParameterName% = (double) distribution.next();
 %endIf%

Replace the property parameter names with your own property parameters.5.

Click on the Save button, close the Code Template Editor and reload the project.6.

As presented, for each specified parameter the code template will simply replace any 'real' number initialized by the
distribution with an integer. If you prefer, you can use one of the commented lines instead:

Math.ceil() will take the 'real' number and convert it to the next highest integer·

Math.floor() will take the 'real' number and convert it to the next lowest integer·

Math.round() will take the 'real' number and round it up or down depending on whether it is greater than or less than·
n.5

Time Parameter Behavior

In the BPSim configuration, you can set a number of Time parameters for an Activity, such as Queue Time and Wait
Time. You can also set a Result Request on each of these, for a Custom simulation. However, the BPSim simulation
engine combines these parameters into a single 'Processing Time' quantity.

Consider the simple model TimeParameter in the Example Model (Example Model > Model Simulation > BPSim
Models > Time Parameter), represented by this diagram:

StartEvent1

Activity1

EndEvent1

«BPSim»
Artifact2

If you double-click on the Artifact2 element, the Configure BPSim window displays. Click on the Activity1 element in
the diagram to expand the Activity group, to select Activity1 in the hierarchy at the left of the dialog, and to display the
first tab, 'Time', for the element in the configuration, as shown.

(c) Sparx Systems 2020 Page 133 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Note that in the upper panel there are seven system-supplied 'Time' parameters, which have been given initial values of -
in order - 1, 2, 4, 8, 16, 32 and 64 minutes (the 64 minutes is 1 hour and 4 minutes). Note also that in the lower panel,
each of these has a Result Request for the mean runtime value of the parameter.

Click on the Run button, and on the 'BPSim Simulation Controller' dialog click on the Run button and select 'Standard
Simulation'. The simulation is configured to cycle through the process once. When the simulation is complete, click on
the Open Result button, and on the 'BPMN Simulation Report View' right-click and select the 'Show Only Non-Empty
Items' option. This gives you, for the Activity1 element on which the parameters were set, these results:

All of these derived results are 127 minutes, the sum of the initial values of the original seven 'Time' parameters. The
individual parameters are not processed separately.

If you return to the 'BPSim Simulation Controller' dialog and click on the Run button, selecting 'Custom Simulation' this
time, the Open Result button displays the 'BPMN Simulation Custom Report View'. In the configuration, the Result
Requests were for the mean values of the seven parameters. In the Report View for the simulation, you only see the mean
of the single aggregated parameter, ProcessingTime, as 127 minutes.

(c) Sparx Systems 2020 Page 134 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

(c) Sparx Systems 2020 Page 135 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Compare BPSim Configurations

When you develop a BPSim configuration, you can define a wide range of parameters to set prior to running simulations
and observing the effects of those settings, and of changes in selected settings. To facilitate using and managing multiple
'what-if' scenarios, it is recommended that you create copies of the original configuration (as Artifact elements) and make
the setting changes in the copies.

A useful facility in creating variations of a configuration is to apply inheritance, whereby the data and parameters you do
NOT intend to vary are held in one configuration, and only those parameters that you change are held in another. The
'variable' configuration uses (inherits) the common data held in the base configuration, so you do not have to re-create
that common data in the 'variable' configuration.

You can then run simulations on the changed configurations and on the original 'baseline' and compare the simulation
reports to see what differences occurred in the run-time variables, and then run and display the comparisons of the
configurations to see what changes in parameter settings gave rise to those run-time differences.

By running simulations under the original and copy configurations, comparing the results and the changes that caused the
results, and modifying the model accordingly, you can achieve a very high degree of control in streamlining the business
process you are developing.

Access

Context Menu On a diagram or the Browser window | Right-click Business Process Simulation
Artifact | Show BPSim Configuration

The BPMN Simulation Configuration Report View

This view initially displays a hierarchy of the parameters in the selected configuration that have values and, in the
column under the configuration name, the values set for those parameters. You can expand or collapse individual tab and
parameter items using the +/- expansion/contraction boxes, or the hierarchy as a whole by right-clicking on the view and
selecting the 'Collapse All' or 'Expand All' options. To review the results more easily, you can also drag the tab off the
workspace to become a floating display, and expand the display to full screen size.

To compare two (or more) configurations, click on another configuration Artifact element in the Browser window or
diagram and either:

Drag it onto the report view or·

Select the 'Show BPSim Configuration Results' option·

The parameter hierarchy now contains any additional parameters in that configuration, and its parameter values display
in a column to the left of the original configuration values.

(c) Sparx Systems 2020 Page 136 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

You can review and manipulate the information on the report using options available from a right-click context menu.

BPMN Simulation Configuration Report Options

Option Description

Collapse All Select this option to collapse the parameter hierarchy down to just the parent tab
names.

Expand All Select this option to expand the parameter hierarchy to the lowest value type.

Show Only Different items (When you have two or more configurations shown.) Select this option to restrict
the display to those parameters where the values differ between the configurations.
Click on the option again to deselect it.

Highlight Different Items (When you have two or more configurations shown and where their parameter
values are different.) Displays the differing parameter values in red. This option is
disabled if you select the 'Show Only Different Items' option.

Show Only Non Empty
Items

Select this option to filter the display to show only parameters that have a specific
value other than 0.

Remove Scenario (When you have selected an item within a configuration.) Select this option to
remove the whole configuration from the report.

Edit Parameter (When you have selected an item within a configuration.) Select this option to
display the appropriate tab in the Configure BPSim window, with the parameter and
value highlighted, and edit the value. When you have edited the value and clicked

(c) Sparx Systems 2020 Page 137 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

off it, the Save button is enabled; click on this button to return to the Report View.
The hierarchy is collapsed, but when you expand it again the selected parameter
value shows the change you made.

(c) Sparx Systems 2020 Page 138 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

BPSim Charts

The Artifacts page of the Diagram Toolbox provides two icons specifically to generate charts that reflect selected results
from BPSim simulations. These are:

BPSim Result Chart - to generate a Chart that reflects selected results from a series of standard BPSim simulations·

BPSim Custom Result Chart - to generate a Chart that reflects results from a series of customized BPSim·
simulations

As for other Chart Artifacts, both BPSim Chart types can be quickly configured to display the simulation results in
variations of a line chart, two-dimensional bar chart or 3-dimensional bar chart.

Prerequisites

To populate the Charts created from the Business Process Simulation Artifacts, you select the Result Artifacts created
during the simulation of each configuration that you want to show. Therefore, the initial simulations must be performed
first, and the Report Artifacts generated.

Access

Display the 'Artifacts' page of the Diagram Toolbox using any of the methods outlined in the table.

Then, drag the BPSim <type> Chart Artifact icon onto the diagram - a new chart element is created.

Double-click on the new chart element to open the 'Properties' dialog, showing the 'BPSim Chart' page.

Ribbon Design > Diagram > Toolbox > Artifacts

Keyboard Shortcuts Ctrl+Shift+3 | Artifacts

Other You can display or hide the Diagram Toolbox by clicking on the or icons at
the left-hand end of the Caption Bar at the top of the Diagram View.

Select Results to Display In Chart

Complete the fields on the 'BPSim Chart' page of the Chart 'Properties' dialog.

(c) Sparx Systems 2020 Page 139 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Option Action

Base Report
Click on the button to display the 'Select <<BPSimReport>>Artifact' dialog,
and select the report Artifact for the simulation results against which other
simulation results will be compared. This Results Artifact is also added to the
'Experiments' panel as the first in the list of report results to be compared.

Type Click on the drop-down arrow and select the format type of the Chart in which to
display the results - 2D Bar, 3D Bar or Line. After you have specified the report
parameters to compare, you can select the 'Appearances' page of the dialog and
define the appearance of the bar chart or Time line graph.

Report Schema Expand the hierarchy as necessary and select the checkbox against each property to
display on the chart. Each property will be represented by a separate line or group
of bars on the chart. Usually you would select similar objects (such as different
resources) and the same single property for each object (such as the degree of
utilization of the resource). You have a wealth of properties to examine and
compare, but any more than a couple on the same chart makes the chart hard to
read.

Experiments (BPSim
Reports)

This panel lists the simulation report results (as BPSim Result Artifacts) that you
have selected to compare using the chart, in the sequence in which their selected
parameter will be shown on the Chart. Usually, the Base Report remains as first in
the list and the result for its parameter is shown at the left of the Chart. If you want
to change the sequence, click on the Result Artifact name and click on the
appropriate Up/Down green arrow button.

To add further Result Artifact names to the list, click on the Add button and browse
for and select the Artifact from the 'Select <<BPSimReport>> Artifact' dialog.

A BPSim Chart Example

(c) Sparx Systems 2020 Page 140 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

In the Help Desk Phone Support example, we created three BPSim Artifacts to do what-if analysis of: 'How many
supports do we need to answer the customer's questions over the phones in an economical way?'

We started with two supports, then tried three and five supports. After simulation, we have a BPSim Report based on
different configurations: TwoSupport-Result, ThreeSupport-Result, FiveSupport-Result.

These are the steps to create a chart to compare the customer's average time waiting for support:

Create a BPSim Result Chart on the diagram, and name it Average Waiting Time.1.

Double-click on the chart to open the Properties window, then open the 'BPSim Chart' tab.2.

Click on the button to select a Base Report, from which we define the schema (legends) to use in the chart.3.
Select 'TwoSupport-Result'.

Choose this schema:4.
 - Time | Service Customer | Average Time Waiting For Resource

Click on the Add button to add another two BPSim Reports: 'ThreeSupport-Result' and 'FiveSupport-Result'.5.

Click on the OK button, and adjust the size of the chart element. This chart gives us direct information.6.

These are the steps to create a chart to compare the degree of use of Support:

Create a BPSim Result Chart on the diagram, and name it Utilisation Rate.1.

Double-click on the chart to open the Properties window, then open the 'BPSim Chart' tab.2.

Click on the button and select a Base Report, from which to define the schema (legends) to use in the chart.3.
Select 'TwoSupport-Result'.

Choose this schema:4.
 - Resource | Support | Degree Of Utilisation

Click on the Add button to add another two BPSim Reports: 'ThreeSupport-Result' and 'FiveSupport-Result'.5.

Click on the OK button and adjust the size of the chart element. This chart provides specific information.6.

(c) Sparx Systems 2020 Page 141 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

(c) Sparx Systems 2020 Page 142 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

BPSim Examples

This document contains many examples of BPMN modeling, BPSim Configuration and Analysis of the simulation
results.

These examples can be accessed from the EAExample model.

The EABPSim Execution Engine is required to run the simulations.

(c) Sparx Systems 2020 Page 143 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Help Desk Phone Support Simulation - Resource
Perspective

In this example, we create a very simple model to simulate a Help Desk phone support process.

We set up a scenario in which resources are limited and the requests have to be put in a waiting queue for a resource.
Then we try to seek a balance point between customer's waiting time and the number of resources, using a what-if
analysis.

Firstly, we model this process step-by-step, starting with a simple parameter setting than can be calculated with pen and
paper, then verifying it with EABPSim. After that, we perform a what-if analysis that might help the manager to make a
decision.

Create BPMN Model

The model itself is very simple, consisting of a Start Event, a Task and an End Event.

Customer
calls in

Service Customer

Customer
hangs up

Create a Start Event called Customer calls in·

Add a Sequence Flow to a target Abstract Task called Service Customer·

Add a Sequence Flow to a target End Event called Customer hangs up·

Create a BPMN2.0 Resource named Support; this element will be used in the BPSim Configuration.

Pen and Paper Analysis

We will use pen and paper to analyze this case:

7 customers call in at 2 minute intervals·

2 support resources are available·

Each service will take 10 minutes·

(c) Sparx Systems 2020 Page 144 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Seen from this result, it is already a very complicated computation for such a simple model when resource constraints are
applied. When the process expands and more constraints are applied, analyzing the process with pen and paper will
quickly become impossible. We will demonstrate how EABPSim can help.

BPSim Configuration

Open the Configure BPSim window ('Simulate > Process Analysis > BPSim > Open BPSim Manager')·

Create a Business Process Simulation Artifact named Pen & Paper Analysis 7 Customers·

Select the Package containing the corresponding BPMN 2.0 model·

All the BPMN elements will be loaded in to the Configure BPSim window.

In the left-hand tree on the window, expand the 'Resource' group and click on Support; click on the 'Resource' tab·
and on the drop-down arrow of the 'New Parameter' field, then select 'Quantity' and, in the 'Value' field, type '2'

(c) Sparx Systems 2020 Page 145 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

In the left-hand tree, expand the 'StartEvent' group, then click on Customer calls in and on the 'Control' tab·

Click on the drop-down arrow of the 'New Parameter' field and select, in turn:·

 - 'InterTriggerTimer' and, in the 'Value' field, click on the button, select the 'Constant' tab
 and 'Numeric', type '2' in the 'Constant Numeric' field and select 'minutes' in the 'TimeUnit' field
 - 'TriggerCount', and in the 'Value' field type '7'

(c) Sparx Systems 2020 Page 146 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

In the left-hand tree, expand the 'Activity' group, then click on Service Customer and on the 'Time' tab·

Click on the drop-down arrow of the 'New Parameter' field and select 'ProcessingTime' and, in the 'Value' field, click·

on the button and select the 'Constant' tab and 'Numeric', type '10' in the 'Constant Numeric' field and select
'minutes' in the 'TimeUnit' field

Click on the 'ResourceRole' tab, click on the Add Resource Role button; in the new row in the 'Resource Roles·

defined in BPMN' panel, click on the button in the 'BPMN Resource' field and select the Support element you
created earlier

In the 'Quantity' field, type '1'·

In the 'Resource Selection Expression for Activity' panel the automatically generated expression
bpsim:getResource('Support',1) displays.

Run the Simulation

On the Configure BPSim window Toolbar, click on the Run button; the 'BPSim Simulation Controller' dialog·
displays

Click on the Run button drop-down arrow and select 'Standard Simulation'·

When the simulation is complete, click on the button on the 'BPSim Simulation Controller' dialog toolbar to·
open the 'BPMN Simulation Report View'

(c) Sparx Systems 2020 Page 147 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Tip: You can select the 'Show Only Non-Empty Items' option to filter the results.

The results match the pen and paper analysis.

Simulation - 2 Support Resources for 20 customers

You can create a new Business Process Simulation Artifact by copying an existing BPSim Configuration. Copy the Pen
& Paper Analysis 7 customers element and press Ctrl+Shift+V to paste, giving the new element the name TwoSupport.

Double-click on TwoSupport to open the 'Configure BPSim' dialog; you can see that all the configurations are kept·
from the copied source

Expand the 'StartEvent' group and click on Customer calls in; click on the 'Control' tab and, in the 'Value' field for·
the 'TriggerCount' parameter, change the figure to '20'

Run simulation and analyze results

(c) Sparx Systems 2020 Page 148 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

From the report, you can see that:

The 'Average Time Waiting For Resource' is 27 minutes and the 'Maximum Time Waiting For Resource' is 54·
minutes

The two Support resources - are they busy? If they were not, we might have to change the process to use all of their·
time and reduce the customer's waiting time; however, the 'Degree Of Utilisation' is at 98%, which indicates that the
resources had almost no idle time

'What-If' I have more staff? Compare 2 Support Resources with 3 and 5 Support
Resources

Copy TwoSupport and press Ctrl+Shift+V to paste, giving the new element the name ThreeSupport·

Double-click on ThreeSupport to open the 'Configure BPSim' dialog, expand the 'Resource' group and click on·
Support, then click on the 'Resource' tab and, for the 'Quantity' parameter, change the 'Value' field to '3'

Copy TwoSupport and press Ctrl+Shift+V to paste, giving the new element the name FiveSupport·

Double-click on FiveSupport to open the 'Configure BPSim' dialog, expand the 'Resource' group and click on·
Support, then click on the 'Resource' tab and, for the 'Quantity' parameter, change the 'Value' field to '5'

Run the simulations and do a comparison; in the Browser window:·
 - Ctrl+click on TwoSupport, ThreeSupport and FiveSupport, then right-click and select the 'Show
 BPSim Configuration' option
 - Ctrl+click on TwoSupport-Result, ThreeSupport-Result and FiveSupport-Result, then right-click
 and select the 'Show BPSim Report' option

(c) Sparx Systems 2020 Page 149 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Tips:

Use the button and click on the 'Show only different items' option for both views·

You can dock the views together, so they provide direct comparisons: THESE are the differences in results caused·
by THOSE differences in configuration

Toggle the filter bar to filter the items that interest you·

Analysis

The docked comparison views show the configuration differences and the corresponding result differences.

The customer's waiting time dropped from 27 minutes (2 Support resources) to 11.4 minutes (3 Support resources)·
and further down to 0 minutes (5 Support resources)

The 'Degree Of Utilisation' dropped from 98% (2 Support resources) to 93% (3 Support resources) and further down·
to 83% (5 Support resources)

The customers will most likely be satisfied with 5 Support resources; however, the cost might be out of budget. So 3 or
possibly 4 Support resources might be a balance point for this case. You are recommended to copy one of the Business
Process Simulation Artifacts and configure and run a simulation for 4 Support resources.

Show Result with Chart

(c) Sparx Systems 2020 Page 150 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Drag a 'BPSim Result Chart' icon from the Toolbox onto the diagram and create a BPSim Result Chart Artifact; call·
it Average Waiting Time

Double-click on the Artifact to display the element 'Properties' dialog and click on the 'BPSim Chart' tab·

Click on the button and select a Base Report from which to define the schema (legends) to use in the chart;·
select TwoSupport-Result

Choose the schema 'Time' | 'Service Customer' | 'Average Time Waiting For Resource'·

Click on the Add button to add another two BPSim Reports: ThreeSupport-Result and FiveSupport-Result·

Click on the OK button and adjust the size of the chart element; this chart gave us very straightforward information·

Create another BPSim Result Chart Artifact on the diagram, called Utilisation Rate·

Double-click on the Artifact to display the element 'Properties' dialog and click on the 'BPSim Chart' tab·

Click on the button and select a Base Report from which to define the schema (legends) to use in the chart;·
select TwoSupport-Result

Choose the schema 'Resource' | 'Support' | 'Degree Of Utilisation'·

Click on the Add button to add another two BPSim Reports: ThreeSupport-Result and FiveSupport-Result·

Click on the OK button and adjust the size of the chart element·

(c) Sparx Systems 2020 Page 151 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

(c) Sparx Systems 2020 Page 152 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Calendar-Based Help Desk Phone Support Simulation

In this example, we create a very simple model to simulate the Help Desk telephone support process, based on calendar
settings. We assume that:

Customers call in at different intervals on weekdays and weekends·

Processing times differ between weekdays and weekends·

There are different numbers of support resources on weekdays and weekends·

We model this process step by step, then create calendars and configure the Business Process simulation, which is simple
enough to be calculated with pen and paper. After that, we run the simulation to compare that result with the pen and
paper analysis.

Create BPMN Model

The model itself is very simple, consisting of a Start Event, a Task and an End Event.

Customer
calls in

Service Customer

Customer
hangs up

Create a Start Event Customer calls in·

Add a Sequence Flow to the target abstract task Activity Service Customer·

Add a Sequence Flow to the target End Event Customer hangs up·

Create a BPMN2.0 Resource named Support. Create a BPMN2.0::ResourceRole inside Service Customer, give it the
name support and set the tag resourceRef to the name of the Resource element Support.

Pen and Paper Analysis

We can use pen and paper to analyze this case:

The simulation duration is 2 hours and 10 minutes, from 8:00AM to 10:10AM·

Customers call in every 20 minutes on weekdays·

Customers call in every 60 minutes on weekends·

To service a customer takes 50 minutes on weekdays·

To service a customer takes 40 minutes on weekends·

There are 2 support resources on weekdays·

There is 1 support resource on weekends·

(c) Sparx Systems 2020 Page 153 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Looking at this result, when resource constraints are applied the computation is very complicated for such a simple
model.

On weekdays

7 customers called at intervals of 20 minutes over a duration of 2 hours and 10 minutes·

4 customer calls were terminated normally·

2 customer calls were interrupted because of timeout·

1 customer call was not answered·

Support1 worked continuously for 130 minutes, Support2 worked continuously for 110 minutes·

On weekends

3 customers called at intervals of 60 minutes over a duration of 2 hours and 10 minutes·

2 customer calls were terminated normally·

1 customer call was interrupted because of timeout·

Support1 worked 90 minutes, in 40-minute blocks with an interval of 20 minutes between calls·

Now we will see how EABPSim can help.

BPSim Configuration

In this section, we first create the Calendars, then we set up the Duration and Start parameters.

For element parameters, you can specify one or more calendars for a given parameter. However, if any calendar is set
for a parameter value, a default value (without any calendar specified) must exist, otherwise the simulation will not
work.

(c) Sparx Systems 2020 Page 154 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Clicking on the button on the Configure BPSim window toolbar will automatically check this constraint for you.

Task Action

Create BPSim Artifact and
Set Package

Open the Configure BPSim window ('Simulate > Process Analysis > BPSim >·
Open BPSim Manager')

Create a Business Process Simulation Artifact named Calendar Based Support·
Process Simulation

Select the Package containing the corresponding BPMN 2.0 model·

All the BPMN elements will be loaded in to the Configure BPSim window.

Calendars Click on the 'Calendars' tab, click on the New button to display the 'Event
Recurrence' dialog and complete the fields as shown to create a calendar. Click on
the OK button and overtype the Calendar_n text with a name for the calendar.
Create two calendars.

In 'Event Time' set 'Start' to 08:00AM and 'End' to 05:00PM; in 'Recurrence·
Pattern' select 'Weekly' and select the checkboxes against 'Monday' through to
'Friday'; in 'Range of recurrence' set 'Start' to '04/1/2020' and select 'No end
date'; overtype Calendar_1 with 'Weekdays'

In 'Event Time' set 'Start' to 08:00AM and 'End' to 05:00PM; in 'Recurrence·
Pattern' select 'Weekly' and select the checkboxes against 'Saturday' and
'Sunday'; in 'Range of recurrence' set 'Start' to '02/1/2020' and select 'No end
date'; overtype Calendar_2 with 'Weekend'

Start & Duration Click on the 'Scenario' tab.

Duration - input 0000 002:10:00, which means 0 days, 2 hours and 10 minutes·

Start - for Weekday simulation input 1/07/2016 8:00AM, which means 1st of·
July, 2016, which is a Friday

Start - for Weekend simulation input 2/07/2016 8:00AM, which means 2nd of·
July, 2016, which is a Saturday

Customer arrivals In the left-hand tree on the dialog, expand the 'StartEvent' group and click on
Customer calls in; click on the 'Control' tab and, using the drop-down arrow of the
'New Parameter' fields, create these parameters:

InterTriggerTimer - Value: 100:000:000 000:00:00; Calendar: ---- (this default·
value is necessary)

InterTriggerTimer - Value: 000:000:000 000:20:00; Calendar: Weekdays·

InterTriggerTimer - Value: 000:000:000 001:00:00; Calendar: Weekends·

Processing Times Expand the 'Activity' group and click on Service Customer; click on the 'Time' tab
and, using the drop-down arrow of the 'New Parameter' fields, create these
parameters:

ProcessingTime - Value: 100:000:000 000:00:00; Calendar: ---- (this default·
value is necessary)

ProcessingTime - Value: 000:000:000 000:50:00; Calendar: Weekdays·

ProcessingTime - Value: 000:000:000 000:40:00; Calendar: Weekends·

Resources Expand the 'Resource' group and click on Support; click on the 'Resource' tab and,
using the drop-down arrow of the 'New Parameter' fields, create these parameters:

Quantity - Value: 0; Calendar: ---- (this default value is necessary)·

Quantity - Value: 2; Calendar: Weekdays·

(c) Sparx Systems 2020 Page 155 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Quantity - Value: 1; Calendar: Weekends·

Resource Selection
(allocation)

In the 'Activity' group, click on Service Customer and click on the 'ResourceRole'
tab.

Check that the 'Resource SelectionExpression for Activity' panel shows
bpsim::getResource('Support',1) as an expression. This expression is loaded from
your BPMN model by default. You can do some advanced configurations for
resource selection for a task.

Run Simulation

Weekdays

Click on the 'Scenario' tab and set the 'Start' value to '1/7/2016'·

On the dialog Toolbar, click on the Run button; the 'BPSim Simulation Controller' dialog displays·

Click on the Run button drop-down arrow and select 'Standard Simulation'·

A file with the name Calendar Based Support Process Simulation - Result is generated. This report file contains the
result for a weekday simulation.

Weekends

Click on the 'Scenario' tab and set the 'Start' value to '2/7/2016'·

On the dialog Toolbar, click on the Run button; the 'BPSim Simulation Controller' dialog displays·

Click on the Run button drop-down arrow and select 'Standard Simulation'·

The Calendar Based Support Process Simulation - Result file is updated to show the result for a weekend simulation.

In each case, check the match between the result file and our analysis with pen and paper.

(c) Sparx Systems 2020 Page 156 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Car Repair Process

This example simulates the process flow of a Car Repair shop. The BPSim configuration:

Uses a property parameter initialized by distribution to generate a random number of issues for each customer·

Applies probability to simulate:·
 - Acceptance of the initial estimate or not
 - Whether new issues will be found during repair

Increments or decrements the property parameter's value in each task·

Uses the property parameter's value on conditions of Sequences outgoing from Gateways·

Simulates the customer arrivals for a given start and duration·

Create BPMN Model

Create the main process

Customer Arrives

Make Estimate
Accepted?

Initial Estimate Not Accepted

Customer Leaves Shop

Accept PaymentRepair Car
Initial Estimate Accepted

Initial Estimate Not
Accepted

Create a Start Event Customer Arrives·

Add a Sequence Flow to a target abstract task Activity Make Estimate·

Add a Sequence Flow to a target Exclusive Gateway Accepted?·

Add Sequence Flows to:·
 - A target End Event Initial Estimate Not Accepted
 - A target subProcess Repair Car

From Repair Car, add a Sequence Flow to a target abstract task Activity Accept Payment·

Add a Sequence Flow to a target End Event Customer Leaves Shop·

Create the sub process Repair Car

Repair Issue

Handle New
Found Issue

Inspect for Issue

Repairs Completed

Start Repairs
New
Issue

Found?
converge
Gateway2

converge
Gateway1

Have further issues?

No New
Issue Found

New Issue
Found

More Issues to Repair

No More Issues to
Repair

(c) Sparx Systems 2020 Page 157 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Create a Start Event Start Repairs·

Add a Sequence Flow to a target Exclusive Gateway converge Gateway1·

Add a Sequence Flow to an abstract task Activity Inspect for Issue·

Add a Sequence Flow to an Exclusive Gateway converge Gateway2·

Add a Sequence Flow to an Exclusive Gateway New Issue Found?·

Add Sequence Flows to:·
 - A target abstract task Activity Handle New Found Issue, then add a Sequence Flow back to
 converge Gateway2
 - A target abstract task Repair Issue, then add a Sequence Flow to a target Exclusive Gateway
 Have further issues?

From the Gateway Have further issues? add Sequence Flows to:·
 - A target End Event Repairs Completed
 - converge Gateway1

Configure BPSim

Task Description

Artifact and Package Open the Configure BPSim window ('Simulate > Process Analysis > BPSim >·
Open BPSim Manager')

Create a Business Process Simulation Artifact named IntermediateEvent -·
Boundary - Error

Select the Package containing the corresponding BPMN 2.0 model·

All of the BPMN elements will be loaded in to the Configure BPSim window.

Start and Duration We will simulate the processes in a car repair shop whose opening hours are from
9:00 am to 5:00 pm, which is a period of 8 hours. We also suppose that a customer
walking in after 4:50 pm will not be served on that day. Therefore the simulation
Start time is 9:00 am and the duration is 7 hours and 50 minutes.

On the left hand panel of the 'Configure BPSim' dialog, click on the 'Scenario' item
in the tree; the 'Scenario' tab is activated.

In the 'Start' field, select any date and change the time section to '9:00 AM'·

Set the 'Duration' field to '0000 007:50:00' (Tips: the format is: dddd hh:mm:ss)·

Customer Arrives We will simulate a customer arriving every 24 minutes. The first customer arrives
at 9:00 AM and the last arrives at 4:36 PM (the customer arriving at 5:00 PM will
not be served today because that is constrained by the 'Duration' setting).

With a pen and paper, we can calculate that there are 20 customers served (9:00
AM to 4:36PM = 456 minutes, number of customers: 456/24 + 1 = 19 + 1 = 20).
We will verify this with the simulation result later.

Expand the 'StartEvent' group and select Customer Arrives. Click on the 'Control'
tab and the 'New Parameter' drop-down arrow, and select 'InterTriggerTimer'. In the
'Value' and 'Unit' fields type 24 and select 'min' (for '24 minutes').

Property Parameters We suppose each customer's car might initially have a different number of issues.
This could be reflected using a random number generator. BPSim provides a
number of distributions to suit your needs.

In this example, we use a TruncatedNormal distribution to initialize the property
noOfIssues. Tasks Repair Issue and Handle New Found Issue will decrement and
increment the value of noOfIssues respectively.

(c) Sparx Systems 2020 Page 158 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Click on the Customer Arrives Start Event and on the 'Properties' tab·

Overtype New Property with noOfIssues, and in the 'Value' field click on the·

 button; the 'Parameter Value' dialog displays

Click on the 'Distribution' tab and select the 'TruncatedNormal' distribution·
type; in the fields 'Mean', 'StandardDeviation', 'Min' and 'Max' type the values
2, 1, 1 and 1000 respectively

Important Note: Some distributions, such as 'TruncatedNormal', return a floating
point value but the property is used as an integer. Setting the property's type is
important, especially in condition expressions when testing with equality. For
example, the condition expression getProperty('noOfIssues') = 0 will almost never
be satisfied because noOfIssues was initialized by a floating point distribution.

Tip: How to customize the type for a property

After you create the property and set a value, click on the Save button on the
toolbar so that the created property name is shown in the bottom panel of the
'Property' tab; click on the 'Value Type' drop-down arrow and select the value 'int'
instead of the default 'double'.

Click on the Activity Repair Issue and on the 'Properties' tab, and overtype the·
New Property text with noOfIssues

In the 'Value' field click on the button; the 'Parameter Value' dialog·
displays

Click on the 'Expression' tab and, in the 'Expression' field, type {noOfIssues}·
-1; click on the OK button

Click on the Activity Handle New Found Issue and on the 'Properties' tab, and·
overtype the New Property text with noOfIssues

In the 'Value' field click on the button; the 'Parameter Value' dialog·
displays

Click on the 'Expression' tab and, in the 'Expression' field, type {noOfIssues}·
+1; click on the OK button

Probability on Sequence
Flows

We assume that 1/3 of the customers will not accept the initial estimate for repairs
and 2/3 will accept it. We also assume that for 1/4 of the repairs new issues will be
found, and for 3/4 of the repairs no new issues will be found.

Expand the 'Gateway' group in the left-hand tree, and expand the Accepted?
element. For the:

Initial Estimate Accepted Sequence Flow, click on the 'Control' tab and on the·
'New Parameter' drop-down arrow, and select 'Probability'; in the 'Value' field
type 0.67

Initial Estimate Not Accepted Sequence Flow, click on the 'Control' tab and on·
the 'New Parameter' drop-down arrow, and select 'Probability'; in the 'Value'
field type 0.33

In the 'Gateway' group, expand the New Issue Found? element. For the:

No More Issues to Repair Sequence Flow, click on the 'Control' tab and on the·
'New Parameter' drop-down arrow, and select 'Probability'; in the 'Value' field
type 0.75

More Issues to Repair Sequence Flow, click on the 'Control' tab and on the·
'New Parameter' drop-down arrow, and select 'Probability'; in the 'Value' field
type 0.25

Condition on Sequence
flows

We use an expression to return a boolean value as a Sequence Flow's condition,
which plays a key role in the flow's logic.

(c) Sparx Systems 2020 Page 159 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

In the 'Gateway' group, expand the Have Further Issues? element. For the:

More Issues to Repair Sequence Flow, click on the 'Control' tab and on the·
'New Parameter' drop-down arrow, and select 'Condition'; in the 'Value' field

click on the button to open the parameter dialog, click on the 'Expression'
tab and type {noOfIssues} != 0 in the 'Expression' field

No More Issues to Repair Sequence Flow, click on the 'Control' tab and on the·
'New Parameter' drop-down arrow, and select 'Condition'; in the 'Value' field

click on the button to open the parameter dialog, click on the 'Expression'
tab and type {noOfIssues} = 0 in the 'Expression' field

Note: All the outgoing transitions from a Gateway should include 100% of the
logic; for example, you would not enter {noOfIssues} > 10 and {noOfIssues} < 5
as condition expressions, because values in the range [5, 10] will not be handled by
any outgoing Sequence Flows.

Run Simulation

From the 'Configure BPSim' dialog toolbar, click on the Run button; the 'BPSim Simulation Controller' dialog·
displays

Click on the Run button and select 'Standard Simulation'·

When the simulation is complete, it provides this result:·

(c) Sparx Systems 2020 Page 160 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Token Analysis

20 customers arrived, matching the number we calculated manually (see Customer Arrives in the Configure BPSim·
table)

8 customers out of the 20 did not accept the initial estimate, whilst 12 of the 20 accepted and had their car repaired;·
these figures roughly match the 1/3 and 2/3 probabilities

64 tokens passed the Gateway New Issue Found?, of which19 had new issues and 45 did not; these figures roughly·
match the 1/4 and 3/4 probabilities

Analysis on individual customers

Click on the button on the toolbar to open the 'BPSim PropertyParameter Values' dialog. As there are 20 customers
(tokens), you can input a value between 0 and 19 in the 'Token Number' field and click on the Query button to do some
analysis:

This customer did not accept the initial estimate, as shown on the 'Group by Property' tab:·

This customer's car had only one issue, which was fixed:·

This customer's car had three known issues and three other issues were found during repair, so in total six issues got·
fixed (perhaps this is a really old car); switching to the 'Group by Element' tab:

(c) Sparx Systems 2020 Page 161 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

(c) Sparx Systems 2020 Page 162 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

BPMN2.0 Event Examples

An Event is something that happens during the course of a Process. Events affect the flow of the Process, usually having
a cause or an impact, and in general requiring or allowing for a reaction. For example, the start of an Activity, the end of
an Activity, the change of state of a document, or the arrival of a Message could all be considered to be Events.

Events allow for the description of 'event-driven' Processes. In these Processes, there are three main types of Event:

Start Events, which indicate where a Process will start·

End Events, which indicate where the path of a Process will end·

Intermediate Events, which indicate where something happens between the start and end of a Process·

Within these three types, Events can be one of two subtypes:

Events that catch a trigger - all Start Events and some Intermediate Events are catching Events·

Events that throw a Result - all End Events and some Intermediate Events are throwing Events that could eventually·
be caught by another Event

In this section, we provide examples illustrating many of the commonly-used BPMN 2.0 events. In each example, we
provide step-by-step BPMN modeling and BPSim configuration instructions, and a thorough analysis of the simulation
result. All the examples are available in the EAExample model.

(c) Sparx Systems 2020 Page 163 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Error Event

When an Intermediate Error Event connects to the boundary of an Activity, it becomes part of an exception flow. The
event is triggered when a token causes a fault name to be raised in the normal flow, going through to an Error End Event.

Create BPMN Model

s1

subProcess1

error_ie_default

error_ie_fault2

error_ie_fault1

Task4

error_end_fault1

normal_end

Task2

Task1

40,10,20,30
Probabilities

s2

Task3

error_end_fault2

error_end_default

e1

e2

e3

e4

Create the main process

Create a Start Event s1·

Add a Sequence Flow to a target Activity element subProcess1; enlarge the Activity and right-click, selecting the 'Is·
Expanded' option, then open the 'Properties' dialog and set 'Type' to 'subprocess'

Add a Sequence Flow to a target End Event element e1 ('Type' set to 'None')·

Create three Boundary Intermediate Events, dragging the elements from the Toolbox and dropping them on·
subProcess1; from the instant menus select 'Edge-Mounted' and 'Error':
 - error_ie_fault1; add a Sequence Flow to a target EndEvent element e2 ('Type' set to 'None')
 - error_ie_fault2; add a Sequence Flow to a target EndEvent element e3 ('Type' set to 'None')
 - error_ie_default; add a Sequence Flow to a target EndEvent elemenr e4 ('Type' set to 'None')

Create the subprocess

Within the subProcess1 Activity:

Create a Start Event s2, 'Standalone' and set 'Type' to 'None'·

Create a Sequence Flow to a target Gateway element set to 'Exclusive' and with the name '40,10,20,30 Probabilities'·

Create Sequence Flows to four target Activiy elements of Type 'abstractTask' called:·
 - Task1, and add a Sequence Flow to a target EndEvent called normal_end, 'Type' set to 'None'
 - Task2, and add a Sequence Flow to a target EndEvent called error_end_fault1, 'Type' set to 'Error'
 - Task3, and add a Sequence Flow to a target EndEvent called error_end_fault2, 'Type' set to 'Error'
 - Task4, and add a Sequence Flow to a target EndEvent called error_end_default, 'Type' set to
 'Error'

Create BPMN2.0::Error elements

Create the Error elements Fault1 and Fault2, which will be used as error code by Events.

(c) Sparx Systems 2020 Page 164 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Double-click on the error_end_fault1 element and, in the 'Properties' dialog 'BPMN2.0' tab, locate the 'errorRef' tag·

In the 'Value' field, click on the button and browse to the Package containing this model·

Click on the Add New button and, in the 'Name' field, type the name Fault1, then click on the Save button·

Again click on the Add New button and, in the 'Name' field, type the name Fault2, then click on the Save button·

Click on the OK button, and again on the next OK button·

Set up Events for Error Codes

Double-click on the error_end_fault1 element and, in the 'Properties' dialog 'BPMN2.0' tab, locate the 'errorRef' tag·

In the 'Value' field, click on the button and browse to the Package containing this model·

Click on Fault1, then on the OK button, and again on the OK button.·

Do the same for these elements:

error_end_fault2, clicking on Fault2·

error_ie_fault1, clicking on Fault1·

error_ie_fault2, clicking on Fault2·

Configure BPSim

Object Action

Artifact & Package Open the Configure BPSim window ('Simulate > Process Analysis > BPSim >·
Open BPSim Manager')

Create an Artifact named 'IntermediateEvent - Boundary - Error' (in the·

'Select/Create Artifact' field, click on the button and select its parent
Package and click on the Add New button, then type in the element name and
click on the Save button and the OK button)

Then all the BPMN elements will be loaded in to the Configure BPSim window.

s1 From the tree on the left of the Configure BPSim window, expand 'StartEvent'·
and click on 's1'

On the 'Control' tab, in the 'New Parameter...' field, click on the drop-down·
arrow and select 'TriggerCount'

In the 'Value' field, type '100'·

Probability From the tree on the left of the Configure BPSim window, expand 'Gateway |
40,10,20,30 Probabilities'.

Tips: You can also float the Configure BPSim window, then click on the element or
connectors on the BPMN diagram; the element in the Configure BPSim window
will be automatically selected.

For each of the Taskn elements, in the 'Control' tab click on the 'New Parameter'
drop-down arrow and select 'Probability', then type the corresponding value in the
'Value' field:

For Task1 type '0.4'·

For Task2 type '0.1'·

For Task3 type '0.2'·

For Task4 type '0.3'·

(c) Sparx Systems 2020 Page 165 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Run Simulation

On the 'Configure BPSim' dialog Toolbar, click on the 'Run' icon to open the 'BPSim Controller' dialog·

Click on the Run button and select 'Standard Simulation'·

The results of the simulation resemble this:·

Analysis:

The Probability set on the Sequence Flows outgoing from 40,10,20,30 Probabilities are 0.4, 0.1, 0.2 and 0.3 respectively.

36 out of 100 passes finished at normal_end, which flowed to e1·

11 out of 100 passes finished at error_end_fault1, which triggered error_ie_fault1 by the ErrorRef Fault1, and the·
exception flowed to e2

23 out of 100 passes finished at error_end_fault2, which triggered error_ie_fault2 by ErrorRef Fault2, and the·
exception flowed to e3

(c) Sparx Systems 2020 Page 166 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

30 out of 100 passes finished at error_end_default, which triggered error_ie_default because they did not set·
ErrorRef and the exception flowed to e4

The numbers 36, 11, 23 and 30 add up to 100, which was set as the TriggerCount in s1, so they match the 100%
probability

(c) Sparx Systems 2020 Page 167 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Escalation Event

In BPMN, Escalation is the non-interrupting counterpart of Error, with similar throw-catch behavior. Unlike Error,
however, the normal flow and exception flow exits from the Activity are parallel paths, not alternative.

Create BPMN Model

S1

subProcess1

Catch Issue

S2

Task1

Throw Issue E2

Task2 (20)

Task3 (30)

merge
Parallel

E1

Create the main process

Create a Start Event S1·

Add a Sequence Flow to a target Activity subProcess1; enlarge the Activity and right-click, selecting the 'Is·
Expanded' option, then open the 'Properties' dialog and set 'Type' to 'subprocess'

Add a Sequence Flow to a target abstractTask Activity element Task2 (20) (open the 'Properties' dialog and set the·
'Type' field to 'abstractTask')

Add a Sequence Flow to a target parallel Gateway element merge Parallel (open the 'Properties' dialog and set the·
'Type' field to 'parallel')

Add a Sequence Flow to a target End Event E1·

On subProcess1, add a boundary non-interrupting Escalation Event Catch Issue (drag the 'Intermediate Event' icon·
onto subProcess1, and from the instant menus select 'Edge Mounted' and 'Escalation'; double-click on the element to
display the 'Properties' dialog and add the name, then in the 'Type' field select 'Boundary Non-Interrupting >
Escallation')

Add a Sequence Flow to a target abstractTask Activity element Task3 (30) (open the 'Properties' dialog and set the·
'Type' field to 'abstractTask')

Add a Sequence Flow to the target element merge Parallel·

Create the sub process

Within (or under) subProcess1, create a Start Event S2·

Add a Sequence Flow to a target abstractTask Activity element Task1 (open the 'Properties' dialog and set the 'Type'·
field to 'abstractTask')

Add a Sequence Flow to a target Throwing Escalation Intermediate Event Throw Issue (open the 'Properties' dialog·
and in the 'Type' field select 'Throwing > Escalation')

Add a Sequence Flow to a target End Event E2·

Create BPMN2.0::Escalation elements

From the Diagram Toolbox, expand the 'BPMN 2.0 Types' page, drag the 'Escalation' icon onto the diagram, and give the
element the name Escalation1; this will be used as the escalation code by the Events.

Set up Events for Escalation Codes:

(c) Sparx Systems 2020 Page 168 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Double-click on Throw Issue and in the 'Value' field for the escalationRef tag click on the icon and locate and·
select Escalation1

Double-click on Catch Issue and, again, in the 'Value' field for the escalationRef tag click on the icon and·
locate and select Escalation1

(The exception flow exits from the Activity are parallel.)

Configure BPSim

Task Action

Artifact & Package Open the Configure BPSim window ('Simulate > Process Analysis > BPSim >·
Open BPSim Manager')

Create an Artifact named 'Escalation Event Simulation' (in the 'Select/Create·

Artifact' field, click on the button and select its parent Package and click
on the Add New button, then type in the element name and click on the Save
button and the OK button)

Then all the BPMN elements will be loaded in to the Configure BPSim window.

Trigger Count of Start
Event

From the tree on the left of the Configure BPSim window, expand 'StartEvent'·
and click on S1

On the 'Control' tab, in the 'New Parameter...' field, click on the drop-down·
arrow and select 'TriggerCount'

In the 'Value' field, type '1'·

ProcessingTime In the left-hand tree expand 'Activity' and click on Task2 (20); in the 'Value'·
field for 'Processing Time' type '20' and in the 'Unit' field type 's' (for 20
seconds)

Click on Task3 (30); in the same way, set 'ProcessingTime' to 30 seconds·

dummyVariable for Trace In order to show the exact trace of a given token, you must set a dummy variable on
S1.

In the left-hand hierarchy click on S1, and on the 'Properties' tab overtype the·
New Property text with the name of a variable (such as 'dummyVariable')

In the 'Value' field, click on the button and, on the '<<StartEvent>>S1 :·
<variable name>' dialog click on 'Numeric' and type a 'Constant Numeric'
value of '0'; click on the OK button

Run Simulation

On the 'Configure BPSim' dialog Toolbar, click on the 'Run' icon to open the 'BPSim Simulation Controller' dialog·

Click on the 'Run' icon drop-down arrow and select 'Standard Simulation'·

After simulation, click on the button on the tool bar to display the 'BPSim PropertyParameter Values' dialog·

Click on the Query button and on the 'Group by Property' tab, and expand 'dummyVariable' (or the name you·
assigned to the variable)

(c) Sparx Systems 2020 Page 169 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Analysis:

Unlike Error, the normal flow and exception flow exits from subProcess1 are not alternative paths but parallel. This
feature can be easily discovered from the trace:

E2 and Task2 (20) still get traversed afterTask3 (30) started·

E1 was reached after mergeParallel was traversed twice·

(c) Sparx Systems 2020 Page 170 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Event Sub-Process

Event Sub-Processes enable your system to handle an Event within the context of a given Sub-Process or Process. An
Event Sub-Process always begins with a Start Event; it is not instantiated by normal control flow, but only when the
associated Start Event is triggered. Event Sub-Processes are self-contained and MUST not be connected to the rest of the
Sequence Flows in the Sub-Processes.

If the isInterrupting attribute of its Start Event is set, an Event Sub-Process cancels execution of the enclosing·
Sub-Process

If the isInterrupting attribute is not set, execution of the enclosing Sub-Process continues in parallel to the Event·
Sub-Process

In this example, we demonstrate how Interrupting and Non-Interrupting Event Sub-Processes affect the life line of the
enclosing Sub-Process and Process.

