
MDG Technologies
Using Sparx Systems Enterprise Architect, you

can create models based on UML or Model
Driven Generation (MDG) Technologies that
are supplied with the system, or from external

locations, or developed with Enterprise
Architect in your own organization.

Enterprise Architect

User Guide Series

Author: Sparx Systems
Date: 2021-09-02

Version: 15.2

CREATED WITH

Table of Contents

MDG Technologies 8
Specify Required MDG Technologies 11
Work with MDG Technologies 15
Manage MDG Technologies 16
Access Remote MDG Technologies 22
Import MDG Technologies to Model 25
Extensions - MDG Technologies 29
MDG Technology SDK 32
Defining a Modeling Language 34
Developing Profiles 38
Create Stereotype Profiles 39
Create a Profile Package 42
Add Stereotypes and Metaclasses 45
Create Stereotypes Extending non-UML Objects 50
Redefine Stereotypes in Another Profile 54

Define Stereotype Tagged Values 57
Add an Enumeration to a Stereotype 60
Define a Structured Tagged Value 64
Use the Tagged Value Connector 69
With Predefined Tag Types 71

Define Stereotype Constraints 73
Add Shape Scripts 76
Set Default Appearance 80

Special Attributes 82
Define a Stereotype as a Metatype 96
Define Multiple-Stereotype Level 98
Define Creation of Instance 100
Define Composite Elements 103
Define Child Diagram Type 105
Define Tag Groupings 108

Introducing the Metamodel Views 112
Built-in Metamodel Diagram View 116
Custom Metamodel Diagram View 121
Define Metamodel Constraints 132
Constraints on Meta-Constraint connector 141
Metamodel Constraints and the Quick Linker 153

Quick Linker 157
Quick Linker Definition Format 159
Relationship Table 170
Quick Linker Example 174
Hide Default Quick Linker Settings 177
Quick Linker Object Names 179
Add Quick Linker Definition To Profile 184

Export a Profile 186
Save Profile Options 190

UML Profiles in the Resources Tab 193
Import UML Profiles Into the Resources Tab 195

MDG Technologies - Creating 198
Using the Profile Helpers 199
Create Stereotype Profiles using Profile Helpers 203

Add Stereotypes and Metaclasses using Profile
Helpers 207
Edit a Stereotype Element 216

Create Diagram Profiles using the Profile Helpers 219
Create Toolbox Profiles using the Profile Helpers 224
Create Hidden Sub-Menus using the Profile
Helpers 234

Create MDG Technology File 239
Add a Profile 244
Add a Pattern 246
Add a Diagram Profile 248
Add a Toolbox Profile 250
Add Tagged Value Types 252
Add Code Modules 254
Define Code Options 256

Add MDA Transforms 259
Add Document Report Templates 261
Add Linked Document Templates 263
Add Images 265
Add Scripts 267
Add Workspace Layouts 269
Add Model Views 271
Add Model Searches 273

Working with MTS Files 275
Create Toolbox Profiles 278
Create Toolbox Profiles 280
Toolbox Page Attributes 287

Create Hidden Sub-Menus 288
Assign Icons To Toolbox Items 291
Override Default Toolboxes 294
Elements Used in Toolboxes 297
Connectors Used in Toolboxes 302

Create Custom Diagram Profiles 305
Built-In Diagram Types 309
Attribute Values - styleex & pdata 311

Set Up Technology Element Images 315
Define Validation Configuration 318
Incorporate Model Wizard Templates 320
Add Import/Export Scripts 325
Deploy An MDG Technology 330

Shape Scripts 332
Getting Started With Shape Scripts 333
Shape Editor 337
Write Scripts 340
Shape Attributes 346
Drawing Methods 353
Color Queries 369
Conditional Branching 371
Query Methods 372
Display Element/Connector Properties 377
Sub-Shapes 385
Add Custom Compartments to Element 388
Show Composite Diagram 401
Reserved Names 408

Syntax Grammar 411
Example Scripts 414

Tagged Value Types 432
Create Tagged Value Type from Predefined Types 434
Predefined Structured Types 436
Create Custom Masked Tagged Value Type 448
Create Reference Data Tagged Values 453
Predefined Reference Data Types 456

MDG Technologies 2 September, 2021

MDG Technologies

An MDG Technology is a vehicle for providing access to
the resources of either a commercially-available technology
or a technology that you have created yourself. Such
resources include a wide range of facilities and tools, such
as UML Profiles, code modules, scripts, Patterns, images,
Tagged Value Types, report templates, Linked Document
templates and Toolbox pages.

Using Enterprise Architect, you can develop models based
on the standard UML specifications, and you can extend the
core UML structures using UML-supported mechanisms
such as Tagged Values, Stereotypes, Profiles and Design
Patterns. These facilities are within the Enterprise Architect
core technologies, and you can activate and use further
Model Driven Generation (MDG) Technologies that are
either integrated with the system or available from external
locations.

If your systems or work domain require further
specialization you, as a Technology Developer, can use
Enterprise Architect to develop your own customized
modeling languages and solutions.

Obtain and use Technologies

Source of Technology

(c) Sparx Systems 2021 Page 8 of 461

MDG Technologies 2 September, 2021

Core technologies - Enterprise Architect itself contains a:
Basic UML 2 technology as an implementation of·

UML 2.5 structural and behavioral modeling, and
Core Extensions technology that applies profiles and·

stereotypes to provide extended modeling of aspects
such as Requirements, User interface and Data
Modeling

Additional technologies are included in the Enterprise
Architect Install directory, MDGTechnologies subfolder.

You can import technologies from external sources into
the APPDATA folder (%APPDATA%\Sparx
Systems\EA\MDGTechnologies) for your own use, or
into the 'Resources' tab of the Browser window for other
project users to access.

You can transfer technologies into the MDGTechnologies
subfolder; these technologies are available when you
restart Enterprise Architect (on Vista/Windows 7 systems
you might have to increase your access permissions to do
this).

You can access and activate MDG Technologies in
remote system folders or web sites, from Enterprise
Architect.

Technology Developers can create new MDG
Technologies and deploy them to the project team either

(c) Sparx Systems 2021 Page 9 of 461

MDG Technologies 2 September, 2021

through the MDGTechnologies subfolder or from a
remote folder or website.

To see which technologies are available within Enterprise
Architect, and activate the ones you require, use the
'MDG Technologies' dialog ('Specialize > Technologies >
Manage-Tech' ribbon option).
Having made the MDG Technologies available, you can
manage their availability to users and you can work with
them.
You also have the facility to turn off or disable the
Enterprise Architect 'Basic UML 2' and 'Core Extensions'
technologies and facilities, so that you can apply the
Enterprise Architect facilities and features exclusively to
one or more selected MDG Technologies.

