
Model Based Systems
Engineering and

SysML
A Guidebook to Model Based Systems

Engineering using Sparx Systems Enterprise
Architect

Enterprise Architect

User Guide Series

Author: Sparx Systems &
Stephen Maguire

Date: 2021-09-02
Version: 15.2

CREATED WITH

Table of Contents

Model Based Systems Engineering and SysML 12
An Equation with Four Variables 15
The Engineering Method or Process 17
Modeling as a Discipline 22
Getting Started 25
Defining a Model's Purpose 28
Deciding Where to Start 31
Connecting Parts of the Model 33
Ensuring a Model's Quality 35

The Systems Modeling Language (SysML) 37
Enterprise Architect the Modeling Tool 39
Collaboration Platform 43
Project Management Workbench 44
Model Repository 46

Getting Started 47
Setting Up a Model Structure 50
Tailoring the Application 52
Setting a Perspective 54
Selecting a Visual Style 57
Selecting a Workspace 59
Setting Preferences 60

Importing Existing Material 61
Creating Diagrams Elements and Relationships 68

Visualizing the Models 75
Synchronizing with External Data 77

Where we are Heading 79
Getting to Know the SysML Diagrams 92
Common Aspects of Diagrams 103
Block Definition Diagram 119
Requirement Diagram 123
Use Case Diagram 128
Package Diagram 133
Activity Diagrams 136
Internal Block Diagram 140
Parametric Diagram 143
Sequence Diagram 147
StateMachine Diagram 152

Systems Modeling Language Overview 155
Language Architecture 158
Key Grammatical Concepts 169
Models, Diagrams, Elements and Views 171

Collaborating as an Engineering Team 179
Central Shared Repository 180
Cloud Computing 182
Discussions and Chat 185
Kanban Resources and Calendars 187
Model Reviews 189
Sharing Resources in the Team Library 192
Viewing Models on Mobile Devices 194
Modeling the Future 196

Version Control and Baselines 201
Reusable Asset Server 205

Using Packages to Structure the Repository 209
The Function of Packages 211
Introducing Package Diagrams 213
Package Organization Regimes 222
The Browser Window 227
Accessing the Repository using Model Views 232

Requirement Definition and Management 234
Requirements as First Class Citizens 242
Introducing Requirement Diagrams 248
Developing Requirements 255
Elicitation 257
Document Sources 258
User Observations 260
Stakeholder Workshops 262
Creating Requirements 267
External and Internal Requirements 268
Requirement Categories 269
Requirement Properties 271

Specification 273
Meet the Specification Manager 275

Analysis 279
Prioritize the Requirements 281

Validation 287
Visualizing Requirements 290
Requirements Diagrams 291

Specification Manager 293
Browsers and Views 295
Relationships Matrix 298
Requirements Tables 300

Managing Requirements 301
Tracing Requirements 302
Tracking Requirements 308
Managing Changing Requirements 311
Impact Analysis of Changes 316
Requirement Volatility 320
Requirement Reuse 324

Requirement Relationships 328
Adding Refinement to a Requirement 333
Containment Relationship 335
Copying Existing Requirements 338
Deriving a Requirement from Another 340
Ensuring a Requirement is Satisfied 342
Traceability to Model Elements 345
Verify Relationship 347
Visualizing Requirement Relationships 350

Documenting Requirements 360
Project Glossary 362
Software Requirement Specification 363

Describing User Goals with Use Cases 364
Requirements and Use Cases 365
Introducing Use Case Diagrams 369
Meet the Scenario Builder 376

Structuring a Use Case Model 378
Generating Behavior Diagrams 379
Use Case Report 380

Using Blocks to Model Structure and Constraints 382
Getting Started with Blocks 389
Modelling Constraints as Blocks 393
Introducing Block Definition Diagrams 395
The Fundamental Structural Building Blocks 403
Modeling Structural Features 404
Modeling Behavioral Features 415
Other Block Relationships 424
Modeling Interaction Points 432
Modeling Quantity using Value Types 438

Using Properties and Parts to Model Block Usage 442
Introducing Internal Block Diagrams 444
Modeling and Connecting Parts 447

Modeling Parametric Equations 451
Introducing Parametric Diagrams 453
Systems of Equations using Part Associations 457
Measures of Effectiveness using Parametrics 460

Coordinating Behavior with Activities 463
Actions the Fundamental Behavioral Building Blocks 467
Introducing Activity Diagrams 472
Creating Activity Hierarchies 478
Specifying Action Sequence with Control Flows 480
Specifying Item Flow with Object Flows 483
Modeling Inputs and Outputs with Parameters and

Pins 487
Visualizing Activities with Simulations 491
Allocations and other Relationships 494

Modeling Change with StateMachines 497
States and Behaviors 501
Introducing StateMachine Diagrams 503
Triggers and Transitions 509
Composite States and Regions 515
Pseudostates - The Traffic Police 518
State Tables another View 525
Visualizing and Implementing with Simulations 529

Interactions as a Sequence of Messages 532
Lifelines, Messages and Activations 534
Introducing the Sequence Diagram 542
Message Orchestration with Fragments 548

Visualizing with Simulations 550
SysML Simulation in Modelica and Simulink 551
How it Works 554
Getting Started with OpenModelica 558
Creating Models for Simulation 566

Example SysML Model 575
Package Overview (Structure of the Sample Model) 576
Package Diagram - Applying the SysML Profile 577
Package Diagram - Showing Package Structure of
the Model 578

Setting the Context (Boundaries and Use Cases) 581
Operational Domain Model - Setting Context 582

Use Case Diagram - Top Level Use Cases 584
Use Case Diagram - Operational Use Cases 588

Elaborating Behavior (Sequence and StateMachine
Diagrams) 590
Sequence Diagram - Drive Black Box 591
StateMachine Diagram - HSUV Operational States 595
Sequence Diagram - Start Vehicle Black Box and
White Box 597

Establishing Requirements (Requirements Diagrams
and Tables) 600
Requirement Diagram - HSUV Requirement
Hierarchy 601
Requirement Diagram - Derived Requirements 602
Requirement Diagram - Acceleration Requirement
Relationships 604
Table - Requirements Table 606

Breaking Down the Pieces (Block Definition
Diagrams, Internal Block 607
Block Definition Diagram - Automotive Domain 608
Block Definition Diagram - Hybrid SUV 609
Internal Block Diagram - Hybrid SUV 610
Block Definition Diagram - Power Subsystem 612
Internal Block Diagram for the Power Subsystem 613

Defining Ports and Flows 616
Block Definition Diagram - ICE Flow Properties 618
Internal Block Diagram - CAN Bus 620
Block Definition Diagram - Fuel Flow Properties 621
Parametric Diagram - Fuel Flow 623

Analyze Performance (Constraint Diagrams, Timing
Diagrams, Views) 624
Block Definition Diagram - Analysis Context 626
Package Diagram - Performance View Definition 627
Package Diagram - Viewpoint Definition 629
Package Diagram - View Definition 631
Package Diagram - View Hierarchy 633
Parametric Diagram - Measures of Effectiveness 634
Parametric Diagram - Economy 636
Parametric Diagram - Dynamics 637
(Non-Normative) Timing Diagram - 100hp
Acceleration 639

Defining, Decomposing, and Allocating Activities 640
Activity Diagram - Acceleration (top level) 641
Block Definition Diagram - Acceleration 642
Activity Diagram (EFFBD) - Acceleration (detail) 643
Internal Block Diagram - Power Subsystem
Behavioral and Flow Allocation 645
Internal Block Diagram: Property Specific Values -
EPA Fuel Economy Test 646

Meet the Systems Engineering Tools 648
Requirements Diagram 650
Activity Diagram 655
Use Case Diagram 659
Scenario Builder 664
Auditing 668
Calendar 671
Block Definition Diagram 674

Internal Block Diagram 677
Dashboard Diagrams 680
Decision Tree Diagram 683
StateMachine Diagram 687
Documentation 690
Gap Analysis Matrix 693
Heat Map 697
Import and Export Spreadsheets 700
Parametric Diagram 703
Patterns 705
Relationship Matrix 709
Roadmap Diagram 713
Specification Manager 717
Strategy Map 720
Library 724
Time Aware Modeling 727
Traceability Window 732
Value Chain 736

Model Based Systems Engineering and SysML 2 September, 2021

Model Based Systems Engineering and
SysML

Model Based Systems Engineering (MBSE) has emerged as
a powerful approach to the management and engineering of
complex systems. It is a shift away from the
document-centric approach and allows models to be
developed and used for a wide range of purposes, including
Requirement specification, design, trade-offs, architecture,
verification, validation, simulations and support, and more.

The models act as an 'insurance policy' against catastrophic
engineering errors and help to reduce the high cost of failure
at the specification, design, test, implementation and support
phases.

When you use Enterprise Architect for MBSE you open the
door to a completely new way of thinking and working.
Enterprise Architect is a rigorous collaboration platform that
allows ideas, problems, solutions and implementations to be
shared by a wide range of stakeholders including:

(c) Sparx Systems 2021 Page 12 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Customers·

Executives·

Engineering Managers·

Engineering Team leaders·

Architects and Designers·

Systems Engineers·

Software Engineers·

Testers·

Suppliers·

System Integrators·

Support Staff·

Users or their surrogates·

The models are also available in real-time for view,
contributions, reviews and discussions through a secured
Browser interface, utilizing the power of collaboration to
create robust and well formed architectures and designs.

In this guidebook we will explore many of the features of
Enterprise Architect that can be harnessed to take an

(c) Sparx Systems 2021 Page 13 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

individual engineer, a team, an organization or an entire
industry segment to the level of practice and performance
that is required in an age dominated by innovation and
unprecedented technical change. The guidebook will
provide background for the Systems Modeling Language
and show how the language constructs can be created in
Enterprise Architect. It is intended to give a newcomer to
both the language and the tool exposure to all that is
possible in the field of Systems Engineering using this
powerful engineering and collaboration platform. In the
words of the famous 17th Century physicist, Sir Isaac
Newton:

 'If I have seen further than others it is because I
have stood on the shoulders of giants.'

Enterprise Architect provides a platform where this vision
can take place, where through the Collaboration features and
powerful facilities such as simulations and automation an
engineer can see opportunity, design solutions, and architect
the future.

Release 15.2 includes major upgrades for systems engineers,
technical architects and others wishing to couple their
modeling and simulation work in Enterprise Architect with
MATLAB, Octave, OpenModelica and more. All new
'Solver' classes and an extensive Math Library in the
JavaScript engine provide a new and significantly expanded
Simulation capability. Please see the Enterprise Architect
Release 15.2 (http://www.sparxsystems.com/ea152) web
page for more information.

(c) Sparx Systems 2021 Page 14 of 739 Created with Enterprise Architect

http://www.sparxsystems.com/ea152
http://www.sparxsystems.com/ea152

Model Based Systems Engineering and SysML 2 September, 2021

An Equation with Four Variables

The title of this guidebook implies that there are only two
disciplines to learn:

Model Based Systems Engineering (MBSE) and·

The Systems Modeling Language (SysML)·

However, there are four aspects to be considered when
taking on this approach. This is like an equation with four
unknowns , each of which must be addressed before a team
can be successful with an MBSE project or initiative. The
variables in the equations are:

The engineering method or process·

The discipline of modeling·

The Systems Modeling Language (SysML)·

Enterprise Architect, the modeling tool of choice·

It is not imperative that these four aspects be mastered
straight away, but it is important that they are known and
worked on and that the team develops the skills to
understand them individually and how they relate to each
other. For example, how to create a SysML Requirements
diagram using Enterprise Architect and what properties
should be included, when should it be done and what other

(c) Sparx Systems 2021 Page 15 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

parts of the model should it be related to.

 MBSE Approach = Process + Language +
Modeling + Tool

The guidebook will address all of these concerns, and by the
end the reader will not be confronted with unknown
variables, but the equation will have values based on the
learning, thus solving the equation with the four variables
that we started with. At this point the reader will be well on
their way towards a sound engineering modeling practice
using the most powerful tool available.

(c) Sparx Systems 2021 Page 16 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The Engineering Method or Process

The Systems Modeling Language is process agnostic and
can be used with any method or process. This point is
sometimes not understood by newcomers to the language
who expect that it should be prescriptive and give clear
guidelines as to what elements, diagram and models should
be created and when. This agnostic position provides great
flexibility and allows the language to be used in ways that
are applicable to the process and the underlying problem or
solution domain.

The elements, connectors, diagrams, and language
definitions defined as part of the Systems Modeling
language have all been created with the express purpose of
allowing engineers to create models of the:

mission·

stakeholders·

requirements·

measures of effectiveness·

structural and behavioral aspects of a system such as the·

components that ultimately implement the requirements

The process that is used by a team to create, manage and
disseminate the Artifacts is completely arbitrary and must be
defined at an organization or team level.

System Engineering typically requires a collaborative or
multidisciplinary approach where teams work together to
produce a result that meets the stakeholders' needs. There

(c) Sparx Systems 2021 Page 17 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

are two important aspects to any process:

A management process - which governs stakeholders,·

risk, schedule, budget and quality

A technical process - which manages architecture,·

analysis, design, integration and testing

The two processes, however, clearly require touch points to
ensure that the overall mission and the goals and objectives
of the project are being met.

Enterprise Architect allows you to use any type of process
regardless of whether it is formally defined, part of a
standard or crafted in-house. There are also facilities within
Enterprise Architect that allow you to define, publish and
share a bespoke process.

A Well Supported Team

Enterprise Architect provides a large range of tools that will
help teams collaborate regardless of where they are
geographically located or how they are separated by time
and distance. The product has been built as a collaborative
platform from the ground up, allowing engineering and
non-engineering, technical and non-technical stakeholders to
work together in a collaborative and integrated structure.

The repository can be Cloud-based, and users can connect
securely from anywhere on the globe, effectively creating a
virtual team. This is important for a number of projects
where expertise is not available locally or where the project
itself is global. The users and teams can use the

(c) Sparx Systems 2021 Page 18 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

collaboration features such as Discussions, Chats, Reviews
and Model Mail to work together. The result will be
collaborative architecture and design that is not the result of
one engineer's work, but the output of many minds, and the
work will be more than the sum of its parts.

These tools are powerful because they can be used to
annotate models, elements and diagrams, allowing users to
work together as though they were working collaboratively
on a whiteboard in the same room.

The Team Library is another powerful collaboration tool
that allows any type of file to be either included in the
repository or listed with a hyperlink and/or URL reference
to its external location on a web site. Documents such as
standards, specifications, guidelines, guidance, examples,
mentors and other material can all be catalogued in the
Team Library.

(c) Sparx Systems 2021 Page 19 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

There is a wide range of other tools that can be used to
facilitate team work, including the Image Manager,
Calendars, Publishing, Kanban, Project Management
features and many more. This example shows a Kanban
diagram that can be used to visualize what is being worked
on in an Agile team developing physical or software
components of a system. For more information see the Team
Support Help topic.

(c) Sparx Systems 2021 Page 20 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/team_development.html
https://sparxsystems.com/enterprise_architect_user_guide/15.2/team_development.html

Model Based Systems Engineering and SysML 2 September, 2021

(c) Sparx Systems 2021 Page 21 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Modeling as a Discipline

Most people, systems engineers included, typically find it
easier to write a long description of a topic rather than a
succinct, concise summary - this is analogous to the
challenge of modeling.

The question isn't so much what to include, but rather what
to leave out.

One of the advantages of model based system engineering is
precisely this - it encourages engineers to create models that
are descriptive, crisp and concise. The long (and sometimes
rambling) sentences of document based processes are
replaced with clear and laconic diagrams that
unambiguously describe the requirements, the structure and
the behavior of the system.

(c) Sparx Systems 2021 Page 22 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

There are those who describe modeling as a hermetic
discipline and speak of it as one of the 'dark arts' practiced
by alchemist engineers robed in purple gowns. This
underlies the issue that modeling is seldom taught as a
subject in our universities, nor are there vast quantities of
literature on the topic, making it appear to be a mysterious
art rather than what it is - a science that can be learnt.

There are a number of different types of model including:

Scale Models·

Physical Models·

Abstract Models·

(c) Sparx Systems 2021 Page 23 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

In this guidebook we are most interested in Abstract models,
as they are the models we will typically be creating using
Enterprise Architect and the Systems Modeling Language.

These models are - as the name suggests - abstractions of
reality that seek to highlight the most important aspects of
an entity, subsystem or system, while leaving out the things
that are not important or are irrelevant from that viewpoint.
For more information see the Building Models Help topic.

(c) Sparx Systems 2021 Page 24 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/modeling_tools/models.html

Model Based Systems Engineering and SysML 2 September, 2021

Getting Started

An abstract model is a representation of a real world thing in
a way that helps us to reason about it without needing to
view the real thing. Typically a model is much smaller and
is a simplified view of a system or one of its parts. A model
can also be created that focuses on just one aspect or facet of
a system; for example, the communication or navigation
system of an aircraft.

A building is a complex structure that has a number of
different systems including Structural, Electrical,
Ventilation, Plumbing, Landscape and more.

(c) Sparx Systems 2021 Page 25 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

By constructing a number of models we are able to create a
simplified view of each of the subsystems, which makes it
easier to understand that aspect of the building. The models
themselves also need to be resolved against each other. For
example, it is critical that the power system represented in
the electrical model provide electricity to the
air-conditioning equipment modeled in the ventilation
system. The Human Usage model needs to be resolved
against the Landscape model to ensure that the gardens and
landscaping meet the recreational needs of the occupants
and their visitors.

A model will typically be viewed by a number of different
stakeholders who commonly have quite disparate roles with
respect to the part of the system being modeled. To ensure
the model is useful to a particular stakeholder, views can be
created representing what is seen when looking at the model
from a particular viewpoint.

The electrical model of the building is useful to a number of
different stakeholders, all of whom have a different
viewpoint with respect to the system, including the
Electrical Grid Officer, the Safety Inspector, the Electrician
and the Purchasing officer.

(c) Sparx Systems 2021 Page 26 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

(c) Sparx Systems 2021 Page 27 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Defining a Model's Purpose

Moving to Model Based System Engineering brings with it
a number of challenges and traps for teams who are more
accustomed to working with document-centric methods.
Probably the commonest trap is to start modeling without
having a clear understanding or definition of the purpose of
the models.

In comparison with document-centric modeling approaches,
it is more difficult to define the purpose of a model than it is
to define the purpose of a suite of documents. The model is
orders of magnitude more useful and powerful than a
document and can be used to perform work that is
unimaginable with a document-based system. Some of the
advantages of the model based approach are:

Consistency checks can be easily applied·

Alternative views can be readily created and kept·

consistent

If documentation is required it can be generated·

automatically

Models are interlocking and consistent·

Change impact can be visualized and automated·

Models can be kept compliant with an underpinning·

metamodel

Models can be versioned and baselined·

Requirements traceability can be easily managed·

(c) Sparx Systems 2021 Page 28 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Models can be easily manipulated and changed·

The model can be used to generate code and standards·

Models can be simulated producing powerful·

visualizations

Models can be transformed from one level of abstraction·

to another

Parts of the model can be easily reused creating efficiency·

This diagram shows how traceability can be visualized and
managed in the tool, allowing you to view the way that parts
of the models interlock and how elements form a graph of
connections, helping you to describe and comprehend your
model.

Enterprise Architect harnesses the power of the SysML,

(c) Sparx Systems 2021 Page 29 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

along with a large set of tools built with System Engineering
Managers, Systems Engineers and other stakeholders in
mind, providing simple but powerful ways to take advantage
of the Model-Based Systems Engineering approach.

There are other profound benefits that can be achieved by
moving to a model-based approach, including ensuring that
projects and programs of work are performed with rigor,
productivity and efficiency using a tool that encourages
excellence and collaboration. For more information see the
Benefits and Features Help topic.

(c) Sparx Systems 2021 Page 30 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/benefits_and_features.html

Model Based Systems Engineering and SysML 2 September, 2021

Deciding Where to Start

The process of modeling can be quite daunting for engineers
new to Model Based Systems Engineering. More than
anything else is, apparently, the issue of where to start
modeling - the engineer's equivalent of the artist's 'blank
canvas' inertia.

Enterprise Architect provides a welcomed solution to this
issue, by providing a series of patterns that can be used to
create starting points for an initiative or project, including
all of the SysML diagram types with a number of patterns
for each type. For more information see the Model Wizard
topic,

Textbooks typically describe a series of steps that should be

(c) Sparx Systems 2021 Page 31 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/model_wizard.html

Model Based Systems Engineering and SysML 2 September, 2021

carried out in a prescribed order, but in practice these
recipes don't work because projects are substantially more
complex than the generic ways described in the books, and
complex project and resource dependencies mean that tasks
cannot be performed in a prescribed order.

The starting point will typically be determined by the
engineering method or process being used for the project,
which could be a waterfall, an iterative, a combination of
both or another type of process. Regardless of the type of
process being used, having a clear understanding of the
mission is often a good starting point, and defining the
affected stakeholders and their concerns and requirements is
often a good next step.

(c) Sparx Systems 2021 Page 32 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Connecting Parts of the Model

The Systems Modeling Language encourages engineers to
create a series of models, which will seem to the novice or
newcomer to model-based systems engineering to be
fragmenting the view of the system. In reality the SysML
describes a network of models, each addressing particular
concerns but connected together to describe the system and
its parts as a whole.

In this illustration we see a compelling Enterprise Architect
diagram that depicts the connections between parts of the
model using specialized elements and connectors, namely a
Requirement, an Activity and a Block using the Allocate
relationship. The elements can be reused in any number of
diagrams, and changing their properties in one location will
update them in every context. Diagrams can be created
quickly and easily using a number of powerful features, and
they can be visualized in a wide range of ways such as lists,
tables and spreadsheets. The diagrams can be filtered, and
elements can be replaced with graphic icons to create more
interest for non-technical audiences. For more information
see the Diagramming Help topic.

This is the real power of the Model Based Systems
Engineering approach, as it allows a system to be viewed in
a multitude of ways, from a complete and high level view

(c) Sparx Systems 2021 Page 33 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/umldiagram.html

Model Based Systems Engineering and SysML 2 September, 2021

down through multiple layers of decomposition or
hierarchy. Each level is connected, gaps or breaks in the
models can be easily identified, and remedies can be found.

(c) Sparx Systems 2021 Page 34 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Ensuring a Model's Quality

The quality of a model will ultimately be reflected in the
quality of the system that it represents. Enterprise Architect
has been designed to provide a platform for the creation and
management of high quality collaborative models. There are
a number of features that assist the modeler attain the
required level of quality, including facilities such as:

Metamodel - that can be defined by a user to effectively·

create a grammar for the model, ensuring that users create
'compliant' modeling sentences; for more information see
the Profile Help topic

Model Validation - that allows the model to be checked·

for compliance with the underlying metamodel

Discussions and Chat - that allow modelers to work·

collaboratively on a problem or solution

Reviews - that allow internal or external experts to view·

and critique models

Model Patterns - that provide expertly created model·

Packages to provide a starting point for modeling

Searches - that assist in finding particular problems in the·

model

(c) Sparx Systems 2021 Page 35 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/umlprofiles_2.html

Model Based Systems Engineering and SysML 2 September, 2021

This diagram shows the Model Patterns in action where
novice and experienced modelers alike can, with a single
button press, create well formed models and diagrams using
a productive corpus of industry best practice models - all
SysML compliant. There is also a detailed explanation and
discussion on how to use the pattern next step, where to get
further help and more. For more information see the Model
Wizards Help topic.

(c) Sparx Systems 2021 Page 36 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/model_wizard.html
https://sparxsystems.com/enterprise_architect_user_guide/15.2/model_wizard.html

Model Based Systems Engineering and SysML 2 September, 2021

The Systems Modeling Language
(SysML)

The Systems Modeling Language (SysML) is a language
that has been defined for the purpose of representing the
Artifacts of Systems Engineering problems and solutions or
programs of work in a consistent, efficient and robust way.

SysML is designed to provide simple but powerful
constructs for modeling a wide range of systems engineering
problems and solutions. It can be used for a variety of
purposes but is particularly effective in specifying
requirements, structure, behavior, allocations, and
constraints on system properties to support engineering
analysis including parametric analysis and simulation.
SysML can be used with multiple processes and methods
such as structured, object-oriented, iterative, waterfall and
many others.

The language has been designed and augmented over more
than ten years to be suitable for modeling systems of an ever
increasing complexity. These changes have seen a relatively

(c) Sparx Systems 2021 Page 37 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

compact and concise language become broader and more
diverse; nevertheless, the majority of systems engineering
projects can still be modeled with a smaller part of the
language, which we might term 'Core SysML'. For more
information see the Modeling Systems in Enterprise
Architect Help topic.

(c) Sparx Systems 2021 Page 38 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/sysmodl_in_ea.html
https://sparxsystems.com/enterprise_architect_user_guide/15.2/sysmodl_in_ea.html

Model Based Systems Engineering and SysML 2 September, 2021

Enterprise Architect the Modeling Tool

Enterprise Architect is both a Model Repository and a
Collaboration Platform, making it a powerful tool for Model
Based Systems Engineering projects. It enables team
members - including project sponsors, engineering
managers, customers and engineers - to collaborate on
projects in a rigorous and productive environment. Using
WebEA and Prolaborate, the collaboration can continue on
mobile devices such as mobile 'phones, Tablets and
Notebooks.

In the information and innovation age, a tool is required to
do a lot more than store information or allow users to view
diagrams and models. Enterprise Architect has taken up this
challenge and propelled its Systems Engineering offering to
another level, with tools such as the:

Scenario Builder, which automatically creates Activity·

diagrams from Use Case steps, and generates Test Cases
from Scenarios; for more information see the Scenario
Builder Help topic

(c) Sparx Systems 2021 Page 39 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/tools_ba_scenario_builder.html
https://sparxsystems.com/enterprise_architect_user_guide/15.2/tools_ba_scenario_builder.html

Model Based Systems Engineering and SysML 2 September, 2021

Executable StateMachines, which allow programming·

code to be automatically generated from StateMachines;
for more information see the Executable StateMachine
Help topic

(c) Sparx Systems 2021 Page 40 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/executable_statemachines_main.html

Model Based Systems Engineering and SysML 2 September, 2021

Parametric Simulations using OpenModelica or Simulink,·

bringing models to life and allowing complex and often
intractable problems to be visualized and analyzed to
support trade-off analysis and engineering investigations;
for more information see the Parametric Models Help
topic

In this example the relationships between the factors
controlling a fluid flowing between two tanks are defined:

(c) Sparx Systems 2021 Page 41 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/sysml_parametric_models_2.html

Model Based Systems Engineering and SysML 2 September, 2021

The models can then be simulated using the powerful
OpenModelica simulation features.

par [block] Tank [Tank]

qIn: LiquidFlow

qOut: LiquidFlow

tSensor: ReadSignal

tActuator: ActSignal

area: Real

flowGain: Real minV: Real

h: Real

e1 : Mass_Balance
{der(h) = (x - y) / a}

e2 : SensorValue
{a=b}

e3 : Q_OutFlow
{a=LimitValue(min, max, -b*c)}

h

y

a

ab

a

c
b max min

x

maxV: Real

lflow : Real

lflow : Real

val : Real

act : Real

«equal» «equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

(c) Sparx Systems 2021 Page 42 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Collaboration Platform

The information age has been transmuted to the innovation
age almost while we were sleeping, and now more than ever
there is an imperative that teams will work together in new
and cohesive ways. Sharing documents and files on disk and
working with static diagrams are now things that we expect
to see in museums. Responsive, robust and innovative
solutions can only be achieved by teams working with
exceptional tools that not only allow models to be
constructed and facilitate collaboration, but also perform
work. Enterprise Architect is a powerful toolkit that allows
teams to collaborate, bringing together the best minds and
most experienced hands from a wide range of interlocking
disciplines. The people that contribute to update and view
the models might be dispersed geographically, operate in
different time zones, be from different organizations or even
speak different natural languages.

This image shows some of the powerful collaboration
features available from the Start ribbon. Discussions and
Reviews are also available from WebEA and Prolaborate,
allowing modeling and non-modeling staff to collaborate,
resulting in more robust and fit-for-purpose solutions. For
more information see the Collaboration Panel Help topic.

(c) Sparx Systems 2021 Page 43 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/use_today_panel.html

Model Based Systems Engineering and SysML 2 September, 2021

Project Management Workbench

Enterprise Architect provides a wide range of tools for
managing a Model Based Systems Engineering project. In
this way it can act as a project management workbench that
can be used to manage an engineering project. The entire
Systems Life Cycle can be modeled in the tool, from the
conceptualization of business needs through design,
implementation, utilization, support and ultimately to the
system's retirement or disposal.

There are Gantt charts, Calendars, Team Libraries, Risk,
Defect, Task, Effort and Metric Registers, to name a few.
Roadmaps are another powerful feature that allow a project
manager to visualize the development of a project over time
from a current state to any number of transition or future
states.

A team can also work cohesively using the built-in Kanban
boards which allow items such as Requirements, User
Stories, Defects and Changes and more to be visualized as
they are actively being worked on. Resource allocation and
Properties such as Priority and Status can be viewed through
the board items and over-fill limits are displayed.

(c) Sparx Systems 2021 Page 44 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

This powerful technique, which has its origin in the
Japanese Automotive sector has been implemented in
Enterprise Architect in a way that will greatly enhance the
productivity of your team and its project management. For
more information see the Project Management Help topic.

(c) Sparx Systems 2021 Page 45 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/projectmanagement.html

Model Based Systems Engineering and SysML 2 September, 2021

Model Repository

Enterprise Architect is primarily a model repository that
allows models to be managed from their creation through to
their retirement. The repository is stored in a relational
database that can be hosted in a client server configuration
or as part of a Cloud services facility, either on or off
premise in a Cloud environment. So even though modelers
will be working with diagrams and visual elements, these
diagram are all codified and stored in the repository
database. The repository can contain any number of models
and can be organized for reuse and for enterprise and project
models. For more information see the Model Repository
topic.

(c) Sparx Systems 2021 Page 46 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/configuration_management.html

Model Based Systems Engineering and SysML 2 September, 2021

Getting Started

Getting started with a new tool is often one of the most
difficult challenges but Enterprise Architect makes this easy
by providing a number of facilities to assist the newcomer to
the tool. Enterprise Architect is a large and powerful
application and the breadth of its coverage would
overwhelm a person new to the program but fortunately a
solution to this has been built into the design.

Perspectives can be used to limit the functionality to
System Engineering - making it easy for a system engineer
or manager to get started. A user still has the ability to
utilize other functionality that might be useful, such as
Strategic Modeling, Mind Mapping, Code Engineering and
more, simply by changing Perspectives - all without having
to open a different tool. It is worth noting that Perspectives
exist for a wide range of modeling disciplines that
Enterprise Architect supports. For more information see the
Perspectives topic.

(c) Sparx Systems 2021 Page 47 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/what_perspectives.html

Model Based Systems Engineering and SysML 2 September, 2021

A user also has tremendous flexibility to tailor their own
environment and the user interface by setting preferences
and selecting workspaces and visual styles. For more
information see the Customization topic.

Setting up a new project is straightforward with the use of
the Model Wizard Patterns (with accompanying
documentation) that can be utilized to automatically create
an MBSE project structure to get you started. The wizard
can then be used to create any number of SysML diagrams

(c) Sparx Systems 2021 Page 48 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/defaultsandusersettings.html

Model Based Systems Engineering and SysML 2 September, 2021

as the model is developed and the problem and solution
spaces are fleshed-out.

All of these facilities make it easy for a newcomer to get
started, allowing them to become productive members of a
team and start contributing to models quickly and without
any delay. A novice engineer will be surprised how
productive they can be when compared to working in text
based or other more rudimentary modeling tools. There will
be challenges along the way as you push yourself and the
tool to new limits but a powerful help system, a large
community of users, comprehensive forums, a community
site and a first class support services will make the journey
easy and informative.

(c) Sparx Systems 2021 Page 49 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Setting Up a Model Structure

Enterprise Architect has been designed as a productivity tool
from the ground up, and setting up a model structure -
sometimes a daunting task for the beginner and tedious for
the experienced user - is made simple in Enterprise
Architect by the use of Model Wizards.

The structure for a new initiative (project) can be created
using the Model Wizard, which will create an entire project
structure that can be tailored on import, providing all the
Packages ready to start the project.

The structure of the repository is a subject that is explored in
a later topic, because it is critical to the success of a
model-based engineering approach to Systems Engineering.
We will learn later that Packages are important units in the
organization and maintenance of a model repository, and

(c) Sparx Systems 2021 Page 50 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

there is an entire topic dedicated to the subject of using
Packages to structure the repository. For more information
see the Model Wizard Help topic.

(c) Sparx Systems 2021 Page 51 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/model_wizard.html

Model Based Systems Engineering and SysML 2 September, 2021

Tailoring the Application

Enterprise Architect is a tool with a vast amount of
functionality, which is one of the reasons why it is so
popular as a tool for modeling systems of any kind. To
ensure that the tool provides the most benefit to an
organization, team, project or individual, some tailoring of
the interface to suit the modeling intent will ensure that all
parties achieve the best outcomes. Most of the settings can
be changed by a single button click, transforming the tool to
be fit for purpose, which - for us - is collaborating on Model
Based Systems Engineering projects.

We will look at a number of places where we can change the
application from a generic modeling tool to a systems
engineering tool. We will look at these topics.

Selecting a Perspective

Selecting a Perspective is similar to putting a filter on an
optical lens. It allows a modeler to just see application
facilities relevant to that Perspective - in our case the
Systems Modeling Language (SysML).

Selecting a Workspace

Selecting a workspace is important because it allows the

(c) Sparx Systems 2021 Page 52 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

user to ensure that the windows, ribbons, toolbars and other
visual elements provide an efficient working environment
and easy access to the important facilities that are needed.

Setting Visual Styles

Visual styles provide a series of options for the look and feel
of the application, including things such as colors and tab
positions.

Setting Preferences

Preferences provide a wide range of options for tailoring
how Enterprise Architect looks and functions from General
settings such as Browser window options to Diagram,
Objects and Engineering options. Many of the options apply
to an individual user with others pertaining to the entire
repository.

(c) Sparx Systems 2021 Page 53 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Setting a Perspective

Enterprise Architect is a tool packed with features for a wide
range of disciplines, methods, languages and frameworks.
Perspectives provide a way for a user to select a facet of the
tool that allows them to focus on a particular subset of the
tools features and facilities. The Systems Engineering
group of Perspectives provides a natural starting point for
Systems Engineers, but at any point if you decide to use
other facilities in the tool you can simply change
Perspectives and the tool will change to provide a focus on
the selected area.

Selecting one of the Systems Engineering Perspectives will

(c) Sparx Systems 2021 Page 54 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

change the tools to focus on the selected aspect of Systems
Engineering. For example, choosing the SysML Perspective
will display a series of model patterns giving a user a jump
start by being able to load a pattern for a standard model
fragment or diagram. The 'New Diagram' dialog will also
just display SysML diagram types.

There is also the convenient facility for a user to create any
number of their own Perspectives, adding sets of
technologies to each Perspective. This allows a modeler
whose primary concern is SysML diagrams to add other
facilities such as strategic models, Kanban diagrams and
dozens of other useful diagramming and modeling
mechanisms. For more information see the Perspectives
topic.

(c) Sparx Systems 2021 Page 55 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/what_perspectives.html

Model Based Systems Engineering and SysML 2 September, 2021

(c) Sparx Systems 2021 Page 56 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Selecting a Visual Style

Every modeler will have their own preferences about the
color scheme and style of the user interface and Enterprise
Architects allows these to be set and saved for each user
making the application more appealing. For example some
modelers will want a dark color scheme and others will
prefer a light or colorful scheme.

There is a range of options here including setting the
position of the main window tabs and the size of the text in

(c) Sparx Systems 2021 Page 57 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

the notes window and much more. Setting the visual style
will assist in personalizing the modeling environment and
making individual modelers feel comfortable while
maintaining consistent and rigorous models. For more
information see the Visual Style topic.

(c) Sparx Systems 2021 Page 58 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/visualstyles.html

Model Based Systems Engineering and SysML 2 September, 2021

Selecting a Workspace

Enterprise Architect has a powerful way of quickly
changing the layout of the User Interface to facilitate
particular tasks or ways of working. This is achieved by
simply selecting a workspace that will change the visible
windows and tools, to provide the most efficient way of
working to suit the task. For example, there is a workspace
defined for Systems Engineering Simulations, one for Use
Case Modeling, and another one for Testing. You can also
define any number of your own workspace layouts that you
find useful, by opening windows and tools and positioning
them in an arrangement that facilitates working on a
particular task or set of tasks, and saving them. In this
example, a modeler has defined three custom workspace
layouts. For more information see the Workspace Layouts
topic.

(c) Sparx Systems 2021 Page 59 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/manage_workspace_layout.html

Model Based Systems Engineering and SysML 2 September, 2021

Setting Preferences

Enterprise Architect has a formidable set of preferences,
some of which can be set for the entire repository and others
for each user. These allow the application to be tailored to
suit an individual engineer or an entire team. For more
information see the Local Options topic.

This diagram shows how diagram themes can be set and
elements of the style can be specified, including fonts,
colors, line thickness and gradients.

(c) Sparx Systems 2021 Page 60 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/configurelocaloptions.html

Model Based Systems Engineering and SysML 2 September, 2021

Importing Existing Material

When Enterprise Architect has been set up for use it is likely
that you will still have some existing project artifacts in the
form of diagrams, documents, spreadsheets and items in
other formats. Many of these can be conveniently imported
into Enterprise Architect or referenced from within the tool.
The tool also provides extensive server-side connectivity to
a wide range of other tools, including Requirements
Management tools such as DOORS Next Generation,
project management tools such as Wrike, and project
implementation tools such as Jira, via the Pro Cloud Server
(a separately licensed server-side component).

Importing Spreadsheets

Spreadsheets are commonly used as a general purpose
container for a wide range of numerical and textual project
data. Uses include:

Requirements·

Stakeholder Analysis·

Planning·

Roadmaps·

Subsystems·

Components·

(c) Sparx Systems 2021 Page 61 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Interface Definitions·

Task Management·

While the spreadsheet is a very familiar tool it lacks many
of the rigorous and powerful features of an information
management platform such as Enterprise Architect,
including:

Collaboration,·

Diagramming·

Traceability,·

Baselines,·

Visualizations,·

Simulations·

Versions and more.·

Enterprise Architect has built in support for all these and
many other forms of information that are commonly stored
in Spreadsheets. The tool also conveniently comes with
facilities to import and export the spreadsheet data using the
CSV file format.

(c) Sparx Systems 2021 Page 62 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The most typical scenario is for the information in the
Spreadsheets to be imported into Enterprise Architect and
then the spreadsheet can be decommissioned and the
information assets can be managed in Enterprise Architect
from that point forward.

There might be situations where using the numerical
analysis aspects of a spreadsheet would be useful, and
Enterprise Architect conveniently provides a tool to export
information to CSV file format for import into a
spreadsheet. For more information see the Import and
Export Spreadsheets topic.

Importing Visio Diagrams

Microsoft Visio is commonly used by engineering teams,
often because there are no other more sophisticated tools
available and it serves the purpose of creating general
purpose diagrams. It is common for a team that adopts
Enterprise Architect as their engineering platform of choice
to have a collection of preexisting Visio diagram. All these

(c) Sparx Systems 2021 Page 63 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/tools_ea_import_and_export_spreadsheets.html
https://sparxsystems.com/enterprise_architect_user_guide/15.2/tools_ea_import_and_export_spreadsheets.html

Model Based Systems Engineering and SysML 2 September, 2021

diagrams can be imported into Enterprise Architect but the
results are more effective when these Visio diagram have
been constructed with consistency or using standard
industry palettes rather than free-form geometric shapes
such as square and circles that have no shared meaning.
Once imported the diagrams can be massaged and updated
to form part of the repository, and the original Visio
diagrams can be decommissioned.

Enterprise Architect provides a free tool that can be used to
connect to an MS Visio engine and import selected
diagrams into the repository.

A decision has to be made whether to decommission the
diagrams in Visio and to allow Enterprise Architect to
manage the diagrams from this point on. Having the
diagrams in the repository provides great power, as elements
on the diagrams can be related to other elements in the
repository. For more information see the Extensions the
topic.

Using the Team Library

Even if an engineering team has transitioned to Model
Based Systems Engineering it is likely that there will still be

(c) Sparx Systems 2021 Page 64 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/mdg_products.html

Model Based Systems Engineering and SysML 2 September, 2021

a range of documents and web based material that is critical
for the management and development of engineering
solutions. Enterprise Architect provides a pragmatic
approach to this need by incorporating a Team Library
feature where documents and web resources (both local and
remote) can be collected together as references.

Any of the references catalogued in the Team Library can
be included on a diagram as an Internal or External Artifact
but more conveniently they can also be imported or
referenced. For more information see the Team Library
topic.

MS Office Integration

Enterprise Architect has the ability to integrate with the
Microsoft Office suite of applications using the MDG Link
for Microsoft Office, making it easy to exchange

(c) Sparx Systems 2021 Page 65 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/discussionforum.html

Model Based Systems Engineering and SysML 2 September, 2021

information between any Enterprise Architect model and
MS Powerpoint, Word and Excel. There are options to
import, export and synchronize the content.

Powerpoint

PowerPoint integration provides easy access to Enterprise
Architect's model repository within PowerPoint
presentations. You can insert references to the model, use
hyperlinked model element names, insert diagrams as
images and tabulate Package contents on slides.

Excel

The Microsoft Excel Importer tool allows you to import
contents from Excel workbooks into Enterprise Architect as
model elements. This includes importing spreadsheet data as
UML elements, connectors, attributes and operations.

Word

The Microsoft Word Importer tool brings Requirements,
Use Cases, Processes, Classes and other data from Word
documents into Enterprise Architect as model elements. The
Word Importer provides a step-by-step approach that helps
you map items such as sections, tables and delimited
name-value pairs to Enterprise Architect elements and
properties – including defining custom Tagged Values.

Integration with External Tools

Enterprise Architect provides a powerful interface (as part

(c) Sparx Systems 2021 Page 66 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

of the Pro Cloud Server) for connecting your model
repositories to external tools. This enables Enterprise
Architect to synchronize elements in external tools with
views of the elements in Enterprise Architect, which is
particularly useful if Enterprise Architect and another tool
share an interest in particular types of information. An
example is the integration with the DOORS Next
Generation (NG) product, where requirements modeled in
DOORS can be viewed inside Enterprise Architect, and
local surrogates of the elements can be placed on diagrams
and related to any number of other modeling elements,
including strategies, trade studies, Use Cases and
Components. (There is also an in-model facility available to
connect to older versions of DOORS.)

There is a wide range of integrations available, and teams
can create their own integrations using the Open Services
for Lifecycle Collaboration (OSLC) facility, available as
part of the Pro Cloud Server. For more information see the
Integrations Help topic.

(c) Sparx Systems 2021 Page 67 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/integrate_external_provider_data.html

Model Based Systems Engineering and SysML 2 September, 2021

Creating Diagrams Elements and
Relationships

Once a model structure has been set up and the application
has been tailored to suit your needs, including the selection
of the SysML Perspective and an appropriate workspace,
you are ready to start creating elements and diagrams. While
it is possible to create an element without first creating a
diagram it is common practice to first create a diagram as a
canvas for how the elements will be visualized. The first
thing you will need to do is choose a location for the
diagram in the Browser window. For example, you might
be defining the fundamental architecture of your system and
have defined a Package called 'Subsystems'. By selecting
this Package you are telling Enterprise Architect that this is
where you want a new Subsystems diagram inserted.

Creating a New Diagram

Enterprise Architect is a flexible tool and provides a number
of ways of inserting a new diagram, including:

Selection from the Ribbons:

(c) Sparx Systems 2021 Page 68 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Selection from the Browser window header bar:

Selection from the context (right click) menu:

Regardless of the method you choose you will be able to
select the SysML diagram type from the 'Diagram Types'
panel of the 'New Diagram' dialog.

(c) Sparx Systems 2021 Page 69 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Let's continue on to create a Block Definition diagram to
represent the Subsystem. Select the Block Definition
diagram as the diagram type and enter an appropriate name.
Once you click on the OK button, a new (blank) BDD
diagram will be created and the Block Definition Diagram
Toolbox will be displayed ready for you, or a member of
your team, to create elements and relationships.

Enterprise Architect will create a diagram canvas with a
visible frame that represents the border of the diagram. The
diagram frame is included because some users prefer to see
it, but it can be hidden with no loss of meaning or
compliance; once hidden the canvas then becomes the frame
and the header information is contained at the top of the
canvas. The frame can be included in saved or published
diagrams by choosing this option in the 'Preferences' dialog.

Adding Elements to a Diagram

With the new diagram opened you are ready to start creating
elements and relationships to describe the subsystems. There
are essentially two types of Object that can be added to a

(c) Sparx Systems 2021 Page 70 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

diagram:

New elements - Created by dragging an item from the·

Toolbox and dropping it onto the diagram canvas

Existing elements - Placed on the diagram by·

drag-and-dropping an element from the Browser window

If you are starting a new project and have just set up your
repository, you will not typically have elements in the
Browser window so you will make more use of the first
option and create elements from the Toolbox. As your
project progresses it will become more common to use the
second option and drag existing elements from the Browser
window.

We will create a number of Blocks. Firstly we need a Block
to represent the entire vehicle, so we will drag and drop a
Block item from the Toolbox onto the diagram canvas. The
tool will resize the frame to include the Block regardless of
where you placed it on the canvas. The element will be
given a default name of 'Block1'. Now using the Properties
window, typically docked on the side of the diagram,
change the element's name to 'Vehicle' by typing over the
default name 'Block1'.

(c) Sparx Systems 2021 Page 71 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

This will change the element's name in the Browser window
and the diagram. Returning to the diagram you will see the
newly added Block with the name 'Vehicle' enclosed in the
diagram frame.

We could now use the same method to add a series of
Blocks to represent each of the Subsystems.

Adding Relationships to a Diagram

Once you have added two or more elements you can connect
them with relationships, which provide the semantic glue
between the different elements in the model. For example, a
Block element can connected to another Block element
using an Part Association relationship. There are two
primary ways that connectors can be added to a diagram:

Quick Linker - an intuitive diagram device initiated by1.

(c) Sparx Systems 2021 Page 72 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

dragging a link between the Quick Linker arrow (at the
top right of the element) and another diagram object

ToolBox Items - connectors can be selected in the2.
Toolbox and then dragged between two diagram objects.

Either method will result in the specified connector being
drawn between the two elements. Care needs to be exercised
to ensure you are dragging in the right direction; the Part
Association relationship, for example, should be dragged
from the Block that is at the part end to the Block that is at
the whole end. This will ensure that the little diamond
marker at the end of the relationship is positioned at the
correct end, indicating the whole-part relationship.

Regardless of the method that is used the result will be an
Information Requirement relationship connecting the two
Blocks. The direction and style of the connector can be
altered, and any number of way-points can be added to route

(c) Sparx Systems 2021 Page 73 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

it differently as the model is developed. This diagram shows
the added relationship where the modeler has also added a
role name (+cu) and a multiplicity (1..2), indicating that a
Boom Gate must have at least one control unit but could
have as many as two. If a modeler were to inadvertently add
the connector in the wrong direction it can be conveniently
reversed by accessing options from the Advanced submenu
of the connector's context menu.

(c) Sparx Systems 2021 Page 74 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Visualizing the Models

You might have been introduced to the SysML by reading
introductory material in textbooks or in lecture notes as part
of a tertiary qualification or in online pages. Much of this
content presents the SysML as a language of diagrams, but
Enterprise Architect expands the horizons of the language -
and modeling in general - by providing a variety of ways to
visualize information in the repository. The diagrams still
play an important part, but in many circumstances there are
more compelling ways to visualize or work with the
repository content, including:

Specification View - a spreadsheet or document view for·

those who are more familiar working this way

List View - a table-based view similar to a spreadsheet·

where the properties of multiple elements can be viewed

Traceability View - a hierarchical and graphical view·

where element relationships can be viewed to any level of
nesting

Gap Analysis Matrix - shows source and target elements·

and gaps in architectural models

Relationship Matrix - a grid based view with two axes·

containing sets of elements

State Table View - a view available for StateMachine·

diagrams to display the state transitions in a table

Gantt Chart View - view a timeline when resources have·

been assigned

(c) Sparx Systems 2021 Page 75 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Searches - view element lists that comply with a built-in·

or user defined set of criteria

Publications - view elements in a publication using·

built-in or user defined templates

Graphical View - view the elements as a diagram (this is·

the default view)

This diagram shows a Gantt Chart that has been
automatically created from the resource information entered
against elements that were visualized on a Kanban Diagram.
For more information see the Gantt View Help topic.

(c) Sparx Systems 2021 Page 76 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/tools_ba_gantt_view.html

Model Based Systems Engineering and SysML 2 September, 2021

Synchronizing with External Data

While Enterprise Architect is a central tool for the
management of Model Based Systems Engineering projects,
there are likely to be a number of other tools that an
engineering office will have in place or will acquire for the
purposes of ensuring that an endeavor meets its outcomes.
These might include Project Management tools,
visualization tools, Requirements Management catalogues,
configuration management systems and issue tracking
software.

Enterprise Architect, through the Pro Cloud Server (a
separately licensed server-side component), provides
bi-directional integration with a large number of tools
including:

Doors Next Generation - used for Requirements·

Management

Wrike - used for general purpose Project Management·

Jira - used for issue tracking·

ServiceNow - used for Configuration Management·

Share Point - used for document management·

Team Foundation Server - used for Version Control in·

the software discipline

Representations of the elements from these external data
sources can be included in diagrams and related to other
elements in the repository. This allows Enterprise Architect
to become an engineering information hub, connecting and

(c) Sparx Systems 2021 Page 77 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

integrating with a wide range of tools to provide a single
view of a project. This image shows a current list of
providers.

(c) Sparx Systems 2021 Page 78 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Where we are Heading

The discipline of Systems Engineering dates back to the
early 1900's; the term is thought to have been first coined by
Bell Laboratories in the early 1940's. Sixty-odd years would
pass before the need for a dedicated language for modeling
systems was perceived in 2001, but it wasn't until 2006 that
the Systems Modeling Language (SysML) was adopted by
the Object Management Group and became the language of
choice for describing systems.

In the field of Systems Engineering, Enterprise Architect
has become the tool of choice for many leaders in the
industry, because of its flexible, extensible and pragmatic
approach to modeling complex systems and its strong
compliance with the Systems Modeling Language
specification.

ibd [block] Automotive Domain [AutomotiveDomain]

«external»
drivingConditions: Environment

Driver

Passenger

Mechanic

object: ExternalObject

«external»

HSUV: HybridSUV

«LightCondition»

weather: Weather

«external»

road: Road

«external»

vehicleCargo:
Baggage

«external»

«diagramDescription»
version=”0.1"
description=”Initial concept to identify top level domain entities"
reference=”Ops Concept Description”
completeness=”partial. Does not include gas pump and various other
external interfaces.”

x1: x5:

x2:

x4:x3:

As a platform, Enterprise Architect offers a unique

(c) Sparx Systems 2021 Page 79 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

capability in supporting the integration of strategic,
business, engineering and technology models, from
motivation models through to the implementation of
systems and continuing on to support. The tool helps the
System Engineer to create Strategic models - including
diagrams such as the Balanced Scorecard - Capability
models, Tactical models - such as Gap Analysis and
Roadmaps - and Operational models, appealing to
stakeholders including the senior executives, engineering
managers, solution and implementation teams, and
engineers.

How it will help you

Readers will typically come to the topic of Model Based
Systems Engineering with some existing knowledge or
experience even if it is something that has been learnt in
lectures or by on the job training, or perhaps by using a
different tool. Readers will benefit by understanding
Enterprise Architect's features and the tools that are
available to develop and manage Model Based Systems
Engineering models in Enterprise Architect. This knowledge
will enable them to be more productive as an individual and
also as a member of a team. The reader will also learn about
the syntax and semantics of the Systems Modeling
Language popularly know as SysML and how it can be used
to model and even to simulate complex engineering
systems.

(c) Sparx Systems 2021 Page 80 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Who will benefit

Anyone involved in the development, management or
support of Model Based Systems Engineering initiatives
whether at a:

Strategic level,·

Business Value level,·

Management Level or·

Engineering level·

will benefit from reading this information. This covers a
wide range of roles including:

Customers,·

Strategic Thinkers,·

Senior Management,·

Engineering Management,·

System Designers and Architects,·

Software Designer and Architects,·

Systems Engineers,·

Software Engineers,·

Fabrication Teams,·

Implementation Teams,·

(c) Sparx Systems 2021 Page 81 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Support Staff.·

The real power of this way of working and using Enterprise
Architect as a tool is in the unification of the
interdisciplinary teams. Thus allowing people from a wide
range of disciplines, potentially geographically dispersed
and working at a wide range of levels from strategy to
support, to share a common view of the product or system
being developed.

What you will learn

This guidebook will teach you how to use the powerful
features of Enterprise Architect to develop and manage
Model Based Systems Engineering initiatives, to write and
read the Systems Modeling Language (SysML), create
documentation and to work collaboratively as a member of a
team using a formal or informal engineering process.

You will learn what tool facilities are available and which
tools should be used to perform a particular technique and
using links to help topics how to use them . For example,
regardless of the process or framework that is adopted, at

(c) Sparx Systems 2021 Page 82 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

some point Allocation between Structural and Behavioral
elements will need to be performed; this topic will describe
the technique and how to best achieve it using the tools and
facilities you have at your fingertips by adopting Enterprise
Architect.

Overview of the Documentation

This table provides a list and a description of the subjects
that are included in this work, giving an overview of the
material.

An Equation
with Four
Variables

This topic describes Model Based
Systems Engineering from a
mathematical perspective as an equation
with four variables namely: Modeling,
Enterprise Architect the tool of choice,
the Systems modeling language, and an
Engineering Process. Elementary
mathematics would suggest that we need
four simultaneous equations to solve such
a problem. This topic will introduce these

(c) Sparx Systems 2021 Page 83 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

four variables and suggest ways you as an
engineer or manager can become
proficient in this discipline without the
need to solve the equations
simultaneously.
We will see how Enterprise Architect can
play an important part in all four parts of
the equation and has been designed to
help make your engineering initiatives
successful.

Getting
Started

This topic introduces newcomers to the
tool to the most important aspects of the
application, including setting up a model
structure, tailoring the application,
working with diagrams, other ways of
visualizing content and integrations with
other tools. It also includes discussions
on the user interface, including Ribbons
and Perspectives which are fundamental
to working with the tool.
The tool has an extensive Help system
that has been developed over more than
twenty years and that can provide
answers to almost any question that an
engineer or other stakeholder might have
while working in the tool.

Where we This topic describes the list of the topics

(c) Sparx Systems 2021 Page 84 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

are Heading in the Guide, giving an overview of each
topic.

Getting to
Know the

SysML
Diagrams

This topic introduces the diagram as the
preferred and most commonly used
method for visualizing models and
repository content. It gives a brief
introduction to each diagram and allows
the reader to build up a mental map of
what the diagrams are and how that can
be used both to express one's ideas and to
interpret the ideas of others.

Systems
Modeling
Language
Overview

This topic provides insight into the
anatomy and the physiology of the
Systems Modeling Language. It provides
a useful synopsis of the notation and
describes the language architecture. It
also introduces the fundamental concepts
including: Elements, Diagrams, Models
and Views. While this information can be
gleaned from the Specification itself it is
summarized in this topic in enough detail
to shield the newcomer from the need to
wade through the specification.
Enterprise Architect provides example
models and a powerful help system that
will act as useful resources to help the
newcomers and experienced practitioners

(c) Sparx Systems 2021 Page 85 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

alike gain experience with the language.

Collaboratin
g as an

Engineering
Team

This topic introduces the formidable
collaboration tools where system
engineers, managers, customers,
consulting engineers, regulators and
standards bodies can all contribute to
models. This includes discussions, chats,
model mail, a team library, reviews and
more.

Using
Packages to

Structure
the

Repository

This topic covers the fundamental aspect
of the repository structure and how it is
used as an organizing principle to ensure
that the repository is fit for purpose. It
also covers how the Package can be used
as a container that both allows content to
be added but also provides a mechanism
for the management of the elements,
properties, diagrams and views that are
added to each Package.

Requiremen
ts Definition

and
Managemen

t

This topic introduces the engineer and
other stakeholders to this all important
and central discipline that forms the basis
for all other aspects of a modeling
endeavor. Enterprise Architect has a
formidable and unparalleled set of tools
for developing, managing, visualizing
and documenting requirements and these

(c) Sparx Systems 2021 Page 86 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

are introduced and practical examples are
given on how the tool can be used.

Describing
User Goals

with Use
Cases

This topic describes a user-centric way of
articulating requirements where the goal
that the user is trying to achieve is the
foundation upon which a requirement is
written. The users' goals are codified in
Use Cases, which are represented simply
on a diagram but the details of which are
fleshed out in Enterprise Architect using
the Scenario Builder. This facility
allows the description, constraints such as
preconditions and post-conditions, and
the steps of the scenarios to be written in
a compelling and productive user
interface. It also describes how
behavioral diagrams can be automatically
generated from the tool, and the elements
such as Activities can be linked to
up-stream modeling elements such as
Requirements and down-stream elements
such as Components - creating powerful
traceability.

Using Blocks
to Model

Structure
and

Constraints

The Block, which is introduced in this
topic, is the fundamental unit of structure
in the language and can also be used to
model constraints. It is the atom of the
SysML language and can have Features,

(c) Sparx Systems 2021 Page 87 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Properties and Interaction Points that
describe in detail the anatomy. This topic
also describes the relationships that
Blocks have with other model elements,
including the all-important Allocation
relationship that relates Blocks to
Activities. Allocations tie together the
two important pillars of the SysML:
Structure and Behavior. It also introduces
devices for modeling Quantity and Value
Types that can be used to model
dimensions in the physical world.

Using
Properties

and Parts to
Model Block

Usage

This topic follows on from the previous
topic and introduces the Internal Block
diagram, which is used to visualize how
Blocks are used in a given context. These
diagrams show how a Block's part
properties can be connected together. The
owning Block is represented as a diagram
frame and the parts that appear at the part
end of the Part Association on a Block
Definition diagram appear on the Internal
Block diagram as a Part element

Coordinatin
g Behavior

with
Activities

This topic introduces Activities and the
more atomic unit, the Action, which are
both used to describe the behavioral
aspects of a system at different levels.
These all-important elements are

(c) Sparx Systems 2021 Page 88 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

equivalent to the verbs in our natural
languages and, like verbs, have an
organizing function in the model.
Enterprise Architect has a number of
powerful devices such as Simulations that
can bring these models to life and allow
complex real world problems to be
simplified and visualized.

Visualizing
with

Parametrics
and

Simulations

This topic explores the use of Parametric
diagrams in connection with Block
Definition diagrams, which define
ConstraintBlocks that model
mathematical equations and the
parameters they use. The topic describes
how these constraints and parameters can
be represented on the Parametric
diagram, which is a cousin of the Internal
Block diagram. Simulation of the
Parametric diagrams is also introduced
and you will learn how to install and
work with the OpenModelica interface.
You will learn how powerful plots of
equations can be visualized without the
need to leave the Enterprise Architect
environment.

Modeling
Change with
StateMachin

This topic introduces the StateMachine as
a method of describing the discrete
conditions (States) that an entity such as a

(c) Sparx Systems 2021 Page 89 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

es Block can exhibit. This powerful
behavioral device can bring great clarity
to a model and solve otherwise
intractable problems. Enterprise Architect
has a number of tool features that can
bring these models to life, namely the
State Table and Executable
StateMachines that allow the States and
the Transitions to be active in compelling
visualizations.

Interactions
as a

Sequence of
Messages

In this topic the Sequence diagram is
introduced as a way of modeling
messaged based behaviors. You will learn
how to use this diagram to model a range
of engineering concepts. The diagrams
model the interaction between Blocks
that are internal to the system, or between
the system itself and its environment, and
they can be used to model the
communication that occurs with the steps
of a Use Case. Lifelines and Activations
are studied and Message orchestration is
introduced with the use of Fragments.

A First
Example

SysML
Model

In this topic we explore the diagrams that
specify, design and test a Hybrid SUV
vehicle that utilizes fuel and electricity as
power sources, featuring mechanisms like
regenerative breaking to meet its fuel

(c) Sparx Systems 2021 Page 90 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

efficiency requirements. The example
model is published in an annex of the
SysML specification; in this topic we
explore the diagrams that have been
created in Enterprise Architect,
explaining significant language and tool
features.

Meet the
Systems

Engineering
Tools

This topic introduces some of the most
important tools for working with Systems
Engineering models, describing what
they are, where they can be found, and
how they can be used, including options
and where to find more help. There are
many other tools that modelers might find
useful; these are introduced at relevant
points in the document.

(c) Sparx Systems 2021 Page 91 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Getting to Know the SysML Diagrams

The diagrams of the SysML can be regarded as types of
canvas, where an engineer will create visual representations
of the engineering concepts that form part of the model.
There are nine SysML diagram types, each focused on a
particular aspect of the problem or solution. While the
diagram types typically contain different types of elements,
they all conform to a standard representation composed of: a
Frame that contains, a Header and a Contents Area.

This section describe some of the most useful tools and
features that can be used when working with diagrams, but
there are many others that can be helpful. For more
information see the Diagrams Help topic.

(c) Sparx Systems 2021 Page 92 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/modeling_tools/umldiagram.htm

Model Based Systems Engineering and SysML 2 September, 2021

Diagram Frames

A Diagram Frame is a visual device that encloses the
elements and relationships on a diagram. The frame has two
parts:

A Header Area that contains a qualified name for the·

model element within the frame, which is provided if it is
not contained within default namespace associated with
the frame; it has the form:

diagramKind [modelElementType] modelElementName
[diagramName]

A Contents Area that contains the visual elements that·

make up the diagram

(c) Sparx Systems 2021 Page 93 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Enterprise Architect by default displays the frames within a
diagram window, but in compliance with the SysML
specification the frame can be suppressed to create a less
cluttered diagramming interface. (Remembering that
Enterprise Architect conveniently displays the frame header
information in the diagram header).