Create BPMN Model

Start1 fork

subProcess1

Start2

Task1 (150)

End3

subProcess2

Start3(@20)

Task2 (100)

End4

subProcess3

Start4(@30)

Task3 (40)

End5

Task4 (20)

End1

task5 (1000)

End2

subProcess4

Start5(@60)

Task6 (2000)

End6

subProcess5

Start6(@80)

Task7 (2000)

End7

Model the main process

Create a StartEvent Start1·

Add a Sequence Flow to a target Parallel Gateway element fork·

Add a Sequence Flow to·
 - a Sub-Process subProcess1, and from that add a Sequence Flow to a target End Event element

(c) Sparx Systems 2020 Page 171 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

 End1
 - an abstract Task Task5, and from that add a Sequence Flow to a target End Event element End2

Tips on how to model an Event Sub-Process

Drag an Activity from the 'BPMN2.0 - Business Process' toolbox onto the diagram·

Double-click on the Activity to display the 'Properties' dialog and, in the 'Type' field, select 'subProcess'; set·
'triggeredByEvent' to 'true' and click on the OK button

Right-click on the element and select the 'Is Expanded' option; this will display the element name on the top left·
corner

Model the Event Sub-Processes for the main process

Create an Event Sub-Process subProcess4·
 - Create a Timer Start Event Start5(@60), then double-click on it to display the 'Properties' dialog
 and, in the 'Type' field, select 'Event Sub-Process Non-Interrupting > Timer'; click on the OK button
 - Add a Sequence Flow to a target abstract task Activity Task6(2000)
 - Add a Sequence Flow to a target End Event element End6

Create an Event Sub-Process subProcess5·
 - Create a Timer Start Event Start6(@80), then double-click on it to display the 'Properties' dialog
 and, in the 'Type' field, select 'Event Sub-Process Interrupting > Timer'; click on the OK button
 - Add a Sequence Flow to a target abstract task Activity Task7(2000)
 - Add a Sequence Flow to a target End Event element End7

Model the Sub-Process subProcess1 and the enclosed Event Sub-Processes

Create a StartEvent Start2·
 - Add a Sequence Flow to a target abstract task Activity Task1(150)
 - Add a Sequence Flow to a target End Event End3

Create an Event Sub-Process subProcess2·
 - Create a Timer Start Event Start3(@20), then double-click on it to display the 'Properties' dialog
 and, in the 'Type' field, select 'Event Sub-Process Non-Interrupting > Timer'
 - Add a Sequence Flow to a target abstract task Activity Task2(100)
 - Add a Sequence Flow to a target End Event element End4

Create an Event Sub-Process subProcess3·
 - Create a Timer Start Event Start4(@30), then double-click on it to display the 'Properties' dialog
 and, in the 'Type' field, select 'Event Sub-Process Interrupting > Timer'
 - Add a Sequence Flow to a target abstract task Activity Task3(40)
 - Add a Sequence Flow to a target abstract task Activity Task4(20)
 - Add a Sequence Flow to a target End Event element End5

Configure BPSim

Using this table, we create the Artifact in the configuration Package and configure the parameter values of each element.

Task Action

Create Artifact Open the Configure BPSim window ('Simulate > Process Analysis > BPSim >·
Open BPSim Manager')

Create an Artifact named 'Event Sub Process Interrupting and·

Non-Interrupting' (in the 'Select/Create Artifact' field, click on the button
and select its parent Package and click on the Add New button, then type in the
element name and click on the Save button and the OK button)

(c) Sparx Systems 2020 Page 172 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Then all the BPMN elements will be loaded in to the Configure BPSim window.

InterTriggerTimer for Start
Events in Event
Sub-Process

From the tree on the left of the 'Configure BPSim' dialog, expand 'StartEvent'.

For each of the elements listed here, on the 'Control' tab click on the drop-down
arrow in the 'New Parameter...' field and select the parameter 'InterTriggerTimer'.

Click on the button in the 'Value' field to open the 'Parameter' dialog and select
'Constant > Numeric', then type in the value and select 'seconds'.

Start3(@20): 20 seconds·

Start4(@30): 30 seconds·

Start5(@60): 60 seconds·

Start6(@80): 80 seconds·

ProcessingTime for Tasks From the tree on the left of the Configure BPSim window, expand 'Activity'.

For each of the elements listed here, on the 'Time' tab click on the drop-down arrow
in the 'New Parameter...' field and select the parameter 'ProcessingTime'. Click on

the button in the 'Value' field to open the 'Parameter' dialog and select
'Constant > Numeric', then type in the value and select 'seconds'.

Task1 (150): 150 seconds·

Task2 (100): 100 seconds·

Task3 (40): 40 seconds·

Task4 (20): 20 seconds·

Task5 (1000): 1000 seconds·

Task6 (2000): 2000 seconds·

Task7 (2000): 2000 seconds·

Run Simulation

On the 'Configure BPSim' dialog Toolbar, click on the 'Run' icon to open the 'BPSim Simulation Controller' dialog·

Click on the 'Run' icon drop-down arrow and select 'Standard Simulation'·

(c) Sparx Systems 2020 Page 173 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Analysis

Reading the results, it might not be completely straightforward to see what has happened; however, if we draw the
lifeline for each task in a Timing diagram, it becomes clearer.

(c) Sparx Systems 2020 Page 174 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Ta
sk

1 active

inactive

Start2

Start4

Ta
sk

7 active

inactive
Start1

Start6

Ta
sk

5 active

inactive

Start1

Start6

Ta
sk

3 active

inactive

Start4

Ta
sk

2 active

inactive

Start3

Start4

Ta
sk

4 active

inactive
Start6

Ta
sk

6 active

inactive
Start1

Start5

Start6

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Ta
sk

1 active

inactive

Start2

Start4

Ta
sk

7 active

inactive
Start1

Start6

Ta
sk

5 active

inactive

Start1

Start6

Ta
sk

3 active

inactive

Start4

Ta
sk

2 active

inactive

Start3

Start4

Ta
sk

4 active

inactive
Start6

Ta
sk

6 active

inactive
Start1

Start5

Start6

Event Start3(@20) is Non-Interrupting, it did not stop Task1 at 20 seconds·

Event Start4(@30) is Interrupting, it stopped Task1 and Task2 at 30 seconds; it did not affected Task5 because·
Task5's enclosing process (main process) level is higher than Start4's enclosing Sub-Process (subProcess1)

Event Start5(@60) is Non-Interrupting, it started Task6 at 60 seconds without affecting Task3 or Task5·

Event Start6(@80) is Interrupting, it started Task7 at 80 seconds and interrupted the running Tasks (Task4, Task5,·
Task6) that were in the same or lower level of its enclosing process

Only End7 is reached as expected·

(c) Sparx Systems 2020 Page 175 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Fibonacci Number Generator with Link Event

A Link Event is a mechanism for connecting two sections of a Process. Link Events can be used:

To create looping scenarios, as generic 'Go To' objects within the Process level·

To avoid long Sequence Flow lines; paired Link Events can be used as 'off-page' connectors for printing a Process·
across multiple pages

The use of Link Events is limited to a single Process level (that is, they cannot link a parent Process with a sub-Process).

There can be multiple source Link Events, but there can only be one target Link Event.

The target Link Event marker is unfilled, to 'catch' from the source link·

The source Link Event marker is filled to 'throw' to the target link·

When the EABPSim Execution Engine is running the simulation, the source-target Link Events are paired by element
NAME, so they cannot be empty.

Create BPMN Model

S1

E1
next=first+second first=second second=next n++

loopNode

SetNext

SetNext

Create a StartEvent S1·

Add a Sequence Flow to a target abstractTask Activity element next=first+second (open the 'Properties' dialog and·
set the 'Type' field to 'abstractTask')

Add a Sequence Flow to a target abstractTask Activity element first=second·

Add a Sequence Flow to a target abstractTask Activity element second=next·

Add a Sequence Flow to a target abstractTask Activity element n++·

Add a Sequence Flow to a target exclusive Gateway element loopNode (on the instant menu, select 'Exclusive')·

Add a Sequence Flow to each of these target elements:·
 - A Throwing Link Intermediate Event element SetNext (open the 'Properties' dialog and set the
 'Type' field to 'Throwing > Link') and
 - An End Event element E1

Create a Catching Link Intermediate Event element SetNext (open the 'Properties' dialog and set the 'Type' field to·
'Catching > Link')

Add a Sequence Flow to the target element next=first+second·

Configure BPSim

We will use Property Parameters to define how the sequence flow forms a loop during which a Fibonacci Number will be
generated. The loop mechanism is implemented via the pair of Link Events.

Open the Configure BPSim window ('Simulate > Process Analysis > BPSim > Open BPSim Manager')

Task Action

Element: S1 In the element type list on the left, expand the Start Event group and click on S1.

(c) Sparx Systems 2020 Page 176 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Click on the 'Control Tab' and on the 'New Parameter' drop-down arrow; select
'TriggerCount'.

In the 'Value' field type '1'.

Click on the 'Properties' tab

Overtype the New Property text to create these properties:

N - and type '10' in the 'Value' field as the total number of Fibonacci Numbers·
to be generated

first - and type '1' in the 'Value' field·

second - and type '1' in the 'Value' field·

n - and type '0' in the 'Value' field as the nth new Fibonacci Number·

Element: next=first+second In the element type list, expand the Activity group and click on next=first+second.

Click on the 'Properties' tab and overtype the New Property text with 'next '.

In the 'Value' field, click on the button, click on the 'Expression' tab and type
the expression '{first}+{second}'.

Click on the OK button.

Element: first=second In the element type list, in the Activity group click on first=second.

Click on the 'Properties' tab and overtype the New Property text with 'first '.

In the 'Value' field, click on the button, click on the 'Expression' tab and type
the expression '{second}'.

Click on the OK button.

Element: second=next In the element type list, in the Activity group click on second=next.

Click on the 'Properties' tab and overtype the New Property text with 'second'.

In the 'Value' field, click on the button, click on the 'Expression' tab and type
the expression '{next}'.

Click on the OK button.

Element: n++ In the element type list, in the Activity group click on n++.

Click on the 'Properties' tab and overtype the New Property text with 'n'.

In the 'Value' field, click on the button, click on the 'Expression' tab and type
the expression '{n}+1'.

Click on the OK button.

Conditions of Gateway In the element type list, expand the Gateway group and the LoopNode element and
click on SetNext.

Click on the 'Control' tab and on the 'New Parameter' drop-down arrow, and select
'Condition'.

In the 'Value' field, click on the button, click on the 'Expression' tab and type
the expression '{n} <={N}'.

Click on the OK button.

Now click on E1.

Click on the 'Control' tab and on the 'New Parameter' drop-down arrow, and select

(c) Sparx Systems 2020 Page 177 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

'Condition'.

In the 'Value' field, click on the button, click on the 'Expression' tab and type
the expression '{n} > {N}'.

Click on the OK button.

Run Simulation

On the 'Configure BPSim' dialog, in the toolbar, click on the 'Run' icon; the 'BPSim Simulation Controller' dialog·
displays

Click on the 'Run' icon drop-down arrow and select 'Standard Simulation'·

When the simulation is complete, click on the icon in the toolbar; the 'BPSim PropertyParameter Values' dialog·
displays

Click on the Query button and on the 'Group by Element' tab, and expand 'next=first+second'; all the attributes's·
snapshot values are listed

Apply a filter 'next' (right-click on the list header, select 'Toggle Filter Bar' and type 'next' under the 'Element'·
heading); the results will resemble this image:

Ten more Fibonacci numbers are generated:

 2,3,5,8,13,21,34,55,89,144

(c) Sparx Systems 2020 Page 178 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Message Event

When used in normal sequence flow, the Message Event can be used to either send or receive a message.

When sending a message to a participant, the values of all property parameters are copied; once the message is sent·
the token continues along the sequence flow

When receiving a message, the event is triggered when a message is received.·

This example demonstrates the Message Event features. We will first create the BPMN model, then configure BPSim
and run the simulation.

Create BPMN Model

Po
ol

1

StartEvent1

Sender

Activity1

Receiver

Gateway1

EndEvent1

EndEvent2

Po
ol

2

StartEvent2

Activity2 Gateway2

Activity3

Activity4

Gateway3

EndEvent3

Sequence

Pool1

The token starts from StartEvent1·

On receiving the token, Sender (a Throwing Intermediate Message Event) creates a message and copies the current·
property values to the message

Sender sends the message to the 'To' participant (Pool2, StartEvent2)·

Sender forwards the token along its sequence flow, as far as Receiver·

The token waits at Receiver until a message arrives·

Pool2

StartEvent2 receives a message and starts a token·

StartEvent2 copies the values from the message and sets these in the token·

StartEvent2 forwards the token along its sequence flow until EndEvent3·

EndEvent3 creates a message and copies the current property values to the message·

(c) Sparx Systems 2020 Page 179 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

EndEvent3 sends the message to the 'To' participant (Pool1, Receiver)·

Pool1 continued

The waiting Receiver is awakened and the property values are updated from the arriving message·

Create Diagram

Create a BPMN 2.0 Collaboration diagram·

Select the option 'Create this diagram within a new CollaborationModel'·

Create Pool1 and Pool2 by dragging the 'Pool' icon from the Toolbox onto the diagram·

Within Pool1

Create a Start Event of type 'None', named StartEvent1·

Add a Sequence Flow to the target Intermediate Event of type 'Throwing Message', called Sender·

Add a Sequence Flow to the target Activity of type 'abstract', called Activity1·

Add Sequence Flows to the target:·
 - End Event of type 'None', called EndEvent1
 - End Event of type 'None', called EndEvent2

Within Pool2

Create a Start Event of type 'Message', called StartEvent2·

Add a Sequence Flow to the target Activity of type 'abstract', called Activity2·

Add a Sequence Flow to the target Gateway of type 'Exclusive', called Gateway2·

Add Sequence Flows to the target:·
 - Activity of type 'abstract', called Activity3
 - Activity of type 'abstract', called Activity4

Add Sequence Flows from Activity3 and Activity4 to the target Gateway of type 'Exclusive', called Gateway3·

Add a Sequence Flow to the End Event of type 'Message', called EndEvent3·

Message Flows

Add a Message Flow from Sender to StartEvent2·

Add a Message Flow from EndEvent3 to Receiver·

Configure BPSim

In order to show the Message Flow's ability to carry values, we create a Property Parameter 'M1' and change its value in
each Activity. We then use the value of 'M1' as part of the expression for the condition of the Sequence Flow.

Task Description

Create Artifact and
Package

Open the Configure BPSim window ('Simulate > Process Analysis > BPSim >·
Open BPSim Manager')

Click on the button in the 'Select/Create Artifact' field and create an·
Artifact called 'MessageEvent-StartEvent-IntermediateEvent-EndEvent'

In the 'Select Package' field select the Package containing the model·

All the BPMN elements from the model are loaded into the Configure BPSim

(c) Sparx Systems 2020 Page 180 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

window.

Property Values We will give the Property Parameter 'M1' an initial value of 10 at StartEvent1. Then
we change the value as the token flows through the processes and the value is
copied across participants.

In the element list on the left of the dialog:

Expand the 'StartEvent' group, click on StartEvent1 and on the 'Properties' tab,·

and overtype New Property with 'M1'; in the 'Value' field click on the
button and select 'Constant' and 'Numeric, and type '10' in the 'Constant
Numeric' field

Expand the 'Activity' group, click on Activity1 and on the 'Properties' tab, and·

overtype New Property with 'M1'; in the 'Value' field click on the button
and select 'Expression', and type '{M1} + 100' in the 'Expression' field

Click on Activity2 and on the 'Properties' tab, and overtype New Property with·

'M1'; in the 'Value' field click on the button and select 'Expression', and
type '{M1} + 10' in the 'Expression' field

Click on Activity3 and on the 'Properties' tab, and overtype New Property with·

'M1'; in the 'Value' field click on the button and select 'Expression', and
type '{M1} + 10' in the 'Expression' field

Click on Activity4 and on the 'Properties' tab, and overtype New Property with·

'M1'; in the 'Value' field click on the button and select 'Expression', and
type '{M1} + 1' in the 'Expression' field

Tip: The format of {PropertyName} is a convenient short form of
getProperty("PropertyName").

Control Parameters We only need one token in this simulation for evaluating the behavior of the model.

In the expanded 'StartEvent' group, click on StartEvent1 and the 'Control' tab;·
click on the 'New parameter' drop-down arrow and select 'Trigger Count', and
type in a 'Value' of '1'

Now set up the conditions for the Gateways' outgoing Sequence Flows. In the
element list on the left of the dialog, expand the 'Gateway' group:

Expand Gateway1, click on EndEvent1 and on the 'Control' tab, then click on·
the 'New Parameter' drop-down arrow and select 'Condition'; in the 'Value'

field click on the button and select 'Expression', and type '{M1} >= 50' in
the 'Expression' field

Click on EndEvent2 and on the 'Control' tab, then click on the 'New Parameter'·

drop-down arrow and select 'Condition'; in the 'Value' field click on the
button and select 'Expression', and type '{M1} < 50' in the 'Expression' field

Expand Gateway2, click on Activity3 and on the 'Control' tab, then click on the·
'New Parameter' drop-down arrow and select 'Condition'; in the 'Value' field

click on the button and select 'Expression', and type '{M1} >= 15' in the
'Expression' field

Click on Activity4 and on the 'Control' tab, then click on the 'New Parameter'·

drop-down arrow and select 'Condition'; in the 'Value' field click on the
button and select 'Expression', and type '{M1} < 15' in the 'Expression' field

(c) Sparx Systems 2020 Page 181 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Run Simulation

On the 'Configure BPSim' dialog toolbar, click on the Run button; the 'BPSim Simulation Controller' dialog displays·

Click on the 'Run' icon drop-down arrow and select 'Standard Simulation'; the simulation starts·

When the simulation is finished, click on the button; the 'Property Parameter Values' dialog displays, tracing·
the values for properties during simulation

In the 'Token Number' field type '0', then click on the Query button and on the 'Group by Property' tab·

Analysis

As the 'ProcessingTime' of Activity1 was set as a distribution value, it turns out that:

[Process1]'s 'M1' value after Pool1.StartEvent1 is '10', as expected·

*[Process2] Pool2.StartEvent2's 'M1' value is '10'; this value is carried from a message sent by Pool1.Sender·

Now there are actually two 'M1's - Process1.M1 and Process2.M1

[Process2] Pool2.Activity2 increased Process2.M1 by 10; [Process2.M1 == 20]·

[Process1] Pool1.Activity1 increased Process1.M1 by 100; [Process1.M1 == 110]·

[Process2] The condition expressions are evaluated; as '20 > 15', the token will flow to Activity3 [Process2.M1 ==·
20]

[Process2] Pool2.Activity3 increased Process2.M1 by 10; [Process2.M1 == 30]·

[Process1] Pool1.Receiver is reached and waiting [Process1.M1 == 110]·

[Process2] Pool2.Gateway3 serves as a Merge node and continues to EndEvent3 [Process2.M1 == 30]·

*[Process1] Pool1.Receiver is woken up by a message(carrying M1 == 30) and Process1.M1's value changes from·
110 to 30

[Process1] The condition expressions are evaluated; as '30 < 50', the token will flow to EndEvent2 [Process1.M1 ==·
30]

Notes

The lines marked with an asterisk (*) are the effects of Message Flows·

The order within a process is defined; however, the order between two processes is not always predictable·

(c) Sparx Systems 2020 Page 182 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

The Throwing Message Event forks another process; the Catching Message serves as thread synchronization·

(c) Sparx Systems 2020 Page 183 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Signal Events

A Signal Event provides the facility of loosely coupling 'throwers' and 'catchers' by publish-subscribe integration. A
'thrower' will broadcast a signal rather than addressing it to a particular process; any process listening for that particular
event could trigger a new instance using a Signal Start Event.

A Signal can be thrown from either a throwing Intermediate Event or a throwing End Event, and can be caught in a Start
Event or a catching Intermediate Event (including a boundary Signal Event).

In this example, we demonstrate these Signal Events and their impact on the lifelines of tasks, via BPSim parameter
settings.

Start Signal Event:·
 - Start By Signal1 in top level process (Pool1)
 - Start By Signal2 Interrupting in event sub-process eventSubProcess2
 - Start By Signal1 Non Interrupting in event sub-process eventSubprocess1

Throwing Intermediate Signal Event:·
 - Broadcast Signal1

Catching Intermediate Signal Event:·
 - Receive Signal1 (normal)
 - Receive Signal2 (normal)
 - Receive Signal2 (boundary Interrupting)
 - Receive Signal1 (boundary non-interrupting)
 - Receive Signal2 (in Event Gateway)

End Signal Event:·
 - End By Throwing Signal2

Create BPMN Model

In order to demonstrate the ability to communicate across processes via a Signal Event, we create a Collaboration model
with a main Pool and a process in another Pool (Pool1).

(c) Sparx Systems 2020 Page 184 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Po
ol

1

E3
Task12 (100)

Start By
Signal1

S1

eventSubProcess1

Task11 (20)

Start By Signal1 Non-
Interrupting

End By
Throwing
Signal2

E1

Broadcast
Signal1

Task5 (100)

Receive Signal2
(boundary

interrupting)

Task6 (10)

Receive
Signal1
(normal)

Task4 (10)

Task1 (20) Task2 (10)

Receive
Signal2
(normal)

parallelFork

parallelMerge

Task3 (20)

eventGateway

Receive Signal2 (in
Event Gateway)

Wait (25)

Task7 (30)

Receive Signal1
(boundary non-

interrupting)

Task9 (10)

Task10 (10)

Task8 (5)

E2

eventSubProcess2

Start By Signal2
Interrupting

Task13 (10)

E4

Create the Collaboration and main process

Create a new BPMN2.0 Collaboration diagram called CollaborationForTestingSignalEvents, (choose the option 'Create
this diagram within a new Collaboration Model'). Right-click on the diagram name in the Browser window and select the
'Encapsulate Process' option.

A Pool PoolMain and a process BusinessProcess_PoolMain are created, and these tags are set with the automatic values:

CollaborationForTestingSignalEvents.mainPool is set to PoolMain·

PoolMain.processRef is set to BusinessProcess_PoolMain·

Create the elements for the main process

Create a Start Event S1 and add a Sequence Flow to a Fork Parallel Gateway parallelFork

Add Sequence Flows to:

An Abstract Task Task1 (20) and then add this chain of Sequence Flows:·
 - To a Throwing Intermediate Signal Event Broadcast Signal1
 - Then to an Abstract Task Task2 (10)
 - Then to a Catching Intermediate Signal Event Receive Signal2 (normal)
 - Then to an Abstract Task Task3 (20)

(c) Sparx Systems 2020 Page 185 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

 - Then to a Merge Parallel Gateway parallelMerge
 - Then to an End Event E1

An Abstract Task Task4 (10) and then add this chain of Sequence Flows:·
 - To a Catching Intermediate Signal Event Receive Signal1 (normal)
 - Then to an Abstract Task Task5 (100), on which you create a Boundary Interrupting Catching
 Intermediate Signal Event Receive Signal2 (boundary interrupting)
 - Then to an Abstract Task Task6 (10)
 - Then to the earlier Merge Parallel Gateway parallelMerge

An Abstract Task Task7 (30), and then add this chain of Sequence Flows:·
 - To an Abstract Task Task8 (5)
 - Then to the earlier Merge Parallel Gateway parallelMerge

On Task7 (30), create a Boundary Non-interrupting Catching Intermediate Signal Event Receive Signal1 (boundary
non-interrupting). Add a Sequence Flow to an Event Gateway eventGateway, and to that add Sequence Flows to:

A Catching Intermediate Signal Event Receive Signal2 (in Event Gateway), and then this chain of Sequence Flows:·
 - To an Abstract Task Task9 (10)
 - Then to the earlier Merge Parallel Gateway parallelMerge

A Catching Intermediate Timer Event Wait (25), and then this chain of Sequence Flows:·
 - To an Abstract Task Task10 (10)
 - Then to an End Event E2

Create an Event sub-process (triggered by a non-interrupting Start Signal Event) in the main process

Create an Activity eventSubProcess1 and, in its 'Properties' dialog, set the 'Type' field to subProcess and change the·
attribute 'triggeredByEvent' to true

Within eventSubProcess1 create a Start Event Start By Signal1 Non Interrupting and, in its 'Properties' dialog, set·
the 'Type' field to Event Sub-Process Non-Interrupting > Signal

Add a Sequence Flow to a target Abstract Task Task11 (20)·

Add a Sequence Flow to a target End Event End By Throwing Signal2 and, in the element 'Properties' dialog, set the·
'Type' field to Signal

Create another process

From the Toolbox, drag and drop the 'Pool' icon onto the diagram and name the element Pool1·

Right-click on Pool1 in the Browser window and select the 'Encapsulate Process' option; a process·
BusinessProcess_Pool1 is created and the tag 'Pool1.processRef' is set to BusinessProcess_Pool1

Create the main process for Pool1

Create a Signal Start Event Start By Signal1·

Add a Sequence Flow to a target Abstract Task Task12 (100)·

Add a Sequence Flow to a target End Event E3·

Create an Event sub-process to interrupt Pool1

Create an Activity eventSubProcess1 and, in the 'Properties' dialog, set the 'Type' field to subProcess; change the·
attribute 'triggeredByEvent' to true

Within eventSubProcess2 create a Start Event Start By Signal2 Interrupting and, in the 'Properties' dialog, set the·
'Type' field to Event Sub-Process Interrupting > Signal

Add a Sequence Flow to a target Abstract Task Task13 (10)·

Add a Sequence Flow to a target End Event E4·

Create the BPMN2.0 Signal Elements and configure for Signal Events

(c) Sparx Systems 2020 Page 186 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

In the BPMN 2.0 Toolbox, expand the 'BPMN 2.0 - Types' page and drag the 'Signal' icon onto the diagram; name the
element Signal1. Drag the icon onto the diagram again to create Signal2. These are root elements (which can be used by
all processes) so they will be created directly under the model Package.

Double-click on each of the Signal Event elements and, in the 'Value' field for the 'signalRef' tag, click on the button
and browse to the appropriate Signal element.

Tips: Alternatively, you can drag the Signal element from the Browser window and drop it on the Event elements in the
diagram; a context menu displays, from which you select the 'set signalRef' option.

Set signalRef to 'Signal1' on:·
 - Broadcast Signal1
 - Start By Signal1 in top level process (Pool1)
 - Start By Signal1 Non Interrupting in Event sub-process eventSubprocess1
 - Receive Signal1 (normal)
 - Receive Signal1 (boundary non-interrupting)

Set signalRef to 'Signal2' on:·
 - Start By Signal2 Interrupting in Event sub-process eventSubProcess2
 - Receive Signal2 (normal)
 - Receive Signal2 (boundary Interrupting)
 - Receive Signal2 (in Event Gateway)

Configure BPSim

In this section, we create the Configuration Artifact, specify the model Package and configure the parameter values of
each element.

The configuration is quite simple because none of the Signal Events require any BPSim configurations. All we have to
do is set the processing time for tasks so we can observe how processes, threads and tasks are started and interrupted.

Task Description

Set up configuration Open the Configure BPSim window ('Simulate > Process Analysis > BPSim >·
Open BPSim Manager')

Create an Artifact named 'SignalEvent Complete Example' (in the·

'Select/Create Artifact' field, click on the button and select its parent
Package and click on the Add New button, then type in the element name and
click on the Save button and the OK button)

Then all the BPMN elements will be loaded in to the Configure BPSim window.

Non-Signal Events In the element list on the left of the dialog, expand the 'StartEvent' group, then·
click on S1 and on the 'Control' tab; click on the 'New Parameter' drop-down
arrow and select 'Trigger Count', then type '1' in the 'Value' field

Expand the 'IntermediateEvent' group, then click on Wait (25) and on the·
'Control' tab; click on the 'New Parameter' drop-down arrow and select

'InterTriggerTimer', then click on the button in the 'Value' field; select
'Constant' and 'Numeric', and type '25' in the 'Constant Numeric' field and
'seconds' in the 'TimeUnit' field

Dummy variable for
Process

The simulation controller displays a list showing the runtime token count for each
element. For example, 4 tokens have passed the Gateway element parallelMerge in
a simulation. This is quite useful for certain statistics and analysis. However, it does
not show WHEN parallelMerge was traversed during the simulation. In order to get
the exact trace for a single token we use the property trace utility, which relies on
property parameters. So we create a dummy parameter.

(c) Sparx Systems 2020 Page 187 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

In the 'Configuration BPSim' dialog, expand the 'BusinessProcess' group.

Click on BusinessProcess_Main and on the 'Properties' tab, and overtype New·

Property with dummyVariable; in the 'Value' field, click on the button and
on 'Constant' and 'Numeric', and in the 'Constant Numeric' field type '0'

Click on BusinessProcess_Pool1 and perform exactly the same actions as for·
BusinessProcess_Main

Processing Time for Tasks Expand the 'Activity' group and for each Task element listed here: select the 'Time'
tab, click on the 'New Parameter' drop-down arrow and select 'ProcessingTime',

then click on the button on the 'Value' column, select 'Constant' and 'Numeric',
type the value as indicated into the 'Constant Numeric' field and select 'seconds' in
the 'TimeUnit' field.

Task1 (20): 20 seconds·

Task2 (10): 10 seconds·

Task3 (20): 20 seconds·

Task4 (10): 10 seconds·

Task5 (100): 100 seconds·

Task6 (10): 10 seconds·

Task7 (30): 30 seconds·

Task8 (5): 5 seconds·

Task9 (10): 10 seconds·

Task10 (10): 10 seconds·

Task11 (20): 20 seconds·

Task12 (100): 100 seconds·

Task13 (10): 10 seconds·

Run Simulation

On the 'Configure BPSim' dialog Toolbar, click on the 'Run' icon to open the 'BPSim Simulation Controller' dialog·

Click on the 'Run' icon drop-down arrow and select 'Standard Simulation'·

After simulation, click on the button on the tool bar to display the 'BPSim PropertyParameter Values' dialog·

Click on the Query button and on the 'Group by Property' tab, and expand 'dummyVariable'·

(c) Sparx Systems 2020 Page 188 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Analysis

From the direct results of the simulation it might not be obvious what has taken place; however, if we draw the lifeline
for each task, it becomes quite clear.

(c) Sparx Systems 2020 Page 189 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Ta
sk

1 active

inactive
S1

Ta
sk

13 active

inactive

Start By Signal2 Interrupting

Ta
sk

10 active

inactive

Ta
sk

9 active

inactive

Receive Signal2 (in Event Gateway)

Ta
sk

6 active

inactive

Ta
sk

4 active

inactive
S1

Ta
sk

2 active

inactive

Ta
sk

3 active

inactive

Receive Signal2 (normal)

Ta
sk

5 active

inactive
S1

Receive Signal1 (normal)

Receive Signal2(boundary interrupting)

Ta
sk

7 active

inactive
S1

Ta
sk

8 active

inactive

Ta
sk

11 active

inactive

Start By Signal1 Non-Interrupting

Ta
sk

12 active

inactive

Start By Signal1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Ta
sk

1 active

inactive
S1

Ta
sk

13 active

inactive

Start By Signal2 Interrupting

Ta
sk

10 active

inactive

Ta
sk

9 active

inactive

Receive Signal2 (in Event Gateway)

Ta
sk

6 active

inactive

Ta
sk

4 active

inactive
S1

Ta
sk

2 active

inactive

Ta
sk

3 active

inactive

Receive Signal2 (normal)

Ta
sk

5 active

inactive
S1

Receive Signal1 (normal)

Receive Signal2(boundary interrupting)

Ta
sk

7 active

inactive
S1

Ta
sk

8 active

inactive

Ta
sk

11 active

inactive

Start By Signal1 Non-Interrupting

Ta
sk

12 active

inactive

Start By Signal1

Task1, Task4 and Task7 started in parallel·

(c) Sparx Systems 2020 Page 190 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Task2 started immediately after Task1 finished (without stopping at the throwing event)·

At 20 seconds, Signal1 was broadcast by the Throwing Intermediate Event Broadcast Signal1 and:·
 - Receive Signal1 (normal) was activated and Task5 started
 - Start By Signal1 Non-Interrupting was activated and Task11 in eventSubProcess1 started
 - Start By Signal1 was activated and Task12 in Pool1 started

At 40 seconds, Signal2 was broadcast by the End Event End By Throwing Signal2 and:·
 - Receive Signal2 (normal) was activated and Task3 started
 - Task5 was interrupted and Task6 started
 - Receive Signal2 (in Event Gateway) was activated and Task9 started
 - Start By Signal2 Interrupting was activated, and:
 > The main process in Pool1 was interrupted and Task12 stopped
 > Task13 in eventSubProcess2 started

The eventSubProcess2 inside BusinessProcess_Pool1 finished when E4 was reached at 50 seconds·

The BusinessProcess_MainPool finished when E1 was reached at 60 seconds·

The Intermediate Timer Event Wait (25) did not get activated because the signal event in the Gateway was activated·
first; as a result, Task10 was never started

Note: The actual running time for each task can be observed from the generated BPSimReport element, by:

Double-clicking on the <<BPSimReport>> element.1.

Expanding the 'Time' group.2.

Expanding the task element.3.

Checking 'Total Time In Task'.4.

For example, for element Task5 (100), although we set its processingTime to be 100 seconds, the Total Time In Task
was 20 seconds, which was interrupted by Receive Signal2 (boundary interrupting) at 20 seconds.

(c) Sparx Systems 2020 Page 191 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Timer Event - Boundary

Create BPMN Model

StartEvent1

TaskTakesAbout60Minutes

Timeout60Minutes

finished successfully

error_timeout

Create a Start Event StartEvent1·

Add a Sequence Flow to a target userTask TaskTakesAbout60Minutes·

Add a Sequence Flow to a target End Event finished successfully·

Create an Intermediate Event, dragging the icon from the Toolbox and dropping it onto TaskTakesAbout60Minutes;·
select 'Edge-Mounted' and 'Timer' from the automatic menus, and call the element Timeout60Minutes

Add a Sequence Flow to a target End Event (Error) error_timeout·

Configure BPSim

In this section, we create the Configuration Artifact, identify the parent Package and set the parameter values of each
element.

Objects Action

Create Artifact and
Package

Open the 'Configure BPSim' dialog ('Simulate > Process Analysis > BPSim >·
Open BPSim Manager')

Create an Artifact named 'IntermediateEvent - Boundary - Timer -·

TruncatedNormal' (in the 'Select/Create Artifact' field, click on the button
and select its parent Package, click on the Add New button, then type in the
element name and click on the Save button and the OK button)

Then all the BPMN elements will be loaded in to the 'Configure BPSim' dialog.

StartEvent1 In the element list on the left of the dialog, expand the 'StartEvent' group and click
on StartEvent1.

Click on the 'Control' tab·

Click on the 'New Parameter' drop-down arrow and select 'TriggerCount'·

In the 'Value' field type '100'·

TaskTakesAbout60Minutes In the element list on the left of the dialog, expand the 'Activity' group and click on
TaskTakesAbout60Minutes.

Click on the 'Time' tab·

Click on the 'New Parameter' drop-down arrow and select 'ProcessingTime'·

In the 'Value' field click on the button and select 'Distribution' and·
'TruncatedNormal'

(c) Sparx Systems 2020 Page 192 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

In the 'Mean' field type '50'·

In the 'StandardDeviation' field type '10'·

In the 'Min' field type '0'·

In the 'Max' field type '1000'·

Click on the OK button·

Timeout60Minutes In the element list on the left of the dialog, expand the 'IntermediateEvent' group
and click on Timeout60Minutes.

Click on the 'Control' tab·

Click on the 'New Parameter' drop-down arrow and select 'InterTriggerTimer'·

Set the value to '000:000:000 001:00:00' (that is, 1 hour)·

Run Simulation

On the Configure BPSim window toolbar, click on the 'Run' icon to open the 'BPSim Simulation Controller' dialog·

Click on the 'Run' icon drop-down arrow and select 'Standard Simulation'·

After simulation, click on the button on the tool bar to display the 'BPSim PropertyParameter Values' dialog·

Click on the Query button and on the 'Group by Property' tab, and expand 'dummyVariable'·

On simulation, we get this result:

Analysis

Since the ProcessingTime of TaskTakesAbout60Minutes was set as a distribution value, it turns out that:

(c) Sparx Systems 2020 Page 193 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

93 out of 100 finished in 1 hour, so the normal flow to finished successfully takes effect·

7 out of 100 finished in more than 1 hour, so the exception flow to error_timeout takes effect·

Other Configurations

In the example folder, there are two other Business Process Simulation Artifacts that set the ProcessingTime as a
constant value of 50 minutes and 80 minutes, other settings remain the same.

Run simulation on these two Artifacts:

ProcessingTime configured to be 50 minutes always finishes in normal flow·

ProcessingTime configured to be 80 minutes always finishes in exception flow·

(c) Sparx Systems 2020 Page 194 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Timer Event - Standalone Intermediate Event

When a Timer Intermediate Event is used within the normal sequence flow as a standalone element, it acts as a delay
mechanism.

Create BPMN Model

StartEvent1 Fork

Delay15Minutes

EndEvent1

Task10Minutes

Task20Minutes

Merge

Task1

Task2

Task3

Create a Start Event called StartEvent1·

Add a Sequence Flow to a target Parallel Gateway called Fork·

Add Sequence Flows to:·
 - A Standalone Timer Intermediate Event called Delay15Minutes, and from that a Sequence Flow
 to an Activity called Task1
 - An Activity called Task10Minutes, and from that a Sequence Flow to an Activity called Task2
 - An Activity called Task20Minutes, and from that a Sequence Flow to an Activity called Task3

From Task1, Task2 and Task3 create Sequence Flows to a Merge Parallel Gateway called Merge·

Add a Sequence Flow to a target EndEvent called EndEvent1·

Configure BPSim

In this section, we create the Configuration Artifact, specify the model Package and configure the parameter values of
each element.

Object Action

Create Artifact and
Package

Open the 'Configure BPSim' dialog ('Simulate > Process Analysis > BPSim >·
Open BPSim Manager')

Create an Artifact named 'IntermediateEvent - Standalone - Timer' (in the·

'Select/Create Artifact' field, click on the button and select its parent
Package and click on the Add New button, then type in the element name and
click on the Save button and the OK button)

Then all the BPMN elements will be loaded in to the 'Configure BPSim' dialog.

StartEvent1 In the element list on the left of the dialog, expand the 'StartEvent' group, then·
click on StartEvent1 and on the 'Control' tab

Click on the 'New Parameter' drop-down arrow and select 'Trigger Count', then·

(c) Sparx Systems 2020 Page 195 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

type '1' in the 'Value' field

Click on the 'Properties' tab·

Overtype New Property with dummyProperty; in the 'Value' field, click on the·

 button and on 'Constant' and 'Numeric', and in the 'Constant Numeric'
field type '0'

With this property, the 'Property Trace' dialog will be able to show the sequence of
element flows during simulation.

Delay15Minutes In the element list on the left of the dialog, expand the 'IntermediateEvent'·
group, then click on Delay15Minutes and on the 'Control' tab

Click on the 'New Parameter' drop-down arrow and select 'InterTriggerTimer',·
then set the 'Value' field to 15 minutes ('000:000:000 000:15:00')

Task10Minutes In the element list on the left of the dialog, expand the 'Activity' group, then·
click on Task10Minutes and on the 'Time' tab

Click on the 'New Parameter' drop-down arrow and select 'ProcessingTime',·
then set the 'Value' field to 10 minutes ('000:000:000 000:10:00')

Task20Minutes In the element list on the left of the dialog, expand the 'Activity' group, then·
click on Task20Minutes and on the 'Time' tab

Click on the 'New Parameter' drop-down arrow and select 'ProcessingTime',·
then set the 'Value' field to 20 minutes ('000:000:000 000:20:00')

Run Simulation

On the 'Configure BPSim' dialog Toolbar, click on the 'Run' icon to open the 'BPSim Simulation Controller' dialog·

Click on the 'Run' icon drop-down arrow and select 'Standard Simulation'·

After simulation, click on the button on the tool bar to display the 'BPSim PropertyParameter Values' dialog·

Click on the Query button and on the 'Group by Property' tab·

(c) Sparx Systems 2020 Page 196 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Analysis

The Fork Parallel Gateway will activate the outgoing Sequence Flows simultaneously (the order is undefined and not
important). However, we would expect the order of the Tasks to be exactly:

Task2·

Task1·

Task3·

This order is determined by the BPSim parameters set on two of the Activities (ProcessingTime) and the Timer
Intermediate Event (InterTriggerTimer). The sequence shown in the 'BPSim PropertyParameter Values' dialog confirms
that Task2 comes ahead of Task1, which comes ahead of Task3.

(c) Sparx Systems 2020 Page 197 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Paint Wall Process Simulation (Call Activity)

This is a simple example to simulate the process of painting a wall. We define the main process as preparing the surface
and then painting it three times. Preparing the surface is further divided into tasks such as sanding and cleaning.

We assume that applying each of the three coats of paint is the same process, except that the time randomly spent on
each coat might be different.

Create BPMN Model

S1

Call Prepare Surface

E1

Coat Surface 1st Round Coat Surface 2nd Round Coat Surface 3rd Round

Create the main process - Paint Wall Process

Create a Start Event called S1·

Add a Sequence Flow to a target callProcessActivity called Call Prepare Surface·

Add a Sequence Flow to a target callGlobalTaskActivity calledCoat Surface 1st Round·

Add a Sequence Flow to a target callGlobalTaskActivity called Coat Surface 2nd Round·

Add a Sequence Flow to a target callGlobalTaskActivity called Coat Surface 3rd Round·

Add a Sequence Flow to a target End Event called E1·

S2

Clean Surface

E2

Sand Surface

Create the re-used process - Prepare Surface Process

Create a Start Event called S2·

Add a Sequence Flow to a target Abstract Task called Sand Surface·

Add a Sequence Flow to a target Abstract Task called Clean Surface·

Add a Sequence Flow to a target End Event called E2·

Set Global Task and re-used process to call Activities

Create a Global Task Activity called Coat Surface·

Double-click on each of Coat Surface 1st Round, Coat Surface 2nd Round and Coat Surface 3rd Round, and set the·
tag 'calledActivityRef' to Coat Surface

Tip: You can also drag the Global Task 'Coat Surface' from the Browser window and drop it on the Call Activity
element, clicking the 'set calledActivityRef' option on the context menu.

Double-click on Call Prepare Surface and set the tag 'calledActivityRef' to Prepare Surface Process·

Tip: You can also drag the process 'Prepare Surface Process' from the Browser window and drop it on the Call Activity
element, clicking the 'set calledActivityRef' option on the context menu.

Configure BPSim

Open the 'Configure BPSim' dialog ('Simulate > Process Analysis > BPSim > Open BPSim Manager')·

(c) Sparx Systems 2020 Page 198 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Create a Business Process Simulation Artifact named Paint Wall Simulation·

Select the Package containing the corresponding BPMN 2.0 model·

All of the BPMN elements will be loaded in to the 'Configure BPSim' dialog.

Object Activity

Fixed Scaling Time On the left hand panel of the Configure BPSim window, expand the 'Activity'
group, then:

Click on Sand Surface and on the 'Time' tab, then click on the 'New Parameter'·
drop-down arrow and select 'Processing Time'; in the 'Value' field, change the
setting to 000:000:000 000:30:00 (that is, 30 minutes)

Click on Clean Surface and on the 'Time' tab, then click on the 'New Parameter'·
drop-down arrow and select 'Processing Time'; in the 'Value' field, change the
setting to 000:000:000 000:10:00, (that is,10 minutes)

Random Coating Time On the left hand panel of the Configure BPSim window, expand the 'GlobalTask'
group, then:

Click on Coat Surface·

Click on the 'Time' tab, then click on the 'New Parameter' drop-down arrow·
and select 'Processing Time'

In the 'Value' field click on the button, and on the parameter dialog click·
on the 'Distribution' tab and on 'Poisson'

In the 'Mean' field type '10', then click on the OK button·

With this setting, the mean value of the random numbers generated by the Poisson
distribution is 10. If you prefer, you can choose other types of distribution.

TriggerCount on S1 On the left hand panel of the Configure BPSim window, expand the 'Start Event'
group, then:

Click on S1·

Click on the 'Control' tab, then click on the 'New Parameter' drop-down arrow·
and select 'TriggerCount'

In the 'Value' field type '1'·

Run Simulation

From the 'Configure BPSim' dialog toolbar, click on the Run button; the 'BPSim Simulation Controller' dialog·
displays

Click on the Run button and select 'Standard Simulation'·

When the simulation is complete, it provides this result:·

(c) Sparx Systems 2020 Page 199 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Flow Analysis

For the only token started on S1, we can see from the 'BPSim Simulation Controller' dialog how the flow develops:

When reaching the callProcessActivity, the called process is activated; so we have S2 ~ E2·

When reaching a callGlobalTaskActivity, the called Global Task is activated - the notation reads: GlobalTask name·
(called activity name); the global Coat Surface was called three times:
 - Coat Surface(Coat Surface 1st Round)
 - Coat Surface(Coat Surface 2nd Round)
 - Coat Surface(Coat Surface 3rd Round)

Time Analysis

Click on the button on the 'BPMN Simulation Controller' dialog toolbar. The 'BPMN Simulation Report View'
displays:

(c) Sparx Systems 2020 Page 200 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Tips: Type a text string in the Filter bar to show only the records containing that text string in that column field.

After expanding the report (click on the button on the 'Report View' toolbar), the report displays as shown in the
example, from which we can make this analysis:

Coat Surface 1st Round took 8 minutes; Coat Surface 2nd Round took 10 minutes; Coat Surface 3rd Round took 12·
minutes - the figures 8, 10, 12 are randomly generated by the Poisson(10) distribution; what is important here is that
each call instance of the Global Task has its own values

Coat Surface has a total time collected from all instances: 8 + 10 + 12 = 30·

The Call Activity Call Prepare Surface took 40 minutes, composed of Sand Surface (30 minutes) and Clean Surface·
(10 minutes)

The Sum Of Processing Time for Paint Wall Process is 70 minutes, composed of the four Call Activities: 40 + 8 +·
10 + 12 = 70

Customized Simulation

We can configure a 'Result Request' on BPMN elements to customize the simulation report so that we only report on the
parameters we are interested in.