(c) Sparx Systems 2021 Page 10 of 461

MDG Technologies 2 September, 2021

Specify Required MDG Technologies

When you have a model that must make use of certain MDG
Technologies, a model Administrator can configure the
system to check that those Technologies are available and
active during the loading process, before the model actually
opens. You identify the Technologies in the 'MDG
Technologies' section of the 'Manage Project Options'
dialog. If a Technology is:

Required and not installed on a user's machine, that user·

will be unable to open the model

Required and available, but not enabled, the system can·

be configured to automatically enable that Technology

Specifically not to be used in this model, but is available·

and enabled, the system can be configured to
automatically disable that Technology

The model Administrator can thus ensure that the correct
operating environment is in place to work in the model, so
that all users have the same view and are using the same
facilities (or, at least, are not using the wrong tools and
creating structures that other users cannot work with).

You could have a 'relaxed' model where some Technologies
are required but others can be used at the user's discretion,
or a 'restricted' model where certain Technologies are
required and all others are blocked.

Access

(c) Sparx Systems 2021 Page 11 of 461

MDG Technologies 2 September, 2021

Ribbon Configure > Model > Options > MDG
Technologies

Select Required Technologies

Option Action

Technology Review the MDG Technologies currently
accessible to you, listed in alphabetical
order. These technologies might be
built-in to Enterprise Architect, provided
by an Add-In or from an imported
directory or URL.

Required For a model Administrator, select this
checkbox against each Technology that
must be available before the model can
be opened.
Next time a user tries to open the model,
Enterprise Architect will check that the
selected Technologies are available on
the user's system before allowing access
to the model. If a required Technology is
not installed, Enterprise Architect will not

(c) Sparx Systems 2021 Page 12 of 461

MDG Technologies 2 September, 2021

open the model.
Additionally, if a Technology flagged as
Required is available but not enabled, the
system will automatically enable it for
this model; the Technology will still be
disabled in any other models the user
might access.

Disabled All checkboxes default to unselected,
allowing the Technologies to be used.
Select the checkbox against each
Technology that specifically must not be
used in the model. If the Technology is
available and enabled, the system
automatically disables it within the
model. It will still be enabled in other
models that the user might access.

All Click on this button to select the
'Required' checkbox of every Technology
in the list.

None Click on this button to clear all selected
'Required' checkboxes in the list.

Notes

(c) Sparx Systems 2021 Page 13 of 461

MDG Technologies 2 September, 2021

In the Corporate, Unified and Ultimate Editions of·

Enterprise Architect, if security is enabled you must have
'Configure Project Requisites' permission to select or clear
the 'Required' and 'Disabled' checkboxes against the
Technologies

(c) Sparx Systems 2021 Page 14 of 461

MDG Technologies 2 September, 2021

Work with MDG Technologies

Any MDG Technology listed on the 'MDG Technologies'
dialog can be enabled, which makes their interface profiles
and Toolbox pages available for your use.

When you enable an MDG Technology, any
Technology-specific diagram types are added to the 'New
Diagram' dialog lists, and the Technology's Diagram
Toolbox pages are added to those available through the
search facilities of the Toolbox.

If you set an MDG Technology to 'Active', it becomes the
main technology for the model. Only one Technology can
be active at a time. The Technology's validation
configuration is set, and whilst common Toolbox pages are
visible at all times, the Technology's Toolbox pages
override any parallel Enterprise Architect Toolbox pages;
for example, the ICONIX 'Class' pages would override the
Enterprise Architect 'Class' pages.

You create Technology-specific diagrams and populate
them with elements and connectors in the same way as for
standard Enterprise Architect diagrams.

(c) Sparx Systems 2021 Page 15 of 461

MDG Technologies 2 September, 2021

Manage MDG Technologies

You use the 'Manage MDG Technologies' dialog to manage
the MDG Technologies accessible to the project and
available to project users. The dialog lists the technologies
held in a number of locations accessed by the project, such
as the APPDATA folder and the Enterprise Architect Install
directory. You can set these technologies to being available
for use or disabled, as you require. MDG Technologies are
deployed as .xml files.

Access

Ribbon Specialize > Technologies > Manage

Configure availability of Technologies

Option Action

Technology Lists all MDG Technologies currently
accessible to the project, in alphabetical
order.
If you click on a Technology name, the

(c) Sparx Systems 2021 Page 16 of 461

MDG Technologies 2 September, 2021

upper right panel of the dialog displays
the technology:

Name·

Version number·

Logo (if defined), and·

Location of the deployed XML file,·

which can be:
 - Internal to Enterprise Architect
 - An extension
 - In the Install directory (just the
file name)
 - In the APPDATA folder
(filename followed by (in APPDATA))
 - In the model

The lower right panel displays a
description of the Technology, in many
cases providing the manufacturer's web
site address and a support contact.

Enabled Select this checkbox against each
Technology that you want to be available
for use in the project. When an MDG
Technology is enabled:

The Technology is added to the list of·

available options in the 'Profile' field of
the Default Tools toolbar, so that you
can apply the interface profiles of the
MDG Technology

(c) Sparx Systems 2021 Page 17 of 461

MDG Technologies 2 September, 2021

At least one set of Toolbox pages for·

the MDG Technology is automatically
added to the Diagram Toolbox; you
can access the added Toolbox pages
through the 'Find Toolbox Item' dialog
Any MDG Technology-specific·

diagram templates are added to the
'New Diagram' dialog for selection;
when selected, these display the
diagram-specific Toolbox pages

Clear the checkbox against a Technology
to make it unavailable to the project
users.
If you disable an MDG Technology that
was in use, its Toolbox pages, diagram
types and quick-links are omitted from
the Diagram Toolbox, Default Tools
toolbar, diagrams and 'New Diagram'
dialog in the user interface.

All Click on this button to select the 'Enabled'
checkbox of every Technology listed on
the dialog.

None Click on this button to clear the 'Enabled'
checkbox of every Technology listed on
the dialog.
If you click on this button, scroll to the
top of the list and select the 'Basic UML

(c) Sparx Systems 2021 Page 18 of 461

MDG Technologies 2 September, 2021

2 Technology' and 'Core Extensions'
checkboxes to re-enable the 'UML' and
'Extended' Toolbox pages and diagram
types.

Set Active Setting a Technology to Active makes
that Technology your default interface to
Enterprise Architect, and can:

Override various Toolbox pages·

(including those from other
Technologies) with pages specific to
the active Technology
Redefine a stereotype in another·

profile, adding new tags and removing
or modifying existing tags, while the
stereotype behaves in all other ways as
if it is the original stereotype

If your preferred Technology does not
use overrides and redefinitions, it is not
necessary to set it to Active.
Select and highlight your preferred
Technology, then click on the Set Active
button. This displays an asterisk against
the Technology name in the 'Technology'
panel, and selects the Technology in the
'Profile' field of the Default Tools toolbar.
If the MDG Technology has not yet been
enabled, this button also enables it.