A frame can be switched back on whenever needed, and
diagrams being sent to the clipboard or printer can be
configured to display frames regardless of whether they
have been hidden in the user interface.

If set to non-selectable, the frame will auto-resize to fit the
bounds of the diagram, expanding from its default size but
not shrinking smaller. They can, however, be made
selectable and adjusted to suit a modeler's preference.

(c) Sparx Systems 2021 Page 94 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Note that diagrams showing Diagram Frames applied using
release 14.0 or later of Enterprise Architect will draw the
parent object on the diagram when opened using a release of
Enterprise Architect earlier than release 14.0.

Diagram Descriptions (Notes)

In addition to the meta information contained in the Header
a diagram can have a description that is useful for
newcomers to understand the purpose and intent of the
diagram. The description can be added, viewed and
maintained in the diagram's notes window,

A diagram is often created to describe aspects of a model or
system. While the diagram itself and the elements and
connectors it contains tell a story there is often the need to
annotate the diagram with some extra information in the
form of descriptive text. This text might for example:

(c) Sparx Systems 2021 Page 95 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Describe the purpose of the diagram,·

Highlight how to interpret the diagram,·

Contain link to other information in the model,·

Provide an explanation of the symbols used.·

The notes will be generated to documentation and are
visible through the WebEA interface.

Diagram Properties

Each diagram has a series of properties that describe the
diagram at a meta level including such items as the:

Date the diagram was created,·

Date the diagram was modified,·

Model author who created the diagram,·

Hand Drawn and Whiteboard Mode·

Visual theme, and many more.·

(c) Sparx Systems 2021 Page 96 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

In addition there is a tab dedicated to specifying which
compartments are visible in the diagram and another tab
used to specify matrices and swimlanes.

Changing Themes and Appearance

Enterprise Architect provides a facility that allows you to
apply a selected theme to all diagrams presented on your
device. You can use this to create a particular style of the
diagram and it can effect color, font, gradient, line thickness
and background image (tile). It is a useful mechanism to

(c) Sparx Systems 2021 Page 97 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

give your diagram more appeal or to unify their appearance.

Colors and styles can also be set for each diagram element
individually either as a default (every diagram the element
appears in) or only for the element on the current diagram.

Alternative Visualizations of Diagrams

Whilst being compliant with the SysML specification and
providing all of the diagram functionality expected in a
modeling tool, Enterprise Architect provides a number of
ways for modelers to view the diagram differently, bringing
rich visualizations of the diagram and its elements. These
include:

Specification View - presents the elements in a familiar·

word processor or spreadsheet format, allowing elements
and text to be updated

List View - presents the elements in a list that can be·

sorted and grouped, and the fields updated

Inline Specification View - presents the diagram alongside·

a narrative view similar to the Specification View

(c) Sparx Systems 2021 Page 98 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Gantt View - presents the elements in a Gantt view·

showing resource allocation and other temporal
information

In addition, the diagram can be viewed in two modes that
change the appearance of diagrams suitable for
presentations, adding great appeal and attenuating the focus
on the strictness of the underlying modeling language.

Creating Appeal with Alternative Images

(c) Sparx Systems 2021 Page 99 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The diagrams created as part of a model are intended to
communicate ideas to an audience and the intent of the
diagram is often better conveyed to a non technical or
business audience by the use of an image. Enterprise
Architect provides a mechanism to replace the vanilla (and
sometimes) unappealing graphical notation of the Systems
Modeling Language with an image in a variety of formats
including vector based images.

bdd [package] Production Line [Robots in Manufacturing]

«block»
Production Line

parts
 : Automated Assembly Unit

«block»
Automated

Assembly Unit

Spot Weld Body Robot

«block»

«requirement»
Automation

id = "7085"
text = "The system must use robots to
automate tasks that are beyond human
capabilities of accuracy, endurance, speed,
size, weight and that potentially must be
carried out in hazardous environments."

(from Requirements)

+au

1..*

«satisfy»

The image can be applied to every instance of the image in
diagram or just for a particular diagram. A set of default
images can be imported into the Image Manager or a user
or team is free to create their own images specific to a

(c) Sparx Systems 2021 Page 100 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

particular domain or industry.

Diagram Filters

Diagram Filters provide a mechanism for filtering out parts
of a diagram or list of elements that are not of interest,
leaving just the elements and connectors that are relevant to
the view. The filters can be defined for elements or
connectors and there is a wide range of criteria that can be
set, such as filter out all elements that don't have a status of
'Validated' and were created since a milestone date. More
simply an element type or stereotype can be filtered out. The
elements that do not meet the criteria can be hidden,
gray-scaled or simply dimmed (faded) so they are visible
but not prominent.

Diagram Legends

(c) Sparx Systems 2021 Page 101 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Diagram Legends provide a way of describing the elements
and connectors used in the diagram. The legends can
dynamically change the visual aspects of elements and
connectors in the diagram, for example by changing fill
color, line color and line width based on element properties
or Tagged Values.

Any number of legends can be created and they can be
applied to one or more diagrams.

(c) Sparx Systems 2021 Page 102 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Common Aspects of Diagrams

Diagrams are one of the most important ways to visualize
the contents of a model and represent a diagram author's
expression of what they consider important. Its compelling
visual appeal and its ability to act as a narrative telling a
story about some aspect of the system being modeled makes
the diagram one of the most important views. Each diagram
in the SysML has common aspects (or features) including:

a diagram Frame·

a diagram Header·

a diagram Contents Area (Canvas)·

a diagram Description (Notes)·

a diagram Properties Sheet·

A diagram Legend·

And more·

There is also a wide range of other facilities and that will
help the engineer when working with diagrams these
include:

Traceability Window·

Relationships Window·

Pan and Zoom·

Diagram Layout·

Diagram Filters·

Roadmaps·

(c) Sparx Systems 2021 Page 103 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Kanban·

Zoom options·

Appearance, Alignment and Style tools·

Diagram Frame

The Diagram Frame resembles a curtain enclosing the
elements that form part of the diagram. While it is more
important when viewing diagrams in line with written text,
some modelers prefer to have the diagram visible when
modeling.

bdd [package] Airport Security [Airport Smart Gate Scanners]

«block»
Airport System

parts
 : Security Subsystem

«block»
Security Subsystem

parts
 : Smart Gate Scanner

Smart Gate Scanner

«block»

The frame can be conveniently shown or hidden for each

(c) Sparx Systems 2021 Page 104 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

diagram, and when it is hidden the diagram information -
such as the type, parent and the name of the diagram - is still
visible in the diagram header.

Preferences can also be set to show the Diagram Frame
when diagrams are exported as part of documentation, to the
clipboard or in saved images. These options are located on
the 'Diagram' page of the 'Preferences' dialog.

The frame contains a header in the top left hand corner,
which contains useful information on the diagram. This
syntax describes the contents of the header.

 diagramKind [modelElementType] modelElementName
[diagramName]

diagramKind - is a code for the type of diagram, such as1.

(c) Sparx Systems 2021 Page 105 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

bdd (Block Definition diagram),

modelElementType - is the type of element that is acting2.
as the namespace of the diagram,

modelElementName - is the name of the namespace3.
element,

diagramName - is the name of the diagram, provided by4.
the user.

Diagram Header Bar

The diagram header bar provides useful information about
the diagram and tools to work with all open diagrams. Even
when the frame is not visible, the header will show the
diagrams details.

It also has a number of other useful icons that are used to
control aspects of the display, including:

Toolbox Chevron - that hides or shows the toolbox for all·

displayed diagrams,

(c) Sparx Systems 2021 Page 106 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Document Chevron - that shows or hides the Inline·

Specification view of the diagram,

Open Diagrams Arrow - which displays a list of open·

diagrams, indicating the one with unsaved changes,

Close Diagram Icon - that allows the diagram to be·

closed.

Diagram Contents

The diagram content is the canvas where you view and work
on your diagram. It is a highly flexible work area with lots
of powerful tools for both creating and visualizing existing
diagrams. Pictures can be added and mixed with the
standard geometric SysML elements, allowing expressive
and compelling diagrams that help convey important
engineering concepts to both technical and non-technical
audiences.

(c) Sparx Systems 2021 Page 107 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Enterprise Architect extends the way to view a diagram
using a number of powerful visualization techniques. These
will provide you with alternative ways to work with diagram
content and are welcomed by newcomers who might be
more familiar with working with elements in spreadsheets,
list and documents. Notice also in this diagram that images
can be used as an alternative to the vanilla SysML shapes.

Document View

This is a convenient view that displays the elements on the
diagram in a narrative form in a document. It is also known
as the 'Inline Specification' panel and is not a separate view
but a panel related to the selected diagram. The document is
conveniently opened to the right of the diagram so both

(c) Sparx Systems 2021 Page 108 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

diagram and document can be viewed simultaneously. Each
element present in the diagram will have a heading in the
document with the element's notes (description) displayed in
position under the heading. Elements and their notes
presented in this view can be conveniently edited, all the
while viewing both the document view and the diagram, and
the two are kept synchronized. The elements are by default
listed in alphabetical order but this sort order can be
changed from the context menu to follow top to bottom or
left to right.

List View

This is a useful way of viewing the elements in a diagram
while allowing them to be viewed, updated and created in a
familiar spreadsheet-like view. Element properties including
standard properties, Tagged Values and notes can be
managed, and drop down lists for properties with a discrete

(c) Sparx Systems 2021 Page 109 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

list of values are available, providing a welcomed way of
viewing these properties across multiple elements.

Specification View

The Specification Manager resembles the inline document
viewer, but gives more power and opens in a separate
dockable window. It is the perfect tool, designed for
engineers and other stakeholders who are more familiar with
working with spreadsheets or documents. It essentially
allows a modeler or viewer to visualize the contents of a
diagram (or Package) as a document or spreadsheet. The
document view resembles the familiar word processor
document, which can be edited in-line to create new
elements and their descriptions. The visualization can be
changed to resemble a spreadsheet where properties are

(c) Sparx Systems 2021 Page 110 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

displayed in columns.

It is a highly welcomed view for those transitioning from
document-based systems engineering processes, and a
favorite for engineers entering test-based information such
as a set of requirements, activities, components and other
elements.

Gantt Chart

(c) Sparx Systems 2021 Page 111 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

This provides a typical Gantt chart view of the elements in
the diagram where resource allocation has been applied to
the elements this can be visualized to give an engineering or
project manager a view on progress within the model.

Diagramming Tools

There is also a wide range of other tools that can be used to
display the information in the repository that will assist the
engineer when working with elements in diagrams,
including but not limited to:

Traceability Window

Used to view how element in the model are connected in a
graph of elements and their relationships. For more
information see the Traceability Window topic.

Relationships Window

Used to view the relationship between a selected element

(c) Sparx Systems 2021 Page 112 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/hierarchy.html

Model Based Systems Engineering and SysML 2 September, 2021

and other elements in the model; these relationship are not
visible but can be conveniently visualized in this separate
window. For more information see the Relationships
Window topic.

Pan and Zoom

Used to move around a large diagram by using a small
rectangle that represents the view-port, and to zoom in using
a slider control. For more information see the Pan and Zoom
topic.

Diagram Layout

Used to create compelling layouts of a diagram, using
selected visual layout patterns such as digraphs and springs.
For more information see the Layout Diagram topic.

Diagram Filters

Used to filter elements from view in a diagram either by
making hiding them, changing them to a gray scale, or
fading them. You can also reverse the behavior and select
element to include. For more information see the Diagram
Filters topic.

Roadmaps

Used to create time based representations of elements, with
an applied timescale that can be configured to suit the
project or modeler to show a roadmap for strategic and

(c) Sparx Systems 2021 Page 113 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/linktab.html
https://sparxsystems.com/enterprise_architect_user_guide/15.2/linktab.html
https://sparxsystems.com/enterprise_architect_user_guide/15.2/tools_ba_pan_and_zoom.html
https://sparxsystems.com/enterprise_architect_user_guide/15.2/layout_diagrams.html
https://sparxsystems.com/enterprise_architect_user_guide/15.2/diagram_filters_window.html
https://sparxsystems.com/enterprise_architect_user_guide/15.2/diagram_filters_window.html

Model Based Systems Engineering and SysML 2 September, 2021

development purposes. For more information see the
Roadmaps topic.

Kanban

Used to manage items in a traditional Kanban diagram,
where elements are moved between columns that represent
their order in a staged process; resources working on the
items can be visualized, creating a powerful way for a team
to manage its model or product development. For more
information see the Kanban topic.

Diagram Ribbons and Menus

There are a number of ribbons that are useful when working
with diagrams. The starting point, as described earlier, is the
'Diagram' panel of the Design ribbon, which allows you to
insert new diagrams and edit and change the view of
existing diagrams.

The 'Element' panel on the Design ribbon will also be useful
when working with elements on the diagram (or selected in
the Browser window) allowing you to insert new elements,
edit existing ones and manage element properties, features
and responsibilities. For more information see the Design
Ribbon Help topic.

(c) Sparx Systems 2021 Page 114 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/tools_ea_roadmap_diagram.html
https://sparxsystems.com/enterprise_architect_user_guide/15.2/kanban_facilities.html
https://sparxsystems.com/enterprise_architect_user_guide/15.2/overview_design_ribbon.html
https://sparxsystems.com/enterprise_architect_user_guide/15.2/overview_design_ribbon.html

Model Based Systems Engineering and SysML 2 September, 2021

Another important ribbon is the Layout ribbon, which
contains a number of panels that will be useful for working
with diagrams. This includes the 'Diagram' panel, which
contains options to set themes and change the diagram
mode, for example to Hand-Drawn. For more information
see the Layout Ribbon topic.

The 'Style' panel allows the visual style properties of
diagram elements to be set either as a group or for
individual elements.

The 'Alignments' Panel provides a rich set of tools for
aligning elements in a diagram. These are very useful and

(c) Sparx Systems 2021 Page 115 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/overview_layout_ribbon.html

Model Based Systems Engineering and SysML 2 September, 2021

provide a range of alignment options that are not typically
available in most drawing Packages, allowing elements - for
example - to be spaced evenly horizontally or vertically.

The 'Tools' Panel provides a series of tools for working with
diagrams, allowing for filtering content in diagrams - for
example, allowing a modeler to display only Constraint
elements with a specified status, that were created after a
specified date - Pan and Zoom and Layout options. The
Filter panel provides a quick and ad-hoc way to filter
content in the diagram without the need to create a diagram
filter.

A series of helpers are also available for working with
diagrams and their elements, controlling such things as

(c) Sparx Systems 2021 Page 116 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

horizontal and vertical hold to restrict element diagonal
movement.

Diagram Properties

A diagram in Enterprise Architect has a rich set of
properties, some being descriptive - such as the name - and
others being prescriptive, specifying how the diagram
should be displayed and what elements, compartments and
other features should be visible, including line styles.

Many of these properties can be set both at a diagram level
and at an element or connector level, allowing individual
parts of the diagram to be displayed differently to others.

The ability to set the visibility of element compartments is
particularly useful for engineering diagrams, as the SysML
provides a rich set of compartments for a wide range of
items. These compartments, if not managed, can clutter a
diagram and attenuate a reader's ability to understand the
meaning of the diagram.

The compartments, as with other properties, can be set at a
diagram level or an element level, which allows a modeler
to select the compartments to display for specific elements.

(c) Sparx Systems 2021 Page 117 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

(c) Sparx Systems 2021 Page 118 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Block Definition Diagram

The Block Definition diagram is the most widely-used of
the SysML diagrams; it is used to model Blocks, their
relationships to other elements (including other Blocks) and
their features in the form of Properties, Operations and
Receptions. Blocks are modular units of system description
and provide a way of modeling systems as a graph or tree of
modular units. Other elements, such as ConstraintBlocks
and Properties, can also appear on the diagram and help
describe the system being modeled. For more information
see the Block Definition Diagram Help topic.

bdd [block] Automotive Domain [HybridSUV Breakdown]

«LightCondition»
HybridSUV

properties
 b : BodySubsystem
 bk : BrakeSubsystem
 c : ChassisSubsystem
 i : InteriorSubsystem
 l : LightingSubsystem
 p : PowerSubsystem
 Property1

«block»
PowerSubsystem

«block»
BrakeSubsystem

«block»
BodySubsystem

«block»
InteriorSubsystem

«block»
LightingSubsystem

«block»
ChassisSubsystem

«block»
BrakePedal «block»

WheelHubAssembly

«rationale»
2 wheel drive is the only way to get acceptable
fuel economy, even though it limits off-road
capability

lp cibk

bkp
2 4

b

Elements

The main elements that can appear in Block Definition

(c) Sparx Systems 2021 Page 119 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/block_definition_diagrams.html

Model Based Systems Engineering and SysML 2 September, 2021

diagrams are provided by the Diagram Toolbox for this
diagram type:

The main connectors that can appear in Block Definition
diagrams are as shown:

(c) Sparx Systems 2021 Page 120 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Tools

A variety of tools can be used with structural modeling and
Block Definition diagrams, including:

Diagram Filters - which allows a user to filter elements·

out of the diagram to achieve a more specific focus,

Pan and Zoom - which allows a modeler or viewer to·

easily move around large diagrams,

Spreadsheet (CSV) Import and Export - which allows·

content in spreadsheets to be imported or exported from
the model,

Documentation - which allows formal or informal·

documentation to be generated from the model in a
variety of formats,

Traceability - which provides a hierarchical view of an·

element's relationships to other model elements,

Responsibilities Window - which provides a composite·

view of the important responsibilities of an element,
including Constraints, Requirements and Scenarios

Relationship Matrix - which allows the connections·

between Blocks (or other elements) and other elements
such as Requirements and Use Cases to be visualized in a
matrix.

(c) Sparx Systems 2021 Page 121 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Usage

The Block Definition Diagram is a general-purpose
diagram that can be used to describe the structural aspects of
a system.

(c) Sparx Systems 2021 Page 122 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Requirement Diagram

The Requirements diagram is used to create and view
Requirements and their relationships to other elements,
including other Requirements. Requirements can be
specified at any level, from strategic enterprise or business
requirements through stakeholder requirements down to
low-level engineering and even software and transition
requirements. For more information see the Requirements
Modeling topic.

req [package] HSUV Requirements [Requirement Derivation]

«requirement»
Braking

«requirement»
FuelEconomy

«requirement»
FuelCapacity

«requirement»
OffRoadCapability

«requirement»
Acceleration

«requirement»
CargoCapacity

«requirement»
RegenerativeBraking

«requirement»
Range

«requirement»
Power

«requirement»
PowerSourceManagement

«problem»
Power needed for acceleration, off-
road performance and cargo capacity
conflicts with fuel economy

«rationale»
Power delivery shall happen by
coordinated control of gas and electric
motors. See "Hybrid Design
Guidance"

refinedBy
HSUVOperationalStates

«deriveReqt»

«deriveReqt»

«deriveReqt» «deriveReqt»

«deriveReqt»

«deriveReqt»

«deriveReqt»

«deriveReqt» «deriveReqt»

The elements contained in this diagram can be viewed in a

(c) Sparx Systems 2021 Page 123 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/create_a_requirements_model.html
https://sparxsystems.com/enterprise_architect_user_guide/15.2/create_a_requirements_model.html

Model Based Systems Engineering and SysML 2 September, 2021

number of different ways, including:

Specification View - allowing the elements and their notes·

to be displayed in word processor or spreadsheet format in
a separate dockable window

Inline Specification View - allowing the diagram and a list·

of its elements in a narrative form to be viewed
side-by-side

List View - allowing the diagram elements to be viewed in·

a list that can be sorted and the elements grouped by
properties

Gantt View - allowing the diagram elements to be·

represented on a Gantt chart showing how resources are
utilized over time

Elements

The main elements that can appear in Requirements
diagrams are:

Requirement·

Test Case·

The main connectors that can appear in Requirements
diagrams are:

Containment·

Trace·

Copy·

(c) Sparx Systems 2021 Page 124 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Derive·

Verify·

Refine·

Satisfy·

Tools

A variety of tools can be used with requirements modeling,
including:

Specification Manager - which allows a user to work·

with requirements in a spreadsheet or word processor type
of format

Spreadsheet (CSV) Import and Export - which allows·

content in spreadsheets to be imported or exported from
the model

Documentation - which allows formal or informal·

documentation to be generated from the model in a
variety of formats

Traceability - which provides a hierarchical view of an·

element's relationships to other model elements

Responsibilities Window - which provides a composite·

view of the important responsibilities of an element,
including Constraints, Requirements and Scenarios

Relationship Matrix - which allows the connections·

between Requirement (or other elements) and other
elements such as stakeholder needs to be visualized in a

(c) Sparx Systems 2021 Page 125 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

matrix

Mind Mapping - which provides a way of recording the·

progress of a meeting, thus recording - for example - the
stakeholders' needs

Probably the most widely used of these requirement tools
would be the Specification Manager, which will provide a
welcome and familiar way of working with textual
specifications such as requirements or constraints. The
Specification Manager can be used to view a list of elements
contained within a Package or a diagram.

Usage

The Requirements diagram can be used to show a hierarchy
of requirements using the containment relationship allowing

(c) Sparx Systems 2021 Page 126 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

a viewer to see how the structural relationships of the
requirements. It is however most compelling when
Requirements are viewed in a diagram with other elements
using other relationships including other requirements. An
example of this is the relationship between Requirements
and Test Cases or Requirements and the Components of a
solution.

(c) Sparx Systems 2021 Page 127 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Use Case Diagram

The Use Case diagram is used to define and view Use Cases
and the Actors that derive value from the system. The Use
Case diagram describes the relationship between the Actors
and the Use Cases, enclosing the Use Case within a
Boundary that defines the border of the system; the Actors,
by definition, lie outside the Boundary. While the Use Case
diagram can appear simplistic, it is a powerful
communication device that describes the value or goals that
external roles obtain from interacting with the system. Each
Use Case can be detailed with descriptions, constraints and
any number of scenarios that contain sets of steps performed
alternately by Actor and system to achieve the desired goal.

(c) Sparx Systems 2021 Page 128 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

uc [package] HSUV Use Cases [Operational Use Cases]

Hybrid SUV

Drive the vehicle

Park

Start the vehicle

Accelerate

Steer

Brake

Driver

«include»

«include»

«extend»

«include»

«include»

Elements

The main elements that can appear in Use Case diagrams
are:

Boundary·

Actor·

Use Case·

Scenario·

The main connectors that can appear in Use Case diagrams

(c) Sparx Systems 2021 Page 129 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

are:

Communication Path·

Generalization·

Includes·

Extends·

Tools

There are a variety of tools available for working with Use
Cases in addition to the Use Case diagram itself. These
include:

Scenario window - which provides a way of detailing the·

descriptions, constraints and the step of each scenario

Documentation Generator - which allows corporate,·

reports or ad-hoc documentation to be created in a variety
of formats, including docx, pdf and rtf

Traceability - which provides a hierarchical view of an·

elements relationships to other model elements

Responsibilities window - which provides a composite·

view of the important responsibilities of an element
including Constraints, Requirements and Scenarios

Relationship Matrix - which allows the connections·

between Requirement (or other elements) and other
elements such as stakeholder needs to be visualized in a
matrix

The main tool used for working with Use Cases is the

(c) Sparx Systems 2021 Page 130 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Scenario window, which is a comprehensive and purpose
built facility for working with Use Cases and Scenarios. The
tool can be used to define the details of a Use Case and its
scenarios and constraints, which provides a productive
alternative to the traditional text-document based approach
to defining Use Cases. This ensures that the Use Case
diagram and the textual details of the Use Cases and its
Scenarios and Constraints are all contained in the same
model and can be traced.

If the Use Cases are required in a document format for
contractual or process reasons, a Use Case Report can be
generated automatically from the models using the in-built
documentation engine.

Scenario Builder

Usage

The Use Case diagram can be used to define the details of a
Use Case and its Scenarios and Constraints. This is a
welcomed alternative to the traditional text-document based
approach commonly used to define Use Cases. This ensures
that the Use Case diagram and the textual details of the Use
Cases and its Scenarios and Constraints are all contained in
the same model and can be traced. If the Use Cases are
required to be presented in a document format for
contractual or process reasons, a Use Case Report can be
generated automatically from the models using the in-built
documentation engine.

(c) Sparx Systems 2021 Page 131 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/tools_ba_scenario_builder.htm

Model Based Systems Engineering and SysML 2 September, 2021

(c) Sparx Systems 2021 Page 132 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Package Diagram

The SysML Package diagram is used to define or view the
Packages that provide the fundamental organization of the
repository. These can include name-spaces and their
sub-Packages and other less formally defined groups of
elements. The Packages that appear in diagrams can also be
viewed in the Browser window and their hierarchy can be
navigated by expanding and collapsing the tree.

pkg [package] HSUV Model [HSUV Model Views]

HSUV Views HSUV Viewpoints HSUV Viewpoint Methods

«view»
Operational View

«view»
Performance View

«viewpoint»
Operational Viewpoint

«viewpoint»
Performance Viewpoint

«activity»
Requirements Query

(from HSUV Viewpoint
Methods)

The main element that is represented in the Package
diagram is the Package itself, with the elements it contains.
There are a number of important relationships between
Packages, including Dependencies that show that one
Package is dependent on one more other Packages.
Packages can be organized into a number of different types
of hierarchy.

Elements

The main elements that can appear in Package diagrams are:

(c) Sparx Systems 2021 Page 133 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Model·

Model Library·

Package·

View·

View Point·

Stakeholder·

The main connectors that can appear in Package diagrams
are:

Conform·

Dependency·

Import·

Containment·

Realization·

Refine·

Expose·

Tools

A variety of tools can be used with structural modeling and
Block Definition diagrams, including:

Documentation - which allows formal or informal·

(c) Sparx Systems 2021 Page 134 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

documentation to be generated from the model in a
variety of formats,

Traceability - which provides a hierarchical view of an·

element's relationships to other model elements,

Responsibilities Window - which provides a composite·

view of the important responsibilities of an element,
including Constraints, Requirements and Scenarios

Relationship Matrix - which allows the connections·

between Packages(or other elements) and other elements
such as Requirements and Use Cases to be visualized in a
matrix.

Usage

The Package diagram can be used to describe the
relationship between Packages and the elements that they
contain. While structural information is visible in the
Browser window there is a range of relationships that can
exist between Packages themselves and between Packages
and elements, that cannot be visualized in the Browser
window. Package diagrams can also be included in
documentation and can assist in orientating an audience by
giving them an overview of a section of the architecture or
design in a similar way to providing a table of contents in a
publication.

(c) Sparx Systems 2021 Page 135 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Activity Diagrams

The Activity diagram is the most important behavior
diagram and can be used to model flow (discrete or
continuous) based behavior where inputs are converted to
outputs by traversing a sequence of actions that perform
work on the items. They are analogous to the common flow
chart diagram but have more sophisticated semantics and
also allow Activities and Actions to be related to elements
such as Blocks, Requirements and Use Cases.

The Actions that appear on the Activity diagrams can
contain input or output pins that represent the interaction
points where inputs are fed into an action and outputs are
emitted.

«activity»
Accelerate

«continuous» drivePower:
Horsepwr

transModeCmd: Integer

«Continuous»
accelPosition

:Provide Power

:PushAccelerator :MeasureVehicle
Conditions

«Continuous»
vehCond

(c) Sparx Systems 2021 Page 136 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Usage

The Activity diagram can be used to model flow based
behavior and is similar to the widely-available Flow Chart
or Functional Flow diagrams that had been used extensively
before the SysML specification was devised. They are
typically used to show the way parts of the system behave,
including the input and output of items and signals.

Elements

The main elements that can appear in Activity diagrams are:

Activity·

Action (Various kinds)·

Action Pin·

Partition·

Object Node·

Central Buffer Node·

DataStore·

Decision·

Merge·

Initial·

Final·

(c) Sparx Systems 2021 Page 137 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The main connectors that can appear in Activity diagrams
are:

Control Flow·

Object Flow·

Interrupt Flow·

Dependency·

Tools

A variety of tools can be used with behavioral modeling and
Activity diagrams, including:

Diagram Filters - which allows a user to filter elements·

out of the diagram to achieve a more specific focus,

Pan and Zoom - which allows a modeler or viewer to·

easily move around large diagrams,

Spreadsheet (CSV) Import and Export - which allows·

content in spreadsheets to be imported or exported from
the model,

Documentation - which allows formal or informal·

documentation to be generated from the model in a
variety of formats,

Traceability - which provides a hierarchical view of an·

element's relationships to other model elements,

Responsibilities Window - which provides a composite·

view of the important responsibilities of an element,

(c) Sparx Systems 2021 Page 138 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

including Constraints, Requirements and Scenarios

Relationship Matrix - which allows the connections·

between Activities (or other elements) and other elements
such as Blocks, Requirements and Use Cases to be
visualized in a matrix.

(c) Sparx Systems 2021 Page 139 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Internal Block Diagram

The Internal Block diagram provides a way of viewing the
composition of a block using part properties connected
together using ports and connectors. The diagram is useful
for showing a Block's (represented by the diagram frame)
composition and the flow of inputs and outputs between the
various parts that make up the block, when required the
direction of flow can be indicated on the connectors.

ibd [block] PowerSubsystem [CAN Bus Description]

epc: ElectricalPowerController

fp: FS_EPC

t: Transmission

SN = sn89012

fp: FS_TRSM

ice: InternalCombustionEngine

fp: FS_ICE

: CAN_Bus

pcu: PowerControlUnit

eepc: ~IFS_EPC etrsm: ~IFS_TRSM eice: ~IFS_ICE

Elements

The main elements that can appear in Block Definition
diagrams are:

Property·

(c) Sparx Systems 2021 Page 140 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Connector Property·

Distributed Property·

Flow Property·

Bound Reference·

End Path Multiplicity·

Signal·

Port·

The main connectors that can appear in Block Definition
diagrams are:

Item Flow·

Connector·

Binding Connector·

Dependency·

Tools

A variety of tools can be used with structural modeling and
Internal Block diagrams, including:

Diagram Filters - which allows a user to filter elements·

out of the diagram to achieve a more specific focus,

Pan and Zoom - which allows a modeler or viewer to·

easily move around large diagrams,

Spreadsheet (CSV) Import and Export - which allows·

(c) Sparx Systems 2021 Page 141 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

content in spreadsheets to be imported or exported from
the model,

Documentation - which allows formal or informal·

documentation to be generated from the model in a
variety of formats,

Traceability - which provides a hierarchical view of an·

element's relationships to other model elements,

Responsibilities Window - which provides a composite·

view of the important responsibilities of an element,
including Constraints, Requirements and Scenarios

Relationship Matrix - which allows the connections·

between Blocks (or other elements) and other elements
such as Requirements and Use Cases to be visualized in a
matrix.

Usage

The Internal Block diagram is used to model the internal
structure of a block including its parts and the relationship
between those parts.

(c) Sparx Systems 2021 Page 142 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Parametric Diagram

The SysML Parametric Diagram is a type of Internal Block
Diagram (with some restrictions) that is used to model
equation with parameters. They are an important tool that
can be used to describe equations and their parameters and
are important when performing trade off analysis and
assessing design alternatives as they can be combined into
systems of equations and related to Measures of
Effectiveness MOEs.

par [block] Tank [Tank]

qIn: LiquidFlow

qOut: LiquidFlow

tSensor: ReadSignal

tActuator: ActSignal

area: Real

flowGain: Real minV: Real

h: Real

e1 : Mass_Balance
{der(h) = (x - y) / a}

e2 : SensorValue
{a=b}

e3 : Q_OutFlow
{a=LimitValue(min, max, -b*c)}

h

y

a

ab

a

c
b max min

x

maxV: Real

lflow : Real

lflow : Real

val : Real

act : Real

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

Parametric diagrams describe the usage of constraint blocks
and provide a mechanism for integrating engineering
analysis such as performance and reliability and other
factors of interest with other SysML models and diagrams.

Parametric diagrams define the way that constraint blocks

(c) Sparx Systems 2021 Page 143 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

are used to constrain the properties of another block. The
usage of a constraint is said to bind the parameters of the
constraint (e.g. F=m*a), such as F, m, and a, to specific
properties of a block, such as a mass and acceleration, that
provide values for the parameters.

Elements

The main elements that can appear in Parametric diagrams
are:

ConstraintProperty·

Property·

Objective Function·

Measure of Effectiveness·

The main connectors that can appear in Parametric
diagrams are:

Connector·

Binding Connector·

Item Flow·

Dependency·

Tools

A variety of tools can be used with structural modeling and
Internal Block diagrams, including:

(c) Sparx Systems 2021 Page 144 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Modelica Integration - which provides a mechanism for·

simulation,

Diagram Filters - which allows a user to filter elements·

out of the diagram to achieve a more specific focus,

Pan and Zoom - which allows a modeler or viewer to·

easily move around large diagrams,

Spreadsheet (CSV) Import and Export - which allows·

content in spreadsheets to be imported or exported from
the model,

Documentation - which allows formal or informal·

documentation to be generated from the model in a
variety of formats,

Traceability - which provides a hierarchical view of an·

element's relationships to other model elements,

Usage

The Parametric diagram can be used to show how the
physical properties of a system are constrained by
specifying a network of constraints that represent
mathematical expressions such as {F=m*a} and {a=dv/dt}.

They can also be used for trade-off analysis, where a
Constraint Block can define an objective function used to
make a comparison between alternative solutions.

Critical performance parameters and their relationships to

(c) Sparx Systems 2021 Page 145 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

other parameters can be modeled, which can then be tracked
throughout the system life cycle.

(c) Sparx Systems 2021 Page 146 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Sequence Diagram

A Sequence diagram is a type of Interaction diagram that
shows the time ordered interaction between objects. The
diagram has two axes; the vertical axis represents time and
the horizontal axis represents the objects that take part in the
interaction, typically ordered in a way that best illuminates
the interaction. These diagrams have their origin in the
modeling of software interactions, but they can be used with
systems engineering to be prescriptive of how elements
(such as Blocks) should interact, or descriptive in showing
how they do interact, in practice.

This Sequence diagram shows the interactions and sequence
of message flows between a driver and a vehicle. The
diagram expresses the necessary interactions for the 'Drive
the Vehicle' Use Case. The interaction is owned by the
'AutomotiveDomain' Block.

(c) Sparx Systems 2021 Page 147 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

sd [interaction] Drive Black Box [Drive Black Box]

par

alt controlSpeed

[self.colInState(idle)]

[self.colInState(braking)]

[self.colInState(braking)]

driver: Driver

vehicleInContext: HybridSUV

ref
Start Vehicle Black Box

ref
Idle

ref
Accelerate/Cruise

ref
Brake

ref
Steer

ref
Park/Shutdown Vehicle

(c) Sparx Systems 2021 Page 148 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Elements

The main elements that can appear in Parametric diagrams
are:

Sequence·

Fragment·

Endpoint·

Diagram Gate·

State/Continuation·

The main connectors that can appear in Parametric diagrams
are:

Message·

Self Message·

Recursion·

Dependency·

Tools

A variety of tools can be used with behavioral modeling and
Activity diagrams, including:

Diagram Filters - which allows a user to filter elements·

out of the diagram to achieve a more specific focus,

(c) Sparx Systems 2021 Page 149 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Pan and Zoom - which allows a modeler or viewer to·

easily move around large diagrams,

Spreadsheet (CSV) Import and Export - which allows·

content in spreadsheets to be imported or exported from
the model,

Documentation - which allows formal or informal·

documentation to be generated from the model in a
variety of formats,

Traceability - which provides a hierarchical view of an·

element's relationships to other model elements,

Responsibilities Window - which provides a composite·

view of the important responsibilities of an element,
including Constraints, Requirements and Scenarios

Relationship Matrix - which allows the connections
between Activities (or other elements) and other elements
such as Blocks, Requirements and Use Cases to be
visualized in a matrix.

Usage

The very fact that we are modeling a system implies that it
has a degree of complexity that can not be managed without
the use of tools. Sequence diagrams can be used to represent
system scenarios showing how parts of a system interact
together to achieve some specified outcome. Messages are
said to be exchanged between lifelines representing the
lifetime of the object, the messages represent operations or

(c) Sparx Systems 2021 Page 150 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

signals sent and received by the objects.

(c) Sparx Systems 2021 Page 151 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

StateMachine Diagram

A StateMachine diagram is a powerful way of presenting
information about the lifetime of a system element such as a
Block. It can be used to describe the important conditions
(States) that occur in an entity's lifetime or cycles. Typically
only entities that have important stages in their lifetime are
modeled with StateMachine diagrams. The entity is said to
transition from one State to another as specified by the
StateMachine. Triggers and Events can be described that
allow the state transition to occur and Guards can be defined
that restrict the change of state. Each State can define the
behaviors that occur on entry, during and exit from the
State.

stm HSUVOperationalStates

Off

Operate

Idle

Accelerating/Cruising Braking

Nominal states only

Refines
<<Requirement>>
Power Source Management

engageBrake

accelerate

keyOff

stopped

shutOffstart

releaseBrake

(c) Sparx Systems 2021 Page 152 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Elements

The main elements that can appear in Parametric diagrams
are:

State·

StateMachine·

Initial·

Final·

Choice·

History·

Fork and Join·

The main connectors that can appear in Parametric
diagrams are:

Transition·

Dependency·

Tools

A wide variety of tools are available for working with
StateMachine diagrams, in addition to the StateMachine
diagram itself. These include:

State Table Editor - Which allows the StateMachine·

diagram to be visualized in a table that, for some analysts,
is easier to understand than a diagram; it contains the

(c) Sparx Systems 2021 Page 153 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

same information as the diagram and can be viewed in a
number of different ways

Dynamic Simulation - Allows StateMachines to be·

visualized, showing how an entity transitions from one
state to another

Executable StateMachines - As well as utilizing the·

simulation engine and allowing StateMachines to be
visualized, provide a complete language-specific
implementation that can form the behavioral 'engine' for
multiple software products on multiple platforms

Usage

Complex systems are often composed of entities such as
Blocks that have complex behavior and might have lifetimes
that are difficult to understand.

StateMachines can be used to describe the important
conditions (States) that occur in an entity's lifetime or
cycles. Typically, only entities that have important stages in
their lifetime are modeled with StateMachine diagrams.
These diagrams provide insight into the way an entity
transitions from state to state, ignoring conditions that are
not important to the analysis.

(c) Sparx Systems 2021 Page 154 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Systems Modeling Language Overview

Model Based System Engineering heralds a new era of
communication and real time model collaboration. It brings
with it the concept of the model as a machine rather than a
cabinet full of documents. A machine that can do work such
as validate requirements, generate parametric simulations of
complex mathematics and physics equations, bring to life
executable StateMachines and simulate business and
decision logic, evolve in response to reviews, and create
documentation, to list a few. These benefits are realized by
the power of Enterprise Architect and because a standard
and shared language is used to create the models - the
Systems Modeling Language, commonly abbreviated to just
SysML.

SysML allows both humans and machines to understand the
models - the humans adding ingenuity, engineering and
design and the machines performing the tedious and
error-prone tasks such as validation, doing the heavy lifting
such as generating parametric simulations and performing
what-If analysis, and carrying out the more mundane tasks
such as searching and report generation.

The acquisition of a language is not something that happens
for free, but it is something that can happen without pain or

(c) Sparx Systems 2021 Page 155 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

frustration and without what some skeptics call a 'flair for
languages'. Enterprise Architect will also be a friend that
will assist you in learning the language by providing many
in-tool devices to assist with the learning, and a rich and
replete library of model patterns that will help you get
started, ensuring you are creating industry best-practice
models.

When you begin your journey with Enterprise Architect you
immediately and effortlessly become part of an extensive
international community of users and practitioners, who
work with the tool day-in day-out to specify, design,
implement and support system engineering models that are
used to solve real world problems. Many of these problems
and opportunities are complex and often seemingly
intractable, but can be worked through by the collaboration
of modelers applying the SysML to express and solve
problems.

(c) Sparx Systems 2021 Page 156 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Enterprise Architect seamlessly facilitates this collaboration
with its rich desktop and Cloud platforms that help to ensure
the models are both robust and expressive, and the result of
not just one but any number of engineers and other
stakeholders, working together no matter what natural
language they speak, what device they are using or where
they are located in the world.

(c) Sparx Systems 2021 Page 157 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Language Architecture

The Systems Modeling Language (SysML) is fundamentally
a set of conventional symbols that allow humans and tools
to communicate about systems engineering. It is an
international standard that defines and describes a
general-purpose modeling language for systems
engineering. Enterprise Architect is one of the world's
leading tools that implements this standard and allows
Systems Engineers to apply the approach that is known as
Model Based Systems Engineering. In addition Enterprise
Architect offers tool features that support a wide range of
ancillary aspects of engineering practice and management.
We will explore these powerful and productive tool features
throughout this guidebook.

The SysML is based on another standard, the Unified
Modeling Language (UML), that has been adopted and used
by Software Engineers since the late nineties. This is
important, as many Systems Engineering projects involve
both system and software aspects and so both system and
software engineers are able to understand each others
models, leading to greater transparency, less chance of
errors and mutually intelligible language constructs,
resulting in a system that is less likely to fail or exhibit
faults. This Venn diagram shows the relationship between
the two standards. SysML reuses the Use Case, Activity and
Sequence Diagrams.

(c) Sparx Systems 2021 Page 158 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Requirements Driven

The creation of the Systems Modeling Language (SysML)
was driven by user requirements; the design of the SysML
responded to the needs set out in the Request for Proposal
for the Unified Modeling Language for Systems
Engineering. This document specifies a customization of
UML for Systems Engineering (SE) and mandates that this
customization should support modeling of a broad range of
systems, which could include hardware, software, data,
personnel, procedures, and facilities. The document states:

'The customization of UML for Systems Engineering should
support the analysis, specification, design, and verification
of complex systems by:

(c) Sparx Systems 2021 Page 159 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Capturing the systems information in a precise and·

efficient manner that enables it to be integrated and reused
in a wider context

Analyzing and evaluating the system being specified, to·

identify and resolve system requirements and design
issues, and to support trade-offs

Communicating systems information correctly and·

consistently among various stakeholders and participants'

The designers of Enterprise Architect have read these
documents and the resulting SysML specification in detail
and created a sophisticated and highly usable tool that
implements all these requirements and adds a rich set of
additional features to ensure an organization's engineering
and business success.

For a language to be useful and relevant it must evolve in

(c) Sparx Systems 2021 Page 160 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

response to the needs of its communities of users. In so
responding, the SysML specification is updated regularly
and the teams at Sparx Systems also update and extend
Enterprise Architect to ensure it complies with the evolving
standard and, more fundamentally, meets the diverse needs
of its community of users.

Unified Modeling Language Reuse and
Extensions

The Systems Modeling Language (SysML) is built on top of
the Unified Modeling Language (UML). The UML had
been ratified and adopted by the Object Management Group
(OMG), who continue as the custodians of the specification.
In 2005 UML was also published by the International
Organization for Standardization (ISO) as an approved ISO
standard. The language provided a specification for
modeling software centric systems. The SysML language
dates back to 2001 and had its origins in an open source
specification, but when the International Council on
Systems Engineering (INCOSE) began working with the
OMG a final version of the SysML was adopted by the
OMG in 2006.

In many ways SysML is theoretically the more primitive
language as it is a general purpose modeling language, and
UML is more specialized, being designed for modeling
software centric systems. However, history and the

(c) Sparx Systems 2021 Page 161 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

languages' genesis has inverted this position. In practice,
SysML has been created using the UML profiling system
and is an extended subset of the UML. What this means is
that SysML did not take all of UML and it also defined
some additional language constructs. The Venn diagram we
saw in an earlier section describes mathematically the two
intersecting sets of language constructs.

The Enterprise Architect implementation of the SysML
specification is highly compliant, with the developers
working closely with the specification and in constant
communication with industry experts, thought leaders and
the systems engineering communities in a wide range of
industries. This has resulted in a world class tool that not
only implements the specification but also provides a wide
range of additional tools such as Executable StateMachines,
Parametric Simulations, Gantt Charts, Kanban Boards, Mind
Mapping, Strategic models and literally hundreds of other
features.

In addition there continues to be an increase in the
interaction between system and software engineering
problems and solutions in a wide range of disciplines, from
rail systems to aeronautical systems, energy systems and
many more. Enterprise Architect is uniquely positioned
because of its formidable features supporting both these
disciplines and also its strengths as an architectural tool.

(c) Sparx Systems 2021 Page 162 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Partitioning with Packages

Packages are the fundamental unit of partitioning in the
language and are designed to prevent circular dependencies.
The language is formally partitioned into sets of model
elements that group the elements logically and allow a
language user to understand the elements as a collection of
linguistic units.

They are also the fundamental structural unit in user defined
models and act as a general purpose mechanism used to
group elements based on user defined factors. Formally they
can be used to specify a namespace, which is important in
some modeling constructs such as the definition of XML
schemas or code generation. Packages can be created and
viewed either in the Browser window or in diagrams, and
both locations provide different ways to work with the
Packages. Diagrams are useful for displaying the contents of
Packages visually or to describe the relationships that exist
between Packages.

(c) Sparx Systems 2021 Page 163 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

pkg [package] HSUV Model [HSUV Model Relations]

HSUV Requirements HSUV Specification

(from HSUV Requirements)

«modelLibrary»
SI Definitions

(from Modeling Domain)

Hybrid SUV Constraints

(from HSUV Analysis)

HSUV Structure

«conform»

Architect provides numerous ways to display Packages in
diagrams that will assist users in understanding the
structural relationships between Packages and the elements
and diagrams they contain. When a Package is included in a
diagram, the tool allows the user to choose from a number
of display options and the compartment visibility can be
changed to show the Package content. In this diagram the
author wants to show the contents of two Packages that have
significance in the unlikely event of a collision. The 'Show
Package Contents' option has been selected in the element
compartment visibility making it clear what elements are
contained in each Package.

(c) Sparx Systems 2021 Page 164 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

pkg [package] Hybrid Suv Blocks [Collision Detection]

Collision Detection

+ Braking Subsystem

+ Collision Detection Subsystem

+ Communication Subsystem

+ Laser Detection

+ Radar Detection

+ Reversing Camera

Fuel Tank

+ Communication Subsystem

+ Fuel Guage

+ Fuel Subsystem

+ Fuel Tank

+ Vehicle

+ Left Tank

+ Right Tank

+ fs

+ v

The same Packages and their contents can be viewed in the
Browser window, it is important to remember that while it is
possible to include the diagrams in publications such as
reports, the contents of the Browser window would not be
visible in these documents.

(c) Sparx Systems 2021 Page 165 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Interoperability and Model Exchange

Enterprise Architect is one of the leading SysML tools with
a requisite set of features, but the designers are aware that
organizations will have the need to use a variety of tools to
accomplish the complex business and engineering tasks that
confront every organization in the Twenty-First Century. To
ensure that the important engineering and business
information is available to be exchanged with other tools
and platforms, there is rich support for model exchange in
compliance with the ISO 10303-233 data interchange
standard to support interoperability among other engineering

(c) Sparx Systems 2021 Page 166 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

tools. This is implemented based on the UML XMI
interchange capability, which is supported in the tool at the
Package level, allowing any Package and its contained
hierarchy to be exchanged with other compliant tools.

Enterprise Architect goes further than this and provides
exchange mechanisms with a wide variety of business,
project management, analytical and project delivery tools.
This is achieved at the modeling tool level with the
provision to exchange data contained in spreadsheets using
the CSV file format, and text in word processors. Reference
data such as lists of Priorities, Statuses, Complexities,
Constraints, and other data such as Glossaries, Roles and
Authors, Calendars and more can all be imported and
exported from the repository.

(c) Sparx Systems 2021 Page 167 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Geospatial information forms a critical data set in a world
where geo-location is an important aspect of almost every
project and initiative. Enterprise Architect provides a data
exchange with the leading geospatial modeling tools,
allowing two previously disparate and heterogeneous data
sets to be viewed and managed together.

(c) Sparx Systems 2021 Page 168 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Key Grammatical Concepts

The SysML, like its parent the UML, is a visual language
where diagrams are central to the communication strategy of
the language. Even though the emphasis of the language is
on this visual codification and transmission of ideas, the
language also has facilities to express ideas textually, which
is an important complement to the visual mechanisms. A
number of elements, such as the Requirement element, have
a visual form, but the details of the Requirement are written
in a property called Requirement 'text' as shown in this
diagram.

Enterprise Architect has also been carefully designed to
respect the way in which different users work with
information. The design team works closely with its
community of users and is aware that some users work
better with diagrammatic visualization and others with text.
Many of the tools available in Enterprise Architect have
been designed with these different types of user in mind. For

(c) Sparx Systems 2021 Page 169 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

example, in the Requirements Management discipline, users
are often more familiar with working in documents and
spreadsheets. To cater for this Enterprise Architect has a
number of views that users can switch to, that allow them to
enter, edit and manage Requirements through these types of
interface. One of these tools is the Specification Manager,
which provides a flexible and familiar way of working with
Requirements from both a document-based view and a
spreadsheet view, allowing Requirements to be viewed,
created and managed with ease.

(c) Sparx Systems 2021 Page 170 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Models, Diagrams, Elements and
Views

Models

The word model is quite overused and over-loaded with
meaning. Some people use model to signify an entire
repository whereas others use it to refer to a section of a
complete repository. Models are the structural divisions in
the repository.

Diagrams

The SysML specification defines nine diagram types. This is
the canonical list and the SysML in addition defines the
elements that are typically used on each diagram. Many
newcomers and even some experienced users are not aware
that even though these lists of elements describe the
commonly used elements for a particular diagram type, that
does not preclude a modeler from using other elements on
these diagrams. In fact, using a number of element types on
the same diagram results in an expressive model and allows
stakeholders and engineers from different disciplines to
understand the inter-diagram connections between the
models.

In this section we will also learn that there are a number of

(c) Sparx Systems 2021 Page 171 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

'universal' model elements that the specification suggests
can be incorporated as part of any diagram, including
Comments, Constraints and Rationales. This diagram shows
a range of element types including a Block, a Use Case, a
Requirement and a Test Case, all expressed on a Block
Definition Diagram (BDD).

req [package] HSUV Requirements [Acceleration Requirement Refinement and Verification]

«requirement»
Acceleration

Accelerate
«requirement»

Power
«testCase»

Max Acceleration

«block»
PowerSubsystem

«deriveReqt» «verify»

«satisfy»

«refine»

As stated earlier, the Systems Modeling Language specifies
nine different types of diagram.

Elements

The nine diagrams described earlier are individually
specified to convey a particular aspect of an engineering
opportunity or solution; for example, the Parametric
diagram is intended to show how equations are constructed.

(c) Sparx Systems 2021 Page 172 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

There are, however, a number of types of element that are
universal to the model endeavor and can appear on any type
of diagram. Many of these elements are used on diagrams to
convey important annotations to a model or to help explain a
particular aspect of the model. They include elements such
as Notes, Constraints, Rationales and Views. In this diagram
a stakeholder who has been viewing the model has added a
comment to question a part of the model.

For more information, see the Common Toolbox Page Help
topic.

While Enterprise Architect is highly compliant with the
SysML specification it has a number of collaborative
features that allow such comments to be managed, such as
through its Discussion feature. This allows discussions to be
kept separate from the elements proper that comprise the
model. This screen image shows the same comment added
using the Discussion feature, which allows replies and a
range of other collaborative devices.

(c) Sparx Systems 2021 Page 173 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/common_group.html

Model Based Systems Engineering and SysML 2 September, 2021

For more information, see the Discussions Help topic.

The responder could also have sent a Model Mail message,
which might include a link to an Enterprise Architect
element or diagram as shown.

(c) Sparx Systems 2021 Page 174 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/tools_ea_element_discussions.html

Model Based Systems Engineering and SysML 2 September, 2021

For more information, see the Model Mail Help topic.

When the user opens the mail message, they are able to
follow the link and open the diagram referenced in the link.
This is a powerful mechanism allowing dynamic and
real-time views of the modeling information to be
referenced and accessed rather than an image sent in a static
document. This image shows the diagram that would be
displayed in the tool when the link is opened.

req [package] Security and Safety Mechanisms [Requirements and Mind Map Traces]

«requirement»
The system shall not allow unauthorized vehicles

to enter the car park

id = "SR-009"
text = "The car park is a restricted area and entry
needs to be controlled to allow authorized vehicles
to enter but unauthorized vehicles need to be
restricted."

Motor Bikes and Bicycle Access - These
modes of transport have been defined as
vehicles in the Project Glossary so should
be handled along with Cars and Trucks.

Vehicles

«trace»

The ability to link elements from different modeling
domains is one of Enterprise Architect's great strengths as a
unifying platform for teams and disciplines, and nowhere is
this more true than in the relationship between business
strategy and engineering, and between software
development and engineering. The result is a consistent and
harmonized model where the possibility of faults resulting
from seams between different teams is significantly reduced.
For more information see the Traceability Window Help
topic.

(c) Sparx Systems 2021 Page 175 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/tools_ea_model_mail.html
https://sparxsystems.com/enterprise_architect_user_guide/15.2/tools_ba_traceability_window.html

Model Based Systems Engineering and SysML 2 September, 2021

Views

Fundamentally a system is conceived of, analyzed, designed
and built for its stakeholders. System engineers gather
concerns and interests from stakeholders and apply analysis
to create requirements and constraints. These are used as
input for analysis and design and before the system is
delivered for validation and verification. Stakeholders need
to be able to visualize how their interests are being
addressed at various stages in the engineering process and
this visualization can be provided by views and viewpoints.
The concepts of viewpoint and view are articulated in
ISO-42010 (formerly IEEE-1471) and the SysML
specification was written to be consistent with the
ISO-42010 standard. There are a number of commonly used
viewpoints including:

Operational·

Performance·

Manufacturing·

Security·

A viewpoint is a prescription for constructing a view that
will address the needs, interests and concerns of a given
stakeholder. A view is what the stakeholder sees from a
given viewpoint and should enable them to visualize the
parts of the system that are of concern to them while leaving
out, or obscuring, the aspects of the system that are not of
interest.

(c) Sparx Systems 2021 Page 176 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

pkg [package] HSUV Views [Viewpoints]

«viewpoint»
Requirements

«create»
View()

«viewpoint»
concern = "What are the system
requirements?"
language = "SysML"
method = "Requirements Query"
presentation = "Requirements table report
style-sheet in slide format"
purpose = "What are the system
requirements"
stakeholder = "Customer"

«view»
Hybrid SUV Requirements

«view»
stakeholder = "Customer"
viewpoint = "Requirements"

«view»
Hybrid SUV Verification and

Validation Plan

«view»
stakeholder = "Customer"
viewpoint = "VnV"

«viewpoint»
VnV

«Create»
View()

«viewpoint»
concern = "Will the system perform
adequately?"
language = "SysML"
method = "VnVQuery"
presentation = "nV report stylesheet in slide
format"
purpose = "Describe the VnV"
stakeholder = "Customer"

«stakeholder»
Customer

concern = "What are the system
requirements?; Will the system
perform adequately?"

«conform»

«conform»

In addition to the formal mechanism described by the
SysML specification in the form of View and Viewpoint
elements, Enterprise Architect has a wide range of tools to
assist with the creation and management of viewpoints,
views and representations. There are several tools that can
be used to create different views of the elements in the
repository; these include the Working Sets and the Model
Views. Working sets allow a collection of diagrams,
Matrixes, Team Libraries and other items to be saved and
reopened as a set, which is useful when working with
different groups of stakeholders. For more information see
the Working Sets topic

Model Views can be used to create views of elements
grouped together irrespective of their location in the

(c) Sparx Systems 2021 Page 177 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/tools_ea_working_sets.html

Model Based Systems Engineering and SysML 2 September, 2021

Browser window. There are also several tools that can hide
or obscure parts of a diagram to make it more appealing to a
particular audience. The appearance of diagrams can be
altered by changing the appearance of elements, including
using an image, and Diagram Filters can obscure or hide
elements from view. For more information see the Visual
Filters topic. A powerful Documentation engine can create
high quality publications directly from the model into pdf or
docx formats. For more information see the Documentation
topic.

(c) Sparx Systems 2021 Page 178 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/tools_ba_visual_filters.html
https://sparxsystems.com/enterprise_architect_user_guide/15.2/tools_ba_visual_filters.html
https://sparxsystems.com/enterprise_architect_user_guide/15.2/tools_ba_documentation.html

Model Based Systems Engineering and SysML 2 September, 2021

Collaborating as an Engineering Team

An engineering team is multidisciplinary and consists of
strategists, managers, system engineers, software engineers,
testers and others. The commercial pressures to release a
product or provide a solution means that teams have to work
more cleverly and cohesively to ensure engineering
outcomes. Enterprise Architect has been built from the
ground up as a collaborative platform, not just for engineers
but for all disciplines. It facilitates individuals and teams
working together and sharing information, models, designs
and solutions with a full range of tools from discussions,
reviews, a team library and chat to Version Control and
Baselines.

(c) Sparx Systems 2021 Page 179 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Central Shared Repository

Enterprise Architect is not just a sophisticated drawing tool
but a modeling platform that allows models to be validated,
simulated, transformed and manipulated programmatically.
This can be achieved because the tool does not store the
diagrams in raster or vector format but rather the images are
coded in a relational database along with all the reference
data and other repository metadata. The platform uses this
relational database to store all modeling information and
metadata and this provides the back-end storage that is
accessed by client and web based tools. For more
information see the Model Repository topic.

This product architecture allows users to share models,
diagrams and other repository information such as reference
data, images in the Image Library and documents in the
Team Library and many other tool features that facilitate
collaboration and working together in a co-located or
distributed team. For more information see the Team
Support topic.

(c) Sparx Systems 2021 Page 180 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/configuration_management.html
https://sparxsystems.com/enterprise_architect_user_guide/15.2/team_development.html
https://sparxsystems.com/enterprise_architect_user_guide/15.2/team_development.html

Model Based Systems Engineering and SysML 2 September, 2021

(c) Sparx Systems 2021 Page 181 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Cloud Computing

The central repository described in the previous topic can be
accessed directly from the Enterprise Architect desktop
client, using appropriate database connectivity layers
(ODBC) and the accompanying drivers. There is, however,
another powerful and easier way to access a repository
hosted in a Cloud, and that is via Cloud services using the
http or https protocols. The Cloud can be on-premise or
off-premise and there are many ways the Cloud could be
configured. There is also a Server comprising a number of
modules that can be purchased, called the Pro Cloud Server,
which provides a variety of tools, facilities and ways to view
the models via a browser on a computer or hand held device,
such as a tablet or smart phone. For more information see
the Cloud Based Repositories topic.

(c) Sparx Systems 2021 Page 182 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/connect_to_the_cloud.html

Model Based Systems Engineering and SysML 2 September, 2021

This provides a platform for working with a variety of
stakeholders, from Engineering Managers to Consulting
Engineers, locally located or distributed across the globe.
The power of this way of working can be realized with
minimal set up and the benefit of having all team members
and stakeholders viewing and contributing to the same
models cannot be underestimated.

Productivity gains can be achieved by being able to get
valuable and timely feedback, or to discuss a diagram with
an engineering consultant while they are traveling on a train
to a trade show, or from the engineering lead while on a
break from a symposium - all in real time and within the
model from a smart phone or tablet.

The Pro Cloud Server also provides connectivity to a wide
range of other tools and platforms, spanning Requirements
Management systems, Configuration Management Tools,
Issue Tracking Systems, Project Management Systems and
more.

This screenshot shows a list of some of the available
integrations, although this list is being added to regularly so
it is worthwhile checking whether additional integrations
have been inluded. For more information see the External
Integrations topic.

(c) Sparx Systems 2021 Page 183 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/integrate_external_provider_data.html
https://sparxsystems.com/enterprise_architect_user_guide/15.2/integrate_external_provider_data.html

Model Based Systems Engineering and SysML 2 September, 2021

(c) Sparx Systems 2021 Page 184 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Discussions and Chat

Central to the notion of collaboration is a modeler's ability
to discuss and chat with colleagues or industry and
standards specialists about a problem or solution. Enterprise
Architect allows engineers, managers and others to enter
into discussions about elements, diagrams and connectors. A
post can be created that starts a thread or conversation which
other modelers can then enter into by replying. The
discussions are kept separately from element and diagram
meta information allowing rich and constructive comments
to be made without affecting documentation or reports
generated from the models. The discussions and chat are
two of the options available from the Collaborate window.

Chat is useful for quick and responsive communication with
colleagues or experts that have been defined as part of a

(c) Sparx Systems 2021 Page 185 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

security defined group of users. Chats are not related to
model elements in the way that discussions are but rather are
global and when the chat window is opened and a group is
selected the items are listed in date-time order. For more
information see the Collaboration Panel topic.

(c) Sparx Systems 2021 Page 186 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/use_today_panel.html

Model Based Systems Engineering and SysML 2 September, 2021

Kanban Resources and Calendars

The powerful Kanban technique, has been implemented in
Enterprise Architect in a way that will greatly enhance the
productivity of your team and the project management of
software and system engineering projects or sets of tasks.
Within Enterprise Architect it is a simple to use feature,
enabling you to manage items in a backlog and move them
into any number of lanes, or even to other boards,
representing stages in a process. The facility can be
incorporated into existing or new engineering or software
development processes, resulting in unprecedented
efficiencies.

One of the great advantages of using this feature is that
elements that participate in the Kanban diagrams can be
linked to other elements in the repository, allowing full
traceability from, for example, a requirement up to a
strategic intent or to a component of a design and down to
an element of a released product. Kanban can be used to
visualize the resources, effort and state of completion of
items as they move through any number of linked Kanban
boards. This is an example from a software development
process related to a warehouse systems engineering project.

(c) Sparx Systems 2021 Page 187 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

For more information see the Kanban and Resource
Allocation Help topics.

(c) Sparx Systems 2021 Page 188 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/kanban_facilities.html
https://sparxsystems.com/enterprise_architect_user_guide/15.2/kanban_allocating_resources.html
https://sparxsystems.com/enterprise_architect_user_guide/15.2/kanban_allocating_resources.html

Model Based Systems Engineering and SysML 2 September, 2021

Model Reviews

Model Reviews provide an ability for project stakeholders to
collaborate formally in the assessment (review) of model
content, including elements and diagrams. This powerful
collaboration tool utilizes a number of built in features -
such as the Review view - to manage the process of the
review and to visualize discussions and contributions to the
review. A review diagram provides a mechanism for
participants to add elements and diagrams to the review.
This diagram contains a number of elements related to the
review topic.