Configure Result Request

On the left hand side of the 'Configure BPSim' dialog, expand the 'Activity' group, then click on Coat Surface 1st·
Round and on the 'Time' tab

In the lower panel on the right of the dialog, click on 'ProcessingTime', click on the drop-down arrow in the 'Result·

(c) Sparx Systems 2020 Page 201 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Request' field and select the checkbox against 'sum'; click on the OK button

Repeat these steps for the Activities Call Prepare Surface, Coat Surface 2nd Round, Coat Surface 3rd Round·

Expand the 'Business Process' group and repeat these steps for Paint Wall Process·

Run Simulation

On the 'Configure BPSim' dialog toolbar, click on the Run button; the 'BPSim Simulation Controller' dialog displays·

Click on the Run button drop-down arrow and select, in this case, 'Customized Simulation'·

Flow Analysis

The Flow Analysis is exactly the same as for a Standard Simulation.

Time Analysis

On the 'BPSim Simulation Controller' dialog toolbar, click on the button; the 'BPMN Simulation Report View'
displays.

The Time Analysis is the same as for a Standard Simulation; however, the report only contains the 'sum' results we
requested.

Note: Currently, in the Time Analysis, we can not request ProcessingTime either on the called process itself or on the
Activities contained by the called process. If you have this requirement, use the Standard Simulation.

(c) Sparx Systems 2020 Page 202 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

BPSim Cost Parameters

BPSim 1.0 provides the means to set cost parameters and receive cost statistics from process simulation experiments.
BPSim provides a framework to determine variable costs according to two parameters, both related to the level of
activity performed in the simulated process. These parameters are:

Completion cost ('Fixed Cost' in the BPSim specification) - The cost incurred whenever an operation is completed;·
this cost can be related to Task, Process, Sub-Process, Call Activity or Resource elements

Time cost ('Unit Cost' in the BPSim specification) - The cost incurred whenever a task, process, sub-process, call·
activity or resource is busy for a period of time

The cost parameters are supported on Activities, resources and processes.

Activity - Completion cost is incurred whenever an Activity finishes; Time cost (Unit Cost * Time) is incurred·
whenever an activity finishes

Resource - Completion cost is incurred whenever each involved resource finishes an activity; Time cost (Unit Cost *·
Time) is incurred whenever each involved resource finishes an activity

Process - Completion cost is incurred whenever a process finishes; Time cost (Unit Cost * Time) is incurred·
whenever a process finishes

Those costs that are known without the need for simulation - for example, overall labor employment costs - are not
supported by BPSim.

In this topic, we discuss two examples that demonstrate the configuration and simulation of cost parameters.

Set Cost on Activity·

Set Cost on Resource·

Set Cost Parameters on Activity

StartEvent1

Task(100+4*20) Task (100+3*30)

EndEvent1

call global (100+2*10)

Create the BPMN Model (Activities)

In the Browser window, create a StartEvent1, a GlobalTask1, two AbstractTasks, and an EndEvent1·

Ctrl+drag the elements from the Browser window onto a diagram, pasting GlobalTask1 as an Invocation (Call·
Activity) called call global (100+2*10)

Give the elements names and connect them with Sequence Flows; the two AbstractTasks should be called:·
 - Task (100+3*30) and
 - Task (100+4*20)

BPSim Configuration

Create a Business Process Simulation configuration Artifact in the diagram, right-click on it and select the 'Configure
BPSim' option. Set the configuration to link to the Package containing the BPMN model elements and configure these
BPSim parameters as indicated.

Parameter Settings

Click on the 'Scenario' tab and, for the 'Time Unit' parameter, click on the·

(c) Sparx Systems 2020 Page 203 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Scenario Parameters 'Value' drop-down arrow and select 'hours'

In the 'Value' field for the 'Duration' parameter, set the value to '0001 00:00:00'·
(1 day)

This Time Unit is used to calculate the Time Cost (Time cost = Unit Cost * Time),
so make sure the Unit Cost is based on the correct Time Unit.

Control Parameters On the left side of the dialog, expand the 'StartEvent' group and click on·
StartEvent1

Click on the 'New Parameter' drop-down arrow and select 'TriggerCount'·

In the 'Value' field type '1'·

Time Parameters On the left side of the dialog, expand the 'Activities' group.

Click on Task(100+4*20) and on the 'Time' tab, then click on the 'New·
Parameter' drop-down arrow and select 'ProcessingTime'; set the 'Value' field
to '000:000:000 004:00:00' (4 hours)

Click on Task(100+3*30) and do the same, setting the 'Value' field to·
'000:000:000 003:00:00' (3 hours)

Expand the 'GlobalTask' group.

Click on GlobalTask1 and do the same, setting the 'Value' field to '000:000:000·
002:00:00' (2 hours)

Cost Parameters Click on Task(100+4*20) and on the 'Cost' tab, then click on the 'New·
Parameter' drop-down arrow and select:

 - 'FixedCost' - in the 'Value' field click on the button, select
 the 'Constant' tab and 'Floating', and in the 'Constant Floating' field
 type '100'; click on the OK button
 - 'UnitCost' - do the same, setting the 'Constant Floating' field to '20'

Click on Task(100+3*30) and do the same, setting:·
 - 'FixedCost' to '100
 - 'UnitCost' to '30'

Click on GlobalTask1 and do the same, setting:·
 - 'FixedCost' to '100
 - 'UnitCost' to '10'

Expand the 'BusinessProcess' group, click on BPSim Cost and do the same,·
setting:
 - 'FixedCost' to '50'
 - 'UnitCost' to '5

Simulation

From the 'Configure BPSim' dialog toolbar, click on the Run button; the 'BPSim Simulation Controller' dialog·
displays

Click on the Run button and select 'Standard Simulation'·

When the simulation is complete, click on the button on the 'BPMN Simulation Controller' dialog toolbar; the·
'BPMN Simulation Report View' displays

Filter the report by clicking on the button and selecting 'Show only Non-Empty Items'·

(c) Sparx Systems 2020 Page 204 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Analysis

Activity Analysis

Task(100+4*20) Total Completion Cost is 100, matching the FixedCost (100) setting in BPSim·

Total Time Cost is 80, calculated as ProcessingTime (4 hours) * UnitCost·
(20/hour)

Task(100+3*30) Total Completion Cost is 100, matching the FixedCost (100) setting in BPSim·

Total Time Cost is 90, calculated as ProcessingTime (3 hours) * UnitCost·
(30/hour)

call global (100+2*10) Total Completion Cost is 100, matching the FixedCost (100) on GlobalTask1·
setting in BPSim

Total Time Cost is 20, calculated as ProcessingTime (2 hours) * UnitCost·
(10/hour) on GlobalTask1

BPSim Cost process Total Completion Cost is 50, matching the FixedCost (50) setting in BPSim·

Total Time Cost is 45, calculated as Total ProcessingTime of all tasks (4 + 3 +·
2 = 9 hours) * UnitCost (5/hour)

(c) Sparx Systems 2020 Page 205 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Set Cost Parameters on Resource

StartEvent1

Task (by Junior) Task (by Senior)

EndEvent1

call global (by Junior)

Create the BPMN Model (Resources)

In the Browser window create a StartEvent1, a GlobalTask1, two abstractTasks called Task (by Junior) and Task (by·
Senior), and an EndEvent1

Ctrl+drag the elements from the Browser window onto a diagram, pasting GlobalTask1 as an Invocation (Call·
Activity) named call global (by Junior)

Connect the elements with Sequence Flows·

Create two BPMN2.0 Resource elements: Junior Developer and Senior Developer·

BPSim Configuration

Create a Business Process Simulation configuration Artifact in the diagram, right-click on it and select the 'Configure
BPSim' option, then set the configuration to link to the Package containing the BPMN model elements and configure
these BPSim parameters as indicated.

Parameter Setting

Scenario Parameters Click on the 'Scenario' tab and, for the 'Time Unit' parameter, click on the·
'Value' drop-down arrow and select 'hours'

In the 'Value' field for the 'Duration' parameter, set the value to '0001 00:00:00'·
(1 day)

This Time Unit is used to calculate the Time Cost (Time cost = Unit Cost * Time),
so make sure that the Unit Cost is based on the correct Time Unit.

Control Parameters On the left side of the dialog, expand the 'StartEvent' group and click on·
StartEvent1

Click on the 'New Parameter' drop-down arrow and select 'TriggerCount'·

In the 'Value' field type '1'·

Time Parameters On the left side of the dialog, expand the 'Activities' group.

Click on Task (by Junior) and on the 'Time' tab, then click on the 'New·
Parameter' drop-down arrow and select 'ProcessingTime'; set the 'Value' field
to '000:000:000 004:00:00' (4 hours)

Click on Task (by Senior) and do the same, setting the 'Value' field to·
'000:000:000 003:00:00' (3 hours)

Expand the 'GlobalTask' group.

Click on GlobalTask1 and do the same, setting the 'Value' field to '000:000:000·
002:00:00' (2 hours)

Resource Parameters On the left of the dialog, expand the 'Resource' group.

(c) Sparx Systems 2020 Page 206 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Click on Junior Developer and on the 'Resource' tab, then click on the 'New·
Parameter' drop-down arrow and select 'Quantity'; in the 'Value' field type '10'

Click on Senior Developer and do the same, typing '5' in the 'Value' field·

Assign Resource to Activities

On the left of the dialog, expand the 'Activity' group and click on:

Task (by Junior) and on the 'Resource Role' tab, then - if the 'Resource Roles·
defined in BPMN' panel is empty - click on the Add Resource Role button,
choose 'Junior Developer' and type '1' in the 'Quantity' field; check that the
'Resource Selection Expression for Activity' panel now contains:
 bpsim::getResource('Junior Developer', 1)

call global (by Junior) and do exactly the same thing·

Task (by Senior) and do the same thing, selecting 'Senior Developer' and·
setting 'Quantity' to '1'; the 'Resource Selection Expression for Activity' panel
should contain:
 bpsim::getResource('Senior Developer', 1)

Cost Parameters Click on Junior Developer and on the 'Cost' tab, then click on the 'New·
Parameter' drop-down arrow and select:

 - 'FixedCost' - in the 'Value' field click on the button, select
 the 'Constant' tab and 'Floating', then in the 'Constant Floating'
 field type '100' and in the 'CurrencyUnit' field type 'AUD'; click on
 the OK button
 - 'UnitCost' - do the same, setting the 'Constant Floating' field to '20'

Click on Senior Developer and do the same, setting:·
 - 'FixedCost' to '100'
 - 'UnitCost' to '30'

Simulation

From the Configure BPSim window toolbar, click on the Run button; the 'BPSim Simulation Controller' dialog·
displays

Click on the Run button and select 'Standard Simulation'·

When the simulation is complete, click on the button on the 'BPMN Simulation Controller' dialog toolbar; the·
'BPMN Simulation Report View' displays

Filter the report by clicking on the button and selecting 'Show only Non-Empty Items'·

(c) Sparx Systems 2020 Page 207 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Analysis

Resource Results

Junior Developer Total Completion Cost is '200', calculated as FixedCost (100) * number of·
Activities involved (2)

Total Time Cost is '120', calculated as ProcessingTime (4 + 2 = 6 hours) *·
UnitCost (20/hour)

Senior Developer Total Completion Cost is '100', calculated as FixedCost (100) * number of·
Activities involved (1)

Total Time Cost is '90', calculated as ProcessingTime (3 hours) * UnitCost·
(30/hour)

(c) Sparx Systems 2020 Page 208 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Export a BPSim Configuration

When you have defined a BPSim Configuration in a model, you can export it to an XMI file to be imported into other
projects. The BPMN 2.0 model on which the configuration is based is also exported with the configuration. This binds
the model to the appropriate BPSim Configuration when you import the XMI file into another project.

Access

Ribbon Publish > Model Exchange > Export-XML > Export XML for Current Package :
Publish

Context Menu On a diagram or in the Browser window, right-click on the Business Process
Simulation Artifact | Export BPSim Configuration

Keyboard Shortcuts Ctrl+Alt+E : Publish

Other
Toolbar of Configure BPSim window | Export icon

Publish Model Package

The process of exporting a BPSim configuration and its model uses the 'Publish Model Package' dialog for publishing a
model to an XMI file.

Option Description

Package Defaults to the name of the Package containing the Business Process Simulation
Artifact.

Filename
Type in or browse for (click on the icon) the file path and XML filename into
which to export the model.

XML Type Select 'BPMN 2.0 XML'.

Export Click on this button to export the configuration and BPMN 2.0 model. The export is
complete when a confirmation message displays in the 'Progress' field.

Format XML Output Defaults to selected; leave selected.

View XML If you want to examine the exported XML, click on this button.

Notes

To import the model from XMI into a new project, select the target Package in the new project and select the·
'Publish > Model Exchange > Import XML > Import Package from XMI' ribbon option

(c) Sparx Systems 2020 Page 209 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

(c) Sparx Systems 2020 Page 210 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

DMN Modeling and Simulation

Decision Model and Notation (DMN) is a standard published and managed by the Object Management Group (OMG).

Portions of this topic have been used verbatim or are freely adapted from the DMN Specification, which is available on
the OMG DMN web page (https://www.omg.org/spec/DMN). A full description of the DMN and its capabilities can be
found on the OMG website.

The purpose of DMN is to provide the constructs that are needed to model decisions, so that organizational
decision-making can be readily depicted in diagrams, accurately defined by business analysts, and (optionally)
automated. It is also intended to facilitate the sharing and interchange of decision models between organizations.

What is DMN?

DMN is intended to provide a bridge between business process models and decision logic models:

Business process models will define tasks within business processes where decision-making is required to occur·

Decision Requirements Diagrams will define the decisions to be made in those tasks, their interrelationships, and·
their requirements for decision logic

Decision logic will define the required decisions in sufficient detail to allow validation and/or automation·
Business Process BPMN

Collect Application
Data

Decide Routing

Offer Product Decline Application

Business Process
Model (BPMN)

Routing = DECLINERouting = ACCEPT

dmn Decision Model (DMN)

Application risk category table

Application risk score model

Application Risk Eligibility Eligibility Rules

Routing

Application

Decision
Model (DMN)

Decision Requirements
Level

custom Decision Logic

Employment status

UNEMPLOYED

-

-

-

Country

-

not(UK)

-

-

Age

-

-

<18

-

Eligibilty

INELIGIBLE

INELIGIBLE

INELIGIBLE

ELIGIBLE

P

1

2

3

4

Eligibility Rules

Decision Logic
Level

Taken together, Decision Requirements diagrams and decision logic allow you to build a complete decision model that
complements a business process model by specifying - in detail - the decision-making carried out in process tasks.

DMN provides constructs spanning both decision requirements and decision logic modeling.

For decision requirements modeling, it defines the concept of a Decision Requirements Graph (DRG) comprising a·

(c) Sparx Systems 2020 Page 211 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

set of elements and their connection rules, and a corresponding notation: the Decision Requirements Diagram
(DRD).

For decision logic modeling it provides a language called FEEL for defining and assembling decision tables,·
calculations, if/then/else logic, simple data structures, and externally defined logic from Java and PMML into
executable expressions with formally defined semantics.

Benefits of Using DMN in Enterprise Architect

Modeling decision-making processes using DMN allows you to record, specify and analyze complex decision processes
as a system of interrelated decisions, business rules, data sets and knowledge sources. By doing so, you can decompose a
highly complex decision making process into a network of supporting decisions and input data. This facilitates easier
understanding of the overall process, supports refactoring of processes and simplifies the task of validating the process,
by allowing you to easily validate the individual steps that make up the overall process.

When you build a Decision Model in Enterprise Architect using DMN, you can run simulations of the model to verify
the correctness of the model. After you have verified your model, you can generate a DMN Module in Java, JavaScript,
C++ or C#. The generated DMN Module can be used with the Enterprise Architect BPSim Execution Engine,
Executable StateMachine, or within a separate software system that you are implementing.

Enterprise Architect also provides a 'Test Module' facility, which is a preprocess for integrating DMN with BPMN. The
aim is to produce BPMN2.0::DataObject elements, then use these to verify that a specified target decision is evaluated
correctly with the DMN Module. You then configure BPSim by loading DataObjects and assigning DMN Module
decisions to BPSim Properties.

This feature is available in the Unified and Ultimate editions of Enterprise Architect, from Release 15.0.

Decision Requirements Graphs

The DMN decision requirement model consists of a Decision Requirements Graph (DRG) depicted in one or more
Decision Requirements Diagrams (DRDs). The elements modeled are decisions, areas of business knowledge, sources of
business knowledge, input data and decision services.

A DRG is a graph composed of elements connected by requirements, and is self-contained in the sense that all the
modeled requirements for any Decision in the DRG (its immediate sources of information, knowledge and authority) are
present in the same DRG. It is important to distinguish this complete definition of the DRG from a DRD presenting any
particular view of it, which might be a partial or filtered display.

Input Data

Decision Business Knowledge

(c) Sparx Systems 2020 Page 212 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

An Example of Decision Modeling

Imagine you are an Airline reservation officer working at the check-in counter for a busy domestic airline. Getting the
aircraft off on-time is critical as delays can result in fees applied by the airport controllers, needing to fly at a lower
altitude increasing the cost of fuel, and other penalties.

A message from the supervisor appears on your screen saying that the economy cabin is overbooked; you will need to
upgrade some passengers to Business or First Class — but which passengers should be chosen and which cabin should
they be upgraded to? A decision needs to be made but what factors should be considered? This can be recorded in a
Decision Model using a Decision Requirements diagram.

Cabin Upgrade Policy

Customer Cabin Status

Determine Cabin for Upgrade

This is helpful but the busy check-in officer would still need to weigh up all the factors and make an unbiased decision.
Should a disgruntled passenger be given priority over a Gold level frequent flyer, or should the fact that a particular
passenger is connecting to an international flight take precedence. These 'rules' can all be recorded in a Decision table,
making it clear which passengers should get an upgrade and to which cabin: Business or First Class. This will make it
much easier to make the decision and the rules can be formulated, agreed upon and checked for consistency back at head
office. In this example we have kept it simple and used two factors: firstly the number of flights the passenger has made
in the last month and secondly how overbooked the cabin is.

The table is divided into columns and rows. There are three types of column: inputs that are required to make the
decision, outputs that are the result of applying the rules, and annotations.

This is again very helpful but still requires the busy check-in officer to be able to source all the required information
required to find the right row in the Decision table. Even if all this information were available, a wrong decision could
still result from human error in selecting the wrong row in the table.

Fortunately the Decision Models can be automated and generated to programming code that can be executed by an
application. So our busy check-in officer would not need to do anything or make any decisions; as he or she was
checking in the passengers, if a particular passenger was entitled to an upgrade it would be visible on the computer
screen. In the next diagram the model has been simulated so that the business and technical staff can agree that the model
has been defined correctly. Any number of user-defined data sets can be used to test the model before generating the
programming code that will run in the check-in system and display the result to the end user.

(c) Sparx Systems 2020 Page 213 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

When developing the models a business or technical user can step through the simulation and the system will show that
user which row in the Decision table was fired to determine the output. This is very useful in models that are made up of
multiple decisions.

It is common for the rules that govern the upgrade decision to change. For example, the Marketing Department might
decide they want to reward passengers that travel on long-haul flights. The Decision Requirements diagram can be
altered to include the new input, the Decision table modified, and the programming code regenerated. Once the changes
have been pushed through to the airport systems, the right passengers will be automatically upgraded. The check-in
officer could still view the Decision tables during a training and briefing session to understand the rules.

(c) Sparx Systems 2020 Page 214 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Building a Decision Model in Enterprise Architect

In the model we described in An Example of Decision Modeling, we showed how a decision can be modeled using a
Decision Table, in which a decision result is determined by finding a row in the table where the input values in the table
match the input values under consideration, giving a particular output result.

We will now look at how such a model can be created in Enterprise Architect, by stepping through the process of
creating the decision model for the Airline Cabin Upgrade example.

There are a number of model elements involved in this example, such as Input Data elements, Item Definitions that are
used to describe the Input Data (defining the data types), a Decision element and also a Business Knowledge Model
element that holds the Decision Table definition.

Create a Decision Requirements Diagram

These steps will guide you through the creation of a simple Decision Requirements Diagram (DRD). In this example, we
will create the model from scratch, rather than using a pattern from the Model Wizard.

Step Description

1 Select the perspective 'Requirements | Decision Modeling'.

(The Model Wizard is displayed, but we will not use it for this example, so close
the Model Wizard.)

2 Create a new DMN diagram. Name it 'Airline Cabin Upgrade'.

3 Using the diagram toolbox, place a Decision element on the diagram. Choose
'Invocation' as the type - we will use this element to 'invoke' a decision from a
Business Knowledge Model element. Name the element 'Determine Cabin for
Upgrade'.

4 Place an InputData element on the diagram. Name this element 'Customer'.

5 Place another InputData element on the diagram. Name this element 'Cabin Status'.

6 Place a Business Knowledge Model element on the diagram. Choose the type
'Decision Table'. Name this element 'Cabin Upgrade Policy'.

7 Draw an 'Information Requirement' connector from the decision 'Determine Cabin
for Upgrade' to the input data 'Customer'.

8 Draw an 'Information Requirement' connector from the decision 'Determine Cabin
for Upgrade' to the input data 'Cabin Status'.

9 Draw a 'Knowledge Requirement' connector from the decision 'Determine Cabin
for Upgrade' to the BKM 'Cabin Upgrade Policy'.

Class

At this stage, we should have a simple DRD, that resembles this:

(c) Sparx Systems 2020 Page 215 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Cabin Upgrade Policy

Customer Cabin Status

Determine Cabin for Upgrade

We can now specify the details for each of the elements making up this model.

Define the Decision Table

By double-clicking on the Business Knowledge Model element 'Cabin Upgrade Policy', the 'DMN Expression' window is
displayed, showing an empty decision table. This is where we will define the rules of our cabin upgrade policy.

By default, new decision tables are created with two input columns and one output column, a header row and three empty
rules rows.

The left-most column in the table displays the 'hit policy' and also numbers the rules. By default, the 'hit policy' is 'U' for
'Unique'. This is the policy that we will use for our example, so you do not need to change this column heading.

For more information on 'hit policy', refer to the Decision Table Hit Policy Help topic.

Name and Define Types for Decision Table Inputs and Outputs

Step Description

1 On the toolbar of the 'DMN Expression' window, click on the 'Edit Parameters'

button, .

The 'Edit Parameters' dialog displays.

2 Replace the parameter name 'Input 1' with 'Num of Pax Overbooked'.

If necessary, click on the 'Type' drop-down arrow and set the type of this parameter
to 'number'.

3 Replace the parameter name 'Input 2' with 'Num of Flights in Last Month by Pass'.

Set the type of this parameter to 'number' as well.

Close the 'Edit Parameters' dialog.

4 Edit the input expression that will be evaluated for column 1.

(c) Sparx Systems 2020 Page 216 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Select the header cell (containing the text 'Input 1') then click again or press F2 to
enter 'Edit' mode. Select all of the cell text, then press the Spacebar. The list of
input parameters is displayed. Click on 'Num of Pax Overbooked', then press
'Enter'. The expression for column 1 is set to 'Num of Pax Overbooked'.

Note: The input expressions evaluated for each column typically just use the
corresponding input parameter; however, you can use a complex expression.

5 Right-click on the column 1 expression and check that its data type is set to
'number'.

6 Edit the input expression that will be evaluated for column 2.

Select all of the text, then press the Spacebar. The list of input parameters is
displayed. Choose 'Num of Flights in Last Month for Pass', then press 'Enter'.

The expression for column 2 is set to 'Num of Flights in Last Month for Pass'.

7 Right-click on the column 2 expression and set its data type to 'number'.

8 Edit the name of the decision table output.

Replace 'Output 1' with 'Upgrade Cabin', then press 'Enter'.

9 Set the data type of the decision output.

Right-click on the output column header and choose 'string'.

10 Set the allowable values for the decision output.

In the cell directly beneath the output column header (but above row 1), define the
allowable values for output. Enter 'Business Class, First Class'.

Note: There is no need for quote marks around the values, as the data type has
been specified as 'string'.

Define the Rules of the Decision Table

Enter values into the table cells to match this image.

Click on a cell to select it, and click again to edit it.

You can copy and paste existing rules by selecting the rows to copy (Shift+click adds to the selection), right-click and
choose 'Copy', then right-click and choose 'Append'.

Once you have finished editing the rules, click on the Save button .

Finally, click the Validate button , to check for errors in the table of rules.

(c) Sparx Systems 2020 Page 217 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Create ItemDefinition Elements

Add two ItemDefinition elements to the diagram, one for each of the InputData elements. Name one element
'CustomerDefinition' and the other 'CabinStatusDefinition'.

Cabin Upgrade Policy

Customer Cabin Status

Determine Cabin for Upgrade

«ItemDefinition»
CustomerDefinition

«ItemDefinition»
CabinStatusDefinition

Double-click the ItemDefinition named 'CustomerDefinition' to edit the definition. The DMN Expression window is
displayed.

Right-click on the cell 'CustomerDefinition' and choose 'Add Child Component'. Overtype the name of the child
component with 'Num of Flights in Last Month' and overtype its datatype with 'number'. Click the 'Save' button to save
the changes, and close the window.

Similarly, double-click on the ItemDefinition named 'CabinStatusDefinition', add a child component named 'Num of Pax
Overbooked' and set its data type to 'number'. Save the changes and close the window.

Specify the Data Type For Each InputData Element

Select the InputData element 'Customer'. In the Properties window, select the property 'typeRef' and click on the
button.

(c) Sparx Systems 2020 Page 218 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Select the ItemDefinition 'Customer Definition' as the type. Click on 'OK'.

Similarly, specify 'Cabin Status Definition' as the type for 'Cabin Status'.

Specify the Inputs to the Decision Element

Double-click on the decision element 'Determine Cabin for Upgrade'

In the DMN Expression window, locate the table row containing the text 'Num of Pax Overbooked' in the first column.
Click in the cell in the second column of this row, and press the Spacebar. A list of possible input values is displayed.
Choose 'Cabin Status . Num of Pax Overbooked' and press 'Enter'. The selection is written into the cell.

Repeat this process for the second table row 'Num of Flights in Last Month', choosing 'Customer . Num of Flights in Last
Month'.

Click on the Save button.

Click on the Validate button.

Define Data Sets

The 'correctness' of your decision model can be tested, by running simulations using a range of representative data sets to
verify that the model produces the correct result in all situations.

You can create numerous Data Sets with various names, using a range of data values. You can set one of the data sets as
the default value.

We will now create a Data Set for each of our InputData elements.

Step Description

1 Double-click on the InputData element 'Customer'.

The DMN Expression window displays.

(c) Sparx Systems 2020 Page 219 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

2
In the DMN Expression window, click on the 'Edit Data Set' button .

The 'Edit Data Set' window is displayed.

3
Click on the button.

A new data set is created.

4 Overwrite the name of the data set if you wish.

Leave the Type as 'number'. Enter a value of, for example, 3.

Click on the Save icon and the OK button.

5 Repeat for the InputData 'Cabin Status'. Enter a value of, for example, 4.

Add a DMNSimConfiguration Artifact

Locate the DMN 'Simulation Configuration' Artifact in the Diagram Toolbox. Drop one of these onto the diagram as
well.

Double-click on it to open the DMN Simulation window at the 'Simulate' tab.

From the DMN Simulation window, you can run simulations of the completed Decision model. You can also perform
validation, generate code and generate test modules.

Step Description

1 Locate the edit field in the toolbar of this window.

2 Click on the drop-down arrow in this field.

A list displays, showing all of the Decision Services and Decision elements in the
Package associated with the DMNSim Configuration Artifact. In this case,
'Determine Cabin for Upgrade' is the only item in the list.

3 Click on 'Determine Cabin for Upgrade'.

4 The body of the window now displays the InputData elements and the decision
results that are available as inputs to the selected decision.

Click on the Save button.

5 Use the 'Value' column to select one of the predefined DataSets for the InputValues,

then you can click on the 'Run' button in the lower toolbar to run a
simulation, using the selected data sets.

(c) Sparx Systems 2020 Page 220 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Components of Decision Requirements Diagrams

The elements modeled in Decision Requirements graphs (DRGs) and Decision Requirements diagrams (DRDs) are
Decision, Business Knowledge Model, Input Data, Knowledge Source and Decision Service. The dependencies between
these elements express three kinds of requirement - Information, Knowledge and Authority.

Components of Decision Requirements Diagrams

This table summarizes the notation for all components of a Decision Requirements diagram.

Component Description

Decision A Decision element denotes the act of determining an output from a number of
inputs (Input Data or Decision), using decision logic expressed as Literal
Expressions, Decision Tables, Invocations or Boxed Context.

Business Knowledge
Model

A Business Knowledge Model denotes a reusable module of decision logic
represented by a function, which includes zero, one or more than one parameter.

Decision Service
(expanded)

A Decision Service can enclose a set of reusable decisions that are invoked
internally - for example, by another Decision or Business Knowledge Model - or
externally - for example, by a BPMN Process.

A good practice is to use a diagram to describe a single expanded Decision Service.

Decision Service
(collapsed)

If a Decision Service element serves as an invocable element, connected with
knowledge requirements to other elements with invocation logic, we can hide the
details of the Decision Service to focus on the decision hierarchies in the big
picture.

Input Data An Input Data element denotes information used as an input to one or more
Decisions.

Item Definition An Item Definition is used to define the type and structure of data items used in the
decision model. It is primarily referenced by Input Data elements as a basis for the
type and structure of data expected to be input. It can also be referenced for setting
the structure for an output.

The Item Definition contains Data Sets that provide sets of values useful when
performing varied simulations.

Knowledge Source A Knowledge Source element denotes an authority for a Business Knowledge
Model or Decision.

Information Requirement An Information Requirement denotes Input Data or Decision output being used as
input to a Decision.

Knowledge Requirement A Knowledge Requirement denotes the invocation of a Business Knowledge Model
or Decision Service.

Authority Requirement An Authority Requirement denotes the dependence of a DRG element on another
DRG element that acts as a source of guidance or knowledge.

(c) Sparx Systems 2020 Page 221 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

(c) Sparx Systems 2020 Page 222 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

DMN Expression Editor

The DMN Expression Editor is the window in which you will define, review and update the details of most of the
different types of DMN element within your model. Primarily, it is used for editing the Value Expressions of Decision
elements and BusinessKnowledgeModel (BKM) elements.

A different version of the DMN Expression Editor is displayed for each of the four types of value expression used by
Decision elements and BKM elements. For BKM elements a second window tab is also presented, for defining the input
and output parameters used in calling the BKM.

Two additional versions of the DMN Expression Editor also exist to support editing of ItemDefinition and InputData
elements.

The toolbar that is displayed, and the layout of the window content, are dependent upon the type of DMN element that is
currently selected and, where applicable, the type of Value Expression being defined.

This image shows the version of the DMN Expression Editor used for defining a Decision Table. In this case, the
underlying element is a BusinessKnowledgeModel, and so the decision logic is 'invoked' by other elements, with input
and output passed via parameters.

Detailed explanations of the DMN Expression Editor's features for each element and expression type are provided in the
child Help topics of this topic.

Access

Diagram Double-click a DMN element on a diagram.

The DMN Expression editor window corresponding to the element and its
expression type is displayed.

Value Expressions

Summarized in this table are four distinct types of value expression with references to the Help topics detailing each of
them.

Type and Icon Description

Decision Table A Decision table is a tabular representation of a set of related input and output
expressions, organized into rules indicating which output entry applies to a specific
set of input entries.

Literal Expression A literal expression specifies the decision logic as a textual expression that
describes how an output value is derived from its input values. To support
simulation and execution, the literal expression can use Javascript functions.

(c) Sparx Systems 2020 Page 223 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Boxed Context A boxed context is a collection of context entries, consisting of (name, value) pairs,
each with a result value.

The context entries provide a means of decomposing a complex expression into a
series of simple expressions, providing intermediate results that can be used in
subsequent context entries.

Invocation An invocation calls on another model element (a BusinessKnowledgeModel or a
Decision Service) to provide a decision result. The invocation defines parameters
that are passed into the 'invoked' element, providing context for evaluation of its
decision logic. The decision result is then passed back to the 'invoking' element.

ItemDefinition and InputData Elements

Element Description

ItemDefinition ItemDefinition elements are used to define data structures and, optionally, to
restrict the range of allowable values of the data. ItemDefinitions can range from a
simple single type through to a complex structured type. ItemDefinitions are used
to specify the type of InputData elements as well as input parameters.

InputData InputData elements are used to provide input to Decision elements.

The data type of an InputData element is defined using an ItemDefinition element.
Data Sets can also be defined as part of an ItemDefinition and an InputData element
can then specify a Data Set to be used when running a simulation.

(c) Sparx Systems 2020 Page 224 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Decision Table

A Decision Table is a tabular representation of a set of related input and output expressions, organized into rules
indicating which output entry applies to a specific set of input entries.

Decision Tables are supported by both the Decision and the Business Knowledge Model element types. They are denoted

by the icon in the top right corner of the element on a diagram.

Access

Diagram On a diagram, double-click on a Decision element or BusinessKnowledgeModel
element.

The DMN Expression window is displayed, showing details of the selected
element.

Overview

This image shows the DMN Expression window as it appears for a Decision Table.

A Decision Table consists of:

The table hit policy (C+, U, A, P and so on) that specifies how the rules are applied·

A list of rules (1, 2, 3, 4 and so on), where each rule row contains specific input entries and corresponding output·
entries

A list of input clauses (under the blue headings), defined as expressions that generally involve one or more input·
values

A list of output clauses (under the pink heading), defining the output corresponding to a specific set of inputs·

Optional annotations for each rule (under the green heading) which you can add through the window Toolbar·

An input clause consists of an expression and an optional list of allowed values (the row just underneath the column
headings). Very often, the expression is simply an unmodified input value; however, it could also be an expression
involving more than one input value or perhaps a conditional statement such as 'Application Risk Score > 100'. The
allowable values apply to the expression result rather than the input values used.

Each output clause consists of an identifier (a name) and again an optional list of allowed values for that clause.

(c) Sparx Systems 2020 Page 225 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

The Decision Table should contain all the inputs - and only those inputs - required to determine an output.

In determining which rules are applied, the expressions defined in the input clauses are evaluated for the given inputs and
the expression results are then used to find rules with matching input entries.

Where the DMN Expression window is not wide or deep enough to display all columns and rows, you can use scroll
bars to access the hidden content, or drag the borders out to increase every column width. The 'Input' and 'Output' column
widths are initially the same, but you can adjust each column width independently of the others, by dragging the column
border either within the table or in the gray bar just below the tab names.

Toolbar for Decision Table Editor

When a Decision Table is selected, the features available in the DMN Expression window are accessed via the Toolbar at
the top of the window, as shown:

For more details refer to the Toolbar for Decision Table Editor Help topic.

Parameters

In the case of BusinessKnowledgeModel elements, parameters are used to pass input values supplied by the invoking
element. The BKM's decision logic is evaluated using the input parameters and the result is returned to the invoking
element. By default, a BKM element is created with two input parameters, 'Input 1' and 'Input 2'.

Click on the icon in the toolbar of the DMN Expression window to display the 'Edit Parameters' dialog.

Here you can change the parameter names, rearrange the sequence, set their data types, create additional parameters or
delete existing ones.

Hit Policy

(c) Sparx Systems 2020 Page 226 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Right-click on the 'Hit Policy Indicator', then choose the desired hit policy from the pop-up menu. The various table hit
policies are described in detail in the Decision Table Hit Policy Help topic.

Input Clauses

An input clause of a Decision Table is defined as an expression. Very often, the expression is simply an unmodified
input value; however, it could also be an expression involving more than one input value or it could be defined as a
conditional statement, such as 'Application Risk Score > 100'. The allowable values apply to the expression result rather
than the input values used and, as such, the type of the values should match the type of the expression result.

Decision Tables are created with two default input clauses, 'Input 1' and 'Input 2'. The data type for both of these clauses
is 'number'. In the DMN Expression window, the input clauses are displayed as column headings on the Decision Table.
To modify an input clause, click on the column heading to select the cell, then click again or press F2 to edit.

Auto-completion is supported when editing input clauses. That means, for Decision elements, any inputs that are
connected to the Decision element are made available for selection from a list. Similarly, for BKM elements, the
invocation parameters are made available for selection from a list. See the DMN Expression Auto-completion Help topic
for further information.

To add additional columns of input entries to the Decision Table, click on the icon on the toolbar of the DMN
Expression window.

To remove input columns from the table, right-click within the unwanted input column, then select the option 'Delete
Input Column' from the pop-up menu.

The order of the input columns in the table can be re-arranged by dragging and dropping columns to new positions.
(Drag the unlabelled cell at the very top of the table column to the required position.)

Allowed Values

When defining an 'Input' or an 'Output' column, the second row of the column defines the Allowed Values. This is an
optional cell in the column, but useful for clarifying the entries in the rows beneath it. When running a validation, each of
the cells below the Allowed Values cell are checked to make sure they conform to the expression in this cell.

The expressions used in this cell depend on how the 'Input' or 'Output' column is typed. For example:

number - [18 ..35]·

string - 'High', 'Low', 'Medium'·

boolean - true, false·

Fast Fill Allowed Values

The Input/Output Expression that this references can be a simple value or a complex FEEL expression; however, if it is
directly related to an ItemDefinition's 'Allowed Values' field then pressing the Spacebar will enable a fast-fill option to
set the 'Allowed Values' as defined in the ItemDefinition (usually referenced via an InputData element).

(c) Sparx Systems 2020 Page 227 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Fast Fill Rows

Once the 'Allowed Values' field is defined, as well as restricting the values that can be used when defining the rules in
the table, the 'Allowed Values' field also provides the user with a fast fill option. This is invoked, in a rule cell, by
pressing the Spacebar and selecting the required item:

For more details see the Help topic DMN Expression Auto Completion.

Output Clauses

An output clause consists of a name, a data type and an optional list of allowed values. To modify an output clause, click
on the column heading cell to select the cell, then click again or press F2 to edit.

To add additional columns of output entries to the Decision table, click on the icon on the toolbar of the Expression
editor window.

To remove output columns from the table, right-click within the unwanted output column, then select the option 'Delete
Output Column' from the pop-up menu.

The order of the columns in the table can be re-arranged by dragging and dropping columns to new positions. (Drag the
unlabelled cell at the very top of the table column to the desired position.)

Data Type for Input/Output Clauses

For the simulation to work it is critical to set the data type for all input and output clauses. Range, gap and overlap
validations are supported for clauses of type 'number', but validation cannot be performed if the type has not been
specified. Code Generation for typed languages such as C++, C# and Java requires that the data types are specified.
When the data type is specified as 'string', there is no need to enclose each string literal within quotes. String values are
displayed using italic font if the type has been declared.

To set the data type, right-click on the Input or Output column header and select the required type from the list.

(c) Sparx Systems 2020 Page 228 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Defining Decision Table Rules

Decision table rules are defined by specifying input entries and corresponding output entries within the cells of a table
row. For 'number' data types, input entries can be specified as a single value, or as a number range, such as '<10', '>100'
or '[2..8)'. (When defining number ranges, the use of round brackets indicates that the bounding number is NOT
included, use of square brackets indicates the bounding number is included.) Output entries should specify a single value
per cell.

Additional rules can be appended to the list of rules by clicking on the icon in the toolbar. Unwanted rules can be
deleted from the table by right-clicking on the rule and selecting the option 'Delete Rule Row' from the pop-up menu.

Existing rules can be copied and pasted within the table by first selecting the rules, (use 'Ctrl+Click' to add/remove from
selection), then using the menu options 'Copy Rules to Clipboard' and 'Paste Rules from Clipboard' to perform the copy
and paste. The copied rules can then be modified by selecting and editing individual cell entries.

If the 'Allowed Values' field is set for a string or boolean expression, the Spacebar can be used to display a list of values
to select from, as shown in the earlier Allowed Values - Fast Fill Rows section.

Rules can also be sorted within the table, either by:

Clicking the icon on the toolbar, then choosing to either 'Sort By Input' or 'Sort By Output', or·

Right-clicking on individual rules within the table and selecting the 'Move Rule Up' or 'Move Rule Down' option·
from the pop-up menu

To determine which table rows are selected for output, the expressions that are defined by the input clauses are evaluated
for the given inputs and the results of the expressions are then compared against the input entries of the table rows.
Where the expression results match the input entries of a table row, that row is selected for output.

The Decision table's 'Hit Policy' determines how the table's matching rows are then used to produce its output.

(c) Sparx Systems 2020 Page 229 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Toolbar for Decision Table Editor

This table provides descriptions of the features accessible in the DMN Expression window when a Decision Table is
selected.

Toolbar Options

Icon Description

Save changes to the currently selected Decision or BusinessKnowledgeModel
element.

Switch views between Rule-as-Row and Rule-as-Column for the Decision Table. If
you click on the drop-down arrow you can select options to switch between these
two orientations and also Rule-as-Crosstab.

Rule-as-Row format:

Rule-as-Column format:

Rule-as-Crosstab format (note that this format hides the Annotation fields):

During simulation a Crosstab Decision Table highlights related input entries and
output entries.

Click on 'Sort By Input' to sort the rules by input columns; click on 'Sort By Output'
to sort the rules by output columns. The columns can be dragged and dropped to
organize the sorting order.

Merge cells of adjacent rules, where the content of the input entries is the same.
You can edit the content of the merged cells. During simulation, the merged items
are highlighted.

Split input entry cells that have previously been merged.

Display the 'Edit Parameters' window, where you can specify the names and data
types of the parameters that are passed when invoking the decision logic of a
BusinessKnowledgeModel element.

(c) Sparx Systems 2020 Page 230 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Append an input column to the Decision Table.

Append an output column to the Decision Table.

Append an annotation column (with a green heading cell) to the table, in which you
can record short notes or comments on the rule. (See the illustrations in the
Rule-as-Row/Rule-as-Column row earlier.) You can add more than one annotation
column if required, typing in an appropriate column title in each heading cell.

To remove an annotation column, right-click on it and select the 'Delete Annotation
Column' option.

Append a rule to the Decision Table.

Show or hide the allowed values fields for the 'Input' and 'Output' columns.

The allowed values defined for an input or output will be used for validation and
auto completion editing.

Perform validation of the Decision Table. Enterprise Architect will perform a
series of validations to help you discover any errors in the Decision Table.

This button is enabled when a Decision Table is defined for a
BusinessKnowledgeModel element.

Select the 'Input Parameter Values for Simulation' tab, complete the fields, then
click on this button. The test result will be presented on the Decision Table, with
the runtime values of inputs and outputs displayed and valid rule(s) highlighted.

You can use this functionality to unit test a BusinessKnowledgeModel element,
without specifying its context.

A number of menu options are available for this tool bar button. For more
information, see the Help topic Simulate DMN Model.

(c) Sparx Systems 2020 Page 231 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Decision Table Hit Policy

The Hit Policy specifies the result of the Decision table in cases of overlapping rules. The single character in a particular
Decision table cell indicates the table type and unambiguously reflects the decision logic.

Single Hit Policies:

Unique: no overlap is possible and all rules are disjoint; only a single rule can be matched (this is the default)·

Any: there might be overlap, but all the matching rules show equal output entries for each output, so any match can·
be used

Priority: multiple rules can match, with different output entries; this policy returns the matching rule with the highest·
output priority

First: multiple (overlapping) rules can match, with different output entries; the first hit by rule order is returned·

Multiple Hit Policies:

Output order: returns all hits in decreasing output priority order·

Rule order: returns all hits in rule order·

Collect: returns all hits in arbitrary order; an operator (‘+’, ‘<’, ‘>’, ‘#’) can be added to apply a simple function to·
the outputs

Collect operators are:

+ (sum): the result of the Decision table is the sum of all the distinct outputs·

< (min): the result of the Decision table is the smallest value of all the outputs·

> (max): the result of the Decision table is the largest value of all the outputs·

(count): the result of the Decision table is the number of distinct outputs·

Example of Unique hit policy

The 'Unique' hit policy is the most popular type of Decision table and all rules are disjoint.

Example of Priority hit policy

(c) Sparx Systems 2020 Page 232 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

In a table with the 'Priority' hit policy, multiple rules can match, with different output entries. This policy returns the
matching rule with the highest output priority.

Note: The list of allowable values is used to define the output priority. Here, the allowable values are listed as
INELIGIBLE, ELIGIBLE; which defines INELIGIBLE as having a higher priority than ELIGIBLE.

One possible simulation result might resemble this:

The matching rules are highlighted, but the output from rule 2 is chosen because INELIGIBLE has higher priority than
ELIGIBLE.

Example of Collection-Sum hit policy

For a Decision table with the 'Collect-Sum' (C+) hit policy, the result of the Decision table is the sum of all the distinct
outputs.

In this example, the output Partial Score is calculated as 43 + 45 + 45 = 133

(c) Sparx Systems 2020 Page 233 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

(c) Sparx Systems 2020 Page 234 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Decision Table Validation

A Decision table is one of the most common and powerful DMN Expressions used to express decision logic. However,
modeling a Decision table can also be complicated, especially if multiple input clauses are used in combination for many
Decision table rules. Enterprise Architect provides the facility to validate Decision tables, as explained in this topic.

Access

DMN Expression Window Simulate > Decision Analysis > DMN > DMN Expression : Validate button

DMN Simulation Window Simulate > Decision Analysis > DMN > Open DMN Simulation > Configure :
Validate button

Entries out of range detection

It is good practice to define 'allowed values' for the input clauses and output clauses of a Decision Table. The 'allowed
values' list is used to perform range-checking of the input and output entry values for the table rules.

In this example:

The 'Age' input clause defines a range of [20..120]; however, the input entry for rule 1 specifies a range of [18..21];·

(c) Sparx Systems 2020 Page 235 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

this is outside the range of allowed values, so rule 1 is reported as invalid

The 'Marital Status' clause defines its allowed values as an enumeration of 'S, M'; rule 12 specifies a value of 'D',·
hence that rule is also reported as invalid

These issues can be corrected, either by updating the 'allowed values' or by modifying the input entries for the invalid
rules, depending on the actual business rules.