(c) Sparx Systems 2021 Page 19 of 461

MDG Technologies 2 September, 2021

Advanced Click on this button to add MDG
Technologies in folders and websites
remote from Enterprise Architect.

Remove (Enabled only for Technologies imported
directly into the model.)
Click on this button to remove the
selected Technology from the list, from
the 'Resources' tab of the Browser
window and from the model.

OK Click on this button to close the dialog,
save your changes and put them into
effect.

Cancel Click on this button to close the dialog
and abort the changes you have made.

Notes

If you change the 'Enabled' setting of an MDG·

Technology, or if you change the list of external paths,
click on the OK button to reload all enabled
technologies; you do not need to restart Enterprise
Architect for the changes to take effect

To work exclusively in a selected MDG Technology, or a·

(c) Sparx Systems 2021 Page 20 of 461

MDG Technologies 2 September, 2021

small number of Technologies, you can enable just those
Technologies (and perhaps set one of them to Active) and
then deselect the 'Basic UML 2 Technology' checkbox
(and, if necessary, the 'Core Extensions' checkbox)

(c) Sparx Systems 2021 Page 21 of 461

MDG Technologies 2 September, 2021

Access Remote MDG Technologies

When you are working on your model, you can use MDG
Technologies local to your system, or you can access
Technologies you have identified in folders and websites
remote from the system. You essentially 'bookmark' these
remote Technologies for continued use, and then delete the
link when you do not want to use them any more.

Access

Ribbon Specialize > Technologies >
Manage-Tech : Advanced

Notes

To remove an MDG Technology listed in the 'MDG·

Technologies - Advanced' dialog, click on the folder path
or URL and click on the Remove button; the path or
URL is deleted

Specify the location of a remote MDG

(c) Sparx Systems 2021 Page 22 of 461

MDG Technologies 2 September, 2021

Technology

Ste
p

Action

1 On the 'MDG Technologies - Advanced' dialog,
click on the Add button.
A short context menu displays, offering the options:

'Add Path'·

'Add URL'·

2 To specify an MDG Technology in a directory
folder, select the 'Add Path' option.
The 'Browse for Folder' dialog displays.
Browse for the MDG Technology folder, click on it,
and click on the OK button; go to step 4.

3 To specify an MDG Technology on a web site, select
the 'Add URL' option.
The 'Input' dialog displays.
In the 'Enter Value' field, type or copy-and-paste the
MDG Technology URL and click on the OK button.

4 The folder path or URL for the MDG Technology
displays in the Path panel.
The Technology is available

(c) Sparx Systems 2021 Page 23 of 461

MDG Technologies 2 September, 2021

(c) Sparx Systems 2021 Page 24 of 461

MDG Technologies 2 September, 2021

Import MDG Technologies to Model

If you locate or create an MDG Technology that is of use to
your project, you can import it into the project either:

For only your own use; that is, import the technology into·

the %APPDATA%\Sparx
Systems\EA\MDGTechnologies folder on your
workstation, or

To be available to all users of the model, through the·

'Resources' tab of the Browser window for the model

To import an MDG Technology you must have a suitable
MDG Technology XML file. If the MDG Technology
includes references to any metafiles, they should be in the
same directory as the MDG Technology XML file.

The Model Patterns provided with the MDG Technology
must each have the relevant Pattern XML file, and an RTF
file with the same file name containing a description of the
Pattern, in the ModelPatterns directory within the Enterprise
Architect install directory.

On start up, Enterprise Architect scans both the APPDATA
folder and the Enterprise Architect Install directory
MDGTechnologies subfolder for technology files, to make
them available through the 'MDG Technologies' dialog and,
for model Technologies, the 'Resources' tab of the Browser
window. Technologies imported to the APPDATA folder
are indicated by the text 'Location: Technology.xml'. The
Model Patterns have to be imported into the ModelPatterns
directory on the user's system separately.

(c) Sparx Systems 2021 Page 25 of 461

MDG Technologies 2 September, 2021

Access

Ribbon Specialize > Technologies >
Publish-Tech > Import MDG Technology

Context
Menu

In the 'Resources' tab of the Browser
window | Right-click MDG Technologies
folder | Import Technology

Import a technology

Ste
p

Action

1 On the 'Import MDG Technology' dialog, in the
'Filename' field, type the path and filename of the
MDG Technology file to import, or browse for it
using the button.
When you enter the filename, the MDG Technology
name and version display in the 'Technology' and
'Version' fields, and any notes display in the 'Notes'
field.

(c) Sparx Systems 2021 Page 26 of 461

MDG Technologies 2 September, 2021

2 Select the appropriate radio button for the type of
import you want to perform:

Import to Model·

Import to User·

3 Click on the OK button.
(If you selected the 'Import to User' option) If the·

APPDATA folder does not yet exist, Enterprise
Architect creates it
If the MDG Technology already exists, Enterprise·

Architect displays a prompt to overwrite the
existing version and import the new one

Once the import to APPDATA is complete, you
must restart Enterprise Architect; the MDG
Technology is then listed in the 'MDG Technologies'
dialog.

Notes

To remove an MDG Technology that has been added to·

APPDATA, locate the appropriate XML file in the
%APPDATA%\Sparx Systems\EA\MDGTechnologies
folder and delete it

Consider the fact that some MDG Technologies can be·

large and might impose some delays on the workstation as
they load each time a user connects to the model

(c) Sparx Systems 2021 Page 27 of 461

MDG Technologies 2 September, 2021

To remove an MDG Technology from the 'Resources' tab·

of the Browser window and the model, either:
 - Right-click on the Technology name and select the
'Remove Technology' menu option, or
 - Click on the Technology name in the 'Manage MDG
Technologies' dialog and click on the
 Remove button

(c) Sparx Systems 2021 Page 28 of 461

MDG Technologies 2 September, 2021

Extensions - MDG Technologies

Enterprise Architect is the core for a range of Model Driven
Generation (MDG) extensions to its modeling capabilities,
using more specialized, niche frameworks and profiles.

Extension Facilities

Extensions

A number of technologies are already integrated with the
Enterprise Architect installer, including:

ArchiMate·

BPEL·

BPMN·

Data Flow diagrams·

Eriksson-Penker Extensions·

ICONIX·

Mind Mapping·

SoaML·

SOMF 2.1·

Strategic Modeling·

Systems Modeling Language (SysML)·

MDG Link For Eclipse·

MDG Link For Visual Studio.NET·

(c) Sparx Systems 2021 Page 29 of 461

MDG Technologies 2 September, 2021

Enterprise Architect provides support for:
Downloading MDG Technologies from external system·

files or websites, or
Creating your own easily with the Enterprise Architect·

MDG Technology Wizard

Sparx Systems also market a number of MDG products:
MDG Technology For:

Zachman Framework·

The Open Group Architecture Framework (TOGAF)·

Unified Architecture Framework (UAF), formerly·

Unified Profile for DoDAF and MODAF (UPDM)
Data Distribution Service (DDS)·

Python (Enterprise Architect versions 4.5 to 5.0;·

integrated in later versions) (* free product! *)
CORBA (* free product! *)·

Java Beans (* free product! *)·

Testing (* free product! *)·

MDG Integration For:
Eclipse 3.3·

Visual Studio 2005, 2008 & 2012·

MDG Link For
Microsoft Visio (* free product! *)·

IBM Rational Software Architect (formerly Telelogic)·

DOORS
Over time, this list is being extended to include further

(c) Sparx Systems 2021 Page 30 of 461

MDG Technologies 2 September, 2021

products.