Any number of reviews can be created and modelers can
join and participate in the reviews. The launching pad for
the review facility is the 'Collaborate' panel of the Start
ribbon.

(c) Sparx Systems 2021 Page 189 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Selecting the 'Review > Manage Reviews' option will open
the Reviews view, where all existing reviews will be listed
and - with a right-mouse-click - new reviews can be created.
The view shows the Review metadata in the left hand panel
(including start and end dates) and the review details in the
right hand panel, including the element and diagrams that
form part of the review and the posts and replies for each
item.

The review comments can be entered and viewed in the
'Review' tab of the Collaborate window. These will keep a
running tally of all the posts and replies annotating the post,
and replies with the author and the date. In this way highly
collaborative outcomes can be achieved and - through the
WebEA product available on smart phones and tablets -
stakeholders such as external consultants and industry
experts could contribute to the review without having to use
the Enterprise Architect desktop application.

(c) Sparx Systems 2021 Page 190 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Each of the items in the Review view can have a number of
properties set, including the Status and Priority of the review
item; these can be seen as two small icons (a flag and a
quantity icon) to the right of the item.

(c) Sparx Systems 2021 Page 191 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Sharing Resources in the Team Library

Teams that are using processes centered around Model
Based Systems Engineering will invariably rely on a vast
array of documents in the form of policies, methods,
instructions, process descriptions, guidance documents,
standards and other types of engineering or project
documentation. Some of these will be document based and
others will be resource based and available on an internal
network, shared system, an Intranet or Extranet or more
broadly the public Internet.

Regardless of where the documents or pages are located
they can be either imported into Enterprise Architect or
referenced as external resources via a URL. They can be
included on a diagram as an Internal or External Artifact but
more conveniently they can also be imported or referenced
from the Team Library.

(c) Sparx Systems 2021 Page 192 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Consideration could also be given to importing some, or all,
of the items in these documents as first class model
elements. For example, a policy could be created as a
metamodel element and the list of policies could be
imported, allowing individual policies to be traced to
particular system components. For more information see the
Team Library Help topic.

(c) Sparx Systems 2021 Page 193 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/discussionforum.html

Model Based Systems Engineering and SysML 2 September, 2021

Viewing Models on Mobile Devices

The modern workplace has changed significantly in recent
years, with organizations encouraging flexibility in the form
of hot desks and working from a home office, leading to
more and more people working on portable devices. Also,
the pace of change in our modern world increases every
year, being driven by innovation and disruption - for
example, a pandemic affecting every country in which
suppliers, customers or colleagues are based, requiring
people to be absent from offices everywhere, and unable to
travel to consult or deliver expertise directly. . Strategists,
Technologists and Engineers need to collaborate to achieve
engineering outcomes and in a dispersed workforce this
typically means they need to contribute to models from
mobile devices, both while on the move and under restricted
isolation.

Enterprise Architect repository content can be viewed in
real-time through a browser on a mobile device such as a
tablet or smart phone. This allows engineers, managers and
others to collaborate while they are between meetings, at
offsite inspections, on public transport or anywhere they
happen to be. Never before has this been possible, and now
the velocity of a project does not need to be slowed while
waiting for reviews or for people to return to the office; the
models can be updated at Internet speed from anywhere. For
more information see the Cloud Based Repositories Help
topic.

(c) Sparx Systems 2021 Page 194 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/connect_to_the_cloud.html

Model Based Systems Engineering and SysML 2 September, 2021

(c) Sparx Systems 2021 Page 195 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Modeling the Future

The world is being driven by an almost insatiable appetite
for change and innovation and this has resulted in Systems
Engineers needing to work smarter and faster and come up
with clever ways of solving problems. Time Aware
Modeling is a unique modeling facility that allows engineers
and other stakeholders to model any number of future states.
This introduction of state into the models provides a
mechanism to visualize what a proposed solution might look
like, and allows engineers to compare a number of proposed
solutions. A given solution can be analyzed and reasoned
about and potential pitfalls and problems can be identified in
the models. Reviews and walk-throughs can be carried out
by any number of stakeholders and these can be used to
determine which of a number of solutions is suitable.

The process can be initiated by making a clone of a Package
for which you need a future state model. This can be done
using the ribbon options or from the Browser window
context menu.

The tool will display a prompt allowing the engineer to
specify a name and a version number for the cloned
structure. The version number is critical to the operation of

(c) Sparx Systems 2021 Page 196 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

the feature and is used by Enterprise Architect as a way of
tracking elements and diagrams that form part of this future
version with the specified version number. The tool will also
prompt for a location within the repository for the cloned
Package structure. Typically it can be given a name that
includes its version and the contained-in parent of the
Package being cloned; it might also, however, be kept in a
separate part of the repository designated for future state
versions.

The step just performed simply sets up the structure for the
cloning and does not itself create future states of element; it
does, however, make a copy of any diagrams contained in
the Package. This illustration shows a Package that has been
cloned, containing two diagrams that are copies of the
diagrams in the original Package.

(c) Sparx Systems 2021 Page 197 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The diagram is assigned the version number specified in the
version dialog, set by the user in the previous step. The
cloning of individual elements is by selecting an element on
a diagram, but until this is done all elements on the diagram
will be the previous version. Enterprise Architect has a
facility available from the diagram property sheet that
allows the modeler to filter the elements on the diagram to
the version of the diagram.

Setting this property on a newly cloned diagram will display
all the elements in a gray-scale as they are all from the
previous version. From this point, individual elements can

(c) Sparx Systems 2021 Page 198 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

be cloned and Enterprise Architect will make a copy of the
selected element, creating copies of all its connectors. This
is important as it will allow the element to be promoted as
the updated current version once the change has been
implemented. Individual diagram elements can be cloned
by selecting the element in the diagram and displaying the
context menu, as shown in this illustration.

Once again you will be prompted for the version number,
conveniently the tool will default to the one chosen for the
cloned Package. Once this has been accepted Enterprise
Architect will create a copy of the selected element and
because the diagram is still filtered to version this element
will appear normally in the diagram, with the other elements
still displayed in gray-scale.

(c) Sparx Systems 2021 Page 199 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The Browser will show the newly created (version 2)
element that will be collated with the diagram. In this way
the cloned Package will only contain elements and diagrams
with the new version number. For more information see the
Time Aware Modeling Help topic.

(c) Sparx Systems 2021 Page 200 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/tools_ea_time_aware_modeling.html

Model Based Systems Engineering and SysML 2 September, 2021

Version Control and Baselines

We live and work in a world which is moving at Internet
speed and consequently engineering problems and
opportunities change at the same speed. It is the engineers
challenge to record, analyze, conjure and implement
engineering solutions in this timescale. This means that
almost before an engineer has described a problem fully it
will have changed or the business or engineering context of
the problem will have changed. Most times the new
direction or the changes will be described and adopted, but
other times an engineer will be required to back-track and
return to a previous version of the problem, opportunity or
solution. Enterprise Architect has sophisticated tools for
performing this back-tracking.

Enterprise Architect has two fundamental tools for working
with prior versions of modeling content.

Version Control - Once configured, any change point can·

be returned to; users check-out model fragments, make
changes, and check-in the fragments, thus creating
versions - for more information see the Version Control
Help topic

Baselines - Created at milestone or significant points in a·

model's development; a user creates a Baseline, and then
at a future point the evolved model is compared to the
Baseline at any level of granularity, and prior content can
be restored - for more information, see the Baseline Help
topic.

(c) Sparx Systems 2021 Page 201 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/versioncontrol.html
https://sparxsystems.com/enterprise_architect_user_guide/15.2/baselinesanddifferences.html

Model Based Systems Engineering and SysML 2 September, 2021

There is an important difference between the two methods,
and that is: Baselines must be created intentionally. For
example, if a team of engineers creates a model and it is
signed off by a product owner, and then work continues
onto phase two. If for some reason the team wants to
back-track and return to the phase one model, without a
Baseline in place this would not be possible. In contrast,
once Version Control is configured, the same team could
easily return to the phase one milestone so long as they
knew the date it was completed.

Baselines

Baselines are a powerful way to ensure that a team can
back-track a model to a milestone or significant point in the
model's evolution. They provide a user-driven way of
managing change and give the modeling teams a sense of
comfort that if they go off-track for some reason or some
dimension of the problem, opportunity or solution changes
and they need to return to a previous point it can easily be
done. It is important to remember that a baseline is simply a
snapshot of a package (potentially including sub-packages)
in the repository but it must be created intentionally and
needs to be created at the point in time that it represents. For
more information see the Baseline topic.

(c) Sparx Systems 2021 Page 202 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/tools_ea_baseline_tool.html

Model Based Systems Engineering and SysML 2 September, 2021

Version Control

Enterprise Architect allows an engineering team to manage
changes and revisions to projects by placing individual
model Packages, view nodes or root nodes under Version
Control. Version Control is configured within Enterprise
Architect through any number of third-party source-code
control applications that manage access to and store
revisions of the controlled Packages. Once the Version
Control software has been installed and configured a team
can save a history of changes to Packages, view and retrieve
prior revisions of work, check out and check in content as it
is being worked on and more. This facility allows a team to
work collaboratively while providing an isolated way for
engineers to work on particular parts of the model. For more
information see the Version Control topic.

(c) Sparx Systems 2021 Page 203 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/model_repository/versioncontrol.html

Model Based Systems Engineering and SysML 2 September, 2021

(c) Sparx Systems 2021 Page 204 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Reusable Asset Server

The Reusable Asset Server (RAS) is a team productivity
feature that allows teams to store modeling content in a
location that can be accessed by distributed groups of
modelers for reuse. Any team or organization can set up a
RAS, store content and - through security settings - make it
available. The atomic unit of storage is an asset that can be
both modeling- and file-based information:

Packages contained in a repository and viewable in the·

Browser

Files in a range of text, code and graphic formats,·

including .eap files

The Reusable Asset Server is available from the 'Publish'
ribbon using the 'Model Exchange' panel. This puts this
service at your fingertips.

The assets are stored in the Cloud and require a connection
to be specified to a Pro Cloud Servicer model that has been
set up for this purpose. Typically, this task is performed by
the infrastructure section of an IT department, and the
details of how to connect would be simply provided to the
engineering team. This screen capture shows the details that
are required to make the Cloud-based connection.

(c) Sparx Systems 2021 Page 205 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Once a server has been set up it is possible to add any asset
to it. Formally, the server is a registry and content is set to
be registered on the server.

The Reusable Asset Server can be used to store information
and modeling assets between projects, and is particularly
useful for storing information for reuse between projects or
programs. When a project has delivered its value to the
business it is quite common for the project artifacts to be
archived and effectively made inaccessible to other teams.

(c) Sparx Systems 2021 Page 206 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The Reusable Asset Server is a convenient place to store
these artifacts so they can be reused by other teams. For
example, a project that has developed models for a new or
upgraded hospital could store these valuable modeling
artifacts in the RAS and then any time another hospital is
being worked on they could be reused, saving potentially
thousands of hours of work. This image shows the details of
a Package registered within the RAS, including the version
number, the Global User Identifier and comments that will
help an engineer browsing for reusable content find the
assets they are looking for.

One of the key advantages of using this feature is that the
RAS holds assets in a dependency tree, allowing a potential
user of the asset to understand the Packages that it depends
on. This is an analogous mechanism used by software
installation programs that determine if a software item
selected for installation depends on other items that are not
present on the target machine, and if these items in turn have

(c) Sparx Systems 2021 Page 207 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

other dependencies. The Reusable Asset Service does this
work for the engineer and performs a traversal of the
dependency graphs, allowing the user to understand what
the required asset depends on. This screen capture shows
how dependencies can be managed in the RAS.

For more information see the Reusable Asset Service Help
topic.

(c) Sparx Systems 2021 Page 208 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/reuseable_asset_service.html

Model Based Systems Engineering and SysML 2 September, 2021

Using Packages to Structure the
Repository

The Package is one of the most fundamental and important
elements in the SysML. It functions as a container and
viewed simply, it is resembles a folder in your favorite file
explorer software for your computer. So, in this way, it is
firstly a container that groups together other elements,
including other Packages but we will learn in this topic that
it also has other important functions in Enterprise Architect.

In a deeper sense a Package is a namespace that provides a
way of uniquely identifying any element in a repository,
similar to the way URL works. The path shown here has
been extracted automatically from Enterprise Architect; it

(c) Sparx Systems 2021 Page 209 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

allows you to visualize the namespace.

 SysML Example.HSUV Model.HSUV Use Cases.Use
Cases.Drive the vehicle

Setting up the Package structure is an important and often
dreaded task, but fortunately Enterprise Architect takes
away a lot of the anguish that newcomers (and experienced
modelers) feel when approaching this task.

The next few topics will introduce you to best practice in
setting up a Package structure, and to some of the additional
tools and facilities that will make working with Packages a
lot easier.

pkg [package] HSUV Model [HSUV Model Views]

HSUV Views HSUV Viewpoints HSUV Viewpoint Methods

«view»
Operational View

«view»
Performance View

«viewpoint»
Operational Viewpoint

«viewpoint»
Performance Viewpoint

«activity»
Requirements Query

(from HSUV Viewpoint
Methods)

(c) Sparx Systems 2021 Page 210 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The Function of Packages

In addition to the previous discussion Packages are an
important element in the use of Enterprise Architect as they
are used as the basis for a number of facilities in the tool,
including:

Container for elements,·

Namespace Definition,·

Security,·

Version Control,·

Baselines,·

Importing and Exporting,·

Documentation,·

Auditing,·

Time Aware Modeling, and much more.·

These things all have to be considered when deciding upon
the structure of the Packages. Containership and namespace
are the most critical, but all the other functions must be kept
in mind when deciding on an initial model structure or when
the model structure is being re-factored. It is often the case
that some of the functions are not initially used and only
brought into play when the repository has gained a degree of
maturity. This is often a trigger for the repository to be
reorganized, but fortunately - because of the ease of

(c) Sparx Systems 2021 Page 211 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

drag-and-drop - this can be done easily and effectively and
is not a time consuming exercise.

(c) Sparx Systems 2021 Page 212 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Introducing Package Diagrams

The Package diagram is a simple diagram that visually
describes the structure of the repository including
relationships between Packages and other Packages and
elements. Package diagrams appear quite simplistic with a
small number of elements:

Model·

Model Library·

Package·

View·

View Point·

Stakeholder·

These are connected by a series of relationships.

(c) Sparx Systems 2021 Page 213 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

pkg [package] HSUV Model [HSUV Model Relations]

HSUV Requirements HSUV Specification

(from HSUV Requirements)

«modelLibrary»
SI Definitions

(from Modeling Domain)

Hybrid SUV Constraints

(from HSUV Analysis)

HSUV Structure

«conform»

Again, the number of relationships is quite limited, but each
has specific meaning in the diagram.

Conform·

Dependency·

Import·

Containment·

Realization·

Refine·

Expose·

As with all SysML elements, there is both a graphical and
textual aspect to the elements, notes can be added to each of
the Packages and the relationships to clarify the purpose of
the element or the connector. The Package diagram can
contain any type of model element but typically it contains

(c) Sparx Systems 2021 Page 214 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Packages. Enterprise Architect extends the SysML
specification by providing a number of different and
innovative ways to visualize Packages and their content on a
Package diagram. These options can be seen in the menu
that is displayed when a Package is dragged from the
Browser window onto a diagram.

In this diagram we can see that the modeler has chosen the
'Package Element' option and has set the Compartment
Visibility of the Package diagram object to display the
Package contents. The Compartment Visibility options are
available from a diagram object's context menu for any
element, and Enterprise Architect dynamically changes the
options depending on the element type and the available
compartments.

(c) Sparx Systems 2021 Page 215 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

pkg [package] HSUV Package Overview [HSUV Requirements and Use Cases]

HSUV Specification

+ Capacity

+ Eco-Friendliness

+ Ergonomics

+ Performance

+ Power

+ PowerSourceManagement

+ Qualification

+ Range

+ RegenerativeBraking

(from HSUV Requirements)

Use Cases

+ Start the vehicle

+ Accelerate

+ Brake

+ Drive the vehicle

+ Idle

+ Insure the vehicle

+ Maintain the vehicle

+ Operate the vehicle

+ Park

+ Register the vehicle

+ Steer

(from HSUV Use Cases)

In the next diagram the engineer has chosen the 'Package as
List' option, which relies upon auto-generated but
user-configurable SQL code to create a dynamic list of
elements based on any of the Package element's metadata.
Here we see the same list of requirements but this time a
number of properties are also displayed.

(c) Sparx Systems 2021 Page 216 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

pkg [package] HSUV Package Overview [HSUV Requirements List]

Any number of Package diagrams can be created to define
or help visualize the structure of the repository. For more
information see the Package Diagram Help topic.

Creating Package Diagrams

A Package diagram can be created from a number of places
in the User Interface, by selecting:

Design ribbon - Add icon on the Diagram panel·

Browser window toolbar - New Diagram icon·

Browser window context menu - Add Diagram·

The access options will all display the same dialog, they are
simply different entry points to the same tool features. We

(c) Sparx Systems 2021 Page 217 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/packagediagram.htm

Model Based Systems Engineering and SysML 2 September, 2021

will use the Design ribbon to create a Package diagram.

Firstly select the location in the Browser window where you
want the Package diagram to be located. This can be either a
Package or an element, but it is common to insert Package
diagrams into a Package. Once the Package location has
been selected in the Browser window, select the ribbon
option:

 Design | Diagram | Add

Selecting this option will open the New Diagram dialog, on
which you name the diagram; the name initially defaults to
the name of the Package or element that contains the
diagram. With the SysML perspective chosen and the
version of SysML selected, a list of diagrams will be
displayed from which you select the Package diagram. Click
on the OK button to create a new Package diagram in the
location selected in the Browser window. The Diagram
View will be opened, allowing you to start adding elements
and connectors that describe the structure of the system and
its division into these structural groups. Enterprise Architect
will also display the 'Package' Toolbox pages that contain
the elements and relationships as defined by the SysML
specification to be applicable for constructing Package
diagrams. Any number of other Toolbox pages can be

(c) Sparx Systems 2021 Page 218 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

opened, if required, in addition to the 'Common' elements
and 'Common Relationships' pages that will always be
available.

The most import elements and connectors that are used with
the Package diagram are:

Elements

Model - used to define a high level part of the system·

Model Library - used to define a reusable set of elements·

Package - used to create a basic structural unit·

View - used to define what a stakeholder will see when·

viewing

Viewpoint - used to define a reference point for a view·

Stakeholder - used to describe people or parties with·

(c) Sparx Systems 2021 Page 219 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

material interest

Connectors

Conform·

Dependency·

Import·

Containment·

Realization·

Refine·

Expose·

Elements can be added to the diagram by
dragging-and-dropping them from the Toolbox onto the
Diagram View. It is considered good practice to start by
defining Model and Model Libraries. When a Model or
Model Library icon is dragged from the Toolbox to a
diagram, the modeler will be prompted to enter a new
Package name using this dialog:

Once the Package name has been entered a new Package
element will be created on the diagram. When creating a
Package from the Toolbox or inserting one into the Browser

(c) Sparx Systems 2021 Page 220 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

window, a modeler is given a number of options as
indicated on the dialog in this screen capture.

As described earlier, when an existing Package is dragged
from the Browser window (or copied from an existing
diagram) Enterprise Architect allows you to create it in a
number of different ways, as indicated in this screen
capture:

(c) Sparx Systems 2021 Page 221 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Package Organization Regimes

As suggested earlier, the librarians, administrators or
engineers involved with the set up of the repository can find
themselves conflicted about which direction to take because
there is a wide range of organizing principles that can be
used to structure the contents of the repository. Some of
these are:

A Breakdown structure - Systems | Subsystems |·

Components | Parts

Engineering Teams, working on different aspects of a·

system - Team One | Team Two

Programs of work and Projects - Program One | Project·

One, Project Two

Divisions within a method - Architecture | Requirements |·

Design

Security and Access Control·

Ease of Navigation·

Any one or any combination of these principles can be used
to structure the repository, and they can be changed over
time to suit the evolution of the engineering practice and the
model usage and experience of the users. Possibly the most
difficult of these principles is the need to make the
repository friendly to its inhabitants, to ensure ease of
navigation so that they can easily find what they are looking

(c) Sparx Systems 2021 Page 222 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

for. Enterprise Architect has some useful facilities to reduce
this tension, allowing other mechanisms to be used for
navigation and freeing the repository design to develop
based on a number of the other more important principles.
Some of these tool features are listed here.

Model Views

Provide a flexible and powerful mechanism allowing an
engineer or team to create any view of the model that they
find useful. Using this facility removes the need for
modelers and engineers to access the Browser window, as
they can locate the elements of interest through the Model
Views window.

For example, views can be created based on a search that
returns elements from any part of the repository; an engineer
could define a view that returned all requirements that were
high priority, with the status 'Approved' and flagged as

(c) Sparx Systems 2021 Page 223 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

'Difficult', regardless of which project they were part of or
where in the Package hierarchy they were located.
Alternatively, a modeler might just cherry-pick particular
elements and diagrams of importance to them and include
them in a Favorites View, or create a view based on newly
created Components. This facility provides a highly flexible
mechanism for accessing the important parts of the
repository, and views can be created at modeler or team
level. We will return to the Model Views facility in a later
topic, as it is an extremely useful part of the tool.

Diagram Navigation Cells

Enterprise Architect has made it easy for users to navigate
through a repository by providing a powerful diagram
mechanism to hyperlink to any diagram in the repository.

(c) Sparx Systems 2021 Page 224 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

This allows librarians and even modelers themselves to
create any number of diagrams that act as launch pads that
will take a viewer to diagrams of interest, effectively
shielding them from needing to know how the repository is
structured. These diagrams are viewable through the Internet
browser and Cloud products, and provide a compelling
experience for casual users and non-modelers.

Search Facility

This is a power feature that provides built-in and user
defined searches to retrieve a list of elements or diagrams
that meet a specified set of criteria. The amount of

(c) Sparx Systems 2021 Page 225 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

information contained in a repository can grow
exponentially as more people contribute to the models and
information is imported from external sources such as Risks,
Policies, Rules, Principles and more. There is a rich and
useful set of searches that are defined as part of the product
and in many circumstances one of these built-in searches
will suffice for a modeler or engineer to locate the elements
or diagrams they are looking for. These searches can be
parameter driven providing a mechanism to reuse a search
to find a variety of elements. For example a search could be
written that has a user input parameter of Status allowing
users to input a status, for example 'Proposed' at the time the
search is run.

Searches can be created by non-technical staff using the
intuitive Query Builder but there are also a number of other
ways that searches can be created including SQL based
queries that do require knowledge of the database tables and
Add-in queries that require a technical person to create a
program that defines the search. These searches can be used
by a number of other facilities including, as discussed
earlier, Model Views.

(c) Sparx Systems 2021 Page 226 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The Browser Window

The Browser window is the primary tool for structuring and
navigating the repository, using expanding and collapsing
tree nodes. The key structural element is the Package, which
is a folder-like element that can contain other elements and
diagrams, including other Packages. The elements in turn
can contain other elements, features and diagrams, but not
Packages.

(c) Sparx Systems 2021 Page 227 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Root nodes are the highest nodes in the tree; these root
Packages can contain Views that in turn can contain any
level of Packages and elements. Tree nodes including
Packages, elements, Features and diagrams can be copied
and pasted between locations, or dragged and dropped to
new locations. Many important tools, functions and
windows are applied at the level of the Package, such as
import or export of model content, documentation and
Package Control, including Baselines. For more
information see the Browser Window topic.

Context Diagram and Element Browsers

Enterprise Architect provides a number of additional
browsers that help an engineer or modeler to focus on a
subset of the repository content. These browsers can be
selected as tabs from the main Browser window.

The Context Browser provides a filtered view just of a
particular branch of the model, to work on just the section of
the repository that is relevant at a particular time. This
spotlight view takes away the noise and complexity of the
Project view and shows just the part of the model of interest,
allowing the engineer to view it in isolation.

(c) Sparx Systems 2021 Page 228 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/projectexplorer.html

Model Based Systems Engineering and SysML 2 September, 2021

In our example, the modeler wants to focus his attention on
the Use Case Package. Using the button you can move
back up the tree, or by clicking on a Package or element that
contains other elements these can be displayed, but the view
always remains at a single level of hierarchy.

The Diagram Browser lists the objects present on the active
diagram. Each object's connectors can also be displayed,
making this a powerful view of the diagram.

(c) Sparx Systems 2021 Page 229 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The Element Browser displays information about the
currently selected element. This provides a way of
visualizing all of the elements relationships, scenarios,
requirement, features and much more.

(c) Sparx Systems 2021 Page 230 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

(c) Sparx Systems 2021 Page 231 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Accessing the Repository using Model
Views

Model Views provide alternative views of the elements in
the Repository. Whereas the Browser window is designed
to organize the Packages and elements structurally, the
Model Views facility allows the modeler to create a number
of views that can group elements and diagrams differently.
This is a powerful facility that can be used by individuals
and engineering teams to see the repository contents in any
number of proprietary views designed to present only the
information that is important or relevant. It effectively
allows you to create windows through which to view the
repository in unique and compelling ways that will provide
insight and clarity, allowing the modeler to see things that
might not have been possible using the Browser window.

The views can be based on a wide range of criteria,

(c) Sparx Systems 2021 Page 232 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

including Favorites folders containing hand picked items of
interest, and folders based on a search such as 'all elements
created last week that have a status of Proposed' or 'all
Components provided by a particular engineering supplier'.
For more information see the Model Views Help topic.

(c) Sparx Systems 2021 Page 233 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/tools_ea_model_views.html

Model Based Systems Engineering and SysML 2 September, 2021

Requirement Definition and
Management

The field of Requirement Engineering is one of the most
critical disciplines in the solution development lifecycle, and
it has a documented impact on the success of projects. In the
words of the renowned Twentieth Century physicist, Albert
Einstein:

'If you define a problem carefully enough the solution will
jump out at you.'

Enterprise Architect has an unparalleled range of tools for
developing, managing, visualizing and documenting
requirements, including tools to import or integrate and
synchronize with external requirement management
systems.

(c) Sparx Systems 2021 Page 234 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

These tools implement all aspects of requirements that are
defined in the SysML specification, but the tool features go
far beyond this to create a sophisticated requirements
platform replete with tools for all disciplines associated with
the management and definition of requirements. Not only
are the tools useful for those engineers or managers working
directly with requirements, but there is a range of facilities
such as the Traceability window that will assist any
discipline, and that can be used by the Architecture and
Design Teams who are responsible for ensuring the
requirements are built into the designs, and consequently
implemented into the delivered product or service. For more
information see the Requirements Model Help topic.

Developing Requirements

(c) Sparx Systems 2021 Page 235 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/requirements_engineering.html

Model Based Systems Engineering and SysML 2 September, 2021

Requirement Development consists of all the activities and
tasks associated with discovering, evaluating, recording,
documenting and validating the requirements for a particular
project. Requirements are discovered, analyzed, specified
and verified. Enterprise Architect has a wide range of tools
and features to assist the Systems Engineer as they develop
requirements. The centerpiece for Requirement
Development is the Specification Manager, through which
the Engineer can enter, view and manage requirements in
textual form as if in a spreadsheet or document.
Requirement properties such as Status, Priority and Author
can be edited in-line, and filters can be applied to restrict the
display to particular requirements.

(c) Sparx Systems 2021 Page 236 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The Specification Manager can be used in conjunction with
a platform of other tools such as diagrams, the Traceability
window and the Discussions facility.

req [package] HSUV Requirements [Acceleration Requirement Refinement and Verification]

«requirement»
Acceleration

Accelerate
«requirement»

Power
«testCase»

Max Acceleration

«block»
PowerSubsystem

«deriveReqt»
«refine»

«satisfy»

«verify»

(c) Sparx Systems 2021 Page 237 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Managing Requirements

This consists of the activities to maintain a set of
requirements that represent an accord or agreement between
the project team and the customer. It also has a focus on
ensuring that the requirements are acceptable to the Design
and Development teams, and that they are sufficiently
specific to be implemented into working business, software
or hardware systems. Enterprise Architect is a sophisticated
platform for managing requirements, and regardless of the
domain, the size of the project or the method being
followed, Enterprise Architect provides tools that make it
easy to manage the largest of requirement repositories in
complex projects.

This diagram shows a Bar
Chart element depicting
element status for all the
requirements in a selected
package. It provides a
useful summary for a
Requirements Manager
and is dynamically updated
when the status changes
and the diagram is
reopened. There are a
range of other pre-defined
charts and user defined
charts can also be added.

Requirement Relationships

(c) Sparx Systems 2021 Page 238 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

There is a rich set of requirement relationships that allow the
Requirement elements to be connected to other modeling
elements including other Requirements. The relationships
include:

Containment·

Trace·

Copy·

Derive·

Verify·

Refine·

Satisfy·

We will explore these relationships fully in the body of this
topic.

Visualizing Requirements

The visualization of requirements is an important aspect of
the requirements process as it is critical that the catalogue of
requirements can be viewed by all stakeholders as they are
specified, analyzed, developed and managed. The
requirements represent an engineer's interpretation of the
discussions, observations and articulations made by
stakeholders concerning the problem or opportunity at hand.
Enterprise Architect has a wide range of mechanisms not
only to present these requirements to the stakeholder
community but also to allow the requirements to be

(c) Sparx Systems 2021 Page 239 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

discussed, reviewed and curated.

Documenting Requirements

There are a number of documents that are commonly
produced as part of the requirements engineering discipline
such as the System Requirements Specification and Use
Case Reports and these can be generated automatically from
a requirements model using built-in templates or user
defined templates. In addition a wide range of other
documents can be produced using built-in or customized
templates.

(c) Sparx Systems 2021 Page 240 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

There is also the possibility of viewing the models in a web
browser on a portable device such as a phone or tablet or a
PC. This facility is available as part of the Pro Cloud Server
product and provides an alternative to producing static
documentation and allows an engineering team to
communicate and collaborate with an extended audience
outside the modeling environment without the need for any
software installation or configuration.

(c) Sparx Systems 2021 Page 241 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Requirements as First Class Citizens

Enterprise Architect provides a wide range of facilities that
can be used for the development, visualization, management
and documentation of Requirements as first class elements.
People reading general SysML textbooks will often come
away with the idea that Requirements are expressed on
diagrams, but Enterprise Architect provides a wide range of
other ways to visualize Requirements that will assist the
engineer when working with them as text based elements,
including being able to visualize them in a hierarchy in the
Browser window.

Requirements can be created as part of a specification or
tender, or form part of a contractual document, in which
case they can be easily imported into Enterprise Architect.

(c) Sparx Systems 2021 Page 242 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

However, it is more common for them to be developed as
part of an elicitation effort typically conducted with
workshops and reviews. Enterprise Architect has a number
of features that can be used to record the proceeds of these
meetings, such as Mind Map diagrams. Once the workshops
have been completed, the ideas recorded in these meetings
can be converted to Requirements or mapped to the meeting
elements in a way that allows them to be developed
collaboratively.

The Requirements often form part of a contractual
relationship between organizations, or an agreement
between different sections of the same organization, and as
such need to be maintained and managed with rigor.
Enterprise Architect provides a wide range of facilities to
assist with this rigor, including Baselines, Audit tools,
Version Control and more.

Requirements Auditing

Auditing can be turned on in a model and can track the

(c) Sparx Systems 2021 Page 243 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

details of a requirement change, including when it was
changed, who changed it and the delta - before and after the
change. Auditing can be used to track what was changed in
a model, who changed it and when. There are a number of
modes and a repository administrator can use the settings to
specify what is recorded in the audit. While a Baseline can
be used to show the difference between a model and a
snapshot at a point in time, the Auditing tool records each
individual change; it cannot, however, be used to revert to a
previous state (the Baseline tool would be used if that was
required).

This is a particularly useful feature in Systems Engineering,
where there are regulatory or compliance aspects to a
process or when faults have to be traced back to their design
or requirement specification. Auditing would typically be
set up and administered by a librarian or administration
function within the team. Auditing can be enabled, set up
and viewed using the ribbon option 'Configure > Model >
Auditing'.

Auditing is by default disabled and must be enabled (turned

(c) Sparx Systems 2021 Page 244 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

on) before the system will start to keep an audit log. This,
along with a range of other options, is available from the
Audit Settings window.

For more information see the Auditing Help topic.

Requirements Baselines

Baselines are user initiated snapshots of a Package in a
model. The Baseline effectively makes a copy of a branch of
the Package hierarchy and its contents. At a subsequent
point in time, the model can be compared with the Baseline
and, if the model has changed, these changes will be
presented in a visualization tool, allowing a user to view
each part of the model that has changed, including the
content that exists in the Baseline and the model. It is then

(c) Sparx Systems 2021 Page 245 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/tools_ba_auditing.html

Model Based Systems Engineering and SysML 2 September, 2021

possible to inject the contents from the Baseline into the
model at the level of a discrete change.

Baselines provide a convenient way for Systems
Engineering teams to ensure that models are evolving the
right way, and when a model direction needs to be reverted
to a previous version they can be used to reinstate atomic
parts of the model. Baselines can be set up and viewed by
pressing Ctrl+Alt+B or from the ribbon location:

Ribbon: Design > Model > Manage > Manage Baselines

As discussed previously, Baselines are user initiated and are
stored inside the repository, so if the repository is copied the
Baselines would be copied as well. It is quite common for
most users to be given permission to create Baselines, but
the ability to restore from a Baseline is typically reserved for
a librarian or administration role. For more information see
the Baseline Help topic.

(c) Sparx Systems 2021 Page 246 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/tools_ba_baseline_tool.html

Model Based Systems Engineering and SysML 2 September, 2021

Version Control

Version Control allows Packages within a model to be
versioned. To commence work on a part of the model, a user
is required to check out a Package (including its
sub-Packages) and then to work on a local copy. When the
work is complete or at any point a user can check in the
Package allowing the changes to be seen by other model
users.

Version Control provides a sophisticated and robust way of
working with models, and in contrast to Baselines does not
require a user to initiate a version other than to check-out
the Package. The system is automatically creating a version
in the background as the work is done and changes are being
made. Version Control can be set up and viewed from these
ribbon options.

 Configure > Version Control > Project-VC, Package-VC

Version Control provides a powerful mechanism for
managing model content and allows a user or a team to keep
fine-grained control over the way a Package and its content
change over time. For more information see the Version
Control Help topic.

(c) Sparx Systems 2021 Page 247 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/applying_version_control_to_en.html
https://sparxsystems.com/enterprise_architect_user_guide/15.2/applying_version_control_to_en.html

Model Based Systems Engineering and SysML 2 September, 2021

Introducing Requirement Diagrams

A Requirement diagram provides a way of visualizing
Requirements and their connections. It is not just the
relationship between any two Requirements, but the
relationships between Requirements and other types of
element such as Use Case, Activity and Block that can be
visualized on these diagrams. Two of the elements provided
in the Toolbox are:

Requirement·

Test Case·

These elements can be connected to each other, or to other
elements, creating powerful expressions.

bdd [package] Production Line [Robots in Manufacturing]

«block»
Production Line

parts
 : Automated Assembly Unit

«block»
Automated

Assembly Unit

Spot Weld Body Robot

«block»

«requirement»
Automation

id = "7085"
text = "The system must use robots to
automate tasks that are beyond human
capabilities of accuracy, endurance, speed,
size, weight and that potentially must be
carried out in hazardous environments."

(from Requirements)

«satisfy»

+au

1..*

(c) Sparx Systems 2021 Page 248 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

In this diagram we see a Requirement that has been
connected to a Block using a Satisfy relationship, which
describes how other elements will ensure that the
Requirement's intent is met. The Block has an alternative
image defined, this being the image of a robot.

Again, the number of relationships is quite limited, but each
has specific meaning in the diagram.

Containment·

Trace·

Copy·

Derive·

Verify·

Refine·

Satisfy·

As with all SysML elements, there is both a graphical and a
textual aspect to the elements. The Requirement has two
properties defined:

id - a unique identifier for the Requirement·

Text - a textual description of the Requirement·

Any number of Requirement diagrams can be created to
describe the needs and concerns of stakeholders and others.
For more information see the Requirement Modeling topic.

Creating Requirement Diagrams

A Requirement diagram can be created from a number of

(c) Sparx Systems 2021 Page 249 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/create_a_requirements_model.html

Model Based Systems Engineering and SysML 2 September, 2021

places in the User Interface, such as:

Design ribbon - 'Add' icon on the 'Diagram' panel·

Browser window Toolbar - 'New Diagram' icon·

Browser window context menu - 'Add Diagram' option·

We will use the Design ribbon to create a Requirement
diagram. Firstly, select the location in the Browser window
where you want the Requirement diagram to be created. As
with all diagrams, this can be either a Package or an
element, but it is common to insert Requirement diagrams
into a Package. Once the Package location has been selected
in the Browser window, click on the ribbon option 'Design >
Diagram > Add'.

This option opens the 'New Diagram' dialog, allowing you
to re-name the diagram - the name initially defaults to the
name of the Package or element that contains the diagram.
When you select the SysML Perspective and the version of
SysML, a list of diagrams will be displayed, allowing you to
select the Requirement diagram. You click on the OK
button to create a new Requirement diagram in the
specified location in the Browser window. The Diagram
View will be opened, allowing you to start adding elements
and connectors that describe the Requirements and their
relationships. Enterprise Architect will also display the
'Requirements' page of the Toolbox, which contains the

(c) Sparx Systems 2021 Page 250 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

elements and relationships defined by the SysML
specification to be applicable for constructing Requirement
diagrams. Any number of other Toolbox pages can be
opened as required, in addition to the 'Common' elements
and 'Common Relationships' Toolbox pages that are
displayed by default.

The most important elements and connectors used with the

(c) Sparx Systems 2021 Page 251 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Requirement diagram are:

Elements

Requirement - used to define a Requirement·

Test Case - used to describe a Test·

Connectors

Containment - used to provide additional information that·

helps clarify the Requirement

Trace - used to connect a Requirement to any other·

modeling element

Copy - used to show that one Requirement is a copy of·

another

Derive - used to describe the fact that one Requirement is·

based on or is an extension or derivation of another
Requirement

Verify - used to indicate that a Requirement has been·

fulfilled

Refine - used to add refinement or additional information·

that helps clarify the Requirement

Satisfy - used to show that one or more model elements in·

the architecture or design fulfills the notion expressed in
the Requirement

Requirement Extensions

Extended Requirement - used for extended Requirements·

(c) Sparx Systems 2021 Page 252 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Functional Requirement - used for Requirements related·

to function

Interface Requirement - used for Requirements related to·

Interfaces

Performance Requirement - used for Requirements related·

to performance

Physical Requirement - used for Requirements related to·

physical aspects of a system

Design Requirement - used for Requirements related to·

design

Elements can be added to the diagram by
dragging-and-dropping them from the Toolbox into the

(c) Sparx Systems 2021 Page 253 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Diagram View. Relationships can be created by first
selecting the required relationship in the toolbox and then
dragging-and-dropping between a source and target element.
It is common not to create Requirement diagrams that
simply list the Requirements but rather to create diagrams
that show the relationships between any two Requirements
or the relationships the Requirements have with other
elements such as Use Cases, Activities and Blocks.

(c) Sparx Systems 2021 Page 254 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Developing Requirements

Requirement Development includes all the activities and
tasks associated with discovering, evaluating, recording,
documenting and validating the requirements for a particular
project or program of work. Requirements are discovered,
analyzed, specified and verified, and Enterprise Architect
has a wide range of tools and features to assist the Systems
Engineer as they develop requirements. The centerpiece for
Requirement Development is the Specification Manager,
allowing the Requirement Engineer to enter, view and
manage requirements in textual form in a spreadsheet
format.

The Specification Manager can be used in conjunction with
a platform of other tools, such as diagrams, the Traceability

(c) Sparx Systems 2021 Page 255 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

window and the Discussions facility. These windows
provide other views of the requirements, giving the modeler
and the viewer a deep understanding of how a requirement
relates to other parts of the repository, and providing detail
not visible through the Specification Manager.

(c) Sparx Systems 2021 Page 256 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Elicitation

Elicitation is the process of information discovery, the
information gleaned from this process will form the
precursors to requirements. The information will typically
be raw and often heterogeneous, and it will not be until the
requirements analysis phase is performed that true
requirements will be able to be derived from it. Elicitation
will take many forms, and all of the skills of the
requirements engineer will be needed to determine which
documents, machines, tools, people and processes to
examine to discover the information.

(c) Sparx Systems 2021 Page 257 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Document Sources

Requirements can often be sourced from a wide range of
locations including documents such as a:

Business Case·

Concept of Operation·

Requirement Specifications (of an Existing System)·

User Manual·

Standards Document·

Policy Document·

Regulatory or Compliance Document·

While all of these documents can be developed in Enterprise
Architect using the Document Artifact facility they are
typically developed in other tools and live outside the
repository. They can be dragged onto a diagram and either
imported into the repository or saved as a reference or
surrogate for the external document.

(c) Sparx Systems 2021 Page 258 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

req [package] Documents [Document Analysis]

Stakeholder Workshop Minutes

Boom Gate Instruction Manual

The Boom Gate Instruction Manual is a
PDF document that was written at the
time the existing system was
implemented.

Concept of Operation Carpark
Management System

This CONOPS document was
developed by the Senior Engineering
team and describes the complete
overhaul of the existing Boom Gate
facilities into a Carpark Management
System

«requirement»
Remote Control of Access List

id = "3078"
text = "The system must allow the
permitted vehciles Control List to be
managed remotely including assigning
temporay access to guest vehicles."

Access Control

Remote Management
of Access List Ideas

Boom Operation
Workshop

Occupational Health and Safety
Policy

Managed and maintained by the
corporate office in compliance with
Federal and State Government Laws.

«trace»

«trace»

«trace»

«trace»

Another and perhaps more useful option is to add them to
the Team Library which is a document and web page
library used to create a catalogue of items that can be
referenced by requirements. It is also worth considering
reviewing the contents of the documents and incorporating
the information as model elements. This has the benefit of
an Engineer being able to create traceability relationships
between elements such as Business Motivations and
problem and solution elements such as Requirements, Use
Cases and Components. For more information see the Team
Library Help topic.

(c) Sparx Systems 2021 Page 259 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/discussionforum.html
https://sparxsystems.com/enterprise_architect_user_guide/15.2/discussionforum.html

Model Based Systems Engineering and SysML 2 September, 2021

User Observations

Observing users perform their work is a powerful and
unobtrusive way of gaining an understanding of:

The tasks they carry out and·

How they use information and other software and·

hardware devices to achieve an outcome from their
interaction with a system

Even if the processes that support the planned system will
be different, the observations of the current processes will
provide a useful context for discussions. It will also help the
engineer empathize with the user, which can result in a
deeper understanding of the issues they face and provide the
basis for the discovery of potential solutions. An engineer
will often discover unmentioned documents, checklists and
clue cards that can help illuminate the process. Equipped
with a mobile phone or camera, it is also useful for the
engineer to take photographs of the user working, which
will help engineers and others recall and discuss the task
during the requirements analysis phase.

Enterprise Architect supports the modeler in representing
files such as photos and scanned documents directly in the
model, creating a rich and expressive representation of the
user at work. There is the option to represent these as an
Artifact (which, with a single key stroke (F12), will launch
the file) or to use a hyperlink or even to include the image

(c) Sparx Systems 2021 Page 260 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

itself in a diagram. For more information see the Changing
Elements Appearance topic.

bdd [package] Production Line [Robots in Manufacturing]

«block»
Production Line

parts
 : Automated Assembly Unit

«block»
Automated

Assembly Unit

Spot Weld Body Robot

«block»

«requirement»
Automation

id = "7085"
text = "The system must use robots to
automate tasks that are beyond human
capabilities of accuracy, endurance, speed,
size, weight and that potentially must be
carried out in hazardous environments."

(from Requirements)

+au

1..*

«satisfy»

This diagram represents a photograph taken by an engineer
of an advanced production line robot assisting with a
manufacturing system. The image can be placed into
diagrams, and relationships can be drawn between the robot
and other parts of the system description, including
requirements.

(c) Sparx Systems 2021 Page 261 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/appearancemenusection.html
https://sparxsystems.com/enterprise_architect_user_guide/15.2/appearancemenusection.html

Model Based Systems Engineering and SysML 2 September, 2021

Stakeholder Workshops

The Requirements Engineer is charged with the difficult
task of eliciting requirements, which necessitates excellent
communication with the stakeholders, including the
customer and the analysis team. One very successful way of
facilitating the elicitation of the stakeholders' needs is to run
a workshop with all the key stakeholders present. The
Requirements Engineer's skills as a communicator, diplomat
and mediator are important to create a collaborative and
respectful environment conducive to the exploration of the
stakeholders' needs and concerns. It is imperative that the
engineer uses terminology that the stakeholders understand,
and also displays an understanding of or a willingness to
learn about the elements that make up the engineering
domain.

There is sometimes a misconception that what will be
articulated during these workshops is a set of clearly defined
requirements that can be entered into the tool as Stakeholder
Requirements. This is far from the reality of what happens.
Stakeholders will typically articulate a wide range of ideas,
including Policies, Business Rules, Data Definitions, Project
Management Constraints, Functional Requirements,
Business Requirements, existing system problems and even
suggested solutions. Even when an external consultant is
used to run these meetings, the engineer will not have time
to categorize all of these statements inside the meetings.
What is needed is a way for the scribe who is tasked with
documenting the statements to get them into the tool without

(c) Sparx Systems 2021 Page 262 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

any concern for what type of information is being recorded.
Having them recorded in the tool rather than scribbled in the
engineer's notebook is best practice because it allows them
to be displayed during the meeting and for stakeholders to
see each others' comments.

Enterprise Architect has a number of facilities that can help
with these workshops. One method that is very practical is
to use the Mind Mapping diagram to record the stakeholders
statements, which is very effective because it is a well
known method and doesn't introduce any of the formality
that comes with modeling languages such as SysML. This
diagram shows a starter Mind Map created from a pattern
that can be altered to suit the workshop need.

The Mind Mapping facility is available by switching to that
Perspective or, if it is used commonly, it can be added to a
user-defined Perspective Set using the My Perspectives
facility.

(c) Sparx Systems 2021 Page 263 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

This Perspective, like others, requires the appropriate
technology to be enabled, which in this case is Mind
Mapping.

As important terms are uncovered they could be entered into
the Project Glossary and, even if there is not time to
discuss and debate the agreed meaning, the words will act as
an initial list of important entities in the domain.
Alternatively, the terms could be created as Blocks in a

(c) Sparx Systems 2021 Page 264 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Block Definition diagram and related to each other with
connectors that describe the important relationships between
the terms.

The stakeholders can also be modeled and their
organizational relationships to each other can be described
in a diagram. This is a useful technique that allows key
stakeholders to identify themselves in the models, which
creates buy-in.

(c) Sparx Systems 2021 Page 265 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Chief Executive Officer

This diagram shows the
organizational structure of
stakeholders using an alternate
image. Using graphics on
diagrams tends to make the
diagrams more appealing,
particularly to high-level
business stakeholders. An
Alternate Image can be selected
by choosing this option from the
Appearance sub menu available
from the element Context Menu.

Finance Manager

Stock Control Manager

Development Manager

Process Manager

Business Manager

Operation Managers

IT Manager

Credit
Controller

(c) Sparx Systems 2021 Page 266 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Creating Requirements

Enterprise Architect has extensive support for developing
Requirements and provides a number of specialized tools for
this purpose. As with all model content, a Modeler is
encouraged to check whether the Requirements have been
entered into the repository by someone else before
embarking on the task of creating new Requirements. It is
also possible that the Requirements have been defined in
another tool such as a spreadsheet and could be imported
into Enterprise Architect without the need to create each
Requirement manually.

Enterprise Architect has two locations for Requirements;
they can be created in the model as an element that will
appear in the Browser window, or they can be created
inside another element as an Internal Requirement or
Responsibility.

(c) Sparx Systems 2021 Page 267 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

External and Internal Requirements

Enterprise Architect can support any type of Requirement
process and allows Requirements to be defined as elements
in the model. These are called External Requirements, but
the tool also allows Requirements to be defined for a
specific element, and these are called Internal Requirements.
An engineer who wants to define a user Requirement such
as:

The system must allow bus schedules to be updated.

would use an External Requirement. A modeler wanting to
describe how a Component should behave would use an
Internal Requirement for the Component such as:

The editor must support Unicode.

There is often contention between Analysts and Developers
as to whether a Requirement should be Internal or External,
and Enterprise Architect provides a facility to move Internal
Requirements to be external to the element. When they are
moved they are still linked to the original element.

(c) Sparx Systems 2021 Page 268 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Requirement Categories

The SysML specification provides a non-normative list of
Requirement categories (types). These are stereotyped
Requirements that refine or extend the base SysML
Requirement, providing a mechanism to create
Requirements that serve a particular purpose or describe a
particular aspect of a system. For example Physical
Requirements can be used to describe some physical aspect
of a system such as the weight or size of a component.
These and other user-created categories can have any
number of additional properties defined such as:

RiskKind·

VerificationMethodKind·

Enterprise Architect conveniently provides these
Requirement categories as elements on the SysML
Requirement's Toolbox pages.

The tool also provides a sophisticated and fully functional
profile system, allowing users to create extensions to the
base SysML Requirement and any number of user-defined

(c) Sparx Systems 2021 Page 269 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Requirement categories applicable to the modeling domain
or problem space. These stereotyped Requirements can have
user-defined properties added that are needed to model the
specific Requirement element (or other model element).

For example a team might decide to include a property of
volatility to a Requirement to ensure work is not
commenced until the Requirement is stable (i.e. not
volatile). As another example, a team might be creating
medical devices and need to comply with various statutory
standards. Each component that is used as part of the
solution might be required to be compliant. A
compliance-level property could be created and the
component could be assigned a level indicating its
compliance from a range of values defined in a spin control
or a drop-down list. For more information see the Profile
Help topic.

(c) Sparx Systems 2021 Page 270 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/umlprofiles_2.html

Model Based Systems Engineering and SysML 2 September, 2021

Requirement Properties

Requirement Development and Management is critical to
the success of any project, and the properties of
Requirements are important to prioritization and the way
they will be elaborated and used within an implementation
or development team. All Enterprise Architect elements
have standard properties such as Status, Author and Phase,
but the Requirement element has additional properties such
as Difficulty and Priority.

Some Requirement processes will prescribe specific
properties such as Custodian and Volatility (Stability) and

(c) Sparx Systems 2021 Page 271 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

these can be configured using Tagged Values that can be
applied to each Requirement. The 'Notes' field for a
Requirement has special significance as it often contains a
formal and contractual description of how the system must
behave or perform. For more information see the Element
Properties Help topic.

(c) Sparx Systems 2021 Page 272 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/element_property_displays.html
https://sparxsystems.com/enterprise_architect_user_guide/15.2/element_property_displays.html

Model Based Systems Engineering and SysML 2 September, 2021

Specification

Requirements specification is an important aspect of the
evolution of a Requirement. It provides an important
catalogue of statements about the system's behavior in both
normal and abnormal conditions. The Requirements will be
of interest to a wide range of stakeholders including:

Engineering Managers·

Architects·

Designers·

Customers or their surrogates·

System Engineers·

Software Engineers·

Testers·

Compliance Managers·

Quality Engineers·

Safety Engineers·

All these groups will have both input to the Requirements
and a need to use the catalog of Requirements in their work.
There is a variety of ways in which requirements can be
specified in Enterprise Architect, including:

Directly in the Browser window·

(c) Sparx Systems 2021 Page 273 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

On a diagram·

Using the Specification Manager·

We will look at the Specification Manager in the next
section, and you will see that it provides great flexibility
when working with Requirements and other elements with
textual content.

(c) Sparx Systems 2021 Page 274 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Meet the Specification Manager

The Specification Manager is a unique and powerful tool
providing a spreadsheet or word processor view that can be
used to manage any element, although it is particularly
useful when working with Requirements that always have
descriptive text to describe the Requirement in detail. New
Requirements can be created with names and detailed
descriptions, and properties such as Status and Priority can
be added or changed from drop-down lists. Existing
Requirements can be viewed and managed in a convenient
view - such as diagrams and windows - and changing them
in the Specification Manager will change them in all other
places in the repository.

The Specification Manager is the perfect tool for those
analysts who are more comfortable working with text rather

(c) Sparx Systems 2021 Page 275 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

than diagrams, and who are accustomed to working in a
Word Processor or Spreadsheet. It has the added advantage
that the Requirements are part of a model and can be traced
to other element, including Business Drivers, Stakeholders
and Solution Components. In this image it can be seen that
the Requirement status and other element properties can be
edited from drop-down lists.

There is a wide range of options that provide great
flexibility when working with the Specification Manager,
including showing notes in columns as in a spreadsheet or
inline as in a document, and adjusting the size of the text.
These options are available from the 'Specification -
Specify' ribbon, which is conditionally displayed when the
Specification Manager is launched.

(c) Sparx Systems 2021 Page 276 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Filters provide a powerful way to restrict the display to
elements that contain a word or text fragment in a selected
column. In this illustration a modeler has decided to restrict
the display to all Requirements that contain the word 'light'
in the text of the Requirement. This is a powerful
productivity tool when working with large sets of
Requirements, and it can be used to locate all Requirements
with a particular status, priority, complexity or even all
Requirements owned by a specified stakeholder or team, if
they have been defined in the model.

A diagram can also be opened from the Specification
Manager, allowing you to edit the elements on the diagram
as a group. This is a compelling and welcomed view for
some non-technical staff, including managers and
customers. For more information see the Specification
Manager Help topic.

(c) Sparx Systems 2021 Page 277 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

(c) Sparx Systems 2021 Page 278 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Analysis

The analysis phase of requirements development ensures
that the requirements discovered in the elicitation phase
have been articulated correctly and have the correct format,
level of detail and properties, and form a correct and
cohesive set. As a result of the disparate sources and
methods of elicitation the requirements recorded in the
elicitation phase will need some massaging and balancing -
it is quite common for example, to find repeated or
overlapping requirements or for a systems engineer to
inadvertently have omitted to record the concerns of one or
more stakeholders. Tools such as the Relationship Matrix
and the Traceability window will help reveal omissions
and issues with requirements. The Collaborate window,
including the Model Mail facility, will also provide
mechanisms for discussing, reviewing and chatting about
the Requirements with other team members.

(c) Sparx Systems 2021 Page 279 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

(c) Sparx Systems 2021 Page 280 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Prioritize the Requirements

Prioritizing Requirements is imperative to the success of a
project, as it ensures that analysis, development, testing and
implementation resources are focused on the most critical
aspects of the system. Prioritization is a decision process
that allocates a priority to each Requirement; the most
common criteria for categorization is business value.
Business value is typically determined by the cost-benefit
analysis of the value the implemented Requirement will
produce for the organization or its customers. Other factors
might be policy or regulatory compliance, urgency, business
or technical risk and the likelihood of success. Requirements
can be visualized in a Kanban board which can be used to
indicate priority by moving items from a Backlog lane to a
Queue Lane and also allowing items to be ordered within
the lanes. For more information see the Kanban Help topic.

(c) Sparx Systems 2021 Page 281 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/kanban_facilities.html

Model Based Systems Engineering and SysML 2 September, 2021

Alternatively, Searches or Model Views could be used to
create a list of requirements based on some criteria that
would enable the Requirements to be prioritized.

Requirement Priority Property

There is a wide range of criteria that can be used for
prioritization, and each organization and project will
typically use some type of weighted average to determine
the priority. Enterprise Architect has flexible and complete
support for Requirement prioritization, as each element has
a built-in 'Priority' property that can be set to indicate its
priority, allowing the user to select the allocated priority
from a drop down list.

(c) Sparx Systems 2021 Page 282 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The list of priorities is conveniently pre-loaded when you
install Enterprise Architect, but these can be edited or
completely revised to suit an organization or project. They
can even be imported as reference data from a previous
project or, if the current project was created based on a
template, the organization's priorities could be pre-loaded
from the base model. They can be set up using this ribbon
option:

 Configure > Reference Data > Model Types > General
Types > Priority

Changing the Priority Collaboratively

The process of selecting criteria and assigning priority is
typically collaborative, and is often done in a workshop with
stakeholders or their representatives debating the
categorization. In previous eras this was a laborious and
difficult process, but Enterprise Architect has some
powerful features for working with Requirement properties,
including priority. There are a number of windows -
including the Package List and the Diagram List - that

(c) Sparx Systems 2021 Page 283 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

support working with the Requirements and editing the
priority in-line, automatically filtering or sorting the list of
Requirements based on the newly assigned priority. The
Specification Manager is a useful tool for this purpose,
providing a text-based interface where the Requirements
and their notes can be viewed and priorities can be selected
from a drop down list. The interface also displays a number
of other properties that are typically useful for prioritization,
such as Status and Complexity. For more information see
the Editing Elements Help topic.

When a Requirement property is changed and saved in any
window or diagram, the property will be changed in all
other views and any other users viewing the repository will
immediately be able to see the change.

Dashboard Diagams

(c) Sparx Systems 2021 Page 284 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/specification_element_menu.html

Model Based Systems Engineering and SysML 2 September, 2021

Enterprise Architect has a series of Dashboard diagrams that
can be used to create a compelling view of the Priority of
Requirements in a Package, with the option to include
sub-Packages. There are a number of pre-configured Charts
that can be used to display the ratio of Priority values for
Requirements in a part of the model. Filters add another
level of user configuration, allowing a modeler to, for
example, exclude Requirements of a particular Status or
ensure only Requirements for the current phase are
displayed. For more information, see the Dashboard
Diagram Help topic.

This diagram shows a Pie Chart element
depicting element priorities for all the
Requirements in a selected Package.
It provides a useful summary for a
Requirements Manager and is
dynamically updated when the priority
changes and the diagram is reopened.
A range of other pre-defined Charts and
user-defined Charts can also be added.
A filter has been added to exclude all
elements other than Requirements.

Visualization with Kanban Boards

Enterprise Architect has a Kanban Board diagram that can
be used to manage Requirements and other specification or
project management elements such as Change. The Kanban
Board is particularly useful for managing the priority of

(c) Sparx Systems 2021 Page 285 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/tools_ea_dashboard_diagrams.html
https://sparxsystems.com/enterprise_architect_user_guide/15.2/tools_ea_dashboard_diagrams.html

Model Based Systems Engineering and SysML 2 September, 2021

Requirements and other elements. The elements can simply
be dragged onto the diagram and then between columns,
allowing teams to manage and visualize the progress a
Requirement makes between specification and
implementation.

Backlog Queue In Progress Test/Review Done Deploy

Vehicle Height

Validated
Queue

Low Light Visibility

Proposed
Backlog

Fog and Rain Visibility

Validated
In Progress

Illumination

Approved
In Progress

Minimize Power Utilization of Boom Gate

Validated
Queue

Electrical Power

Proposed
In Progress

The Kanban diagram can be configured so that when an
element is dragged between columns the priority of the
element is automatically changed. For more information see
the Kanban Help topic.

(c) Sparx Systems 2021 Page 286 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/kanban_facilities.html

Model Based Systems Engineering and SysML 2 September, 2021

Validation

Requirements validation is necessary to make sure the
Requirements are of a high standard, suitably define the
Customer's problem (or opportunity) and are sufficient for
the implementation teams to design and implement the
product. It is imperative that the requirements have the
desired level of quality and are complete and necessary.
There are a number of ways that Requirements can be
validated, but probably the two most common ways are to
perform team reviews and to assign test cases to the
requirements.

The team reviews are typically conducted by team members
or other analysts who have some familiarity with the
domain, but were not themselves responsible for the
requirements development or management. Enterprise
Architect has a powerful tool to assist with this process,
called the Team Library, which works across the entire
model and allows reviewers to record their findings in
discussion documents and to reference model elements.
There is also a Requirements Checklist element available
from the 'Extended Requirements' page of the Requirements
Toolbox, which provides a useful mechanism for checking
the quality of Requirements.

(c) Sparx Systems 2021 Page 287 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

REQ117 - The system must
provide a mechanism allowing
students to identify themselves

This diagram shows the use of a
Requirements Checklist that acts as
an indicator (check) to ensure the
requirement is compliant with best
practice. The check items are
editable and a general checklist
element is available that can be
used with any element.

Requirements Checklist

Atomic

Attainable

Cohesive

Complete

Current

Independent

Modifiable

Traceable

Unambiguous

Verifiable

Test Cases can be defined at a number of levels from User
Acceptance tests down to Unit tests. Defining the test cases
early in the requirements development process creates a
double check on the Requirements, because when test cases
are defined issues with the Requirements are often
uncovered. Enterprise Architect has a number of facilities to
define test cases and a modeler can select whichever is the
most appropriate for the endeavor.

(c) Sparx Systems 2021 Page 288 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

req [package] Requirements [Requirements - Verify Relationship]

«requirement»
Low Light Visibility

id = "1026"
text = "The system must ensure any barrier is
visible in low light conditions including night and
shadows and there must be enough time in these
conditions for a driver to stop at the control unit."

satisfiedBy
Strip Illumination

«testCase»
After Dark Test

Verdict = inconclusive

The test was conducted at the winter
equinox under a cloudless, moonless sky.
Ambient lights were present from
neighboring buildings.

«testCase»
Shadow Test

Verdict = pass

The test was conducted at the winter
equinox and under a cloudy sky using a
shade to simulate shadow.

«verify»

«verify»

(c) Sparx Systems 2021 Page 289 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Visualizing Requirements

Requirements can be visualized in a number of different
ways using different features of the product. Some of the
methods allow the user to create new and edit existing
requirements while others simply provide a way of viewing
the requirements. Requirements, like all elements in the
SysML, can form part of a graph and many of the important
semantics are expressed in these relationships; for example
the relationship between a requirement and the test cases
that verify it. It is, however, quite common for requirement
analysts, managers and other stakeholders to want to view
the requirements independently of any relationships that a
requirement might participate in. We will look at a number
of these facilities now and others will be covered in the
Visualizing Requirement Relationships topic.