Completeness detection - report gaps in the rules

The gaps in rules for a Decision table mean that, given a combination of input values, no rule is matched. This indicates
that some logic or rule might be missing (unless a default output is defined).

When the Decision table contains many rules that specify number ranges, it becomes difficult to detect gaps by eye and
quite time-consuming to compose and run exhaustive test cases.

For example:

The validation reports a gap in the rules. Closer inspection reveals an error in rule 9. The input entry (580..600], should
be [580..600].

Rule Overlap detection for Unique Hit Policy

When rules overlap, for a given combination of input values, multiple rules are matched. This is a violation if the
Decision table specifies its Hit Policy as 'Unique'.

When the Decision table contains many rules that specify number ranges, it becomes difficult to detect gaps by eye and
quite time-consuming to compose and run exhaustive test cases.

For example:

(c) Sparx Systems 2020 Page 236 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

The validation reports an overlap in the rules, involving rules 4 & 5. Closer inspection reveals the overlap exists in the
third input 'Credit Score', where '<610' overlaps with '[600..625]'. You could correct this issue either by changing rule 4
to '<600' or by changing rule 5 to '[610..625]', to reflect the actual business rules.

(c) Sparx Systems 2020 Page 237 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Literal Expression

A Literal Expression is the simplest form of DMN expression; it is commonly defined as a single-line statement, or an
if-else conditional block. The Literal Expression is a type of value expression used in both Decision Elements and
BusinessKnowledgeModel (BKM) elements. As the expression becomes more complex, you might prefer a Boxed
Context or, in order to improve the readability, you can encapsulate some of the logic as a function in the DMN Library.

The icon on the top right corner of the Decision or BKM element indicates that it is implemented as a Literal
Expression.

Access

Diagram On a diagram, double-click on a Decision element or BusinessKnowledgeModel
element.

The DMN Expression editor window displays showing details of the selected
element.

Overview

This image shows the DMN Expression editor window, as it appears for a Literal Expression.

The Literal Expression is a textual representation of the decision logic. It describes how an output value is derived from
its input values, using mathematical and logical operations.

The expression editor window presents the Literal Expression as a table, with two key rows:

Parameters: defines the input parameters used in the expression·

Literal Expression: where the formula for the expression is defined - this defines the output of the Decision·

In order to support simulation and execution, the literal expression can use Javascript global functions or Javascript
object functions. Users can also create DMN Library functions for use within the expressions.

Toolbar for Literal Expression Editor

When a Literal Expression is selected, the layout of features accessible in the DMN Expression window is:

For more details refer to the Help topic 'Toolbar for Literal Expression Editor'.

(c) Sparx Systems 2020 Page 238 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Expression Editor and Intelli-sense support

In accordance with the FEEL language specification, parameter names can contain spaces, which makes the expression
easier to read. Enterprise Architect also provides Intelli-sense support for editing the expressions, allowing for minimal
typing and fewer mistakes.

Given a decision hierarchy such as the one shown, when editing the expression for 'Decision1', the inputs to 'Decision1' -
namely 'Decision2', 'Decision3', 'InputData1' and 'InputData2' - will be available through Intelli-sense in the editor.

By right-clicking on the 'Expression' row of the DMN Expression window, then choosing the menu option 'Edit
Expressions...', the expression code editor dialog is displayed. Pressing 'Ctrl+Space' displays the Intelli-sense menu:

(c) Sparx Systems 2020 Page 239 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

For 'Decision' elements, all of the inputs to the decision will be displayed·

For 'BKM' elements, all of the input parameters will be displayed·

The DMN Model can be generated as source code in JavaScript, Java, C# or C++; since some languages might have
different syntax for some expressions, Enterprise Architect provides language override pages for each language. If no
override code is specified for a language, the expression defined for the FEEL language will be used.

In the generated code, the space inside a variable name will be replaced by an underscore.

(c) Sparx Systems 2020 Page 240 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Toolbar for Literal Expression Editor

When a Literal Expression is selected, the DMN Expression window displays a toolbar specific to that type of
expression.

Toolbar Options

This table provides descriptions of the features accessible from the toolbar in the DMN Expression window when a
Literal Expression is selected.

Options Description

Click on this button to save the configuration to the current Decision or
BusinessKnowledgeModel.

Click on this button to edit parameters for the Business Knowledge Model.

This option is disabled for Literal Expressions.

This option is disabled for Literal Expressions.

This option is disabled for Literal Expressions.

This option is disabled for Literal Expressions.

Click on this button to perform validation of the Literal Expression. Enterprise
Architect will perform a series of validations to help you locate any errors in the
Expression.

This button is enabled when the Literal Expression is defined for a
BusinessKnowledgeModel element.

(c) Sparx Systems 2020 Page 241 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Example - Loan Repayment

This Business Knowledge Model (BKM) Payment is implemented as a Literal Expression.

The BKM defines three parameters: Rate, Term and Principle·

Set the values for the Input Parameters and evaluate the model:

The runtime parameter value will be displayed; for example, Rate = 00.005·

The BKM's result will be evaluated by the literal expression and the value is displayed on the declaration line; for·
example, return = 1798.65

Although the formula for this can be written in one line, it is quite complicated. We can re-factor this model with Built-In
function and Boxed Context to improve readability:

The Boxed Context defines two variable-expression paired entries; these variables serve as 'local variables', which·
can be used in later expressions

Return value: the expression can use the value of 'local variables'·

Any expressions in a Boxed Context can use built-in functions that are defined in the customizable Template —·
DMN Library; for example, functions PMT(...) and decimal(...) are used in this example

The simulation result is exactly the same as a Literal Expression:

(c) Sparx Systems 2020 Page 242 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

(c) Sparx Systems 2020 Page 243 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Boxed Context

A Boxed Context is a collection of context entries, presented in the form of a table, followed by a final result expression.

These context entries consist of a variable paired with a value expression and can be thought of as intermediate results.
This allows for complex expressions to be decomposed into a series of simple expressions, with the final result being
evaluated in a much simpler form.

The Boxed Context type is supported in both the Decision and the Business Knowledge Model element types. It is

denoted by the icon.

Access

Diagram On a diagram, double-click on a Decision element or BKM element.

The DMN Expression editor window is displayed, showing details for the selected
element.

Overview

This image shows the DMN Expression editor window as it appears for a Boxed Context expression.

A Boxed Context is a collection of context entries, presented in the form of a table, followed by a final result expression.
Each context entry consists of a variable and a value expression. The variable can be considered as an intermediate
result, and it can be used within the value expression of any subsequent context entry. The value expression of a context
entry can be either a Literal Expression or an Invocation, and can make use of any available inputs such as parameters (to
a BKM element), InputData or decision results, as well as any previously defined context variables.

The final result of a Boxed Context expression is determined by working through each context entry in turn, evaluating
the value expression and assigning its result to the variable, then finally evaluating the result expression. The result
expression can also make use of any input or local variable, but must evaluate to provide a result.

Toolbar for Boxed Context Editor

When a Boxed Context expression is selected, the layout of features accessible in the DMN Expression window is:

(c) Sparx Systems 2020 Page 244 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

For more details refer to the Help topic 'Toolbar for Boxed Context Editor'.

Specifying Parameters

In the case of BusinessKnowledgeModel elements, parameters are used to pass input values supplied by the invoking
element. The BKM's decision logic is evaluated using the input parameters and the result is returned to the invoking
element. By default, a BKM element is created with two input parameters, 'Input 1' and 'Input 2'.

Click on the icon in the toolbar of the DMN Expression window to display the 'Edit Parameters' window.

Here you can change the parameter names, set their data types, create additional parameters or delete existing ones.

Specifying Context Entries

Each context entry consists of a variable-expression pair.

The variable name can be any text that you like and can even contain spaces. To edit the variable name, click on the cell
to select it, then click again or press F2 to enter edit mode. To exit edit mode, click elsewhere or press the Enter key.

In general, it is not necessary to specify a data type for the expression or variables - the type will be inferred from the
value. However, if you intend to generate code for compiled languages such as Java, C++ or C#, you will have to
specify the type of all context entry variables.

The value expression of a context entry can be either a Literal Expression or an Invocation and can make use of any
available inputs, such as parameters (to a BKM element), InputData or decision results, as well as any previously defined
context variables. Right-clicking on the expression cell displays a pop-up menu that provides options for displaying an
expression code editor, or for setting the value expression as an If-Else statement or an Invocation.

(c) Sparx Systems 2020 Page 245 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

You can also edit the value expression by entering text directly into the expression cell.

For further information on how to specify Literal Expressions or Invocations, please see the Help topics covering those
subjects.

(c) Sparx Systems 2020 Page 246 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Toolbar for Boxed Context Editor

This table provides descriptions of the features accessible in the DMN Expression window when a Boxed Context is
selected.

Toolbar Options

This toolbar is for Boxed Context.

Options Description

Save changes to the currently selected Decision or BusinessKnowledgeModel
element.

Display the 'Edit Parameters' window, where you can specify the name and data
type of each parameter that is passed when invoking the decision logic of a
BusinessKnowledgeModel element.

Create a new context entry and append it to the list of context entries.

Delete the currently selected context entry.

Move the currently selected context entry up one position in the list.

Move the currently selected context entry down one position in the list.

Perform validation of the BoxedContext. Enterprise Architect will perform a series
of validations to help you discover any errors in the BoxedContext definition.

This button is enabled when a Decision table is defined for a
BusinessKnowledgeModel element.

Select the 'Input Parameter Values for Simulation' tab, complete the fields, then
click on this button. The test result will be presented on the Decision table, with the
runtime values of inputs and outputs displayed and valid rule(s) highlighted.

You can use this functionality to unit test a BusinessKnowledgeModel element,
without specifying its context.

A number of menu options are available for this tool bar button. For more
information, see the Help topic Simulate DMN Model..

(c) Sparx Systems 2020 Page 247 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Example - Loan Installment Calculation

The Business Knowledge Model (BKM) Installment calculation is implemented as Boxed Context.

The BKM defines four parameters: Product Type, Rate, Term and Amount·

The Boxed Context defines two variable-expression pair entries; these variables serve as 'local variables' that can be·
used in later expressions

Return value: The expression can use the value of 'local variables'·

Any expressions in a Boxed Context can use built-in functions, which are defined in the customizable Template —·
DMN Library; the functions PMT(...) and decimal(...) are used in this example

Specify Type to Context Entry Variable

In general, the expression and variables do not have to specify a type, which is inferred from the value provided. This
feature is supported generically by JavaScript, which is used for Enterprise Architect's DMN Simulation.

However, if you want to generate code from a DMN model to compiled languages such as Java, C++ or C#, you will
have to specify the type for each Context Entry Variable. Otherwise, if you validate the model, you will see warnings
such as:

Right-click on the Context Entry Variable (Monthly Fee, Monthly Repayment) in this model.

(c) Sparx Systems 2020 Page 248 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Select the 'Show Variable Type' option.

Now type in the variable type, appending it to the variable name and separated by a colon, as shown here.

(c) Sparx Systems 2020 Page 249 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Then click on the Save button on the toolbar to save the expression, and click on the button to validate the model
again.

Expression Editor and Intelli-sense Support

The parameter and Context Entry's variable name can contain spaces, according to the FEEL language specification. This
feature makes the expression easy to read. In order to help you edit the expressions with less typing and making fewer
mistakes, Enterprise Architect provides Intelli-sense support for editing expressions:

To edit an expression, right-click on the expression (in the right-hand field) and select the 'Edit Expressions' menu
option. The 'Expression' dialog displays. Click on the required line and press Ctrl+Space to show the Intelli-sense menu:

(c) Sparx Systems 2020 Page 250 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

All the Context Entry Variables earlier than the current one will be included (the Context Entry Variables later than·
the current one are excluded)

For a BKM, all the parameters will be included·

For a Decision, all the required Decisions will be included·

The DMN model can be generated as source code for JavaScript, Java, C# and C++. Since some languages might have
different syntax for some expressions, Enterprise Architect provides language override pages for each language. If no
override code is specified for a language, the expression defined for the FEEL language will be used.

In the generated code, the space inside a variable name will be replaced by an underscore.

Simulation of Business Knowledge Model

Select the 'Input Parameter Values for Simulation' tab and complete each field.

Click on the Save button and then on the Simulation button on the toolbar; the test result will be presented in the Boxed
Context expression.

The runtime parameter value will be displayed; for example, 'Rate = 0.00375'·

The 'Context Entry' variable's runtime value will be displayed; for example, 'Monthly Repayment = 1520.06'·

The BKM's result will be evaluated by the last entry and the values displayed on the declaration line; for example,·
'return = 1540.06'

You can use this functionality to unit test a BusinessKnowledgeModel without knowing the context so that later on it can
be invoked by a Decision or another BusinessKnowledgeModel.

(c) Sparx Systems 2020 Page 251 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Invocation

An invocation is a container for the parameter bindings that provide the context for the evaluation of the body of a
Business Knowledge Model. There are two common use cases for an Invocation:

Bind an Input Data to the Business Knowledge Model·

Bind parameters or context entry variables to the Business Knowledge Model·

An example of each is provided in the sub-topics of this Help topic.

Access

Diagram Double-click on the appropriate Decision element or BKM element.

The DMN Expression window displays, showing details for the selected element.

Overview

An Invocation is a type of value expression applicable to both Decision elements and Business Knowledge Model
elements. It is a tabular representation of how decision logic defined within an invocable element (a Business Knowledge
Model or a Decision Service) is invoked by a Decision or by another Business Knowledge Model.

Toolbar for Invocation Editor

When an Invocation is selected, a number of facilities for working on it are accessible from the toolbar of the DMN
Expression window:

For more details refer to the Help topic 'Toolbar for Invocation Editor'.

Bindings

The parameter bindings of an Invocation provide the context for evaluation of the body of the invocable element.

(c) Sparx Systems 2020 Page 252 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

In this example:

The Decision 'Post-bureau risk category' is represented as an Invocation connecting to the Business Knowledge·
Model 'Post-bureau risk category table', implemented as a Decision Table

The Decision 'Post-bureau risk category' is the target of three Information Requirement connectors from two Input·
Data elements and one Decision element

The binding list binds the input values to the Business Knowledge Model's parameters·

The Invocation also specifies the requested 'OutputClause'; in the case where a Decision Table has multiple output·
clauses defined, the Invocation must explicitly request an output clause as the result of the expression

Inputs

Inputs from other Decisions and InputData elements can be set by pressing the Spacebar in the field:

(c) Sparx Systems 2020 Page 253 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Output

As an Invocation can only invoke one Business Knowledge Model, the output is defined by the Business Knowledge
Model output.

(c) Sparx Systems 2020 Page 254 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Toolbar for Invocation Editor

When an Invocation expression is selected, the DMN Expression window toolbar provides options specific to that
expression type.

Toolbar Options

This table provides descriptions of the features accessible in the DMN Expression window when an Invocation is
selected.

Options Description

Click on this button to save the configuration to the current Decision or
BusinessKnowledgeModel.

Click on this button to edit parameters for the Business Knowledge Model.

Applicable to Invocation value expressions, for both Decision elements and BKM
elements.

Click on this button to synchronize with the invoked Business Knowledge Model.
For example, if the Business Knowledge Model changes name, parameters, outputs
or types, click on this button to synchronize these changes.

Applicable to Invocation value expressions, for both Decision elements and BKM
elements.

Click on this button to set or change a Business Knowledge Model as an
invocation.

Applicable to Invocation value expressions, for both Decision elements and BKM
elements.

Click on this button to open the invoked Business Knowledge Model in the DMN
Expression window.

Applicable to Invocation value expressions, for both Decision elements and BKM
elements.

When a Business Knowledge Model is implemented as a Decision table, it could
define multiple output clauses; the invocation on this Business Knowledge Model
might have to specify which output is requested.

Click on this button to list all the available outputs in a context menu; the currently
configured output is checked.

Perform validation of the Invocation. Enterprise Architect will perform a series of
validations to help you locate any errors in the Invocation definition.

This button is enabled when the Invocation is defined for a
BusinessKnowledgeModel.

Select the 'Input Parameter Values for Simulation' tab, complete the fields and click
on this button. The test result will be presented on the Decision table, with the
runtime values of inputs and outputs displayed and valid rule(s) highlighted.

You can use this functionality to unit test a BusinessKnowledgeModel without
knowing the context and later on invoked by a Decision or other

(c) Sparx Systems 2020 Page 255 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

BusinessKnowledgeModel.

Menu options are available for this toolbar button. For more information, see the
Simulate DMN Model Help topic.

(c) Sparx Systems 2020 Page 256 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Example 1 - Bind Input Data to Business Knowledge Model

A full example can be created with a Model Pattern (in the ribbon, select 'Simulate > Decision Analysis > DMN > Apply
Perspective > DMN Decision > Decision With BKM : Create Pattern(s)').

In this example, Input Data Applicant Data is typed to Applicant data Definition, which has three components.

The Business Knowledge Model Application risk score model is implemented as a Decision table with three inputs and
one output.

The Decision Application risk score is implemented as an Invocation to bind the Input Data's 'leaf' components to the
BKM's parameters.

(c) Sparx Systems 2020 Page 257 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

In order to make the binding easier, Auto-Completion is supported for the binding expression.

The full modeling and simulation instructions are available in the Pattern's documentation.

(c) Sparx Systems 2020 Page 258 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Example 2 - Bind Context Entry variables to Business
Knowledge Model

A full example can be created with a Model Pattern (in the ribbon, select 'Simulate > Decision Analysis > DMN > Apply
Perspective > DMN Business Knowledge Model Examples > Business Knowledge Model Invocation : Create Pattern).

In this example, the BKM Difference Of Two Squares is implemented as Boxed Context:

The variable sum of ab is implemented as an invocation by binding parameters a and b to BKM Addition·

The variable difference of ab is implemented as an invocation by binding parameters a and b to BKM Subtraction·

The variable difference of squares is implemented as an invocation by binding local variables sum of ab and·
difference of ab to BKM Multiplication

In order to make the binding easier, auto-completion is supported for the binding expression.

The full modeling and simulation instructions are available in the Pattern's documentation.

(c) Sparx Systems 2020 Page 259 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Edit DMN Expression Dialog

The 'Edit DMN Expression' dialog is used for setting expressions in the Boxed Content, Invocation and Literal
Expression element types. It provides Intelli-sense support for constructing expressions based on the FEEL grammar, as
well as the code languages that can be used for code generation of the model.

DMN Expression Editor and Intelli-sense support

To help you edit expressions with less typing and fewer mistakes, Enterprise Architect provides Intelli-sense support for
editing the expressions.

Note that the parameter and Context Entry variable names can contain spaces, according to the FEEL language
specification. This feature is intended to make each expression easy to read.

Examples

Given this decision hierarchy, the expression in 'Decision3' is able to use the outputs from the two referenced Decisions.

Decision1 Decision2

Decision3

To open the 'Edit DMN Expression' dialog:

Double-click on the Decision element in the diagram, to display the DMN Expression window.1.

Right-click on the expression line and select the menu option 'Edit Expression'. The 'Edit DMN Expression' dialog2.
displays.

Click on a line and press Ctrl+Spacebar to show the Intelli-sense menu:3.

(c) Sparx Systems 2020 Page 260 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

For a BusinessKnowledgeModel expression all the parameters will be included·

For Decision expression all the required Decisions will be included·

All Context Entry Variables earlier than the current one will be included (Context Entry Variables later than the·
current one are excluded)

In this example, editing a BKM Boxed Context expression, the Input Parameters are shown in the Intelli-sense menu:

Language selection

The DMN Model can be generated as source code in JavaScript, Java, C# or C++. As the syntax differs between the
languages, Enterprise Architect provides language-override pages for each language. If no override code is specified for

(c) Sparx Systems 2020 Page 261 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

a language, the expression that is defined for the FEEL language will be used.

Note: In the generated code, the space inside a variable name will be replaced by an underscore.

(c) Sparx Systems 2020 Page 262 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

DMN Expression Validation

DMN defines many expressions, such as FunctionDefinition, DecisionTable, Boxed Context, Invocation and Literal
Expression. The parameters, arguments and logic of these expressions are implemented largely by 'text'.

To make modeling easier and more reliable, Enterprise Architect provides two features: Auto Completion and
Validation.

Validation: Identifies modeling errors caused by typos, logic incompleteness, inconsistency, and so on·

Auto Completion: You can select a text string from a list of enumerations rather than type the text in·

In this topic, we will show you how to validate a DMN Expression.

Access

DMN Expression Window Simulate > Decision Analysis > DMN > DMN Expression : Validate button

DMN Simulation Window Simulate > Decision Analysis > DMN > Open DMN Simulation > Simulate :
Validate icon

Common validations

Variable Name Validation

In this example, the Boxed Context BusinessKnowledgeModel BKM1 defines two parameters, 'Input 1' and 'Input 2', and
two local variables, 'Local Variable 1' and 'Local Variable 2'. The expression has been validated, and the results output to
the 'DMN Validation' tab of the System Output window.

(c) Sparx Systems 2020 Page 263 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Context Entry #1 failed because there is a typographic error; it should be operator '-', but the user typed or copied in·
'–'

Context Entry #2 failed because there is no space between 'Input' and the number 2; note that the function 'ceiling()'·
is defined in the DMN Library so it can be successfully parsed

Context Entry #3 failed because there is no space between 'Local' and 'Variable'·

It is hard to identify these kinds of error by eyesight. Running validation can help identify errors and then you can
perform an easy fix.

Dependency Validation

A decision might require other decisions, input data and business knowledge models; these relationships are identified by
InformationRequirement and KnowledgeRequirement connectors.

When the graph is getting complex, it is quite possible that some connectors are missing or the wrong connector type is
being used.

In this example, click on the Validate button, Enterprise Architect will show that:

'Decision3' is used by 'Decision1' by binding to a parameter of the called BKM2; however, it is not defined - an·
InformationRequirement connector is missing

The Invocation defined in 'Decision1' is not valid; the connector type from 'BKM2' to 'Decision1' should be a·
KnowledgeRequirement

After fixing these problems, run the validation again:

(c) Sparx Systems 2020 Page 264 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

DMN Expression Auto Completion

DMN defines many expressions, such as FunctionDefinition, DecisionTable, Boxed Context, Invocation and Literal
Expression. The parameters, arguments and logic of these expressions are implemented largely by text.

To make modeling easy and reliable, Enterprise Architect provides an Auto Completion facility, helping provide the:

Allowed Values of ItemDefinition·

Input/Output Entries of a Decision Table·

InformationRequirement·

Allowed Values of ItemDefinition

The idea is to define allowed value enumerations in ItemDefinition, then compose a list for selection whenever these
values are requested.

In this example, ItemDefinition 'Applicant data . Employment Status' defines an enumeration of allowed values.

When editing values for the InputData typed to this ItemDefinition, press the Spacebar on the keyboard to display a list
of values to select from.

We could also define multiple data sets for the InputData, as the Auto Completion feature is available on this dialog.

(c) Sparx Systems 2020 Page 265 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Input/Output Entries of a Decision Table

Take the 'Strategy' ItemDefinition as an example:

We can quickly fill the 'Allowed Values' field for a Decision table by selection:

Then we can quickly fill the Decision table rules by selection:

(c) Sparx Systems 2020 Page 266 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Information Requirement

On a decision hierarchy, a decision might access required decisions and input data; these required elements form a list of
variables that can be used by the decision.

(c) Sparx Systems 2020 Page 267 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

In this example, Decision 'Eligibility' requires two decisions - 'Pre-bureau risk category' and 'Pre-bureau affordability' -
and one Input Data item 'Applicant data'.

When setting the binding values for the invoked BusinessKnowledgeModel 'Eligibility rules', an Auto Completion list
will prompt for selection. In this list, there are sub-decision names - leaf components of the input data. With this feature,
you can easily set up an invocation.

(c) Sparx Systems 2020 Page 268 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Decision

A Decision element is used to evaluate an output based on one or more inputs. The logic that determines the output is
either defined within that Decision element or it invokes the decision logic contained in a Business Knowledge Model
that is connected to the Decision.

Inputs

A Decision can have any number of inputs, including the option to define the input values in the element. The most
common input is to use an Input Data Element.

Output

A Decision can have zero or one output. The output can be a complex data set.

Value Expressions

The output of a Decision element is determined using a Value Expression. The Value Expression contains the element's
decision logic and can take one of four forms: Decision Table, Literal Expression, Invocation or Boxed Context. Value
Expressions are defined and edited using the DMN Expression editor, which displays one of four formats according to
the type of expression being used.

When displayed on a diagram, the Decision element shows an icon in the top-right corner that indicates which type of
value expression it is using.

Type Description

A Decision table is a tabular representation of a set of related input and output
expressions, organized into rules indicating which output entry applies to a specific
set of input entries.

A Literal Expression is the simplest form of DMN expression. It is commonly
defined as a single-line statement or an if-else conditional block.

A Decision Invocation requires that a Business Knowledge Model element is
referenced using a Knowledge Requirement connector. The Decision element
simply contains the parameters that provide the context for evaluating the Business
Knowledge Model (BKM). Part or all of the result returned from the BKM can be
set to be passed as the output of the Decision.

A Boxed Context is a collection of context entries. Each context entry consists of a
variable and an expression. The Context also has a result value.

(c) Sparx Systems 2020 Page 269 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Business Knowledge Model

A Business Knowledge Model (BKM) element represents a reusable piece of decision logic. Typically, it is connected to
a Decision element that invokes the BKM and passes on a set of inputs. The BKM, using its internal logic, evaluates an
output that is passed back to the Decision.

Unless a BKM is working on fixed values, it usually requires defining a set of input parameters, as well as the definition
of an output. The parameters and the decision logic are defined using the DMN Expression window.

Inputs and output

When used in a decision model, a BKM must be connected via a KnowledgeRequirement to a Decision or another BKM,

through which it receives its inputs . The input parameters are defined using the icon. These can be set as a simple
type or a complex type defined using an ItemDefinition. The naming of the input parameters influences the naming
within the Value Expression.

Output

A BKM output is via a KnowledgeRequirement which must be an input to a Decision or to another BKM. The output is
defined using:

The icon for a Literal Expression·

Output column(s) in the DMN Expression table for a Decision Table, Boxed Content and Invocation.·

An output can be a simple type or a complex type defined using an ItemDefinition.

Value Expressions

To define a means for evaluating an output, based on the decision logic, a BKM element contains a Value Expression.
This is defined and edited using the DMN Expression window, which has four formats, the format being determined by

(c) Sparx Systems 2020 Page 270 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

the type of Value Expression that you want to use.

The BKM element can be set with these structures for the Value Expression. Each is shown in the model with an icon.

Type Description

A Decision table is a tabular representation of a set of related input and output
expressions, organized into rules indicating which output entry applies to a specific
set of input entries.

A Literal Expression is the simplest form of DMN expression. It is commonly
defined as a single-line statement or an if-else conditional block.

A Decision Invocation requires that a Business knowledge model element is
referenced using a Knowledge Requirement connector. It simply contains the
parameters that provide the context for the evaluating a business knowledge model.

A Boxed Context is a collection of context entries. Each context entry consists of a
variable and an expression. The Context also has a result value.

Validation and Testing

To ensure a BKM element is able to produce a correct output it can be validated using the Validation icon . A BKM

can also be tested as a unit to ensure it is operative using the Simulation button. For more details see the Input
Parameter Values for Simulation Help topic.

(c) Sparx Systems 2020 Page 271 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

BKM Parameters

A Business Knowledge Model is implemented as a function definition, with parameters and a DMN expression as its
body (such as Decision Table, Boxed Context or Literal Expressions).

As a BKM is intended to function stand-alone, and be called by Decisions or other BKMs, it is necessary to define any
input parameters. Also, for Literal Expressions, you must define the output parameter.

When defining any input Parameters you can set them with default values for testing. After creating a BKM, to verify
that it functions correctly, you can run a simulation based on these default values.

Parameters of a Business Knowledge Model

To open the 'Edit Parameters' dialog, in the DMN Expression window, click on the Edit Parameters button :

Note: this is an example for a Literal Expression that includes a return type.

Edit parameters

You can perform these actions on the parameters:

Action Description

Add a new parameter by typing in the 'New Parameter...' row.

Modify the name of the existing parameter by in-place editing in the cell.

Delete an existing parameter using the context menu.

Click on the Type to enable a drop-down. Select a type for the parameter from the

(c) Sparx Systems 2020 Page 272 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

drop-down.

Set an Item Definition Type

When changing the type of Parameter there is an option to select a pre-defined type
from an ItemDefinition. The option for this is 'Select Type ...'. When this option is
selected it will open a dialog for selecting an ItemDefinition.

(c) Sparx Systems 2020 Page 273 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Input Parameter Values for Simulation

As a Business Knowledge Model is self-contained, it is possible to perform a simulation 'Unit Test' by providing a
default set of values as an input for its parameters. These values can be defined in the Input Parameter Values for
Simulation tab in the DMN Expression window.

Parameters of a Business Knowledge Model

Parameters for a BKM are accessed from the DMN Expression window, using the Edit Parameters button on the
toolbar:

A default set of values for these parameters, that can be used in a simulation of the BKM, are defined in the 'Input
Parameter Values for Simulation' tab on the DMN Expression window:

With these parameters set the BKM can be tested using the Simulation button.

Simulation examples

These are two examples of using the Input Parameter Values for Simulation.

Type Description

(c) Sparx Systems 2020 Page 274 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Decision Table An example simulation of a BKM Decision Table element based on values set in
the Input Parameter Values for Simulation tab.

Literal Expression An example simulation of a BKM Literal Expression element based on values set in
the Input Parameter Values for Simulation tab.

(c) Sparx Systems 2020 Page 275 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Decision Table Simulation Example

The example Business Knowledge Model (BKM) described in this section is available from the Model Wizard
(Ctrl+Shift+M). Select a host Package in your model, invoke the Model Wizard and - from the Perspectives drop-down
menu - select 'Requirements | Decision Modeling'.

To access the example used in this section:

Create a pattern for 'DMN Decision | A Complete Example'·

Navigate in the Browser window to 'A Complete Example | Business Knowledge Models'·

It is also available in the Enterprise Architect Example model (EAExample):

Navigate in the Browser window to 'Analysis and Business Modeling > DMN Examples > A Complete Example >·
Business Knowledge Models'

Double-click on the 'Eligibility rules' element to open the BKM in the DMN Expression window

When a Decision Table is created for a Business Knowledge Model, we can test this BKM by binding some values:

We can provide test values such as these:

Click on the Simulation button on the tool bar to obtain this result:

(c) Sparx Systems 2020 Page 276 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

The runtime parameter value will take the place of 'Allowed Values' in simulation mode·

Valid rule(s) are highlighted·

Since this Decision table's hit policy is P (Priority) the final result is determined by the order of 'output values'; since·
'INELIGIBLE' and 'ELIGIBLE' are the output values and 'INELIGIBLE' comes ahead of 'ELIGIBLE', rule #3 will
give the final result and this applicant is 'INELIGIBLE'.

(c) Sparx Systems 2020 Page 277 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Literal Expression Simulation Example

The Business Knowledge Model (BKM) described in this section is available from the Model Wizard (Ctrl+Shift+M).
Select a host Package in your model, invoke the Model Wizard and - from the Perspectives drop-down menu - select
'Requirements | Decision Modeling'.

To access the example used in this section:

Create a pattern for 'DMN Business Knowledge Model > Business Knowledge Model Literal Expression'·

Navigate in the Browser window to 'Business Knowledge Model Literal Expression > Payment'·

It is also available in the Enterprise Architect Example model (EAExample):

Navigate in the Browser window to 'Model Simulation > DMN Models > Business Knowledge Model > Business·
Knowledge Model Literal Expression'

Double-click on the 'Payment' element to open the BKM in the DMN Expression window.

Similar to a Decision table, the Business Knowledge Model implemented as a Boxed Expression can be tested as well.

Take the 'Payment' element as an example. This BKM will calculate the monthly repayment based on interest rate,
number of terms and principal amount.

We could provide test values such as these:

Click on the Simulation button on the tool bar; this result is obtained:

The runtime parameter and return values will be displayed with an equals sign '=' followed by the runtime value. This
value is also displayed as a label against the element on its parent diagram.

(c) Sparx Systems 2020 Page 278 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

In this example, given an annual Rate of 4% for 30 years and a principal of $300,000, the monthly repayment is
$1,432.25.

Note: The DMN Library already has a PMT function defined; this example mainly demonstrates how Literal Expression
works and how to test it with a set of arguments.

(c) Sparx Systems 2020 Page 279 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

InputData

An InputData element is used to input into Decisions a set of values that originate outside the model. That set of values is
used for evaluating Decisions. It derives its type and a set of values from an ItemDefinition.

Overview

InputData elements are created by dragging an icon from the Toolbox onto a DMN diagram.

The name of the InputData element must be unique and not duplicate the name of any other Decision, InputData,
Business Knowledge Model, Decision Service, or Import in the decision model.

Referencing an ItemDefinition

The structure of the data, as well as sets of values for an InputData element, are defined in an ItemDefinition element. A
DMN InputData element must be referenced (typed) by an ItemDefinition by either:

Clicking on the icon on the DMN Expression window of the InputData element or·

Selecting the InputData element and pressing Ctrl+L to select the ItemDefinition from the dialog·

InputData properties

The properties of an InputData element are accessible via the DMN Expression window. Double-click on the InputData
element to open this window.

The DMN Expression window provides a view of the data structure as well as access to Data Sets that can be used in
simulations.

(c) Sparx Systems 2020 Page 280 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

InputData DMN Expression

The DMN Expression window provides a view of an InputData's data structure, options to alter the value of Items, and
access to Data Sets that can be used in simulations.

Access

Ribbon Simulate > Decision Analysis > DMN > DMN Expression, then select / create an
InputData

Other Double-click on a DMN InputData element

Toolbar Options

Option Description

Saves the configuration to the current InputData element.

Sets the InputData's type by selecting a reference to an ItemDefinition.

Opens the ItemDefinition element that is referenced by this InputData as its type
definition.

Runs a validation of the InputData. Enterprise Architect will perform a series of
validations to help you identify errors in the InputData.

Option to select a Data Set as defined in the ItemDefinition that references this
InputData.

Opens the dialog for editing data sets for this input data. Each InputData can define
multiple data sets. With this feature, the DMN Simulation can quickly test the
results of a decision by choosing different data sets.

(c) Sparx Systems 2020 Page 281 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Auto Completion

If the InputData has a field with 'Allowed Value' defined, then the field can be populated by selecting the field, pressing
on the Spacebar, then selecting an option from the drop-down.

Data Sets

Data Sets are defined in the ItemDefinition referenced by the InputData element. Using the toolbar drop-down you can
select a data set from the ItemDefinition. Once a set is selected you can alter the values of the items. You can also add

new Data Sets by opening the Edit Data Set window using the icon.

(c) Sparx Systems 2020 Page 282 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

ItemDefinition

Fundamental to creating Decision Models is the definition of the structure of data items used within the model. An
ItemDefinition is used to define the structure of the input data and, optionally, to restrict the range of allowable values of
the data. ItemDefinitions can range from a simple single type through to a complex structured type.

Overview

ItemDefinition elements are created by dragging a icon from the DMN Toolbox onto a DMN
diagram.

The core properties of an ItemDefinition element are accessed via the DMN Expression window.

Access

To open the DMN Expression window for an ItemDefinition Element:

Ribbon Simulate > Decision Analysis > DMN > DMN Expression, then select or create an
ItemDefinition

Other Double-click on a DMN ItemDefinition

DMN Expression and Data set

This image is an overview of the DMN Expression window, showing a complex data item and the layout of the key
fields used in the definition of the data. Included is a view of a Data Set defined using this ItemDefinition. A Data Set is
an 'instance' of data conforming to an ItemDefinition, which contains a set of values to be used in the DMN simulation.

(c) Sparx Systems 2020 Page 283 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

As ItemDefinitions are foundation elements in the model, it is recommended that they are validated before going on to
use them in the model. This will ensure that any issues are resolved early on in the process of creating a complex model.

For more details on setting up ItemDefinitions, see the Help topics listed in the Learn more section.

(c) Sparx Systems 2020 Page 284 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Item Definition Toolbar

This table provides descriptions of the features accessible in the DMN Expression window when an ItemDefinition
element is selected.

Toolbar Options

Option Description

Saves the configuration of the current ItemDefinition.

Creates a new data component as a child of the selected component.

Creates a new data component as a sibling of the selected component.

Deletes the selected data component.

Validates the ItemDefinition; Enterprise Architect will perform a series of
validations to help you identify any errors in the ItemDefinition.

Opens the 'Edit Data Set' dialog, in which you can create and edit 'instances' of the
ItemDefinition for use by InputData elements.

(c) Sparx Systems 2020 Page 285 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

ItemDefinitions and Data Sets

An ItemDefinition describes the types and structures of data items used in a Decision model. It serves as the data type
definition for InputData elements, Decision elements and Business Knowledge Model parameters. An ItemDefinition
can also define data sets that provide sets of values for use in DMN Simulations. Switching between different data sets
provides the ability to do 'what-if' analysis using the Decision model.

ItemDefinition Structure

A complex ItemDefinition consists of nested elements. For example, tApplicantData is structured as:

The tApplicantData ItemDefinition example is a composite type of five child items. 'Monthly' is composed of three
children (Expenses, Income and Repayments). The Leaf components (non-composite), will have a primitive type such as
number, string or boolean.

Data Set

The ItemDefinition's Data Set can be viewed and edited using the icon on the Toolbar. With the 'Edit Data Set'
dialog, you can add, delete and duplicate the data sets. There is also support for CSV import and export of data sets.

(c) Sparx Systems 2020 Page 286 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

As shown in the example, the ItemDefinition for tApplicantData defines three data sets:

Default·

Income4000·

Income5000·

Each data set can be viewed in an InputData element that is typed to the ItemDefinition. For example the 'Applicant Data'
InputData element is typed to the 'tApplicantData' ItemDefinition. The DMN Expression window for 'Applicant Data',
illustrated here, shows the data values according to the data set selected in the drop-down list in the window toolbar
(Income5000 in this case).

(c) Sparx Systems 2020 Page 287 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Setting a Reference to an ItemDefinition

A DMN InputData element is set to be referenced (typed) by an ItemDefinition using either:

The icon on the DMN Expression window of the InputData element or·

Selecting the InputData element and pressing Ctrl+L to select the ItemDefinition from the dialog·

There are other cases of using ItemDefinitions; for instance, when setting the type for an Input Parameter in a BKM or an
output parameter in a Decision Table.

(c) Sparx Systems 2020 Page 288 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Types of Component

An ItemDefinition element can be defined as a tree of components that consists of only one of either:

A built-in type or·

A Composition of ItemDefinition elements·

In this tree of components, if a component is a 'leaf' that has no child components, it must be set as a built-in type. If an
ItemDefinition has child components, it is those child/leaf components that are set as a built-in type.

For example Applicant Data and Monthly are compositions, whereas Age and Expenses are leaves set to a built-in type:

The FEEL language has these built-in types:

number·

string·

boolean·

days and time duration·

years and months duration·

time·

date and time·

Note: 'number', 'string' and 'boolean' are supported by Enterprise Architect for simulation.

To set a type for a 'leaf' ItemDefinition, you can use one of three methods:

Select the appropriate context menu option in the DMN Expression window (Recommended)·

(c) Sparx Systems 2020 Page 289 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Type ': string', ': boolean' or ': number' after the name in the cell in the DMN Expression window·

Type 'string', 'boolean' or 'number' as the value of the tag 'Type' in the Properties window for the ItemDefinition·

For composite ItemDefinitions, the context menu also offers options to create a child or a sibling component, or to delete
the selected item:

(c) Sparx Systems 2020 Page 290 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Allowed Value Enumerations

When defining data inputs for a Decision, it is common to want to restrict the set of allowable values for an input. For
example, you might want to restrict the allowed values for Marital Status to just two options, 'Single' and 'Married'.

You can specify the allowed values for any leaf component of an ItemDefinition. Initially, the data field for a leaf
component contains the text Type in Allowed Value Enumerations. You simply type over this text with the allowed
values. For example, the ItemDefinition Strategy has three allowed values - BUREAU, DECLINE and THROUGH.

Allowed Value Enumerations are also used to support Auto Completion. When specifying values for an InputData
element or an input parameter that references an ItemDefinition in which Allowed Values have been defined, the user
can simply press the Spacebar and choose a value from the list.

You can also autocomplete by typing the first letter of the option you want to enter.

The input parameters and output clauses of Decision tables also support the specification of allowable values. This
restricts the values that can be used when defining the rules in the table, but also allows the user to fast fill the rules by
pressing the Spacebar then selecting the required item.

A more complex ItemDefinition can include a number of Allowed Value Enumerations; for example:

(c) Sparx Systems 2020 Page 291 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Data Sets

Each InputData element typed by an ItemDefinition has a set of components, and multiple data sets can be defined to
provide different sets of values for those components. With this feature, a user performing a DMN Simulation can
quickly test the result of a decision by choosing different data sets. The data sets are associated with and based on the
ItemDefinition, but you can also work on them via the InputData element.

You add or update data sets using the 'Edit Data Set' dialog, which you invoke from the DMN Expression window for
either the ItemDefinition or the InputData element. Initially, the 'Edit Data Set' dialog shows a single set of components
with no values, under the set name 'Default'. You can either leave this set with no values, or provide values; either way,
you can use this as a template to duplicate for new data sets. You cannot delete the 'Default' data set.

When you access an InputData element in the DMN Expression window, the values in the 'Default' data set are shown
against the components of the element. You can then click on the drop-down arrow in the toolbar and select any other
data set from the list. Note that if you leave the 'Default' data set untouched, you can create a duplicate 'default' data set
and assign values to it, and that 'default' set will provide the values when you initially access the InputData element.

You can duplicate and delete any other data set that you create, export the data sets to a CSV file and import them from a
CSV file.

Note that if you create a data set and do not enter values, it is discarded when you close the dialog.

(c) Sparx Systems 2020 Page 292 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Access

Ribbon Simulate > Decision Analysis > DMN > DMN Expression > click on InputData

item : icon

Other
In a diagram, double-click on the DMN InputData element : icon.

(c) Sparx Systems 2020 Page 293 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Toolbar Options

Option Description

Click on this button to create a new data set.

Click on this button to delete the selected data set.

Click this button to duplicate the selected data set.

Click on this button to save the data sets to the InputData.

Click on this button to reload the data sets for the InputData.

Click on this button to import data sets from a CSV file.

Click on this button to export the datasets to a CSV file.

(c) Sparx Systems 2020 Page 294 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Exchange Data Sets using DataObjects

When testing code generated from a DMN model, or when simulating BPMN models that call DMN models, you need a
means of exchanging data sets. For example, in a BPMN call of a DMN model, a BPMN DataObject is used to store the
set of variables that will be passed on to the DMN model that it is calling. This DataObject needs to be populated with
data fitting the DMN InputData's data structure ready to be passed to that InputData object. This same BPMN
DataObject is used when testing the code generated from a DMN model.

This topic describes the process of creating BPMN DataObjects from DMN Data Sets.

A Data Set is stored in a DMN InputData element and can be accessed using the icon on the DMN Expression
window.

This opens the InputData's Edit Data Set dialog which can contain multiple sets of values:

(c) Sparx Systems 2020 Page 295 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

There are two options to transfer the Data Set to a DataObject:

1. Direct

Create a BPMN DataObject under a Package in the Browser window.·

Open the DMN Simulation window·

(c) Sparx Systems 2020 Page 296 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Select a Data Set from the 'Value' drop-down·

Click on the icon on the DMN Simulation window; this opens the 'Select Element' dialog·

Select the BPMN DataObject element·

Click on the OK button·

The Data Set is now viewable in the Notes of the DataObject.

2. Manual

To manually exchange this Dataset:

Open the DMN Expression window for the InputData element·

Click on the Edit DataSet icon ; this opens the 'Edit Data Set' dialog·

Use the CSV Export icon to export these details to a file·

The text in the CSV file can be added as text in the Notes of a BPMN DataObject element.

(c) Sparx Systems 2020 Page 297 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

(c) Sparx Systems 2020 Page 298 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Decision Service

Portions of this topic have been used verbatim or are freely adapted from the DMN Specification, which is available at:
https://www.omg.org/spec/DMN. This site contains a full description of the DMN and its capabilities.

A Decision Service exposes one or more decisions from a Decision model as a reusable element, which might be invoked
internally by another decision in the Decision model, or externally by a task in a BPMN process model.

When the Decision Service is called with the necessary input data and input decisions, it returns the outputs of the
exposed decisions.

The Interface of a Decision Service

The interface to the Decision Service consists of:

Input data - instances of all the input data required by the encapsulated decisions·

Input decisions - instances of the results of all the input decisions·

Output decisions - the results of evaluating (at least) all the output decisions, using the provided input decisions and·
input data

When the Decision Service is called with the necessary input data and input decisions, it returns the outputs of the
exposed decisions.

This figure shows a Decision model that includes six decisions and three items of input data.

For DecisionService1, the:

Output decision is {Decision1}·

Input decision is {Decision5}, and·

Input data is {InputData1}·

As Decision1 requires Decision2, which is not provided to the service as input, the service must also encapsulate

(c) Sparx Systems 2020 Page 299 of 461 Created with Enterprise Architect

https://www.omg.org/spec/DMN

User Guide - Simulation and Behavior 3 April, 2020

Decision2; therefore the encapsulated decisions are {Decision1, Decision2}.

It is obvious from the figure that Decision6, Decision3, Decision4 and InputData3 are not required by any decisions from
DecisionService1. What about InputData2? Although it is required by Decision5, which is required by DecisionService1,
InputData2 is actually not required by DecisionService1. This is because Decision5 is defined as the Input Decision.
From the point of view of a Decision Service, we ignore any decisions or input data required by an Input Decision.

For DecisionService2, the:

Output decision is {Decision3}·

Input decision is {Decision5}, and·

Input data is {InputData3}·

As Decision3 requires Decision4, which is not provided to the service as input, the service must also encapsulate
Decision4; therefore the encapsulated decisions are {Decision3, Decision4}.