Sparx Systems provide extended editions of Enterprise
Architect to give greater support for systems engineering
and business engineering.
These editions incorporate several of the listed MDG
Technologies and other Add-Ins.

For the latest list of available Add-Ins and an
introduction to each product, including details of pricing,
purchasing and download options, see the Sparx Systems
website.
When you purchase one of the Add-Ins, you receive one
or more license keys and instructions on obtaining,
installing and registering the product.

(c) Sparx Systems 2021 Page 31 of 461

MDG Technologies 2 September, 2021

MDG Technology SDK

Enterprise Architect is a powerful tool with hundreds of
built in features and support for a wide range of modeling
standards ready to use out of the box. It also provides a
range of powerful extension mechanisms. The Enterprise
Architect Software Development Kit (SDK) contains the
mechanisms for extending the core UML to support the
modeling of a particular domain, platform or method.
Enterprise Architect and other partner organizations provide
commercially available Model Driven Generation (MDG)
Technologies, but anyone is free to use the SDK to create a
new Profile and to distribute it as an MDG Technology. For
example, you might work in the field of safety engineering
and use specific constructs to model your domain and the
methods that are used. You could, for example, use
Enterprise Architect to create new elements to represent a
failure event, a failure mode and any other domain specific
entities. Once the profile is complete it could be bundled
into an MDG Technology and then used locally within your
organization or distributed to the entire industry.

Notes

In developing your technologies, you need to be familiar·

with the modeling structures and concepts of the core
system and extension mechanisms as they impact and are
used by the people you are designing the technology for;

(c) Sparx Systems 2021 Page 32 of 461

MDG Technologies 2 September, 2021

that is, the system as described in the modeling sections of
this User Guide

(c) Sparx Systems 2021 Page 33 of 461

MDG Technologies 2 September, 2021

Defining a Modeling Language

If you want to perform more specialized modeling, you can
extend the base UML modeling elements and their use to
develop your own modeling language or solution. A simple
method of doing this is to develop and deploy an MDG
Technology, which can contain a number of specialized
Profiles and a range of other mechanisms to provide the
broadest scope for your customized solution.

Extension Facilities

Facility Description

MDG
Technologies

An MDG Technology is a vehicle for
providing access to the resources of a
commercially-available technology or
one that you have created yourself. Such
resources include a wide range of
facilities and tools, such as UML Profiles,
code modules, scripts, Patterns, images,
Tagged Value Types, report templates,
Linked Document templates and Toolbox
pages.

(c) Sparx Systems 2021 Page 34 of 461

MDG Technologies 2 September, 2021

Profiles Profiles are a means of extending UML;
you use them to build models in
particular domains.
A Profile is a collection of additional
stereotypes and Tagged Values that
extend or are applied to elements,
attributes, methods and connectors, which
together describe some particular
modeling problem and facilitate modeling
constructs in that domain.

Stereotypes Stereotypes are an inbuilt mechanism for
logically extending or altering the
meaning, display and syntax of a model
element. Different model elements have
different standard stereotypes associated
with them.
The same principles apply when you
customize your own stereotypes, either
through the 'UML Types' dialog to
qualify an element of an existing type, or
as elements that extend a specific
metaclass to define a new element type.

Design
Patterns

Patterns are groups of collaborating
Objects/Classes that can be abstracted
from a general set of modeling scenarios
(that is, parameterized collaborations).

(c) Sparx Systems 2021 Page 35 of 461

MDG Technologies 2 September, 2021

They generally describe how to solve an
abstract problem, and are an excellent
means of achieving re-use and building in
robustness.

Shape Scripts A Shape Script is a script that applies a
custom shape and orientation to an
element or connector, in place of that
object's standard UML notation. Each
script is associated with a particular
stereotype, and is drawn for every object
having that stereotype.
Where you redefine the properties of a
standard UML object to create a new
object, you can apply a new shape to the
object as well.

Tagged
Value Types

You use Tagged Values to add further
properties to a model element. You can
apply them at three levels:

As a standard Tagged Value associated·

with the model element
As a customized Tagged Value based·

on a standard Tagged Value Type
As a customized Tagged Value based·

on a customized Tagged Value Type

Code
Template

Within Enterprise Architect, you can
modify the way code is generated or

(c) Sparx Systems 2021 Page 36 of 461

MDG Technologies 2 September, 2021

Frameworks transformed, including generating code
for behavioral models, by customizing
the templates that control these actions.
You can also incorporate these templates
in a technology, to add the customized
generation and transformation to the
facilities of that technology.

(c) Sparx Systems 2021 Page 37 of 461

MDG Technologies 2 September, 2021

Developing Profiles

Profiles are collections of extensions, based on stereotypes
that are applied to UML elements, connectors and features.
The stereotypes can have attributes to specifically define
Tagged Values that further extend the characteristics of the
stereotyped element or connector. Profiles are stored as
XML files with a specific format; to apply the extensions of
a Profile, you add its XML file as a component of an MDG
Technology, and deploy the technology; that is:

Create a model in which to develop the MDG1.
Technology, and within this create a Profile Package in
which you define your Profile(s)

Save the Profile as an XML file, with a specific format.2.

Call the XML file into an MDG Technology, using the3.
MDG Technology Creation Wizard.

Deploy the MDG Technology (and hence Profile) on your4.
system.

(c) Sparx Systems 2021 Page 38 of 461

MDG Technologies 2 September, 2021

Create Stereotype Profiles

When you are creating a Profile to define a new modeling
solution, you initially create a Package with the «profile»
stereotype. You then consider the number of model elements
(and hence Stereotype elements) you will need to create. If
you are going to create:

A small number of Stereotype elements, you can manage·

them on a single child diagram within the Profile Package,
and save the diagram as the Profile

A large number of Stereotype elements, create them on as·

many child diagrams as are convenient (one Stereotype
per diagram if you prefer) and save the Package as the
Profile

Every Stereotype element extends at least one Metaclass
element. The Stereotype elements use the Profile name as
their namespace. When you have created your Profile, you
can incorporate it into an MDG Technology.

The process of creating a Profile and applying it to your
models comprises a number of steps. Some of these steps
are necessary only if you want the Profile to apply a specific
meaning, display, appearance or syntax to a type of model
element.