(c) Sparx Systems 2021 Page 290 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Requirements Diagrams

The Requirements diagram can be used to visualize
Requirements and their relationships to other elements,
including other Requirements. You can of course view
Requirements in a number of other ways, but for many
stakeholders the Requirements diagram will be more
appealing as it provides a graphical way to view the
Requirements' connections to other important parts of the
model, including stakeholders, architecture, design and tests.
This diagram shows how Requirements can be viewed along
with their connection to other elements. A Requirement
stating that unauthorized vehicles should not be allowed to
gain access to the car park is allocated to the Activity
'Restrict Unauthorized Vehicles', which in turn is allocated
to a Block representing the Boom Gate.

A Requirements diagram can be created from a number of
different locations in the user interface, including from the
ribbon option 'Design > Diagram > Add'.

The 'New Diagram' dialog will be displayed, and the
Requirements diagram can be selected from the list of
SysML diagram types. For more information, see the

(c) Sparx Systems 2021 Page 291 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Requirements Modeling Help topic.

(c) Sparx Systems 2021 Page 292 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/create_a_requirements_model.html

Model Based Systems Engineering and SysML 2 September, 2021

Specification Manager

The Specification Manager is the central tool for working
with Requirements in Enterprise Architect, and has been
designed from the ground up to be a tool that allows
Requirements to be created and managed through an
intuitive and fully featured interface. For those engineers or
other stakeholders who are accustomed to working with
spreadsheets or word processor documents, the tool will
seem natural and emulates both these modes of
visualization, allowing a user to toggle between spreadsheet
mode and document mode.

The Specification Manager can be opened from the ribbon:
'Design > Model > Specification Manager'.

The Specification Manager can be used to view any type of

(c) Sparx Systems 2021 Page 293 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

element, but is particularly suited to elements with a large
textual component such as Requirements. Any elements that
are changed in the tool will also automatically be changed in
Requirements diagrams, in the Browser window and in
other catalogs such as tables. For more information see the
Specification Manager Help topic.

(c) Sparx Systems 2021 Page 294 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/tools_ea_specification_manager.html

Model Based Systems Engineering and SysML 2 September, 2021

Browsers and Views

The Browser is the central navigation tool, which can be
used to structure and explore the contents of a repository
including working with requirements. The Browser has a
number of tabs that allow the contents of the repository to
be viewed in particular ways. We have looked at the
Browser in an earlier topic, but will speak about its
relevance for visualizing requirements.

Most system engineers will try and keep their requirements
for a particular project or endeavor in a single location,
although there might be circumstances where they need to
be separated; for example, for contractual or schedule
reasons. Once a Requirements Package has been selected in
the 'Project' tab, a user can switch to the 'Context' tab to get
a focused view - effectively removing the noise of the other
elements outside that context. An individual requirement
can then be selected and the 'Details' tab selected on the
Inspector window to focus on the properties of the selected
requirement.

The elements and relationships contained in an open
diagram can also be visualized through the 'Diagram' tab of
the Browser, providing an alternative way of viewing the
contents of a diagram.

(c) Sparx Systems 2021 Page 295 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Any Package or diagram can also be visualized in a number
of different ways, including the list view that provides an
often welcomed view of the elements in a list, similar to a
spreadsheet where the requirements are listed in rows and
their properties are listed in columns.

(c) Sparx Systems 2021 Page 296 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

(c) Sparx Systems 2021 Page 297 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Relationships Matrix

The Relationship Matrix is a powerful tool for visualizing
the connections between the elements in any two Packages,
in an interface resembling a spreadsheet with rows and
columns. The tool is particularly powerful when used with
Requirements, and allows an engineer to see how
Requirements are related to other elements, including other
Requirements.

The Relationship Matrix can be opened from the ribbon
option 'Design > Impact > Matrix'. Select whether the
current Package is the source Package, target Package, or
both.

Where a relationship exists an arrow icon will be displayed
in the cell at the intersection of the source and target
elements, with the arrowhead showing the direction of the
relationship. The matrix can also be configured to highlight

(c) Sparx Systems 2021 Page 298 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

the rows or columns that do not have any relationships in a
separate color. This and other options can be configured on
the Options window, available from the Options button in
the Relationship Matrix header.

These options allow you to tailor the way that the matrix is
displayed, including whether elements are sorted and their
names are prefixed with the Package name, and whether
source and target element rows and columns without
connections are highlighted. For more information see the
Relationship Matrix Help topic.

(c) Sparx Systems 2021 Page 299 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/tools_ea_relationship_matrix.html

Model Based Systems Engineering and SysML 2 September, 2021

Requirements Tables

Requirements Tables are spreadsheet like views that can be
created using a SQL statement to select requirements (or
any other elements) based on a select statement which
effectively filters out a particular group of requirements. For
example a table could be used to display all the
requirements related to the power subsystem that are
approved and are of high priority or for the decomposition
of performance requirements. Any number of tables can be
created and they are refreshed dynamically as underlying
properties are updated in the repository. This provides more
flexibility than the list view because of the ability to select a
group of requirements from anywhere in the repository
based on specified criteria.

(c) Sparx Systems 2021 Page 300 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Managing Requirements

This consists of the activities to maintain a set of
requirements that represent an accord or agreement between
the project team and the customer. It also involves ensuring
that the requirements are acceptable to the design and
implementation teams and that they are sufficient so that
what they specify can be implemented into working
business, software or hardware systems. Enterprise
Architect is a sophisticated platform for managing
requirements, and regardless of the domain, the size of the
project or the method being followed, there are tools that
will make it straightforward to manage even large
repositories of requirements in complex projects.

This diagram shows a Bar
Chart element depicting
element status for all the
requirements in a selected
package. It provides a
useful summary for a
Requirements Manager
and is dynamically updated
when the status changes
and the diagram is
reopened. There are a
range of other pre-defined
charts and user defined
charts can also be added.

(c) Sparx Systems 2021 Page 301 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Tracing Requirements

Most Requirement processes mandate that Requirements are
traced from high level concepts such as Business Drivers,
Visions and Goals down to the parts of Components that
implement them. For many projects this is an intractable
problem because much of the information lives in a set of
heterogeneous tools such as word processor documents,
spreadsheets, diagram tools, corporate presentation tools and
more. Some Project Managers attempt to solve the problem
by creating a spreadsheet that acts as a register of all the
disparate information but the management of this file takes
up considerable project resources and the file is almost
impossible to keep up to date. With Enterprise Architect
there is the ability to model all of this project information in
the one tool and to create easy-to-maintain and analyzable
traces between all the elements, from the organization's
mission statement right down to the level of programming
code, if required.

Visualizing Traces in diagrams

Regardless of whether you have entered the project’s
Requirements using a diagram, using a text-based tool such
as the Specification Manager, or by importing them from
another tool, viewing the requirement traces in a diagram
gives an easily understood view of their relationships. The
diagrams can be created easily by dragging and dropping

(c) Sparx Systems 2021 Page 302 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

elements from the Browser window, or automatically by
using the 'Insert Related Elements' option. This function
can be configured and used to draw a graph of elements to
any depth, and can be restricted to selected types of element
and connector. It is a powerful productivity tool in a team
environment, and even modelers with deep knowledge of
the domain and the repository are surprised at the
connections that are displayed in the diagrams.

View Basket

(from View Basket)

The bookstore will provide
discounts to students to
encourage learning

(from Policies)

(from Take Orders)

View Shopping Basket

(from Take Orders)

Add To Shopping Basket

BrowseCatalogue

(from Browse Catalogue)

REQ014 - Shopping Basket

The system must provide a shopping Basket
facility that remembers the contents between
sessions.

(from Take Orders)

BasketManager

requirements
Manages addition and deletion of items from the basket
and serializes contents between sessions.

Web Server: Dell PowerEdge
2650

Disk Controller = RAID 5
Disks = 4 x 80 GB
Processor = 2 x 2.8 GHZ
RAM = 2 x 1024 MB

«goal»
Provide customers with a competitive

online shopping experience

(from Goals)

Traceability can be used to
keep track of how thing are
related in the models from
the highest level business
goals down to the execution
environments and hardware
that solutions are deployed
to. The most common
relationships used are: Trace,
Realization, Dependency and
Generalization. Annotations
under the elements indicate
their Package location in the
Browser window.

«realize» «trace»

«trace»

«trace»

«trace»

«trace»

«trace»

Visualizing Traces using the Relationship
Matrix

The Relationship Matrix is a powerful tool that provides

(c) Sparx Systems 2021 Page 303 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

an alternative way of visualizing the relationships between
Requirements and other elements, or even between different
levels or types of Requirement. It is quite common for some
stakeholders to prefer a spreadsheet-like view of the
Requirements and their relationships, and the Relationship
Matrix provides an excellent way of presenting the
relationships without resorting to a diagram. In Use Case
driven requirements methods, Use Cases are said to realize
one or more Requirements, and these relationships can be
displayed visually in the Relationship Matrix. The list of
Use Cases would appear on one axis of the matrix and the
Requirements would be listed on the other axis. A marker in
the intersection of a row and column would display if a
relationship exists, indicating that a particular Use Case
realizes a Requirement. Relationships between elements can
be created or deleted using the Relationship Matrix, and the
Matrix can be saved and reopened at any time or saved to a
CSV file so it could be opened in a spreadsheet.
Documentation can also be created that includes the
Relationship Matrix, providing a powerful communication
tool for people who do not have access to the model.

(c) Sparx Systems 2021 Page 304 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Visualizing Traces using the Traceability
Window

While diagrams and the Relationship Matrix allow
modelers to view traces between requirement elements it is
possible that the creators of these views of the repository
have deliberately omitted elements from the view. For
example a diagram does not need to show all the
requirements owned by a particular stakeholder. The
Traceability window will, however, present a complete and
unabridged view of the relationships between elements. The
element relationships will be displayed regardless of the
location of the elements in the Browser window.

(c) Sparx Systems 2021 Page 305 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Visualizing Traces using the Relationships
Window

Modelers often choose to hide one or more relationships on
a diagram for the purpose of making the diagram simpler to
understand or to hide detail. The Relationships window is a
useful window to have open as it will display all the
relationships that exist between the elements in the diagram
indicating whether they are visible or hidden in the diagram.

If relationships have been hidden in a diagram they can be
made visible by selecting the 'Show Relationships' option on
the 'Connectors' page of the 'Properties' dialog for the
diagram.

(c) Sparx Systems 2021 Page 306 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

(c) Sparx Systems 2021 Page 307 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Tracking Requirements

The status of a requirement is a fundamental indicator of
where it is positioned in the requirement's development
process. For example requirements that have a status of
'Proposed' indicate that they are not yet ready and available
for development work to begin. Enterprise Architect has a
variety of tools to allow status to be tracked, analyzed and
managed, starting with the fact that each requirement can be
assigned a status and the list of status codes are completely
configurable. The status is conveniently displayed in list
views of the requirements including when using the
Specification Manager. There are also a set of pre-defined
and extensible dashboard charts and graphs that can be used
to get a compelling visual representation of the status and
other properties of requirements.

Tools for tracking requirements

Tool Description

Status Codes Status codes are a controlled list of
statuses that can be applied to any
element including Requirements.
Enterprise Architect comes with a
pre-defined list of codes but the list can
be configured and codes in the list can be
changed and deleted and new codes can

(c) Sparx Systems 2021 Page 308 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

be added. The status of Requirements can
be displayed in a diagram as a color
coded band on the side of the element.

REQ011 - Manage
User Accounts

REQ018 - Report on
User Account

REQ024 - Secure
Access

REQ017 - Remove
User

REQ016 - Add Users
This diagram shows the use of
the color code bar indicating the
status of the requirement. It is a
powerful visual cue that is useful
in workshops and printed
material to convey the status of
a series of requirements in a
diagram. The status codes and
the colors are completely
configurable and a legend can be
placed on the diagram to convey
their meaning.

Validated

Proposed

Approved

Implemented

Legend

Dashboards
charts and
graphs

Dashboard diagrams are an extended
diagram type and allow high quality
charts and graphs to be created to display
repository information in a visually
compelling way. Any number of
diagrams and charts can be created and
the data can be sourced from any level in
the repository Package hierarchy.
Enterprise Architect comes with a
toolbox page of pre-configured charts and
graphs, but new charts can be created
based on any information in the
repository.

(c) Sparx Systems 2021 Page 309 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

This diagram shows a Bar
Chart element depicting
element status for all the
requirements in a selected
package. It provides a
useful summary for a
Requirements Manager
and is dynamically updated
when the status changes
and the diagram is
reopened. There are a
range of other pre-defined
charts and user defined
charts can also be added.

(c) Sparx Systems 2021 Page 310 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Managing Changing Requirements

It is inevitable that requirements will change during the
specification and solution phases of a project, and most
requirements management processes have some type of
mechanisms for embracing these changes. Typically, a set of
requirements will have been specified and groomed for the
solution teams to implement; any subsequent changes are
specified as Change Requests. Regardless of the rigor of the
process being used, inadvertent changes will occur that need
to be managed along with the Change Requests. Enterprise
Architect is a sophisticated requirements management
platform, with a range of tools to assist the requirements
manager. Change Requests can be managed in the
Maintenance window, which allows the requested change
to be recorded and described, along with whoever requested
it and when it was done and whoever completed the change.
Inadvertent changes can be discovered and analyzed using a
number of tool features, including Auditing, Baselines and
Version Control; these tools have some overlapping
features and can be used in isolation or together. The
built-in Security system will also assist in preventing
inadvertent changes to models, by allowing modelers to
intentionally lock Packages and elements in the model.

Mechanisms for managing changing
requirements

(c) Sparx Systems 2021 Page 311 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Mechanism Description

Element
change task
and effort
items

Changes to requirements can happen
inadvertently but it is more common for
there to be an intentional change in
response to a wide variety of factors such
as Stakeholders revising their needs, the
business changing or a problem being
poorly understood. Inadvertent changes
can be picked up using a number of tools
but deliberate changes can be assigned
using the Change item, which can be
recorded against each element. Once the
impact of the change has been analyzed
Tasks can be created to specify what
needs to be done to implement the change
and Effort can be assigned using the
Requirements Effort item.

Auditing Auditing is a built-in tool that, when

(c) Sparx Systems 2021 Page 312 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

enabled, automatically records changes to
the repository. It has a number of
different modes and views, and can be
configured to assist in the management of
Requirements. It can track what was
changed in the model, who made the
change and when it was made, showing
the before and after views. So if the text
of a Requirement was updated or its
status was changed, this would be
recorded. Auditing functionality overlaps
with the Baseline tool, but unlike the
Baseline tool the changes are being
recorded automatically and every discreet
change is recorded. In contrast, the
Baseline tool will only compare the
current model to a Baseline regardless of
how many intervening changes had been
made. Auditing will not assist with the
impact of the changes but just what
changes have occurred. Once the changes
have been established, tools such as the
Relationship Matrix can be used to
determine the impact.

(c) Sparx Systems 2021 Page 313 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Version
Control

Version Control can be implemented in
Enterprise Architect to manage changes
and revisions to any Package including
Requirements Packages. Once
implemented changes to Requirements
will be recorded and a requirements
analyst will be able to view previous
version and roll back to these versions if
required. There is some overlap between
this tool feature and Auditing and
Baselines. The difference between this
facility and Auditing is that Auditing
simply records the changes but does not
allow you to revert to a previous version.
The difference between Version Control
and Baselines is that a modeler must
intentionally create a baseline whereas
with Version Control the changes are
being recorded automatically in the
background. Also with Baselines the
intervening changes are not recorded, just
the difference between the current
requirement and the one captured in the
Baseline.

Baselines Baselines provide a powerful mechanism
for managing changes to Requirements.
Any number of baselines can be created
and when requirements are changed these
changed requirements can be compared

(c) Sparx Systems 2021 Page 314 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

to one of the baselines. Baselines are
typically created at important milestones
in a project such as after a stakeholder
meeting or before a development iteration
is commenced. When differences are
found and these changes were not
intended or contravene project
management practice the requirements
from the baseline can be restored to the
current model. Baselines will not help
with assessing the impact of a change but
once a change has been identified tools
such as the Relationship Matrix and
element traces can be used to determine
the impact of a change.

(c) Sparx Systems 2021 Page 315 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Impact Analysis of Changes

When the development of a system has started and
requirements change there will be an impact of the change
and the effect will need to be determined, understood and
managed. Having traceability established both to up-process
elements such as Stakeholders and Business Drivers and
down-process elements such as Use Cases, Components,
Test Cases and source code operations is critical to
determining the impact of the change. Enterprise Architect
has a number of facilities that can assist with this including
the ability to visualize traces in diagrams, a powerful
Relationship Matrix, a Traceability window, element
Change, Task and Effort items that can be used to record
impact and what is required to implement it.

Tools to record and analyze the impact of
change

Tool Description

Analysis
using
requirement
traces

The ability to visualize requirements and
the way they are connected to other
elements is a powerful tool for analyzing
the impact of change. Requirements often
form a hierarchy and when one
requirement is affected it typically has a

(c) Sparx Systems 2021 Page 316 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

ripple effect to the requirement's children
and being able to visualize this in a
diagram or in a hierarch is very useful.
Requirements are also typically traced to
up-process and down process elements
and a diagram provides a way of viewing
and analyzing these connections. The
Insert Related Elements function can
discover these connections and
automatically draw and layout a diagram
allowing the modeler to spend their time
analyzing the impact.

Inventory Manager

requirements
Provides services for the
management of Titles.

REQ019 - Manage Inventory

REQ032 - Update Inventory

Manage Titles

Tracing Requirements

This diagram shows the expressive power of putting disparate elements onto a diagram.

It shows the traceability between different layers of a system. The traceability can be from the
Requirements to the Use Cases that Realize them, to the logical Components that will
deliver the required functionality.

«realize»

«trace»

«realize»

Analysis
using a
relationship
matrix

The Relationship Matrix can be used to
visualize the requirements and their
connections by placing the Requirement
on one axis of the matrix and the
connected elements on the other. This
method is very useful in workshops when
working with people who might not be

(c) Sparx Systems 2021 Page 317 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

familiar with modeling languages such as
UML or who work better with
spreadsheet types of view. Any number
of matrices can be created and their
specification can be stored so they can
easily be recalled.

Analysis
using the
traceability
window

The Traceability window is a powerful
window that shows the hierarchy of
elements in the Repository. It is
particularly useful because it
unconditionally shows how elements are
related to each other. Other views of the
repository could be configured just to
display particular elements for the
purpose of communicating an idea
whereas the Traceability window will
display all relationship that an element

(c) Sparx Systems 2021 Page 318 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

participates in which makes it particularly
useful for analyzing the impact of
change.

(c) Sparx Systems 2021 Page 319 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Requirement Volatility

There are ever increasing market place pressures to release
products and systems as early as possible, putting stress on
project teams to develop, test and deploy products in shorter
and shorter periods of time. The requirements processes
have changed significantly in recent years to ensure that
stable, correct and well-articulated specifications are
provided to architects, designers and developers when they
need them. There has been a move to iterative and
incremental processes and this necessitates providing a set
of stable requirements for every iteration. The churning of
requirements is often an indicator that a problem is not
clearly understood, that stakeholders have not been
compromised and there are unresolved political issues, the
scope is not defined or the business itself is in fluctuation.
Enterprise Architect has a number of mechanisms that can
be used to assist with this problem. Enterprise Architect
does not have a built-in property for requirement volatility
(stability) but using the general purpose UML extension
mechanism of Tagged Values a tag could be created to
record this property.

Note: Internal requirements do have a stability property but
external requirements do not.

Mechanisms for managing requirement
volatitlity

(c) Sparx Systems 2021 Page 320 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Mechanism Description

Volatility as
a Tagged
Value

Enterprise Architect provides a series of
properties for Requirements, but
additional properties can be created to
record other properties such as a
Requirement's volatility or the source of
the Requirement. This is achieved using
the UML Tagged Value mechanism,
which allows any element including
Requirements to have one or more tags
applied, representing some property that
can be assigned a value. Enterprise
Architect has extended this mechanism
and allows the modeler to create a list of
values that can be chosen from a drop
down list using the Predefined Structured
Tagged Values. This allows a team to
define their own list of volatility values,
such as extreme, high, medium low,
minimal.

Using The Baseline facility is a powerful tool
that enables a user to take a snapshot of a

(c) Sparx Systems 2021 Page 321 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Baselines model or more typically a model
fragment and then as the model is
developed to compare the new version of
the model to the baseline thus identifying
anything that has changed since the
baseline was taken. Baselines have
general applicability but are particularly
useful with requirements management
where requirements are often said to be
signed-off or frozen and any alterations to
them must be registered as a change. The
Baseline tool has a Compare utility that
conveniently lists changes between the
current model and the baseline.

Searches for
churning
requirements

Enterprise Architect has a sophisticated
search facility that allows a user to search
across either a selected Package or the
entire repository, to locate elements that
meet fine-grained criteria. This can be
used to locate requirements that have not
changed by searching for a change in the

(c) Sparx Systems 2021 Page 322 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

modification date before a specified date,
thus providing a list of stable
requirements. Alternatively, if volatility
has been set using a Tagged Value, all
elements with a specified volatility could
be located. The search facility returns a
list of elements that can be located in the
Browser window; the search can be used
as the basis of a Model View to be used
to view either volatile or non-volatile
requirements.

(c) Sparx Systems 2021 Page 323 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Requirement Reuse

The concept of reusing artifacts of a system development
process has been written about in many papers and text
books but has traditionally been confined to software
components. In more recent years the notion of reusing
specifications, including requirements, has started to get
traction. The reuse is particularly important where
organizations create a family of products with similar
features, or where there is a community of users within an
industry or domain. Other types of requirement such as
security and regulatory requirements will typically apply to
a number of projects. Business Rules and Stakeholders
Concerns will also typically apply across many projects and
are best catalogued outside individual project structures.
Enterprise Architect provides a number of sophisticated
mechanisms for managing the reuse of elements across
projects, including structuring the repository for reuse,
importing requirements from other sources, and a Reusable
Asset Service.

Mechanism for requirements reuse

Mechanism Description

Structuring
the repository
for

When you set up a repository, you have
the choice of structuring it for a single
project or for multiple projects, which in

(c) Sparx Systems 2021 Page 324 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

requirements
reuse

turn could be organized by a number of
programs of work. Enterprise Architect
gives the modeler complete control on
how the repository is structured, allowing
Packages to be set up above the level of
projects where some requirements such
as Business, Regulatory and Architectural
Requirements can be added.

Creating a
base model

When you create a new repository in
Enterprise Architect, you have the option
of creating a blank model using the
Model Wizard to help set up a repository
structure, or you can use a base model as
a template for the new model. The base
model is a good place to store reusable
assets such as Business, Regulatory and
Architectural Requirements, and Policies
and Business Rules. A base model can be
created using the 'Save Project As...'
option under the 'File Management' icon
().

Importing
requirements
from other
models

It is quite common to have a number of
Enterprise Architect Repositories in an
organization and it is very easy to copy
and reuse Requirements (or any other
elements) from one model in another.
This can be achieved by simply copying a
selection of Requirements or an entire

(c) Sparx Systems 2021 Page 325 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Package from one repository to another,
or even from one project to another in the
same repository. Enterprise Architect
works in the same way as any other
Windows program, simply copying the
selection to the clipboard and then
allowing it to be pasted in another
location in the same model or in another
open repository.

Using the
Reusable
Asset Service

The Reusable Asset Service (RAS) is
particularly useful for distributed teams
and provides a simple and convenient
mechanism for modelers to distribute or
download reusable model structures and
elements such as Requirements through a
shared repository, accessible via a Pro
Cloud Server connection. Enterprise or

(c) Sparx Systems 2021 Page 326 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

organizational level Requirements could
be stored in the RAS and different teams
could incorporate them into their models,
governance of the assets would typically
be managed by the owner of the asset
(register) at the Reusable Asset Service
level.

(c) Sparx Systems 2021 Page 327 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Requirement Relationships

Enterprise Architect supports all the SysML Requirement
relationships, which can be visualized in a number of
different locations within the user interface, providing a
powerful and flexible way of working with these important
connectors. The relationships between elements (including
Requirements) are not visible in the Browser window, as
this would clutter the elements when there are more
effective ways of viewing the connections.

The Relationships window is useful to have docked while
viewing elements, either in the Browser window or in a
diagram. As an element is selected in the Browser window
or in a diagram, the context changes and the Relationships
window will display just the relationships that exist between
the selected element and other elements in the model,
including other Requirements.

The relationships between Requirements and other
elements, including other Requirements, can be visualized
in any diagram including Requirements diagrams, in three
different ways:

A connector between two elements·

A compartment in the Requirement element·

A callout notation in the form of a note attached to either·

a Requirement or another model element

All three diagram notations have their purpose, and provide
flexibility for the modeler to choose the appropriate
representation for a particular purpose and audience.

(c) Sparx Systems 2021 Page 328 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The relationship drawn between two elements visible in a
diagram is the most common way to visualize Requirement
relationships; the dashed line is drawn from the client (the
dependent element) to the supplier (the providing element).
So in this example the 'Strip Illumination' Block is the client
and it depends on the 'Low Light Visibility' Requirement, so
the arrow points from the Block (client) to the Requirement
(supplier).

req [package] Requirements [Requirements - Satisfy Relationship]

«requirement»
Low Light Visibility

id = "1026"
text = "The system must ensure any barrier is
visible in low light conditions including night and
shadows and there must be enough time in
these conditions for a driver to stop at the
control unit."

«block»
Strip Illumination

parts
 hs : Housing
 dc : DC Connector
 la : LED Array

The strip illumination runs the length of the
beam and illuminates the reflecting surfaces of
the boom orthogonal to the light direction.
Making it visible to approaching vehicles.

«rationale»
The design of the strip lighting and
its illumination properties satisfies
the State Government Occupational
Health and Safety Standards.

«satisfy»

Notice also in this example that the modeler has chosen to
display the Parts compartment, showing the Parts that make
up the Block, and the Notes compartment that describes the
Block. A rationale has also been added to qualify the
'Satisfy' relationship, and to provide an explanation as to
why the Block was chosen in the context of standards.

Compartments can be used to display the relationships that a
Requirement participates in, which is a compact and useful
way of visualizing the Requirement relationships without
the need to include the related elements in the diagram.

(c) Sparx Systems 2021 Page 329 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

req [package] Requirements [Requirements - Compartments]

«requirement»
Low Light Visibility

id = "1026"
text = "The system must ensure any barrier is visible in low light
conditions including night and shadows and there must be
enough time in these conditions for a driver to stop at the control
unit."

refinedBy
Operate at Night

tracedFrom
Trade Study - Light Condition

verifiedBy
After Dark Test
Shadow Test

satisfiedBy
Strip Illumination

The list of visible compartments can be configured for each
diagram element or for the entire diagram, providing fine
granular control on how the relationships are visualized.

Alternatively, a Callout notation can be used to display the
relationship in a note attached to either the Requirement
element or the dependent element that the relationship
relates to. This notation is particularly useful when elements
appear in diagrams in which either the connector or
compartment displays are not suitable, such as an Internal
Block diagram, Sequence diagram or Use Case diagram, or
in other diagrams as a modeler sees fit. The Requirement
relationships are binary, meaning they have two ends: a

(c) Sparx Systems 2021 Page 330 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

supplier and a client. This means that the Callout can be
attached to either a Requirement or the related model
element which, depending on the relationship, could be a
Block, Test Case, Use Case or other model element,
including another Requirement.

In this diagram the modeler's focus is on the Requirement
and the Block element is listed in the note stereotyped as
<<satisfiedBy>>.

req [package] Requirements [Requirements - Satisfy Relationship Callout - Requirement]

«requirement»
Low Light Visibility

id = "1026"
text = "The system must ensure any
barrier is visible in low light conditions
including night and shadows and there
must be enough time in these
conditions for a driver to stop at the
control unit."

satisfiedBy
Strip Illumination

In this diagram, the modeler's focus has switched to a Block
and the Requirement element is listed in the note
stereotyped as <<satisfies>>.

(c) Sparx Systems 2021 Page 331 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

req [package] Requirements [Requirements - Satisfy Relationship Callout - Block]

«block»
Strip Illumination

parts
 hs : Housing
 dc : DC Connector
 la : LED Array

The strip illumination runs the length of the
beam and illuminates the reflecting surfaces of
the boom orthogonal to the light direction.
Making it visible to approaching vehicles.

satisfies
«requirement» Low Light Visibility

The next section details the Requirement relationships,
providing an example of each relationship.

(c) Sparx Systems 2021 Page 332 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Adding Refinement to a Requirement

The Refine relationship is a relationship between a
Requirement and another model element that adds
refinement or additional information that helps clarify the
requirement so that its meaning is more apparent. The
Refine relationship is available from the 'Relationships' page
of the SysML Requirements Toolbox.

The Refine relationship can be drawn between a
Requirement and any model element such as a Use Case, a
StateMachine, or an Activity. The choice of model element
will depend on the information expressed in the requirement
and the discretion of the modeler or engineer.

req [package] Requirements [Requirements - Refine Relationship]

«requirement»
Low Light Visibility

id = "1026"
text = "The system must ensure any barrier
is visible in low light conditions including
night and shadows and there must be
enough time in these conditions for a driver
to stop at the control unit."

Operate at Night
«refine»

(c) Sparx Systems 2021 Page 333 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

In this example the Use Case does not extend or embellish
the requirement but rather adds detail in the form of
descriptions and Scenarios that will make the meaning of
the requirement easier to understand.

(c) Sparx Systems 2021 Page 334 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Containment Relationship

The Containment relationship's name well describes its
purpose - it is used to show that one or more Requirements
are contained in, or are grouped by, another higher-level
Requirement. It is a fundamental and highly used
relationship when modeling requirements for any system of
even moderate complexity. A large system could have
thousands, if not tens of thousands, of requirements, and
these are best grouped together in hierarchies. An alternative
to the use of the Containment relationship is to group
Requirements using Packages. This method works when
there are just two levels in the hierarchy or when you group
Requirements by type - such as Stakeholder or Physical -
but it has limitations when used more extensively.

The Containment relationship is available from relationships
page of the SysML Requirements Toolbox.

This diagram shows the use of the Containment relationship
to show two lower-level Requirements that are 'contained'
by a higher-level Requirement.

(c) Sparx Systems 2021 Page 335 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

req [package] Requirements [Requirements - Containment Relationship]

«requirement»
Operational Visibility

id = "1024"
text = "The system must ensure any barrier is
visible in all operating conditions including weather
events such as fog and low light conditions such as
at night."

«requirement»
Low Light Visibility

id = "1026"
text = "The system must ensure any barrier is
visible in low light conditions including night and
shadows and there must be enough time in these
conditions for a driver to stop at the control unit."

«requirement»
Fog and Rain Visibility

id = "1025"
text = "The system must ensure any barrier is
visible in any weather conditions including Fog and
Rain and there must be enough time in these
conditions for a driver to stop at the control unit."

The containment of Requirements can also be visualized in
the Browser window, where containment is represented by
elements being nested or, more formally, the contained
elements are children of another Requirement. This leveling
is possible for any elements in the repository, but has special
meaning with Requirements. This image shows the same
Requirements as in the previous diagram, but in the Browser
window.

(c) Sparx Systems 2021 Page 336 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Note that nesting the Requirements in the Browser window
does not create Containment relationships between
Requirements. In fact, it is possible that the two different
methods could be out-of-synch with each other because they
are independent mechanisms.

(c) Sparx Systems 2021 Page 337 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Copying Existing Requirements

The Copy relationship is a relationship between two
Requirements; it is used to show that one Requirement is a
copy of another. The relationship is a type of Dependency
and is represented by a dashed line with the keyword
<<copy>>, with an open arrow head pointing from the
Copied (Client) to the Base Requirement (Supplier). Given
that Requirements elicitation, and management are
expensive and time consuming activities, and that many
projects often have an overlap of interests, it is useful to
re-use Requirements; the Copy relationship provides a
mechanism to do this. The base Requirement is typically
stored in another project's namespace but it is considered
good practice to move the common (base) Requirements to
a namespace that sits above the level of individual projects.

The Copy relationship is available from the Relationships
page of the SysML Requirements Toolbox.

This diagram depicts a power utilization Requirement that
has been copied for re-use in a number of projects.

(c) Sparx Systems 2021 Page 338 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

req [package] Requirements [Requirements - Copy Relationship]

«requirement»
Minimize Power Utilization

id = "9001"
text = "The system must minimize the power
used by all of its components"

(from Car Park Boom Gate)

«requirement»
Minimize Power Utilization of Boom Gate

id = "1006"
text = "The system must minimize the power
used by all of its components"

«copy»

When the Copy relationship is used the new Requirements
are assigned a new id, but the text of the new Requirement
will be a read-only copy of the base Requirement.

(c) Sparx Systems 2021 Page 339 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Deriving a Requirement from Another

The Derive relationship is a relationship between two
Requirements, used to describe the fact that one
Requirement is based on or is an extension or derivation of
another Requirement.

The Derive relationship is available from relationships page
of the SysML Requirements Toolbox.

The two Requirements are typically at different levels of
abstraction or resolution. A Requirement in a low level
specification might have a Derive relationship to a
Requirement in a higher level specification. The lower level
Requirement is typically derived from the higher level
Requirement as a result of investigation, elaboration or
analysis. The important aspect of this relationship is that if
the Requirement at the arrow end of the relationship is
changed, it is highly likely that the derived Requirement will
need to be reanalyzed.

(c) Sparx Systems 2021 Page 340 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

req [package] Requirements [Requirements - Derive Relationship]

«requirement»
Low Light Visibility

id = "1026"
text = "The system must ensure any
barrier is visible in low light conditions
including night and shadows and there
must be enough time in these
conditions for a driver to stop at the
control unit."

«requirement»
Illumination

id = "1029"
text = "The system must use strip
lighting for illuminating the boom."

«deriveReqt»

(c) Sparx Systems 2021 Page 341 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Ensuring a Requirement is Satisfied

The Satisfy relationship is used to show that one or more
model elements in the architecture or design fulfills the
notion expressed in the Requirement. It is an important
connection or bridge between what might be described as
the problem or opportunity and the architecture, design and -
when verified - the implementation.

The Satisfy relationship is available from 'Relationships'
page of the SysML Requirements Toolbox.

The relationship is a type of Dependency and is represented
by a dashed line with the keyword <<satisfy>>, with an
open arrow head pointing from the design element (Client)
to the Requirement (Supplier).

(c) Sparx Systems 2021 Page 342 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

req [package] Requirements [Requirements - Satisfy Relationship]

«requirement»
Low Light Visibility

id = "1026"
text = "The system must ensure any barrier is
visible in low light conditions including night and
shadows and there must be enough time in
these conditions for a driver to stop at the
control unit."

«block»
Strip Illumination

parts
 hs : Housing
 dc : DC Connector
 la : LED Array

The strip illumination runs the length of the
beam and illuminates the reflecting surfaces of
the boom orthogonal to the light direction.
Making it visible to approaching vehicles.

«rationale»
The design of the strip lighting and
its illumination properties satisfies
the State Government Occupational
Health and Safety Standards.

«satisfy»

In this diagram it can be seen that the Block 'Strip
Illumination' satisfies the Requirement that speaks of the
visibility of the boom in low light conditions. There is also a
rationale added that describes the compliance with respect to
State Government regulations.

In this diagram the Satisfy relationship has been displayed
using Callout notation.

req [package] Requirements [Requirements - Satisfy Relationship Callout - Requirement]

«requirement»
Low Light Visibility

id = "1026"
text = "The system must ensure any
barrier is visible in low light conditions
including night and shadows and there
must be enough time in these
conditions for a driver to stop at the
control unit."

satisfiedBy
Strip Illumination

In the next diagram callout notation has been used but this

(c) Sparx Systems 2021 Page 343 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

time the Block is referenced in the callout.

req [package] Requirements [Requirements - Satisfy Relationship Callout - Block]

«block»
Strip Illumination

parts
 hs : Housing
 dc : DC Connector
 la : LED Array

The strip illumination runs the length of the
beam and illuminates the reflecting surfaces of
the boom orthogonal to the light direction.
Making it visible to approaching vehicles.

satisfies
«requirement» Low Light Visibility

(c) Sparx Systems 2021 Page 344 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Traceability to Model Elements

The Trace relationship is a general purpose, widely-used
relationship that connects a Requirement to any other
modeling element. The relationship is expressed as a dashed
line with the keyword <<trace>>, which indicates the
meaning; the arrow head points to an up-process element
(one that was created earlier in the process).

In this diagram the modeler wants to show that a
Requirement has a relationship to a trade study represented
by a Document Artifact. The document might have been
written in Enterprise Architect or it might be a linked
external document.

req [package] Requirements [Requirements - Trace Relationship]

«requirement»
Low Light Visibility

id = "1026"
text = "The system must ensure any barrier is visible in
low light conditions including night and shadows and
there must be enough time in these conditions for a
driver to stop at the control unit."

Trade Study - Light Condition

This trade study was conducted by Lumino-
Technical Solutions to identify how light conditions
would eff ect the operation of a boom gate and the
requirements for driver and autonomous vehicle
visibility.

«trace»

The Trace relationship acts as a catch-all, and is useful when
a modeler wants to show that a Requirement has a semantic
relationship to an up-process element, and none of the other
relationships are appropriate.

(c) Sparx Systems 2021 Page 345 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

(c) Sparx Systems 2021 Page 346 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Verify Relationship

The Verify relationship is used to indicate that a
Requirement has been fulfilled. The relationship is a type of
Dependency and is represented by a dashed line with the
keyword <<verify>>, with an open arrow head pointing
from the Test Case (Client) to the Requirement (Supplier).

The Verify relationship is available from relationships page
of the SysML Requirements Toolbox.

The Test Case can describe the method or testing process; it
contains a tag that defines the verdict (test result), which can
be:

pass·

fail·

inconclusive·

error·

a user defined value·

(c) Sparx Systems 2021 Page 347 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The Satisfy relationship has a related purpose in that it
describes which part of the design or system is actually used
to carry out the notion expressed in the Requirement.

req [package] Requirements [Requirements - Verify Relationship]

«requirement»
Low Light Visibility

id = "1026"
text = "The system must ensure any barrier is
visible in low light conditions including night and
shadows and there must be enough time in these
conditions for a driver to stop at the control unit."

satisfiedBy
Strip Illumination

«testCase»
After Dark Test

Verdict = inconclusive

The test was conducted at the winter
equinox under a cloudless, moonless sky.
Ambient lights were present from
neighboring buildings.

«testCase»
Shadow Test

Verdict = pass

The test was conducted at the winter
equinox and under a cloudy sky using a
shade to simulate shadow.

«verify»

«verify»

In this diagram a Requirement describes Low Light
Conditions, and there are two separate Test Cases used to
verify the Requirement. The modeler has chosen to display
the 'satisfiedBy' compartment to help clarify what part of the
implementation is being subjected to the test. Notice that the
verdict is different for each Test Case: the After Dark Test is
inconclusive whereas the Shadow Test passes. A modeler
can choose to show or hide the Verdict tag in individual
diagrams.

(c) Sparx Systems 2021 Page 348 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

(c) Sparx Systems 2021 Page 349 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Visualizing Requirement Relationships

Relationships between Requirements and other elements -
including other Requirements - are a critical aspect of
Model Based Systems Engineering. In many ways these
relationships are the important bridges between specification
and design, or problem and solution. These relationships can
be viewed in a wide range of specialized windows and user
interface mechanisms. One of the first things a newcomer to
Enterprise Architect will observe is that these relationships
are not visibly nested under elements in the 'Project' tab of
the Browser window. It has been a conscious design
decision not to clutter the 'Project' tab with these
relationships, but rather to make them visible in other
displays that can be docked and viewed at the same time as
the elements they relate to.

This illustration shows the 'Details' tab of the Inspector
window with the 'Relationships' node expanded to show all
the relationships that are connected to the 'Low Light
Visibility' Requirement, which has been selected in the
'Project' tab. There is also a dedicated Relationships
window.

(c) Sparx Systems 2021 Page 350 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

There is also a wide range of other windows where
relationships can be visualized. For more information see
the Browser topic.

Traceability Window

The Traceability window is a powerful and unique feature
of Enterprise Architect that allows relationships to be
explored, so that the modeler can effectively take walks
through the graph of elements and their connections. It is a
useful window to have open when you want to view how an
element is connected and also what the connected elements

(c) Sparx Systems 2021 Page 351 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/projectexplorer.html

Model Based Systems Engineering and SysML 2 September, 2021

are connected to. So, for example, in this model of the
Boom Gate when the 'Low Light Visibility' Requirement is
selected, the Traceability window will show that it is
connected to the 'Strip Lighting' Block that satisfies the
requirement.

The Traceability window can be opened from the ribbon
option 'Design > Impact > Trace'.

The modeler in this situation might also be interested in the
structural aspects of the 'Strip Lighting' Block and so can
follow this element's relationships to discover its structural
relationships, walking the graph to find answers to questions
and exploring the model.

If you are not concerned about viewing the relationships it is
best not have this window open, as its contents must be
rendered each time you change focus to another element
and, for well connected elements, this can take some time,
increasing the time it takes to move around the model. For

(c) Sparx Systems 2021 Page 352 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

more information see the Traceability Window Help topic.

Relationships Window

The Relationships window is a useful window to have open
when working with crosscutting concerns, as is typically the
case with Requirements. When an element is selected in a
window, the Browser window or a diagram, the
Relationships window displays a list of the connectors that
either target the selected element (target) or emanate from
the element (source). Another useful aspect of this window
is that the 'View' column indicates whether the relationship
is visible in the currently open diagram.

The Relationships window can be opened from the ribbon
option 'Start > Desktop > Design > Relationships

A modeler can also locate all diagrams that contain the
selected relationship, by choosing the 'Find in all Diagrams'
option from the context menu. In this illustration it can be
seen that the 'deriveReqt' relationship that connects the 'Low
Light Visibility' Requirement and the 'Illumination'
Requirement exists in two diagrams. For more information
see the Relationships window Help topic.

(c) Sparx Systems 2021 Page 353 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/tools_ea_traceability_window.html
https://sparxsystems.com/enterprise_architect_user_guide/15.2/linktab.html

Model Based Systems Engineering and SysML 2 September, 2021

Relationship Matrix

The Relationship Matrix is a powerful tool for visualizing
the connections between the elements in any two Packages,
in an interface resembling a spreadsheet with rows and
columns. The tool is particularly powerful when used with
Requirements, and allows an engineer to see how
Requirements are related to other elements, including other
Requirements.

The Relationship Matrix can be opened from the ribbon
option 'Design > Impact > Matrix'. Select whether the
current Package is the source Package, target Package, or
both.

Where a relationship exists an arrow icon will be displayed
in the cell at the intersection of the source and target

(c) Sparx Systems 2021 Page 354 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

elements, with the arrowhead showing the direction of the
relationship. The matrix can also be configured to highlight
the rows or columns that do not have any relationships in a
separate color. This and other options can be configured on
the Options window, available from the Options button in
the Relationship Matrix header.

These options allow you to tailor the way that the matrix is
displayed, including whether elements are sorted and their
names are prefixed with the Package name, and whether
source and target element rows and columns without
connections are highlighted. For more information see the
Relationship Matrix Help topic.

Insert Related Elements

The Insert Related Elements feature is a productivity tool
that allows an engineer or other stakeholder to quickly
construct a diagram by inserting a central element and then
asking the tool to find all elements related to this element,

(c) Sparx Systems 2021 Page 355 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/tools_ea_relationship_matrix.html

Model Based Systems Engineering and SysML 2 September, 2021

down to an arbitrary depth of connectivity. This helps the
engineer to effectively explore the graph of elements and
create a diagram that shows how other elements in the
repository directly relate to this central element and how
other elements relate to those elements. Element and
connector types can be specified for inclusion or exclusion,
and the depth can be changed to bring more or fewer
elements and connectors into the diagram. The diagram can
be automatically laid out or the diagram layout tool can be
used to reorganize the layout to make it more appealing or
relevant.

The Insert Related Elements feature can be used by
selecting an element in a diagram and then using the ribbon
option 'Design > Element > Add > Related Element'.

The feature can be used as an exploratory tool where the

(c) Sparx Systems 2021 Page 356 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

rendered diagrams are constructed as part of an enquiry
process and are discarded after they have served their
purpose. Alternatively, the feature can be used to create
more permanent diagrams that can be saved and reused for
visualization. Either way the tool will save the engineer
time, and enable the creation of accurate and expressive
diagrams that are bound to impress stakeholders who would
otherwise not have been able to visualize the connections
between elements. For more information see the Insert
Related Elements Help topic.

Kanban Diagrams

Kanban diagrams can be used to visualize requirements (and
other elements) as they pass through the stages of an
industry standard or proprietary process or methodology.
The concept of Kanban has its origins in process efficiency
analysis in the automotive industry in the latter years of 20th

Century Japan. It has since then been adopted by a number
of software and system communities as an effective way of
managing requirements from the backlog or queue to their
implementation. Enterprise Architect has a full and
pragmatic implementation of Kanban that can support a
number of different requirement processes.

(c) Sparx Systems 2021 Page 357 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/tools_ba_insert_related_elements.html
https://sparxsystems.com/enterprise_architect_user_guide/15.2/tools_ba_insert_related_elements.html

Model Based Systems Engineering and SysML 2 September, 2021

In this diagram we see a number of columns that represent
the stages in the requirements process, allowing elements to
be dragged between columns - typically from left to right
but occasionally elements can be returned to a Backlog, for
example. The diagram is completely configurable by the
engineer, allowing the number of columns and their names
and a wide range of other aspects of the diagram to be
configured, including Bound Properties, Work in Progress
limits and colors to name a few.

It is also possible to show the progress that has been made
on a particular requirement, by applying resource allocations
and displaying each resource as a progress bar showing the
percentage completion for the task. In this diagram we see a

(c) Sparx Systems 2021 Page 358 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

number of elements, one of which shows three resources
working on the same element. For more information see the
Kanban Help topic.

(c) Sparx Systems 2021 Page 359 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/kanban_facilities.html

Model Based Systems Engineering and SysML 2 September, 2021

Documenting Requirements

A number of documents are commonly produced as part of
the Requirements Engineering discipline, such as the
Software (System) Requirements Specification and Use
Case Report. These can be generated automatically from a
requirements model using built-in templates. In addition a
wide range of other documents can be produced using
built-in or customized templates. The documentation facility
in Enterprise Architect is highly configurable and many
reports can be produced using the template system, but for
more complex reports there is a facility called Virtual
Documents that allows a publisher to model the structure of
the document and to cherry pick content from anywhere in
the repository, applying different templates to each section
of the document. There is also a wide variety of options that
can be applied at the template or document generation level,
and the Scripting engine can be used to inject content into a
document or to produce the entire report.

There is also a powerful Custom Document facility that

(c) Sparx Systems 2021 Page 360 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

allows a modeler to define a dynamically created document
by simply dragging content from the Browser in the form of
elements, diagrams or packages and applying a built-in or a
user defined template to each item that specifies how the
content will be rendered. This allows a document to be
visualized and can include any handcrafted content or
images in addition to the content injected from the Browser.

(c) Sparx Systems 2021 Page 361 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Project Glossary

A Project Glossary lists and defines the terms that are
important for a project or program of work. The Project
Glossary can be generated as an isolated document, or it can
be included as a section in one or more other documents. It
provides a single point of truth for the important project
terms and their meanings; when new documentation is
generated the terms will automatically be updated. The
Glossary can be generated to a Docx or PDF format, or to
HTML that could be included in a project or organization
level web site. The Glossary allows the modeler to
categorize the terms into user defined Types, and these can
have styles applied when they are generated in
documentation.

The Project Glossary can be viewed and managed from this
ribbon location:

 Publish > Dictionary > Glossary

(c) Sparx Systems 2021 Page 362 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Software Requirement Specification

This document describes the Requirements of the system, its
behavior under defined conditions, and the constraints that it
must operate under; it will typically be read by a variety of
stakeholders. There is a built-in Requirements template that
can be used to generate the document, although the modeler
is free to create a new template that could be either based on
this or created from a blank template. When the document
has content from a variety of locations in the Browser
window, it would be most expedient to use the Virtual
Documents facility, which allows the user to create a model
of the document (similar to a Master document in a Word
Processor) that has a number of sections called Model
Documents. These can have content picked from anywhere
in the Browser window.

(c) Sparx Systems 2021 Page 363 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Describing User Goals with Use Cases

Use Cases were originally devised by Ivar Jacobson, a
Swedish electrical engineer who was also an important
proponent in the development of the Unified Modeling
Language (UML). Use Cases are used as a method for
representing functional requirements from the users'
perspective. They are said to be goal driven, because the
Use Case defines the goal that the user is trying to achieve
while interacting with the system. Enterprise Architect fully
supports the development of Use Case diagrams, but also
fully supports the modeling and management of Use Case
text; it has a unique and highly productive tool for working
with Use Cases, called the Scenario Builder.

This innovative tool not only allows Use Cases to be
modeled at any level of detail, but also automatically creates
behavioral models that allow the detailed steps of a Use
Case and the interaction between the Actor and the System
to be visualized and related to other parts of the model.

The Use Case is a close cousin to the User Story, which is
used in a number of Agile Software development
techniques. The term originally coined in Swedish is more
naturally translated as Usage Scenario, which provides a
more compelling explanation of the method.

(c) Sparx Systems 2021 Page 364 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Requirements and Use Cases

The Use Case technique is fundamentally very simple and
was originally devised to ensure that functional
requirements were written from the perspective of the User.
This standpoint helped to ensure that deployed systems
would be fit for purpose and be accepted by the diverse
community of users. There is however a vast amount of
conflicting literature and an equally large number of styles
for defining Use Cases. This has led to confusion and
uncertainty and has tended to attenuate the value that can be
derived from this powerful and simple technique.

In software engineering, many methods prescribe the use of
Use Cases as an alternative to Requirements development,
because the Unified Modeling Language (UML) does not
include a formal Requirement element. In contrast, most
Model Based Systems Engineering methods using SysML
combine the application of Use Cases and Requirements.
This is a result of the fact that SysML defines both a Use
Case and a Requirement element so these two elements can
be related to each other and compliment the system
specification to bring clarity a precision to the important
discipline of requirements engineering and management.

(c) Sparx Systems 2021 Page 365 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

req [package] Hybrid Suv Requirements [Requirements - Refine Relationship]

«requirement»
Master Cylinder Efficacy

id = "S5.4.1"
text = "A master cylinder shall have a
reservoir compartment for each service
brake subsystem serviced by the master
cylinder. Loss of fluid from one
compartment shall not result in a complete
loss of brake fluid from another
compartment."

Decelerate Car
«refine»

In these two diagrams the modeler has used the <<refine>>
relationship to indicate that the Decelerate Car Use Case
refines or adds additional explanation to clarify the
Requirement Master Cylinder Efficacy. This provides a
powerful mechanism to trace implementation level
components that are connected to the Use Case back up to
the Requirement and ultimately to the Stakeholder.

(c) Sparx Systems 2021 Page 366 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

req [package] Hybrid Suv Blocks [Requirements Use Case and Subsystem Components]

ABS Braking Subsystem

«block»

Disk Brake Assembly

«block»

«requirement»
Master Cylinder Efficacy

id = "S5.4.1"
text = "A master cylinder shall have a
reservoir compartment for each service
brake subsystem serviced by the master
cylinder. Loss of fluid from one
compartment shall not result in a complete
loss of brake fluid from another
compartment."

Decelerate Car
«refine»

+dba

4

«trace»

The Traceability window can also be used to view the
connections between model elements at different levels of
abstraction and to see the connection from a Block that
forms part of a subsystem assembly back to the
Requirement that specified the functionality.

(c) Sparx Systems 2021 Page 367 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Use Cases are typically used to refine the high level
requirements and to express the communication and
interaction between the User and the System.

(c) Sparx Systems 2021 Page 368 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Introducing Use Case Diagrams

The Use Case diagram is a simple diagram that visually
describes the users' goals with respect to the system or part
of the system. This could be paraphrased to 'the value that
the system provides to the Actors'. Use Case diagrams
appear quite simplistic, with a small number of elements:

Subject·

Actors·

Use Cases·

These are connected by a series of relationships.
uc [package] Hybrid Suv Use Cases [Maintain the Vehicle]

HybridSUV

Maintainer

(from
Actors)

(from Use Cases)

Maintain the vehicle

The Subject (boundary) provides a context for the definition
and represents a system or part of a system; the Actors by
definition lie outside the Subject and the Use Cases within.
The Communication Path relationship by definition crosses
the perimeter of the Subject as it connects an Actor with a

(c) Sparx Systems 2021 Page 369 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Use Case. Again, the number of relationships is quite
limited, but each has specific meaning in the diagram.

Communication path·

Extend (also with Condition)·

Include·

Generalization·

As with all SysML elements, there is both a graphical and
textual aspect to the elements, and in the description of Use
Cases there is typically more emphasis on the textual or
narrative aspect.

uc [package] HSUV Use Cases [Top Level Use Cases]

HybridSUV

Operate the vehicle

Insure the vehicle

Register the vehicle

Maintain the vehicle

Driver

Registered Owner

Maintainer

Insurance Company

Department Of Motor
Vehicles

Any number of Use Case diagrams can be created to
represent the users' interaction with the system or part of a

(c) Sparx Systems 2021 Page 370 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

system. It is important to understand that Use Cases are
intended to describe the value the system provides for its
users and they are not intended to be broken down by
functional decomposition. This is unquestionably the most
common mistake made by novice modelers, resulting in the
attenuation of the profound benefits that can be gained by
this powerful technique.

The Use Case model can be embellished by a mechanism
called 'structuring the Use Case Model', which factors out
repeating text, classifies Actors and Use Cases, and specifies
extension points. This mechanism will be discussed later in
this chapter. For more information see the Use Case Help
topic.

Creating a Use Case Diagram

A Use Case diagram can be created from a number of places
in the User Interface by selecting:

Design ribbon - Add icon on the Diagram panel·

Browser window toolbar - New Diagram icon·

Browser window context menu - Add Diagram·

We will use the Design ribbon to create a Use Case diagram.
Firstly, select the location in the Browser window where
you want the Use Case diagram to be located. As with all
diagrams, this can be either a Package or an element, but it
is common to insert Use Case diagrams into a Package.

(c) Sparx Systems 2021 Page 371 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/sysml_use_cases.html

Model Based Systems Engineering and SysML 2 September, 2021

Once the Package location has been selected in the Browser
window, select:

 Design > Diagram > Add

Selecting this option will open the New Diagram dialog,
allowing you to name the diagram; the name initially
defaults to the name of the Package or element that contains
the diagram. With the SysML perspective chosen and the
version of SysML selected, a list of diagrams will be
displayed allowing you to choose the Use Case diagram.
Click on the OK button to create a new Use Case diagram
in the location selected in the Browser window. The
Diagram View will be opened, allowing you to start adding
elements and connectors that describe the value that the
system will provide to its users. Enterprise Architect will
also display the 'Use Case' pages of the Diagram Toolbox
that contain the elements and relationships defined by the
SysML specification to be applicable for constructing Use
Case diagrams. Any number of other Toolbox pages can be
opened, if required, in addition to the Common elements and
Common Relationships Toolbox pages that will always be
available.

(c) Sparx Systems 2021 Page 372 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The most important elements and connectors that are used
with the Use Case diagram are:

Elements

Actor - used to describe a role a user plays with respect to·

the system

Use Case - used to describe the value a system provides to·

its users

Boundary - used to show the scope of the systems·

(typically one per diagram)

Connectors

Communication Path - used to connector Actors to Use·

Cases

Generalize - used between two Actors or between two·

Use Cases

Include - used between to Use Case to reuse scenario·

(c) Sparx Systems 2021 Page 373 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

steps

Extend - used to embellish a Use Case with extra detail·

Elements can be added to the diagram by
dragging-and-dropping them from the Toolbox onto the
Diagram View. It is considered good practice to start with a
Boundary element, which should be named appropriately to
describe the system, sub-system or entity being modeled by
the Use Case diagram. Leaving the name blank, or giving it
a name that does not make it clear to the reader what system
or part of a system is being modeled, can lead to
misinterpretation of the diagram. With the Boundary added
and appropriately sized in the diagram, Actors and Use
Cases can be added - Actors positioned outside the
Boundary and Use Cases inside. The next step is to add
Communication Path relationships between Actors and Use
Cases, thus defining the value that the Actors derive from
the system.

(c) Sparx Systems 2021 Page 374 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Once a basic diagram has been created, and as knowledge of
the domain and the system's behaviors are further revealed,
it is possible to structure or embellish the diagram using the
additional relationships of Include, Extend and Generalize.
The newcomer is cautioned against using these relationships
too liberally, and any attempt to use functional
decomposition will attenuate the value of the Use Case
model, which is intentionally broad in its description to
allow stakeholders to get a 10,000 meter view of the
services provided by the system, sub-system or entity being
modeled.

(c) Sparx Systems 2021 Page 375 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Meet the Scenario Builder

There is a wide range of tools for working with Use Cases,
but none more important and useful than the Scenario
Builder. This unique tool bridges the gap between what has
traditionally been done within Word Processors or isolated
tools that separate the Use Case diagram with its Actors and
Use Cases, and the steps of the scenarios.

The Scenario Builder also provides a mechanism to
automatically generate behavioral models directly from the
Scenario steps, allowing elements of the architecture and
design to be related to individual steps.

(c) Sparx Systems 2021 Page 376 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The tool provides a whole range of options that will be
suitable for any Use Case or Requirements process, ranging
from what is commonly termed a basic process where the
Actor and Use Cases are named and the Use Case is given a
description, to a partially-dressed process where the basic
flow is completed. A fully-dressed process will typically
detail all the steps in the basic flow and define and detail the
steps of Alternate and Exception Scenarios. For more
information see the Scenario Builder topic.

In addition any number of constraints can be added, such as
pre-conditions and post-conditions and invariants.

(c) Sparx Systems 2021 Page 377 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/tools_ba_scenario_builder.html

Model Based Systems Engineering and SysML 2 September, 2021

Structuring a Use Case Model

While the Use Case model provides a high level of
visualization, and a systems engineer is cautioned against
applying functional decomposition, SysML does provide a
number of mechanisms that can help to structure a Use Case
model to ensure that discrete pieces of functionality can be
reused. These mechanisms consist of the <<include>>
Dependency, <<extend>> Dependency and Generalization
relationship.

uc [package] HSUV Use Cases [Operational Use Cases]

Hybrid SUV

Drive the vehicle

Park

Start the vehicle

Accelerate

Steer

Brake

Driver

«include»

«include»

«include»

«extend»

«include»

(c) Sparx Systems 2021 Page 378 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Generating Behavior Diagrams

Enterprise Architect has a powerful productivity tool that
allows behavior diagrams to be automatically generated
from Use Case specifications defined in the Scenario
Builder. This provides a way of visualizing these otherwise
textual descriptions. It also allows relationships to be drawn
between steps in a Use Case description and other modeling
elements.

(c) Sparx Systems 2021 Page 379 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Use Case Report

The creation of Use Case documentation has traditionally
been a manual process and with the documents in many
projects running into hundreds of pages their production
consumes valuable project resources. These hand-crafted
documents become difficult to maintain and remain isolated
from other parts of the project such as Requirements,
Business Rules and solution Components. Enterprise
Architect has a powerful tool called the Scenario Builder
that allows the modeler to specify Use Cases and Scenarios
inside the model and these can be automatically generated to
high quality documentation using built-in templates. There
are two built-in templates that can be used for generating a
Use Case report: one documents the Use Case at a summary
level and the other at a detailed level.

Example content from a Use Case Report

(c) Sparx Systems 2021 Page 380 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The detailed Use Case report will list all the details of the
Use Case and the detailed steps, including Basic Paths,
Alternate and Exception Scenarios. Other information,
including Internal Requirements, Pre and Post Conditions
and other Constraints will also be included in the report. If a
Behavioral diagram such as an Activity diagram has been
automatically created, this diagram will also be displayed in
the report.

(c) Sparx Systems 2021 Page 381 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Using Blocks to Model Structure and
Constraints

The language constructs and expressions in SysML, as with
our natural languages, can be divided into structural and
behavioral types. In languages such as English, German or
Japanese, nouns describe structure and verbs describe
behavior. Sentences typically contain a combination of
nouns and verbs that bring to light some aspect of the
speaker's world. The SysML has a similar division, with
elements that describe Structure and other elements that
describe Behavior. In SysML the structural things (nouns)
are described using a Block. When engineers create
diagrams they will often have a mixture of behavior or
structure elements and they will describe a particular aspect
of a system - bringing to light some aspect of the system
being modeled.

The Block is the fundamental unit of system structure; it can
be used to describe an entire system, a subsystem, a
component, an item that flows through a system, a
constraint, or entities that reside outside a system. In a
similar way to our natural languages, a Block can represent
something abstract, logical or physical. This is an important
concept, and writers and readers of the SysML must be clear
as to the intention of the representation. For example, in a
logical architecture there are typically Blocks representing
conceptual ideas or designs that at the time of detailed
design and construction might be realized by physical and

(c) Sparx Systems 2021 Page 382 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

tangible components. A systems architect might define a
Block called Collision Detection Subsystem that is an
expression of a logical system component that could at the
detailed design phase, be in part, realized by a set of radar
and laser transmitters, detectors and cameras.

bdd [block] Automotive Domain [HybridSUV Breakdown]

«LightCondition»
HybridSUV

properties
 b : BodySubsystem
 bk : BrakeSubsystem
 c : ChassisSubsystem
 i : InteriorSubsystem
 l : LightingSubsystem
 p : PowerSubsystem
 Property1

«block»
PowerSubsystem

«block»
BrakeSubsystem

«block»
BodySubsystem

«block»
InteriorSubsystem

«block»
LightingSubsystem

«block»
ChassisSubsystem

«block»
BrakePedal «block»

WheelHubAssembly

«rationale»
2 wheel drive is the only way to get acceptable
fuel economy, even though it limits off-road
capability

2

p bk li

4
bkp

b c

A number of our natural languages have a grammatical term
called classifiers, which group the things (nouns) of a
lexicon into classes of things that share common
characteristics and behavior. This same principle applies to
Blocks, which are essentially a type of classifier that groups
a collection of instances that share the same structural and
behavioral features. Instances of a Block can be modeled in
a generic way or they can be given precise values, such as
the volume of petrol contained in a fuel tank at a particular
point in a journey or at the time of an accident.