It is good practice to create a separate diagram for each Decision Service. In this way, the diagram will only contain the
interface elements and encapsulated decisions for the Decision Service; the elements that are not relevant will not appear
on the diagram.

Modeling a Decision Service

We can create a Decision Service element from the DMN pages of the Diagram Toolbox, and toggle [output] and
[encapsulated] partitions from the context menu.

You can only show an [encapsulated] partition when an [output] partition is shown.

Once the decisions and input data are put in the correct partition(s), you must run the 'Update DecisionService Interface"
command from the context menu to update the model.

(c) Sparx Systems 2020 Page 300 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Important: in order for the DMN simulation to work properly, please update the Decision Service interface whenever
you:

Show/Hide the decision service partition(s)·

Add a decision to the decision service·

Remove a decision from the decision service·

Move a decision between partitions·

Add/Remove Decision Service Inputs: Input Data or Input Decisions·

(c) Sparx Systems 2020 Page 301 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Simulating a Decision Service

It is possible to perform a model simulation on a Decision Service.

Decision Service Simulation

To perform a model simulation on the Decision Service, work through these steps:

Step Description

1 Drag a Simulation Configuration Artifact element onto a diagram from the 'DMN
Components' page of the Toolbox, and double-click on it to open it in the DMN
Simulation window.

By default, all Decision Service elements and each single decision are listed for
selection in the drop-down field in the dialog toolbar.

2 Select a Decision Service element on which to run the simulation. In the example
we chose 'Routing Decision Service', so three input data items and five
encapsulated decisions (including one output decision) are loaded in the simulation
list.

Important: This list is drawn from the internal data of the Decision Service; make
sure you run the 'Update DecisionService Interface' command from the context
menu whenever the Decision Service model diagram is changed. Reload the
Decision Model by clicking the 'Refresh' icon (third from the left) on the DMN
Simulation window toolbar.

3 The input data and decisions are in the correct execution order. For example,
'Application risk score' will be executed before 'Post-bureau risk category', 'Post
bureau affordability' and 'Routing'. For each Input Data element, click on the
drop-down arrow in the 'Value' field and select the Data Sets to provide input data
values.

Validate the input data and decisions, and make any necessary corrections using the

(c) Sparx Systems 2020 Page 302 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

DMN Expression window.

On the DMN Simulation window, click on the Save icon and on the button
on the toolbar.

4 The runtime execution result is shown both in the list and on the diagram. You can
also click on the 'Step-through' icon on the toolbar to debug the DMN model.

A good practice is to keep the DMN Expression window open while debugging.
The run time status of the expression (such as Decision Table, Boxed Context,
Literal Expression or Invocation) will show the details of the logic encapsulated by
the Decision or invoked Business Knowledge Model.

(c) Sparx Systems 2020 Page 303 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

DMN Simulation

After a Decision Model is created, you can:

Configure a DMN simulation Artifact and Validate, Run, Step-through or Debug the model·

Do what-if analysis to ensure the model meets the requirements of the business, by switching data sets·

Generate code for the DMN Server with any of the supported languages: Java, JavaScript, C++ and C#·

Simulate BPMN and DMN together.·

This Help topic covers the process of configuring and running a DMN simulation.

Configure a DMN Simulation

To configure a DMN simulation you must first create a DMNSimConfiguration element:

Open a Decision Requirements Diagram·

Drag the 'Simulation Configuration' icon from the 'DMN Components' page of the toolbox onto the diagram·

Double-click to open the DMN Simulation window at the 'Simulate' tab·

All DMN elements in the selected Package (Decision, BusinessKnowledgeModel, InputData and ItemDefinition) will be
loaded to the DMN Simulation window. The 'Target Decision' combo box will list all the Decisions.

Choose a target Decision - the dependent InputData elements will be listed in the 'Element' column·

Set a defined dataset by clicking on the 'Value' drop-down arrow in the list·
For example, we might choose the dataset 'Income5000' for the InputData element 'Applicant data', and choose
'default' for the InputData element 'Requested product'

(c) Sparx Systems 2020 Page 304 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Simulate a DMN Model

When a Target Decision is specified, the 'Simulate' tab will list the Decisions, in dependency order·

Click on the Run button to evaluate all the decision values based on the values defined for the Input Data elements·

Click on the Step button to evaluate a single decision and watch the DMN Expression window, which clearly shows·
the input value for the decision and output based on the input; the diagram containing the decision hierarchy will
highlight the executed decisions and show the runtime results on a label

In this example, the decision 'Eligibility' returns a string 'ELIGIBLE' and invokes BusinessKnowledgeModel 'Eligibility

(c) Sparx Systems 2020 Page 305 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

rules' by binding the parameters as shown:

Bind 'Pre-Bureau Affordability' to the dependent decision 'Pre-bureau affordability' (runtime value: true)·

Bind 'Pre-Bureau Risk Category' to the dependent decision 'Pre-bureau risk category' (runtime value: HIGH)·

Bind 'Age' to the field 'Age' in dependent input data 'Applicant data' (runtime value: 40)·

The BusinessKnowledgeModel 'Eligibility rules' has a Hit Policy P (Priority), meaning that multiple rules can match, but
only one hit should be returned; the ordering of the list of output values is used to specify the (decreasing) priority.

In this run time case ('Pre-Bureau Affordability' = true, 'Pre-Bureau Risk Category' = HIGH, 'Age' = 40), only one rule
with output 'ELIGIBLE' matches.

(c) Sparx Systems 2020 Page 306 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Simulate DMN Model

A DMNSimConfiguration Artifact contains information to define the simulation of a DMN model depicted by Decision
Requirements diagrams, using the DMN Simulation window.

Access

Ribbon Simulate > Decision Analysis > DMN > Open DMN Simulation | Simulate tab

Other Double-click on a DMNSimConfiguration element |Simulate tab

DMNSimConfiguration Artifact

To create a DMNSimConfiguration element:

Open a Decision Requirements Diagram·

Drag the 'Simulation Configuration' icon from the toolbox onto the diagram·

By default, all DMN elements in the current Package (Decision, BusinessKnowledgeModel, InputData and
ItemDefinition) will be loaded to the DMN Simulation window.

Simulation Overview

When a target Decision is specified, the 'Simulation' tab will list the related Decisions, in dependency order.

When executing or 'stepping through' the Decision Hierarchy, the Decisions will be evaluated in order and:

The runtime result will show in the 'Value' column·

The runtime result will be displayed as overlaid text on the diagram·

The Decision logic and input/output data will be presented in the DMN Expression window·

(c) Sparx Systems 2020 Page 307 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Simulation run and stepping through

You can perform a full run of the simulation using the icon. You can step into each Decision to see the invocation

sequence using the icon.

For example, in the 'Simulate' tab of our illustration, you can see that:

The Decision 'Pre-bureau affordability' invokes the BusinessKnowledgeModel 'Affordability calculation'·

BusinessKnowledgeModel 'Affordability calculation' further invokes another BusinessKnowledgeModel 'Credit·
contingency factor table'

Decision List

When a Package is loaded, a Decision Requirements Graph (DRG) and decision dependency list is created. The DMN
InformationRequirement connectors determine the list order.

All the decisions will be listed in the drop-down for the toolbar data entry field·

Data Set & Input Data

When the target Decision is selected, all the dependent InputDatas are added to the 'Element' column. You can then
choose from the data sets defined for each InputData element, using the drop-down lists in the 'Value' column. Each data
set provides runtime values to use in the simulation.

(c) Sparx Systems 2020 Page 308 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Advanced Debugging

Although Enterprise Architect provides a validation feature to help you locate many modeling issues and DMN
expression issues, the simulation might still fail (rarely but possible) due to uncaught issues.

However, Enterprise Architect provides the ability to debug the code that is running behind the simulation. You can also
modify the code and run it in cycles until the issue is found and fixed.

The drop-down arrow for the Execute button on the toolbar displays a menu with these options:

Generate new Script (Scripting Window)·

Update Selected Script (Scripting Window)·

Run Selected Script (Scripting Window)·

Edit DMN Template·

If you select 'Generate New Script (Scripting Window)', the Scripting window displays showing a script created in a
Package named 'DMN'.

(c) Sparx Systems 2020 Page 309 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

The default script name is composed of these parameters: 'ArtifactName - TargetDecision - InputData1(DataSet)_·
InputData2(DataSet)_...'

Double-click on this file to open it in the Enterprise Architect Script editor, set a breakpoint, and debug the file.

By selecting the script in the Scripting Window, and if the script matches the model (by the 'Simulation Script Identifier'
in the script), you enable the menu option 'Run Selected Script'.

You can customize the DMN Template to generate the correct script for simulation.

(c) Sparx Systems 2020 Page 310 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

DMN Simulation Toolbar

The DMN Simulation window has a toolbar providing functions to prepare for the simulation, and the 'Simulate' tab of
the window has a toolbar to execute the simulation.

Access

Ribbon Simulate > Decision Analysis > DMN > Open DMN Simulation > Simulate tab

Other Double-click on a DMNSimConfiguration element

Toolbar Options

Option Description

Displays the 'Select DMN elements Package' browser, which you use to set the
Package for the DMNSimConfiguration Artifact to operate on. All DMN elements
under this Package and its sub-Packages will be loaded.

Saves the information specified in the DMN Simulation window to the
DMNSimConfiguration element, including the:

Target Decision·

Selected Dataset for each dependent InputData·

Reloads the DMN elements from the configured Packages. For example, when any
DMN elements are modified, this command should be run to reload the Package so
that the changes will be taken into account for the next DMN Simulation.

Validates all the dependent DMN elements based on the target Decision. The
results of the validation are displayed on the 'DMN Simulation Validation' tab of
the System Output window.

Note: A Decision, BusinessKnowledgeModel, InputData or ItemDefinition element
that is not on the target Decision hierarchy will not be considered. For example, if
you have some unfinished Decision elements in the Package, that have no
relationship to the target Decision, they will not impact the simulation.

Click on the drop-down arrow and, from the list, select a target Decision for the
simulation.

Simulation options

Option Description

(c) Sparx Systems 2020 Page 311 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

dmnsim_toolbar_execute Click on this button to execute the Decision hierarchy in order. The results will be
represented by text overlays on the diagram, and shown in the 'Values' column of
the DMN Simulation window.

dmnsim_toolbar_step Click on this button to step through the Decision hierarchy in order. One click will
evaluate one decision element. With this feature, you will be able to see the
decision-making process; the decision logic and runtime values will be displayed
clearly in the DMN Expression window.

dmnsim_toolbar_stop Click on this button to stop the simulation.

dmnsim_toolbar_export_all
_to_dataobject

Click on this button to export the InputData elements' DataSets to a BPMN 2.0
DataObject. This appends the InputData 'name = value' records to the
DataObject.Notes. The drop-down options include:

Export All Inputs to the BPMN DataObject·

Export Selected Inputs to the BPMN DataObject·

Export Runtime Results to a CSV Report·

(c) Sparx Systems 2020 Page 312 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Example DMN Simulation

Enterprise Architect provides a an example DMN model on which you can perform a simulation to experience the
process and see how the simulation works. The example model is supplied with the EAExample.eap model, and is
located in the Package:

Example Model > Model Simulation > DMN Models > Decision > A Complete Example > Routing Decision·
Service (diagram)

The Package contains a 'DMNSimConfiguration' Simulation Artifact that defines the simulation settings for the DMN
model. Drag this Artifact onto the Routing Decision Service diagram and double-click on it to open the DMN Simulation
window at the 'Simulation' tab.

In the DMN Simulation window, the Routing Decision Service element name is shown in the data entry field in the
Toolbar, and the related Input Data, Input Decisions, encapsulated Decisions and output Decisions are loaded in the
'Element' column in execution order.

After you select Data Sets for the Input Data and Input Decisions, the model is ready to run as a simulation. To run the
simulation, click on the Run button and allow the simulation to complete. Then use the 'Step Through' toolbar option to
pass through the process one step at a time. The diagram fades all elements except those that the 'step through' process
has acted on or is currently acting on. The diagram, DMN Simulation window and DMN Expression window all show
the input data being applied, as shown:

(c) Sparx Systems 2020 Page 313 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

The list items change from 'static' to 'runtime'; note that the invoked Business Knowledge Models are loaded in the list;
in this example:

Decision 'Post-bureau affordability' is in the state of 'Evaluating' (refer to the diagram text), which means the·
Decision is invoking the Business Knowledge Model 'Credit contingency factor table' by binding the input values to
the parameters

Continue stepping through until you reach the Routing Decision (invoking the 'Routing rules' BKM) is reached.

Given the arguments (Post-bureau risk category : "VERY LOW", Post-bureau affordability : true, Bankrupt : false,·
Credit score : 600), the output is "ACCEPT"

After the Business Knowledge Model 'Routing rules' executes, the value will be carried back to the Decision·
'Routing'

(c) Sparx Systems 2020 Page 314 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

DMN Module Code Generation and Test Module

After a Decision model is created and simulated, you can generate a DMN module in Java, JavaScript, C++ or C#. That
DMN module can be used with the Enterprise Architect BPSim Execution Engine, Executable StateMachine, or your
own project.

Enterprise Architect also provides a 'Test Module' page, which is a preprocess for integrating DMN with BPMN. The
concept is to provide one or more BPMN2.0::DataObject elements, then test if a specified target Decision can be
evaluated correctly or not.

If any error or exception occurs, you can create an Analyzer Script to debug the code of the DMN module and Test
Client.

After this 'Test Module' process, Enterprise Architect guarantees that the BPMN2.0::DataObject elements will work well
with the DMN Module.

You then configure BPSim by loading DataObjects and assigning DMN module Decisions to BPSim Properties, which
will be further used as conditions on the Sequence Flows outgoing from a Gateway.

Access

Ribbon Simulate > Decision Analysis > DMN > Open DMN Simulation > Generate
Module

DMN Module: Code Generation

On the DMN Simulation window, select the DMN structure you want to generate the module from, in the data entry field
of the Toolbar.

Click on the 'Generate Module' tab, and then Ctrl+click on the names of the DMN elements you want to generate to the
server.

In the data entry field in the tab toolbar, select the language to generate in, and in the 'Module Path' field click on the

(c) Sparx Systems 2020 Page 315 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

 icon and browse to the path location to generate the module into (note, for Java the path has to match the Package
structure).

Click on the Generate button ().

When the generation is complete, click on the button to open the 'Test Module' tab for the generated module.

DMN Server: Test Module

When you use the button to select the 'Test Module' tab, the 'DMN Module' field will be filled automatically with the
generated DMN Server path of the module you most recently generated on the 'Generate Module' tab. If necessary, on
the 'Decision' field click on the drop-down arrow and select the required Decision.

Click on the Add BPMN DataObject button () in the Toolbar and select one or more (Ctrl+Click) BPMN2.0
DataObject(s) to add to the list in the main panel.

Now click the Run button on the toolbar. In the System Output window, this message indicates the DMN Server and
BPMN2.0 DataObject can work well with each other to evaluate the selected decision:

Running Test Client for DMN Server...

 dmnServer.Application_risk_score: 133.0

Result : 133.0

The Running completed successfully.

If there are errors, create an Analyzer script by clicking the toolbar button and use the script to fix the issue.

Important: This 'Test Module' step is recommended before integrating DMNServer.java with the Enterprise Architect
BPSim Execution Engine.

(c) Sparx Systems 2020 Page 316 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Code Generation & Connect to BPMN

Generate the DMN Server in Java, JavaScript, C++, or C#·

Run/Debug tests of the Java version of the DMN Server·

Connect the DMN Server to the Enterprise Architect BPSim Execution Engine·

Common Errors & Solutions

Variable Types: as DMN models use the FEEL language (Simulate with JavaScript), typing variables is not·
compulsory; however, when generating code to languages that are compiled, you do have to type a variable - there
are context menu options and tag values for setting the type of a variable

Since a DMN expression allows for spaces, in order to clarify the composite Input Data there must be a space before·
and after the '.' in the expression; for example, 'Applicant data . Age' is valid, whereas 'Applicant data.Age' is not
valid
Note that when using the Auto Completion feature this issue will not arise

Running validation will help you locate most of the modeling issues; do this before simulation and code generation·

Notes

Compiling with Java requires full read-write access to the target directory; compilation will fail if the module path is·
set to just 'C:' or 'C:\Program Files (x86)'

(c) Sparx Systems 2020 Page 317 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Integrate a DMN Module Into BPSim for Simulation

The strength of DMN is its ability to describe business requirements through the Decision Requirement diagram and to
encapsulate the complicated logic in versatile expressions such as the Decision Table and Boxed Context.

Equally, the strength of BPMN is its ability to describe business processes with a Sequence Flow of tasks and events, or
to describe collaborations of processes with Message Flows.

The Decision Requirements diagram forms a bridge between Business Process models and decision logic models:

Business Process models define tasks within business processes, where decision-making is required·

Decision Requirements diagrams define the decisions to be made in those tasks, their interrelationships, and their·
requirements for decision logic

Decision logic defines the required decisions in sufficient detail to allow validation and/or automation·

DMN provides a complete Decision model that complements a Business Process model by specifying in detail the
decision-making carried out in process tasks.

The two examples demonstrated in this topic can be accessed from:

EAExample Model | Model Simulation | BPSim Models·

Perspective | Business Modeling | BPSim | BPSim Case Studies·

There are two ways in which BPSim expressions use a DMN model:

DMN's Decision Service - demonstrated by the Loan Application Process·

DMN's BusinessKnowledgeModel - demonstrated by the Delivery Cost Calculation·

The process of integrating a DMN model with a BPSim model includes:

DMN Model Validation, Simulation, Code Generation and Testing on the generated module·

Set up a usage dependency from the BPSim Artifact to the DMN Artifact·

Generate or update the BPMN DataObject from the DMN DataSet·

Create Property Parameters in BPSim to be used on tasks and Sequence Flows out going from Gateways·

Bind the DMN interface to BPSim Property Parameters·

DMN Model Validation for Compiled languages such as Java

When you create a DMN model and simulate it in Enterprise Architect, the code driving the simulation is JavaScript; this
means that the variables do not need to be explicitly typed (the variable type is inferred from the value assigned to it).

However, for languages such as C++, C# and Java, the compiler will report an error that a variable does not have a type.

For generation to these languages you must run validation on the model and use the results to find variables that need
their type set. For example:

Business Knowledge Model parameter - select the BKM element to view in the DMN Expression window, click on·
the second button to open the 'Parameter' dialog, specify a type for the parameter

Decision type - select the Decision element, open the Properties window, for the property 'variableType' select from·
the 'Value' field

Decision Table Input/Output clauses - on the Decision Table Input/Output clause, right-click to display the context·
menu and choose the type

Boxed Context variables - refer to the Boxed Context Help topic·

(c) Sparx Systems 2020 Page 318 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/dmn_expression_boxedcontext.htm

User Guide - Simulation and Behavior 3 April, 2020

DMN Code Generation In Java

After using validation to fix any variable type issues, we can proceed to the 'Generate Module' page in the DMN
Simulation window.

Select DecisionService1 in the top toolbar data entry field; all the elements involved in DecisionService1 will now·
be included in the list

Item Definition and Business Knowledge Model are global elements·

Input Data and Decisions are encapsulated in the DecisionService element·

The supported languages are C++, C#, Java and JavaScript; note that for JavaScript the generated .js file is the same·
as the simulation script ('Simulate' tab | Run button drop down menu | Generate New Script (Scripting Window))
except that the simulation-related codes are omitted

For Java, the 'Module Path' value must match the Package structure; in this example, the DMNModule.java must be·
generated to a directory to form a file path that ends with '\com\sparxsystems\dmn\DMNModule.java' - you have to
manually create the directory structures for now

Click on the Generate Code button () on the toolbar. This example will use Java; however, C++ and C# are the same.
These actions are performed:

The .java file is generated to the path specified·

An Analyzer Script (Build script) for this Artifact is created·

The Build Script for this Analyzer Script is executed·

Progress messages are reported in the System Output window·

If the model is valid, this process will return the message:

(c) Sparx Systems 2020 Page 319 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

If there are compiling errors, you can open the generated .java file by clicking the button next to the button on
the toolbar, manually fix the issue, and compile with the generated script until you are successful.

One common reason for a compile failure is that languages can have different grammars for an expression. You might
need to provide a value for a language to overwrite the default (right-click on a DMN Literal Expression | Edit
Expression).

Testing DMN Modules before external Use

Having generated the model to java code and successfully compiled it we now want to:

Test this module's correctness·

Provide it with inputs·

Get the output Decision values·

Generate BPMN DataObject

(c) Sparx Systems 2020 Page 320 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

The data carried by the selected data set will be generated to the BPMN DataObject's 'Notes' field.

Click the button (2nd to the right on the toolbar of the 'Generate Module' tab) to open the 'Test Module' tab·

Click the on the toolbar to select the input BPMN DataObject elements·

Select the available outputs from the 'Decision' combo box, such as Get_Routing(), and click on the Run button on·
the toolbar

(c) Sparx Systems 2020 Page 321 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

The execution result will be displayed in the Debug window. You can also open the test module file, set a breakpoint on
the line and debug in the DMN Module to do line-level-debugging.

We highly recommend you test your DMN Module with this window to guarantee that the DMN Module is functional
with the given inputs (from the BPMN DataObjects) and that it will successfully compute the result of the output.

Note: The DMN Module path is saved in the DMNSimConfiguration Artifact's 'Filepath' property.

Now, it is time to integrate the DMN module with the BPSim model.

The first step is to set up the usage dependency between the BPSim Artifact and the DMN Simulation Artifact.

Note: A BPSim Artifact can use multiple DMN modules if necessary. This is supported by simply putting all DMN
Artifacts on this diagram and drawing a Dependency connector from the BPSim Artifact to each DMN Simulation
Artifact.

These Help topics provide two examples of using these methods. See:

Example: Integrate DMN Decision Service into BPSim Data Object and Property Parameter·

Example: Integrate DMN Business Knowledge Model into BPSim Property Parameter·

Learn More

Example: Integrate DMN Decision Service into BPSim Data Object and Property Parameter·

Example: Integrate DMN Business Knowledge Model into BPSim Property Parameter·

Exchange Data Sets using DataObjects·

Business Process Simulation (BPSim)·

(c) Sparx Systems 2020 Page 322 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/dmn_bpsim_integrate_dservice.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/dmn_bpsim_integrate_bkm.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/dmn_exchange_datasets.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/bpsim_introduction.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/dmn_bpsim_integrate_dservice.htm

User Guide - Simulation and Behavior 3 April, 2020

Example: Integrate DMN Decision Service into BPSim Data
Object and Property Parameter

An example of integrating a DMN Decision service into the BPSim model is provided in the Model Wizard for BPSim.

To access this:

Set the Perspective to Business Modeling > BPSim·

Open the Model Wizard (Ctrl+Shift+M)·

From the BPSim Case Studies group select BPMN Integrate with DMN Complete Example·

Click on the Create Pattern(s) button.·

This will create BPMN and DMN models configured to simulate a call to a DMN model from the BPMN model.

Note: In order to integrate the DMN Module, the Expression Language must use Java and the JRE and JDK must be
configured correctly (the minimum version of java is 1.7). See Install the BPSim Execution Engine in the Help topic
Business Process Simulation (BPSim).

In this BPMN diagram there are three DataObjects (aqua) connected to BPMN Activities. These DataObject elements
carry input data, generated from the DMN Simulation window.

When the simulation is running it will automatically load all DataObjects connecting to the task when the simulation·
token passes through

The second Business Rules task 'Decide bureau strategy' is configured to set the property 'Strategy' to the value·
'DMNSimArtifact.Get_Strategy()'; you don't need to type this in - press Ctrl+Space to help you edit the expression

When these are set, click on the 'Execute' tab and simulate the model. You can then view the report or go to the 'Step'
page to do step debugging of the BPSim model.

(c) Sparx Systems 2020 Page 323 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Example: Integrate DMN Business Knowledge Model into
BPSim Property Parameter

In some cases, you might want just to design a Decision Table to use in a BPMN model. If so, there is no need to go
through the processes of creating a Decision Service, Decision, Input Data or even Item Definition, as a Business
Knowledge Model (BKM) can be directly interfaced.

An example of integrating a DMN BKM into the BPSim model is provided in the Model Wizard for BPSim.

To access this:

Set the Perspective to Business Modeling > BPSim·

Open the Model Wizard (Ctrl+Shift+M)·

From the BPSim Case Studies group select BPMN Integrate with DMN - Delivery Cost Calculation·

Click on the Create Pattern(s) button·

Create a simple Business Knowledge Model as a Decision Table (you can also create other expressions such as1.
Boxed Context or Literal Expressions) with parameters, then model the logic (input clause, output clause, rules) and
test it (the 'Input Parameter Values for Simulation' tab on the DMN Expression window).

Connect the BKM to a Decision with a Knowledge Requirement connector. This Decision serves as a group name2.
for a number of BKM functions; you can simply input a number such as '10' to the expression. For example, if you
want to generate Java code with only five BKMs (considering your model might have over one hundred BKMs), you
can connect these five BKMs to a Decision and select this Decision in the DMN Simulation window, then all five
BKMs will be included automatically.

Generate Java code and (assuming everything is correct) the compile will be successful.3.

In the BPSim configuration, we simply use Intelli-sense to construct the expression for task 'Compute Delivery cost'.4.

In this example, the 'Generate furniture price and weight' task will generate random values to the properties 'Weight' and
'Price', then the 'Compute Delivery cost' task will pass the value to the Business Knowledge Model and the result will be
carried back to the property 'DeliveryCost'.

You can now execute the simulation, and step through the debug process to observe, for example, the attribute value
changes.

(c) Sparx Systems 2020 Page 324 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Integrate DMN Module Into UML Class Element

After a Decision Model is created and simulated, you can generate a DMN Module in Java, JavaScript, C++ or C# and
test it.

The DMN Module can be integrated with a UML Class element, so the code generated from that Class element can reuse
the DMN Module and be well-structured. Since a Class element can define a StateMachine, after integration with the
DMN Module the Executable StateMachine simulation will generically be able to use the power of the DMN Module.

In this topic, we will explain the process of integrating a DMN Model with a UML Class element, considering the:

Class element's requirement·

DMN Models·

DMN Binding to Class & Intelli-sense·

Code Generation on the Class element·

Class Element's Requirement

Suppose we have a Class Applicant with an operation AffordabilityForProduct that evaluates whether the applicant can
afford a loan product.

A simplified model resembles this:

The Class Applicant contains two attributes, which are actually calculated from more basic data such as the applicant's
monthly income, expenses, existing repayments, age and employment status.

In this example, however, we simplify the model by skipping these steps and providing disposable income and risk score
directly.

DMN Models

In this example, we have two disjoint DMN Models to show that a UML Class can integrate multiple DMN Models.

Installment Calculator

This DMN model computes the monthly repayment based on amount, rate and terms. It is composed of an InputData, a
Decision and a Business Knowledge Model.

(c) Sparx Systems 2020 Page 325 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Credit Contingency Factor Calculator

This DMN model computes the credit contingency factor based on the applicant's risk score. It is composed of an
InputData, two Decisions and two Business Knowledge Models.

Note: In this example, we focus on how to integrate DMN modules into a Class element; the DMN elements' detail is not
described here.

Generate code for both DMN Models

Click on the Generate Code icon, and check that you can see this string in the System Output window, 'DMN' tab:

DMN Module is successfully compiled.

(c) Sparx Systems 2020 Page 326 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Note: Since this model uses a built-in function PMT, the DMN Library has to be included:

Click on the Generate Code icon, and check that you can see this string in the System Output window, 'DMN' page:

DMN Module is successfully compiled.

DMN Binding to Class & Intelli-sense

Put the two DMNSimConfiguration Artifacts on the Class diagram.

(c) Sparx Systems 2020 Page 327 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Use the Quick Linker to create a Dependency connector from the Class Applicant to each of the DMN Artifacts.

On creation of the connector, a dialog will prompt you to choose the operation to be bound to the DMN module.

When the DMN module is bound to the operation:

The operation takes a stereotype <<dmnBinding>>·

The Dependency connector is linked to the operation·

Multiple DMN Artifacts can be bound to the same operation.

After DMN Bindings, Intelli-sense for the operation's code editor will support DMN Modules. To trigger the
Intelli-sense, use these key combinations:

Ctrl+Space - in most of the cases·

Ctrl+Shift+Space - when Ctrl+Space does not work after a parenthesis '('; for example, a function's arguments, or·
inside an 'If' condition's parentheses

(c) Sparx Systems 2020 Page 328 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Class attributes will be listed - m_RiskScore, m_DisposableIncome·

Operation parameters will be listed - Amount, Rate, Term·

Operations will be listed - AffordabilityForProduct·

All bound DMN Modules will be listed - Contingency_Factor_Calculator, Installment_Calculator·

It is quite easy to compose the code with Intelli-sense support. On accessing the DMN Module, all the Input Datas,
Decisions and Business Knowledge Models will be listed for selection.

This illustration shows that we are selecting 'Get_Required_monthly_installment()' from the Installment_Calculator.

This is the final implementation for the operation.

(c) Sparx Systems 2020 Page 329 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Code Generation for Class (With DMN Integration)

'Generate Code on Class Applicant' produces this code:

The DMN Module(s) are generated as attributes of the Class·

The dmnBinding operation's code is updated·

Note: Regardless of whether the generation option is 'Overwrite' or' Synchronize', the operation's code will be updated if
it has the stereotype 'dmnBinding'.

(c) Sparx Systems 2020 Page 330 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Importing DMN XML

Enterprise Architect supports the import of a DMN 1.1 or 1.2 XML file into a project, with both model semantics and
diagram-interchange information.

Access

In the Browser window, select the Package into which to import the XML file. Then use one of the methods outlined
here to open the 'Import Package from DMN 1.1 XML' dialog.

Ribbon Publish > Technologies > Import > DMN 1.1

Keyboard Shortcuts Ctrl+Alt+I : Other XML Formats > DMN 1.1

Import DMN 1.1 XML

Step, Step Action, Action

1
In the 'Filename' field, type in the source file path and name, or click on the
icon to locate and select the file.

2 Click on the Import button to import the file into the Package.

Import the example from OMG

Download the zip file at this link and extract it to your file manager.1.

Browse for the folder examples/Chapter 11/.2.

Click on the file Chapter 11 Example.dmn and import it as a DMN 1.1 format file.3.

These diagrams are imported to show different perspectives of the model:

DRD of all automated decision-making·

DRD for the Review Application decision point·

DRD for the Decide Routing decision point·

DRD for the Decide Bureau Strategy decision point·

These diagrams are imported to define the Decision Services:

Bureau Strategy Decision Service·

Routing Decision Service·

The 'Bureau Strategy Decision Service' diagram is shown here. It has two Input Data elements (Applicant data,
Requested product), two Output Decisions (Bureau call type, Strategy) and five Encapsulated Decisions. Note that the
invoked Business Knowledge Models are not shown on the diagram.

(c) Sparx Systems 2020 Page 331 of 461 Created with Enterprise Architect

https://www.omg.org/spec/DMN/20180521/examples.zip

User Guide - Simulation and Behavior 3 April, 2020

In order to generate production code from the model, you might have to run a validation and simulation to ensure that the
imported model has the correct expressions.

Create a DMN Sim Configuration Artifact on any of the listed diagrams, and double-click on it to open it in the1.
DMN Simulation window.

The Decision Services and Decisions are listed in the target drop-down field. Once you specify a target, all the2.
required elements are listed in the window.

Click on the Validate button (4th on the toolbar). If any error or warning messages display, we suggest that you to3.
fix the problems as directed by the error or warning descriptions, before performing the simulation.

Provide appropriate values for the inputs, and either run the simulation or step-debug the model.4.

Note: The 'Bureau Strategy Decision Service' example is also available in the EAExample Model. Select 'EA 15
Examples | DMN Example | A Complete Example | Bureau Strategy Decision Service'.

(c) Sparx Systems 2020 Page 332 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Executable StateMachines

Executable StateMachines provide a powerful means of rapidly generating, executing and simulating complex state
models. In contrast to dynamic simulation of State Charts using Enterprise Architect's Simulation engine, Executable
StateMachines provide a complete language-specific implementation that can form the behavioral 'engine' for multiple
software products on multiple platforms. Visualization of the execution uses and integrates seamlessly with the
Simulation capability. Evolution of the model now presents fewer coding challenges. The code generation, compilation
and execution is taken care of by Enterprise Architect. For those having particular requirements, each language is
provided with a set of code templates. Templates can be customized by you to tailor the generated code in any ways you
see fit.

These topics introduce you to the basics of modeling Executable StateMachines and tell you how to generate and
simulate them.

The creation and use of Executable StateMachines, and generating code from them, are supported by the Unified and
Ultimate editions of Enterprise Architect.

Overview of Building and Executing StateMachines

Building and using Executable StateMachines is quite straightforward, but does require a little planning and some
knowledge of how to link the different components up to build an effective executing model. Luckily you do not have to
spend hours getting the model right and fixing compilation errors before you can begin visualizing your design.

Having sketched out the broad mechanics of your model, you can generate the code to drive it, compile, execute and
visualize it in a matter minutes. These points summarize what is required to start executing and simulating
StateMachines.

Facility Description

Build Class and State
models

The first task is to build the standard UML Class and State models that describe the
entities and behavior to construct. Each Class of interest in your model should have
its own StateMachine that describes the various states and transitions that govern its
overall behavior.

Create an Executable
StateMachine Artifact

Once you have modeled your Classes and State models, its time to design the
Executable StateMachine Artifact. This will describe the Classes and objects
involved, and their initial properties and relationships. It is the binding script that
links multiple objects together and it determines how these will communicate at
runtime. Note that it is possible to have two or more objects in an Executable
StateMachine Artifact as instances of a single Class. These will have their own state

(c) Sparx Systems 2020 Page 333 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

and behavior at run-time and can interact if necessary.

Generate Code and
Compile

Whether it is JavaScript, C++, Java or C# that you use, Enterprise Architect's
engineering capabilities provide you with a powerful tool, allowing you to
regenerate the executable at any time, and without the loss of any customized code
you might have made. This is a major advantage over a project's lifetime. It is
probably also worth noting that the entire code base generated is independent and
portable. In no way is the code coupled with any infrastructure used by the
simulation engine.

Execute StateMachines So how do we see how these StateMachines behave? One method is to build the
code base for each platform, integrate it in one or more systems, examining the
behaviors, 'in-situ', in perhaps several deployment scenarios. Or we can execute it
with Enterprise Architect. Whether it is Java, JavaScript, C, C++ or C#, Enterprise
Architect will take care of creating the runtime, the hosting of your model, the
execution of its behaviors and the rendition of all StateMachines.

Visualize StateMachines Executable StateMachine visualization integrates with Enterprise Architect's
Simulation tools. Watch state transitions as they occur on your diagram and for
which object(s). Easily identify objects sharing the same state. Importantly, these
behaviors remain consistent across multiple platforms. You can also control the
speed at which the machines operate to better understand the timeline of events.

Debug StateMachines When states should change but do not, when a transition should not be enabled but
is, when the behavior is - in short - undesirable and not immediately apparent from
the model, we can turn to debugging. Enterprise Architect's Visual Execution
Analyzer comes with debuggers for all the languages supported by
ExecutableStateMachine code generation. Debugging provides many benefits, one
of which might be to verify / corroborate the code attached to behaviors in a
StateMachine to ensure it is actually reflected in the executing process.

(c) Sparx Systems 2020 Page 334 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Executable StateMachine Artifact

An Executable StateMachine Artifact is key to generating StateMachines that can interact with each other. It specifies
the objects that will be involved in a simulation, their state and how they connect. A big advantage in using Executable
StateMachine Artifacts is that each of several parts in an Artifact can represent an instance of a StateMachine, so you can
set up simulations using multiple instances of each StateMachine and observe how they interact. An example is provided
in the Example Executable StateMachine Help topic.

Creating the Properties of an Executable StateMachine

Each Executable StateMachine scenario involves one or more StateMachines. The StateMachines included are specified
by UML Property elements; each Property will have a UML Classifier (Class) that determines the StateMachine(s)
included for that type. Multiple types included as multiple Properties can end up including many StateMachines, which
are all created in code and initialized on execution.

Action Description

Drop a Class from the
Browser window on to the
<<Executable
StateMachine>> Artifact

The easiest way to define properties on an Executable StateMachine is to drop the
Class onto the Executable StateMachine from the Browser window. On the dialog
that is shown, select the option to create a Property. You can then specify a name
describing how the Executable StateMachine will refer to this property.

Note: Depending on your options, you might have to hold down the Ctrl key to
choose to create a property. This behavior can be changed at any time using the
'Hold Ctrl to Show this dialog' checkbox.

Use and Connect Multiple
UML Properties

An Executable StateMachine describes the interaction of multiple StateMachines.
These can be different instances of the same StateMachine, different StateMachines
for the same instance, or completely different StateMachines from different base
types. To create multiple properties that will use the same StateMachine, drop the
same Class onto the Artifact multiple times. To use different types, drop different
Classes from the Browser window as required.

Defining the initial state for properties

The StateMachines run by an Executable StateMachine will all run in the context of their own Class instance. An
Executable StateMachine allows you to define the initial state of each instance by assigning property values to various
Class attributes. For example you might specify a Player's age, height, weight or similar if these properties have
relevance to the scenario being run. By doing this it is possible to set up detailed initial conditions that will influence
how the scenario plays out.

Action Description

Set Property Values dialog The dialog for assigning property values can be opened by right-clicking on a
Property and selecting 'Features | Set Property Values', or by using the keyboard
shortcut Ctrl+Shift+R.

Assign a value The 'Set Property Values' dialog allows you to define values for any attribute
defined in the original Class. To do this, select the variable, set the operator to '='
and enter the required value.

(c) Sparx Systems 2020 Page 335 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Defining relationships between properties

In addition to describing the values to assign to variables owned by each property, an Executable StateMachine allows
you to define how each property can reference others based on the Class model that they are instances of.

Action Description

Create a connector Connect multiple properties using the Connector relationship from the Composite
toolbox.

Alternatively, use the Quick Linker to create a relationship between two Properties
and select 'Connector' as the relationship type.

Map to Class model Once a connector exists between two properties, you can map it back to the
Association it represents in the Class model. To do this, select the connector and
use the keyboard shortcut Ctrl+L. The 'Choose an Association' dialog displays,
which allows the generated StateMachine to send signals to the instance filling the
role specified in the relationship during execution.

(c) Sparx Systems 2020 Page 336 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Modeling Executable StateMachines

Most of the work required to model an Executable StateMachine is standard UML based modeling of Classes and State
models. There are a couple of conventions that must be observed to ensure a well formed code base. The only novel
construct is the use of a stereotyped Artifact element to form the configuration of an Executable StateMachine instance
or scenario. The Artifact is used to specify details such as:

The code language (JavaScript, C#, Java, C++ including C)·

The Classes and StateMachines involved in the scenario·

The instance specifications including run-state; note that this could include multiple instances of the same·
StateMachine, for example where a 'Player' Class is used twice in a Tennis Match simulation

Basic Modeling Tools and Objects for Executable StateMachines

These are the primary modeling elements used when building Executable StateMachines.

Object Details

Classes and Class
Diagrams

Classes define the object types that are relevant to the StateMachine(s) being
modeled. For example, in a simple Tennis Match scenario you might define a Class
for each of a Player, a Match, a Hit and an Umpire. Each will have its own
StateMachine(s) and at runtime will be represented by object instances for each
involved entity. See the UML modeling guide for more information on Classes and
Class diagrams.

StateMachines For each Class you define that will have dynamic behavior within a scenario, you
will typically define one or more UML StateMachines. Each StateMachine will
determine the legal state-based behavior appropriate for one aspect of the owning
Class. For example, it is possible to have a StateMachine that represents a Player's
emotional state, one that tracks his current fitness and energy levels, and one that
represents his winning or losing state. All these StateMachines will be initialized
and started when the StateMachine scenario begins execution.

Executable StateMachine
Artifact

This stereotyped Artifact is the core element used to specify the participants,
configuration and starting conditions for an Executable StateMachine. From the
scenario point of view it is used to determine which Instances (of Classes) are
involved, what events they might Trigger and send to each other, and what starting
conditions they operate under.

From the configuration aspect, the Artifact is used to set up the link to an analyzer
script that will determine output directory, code language, compilation script and
similar. Right-clicking on the Artifact will allow you to generate, build, compile
and visualize the real time execution of your StateMachines.

StateMachine Constructs Supported

This table details the StateMachine constructs supported and any limitations or general constraints relevant to each type.

Construct Description

StateMachines Simple StateMachine: StateMachine has one region·

Orthogonal StateMachine: StateMachine contains multiple regions·

(c) Sparx Systems 2020 Page 337 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Top level region (owned by StateMachine) activation semantics:

Default Activation: When the StateMachine starts executing.

Entry Point Entry: Transitions from Entry Point to vertices in the contained
regions.

Note 1: In each Region of the StateMachine owning the Entry Point, there is at·
most a single Transition from the entry point to a Vertex within that Region

Note 2: This StateMachine can be referenced by a Submachine State -·
connection point reference should be defined in the Submachine State as
sources/targets of transitions; the Connection point reference represents a
usage of an Entry/Exit Point defined in the StateMachine and referenced by the
Submachine State

Not Supported

Protocol StateMachine·

StateMachine Redefinition·

States Simple State: has no internal Vertices or Transitions·

Composite State: contains exactly one Region·

Orthogonal State: contains multiple Regions·

Submachine State: refers to an entire StateMachine·

Composite State Entry Default Entry·

Explicit Entry·

Shallow History Entry·

Deep History Entry·

Entry Point Entry·

Substates Substates and Nested Substates·

Entry and Exit semantics, where the transition includes multiple nested levels of
states, will obey correct execution of nested behaviors (such as OnEntry and
OnExit).

Transitions support External Transition·

Local Transition·

Internal Transition (draw a self Transition and change Transition kind to·
Internal)

Completion Transition and Completion Events·

Transition Guards·

Compound Transitions·

Firing priorities and selection algorithm·

For further details, refer to the UML Specification.

Trigger and Events An Executable StateMachine supports event handling for Signals only.

To use Call, Timing or Change Event types you must define an outside mechanism
to generate signals based on these events.

Signal Attributes can be defined in Signals; the value of the attributes can be used as event
arguments in Transition Guards and Effects.

For example, this is the code set in the effect of a transition in C++:

 if(signal->signalEnum == ENUM_SIGNAL2)

(c) Sparx Systems 2020 Page 338 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

 {

 int xVal = ((Signal2*)signal)->myVal;

 }

Signal2 is generated as this code:

 class Signal2 : public Signal{

 public:

 Signal2(){};

 Signal2(std::vector<String>& lstArguments);

 int myVal;

 };

Note: Further details can be found by generating an Executable StateMachine and
referring to the generated 'EventProxy' file.

Initial An Initial Pseudostate represents a starting point for a Region. It is the source for at
most one Transition; there can be at most one Initial Vertex in a Region.

Regions Default Activation & Explicit Activation:

Transitions terminate on the containing State:

If an initial Pseudostate is defined in the Region: Default activation·

If no initial Pseudostate is defined, the Region will remain inactive and the·
containing State is treated as a Simple State

If the transition terminates on one of the Region's contained vertices: Explicit·
activation, resulting in the default activation of all of its orthogonal Regions,
unless those Regions are also entered explicitly (multiple orthogonal Regions
can be entered explicitly in parallel through Transitions originating from the
same Fork Pseudostate)

For example, if there are three Regions defined for an Orthogonal State, and
RegionA and RegionB have an Initial Pseudostate, then RegionC is explicitly
activated. Default Activation applies to RegionA and RegionB; the containing State
will have three active Regions.

Choice Guard Constraints on all outgoing Transitions are evaluated dynamically, when the
compound transition traversal reaches this Pseudostate.

Junction Static conditional branch: guard constraints are evaluated before any compound
transition is executed.

Fork / Join Non-threaded, each active Region moves one step alternately, based on a
completion event pool mechanism.

EntryPoint / ExitPoint
Nodes

Non-threaded for orthogonal State or orthogonal StateMachine; each active Region
moves one step alternately, based on a completion event pool mechanism.

History Nodes DeepHistory: represents the most recent active State configuration of its·
owning State

ShallowHistory: represents the most recent active Substate of its containing·
State, but not the Substates of that Substate

Deferred Events Draw a self Transition, and change the Transition kind to Internal. Type 'defer();' in
the 'Effect' field for the transition.

Connection Point A Connection Point Reference represents a usage (as part of a Submachine State) of

(c) Sparx Systems 2020 Page 339 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

References an Entry/Exit Point defined in the StateMachine referenced by the Submachine
State. Connection Point References of a Submachine State can be used as sources
and targets of Transitions. They represent entries into or exits out of the
StateMachine referenced by the Submachine State.

State behaviors State 'entry', 'doActivity' and 'exit' behaviors are defined as operations on a State.
By default, you type the code that will be used for each behavior into the 'Code'
panel of the Properties window for the Behavior operation. Note that you can
change this to type the code into the 'Behavior' panel, by customizing the
generation template.

The 'doActivity' behavior generated will be run to completion before proceeding.
The code is not concurrent with other entry behavior; the 'doActivity' behavior is
implemented as 'execute in sequence after entry' behavior.

References to Behaviors within other Contexts/Classes

If the Submachine State references behavior elements outside the current context or Class, you must add an <<import>>
connector from the current context Class to the container context Class. For example:

 Submachine State S1 in Class1 refers to StateMachine ST2 in Class2

Therefore, we add an <<import>> connector from Class1 to Class2 in order for Executable StateMachine code
generation to generate code correctly for Submachine State S1. (On Class 1, click on the Quick Linker arrow and drag to
Class 2, then select 'Import' from the menu of connector types.)

Reusing Executable StateMachine Artifacts

You can create multiple models or versions of a component using a single executable Artifact. An Artifact representing a
resistor, for example, could be re-used to create both a foil resistor and a wire wound resistor. This is likely to be the case
for similar objects that, although represented by the same classifier, typically exhibit different run states. A property
named 'resistorType' taking the value 'wire' rather than 'foil' might be all that is required from a modeling point of view.
The same StateMachines can then be re-used to test behavioral changes that might result due to variance in run-state.
This is the procedure:

Step Action

Create or open Component
diagram

Open a Component diagram to work on. This might be the diagram that contains
your original Artifact.