Create a Profile

Ste Description

(c) Sparx Systems 2021 Page 39 of 461

MDG Technologies 2 September, 2021

p

1 Create a Profile Package in a technology
development model.

2 Add Stereotype and Metaclass elements to the child
diagram(s) of the Profile Package.

3 Define Tagged Values for the Stereotype elements.

4 Define constraints for the Stereotype elements.

5 Add an Enumeration element to define a drop-down
list of values for a Tagged Value on the Stereotype
element.

6 Add Shape Scripts for the Stereotype elements.

7 Set the default appearance for each stereotyped
model element.

8 Include Quick Linker definitions in the Profile.

9 Save either the Package or the diagram as the
Profile, and export it.

10 Incorporate the Profile into an MDG Technology and
deploy the technology.

(c) Sparx Systems 2021 Page 40 of 461

MDG Technologies 2 September, 2021

Notes

A Profile Package can contain several diagrams and many·

elements and connectors, but no other Packages; do not
use nested Packages in a Profile

If you are creating a Profile to form part of an MDG·

Technology, note that you define the special Toolbox
pages and diagrams for the Technology in separate
Profiles

(c) Sparx Systems 2021 Page 41 of 461

MDG Technologies 2 September, 2021

Create a Profile Package

The first stage in creating a UML Profile to define new
model elements is to create a Package that has the stereotype
«profile» in your technical development model.

Toolbox Icon

Access

Create a new Package diagram, then show the Diagram
Toolbox and open the 'Profile' page.

Use one of methods outlined here to access the 'Profile' page
of the Diagram Toolbox.

Ribbon Design > Diagram > Toolbox : to
display the 'Find Toolbox Item' dialog
and specify 'Profile'

Keyboard
Shortcuts

Ctrl+Shift+3 : to display the 'Find
Toolbox Item' dialog and specify 'Profile'

Other You can display or hide the Diagram
Toolbox by clicking on the or icons

(c) Sparx Systems 2021 Page 42 of 461

MDG Technologies 2 September, 2021

at the left-hand end of the Caption Bar at
the top of the Diagram View.

Create a Profile Package

Ste
p

Description

1 On the 'New Diagram' dialog, click on 'UML
Structural' in the 'Select From' field, and 'Package' in
the 'Diagram Types' field.
Click on the OK button. The new diagram opens in
the Diagram View.

2 Open the 'Profile' page of the Diagram Toolbox
(click on to display the 'Find Toolbox Item' dialog
and specify 'Profile').

3 Drag the 'Profile' item onto the Package diagram.
The 'New Model Package' dialog displays.

4 In the 'Package Name' field, type a name for the
Profile and select the 'Automatically add new
diagram' checkbox.
Click on the OK button. The 'New Diagram' dialog

(c) Sparx Systems 2021 Page 43 of 461

MDG Technologies 2 September, 2021

displays.

5 In the 'Name' field, type the diagram name, then
click on 'UML Structural' in the 'Select From' field
and 'Class' in the 'Diagram Types' field.

6 Click on the OK button.
The system creates a Package with the stereotype
«profile» and a child Class diagram.
Depending on your system set-up, the 'Properties'
dialog for the Package might display. If necessary,
you can add any basic Package details you want to
assign to the Package, such as version, phase, or
notes.

7 On the diagram, double-click on the Profile Package
to open the child diagram.
You now use this child diagram to add Stereotype
elements to the Profile.

(c) Sparx Systems 2021 Page 44 of 461

MDG Technologies 2 September, 2021

Add Stereotypes and Metaclasses

When you are extending the UML to develop a
domain-specific toolset, you start by creating a Profile
Package for the stereotypes you intend to customize. This
Package has at least one child Class diagram, and it is on
this child diagram that you specify:

The types of object that you are extending, represented by·

Metaclass elements, and

The way in which each object is extended, represented by·

Stereotype elements

You can qualify the effect of a Stereotype on a Metaclass
using a range of other tools, including:

Shape Scripts in the Stereotype·

Tagged Values, defined by attributes in the Stereotype·

element

Structured Tagged Value Classes, defined using attributes·

in the Stereotype element

Enumerations, defined using attributes in the Stereotype·

element

Tagged Value connectors, to identify possible values for a·

Tagged Value in an element generated with a Stereotype

Constraints on the Stereotype element·

Special attributes, that define specific default behavior of·

stereotyped elements, such as the initial size and color of
the element

(c) Sparx Systems 2021 Page 45 of 461

MDG Technologies 2 September, 2021

Modifying the default appearance of the Stereotype·

element

Add Metaclasses and Stereotypes to a
Profile

Ste
p

Description

1 Open the child diagram of the Profile Package.

2 Drag the Metaclass element from the 'Profile' page
of the Toolbox onto the diagram.
The 'Extend Metaclass' dialog displays, listing the
types of object you can extend, namely:

Core UML elements, and attributes and operations·

Core connectors·

Abstract metatypes such as Action types,·

ConnectorEnd and Gate, and
Stereotypes·

On the 'Core Elements' tab, you can include the set
of system-defined extended elements such as
ActivityRegion, Change and User, by selecting the
'Include Extended' checkbox.
On the 'Stereotypes' tab, to specify the technology
containing the stereotypes that you want to extend,
click on the drop-down arrow in the top field and

(c) Sparx Systems 2021 Page 46 of 461

MDG Technologies 2 September, 2021

select the technology name.

3 Scroll through the selected list and tick one or more
object types to extend.
If you want to select all objects on a tab, click on the
All button.

4 Click on the OK button.
For each checkbox that you have selected, a new
Metaclass element is created on the diagram.

5 Drag a Stereotype element from the Toolbox onto
the diagram.
If the 'Properties' dialog does not display,
double-click on the element on the diagram.

6 In the Name field, type a name for the stereotype.

7 Click on the OK button.

8 Click on the Extension relationship in the Toolbox
and drag the connection from the Stereotype element
to the Metaclass element that it will extend.

9 Your diagram now resembles this example:

(c) Sparx Systems 2021 Page 47 of 461

MDG Technologies 2 September, 2021

10 Optionally, you can now add to your Stereotype
element:

Stereotype tags·

Enumeration tags·

Structured Tagged Values·

Tagged Value connectors·

Special attributes·

Constraints and/or·

Shape Scripts·

You can also define the default appearance of the
element or connector as required.

Notes

If you intend to extend a large number of model elements,·

rather than putting all of them on one diagram you can
create additional child Class diagrams under the Profile

(c) Sparx Systems 2021 Page 48 of 461

MDG Technologies 2 September, 2021

Package and add different types of Metaclass element to
different diagrams; in this case you save the Package as
the Profile, not the individual diagrams

If you want to have a stereotype extending more than one·

metaclass, create one Stereotype element with an
Extension connector to each of the Metaclass elements, as
shown:

Stereotype elements must have unique names, but·

Metaclass elements can have the same name (for example,
there can be several Action Metaclasses, each with a
different ActionKind attribute)

(c) Sparx Systems 2021 Page 49 of 461

MDG Technologies 2 September, 2021

Create Stereotypes Extending
non-UML Objects

A Profile is typically defined by extending core UML object
types to create your own modeling language or technology;
however, you can also extend non-UML objects defined by
another existing technology such as ArchiMate, BPMN, or
SysML.