(c) Sparx Systems 2021 Page 383 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

bdd [package] Fuel Tank [Fuel Tank]

«block»
Vehicle

parts
 : Communication Subsystem
 : Fuel Subsystem

«block»
Fuel Subsystem

parts
 : Fuel Tank

«block»
Fuel Tank

- Capacity: volume
- Material: string
- Reserve: volume

«block»
Fuel Guage

- Warning State: int

«block»
Communication Subsystem

parts
 : Fuel Guage

+reservoir 1..2 +indicator 1..2
{ordered}

In the Fuel Tank diagram the car is modeled as a classifier
(Block) level, where the model is describing a generic
vehicle and representing the fact that a vehicle could have
one, or a maximum of two, fuel tanks. This Fuel Tank
Instances diagram, however, describes a particular vehicle
that has two fuel tanks that have different capacities and
reserve volumes.

(c) Sparx Systems 2021 Page 384 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

bdd [package] Fuel Tank [Fuel Tank Instances]

fs: Fuel Subsystem

properties
 : Fuel Tank

Left Tank: Fuel Tank

Material = high-density polyethylene
Reserve = 5
Capacity = 80

v: Vehicle

Right Tank: Fuel Tank

Reserve = 3
Capacity = 50
Material = high-density polyethylene

A Block defines a collection (or set) of features that are used
to describe a system, subsystem, component or other
element of interest. These features can include both
structural and behavioral features, such as properties,
operations and receptions, to represent the state of the
system and the behavior that the system is capable of
exhibiting.

Enterprise Architect has a powerful set of tools that help the
systems engineer to work with Blocks and to visualize the
structure and behavior of these all-important elements in a
system's definition. These facilities include the:

Block Definition Diagram, which describes the Blocks,·

their features, interaction points and structural
relationships

Internal Block Diagram, which captures the internal·

(c) Sparx Systems 2021 Page 385 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

structure of a Block in terms of properties and connectors
between properties

This Internal Block Diagram shows how a number of
sub-systems cooperate to create the structure of the vehicle.
For example the Lighting Subsystem has a connection with
the Interior Subsystem which in turn has a connection to the
Body Subsystem.

ibd [LightCondition] HybridSUV [HybridSUV]

p: PowerSubsystem

bk: BrakeSubsystem

b: BodySubsystem i: InteriorSubsystem

l: LightingSubsystemc: ChassisSubsystem bk-l:

b-c:

b-i:

p-c:

c-bk:

p-bk:

i-l:b-l:

Some relationships have been suppressed in the diagram; for
example, the Power Subsystem would typically have a
connection to the Lighting Subsystem. This point is
important, as newcomers to SysML and Enterprise Architect
often think that every defined relationship should be
displayed in a diagram. While this statement appears to be
true it is important to remember that a modeler, like a
cartoonist creating a caricature, will often leave details out
of illustrations to focus the viewer's attention on other

(c) Sparx Systems 2021 Page 386 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

subjectively more important elements and connectors.

This screen capture shows how an engineer can set the
visible relationships for a diagram.

If a connector is not checked in this dialog it will not be
displayed in the current diagram. It might, however, be
visible in other diagrams where the connected elements are
displayed. This can be set from the 'Layout > Diagram >
Appearance > Visibility > Set Visible Relationships' ribbon
option.

Regardless of which connectors are displayed in a diagram,
a modeler can always view all of an element's connectors by
selecting the element in the diagram and viewing the
Traceability window. In this screen capture the Power
Subsystem has been selected, and even though the connector
between the Power Subsystem and the Lighting Subsystem
has been set to 'not Visible' in the diagram, the relationship
can be seen in the Traceability window.

(c) Sparx Systems 2021 Page 387 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The features of a Block are either structural or behavioral.

The structural features are of three kinds:

Parts - that describe the composition of a Block; for·

example, that a vehicle's chassis is composed of two axles
and four wheel assemblies

References - that describe the Block's relationship with·

other Blocks (including itself); for example, that a
metropolitan train has a relationship to a station and an
overhead wiring system

Values - that describe quantifiable aspects of a Block; for·

example, such things as dimensions, temperature and
luminosity

The Behavioral features include:

Operations - typically representing synchronous requests·

Receptions - representing asynchronous requests from a·

signal

(c) Sparx Systems 2021 Page 388 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Getting Started with Blocks

The designers of Enterprise Architect have created great
flexibility for the Systems Engineers and other disciplines,
recognizing that team members often perform a variety of
roles and need to effectively change hats multiple times
within a project, or even within a day. Perspectives and
Workspaces provide a convenient and efficient way for a
Systems Engineer to effectively change roles without the
need to launch another tool.

Setting the Perspective and Workspace

Systems Engineers who have been working with the tool for
some time will have selected a Perspective from the
Systems Engineering Perspective Set; typically this might
be the SysML Perspective, giving them access to all the
patterns and Toolbox pages to create any one of the SysML
diagrams, including the Block Definition and Internal Block
diagrams.

(c) Sparx Systems 2021 Page 389 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

As explained in the introductory topic, workspaces can be
set to facilitate modeling of a particular type; in the case of
Block Definition diagrams, any one of the workspaces
contained in the Core Workspace Set will be useful for
modeling, including:

Basic Diagramming·

Core Modeling·

Default·

An Engineer who is working at a project level might also
find some of the construction workspaces useful, including:

Roadmaps·

Kanban·

Document Publishing·

Reviews and Discussions·

(c) Sparx Systems 2021 Page 390 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Creating Block Definition or Internal Block
Diagrams

There are two diagrams that you will typically create when
working with Blocks:

Block Definition diagram (BDD) - used to show the·

structural relationships between Blocks, including
hierarchies of both Parts and type, and reference
connections to other Blocks

Internal Block diagram (IBD) - used to show how the Part·

properties are connected directly, or through interaction
points such as Ports and interfaces

We will discuss the Block Definition diagram in this chapter
of the Guide; in the next chapter we will discuss the Internal
Block diagram, which will demonstrate how Blocks can be
used in a given context.

Internal Block Diagram - Setting Context

One of the most important diagrams to create early in an
initiative is a Context diagram, which describes the product
or service being modeled in the context of its environment
or domain. This helps a model viewer get a clear picture and
understanding of how the product sits within one or more of

(c) Sparx Systems 2021 Page 391 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

the environments it will need to operate in. It also gives an
early indication of what is in scope and out of scope in the
project. Elements in the diagram have been marked
'External' (using a stereotype) indicating that they form part
of the product or service environment or context.

Images have been used to soften the diagram, making it
more appealing to a wide range of stakeholders, including
business and non-technical audiences.

This Internal Block diagram shows the Hybrid SUV in the
context of a typical city environment. It is envisaged that at
least one other diagram could be created, showing an
off-road environment where roads would be replaced by dirt
tracks and rivers, and buildings by mountains and trees.

(c) Sparx Systems 2021 Page 392 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Modelling Constraints as Blocks

Engineering Analysis requires the Engineer to perform a
variety of functions that include the construction of
performance and reliability models, trade-off analysis,
alternatives analysis and trade studies. These analyses often
require the use of mathematical expressions and equations
that are used to constrain the elements of an analysis.
SysML provides a language mechanism in the form of a
ConstraintBlock that is used to model the equations
graphically. This is a powerful mechanism that allows the
expression to be articulated along with its parameters and
their types. The modeled equations can then be reused in a
number of different contexts, allowing an Engineer to define
the formula for Newton's second law of motion {F=m*a} or
Carnot's definition, resulting in a fundamental theorem of
thermodynamics {p= W/t =(mg)h/t}. One of the powerful
results of modeling these equations graphically is that they
can be related to other model elements such a stakeholder's
Requirements, mission goals and lower level elements such
as Blocks and implementation artifacts.

Enterprise Architect allows these ConstraintBlocks to be
modeled and then reused as Constraint Properties on
Parametric diagrams. The Constraint definitions can be
grouped into libraries, and not only used in the current
initiative but reused across multiple projects and initiatives.
In a later topic we will see how the constraints can be built
up into a network of equations and used on Parametric
diagrams to evaluate alternatives, and to conduct trade-off

(c) Sparx Systems 2021 Page 393 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

and alternative analysis. The tool's precision and technical
excellence will ensure that equations defined in this way can
be created, maintained and used with rigor.

bdd [package] HSUV Analysis [Definition of Dynamics]

«constraint»
StraightLine VehicleDynamics

values
 acc : Accel
 Cd : Real
 Cf : Real
 dt : Time
 incline : Real
 tw : Weight
 vel : Vel
 whlpowr : Horsepwr
 x : Dist

constraints
 : AccelerationEquation
 : PositionEquation
 : PowerEquation
 : VelocityEquation

«constraint»
AccelerationEquation

constraints
{a = (550/32)*tp(hp)*dt*tw}

values
 a : Accel
 delta-t : Time
 tp : Horsepwr
 tw : Weight

«constraint»
VelocityEquation

constraints
{v(n+1) = v(n)+a*32*3600/5280*dt}

values
 a : Accel
 delta-t : Time
 v : Vel

«constraint»
PositionEquation

constraints
{x(n+1) = x(n)+v*5280/3600*dt}

values
 delta-t : Time
 v : Vel
 x : Dist

«constraint»
PowerEquation

constraints
{tp = whlpowr - (Cd*v) - (Cf*tw*v)}

values
Cf : Real
Cd : Real
i : Real
tp : Horsepwr
tw : Weight
v : Vel
whlpowr : Horsepwr

pwr vel accpos

(c) Sparx Systems 2021 Page 394 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Introducing Block Definition Diagrams

Blocks provide a unifying concept to describe the structure
of an element or system, including:

Systems·

Hardware·

Software·

Data·

Procedures·

Facilities·

People·

Blocks can have multiple standard compartments that can be
made visible on diagrams to describe the Block's
characteristics, including:

Properties (parts, references, values, ports)·

Operations·

Constraints·

Allocations from/to other model elements (such as·

Activities)

Requirements that the Block satisfies·

User defined compartments·

(c) Sparx Systems 2021 Page 395 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Any of the compartments can be suppressed. A separator
line is not drawn for a missing compartment. If a
compartment is suppressed, no inference can be drawn
about the presence or absence of elements in it. In this
diagram a Pendulum has been modeled and a number of
compartments have been made visible in preparation to
create a parametric simulation.

Additional compartments can be supplied as a tool extension
to show other predefined or user-defined model properties
(for example, to show business rules, responsibilities,
variations, events handled, raised, and so on).

Each Block must have a non-null name that is unique within
its namespace. The scope of a name is its containing
Package and other Packages that can see the containing

(c) Sparx Systems 2021 Page 396 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Package.

Creating a Block Definition Diagram

A Block Definition diagram can be created from a number
of places in the User Interface by using any of these options:

Design ribbon - Add icon on the Diagram Panel·

Browser window Toolbar - New Diagram icon·

Browser window Context Menu - Add Diagram·

We will use the Design ribbon to create a Block Definition
diagram. Firstly, select the location in the Browser window
where you want the Block Definition diagram to be located.
As with all diagrams, this can be under either a Package or
an element, but it is common to insert Block Definition
diagrams into a Package. Once the location has been
selected in the Browser window, select the ribbon option:

 Design > Diagram > Add

Selecting this option will open the 'New Diagram' dialog,
allowing you to name the diagram. The name initially
defaults to the name of the Package or element that contains

(c) Sparx Systems 2021 Page 397 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

the diagram. With the SysML perspective chosen and the
version of SysML selected, a list of diagrams will be
displayed; select the Block Definition diagram and click on
the OK button. A new Block Definition diagram will be
created in the location selected in the Browser window. The
Diagram View will be opened allowing you to start adding
elements and connectors that describe the Blocks and other
important structural elements such as Ports, Interfaces and
Value Types. Enterprise Architect will also display the
'Block Definition' pages of the Diagram Toolbox, which
contain the elements and relationships defined by the
SysML specification as applicable for constructing Block
Definition diagrams. Any number of other Toolbox pages
can be opened if required, in addition to the 'Common'
elements and 'Common Relationships' pages that will
always be available.

The most import elements and connectors that are used with

(c) Sparx Systems 2021 Page 398 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

the Block Definition diagram are:

Elements

Block·

Constraint Block·

Value Type·

Property·

Unit·

Quantity Kind·

Proxy Port·

Full Port·

Connectors

Reference Association·

Part Association·

Shared Association·

Generalization·

Dependency·

Item Flow·

(c) Sparx Systems 2021 Page 399 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Elements can be added to the diagram by drag-and-dropping
them from the Toolbox onto the Diagram View. For more
information see the Block Definition Diagram Help topic.

Creating a Block Element

Block elements, as with any other type of element, can be
created using the 'Add Element' option on a Package context
menu, or by using the 'SysML Block Definition' page of the
Diagram Toolbox to place a Block on a Block Definition
diagram (BDD).

(c) Sparx Systems 2021 Page 400 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/block_definition_diagrams.html

Model Based Systems Engineering and SysML 2 September, 2021

It is common for Blocks to appear on multiple BDDs, where
each diagram is designed to address the concerns of a
particular stakeholder or stakeholder group. Enterprise
Architect has a wide range of display options both at the
level of individual Blocks (or any element) or at the level of
the diagram. These can be used to decide, for example,
which compartments to display or even which features to
display for individual elements, There is also a wide range
of generic element and diagram settings to style both the
element and the diagram. For example, it is possible to set
the element colors including fill, borders and text, or to
change the appearance of an element by applying a
graphical image that better conveys the Block's function. In
this example, a modeler has decided to use an alternative
image for a Spot Welding Robot to convey more clearly the
automation taking place on the production line.

(c) Sparx Systems 2021 Page 401 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

bdd [package] Production Line [Robots in Manufacturing]

«block»
Production Line

parts
 : Automated Assembly Unit

«block»
Automated

Assembly Unit

Spot Weld Body Robot

«block»

«requirement»
Automation

id = "7085"
text = "The system must use robots to
automate tasks that are beyond human
capabilities of accuracy, endurance, speed,
size, weight and that potentially must be
carried out in hazardous environments."

(from Requirements)

«satisfy»

+au

1..*

(c) Sparx Systems 2021 Page 402 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The Fundamental Structural Building
Blocks

Blocks are the fundamental and discrete modular units of
system description. A Block defines a collection of features
that are used to define an aspect of a system or a system
itself. The features are of two fundamental types: structural
(what a Block consists of) and behavioral (what it does)
features. A Block's relationships with other Blocks
(including itself) and with elements of other types, help to
describe the structure of a system, subsystem or component.

System modelers use Block Definition Diagrams (BDDs) to
define the structure of Blocks, and Internal Block Diagrams
(IBDs) to describe their usage.

These diagrams can be created from the 'New Diagram'
dialog, accessible from the Browser window toolbar.

(c) Sparx Systems 2021 Page 403 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Modeling Structural Features

Blocks typically are defined using a series of structural
features. These are the properties of the Block and define
the nature of the Block. For example, a train engine (Rolling
Stock) will have properties such as Engine Class, Identity
Number, Number of Wheel Assemblies, Motive Force,
Motors and a range of other properties. An important point
to remember is that the Block is a classifier that describes a
set of Engines. The engine at the front of the train set that
you board for your summer holiday is an instance of an
engine and it will have a particular Class, for example OSE
class 660, and an identifier of SM-09873, and 8 wheel
assemblies.

Enterprise Architect supports three basic kinds of structural
feature and each is important for modeling different aspects
of the structure of a Block. We will look at each of them in
these sections.

Parts - a block is composed of parts·

References - refer to features of other blocks·

Values - describe quantities·

This diagram shows all three types of structural feature.

(c) Sparx Systems 2021 Page 404 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

bdd [package] Truck [Brake Assembly - Detail]

«block»
Master Cylinder

- Diameter: m
- Height: m
- Volume: L

«block»
Brake Fluid

- Hygroscopicity: che
- Viscosity: Pa s

«block»
Brake Assembly

properties
 : Master Cylinder
 Back Left : Wheel Cylinder
 Back Right : Wheel Cylinder
 Front Left : Wheel Cylinder
 Front Right : Wheel Cylinder

«block»
Wheel Cylinder

- Diameter: m
- Height: m
- Volume: L

+mc 1

+fluid

+reservoir

+fluid

+reservoir

+master

1

+slave

4..10

+wc 4..10

The Braking System is made up of a number of parts, two of
which have been shown on this diagram. The Part
Association has been used to indicate that the Master
Cylinder and Wheel Cylinders are fundamental constituents
of the braking system. A Reference Association has been
used to show both a relationship between the two types of
cylinders and also between the cylinders and the Brake
Fluid. Values that have been entered as attributes are
displayed with their accompanying Value Types; for
example, Volume has a Value Type of L, which is the
symbol for the Dimension of Volume whose SI Unit is
Litre.

(c) Sparx Systems 2021 Page 405 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Blocks Composed of Parts

A Part is a structural Feature of a Block and forms one of
the strongest relationships between a Block and its
properties. It is important to understand that an Instance of
a Block might have multiple instances of a Part; for
example, a truck might have multiple wheel assemblies and
- depending on the size and type of truck - this could be as
low as 2 or as high as 10. These possible configurations can
be specified in the definition of the Block and its Parts,
which are formally known as multiplicities - the lower
number is referred to as the lower bound and the higher
number as the upper bound. A Part will typically be typed
by another Block, thus in the example the type of the Part
will be another Block named 'Wheel Assembly', which
would typically itself comprise an axle and two wheel
assemblies. Thus each Part will be defined in the Block with
a name, a type and a multiplicity. The tool allows the Part
Composition relationship to be created in a number of ways,
but perhaps the most immediate way is to drag both the
Chassis Block (the whole) and the Wheel Assembly Block
(the Part) onto the diagram and then use the Quick Linker to
drag from the Part (Wheel Assembly) to the whole (Chassis).

Dragging from the source object to the target will display a
menu of possible connectors, and the engineer would choose

(c) Sparx Systems 2021 Page 406 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

the Composition to Whole connector. The result will be a
relationship with the diamond marker at the Chassis end of
the line, indicating it is the whole and the element at the
Wheel Assembly end is the Part.

The connector properties will allow you to set the source
role and multiplicities which, as discussed, specify the name
and the possible number of Parts for each Instance of a
Chassis.

(c) Sparx Systems 2021 Page 407 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

bdd [package] Truck [Chassis - Part Composition]

«block»
Chassis

«block»
Wheel Assembly

«block»
Frame

«block»
Transmission

«block»
Brake Assembly

«block»
Axle Assembly

+br 1

+aa 2..6 +tr 1

+wa 2..4

+fr 1

In the diagram the modeler has expressly defined the Parts
by using the Part Association, available from the SysML
Block Definition toolbox.

In this diagram the modeler has used the Owning Block's
Part compartment to display the Parts owned by the Chassis
Block.

(c) Sparx Systems 2021 Page 408 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

bdd [package] Truck [Chassis - Parts Compartment]

«block»
Chassis

parts
 ba : Axle Assembly[2..6] {unique}
 fr : Frame
 tr : Transmission

properties
 : Frame
 : Transmission
 Front Primary : Axle Assembly
 Front Secondary : Axle Assembly
 Rear Primary : Axle Assembly
 Rear Secondary : Axle Assembly

The Parts compartment will display by default, but its
visibility can be controlled at a diagram level using the
diagram Properties, or at an individual element level using
the element's 'Compartment Visibility' option on the
element's context menu. Setting the visibility at the diagram
level will result in all elements in the diagram complying
with the specified visibility - displayed or not displayed as
specified - whereas setting it at the element level will only
affect the selected element.

The repository elements will be updated regardless of
whether they are edited in the diagram or the Browser or

(c) Sparx Systems 2021 Page 409 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

any other window. In the example, the engineer created the
Parts in the diagram by dragging a Part Association from the
Toolbox; in response to this Enterprise Architect creates
three new Parts, which are placed under the Chassis node in
the Browser as indicated in this screen shot.

The Part Association is the strongest type of Association
relationship - the strength continuum from weakest to
strongest being:

Reference Association1.

Shared Association2.

Part Association3.

We will explore the other relationships in later sections of
this guide.

References to Other Blocks

As stated earlier the Part Association is the strongest type
of relationship in the SysML and implies a sense of
responsibility on the part of the whole:

(c) Sparx Systems 2021 Page 410 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

It is responsible for the lifetime of its parts from which it·

is comprised

A part can only participate in a part composition with a·

single block

The second condition means that the multiplicity at the
whole end of a Part composition is always 1..1 which can be
abbreviated as 1.

There is however another relationship, the Reference
Association (or Reference for short) that can be used to
specify relationships between Blocks independent of
composition or the notion of one block being a part of
another. This provides a very useful mechanism for creating
relationships between blocks that are part of different part
hierarchies or between any two blocks that are related to
each other. For example the Master Cylinder and Wheel
Cylinders both have a relationship to Brake Fluid which is
used to fill their reservoirs. The Wheel Cylinder could in
turn have a relationship to a mechanic that periodically
checks the cylinder for leaks that would compromise the
efficacy of the braking system. `

(c) Sparx Systems 2021 Page 411 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

bdd [package] Truck [Master and Wheel Cylinder References]

«block»
Master Cylinder

«block»
Brake Fluid

«block»
Wheel Cylinder

+fluid

+reservoir

+master

1

+slave

4..10

+fluid

+reservoir

Values used to Describe Quantities

Blocks can have properties with some type of quantifiable
value; for example, an Engine has a Power Output, a
Reservoir has a Volume, an Automobile has a Color, a
Railway carriage has a number of Bogies. The types can be
a primitive type defined as Number, Integer, Real, Complex,
Boolean or String, as illustrated in this diagram.

bdd [package] Primitive Value Types [Primitive Value Types]

«valueType»
Number

«valueType»
Integer

«valueType»
Real

«valueType»
Complex

- imaginaryPart: Real
- realPart: Real

«valueType»
String

«valueType»
Boolean

(c) Sparx Systems 2021 Page 412 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

An engineer, team or community of practice can also define
any number of Value Types that can be simple or structured.
These can be based on any number of Systems of Units,
such as the International System of Units (SI). An
automotive engineer designing a braking system might find
themselves using a number of Standard SI Value Types and
a number of Derived Types, as well as other Values not
defined as part of that standard. This diagram illustrates how
these Values can be defined, using the Value Type element
available in the SysML Block Definition Toolbox.

bdd [package] Value Types [Value Types - User Defined]

«valueType»
Pa s

quantityKind = Viscosity
unit = Pascal Second

«valueType»
L

quantityKind = Volume
unit = Litre

«valueType»
che

quantityKind = Hygroscopicity
unit = Coefficient of Hygroscopic Expansion

The Value Type has two defined properties - the
quantityKind and the Unit. These can also be modeled in
Enterprise Architect and give rigor to the application of the
Value Type. An engineer will know that the type is based on
a quantity (dimension) and a defined Unit. This diagram
shows these elements for the (Viscosity) Value Type.

(c) Sparx Systems 2021 Page 413 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

bdd [package] Value Types [Value Types -Viscosity]

Pascal Second

quantityKind =
symbol =
description =
definitionURI =

(from Units)

Viscosity

definitionURI =
description =
symbol =

(from Quantity Kinds)

«valueType»
Pa s

quantityKind = Viscosity
unit = Pascal Second

(c) Sparx Systems 2021 Page 414 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Modeling Behavioral Features

When a system is in operation, Instances of the Blocks that
have been defined as part of the architecture and detailed
design are instantiated. At this time if a Block has a
Classifier Behavior defined this behavior will typically
begin and will continue operating until the Block is
destroyed. Thus in the example of our Car Park System,
when the system has been activated the Card Reader will
begin operating and its prime behavior will come into effect.
In addition to this a Block (even though fundamentally
structural in nature) has behavioral features that will be
called upon to carry out work. In summary, there are two
fundamental definitions of behavior that are defined within
the context of a Block, namely:

Classifier Behavior - the native behavior that is initiated·

when a Block is instantiated

Behavior Features - these are the Operations and·

Receptions (and their related Signals)

We will look at these different behaviors in the next sections
of the Guide, but it is important to understand that they will
work in unison, coordinated by system interactions that will
ensure that the operations are called in sequence and that the
Signals are received and acted upon by the Receptions.

A Blocks Classifier Behavior

(c) Sparx Systems 2021 Page 415 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

A Block has the potential to do work, but by itself it is a
somewhat latent entity and needs to be commanded into
action by some type of call to its operations or by the receipt
of a signal, state change or other behavioral trigger. A Block
has a concept of its native or classifier behavior, as it is
formally called. This diagram shows a Block in the Browser
window that has a nested Activity that will be defined as the
Classifier Behavior for the Block.

To select this behavior for the classifier behavior, open the
Properties window and change the Classifier Behavior
property by selecting the [...] icon and locating the
appropriate Behavior (Activity) as indicated in this
illustration.

Operations as Behavioral Features

(c) Sparx Systems 2021 Page 416 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Blocks can define operations essentially as the 'muscles' of
the Block, as it is the operations that do most of the work
required of the system. In Enterprise Architect an engineer
can access the operations from a number of points in the
user interface, but all of these points will open the Features
window, which lists the operations on the 'Operations' tab as
shown here:

The Features window is useful as a summary of all the
structural and behavioral features, including Parts and
Interaction Points owned by the Block. The easiest way to
create an operation is to select the Block in a diagram or in
the Browser window and click on the ribbon item:

 Design > Element > Editor > Features > Operations

(c) Sparx Systems 2021 Page 417 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Operations are simply created by selecting the 'Operations'
tab and adding the name and other details in a row of the
window. Any number of operations can be created, and each
operation can define any number of parameters, which
specify the inputs and outputs to the operation. Their
importance will be discussed later in this section when we
describe the relationship between Activity Parameters and
Action Pins. Operations can also be displayed in a diagram,
either on their own or with other features, each type of
which is displayed in a separate compartment of the parent
element.

There is a wide range of options that govern how the
operations are displayed, including the ability not to display
the entire compartment or to only display particular
operations by suppressing others from display.

(c) Sparx Systems 2021 Page 418 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

This will result in selected operations being hidden on the
diagram, which is a very useful presentation device as it
helps an engineer create a diagram focused on a particular
aspect of the Block, suppressing or hiding irrelevant and
distracting content. This diagram fragment shows the result
of suppressing operations:

The same can be done for attributes at an element level, and
a similar function is available to suppress particular
operations, attributes and Tagged Values at a diagram level.
An engineer might use the diagram-level function when
there is a particular operation that appears on multiple
Blocks and they want to suppress it for every element in the
diagram.

(c) Sparx Systems 2021 Page 419 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Operations can be invoked in two modes, either
synchronously or asynchronously, and can be initiated in a
number of different ways depending on the type of behavior
that is orchestrating the systems behavior, including:

A Call Operation Action (invocation of an Activity)·

A Message as part of an Interaction (Sequence diagram)·

A StateMachine·

This means that the operation can be visualized in a range of
SysML diagrams and will appear differently in different
contexts. For example, in a Sequence diagram where
messages are sent between instances of Blocks or other
classifiers, the operation will appear as an annotation to one
of the Block's incoming messages to show that the operation
will be initialized as a result of the message. Enterprise
Architect allows an engineer to access the Block's operation
list directly from this diagram and will also allow operations
to be created directly from the diagram.

(c) Sparx Systems 2021 Page 420 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

In the case of the Call Operation Action, the element's Pins
must be aligned by type and name to the called operation's
parameters; Enterprise Architect helps you visualize this
mapping on a diagram, using the 'Link to Feature' facility.

act [activity] Monitor Entrants [Card Reader Activity Connection]

Validate Entrant
(::)

cardType: Integer

CardID:
String

validity: String

«block»
Card Reader

+ ejectCard(): void
+ readCard(cardType: int, cardID: char(8), validity: *char(1)): int
+ retainCard(): void
+ validateCard(): void

Receptions as Behavioral Features

Receptions are another behavioral feature of a Block but, in
contrast to an operation, Receptions can only be called
asynchronously. Receptions also work differently to
operations in that an Operation Call specifically identifies an
operation to be invoked, whereas the receipt of an instance
of a Signal is deemed to be a request for any Reception of
the receiving object that references that Signal or any direct
or indirect generalization of it. In this way there is a level of
indirection between the calling element and the Reception.
A Reception has parameters corresponding to the attributes
of the Signal referenced by the Reception, and these are
considered as 'in' parameters of the Reception.

(c) Sparx Systems 2021 Page 421 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The easiest way to create a Reception is to click on the
Block in a diagram or in the Browser window and select
the ribbon item 'Design > Element > Editor > Receptions'.

To create a new Reception you must first have created the
appropriate Signal to relate the Reception to. When you
create the Reception you will be prompted to locate the
appropriate Signal in the Browser window as shown here:

(c) Sparx Systems 2021 Page 422 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Receptions, like operations, can be displayed in a
specialized compartment in a Block on a diagram. It is
possible to customize the display and suppress all
Receptions or configure which particular Receptions are
displayed. In this screen capture the engineer has decided to
make all Receptions visible, but each diagram and each
Block within a diagram can be configured differently.

(c) Sparx Systems 2021 Page 423 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Other Block Relationships

Blocks are the key structural elements in the SysML and can
participate in a variety of relationships, some of which have
been discussed in earlier sections of the Guide while we
were discussing Associations. There are a number of other
relationships that can be used when defining Blocks.

Generalization a Relationship of Family

In an earlier section we spoke of the Part Association being
the strongest type of Association relationship, but there is
another relationship - the Generalization - which is also very
strong and essentially is used to model the fact that Blocks
(and other Classifiers) belong to the same family. The word
'classifier' comes from our natural languages, such as
Chinese and Thai, that have an abstract way of classifying
or grouping classes of nouns that have similar
characteristics; for example, a belt and a road are long thin
things, whereas a berry and a ball are round things. So too
with the SysML, the Generalization relationship is used to
classify things and the structure can be an arbitrary depth. In
many ways it is more natural for engineers to read the
relationship in reverse and say something is a specialized
version of something.

(c) Sparx Systems 2021 Page 424 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

bdd [package] Vehicle Types [Vehicle Types - separate connectors]

«block»
Vehicle

- length: m
- weight: Kg

+ Accelerate(Real): void
+ Brake(Real): void
+ Cruise(Real): void

«block»
Car

«block»
Bus

«block»
Train

Enterprise Architect allows an engineer to create these
classification hierarchies for Blocks, Value Types, Signals,
Interfaces, Activities and more. A diagram typically
contains a single family.

The relationship can be drawn by first selecting the
'Generalization' icon in the Toolbox and then
dragging-and-dropping from the more specialized element
to the more generalized element. Alternatively this can be
done using the Quick Linker.

(c) Sparx Systems 2021 Page 425 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

When a Block participates in a generalization hierarchy and
has a number of specializations, the connectors emanating
from the Block can become untidy. Enterprise Architect
provides a mechanism to change the line style to any one of
a number of styles, but probably the most useful style is the
Vertically-oriented Tree style, which groups the heads of the
relationship together and allows their tails to be aligned in
parallel.

bdd [package] Vehicle Types [Vehicle Types - vertical tree connectors]

«block»
Vehicle

- length: m
- weight: Kg

+ Accelerate(rate): void
+ Brake(rate): void
+ Cruise(speed): void

«block»
Car

«block»
Bus

«block»
Train

One of the powerful language mechanisms that results from

(c) Sparx Systems 2021 Page 426 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Generalization is for the specialized elements to inherit the
structural and behavioral features from the generalized
element. So far in the example diagrams the engineer has
chosen not to display these inherited features, but they can
be set to be displayed using the compartments sections of
the element's Property sheet.

The result will be that the specialized Blocks will display
the attributes and operations that have been inherited from
the parent Block. These will be shown grouped by the name
of the parent Block. This mechanism is used extensively in
software engineering but also is useful for the systems
engineer where the specialized Block automatically inherits
the features of its parent by virtue of being a 'member of the
family'. Just as in a human family a specialized Block
(child) can override the structural or behavioral features
inherited from a parent.

(c) Sparx Systems 2021 Page 427 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

bdd [package] Vehicle Types [Vehicle Types - inherited features]

«block»
Vehicle

- length: m
- weight: Kg

+ Accelerate(rate): void
+ Brake(rate): void
+ Cruise(speed): void

«block»
Car

::Vehicle
- length: m
- weight: Kg

::Vehicle
+ Accelerate(rate): void
+ Brake(rate): void
+ Cruise(speed): void

«block»
Bus

::Vehicle
- length: m
- weight: Kg

::Vehicle
+ Accelerate(rate): void
+ Brake(rate): void
+ Cruise(speed): void

«block»
Train

::Vehicle
- length: m
- weight: Kg

::Vehicle
+ Accelerate(rate): void
+ Brake(rate): void
+ Cruise(speed): void

Blocks belong to families base upon certain criteria, and this
can be modeled using the Generalization Set, which is a
mechanism used to define the basis for membership of a
family.

Dependency

The Dependency is a useful but semantically weak
relationship. It is the 'pawn' of the engineers' toolkit of
relationships, often used early in the modeling process when
the details of the relationships between system elements
have not been analyzed or are simply not known. It models
the fact that the element (Client) at the tail end of the

(c) Sparx Systems 2021 Page 428 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

relationship relies in some way on the element (Supplier) at
the arrow-head end of the relationship. Novice modelers can
be forgiven for drawing this relationship in the reverse
direction, since anecdotally material is often thought to pass
in the direction from the supplier to the client. Once the
semantics of the relationship are understood and it is
realized that the relationship does not say anything about the
direction of flow, the mistake will not be made.

There are a number of types of dependency, all of which are
supported by Enterprise Architect. The connector can be
created by selecting the 'Dependency' icon in the 'SysML
Block Relationships' page of the Toolbox and then clicking
on the client (tail end) element and dragging the cursor
across to the supplier (arrow-head end) element. The
connector can also be created using the Quick Linker arrow
at the top right corner of a selected diagram element. Once
the relationship has been created, a stereotype can be chosen
from the connector's Properties window to make the
dependency more specific. This screen capture shows all
the available stereotypes, some of which are used between
different types of element other than Blocks; for example,
Packages and Requirements.

(c) Sparx Systems 2021 Page 429 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

bdd [package] Card Reader and Controller [Boom gate Dependencies]

«block»
Card Reader

+ ejectCard(): void
+ readCard(int, char(8), *char(1)): int
+ retainCard(): void
+ validateCard(): void

receptions
+ «signal» Card Inserted()
+ «signal» Card Removed()
+ «signal» House Keeping Initiated()
+ «signal» Network Unavailable()
+ «signal» System Shutdown()

classifier behavior
«activity» Monitor Entrants ()

«block»
Control Unit

+ checkAccessRight(): void

«block»
Boom Controller

+ closeBoom(): void
+ lockBoom(): void
+ openBoom(): void
+ unlockBoom(): void

Allocating between Blocks and Activities

The Allocation relationship can be used in a variety of
circumstances but it is particular useful for expressing a
fundamental relationship between the two most canonical
Behavioral and Structural elements, namely the Activity and
the Block. This is similar to our natural languages, where a
verb is meaningless without the presence of a noun that
carries out the action described by the verb. This type of
allocation is referred to as Functional Allocation, and the
engineer bridges the divide between these two aspects of a
system by finding a Block that can carry out the behavior
described by an Activity.

(c) Sparx Systems 2021 Page 430 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

bdd [package] Functional Allocations [Verify Entrant]

«block»
Camera System

+ determineLicencePlate(): void

«block»
Card Reader

+ ejectCard(): void
+ readCard(int, char(8), *char(1)): int
+ retainCard(): void
+ validateCard(): void

receptions
+ «signal» Card Inserted()
+ «signal» Card Removed()
+ «signal» House Keeping Initiated()
+ «signal» Network Unavailable()
+ «signal» System Shutdown()

classifier behavior
«activity» Monitor Entrants ()

«activity»
Verify Entrant

«allocate»

In this diagram the engineer has created two functional
allocation relationships that describe how the work specified
in the Activity Verify Entrant will be carried out. One
relationship targets the Camera System that is used to
capture the vehicle's licence plate in order to determine if
the particular vehicle has been authorized for entry. The
other relationship targets the Card Reader Block that is used
to determine that the card owner has a relationship with the
Parking Station.

(c) Sparx Systems 2021 Page 431 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Modeling Interaction Points

Blocks - and the Parts that are typed by Blocks - reside in an
environment and will interact with this environment and the
other elements it contains. In general terms the SysML
provides a language construct called Interaction Points,
which are locations on the boundary of an element that act
as entry and exit points for communication with the owning
element. Ports are a type of Interaction Point and provide a
powerful mechanism for the Block to expose its behaviors -
either those that it owns innately or those that are provided
by its Parts. The Port is represented by a small rectangle
(usually a square) mounted on the boundary of a Block or
Part. SysML currently supports two types of Port that are
intended to eventually replace the earlier concepts of Flow
Port and Standard Port:

Proxy Port - Acts as a relay to expose the behavioral·

features provided by the owning Block and is typed by an
Interface that describes these services

Full Port - Acts as a Part and is typed by a Block, which·

means that it can itself contain Parts

Enterprise Architect has full support for both these types of
Port, and has backward compatibility to the earlier Standard
and Flow Ports (which are still available for use but will be
deprecated in later versions of the standard).

Once a Block Definition diagram has been created and a
Block has been placed on the diagram, Ports can be created
by either:

(c) Sparx Systems 2021 Page 432 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Drag-and-dropping the appropriate Port from the Toolbox·

onto the Block - this diagram shows the section of the
Block Definition Toolbox that lists the Ports

Selecting the 'New Child Element' option from the Block's·

context menu and select the appropriate type of Port, as
shown:

Whichever method you choose, the Port will then be
automatically placed on the boundary of the Block and can
be moved into the required position and named. Note also
that the Port can be added from the 'Element' panel of the
'Design' ribbon. This screen image is of a section of diagram
showing two Ports with direction indicators inside the Port
element. The Ports have been named 'in' and 'out'
respectively, and have been typed by 'Fluid', which indicates
the type of the item arriving at the Port.

(c) Sparx Systems 2021 Page 433 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Ports can contain Interfaces and also nested Ports;
Enterprise Architect provides a useful feature that allows the
engineer to customize the Port size, effectively changing the
small squares into small rectangles.

Interfaces and Ports

An Interface is a useful way of encapsulating a group of
services provided by a Block, providing a simple way of
exposing those services to clients. The Interface has the
same appearance as a Block and can have defined
operations and Receptions, but no attributes (Properties).

An Interface can be created by simply dragging the
'Interface' icon from the Toolbox page. Behavioral features
can be added by selecting the appropriate Feature from the

(c) Sparx Systems 2021 Page 434 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Interface's context menu.

Another easy way to create an interface's operations is to
select the Block in a diagram or in the Browser window
and click on the ribbon item:

 Design > Element > Editor > Features > Operations

Operations are simply created by selecting the 'Operations'
tab and adding the name and other details in a row of the
window. Any number of operations can be created, and each
operation can define any number of parameters that specify
the inputs and outputs to the operation. Receptions - the
other behavioral feature - can be added in a similar way
using the 'Receptions' tab. Any of these items can be
reordered using the <Ctrl>+ up- and down-arrow keyboard

(c) Sparx Systems 2021 Page 435 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

keys.

Interfaces can be added to Ports, which are a common
mechanism in the Unified Modeling Language and provide
a way of publishing the services that are available at a Port.
The interfaces are of two fundamental types:

Provided - available for use·

Required - required for use·

With a Port selected on the boundary of a Block in a
diagram, an Interface can be added as for any other
structural element - from the Port's context menu items:

New Child Element | Provided·

New Child Element | Required·

Interfaces added in this way must be typed by an Interface
proper (an element stereotyped as <<interface>>). This can
be achieved by first selecting the Interface in the diagram
and then selecting the Properties window from the
Interface's context menu. You can then name the interface
and use the [...] icon to navigate or search for the Interface
element. This diagram demonstrates the step for a Signal
Registration Interface.

(c) Sparx Systems 2021 Page 436 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

(c) Sparx Systems 2021 Page 437 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Modeling Quantity using Value Types

A Block can have simple properties called Value Properties,
which define attributes of a Block that represent a scalar or
vector quantity. Values are used to express information
about a Block and provide a slot for an actual value to be
entered in an instance of a Block. For example, a Tank can
have a properties of diameter, height and volume defined.
The value types allow an engineer to create a universal way
of quantifying a property; for example:

A centrifuge has a maximum speed specified in·

revolutions per minute (rpm)

A train carriage has a weight specified in kilograms (kg)·

A tank has a volume specified in liters (l)·

A light source has a luminous intensity specified in·

Candela (cd)

A dialysis machine has a blood flow rate specified in·

milliliters per minute (ml/min)

This diagram shows a number of different Value Types that
can be defined in Enterprise Architect and then applied to
any number of attributes defined in Blocks.

(c) Sparx Systems 2021 Page 438 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

bdd [package] Value Types [Examples]

«valueType»
Arrivals per Hour

«enumeration»
Flow Rate

literals
 Rapid
 Fast
 Medium
 Slow
 Torpid

«valueType»
3D Coordinates

- X: Real
- Y: Real
- Z: Real

The intent of the Value Type is to allow an engineer, team
or industry to define standard types that can be reused to
characterize the value properties defined for any number of
Blocks. For example, the value type of 'Kilogram' could be
applied to a value property specifying the weight of a train
or the weight of a bus or the seating capacity of either.

bdd [package] Rolling Stock [Rolling Stock]

«block»
Carriage

- Seated Capacity: int
- Weight: Kilograms

«block»
Bus

- Seated Capacity: int
- Weight: Kilograms

«valueType»
Kilograms

These value types, as the name suggests, have a value that
describes the quantity of the property; they can be defined
using the 'Attribute' tab of the Features window, as shown
here.

(c) Sparx Systems 2021 Page 439 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

For example, two Blocks representing a Train and a Bus
could have a property of 'Weight' defined that is typed by
the value type 'Kilogram'. If an attribute such as 'Seating
Capacity' has a simple type such as 'Integer' this can be
directly selected in the 'Type' drop down, but if 'Type' is
based on a Value Type this can be selected using the 'Select
type..' option from the drop-down.

Instances of Blocks that have an attribute (Value Property)
defined in Enterprise Architect can have an actual value
specified for the attribute. For example, each instance of the
Bus and Train with, say, a particular model number could
have a different weight defined. Other properties such as
'Seating Capacity' could have a primitive type of 'Integer'
defined, and these also could be set for particular instances
of 'Carriage'.

Enterprise Architect allows an engineer to set the values for
each of the defined attributes by using the 'Set Run State'
option from the 'Features' sub-menu for a Block instance.

(c) Sparx Systems 2021 Page 440 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The attribute values (slots) can be displayed on a diagram,
allowing an engineer to create compelling examples or
catalogues of Block instances, as shown here.

bdd [package] Rolling Stock [Carriage and Bus Instances]

Model P: Bus

Seated Capacity = 30
Weight = 8,000

Engine Type A: Carriage

Seated Capacity = 60
Weight = 33,270

Model R: Bus

Seated Capacity = 30
Weight = 9,450

Wagon Type B: Carriage

Seated Capacity = 70
Weight = 27,450

(c) Sparx Systems 2021 Page 441 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Using Properties and Parts to Model
Block Usage

Blocks are classifiers and describe the characteristics of a
set of elements that represent the way the Block is used in a
context. When the Block has attributes (value properties)
defined these are given specific values in the instances of
the Block. Effectively, each Block instance has an identity
and typically would have different values assigned that
define the Block's state. Enterprise Architect allows these
values to be specified using a Set Run State option available
from the context menu.

Internal Block diagrams often show how a Block's parts are
connected together in a usage context. Enterprise Architect
allows Blocks to be dragged from the Browser window
onto a diagram and dropped as Part Properties. These are
effectively Parts and represent instances of the Block
classifier. An engineer has the opportunity to name these in
the context of the diagram. For example, this diagram
represents a Brake Assembly that has been modeled, which
is indicated in the diagram frame in this format:

ibd [block] Brake Assembly [Master and Wheel Cylinder
Parts]

ibd - signifies that it is an Internal Block diagram·

block - signifies the owing element type·

Brake Assembly - is the name of the element·

(c) Sparx Systems 2021 Page 442 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Master and Wheel Cylinder Parts - is the name of the·

diagram

The engineer has named each of the wheel cylinder parts
(Front Left, Front Right, Back Left, Back Right) as these
need to be identified with respect to their location in the
vehicle, but has decided not to name the master cylinder as
no further qualification is required.

ibd [block] Brake Assembly [Master and Wheel Cylinder Parts]

: Master Cylinder

Front Left: Wheel Cylinder Front Right: Wheel Cylinder

Back Right: Wheel CylinderBack Left: Wheel Cylinder

(c) Sparx Systems 2021 Page 443 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Introducing Internal Block Diagrams

An Internal Block diagram provides a way of visualizing the
internal structure of a Block, including its Properties and
Parts and the way that these Parts relate to each other. The
diagram is not required to display all the Parts that a given
Block is composed of and it is common for an engineer to
create a diagram that focuses on a particular aspect of a
system or subsystem.

The frame of an Internal Block diagram represents the
owning Block, so it will be named as such and the elements
that appear on the diagram will be Parts that are instances of
the Blocks that the owning Block is composed of. This
Internal Block diagram shows an instance of a vehicle in a
given context; it uses a number of images in place of the
conventional SysML language symbols as a way of adding
appeal and making the diagram more compelling to a
non-engineering audience. For more information see the
Internal Block Diagram Help topic.

(c) Sparx Systems 2021 Page 444 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/internal_block_diagram.html

Model Based Systems Engineering and SysML 2 September, 2021

ibd [block] Automotive Domain [AutomotiveDomain]

«external»
drivingConditions: Environment

Driver

Passenger

Mechanic

object: ExternalObject

«external»

HSUV: HybridSUV

«LightCondition»

weather: Weather

«external»

road: Road

«external»

vehicleCargo:
Baggage

«external»

«diagramDescription»
version=”0.1"
description=”Initial concept to identify top level domain entities"
reference=”Ops Concept Description”
completeness=”partial. Does not include gas pump and various other
external interfaces.”

x3:

x2:

x1:

x4:

x5:

Creating an Internal Block Diagram

An Internal Block diagram can be created from a number of
places in the User Interface, such as:

Design ribbon - Add Icon on the Diagram Panel·

Browser window toolbar - New Diagram icon·

Browser window context menu - Add Diagram·

We will use the Design ribbon to create an Internal Block
diagram. Firstly, select the location in the Browser window
where you want the diagram to be located. In contrast to
most other SysML diagrams the Internal Block diagram is
typically inserted under its owning Block. Once the location
has been selected in the Browser window, select the ribbon
item:

(c) Sparx Systems 2021 Page 445 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Design > Diagram > Add

Selecting this option will open the New Diagram dialog,
allowing you to name the diagram; the diagram name
defaults to the name of the Block that contains the diagram.
With the SysML perspective chosen and the version of
SysML selected, a list of diagram types is displayed from
which you select the Internal Block diagram. Click on the
OK button to create a new Internal Block diagram in the
location selected in the Browser window. The diagram
canvas will be opened, allowing you to start adding
elements and connectors that describe the internal structure
of the Block. Enterprise Architect will also display the
'Internal Block' page of the Toolbox, which contains the
elements and relationships defined by the SysML
specification to be applicable for constructing this diagram
type. Any number of other Toolbox pages can be opened if
required, in addition to the 'Common Elements' and
'Common Relationships' pages that are always available.

(c) Sparx Systems 2021 Page 446 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Modeling and Connecting Parts

When a Block is composed of a number of other Blocks, it
is typically the case that when the system is instantiated the
contained Blocks will perform much of the work that is
required of the owning Block. The Internal Block diagram
provides a language mechanism to visualize how the parts
interact, to show the structure of the Blocks in context and
to provide the overall behavior specified by the owning
Block. In an earlier topic we viewed a Block Definition
diagram of the chassis of a truck, describing the Blocks that
make up the chassis based on Blocks.

bdd [package] Truck [Chassis - Part Composition]

«block»
Chassis

«block»
Wheel Assembly

«block»
Frame

«block»
Transmission

«block»
Brake Assembly

«block»
Axle Assembly

+aa 2..6

+br 1

+tr 1+fr 1

+wa 2..4

The diagram includes multiplicities at the part ends of the

(c) Sparx Systems 2021 Page 447 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Association showing how many of a particular part can be
included in a single instance of the owning Block. These
numbers represent the cardinality expressed as an upper and
lower bound, which can be defined in the Properties
window for the connector. This screen capture shows a
portion of the Properties window used to define
multiplicities and other properties of the Association End,
all of which add rich semantics to the association.

This Internal Block diagram of the chassis shows the parts
that make up the chassis in an actual context. The number of
axles is defined for the particular instance of the truck.

(c) Sparx Systems 2021 Page 448 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

ibd [block] Chassis [Chassis Parts]

: Frame

: TransmissionRear Primary: Axle Assembly

: properties
 left-rp1 : Wheel Assembly
 right-rp1 : Wheel Assembly
 rp1 : Axle

Rear Secondary: Axle Assembly

: properties
 left-rs1 : Wheel Assembly
 right-rs : Wheel Assembly
 rs : Axle

Front Primary: Axle Assembly Front Secondary: Axle Assembly

Enterprise Architect allows an engineer to create diagrams
with parts nested to any level, which helps demonstrate the
structure of a Block and the way the parts would be
connected in a real world context.

This diagram shows parts nested on two levels, but any
number of levels are possible and can be created on a
diagram. This type of expression can lead to quite large
diagrams, and Enterprise Architect supports paper size up to
A0, allowing large diagrams to be created and printed.

(c) Sparx Systems 2021 Page 449 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

ibd [block] Chassis [Chassis Parts Exploded]

: Frame

: Transmission

Rear Primary: Axle Assembly

: properties
 left-rp1 : Wheel Assembly
 right-rp1 : Wheel Assembly
 rp1 : Axle

Rear Secondary: Axle Assembly

Front Primary: Axle Assembly Front Secondary: Axle Assembly

left-rp1: Wheel
Assembly

right-rp1:
Wheel

Assembly

rp1: Axle

left-rs1: Wheel
Assembly rs: Axle

right-rs: Wheel
Assembly

In the
diagram the Rear Primary and Secondary Axle Assemblies
have been shown in detail, where each Axle is composed of
a right and left wheel assembly, which themselves could be
shown as a nested structure comprising the Brake Assembly,
which in turn could show the Wheel Cylinder Assemblies.

In the case where a part is added to the diagram but the
modeler for some reason needs to change the Block
classifier that types the Block, this can be done from the
'Parts' context menu that provides an option for the Property
Type to be changed. This can be convenient where an
elaborate diagram has been created and it is easier to leave
the visual element in place and just update the Block it is
based on.

(c) Sparx Systems 2021 Page 450 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Modeling Parametric Equations

Engineers are charged with finding solutions to problems
and opportunities, and use models as a way of visualizing
simplifications of both the system under consideration and
the world context that the system will need to operate in.
Systems engineering models created in Enterprise Architect
provide a valuable tool for analysis, design, architecture,
testing and visualization. This includes being able to predict
how a system will behave in a given context, balancing
competing requirements and design considerations in the
form of stakeholder negotiations and trade-off analysis.
Parametric diagrams are a powerful tool that can assist the
engineer to address these concerns in a model and
pre-emptively represent how a system is likely to behave.

In an earlier topic we learnt how equations can be modeled
using the Block Definition diagram, with the Part
Association relationship articulating the variables
(parameters) of the equation. This provides a powerful
mechanism for re-use. As a refresher of how we use a
Constraint Block to model equations refer to this diagram,
which uses a Constraint (which is a stereotyped Block) to
model a vehicle's fuel. The Fuel Flow Rate is based on an
equation that has fuel pressure (press) and fuel demand as
variables (parameters).

(c) Sparx Systems 2021 Page 451 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

bdd [block] PowerSubsystem [PowerSubsystem Constraints]

«constraint»
FuelFlow

constraints
{flowrate=press/(4*injectorDemand)}

values
 flowrate : Real
 injectorDemand: : Real
 press : Real

Any equation, or system of equations can be modeled using
the constraint.

This constraint can potentially be re-used in a number of
different contexts. It is on the Parametric diagram that we
see how it is used. For more information, see the Parametric
Diagrams Help topic.

(c) Sparx Systems 2021 Page 452 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/parametric_diagrams.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/parametric_diagrams.htm

Model Based Systems Engineering and SysML 2 September, 2021

Introducing Parametric Diagrams

A Parametric diagram provides a way of visualizing
equations and their parameters in a particular context in the
form of constraint properties. Each of these properties
represents a usage of a ConstraintBlock that has typically
been defined on a Block Definition diagram.

The frame of a Parametric diagram represents the owning
ConstraintBlock, so it will be named as such and the
elements that appear on the diagram will be constraint
properties, which are instances of the ConstraintBlocks that
the owning Block is composed of, thus showing the
composition of the constraint.

Creating Parametric Diagrams

A Parametric diagram can be created from a number of
places in the User Interface, using any of these options:

Design ribbon - Add icon on the Diagram panel·

Browser window toolbar - New Diagram icon·

Browser window context menu - Add Diagram·

We will use the 'Design' ribbon option to create a Parametric
diagram. Firstly you select the Package in the Browser
window where you want the diagram to be located.

In contrast to most other SysML diagrams, the Parametric
diagram is typically inserted under its owning Constraint
Block. Once the location has been selected in the Browser

(c) Sparx Systems 2021 Page 453 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

window, select:

 Design > Diagram > Add

Selecting this option opens the 'New Diagram' dialog,
allowing you to name the diagram; the name will initially
default to the name of the Constraint Block that owns the
diagram. With the SysML Perspective chosen and the
version of SysML selected, a list of diagrams will be
displayed allowing you to select the Parametric diagram.
Click on the OK button to create a new Parametric diagram
in the location selected in the Browser window. The
Diagram View will be opened, allowing you to start adding
elements and connectors that describe the equations and the
parameters. Enterprise Architect will also display the
'Parametric' pages of the Diagram Toolbox, which contain
the elements and relationships defined by the SysML
specification to be applicable for constructing this diagram
type. Any number of other Toolbox pages can be opened if
required, in addition to the 'Common' elements and
'Common Relationships' pages that are displayed by default
and that allow diagram notes, legends and other common
elements to be added.

(c) Sparx Systems 2021 Page 454 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The most important elements and connectors used with the
Parametric diagram are:

Elements

ConstraintProperty·

Property·

Element Extensions

Objective Function·

Measure of Effectiveness·

Connectors

Dependency·

(c) Sparx Systems 2021 Page 455 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Item Flow·

Connector·

Binding Connector·

Elements can be added to the diagram by
dragging-and-dropping them from the Toolbox page onto
the diagram canvas.

(c) Sparx Systems 2021 Page 456 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Systems of Equations using Part
Associations

Engineering problems and systems typically require detailed
analysis to determine how a particular proposed solution
will perform. The analysis can involve any number of
equations that are often related to each other to determine a
particular value. Enterprise Architect allows an engineer to
construct systems of equations using a Block Definition
diagram and then to use these equations in multiple
Parametric diagrams to describe proposed solutions.

This Block Definition diagram describes parameters of the
straight line dynamics of a vehicle - the HSUV - and
includes a number of equations that are represented on the
diagram as Constraints, which are a type of Block.

(c) Sparx Systems 2021 Page 457 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

bdd [package] HSUV Analysis [Definition of Dynamics]

«constraint»
StraightLine VehicleDynamics

values
 acc : Accel
 Cd : Real
 Cf : Real
 dt : Time
 incline : Real
 tw : Weight
 vel : Vel
 whlpowr : Horsepwr
 x : Dist

constraints
 : AccelerationEquation
 : PositionEquation
 : PowerEquation
 : VelocityEquation

«constraint»
AccelerationEquation

constraints
{a = (550/32)*tp(hp)*dt*tw}

values
 a : Accel
 delta-t : Time
 tp : Horsepwr
 tw : Weight

«constraint»
VelocityEquation

constraints
{v(n+1) = v(n)+a*32*3600/5280*dt}

values
 a : Accel
 delta-t : Time
 v : Vel

«constraint»
PositionEquation

constraints
{x(n+1) = x(n)+v*5280/3600*dt}

values
 delta-t : Time
 v : Vel
 x : Dist

«constraint»
PowerEquation

constraints
{tp = whlpowr - (Cd*v) - (Cf*tw*v)}

values
Cf : Real
Cd : Real
i : Real
tp : Horsepwr
tw : Weight
v : Vel
whlpowr : Horsepwr

pos velpwr acc

The next diagram, a Parametric diagram, shows how the
ConstraintBlocks are used in a particular context, being
represented on the diagram as ConstraintProperties. We can
visualize how the total power parameter is calculated, with a
connection between the Power Equation and the equivalent
parameter on the Acceleration Equation. Connections can be
seen between the Position Equation and the Velocity
Equation, which is ultimately connected back to the
Acceleration Equation.

(c) Sparx Systems 2021 Page 458 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

par [constraint block] StraightLine VehicleDynamics [StraightLineVehicleDynamics]

acc : Accel

tw : Weight

Cf : Real

Cd : Real

whlpowr : Horsepwr

incline : Real

: PositionEquation
{x(n+1) = x(n)+v*5280/3600*dt}

: PositionEquation

delta-t : Time

v : Vel

x : Dist

: PowerEquation
{tp = whlpowr - (Cd*v) - (Cf*tw*v)}

: PowerEquation

whlpowr : Horsepwr

Cd : Real

Cf : Real

tw : Weight

tp : Horsepwr

v : Vel

i : Real

: AccelerationEquation
{a = (550/32)*tp(hp)*dt*tw}

: AccelerationEquation

tw : Weight

delta-t : Time
tp : Horsepwr

a : Accel

: VelocityEquation
{v(n+1) = v(n)+a*32*3600/5280*dt}

: VelocityEquationdelta-t : Time

v : Vel

a : Accel

vel : Vel

(c) Sparx Systems 2021 Page 459 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Measures of Effectiveness using
Parametrics

Measures of Effectiveness (MOEs) are an important
engineering mechanism used to quantify the achievement of
mission objectives or specified desired outcomes. They can
be modeled using the Parametric diagram, and the Measure
of Effectiveness element is available from the 'Parametrics'
page of the Diagram Toolbox, from which it can be
dragged onto a diagram and related to parameters of
equations represented as ConstraintProperties.

The Measures of Effectiveness can be reused to evaluate
any number of design alternatives and allow these designs to
be systematically compared and evaluated. This diagram
shows the overall cost effectiveness of a Hybrid SUV
(HSUV) for a proposed solution entitled 'Alternative One'
(alt1) based on a number of MOEs including:

FuelEconomy - Expression of fuel economy·

QuarterMile - Time taken to travel 0.25 miles·

Zero60Time - Time taken to accelerate to 60/mph·

CargoCapacity - The volume of the cargo spaces·

UnitCost - Cost of the vehicle·

(c) Sparx Systems 2021 Page 460 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Each one of these would have its own Parametric model that
would be able to determine the effective value and
contribute to the overall equation, which is a series of
weighted sums {CE = Sum (W i*P i)}. Enterprise Architect
allows any number of alternatives to be defined, and the
engineer can reuse the MOE elements and the
ConstraintBlocks used to define the contributing equations.

par [block] MeasuresOfEffectiveness [HSUV MOEs]

«moe»

FuelEconomy
: EconomyEquation

f : Real

: UnitCostEquation
uc : Real

«moe»

QuarterMileTime

«moe»

Zero60Time

«moe»

CargoCapacity

«moe»

UnitCost

«moe»

CostEffectiveness

: MaxAccelerationAnalysis

q

z

: CapacityEquation
{pcap = Sum(Vi)}

vc

«objectiveFunction»

MyObjectiveFunction

Enterprise Architect has a useful search feature that allows
the type that a property is based on to be located in the
Browser window. This function is particularly useful for
finding the owning Block or constraint of a Block or
ConstraintProperty found on Parametric and Internal Block
diagrams.

It is possible to setup a slide show using the 'Model Views'

(c) Sparx Systems 2021 Page 461 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

tab of the Focus window. For more information see the
Diagram Slide Show Help topic.

(c) Sparx Systems 2021 Page 462 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/diagram_slideshow.html

Model Based Systems Engineering and SysML 2 September, 2021

Coordinating Behavior with Activities

As discussed in an earlier topic, the Systems Modeling
Language (SysML) has two fundamental aspects that are
analogous to two important grammatical categories in the
natural languages humans use to communicate, namely
nouns and verbs. In the SysML these are Structural and
Behavioral Constructs; Structural Constructs being
analogous to nouns in our natural languages, and Behavioral
Constructs being analogous to verbs.

We referred to the structural aspects of the Language in
previous topics, when we discussed both Packages and
Blocks. We will now turn our attention to the main
Behavioral diagram, namely the Activity diagram. There are
a number of other behavior diagrams, and indeed behavior is
visible in structural diagrams in the form of operations and
also in the Behavior that is assigned directly to a Block.

While the newcomer to SysML, viewing the Activity
diagrams for the first time, might be reminded of the flow
chart, they will soon learn that the Activity diagram has
powerful syntax and semantics that go far beyond the chart.
The Activity diagram is formally based on a branch of
mathematics called Petri Nets and it uses a system of tokens
to indicate both the sequence of actions and also the items
that flow through the system. The items that flow can be
information items, physical items or even control signals.
We will reference this token system as a way to illuminate
the working of the Activity diagram.

(c) Sparx Systems 2021 Page 463 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

This diagram, describing a vehicle's acceleration, shows
many of the elements that are commonly seen on an Activity
diagram. You will see in the subsequent topics that it is a
very expressive diagram that, if crafted carefully, can
rigorously convey a lot of information.

«activity»
Accelerate

«continuous» drivePower:
Horsepwr

transModeCmd: Integer

«Continuous»
accelPosition

:Provide Power

:PushAccelerator :MeasureVehicle
Conditions

«Continuous»
vehCond

In fact the syntax of the Activity diagram is one of the
richest of any of the SysML diagrams, and when you add to
this the powerful mechanisms and tools that Enterprise
Architect includes to work with these diagrams, the
opportunities for a modeler to express themselves makes
these one of the most versatile but also challenging parts of
system representation.