Select the Executable
StateMachine to copy

Now find the original Executable StateMachine Artifact in the Browser window.

Create the New Component Whilst holding the Ctrl key, drag the original Artifact on to your diagram. You will
be prompted with two questions.

The answer to the first is Object and to the second All. Rename the Artifact to
differentiate it from the original and then proceed to alter its property values.

(c) Sparx Systems 2020 Page 340 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Code Generation for Executable StateMachines

The code generated for an Executable StateMachine is based on its language property. This might be Java, C, C++, C# or
JavaScript. Whichever language it is, Enterprise Architect generates the appropriate code, which is immediately ready to
build and run. There are no manual interventions necessary before you run it. In fact after the initial generation, any
Executable StateMachine can be generated, built and executed at the click of a button.

Language Supported

An Executable StateMachine supports code generation for these platform languages:

Microsoft Native C/C++·

Microsoft .NET (C#)·

Scripting (JavaScript)·

Oracle Java (Java)·

From Enterprise Architect Release 14.1, code generation is supported without dependency on the simulation environment
(compilers). For example, if you don't have Visual Studio installed, you can still generate code from the model and use it
in your own project. The compilers are still needed if you want to simulate models in Enterprise Architect.

Simulation Environment (Compiler Settings)

If you want to simulate the Executable StateMachine model in Enterprise Architect, these platforms or compilers are
required for the languages:

Language Platform Example of Framework Path

Microsoft Native (C/C++) C:\Program Files (x86)\Microsoft Visual Studio 12.0

C:\Program Files (x86)\Microsoft Visual Studio\2017\Professional (or other
editions)

Microsoft .NET (C#) C:\Windows\Microsoft.NET\Framework\v3.5 (or higher)

Scripting (JavaScript) N/A

Oracle Java (Java) C:\Program Files (x86)\Java\jdk1.7.0_17 (or higher)

Access

Ribbon Simulate > Executable States > Statemachine > Generate, Build and Run or

Simulate > Executable States > Statemachine > Generate

Generating Code

(c) Sparx Systems 2020 Page 341 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

The 'Simulate > Executable States > Statemachine' ribbon options provide commands for generating code for the
StateMachine. Select the Executable StateMachine Artifact first, then use the ribbon option to generate the code. The
'Executable Statemachine Code Generation' dialog displayed depends on the code language.

Generating Code (Java on WIndows)

Project output directory Displays the directory in which the generated code files will be stored. If
necessary, click on the button at the right of the field to browse for and select a
different directory. The names of the generated classes and their source file paths
are displayed after this.

Executable Statemachine
Target Machine

Select the 'Local' option.

(c) Sparx Systems 2020 Page 342 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Java JDK Enter the installation directory of the Java JDK to be used.

Generating Code (Java on Linux)

Project output directory: Displays the directory in which the generated code files will be stored. If
necessary, click on the button at the right of the field to browse for and select a
different directory. The names of the generated classes and their source file paths
are displayed when the path is changed

Executable Statemachine
Target Machine

Select the 'Remote' option.

Operating System Select Linux.

(c) Sparx Systems 2020 Page 343 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Port This is the debugger Port to be used. You will find references to this Port number in
the 'Debug' and 'DebugRun' sections of the Analyzer Script generated.

Generating Code (Other Languages)

At the same time the System Output window opens at the 'Executable StateMachine Output' page, on which progress
messages, warnings or errors are displayed during code generation.

On the 'Executable StateMachine Code Generation' dialog, the 'Artifact' field and 'Language' field display the element
name and coding language as defined in the element's 'Properties' dialog.

Field/Option Description

Project output directory Displays the directory in which the generated code files will be stored. If
necessary, click on the button at the right of the field to browse for and select a
different directory.

Project build environment The fields and information in this panel vary depending on the language defined in
the Artifact element and in the script. However, each supported language provides
an option to define the path to the target frameworks that are required to build and
run the generated code; examples are shown in the Languages Supported section of
this topic.

This path, and its Local Paths ID, are defined in the 'Local Paths' dialog and shown
here on the 'Executable StateMachine Code Generation' dialog.

Generate

(c) Sparx Systems 2020 Page 344 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Click on this button to generate the StateMachine code. The code generation will overwrite any existing files in the
project output directory. The set of files will include all required files including those for each Class referenced by the
StateMachine.

Each Executable StateMachine that is generated will also generate an Execution Analyzer script, which is the
configuration script for building, running and debugging the Executable StateMachine.

Building Code

The code generated by an Executable StateMachine can be built by Enterprise Architect in one of three ways.

Method Description

Ribbon Generate, Build
and Run Command

For the selected Executable StateMachine, generates the entire code base again.
The source code is then compiled and the simulation started.

Ribbon Build Command Compiles the code that has been generated. This can be used directly after
generating the code, if you have made changes to the build procedure (the Analyzer
Script) or modified the generated code in some way.

Execution Analyzer Script The generated Execution Analyzer script includes a command to build the source
code. This means that when it is active, you can build directly using the built-in
shortcut Ctrl+Shift+F12.

Build Output When building, all output is shown on the 'Build' page of the System Output
window. You can double-click on any compiler errors to open a source editor at the
appropriate line.

Leveraging existing code

Executable StateMachines generated and executed by Enterprise Architect can leverage existing code for which no Class
model exists. To do this you would create an abstract Class element naming only the operations to call in the external
codebase. You would then create a generalization between this interface and the StateMachine Class, adding the required
linkages manually in the Analyzer Script. For Java you might add .jar files to the Class path. For native code you might
add a .dll to the linkage.

(c) Sparx Systems 2020 Page 345 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

(c) Sparx Systems 2020 Page 346 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Debugging Execution of Executable StateMachines

Creation of Executable StateMachines provides benefits even after the generation of code. Using the Execution
Analyzer, Enterprise Architect is able to connect to the generated code. As a result you are able to visually debug and
verify the correct behavior of the code; the exact same code generated from your StateMachines, demonstrated by the
simulation and ultimately incorporated in a real world system.

Debugging a StateMachine

Being able to debug an Executable StateMachine gives additional benefits, such as being able to:

Interrupt the execution of the simulation and all executing StateMachines·

View the raw state of each StateMachine instance involved in the simulation·

View the source code and Call Stack at any point in time·

Trace additional information about the execution state through the placement of tracepoints on lines of source code·

Control the execution through use of actionpoints and breakpoints (break on error, for example)·

Diagnose changes in behavior, due to either code or modeling changes·

If you have generated, built and run an Executable StateMachine successfully, you can debug it! The Analyzer Script
created during the generation process is already configured to provide debugging. To start debugging, simply start
running the Executable StateMachine using the Simulation Control. Depending on the nature of the behavior being
debugged, however, we would probably set some breakpoints first.

Breaking execution at a state transition

Like any debugger we can use breakpoints to examine the executing StateMachine at a point in code. Locate a Class of
interest in either the diagram or Browser window and press F12 to view the source code. It is easy to locate the code for
State transitions from the naming conventions used during generation. If you want to break at a particular transition,
locate the transition function in the editor and place a breakpoint marker by clicking in the left margin at a line within the
function. When you run the Executable StateMachine, the debugger will halt at this transition and you will be able to
view the raw state of variables for any StateMachines involved.

Breaking execution conditionally

Each breakpoint can take a condition and a trace statement. When the breakpoint is encountered and the condition
evaluates to True the execution will halt. Otherwise the execution will continue as normal. You compose the condition
using the names of the raw variables and comparing them using the standard equality operands: < > = >= <=. For
example:

 (this.m_nCount > 100) and (this.m_ntype == 1)

To add a condition to a breakpoint you have set, right-click on the breakpoint and select 'Properties'. By clicking on the
breakpoint while pressing the Ctrl key, the properties can be quickly edited.

Tracing auxillary information

It is possible to trace information from within the StateMachine itself using the TRACE clause in, for example, an effect.
Debugging also provides trace features known as Tracepoints. These are simply breakpoints that, instead of breaking,
print trace statements when they are encountered. The output is displayed in the Simulation Control window. They can
be used as a diagnostic aid to show and prove the sequence of events and the order in which instances change state.

(c) Sparx Systems 2020 Page 347 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Viewing the Call Stack

Whenever a breakpoint is encountered, the Call Stack is available from the Analyzer menu. Use this to determine the
sequence in which the execution is taking place.

(c) Sparx Systems 2020 Page 348 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Execution and Simulation of Executable StateMachines

One of the many features of Enterprise Architect is its ability to perform simulations. An Executable StateMachine
generated and built in Enterprise Architect can hook into the Simulation facilities to visually demonstrate the live
execution of the StateMachine Artifact.

Starting a simulation

The Simulation Control toolbar provides a Search button that you use to select the Executable StateMachine Artifact to
run. The control maintains a drop-down list of the most recent Executable StateMachines for you to choose from. You
can also use the context menu on an Executable StateMachine Artifact itself to initiate the simulation.

Controlling speed

The Simulation Control provides a speed setting. You can use this to adjust the rate at which the simulation executes.
The speed is represented as a value between 0 and 100 (a higher value is faster). A value of zero will cause the
simulation to halt after every step; this requires using the toolbar controls to manually step through the simulation.

Notation for active states

As the Executable StateMachine executes, the relevant StateMachine diagrams are displayed. The display is updated at
the end of every step-to-completion cycle. You will notice that only the active State for the instance completing a step is
highlighted. The other States remain dimmed.

It is easy to identify which instance is in which State, as the States are labeled with the name of any instance currently in
that particular state. If two or more artifact properties of the same type share the same state, the State will have a separate
label for each property name.

Generate Timing Diagram

After completing the simulation of an Executable Statemachine, you can generate a Timing diagram from the output. To
do this:

In the Simulation window toolbar, click on 'Tools | Generate Timing Diagram'.

(c) Sparx Systems 2020 Page 349 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Example: Simulation Commands

This example demonstrates how we can use the Simulation window to observe Trace messages or send commands to
control a StateMachine. Through the example, you can examine:

An attribute of a context - the member variable defined in the Class, which is the context of the StateMachine; these·
attributes carry values in the scope of the context for all State behaviors and transition effects, to access and modify

Each attribute of a Signal - the member variable defined in the Signal, which is referenced by an Event and which·
can serve as an Event Parameter; each Signal Event occurrence might have different instances of a Signal

The use of the 'Eval' command to query the runtime value of a context's attribute·

The use of the 'Dump' command to dump the current state's active count; it can also dump the current event deferred·
in the pool

This example is taken from the EAExample model:

 Example Model.Model Simulation.Executable StateMachine.Simulation Commands

Access

Ribbon Simulate > Dynamic Simulation > Simulator > Open Simulation Window)·

Simulate > Dynamic Simulation > Events (for the Simulation Events·
window)

These two windows are frequently used together in the simulation of Executable
StateMachines.

Create Context and StateMachine

In this section we will create a Class called TransactionServer, which defines a StateMachine as its behavior. We then
create an Executable StateMachine Artifact as the simulation environment.

Create the Context of the StateMachine

TransactionServer

- authorizeCnt: int = 0

Create a Class element called TransactionServer.1.

In this Class, create an attribute called authorizeCnt with initial value 0.2.

In the Browser window, right-click on TransactionServer and select the 'Add | State Machine' option.3.

(c) Sparx Systems 2020 Page 350 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Create the StateMachine

stm ServerStateMachine

Final

busy

NEW_REQUEST /
defer();

idle

Initial

AUTHORIZED
/this.authorizeCnt++;

NEW_REQUEST

QUIT

Create an Initial pseudostate called Initial.1.

Transition to a State called idle.2.

Transition to a State called busy, with the trigger NEW_REQUEST.3.

Transition:4.
 - To a Final pseudostate called Final, with the trigger QUIT
 - Back to idle, with the trigger AUTHORIZED, with the effect 'this.authorizeCnt++;'

Create a Deferred Event for the State busy

Draw a self-transition for busy.1.

Change the 'kind' of the transition to 'internal'.2.

Specify the Trigger to be the event you want to defer.3.

In the 'Effect' field, type 'defer();'.4.

Create a Signal and attributes

Create a Signal element called RequestSignal.1.

Create an attribute called requestType with type 'int'.2.

Configure the Event NEW_REQUEST to reference RequestSignal.3.

Create the Executable StateMachine Artifact

«executable statemachine»
Simulation with Deferred Event

server: TransactionServer

From the 'Artifacts' page of the Diagram Toolbox, drag an Executable StateMachine icon onto the diagram and call1.
the element Simulation with Deferred Event.

Ctrl+Drag the TransactionServer element from the Browser window and drop it onto the Artifact as a property, with2.
the name server.

Set the language of the Artifact to JavaScript, which does not require a compiler (for the example; in production you3.
could also use C, C++, C#, or Java, which also support Executable StateMachines).

Click on the Artifact and select the 'Simulate > Executable States > Statemachine > Generate, Build and Run' ribbon4.
option.

Simulation window and Commands

When the simulation starts, idle is the current state.

(c) Sparx Systems 2020 Page 351 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

The Simulation window shows that the Transition Effect, Entry and Do behavior is finished for state idle, and the
StateMachine is waiting for a trigger.

Event Data via Values for Signal attributes

For the Trigger Signal Event NEW_REQUEST, the 'Trigger Parameter Entry' dialog displays to prompt for values for the
listed attributes defined in the Signal RequestSignal, referenced by NEW_REQUEST.

Type the value '2' and click on the OK button. The Signal attribute values are then passed to invoked methods such as the
State's behaviors and the Transition's effects.

These messages are output to the Simulation window:

 [03612562] Waiting for Trigger

 [03611358] Command: broadcast NEW_REQUEST.RequestSignal(2)

 [03611362] [server:TransactionServer] Event Queued: NEW_REQUEST.RequestSignal(requestType:2)

 [03611367] [server:TransactionServer] Event Dispatched: NEW_REQUEST.RequestSignal(requestType:2)

 [03611371] [server:TransactionServer] Exit Behavior: ServerStateMachine_idle

 [03611381] [server:TransactionServer] Transition Effect: idle__TO__busy_61772

(c) Sparx Systems 2020 Page 352 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

 [03611390] [server:TransactionServer] Entry Behavior: ServerStateMachine_busy

 [03611398] [server:TransactionServer] Do Behavior: ServerStateMachine_busy

 [03612544] [server:TransactionServer] Completion: TransactionServer_ServerStateMachine_busy

 [03612562] Waiting for Trigger

We can broadcast events by double-clicking on the item listed in the Simulation Events window. Alternatively, we can
type a command string in the text field of the Simulation window (underneath the toolbar).

 [03612562] Waiting for Trigger

 [04460226] Command: broadcast NEW_REQUEST.RequestSignal(3)

 [04460233] [server:TransactionServer] Event Queued: NEW_REQUEST.RequestSignal(requestType:3)

 [04461081] Waiting for Trigger

The Simulation message indicates that the event occurrence is deferred (Event Queued, but not dispatched). We can run
further commands using the text field:

 [04655441] Waiting for Trigger

 [04664057] Command: broadcast NEW_REQUEST.RequestSignal(6)

 [04664066] [server:TransactionServer] Event Queued: NEW_REQUEST.RequestSignal(requestType:6)

 [04664803] Waiting for Trigger

 [04669659] Command: broadcast NEW_REQUEST.RequestSignal(5)

 [04669667] [server:TransactionServer] Event Queued: NEW_REQUEST.RequestSignal(requestType:5)

 [04670312] Waiting for Trigger

 [04674196] Command: broadcast NEW_REQUEST.RequestSignal(8)

 [04674204] [server:TransactionServer] Event Queued: NEW_REQUEST.RequestSignal(requestType:8)

 [04674838] Waiting for Trigger

dump: Query 'active count' for a State and Event pool

Type dump in the text field; these results display:

(c) Sparx Systems 2020 Page 353 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

From the 'active count' section, we can see that busy is the active state (active count is 1).

Tips: For a Composite State, the active count is 1 (for itself) plus the number of active regions.

From the 'Event Pool' section, we can see that there are four event occurrences in the Event Queue. Each instance of the
signal carries different data.

The order of the events in the pool is the order in which they are broadcast.

eval: Query Run Time Value of the Context

 Trigger AUTHORIZED,

 [04817341] Waiting for Trigger

 [05494672] Command: broadcast AUTHORIZED

 [05494678] [server:TransactionServer] Event Queued: AUTHORIZED

 [05494680] [server:TransactionServer] Event Dispatched: AUTHORIZED

 [05494686] [server:TransactionServer] Exit Behavior: ServerStateMachine_busy

 [05494686] [server:TransactionServer] Transition Effect: busy__TO__idle_61769

 [05494687] [server:TransactionServer] Entry Behavior: ServerStateMachine_idle

 [05494688] [server:TransactionServer] Do Behavior: ServerStateMachine_idle

 [05495835] [server:TransactionServer] Completion: TransactionServer_ServerStateMachine_idle

 [05495842] [server:TransactionServer] Event Dispatched: NEW_REQUEST.RequestSignal(requestType:3)

 [05495844] [server:TransactionServer] Exit Behavior: ServerStateMachine_idle

 [05495846] [server:TransactionServer] Transition Effect: idle__TO__busy_61772

 [05495847] [server:TransactionServer] Entry Behavior: ServerStateMachine_busy

 [05495850] [server:TransactionServer] Do Behavior: ServerStateMachine_busy

 [05496349] [server:TransactionServer] Completion: TransactionServer_ServerStateMachine_busy

 [05496367] Waiting for Trigger

(c) Sparx Systems 2020 Page 354 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

The transition from busy to idle is made, so we expect the effect to be executed·

One event is recalled from the pool and dispatched when idle is completed, causing busy to become the active state·

Type dump and notice that there are three events left in the pool; the first one is recalled and dispatched·

 [05693348] Event Pool: [

 [05693349] NEW_REQUEST.RequestSignal(requestType:6),

 [05693351] NEW_REQUEST.RequestSignal(requestType:5),

 [05693352] NEW_REQUEST.RequestSignal(requestType:8),

 [05693354]]

Type eval server.authorizeCnt in the text field. This figure indicates that the run time value of 'server.authorizeCnt' is 1.

Trigger AUTHORIZED again. When the StateMachine is stable at busy, there will be two events left in the pool. Run
eval server.suthorizeCnt again; the value will be 2.

Access Context's member variable from State behavior and Transition Effect

Enterprise Architect's Executable StateMachine supports simulation for C, C++, C#, Java and JavaScript.

For C and C++, the syntax differs from C#, Java and JavaScript in accessing the context's member variables. C and C++
use the pointer '->' while the others simply use '.'; however, you can always use this.variableName to access the
variables. Enterprise Architect will translate it to this->variableName for C and C++.

So for all languages, simply use this format for the simulation:

 this.variableName

Examples:

In the transition's effect:

 this.authorizeCnt++;

In some state's entry, do or exit behavior:

 this.foo += this.bar;

Note: by default Enterprise Architect is only replacing 'this->' with 'this' for C and C++; For example:

 this.foo = this.bar + myObject.iCount + myPointer->iCount;

will be translated to:

 this->foo = this->bar + myObject.iCount + myPointer->iCount;

A complete list of commands supported

(c) Sparx Systems 2020 Page 355 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Since the Executable StateMachine Artifact can simulate multiple contexts together, some of the commands can specify
an instance name.

run statemachine:

As each context can have multiple StateMachines, the 'run' command can specify a StateMachine to start with.

run instance.statemachine·

run all.all·

run instance·

run all·

run·

For example:

 run

 run all

 run server

 run server.myMainStatemachine

broadcast & send event:

broadcast EventString·

send EventString to instance·

send EventString (equivalent to broadcast EventString)·

For example:

 broadcast Event1

 send Event1 to client

dump command:

dump·

dump instance·

For example:

 dump

 dump server

 dump client

eval command:

eval instance.variableName·

For example:

 eval client.requestCnt

 eval server.responseCnt

exit command:

exit·

The EventString's format:

(c) Sparx Systems 2020 Page 356 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

EventName.SignalName(argument list)·

Note: the argument list should match the attributes defined in the signal by order.

For example, if the Signal defines two attributes:

foo·

bar·

Then these EventStrings are valid:

Event1.Signal1(10, 5) --------- foo = 10; bar = 5·

Event1.Signal1(10,) --------- foo = 10; bar is undefined·

Event1.Signal1(,5) --------- bar = 10; foo is undefined·

Event1.Signal1(,) --------- both foo and bar are not defined·

If the Signal does not contain any attributes, we can simplify the EventString to:

EventName·

(c) Sparx Systems 2020 Page 357 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Example: Simulation in HTML with JavaScript

We already know that users can model an Executable StateMachine and simulate it in Enterprise Architect with the
generated code. In the CD Player and the Regular Expression Parser examples, we will further demonstrate how you can
integrate the generated code with your real projects.

Enterprise Architect provides two different mechanisms for client code to use a StateMachine:

Active State Based - the client can query the current active state, then 'switch' the logic based on the query result·

Runtime Variable Based - the client does not act on the current active state, but does act on the runtime value of the·
variables defined in the Class containing the StateMachine

In the CD Player example, there are very few states and many buttons on the GUI, so it is quite easy to implement the
example based on the Active State Mechanism; we will also query the runtime value for the current track.

In the Regular Expression Parser example the StateMachine handles everything, and a member variable bMatch changes
its runtime value when states change. The client does not register how many states are there or which state is currently
active.

In these topics, we demonstrate how to model, simulate and integrate a CD Player and a Parser for a specified Regular
Expression, step by step:

CD Player·

Regular Expression Parser·

(c) Sparx Systems 2020 Page 358 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cd_player.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/reg_exp_pars.htm

User Guide - Simulation and Behavior 3 April, 2020

CD Player

The behavior of a CD Player application might appear intuitive; however, there are many rules related to when the
buttons are enabled and disabled, what is displayed in the text fields of the window and what happens when the user
supplies events to the application.

Suppose our example CD Player has these features:

Buttons - Load Random CD, Play, Pause, Stop, Previous Track, Next Track and Eject·

Displays - Number Of Tracks, Current Track, Track Length and Time Elapsed·

StateMachine for CD Player

A Class CDPlayer is defined with two attributes: currentTrack and numberOfTracks.

CDPlayer

- currentTrack: int
- numberOfTracks: int

+ next(): void
+ previous(): void

A StateMachine is used to describe the states of the CD Player:

stm StateMachine

CD UnLoaded

entry / entry
this.currentTrack=0;

CD Loaded

CD Stopped

entry / entry
this.currentTrack=1;

CD Playing CD Paused

Initial

Initial

Next
/this.next();

Stop

Previous
/this.previous();

Pause, Play

Stop

Pause

Eject

Load

Previous
/this.previous();

Play

Next
/this.next();

On the higher level, the StateMachine has two States: CD UnLoaded and CD Loaded·

CD Loaded can be composed of three simple States: CD Stopped, CD Playing, CD Paused·

Transitions are defined with triggers for the events Load, Eject, Play, Pause, Stop, Previous and Next·

State behaviors and transition effects are defined to change the value of attributes defined in CDPlayer; for example,·
the 'Previous' event will trigger the self transition (if the current state is CD Playing or CD Paused) and the effect
will be executed, which will decrement the value of currentTrack or wrap to the last track

We can create an Executable StateMachine Artifact and create a property typing to CDPlayer, then simulate the

(c) Sparx Systems 2020 Page 359 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

StateMachine in Enterprise Architect to make sure the model is correct.

Inspect the code generated

Enterprise Architect will generate these files in a folder that the user has specified:

Back-end code: CDPlayer.js, ContextManager.js, EventProxy.js·

Client code: ManagerWorker·

Front-end code: statemachineGUI.js, index.html·

Other code: SimulationManager.js·

File Description

/CDPlayer.js This file defines the Class CDPlayer and its attributes and operations. It also defines
the Class's StateMachines with the State behaviors and the transition effects.

/ContextManager.js This file is the abstract manager of contexts. The file defines the contents that are
independent of the actual contexts, which are defined in the generalization of the
ContextManager, such as SimulationManager and ManagerWorker.

The simulation (Executable StateMachine Artifact) can involve multiple contexts;
for example, in a tennis game simulation there will be one umpire typed to Class
Umpire, and two players - playerA and playerB - typed to Class Player. Both Class
Umpire and Class Player will define their own StateMachine(s).

/EventProxy.js This file defines Events and Signals used in the simulation.

If we are raising an Event with arguments, we model the Event as a Signal Event,
which specifies a Signal Class; we then define attributes for the Signal Class. Each

(c) Sparx Systems 2020 Page 360 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Event occurrence has an instance of the Signal, carrying the runtime values
specified for the attributes.

/SimulationManager.js This file is for simulation in Enterprise Architect.

/html/ManagerWorker.js This file serves as a middle layer between the front-end and back-end.

The front-end posts a message to request information from the ManagerWorker·

Since the ManagerWorker generalizes from ContextManager, it has full access·
to all the contexts such as querying the current active state and querying the
runtime value of a variable

The ManagerWorker will post a message to the front-end with the data it·
retrieved from the back-end

/html/statemachineGUI.js This file establishes the communication between the front-end and the
ManagerWorker, by defining stateMachineWorker. It:

Defines the functions startStateMachineWebWorker and·
stopStateMachineWebWorker

Defines the functions onActiveStateResonse and onRuntimeValueResponse·
with place-holder code:
 //to do: write user's logic

 You could simply replace this comment with your logic, as will be
demonstrated later in this topic

/html/index.html This defines the HTML User Interface, such as the buttons and the input to raise
Events or display information. You can define CSS and JavaScript in this file.

Customize index.html and statemachineGUI.js

Make these changes to the generated files:

Create buttons and displays·

Create a CSS style to format the display and enable/disable the button images·

Create an ElapseTimeWorker.js to refresh the display every second·

Create a TimeElapsed function, set to Next Track when the time elapsed reaches the length of the track·

Create JavaScript as the button 'onclick' event handler·

Once an event is broadcast, request the active State and runtime value for cdPlayer.currentTrack·

On initialization, request the active State·

In statemachineGUI.js find the function onActiveStateResonse_cdPlayer

In CDPlayer_StateMachine_CDUnLoaded, disable all buttons and enable btnLoad·

In CDPlayer_StateMachine_CDLoaded_CDStopped, disable all buttons and enable btnEject and btnPlay·

In CDPlayer_StateMachine_CDLoaded_CDPlaying, enable all buttons and disable btnLoad and btnPlay·

In CDPlayer_StateMachine_CDLoaded_CDPaused, enable all buttons and disable btnLoad·

In statemachineGUI.js find the function onRuntimeValueResponse

In cdPlayer.currentTrack, we update the display for current track and track length·

(c) Sparx Systems 2020 Page 361 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

The Complete Example

The example can be accessed from the 'Resources' page of the Sparx Systems website, by clicking on this link:

CD Player Simulation

Click on the Load Random CD button, and then on the Start Simulation button.

(c) Sparx Systems 2020 Page 362 of 461 Created with Enterprise Architect

https://sparxsystems.com/resources/examples/cd_player/html/index.html

User Guide - Simulation and Behavior 3 April, 2020

Regular Expression Parser

StateMachine for Regular Expression Parser

The Class RegularExpressionParser is defined with one attribute: bMatch.

RegularExpressionParser

+ bMatch: boolean = false

A StateMachine is used to describe the regular expression (a|b)*abb

stm StateMachine

State6

State1 State2 State3
State4

entry / SetMatch
this.bMatch=true;

exit / SetNotMatch
this.bMatch=false;

State5

entry / SetNotMatch
this.bMatch=false;

Initial

Regular Expression (a|b)*abb implemented in Statemachine.

Initial

x

b

reset a

b

b

a

ba

reset
/this.bMatch=false;

a

The transition triggers are specified as events a, b, x and reset·

On entry to State4, bMatch is set to True; on exit from State4, bMatch is set to False·

On entry to State5, bMatch is set to False·

On self transition of State6, bMatch is set to False·

Customize index.html and statemachineGUI.js

Make these changes to the generated files:

Create an HTML input field and an image to indicate the result·

Create JavaScript as the field's oninput event handler·

Create the function 'SetResult' to toggle the pass/fail image·

Create the function 'getEventStr', which will return 'a' on 'a' and 'b' on 'b', but will return 'x' on any other character·

On initialize, broadcast 'reset'·

On the broadcast event, request the runtime variable 'regxParser.bMatch'·

In statemachineGUI.js, find the function 'onRuntimeValueResponse'.

In 'regxParser.bMatch', we will receive 'True' or 'False' and pass it into 'SetResult' to update the image·

(c) Sparx Systems 2020 Page 363 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

The Complete Example

The example can be accessed from the 'Resources' page of the Sparx Systems website, by clicking on this link:

Regular Expression Parser Simulation

(c) Sparx Systems 2020 Page 364 of 461 Created with Enterprise Architect

https://sparxsystems.com/resources/examples/regular_expression_parser/html/index.html

User Guide - Simulation and Behavior 3 April, 2020

Entering a State

The semantics of entering a State depend on the type of State and the manner in which it is entered.

In all cases, the entry Behavior of the State is executed (if defined) upon entry, but only after any effect Behavior
associated with the incoming Transition is completed. Also, if a doActivity Behavior is defined for the State, this
Behavior commences execution immediately after the entry Behavior is executed.

For a Composite State with one or more Regions defined, a number of alternatives exist for each Region:

Default entry: This situation occurs when the owning Composite State is the direct target of a Transition; after·
executing the entry Behavior and forking a possible doActivity Behavior execution, State entry continues from an
initial Pseudostate via its outgoing Transition (known as the default Transition of the State) if it is defined in the
Region
If no initial Pseudostate is defined, this Region will not be active

Explicit entry: If the incoming Transition or its continuations terminate on a directly contained Substate of the·
owning composite State, then that Substate becomes active and its entry Behavior is executed after the execution of
the entry Behavior of the containing composite State
This rule applies recursively if the Transition terminates on an indirect (deeply nested) Substate

Shallow history entry: If the incoming Transition terminates on a shallowHistory Pseudostate of this Region, the·
active Substate becomes the Substate that was most recently active (except FinalState) prior to this entry, unless this
is the first entry into this State; if it is the first entry into this State or the previous entry had reached a Final, a
default shallow history Transition will be taken if it is defined, otherwise the default State entry is applied

Deep history entry: The rule for this case is the same as for shallow history except that the target Pseudostate is of·
type deepHistory and the rule is applied recursively to all levels in the active State configuration below this one

Entry point entry: If a Transition enters the owning composite State through an entryPoint Pseudostate, then the·
outgoing Transition originating from the entry point and penetrating into the State in this region is taken; if there are
more outgoing Transitions from the entry points, each Transition must target a different Region and all Regions are
activated concurrently

For orthogonal States with multiple Regions, if the Transition explicitly enters one or more Regions (in the case of a
Fork or entry point), these Regions are entered explicitly and the others by default.

In this example, we demonstrate a model with all these entry behaviors for an orthogonal State.

Modeling a StateMachine

(c) Sparx Systems 2020 Page 365 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

stm StateMachine

Initial

State1

State2

[RegionB]

[RegionC]

[RegionD]

[RegionE]

EP1

StateB2 StateB3

StateB1

StateC1 StateC3StateC2

StateD2

StateD3

StateD4StateD1

StateE3

InitialE

StateE1 StateE2

HistoryD

HistoryC

InitialB

Final

QUIT

*

DEFAULT

C C

ENTRYPOINT

D
DEEP

E

SHALLOW

B

*

BACK

EXPLICIT B

E

Context of StateMachine

Create a Class element named MyClass, which serves as the context of the StateMachine.1.

Right-click on MyClass in the Browser window and select the 'Add | StateMachine' option.2.

StateMachine

Add to the diagram an Initial Node, a State named State1, a State named State2, and a Final element named final.1.

Enlarge State2 on the diagram, right-click on it and select the 'Advanced | Define Concurrent Substates' option, and2.
define RegionB, RegionC, RegionD and RegionE.

Right-click on State2 and select the 'New Child Element | Entry Point' option to create the Entry Point EP1.3.

In RegionB, create the elements InitialB, transition to StateB1, transition to StateB2, transition to StateB3; all4.
transitions triggered by Event B.

In RegionC, create the elements shallow HistoryC (right-click on History node | Advanced | Deep History |5.
uncheck), transition to StateC1, transition to StateC2, transition to StateC3; all transitions triggered by Event C.

In RegionD, create the elements deep HistoryD (right-click on History node | Advanced | Deep History | check),6.
transition to StateD1, create StateD2 as parent of StateD3, which is parent of StateD4; transition from StateD1 to
StateD4; triggered by Event D.

In RegionE, create the elements InitialE, transition to StateE1, transition to StateE2, transition to StateE3; all7.
transitions triggered by Event E.

Draw transitions from the Entry Point EP1 to StateC1 and StateD1.8.

Draw transitions for different entry types:

Default Entry: State1 to State2; triggered by Event DEFAULT.1.

Explicit Entry: State1 to StateB2; triggered by Event EXPLICIT.2.

Shallow History Entry: State1 to HistoryC; triggered by Event SHALLOW.3.

Deep History Entry: State1 to HistoryD; triggered by Event DEEP.4.

Entry Point Entry: State1 to EP1; triggered by Event ENTRYPOINT.5.

(c) Sparx Systems 2020 Page 366 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Other Transitions:

Composite State Exit: from State2 to State1; triggered by Event BACK.1.

State1 to Final, triggered by Event QUIT.2.

Simulation

Artifact

Enterprise Architect supports C, C++, C#, Java and JavaScript. We use JavaScript in this example because we don't need
to install a compiler. (For other languages, either Visual Studio or JDK are required.)

On the 'Artifacts' page of the Diagram Toolbox, drag the Executable StateMachine icon onto a diagram and create an1.
Artifact named EnteringAStateSimulation. Set the language to JavaScript.

Ctrl+drag the MyClass element from the Browser window onto the EnteringAStateSimulation Artifact, select the2.
'Paste as Property' option and give the Property the name myClass.

«executable statemachine»
EnteringAStateSimulation

myClass: MyClass

Code Generation

Click on EnteringAStateSimulation and select the 'Simulate > Executable States > Statemachine > Generate, build1.
and run' ribbon option.

Specify a directory for the generated source code.2.

Note: The contents of this directory will be cleared before generation; make sure you specify a directory that is used only
for StateMachine simulation purposes.

(c) Sparx Systems 2020 Page 367 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Run Simulation

Tips: You can view the execution trace sequence from the Simulation window, which you open by selecting the
'Simulate > Dynamic Simulation > Simulator > Open Simulation Window' ribbon option

When the simulation begins, State1 is active and the StateMachine is waiting for events.

Open the Simulation Events (Triggers) window using the 'Simulate > Dynamic Simulation > Events' ribbon option.

1) Select the Default Entry: Trigger Sequence [DEFAULT].

(c) Sparx Systems 2020 Page 368 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

RegionB is activated because it defines InitialB; the transition outgoing from it will be executed, StateB1 is the·
active state

RegionE is activated because it defines InitialE; the transition outgoing from it will be executed, StateE1 is the·
active state

RegionC and RegionD are inactive because no Initial Pseudostates were defined·

Select the Trigger [BACK] to reset.

2) Select the Explicit Entry: Trigger Sequence [EXPLICIT].

RegionB is activated because the transition targets the contained vertex StateB2·

RegionE is activated because it defines InitialE; the transition outgoing from it will be executed, StateE1 is the·
active state

RegionC and RegionD are inactive because no Initial Pseudostates were defined·

Select the Trigger [BACK] to reset.

3) Select the Default History Transition: Trigger Sequence [SHALLOW].

(c) Sparx Systems 2020 Page 369 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

RegionC is activated because the transition targets the contained vertex HistoryC; since this region is entered for the·
first time (and the History pseudostate has nothing to 'remember'), the transition outgoing from HistoryC to StateC1
is executed

RegionB is activated because it defines InitialB; the transition outgoing from it will be executed, StateB1 is the·
active state

RegionE is activated because it defines InitialE; the transition outgoing from it will be executed, StateE1 is the·
active state

RegionD is inactive because no Initial Pseudostate was defined·

4) Prepare for testing Shallow History Entry: Trigger Sequence [C, C].

(c) Sparx Systems 2020 Page 370 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

We assume shallow history pseudostate HistoryC can remember StateC3·

Select the Trigger [BACK] to reset.

5) Select the Shallow History Entry: Trigger Sequence [SHALLOW].

For RegionC, StateC3 is activated directly·

Select the Trigger [BACK] to reset.

6) Select the Entry Point Entry: Trigger Sequence [ENTRYPOINT].

RegionC is activated because the transition from EP1 targets the contained StateC1·

RegionD is activated because the transition from EP1 targets the contained StateD1·

(c) Sparx Systems 2020 Page 371 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

RegionB is activated because it defines InitialB; the transition outgoing from it will be executed, StateB1 is the·
active state

RegionE is activated because it defines InitialE; the transition outgoing from it will be executed, StateE1 is the·
active state

7) Prepare for testing Deep History: Trigger Sequence [D].

We assume deep history pseudostate HistoryD can remember StateD2, StateD3 and StateD4·

Select the Trigger [BACK] to reset.

8) Select the Deep History Entry: Trigger Sequence [DEEP].

For RegionD, StateD2, StateD3 and StateD4 are entered; the traces are:·

(c) Sparx Systems 2020 Page 372 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

 - myClass[MyClass].StateMachine_State1 EXIT

 - myClass[MyClass].State1__TO__HistoryD_105793_61752 Effect

 - myClass[MyClass].StateMachine_State2 ENTRY

 - myClass[MyClass].StateMachine_State2 DO

 - myClass[MyClass].InitialE_105787__TO__StateE1_61746 Effect

 - myClass[MyClass].StateMachine_State2_StateE1 ENTRY

 - myClass[MyClass].StateMachine_State2_StateE1 DO

 - myClass[MyClass].InitialB_105785__TO__StateB1_61753 Effect

 - myClass[MyClass].StateMachine_State2_StateB1 ENTRY

 - myClass[MyClass].StateMachine_State2_StateB1 DO

 - myClass[MyClass].StateMachine_State2_StateD2 ENTRY

 - myClass[MyClass].StateMachine_State2_StateD2_StateD3 ENTRY

 - myClass[MyClass].StateMachine_State2_StateD2_StateD3_StateD4 ENTRY

(c) Sparx Systems 2020 Page 373 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Example: Fork and Join

Fork pseudostates split an incoming Transition into two or more Transitions, terminating in Vertices in orthogonal
Regions of a Composite State. The Transitions outgoing from a Fork pseudostate cannot have a guard or a trigger, and
the effect behaviors of the individual outgoing Transitions are, at least conceptually, executed concurrently with each
other.

Join pseudostates are a common target Vertex for two or more Transitions originating from Vertices in different
orthogonal Regions. Join pseudostates perform a synchronization function, whereby all incoming Transitions have to
complete before execution can continue through an outgoing Transition.

In this example, we demonstrate the behavior of a StateMachine with Fork and Join pseudostates.

Modeling StateMachine

stm StateMachine

State1

[RegionA]

[RegionB]

StateA1

StateB1

StateA2

StateB2
Initial Final

X

Y

Context of StateMachine

Create a Class element named MyClass, which serves as the context of a StateMachine·

Right-click on MyClass in the Browser window and select the 'Add | StateMachine' option·

StateMachine

Add an Initial Node, a Fork, a State named State1, a Join, and a Final to the diagram·

Enlarge State1, right-click on it on the diagram and select the 'Advanced | Define Concurrent Substates | Define'·
option and define RegionA and RegionB

In RegionA, define StateA1, transition to StateA2, triggered by event X·

In RegionB, define StateB1, transition to StateB2, triggered by event Y·

Draw other transitions: Initial to Fork; Fork to StateA1 and StateB1; StateA2 and StateB2 to Join; Join to Final·

Simulation

Artifact

Enterprise Architect supports C, C++, C#, Java and JavaScript; we will use JavaScript in this example because we don't
need to install a compiler (for the other languages, either Visual Studio or JDK are required).

From the Diagram Toolbox select the 'Artifacts' page and drag the Executable StateMachine icon onto the diagram·
to create an Artifact; name it ForkNJoinSimulation and set its 'Language' field to 'JavaScript'

Ctrl+Drag MyClass from the Browser window and drop it on the ForkNJoinSimulation Artifact as a Property; give it·

(c) Sparx Systems 2020 Page 374 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

the name myClass

«executable statemachine»
ForkNJoinSimulation

myClass: MyClass

Code Generation

Click on ForkNJoinSimulation and select the 'Simulate > Executable States > Statemachine > Generate, Build and·
Run' ribbon option

Specify a directory for the generated source code·

Note: The contents of this directory will be cleared before generation; make sure you point to a directory that exists only
for StateMachine simulation purposes.

Run Simulation

When the simulation is started, State1, StateA1 and StateB1 are active and the StateMachine is waiting for events.

(c) Sparx Systems 2020 Page 375 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Select the 'Simulate > Dynamic Simulation > Events' ribbon option to display the Simulation Events window.

On Trigger event X, StateA1 will exit and enter StateA2; after the entry and doActivity behavior has run, the completion
events of StateA2 are dispatched and recalled. Then the transition from StateA2 to the Join pseudostate is enabled and
traversed.

Note: Join must wait for all incoming Transitions to complete before execution can continue through an outgoing
Transition. Since the branch from RegionB is not complete (because StateB1 is still active and waiting for triggers) the
transition from Join to Final will not be executed at this moment.

On Trigger event Y, StateB1 will exit and enter StateB2; after the entry and doActivity behavior has run, completion
events of StateB2 are dispatched and recalled. Then the transition from StateB2 to the Join pseudostate is enabled and
traversed. This satisfies the criteria of all the incoming transitions of Join having completed, so the transition from Join
to Final is executed. Simulation has ended.

Tips: You can view the execution trace sequence from the Simulation window ('Simulate > Dynamic Simulation >
Simulator > Open Simulation Window' ribbon option).

 myClass[MyClass].Initial_82285__TO__fork_82286_82286_61745 Effect

(c) Sparx Systems 2020 Page 376 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

 myClass[MyClass].StateMachine_State1 ENTRY

 myClass[MyClass].StateMachine_State1 DO

 myClass[MyClass].fork_82286_82286__TO__StateA1_57125 Effect

 myClass[MyClass].StateMachine_State1_StateA1 ENTRY

 myClass[MyClass].StateMachine_State1_StateA1 DO

 myClass[MyClass].fork_82286_82286__TO__StateB1_57126 Effect

 myClass[MyClass].StateMachine_State1_StateB1 ENTRY

 myClass[MyClass].StateMachine_State1_StateB1 DO

 Trigger X

 myClass[MyClass].StateMachine_State1_StateA1 EXIT

 myClass[MyClass].StateA1__TO__StateA2_57135 Effect

 myClass[MyClass].StateMachine_State1_StateA2 ENTRY

 myClass[MyClass].StateMachine_State1_StateA2 DO

 myClass[MyClass].StateMachine_State1_StateA2 EXIT

 myClass[MyClass].StateA2__TO__join_82287_82287_57134 Effect

 Trigger Y

 myClass[MyClass].StateMachine_State1_StateB1 EXIT

 myClass[MyClass].StateB1__TO__StateB2_57133 Effect

 myClass[MyClass].StateMachine_State1_StateB2 ENTRY

 myClass[MyClass].StateMachine_State1_StateB2 DO

 myClass[MyClass].StateMachine_State1_StateB2 EXIT

 myClass[MyClass].StateB2__TO__join_82287_82287_57132 Effect

 myClass[MyClass].StateMachine_State1 EXIT

 myClass[MyClass].join_82287_82287__TO__Final_105754_57130 Effect

(c) Sparx Systems 2020 Page 377 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Example: Deferred Event Pattern

Enterprise Architect supports the Deferred Event Pattern.

To create a Deferred Event in a State:

Create a self transition for the State.1.

Change the 'kind' of the transition to 'internal'.2.

Specify the Trigger to be the event you want to defer.3.

In the 'Effect' field, type 'defer();'.4.

To Simulate:

Select 'Simulate > Dynamic Simulation > Simulator > Open Simulation Window'. Also select 'Simulate > Dynamic1.
Simulation > Events' to open the Simulation Events window.

The Simulator Events window helps you to trigger events; double-click on a trigger in the 'Waiting Triggers'2.
column.

The Simulation window shows the execution in text. You can type 'dump' in the Simulator command line to show3.
how many events are deferred in the queue; the output might resemble this:
 24850060] Event Pool: [NEW,NEW,NEW,NEW,NEW,]

Deferred Event Example

This example shows a model using Deferred Events, and the Simulation Events window showing all available Events.

We firstly set up the contexts (the Class elements containing the StateMachines), simulate them in a simple context and
raise the event from outside it; then simulate in a client-server context with the Send event mechanism.

Create Context and StateMachine

Create the server context

TransactionServerTestClient
+server

Create a Class diagram and:

A Class element TransactionServer, to which you add a StateMachine ServerStateMachine.1.

A Class element TestClient, to which you add a StateMachine ClientStateMachine.2.

An Association from TestClient to TransactionServer, with the target role named server.3.

Modeling for ServerStateMachine

stm ServerStateMachine

Initial

idle busy

NEW_REQUEST /
defer(); Final

QUIT
NEW_REQUEST

AUTHORIZED

(c) Sparx Systems 2020 Page 378 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Add an Initial Node Initial to the StateMachine diagram, and transition to a State idle.1.

Transition (with event NEW_REQUEST as Trigger) to a State busy.2.

Transition (with event QUIT as Trigger) to a Final State Final.3.

Transition (with event AUTHORIZED as Trigger) to idle.4.

Transition (with event NEW_REQUEST as Trigger and defer(); as effect) to busy5.

Modeling for ClientStateMachine

stm ClientStateMachine

State0

State5

Final

State4

State3

State2

State1

Initial

/%SEND_EVENT("NEW_REQUEST", CONTEXT_REF(server))%;

/%BROADCAST_EVENT("NEW_REQUEST")%;

/%SEND_EVENT("NEW_REQUEST", CONTEXT_REF(server))%;

/%SEND_EVENT("AUTHORIZED", CONTEXT_REF(server))%;

RUN_TEST

Add an Initial Node Initial to the StateMachine diagram, and transition to a State State0.1.