Extending a non-UML object allows inheritance of these
properties from the existing stereotype:

Tagged Values·

Shape Scripts·

Stereotype colors·

Metatype properties·

Create a Stereotype extending a non-UML
Object

Ste
p

Description

1 In the Browser window, locate the Package with the
<<profile>> Stereotype and open its child diagram.
If you do not have an existing <<profile>> Package,
use the 'MDG Technology Builder' option in the

(c) Sparx Systems 2021 Page 50 of 461

MDG Technologies 2 September, 2021

Model Wizard to create a new technology, then
open the diagram from the newly created
<<profile>> Package.

2 Drag the 'Metaclass' icon from the 'Profile' page of
the Diagram Toolbox onto the diagram.
The 'Extend Metaclass' dialog displays.

3 Select the 'Stereotypes' tab.

4 From the drop-down list, select the Profile to extend
(for example, 'SysML1.3') and select the checkbox
next to the non-UML Stereotype to extend (for
example, 'Block').
Click on the OK button.
The appropriate Stereotype element is added to the
Profile diagram.

5 Add a new Stereotype by dragging the 'Add
Stereotype Profile Helper' from the Diagram
Toolbox.
This will be the custom Stereotype that extends the
non-UML type added to the diagram in step 4.
When you have finished, the Stereotype element and
Metaclass element are displayed on the Profile
diagram.

6 Draw a Generalize connector from the custom

(c) Sparx Systems 2021 Page 51 of 461

MDG Technologies 2 September, 2021

Stereotype added in step 5 to the non-UML
Stereotype element added in step 4.

7 Save the diagram as a Profile.

8 Define a Toolbox Profile that has items for each of
your Stereotypes.

9 Incorporate the saved Profiles into an MDG
Technology.

Example Stereotype Profile

This example shows a Stereotype Profile that defines the
stereotype <<hardwareBlock>>. The <<hardwareBlock>>
stereotype is an extension of SysML Block, from the
SysML MDG Technology.

SysML1.3::block

stereotype

hardwareBlock

stereotype

Notes

When using a Shape Script to customize the Stereotype's·

appearance you can use the drawparentshape() method to

(c) Sparx Systems 2021 Page 52 of 461

MDG Technologies 2 September, 2021

render the shape that is defined for the non-UML object
being extended

If you are adding any of the Metaclass element Attributes·

to your stereotype, or if you want to use the Profile Helper
to create a toolbox profile, your stereotype Class must
extend a metaclass as well as specialize a stereotype

(c) Sparx Systems 2021 Page 53 of 461

MDG Technologies 2 September, 2021

Redefine Stereotypes in Another
Profile

If you want to redefine a stereotype in another profile,
adding new tags and removing or modifying existing tags,
while the stereotype behaves in all other ways as if it is the
original stereotype, you can use a redefines Generalization
as described here.

Apply a Redefines Generalization

Ste
p

Action

1 Create a Stereotype element with the same name as
the fully-qualified name of the stereotype that you
are redefining. See 'TOGAF::Principle' in the
example.
Set this stereotype element to 'Abstract'.

2 Create a Stereotype element with the same name, not
fully-qualified. See 'Principle' in the example.
Draw a Generalization from the redefining
stereotype to the redefined stereotype, and give the
Generalization the <<redefines>> stereotype.

(c) Sparx Systems 2021 Page 54 of 461

MDG Technologies 2 September, 2021

3 To:
Remove a tag from the redefined stereotype, give·

the redefining stereotype an attribute with the
same name as the tag you want to remove, and
give this attribute the <<removed>> stereotype;
see 'Implications' in the example
A 'Principle' element created using our profile will
act in all ways as a TOGAF Principle element, but
will not have the usual 'Implications' tag
Add a new tag to the redefined stereotype, simply·

give the redefining stereotype the tag; in the
example, the new 'Application' tag is not provided
by the TOGAF profile but will appear as if it were
Modify an existing Tagged Value Type in the·

redefined stereotype, give the redefining
stereotype a tag with a different type; in the
example, 'Type' is an enumeration from the
TOGAF profile, but we have given it a modified
set of enumeration literals, and 'Metric' is a plain
text tag in the TOGAF profile, but we have
redefined it as a RefGUIDList tag that references a
new 'Metric' stereotype

4 After the profile has been saved and deployed in an
MDG Technology, the user can, by setting the
technology to 'Active', specify that any redefined
elements created should be created using the
redefinitions in the active technology.

(c) Sparx Systems 2021 Page 55 of 461

MDG Technologies 2 September, 2021

Example Diagram

This diagram demonstrates a more complex scenario for extending a non-UML type. It demonstrates the capability of
using a redefines generalization to declare that this should behave like it is the original Principle element from TOGAF.

It also demonstrates how to remove and override Tagged Values defined in the original profile. Elements created with
this stereotype will:
1. Not contain an Implications tag
2. Provide different options for Type from the base profile.
3. Allow metric definitions to be re-used by replacing the plain text with a RefGUIDList to a new Metric stereotype
4. Add a new simple tag "Application" that appears in the TOGAF::Principle group

Principle

Application: string
Type: PrincipleType

«removed»
Implications

TOGAF::Principle
{abstract}

Metric

_metatype = Metric

«metaclass»
Class

isActive: Boolean

«enumeration»
PrincipleType

literals
Business
Data
Application
Technology
Architecture
Testing
Management
Security
Guiding
Privacy

Optionally, an end user can specify that creating a TOGAF::Principle should actually create an instance of Principle from
this profile. They do that by setting this profile as Active (which can only be done for a single technology.)

«redefines»

«taggedValue»

Metric

0..*

(c) Sparx Systems 2021 Page 56 of 461

MDG Technologies 2 September, 2021

Define Stereotype Tagged Values

You can define additional meta-information for a stereotype
by adding various types of Tagged Value, which you
identify as attributes of the Stereotype element. The simplest
Tagged Values are those for which you type plain text into
the 'Value' field.

For more complex Tagged Values, such as enumerations
and Structured Tagged Values, see these topics:

Add An Enumeration to a Stereotype·

Define a Structured Tagged Value·

Define Stereotype Tags with Predefined Tag Types·

Access

Display the 'Attributes' page of the Features window, using
one of the methods outlined here.

Ribbon Design > Element > Editors > Features >
Attributes

Context
Menu

In the Browser window or a diagram |
Right-click on element | Features |
Attributes

Keyboard
Shortcuts

F9 or Ctrl+5 > Attributes

(c) Sparx Systems 2021 Page 57 of 461

MDG Technologies 2 September, 2021

Define Tagged Values for a Stereotype
element

Field Action

Name Overtype the New Attribute text with the
name of the new attribute/tag.