The SysML Activity diagram is based on the UML diagram
of the same name, but additional semantics have been added
in two areas:

Continuous Flow, allowing restrictions on the rate at·

which entities flow along edges in an Activity, and

(c) Sparx Systems 2021 Page 464 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

mechanisms to ensure that the most recent information is
available to Actions

Probability, introduced into Activities to include the·

likelihood that a value will be available to an edge or
output on a parameter set

While the diagram might be said to be based on verb
serialization mechanisms (strings of verbs connected
together with nouns) in our natural language, as mentioned
earlier it has its formal origins in a branch of mathematics
called Petri Nets and token flow. It is imperative that a
modeler understands the token flow aspect of the language,
and can learn to visualize these invisible items that flow
through Object Flows, are detained at buffers, and are
controlled by other language mechanisms that direct how
items flow from Actions. Without this understanding it is
difficult to interpret an Activity diagram, including how the
sequence of Actions is controlled, how the inputs are
consumed and how the outputs are created.

The significant difference between Activity diagrams and
any of their close cousins, such as Flow Charts or Process
diagrams, is the ability to create relationships between these
behavioral elements and structural elements.

A fundamental aspect of the discipline of Systems
Engineering is the ability to segregate function from form,
but also to be able to create a mapping between them that
exposes the seams that relate these two integral parts of
architecture and design. Empirical evidence on large scale,
complex systems engineering problems has proven that
profound benefit results from this approach.

(c) Sparx Systems 2021 Page 465 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Enterprise Architect provides a rich toolbox to work with
these relationships, including the ability not only to allocate
system behavior in the form of Activities and Actions to
Blocks, but also to relate these elements to behavioral
features owned by Blocks, such as operations.

(c) Sparx Systems 2021 Page 466 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Actions the Fundamental Behavioral
Building Blocks

Actions are the behavioral atoms that are connected together
to describe the behavior of an Activity, Sub-system, system
or one of its parts. Effectively an Activity is made up of a
set of Actions that work together to convert items (tokens)
that are input into the Activity to items (tokens) that are
output by the Activity. The first Action in a sequence will
receive its inputs from one of the owning Activity's Input
Parameter Nodes and the last Action in the sequence will
place the output onto one of the Activity's Output Parameter
Nodes. The Actions themselves have input and output
devices called Pins - an Action will receive tokens on its
Input Pins, perform its work and place the resulting tokens
on its Output Pins.

(c) Sparx Systems 2021 Page 467 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Enterprise Architect has rich support for modeling Actions
and their inputs and outputs, and various parts of the user
interface can be used while working with these fundamental
building blocks of behavior. There are a number of different
types of Action available from the Toolbox.

An engineer can add an Action directly from the Toolbox,
but it is more common to create Actions from existing
Activities that have been defined in hierarchies, as described
in the topic Creating Activity Hierarchies. To do this an
Activity would be dragged NOT from the Toolbox but from
the Browser window and dropped onto an open Activity
diagram as an Invocation - this has the effect of creating an
Action based on the Activity and placing it in the diagram.

The integrated Properties window makes it easy to work
with Actions and their Pins. An engineer can specify a range
of properties for the Action and its Pins, including the Pin
Name, Type, Multiplicity, Direction and much more. The
Properties window can be docked or made to float, and even
dragged onto a different monitor; as elements are selected in

(c) Sparx Systems 2021 Page 468 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

the Browser window or a diagram the properties can be
viewed, created or changed.

As a diagram is created, the elements that are added are
automatically inserted into the Browser window, allowing
an engineer to see a structural view of the Activity, Actions,
Pins and other elements. Even if the diagram is not open the
elements can be selected in the Browser window and edited
directly in the Properties window.

(c) Sparx Systems 2021 Page 469 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

A number of these properties will be displayed in the
diagram in the Pin label, including name, type and
multiplicity. The Multiplicity specifies both a lower bound
and an upper bound. The lower bound specifies, for a given
execution of the action, the allowable number of tokens that
the pin can consume or create, and the upper bound
specifies the maximum number of tokens that are consumed
or created on that pin.

act [package] Eartthquake Detector [Quake Analyzer]

Register Earthquake

Determine SeverityQuake Measurement:
Real[0..*]

Severity Level:
Integer[1..*]

There is also a wide range of windows that can be useful
when working with the Actions, including the Traceability
Window, which shows how elements are related regardless

(c) Sparx Systems 2021 Page 470 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

of where they are located in the repository; it also displays
their structural features such as Pins and Parameters.

(c) Sparx Systems 2021 Page 471 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Introducing Activity Diagrams

The Activity diagram is a powerful diagram that can be used
to show the sequence of Actions that describe the behavior
of a Block or other structural element. The Actions are
sequenced using control flows, and can contain input and
output Pins that act as buffers for items that flow from one
Action to another (or from Control or buffer Nodes). The
work carried out by the Actions either consumes or
produces these items. The items can be either material,
energy, or information, depending on the system and the
activity being described.

Creating Activity Diagrams

An Activity diagram can be created from a number of places
in the User Interface such as the:

Design Ribbon - 'Add' icon on the 'Diagram' panel·

Browser Toolbar - New Diagram icon·

Browser Context Menu - New Diagram·

We will use the Design Ribbon to create an Activity
diagram. Firstly, select the location in the Browser where
you want the Activity diagram to be created. As with all
diagrams, this can be either a Package or an element, but it
is common to insert Activity diagrams into a Package. Once
the Package location has been selected in the Browser,
select the ribbon option:

(c) Sparx Systems 2021 Page 472 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

 Design > Diagram > Add

Selecting this option will open the New Diagram dialog,
allowing you to change the name of the diagram (which
defaults to the name of the Package or element that contains
the diagram, as selected in the Browser). With the SysML
perspective chosen and the version of SysML selected, a list
of diagrams will be displayed from which you select the
Activity diagram. When you click on the OK button, a new
Activity diagram will be created in the location selected in
the Browser. The diagram canvas will be opened, allowing
you to start adding elements and connectors that describe
the value that the system will provide to its users. Enterprise
Architect will also display the 'Activity' pages of the
Toolbox, which contain the elements and relationships
defined by the SysML specification to be applicable for
constructing Activity diagrams. Any number of other
Toolbox pages can be opened if required, in addition to the
Common Elements and Common Relationships Toolbox
pages that are always available.

(c) Sparx Systems 2021 Page 473 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The most import elements and connectors used with the
Activity diagram are:

Elements

Activity·

Action·

Action Pin·

Partition·

Parameter·

Initial·

Final·

Decision·

Fork and Join·

Data Store·

Connectors

(c) Sparx Systems 2021 Page 474 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Control Flow·

Object Flow·

Interrupt Flow·

There are many other elements and connectors that can be
used on these diagrams that are important for more
advanced modeling; some of these might be needed as
modelers become more experienced, or more complex parts
of a system's behavior are being described or designed.
These include Activity Parameter, Merge, Central Buffer
Node, Regions, Fork and Join, Decision and Merge.

Elements can be added to the diagram by
dragging-and-dropping them from the Toolbox onto the
diagram canvas. It is considered good practice to start with
an Initial and one or more Final elements, which are named

(c) Sparx Systems 2021 Page 475 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

appropriately to describe the way the Activity starts and the
potentially multiple ways it might finish. Leaving the name
of these elements blank or giving them a name that is
hackneyed such as 'starts' or 'end' will not help to make it
clear to the reader what system or part of a system is being
modeled, and can lead to misinterpretation of the diagram.
When these nodes have been added and appropriately placed
in the diagram, Actions and Object Nodes can be added to
the diagram. The Actions can be connected using the
Control Flow relationship, defining the sequence in which
the Actions will be executed.

Once a basic diagram has been created, and as knowledge of
the domain and the system's behaviors is further accrued, it
is possible to structure or embellish the diagram using the
additional elements and relationships including:

Control Structures for Object flows: Forks and Joins,·

Decision and Merge nodes

Activity Input and Output Structures: Activity Parameters·

(Streaming and Non-Streaming)

Grouping sets of Actions: Interruptible Regions and·

Edges

Token Storage Structures: Data Stores and Central·

Buffers

As stated earlier, the Activity diagram has a rich set of
language devices and the engineer is encouraged to use
these devices to make the system description richer, but
some caution needs to be exercised to ensure that these
language mechanisms can be understood by the intended
audience.

(c) Sparx Systems 2021 Page 476 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

(c) Sparx Systems 2021 Page 477 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Creating Activity Hierarchies

Newcomers to the Systems Modeling Language and
Enterprise Architect might be surprised to learn that it is not
Activities but Actions that are used on Activity diagrams.
Activities that are the classifiers of Actions are typically
visualized on Block Definition diagrams. This might seem a
little counter-intuitive, but when you understand that the
Action is the fundamental atom of system behavior it makes
more sense. Activities are classifiers and as such can, like
Block elements, participate in a wide range of structural
relationships, which is why the relationships such as
Associations marked with Composition can be used between
Activities.

bdd [package] Car Operation [Car Operation]

«activity»
Operating Car

«activity»
Turn Key To On

«activity»
Driving

«activity»
Braking

«activity»
Monitor Traction

«activity,controlOperator»
Enable on Brake Pressure > 0

«activity»
Calculate Traction

«activity»
Calculate Modulation

Frequency

+driving 0..1

+oc 0..1

+calculateM odulationFrequency 0..1

+mt 0..1

+enableO nBrakePressure>0 0..1

+oc 0..1

+turnKeyOn 0..1

+oc 0..1

+calculateTraction 0..1

+mt 0..1

+braking 0..1

+oc 0..1

+monitorTraction 0..1

+oc 0..1

In this diagram a break-down structure has been used where
an activity is decomposed into a number of more granular
activities using the Composition relationship. There are a
number of relationships which have been grouped together

(c) Sparx Systems 2021 Page 478 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

to make the diagram more appealing, using one of the
flexible line styles available from the diagram context menu.

(c) Sparx Systems 2021 Page 479 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Specifying Action Sequence with
Control Flows

Actions are executed within the context of an Activity, and
the order in which the Actions are executed is largely
controlled by the use of special connectors called Control
Flows. These connectors are directed lines drawn between
Actions and act essentially as a conduit for control tokens -
allowing the tokens to flow from one Action to the next in
the direction of the arrow. An Action cannot commence its
work until all incoming Control Flows have received a
token; once they have and the Action is executed a token is
said to be placed on the outgoing Control Flow, which
implies it will travel to the next Action in the sequence.
Control Flow relationships are available from the 'Activity'
pages of the Diagram Toolbox

There are also Control Nodes that can be used with Control
Flows to orchestrate the way the Flows work with the use of
Forks, Joins, Decisions and Merges. There are three
specialized nodes: Initial, Final and Flow Final, that act as
the start and finish of the flow respectively. The Final
(formally Activity Final) node is used to indicate that when
a token arrives the entire Activity terminates, whereas the

(c) Sparx Systems 2021 Page 480 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Flow Final will consume incoming tokens but will have no
effect on the enclosing Activity.

Interrupting Normal Flow

There are a number of circumstances during the execution
of an Activity when a modeler might want to specify a way
of stopping the behavior in a part of an Activity. For
example, in a real-world scenario a user might get part way
though using a machine function such as calibrating a
centrifuge, and then decide that they want to end a particular
part of the calibration process. This scenario might be
provided by a Cancel button on the interface. The SysML
allows this situation to be modeled using an Interruptible
Region and an Interrupting Edge. The notation allows the
Interruptible Region to be drawn to include a number of
elements such as Actions and other Nodes. Typically, when
something unusual occurs an Event is fired in the Activity
and received by an Accept Signal Action; this element has
no incoming control flows and a single outgoing
Interrupting Edge, which targets an Action that resides
outside the Region.

(c) Sparx Systems 2021 Page 481 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

act [package] Cetrifuge Callibration [Cetrifuge Speed Callibration]

Callibrate Cetrifuge

abort

Callibrate
Tachometer

Ensure Stable Set Rotor Speed to
12000 rpm

Run Test 5
times

Abort
Callibration

Record
Results

Callibrated

Abort
Operation

Callibration
Aborted

In this diagram, an engineer has modeled the process used
for performing a speed calibration for a centrifuge. The
centrifuge calibration process can be interrupted for various
reasons; for example, if the centrifuge has become unstable
or the operator is called away to perform other duties. An
Accept Event Action is used to show that the Activity has a
mechanism to listen for a required interruption within a
specified Region of the Activity. The special Interrupt Flow
connector then targets an Action outside the Region, which
is used to shut down the centrifuge; finally this flows to the
calibration Activity being terminated.

(c) Sparx Systems 2021 Page 482 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Specifying Item Flow with Object
Flows

Activities, and the Actions they are composed of, typically
do work by processing items that arrive on Input nodes and,
when the work is complete, placing the resultant items onto
Output nodes. As was discussed earlier, Activity modeling
in the SysML is based on a branch of mathematics called
Petri Nets, which is concerned with discrete State Event
systems. The items that arrive at the input structures must
pass through the graph of Activities and their contained
Actions in an orderly and systematic way. The passage is
created by Object Flows that act as conduits to carry tokens
from one node to another. The tokens represent a number of
different types of 'thing' including information, structures or
physical items such as solids, liquids and gases. There are
thus two important parts to the way that items pass through
the Activity - the nodes that act as origins and destination of
tokens, and the connectors (conduits) that transmit the items.

Enterprise Architect has full support for modeling these
flows, and when a diagram is created or opened for editing,
the Toolbox contains the Object Nodes as shown:

(c) Sparx Systems 2021 Page 483 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

It also contains a section that lists the Object Flow
relationships that can be used to connect the nodes, creating
the conduit for the tokens to flow from one node to another.

Orchestrating the Flow of Tokens

When modeling complex systems there is often the need to
create more elaborate paths (conduits) for the token flow,
such as forking and joining paths to allow tokens to be sent
to a number of object nodes so that work can be done
simultaneously, or to allow tokens to be routed down a
particular path based on some condition. These Control
Nodes control flow and are grouped together on a page of
the Diagram Toolbox.

(c) Sparx Systems 2021 Page 484 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Enterprise Architect allows the connectors to be
manipulated to create any path that is required. This can be
done by utilizing the line styles from a connector's context
menu; the most flexible of these is the Custom Line Style,
but there are several other styles that are very useful. A
modeler can also fix the connector ends to a specific part of
the Source or Target element.

Storage for Tokens in Transit

During the execution of an Activity it is sometimes
necessary to store tokens for a longer period of time than is
possible with Activity Parameters and Action Pins, which
act simply as temporary storage devices. A common
circumstance is when a number of Actions require access to
a stream of tokens - the tokens can be stored in a Central
Buffer and made available to the nodes that require them.
The Central Buffer accepts all tokens on its incoming flows,
then makes the tokens available to downstream nodes; once
accepted, the tokens are then removed from the buffer.

(c) Sparx Systems 2021 Page 485 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The Central Buffer can be created by dragging the 'Central
Buffer' icon from the Toolbox onto an open Activity
diagram; it can then be connected to other object nodes
using Object Flows.

Thus the Central Buffer can, during the execution of the
Activity, be replete with tokens or empty depending on the
consumption of tokens. Another type of node is the Data
Store, a specialization of the Central Buffer where, as tokens
are consumed by downstream actions, a copy is made and
stored back in the buffer. This has the effect of the Data
Store having the appearance of a permanent store - but only
for the lifetime of the Activity's execution.

The Data Store can be created by dragging the 'Data Store'
icon from the Toolbox onto an open Activity diagram; it can
then be connected to other object nodes using Object Flows.

(c) Sparx Systems 2021 Page 486 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Modeling Inputs and Outputs with
Parameters and Pins

Activities and their constituent Actions are the workforce of
systems; while structural elements such as Blocks and Parts
define the structure or anatomy of a system, the Activities
define the physiology. When an Activity is executing we see
the structural elements being called into action to
accomplish some type of system behavior. Much of the
work that a system does, and the behaviors that define what
the work is, are dependent on system inputs that the
executing Activity consumes in order to produce outputs.

act [package] Earthquake Analyzer [Earthquake Analyzer - parameters]

Analyze EarthquakeEarthquake Signal:
Seismic Wave[1..4] Visualization Output:

Video[1..2]
Social Media Feed:

String[1..7]

Inputs and outputs vary greatly between systems and can
include things such as control signals, materials, light,
fluids, energy, numbers and information. The inputs and
outputs are called parameters, which can be typed and can
have multiplicities. Typing ensures that the Activity
specifies what kind (type) of 'thing' it is expecting. Thus if a
distiller had an input parameter with a type of liquid defined
or, even more specifically, a liquid-contaminant, then the

(c) Sparx Systems 2021 Page 487 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Activity would be ill-formed if it received a gas or an
Integer Value as an input on this parameter. The types can
be any one of a defined set ranging from a simple Integer to
a compound Structure. Inputs and outputs can be typed by a
Block, so that you have a well defined structural element -
for example, a grocery item that passes through a self
scanning system at a supermarket checkout. There is a range
of other properties that can be defined for a parameter,
including Streaming or Non Streaming, Multiplicities, and
Direction. Streaming is used when there is a continuous
flow into the parameter, such as with a fluid, or a
communication or information signal such as an audio or
visual stream. Multiplicities define the upper and lower
bounds of the number of tokens that are consumed by an
input parameter or produced by an output parameter. While
Direction defines if the parameter is receiving input (in) or
producing output (out) or a combination of both (inout).

When Activities are placed on an Activity diagram as
invocations they are represented by Actions, and any
Parameters owned by an Activity will be modeled as Pins on
these Actions. The Pins receive tokens on incoming Object
Flows and the owning Action performs its work and places
any specified number of tokens on the output Pins. The Pins
can have a simple type such as an Integer, a complex
Structure such as a matrix or even a Block such as a video
stream. Multiplicities specify a lower and upper bound that
define the minimum and maximum number of tokens
permissible to arrive and depart from any given Pin. The
following unfinished diagram shows an Action with an input
and an output Pin and the transmission of the tokens from

(c) Sparx Systems 2021 Page 488 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

the Owning Activity's input parameter along the Object
Flow.

act [package] Earthquake Analyzer [Earthquake Analyzer -Pins]

Analyze Earthquake

Earthquake
Signal: Seismic

Wave[1..4]

as: Analyze
Signal

is:
os:

The Parameters and Pins are collectively known as
Interaction Points, signifying that they are locations where
an element interacts with its environment; they can be
selected for inclusion on a diagram by using the
multi-purpose Features window.

Enterprise Architect allows you to create a diagram that
shows the owning Activity as a container for the other
Activities included on the diagram as Actions. In this
diagram, the Activity Parameters defined on the owning
Activities are expressed as Pins on the boundaries of the
Actions that have been included as invocations of the
Activities. The diagram shows an Activity with two input

(c) Sparx Systems 2021 Page 489 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

parameters and a single output parameter. The inputs in the
form of tokens can be traced through the diagram as they
arrive at Pins. Once the Action has completed its work,
tokens are placed on the output Pins. The Control Flows
show the sequencing of the enclosed Actions. Notice that a
Fork and Join are used to show that two Actions can be
carried out in parallel. Notice also that a number of the Pins
have been defined as a stream, which is indicated on the
diagram by the solid color of the Pin.

act [package] Earthquake Analyzer [Earthquake Analyzer-Main]

Analyze Earthquake

Earthquake Signal:
Seismic Wave[1..4] Visualization Output:

Video[1..2]

Social Media Feed:
String[1..7]

as: Analyze Signal

is:
os:

il: Identify Location

Input
Stream:

Output Intensity
Data:

Output Speed Data:
ds: Determine

Speed

Input:

ci: Calculate
Intensity

Input:

ps: Process Social
Media Feed

Feed Input:

ga: Generate
Analysis

cv: Create
Visualizations

Imagery Out:

(c) Sparx Systems 2021 Page 490 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Visualizing Activities with Simulations

Any of the SysML Activity diagrams in your models can be
simulated using the built-in dynamic model Simulator. This
provides a powerful way of visualizing the diagrams and is
useful for running demonstrations or walk-throughs with the
user and others in the engineering community.

Using the Model Simulator, you can simulate the execution
of conceptual model designs containing behavior. When you
start a Simulation, the current model Package is analyzed
and a dynamic Simulation process spawned to execute the
model. As the Simulator analyzes and works with UML
constructs directly, there is no requirement to generate
intermediary code or compile simulation 'executables'. This
results in a very rapid and dynamic simulation environment
in which changes can be made and tested very rapidly.

Simulation Window

The Simulation window provides the main interface for
starting, stopping and stepping through your Simulation.
During execution it displays output relating to the currently
executing step and other important information. See the Run
Model Simulation Help topic for more information on the
toolbar commands.

(c) Sparx Systems 2021 Page 491 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/run_model_simulation.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/run_model_simulation.htm

Model Based Systems Engineering and SysML 2 September, 2021

Note the text entry box just underneath the toolbar. This is
the Console input area - here you can type simple JavaScript
commands such as: this.count = 4; to dynamically change a
Simulation variable named 'count' to 4. In this way you can
dynamically influence simulation at run-time.

Breakpoints and Events Window

The Simulation process also makes use of the 'Simulation
Breakpoints' tab of the Breakpoints & Markers window
('Simulate > Dynamic Simulation > Breakpoints'). Here you
set execution breakpoints on specific elements and messages
in a Simulation. See the Simulation Breakpoints Help topic
for more details.

(c) Sparx Systems 2021 Page 492 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/using_simulation_breakpoints.htm

Model Based Systems Engineering and SysML 2 September, 2021

Simulation Events Window

The Simulation Events window ('Simulate > Dynamic
Simulation > Events') provides tools to manage and execute
triggers. Triggers are used to control the execution of
StateMachine transitions.

(c) Sparx Systems 2021 Page 493 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Allocations and other Relationships

A fundamental aspect or discipline in Systems Engineering
is to relate structural elements with behavioral elements.
These two important aspects of a model will become
intertwined as a model develops, but when a number of
engineers start work to define the system it is often difficult
to say exactly how the behavior and the structure will be
related. The Allocation relationship is particularly useful in
these situations. It can be used as a way of showing the
relationship between behavioral elements and structural
elements that will inform the more rigorous modeling that
will be employed as the notions described in the model
become more certain.

bdd [package] Structure [Signal Analysis Allocation Relationship]

«block»
Signal Analyser Unit

ports
 initialise

«activity»
Analyze Signal

(from Earthquake Analyzer)

«allocate»

Enterprise Architect also supports a number of other ways
of representing the Allocation relationship, including as a
compartment in either the behavior or structure element.

(c) Sparx Systems 2021 Page 494 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

act [package] Structure [Signal Analysis Allocation Compartment]

«activity»
Analyze Signal

allocatedTo
«block» Signal Analyser Unit

(from Earthquake Analyzer)

Any element that allows compartments can be configured to
hide or show any number of available compartments. The
list of compartments is specific to an element and is
dynamic, meaning that a compartment will only be visible if
the element participates in one or more relationships of the
specified type and the relationship is not visible on the
containing diagram. The same options can be used to
display a range of other structural or semantic aspects of the
elements as shown here.

It is also possible to show the relationship in a callout
notation, where a note is connected to the element and
displays the name of the relationship and the details of the

(c) Sparx Systems 2021 Page 495 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

related element. This diagram shows the notation for an
Activity, showing the Block that it has been allocated to. To
achieve this an engineer must:

Ensure the relationship is displayed in the diagram.1.

Select the relationship and display the context menu.2.

Choose the 'Create Linked Note' option.3.

This callout notation can be used with any type of SysML
element or relationship, and is a useful way of displaying
the relationship for some types of audiences.

act [package] Structure [Signal Analysis Allocation Callout]

«activity»
Analyze Signal

(from Earthquake Analyzer)

allocatedTo
«block» Signal Analyser Unit

(c) Sparx Systems 2021 Page 496 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Modeling Change with StateMachines

Our world is in constant flux as 'things' change or evolve,
passing from one state to another. Water freezes, glaciers
deform and flow, ice melts, traffic lights cycle between
green, amber and red, aircraft take off, climb, cruise,
descend and land. The SysML StateMachine is used to
describe how structure, in the form of Blocks, changes its
state in a time-boxed life cycle. Our concern is not with the
structure of the Block Instance but its behavior, which can
in turn impact its structure. We are not interested in every
single state a 'thing' can be in but rather the significant
states. So the important states for water molecules could be
a solid, liquid or gas but we are not normally interested in
liquid water at a temperature of 67 degrees Centigrade. If
we were looking at a movie reel of an object's life time, a
StateMachine would pick out the significant frames where
important and relevant changes occurred.

Deciding what is relevant is the prerogative and privilege of
the modeling engineer, and the same Block could have any
number of StateMachines defined by the same or different
engineers. An aircraft's state could be modeled from the
perspective of passenger embarkation and disembarkation,
from the perspective of its maintenance schedule, from the
perspective of lift, or any number of other perspectives.

This StateMachine diagram describes the operational
states of an SUV motor vehicle. The diagram uses
Composite States, which nest States inside other States.

(c) Sparx Systems 2021 Page 497 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

There are three high level States - Off, Operate, and the
unnamed End State. The Operate State has a number of
sub-states, namely Idle, Accelerating/Cruising and Braking.
Together with the transitions this describes the states of the
vehicle as it Starts, Accelerates, Breaks, Stops and finally
when the ignition is turned off.

stm HSUVOperationalStates

Off

Operate

Idle

Accelerating/Cruising Braking

Nominal states only

Refines
<<Requirement>>
Power Source ManagementkeyOff

engageBrake

start

stoppedaccelerate

releaseBrake

shutOff

Using Enterprise Architect an engineer can create
StateMachines and define the transitions from one state to
another, including Events that trigger state change and
Actions that are fired. In addition to these standard modeling
representations, the tool has a range of powerful features
that can help to visualize and reason about this important
linguistic mechanism that ties structure and behavior
together. One of these facilities - which we will look at in
this topic - is Executable StateMachines, available from the
Simulate ribbon.

(c) Sparx Systems 2021 Page 498 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

StateMachines can be defined at any level of granularity as
they are an expression of a Block's behavior. Many
newcomers to SysML are confused about this point.
Because a Block can represent something very simple - such
as a switch on a submarine control panel - or something
complex like the submarine itself, so too can a StateMachine
represent the states of both the switch and the submarine.
The two StateMachine models could have the same
complexity, even though the things being modeled are
themselves clearly at either end of the spectrum when it
comes to complexity.

StateMachine diagrams can appear quite simplistic to the
inexperienced modeler, but they are powerful tools for the
description and analysis of complex problems that cannot be
solved in other ways. It takes a different mindset and
approach, and often the kernel of the problem is focused on
the selection of the level of Block, its context and the
perspective for the StateMachine, rather than the details of
the diagram. Often the best results are achieved heuristically
by a number of engineers working together. This can be
accomplished using Enterprise Architect's powerful
collaboration features, allowing engineers dispersed
geographically to communicate within the model, either by
mail, discussions, chats and formal reviews via the desktop
client, or in a Browser on a Smart Phone, Tablet or
Notebook.

(c) Sparx Systems 2021 Page 499 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The StateMachine has its origin in discrete event-driven
Behaviors, using a finite StateMachine based on an
object-oriented variant of David Harel’s StateCharts
formalism.

(c) Sparx Systems 2021 Page 500 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

States and Behaviors

A State is created within the context of a StateMachine and
is used to model the engineer-defined significant condition
of the owning Block. It is important to remember that the
StateMachine is describing the lifetime of the Block from a
particular perspective, and the States must be defined from
this point of view - not all States, but the significant ones
such as On/Off, Open/Closed, Green/Amber/Red or
Ice/Water/Vapor. Formally, a State models a situation in the
execution of a StateMachine Behavior where some invariant
condition holds for a particular duration.

A Block typically spends some time in a given State, which
might last nanoseconds or days depending on the context;
this temporal aspect is not typically codified in the models
but can be set in a simulation. There are three behaviors
(called Actions) that can be defined with respect to any
given State:

Entry - Fired when a State is entered·

Do - Fired after the Entry behavior and before the Exit·

behavior

Exit - Fired before the State is exited·

This diagram shows how these States are represented in a
StateMachine diagram. Enterprise Architect can
conditionally display these and other compartments at the
level of an individual element, or collectively for all
elements on the diagram.

(c) Sparx Systems 2021 Page 501 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

It is also important to note that the Final node is formally
also a State, but it does not have the same semantics of
behavior as the States represented on diagrams as rectangles
with rounded corners.

There are three fundamental types of State, each of which is
important for modeling a different class of problem:

Simple State - does not contain internal States·

Composite State - contains a least one region that owns·

States

Submachine State - represents an entire StateMachine that·

is nested within the owning State

Enterprise Architect allows you to model each of these State
types, and a modeler can use them productively in
StateMachine diagrams to express real world engineering
problems and solutions.

(c) Sparx Systems 2021 Page 502 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Introducing StateMachine Diagrams

The StateMachine diagram is one of the nine core SysML
diagram types; it is used to create and visualize the behavior
of Blocks as they change states. The key elements on the
diagram are States, Transitions and Pseudostates. The States
represent the significant time in the lifetime of the Block
from a particular perspective, the Transitions represent the
movement from one State to another and the Pseudostates,
as we will see, act as traffic controllers that influence the
way that transitions work.

Enterprise Architect helps a modeler to create any number
of StateMachine diagrams, and each diagram can have any
number of States, Transitions and Pseudostates. Each of
these diagram elements and connectors can in turn have
other information added that will embellish the diagrams
with more detail. The application has a powerful pattern
library productivity tool that is very useful for newcomers
and welcome equally to experience modelers. This screen
capture shows the list of model patterns that can be used to
create StateMachine diagrams.

(c) Sparx Systems 2021 Page 503 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The pattern can be used to create a number of different
StateMachines; in this example we create a simple (single
region) diagram that has all the appropriate detail added to
the States and the Transitions. A modeler can create this
diagram in the appropriate location in the repository and
then edit the States and Transitions and diagram to make it
suit their own modeling context. The initial StateMachine
diagram created from the pattern will resemble this:

stm [package] Simple StateMachine [Simple State Machine]

Initial

State A

entry / Action A(typeOne)
do / Action B
exit / Action C

State B

entry / Action A(typeOne)
do / Action B
exit / Action C

State C

entry / Action A(typeOne)
do / Action B
exit / Action C

Final

Trigger Three [Guard Three]
/Effect Three

Trigger Two [Guard
Two] /Effect Two

Trigger One [Guard
One] /Effect One

Trigger Four [Guard Four]
/Effect Four

This powerful feature prompts engineers to complete details
such as the Trigger and Guard conditions on a Transition, or
the Entry and Exit actions on a State, that they might not
otherwise have been aware of - the result being diagrams
that are aligned with best engineering practice, producing
better outcomes for customers.

Creating StateMachine Diagrams

A StateMachine diagram can be created from a number of
places in the User Interface by using the:

Design ribbon - 'Add' Icon on the 'Diagram' panel·

(c) Sparx Systems 2021 Page 504 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Browser window toolbar - 'New Diagram' icon·

Browser window context menu - 'Add Diagram' option·

We will use the Design ribbon to create a StateMachine
diagram. Firstly you select the location in the Browser
window where you want the StateMachine diagram to be
located. As with all diagrams, this can be either a Package
or an element, but it is common to insert StateMachine
diagrams into an element such as a Block to describe the
important phases in a Block's lifetime. Once the location has
been selected in the Browser window then select:

 Ribbon: Design > Diagram > Add

Selecting this option will open the New Diagram dialog,
allowing you to name the diagram; the name will default to
the name of the Package or element that contains the
diagram, but you can change it. With the SysML perspective
chosen and the version of SysML selected, a list of diagrams
will be displayed from which you can select the
StateMachine diagram. Once the OK button is selected a
new StateMachine diagram will be created in the location
selected in the Browser. The diagram canvas will be opened,
allowing you to start adding elements and connectors that
describe the important phases in the lifetime of the subject.
Enterprise Architect will also display the StateMachine
pages of the Diagram Toolbox, which contain the elements

(c) Sparx Systems 2021 Page 505 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

and relationships defined by the SysML specification to be
applicable for constructing StateMachine diagrams. Any
number of other Toolbox pages can be opened if required, in
addition to the Common (Elements) and Common
Relationships pages that are always available.

The most important elements and connectors used with the
StateMachine diagram are:

Elements

State - defines a significant phase in an entity's lifetime·

StateMachine - defines a set of States·

Initial - defines the entry point to a Region·

Final - defines the last State an entity will have·

History - acts a memento or bookmark when a State is·

exited and re-entered

Connectors

(c) Sparx Systems 2021 Page 506 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Transition - represents the movement from one State to·

another

Elements can be added to the diagram by
dragging-and-dropping them from the Toolbox pages onto
the diagram canvas. It is considered good practice to start
with an Initial and one or more Final State elements, which
should be named appropriately to describe the way the
StateMachine starts and the potentially multiple ways it
might finish. Leaving the name blank or giving it a name
that is hackneyed such as 'starts' or 'end' will not help to
make it clear to the reader what system or part of a system is
being modeled, and can lead to misinterpretation of the
diagram. With these nodes added and appropriately placed
in the diagram, States and Transitions can be added, thus
defining the important phases in the lifetime of the entity
being modeled.

Once a basic diagram has been created, and as knowledge of
the domain and the system's behaviors is further developed,

(c) Sparx Systems 2021 Page 507 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

it is possible to add Triggers, Events and Guards to the
Transitions, and Entry, Do and Exit behaviors to the States.
The newcomer can often perceive these diagrams to be
trivial, but they can reveal profound insights that would not
otherwise be possible to see.

(c) Sparx Systems 2021 Page 508 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Triggers and Transitions

The majority of connectors that you see on a StateMachine
Diagram will be Transitions; these are the lines that connect
one State to another, indicating the allowable ways the
owning Block (instance) can change. The order in which
they change and the behaviors that are executed will depend
on the conditions and real world context of the Block. For
example, a traffic light might flash amber until the
maintenance engineer has rectified a fault, or an aircraft
might maintain a holding pattern until the Control Tower at
the destination airport gives landing clearance. This diagram
shows two transitions that are directed in different
directions, effectively creating the possibility of a cycle
between the two States.

The transitions always originate from one State and target
another, including the special case of a self-transition where
the origin and the target are one and the same. The lines in
the diagram have a label that can display a number of
different options: Trigger, Guard and Effect. We will
discuss these options in detail because they express
important semantics about the transitions, including whether
the transition will be executed at all. A transition can be in
three conditions:

(c) Sparx Systems 2021 Page 509 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Reached - the originating State (or Vertex) is active and·

ready to complete its behaviors

Traversed - the transition is being executed (including any·

defined effect behaviors)

Completed - the target state has been reached and is ready·

to execute entry behaviors

These terms will be useful to system engineers and others
when working collaboratively, discussing the execution of a
StateMachine and its description of the behavior of the
owning Block.

Triggers

Triggers are the initiators of a transition and are mapped to
events that are said to trigger event occurrences. It is these
triggers and their related events that result in a transition
executing (firing) and the owning Block moving from one
state to another. When a state is active it is effectively
waiting to be triggered by an event, and as long as its entry
action is completed - regardless of any other factors - it is
ready to receive and respond to events.

This screen capture demonstrates how the Trigger, Guard
and Effect can be entered and viewed in Enterprise
Architect.

(c) Sparx Systems 2021 Page 510 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

This diagram illustrates the way the Trigger, Guard and
Effect are displayed on a diagram. The Effect in this case
has been defined as a behavior and has been linked to an
Operation defined on the Block.

Trigger

State Operating

S0

Locked

S1

Security Code
Red

E0
[Boom at Rest]

S1

<None> E1

Guards

Guards are the 'gate keepers' of a transition and it is only
when the guard's expression evaluates to True that the

(c) Sparx Systems 2021 Page 511 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

transition will fire. If the expression evaluates to false the
event will be consumed and there will be no observable
change in the Block's state resulting from the trigger.

A guard's expression can be defined in plain English, but
typically it is written in the form of a constraint using a
formal constraint language such as the Object Constraint
Language. When working with simulations or Executable
StateMachines the condition is expressed in the syntax of
the code language that it is to be generated in, for example
JavaScript or C++. This also applies to Effects. In this
diagram we can see a mathematical expression that can be
evaluated by a human or a machine.

Effects

Apart from moving the owning Block from one state to
another, the significance of the Transition relationship is
that it can execute a behavior that could be an Activity or an
Operation on the Owning Block or on any other Block. This
behavior is in addition to the Exit behavior that might have
been defined on the source State, and the Entry behavior on
the target state. This ensures that there is a mechanism to
change the behavior during the execution of the Transition.

(c) Sparx Systems 2021 Page 512 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Bezier Curves

Enterprise Architect has a wide range of tools and facilities
for working with diagrams, including StateMachine
diagrams, and these can be used to help create and visualize
the information codified in the StateMachines. Particularly
useful when working with Transitions is the ability to route
connectors that help make the diagram more appealing. The
line style for the connector in this diagram has been set to a
Bezier Curve, giving the Transition a less rigid appearance.

The shape of the curve can be altered by dragging the
construction point to a new location. Any one of a number
of line styles can be used, providing the modeler with a
toolkit of options for diagram presentation. This context
menu can be selected and the line style set for each

(c) Sparx Systems 2021 Page 513 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

connector individually. The color and thickness of the line
can also be set from the Layout ribbon.

(c) Sparx Systems 2021 Page 514 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Composite States and Regions

The modeling of states has to be hierarchical to deal with
the complexity of engineering systems; the SysML provides
two mechanism for modeling this hierarchy in a
StateMachine:

Regions - which are separate parts of a StateMachine·

Composite States - which are States that contain other·

States

Systems and the objects they contain often exhibit
concurrent behavior where two things can be occur at the
same time; often these separate behaviors interact with each
other to create complex state-based behavior. These
behaviors are typically represented in the Block that the
StateMachine is describing and might involve parts that
have differing lifetimes. These situations can be modeled
using regions; a StateMachine can contain any number of
regions, each with its own set of States, Pseudostates and the
transitions that connect them.

A State itself might need to be hierarchical where a single
State can be decomposed into a number of sub-States
representing the states that form part of the composite State.
For example a Robot might have Operating and
Maintenance States; the Maintenance State could be
decomposed into a number of sub-states such as Recharging
Battery, Updating Environment and Updating Software
Modules. Each of these States could in turn be decomposed
into a number of other States.

(c) Sparx Systems 2021 Page 515 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Enterprise Architect provides a useful starting point for
modeling complex state behavior, by providing a series of
model patterns that can be used to model all aspects of
StateMachines, including modeling Composite States and
Regions.

Composite States are indicated by the oo ('infinity') symbol
and reference a child diagram. The child diagram can be
viewed by clicking on the eye icon or by double-clicking on
the element.

These patterns can be accessed using the Model Wizard
(Ctrl+Shift+M).

This image shows a diagram that has been created from the
State with Regions pattern, which has been simply injected
into the model and that acts as a starting point for the

(c) Sparx Systems 2021 Page 516 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

modeler. The modeler can elaborate the diagram by
replacing the names of States and Transitions and adding or
deleting regions as required.

stm [package] State with Regions [State with Regions]

Initial

State A

entry / Action A(typeOne)
do / Action B
exit / Action C

Final

State B

[Region One]

[Region Two]

State B.3

entry / Action A(typeOne)
do / Action B
exit / Action C

State B.4

entry / Action A(typeOne)
do / Action B
exit / Action C

State B.1

entry / Action A(typeOne)
do / Action B
exit / Action C

State B.2

entry / Action A(typeOne)
do / Action B
exit / Action CInitial

Initial

Trigger Four [Guard Four]
/Effect Four

Trigger Six [Guard Six] /Effect
Six

Trigger Two [Guard Two] /Effect
Two

Trigger One [Guard One] /Effect
One

Trigger Three [Guard Three]
/Effect Three

Trigger Five [Guard Five]
/Effect Five

The regions in State B provide a parallel flow of processes
in Region One and Region Two.

(c) Sparx Systems 2021 Page 517 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Pseudostates - The Traffic Police

The Transition relationships that connect States in a
StateMachine diagram need to be orchestrated to ensure
that the StateMachine is representative of the freedoms that
a Block has to change its state in the physical world.
Pseudostates are nodes that are used to direct the flow along
transitions. The nodes can appear at the beginning, along the
path of a transition or at the end. Types of pseudostate
include:

Initial - used to initiate a StateMachine·

Fork and Join - used to split and reunite a Transition·

Terminate - used to end a StateMachine·

Join - used to reunite a number of Transitions·

Junction - used to split a Transition·

Entry and Exit Point - used on the boundary of a·

SubMachine State

Deep and Shallow History - used as mementoes when a·

composite State is exited

We will look at each in a little more detail and show how
Enterprise Architect can be used to create and manage these
important nodes. it is important to understand that the Final
State - which has an analogous icon to the Initial
pseudostate - is in fact a State in its own right.

Initial

(c) Sparx Systems 2021 Page 518 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The Initial pseudostate is the most widely used of all the
nodes and represents the stating point for a region. There
can only be one Initial in a region and a single transition is
permitted to emerge from the Initial pseudostate. Because it
is the starting point it would not make sense to have a
trigger or a guard - the pseudostate simply becomes active
when the region is entered, a modeler can however define an
effect. Some system engineers will leave this all-important
pseudostate off diagrams, reasoning that its position is
implied, but it is considered good practice to include them
as formally the starting point is undefined without them. It
is, however, common practice to leave the Initial
pseudostate unnamed.

Enterprise Architect will also rely on the StateMachines
being well formed, and that each region has an initial
pseudostate defined, when a modeler is working with
Executable StateMachines or running simulations to
visualize the States a Block instance will transition through
in its lifetime.

Fork and Join

When Regions are used in StateMachine diagrams, it often
necessary to split a transition that targets the State into
multiple transitions such that each outgoing transition
targets a given State in each orthogonal Region. The
outgoing transitions from a Fork pseudostate are restricted

(c) Sparx Systems 2021 Page 519 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

and cannot have a guard or a trigger defined but an Effect
can be defined. This ensures that multiple regions can
simultaneously have active states.

stm [block] Smart Phone [Smart Phone]

Stream Recording

[Streaming]

[Recording]

Initializing Streaming

Finding Media Writing

Stream
Ended

Recording
Complete

Joins work in an analogous but opposite way to unite
incoming transitions from multiple regions. The reverse
restriction applies such that the incoming transitions cannot
have a guard or a trigger defined but an Effect can be
defined. The Effects for all incoming transitions must be
completed before the outgoing transition can fire.

Terminate

The Terminate pseudostate is a useful node to ensure that an
entire StateMachine is shut down. Regardless of what level
in a State hierarchy the node is located, all regions and all

(c) Sparx Systems 2021 Page 520 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

levels of the hierarchy will terminate. It is a final node in the
sense that the owning StateMachine will immediately stop
executing. The termination is not 'graceful' and any
behaviors that are currently being executed will simply stop;
no exit behaviors will be executed. This diagram shows a
Composite State with a single region; if there is a Pressure
Leak the operation of the Autoclave must be immediately
terminated, so there is a transition from the operating state
to the Cycle Aborted Terminate pseudostate.

stm [block] Medical Autoclave [Medical Autoclave]

Idle

Operating

ShutdownCycle Aborted

Ready

Purge Pre-Vacuum

SterilizationCool Down

Cycle
Complete

Pressure Leak

Enterprise Architect allows this node to be placed at any
level and in any region and will honor its semantics in
Executable StateMachine simulations.

(c) Sparx Systems 2021 Page 521 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Junction

The junction pseudostate is used to model transitions with
compound paths There are both inbound and outbound
transitions that are connected to a junction, but during the
execution of the StateMachine only one of the inbound and
one of the outbound transitions will fire. The outbound
transitions are protected by guards and only the transition
with a guard whose expression first evaluates to Boolean
true will fire and carry the outgoing token.

Entry and Exit Point

The Entry point and Exit point pseudostates are used to
allow a StateMachine to be reused as a sub-machine State in
multiple contexts; they can also be used on a composite
State. These pseudostates appear as small circles that
straddle the boundary of a composite State or a sub-machine
State; the entry point is empty whereas the exit point has a
small x inside the circle.

Their position on the boundary is significant because, from a
visual syntax point of view, they allow messages between
the inside and outside of the element to be conveyed.

(c) Sparx Systems 2021 Page 522 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Deep and Shallow History

The History pseudostate is like a bookmark or memento for
a Composite State, and simply stores the name of the
sub-state that was active when the region was exited. When
the region is subsequently re-entered, the StateMachine
resumes its transitions from the sub-state specified by the
History. It is possible that for some reason a region could be
re-entered and the History is unable to provide the last State;
this situation can be handled by a modeler pre-emptively
creating a Transition from the History pseudostate to a
target default sub-State; the Transition would only be used
in the event that the History was unable to provide the
memento.

In this example of a Tubular Centrifuge, a System Engineer
has placed a Shallow History State in the operating
Composite State, indicating that if that start is exited while a
given State is active, and then the State is subsequently
re-entered, the execution will resume at the active sub-state.
The transition exiting the History indicates, in the event that
the owning State is re-entered and the machine did not know
which State to make active, Rinsing would be selected.

(c) Sparx Systems 2021 Page 523 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

State

Next State

Initial

S0

Idle

S1

Operating

S2

Initial

S3

Loading

S4

Separating

S5

Draining Liquid

S6

Concentrating
Discharge

S7

Cleaning

S8

Rinsing

S9

History

S10

Shutdown

S11

Initial S0

Idle S1

Operating

S2

Initial S3

Loading S4

Separating S5

Draining Liquid S6

Concentrating
Discharge

S7

Cleaning S8

Rinsing S9

History S10

Shutdown S11

Both Shallow and Deep History States work the same way
except that a Shallow History pseudostate only remembers
the active sub-states in the owning Region, a Deep History
can remember down to any level in a sub-state hierarchy.
The Deep History is indicated visually by an asterisk placed
after the H*.

(c) Sparx Systems 2021 Page 524 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

State Tables another View

A StateMachine can be visualized in a number of different
ways. We have already looked at a diagram view of the
StateMachine, but Enterprise Architect has a powerful tool
that allows the StateMachine to be visualized in a table.
There are three variants of the table visualization:

State Next State View - where the States and Sub-States·

are organized as rows and columns and the cells represent
the Transitions

State Trigger View - where the triggers are organized as·

columns and the states as rows and the cells represent the
Transitions

Trigger State View - where the triggers are organized as·

rows and the triggers as columns and the cells represent
the Transitions.

This diagram of the changes of a traffic light, like any
StateMachine diagram, can be converted to a State Table.

(c) Sparx Systems 2021 Page 525 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

stm [block] Traffic Light [Traffic Light]

Red

Amber

Green

The StateMachine has explicit
values defined for the timing
these can be replaced by
variables e.g. green-wait-
time = 60

[t > 120]

[t > 123]

Green Wait [60 < t < 120]

Red Wait [0 < t < 60]

[t > 60]

Amber Wait [120 < t < 123]

This view will be appealing and more natural to some
audiences, and the engineer can simply toggle from one
view to another. The States and their Sub-States are
represented on both the rows and the columns of the table,
and the transitions (representing the pathways between
States) are represented in the cells.

(c) Sparx Systems 2021 Page 526 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The two other table views, as outlined previously, allow the
States to be viewed against the Triggers that initiate them.
These are powerful views when the engineer is more
interested in the causal analysis and wants to view or
analyze how events and triggers result in State behavior of
the owning Block. This diagram shows the same Traffic
Light machine represented as a table of triggers and States.

Enterprise Architect also allows these tables to be exported
so that they can be analyzed using a spreadsheet. This is a
useful mechanism, particularly when the StateMachine is
complex and there are large numbers of transitions.

(c) Sparx Systems 2021 Page 527 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

(c) Sparx Systems 2021 Page 528 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Visualizing and Implementing with
Simulations

Enterprise Architect is not only a platform for creating and
managing StateMachine diagrams, it also provides
sophisticated Simulation facilities for engineers and other
stakeholders to visualize the StateMachines. This brings the
models to life and provides a visualization tool not only for
the Engineer who is developing the models but also for the
other audiences, both technical and non-technical, who need
to understand what the model is saying. It is somewhat like
an author reading a newly written passage of text out aloud,
and it can help the engineer find errors in the models or
aspects of the models that need to be corrected or reworked.
It is particularly useful as the models become more
complex, with nested sub-states, complex Triggers and
Guards, and pseudostates such as Forks and Joins that split
and reunite transitions.

With extensive support for Triggers, Trigger Sets, nested
States, concurrent States, dynamic effects and other
advanced simulation capabilities, the feature provides a
sophisticated environment in which to build interactive and
working models that help explore, test and visually trace
complex business, software and system behavior. There is a
ribbon dedicated to simulation, which provides a range of
items that can be used for both dynamic and executable
simulations of StateMachines. This image shows the core
tools for working with dynamic simulations.

(c) Sparx Systems 2021 Page 529 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The second image shows the other powerful tools, including
the Executable StateMachine, that can be used to create
executions of the StateMachine to produce fully
implementable and compilable programming code directly
from the simulated StateMachines. The image also shows a
number of other facilities, including Modelica which - as we
will see in a later topic - is a sophisticated tool for running
complex parametric simulations.

This diagram shows a simple dynamic simulation of the
traffic light system that we looked at in the previous
exercise. It shows the dynamic simulation in action.

(c) Sparx Systems 2021 Page 530 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

(c) Sparx Systems 2021 Page 531 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Interactions as a Sequence of
Messages

Systems are made up of parts and the overall behavior of a
system is provided by these parts working together in an
orchestrated way. Communication between the parts and the
synchronization of their behaviors is critical, both from a
design perspective and from a visualization perspective. The
structural units of a system, represented primarily by the
Blocks, exchange messages and signals that trigger
behaviors, resulting in coordinated system behavior that
represents the system's functions.

driver: Driver

vehicleInContext:
HybridSUV

ref
Start Vehicle White Box

1.0
StartVehicle()

This exchange of messages and signals, and the consequent
behaviors, can be represented on a Sequence diagram that
shows the time-sequenced messages and signals between

(c) Sparx Systems 2021 Page 532 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Block instances that participate in a specific interaction.

(c) Sparx Systems 2021 Page 533 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Lifelines, Messages and Activations

In a Sequence diagram, the Blocks that participate in the
interaction have a lifetime that is represented by a dashed
line, emanating from the base of the element and continuing
vertically for the life of the element. Elements can be
created or destroyed at any time during the period
represented by the Sequence diagram, and the lifeline
therefore represents their existence. Elements that are
present at the top of the diagram are created at the beginning
of the interaction. A message exchange between a sender
and a receiver will originate in one lifeline (the sender) and
end in another (the receiver).

The sender is effectively calling or activating some behavior
provided by the receiving lifeline. Enterprise Architect
provides useful mechanisms to utilize behaviors already
defined in the form of operations. This illustration shows the
properties of an existing message, which the modeler is able
to select from a drop down list of previously defined
operations. Alternatively, the modeler can define a new

(c) Sparx Systems 2021 Page 534 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

operation by selecting the Operations button.

Formally, when a message targets a lifeline an execution
occurs, meaning that a behavior is initiated or augmented.
This execution is represented visually by an activation,
which is drawn on the diagram as a thin rectangular overlay
on the lifeline, the length of which represents the relative
duration of the behavior. The extent of the rectangle
activation is ended when a reply message is sent back to the
caller.

(c) Sparx Systems 2021 Page 535 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

A Block (Instance) can be both the sender and the receiver
of a message, which can be referred to as a reflexive
message because it starts and ends on the same lifeline. In
this case a second and shorter activation rectangle is
overlaid on the first activation but offset to the right.

Messages that Create and Destroy Blocks

Any number of Block Instances can form part of an
interaction, and often a set of these instances will be present
for the duration of the time represented by the Sequence
diagram. These Blocks will be positioned in a row across
the top of the diagram. It is, however, possible for Blocks to
be created and destroyed during the sequence of the
diagram. For example, a particular Block might only be
needed for a short time and so could be instantiated, perform
its function and then be destroyed. Enterprise Architect
allows an Engineer to specify that a message is a Create
message, which means that the receiving Block will be
instantiated at that point in the diagram's time sequence.
This is achieved by setting the Life Cycle message action to
'New' as indicated in this illustration.

(c) Sparx Systems 2021 Page 536 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Setting this property has the effect of moving the targeted
Block to a position lower in the diagram, signifying that the
Block Instance would not be created until this point in the
overall time sequence of the diagram. The message line
style is also altered to a dashed line with an open
arrow-head to reflect that it is a Create message. Other
aspects of the semantics and effect of this message are
unchanged.

In an analogous way the lifetime of an Instance can be
ended by sending a Destroy message. Practically, this means
that the Instance has served its purpose and is no longer
required. This can be achieved easily by once again setting a
message property but this time we set the Life Cycle
message action to 'Delete'.

(c) Sparx Systems 2021 Page 537 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Setting this property has the effect of immediately
terminating the lifetime of the Instance; this is represented
visually by the dashed lifeline being arrested by a small
cross on the lifeline at the point in time that the message
arrives.

When a Sequence diagram is representing a software system
that has bounded memory available, the destruction of the
targeted instance will result in allocated memory being
returned to the memory pool. In systems engineering there
can be a variety of other pay-offs from managing the
lifetime of electro-mechanical objects, such as power
consumption, over-heating, availability, or even risks such
as security.

(c) Sparx Systems 2021 Page 538 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Synchonous and Asynchronous Messages

Messages essentially represent sending some type of request
from a sender to a receiver. There are two fundamental ways
the sender of a message can interact with the recipient. The
first type of message is called a Synchronous message
because the messages occur at approximately the same point
in time. With this type of message the sender waits until the
recipient replies before sending additional messages. The
second type of message is called Asynchronous because the
sender does not wait for a reply from the recipient before
continuing on with the execution, including sending
additional messages to this or other recipients.

Enterprise Architect by default creates Synchronous
messages, but the message type can be altered by setting the
'Synch type' property on the 'Properties' dialog. When the
message type is set to Synchronous (default) this sets the
line style to solid with a closed arrow head pointing to the
recipient Instance. The line can be annotated with the name
and parameters of the message.

Asynchronous messages represent calls to operations, or
signals that are sent to recipients; in either case the sender

(c) Sparx Systems 2021 Page 539 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

does not expect a reply nor pause its execution in wait of
one. In the case of the call to an operation, the operation
itself would be defined as asynchronous and the system or
machine represented by the diagram would know not to wait
for a message return (reply). Enterprise Architect allows this
message type to be set through the 'Synch' property as
explained previously. When the message type is set to
Asynchronous this sets the line style to dashed with an open
arrow head pointing to the recipient Instance. The line can
be annotated with the name and parameters of the message.

There is a third type of message that can optionally be used
with a Synchronous message, this being the Reply Message.
This message signifies an operation that has been invoked
on the recipient returning a receipt that the behavior has
been executed and is complete. The inclusion of Reply
messages in a diagram is a stylistic decision. Some
engineers and modelers prefer to leave them off diagrams to
reduce the visual clutter. If a return type and value have
been set, this will be returned as part of the Reply message.

(c) Sparx Systems 2021 Page 540 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Blocks can have both Operations and Receptions specified
as part of their definition; this paradigm describes the
relationship of Operations and Receptions to messages and
signals.

Synchronous Invocation of Operation - Synchronous·

Message

Asynchronous Invocation of Operation - Asynchronous·

Message

Reception Receipt of Signal - Asynchronous Message·

(c) Sparx Systems 2021 Page 541 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Introducing the Sequence Diagram

The Sequence diagram has its origins in the Unified
Modeling Language, and in that language has primarily
been used to represent interactions between components in
software centric systems. Its usage has been broadened in
the context of Systems Engineering, where it is used in a
more generic way to represent the time-sequenced exchange
of messages and signals between structural units of a system
or part of a system.

The Sequence diagram has two axes; by convention the
horizontal (x) axis represents the Block (Instances) that
participate in the interaction and the vertical (y) axis
represents time. The Blocks do not have to be ordered in any
prescribed way, but a modeler will typically place them in
the order that is most illustrative and that order is often
based on when they are used in the interaction. Time does
not run on a linear scale and the time scale between any two
diagrams could be quite different. For example, the time
scale on Sequence diagram representing a high speed
photographic system would be very different to the scale on
a diagram representing a grocery checkout machine. This
diagram shows the location of two Sequence diagrams
('Start Vehicle Black Box' and 'Start Vehicle White Box')
that are child nodes of a Use Case named 'Start the Vehicle'.

(c) Sparx Systems 2021 Page 542 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The tree structure acts as a navigation aid, and by
double-clicking the item in the Browser window you would
open the diagram from this view.

ecu: PowerControlUnit epc: ElectricalPowerController

1.2 Ready()

1.1 Enable()

1.0 StartVehicle()

(c) Sparx Systems 2021 Page 543 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

In the second diagram we see a simple Sequence diagram
that represents the sequence of messages involved in starting
a vehicle. It can be seen from the diagram that there are two
Blocks (Instances) that form part of the interaction, and
messages are exchanged between the two Blocks and the
initiator of the interaction, and ultimately the Use Case.

Creating Sequence Diagrams

A Sequence diagram can be created from a number of places
in the User Interface by using:

Design ribbon - Add Icon on the Diagram Panel·

Browser window Toolbar - New Diagram Icon·

Browser window Context Menu - Add Diagram·

We will use the Design ribbon to create a Sequence
diagram. Firstly you will need to select the location in the
Browser window where you want the Sequence diagram to
be located. As with all diagrams, this can be either a
Package or an element, but it is common to add Sequence
diagrams to a package as it typically involves a number of
objects in the package. Once the Package location has been
selected in the Browser window, select:

Ribbon: Design > Diagram > Add

(c) Sparx Systems 2021 Page 544 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Selecting this option will open the New Diagram dialog
allowing you to name the diagram; initially the name will
default to the name of the Package or element that contains
the diagram. With the SysML perspective chosen and the
version of SysML selected a list of diagrams will be
displayed allowing the selection of the Sequence diagram.
Once the OK button is selected a new Sequence diagram
will be created in the location selected in the Browser
window. The diagram canvas will be opened allowing you
to start adding elements and connectors that describe the
important interactions between objects. Enterprise Architect
will also display the Sequence diagram toolbox that contains
the elements and relationships defined by the SysML
specification as applicable for constructing Sequence
diagrams. Any number of other toolboxes can be opened if
required in addition to the Common Elements and Common
Relationships toolbars that will always be available.

The most import elements and connectors used with the

(c) Sparx Systems 2021 Page 545 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Sequence diagram are:

Elements

Interaction·

Sequence·

Fragment·

Endpoint·

Diagram Gate·

State/Continuation·

Connectors

Message·

Self Message·

Recursion·

Call from Recursion·

(c) Sparx Systems 2021 Page 546 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Elements can be added to the diagram by
dragging-and-dropping them from the Browser or from the
toolbox onto the diagram canvas. The typical process is to
reuse existing elements such as Blocks that have behaviors
in the form of operations which can be selected as the basis
for the messages that are exchanged between lifelines. The
elements can be added to the diagram as a link but more
typically they are added as a lifeline.

Once a basic diagram has been created, and as knowledge of
the domain and the system's interactions are further
revealed, it is possible to add Fragments, Endpoints,
Diagram Gates and State/Continuation elements.

(c) Sparx Systems 2021 Page 547 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Message Orchestration with
Fragments

Many systems are inherently complex and while simple
Sequence diagrams are useful for conveying an overall
picture of a piece of software or an electro-mechanical
device they need to be augmented to allow sophisticated
models of these more complex systems to be created. One of
the options for modeling complexity in message flows is the
Combined Fragment. These can be used to sequence
messages differently, including being able to select
particular messages in certain circumstances or to execute a
message a number of times. There is a set of combined
fragments that can be used and their operator determines the
type of fragment. Enterprise Architect supports all the
operators, allowing engineers to create diagrams that can
adequately describe the complex engineering systems being
modeled. Fragments can be added to a diagram directly
from the Interactions toolbox page and can be positioned to
overlay the appropriate group of messages.

The element placed on the diagram is a generic Fragment

(c) Sparx Systems 2021 Page 548 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

and will need to have its operator set. This can be achieved
by selecting a value for the type in the Combined Fragment
property sheet.

This will change the fragment to the appropriate type and
allow, for example with the alt type, to set any number of
alternative conditions that will determine which message
will be fired.

(c) Sparx Systems 2021 Page 549 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Visualizing with Simulations

Through the centuries, humans have expanded their
knowledge of the world through the study of mathematics
and physics and the application of systems of thought and
equations to real world problems. Using this knowledge we
have built motor cars and aircraft, sent humans to the moon,
split the atom and solved innumerable other complex
problems. This knowledge, in times of antiquity, was
transmitted by word of mouth, clay tablets and papyrus
scrolls and later scribe's laboriously created books. Then,
with the advent of the printing press the knowledge was
written down in the form of articles, journals and books and
disseminated widely. Four hundred years would pass before
the Internet arrived and much of the existing knowledge
would be transferred to online material in the form of
documents, pages and sites dedicated to these disciplines -
making it available to a vast number of people in all corners
of the globe. Now a new era has arrived where the
knowledge can be used to construct models that allow us to
visualize these equations in motion and in context, with
parametrics specific to our domain and the problems we are
trying to understand and solve.

(c) Sparx Systems 2021 Page 550 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

SysML Simulation in Modelica and
Simulink

Enterprise Architect, as a leading Systems Engineering tool,
allows models to be constructed using industry-compliant
modeling techniques and languages for the representation of
cyber-mechanical systems. These models act as devices for
communication between collaborating engineers, teams of
consultants and others, but can also be used to generate
powerful visualizations using industry-standard modeling
languages used by OpenModelica and MATLAB's Simulink.

This example shows the power of Enterprise Architect in
leveraging existing open standards to visualize solutions.
The diagram depicts two tanks connected together, and a
water source that fills the first tank. Two continuous
controllers are used to regulate the flow of water from the
first tank to the second, and the output from the second tank.