Transition (with event RUN_TEST as trigger) to a State State1.2.

Transition (with effect: %SEND_EVENT("NEW_REQUEST", CONTEXT_REF(server))%;) to a State State2.3.

Transition (with effect: %SEND_EVENT("NEW_REQUEST", CONTEXT_REF(server))%;) to a State State3.4.

Transition (with effect: %BROADCAST_EVENT("NEW_REQUEST")%;) to a State State4.5.

Transition (with effect: %SEND_EVENT("AUTHORIZED", CONTEXT_REF(server))%;) to a State State5.6.

Transition to a Final State Final.7.

Simulation in a simple context

Create the Simulation Artifact

(c) Sparx Systems 2020 Page 379 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

«executable statemachine»
Simulation with Deferred Event

server: TransactionServer

Create an Executable StateMachine Artifact with the name Simulation with Deferred Event and the 'Language' field1.
set to JavaScript.

Enlarge it, then Ctrl+drag the TransactionServer element onto the Artifact and paste it as a property with the name2.
server.

Run the Simulation

Select the Artifact, then select the 'Simulate > Executable States > Statemachine > Generate, Build and Run' option,1.
and specify a directory for your code (Note: all the files in the directory will be deleted before simulation starts).

Click on the Generate button.2.

Select the 'Simulate > Dynamic Simulation > Events' option to open the Simulation Event window.3.

When simulation starts, idle will be the active state.

Double-click on NEW_REQUEST in the Simulation Event window to execute it as the Trigger; idle is exited and1.
busy is activated.

Double-click on NEW_REQUEST in the Simulation Event window to execute it again as the Trigger; busy remains2.
activated, and an instance of NEW_REQUEST is appended in the Event Pool.

Double-click on NEW_REQUEST in the Simulation Event window to execute it a third time as the Trigger; busy3.
remains activated, and an instance of NEW_REQUEST is appended in the Event Pool.

Type dump in the Simulation window command line; notice that the event pool has two instances of4.
NEW_REQUEST.

(c) Sparx Systems 2020 Page 380 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Double-click on AUTHORIZED in the Simulation Event window to execute it as the Trigger; these actions take5.
place:
 - busy is exited and idle becomes active
 - a NEW_REQUEST event is retrieved from the pool, idle is exited and busy becomes active

Type dump in the Simulation window command line; there is now only one instance of NEW_REQUEST in the6.
Event Pool.

Interactive simulation via Send/Broadcast Event

Create the Simulation Artifact

«executable statemachine»
Interactive Simulation with Deferred Event

server: TransactionServerclient: TestClient

Create an Executable StateMachine Artifact with the name Interactive Simulation with Deferred Event and the1.
'Language' field set to JavaScript; enlarge the element.

Ctrl+Drag the TransactionServer element onto the Artifact, and paste it as a property with the name server.2.

Ctrl+Drag the TestClient element onto the Artifact, and paste it as a property with the name client.3.

(c) Sparx Systems 2020 Page 381 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Create a connector from client to server.4.

Click on the connector and press Ctrl+L to select the association from the TestClient element to the5.
TransactionServer element.

Run Interactive Simulation

Launch the simulation in the same way as for the simple context.1.

Once the simulation has started, the client remains at State0 and the server remains at idle.

Double-click on RUN_TEST in the Simulation Event window to trigger it. The event NEW_REQUEST will be2.
triggered three times (by SEND_EVENT and BROADCAST_EVENT) and AUTHORIZED will be triggered once
by SEND_EVENT.

(c) Sparx Systems 2020 Page 382 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Type dump in the Simulation window command line, There is one instance of NEW_REQUEST left in the Event
Pool. The result matches our manual triggering test.

(c) Sparx Systems 2020 Page 383 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Example: Entry and Exit Points (Connection Point
References)

Enterprise Architect provides support for Entry and Exit points, and for Connection Point References. In this example,
we define two StateMachines for MyClass - StateMachine and SubMachine.

stm StateMachine

Final1

State2: SubMachine

CPR_Entry
CPR_Exit2

CPR_Exit3

State1

[RegionA]

[RegionB]

[RegionC]

EntryPoint1
ExitPoint1

Final2

StateC1

InitialC

StateA1

StateB1

Initial1

EVENT_A

EVENT_A

EVENT_C

*

*

stm SubMachine

[RegionX]

[RegionY]

[RegionZ]

ExitPoint2

ExitPoint3

EntryPoint2

StateZ2

StateX1

StateZ1
FinalZ

StateY1

InitialZ

StateY2

InitialY

*

EVENT_BEVENT_B

EVENT_C

EVENT_A

EVENT_C

*

State1 is a Composite State (also called an Orthogonal State because it has multiple Regions) with three Regions:·
RegionA, RegionB and RegionC

(c) Sparx Systems 2020 Page 384 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

State2 is a SubMachine State calling SubMachine, which has three Regions: RegionX, RegionY, and RegionZ·

EntryPoint1 is defined on State1 to activate two of the three Regions; EntryPoint2 is defined on SubMachine to·
activate two of the three Regions

ExitPoint1 is defined on State1; two exit points ExitPoint2 and ExitPoint3 are defined on SubMachine·

Connection Point References are defined on State2 and bind to the Entry/Exit Points of the typing SubMachine·

Initial nodes are defined to demonstrate default activation of the Regions·

Entering a State: Entry Point Entry

EntryPoint1 on State1

When a Transition targeted on EntryPoint1 is enabled, State1 is activated followed by the contained Regions.

Explicit activation occurs for RegionA and RegionB, because each of them is entered by a Transition terminating on·
one of the Region’s contained Vertices

Default activation occurs for RegionC, because it defines an Initial pseudostate InitialC and the Transition·
originating from the InitialC to StateC1 starts execution

EntryPoint2 on SubMachine

The Trigger Sequence to be simulated is: [EVENT_C, EVENT_A].

When a Transition targeted on Connection Point Reference CPR_Entry on State2 is enabled, State2 is activated, followed
by the SubMachine's activation through the binding entry points.

(c) Sparx Systems 2020 Page 385 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Explicit activation occurs for RegionX and RegionY, because each of them is entered by a Transition terminating on·
one of the Region’s contained Vertices - StateX1 in RegionX, StateY1 in RegionY

Default activation occurs for RegionZ, because it defines an Initial pseudostate InitialZ and the Transition·
originating from InitialZ to StateZ1 starts execution

Entering a State: Default Entry

This situation arises when the Composite State is the direct target of a Transition.

Default Entry of State2

The Trigger Sequence to be simulated is: [EVENT_A, EVENTC].

When a Transition targeted directly on State2 is enabled, State2 is activated, followed by default activation for all the
Regions of the SubMachine.

(c) Sparx Systems 2020 Page 386 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

RegionX's State is inactive because it does not define an Initial node·

RegionY is activated through InitialY and the Transition to StateY2 is executed·

RegionZ is activated through InitialZ and the Transition to StateZ1 is executed·

State Exit

State1 Exit

Trigger Sequence [EVENT_C, EVENT_A]: RegionC is inactivated first, then RegionA and RegionB; after the exit·
behavior of State1 is executed, the Transition outgoing from ExitPoint1 is enabled

Trigger Sequence [EVENT_A, EVENT_C]: RegionA and RegionB are inactivated first, then RegionC; after the exit·
behavior of State1 is executed, the Transition outgoing directly from State1 is enabled

State2 Exit

Trigger Sequence [EVENT_C, EVENT_A], so the current state resembles this:

(c) Sparx Systems 2020 Page 387 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Trigger Sequence [EVENT_A, EVENT_C, EVENT_C, EVENT_B, EVENT_B]: RegionX is inactivated first, then·
RegionY, and RegionZ is the last; after the exit behavior of State2 is executed, the Transition outgoing directly from
State2 is enabled

Trigger Sequence [EVENT_A, EVENT_B, EVENT_B, EVENT_C, EVENT_C]: RegionX is inactivated first, then·
RegionZ, and RegionY is the last; after the exit behavior of State2 is executed, the Transition outgoing from
CPR_Exit3 is enabled (ExitPoint3 on SubMachine is bound to CPR_Exit3 of State2)

Trigger Sequence [EVENT_C, EVENT_C, EVENT_B, EVENT_B, EVENT_A]: RegionY is inactivated first, then·
RegionZ, and RegionX is the last; after the exit behavior of State2 is executed, the Transition outgoing from
CPR_Exit2 is enabled (ExitPoint2 on SubMachine is bound to CPR_Exit2 of State2)

(c) Sparx Systems 2020 Page 388 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Example: History Pseudostate

State History is a convenient concept associated with Regions of Composite States, whereby a Region keeps track of the
configuration a State was in when it was last exited. This allows easy return to that State configuration, if necessary,
when the Region next becomes active (for example, after returning from handling an interrupt), or if there is a local
Transition that returns to its history.

Enterprise Architect supports two types of History Pseudostate:

Deep History - representing the full State configuration of the most recent visit to the containing Region; the effect·
is the same as if the Transition terminating on the deepHistory Pseudostate had, instead, terminated on the innermost
State of the preserved State configuration, including execution of all entry Behaviors encountered along the way

Shallow History - representing a return to only the top-most substate of the most recent State configuration, which is·
entered using the default entry rule

In this example, the Classes DeepTurbineManager and ShallowTurbineManager are exactly the same except that the
contained StateMachine for the first has a deepHistory Pseudostate and for the second has a shallowHistory Pseudostate.

Both StateMachines have three Composite States: Turbine_01, Turbine_02 andTurbine_03, each of which has Off and
On States and a History Pseudostate in its Region.

In order to better observe the difference between Deep History and Shallow History, we execute the two StateMachines
in one simulation.

«executable statemachine»
TurbineSimulation

shallowManager: ShallowTurbineManager

deepManager: DeepTurbineManager

The StateMachine in DeepTurbineManager is illustrated in this diagram:

(c) Sparx Systems 2020 Page 389 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

stm StateMachine Turbine_01

On

Initial

High

Low

Off

History1

Turbine_03Initial

On

Initial

High

Low

Off
History3

Turbine_02

On

Initial

High

Low

Off

History2

Initial

MODE

SPEED

MODE

SPEED

NEXTMODE

NEXT

SPEED

SPEED

MODE

SPEED

NEXT

SPEED

MODE

MODE

The StateMachine in ShallowTurbineManager is illustrated in this diagram:

(c) Sparx Systems 2020 Page 390 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

stm StateMachine Turbine_01

History1
Off

On

Low

High

Initial

Turbine_03

History3

Off

On
Low

High

Initial

Initial

Turbine_02

History2

Off

On
Low

High

Initial

Initial

SPEED

NEXT

MODE

SPEED

MODE

SPEED

NEXT

NEXT

MODE

SPEED

MODE

MODE

MODE

SPEED SPEED

Tip: If you right-click on the History node on the diagram and select the 'Advanced | Deep History' option, you can
toggle the type of History Pseudostate between shallow and deep.

First Time Activation of States

After simulation starts, Turbine_01 and its substate Off are activated.

Trigger Sequence: [MODE, SPEED]

(c) Sparx Systems 2020 Page 391 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Then the active State configuration includes:

Turbine_01·

Turbine_01.On·

Turbine_01.On.High·

This applies to both deepManager and shallowManager.

Trigger Sequence: [NEXT]

This trace sequence can be observed from the Simulation window (Simulate > Dynamic Simulation > Simulator > Open
Simulation Window):

 01 shallowManager[ShallowTurbineManager].StateMachine_Turbine_01_On_High EXIT

 02 shallowManager[ShallowTurbineManager].StateMachine_Turbine_01_On EXIT

(c) Sparx Systems 2020 Page 392 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

 03 shallowManager[ShallowTurbineManager].StateMachine_Turbine_01 EXIT

 04 shallowManager[ShallowTurbineManager].Turbine_01__TO__History2_105720_61730 Effect

 05 shallowManager[ShallowTurbineManager].StateMachine_Turbine_02 ENTRY

 06 shallowManager[ShallowTurbineManager].StateMachine_Turbine_02 DO

 07 shallowManager[ShallowTurbineManager].History2_105720__TO__Off_61731 Effect

 08 shallowManager[ShallowTurbineManager].StateMachine_Turbine_02_Off ENTRY

 09 shallowManager[ShallowTurbineManager].StateMachine_Turbine_02_Off DO

Note: Since deepManager has exactly the same trace as shallowManager, the trace for deepManager is filtered out from
this sequence.

We can learn that:

Exiting a Composite State commences with the innermost State in the active State configuration (see lines 01 - 03 in·
the trace sequence)

The Default History Transition is only taken if execution leads to the History node (see line 04) and the State has·
never been active before (see line 07)

Then the active State configuration includes:

Turbine_02·

Turbine_02.Off·

This applies to both deepManager and shallowManager.

Trigger Sequence: [NEXT, MODE]

This trace sequence can be observed from the Simulation window:

 Trigger [NEXT]

 01 shallowManager[ShallowTurbineManager].StateMachine_Turbine_02_Off EXIT

 02 shallowManager[ShallowTurbineManager].StateMachine_Turbine_02 EXIT

(c) Sparx Systems 2020 Page 393 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

 03 shallowManager[ShallowTurbineManager].Turbine_02__TO__History3_105713_61725 Effect

 04 shallowManager[ShallowTurbineManager].StateMachine_Turbine_03 ENTRY

 05 shallowManager[ShallowTurbineManager].StateMachine_Turbine_03 DO

 06 shallowManager[ShallowTurbineManager].Initial_105706__TO__Off_61718 Effect

 07 shallowManager[ShallowTurbineManager].StateMachine_Turbine_03_Off ENTRY

 08 shallowManager[ShallowTurbineManager].StateMachine_Turbine_03_Off DO

 Trigger [MODE]

 Message omitted...

Note: Since deepManager has exactly the same trace as shallowManager, the trace for deepManager is filtered out from
this sequence.

We can learn that:

Since there is no default History Transition defined for History3, the standard default entry of the State is performed;·
an Initial node is found in the Region contained by Turbine_03, so the Transition originating from Initial is enabled
(see line 06)

Then the active state configuration includes:

Turbine_03·

Turbine_03.On·

Turbine_03.On.Low·

This applies to both deepManager and shallowManager.

History Entry of States

As a reference, we show the Deep History snapshot of each Turbine after its first activation:

Turbine_01

Turbine_01.On·

Turbine_01.On.High·

Turbine_02

Turbine_02.Off·

Turbine_03

Turbine_03.On·

Turbine_03.On.Low·

When we further Trigger NEXT, Turbine_01 will be activated again.

(c) Sparx Systems 2020 Page 394 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

This trace sequence can be observed from the Simulation window:

For shallowManager:

 Trigger [NEXT]

 01 shallowManager[ShallowTurbineManager].StateMachine_Turbine_03_On_Low EXIT

 02 shallowManager[ShallowTurbineManager].StateMachine_Turbine_03_On EXIT

 03 shallowManager[ShallowTurbineManager].StateMachine_Turbine_03 EXIT

 04 shallowManager[ShallowTurbineManager].Turbine_03__TO__History1_105711_61732 Effect

 05 shallowManager[ShallowTurbineManager].StateMachine_Turbine_01 ENTRY

 06 shallowManager[ShallowTurbineManager].StateMachine_Turbine_01 DO

 07 shallowManager[ShallowTurbineManager].StateMachine_Turbine_01_On ENTRY

 08 shallowManager[ShallowTurbineManager].StateMachine_Turbine_01_On DO

 09 shallowManager[ShallowTurbineManager].Initial_105721__TO__Low_61729 Effect

 10 shallowManager[ShallowTurbineManager].StateMachine_Turbine_01_On_Low ENTRY

 11 shallowManager[ShallowTurbineManager].StateMachine_Turbine_01_On_Low DO

We can learn that:

The shallowHistory node restores Turbine_01 as far as Turbine_01.On·

Then the Region contained by Composite State Turbine_01.On will be activated by the Initial node, which activated·
at Low

For deepManager:

 Trigger [NEXT]

 01 deepManager[DeepTurbineManager].StateMachine_Turbine_03_On_Low EXIT

 02 deepManager[DeepTurbineManager].StateMachine_Turbine_03_On EXIT

 03 deepManager[DeepTurbineManager].StateMachine_Turbine_03 EXIT

 04 deepManager[DeepTurbineManager].Turbine_03__TO__History1_105679_61708 Effect

 05 deepManager[DeepTurbineManager].StateMachine_Turbine_01 ENTRY

(c) Sparx Systems 2020 Page 395 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

 06 deepManager[DeepTurbineManager].StateMachine_Turbine_01 DO

 07 deepManager[DeepTurbineManager].StateMachine_Turbine_01_On ENTRY

 08 deepManager[DeepTurbineManager].StateMachine_Turbine_01_On_High ENTRY

We can learn that:

The deepHistory node restores Turbine_01 as far as Turbine_01.On.High·

Trigger [NEXT] to exit Turbine_01 and activate Turbine_02

Both shallowManager and deepManager activate Turbine_02.Off, which is the History snapshot when they exited.

Trigger [NEXT] to exit Turbine_02 and activate Turbine_03

Both shallowManager and deepManager activate Turbine_03.On.Low. However, the sequences of shallowManager and
deepManager are different.

For shallowManager, the shallowHistory can only restore as far as Turbine_03.On. Since an Initial node is defined in
Turbine_03.On, the Transition originating from Initial will be enabled and Turbine_03.On.Low is reached.

 01 shallowManager[ShallowTurbineManager].StateMachine_Turbine_02_Off EXIT

 02 shallowManager[ShallowTurbineManager].StateMachine_Turbine_02 EXIT

 03 shallowManager[ShallowTurbineManager].Turbine_02__TO__History3_105713_61725 Effect

 04 shallowManager[ShallowTurbineManager].StateMachine_Turbine_03 ENTRY

 05 shallowManager[ShallowTurbineManager].StateMachine_Turbine_03 DO

 06 shallowManager[ShallowTurbineManager].StateMachine_Turbine_03_On ENTRY

 07 shallowManager[ShallowTurbineManager].StateMachine_Turbine_03_On DO

 08 shallowManager[ShallowTurbineManager].Initial_105727__TO__Low_61728 Effect

 09 shallowManager[ShallowTurbineManager].StateMachine_Turbine_03_On_Low ENTRY

 10 shallowManager[ShallowTurbineManager].StateMachine_Turbine_03_On_Low DO

For deepManager, the deephistory can restore as far as Turbine_03.On.Low directly.

 01 deepManager[DeepTurbineManager].StateMachine_Turbine_02_Off EXIT

 02 deepManager[DeepTurbineManager].StateMachine_Turbine_02 EXIT

 03 deepManager[DeepTurbineManager].Turbine_02__TO__History3_105680_61701 Effect

 04 deepManager[DeepTurbineManager].StateMachine_Turbine_03 ENTRY

 05 deepManager[DeepTurbineManager].StateMachine_Turbine_03 DO

 06 deepManager[DeepTurbineManager].StateMachine_Turbine_03_On ENTRY

 07 deepManager[DeepTurbineManager].StateMachine_Turbine_03_On_Low ENTRY

(c) Sparx Systems 2020 Page 396 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Example Executable StateMachine

Example Class Model

This image shows a sample Class model that is used by the StateMachines described in this topic.

TurbineController

+ simulationLength: int
+ tickLength: double

Turbine

+ currentHeat: double
+ heatDisipation: double
+ heatProduction: double
+ heatTolerance: double

+ cool(int): void
+ warm(int): void

Next

+nextOwns
+master

Example StateMachines

These two diagrams show the definitions of two StateMachines. The first references another StateMachine of the same
type, while the second drives any instances of the first that exist.

stm RunningState

Standby

TICK /
cool(1)

SPEEDUP /
defer();

SPEEDDOWN /
defer();

Initial

On

[Speed]

[Heat]

High

Medium

Low

History

Heating

TICK [currentHeat < heatTolerance] /
warm(1)Initial

Off

SPEEDDOWN

TICK [currentHeat >= heatTolerance]
/%SEND_EVENT("ACTIVATE",

CONTEXT_REF(next))%;

SPEEDUP

START

SHUTDOWN

SPEEDUP

SPEEDDOWN

ACTIVATE

And the top level controller.

(c) Sparx Systems 2020 Page 397 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

stm TurbineControl

Initial

Start

entry / entry

Stop

entry / entry

Run

do / do

Terminate

[simulationLength > 0]
/%BROADCAST_EVENT("TICK")%;

[simulationLength <= 0]

/%SEND_EVENT("ACTIVATE", CONTEXT_REF(master))%;

Example Artifacts

From the example Class and StateMachine diagrams, we can create Executable StateMachines as shown here.

(c) Sparx Systems 2020 Page 398 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

«executable statemachine»
FourUniqueTurbineTest

controller: TurbineController

simulationLength = 200
tickLength = 1

turbine1: Turbine

currentHeat = 0
heatProduction = 1
heatDisipation = 1
heatTolerance = 10

turbine2: Turbine

currentHeat = 0
heatProduction = 0.5
heatDisipation = 2
heatTolerance = 12

turbine3: Turbine

currentHeat = 0
heatProduction = 2
heatDisipation = 0.5
heatTolerance = 15

turbine4: Turbine

currentHeat = 0
heatProduction = 2
heatDisipation = 2
heatTolerance = 8

«executable statemachine»
PairedTurbineTest

controller: TurbineController

simulationLength = 100
tickLength = 1

a: Turbine

currentHeat = 0
heatProduction = 1
heatDisipation = 1
heatTolerance = 10

b: Turbine

currentHeat = 0
heatProduction = 1
heatDisipation = 1
heatTolerance = 10

:Next

:Next

:Owns

:Next

:Next

:Next:Owns

:Next

Note how property values have been set for each property, and the links between elements identify the relationships that
exist in the Class model.

Simulation Results

When running a simulation, Enterprise Architect will highlight the currently active States in any StateMachines. Where
multiple instances of a StateMachine exist, it will also show the names of each instance in that State.

(c) Sparx Systems 2020 Page 399 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

(c) Sparx Systems 2020 Page 400 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Parametric Simulation using OpenModelica

Enterprise Architect provides integration with OpenModelica to support rapid and robust evaluation of how a SysML
model will behave in different circumstances.

This section describes the process of defining a Parametric model, annotating the model with additional information to
drive a simulation, and running a simulation to generate a graph.

Introduction to SysML Parametric Models

SysML Parametric models support the engineering analysis of critical system parameters, including the evaluation of key
metrics such as performance, reliability and other physical characteristics. These models combine requirements models
with system design models, by capturing executable constraints based on complex mathematical relationships.
Parametric diagrams are specialized Internal Block diagrams that help you, the modeler, to combine behavior and
structure models with engineering analysis models such as performance, reliability, and mass property models.

For further information on the concepts of SysML Parametric models, refer to the official OMG SysML website and its
linked sources.

SysMLSimConfiguration Artifact

Enterprise Architect helps you to extend the usefulness of your SysML parametric models by annotating them with extra
information that allows the model to be simulated. The resulting model is then generated as a Modelica model that can be
solved (simulated) using OpenModelica.

The simulation properties for your model are stored against a Simulation Artifact. This preserves your original model and
supports multiple simulations being configured against a single SysML model. The Simulation Artifact can be found on
the 'Artifacts' Toolbox page.

User Interface

The user interface for the SysML simulation is described in the Configure SysML Simulation Window topic.

OpenModelica Examples

To aid your understanding of how to create and simulate a SysML parametric model, three examples have been provided
to illustrate three different domains. These examples and what you are able to learn from them are described in the
SysML Simulation Examples topic.

(c) Sparx Systems 2020 Page 401 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Interfacing with OpenModelica

For details on installing OpenModelica and connecting Enterprise Architect to it, see the Help topic covering the
platform where Enterprise Architect is installed.

Installation

Platform Detail

Windows If Enterprise Architect is installed on a Windows platform, see the OpenModelica
on Windows Help Topic.

Linux If Enterprise Architect is installed on a Linux platform, see the OpenModelica on
Linux Help Topic.

(c) Sparx Systems 2020 Page 402 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

OpenModelica on Windows

When installing OpenModelica for Enterprise Architect operating on a Windows platform, you firstly install the
OpenModelica application, then configure the settings in Enterprise Architect to access OpenModelica.

Install OpenModelica

Step Action

1 Download the OpenModelica Installer from:

https://openmodelica.org/download/download-windows

2 Double-click on the OpenModelica installer and follow the 'Wizard' instructions.

We recommend that you accept the default path for installation.

3 Check that you can locate the executable omc.exe.

For example: C:\OpenModelica1.9.2\bin\omc.exe

Access

Use either of these access paths to display the 'Modelica Solver Path' dialog.

Method Select

Ribbon Simulate > System Behavior > Modelica > SysMLSim Configuration Manager >

 > Configure Modelica Solver

Other
Double-click on an Artifact with the SysMLSimConfiguration stereotype >
> Configure Modelica Solver

Configure the Solver

For Windows, the 'Modelica Solver Path' dialog resembles this:

(c) Sparx Systems 2020 Page 403 of 461 Created with Enterprise Architect

https://openmodelica.org/download/download-windows

User Guide - Simulation and Behavior 3 April, 2020

Type or browse for the path to the Modelica solver to use OpenModelica in Enterprise Architect.

(c) Sparx Systems 2020 Page 404 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

OpenModelica on Linux

If Enterprise Architect is installed on Linux it is necessary to operate with OpenModelica installed on the same platform.
The OpenModelica Linux installation is publicly documented for Debian and Ubuntu; however, it can also be installed
under Linux Mint.

This Help topic provides guidance on:

1. Installation of OpenModelica on:

Linux Debian / Ubuntu·

Linux Mint·

2. Configuring Enterprise Architect to access OpenModelica.

Linux Debian / Ubuntu

To install OpenModelica on a Linux Debian / Ubuntu system refer to the URL:

 https://openmodelica.org/download/download-linux

This provides the instructions for Debian / Ubuntu Packages.

Run these scripts in a terminal:

Step Action

1 To add OpenModelica to your additional repository list:

for deb in deb deb-src; do echo "$deb http://build.openmodelica.org/apt
`lsb_release -cs` nightly"; done | sudo tee /etc/apt/sources.list.d/openmodelica.list

2 Import the GPG key used to sign the releases:

wget -q http://build.openmodelica.org/apt/openmodelica.asc -O- | sudo apt-key add
-

3 Update and install OpenModelica:

sudo apt-get update

sudo apt-get install openmodelica

sudo apt-get install omlib-.* # Installs optional Modelica libraries (most have not
been tested with OpenModelica)

4 To check this installation, ensure that you can find the file /usr/bin/omc by, for
example, executing this command on the terminal:

~ $ /usr/bin/omc --version·

Your installation is successful if the command returns a string resembling this:

OpenModelica 1.13.0~dev-1322-g53a43cf·

Linux Mint

To install OpenModelica on Linux Mint, you initially perform an install for Ubuntu and then modify the Linux Mint
code name to match the Ubuntu code name.

This is a list of mappings of the Linux Mint code name to the Ubuntu code name (to be used in later steps):

(c) Sparx Systems 2020 Page 405 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Linux Mint 17.3 (Rosa) = Ubuntu 14.04 (Trusty): rosa = trusty·

Linux Mint 18 (Sarah) = Ubuntu 16.04 (Xenial): sarah = xenial·

Linux Mint 18.1 (Serena) = Ubuntu 16.04 (Xenial): serena = xenial·

Linux Mint 18.2 (Sonya) = Ubuntu 16.04 (Xenial): sonya = xenial·

Linux Mint 18.3 (Sylvia) = Ubuntu 16.04 (Xenial): sylvia = xenial·

Linux Mint 19 (Tara) = Ubuntu 18.04 (Bionic): tara = bionic·

Click Here for a full list of Linux Mint History and the mappings with Ubuntu.

Step Action

1 Run this script in a terminal:

for deb in deb deb-src; do echo "$deb http://build.openmodelica.org/apt
`lsb_release -cs` nightly"; done | sudo tee /etc/apt/sources.list.d/openmodelica.list

2 To change the repository URL in Linux Mint:

On the Linux Mint main screen select:·
'Menu | Search Bar | Software Sources (type in password) | Additional
repositories | Select 'Openmodelica' | Edit URL'

Change the Linux Mint name (for example, rosa) to the corresponding Ubuntu·
name (for example, trusty) as in the list at the top of this table; that is:
 deb http://build.openmodelica.org/apt rosa nightly
 deb http://build.openmodelica.org/apt trusty nightly

Click on the OK button·

3 Select 'Openmodelica(Sources)'| Edit URL·

Change the Linux Mint name according to the list at the top of the table·
For example, change the Linux Mint name rosa to the corresponding Ubuntu
name trusty

Click on the OK button·

4 To update and install OpenModelica, run these scripts in a terminal:

sudo apt-get update

sudo apt-get install openmodelica

sudo apt-get install omlib-.* # Installs optional Modelica libraries (most have not
been tested with OpenModelica)

Access

Use either of these access paths to display the 'Modelica Solver Path' dialog, to configure the solver.

Method Select

Ribbon Simulate > System Behavior > Modelica > SysMLSim Configuration Manager >

 > Configure Modelica Solver

Other
Double-click on an Artifact with the SysMLSimConfiguration stereotype >
> Configure Modelica Solver

(c) Sparx Systems 2020 Page 406 of 461 Created with Enterprise Architect

https://en.wikipedia.org/wiki/Linux_Mint_version_history

User Guide - Simulation and Behavior 3 April, 2020

Configure the Solver

The 'Modelica Solver Path' dialog resembles this:

Type in or browse for the path to the Modelica solver to use.

(c) Sparx Systems 2020 Page 407 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Creating a Parametric Model

In this topic we discuss how you might develop SysML model elements for simulation (assuming existing knowledge of
SysML modeling), configure these elements in the Configure SysML Simulation window, and observe the results of a
simulation under some of the different definitions and modeling approaches. The points are illustrated by snapshots of
diagrams and screens from the SysML Simulation examples provided in this chapter.

When creating a Parametric Model, you can apply one of three approaches to defining Constraint Equations:

Defining inline Constraint Equations on a Block element·

Creating re-usable Constraint Blocks, and·

Using connected constraint properties·

You would also take into consideration:

Flows in physical interactions·

Default Values and Initial Values·

Simulation Functions·

Value Allocation, and·

Packages and Imports·

Access

Ribbon Simulate > System Behavior > Modelica > SysMLSim Configuration Manager

Defining inline Constraint Equations on a Block

Defining constraints directly in a Block is straightforward and is the easiest way to define constraint equations.

In this figure, constraint 'f = m * a' is defined in a Block element.

bdd [package] Force=Mass*Acceleration(1) [Force=Mass*Acceleration(1)]

«block»
FMA_Test

constraints
{f=m*a}

properties
 a = 9.81
 f
 m = 10

Tip: You can define multiple constraints in one Block.

Create a SysMLSim Configuration Artifact 'Force=Mass*Acceleration(1)' and point it to the Package 'FMA_Test'.1.

(c) Sparx Systems 2020 Page 408 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

For 'FMA_Test', in the 'Value' column set 'SysMLSimModel'.2.

For Parts 'a', 'm' and 'f', in the 'Value' column set 'a' and 'm' to 'SimConstant' and (optionally) set 'f' to 'SimVariable'.3.

On the 'Simulation' tab, in the 'Properties to Plot' panel, select the checkbox against 'f'.4.

Click on the Solve button to run the simulation.5.

A chart should be plotted with f = 98.1 (which comes from 10 * 9.81).

Connected Constraint Properties

In SysML, constraint properties existing in Constraint Blocks can be used to provide greater flexibility in defining
constraints.

In this figure, Constraint Block 'K' defines parameters 'a', 'b', 'c', 'd' and 'KVal', and three constraint properties 'eq1', 'eq2'
and 'eq3', typed to 'K1', 'K2' and 'K1MultiplyK2' respectively.

(c) Sparx Systems 2020 Page 409 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

bdd [package] ConstraintBlockDefinedByConstraintProperties [ConstraintBlocks]

«constraint»
K2

constraints
{p = K2 / q}

parameters
 K2
 p
 q

«constraint»
K1

constraints
{K1 = x * y}

parameters
 K1
 x
 y

«constraint»
K1MultiplyK2

constraints
{K=K1*K2}

parameters
 K1
 K
 K2

«constraint»
K

parameters
 b
 a
 c
 d
 KVal

constraints
 eq1 : K1
 eq2 : K2
 eq3 : K1MultiplyK2

+eq2+eq3+eq1

Create a Parametric diagram in Constraint Block 'K' and connect the parameters to the constraint properties with Binding
connectors, as shown:

par [constraint block] K [K]

eq3 : K1MultiplyK2
{K=K1*K2}

K1 K2

K

eq2 : K2
{p = K2 / q}

p

qK2

eq1 : K1
{K1 = x * y}

x

y K1

KVal

d

c

b

a
«equal»

«equal»

«equal» «equal»

«equal»

«equal»

«equal»

(c) Sparx Systems 2020 Page 410 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Create a model MyBlock with five Properties (Parts)·

Create a constraint property 'eq' for MyBlock and show the parameters·

Bind the properties to the parameters·

par [block] MyBlock [MyBlockPar]

arg_b

arg_a

arg_K

arg_d

arg_c

eq : K

KVal

d

c

b

a

«equal»

«equal»

«equal»

«equal»

«equal»

Provide values (arg_a = 2, arg_b = 3, arg_c = 4, arg_d = 5) in a data set·

In the 'Configure SysML Simulation' dialog, set 'Model' to 'MyBlock' and 'Data Set' to 'DataSet_1'·

In the 'Properties to Plot' panel, select the checkbox against 'arg_K'·

Click on the Solve button to run the simulation·

The result 120 (calculated as 2 * 3 * 4 * 5) will be computed and plotted. This is the same as when we do an expansion
with pen and paper: K = K1 * K2 = (x*y) * (p*q), then bind with the values (2 * 3) * (4 * 5); we get 120.

What is interesting here is that we intentionally define K2's equation to be 'p = K2 / q' and this example still works.

(c) Sparx Systems 2020 Page 411 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

We can easily solve K2 to be p * q in this example, but in some complex examples it is extremely hard to solve a
variable from an equation; however, the Enterprise Architect SysMLSim can still get it right.

In summary, the example shows you how to define a Constraint Block with greater flexibility by constructing the
constraint properties. Although we demonstrated only one layer down into the Constraint Block, this mechanism could
work on complex models for an arbitrary level of use.

Creating Reuseable Constraint Blocks

If one equation is commonly used in many Blocks, a Constraint Block can be created for use as a constraint property in
each Block. These are the changes we make, based on the previous example:

Create a Constraint Block element 'F_Formula' with three parameters 'a', 'm' and 'f', and a constraint 'f = m * a'·

Tip: Primitive type 'Real' will be applied if property types are empty

Create a Block 'FMA_Test' with three properties 'x', 'y' and 'z', and give 'x' and 'y' the default values '10' and '9.81'·
respectively

Create a Parametric diagram in 'FMA_Test', showing the properties 'x', 'y' and 'z'·

Create a Constraint Property 'e1' typed to 'F_Formula' and show the parameters·

Draw Binding connectors between 'x—m', 'y—a', and 'f—z' as shown:·

par [block] FMA_Test [testingFormulaF]

e1 : F_Formula
{f=m*a}

a

m
f z

y

x
«equal»

«equal»

«equal»

Create a SysMLSimConfiguration Artifact element and configure it as shown in the dialog illustration:·
 - In the 'Value' column, set 'FMA_Test' to 'SysMLSimModel'
 - In the 'Value' column, set 'x' and 'y' to 'SimConstant'
 - In the 'Properties to Plot' panel select the checkbox against 'Z'
 - Click on the Solve button to run the simulation

(c) Sparx Systems 2020 Page 412 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

A chart should be plotted with f = 98.1 (which comes from 10 * 9.81).

Flows in Physical Interactions

When modeling for physical interaction, exchanges of conserved physical substances such as electrical current, force,
torque and flow rate should be modeled as flows, and the flow variables should be set to the attribute 'isConserved'.

Two different types of coupling are established by connections, depending on whether the flow properties are potential
(default) or flow (conserved):

Equality coupling, for potential (also called effort) properties·

Sum-to-zero coupling, for flow (conserved) properties; for example, according to Kirchoff's Current Law in the·
electrical domain, conservation of charge makes all charge flows into a point sum to zero

In the generated Modelica code of the 'ElectricalCircuit' example:

 connector ChargePort

 flow Current i; //flow keyword will be generated if 'isConserved' = true

 Voltage v;

 end ChargePort;

 model Circuit

 Source source;

 Resistor resistor;

 Ground ground;

 equation

 connect(source.p, resistor.n);

 connect(ground.p, source.n);

 connect(resistor.p, source.n);

(c) Sparx Systems 2020 Page 413 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

 end Circuit;

Each connect equation is actually expanded to two equations (there are two properties defined in ChargePort), one for
equality coupling, the other for sum-to-zero coupling:

 source.p.v = resistor.n.v;

 source.p.i + resistor.n.i = 0;

Default Value and Initial Values

If initial values are defined in SysML property elements ('Properties' dialog > 'Property' page > 'Initial' field), they can be
loaded as the default value for a SimConstant or the initial value for a SimVariable.

In this Pendulum example, we have provided initial values for properties 'g', 'L', 'm', 'PI', 'x' and 'y', as seen on the left
hand side of the figure. Since 'PI' (the mathematical constant), 'm' (mass of the Pendulum), 'g' (Gravity factor) and 'L'
(Length of Pendulum) do not change during simulation, set them as 'SimConstant'.

bdd [package] Blocks [pendulum]

«block»
Pendulum

properties
 F
 g = 9.81
 L = 0.5
 m = 1
 PI = 3.141
 vx
 vy
 x = 0.5
 y = 0

constraints
 e_newton_x : Newton_pendulum_balance_x
 e_newton_y : Newton_pendulum_balance_y
 eRightTrangle : RightTriangle
 ex : SimpleDer
 ey : SimpleDer

This example is a mathematical model of a physical
system.

The equations are Newton's equations of motion for the
pendulum mass under the influence of gravity.

(c) Sparx Systems 2020 Page 414 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

The generated modelica code resembles this:

 class Pendulum

 parameter Real PI = 3.141;

 parameter Real m = 1;

 parameter Real g = 9.81;

 parameter Real L = 0.5;

 Real F;

 Real x (start=0.5);

 Real y (start=0);

 Real vx;

 Real vy;

 equation

 end Pendulum;

Properties 'PI', 'm', 'g' and 'L' are constant, and are generated as a declaration equation·

Properties 'x' and 'y' are variable; their starting values are 0.5 and 0 respectively, and the initial values are generated·
as modifications

Simulation Functions

A Simulation function is a powerful tool for writing complex logic, and is easy to use for constraints. This section
describes a function from the TankPI example.

In the Constraint Block 'Q_OutFlow', a function 'LimitValue' is defined and used in the constraint.

(c) Sparx Systems 2020 Page 415 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

bdd [package] constraints [SimFunctions]

«constraint»
Q_OutFlow

«SimFunction»
+ LimitValue(double, double, double, *double): int

constraints
{a=LimitValue(min, max, -b*c)}

parameters
 a
 b
 c
 max
 min

On a Block or Constraint Block, create an operation ('LimitValue' in this example) and open the 'Operations' tab of·
the Features window

Give the operation the stereotype 'SimFunction'·

Define the parameters and set the direction to 'in/out'·

 Tips: Multiple parameters could be defined as 'out', and the caller retrieves the value in format of:

 (out1, out2, out3) = function_name(in1, in2, in3, in4, ...); //Equation form

 (out1, out2, out3) := function_name(in1, in2, in3, in4, ...); //Statement form

Define the function body in the text field of the 'Code' tab of the Properties window, as shown:·

pLim :=
 if p > pMax then
 pMax
 else if p < pMin then
 pMin
 else
 p;

When generating code, Enterprise Architect will collect all the operations stereotyped as 'SimFunction' defined in
Constraint Blocks and Blocks, then generate code resembling this:

 function LimitValue

 input Real pMin;

 input Real pMax;

 input Real p;

 output Real pLim;

 algorithm

(c) Sparx Systems 2020 Page 416 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

 pLim :=

 if p > pMax then

 pMax

 else if p < pMin then

 pMin

 else

 p;

 end LimitValue;

Value Allocation

This figure shows a simple model called 'Force=Mass*Acceleration'.

bdd [package] Force=Mass*Acceleration(3) [Force=Mass*Acceleration(3)]

«constraint»
F_Formula

constraints
{f=m*a}

parameters
 f
 a
 m

«block»
FMA

properties
 a
 f
 m

constraints
 e1 : F_Formula

«block»
FMA_Test

constraints
{a_value=sin(time)}
{m_value=cos(time)}

properties
 fma1 : FMA
 a_value
 m_value

A Block 'FMA' is modeled with properties 'a', 'f', and 'm' and a constraintProperty 'e1', typed to Constraint Block·
'F_Formula'

The Block 'FMA' does not have any initial value set on its properties, and the properties 'a', 'f' and 'm' are all·
variable, so their value change depends on the environment in which they are simulated

Create a Block 'FMA_Test' as a SysMLSimModel and add the property 'fma1' to test the behavior of Block 'FMA'·

Constraint 'a_value' to be 'sin(time)'·

Constraint 'm_value' to be 'cos(time)'·

Draw Allocation connectors to allocate values from environment to the model 'FMA'·

(c) Sparx Systems 2020 Page 417 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

ibd [block] FMA_Test [FMA_Test]

a_value

fma1: FMA

: constraints
 e1 : F_Formula

a

m m_value

value constraint as
"cos(time)"

value constraint as
"sin(time)"

«allocate»

«allocate»

Select the 'Properties to Plot' checkboxes against 'fma1.a', 'fma1.m' and 'fma1.f'·

Click on the Solve button to simulate the model·

Packages and Imports

The SysMLSimConfiguration Artifact collects the elements (such as Blocks, Constraint Blocks and Value Types) of a
Package. If the simulation depends on elements not owned by this Package, such as Reusable libraries, Enterprise
Architect provides an Import connector between Package elements to meet this requirement.

In the Electrical Circuit example, the Artifact is configured to the Package 'ElectricalCircuit', which contains almost all
of the elements needed for simulation. However, some properties are typed to value types such as 'Voltage', 'Current' and
'Resistance', which are commonly used in multiple SysML models and are therefore placed in a Package called
'CommonlyUsedTypes' outside the individual SysML models. If you import this Package using an Import connector, all
the elements in the imported Package will appear in the SysMLSim Configuration Manager.

pkg [package] Electrical Circuit [PackageImport]

(c) Sparx Systems 2020 Page 418 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

(c) Sparx Systems 2020 Page 419 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Configure SysML Simulation Window

The Configure SysML Simulation window is the interface through which you can provide run-time parameters for
executing the simulation of a SysML model. The simulation is based on a simulation configuration defined in a
SysMLSimConfiguration Artifact element.

Access

Ribbon Simulate > System Behavior > Modelica > SysMLSim Configuration Manager

Other Double-click on an Artifact with the SysMLSimConfiguration stereotype.

Toolbar Options

Option Description

Click on the drop-down arrow and select from these options:

Select Artifact — Select and load an existing configuration from an Artifact·
with the SysMLSimConfiguration stereotype (if one has not already been
selected)

Create Artifact — Create a new SysMLSimConfiguration or select and load an·
existing configuration artifact

Select Package — Select a Package to scan for SysML elements to configure·
for simulation

Reload — Reload the Configuration Manager with changes to the current·

(c) Sparx Systems 2020 Page 420 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Package

Configure Modelica Solver — Display the 'Modelica Solver Path' dialog, in·
which you type or browse for the path to the Modelica solver to use

Click on this button to save the configuration to the current Artifact.

Click on this button to generate, compile and run the current configuration, and
display the results.

After simulation, the result file is generated in either plt, mat or csv format. That is,
with the filename:

ModelName_res.plt·

ModelName_res.mat or·

ModelName_res.csv·

Click on this button to specify a directory into which Enterprise Architect will copy
the result file.

Click on this button to select from these options:

Generate Modelica Code — Generate the code without compiling or running it·

Open Modelica Simulation Directory — Open the directory into which·
Modelica code will be generated

Edit Modelica Templates — Customize the code generated for Modelica, using·
the Code Template Editor

Simulation Artifact and Model Selection

Field Action

Artifact
Click on the icon and either browse for and select an existing
SysMLSimConfiguration Artifact, or create a new Artifact.

Package If you have specified an existing SysMLSimConfiguration Artifact, this field
defaults to the Package containing the SysML model associated with that Artifact.

Otherwise, click on the icon and browse for and select the Package containing
the SysML model to configure for simulation. You must specify (or create) the
Artifact before selecting the Package.

(c) Sparx Systems 2020 Page 421 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Package Objects

This table discusses the types of object from the SysML model that will be listed under the 'Name' column in the
Configure SysML Simulation window, to be processed in the simulation. Each object type expands to list the named
objects of that type, and the properties of each object that require configuration in the 'Value' column.

Many levels of the object types, names and properties do not require configuration, so the corresponding 'Value' field
does not accept input. Where input is appropriate and accepted, a drop-down arrow displays at the right end of the field;
when you click on this a short list of possible values displays for selection. Certain values (such as 'SimVariable' for a

Part) add further layers of parameters and properties, where you click on the button to, again, select and set values
for the parameters. For datasets, the input dialog allows you to type in or import values, such as initial or default values;
see the Model Analysis using Datasets topic.

Element Type Behavior

ValueType ValueType elements either generalize from a primitive type or are substituted by
SysMLSimReal for simulation.

Block Block elements mapped to SysMLSimClass or SysMLSimModel elements support
the creation of data sets. If you have defined multiple data sets in a SysMLSimClass
(which can be generalized), you must identify one of them as the default (using the
context menu option 'Set as Default Dataset').

As a SysMLSimModel is a possible top-level element for a simulation, and will not
be generalized, if you have defined multiple datasets the dataset to use is chosen
during the simulation.