Type Defaults to int. If necessary, click on the
drop-down arrow and select a different
attribute type.

Scope Defaults to Private. If necessary, click on
the drop-down arrow and select a
different scope value.

Stereotype If an attribute stereotype is required, click
on the icon and search for and/or select
a stereotype from the 'Stereotype
Selector' dialog.

Alias If necessary, type in an alias for the
attribute/tag.

(Optional.) Type the initial value of the

(c) Sparx Systems 2021 Page 58 of 461

MDG Technologies 2 September, 2021

Initial Value attribute/tag.

(c) Sparx Systems 2021 Page 59 of 461

MDG Technologies 2 September, 2021

Add an Enumeration to a Stereotype

Enumeration elements can be used to generate a drop-down
list of values for a Tagged Value associated with a
Stereotype element. The list is displayed, and the value
selected, in the 'Tags' tab of the Properties window.

Following on from the topic Define Stereotype Tagged
Values, this example illustrates how the enumeration 'Color'
can be used to provide a drop-down list of values ('Yellow',
'Red', 'Green') for the 'myTag' Tagged Value on the element
'myStereotype'.

Add an Enumeration to the Stereotype

Ste
p

Description

1 Open the Profile Package child diagram.

(c) Sparx Systems 2021 Page 60 of 461

MDG Technologies 2 September, 2021

On this diagram, we should already have the element
<<metaclass>> Class and the stereotype element
'myStereotype'.

2 In the Toolbox, locate and select the 'Profile' pages.

3 Drag the 'Enumeration' icon from the Toolbox onto
the diagram.

4 If it is not already showing, open the 'Properties'
dialog.
Ribbon: 'Design > Element > Editors > Properties
Dialog' (or press Ctrl+5)

5 In the 'Name' field, type the name of the new
Enumeration element.

6 If it is not already showing, open the Features
window at the 'Attributes' page:
Ribbon: 'Start > Desktop > Design > (Details)
Features'

7 In the 'Name' field, type the name of the
Enumeration attribute (for example, 'Yellow'), then
press 'Enter'.

8 Click on the New Attribute text and type the name of
the next Enumeration attribute. Repeat this step for
additional attributes, to define the other values for

(c) Sparx Systems 2021 Page 61 of 461

MDG Technologies 2 September, 2021

the drop-down list.

9 Right-click on the Stereotype element 'myStereotype'
and select the 'Features > Attributes' option.
The Features window displays for the stereotype, at
the 'Attributes' page.

10 In the 'Name' field type a name for the attribute.

11 In the 'Type' field click on the drop-down arrow
and on the 'Select Type' option, and browse for and
select the name of the Enumeration element from the
'Select <Item>' dialog.

12 In the 'Initial' field type the name of the required
Enumeration attribute that defines the default value.

13 Click on the Close button.
You have now generated a drop-down list for setting
the value of the tag in the 'Tags' tab of the
Properties window. When the Profile is in use, the
Tagged Value for an element created with the
stereotype might appear as shown:

(c) Sparx Systems 2021 Page 62 of 461

MDG Technologies 2 September, 2021

(c) Sparx Systems 2021 Page 63 of 461

MDG Technologies 2 September, 2021

Define a Structured Tagged Value

If you want to define a property that has a number of
components, such as an address, you can use a Structured
Tagged Value. This consists of a set of related simple
Tagged Values in a sequence that together define the
property. For example, the Structured Tagged Value for the
street address has the component Tagged Values:

PropertyNo - 448

Street - My Street

Town - Creswick

AreaCode - 3363

When you initially display this in the Properties window or
tags compartment of an element, the values of the tags are
displayed in a string, such as:

448, My Street, Creswick, 3363

You can then expand the Structured Tagged Value to list the
component tag names and values.

You create a Structured Tagged Value in a profile, using an
unstereotyped Class. Any attribute owned by a Stereotype
element in the profile that is typed by such a Class will
define the Structured Tagged Value.

Create a Structured Tagged Value Class

Ste Description

(c) Sparx Systems 2021 Page 64 of 461

MDG Technologies 2 September, 2021

p

1 In your Profile Package, open the child Class
diagram.

2 In the Toolbox, locate and select the 'Class' page.

3 Drag a Class item from the Toolbox onto the
diagram.
If the 'Properties' dialog does not display,
double-click on the element on the diagram.

4 In the 'Name' field, type the name of the new Class
element.

5 Click on the 'Details' tab and on the Attributes
button.
The Features window displays, showing the
'Attributes' page.

6 In the 'Name' field, type the name of the Structured
Tag attribute (for example, PropertyNo).

7 In the 'Type' field, click on the drop-down arrow
and select the appropriate type (such as 'int' or
'string').

8 Click on the New Attribute text, and repeat steps 6 to
8 for each remaining component tag attribute (for

(c) Sparx Systems 2021 Page 65 of 461

MDG Technologies 2 September, 2021

example: Street, Town, AreaCode).

9 When you have defined all the component tags, click
on the Stereotype element; the Features window
displays at the 'Attributes' page, for the Stereotype.

10 In the 'Name' field type a name for the attribute (for
example: 'HomeAddress').

11 In the 'Type' field click on the button and select
the name of the Structured Tagged Value Class
element from the 'Select <Item>' dialog, as the
attribute's classifier.
You have now generated the components of the
Structured Tagged Value to be maintained in the
Properties window for any element derived from
this part of the profile.

12 Continue defining the profile, then save the diagram
or Package as a profile and either export it for use or
add it to an MDG Technology file.

Example

(c) Sparx Systems 2021 Page 66 of 461

MDG Technologies 2 September, 2021

These elements, when imported into a model as a Profile,
define a 'Person' stereotype that can be applied to Class
elements. This stereotype allows you to enter home and
business address details as Structured Tagged Values, in
elements to which the stereotype is applied.

(c) Sparx Systems 2021 Page 67 of 461

MDG Technologies 2 September, 2021

Notes

The process of applying a Structured Tagged Value·

through a profile is an alternative to applying the Tagged
Value through an Add-In broadcast; see the Learn more
topics

The Tagged Values that make up a Structured Tagged·

Value must be simple; Memo Tagged Values cannot be
incorporated in a Structured Tagged Value

(c) Sparx Systems 2021 Page 68 of 461

MDG Technologies 2 September, 2021

Use the Tagged Value Connector

A common situation when creating a profile is where
instances of one stereotype need to reference elements with
another stereotype applied. For example, an element that
defines a Collection might have a Tagged Value called
rootNode to identify the Root of that Collection, which will
be a Class with the stereotype <<Node>>. In the Properties
window, the user would click on the selection button ()
against the rootNode Tagged Value; when the 'Select
<Item>' dialog displays, the user can locate all Nodes in the
current model, and select one of these elements as the value
of the tag.