(c) Sparx Systems 2021 Page 551 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

A set of diagrams is created in Enterprise Architect that
models the physical aspects of the tanks and the equations
(written in the Modelica/MATLAB language) that
characterize the flows between the tanks. Once the
simulation has been configured and the Solve button
selected, the output resembles this diagram:

We will discuss the details of the constraint and parametric
modeling in a later section of this topic, and see how the
models that we create are simply Block Definition and
parametric diagrams that we learnt about in an earlier
section of the guide. This Parametric diagram shows an
example of the modeling for the two-tank problem, using
constraint properties and connectors that bind the
parameters into a system of equations. Other diagrams are
necessary to produce the result but this is the main diagram
that shows the mass, flows and the sensor determining the
level in the tank.

(c) Sparx Systems 2021 Page 552 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

par [block] Tank [Tank]

qIn: LiquidFlow

qOut: LiquidFlow

tSensor: ReadSignal

tActuator: ActSignal

area: Real

flowGain: Real minV: Real

h: Real

e1 : Mass_Balance
{der(h) = (x - y) / a}

e2 : SensorValue
{a=b}

e3 : Q_OutFlow
{a=LimitValue(min, max, -b*c)}

h

y

a

ab

a

c
b max min

x

maxV: Real

lflow : Real

lflow : Real

val : Real

act : Real

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal» «equal»

«equal»

(c) Sparx Systems 2021 Page 553 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

How it Works

Enterprise Architect has been built on open standards and
the product teams are ever-aware of the power and
efficiency of utilizing existing solutions and not reinventing
the wheel. The tool uses these standards to allow the
visualization to take place:

Systems Modeling Language (SysML) - managed by the·

Object Management Group (OMG)

OpenModelica - managed by the Open Source Modelica·

Consortium (OSMC)

Modelica - managed by the Modelica Association·

We have spent a deal of time in earlier topics learning about
the SysML; in fact we have already learnt most of what we
require to create the Block Definition and Parametric
examples for these visualizations. In addition we will learn
how to add some extra information that OpenModelica
needs; this will be discussed in the next section.

Modelica is an open and object-oriented language based on
equations, allowing the modeling of cyber-mechanical
systems utilizing sub-components. Like its mathematical
cousins, Modelica is a cross-domain language that has a
wide variety of applications, including in mechanical,
electrical, electronic, hydraulic, thermal, control, electric
power and process-oriented domains, to name the possible
sub-components of a Modelica model and the types of
system that can be modeled using the tool.

Enterprise Architect is capable of performing basic

(c) Sparx Systems 2021 Page 554 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

simulations for process diagrams and StateMachines, but for
modeling complex cyber-mechanical systems it makes use
of the power of OpenModelica, underpinned by the
Modelica language itself to do the heavy lifting. Enterprise
Architect allows these cyber-mechanical models to be
related to a wide range of other systems and software
engineering artifacts, including missions, stakeholder
requirements, StateMachines, programming code, Decision
Tables, architectures, trade off analysis and much more.

Enterprise Architect OpenModelica

Parametric
Model

Modelica Language

Plotter

Modelica Plot

Generated Modelica Model
Files

Modelica Plot

An overview of how it works can best be provided by way
of a simplified example. To create a simple visualization of
Newton's Second Law - 'The rate of change of momentum is
proportional to the force acting and takes place in the
direction of that force.' (F = m*a), an engineer using

(c) Sparx Systems 2021 Page 555 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Enterprise Architect will:

1. Create a Block diagram describing the equations using
Constraints and Values.

bdd [package] Force=Mass*Acceleration(1) [Force=Mass*Acceleration(1)]

«block»
FMA_Test

constraints
{f=m*a}

phs variables
 f

phs constants
 a = 9.81

properties
 m = 10

2. Configure the SysMLSim Configuration Artifact (used to
define the information needed by OpenModelica).

3. Run the Simulation by selecting the Solve button on the
window.

A chart will be plotted with f = 98.1 (which is the product of
the Mass (10) and Acceleration (9.81) expressed in the
equation [f = m * a] with the value in place 98.1 = 10 *
9.81). This is a simplistic example aimed at showing the
fundamental ingredients to create the visualization; we will

(c) Sparx Systems 2021 Page 556 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

look at more advanced examples in later sections showing
the use of Constraint Properties and User Defined Data Sets.

(c) Sparx Systems 2021 Page 557 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Getting Started with OpenModelica

An easy way to get started with OpenModelica and
Enterprise Architect's machinery to produce Parametric
simulations is to view some existing examples. This is a
useful learning device for any feature in Enterprise
Architect, but is particularly pertinent when learning the
power of OpenModelica as there are a number of new things
to learn and this is best done with some learning aids. We
will start by looking at a fully worked exemplar taken from
the Example model, which is distributed with every
installation of Enterprise Architect and is available from the
Help Item on the Start ribbon.

The example we will explore is the Pendulum example, but
firstly we need to open the example model, which we do by
selecting the ribbon option:

 Start > Help > Help > Resources > Open Example Model

The OpenModelica features are conveniently grouped in a
single location with other simulation capabilities, and can be
launched using the Modelica/Simulink menu available from
the 'System Behavior' panel of the 'Simulate' ribbon. The
OpenModelica facility keeps company with other simulation
tools such as Executable StateMachine, Decision Modeling
Notation and BPSim.

(c) Sparx Systems 2021 Page 558 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

With the model loaded we can use the OpenModelica
features within Enterprise Architect to locate the Pendulum
example in the model. It is common for a model of a
complex system to be very large, and there could be any
number of existing simulations set up, so Enterprise
Architect provides a mechanism to search for these
simulations.

Selecting this option will return a list of SysML simulation
configuration artifacts, which are the elements where the
OpenModelica details are specified. From this list we can
select the Pendulum example, which will launch a window
that can be used to configure and solve the problem codified
in the example. To be able to run the simulation, a version
of OpenModelica must be installed on the machine that is
running Enterprise Architect. Details on how to install
OpenModelica are contained in the next section.

(c) Sparx Systems 2021 Page 559 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

There are two sections to the window:

The configuration (left hand) panel defines the Value·

Types, Blocks and Constraint Properties, all of which are
defined in the repository and - as we will see later - can be
viewed in the Browser window and diagrams

The simulation (right hand) panel is used to select and·

specify options that will effect the simulation, such as the

(c) Sparx Systems 2021 Page 560 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

data-set, the wait time and duration of the simulation,
output file types and more.

The information in the window is automatically populated
from the model that is visible in the Browser window, and
the location of the elements - including Value Types, Blocks
and Constraint Properties - can be found using the 'Find in
Project Browser' option from the context menu. There is
also an analogous option to find the selected element in any
diagrams in which it appears.

(c) Sparx Systems 2021 Page 561 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Installing OpenModelica

Enterprise Architect utilizes the power of the OpenModelica
platform, so when you run a simulation from the Simulation
window it is effectively calling out to OpenModelica
(installed on the same machine) to do the heavy lifting and
return the simulation results. This ensures that Enterprise
Architect leverages the power of this open tool and all of the
brilliant minds that have contributed to its excellence. There
are both Windows and Linux version of OpenModelica and
you will need to install the one appropriate for your
environment. The steps are summarized here.

Download the OpenModelica software (Windows or1.
Linux).

Install the Software.2.

Check the Installation.3.

Configure the Solver by specifying the path in Enterprise4.
Architect.

Full details of the installation and configuration can be
found in the Interfacing with OpenModelica Help topic.

Simulation with Data Sets

Simulation forms an import aspect of engineering analysis
and provides a powerful and cost effective way of analyzing

(c) Sparx Systems 2021 Page 562 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/sysml_sim_install_openmodelica.html

Model Based Systems Engineering and SysML 2 September, 2021

a system's behavior. The system might already have been
built or it might be planned for development; either way,
simulation can be used to visualize component or system
design considerations, performance optimization, safety
engineering and much more. To provide this capability it is
important to have the ability to run a simulation using
different values for variables and constants. For example, in
our pendulum example we might want to analyze how the
system would perform on different planets, to examine, say:

The effect of terrestrial versus lunar (or other planets)·

gravitational force

The effect of different string length·

The effect of different masses·

The effect of different starting point·

Or any combination of the above·

Enterprise Architect provides a Data Set facility for
simulations that can be applied at the Block level. Using the
'Simulation' tab (right hand panel) of the SysMLSim
Configuration window we can select predefined data sets.

(c) Sparx Systems 2021 Page 563 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Any number of data sets can be defined and can be added to
the appropriate Block in the 'Configuration' (left-hand) panel
of the Simulation window. These are available as nodes
under each Block and there is an option to view and edit the
data values in a window by using the Browse [...] button on
the datasets row.

When selected, the Configure Simulation Data window
will be opened allowing values to be viewed and edited,
imported or exported. This mechanism means that the
simulation machinery can be reused in many different

(c) Sparx Systems 2021 Page 564 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

contexts, and engineering organizations that focus on
particular types of problems can create libraries of
simulations that could be reused in a multitude of contexts
and types of engineering problem. The window illustrated
here shows a data set that contains values pertaining to the
two pendulum problems we have been looking at and we
can see as an example the acceleration due to lunar gravity
has been defined as an approximation of 1.6 m/s2
approximately 16.6% of the value on the surface of the
earth. This simulation could be reused with a different data
sets applicable to Mars or Jupiter or in a more terrestrial
example with a different mass or length of string.

(c) Sparx Systems 2021 Page 565 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Creating Models for Simulation

The example that we looked at in the How it Works section
of this Guide was deliberately trivial; in this section we will
look at these steps in more detail, including options for
configuring the models. Enterprise Architect provides a lot
of flexibility and allows trivial once-off models to be
defined, or sophisticated library based multipurpose models
to be created that can be reused across multiple projects and
domains using different data sets and contexts. In this topic
we will explore some of these options for configuring the
models so that they are fit for purpose and will create the
required engineering outcomes.

Creating a Simulation Model Package

A Model Package can be set up at any location in the
Browser window, but typically it is considered best practice
to set up a Simulations Package under each project or
initiative. This could then contain sub-Packages for each
simulation. It is anticipated that for a given project there
could be a number of different simulations required. It is
also likely, as discussed in the Data-Sets section, that an
organization will want to reuse some of the simulations
across multiple projects. These simulations could be set up
in the Project Browser and defined at a supra-project level -
for example at an enterprise, organization or engineering
department level.. They could then be included in a diagram

(c) Sparx Systems 2021 Page 566 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

at the project level, indicating that they are applicable to a
given project or problem context. It is also likely that an
engineering team will want to reuse Value Types and their
concomitant Quantity and Unit Libraries between projects,
and these, as discussed in an earlier topic of the guide, are
best defined and modeled at a supra-project level.

Enterprise Architect uses the SysML Package Import
mechanism to ensure the Value Types defined at the
enterprise level can be included and reused at each
Simulation Package level. The structure would typically
contain these Packages:

Value Types (specific to this project)1.

Blocks2.

Constraint Properties3.

In the next section we will learn how to create and configure
the SysML Simulation Artifact, which is stereotyped as
<<SysMLSimConfiguration>>.

Creating the Simulation Elements

(c) Sparx Systems 2021 Page 567 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The main effort in preparing a simulation is in the definition
of the model elements, using the SySML with the
appropriate level of precision to allow the OpenModelica
platform to run the simulation. There are a number of ways
that the models can be defined, and in this Guide we will
focus on the most robust and flexible method as this is what
will be used by most practicing engineers and teams.

At this point it is worth looking before the topic of
simulation to ensure we understand its relevance and
connection to other parts of the model, and how simulation
elements might be connected to other model elements such
as Requirements, Test Cases and more. Typically,
simulations are used as a way of investigating some
cyber-physical problem without the need to construct a
time-consuming and often expensive physical model. The
simulation could be part of problem analysis, trade off
analysis, performance analysis or a number of other
investigations. The Blocks that are defined as part of the
simulation could be allocated to behavioral elements and
ultimately to Requirements.

The first elements to be created are the Blocks, which are
the fundamental structural elements of the solution. We
have learnt how to do this in a previous example; this
diagram shows a number of the compartments that have
elements, namely the properties.

(c) Sparx Systems 2021 Page 568 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

In preparation for defining the equations that define the
behavior of the pendulum system, we will define the value
types required to ensure the model is precise and check that
the simulation parameters are correctly specified. This is
done using a Block Definition diagram (bdd), using the
Value Type element available from the Diagram Toolbox.

(c) Sparx Systems 2021 Page 569 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The next step is to define the constraints using
ConstraintBlocks. These elements are where we will define
the Modelica equations that will govern the behavior of the
system being modeled - in our case, a pendulum. As
described earlier in this Guide, ConstraintBlocks are defined
on a Block Definition diagram, and have a series of
parameters defined and a constraint that expresses those
parameters in an equation written in Modelica. For example,
the equation that constrains the vertical aspect of the
pendulum is written as:

 m * der(vy) = -(y/L) * F - m * g

Notice the Modelica keywords such as 'der' signifying a first
order derivative. L is the length (parameter) of the
Pendulum, g is the acceleration due to gravity (constant), m
is the mass (parameter) of the pendulum, x and y are the
coordinates in two-dimensional space, and F is the force.

(c) Sparx Systems 2021 Page 570 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Notice that Modelica uses:

The next step is to create the Parametric diagrams that bind
the equations together. As discussed earlier in the Guide,
these diagrams are a specialized type of Internal Block
diagram and contain instances of ConstraintBlocks called
ConstraintProperties that expose their parameters, which are
bound by connectors to parameters on other
ConstraintProperties.

(c) Sparx Systems 2021 Page 571 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Specifying a Configuration Artifact

The SysML Simulation Artifact is the element that binds the
model elements to the OpenModelica platform. The model
elements expressed in SysML in the form of Blocks,
ConstraintBlocks and their related ConstraintProperties
bound together on Parametric diagrams appear in the
Simulation window and can be configured with other
settings to drive the simulation.

The first step in setting up this facility is to create a
SysMLSim Configuration element, available from the
'Artifact' Toolbox page as shown in this screen capture.

(c) Sparx Systems 2021 Page 572 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Enterprise Architect does most of the heavy lifting with
respect to populating the Configure SysML Simulation
window. The engineer simply has to select the Package
using the icon on the 'Configuration' panel of the
Simulation Artifact window.

Enterprise Architect will display the Package selection
window, and once the Package is selected the
'Configuration' panel will be populated with the Blocks,
ConstraintBlocks and Value Types from the model. From
this point the values can be entered for various parameters,
or data-sets can be defined. The simulation configuration

(c) Sparx Systems 2021 Page 573 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

parameters can be entered and the simulation is ready to run.

Once the data has been entered for the simulation, including
Start and Stop values and Output formats, the Simulation
can be run by selecting the Solve button as shown in this
screen illustration.

(c) Sparx Systems 2021 Page 574 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Example SysML Model

The System Modeling Language (SysML), as with any
language, has to be learned. We are not lucky enough to
have grown up hearing our parents speak the language at
home, but a number of readers might already be familiar
with the language for any number of reasons including:

It has been used by colleagues or partners in projects·

It has been taught as part of a University course·

You have attended training or read or viewed·

documentation

You have taken 6 weeks off work and read the·

specification from cover to cover

If the last one is true you will probably have a deep
knowledge of the language but might be in need of some
recreational leave as it is a fairly dense document and you
will have needed to dip your toes into the Unified Modeling
Language specification as well. It is more likely that a larger
number of readers will have little or no exposure to the
language, and this first example is intended to give you a
quick and high level view of what can be expected when
working in Enterprise Architect to model a Model Based
Systems Engineering Project using the SysML. It is based
on the example of a hybrid vehicle that appears in the
Sample Problem Annex in the specification

(c) Sparx Systems 2021 Page 575 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Package Overview (Structure of the
Sample Model)

The Package diagram demonstrates a way of visualizing the
contents of the repository and when the diagram contents
are viewed in Enterprise Architect's Browser window the
structure can be navigated. There are also important
structural and namespace relationships that can be seen on
package diagrams and these help to clarify the important
high-level relationships between groups of elements in the
repository.

(c) Sparx Systems 2021 Page 576 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Package Diagram - Applying the SysML
Profile

As shown in this diagram, the HSUV Model is a Package
that represents the user model. The SysML Profile is applied
to this Package in order to include stereotypes from the
profile. The HSUVModel might also require model
libraries, such as the SI Units Types model library. The
model libraries are imported into the user model as
indicated.

pkg [package] Modeling Domain [Establishing HSUV Model]

«profile»
SysML

«modelLibrary»
SI Definitions

HSUV Model

«apply»
«apply»

«import»

(c) Sparx Systems 2021 Page 577 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Package Diagram - Showing Package
Structure of the Model

This Package diagram shows the structure of the model used
to define the HybridSUV system. The diagram provides a
useful way of viewing the high level containers (Packages)
used to structure the repository and define the structural,
behavioral and requirements of the HybridSUV system.

pkg [package] HSUV Model [HSUV Model]

HSUV Behavior

Deliver Power Behavior

HSUV Structure

HSUV Interfaces

HSUV Requirements HSUV Use Cases

HSUV Analysis

«modelLibrary»
Automotive Value Types

HSUV Views HSUV Viewpoints HSUV Viewpoint Methods

«view»
Operational View

«view»
Performance View

«viewpoint»
Operational Viewpoint

«viewpoint»
Performance Viewpoint

«activity»
Requirements Query

«requirement»
Performance

«block»
Automotive Domain

The relationships between the Operational View and the
Performance View and the rest of the user model are
explicitly expressed using the «import» relationship. The
Packages that appear in the diagram are defined and can also
be visualized in a hierarchical view using the Browser
window.

(c) Sparx Systems 2021 Page 578 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

While the Browser window provides an important
mechanism for navigating through the repository, there is a
wide range of other views including - in this case - a
diagram. Enterprise Architect also provides a powerful and
convenient way of creating user-defined diagrams that can
act as an alternative way of navigating the repository. This
mechanism allows Systems Engineers and others to create
any number of Navigation Cells to provide
audience-tailored access to the model, shielding the user
from needing to know or understand how to traverse the
model.

(c) Sparx Systems 2021 Page 579 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

These are particularly useful when viewing the models
through a Web Browser.

(c) Sparx Systems 2021 Page 580 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Setting the Context (Boundaries and
Use Cases)

The context of a system is critical for all stakeholders to
gain an understanding of the system in its environment. The
Use Case diagram is one of the simplest but most
descriptive diagrams in the SysML tool kit. Its power lies in
the fact that it relates entities that reside outside the system
(Actors) to the benefits they want from the system (Use
Cases) without articulating how the system will deliver the
value. The Use Cases can be written at a descriptive level,
but if more detail is required Enterprise Architect's Scenario
Builder can be used to specify the steps for each scenario,
in a tool that takes the grind out of documenting Use Cases.
Behavior diagrams such as Activity diagrams and Use Case
documents can also be automatically generated from the
tool.

(c) Sparx Systems 2021 Page 581 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Operational Domain Model - Setting
Context

This Internal Block diagram depicts a user defined usage of
the diagram type which depicts the system in the context of
its environment. The «system» and «external» stereotypes
are user-defined and not specified in SysML, but help the
System Engineer describe the system of interest relative to
its environment.

ibd [block] Automotive Domain [AutomotiveDomain]

«external»
drivingConditions: Environment

Driver

Passenger

Mechanic

object: ExternalObject

«external»

HSUV: HybridSUV

«LightCondition»

weather: Weather

«external»

road: Road

«external»

vehicleCargo:
Baggage

«external»

«diagramDescription»
version=”0.1"
description=”Initial concept to identify top level domain entities"
reference=”Ops Concept Description”
completeness=”partial. Does not include gas pump and various other
external interfaces.”

x4:

x5:

x2:

x1:

x3:

Enterprise Architect also allows the conventional symbols
of the SysML to be replaced by more appealing and
meaningful images that assist in the acceptance of the
diagram by non-technical audiences.

(c) Sparx Systems 2021 Page 582 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

This change of element appearance can be applied at a
(default) global level or at a diagram specific level allowing
alternative presentations to be created for different
audiences.

(c) Sparx Systems 2021 Page 583 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Use Case Diagram - Top Level Use
Cases

The Use Case diagram describes the HybridSUV as a
system that is utilized by a number of external roles. The
diagram helps to set the context of all the roles (human and
other systems) who interact with or get value from the
system. The Use Case diagram, while appearing simplistic,
provides a mechanism to ensure that all potential system
interactions are defined and understood. The system itself is
represented in the diagram by a Boundary element, which
acts as container for the Use Cases, with the Actors lying
outside the Boundary. In this diagram there are a number of
external roles - other than the Driver - who will interact with
the HybridSUV system, including the Registered Owner,
Maintainer, Insurance Company and Department of Motor
Vehicles.

(c) Sparx Systems 2021 Page 584 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

uc [package] HSUV Use Cases [Top Level Use Cases]

HybridSUV

Operate the vehicle

Insure the vehicle

Register the vehicle

Maintain the vehicle

Driver

Registered Owner

Maintainer

Insurance Company

Department Of Motor
Vehicles

The Use Cases appear in the Browser window and can be
conveniently grouped into Actors and Use Cases. Any
number of Use Case diagrams can then be defined that allow
the Systems Engineer to visualize the Use Cases.

(c) Sparx Systems 2021 Page 585 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Enterprise Architect also provides a number of powerful and
unique tools to assist the Systems Engineer to efficiently
describe the Use Cases and define Scenarios that detail the
steps representing the interaction between the Actor and the
System. Once these have been defined the tool can
automatically generate behavioral diagrams directly from
the model.

Once the steps have been generated as model elements then
the traceability can be added:

Actor steps can be traced to Human Machine Interface·

(c) Sparx Systems 2021 Page 586 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Models

System steps can be traced to Component Models.·

(c) Sparx Systems 2021 Page 587 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Use Case Diagram - Operational Use
Cases

Goal-level Use Cases associated with 'Operate the Vehicle'
are depicted in the next diagram. These Use Cases help flesh
out the specific kinds of goals associated with driving and
parking the vehicle. The diagram focuses on the Driver of
the vehicle as the central Actor. Higher level Use Cases
such as maintenance, registration, and insurance of the
vehicle are defined under a separate set of context Use
Cases.

uc [package] HSUV Use Cases [Operational Use Cases]

Hybrid SUV

Drive the vehicle

Park

Start the vehicle

Accelerate

Steer

Brake

Driver

«extend»

«include»

«include»

«include»

«include»

(c) Sparx Systems 2021 Page 588 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

In addition to the powerful features described in the
previous section for articulating the scenarios and their
detailed steps, there are a number of other features provide
by the tool that assist the System Engineer while working
with Use Cases. One of the most powerful of these features
is the Traceability window, which provides a compelling
visualization of what a given Use Case is connected to and
in turn what the connected element is related to. As different
Use Cases (or any other elements) are selected in the
Browser window or a diagram, the window refreshes to
show the selected element's connections.

(c) Sparx Systems 2021 Page 589 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Elaborating Behavior (Sequence and
StateMachine Diagrams)

These topics and sections show how behavior can be
represented and elaborated using Sequence and
StateMachine diagrams.

ecu: PowerControlUnit epc: ElectricalPowerController

1.1 Enable()

1.0 StartVehicle()

1.2 Ready()

(c) Sparx Systems 2021 Page 590 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Sequence Diagram - Drive Black Box

The Sequence diagram is a type of Interaction diagram and
describes the way the Driver interacts with the vehicle in a
particular context. The elements that participate are, by
convention, listed from left to right on the horizontal access
of the diagram, and time proceeds vertically in the diagram.
The dotted lines that emanate from the objects are called
lifelines and represent the time the elements are in existence.

(c) Sparx Systems 2021 Page 591 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

sd [interaction] Drive Black Box [Drive Black Box]

par

alt controlSpeed

[self.colInState(idle)]

[self.colInState(braking)]

[self.colInState(braking)]

driver: Driver

vehicleInContext: HybridSUV

ref
Start Vehicle Black Box

ref
Idle

ref
Accelerate/Cruise

ref
Brake

ref
Steer

ref
Park/Shutdown Vehicle

This diagram uses a type of element called a Reference,
which acts as a place holder for another Sequence

(c) Sparx Systems 2021 Page 592 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Diagram. Enterprise Architect conveniently allows these
diagrams to be opened by double-clicking on the 'ref'
element in the diagram.

driver: Driver

vehicleInContext:
HybridSUV

ref
Start Vehicle White Box

1.0
StartVehicle()

The diagram utilizes a Parallel (par) Combined Fragment to
specify that the Control Speed and Steering interactions
occur at the same time (in parallel). The diagram also uses a
Combined Fragment with a designation of Alternative (alt)
which specifies a number of (alternative) ways that the
driver can control the speed.

(c) Sparx Systems 2021 Page 593 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Enterprise Architect allows the Sequence Diagram to be
defined as a child of the 'Drive the Vehicle' Use Case
making it easy for a modeler to access the diagram and view
it in the context of the goal the Driver is wanting to achieve
with respect to the vehicle.

(c) Sparx Systems 2021 Page 594 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

StateMachine Diagram - HSUV
Operational States

This StateMachine diagram is used to describe the discrete
states that the Hybrid SUV exhibits during a specified part
of its lifetime. A system or part of a system can have a wide
range of states depending on the observer's perspective, so a
modeler must always specify the perspective or view that is
being used for the diagram. The diagram then articulates the
important and relevant conditions within the specified
lifetime of the entity.

stm HSUVOperationalStates

Off

Operate

Idle

Accelerating/Cruising Braking

Nominal states only

Refines
<<Requirement>>
Power Source Management

releaseBrake

start

stoppedaccelerate

engageBrake

shutOff

keyOff

The message in the Sequence diagram Start Vehicle is the
trigger that will cause the vehicle to transition from the Off
state to the Operate (on) state. Enterprise Architect allows
these transitions to be defined in detail.

(c) Sparx Systems 2021 Page 595 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The States appear in the Browser window and are
conveniently grouped together under the StateMachine
node.

(c) Sparx Systems 2021 Page 596 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Sequence Diagram - Start Vehicle Black
Box and White Box

This Sequence diagram describes the interaction of the
Driver starting the vehicle. It makes use of the Interaction
Use element indicated by the (ref) to make reference to
another Sequence diagram. The diagram is intrinsically
simple but these diagram can be augmented with a number
of other elements and connectors which elaborate the details
of other more complex interactions.

driver: Driver

vehicleInContext:
HybridSUV

ref
Start Vehicle White Box

1.0
StartVehicle()

Enterprise Architect provides a convenient mechanism
allowing the modeler to click-through to the referenced
diagram in this case the Start Vehicle White Box diagram.

(c) Sparx Systems 2021 Page 597 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

ecu: PowerControlUnit epc: ElectricalPowerController

1.0 StartVehicle()

1.1 Enable()

1.2 Ready()

Elements in Enterprise Architect can appear in multiple
diagrams allowing for expressive narratives to be built up in
a model and providing a mechanism for modelers to create
multiple views of the same element. The elements on a
diagram can be located in the Browser window showing
their structural relationship to other parts of the model. In
this case both the Black and White Box views of the Start
Vehicle interaction are located as children of the Start
Vehicle Use Case making it easy to relate them to each
other.

(c) Sparx Systems 2021 Page 598 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

(c) Sparx Systems 2021 Page 599 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Establishing Requirements
(Requirements Diagrams and Tables)

The purpose of this part of the model is to demonstrate the
visual modeling of requirements. The vehicle system
specification contains many text based requirements which
have been recreated in Enterprise Architect. There are a
range of requirements that have been modeled including the
requirement for the vehicle to pass emissions standards,
which is expanded for illustration purposes.

Enterprise Architect provides a wide range of tools for
creating, developing, analyzing, managing and testing
requirements. It also has integrations to the DOORS
requirements management tool.

(c) Sparx Systems 2021 Page 600 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Requirement Diagram - HSUV
Requirement Hierarchy

This diagram demonstrates the visualization of requirements
in a hierarchy using the containment (cross-hatch) connector
to show the parent child relationship. The higher level
requirements act as a type of grouping or containment
system and cover a range of high level concerns which are
broken down into lower level and presumably measurable
statements.

req [package] HSUV Requirements [HSUV Specification]

HSUV Specification

«requirement»
Performance

«requirement»
Eco-Friendliness

«requirement»
Ergonomics

«requirement»
Qualification

«requirement»
Capacity

«requirement»
Braking

«requirement»
FuelEconomy

«requirement»
OffRoadCapability

«requirement»
Acceleration

«requirement»
SafetyTest

«requirement»
CargoCapacity

«requirement»
FuelCapacity

«requirement»
PassengerCapacity

«requirement»
Emissions

id = "R1.2.1"
text = "The vehicle shall meet Ultra-Low
Emissions Vehicle standards."

(c) Sparx Systems 2021 Page 601 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Requirement Diagram - Derived
Requirements

This requirements diagrams shows that a number of
requirements have been derived from other requirements.
This relationship implies that some analysis has been
conducted and the derived requirement represent a need that
can meet the intention of the original requirement. For
example Regenerative breaking wasn't a requirement but it
has been derived from the need to have both Braking and
Fuel Economy as expressed in the requirements at the arrow
end of the relationship.

req [package] HSUV Requirements [Requirement Derivation]

«requirement»
Braking

«requirement»
FuelEconomy

«requirement»
FuelCapacity

«requirement»
OffRoadCapability

«requirement»
Acceleration

«requirement»
CargoCapacity

«requirement»
RegenerativeBraking

«requirement»
Range

«requirement»
Power

«requirement»
PowerSourceManagement

«problem»
Power needed for acceleration, off-
road performance and cargo capacity
conflicts with fuel economy

«rationale»
Power delivery shall happen by
coordinated control of gas and electric
motors. See "Hybrid Design
Guidance"

refinedBy
HSUVOperationalStates

«deriveReqt»

«deriveReqt» «deriveReqt»

«deriveReqt»

«deriveReqt»

«deriveReqt»

«deriveReqt»

«deriveReqt»«deriveReqt»

(c) Sparx Systems 2021 Page 602 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

(c) Sparx Systems 2021 Page 603 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Requirement Diagram - Acceleration
Requirement Relationships

This diagram demonstrates a number of requirement
relationships which would typically appear on a
requirements diagram after some analysis and modeling had
been done. The focal element is the Acceleration
requirement and the diagram shows how a number of other
elements are related to this requirement. The refine
relationship is introduced as a way of relating a similarly
named Use Case to the Acceleration requirement. We have
another derived requirement which is subsequently satisfied
by a Block. A 'Max Acceleration' Test Case is also shown
on the diagram and related to the central requirement by a
Verifies relationship. The diagram also demonstrates that
elements other than requirements can be added and help to
make the diagram more expressive.

(c) Sparx Systems 2021 Page 604 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

req [package] HSUV Requirements [Acceleration Requirement Refinement and Verification]

«requirement»
Acceleration

Accelerate
«requirement»

Power
«testCase»

Max Acceleration

«block»
PowerSubsystem

«satisfy»

«verify»«refine»
«deriveReqt»

(c) Sparx Systems 2021 Page 605 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Table - Requirements Table

These examples demonstrate the way that Requirements can
be displayed in a tabular form as an alternative to the
graphical representation in diagrams. This is a welcomed
presentation style for a range of stakeholders who are more
accustomed to working with spreadsheets. The first table
lists the requirements with their IDs and textual statements.
The second table lists the source and target requirements
that participate in the derive relationship.

Enterprise Architect also provides a range of tools and ways
of visualizing requirements (and other elements) including
List Views, Kanban Boards, Specification Views, Gantt
Charts, Graphs and more.

req [requirement] Performance [Decomposition of Performance Requirement]

req [requirement] Performance [Tree of Performance Requirements]

(c) Sparx Systems 2021 Page 606 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Breaking Down the Pieces (Block
Definition Diagrams, Internal Block

Blocks are the fundamental units of structure and can be
used on both Block Definition and Internal Block Diagrams
to describe structural aspects of a system. The Block
definition diagram is often a starting point for many
engineers wanting to gain knowledge of a system and see
how it is structured. The Block itself is made up of structure
and this is represented by Features, this includes Parts which
are themselves typed by other blocks for example a wheel
assembly could have a disc caliper Part. There are also
Value properties, that are items that have quantity and these
represent physical and other measurable dimensions for
example a car could have weight and color and have a 0-100
km acceleration time of 5 seconds. There are also interaction
points that show the points that a block can interact with its
environment.

(c) Sparx Systems 2021 Page 607 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Block Definition Diagram - Automotive
Domain

This diagram shows the use of a Block Definition diagram
to describe the parts that make up the Automotive domain.
The domain includes people who while performing a role
will interact with the system including a Driver, Passenger
and Mechanic, so there could be a number of specific people
performing the role of Driver and the Mechanic when
performing a test after repairing the braking subsystem
would also shift their role from Mechanic to Driver.

bdd [package] HSUV Structure [Automotive Domain Breakdown]

«block»
Automotive Domain

parts
 : Driver
 : Mechanic
 : Passenger
 drivingConditions : Environment
 HSUV : HybridSUV
 vehicleCargo : Baggage

owned behaviors
«interaction» StartVehicleBlackBox
«interaction» DriveBlackBox

Driver Mechanic Passenger

«LightCondition»
HybridSUV

properties
 b : BodySubsystem
 bk : BrakeSubsystem
 c : ChassisSubsystem
 i : InteriorSubsystem
 l : LightingSubsystem
 p : PowerSubsystem
 Property1

«external»
Environment

«external»

«external»
Baggage

Baggage

«external»
ExternalObject

«external»
Road

«external»
Weather

HSUV

object 1..*

drivingConditions

weather

vehicleCargo

road 1..*

(c) Sparx Systems 2021 Page 608 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Block Definition Diagram - Hybrid SUV

All systems that require engineering analysis and design will
be of a level of complexity that will require that the system
be broken down into a number of parts to help reduce the
complexity and facilitate the project management. The first
level of breakdown is most typically called a subsystem and
in the case of the Hybrid SUV or for that matter any other
automobile the sub-systems would include blocks such as
Power, Brake, Lighting and Chassis.

These sub-systems would themselves in turn be broken
down into a number of constituent parts for example the
Braking Subsystem could be broken down into disc
assemblies and hydraulic parts.

bdd [block] Automotive Domain [HybridSUV Breakdown]

«LightCondition»
HybridSUV

properties
 b : BodySubsystem
 bk : BrakeSubsystem
 c : ChassisSubsystem
 i : InteriorSubsystem
 l : LightingSubsystem
 p : PowerSubsystem
 Property1

«block»
PowerSubsystem

«block»
BrakeSubsystem

«block»
BodySubsystem

«block»
InteriorSubsystem

«block»
LightingSubsystem

«block»
ChassisSubsystem

«block»
BrakePedal «block»

WheelHubAssembly

«rationale»
2 wheel drive is the only way to get acceptable
fuel economy, even though it limits off-road
capability

2

bbk ci

4
bkp

p l

(c) Sparx Systems 2021 Page 609 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Internal Block Diagram - Hybrid SUV

The Internal Block diagram provides a mechanism to
describe how the parts are related or connected to each other
in the context of the whole or owning block. In our example
of the Hybrid SUV we can see a connection between the
Power sub-system and the Braking subsystem presumably to
model power assisted breaking. So, while the Block
Definition diagram show the structure in terms of
composition, the Internal Block is able to look inside the
block and see how it is 'wired' together.

ibd [LightCondition] HybridSUV [HybridSUV]

p: PowerSubsystem

bk: BrakeSubsystem

b: BodySubsystem i: InteriorSubsystem

l: LightingSubsystemc: ChassisSubsystem

b-c:

c-bk: bk-l:

i-l:

p-bk:

b-i:

p-c:

b-l:

We will see in a later section how a specialized form of the
Internal Block diagram, namely the Parametric diagram is

(c) Sparx Systems 2021 Page 610 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

used to model systems of mathematical equations.

(c) Sparx Systems 2021 Page 611 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Block Definition Diagram - Power
Subsystem

In the previous two sections we have seen how a system can
be broken down into a number of sub-systems and that this
breakdown can be represented on a Block Definition
diagram. We also saw how the subsystems can be related to
each in the context of the overall system and how these
could be represented on an Internal Block diagram. We will
now look at how one of these sub-systems (the Power
Subsystem) can be broken down into a number of
constituent parts again using the Block definition diagram.

bdd [package] HSUV Structure [Power Subsystem Breakdown]

«block»
PowerSubsystem

«block»
PowerControlUnit

«block»
ElectricalPowerController

«block»
WheelHubAssembly

«block»
FrontWheel

«block»
BatteryPack

«block»
BrakePedal

«block»
Accelerator

«block»
FuelTankAssembly

«block»
InternalCombustionEngine

«block»
ElectricMotorGenerator

«block»
Fuel

«block»
FuelPump

«block»
FuelInjector

«block»
Differential

«block»
Transmission

trsm

emgice

bp epc lfw 1

0..1

fp

rfw 1

0..1

bkp

0..1

0..1

acl

ecu

dif

fi 4

ft

(c) Sparx Systems 2021 Page 612 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Internal Block Diagram for the Power
Subsystem

In an analogous way to how we showed the connections
between subsystems, using an Internal Block diagram, we
can do the same thing to represent the way that the parts of a
subsystem are connected together. So we see again how the
two diagram types, Block Definition diagram and an
Internal Block diagram, can be used in tandem to describe
the structure of a system and how we can move down a part
hierarchy to a point where the complexity is understood and
does not require further modeling.

(c) Sparx Systems 2021 Page 613 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

ibd [block] PowerSubsystem [Alternative 1 - Combined Motor Generator]

bkp: BrakePedal

t: Transmission

SN = sn89012

: flow ports
 inout fp : FS_TRSM

torqueIn

ctrl
I_TRSMData

I_TRSMCmd

bp: BatteryPack

dif: Differential

emg: ElectricMotorGenerator

ice: InternalCombustionEngine

: flow ports
 inout fp : FS_ICE

Port: ICEFuelFitting

torqueOut

ctrl

I_ICEData

I_ICECmd

ft: FuelTankAssembly

Port:
~FuelTankFitting

acl: Accelerator

lfw: FrontWheel[1]

rfw: FrontWheel[1]

epc: ElectricalPowerController

: flow ports
 inout fp : FS_EPC

ctrl

I_IEPCData
I_IEPCCmd

ecu: PowerControlUnit

ice

trsm

epc

I_ICECmd

I_ICEData

I_TRSMCmd

I_TRSMData

I_IEPCCmd I_IEPCData

fp: FuelPump

fi: FuelInjector[4]

fuelReturn:
Fuel

fuelSupply: Fuel

i2: ElectricCurrent

i1: ElectricCurrent

g1: Torque

t2: Torque

t1: Torquec1:

spline

acl-ecu:

fuelDelivery

bp-epc:

leftHalfShaft

c2: rightHalfShaft

4fdist:

bkp-ecu:

c3:

bdd [block] PowerSubsystem [ICE Port Type Definitions]

«block»
ICE

setMixture(mixture: Real): void
setThrottle(throttlePosition: Real): void

values
 isKnocking : Boolean
 rpm : Integer
 Temperature : Real
 «directedFeature» reqd isControlOn : Boolean

(c) Sparx Systems 2021 Page 614 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

(c) Sparx Systems 2021 Page 615 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Defining Ports and Flows

The diagrams in the topics of this section show how items
that flow can be modeled, using Ports, Flows and Flow
Specification on Block Definition, Internal Block and
Parametric diagrams. Most physical systems will have items
that flow, which can be an important part of how the system
works. We could consider a number of examples, including:

A desalination plant - where both salt and fresh water and·

power flow through the system

A production line where assemblies, parts, power and·

robot control instructions flow through the system

An urban transport system where trains, trams, buses,·

ferries and passengers flow through the system

An aircraft where fuel, air, control signals, hydraulic fluid,·

passenger, flight attendants flow through the system

The diagrams start by defining a Controller Area Network
(CAN) bus architecture and show how a number of flow
specifications can be used to define the way that items flow
between parts of the Power Subsystem. The flow of fuel is
modeled using a Block Definition diagram that exhibits
Flow Ports (deprecated in SysML version 1.5) that show the
logical 'conduit' allowing fuel to flow from the Fuel
Assembly and the Internal Combustion Engine. Internal
Block diagrams take this further, and finally a Parametric
diagram is used to show how a mathematical equation for
fuel flow rate, defined in a Constraint, can be used to model
the equation. Simulated plots are then visualized using

(c) Sparx Systems 2021 Page 616 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Enterprise Architect's simulation capabilities.

(c) Sparx Systems 2021 Page 617 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Block Definition Diagram - ICE Flow
Properties

This diagram shows the first (unfinished) steps in the
definition and refinement of a bus architecture. The modeler
has used flow specifications to model the way that items
will flow though the vehicle; for example, a flow
specification has been defined for:

The Internal Combustion Engine FS_ICE·

The Transmission System·

The Electronic Power Controller·

bdd [package] HSUV Structure [CAN Bus Flow Properties]

«flowSpecification»
FS_ICE

{abstract}

flow properties
 in throttlePosition : Real
 in mixture : Real
 out engineData : ICEData

«signal»

ICEData

rpm: Integer
temperature: Real
isKnocking: Boolean

«flowSpecification»
FS_TRSM

{abstract}

«flowSpecification»
FS_EPC

{abstract}

To be specified - What is being
exchanged over the bus
to/from the transmission.

To be specified - What is being
exchanged over the bus
to/from the electronic power
controller.

The diagram will be refined in subsequent iterations of the

(c) Sparx Systems 2021 Page 618 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

process, and Ports and Flows will be used to model the
items that flow through and between the various
subsystems.

(c) Sparx Systems 2021 Page 619 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Internal Block Diagram - CAN Bus

This diagram continues the refinement of the bus
architecture, using an Internal Block diagram to show how
the various systems are integrated into the Controller Area
Network (CAN) Bus. This CAN bus architecture is a central
device for controlling and integrating various parts of the
Hybrid SUV sub-systems.

ibd [block] PowerSubsystem [CAN Bus Description]

epc: ElectricalPowerController

: flow ports
 inout fp : FS_EPC

fp: FS_EPC

t: Transmission

SN = sn89012

: flow ports
 inout fp : FS_TRSM

fp: FS_TRSM

ice: InternalCombustionEngine

: flow ports
 inout fp : FS_ICE

fp: FS_ICE

: CAN_Bus

pcu: PowerControlUnit

eepc: ~IFS_EPC etrsm: ~IFS_TRSM eice: ~IFS_ICE

(c) Sparx Systems 2021 Page 620 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Block Definition Diagram - Fuel Flow
Properties

This Block Definition diagram continues modeling how the
fuel flows from the Fuel Tank Assembly to the Internal
Combustion Engine, elaborating the definition of Fuel Flow.
Fuel itself is modeled as a Block and has two value
properties that define the important physical characteristics,
namely:

Fuel Temperature·

Fuel Pressure·

The Power Subsystem Block is broken down into two of its
important parts, namely the Fuel Tank Assembly and the
Internal Combustion Engine. The two parts have Flow Ports
defined and a connector has been drawn between the two
Ports indicating that the item 'Fuel' can flow from the Fuel
Tank to the Engine.

(c) Sparx Systems 2021 Page 621 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

bdd [block] HSUV [PowerSubsystem Fuel Flow Definition]

«block»
Fuel

pressure: Press
temperature: Temp

«block»
PowerSubsystem

values
 FuelDemand : Real
 FuelFlowRate : Real
 FuelPressure : Real

properties
 ft : FuelTankAssembly
 ice : InternalCombustionEngine

constraints
 : FuelFlow

«block»
FuelTankAssembly

flow properties
 in fuelSupply : Fuel
 out fuelReturn : Fuel

«flowPort» FuelTankFitting: ~FuelFlow

«flowSpecification»
FuelFlow

{abstract}

flow properties
 out fuelSupply : Fuel
 in fuelReturn : Fuel

«block»
InternalCombustionEngine

flow properties
 in fuelReturn : Fuel
 out fuelSupply : Fuel

«flowPort» ICEFuelFitting: FuelFlow

ft ice

(c) Sparx Systems 2021 Page 622 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Parametric Diagram - Fuel Flow

This Parametric diagram demonstrates how mathematical
equations can be modeled using ConstraintProperties and
parameters that are bound to the perimeter of the
ConstraintProperty. In this diagram we see that the flow rate
is related to both the Fuel Demand and the Fuel Pressure,
using the equation:

{flowrate=press/(4*injectorDemand)}

The constraint is modeled in the Constraint Block and can
be used in a number of different contexts, using
ConstraintProperties on Parametric diagrams. Enterprise
Architect has a powerful simulation facility that uses either
OpenModelica or Simulink to create plots of modeled
equations.

par [block] PowerSubsystem [PowerSubsystem]

: FuelFlow
{flowrate=press/(4*injectorDemand)}

injectorDemand: : Real

flowrate : Real press : Real

FuelFlowRate: Real

FuelDemand: Real

FuelPressure: Real

(c) Sparx Systems 2021 Page 623 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Analyze Performance (Constraint
Diagrams, Timing Diagrams, Views)

The diagrams in this section of the example are largely
Package diagrams that describe Viewpoints and Views used
to address stakeholder concerns. The topics also introduce
Measures of Effectiveness (MOEs) that can be used in trade
studies to evaluate candidate solutions and architectures.
The concepts of Viewpoint and View are articulated in
ISO-42010 (formerly IEEE-1471) and the SysML
Viewpoint and View constructs are consistent with this
standard. Typical examples of Views include operational,
manufacturing, or security, and these are then related to
model elements.

The Viewpoint and View model are best thought of as a
narrative or description model, which helps clarify and
explain a system model. A Viewpoint and View model
exposes elements of one or more system models. More
specifically, a Viewpoint is a particular frame from which to
view the system models and is a specification of rules for
constructing a View to address a set of concerns that are of
significance to stakeholders. For example a performance
architect will have different concerns to a safety architect.
The View is intended to visualize the system from the
specified Viewpoint. This provides a mechanism for
stakeholders to specify aspects of the system model that are
important to them from their Viewpoint, and then represent
those aspects of the system in a specific View.

(c) Sparx Systems 2021 Page 624 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The Viewpoint describes the point of view or lens through
which a group of stakeholders look at a system model and,
by framing the concerns of the stakeholders along with the
method for producing a View, their concerns can be
addressed. The method describes:

The expectation of what stakeholder(s) want to see·

exposed from the model

How the stakeholder wants the information to be·

structured and presented

In what kind of artifact the stakeholder wants to consume·

the information.

In other words, the process is the set of rules that describe
how the View should express the information from the
model to address the stakeholder concerns. When the Views
and Viewpoints are modeled in Enterprise Architect the
relationship to modeling elements can be defined.

(c) Sparx Systems 2021 Page 625 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Block Definition Diagram - Analysis
Context

One of the key reasons for modeling a system is to be able
to perform analysis on the models, which provides a cost
effective way to gain insights into how the built system will
perform in situ. Performing analysis on a model is cheaper
and more convenient than building prototypes. This Block
Definition diagram defines the various model elements that
will be used to conduct the analysis in this example. It
depicts each of the ConstraintBlocks and related equations
that will be used for the analysis, and the key relationships
between them. There are two types of element present on
the diagram - Blocks and Constraints. The diagram also
shows the Verify relationship between a Requirement and a
Test Case.

bdd [package] HSUV Analysis [Analysis Context]

«constraint»
CapacityEquation

constraints
{pcap = Sum(Vi)}

«constraint»
RollingFriction Equation

«constraint»
FuelEfficency Equation

«constraint»
StraightLine

VehicleDynamics

«constraint»
PayloadEquation

«constraint»
TotalWeight

«constraint»
AeroDragEquation

«constraint»
RegenBrake

EfficiencyEquation

«block»
CapacityContext

constraints
 cap : CapacityEquation

«block»
UnitCostContext

«block»
EconomyContext

«constraint»
GlobalTime

«requirement»
Acceleration

«testCase»
Max Acceleration

«block»
Automotive Domain

0..1

ad

1
0..1

ad
1

rb

fe

«verify»

pl w

0..1 delta-t

1

adrag

0..1

ad1

0..1

ex

1

rdrag

cap

0..1

t 1

dyn

(c) Sparx Systems 2021 Page 626 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Package Diagram - Performance View
Definition

The SysML allows a team to define their own viewpoints; in
this example we see a user-defined Performance Viewpoint,
and the elements that populate the HSUV-specific
Performance View. The Performance View itself might
contain a number of diagrams depicting the elements it
contains. We can see in the diagram that a number of views
have been defined including the Hybrid SUV Performance
view and SUV Functional View. Each view has a
Stakeholder defined and a View Point. The expose
relationship has been used to relate the Performance View to
the SUV model and the conform relationship shows that the
Performance View is conformant with the Performance
Viewpoint.

(c) Sparx Systems 2021 Page 627 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

pkg [package] HSUV Views [Performance View]

«viewpoint»
Performance Viewpoint

«viewpoint»
concern = "Will the system perform
adequately?"
language = "SysML"
method = "PerformanceQuery"
presentation = "BDD High-lelvel
stylesheet in slide format"
purpose = "..."
stakeholder = "Customer"

«view»
Hybrid SUV Performance

«view»
stakeholder = "Customer"
viewpoint = "Performance Viewpoint"

«view»
SUV Functional View

«view»
stakeholder = "Customer"
viewpoint = "Functional Viewpoint"

«stakeholder»
Customer

concern = "What are the system
requirements?; Will the system perform
adequately?"

HSUV Model

Driver

Drive the vehicle

«requirement»
Performance

id = "2"
text = "The Hybrid SUV shall have the
braking, acceleration, and off-road
capability of a typical SUV, but have
dramatically better fuel economy."«valueType»

FuelEconomy

«valueType»
QuarterMileTime

«valueType»
Zero60Time

«valueType»
CargoCapacity

«valueType»
CostEffectiveness

«constraint»
UnitCostEquation

«constraint»
CapacityEquation

«constraint»
EconomyEquation

«testCase»
EPAFuel EconomyTest

«expose»«conform»

(c) Sparx Systems 2021 Page 628 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Package Diagram - Viewpoint
Definition

The following Package diagram shows the Requirements
and Verification and Validation (VnV) viewpoint definitions
with relationships to stakeholders, concerns and views. The
stakeholder and viewpoint share the same concern via
comments that are shown textually as values of the concern
property. The comments could be shown graphically with
annotation relationships to stakeholders and viewpoints, if
needed. Note that the value of the stakeholder property is an
instance of the stereotype not the class to which the
stereotype is applied.

(c) Sparx Systems 2021 Page 629 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

pkg [package] HSUV Views [Viewpoints]

«viewpoint»
Requirements

«create»
View()

«viewpoint»
concern = "What are the system
requirements?"
language = "SysML"
method = "Requirements Query"
presentation = "Requirements table report
style-sheet in slide format"
purpose = "What are the system
requirements"
stakeholder = "Customer"

«view»
Hybrid SUV Requirements

«view»
stakeholder = "Customer"
viewpoint = "Requirements"

«view»
Hybrid SUV Verification and

Validation Plan

«view»
stakeholder = "Customer"
viewpoint = "VnV"

«viewpoint»
VnV

«Create»
View()

«viewpoint»
concern = "Will the system perform
adequately?"
language = "SysML"
method = "VnVQuery"
presentation = "nV report stylesheet in slide
format"
purpose = "Describe the VnV"
stakeholder = "Customer"

«stakeholder»
Customer

concern = "What are the system
requirements?; Will the system
perform adequately?"

«conform»

«conform»

(c) Sparx Systems 2021 Page 630 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Package Diagram - View Definition

This diagram shows the use of the Expose relationship,
which is a graphical device to indicate the elements
(including Packages) that are part of the view. The
Requirements and the Verification and Validation Views
have outgoing Expose relationships that target a number of
elements in the model. This provides a powerful way of
indicating the elements involved in the view; for example, it
can be seen from the diagram that the Hybrid SUV
Requirements view exposes the Drive Vehicle Use Case, a
Performance Requirement and a Package containing a group
of SUV constraints.

Using some of the powerful visualization tools, it would
also be possible to visualize which Views a given element
participated in, for example the Drive Vehicle Use Case
could appear in a number of different Views.

(c) Sparx Systems 2021 Page 631 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

pkg [package] HSUV Views [HSUV Views]

«view»
Hybrid SUV Requirements

«view»
stakeholder = "Customer"
viewpoint = "Requirements"

«view»
Hybrid SUV Verification and

Validation Plan

«view»
stakeholder = "Customer"
viewpoint = "VnV"

HSUV Model

Hybrid SUV Constraints

«constraint»
UnitCostEquation

«constraint»
CapacityEquation

«constraint»
EconomyEquation

Driver

Drive the vehicle

«requirement»
Performance

id = "2"
text = "The Hybrid SUV shall have the
braking, acceleration, and off-road
capability of a typical SUV, but have
dramatically better fuel economy."

«testCase»
EPAFuel EconomyTest

Checklist D.29

Spec shows a derived symbol '/' prefix to View Tagged Values

«expose»

«expose»

«expose»

«expose»

«expose»

(c) Sparx Systems 2021 Page 632 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Package Diagram - View Hierarchy

This package diagram shows how views, or for that matter,
any other elements with the same stereotype can be
collected into a package and presented visually.

pkg [package] HSUV Views [HSUV Views]

«view»
Hybrid SUV Requirements

«view»
stakeholder = "Customer"
viewpoint = "Requirements"

«view»
Hybrid SUV Verification and Validation

Plan

«view»
stakeholder = "Customer"
viewpoint = "VnV"

«view»
Hybrid SUV Requirements Rationale

«view»
stakeholder = "Customer"
viewpoint = "Requirements Analysis"

«view»
Hybrid SUV Requirements VnV Trace

«view»
stakeholder = "Customer"
viewpoint = "VnV Analysis"

«view»
Hybrid SUV Tests

«view»
stakeholder = "Customer"
viewpoint = "Systems Test"

(c) Sparx Systems 2021 Page 633 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Parametric Diagram - Measures of
Effectiveness

Measure of Effectiveness is a mechanism to evaluate a
solution by setting up a set of measures that will allow the
engineering team to evaluate two or more solutions to a
problem. This technique is usually called a trade study and
the Measures of Effectiveness (MOEs) are calculated for
two or more solutions and compared using a utility
(objective) function. The MOE is a user defined stereotype
and not formally part of the SysML core language; it relies
on the stereotype extension mechanism that permits the
language grammar to be extended. This Parametric diagram
shows how the overall cost effectiveness of the HSUV will
be evaluated. It shows the particular MOEs for one
alternative for the HSUV design, and can be reused to
evaluate other alternatives.

(c) Sparx Systems 2021 Page 634 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

par [block] MeasuresOfEffectiveness [HSUV MOEs]

«moe»

FuelEconomy
: EconomyEquation

f : Real

: UnitCostEquation
uc : Real

«moe»

QuarterMileTime

«moe»

Zero60Time

«moe»

CargoCapacity

«moe»

UnitCost

«moe»

CostEffectiveness

: MaxAccelerationAnalysis

q

z

: CapacityEquation
{pcap = Sum(Vi)}

vc

«objectiveFunction»

MyObjectiveFunction

(c) Sparx Systems 2021 Page 635 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Parametric Diagram - Economy

This Parametric diagram is used to model the fuel economy
as it has been defined as an important high level requirement
for the SUV and so needs to be assessed to ensure the final
product will perform adequately. The Parametric diagram
contains constraint properties (instances of the constraint
blocks). There are a number of equations that contribute to
the evaluation of the overall economy including: Aero Drag
Equation, Regenerative Break Efficiency Equation, Straight
Line Vehicle Dynamics, Rolling Friction equation and the
Fuel Efficiency equation. The constraint properties contain
boundary mounted parameters that are connected to other
parameters by binding connectors.

par [block] EconomyContext [EconomyContext]

adrag : AeroDragEquationvolume : Vol Cd : Real

rb : RegenBrake
EfficiencyEquation

incline : Real

acc : Accel
ebpwr : Horsepwr

pl : PayloadEquation

pcap : Real

psgrWt : Weight cgoWt : Weight

volume : Vol

w : TotalWeight
cgoWt : Weight

psgrWt : Weight

vdw : Weight fw : Weight

tw : Weight

rdrag : RollingFriction Equation

Cf : Realtw : Weight

: FuelEfficency Equationacc : Accel

vel : Vel

whlpwr : Horsepwr

ebpwr : Horsepwr n_ice : Real

mpg : Real

n_em : Realn_eg : Real

dyn : StraightLine VehicleDynamics

whlpowr : Horsepwr

Cd : Real

Cf : Realtw : Weight

acc : Accel

vel : Vel

incline : Real

x : Dist

dt : Time

PayloadCapacity: Real delta-t: Time

ICEEfficiency: Real

mpg: Real

MotorEfficiency: Real

GeneratorEfficiency: Real
position: Dist

FuelWeight: Weight

VehicleDryWeight: Weight

incline: Real

(c) Sparx Systems 2021 Page 636 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Parametric Diagram - Dynamics

In this Parametric diagram the Constraint Block - Straight
Line Vehicle Dynamics - from the previous example has
been expanded to show how it can be modeled with a
number of constraint properties. The Straight Line Vehicle
Dynamics constraint is represented by the diagram frame
and the constituent equations that contribute to the overall
equation are modeled in the diagram as constraint
properties. Each constraint on which the constraint
properties are based has a constraint equation defined,
which is shown in curly braces {} on the diagram; for
example, the Acceleration Equation is defined within the
Constraint Block as {a = (550/32)*tp(hp)*dt*tw}. Binding
Connectors are used to relate the parameters (variables) in
one equation to the parameters (variables) in another
equation.

(c) Sparx Systems 2021 Page 637 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

par [constraint block] StraightLine VehicleDynamics [StraightLineVehicleDynamics]

acc : Accel

tw : Weight

Cf : Real

Cd : Real

whlpowr : Horsepwr

incline : Real

: PositionEquation
{x(n+1) = x(n)+v*5280/3600*dt}

: PositionEquation

delta-t : Time

v : Vel

x : Dist

: PowerEquation
{tp = whlpowr - (Cd*v) - (Cf*tw*v)}

: PowerEquation

whlpowr : Horsepwr

Cd : Real

Cf : Real

tw : Weight

tp : Horsepwr

v : Vel

i : Real

: AccelerationEquation
{a = (550/32)*tp(hp)*dt*tw}

: AccelerationEquation

tw : Weight

delta-t : Time
tp : Horsepwr

a : Accel

: VelocityEquation
{v(n+1) = v(n)+a*32*3600/5280*dt}

: VelocityEquationdelta-t : Time

v : Vel

a : Accel

vel : Vel

(c) Sparx Systems 2021 Page 638 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

(Non-Normative) Timing Diagram -
100hp Acceleration

Enterprise Architect has a power capability to generate plots
of Parametric diagrams using its OpenModelica or Simulink
integration. One of the great benefits of modeling physical
systems is to be able to analyze the way a system would
behave in a real world context, without the need to build
expensive prototypes or to have to perform the test on the
built system itself. The ability to model mathematical
equations that govern the way a system will operate, and to
create models of these as constraints using Block Definition
and Parametric diagrams, provides the precursors to model
simulation.

Enterprise Architect harnesses the power of an open tool
called OpenModelica, which is underpinned by the
Modelica language to generate plots and graphical
representations of equations in motion.

(c) Sparx Systems 2021 Page 639 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Defining, Decomposing, and Allocating
Activities

The examples in the topics of this section use Activity
diagrams that describe behavioral aspects of the Hybrid
SUV, using Actions that are responsible for defining the
work, which is ultimately carried out by instances of Blocks.
There are also a number of Internal Block diagrams that
demonstrate the way that allocations can be represented.

(c) Sparx Systems 2021 Page 640 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Activity Diagram - Acceleration (top
level)

This Activity diagram shows the top level behavior of an
Activity representing the acceleration of the HSUV. It is the
intent of the System Engineer in this example to allocate this
behavior to parts of the Power Subsystem. It is quickly
found, however, that the behavior as depicted cannot be
allocated, and must be further decomposed. The stereotypes
on the object nodes between actions in the figure apply to
parameters of the behaviors or operations called by the
actions

«activity»
Accelerate

«continuous» drivePower:
Horsepwr

transModeCmd: Integer

«Continuous»
accelPosition

:Provide Power

:PushAccelerator :MeasureVehicle
Conditions

«Continuous»
vehCond

(c) Sparx Systems 2021 Page 641 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Block Definition Diagram -
Acceleration

This Block Definition diagram shows the decomposition of
the Provide Power Activity from the diagram in the previous
topic. It is important to note that this is a functional
decomposition and, as such, it defines structural
relationships between the Activities in the hierarchy and so
should be modeled on a Block Definition diagram.

bdd [package] Accelerate [Activity and Object Flow Breakdown]

«activity»
MeasureVehicleConditions

«activity»
MeasureVehicleVelocity

«activity»
MeasureBatteryConditions

«activity»
Provide Power

«activity»
ProportionPower

«activity»
ControlElectricPower

«activity»
ProvideGasPower

«block»
GasPower

«block»
Power

«block»
ElecPower

«activity»
ProvideElectricPower

drivePower a4

a1

gasDrivePower

a2

elecDrivePower

mbat

a3

mvel

(c) Sparx Systems 2021 Page 642 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Activity Diagram (EFFBD) -
Acceleration (detail)

This Activity diagram has the Provide Power Activity as a
diagram frame, which includes Actions invoking the
decomposed Activities and Object Nodes from the previous
diagram. It also uses Allocate Activity Partitions, which are
oriented vertically in the diagram. These partitions include
the Power Control Unit, the Internal Combustion Engine,
the Electric Power Controller and the Electric Power
Generator, which are used to show which part of the system
is responsible for the Actions defined in the diagram. There
is also an allocation callout to explicitly allocate activities
and an object flow to parts in the Power Subsystem Block.

The modeling engineer has used incoming and outgoing
object flows for the ProvidePower Activity. This was done
to distinguish the flow of electrically generated mechanical
power and gas generated mechanical power, and to provide
further insight into the specific vehicle conditions being
monitored.