Properties Properties within a Block can be configured to be either SimConstants or
SimVariables. For a SimVariable, you configure these attributes:

isContinuous — determines whether the property value varies continuously·
('true', the default) or discretely ('false')

isConserved — determines whether values of the property are conserved·
('true') or not ('false', the default); when modeling for physical interaction, the
interactions include exchanges of conserved physical substances such as
electrical current, force or fluid flow

changeCycle — specifies the time interval at which a discrete property value·
changes; the default value is '0'
 - changeCycle can be set to a value other than 0 only when
 isContinuous = 'false'
 - The value of changeCycle must be positive or equal to 0

Port No configuration required.

SimFunction Functions are created as operations in Blocks or Constraint Blocks, stereotyped as
'SimFunction'.

No configuration is required in the Configure SysML Simulation window.

Generalization No configuration required.

Binding Connector Binds a property to a parameter of a constraint property.

No configuration required; however, if the properties are different, the system
provides an option to synchronize them.

Connector Connects two Ports.

No configuration required in the Configure SysML Simulation view. However, you

(c) Sparx Systems 2020 Page 422 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

might have to configure the properties of the Port's type by determining whether the
attribute isConserved should be set as 'False' (for potential properties, so that
equality coupling is established) or 'True' (for flow/conserved properties, so that
sum-to-zero coupling is established).

Constraint Block No configuration required.

Simulation Tab

This table describes the fields of the 'Simulation' tab on the Configure SysML Simulation view.

Field Action

Model Click on the drop-down arrow and select the top-level node (a SysMLSimModel
element) for the simulation. The list is populated with the names of the Blocks
defined as top-level, model nodes.

Data Set Click on the drop-down arrow and select the dataset for the selected model.

Start Type in the initial wait time before which the simulation is started, in seconds
(default value is 0).

Stop Type in the number of seconds for which the simulation will execute.

Format Click on the drop-down arrow and select either 'plt', 'csv' or 'mat' as the format of
the result file, which could potentially be used by other tools.

Parametric Plot Select this checkbox to plot Legend A on the y-axis against Legend B on the·
x-axis.

Deselect the checkbox to plot Legend(s) on the y-axis against time on the·
x-axis

Note: With the checkbox selected, you must select two properties to plot.

Dependencies Lists the types that must be generated to simulate this model.

Properties to Plot Provides a list of variable properties that are involved with the simulation. Select
the checkbox against each property to plot.

(c) Sparx Systems 2020 Page 423 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Model Analysis using Datasets

Every SysML Block used in a Parametric model can, within the Simulation configuration, have multiple datasets defined
against it. This allows for repeatable simulation variations using the same SysML model.

A Block can be typed as a SysMLSimModel (a top-level node that cannot be generalized or form part of a composition)
or as a SysMLSimClass (a lower-level element that can be generalized or form part of a composition). When running a
simulation on a SysMLSimModel element, if you have defined multiple datasets, you can specify which dataset to use.
However, if a SysMLSimClass within the simulation has multiple datasets, you cannot select which one to use during the
simulation and must therefore identify one dataset as the default for that Class.

Access

Ribbon Simulate > System Behavior > Modelica > SysMLSim Configuration Manager > in
"block" group > Name column > Context menu on block element > Create
Simulation DataSet

Dataset Management

Task Action

Create To create a new dataset, right-click on a Block name and select the 'Create
Simulation Dataset' option. The dataset is added to the end of the list of components

underneath the Block name. Click on the button to set up the dataset on the
'Configure Simulation Data' dialog (see the Configure Simulation Data table).

Duplicate To duplicate an existing dataset as a base for creating a new dataset, right-click on
the dataset name and select the 'Duplicate' option. The duplicate dataset is added to

the end of the list of components underneath the Block name. Click on the
button to edit the dataset on the 'Configure Simulation Data' dialog (see the
Configure Simulation Data table).

Delete To remove a dataset that is no longer required, right-click on the dataset and select
the 'Delete Dataset' option.

Set Default To set the default dataset used by a SysMLSimClass when used as a property type
or inherited (and when there is more than one dataset), right-click on the dataset
and select the 'Set as Default' option. The name of the default dataset is highlighted
in bold. The properties used by a model will use this default configuration unless
the model overrides them explicitly.

Configure Simulation Data

This dialog is principally for information. The only column in which you can directly add or change data is the 'Value'
column.

(c) Sparx Systems 2020 Page 424 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Column Description

Attribute The 'Attribute' column provides a tree view of all the properties in the Block being
edited.

Stereotype The 'Stereotype' column identifies, for each property, if it has been configured to be
a constant for the duration of the simulation or variable, so that the value is
expected to change over time.

Type The 'Type' column describes the type used for simulation of this property. It can be
either a primitive type (such as 'Real') or a reference to a Block contained in the
model. Properties referencing Blocks will show the child properties specified by the
referenced Block below them.

Default Value The 'Default Value' column shows the value that will be used in the simulation if no
override is provided. This can come from the 'Initial Value' field in the SysML
model or from the default dataset of the parent type.

Value The 'Value' column allows you to override the default value for each primitive
value.

Export / Import Click on these buttons to modify the values in the current dataset using an external
application such as a spreadsheet, and then re-import them to the list.

(c) Sparx Systems 2020 Page 425 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Modeling and Simulation with Modelica Library

This feature is available from Enterprise Architect Release 14.1.

The Modelica Libraries are comprehensive resources that provide many useful types, functions and models. When
creating SysML models in Enterprise Architect, you can reference resources available in the Modelica Libraries.

Referencing a Type defined in Modelica Library

To configure a simulation to reference a Modelica Library, you first create a ValueType element pointing to the
Modelica library, and register this in the Simulation configuration.

First, create an element for a Referenced Modelica Type

Create a ValueType element with the full name of the Modelica Library path:·

Configure the ValueType element as 'ReferencedType':

Double-click on the SysMLSimConfiguration element to open the 'Configure SysML Configuration' tab·

Navigate to the ValueType element·

In the drop-down field set the value to 'ReferencedType'·

As the ValueType element is configured as 'ReferencedType', the element will not display in the 'Dependencies' list and
will not be generated as a new Class definition to the Modelica file.

Next, set the type for a Property to the ValueType element

In Enterprise Architect, a SysML Property can be set to be a primitive type or an element such as a Block or a
ValueType.

Option 1:

Select the Property (Part or Port)·

Press Ctrl+2 to open the Properties window·

Switch to the 'Property' tab and choose 'Select Type...'·

Browse to the ValueType element you created·

Option 2:

Select the Property (Part or Port)·

(c) Sparx Systems 2020 Page 426 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Press Ctrl+L on the Property·

Browse to the ValueType element you created·

Including a Modelica Library in a Simulation

When using referenced types from a Modelica library in a model, you must load the Modelica model in the environment
for the simulation to work.

Expand the menu option and select 'Include Modelica Library'·

If this option is ticked, this function will be generated to 'Solve.mos' by default:·

 loadModel(Modelica);

Click Here for a detailed description of the loadModel() scripting function.

Customize the Modelica Script Template

You can modify the Modelica script template to add extra libraries required by the model and simulation.

Access

Ribbon: Code | Configure | Options | Edit Code Templates In the 'Language' field select 'Modelica' and in the Scripts
list select 'SysMLSim Script'

As you are appending extra libraries after 'loadModel(Modelica)', the libraries' resources can be referenced by your
model.

SquareWave Example

This example is based on Figure 13-11 in: Principles of Object-Oriented Modeling and Simulation with Modelica 3.3: A
Cyber-Physical, Second Edition, by Peter Fritzson.

(c) Sparx Systems 2020 Page 427 of 461 Created with Enterprise Architect

https://build.openmodelica.org/Documentation/OpenModelica.Scripting.loadModel.html

User Guide - Simulation and Behavior 3 April, 2020

In this example:

We create a ValueType Modelica.SIunits.Time, which is used for the property first and interval of the Block·
SquareWave

ValueType Modelica.SIunits.Time is configured as 'ReferencedType' in the SysML Simulation window·

Select the menu item 'Include Modelica Library'·

Run the simulation; the variable x is plotted like this:

(c) Sparx Systems 2020 Page 428 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

SampleTime Example

This example is based on Figure 13-13 in: Principles of Object-Oriented Modeling and Simulation with Modelica 3.3: A
Cyber-Physical, Second Edition, by Peter Fritzson.

In this example:

We created a ValueType Clock, which is used for the property clk of Block SampleTime·

ValueType Clock is configured as 'ReferencedType' in the SysML Simulation window·

The menu item 'Include Modelica Library' is unselected·

(c) Sparx Systems 2020 Page 429 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Run the simulation; the variable x and stime plot resembles this:

(c) Sparx Systems 2020 Page 430 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

SysML Simulation Examples

This section provides a worked example for each of: creating a SysML model for a domain, simulating it, and evaluating
the results of the simulation. These examples apply the information discussed in the earlier topics.

Electrical Circuit Simulation Example

The first example is of the simulation of an electrical circuit. The example starts with an electrical circuit diagram and
converts it to a parametric model. The model is then simulated and the voltage at the source and target wires of a resistor
are evaluated and compared to the expected values.

Electrical Circuit Simulation Example

Mass-Spring-Damper Oscillator Simulation Example

The second example uses a simple physical model to demonstrate the oscillation behavior of a string under tension.

Mass-Spring-Damper Oscillator Simulation Example

Water Tank Pressure Regulator

The final example shows the water levels of two water tanks where the water is being distributed between them. We first
simulate a well-balanced system, then we simulate a system where the water will overflow from the second tank.

Water Tank Pressure Regulator

(c) Sparx Systems 2020 Page 431 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/sysml_simulation_circuit.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/sysml_simulation_oscillator.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/sysml_simulation_water.htm

User Guide - Simulation and Behavior 3 April, 2020

Electrical Circuit Simulation Example

In this section, we will walk through the creation of a SysML parametric model for a simple electrical circuit, and then
use a parametric simulation to predict and chart the behavior of that circuit.

Circuit Diagram

The electrical circuit we are going to model, shown here, uses a standard electrical circuit notation.

The circuit includes an AC power source, a ground and a resistor, connected to each other by wires.

Create SysML Model

This table shows how we can build up a complete SysML model to represent the circuit, starting at the lowest level types
and building up the model one step at a time.

Component Action

Types Define Value Types for the Voltage, Current and Resistance. Unit and quantity kind
are not important for the purposes of simulation, but would be set if defining a
complete SysML model. These types will be generalized from the primitive type
'Real'. In other models, you can choose to map a Value Type to a corresponding
simulation type separate from the model.

bdd [package] CommonlyUsedTypes [Value Types]

«valueType»
Voltage

«valueType»
Current

«valueType»
Resistance

Additionally, define a composite type called ChargePort, which includes properties

(c) Sparx Systems 2020 Page 432 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

for both Current and Voltage. This type allows us to represent the electrical energy
at the connectors between components.

ElectricalCircuit : Composite Types

bdd [package] Electrical Circuit [Composite Types]

«block»
ChargePort

flow properties
 none v : Voltage
 none i : Current

Blocks In SysML, the circuit and each of the components will be represented as Blocks.
Create a Circuit Block in a Block Definition diagram (BDD). The circuit has three
parts: a source, a ground, and a resistor. These parts are of different types, with
different behaviors. Create a Block for each of these part types. The three parts of
the Circuit Block are connected through Ports, which represent electrical pins. The
source and resistor have a positive and a negative pin. The ground has only one pin,
which is positive. Electricity (electric charge) is transmitted through the pins.
Create an abstract block 'TwoPinComponent' with two Ports (pins). The two Ports
are named 'p' (positive) and 'n' (negative), and they are of type ChargePort.

This figure shows what the BDD should look like, with the Blocks Circuit, Ground,
TwoPinComponent, Source and Resistor.

(c) Sparx Systems 2020 Page 433 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

bdd [package] Electrical Circuit [ElectricalCircuit]

«block»
Source

values
 v : Voltage
 i : Current

constraints
 sc : SourceConstraint

ports
 n : ChargePort
 p : ChargePort

«block»
Circuit

properties
 ground : Ground
 resistor : Resistor
 source : Source

«block»
Ground

constraints
 gc : GroundConstraint

p: ChargePort

«block»
TwoPinComponent

values
 v : Voltage
 i : Current

p: ChargePort n: ChargePort

«block»
Resistor

values
 i : Current
 r : Resistance = 10
 v : Voltage

constraints
 rc : ResistorConstraint

ports
 n : ChargePort
 p : ChargePort

Internal Structure Create an Internal Block diagram (IBD) for Circuit. Add properties for the Source,
Resistor and Ground, typed by the corresponding Blocks. Connect the Ports with
connectors. The positive pin of the Source is connected to the negative pin of the
Resistor. The positive pin of the Resistor is connected to the negative pin of the
Source. The Ground is also connected to the negative pin of the Source.

(c) Sparx Systems 2020 Page 434 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

ibd [block] Circuit [Circuit]

source: Source

n: ChargePort

p: ChargePort

resistor: Resistor

n: ChargePort

p: ChargePort

ground: Ground

p: ChargePort

Notice that this follows the same structure as the original circuit diagram, but the
symbols for each component have been replaced with properties typed by the
Blocks we have defined.

Constraints Equations define mathematical relationships between numeric properties. In
SysML, equations are represented as constraints in Constraint Blocks. Parameters
of Constraint Blocks correspond to SimVariables and SimConstants of Blocks ('i',
'v', 'r' in this example), as well as to SimVariables present in the type of the Ports
('pv', 'pi', 'nv', 'ni' in this example).

Create a Constraint Block 'TwoPinComponentConstraint' to define parameters and
equations common to sources and resistors. The equations should state that the
voltage of the component is equal to the difference between the voltages at the
positive and negative pins. The current of the component is equal to the current
going through the positive pin. The sum of the currents going through the two pins
must add up to zero (one is the negative of the other). The Ground constraint states
that the voltage at the Ground pin is zero. The Source constraint defines the voltage
as a sine wave with the current simulation time as a parameter. This figure shows
how these constraints should look in a BDD.

(c) Sparx Systems 2020 Page 435 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

bdd [package] Electrical Circuit [Constraints]

«constraint»
TwoPinComponentConstraint

constraints
{pi+ni=0}
{i=pi}
{v=pv-nv}

parameters
 i : Real
 ni : Real
 nv : Real
 pi : Real
 pv : Real
 v : Real

«constraint»
GroundConstraint

constraints
{pv=0}

parameters
 pv : Real

«constraint»
ResistorConstraint

constraints
{v=r*i}

parameters
 i : Real
 ni : Real
 nv : Real
 pi : Real
 pv : Real
 r : Real
 v : Real

«constraint»
SourceConstraint

constraints
{v=sin(time)}

parameters
 i : Real
 ni : Real
 nv : Real
 pi : Real
 pv : Real
 v : Real

Bindings The values of Constraint parameters are equated to variable and constant values
with binding connectors. Create Constraint properties on each Block (properties
typed by Constraint Blocks) and bind the Block variables and constants to the
Constraint parameters to apply the Constraint to the Block. These figures show the
bindings for the Ground, the Source and the Resistor respectively.

For the Ground constraint, bind gc.pv to p.v.

par [block] Ground [Ground]

p: ChargePort

v : Voltage

gc : GroundConstraint
{pv=0}

pv : Real
«equal»

For the Source constraint, bind:

sc.pi to p.i·

sc.pv to p.v·

sc.v to v·

(c) Sparx Systems 2020 Page 436 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

sc.i to i·

sc.ni to n.i and·

sc.nv to n.v·

par [block] Source [Source]

p: ChargePort n: ChargePort

i: Current v: Voltage

sc : SourceConstraint
{v=sin(time)}

i : Real v : Real

ni : Real

nv : Real

pi : Real

pv : Realv : Voltage

i : Current

v : Voltage

i : Current
«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

For the Resistor constraint, bind:

rc.pi to p.i·

rc.pv to p.v·

rc.v to v·

rc.i to i·

rc.ni to n.i·

rc.nv to n.v and·

rc.r to r·

par [block] Resistor [Resistor]

n: ChargePort
p: ChargePort

r: Resistance

rc : ResistorConstraint
{v=r*i}

pv : Real

pi : Real

nv : Real

ni : Real

v : Real i : Real r : Real

v: Voltage i: Current

v : Voltage

i : Current

v : Voltage

i : Current

«equal»

«equal»
«equal»

«equal»

«equal»
«equal»

«equal»

Configure Simulation Behavior

This table shows the detailed steps of the configuration of SysMLSim.

Step Action

(c) Sparx Systems 2020 Page 437 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

SysMLSimConfiguration
Artifact

Select 'Simulate > System Behavior > Modelica > SysMLSim Configuration·
Manager'

From the first toolbar icon drop-down, select 'Create Artifact' and create the·
Artifact element

Select the Package that owns this SysML Model·

Create Root elements in
Configuration Manager

ValueType·

block·

constraintBlock·

ValueType Substitution Expand ValueType and for each of Current, Resistance and Voltage select
'SysMLSimReal' from the 'Value' combo box.

Set property as flow Expand 'block' to ChargePort | FlowProperty | i : Current and select·
'SimVariable' from the 'Value' combo box

For 'SysMLSimConfiguration' click on the button to open the 'Element·
Configurations' dialog

Set 'isConserved' to 'True'·

SysMLSimModel This is the model we want to simulate: set the Block 'Circuit' to be
'SysMLSimModel'.

Run Simulation

In the 'Simulation' page, select the checkboxes against 'resistor.n.v' and 'resistor.p.v' for plotting and click on the Solve
button.

(c) Sparx Systems 2020 Page 438 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

The two legends 'resistor.n.v' and 'resistor.p.v' are plotted, as shown.

(c) Sparx Systems 2020 Page 439 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Mass-Spring-Damper Oscillator Simulation Example

In this section, we will walk through the creation of a SysML parametric model for a simple Oscillator composed of a
mass, a spring and a damper, and then use a parametric simulation to predict and chart the behavior of this mechanical
system. Finally, we perform what-if analysis by comparing two oscillators provided with different parameter values
through data sets.

System being modeled

A mass is hanging on a spring and damper. The first state shown here represents the initial point at time=0, just when the
mass is released. The second state represents the final point when the body is at rest and the spring forces are in
equilibrium with gravity.

Create SysML Model

The MassSpringDamperOscillator model in SysML has a main Block, the Oscillator. The Oscillator has four parts: a
fixed ceiling, a spring, a damper and a mass body. Create a Block for each of these parts. The four parts of the Oscillator
Block are connected through Ports, which represent mechanical flanges.

Components Description

Port Types The Blocks 'Flange_a' and 'Flange_b' used for flanges in the 1D transitional
mechanical domain are identical but have slightly different roles, somewhat
analogous to the roles of PositivePin and NegativePin in the electrical domain.
Momentum is transmitted through the flanges. So the attribute isConserved of flow
property Flange.f should be set to True.

(c) Sparx Systems 2020 Page 440 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

bdd [package] Mass Spring Damper Oscillator [PortTypes]

«block»
Flange_b

«block»
Flange

flow properties
 inout f
 inout s

«block»
Flange_a

Blocks and Ports Create Blocks 'Spring', 'Damper', 'Mass' and 'Fixed' to represent the spring,·
damper, mass body and ceiling respectively

Create a Block 'PartialCompliant' with two Ports (flanges), named 'flange_a'·
and 'flange_b' — these are of type Flange_a and Flange_b respectively; the
'Spring' and 'Damper' Blocks generalize from 'PartialCompilant'

Create a Block 'PartialRigid' with two Ports (flanges), named 'flange_a' and·
'flange_b' — these are of type Flange_a and Flange_b respectively; the 'Mass'
Block generalizes from 'PartialRigid'

Create a Block 'Fixed' with only one flange for the ceiling, which only has the·
Port 'flange_a' typed to Flange_a

(c) Sparx Systems 2020 Page 441 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

bdd [package] Mass Spring Damper Oscillator [Blocks and Ports]

«block»
Oscillator

properties
 damper1 : Damper
 fixed1 : Fixed
 mass1 : Mass
 spring1 : Spring

«block»
Damper

constraints
{v_rel=der(s_rel)}
{f = d * v_rel}
{lossPower = f * v_rel}

properties
 d = 25
 lossPower
 v_rel

«block»
Fixed

constraints
{flange_a.s = s0}

properties
 s0 = 1.0

flange_a: Flange_a

«block»
Mass

constraints
{v = der(s)}
{a = der(v)}
{m*a = flange_a.f + flange_b.f}
{flange_a.f = - m * g}

properties
 g = 9.81
 a
 m = 1
 v

«block»
PartialCompliant

constraints
{s_rel=flange_b.s - flange_a.s}
{flange_b.f = f}
{flange_a.f = -f}

properties
 s_rel = 0
 f

flange_b: Flange_bflange_a: Flange_a

«block»
Parti alRigid

constraints
{flange_a.s = s-L/2}
{flange_b.s = s + L/2}

properties
 L = 1
 s = -0.5

flange_b: Flange_bflange_a: Flange_a

«block»
Spring

constraints
{f = c*(s_rel - s_rel0)}

properties
 c = 10000
 s_rel0 = 2

+spring1+damper1+fixed1 +mass1

Internal structure Create an Internal Block diagram (IBD) for 'Oscillator'. Add properties for the fixed
ceiling, spring, damper and mass body, typed by the corresponding Blocks. Connect
the Ports with connectors.

Connect 'flange_a' of 'fixed1' to 'flange_b' of 'spring1'·

Connect 'flange_b' of 'damper1' to 'flange_b' of 'spring1'·

Connect 'flange_a' of 'damper1' to 'flange_a' of 'spring1'·

Connect 'flange_a' of 'spring1' to 'flange_b' of 'mass1'·

(c) Sparx Systems 2020 Page 442 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

ibd [block] Oscillator [Oscillator]

fixed1: Fixed

flange_a: Flange_a

spring1: Spring

flange_a: Flange_a

flange_b: Flange_b

damper1: Damper

flange_a: Flange_a

flange_b: Flange_b

mass1: Mass

flange_b: Flange_b

Constraints For simplicity, we define the constraints directly in the Block elements; optionally
you can define Constraint Blocks, use constraint properties in the Blocks, and bind
their parameters to the Block's properties.

Two Oscillator Compare Plan

After we model the Oscillator, we want to do some what-if analysis. For example:

What is the difference between two oscillators with different dampers?·

What if there is no damper?·

What is the difference between two oscillators with different springs?·

What is the difference between two oscillators with different masses?·

Here are the steps for creating a comparison model:

Create a Block named 'OscillatorCompareModel'·

Create two Properties for 'OscillatorCompareModel', called oscillator1 and oscillator2, and type them with the·
Block Oscillator

(c) Sparx Systems 2020 Page 443 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

bdd [package] Mass Spring Damper Oscillator [OscillatorCompareModel_BDD]

«block»
OscillatorCompareModel

namespace

oscillator2: Oscillatoroscillator1: Oscillator

Setup DataSet and Run Simulation

Create a SysMLSim Configuration Artifact and assign it to this Package. Then create these data sets:

Damper: small VS big·
 provide 'oscillator1.damper1.d' with the value 10 and 'oscillator2.damper1.d' with the larger value 20

Damper: no vs yes·
 provide 'oscillator1.damper1.d with the value 0; ('oscillator2.damper1.d' will use the default value 25)

Spring: small vs big·
 provide 'oscillator1.spring1.c' with the value 6000 and 'oscillator2.spring1.c' with the larger value 12000

Mass: light vs heavy·
 provide 'oscillator1.mass1.m' with the value 0.5 and 'oscillator2.mass1.m' with the larger value 2

The configured page resembles this:

On the 'Simulation' page, select 'OscillatorCompareModel', plot for 'oscillator1.mass1.s' and 'oscillator2.mass1.s', then
choose one of the created datasets and run the simulation.

(c) Sparx Systems 2020 Page 444 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Tip: If there are too many properties in the plot list, you can toggle the Filter bar using the context menu on the list
header, then type in 'mass1.s' in this example.

These are the simulation results:

Damper, small vs big: the smaller damper makes the body oscillate more·

Damper, no vs yes: the oscillator never stops without a damper·

(c) Sparx Systems 2020 Page 445 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Spring, small vs big: the spring with smaller 'c' will oscillate more slowly·

Mass, light vs heavy: the object with smaller mass will oscillate faster and regulate quicker·

(c) Sparx Systems 2020 Page 446 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Water Tank Pressure Regulator

In this section we will walk through the creation of a SysML parametric model for a Water Tank Pressure Regulator,
composed of two connected tanks, a source of water and two controllers, each of which monitors the water level and
controls the valve to regulate the system.

We will explain the SysML model, create it and set up the SysMLSim Configurations. We will then run the simulation
with OpenModelica.

System being modeled

This diagram depicts two tanks connected together, and a water source that fills the first tank. Each tank has a
proportional–integral (PI) continuous controller connected to it, which regulates the level of water contained in the tanks
at a reference level. While the source fills the first tank with water, the PI continuous controller regulates the outflow
from the tank depending on its actual level. Water from the first tank flows into the second tank, which the PI continuous
controller also tries to regulate. This is a natural and non domain-specific physical problem.

Create SysML Model

Component Discussion

Port Types The tank has four ports; they are typed to these three blocks:

ReadSignal: Reading the fluid level; this has a property 'val' with unit 'm'·

ActSignal: The signal to the actuator for setting valve position·

LiquidFlow: The liquid flow at inlets or outlets; this has a property 'lflow' with·
unit 'm3/s"

(c) Sparx Systems 2020 Page 447 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

bdd [package] Blocks [Flows]

«block»
ActSignal

flow properties
 none act : Real

«block»
LiquidFlow

flow properties
 none lflow : Real

«block»
ReadSignal

flow properties
 none val : Real

Block Definition Diagram LiquidSource: The water entering the tank must come from somewhere, therefore
we have a liquid source component in the tank system, with the property flowLevel
having a unit of 'm3/s'. A Port 'qOut' is typed to 'LiquidFlow'.

Tank: The tanks are connected to controllers and liquid sources through Ports.

Each Tank has four Ports:·
 - qIn: for input flow
 - qOut: for output flow
 - tSensor: for providing fluid level measurements
 - tActuator: for setting the position of the valve at the outlet of
 the tank

Properties:·
 - area (unit='m2'): area of the tank, involved in the mass balance
 equation
 - h (unit = 'm'): water level, involved in the mass balance
 equation; its value is read by the sensor
 - flowGain (unit = 'm2/s'): the output flow is related to the valve
 position by flowGain
 - minV, maxV: Limits for output valve flow

BaseController: This Block could be super of a PI Continuous Controller and PI
Discrete Controller.

Ports:·
 - cIn: Input sensor level
 - cOut: Control to actuator

Properties:·
 - Ts (unit = 's'): Time period between discrete samples (not used
 in this example)
 - K: Gain factor
 - T (unit = 's'): Time constant of controller
 - ref: reference level
 - error: difference between the reference level and the actual
 level of water, obtained from the sensor
 - outCtr: control signal to the actuator for controlling the valve
 position

PIcontinuousController: generalize from BaseController

Properties:·
 - x: the controller state variable

(c) Sparx Systems 2020 Page 448 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

bdd [package] Blocks [Blocks]

«block»
BaseController

properties
 error : Real
 K : Real
 outCtr : Real
 ref : Real
 T : Real
 Ts : Real

constraints
 e5 : CoutAct
 e6 : ErrorValue

cOut: ActSignal

cIn: ReadSignal

«block»
LiquidSource

properties
 flowLevel : Real

constraints
 e4 : OutFlow

qOut: LiquidFlow

«block»
PIcontinuousController

properties
 error : Real
 K : Real
 outCtr : Real
 T : Real
 x : Real

constraints
 e7 : StateVariable
 e8 : OutControl

«block»
Tank

properties
 area : Real
 flowGain : Real
 h : Real
 maxV : Real = 10
 minV : Real = 0

constraints
 e1 : Mass_Balance
 e2 : SensorValue
 e3 : Q_OutFlow

tSensor: ReadSignal tActuator: ActSignal

qOut: LiquidFlowqIn: LiquidFlow

Constraint Blocks The flow increases sharply at time=150 to a factor of three of the previous flow
level, which creates an interesting control problem that the controller of the tank
has to handle.

par [block] LiquidSource [LiquidSource]

qOut: LiquidFlow

flowLevel: Real

e4 : OutFlow
{a = if time > 150 then 3*b else b}

ab
lflow : Real

«equal»«equal»

The central equation regulating the behavior of the tank is the mass balance
equation.

The output flow is related to the valve position by a 'flowGain' parameter.

The sensor simply reads the level of the tank.

(c) Sparx Systems 2020 Page 449 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

par [block] Tank [Tank]

qIn: LiquidFlow

qOut: LiquidFlow

tSensor: ReadSignal

tActuator: ActSignal

area: Real

flowGain: Real minV: Real

h: Real

e1 : Mass_Balance
{der(h) = (x - y) / a}

e2 : SensorValue
{a=b}

e3 : Q_OutFlow
{a=LimitValue(min, max, -b*c)}

h

y

a

ab

a

c
b max min

x

maxV: Real

lflow : Real

lflow : Real

val : Real

act : Real

«equal»

«equal»

«equal»

«equal»

«equal» «equal»

«equal»

«equal»

«equal»

«equal»

«equal»

The Constraints defined for 'BaseController' and 'PIcontinuousController' are
illustrated in these figures.

par [block] BaseController [BaseController]

cIn: ReadSignal

cOut: ActSignale5 : CoutAct
{a=b}

e6 : ErrorValue
{a=b-c}

ab

a

b

c
error: Real

outCtr: Real

ref: Real

val : Real

act : Real

«equal»
«equal»

«equal»

«equal»

«equal»

(c) Sparx Systems 2020 Page 450 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

par [block] PIcontinuousController [PIcontinuousController]

e7 : StateVariable
{der(x)=a/b}

e8 : OutControl
{a=b*(c+d)}

xa

K: Real

b

a

b

c

d

x: Real

T: Real

error: Real

outCtr: Real
«equal» «equal»

«equal»

«equal»

«equal»

«equal»

«equal»

Internal Block Diagram This is the Internal Block diagram for a system with a single tank.

bdd [package] Blocks [TankPI]

«block»
TankPI

properties
 piContinuous : PIcontinuousController
 source : LiquidSource
 tank : Tank

This is the Internal Block diagram for a system with two connected tanks.

(c) Sparx Systems 2020 Page 451 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

bdd [package] Blocks [TanksConnectedPI]

«block»
TanksConnectedPI

properties
 controller1 : PIcontinuousController
 controller2 : PIcontinuousController
 source : LiquidSource
 tank1 : Tank
 tank2 : Tank

Run Simulation

Since TankPI and TanksConnectedPI are defined as 'SysMLSimModel', they will be filled in the combo box of 'Model'
on the 'Simulation' page.

Select TanksConnectedPI, and observe these GUI changes happening:

'Data Set' combobox: will be filled with all the data sets defined in TanksConnectedPI·

'Dependencies' list: will automatically collect all the Blocks, Constraints, SimFunctions and ValueTypes directly or·
indirectly referenced by TanksConnectedPI (these elements will be generated as Modelica code)

'Properties to Plot': a long list of 'leaf' variable properties (that is, they don't have properties) will be collected; you·
can choose one or multiple to simulate, and they will become legends of the plot

Create Artifact and Configure

Select 'Simulate > System Behavior > Modelica > SysMLSim Configuration Manager'

The elements in the Package will be loaded into the Configuration Manager.

Configure these Blocks and their properties as shown in this table.

Note: Properties not configured as 'SimConstant' are 'SimVariable' by default.

Block Properties

LiquidSource Configure as 'SysMLSimClass'.

Properties configuration:

flowLevel: set as 'SimConstant'·

Tank Configure as 'SysMLSimClass'.

(c) Sparx Systems 2020 Page 452 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Properties configuration:

area: set as 'SimConstant'·

flowGain: set as 'SimConstant'·

maxV: set as 'SimConstant'·

minV: set as 'SimConstant'·

BaseController Configure as 'SysMLSimClass'.

Properties configuration:

K: set as 'SimConstant'·

T: set as 'SimConstant'·

Ts: set as 'SimConstant'·

ref: set as 'SimConstant'·

PIcontinuousController Configure as 'SysMLSimClass'.

TankPI Configure as 'SysMLSimModel'.

TanksConnectedPI Configure as 'SysMLSimModel'.

Setup DataSet

Right-click on each element, select the 'Create Simulation Dataset' option, and configure the datasets as shown in this
table.

Element Dataset

LiquidSource flowLevel: 0.02

Tank h.start: 0

flowGain: 0.05

area: 0.5

maxV: 10

minV: 0

BaseController T: 10

K: 2

Ts: 0.1

PIcontinuousController No configuration needed.

By default, the specific Block will use the configured values from super Block's
default dataSet.

TankPI What is interesting here is that the default value could be loaded in the 'Configure
Simulation Data' dialog. For example, the values we configured as the default
dataSet on each Block element were loaded as default values for the properties of
TankPI. Click the icon on each row to expand the property's internal structures to

(c) Sparx Systems 2020 Page 453 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

arbitrary depth.

Click on the OK button and return to the Configuration Manager. Then these values
are configured:

tank.area: 1 this overrides the default value 0.5 defined in the Tank Block's·
data set

piContinuous.ref: 0.25·

TanksConnectedPI controller1.ref: 0.25·

controller2.ref: 0.4·

Simulation and Analysis 1

Select these variables and click on the Solve button. This plot should prompt:

source.qOut.lflow·

tank1.qOut.lflow·

tank1.h·

tank2.h·

(c) Sparx Systems 2020 Page 454 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Here are the analyses of the result:

The liquid flow increases sharply at time=150, to 0.06 m3/s, a factor of three of the previous flow level (0.02 m3/s)·

Tank1 regulated at height 0.25 and tank2 regulated at height 0.4 as expected (we set the parameter value through the·
data set)

Both tank1 and tank2 regulated twice during the simulation; the first time regulated with the flow level 0.02 m3/s;·
the second time regulated with the flow level 0.06 m3/s

Tank2 was empty before flow came out from tank1·

Simulation and Analysis 2

We have set the tank's properties 'minV' and 'maxV' to values 0 and 10, respectively, in the example. In the real world, a
flow speed of 10 m3/s would require a very big valve to be installed on the tank.

What would happen if we changed the value of 'maxV' to 0.05 m3/s ? Based on the previous model, we might make these
changes:

On the existing 'DataSet_1' of TanksConnectedPI, right-click and select 'Duplicate DataSet', and re-name to·
'Tank2WithLimitValveSize'

Click on the button to configure, expand 'tank2' and type '0.05' in the 'Value' column for the property 'maxV'·

Select 'Tank2WithLimitValveSize' on the 'Simulation' page and plot for the properties·

Click on the Solve button to execute the simulation·

(c) Sparx Systems 2020 Page 455 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Here are the analyses of the results:

Our change only applies to tank2; tank1 can regulate as before on 0.02 m3/s and 0.06 m3/s·

When the source flow is 0.02 m3/s, tank2 can regulate as before·

However, when the source flow increases to 0.06 m3/s, the valve is too small to let the out flow match the in flow;·
the only result is that the water level of tank2 increases

It is then up to the user to fix this problem; for example, change to a larger valve, reduce the source flow or make an·
extra valve

In summary, this example shows how to tune the parameter values by duplicating an existing DataSet.

(c) Sparx Systems 2020 Page 456 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Troubleshooting OpenModelica Simulation

Common Simulation Issues

This table describes some common issues that can prevent a model being simulated. Check the output in the 'Build' tab of
the System Output window. The messages are dumped from the OpenModelica compiler (omc.exe), which normally
points you to the lines of the Modelica source code. This will help you locate most of the errors.

Issue

The number of equations is less than the number of variables. You might have forgotten to set some properties to
'SimConstant', which means the value doesn't change during simulation. You might have to provide the
'SimConstant' property values before the simulation is started. (Set the values through a Simulation Data Set.)

The Blocks that are typing to Ports might not contain conserved properties. For example, a Block 'ChargePort'
contains two parts — 'v : Voltage' and 'i: Current'. The property 'i : Current' should be defined as SimVariable with
the attribute 'isConserved' set to 'True'.

SimConstants might not have default values — they should be provided with them.

A SimVariable might not have an initial value to start with — one should be provided.

The properties might be typed by elements (Blocks or Value Type) external to the configured Package; use a
Package Import connector to fix this.

SysML Simulation Configuration Filters

The 'SysML Simulation Configuration' dialog shows all the elements in the Package by default, including Value Types,
Blocks, Constraint Blocks, Parts and Ports, Constraint Properties, Connectors, Constraints and Data Sets. For a
medium-sized model, the full list can be quite long and it can be difficult for the user to find a potential modeling error.

In the TwoTanks example, if we clear the Tank.area property 'SimConstant' and then do a validation, we will find this
error:

 Error: Too few equations, under-determined system. The model has 11 equation(s) and 13 variable(s).

This error indicates that we might have forgotten to set some properties to 'SimConstant'.

What we can do now is click on the second button from the right on the toolbar (Filter for the configuration) and open
the dialog shown here. Click on the All button, then deselect the 'Suppress Block' and 'Suppress Variable Part'
checkboxes and click on the OK button.

(c) Sparx Systems 2020 Page 457 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

Now we will have a much shorter list of variables, from which we can find that 'area' does not change during simulation.
Then we define this as a 'SimConstant' and provide an initial value to fix the issue.

Model Validation Examples

Message Discussion

Variable not defined in
Constraint

In the TwoTanks example, when we browse to
'constraintBlock.Outcontrol.Constraint', suppose we find a typing error: we typed 'v'
instead of 'b' in the constraint.

 So, instead of:

 a=b*(c+d)

 We typed:

 a=v*(c+d)

Click on the Validate button on the toolbar. These error messages will appear in the
'Modelica' tab:

 Validating model...

 Error: Variable v not found in scope OutControl. (Expression: " a=v*(c+d);")

 Error: Error occurred while flattening model TanksConnectedPI

 Number of Errors and Warnings found: 2

Double-click on the error line; the configuration list displays with the constraint
highlighted.

Change 'v' back to 'b' and click on the Validate button again. No errors should be
found and the issue is fixed.

Tips: Using the SysML Simulation Configuration view is a shortcut way of

(c) Sparx Systems 2020 Page 458 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

changing the constraints for a Block or Constraint Block. You can:

Change a constraint in place·

Delete using the context menu of a constraint·

Add a new constraint using the context menu of a Block or Constraint Block·

Duplicate Variable Names In the TwoTanks example, browse to block.tank.constraintProperty.e1. Suppose we
gave two properties the same name:

Right-click on e1, select 'Find in Project Browser', and change the name to e2;·
reload the 'SysML Simulation Configuration' dialog

Click on the Validate button on the toolbar; these error messages appear in the
'Modelica' tab:

 Validating model...

 Error: Duplicate elements (due to inherited elements) not identical:
(Expression: "SensorValue e2;")

 Error: Error occurred while flattening model TanksConnectedPI

 Number of Errors and Warnings found: 2

Double-click on the error line; the configuration list displays with the constraint
properties highlighted.

Change the name of one of them from e2 back to e1 and click on the Validate
button again; no errors should be found and the issue is fixed.

Properties defined in
Constraint Blocks not used

In the TwoTanks example, in the Browser window, we browse to the element
'Example Model.Systems
Engineering.ModelicaExamples.TwoTanks.constraints.OutFlow'.

Suppose we add a property 'c' and potentially a new constraint, but we forget to
synchronize for the instances — the constraint properties. This will cause a Too few
equations, under-determined system error if we don't run validation.

Reload the Package in the 'SysML Simulation Configuration' dialog and click on
the Validate button on the toolbar. These error messages will appear in the
'Modelica' tab:

 Validating model...

 Error: ConstraintProperty 'e4' is missing parameters defined in the typing
ConstraintBlock 'OutFlow'. (Missing: c)

 Error: Too few equations, under-determined system. The model has 11
equation(s) and 12 variable(s).

 Number of Errors and Warnings found: 2

Double-click on the error line; the configuration list displays with the constraint
property highlighted. The constraint property is typed to outFlow and the new
parameter 'c' is missing.

Right-click on the constraint property in the configuration list, select 'Find in all
Diagrams', then right-click on the 'Constraint' property on the diagram and select
'Features | Parts / Properties' and select the 'Show Owned / Inherited' checkbox,
then click on 'c'.

Reload the model in the 'SysML Simulation Configuration' dialog and click on the
Validate button. These error messages will appear in the 'Modelica' tab:

 Validating model...

 Error: ConstraintProperty 'e4' does not have any incoming or outgoing binding
connectors for parameter 'c'.

 Error: Too few equations, under-determined system. The model has 11
equation(s) and 12 variable(s).

(c) Sparx Systems 2020 Page 459 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

 Number of Errors and Warnings found: 2

In order to fix this issue, we can do either of two things based on the real logic:

If the property 'c' is necessary in the Constraint Block and a constraint is1.
defined by using 'c', then we need to add a property in the context of the
constraint property and bind to the parameter 'c'.

If the property 'c' is not required, then we can click on this property in the2.
Constraint Block and press Ctrl+D. (The corresponding constraint properties
will have 'c' deleted automatically.)

(c) Sparx Systems 2020 Page 460 of 461 Created with Enterprise Architect

User Guide - Simulation and Behavior 3 April, 2020

(c) Sparx Systems 2020 Page 461 of 461 Created with Enterprise Architect

	Introduction
	Dynamic Model Simulation
	How it Looks
	Simulation Windows
	Set Up Simulation Script
	Activate Simulation Script
	Run Model Simulation
	Simulation Breakpoints
	Objects and Instances in Simulation
	Create Objects in a Simulation
	Destroy Objects in a Simulation

	Dynamic Simulation with JavaScript
	Call Behaviors
	Interaction Operand Condition and Message Behavior
	Guards and Effects
	Triggers

	Action Behavior By Type
	Structured Activity Simulation
	Activity Return Value Simulation
	Simulation Events Window
	Waiting Triggers
	Re-Signal Triggers
	Multi-threading - Forks and Joins

	Trigger Parameters
	Trigger Sets and Auto-Firing
	Using Trigger Sets to Simulate an Event Sequence
	Multi-threading - Concurrent State Regions
	Using Composite Diagrams
	Win32 User Interface Simulation
	Supported Win32 UI Controls
	Win32 Control Tagged Values

	BPMN Simulation
	Create a BPMN Simulation Model
	Initialize Variables and Conditions

	Comparison of UML Activities and BPMN Processes

	Business Process Simulation (BPSim)
	BPSim Configuration
	BPSim - Configure Page
	BPSim - Execute Page
	BPSim - Step Page
	BPSim - Review Page
	Using the Parameter Value Dialog

	The BPSim User Interface Components
	The BPSim Control Perspective
	The BPSim Resource Perspective
	The BPSim Time Perspective
	Configuration Inheritance
	Using the MDG BPSim Execution Engine
	BPSim Execution Engine - Simulation language
	Tracking Property Parameter Values
	Tracking Property Parameter Values - Examples

	Compare BPSim Configurations
	BPSim Charts
	BPSim Examples
	Help Desk Phone Support Simulation - Resource Perspective
	Calendar-Based Help Desk Phone Support Simulation
	Car Repair Process
	BPMN2.0 Event Examples
	Error Event
	Escalation Event
	Event Sub-Process
	Fibonacci Number Generator with Link Event
	Message Event
	Signal Events
	Timer Event - Boundary
	Timer Event - Standalone Intermediate Event

	Paint Wall Process Simulation (Call Activity)
	BPSim Cost Parameters

	Export a BPSim Configuration

	DMN Modeling and Simulation
	An Example of Decision Modeling
	Building a Decision Model in Enterprise Architect
	Components of Decision Requirements Diagrams
	DMN Expression Editor
	Decision Table
	Toolbar for Decision Table Editor
	Decision Table Hit Policy
	Decision Table Validation

	Literal Expression
	Toolbar for Literal Expression Editor
	Example - Loan Repayment

	Boxed Context
	Toolbar for Boxed Context Editor
	Example - Loan Installment Calculation

	Invocation
	Toolbar for Invocation Editor
	Example 1 - Bind Input Data to Business Knowledge Model
	Example 2 - Bind Context Entry variables to Business Knowledge Model

	Edit DMN Expression Dialog
	DMN Expression Validation
	DMN Expression Auto Completion

	Decision
	Business Knowledge Model
	BKM Parameters
	Input Parameter Values for Simulation
	Decision Table Simulation Example
	Literal Expression Simulation Example

	InputData
	InputData DMN Expression

	ItemDefinition
	Item Definition Toolbar
	ItemDefinitions and Data Sets
	Types of Component
	Allowed Value Enumerations

	Data Sets
	Exchange Data Sets using DataObjects

	Decision Service
	Simulating a Decision Service

	DMN Simulation
	Simulate DMN Model
	DMN Simulation Toolbar
	Example DMN Simulation

	DMN Module Code Generation and Test Module
	Integrate a DMN Module Into BPSim for Simulation
	Example: Integrate DMN Decision Service into BPSim Data Object and Property Parameter
	Example: Integrate DMN Business Knowledge Model into BPSim Property Parameter

	Integrate DMN Module Into UML Class Element
	Importing DMN XML

	Executable StateMachines
	Executable StateMachine Artifact
	Modeling Executable StateMachines
	Code Generation for Executable StateMachines
	Debugging Execution of Executable StateMachines
	Execution and Simulation of Executable StateMachines
	Example: Simulation Commands
	Example: Simulation in HTML with JavaScript
	CD Player
	Regular Expression Parser

	Entering a State
	Example: Fork and Join
	Example: Deferred Event Pattern
	Example: Entry and Exit Points (Connection Point References)
	Example: History Pseudostate
	Example Executable StateMachine

	Parametric Simulation using OpenModelica
	Interfacing with OpenModelica
	OpenModelica on Windows
	OpenModelica on Linux

	Creating a Parametric Model
	Configure SysML Simulation Window
	Model Analysis using Datasets
	Modeling and Simulation with Modelica Library
	SysML Simulation Examples
	Electrical Circuit Simulation Example
	Mass-Spring-Damper Oscillator Simulation Example
	Water Tank Pressure Regulator

	Troubleshooting OpenModelica Simulation