(c) Sparx Systems 2021 Page 643 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

act [activity] Provide Power [Detailed Behavior Model Provide Power]

«continuous»
accelPosition: Integer

«continuous»
vehCond: Integer

«continuous»
drivePower: Integer

transModeCmd: Integer

«allocate» pcu: PowerControlUnit

«continuous»
gThrottle

a3:
ControlElectricPower

«continuous»
eThrottle

a4:
ProvideElectricPower

«continuous»
driveCurrent

«continuous»
gasDrivePower

«continuous»
elecDrivePower

a1: ProportionPower

«continuous»
speed

«continuous»
battCond

«allocate» ice:
InternalCombustionEngine

a2: ProvideGasPower

«allocate» epc:
ElectricalPowerController

«allocate» emg:
ElectricMotorGenerator

keyOff

(c) Sparx Systems 2021 Page 644 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Internal Block Diagram - Power
Subsystem Behavioral and Flow
Allocation

This partially-completed Internal Block diagram elaborates
on some of the allocation relationships shown in the
previous example. Here we see how Blocks that have been
added to the diagram as properties communicate with each
other, and we can see the flow of items from one instance of
a Block to another. Specifically, the Electric Power
Controller is connected to the Electric Motor Generator and
we can see electrical current is flowing between the two
properties.

ibd [block] PowerSubsystem [Flow Allocation to Power Subsystem]

emg: ElectricMotorGeneratorepc: ElectricalPowerController

: flow ports
 inout fp : FS_EPC

«flowPort» fp: FS_EPC

can: CAN_Bus trsm: Transmission

«flowPort» fp: FS_TRSM

i2: ElectricCurrent i1: ElectricCurrent

(c) Sparx Systems 2021 Page 645 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Internal Block Diagram: Property
Specific Values - EPA Fuel Economy
Test

This Internal Block diagram demonstrates the way Test
Cases can be modeled in the context of the representation of
sub-systems. The tests have been conducted for a specific
instance of the Hybrid SUV that presumably has come off
the production line and has a specific VIN (vehicle
identification number). The test that has been conducted is
the EPA fuel economy test. Serial numbers of specific
relevant parts can also be indicated to identify any problems
that instances of the parts might have.

(c) Sparx Systems 2021 Page 646 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

ibd [block] SUV_EPA_Fuel_Economy_Test [Test Results]

«system»

TestVehicle1: HybridSUV

p: PowerSubsystem

bk: BrakeSubsystem

b: BodySubsystem i: InteriorSubsystem

l: LightingSubsystemc: ChassisSubsystem

t: Transmission

SN = sn89012

ice: InternalCombustionEngine

verifies
«requirement» Emissions

«testCase»

testRun060401: EPAFuel
EconomyTest

satisfies
«requirement» Emissions

b-c

(c) Sparx Systems 2021 Page 647 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Meet the Systems Engineering Tools

Enterprise Architect is a sophisticated and flexible Model
Based System Engineering platform that can be used as both
a repository and a tool for managing engineering projects. It
can be used across the entire life cycle, from setting up a
Systems Engineering program or practice, through planning,
managing, developing and documenting engineering
endeavors, to the governance of implementation projects
that consume the designs and architectural output. The tool
can be used with any processes and any number of
languages of representation including SysML, UML,
ArchiMate or BPMN. There is a wide range of facilities and
tools that allow the engineer to work using their preferred
methods, such as word processor views, spreadsheet views,
diagrams, Relationship Matrices and a range of other core
and extended features.

This Mind Map shows the landscape of the key Systems
Engineering tools that can be used to set up and maintain
any number of Model Based Systems Engineering
initiatives. While these are the primary tools, there is a range
of other tools that individual teams or engineers will find
useful; these can be explored through the User Guide.

(c) Sparx Systems 2021 Page 648 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Systems Engineering
Tools

Requirements
Diagram

Use Case Diagram

Calendar

Block Definition
Diagram

Internal Block
Diagram

Dashboard
Diagrams

Decision Tree
Diagram

Parametric
Diagram

Time Aware
Modeling

Documentation Gap Analysis
Matrix

Heatmaps Import and Export
Spreadsheets

Activity Diagram

Patterns

Relationship
Matrix

Requirements
Diagram

Responsibility
Assignment

Matrix

Roadmap
Diagram

Specification
Manager

Strategy Map Team Documents Traceability
Window

Element
Discussions

(c) Sparx Systems 2021 Page 649 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Requirements Diagram

Getting to Know the Requirements Diagram

Introducing
the

Requirement
s Diagram

The Requirements diagram provides a
visual representation of how
Requirements are related to each other
and to other elements in the model,
including Business Drivers, Constraints,
Business Rules, Use Cases, User Stories,
design Components and more. The
diagram is one of Enterprise Architect's
extended diagram types. It provides an
appealing graphical representation of
Requirements, that will be a welcome
change for Requirements Analysts who
are accustomed to working with text
based tools.

(c) Sparx Systems 2021 Page 650 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

REQ027 - Add Books

A facility will be required to receive
and add books to the stock lists.

(from Manage Inventory)

Add New Titles

REQ023 - Store and Manage Books

A book storage and management
facility will be required.

This diagram shows a Use Case that
realizes a requirement. The realized
requirement is part of a hierarchy of
requirements expressed with the
Aggregation relationship. The Use
Case has an annotation under the
element indicating its package location
in the Browser window.

«realize»

Where to
find the

Requirement
s Diagram

Browser window Context Menu : Add
Diagram : | Manage | Show All
Perspectives | Extended | Requirements

Usage of the
Requirement

s Diagram

One usage is to show how Requirements
are connected together in a hierarchy or,
even more importantly, how
Requirements are connected to other
elements. The experienced modeler will
define and manage the Requirements in
the Specification Manager and then use
the Requirements diagram to show how
each Requirement is related to upstream
process elements such as Business
Drivers, and downstream process
elements such as Use Cases, User

(c) Sparx Systems 2021 Page 651 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Stories, User Experience designs and
solution Components.

Options for
the

Requirement
s Diagram

The appearance of a diagram can be
changed to suit the audience, and details
can be included, suppressed or altered to
ensure the diagram meets its main
objective of communication. There is a
wide range of options, ranging from
creating a Hand Drawn style of diagram
to filtering diagram content.

(c) Sparx Systems 2021 Page 652 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Learn more

(c) Sparx Systems 2021 Page 653 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

about the
Requirement

s Diagram

Working In Diagrams

(c) Sparx Systems 2021 Page 654 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/commondiagramtasks.htm

Model Based Systems Engineering and SysML 2 September, 2021

Activity Diagram

The Activity diagram is one of the Unified Modeling
Language (UML) Behavioral diagrams that can be used to
model a process or algorithm as a sequence of steps. It is a
more sophisticated version of its close cousin the Flowchart
diagram. Activity diagrams can be used to model Business
Processes as a UML alternative to the BPMN Business
Process diagram; they have the same ability to create a
hierarchy of Activities in the Browser window.

«C
la

ss
»

Tr
an

sa
cti

on
«C

la
ss

»
O

rd
er Order Placed

Package Order

Send Order Close Order

Send Invoice

Invoice

Customer
Payment

Invoice

Process
Payment

Valid
Order?

This diagram shows the use of
Partitions (swim lanes) to organize
the elements and these can be
orientated horizontally or
vertically They act as a container
for the elements in the Browser
window. The diagram also shows
the use of Output and Input pins
connected by an Object flow.

Activity Diagram showing the use of Partitions

[Order Accepted]

[Order Rejected]

The elements can be given a name and detailed descriptions
can be added to the Notes. By connecting the Activities,
Decisions and Forks with connectors (Control Flows) a
sequence of elements can describe the business process. A
process hierarchy can be constructed by nesting Activities in
the Browser window and using the child diagram
functionality to enable drill down from the value chain level
to the lowest level processes.

(c) Sparx Systems 2021 Page 655 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Getting to know the Activity Diagram

Where to
find the
Activity

Diagram

Ribbon: Design > Diagram > Add >
UML > Behavioral > UML Behavioral >
Activity
Browser window Toolbar : New
Diagram icon > UML > Behavioral >
UML Behavioral > Activity
Browser window context Menu | Add
Diagram... > UML Behavioral > Activity

Usage of the
Activity

Diagram

The Activity diagram can be used to
model any business or technical activity
or notion that has a series of steps. This
includes business and technical processes
and also computer algorithms. The steps
are connected by Control Flow
relationships that show the sequencing of
the steps. Decisions and Merges can be
used to model choice and to further
control the flow through the Activity.
Forks and Joins can be added to split and
reunite the flow of control and objects
added to show how data is supplied and
consumed.

Options for Activity diagrams can be drawn at

(c) Sparx Systems 2021 Page 656 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

the Activity
Diagram

different levels of formality, from a
Basic Flow Chart style of diagram used
to represent a simple Business Process to
a sophisticated Action-based diagram
that can be used to model a complex
system. There is a toolbox that contains a
range of elements, relationships and
Patterns for creating the models.
The Activity diagram (like any diagram)
can be viewed as an Element List, which
makes working with element properties
easier.
Diagram Filters can also be used when
presenting the diagrams, to draw
attention to parts of the diagrams, and the
diagrams can be presented in hand drawn
or whiteboard style by changing the
properties of the diagram.

(c) Sparx Systems 2021 Page 657 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Learn more
about the

Activity
Diagram

Activity Diagram

(c) Sparx Systems 2021 Page 658 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/activitydiagram.htm

Model Based Systems Engineering and SysML 2 September, 2021

Use Case Diagram

Getting to know the Use Case diagram

Introducing
the Use Case

Diagram

The Use Case diagram is one of the
Unified Modeling Language (UML)
Behavioral diagrams that can be used to
describe the goals of the users and other
systems that interact with the system that
is being modeled. They are used to
describe the functional requirements of a
system, subsystem or entity and present a
simple but compelling picture of how the
system will be used.

(c) Sparx Systems 2021 Page 659 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Manage Titles

List Stock Levels

Create Orders

Manage Publishers

Add New Titles

Online Bookstore
Use Case diagrams can be created
showing the system as a Boundary
that contains the Use Cases. There is
a sophisticated editor that can be
used to detail the steps of scenarios
including constraints. A behavior
diagram can be automatically
generated from a scenario that
allows the steps described in the
scenario to be visualized.

Products Manager Chief Editor

On-line Customer

Customer Support Officer

They are typically used in conjunction
with higher level Business and
Stakeholder Requirements and are often
supplemented with a set of Non
Functional Requirements.

Where to
find the Use

Case
Diagram

Ribbon: Design > Diagram > Add >
UML Behavioral > Use Case
Browser window Toolbar : New
Diagram icon > UML Behavioral > Use
Case
Browser window context menu | Add
Diagram... > UML Behavioral > Use
Case

(c) Sparx Systems 2021 Page 660 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Usage of the
Use Case
Diagram

The Use Case diagram is used to
describe the goals that users or other
systems want to achieve from interacting
with the system. They always describe
the goal from the Actors' perspective, the
details of the Use Case will describe the
goal with more precision.
Use Cases will often act as the basis for
the definition of Test Cases.

Options for
the Use Case

Diagram

Any number of Use Case diagrams can
be created to represent different parts of
a system or Packages of Use Cases. The
diagrams can be kept simple or they can
be structured by the application of a
number of additional connectors such as
Include, Extend and Generalization
relationships.
A system Boundary can be included that
is used to name the system, subsystem or
entity under discussion; the Actors lie
outside the Boundary and the Use Cases
inside.

(c) Sparx Systems 2021 Page 661 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

This diagram shows the expressive
power of putting disparate
elements onto a diagram to show
the traceability between different
layers of a system. The traceability
can be from the Requirements to
the Use Cases that Realize them to
the logical Components that will
deliver the required functionality
and more.

Manage Titles

Inventory Manager

Manages titles including providing
services to add, delete and modify
titles and advanced sort and filter
services.

REQ164 - The solution must
have the ability to manage
inventory items

REQ0165 - The solution must
allow items to be added to
the inventory

REQ0166 - The solution must
allow inventory items to be
edited

REQ0167 - The solution must
allow inventory items to be
soft deleted

«satisfy»

Use Case diagrams can be used to show
how the Use Case are related to other
elements in the system, including
up-stream elements such as
Requirements and down-stream elements
such as Components.
The Use Case diagram (as for any
diagram) can be viewed as an Element
List, which makes working with the
element's properties easier.
Diagram Filters and Diagram Layers can
also be used when presenting the
diagrams, to draw attention to parts of
the diagrams and the diagrams can be
presented as hand drawn or in a

(c) Sparx Systems 2021 Page 662 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

whiteboard style by changing the
properties of the diagram.

Learn more
about the
Use Case
Diagram

Use Case Diagram

(c) Sparx Systems 2021 Page 663 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/usecasediagram.htm

Model Based Systems Engineering and SysML 2 September, 2021

Scenario Builder

Getting to Know the Scenario Builder

Introducing
the Scenario

Builder

The Scenario Builder is used to define
the details of a Use Case including
defining detailed descriptions, creating
one or more Scenarios and defining
pre-conditions, post-conditions and other
constraints. The detailed steps of a Use
Case can be recorded and linked to other
elements in the model and these can then
be generated out as a diagram providing
a visual representation of the Use Case
and its Scenarios. The diagram and the
text can be synchronized and individual
steps can then be traced to other
elements such as Components that will
realize the Requirement specified in the
Use Case.

(c) Sparx Systems 2021 Page 664 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Where to
find the

Scenario
Builder

Start > Desktop > Design > Scenario
Editor
Design > Element > Editors > Scenarios
Element Context Menu: Properties |
Responsibilities > Scenarios | right click |
Add New : Structure Editor

Usage of the
Scenario

Builder

To define the details of a Use Case and
its scenarios and constraints, which can
be used to replace the traditional
text-document based approach to

(c) Sparx Systems 2021 Page 665 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

defining Use Cases. This ensures that the
Use Case diagram and the textual details
of the Use Cases and its Scenarios and
Constraints are all contained in the same
model and can be traced. If the Use
Cases are required in a document format
for contractual or process reasons, a Use
Case Report can be generated
automatically from the models using the
in-built documentation engine.

Options for
the Scenario

Builder

The Scenario Builder can be viewed as
a tabbed or a docked window or in an
element's Properties window. The steps
of a Use Case including its Scenarios can
be automatically generated into a number
of different diagram types available from
the Generate Diagram toolbar icon.

Learn more
about the
Scenario

Scenarios

(c) Sparx Systems 2021 Page 666 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/objectscenarios.htm

Model Based Systems Engineering and SysML 2 September, 2021

Builder

(c) Sparx Systems 2021 Page 667 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Auditing

Getting to know Auditing

Introducing
Auditing

The Auditing feature can keep track of
the changes to Requirements including
what was changed, when it was changed
and by whom. Auditing is by default
disabled and must be enabled before the
changes to requirements will be
recorded. Once enabled it is a passive
tool that silently records the changes to
elements. It does not replace Version
Control or Baselines and in contrast to
these tools it can not be used to return to
a previous state of the model. Change
management, governance and quality
control are all aided by the use of
Auditing.

Where to
find Auditing

Ribbon: Configure > Model > Auditing

(c) Sparx Systems 2021 Page 668 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Use of
Auditing

Auditing can be used to track what was
changed in a model, who changed it and
when. There are a number of modes and
a repository administrator can use the
settings to specify what is recorded in the
audit. While a baseline can be used to
show the difference between a model and
a snapshot at a point in time, the
Auditing tool records each individual
change; it can not, however, be used to
revert to a previous state.

Options for
Auditing

There is a wide range of settings to
configure auditing, starting with enabling
or disabling the settings that determine
which elements have an audit trail and
the level of detail recorded. Audit logs
can be exported from the repository to
increase performance.

(c) Sparx Systems 2021 Page 669 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Learn more
about

Auditing

Auditing

(c) Sparx Systems 2021 Page 670 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/auditing.htm

Model Based Systems Engineering and SysML 2 September, 2021

Calendar

Getting to know the Calendar

Introducing
the Calendar

The Calendar is a fully featured
mechanism for recording the important
events in an initiative and displaying
other information such as resource
allocation. There are day, week and
month views and the display can be set
to show Calendar entries, Project Tasks
and Resource Allocation. When a
resource has been allocated - for example
to analyze a set of requirements - a user
can drill through from the Calendar to
the requirements' location in the
Browser window.

There are also fully configurable Event

(c) Sparx Systems 2021 Page 671 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Types, Categories and colors. The work
of a Business Analyst will involve a
wide range of events including things
like: workshops, interviews, focus
groups, collaborative games,
brainstorming sessions, reviews,
observations and meetings. All of these
events can be conveniently recorded and
managed in the Calendar. When
resources have been allocated to
elements and tasks have been assigned to
individuals these can be displayed in the
Calendar.

Where to
find the

Calendar

Ribbon: Start > Collaborate > Calendar

Usage of the
Calendar

The Calendar can be used to schedule
and view events such as meetings,
milestones, reviews, workshops and
more. It can be used to view the
allocation of resources to elements in the
repository such as who is analyzing a set
of requirements. It can also be used to
view Project Tasks. An analyst can
conveniently click through to the
elements in the Browser window or the
Project Tasks.

(c) Sparx Systems 2021 Page 672 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Options for
the Calendar

The Calendar has a number of options
including the ability to create recurrent
events. There is an options toolbar icon
that allows aspects of the Calendar's
appearance to be configured.

Learn more
about the
Calendar

Project Calendar

(c) Sparx Systems 2021 Page 673 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/resource_calendar2.htm

Model Based Systems Engineering and SysML 2 September, 2021

Block Definition Diagram

Getting to know the Block Definition
Diagram

Introducing
the Block
Definition
Diagram

The Block Definition diagram is one of
the Systems Modeling Language
(SysML) Structural diagrams that can be
used to model a wide range of things. It
is a general purpose diagram for
modeling entities in the business and
technical domains, including terms and
concepts, Business Rules, and
Capabilities in XML and Database
Schemas.

Where to
find the

Block
Definition
Diagram

Ribbon: Design > Diagram > Add : Type
= Systems Engineering > SysML Select
From = SysML 1.5 Diagram Types =
Block Definition > <required type>
Browser window Toolbar : New
Diagram icon : Type = Systems
Engineering > SysML Select From =
SysML 1.5 Diagram Types = Block
Definition > <required type>
Browser window Context Menu | Add

(c) Sparx Systems 2021 Page 674 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Diagram : Type = Systems Engineering
> SysML Select From = SysML 1.5
Diagram Types = Block Definition >
<required type>

Usage of the
Block

Definition
Diagram

The Block Definition diagram can be
used whenever a logical or structural
representation of a system is required. It
has applicability for modeling both
business and engineering concepts. It is
the fundamental diagram for modeling
the structure of a system or subsystem or
one of its components.

Options for
the Block
Definition
Diagram

The Block Definition (like any diagram)
can be viewed as an Element List, which
makes working with the element's
properties easier.
Diagram Filters can also be used when
presenting the diagrams to draw attention
to parts of the diagrams and the diagrams
can be presented as hand drawn or in a
whiteboard style by changing the
properties of the diagram.

Learn more
about the

Block
Definition

Using Blocks to Model Structure and
Constraints

(c) Sparx Systems 2021 Page 675 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/useblocks_modelstrct_constr.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/useblocks_modelstrct_constr.htm

Model Based Systems Engineering and SysML 2 September, 2021

Diagram

(c) Sparx Systems 2021 Page 676 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Internal Block Diagram

Getting to know the Internal Block Diagram

Introducing
the Internal

Block
Diagram

The Internal Block diagram is used in
conjunction with the Block Definition
Diagram, but it is typically used to show
the internal structure of a Block
including its parts and how they work
together to deliver the behaviors
specified by the block or that have been
allocated to it.

Where to
find the
Internal

Block
Diagram

Ribbon: Design > Diagram > Add : Type
= Systems Engineering > SysML Select
From = SysML 1.5 Diagram Types =
Internal Block > <required type>
Browser window Toolbar : New
Diagram icon : Type = Systems
Engineering > SysML Select From =
SysML 1.5 Diagram Types = Internal
Block > <required type>
Browser window Context Menu | Add
Diagram : Type = Systems Engineering
> SysML Select From = SysML 1.5
Diagram Types = Internal Block >
<required type>

(c) Sparx Systems 2021 Page 677 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Usage of the
Internal

Block
Diagram

The Internal Block diagram is used to
model the internal structure of a block
including its parts and the relationship
between those parts.

Options for
the Internal

Block
Diagram

The Internal Block diagram (like any
diagram) can be viewed as an Element
List, which makes working with the
element's properties easier.
Diagram Filters can also be used when
presenting the diagrams to draw attention
to parts of the diagrams and the diagrams
can be presented as hand drawn or in a
whiteboard style by changing the
properties of the diagram.

(c) Sparx Systems 2021 Page 678 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Learn more
about the

Internal
Block

Diagram

Using Properties and Parts to Model
Block Usage

(c) Sparx Systems 2021 Page 679 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/props_and-parts-mod_blockuse.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/props_and-parts-mod_blockuse.htm

Model Based Systems Engineering and SysML 2 September, 2021

Dashboard Diagrams

Dashboard diagrams allow you to create high quality Charts
and graphs to display repository information in a visually
compelling way. This diagram is an example of creating a
Dashboard diagram in Sparx Systems Enterprise Architect;
it illustrates the ratio of Requirement Priorities in a Pie
Chart.

This diagram shows a Pie Chart element
depicting element priorities for all the
Requirements in a selected Package.
It provides a useful summary for a
Requirements Manager and is
dynamically updated when the priority
changes and the diagram is reopened.
A range of other pre-defined Charts and
user-defined Charts can also be added.
A filter has been added to exclude all
elements other than Requirements.

Enterprise Architect provides a Toolbox page of
pre-configured Charts and graphs, but you are free to create
and save any number of Charts, sourcing data from
anywhere in the repository. The Charts and graphs provide
valuable summary information that assists in the
management of Requirements. High level reporting and
project status can be easily tracked and documented using
the numerous Charts and report elements available, which
tightly link in with the model content and status.

(c) Sparx Systems 2021 Page 680 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Getting to Know Dashboard Diagrams

Where to
find

Dashboard
Diagrams

Browser window | Right-click on
Package | Add Diagram : | Manage |
Show All Perspectives | Extended |
Dashboard

Usage of
Dashboard

Diagrams

Dashboard diagrams present rich yet
easily understood views of information -
such as the status of Requirements in a
particular release of the system - that can
be opened inside the model or
conveniently copied directly into
management or project team
presentations. They are useful for
planning an iteration such as an Agile
sprint to view how ready the
Requirements are for the implementation
team; for example, to view what
percentage of the Requirements have
been approved and are of high priority.

Options for
Dashboard

Diagrams

The standard Charts and graphs available
from the Toolbox can be configured in a
number of ways, including changing the
source, applying filters or modifying the
appearance of the Chart as indicated in
this diagram, available from the Chart's

(c) Sparx Systems 2021 Page 681 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Properties window using the
'Appearance' section.

Learn more
about

Dashboard
Diagrams

Standard Charts·

(c) Sparx Systems 2021 Page 682 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/charts.htm

Model Based Systems Engineering and SysML 2 September, 2021

Decision Tree Diagram

Getting to know the Decision Tree Diagram

Introducing
the Decision

Tree
Diagram

Decision Trees are an effective way of
graphically representing a number of
options and provide a mechanism to
investigate the possible outcomes and
benefits of choosing those options. They
can also assist the analyst to form a
balanced picture of the risks and benefits
associated with each possible course of
action. They are a close cousin of the
Decision Table but have the benefit of
being graphical. Enterprise Architect has
a purpose-built diagram allowing
complex decisions to be modeled and
displayed including probabilities and
uncertainty.

Requirement Not
Specified

Requirement not
Implemented

Poor Interview Recording
Processes

Stakeholder not
Interviewed

Stakeholders Request
Overlooked

No User Acceptance Test
for Feature

Stakeholders Request
Analysed but Excluded

Inadequate Review
Processes

Missing Feature in
Implemented Solution

(c) Sparx Systems 2021 Page 683 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Where to
find the

Decision
Tree

Diagram

Ribbon: Design > Diagram > Add >
Strategic Modeling > Decision Tree
Browser window Toolbar : New
Diagram icon > Strategic Modeling >
Decision Tree
Browser window context menu | Add
Diagram... > Strategic Modeling >
Decision Tree

Usage of the
Decision

Tree
Diagram

Decision Trees can be used to help in
decision making processes, particularly
when the decision involves a complex set
of conditions that have different
likelihoods of occurrence. They can be
used for strategic or operational decision
analysis and can help to formalize the
basis of decision making particularly
when it is imperative that actions that are
taken are based on formal analysis or
have expensive consequences. A
Decision Tree can be used to present a
graphical picture of a Decision Table for
stakeholders who are more comfortable
viewing diagrams rather than tables and
documents.

Options for
the Decision

Tree

Decision Trees can be drawn with
varying levels of formality from simple
trees with a series of decisions resulting

(c) Sparx Systems 2021 Page 684 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Diagram in outcomes to more formal trees that
involve uncertainty with probability
values assigned or formulaic expressions
with input parameters. The 'Decision
Tree' toolbox page contains a range of
elements that can be used, and two
Patterns that can be used to create a
diagram giving the analyst a starting
point.

Diagram Filters can also be used when
presenting the diagrams to draw attention
to parts of the diagrams and the diagrams
can be presented as hand drawn or in a
whiteboard style by changing the
properties of the diagram.

Learn more
about the

Decision Tree Diagram

(c) Sparx Systems 2021 Page 685 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/decision_tree.htm

Model Based Systems Engineering and SysML 2 September, 2021

Decision
Tree

Diagram

(c) Sparx Systems 2021 Page 686 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

StateMachine Diagram

Getting to know the StateMachine Diagram

Introducing
the

StateMachin
e Diagram

The StateMachine diagram is one of
the Systems Modeling Language
(SysML) Behavior diagrams that can be
used to model a wide range of things. It
is a general purpose diagram for
modeling entities in the business and
technical domains, including terms and
concepts, Business Rules, and
Capabilities in XML and Database
Schemas.

Where to
find the

StateMachin
e Diagram

Ribbon: Design > Diagram > Add : Type
= Systems Engineering > SysML, Select
From = SysML 1.5, Diagram Types =
StateMachine > <required type>
Browser window Toolbar : Type =
Systems Engineering > SysML, Select
From = SysML 1.5, Diagram Types =
StateMachine > <required type>
Browser window Context Menu | Add
Diagram : Type = Systems Engineering
> SysML, Select From = SysML 1.5,
Diagram Types = StateMachine >

(c) Sparx Systems 2021 Page 687 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

<required type>

Usage of the
StateMachin

e Diagram

The Class diagram can be used whenever
a logical or structural representation of a
system is required. It has applicability
for modeling both business and technical
concepts and can be used to model
information and structures such as XML
and database schemas.

Options for
the

StateMachin
e Diagram

The Class diagram (like any diagram)
can be viewed as an Element List, which
makes working with the element's
properties easier.
Diagram Filters can also be used when
presenting the diagrams to draw attention
to parts of the diagrams and the diagrams
can be presented as hand drawn or in a
whiteboard style by changing the
properties of the diagram.

(c) Sparx Systems 2021 Page 688 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Learn more
about the

StateMachin
e Diagram

StateMachine diagram

(c) Sparx Systems 2021 Page 689 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/statediagram.htm

Model Based Systems Engineering and SysML 2 September, 2021

Documentation

Getting to know Documentation

Introducing
Documentati

on

The Documentation features can be used
to automatically generate a wide range of
documentation directly from the models.
These can be document-based such as
PDF and Docx format or HTML-based.
Flexible templates can be used to
completely tailor the documents that are
generated including company logos,
tables of content, tables of element
information and diagrams. Ad-hoc
reports can also be created from a
number of tools such as the Glossary and
the Search Window.

Where to Ribbon: Publish > Model Reports >

(c) Sparx Systems 2021 Page 690 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

find
Documentati

on

Report Builder

Use of
Documentati

on

Modelers, Analysts, Architects, Project
Managers and others can use the facility
to produce a wide range of
document-based publications and
reports, such as a System Requirements
Specification, Use Case Report, Data
Dictionary, Solution Architecture
Description and more. It can also be used
for ad-hoc reporting to create reports
such as a list of the most volatile
requirements. HTML documentation can
also be published to allow stakeholders
who don't have access to Enterprise
Architect to view the models from an
Intranet site that can just be placed on a
file system without the need for a Web
Server.

Options for
Documentati

on

There are several options that can be set
to tailor the information that is included
in a generated document, including the
ordering of elements and diagrams and
hiding certain elements. Filters and word
substitutions and other options can also
be applied.

(c) Sparx Systems 2021 Page 691 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Learn more
about

Documentati
on

Model Publishing

(c) Sparx Systems 2021 Page 692 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/documentingprojects.htm

Model Based Systems Engineering and SysML 2 September, 2021

Gap Analysis Matrix

Getting to know the Gap Analysis Matrix

Introducing
the Gap
Analysis

Matrix

The Gap Analysis Matrix is a
specialized Relationship Matrix that is
used to record the gaps that exist
between two versions of some part of an
enterprise. The gaps between two
different versions of an architecture
could be recorded, or the gaps between
two versions of Capabilities or Staff
Competencies, or two versions of
Information or Data. The tool is
structured similarly to a spreadsheet with
columns and rows. The elements that
make up the baseline (starting point) are
listed as rows and the elements that make
up the target (end point) are listed as
columns. There is a column for recording
missing or eliminated elements and a
row for recording new elements. At the
intersection of a baseline element and
target element, notes can be added that
describe any details of the relationship
between the two elements.

(c) Sparx Systems 2021 Page 693 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Where to
find the Gap

Analysis
Matrix

Ribbon: Design > Impact > Gap Analysis

Usage of the
Gap Analysis

Matrix

The Gap Analysis Matrix can be used
for both business and technical analysis.
It is a general purpose tool for recording
the details of a comparison between
different versions of some part of an
enterprise. In business analysis it can be
used to analyze Staff Competencies,
Data and Information, Business

(c) Sparx Systems 2021 Page 694 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Processes, Lines of Business and more,
comparing them within current and
future states of an enterprise. In
Enterprise Architecture the matrix can be
used to record gaps between baseline,
transition and target architectures,
comparing Capabilities, Architecture and
Solution Components and more.

Options for
the Gap
Analysis

Matrix

The Gap Analysis Matrix can be
configured to display different parts of
the repository. Once the appropriate
Packages have been chosen for the
Target and Baseline, and the types of
element have been selected for the filter,
the Gap element type can be selected.
The element chosen for the gap will
restrict the available elements to
represent the gap for 'Missing' or 'New'
elements in cells in the matrix. There are
a number of choices available from the
'Options' menu, including being able to
update, delete and save the Gap Analysis
Matrix as a profile, giving it a name so
that it can be recalled at a later time.

(c) Sparx Systems 2021 Page 695 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Learn more
about the

Gap Analysis
Matrix

Gap Analysis Matrix

(c) Sparx Systems 2021 Page 696 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/gap_analysis_matrix.htm

Model Based Systems Engineering and SysML 2 September, 2021

Heat Map

Getting to know the Heatmap

Introducing
the Heatmap

A Heat Map is a type of chart that can
be used to visualize data in two
dimensions. It uses the color of
rectangles to indicate a dimension of the
data and the relative size of the
rectangles to indicate another dimension.
They are typically used to create
compelling representations of data for
strategic or tactical decision making.
They can be used at any level of a
repository from strategic architecture
down to Technology architectures.

Where to
find the

Double-click on Chart element | Chart
Details | Source > Package

(c) Sparx Systems 2021 Page 697 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Heatmap

Usage of the
Heatmap

Heatmaps are typically used to create
compelling representations of data for
strategic or tactical decision making.
They can be used with Requirements to
indicate the statuses of a group of
requirements and, if the metrics are
available, the estimated implementation
cost of each requirement. They could be
used with an application or technology
inventory to show the prevalence of
technologies. For example, which
applications were developed in a
particular language or run on a particular
operating system.

Options for
the Heatmap

As an alternative to specifying the
parameters of the Heat Map in the fields
on the 'Package' tab, you can select the
'Custom SQL' tab and create a
customized Heat Map using SQL. You
still specify the chart type in the 'Type'
field, but the other dialog fields are
grayed out.

Learn more
about the
Heatmap

Heat Maps

(c) Sparx Systems 2021 Page 698 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/heat_maps.htm

Model Based Systems Engineering and SysML 2 September, 2021

(c) Sparx Systems 2021 Page 699 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Import and Export Spreadsheets

Import and Export Spreadsheets

Introducing
Import and

Export
Spreadsheets

This facility is a useful mechanism to
import Requirements that have been
defined in a Spreadsheet or a Word
Processor table into Enterprise Architect.
Once in Enterprise Architect the
Requirements can be managed and
traced to elements such as business
drivers and Scenarios and Components.
Alternatively Requirements in Enterprise
Architect can be exported to a
Spreadsheet for the purposes of
providing them to a third party or for
some type of numerical or statistical
analysis. The mapping between fields in
the Spreadsheet and the analogous
properties in Enterprise Architect is
completely configurable using a
specification.
For more detailed information exchange,
the MDG Link for Microsoft Office
(available from Sparx Systems) provides
additional functionality and integration
points useful when dealing with complex

(c) Sparx Systems 2021 Page 700 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Requirements.

Where to
find Import
and Export

Spreadsheets

Ribbon: Publish > Model Exchange >
CSV

Use of
Import and

Export
Spreadsheets

This feature can be used to import or
export Requirements from a CSV file.
Before a tool such as Enterprise
Architect was installed, Analysts might
have used a Spreadsheet or a table in
their favorite word processor to record
Requirements; these can conveniently be
imported using the CSV import facility.
Alternatively, Requirements sometimes
have to be provided to a third party who
will typically specify that they want them
in a Spreadsheet file; this can be
achieved using the export facility.

Options to
Import and

The import and export facility is
completely configurable and has a

(c) Sparx Systems 2021 Page 701 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Export
Spreadsheets

user-defined specification to facilitate the
mapping of Spreadsheet fields to
Requirements properties in Enterprise
Architect. This facility also includes the
ability to import and export fields in
Tagged Values of the Requirement.

Learn more
about Import

and Export
Spreadsheets

CSV Import and Export

(c) Sparx Systems 2021 Page 702 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/csvimportexport.htm

Model Based Systems Engineering and SysML 2 September, 2021

Parametric Diagram

Getting to know the Parametric Diagram

Introducing
the

Parametric
Diagram

The Parametric diagram is one of the
Systems Modeling Language (SysML)
Structural diagrams that can be used to
model systems of mathematical
equations. There is an assistant that will
help to convert the equations into
modeled elements including properties.
Once the equations are modeled they can
be used to create simulations using the
OpenModelica integration.

bdd [package] Force=Mass*Acceleration(1) [Force=Mass*Acceleration(1)]

«block»
FMA_Test

constraints
{f=m*a}

phs variables
 f

phs constants
 a = 9.81

properties
 m = 10

Where to
find the

Ribbon: Design > Diagram > Add : Type
= Systems Engineering > SysML, Select

(c) Sparx Systems 2021 Page 703 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Parametric
Diagram

From = SysML 1.5, Diagram Types =
Parametric
Browser window Toolbar : Type =
Systems Engineering > SysML, Select
From = SysML 1.5, Diagram Types =
Parametric
Browser window Context Menu | Add
Diagram : Type = Systems Engineering
> SysML, Select From = SysML 1.5,
Diagram Types = Parametric

Usage of the
Parametric

Diagram

The Parametric diagram can be used
whenever you need to visualize or
simulate a system of equations.

Options for
the

Parametric
Diagram

The Parametric diagram has a number of
options including the modeling of a
simple equation or a system of equations.

Learn more
about the

Parametric
Diagram

Class Diagram

(c) Sparx Systems 2021 Page 704 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/classdiagram.htm

Model Based Systems Engineering and SysML 2 September, 2021

Patterns

Getting to know Patterns

Introducing
Patterns

A Pattern is a general reusable design
solution to a commonly occurring
problem within a given architectural
context. Patterns are not resolved
designs, but rather templates for how a
problem can be solved. The concept
originated in the building architecture
world and was first published in a book
by Christopher Alexander entitled
Design Patterns. They were then applied
to the software industry and were used
extensively by the software engineering
domain to solve commonly recurring
software engineering problems, even
though on the surface the nature of the
problems seemed quite different.

(c) Sparx Systems 2021 Page 705 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Where to
find Patterns

Create a Pattern:
 Specialize > Technologies >
Publish-Tech > Publish Diagram as
Pattern
Use a Pattern:
 Start > Desktop > Share > Resources
> Patterns <pattern group> > Right-click
on Pattern name > Add Pattern to
Diagram

Usage of
Patterns

Patterns can be applied in a wide range
of situations from business to technology
architecture, but are always used to apply

(c) Sparx Systems 2021 Page 706 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

a common solution to any number of
problems or contexts that on the surface
might appear quite different. Enterprise
Architect has provided a useful
mechanism for mining Patterns, which
means that any diagram can be published
as a Pattern and then reused in the same
or a different context. An example of a
Pattern and its usage might be a Pattern
articulating the relationship between
Drivers, Goals, Objectives and
Measures. An existing diagram could be
published as a Pattern and then any
business architecture could reuse the
Pattern by simply dragging it onto an
empty diagram.

Options for
Patterns

Patterns are most commonly available
from the 'Resources' tab of the Browser
window but are also sometimes built into
technologies and made available from a
Toolbox page. There are a number of
options available when publishing a
Pattern, including the ability to describe
the details of the Pattern overall and to
include notes for each of the elements
that make up the Pattern.

(c) Sparx Systems 2021 Page 707 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

(c) Sparx Systems 2021 Page 708 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Relationship Matrix

Getting to Know the Relationship Matrix

Introducing
the

Relationship
Matrix

The Relationship Matrix provides a
visualizing compelling matrix-style view
for a convenient analysis of the way that
Requirements are related to each other
and to other elements in the model. It can
be used to view the relationships
between Stakeholders and their
Requirements, how Use Cases are related
to Business Requirements or Functional
Requirements, how Capabilities are
related to Business Drivers, which
Components implement a set of
Requirements, and more. Any number of
matrices can be defined quickly and then
saved to be viewed in workshops, or
included in documentation generated
automatically from the model or
exported to a spreadsheet file. When a
matrix is created, connections can be
viewed by placing the Requirements on
one axis of the matrix and the connected
elements on the other axis, then the cells
of the matrix will indicate the direction

(c) Sparx Systems 2021 Page 709 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

of the relationship.

Where to
find the

Relationship
Matrix

In the Browser window, click on
Package and select:

The 'Resources' tab | Matrix Profiles |·

Right-click on a profile | Open Matrix
Profile or
The Start ribbon > Desktop > Design >·

Details > Matrix

Usage of the
Relationship

Matrix

To display the relationships that exist
between elements - such as which
Requirements are realized by which Use
Cases - in two Packages in a visually
compelling matrix. It is useful in
analyzing missing elements or
relationships; for example, to determine
which Requirements are not realized by

(c) Sparx Systems 2021 Page 710 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

any Use Case, or which Components do
not have corresponding Requirements or
Use Cases. It is particularly useful in
workshops with Business Stakeholders
who might not be familiar with seeing
Requirements in Trace diagrams.

Options for
the

Relationship
Matrix

There is a range of options that can be
set for the Relationship Matrix,
including saving it to the 'Resources' tab
of the Browser window or to a CSV
format for opening in a spreadsheet. The
appearance of the Relationship Matrix
can also be altered by sorting the
elements, showing an outline numbering
view, and suppressing Package names.
These items are available from the
Options button on the Relationship
Matrix.

Learn more
about the

Relationship
Matrix

Relationship Matrix

(c) Sparx Systems 2021 Page 711 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/elementrelationshipmatrix.htm

Model Based Systems Engineering and SysML 2 September, 2021

(c) Sparx Systems 2021 Page 712 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Roadmap Diagram

Getting to know the Roadmap Diagram

Introducing
the Roadmap

Diagram

The Roadmap diagram is an overlay that
can be applied to any diagram to
describe significant phases in elements
and how they change with the passage of
time.

There is no restriction on the type of
element that can appear on the diagram,
and any diagram can have a Roadmap
overlay defined. Significant user defined
phases in the element's lifetime are
represented by colored bars, which can
be set to show duration. The colors and
the phases can be configured using a
Diagram Legend, which automatically
applies them to the elements in the
diagram. They are particularly useful in

(c) Sparx Systems 2021 Page 713 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Enterprise Architecture diagrams for
describing capability and application
Roadmaps.

Where to
find the

Roadmap
Diagram

Ribbon: Layout > Diagram > Roadmap
Diagram Context Menu: Roadmap

Usage of the
Roadmap
Diagram

The Roadmap diagram has a wide range
of uses in Enterprise Architecture where
they can be used to show application and
capability roadmaps to Systems
Engineering, where they are used to
show timing in low level components.

Options for
the Roadmap

Diagram

The Roadmap overlay has a range of
options that determine the properties of
the timeline, such as the scale of the time
rulers, units, their positions, and the
appearance of the time line including
fonts and colors. The height and position
of the timeline can also be configured to
suit the diagram and display.

(c) Sparx Systems 2021 Page 714 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The Diagram Legend can be configured
to define the phases in the element's
lifetime, to set the specification of the
colored bands and more. Roadmap
segments can be shown or hidden on
individual elements in cases where a
particular segment might not apply to
one or more of the elements on the
diagram.

Learn more
about the

Roadmap Diagram

(c) Sparx Systems 2021 Page 715 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/roadmap_diagram.htm

Model Based Systems Engineering and SysML 2 September, 2021

Roadmap
Diagram

(c) Sparx Systems 2021 Page 716 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Specification Manager

Getting to Know the Specification Manager

Introducing
the

Specification
Manager

The Specification Manager is the
central tool for working with
Requirements; it provides an interface
resembling a Word Processor or
Spreadsheet tool for entering,
maintaining and viewing Requirements.
New Requirements can be created with
names and detailed descriptions and
properties such as Status and Priority can
be added from drop-down lists. Existing
Requirements can be viewed and
managed in a convenient view, and
changing them in the Specification
Manager will change them in all other
places in the repository such as diagrams
and windows. It is the perfect tool for
those analysts more comfortable working
with text rather than diagrams and who
are accustomed to working in a Word
Processor or Spreadsheet. It has the
added advantage that the requirements
are part of a model and can be traced to
other elements, including Business

(c) Sparx Systems 2021 Page 717 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Drivers, Stakeholders and Solution
Components.

Where to
find the

Specification
Manager

Browser window | Right-click on
Package | Open Package in |
Specification Manager

Usage of the
Specification

Manager

To create, view and maintain
Requirements in a text based tool that
resembles working in a word processor
or spreadsheet. Details can be added to
the Requirements and Requirement
properties can be added from drop-down
lists. When the Requirements are
changed in the Specification Manager

(c) Sparx Systems 2021 Page 718 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

the changes are conveniently reflected in
the Browser window and all other
windows.

Options for
the

Specification
Manager

There are a wide range of options
available from the options menu, to tailor
the way you use the Specification
Manager. These include Level
(hierarchical) Numbering, Auto Naming,
Spell Check, Documentation, Import and
Export of Requirements, access to
various related tools and more.

Learn more
about the

Specification
Manager

The Specification Manager

(c) Sparx Systems 2021 Page 719 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/specification_manager.htm

Model Based Systems Engineering and SysML 2 September, 2021

Strategy Map

A Strategy Map is a diagram that is used to describe the
primary strategic goals that are important to an organization
or business team. The diagram shows four important
perspectives that are the significant questions that provide
the definition of a strategy. The defined perspectives are:
‘Financial’, ‘Customer’, ‘Internal Business Processes’ and
‘Learning and Growth’. The diagram is used as a
communication device to ensure there is a common
understanding of the strategy, to focus organization effort
and to assist with the assessment of progress.

(c) Sparx Systems 2021 Page 720 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Organization Capital

Customer Value Proposition

Titles SelectionHigh AvailabilityConsistent QualityPrice

Human Capital

Culture

Information Capital

Leadership Alignment Teamwork

Financial Perspective

Enhance Customer
Value

Expand Revenue
Opportunities

Increase Asset
UtilizationImprove Cost Structure

Long-Term Shareholder
Value

Customer Perspective

Image

Service Excellence Partnership Brand

RelationshipProduct or Service Attributes

Productivity Strategy Growth Strategy

Internal Perspective

Operations Management
Processes

Distribution
Production
Risk
Supply

Customer Management
Processes

Acquisition
Growth
Retention
Selection

Innovation Processes

Design/Develop
Launch
Opportunity ID
R&D Portfolio

Regulatory and Social
Processes

Community
Employment
Environment
Safety and Health

Learning and Growth Perspective

Getting to know the Strategy Map

Where to
find the

Strategy
Map

Ribbon: Design > Diagram > Add >
Strategic Modeling > Strategy Map
Browser window Toolbar : New
Diagram icon > Strategic Modeling >
Strategy Map

(c) Sparx Systems 2021 Page 721 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Browser window context menu | Add
Diagram... > Strategic Modeling >
Strategy Map

Usage of the
Strategy

Map

The Strategy Map is used to model the
key strategic goals that an organization
or management team intend to achieve.
Elements in each of the four perspectives
can be linked to other elements in the
repository to show how they could be
implemented at a business, application or
technology level.

Options for
the Strategy

Map

A Strategy Map can be created using
Patterns that automatically create
elements and a diagram that can be used
as a starting point for the Strategy Map.
There are three Patterns available,
ranging from a very simple expression
with a single element in each perspective
to a completely worked expression with
multiple elements in each perspective. A
toolbox provides a range of additional
elements and relationships to extend the
base maps created using the Patterns.

(c) Sparx Systems 2021 Page 722 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Learn more
about the
Strategy

Map

Strategy Map

(c) Sparx Systems 2021 Page 723 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/strategy_maps.htm

Model Based Systems Engineering and SysML 2 September, 2021

Library

Getting to know The Library

Introducing
The Library

The Library window provides an
opportunity for developers, modelers,
customers and stakeholders to comment
and provide feedback on the work in
progress or at the completion of a
milestone or project.

Usage of The
Library

The Library feature can be used to
conduct model reviews from any number
of perspectives, including walk-throughs,
formal model reviews, or ad-hoc
reviews.

Where to
find The
Library

To post or view an element's discussion
Ribbon: Start > Desktop > Share >
Library

(c) Sparx Systems 2021 Page 724 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Options for
The Library

There is a wide range of settings
available to configure the Library
available from the Category and Topic
context menus, including setting the
status of the category or topic and other
options. Diagrams, elements and element
features can be conveniently dragged
from the Browser window to create
model links that can be used by team
members to hyperlink directly from the
Library window to these items in the
Browser window.

Learn more
about Team

Library

Library Window

(c) Sparx Systems 2021 Page 725 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/discussionforum.htm

Model Based Systems Engineering and SysML 2 September, 2021

(c) Sparx Systems 2021 Page 726 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Time Aware Modeling

Getting to know Time Aware Modeling

Introducing
Time Aware

Modeling

The Time Aware Modeling feature
allows analysts, architects and others to
create incremental versions of their
models by providing tools that facilitate
the migration of elements, diagrams and
Packages through the dimension of time
allowing multiple transitions or versions
to be created. The baseline ('As-is',
current state) models remain unaffected
and any number of target ('To-Be', future
state) models can be constructed for the
purpose of visualization and analysis. It
is particularly useful and powerful when
a number of future options need to be
represented and compared effectively
allowing 'what-if' analysis to be
conducted. Time is one of the most
important dimensions in architecture as it
is the substrate upon which all changes
occur. Architects are aware of its
importance and have traditionally created
models with duplicated elements; time
aware modeling allows the existing

(c) Sparx Systems 2021 Page 727 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

elements, diagrams and Packages to be
cloned.

Forklift

(from Picking
Mechanisms Manual

1.0)

Large Item

(from Picking
Mechanisms Manual

1.0)

This Time Aware Modeling
clone diagram shows the
elements from three
different versions of the
model. The current state
version 1.0, Version 2.0
and Version 3.0. The
diagram has a version
filter applied to obscure all
elements not part of
the version of the
diagram.

Small Item

(from Picking
Mechanisms Manual

1.0)

Mounted Tablet

(from Picking
Mechanisms Manual

1.0)

Voice Instruction

(from Picking
Mechanisms Voice

Assisted 2.0)

«device»
Headset

(from Picking
Mechanisms Voice

Assisted 2.0)

«device»
Wearable Computer

Warehouse Manager
Three

The component contains
an integrated voice
module

Mobile Robotic
Drive Unit

«device»
Communication

Hub

Forklift Operator

Integrated Mobile Robotic Drive Units and Voice
Assisted Forklifts Version 3.0 Q4 2019

1.0

2.0

3.0

Version Legend

Where to
find Time

Aware
Modeling

Clone Package Structure as New Version
Ribbon: Design > Model > Manage >
Clone Structure as New Version
Browser window Context Menu: Clone
Structure as New Version

Clone Diagram as New Version
Ribbon: Design > Diagram > Manage >
Clone as New Version

Clone Element as New Version
Ribbon: Design > Element > Manage >
Clone Element as New Version

(c) Sparx Systems 2021 Page 728 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Usage of
Time Aware

Modeling

Time Aware Modeling can be applied in
a wide range of situations in business
and technology models; it provides a
powerful way of showing how the
entities represented by the model change
over time. The baseline ('As-Is', current
state) models can be left unaffected,
while any number of target ('To-Be',
future state) models can be constructed
to reflect the possible evolution of the
baseline models over time. There are
many areas where an analyst or architect
will find this tool useful; for example:

Architects use models to document the·

current state and then move on to the
more challenging and rewarding task
of defining how the future state will
look, often in a series of transitions
When new customers are acquired, a·

Business Analyst is often challenged
with describing how a base product
should be configured for these
different customer groups, resulting in
different versions of the same product
Business Strategists typically prescribe·

how a Capability model will look for
the organization of the future, resulting
in at least two versions of the
Capability model

(c) Sparx Systems 2021 Page 729 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

During Mergers and Acquisitions,·

Business Architects are tasked with
describing the possible states of the
enterprise after the takeover is
complete
Engineers are required to develop·

better, more efficient solutions to meet
the challenges of the future, so define
newer versions of the solution
Testers need to be aware of different·

versions of a product when designing
and running test cases
Infrastructure engineers need to define·

future environments in response to
performance or security concerns,
creating multiple versions of servers,
devices and even whole facilities

All of the situations require that time is
incorporated into the models so that it
can be reasoned about and made explicit.
Enterprise Architect's Time Aware
modeling facilities can be used in these
situations to ensure that time is included
as a first class citizen in the models.
Time is not measured or modeled in
absolute or relative terms, but by
representing any number of future states
or differences in the form of versions.

(c) Sparx Systems 2021 Page 730 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Options for
Time Aware

Modeling

The Time Aware Modeling features
allow a modeler to clone Packages,
diagrams and elements. Most models are
not trivial and Enterprise Architect
provides a wide range of tools that will
assist in the visualization of the models
and how they change over time. The
Traceability window will be
particularly useful for viewing the
connection between elements in the time
aware models and other parts of the
repository. A very useful feature is the
ability to apply a filter to a diagram
based on version, thus obscuring
elements that are not part of a particular
version.

Learn more
about Time

Aware
Modeling

Time Aware Modeling

(c) Sparx Systems 2021 Page 731 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/time_aware_models.htm

Model Based Systems Engineering and SysML 2 September, 2021

Traceability Window

Getting to Know the Traceability Window

Introducing
the

Traceability
Window

The Traceability window provides a
hierarchical view of element
connections, allowing traceability to be
visualized and queried as elements are
traversed in the model. This tool is
particularly powerful because a modeler
will often choose to hide diagram
relationships, but by selecting an element
in the diagram and viewing its
connections in the Traceability window
all its relationships will be revealed.

(c) Sparx Systems 2021 Page 732 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Where to
find the

Traceability
Window

Start > Desktop > Design > Traceability

Usage of the
Traceability

Window

The Traceability window provides a
hierarchical view of the way an element
is connected to other elements in the
repository, along with the type of each
relationship. This window gives a
complete list of all relationships that
cannot be seen by viewing elements in
the Browser window and that also might
not appear in any diagrams. It is very
useful for managing Requirements and

(c) Sparx Systems 2021 Page 733 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

tracing how a Requirement is related to
upstream process elements such as
Business Drivers and downstream
process elements such as Components. It
is a useful tool, enabling newcomers to a
model to gain a quick understanding of
which are the important and well
connected elements. Before you delete
an element in the model, you should use
the Traceability window to ensure that
you understand that element's existing
relationships.

Options for
the

Traceability
Window

There is a series of options that restrict
traceability to specified connector types;
these options can be set to alter what is
displayed in the window. The options are
available from the toolbar at the top of
the window.

(c) Sparx Systems 2021 Page 734 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Learn more
about the

Traceability
Window

The Traceability Window

(c) Sparx Systems 2021 Page 735 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/hierarchy.htm

Model Based Systems Engineering and SysML 2 September, 2021

Value Chain

Getting to know the Value Chain

Introducing
the Value

Chain

The Value Chain is a strategic diagram
that allows the primary and secondary
activities in an organization to be
modeled. The diagram can be created
from a Pattern that adds and connects the
five primary activities in a chain and the
four supporting activities underpinning
them.

Firm Infrastructure

ServiceMarketing &
Sales

Inbound
Logistics

Outbound
Logistics

Operations

Procurement

Gross Sales

Support Activities

Primary Activities

Legend

Technology Development

Human Resource Management

(c) Sparx Systems 2021 Page 736 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

The Gross Sales element acts as a frame
for the Primary Activity and Support
Activity elements.
An Analyst working at the strategic
business unit level will often be asked to
model the activities the business unit
performs to provide value to its
customers. The Value Chain is the
preferred tool for creating this strategic
representation of the sequence of
activities that an organization performs.

Where to
find the

Value Chain

Ribbon: Design > Diagram > Add >
Strategic Modeling > Value Chain
Browser window Toolbar : New
Diagram icon > Strategic Modeling >
Value Chain
Browser window context menu | Add
Diagram... > Strategic Modeling > Value
Chain

Usage of the
Value Chain

The Value Chain is an important tool to
assist with strategic planning allowing
the whole sequence (or chain) to be
understood. It also allows the chain to be
broken down into its constituent
activities allowing the evaluation of
costs, resource and value to be
determined and potentially improved.

(c) Sparx Systems 2021 Page 737 of 739 Created with Enterprise Architect

Model Based Systems Engineering and SysML 2 September, 2021

Options for
the Value

Chain

Each one of the Primary and Supporting
Activities can be linked to other elements
in the model including a Linked
Document and elements that define
benchmarks.

The Value Chain diagram (like any
diagram) can be viewed as an element
list which makes working with the
element's properties easier.
Diagram Filters can also be used when
presenting the diagrams to draw attention
to parts of the diagrams.

Learn more
about the

Value Chain

Value Chain

(c) Sparx Systems 2021 Page 738 of 739 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/value_chain.htm

Model Based Systems Engineering and SysML 2 September, 2021

(c) Sparx Systems 2021 Page 739 of 739 Created with Enterprise Architect

	Model Based Systems Engineering and SysML
	An Equation with Four Variables
	The Engineering Method or Process
	Modeling as a Discipline
	Getting Started
	Defining a Model's Purpose
	Deciding Where to Start
	Connecting Parts of the Model
	Ensuring a Model's Quality

	The Systems Modeling Language (SysML)
	Enterprise Architect the Modeling Tool
	Collaboration Platform
	Project Management Workbench
	Model Repository

	Getting Started
	Setting Up a Model Structure
	Tailoring the Application
	Setting a Perspective
	Selecting a Visual Style
	Selecting a Workspace
	Setting Preferences

	Importing Existing Material
	Creating Diagrams Elements and Relationships
	Visualizing the Models
	Synchronizing with External Data

	Where we are Heading
	Getting to Know the SysML Diagrams
	Common Aspects of Diagrams
	Block Definition Diagram
	Requirement Diagram
	Use Case Diagram
	Package Diagram
	Activity Diagrams
	Internal Block Diagram
	Parametric Diagram
	Sequence Diagram
	StateMachine Diagram

	Systems Modeling Language Overview
	Language Architecture
	Key Grammatical Concepts
	Models, Diagrams, Elements and Views

	Collaborating as an Engineering Team
	Central Shared Repository
	Cloud Computing
	Discussions and Chat
	Kanban Resources and Calendars
	Model Reviews
	Sharing Resources in the Team Library
	Viewing Models on Mobile Devices
	Modeling the Future
	Version Control and Baselines
	Reusable Asset Server

	Using Packages to Structure the Repository
	The Function of Packages
	Introducing Package Diagrams
	Package Organization Regimes
	The Browser Window
	Accessing the Repository using Model Views

	Requirement Definition and Management
	Requirements as First Class Citizens
	Introducing Requirement Diagrams
	Developing Requirements
	Elicitation
	Document Sources
	User Observations
	Stakeholder Workshops
	Creating Requirements
	External and Internal Requirements
	Requirement Categories
	Requirement Properties

	Specification
	Meet the Specification Manager

	Analysis
	Prioritize the Requirements

	Validation

	Visualizing Requirements
	Requirements Diagrams
	Specification Manager
	Browsers and Views
	Relationships Matrix
	Requirements Tables

	Managing Requirements
	Tracing Requirements
	Tracking Requirements
	Managing Changing Requirements
	Impact Analysis of Changes
	Requirement Volatility
	Requirement Reuse

	Requirement Relationships
	Adding Refinement to a Requirement
	Containment Relationship
	Copying Existing Requirements
	Deriving a Requirement from Another
	Ensuring a Requirement is Satisfied
	Traceability to Model Elements
	Verify Relationship
	Visualizing Requirement Relationships

	Documenting Requirements
	Project Glossary
	Software Requirement Specification

	Describing User Goals with Use Cases
	Requirements and Use Cases
	Introducing Use Case Diagrams
	Meet the Scenario Builder
	Structuring a Use Case Model
	Generating Behavior Diagrams
	Use Case Report

	Using Blocks to Model Structure and Constraints
	Getting Started with Blocks
	Modelling Constraints as Blocks
	Introducing Block Definition Diagrams
	The Fundamental Structural Building Blocks
	Modeling Structural Features
	Modeling Behavioral Features
	Other Block Relationships
	Modeling Interaction Points
	Modeling Quantity using Value Types

	Using Properties and Parts to Model Block Usage
	Introducing Internal Block Diagrams
	Modeling and Connecting Parts

	Modeling Parametric Equations
	Introducing Parametric Diagrams
	Systems of Equations using Part Associations
	Measures of Effectiveness using Parametrics

	Coordinating Behavior with Activities
	Actions the Fundamental Behavioral Building Blocks
	Introducing Activity Diagrams
	Creating Activity Hierarchies
	Specifying Action Sequence with Control Flows
	Specifying Item Flow with Object Flows
	Modeling Inputs and Outputs with Parameters and Pins
	Visualizing Activities with Simulations
	Allocations and other Relationships

	Modeling Change with StateMachines
	States and Behaviors
	Introducing StateMachine Diagrams
	Triggers and Transitions
	Composite States and Regions
	Pseudostates - The Traffic Police
	State Tables another View
	Visualizing and Implementing with Simulations

	Interactions as a Sequence of Messages
	Lifelines, Messages and Activations
	Introducing the Sequence Diagram
	Message Orchestration with Fragments

	Visualizing with Simulations
	SysML Simulation in Modelica and Simulink
	How it Works
	Getting Started with OpenModelica
	Creating Models for Simulation

	Example SysML Model
	Package Overview (Structure of the Sample Model)
	Package Diagram - Applying the SysML Profile
	Package Diagram - Showing Package Structure of the Model

	Setting the Context (Boundaries and Use Cases)
	Operational Domain Model - Setting Context
	Use Case Diagram - Top Level Use Cases
	Use Case Diagram - Operational Use Cases

	Elaborating Behavior (Sequence and StateMachine Diagrams)
	Sequence Diagram - Drive Black Box
	StateMachine Diagram - HSUV Operational States
	Sequence Diagram - Start Vehicle Black Box and White Box

	Establishing Requirements (Requirements Diagrams and Tables)
	Requirement Diagram - HSUV Requirement Hierarchy
	Requirement Diagram - Derived Requirements
	Requirement Diagram - Acceleration Requirement Relationships
	Table - Requirements Table

	Breaking Down the Pieces (Block Definition Diagrams, Internal Block
	Block Definition Diagram - Automotive Domain
	Block Definition Diagram - Hybrid SUV
	Internal Block Diagram - Hybrid SUV
	Block Definition Diagram - Power Subsystem
	Internal Block Diagram for the Power Subsystem

	Defining Ports and Flows
	Block Definition Diagram - ICE Flow Properties
	Internal Block Diagram - CAN Bus
	Block Definition Diagram - Fuel Flow Properties
	Parametric Diagram - Fuel Flow

	Analyze Performance (Constraint Diagrams, Timing Diagrams, Views)
	Block Definition Diagram - Analysis Context
	Package Diagram - Performance View Definition
	Package Diagram - Viewpoint Definition
	Package Diagram - View Definition
	Package Diagram - View Hierarchy
	Parametric Diagram - Measures of Effectiveness
	Parametric Diagram - Economy
	Parametric Diagram - Dynamics
	(Non-Normative) Timing Diagram - 100hp Acceleration

	Defining, Decomposing, and Allocating Activities
	Activity Diagram - Acceleration (top level)
	Block Definition Diagram - Acceleration
	Activity Diagram (EFFBD) - Acceleration (detail)
	Internal Block Diagram - Power Subsystem Behavioral and Flow Allocation
	Internal Block Diagram: Property Specific Values - EPA Fuel Economy Test

	Meet the Systems Engineering Tools
	Requirements Diagram
	Activity Diagram
	Use Case Diagram
	Scenario Builder
	Auditing
	Calendar
	Block Definition Diagram
	Internal Block Diagram
	Dashboard Diagrams
	Decision Tree Diagram
	StateMachine Diagram
	Documentation
	Gap Analysis Matrix
	Heat Map
	Import and Export Spreadsheets
	Parametric Diagram
	Patterns
	Relationship Matrix
	Roadmap Diagram
	Specification Manager
	Strategy Map
	Library
	Time Aware Modeling
	Traceability Window
	Value Chain