To achieve this, you use the Tagged Value connector from
the 'Profile' pages of the Toolbox. A Tagged Value
connector defines a reference-type (that is, RefGUID)
Tagged Value owned by the source stereotype; the Tagged
Value name is the name of the target role of this connector,
and the Tagged Value is limited to referencing elements
with the stereotype of the target element.

This diagram demonstrates how you might use the
connector to represent the example. A Profile defines two
stereotypes: «Collection» and «Node» (both of which
extend the Metaclass Class). The «Collection» stereotype
owns a Tagged Value connector with the target role
rootNode, pointing to the «Node» stereotype. You enter the
target role name on the 'Role(s)' page of the connector
'Properties' dialog.

(c) Sparx Systems 2021 Page 69 of 461

MDG Technologies 2 September, 2021

Notes

The Tagged Value connector can also link directly with a·

metaclass element to identify base UML element type; for
example: if the target is a metaclass Actor, when you
select to identify a specific target element the 'Select
<item>' dialog will list all elements based on Actor

Further, the connector can link to a metaclass for groups·

of element type, namely Classifiers and Properties; if the
connector target is the metaclass:
 - Classifier, when you select to identify a specific
target element the 'Select <item>' dialog will
 list all Enterprise Architect-defined Classifier types
such as Class and Component
 - Property, when you select to identify a specific target
element the 'Select <item>' dialog will list
 list Port, Part and Attribute elements

(c) Sparx Systems 2021 Page 70 of 461

MDG Technologies 2 September, 2021

With Predefined Tag Types

Tagged Values define a wide range of properties and
characteristics of a model element, and some of these
properties have complex or structured values. For example,
you might want your user to select a value between upper
and lower limits (using 'Spin' arrows), set a date and time,
select a color from a palette, or work through a checklist.

You create these complex Tagged Values from any of a
number of predefined simple Tagged Value types and
filters, some of which you might have created yourself
(Configure > Reference Data > UML Types > Tagged
Value Types); the attribute you create in the Stereotype
element has the same name as the Tagged Value Type.

Assign Tagged Values to Stereotypes

Having created a structured Tagged Value, you assign it to
the Stereotype element in the same way as for simple
Tagged Values, by creating an attribute in the Stereotype
element with the name of the Tagged Value Type. For
example, to make the Tagged Value Handicap appear in a
stereotype, create an attribute named Handicap. Depending
on the tag type, you can set the default value for the tag by
giving the attribute an Initial value.

(c) Sparx Systems 2021 Page 71 of 461

MDG Technologies 2 September, 2021

(c) Sparx Systems 2021 Page 72 of 461

MDG Technologies 2 September, 2021

Define Stereotype Constraints

If you need to define the conditions and rules under which
the Stereotype element operates and exists, you can do this
by setting Constraints on the element. Typical constraints
are pre- and post- conditions, which indicate things that
must be true before the element is created or accessed and
things that must be true after the element is destroyed or its
action is complete.

You can show the constraints for an element directly on the
diagram, using the 'Compartment Visibility' function.

Access

Select the Stereotype element, then display the 'Constraints'
page of the 'Properties' dialog, using any of the methods
outlined in this table.

Ribbon Design > Element > Responsibilities >
Constraints

Context
Menu

Right-click on element | Properties |
Responsibilities > Constraints

Keyboard
Shortcuts

Shift+Alt+C

(c) Sparx Systems 2021 Page 73 of 461

MDG Technologies 2 September, 2021

Other Double-click Stereotype element >
Constraints

Define constraints for a stereotype

Field/Button Description

New Click on this button to clear the fields
ready to create a new constraint.

Constraint Type the value of the constraint.

Type Click on the drop-down arrow and
select the appropriate type (Pre-condition,
Post-condition or Invariant).

Status Click on the drop-down arrow and
select the appropriate status.

Notes Type any additional information required.

Save Click on this button to save the constraint
data.

OK Click on this button to close the dialog.

(c) Sparx Systems 2021 Page 74 of 461

MDG Technologies 2 September, 2021

(c) Sparx Systems 2021 Page 75 of 461

MDG Technologies 2 September, 2021

Add Shape Scripts

UML elements and connectors each have a standard
appearance, in terms of shape, color and labeling. It is
possible to change the appearance of a type of element or
connector in a number of ways, using a Shape Script to
define the exact feature you want to impose on the default -
or main - shape. If you want to standardize the appearance,
to apply to many elements, you attach the Shape Script to an
attribute of a Stereotype element in a UML Profile (such as
an MDG Technology UML Profile).

Access

For the element that defines the stereotype within your
UML Profile, define an attribute named '_image' that will
specify the Shape Script.

Display the Shape Script editor by clicking the browse icon
in the 'Initial Value' field of the '_image' attribute.

Ribbon Design > Element > Features > Attributes
> [define or select the attribute '_image']
> click on in the 'Initial Value' field.

Context
Menu

Right-click on Stereotype element |
Features | Attributes | <define or select
the attribute '_image'> | click on in the

(c) Sparx Systems 2021 Page 76 of 461

MDG Technologies 2 September, 2021

'Initial Value' field

Keyboard
Shortcuts

F9 | <define or select the attribute
'_image'>] | click on in the 'Initial
Value' field

Add a Shape Script to a Stereotype element

The Stereotype element now resembles this example:

Ste
p

Description

1 In the 'Name' field, type '_image'.

2 Click on the button next to the 'Initial Value' field.
The 'Shape Editor' dialog displays.

3 Enter the Shape Script in the 'Shape Editor' dialog.

(c) Sparx Systems 2021 Page 77 of 461

MDG Technologies 2 September, 2021

When you have finished writing the Shape Script,
click on the OK button and then the Close button.

Notes

Your Shape Script might include externally-defined·

images; in this case the Shape Script would include the
image method, specifying the image file name prefixed
with the technology name

If you are creating a Shape Script for an Association·

Class, note that the Shape Script is applied to both the
Class part and the Association part; therefore, you might
have to include logic in the shape main that tests the type
of the element so that you can give separate drawing
instructions for Class and for Association

Such logic is not necessary in the:
 - shape source or shape target, which are ignored by
Classes, or the
 - decoration shapes, which are ignored by
Associations

You can also apply Shape Scripts to elements on an ad·

hoc basis, attaching the Shape Script to a stereotype
defined on the 'UML Types' dialog ('Configure >
Reference Data > UML Types')

(c) Sparx Systems 2021 Page 78 of 461

MDG Technologies 2 September, 2021

(c) Sparx Systems 2021 Page 79 of 461

MDG Technologies 2 September, 2021

Set Default Appearance

If you want to define a simple default appearance for a
stereotyped element or connector, you can select the
Stereotype element that defines it and just set any or all of
the:

Background/fill color·

Border color·

Border line width, or·

Font color·

To set these, you use the 'Default Appearance' dialog.

Access

Context
Menu

Right-click on element | Appearance |
Default Appearance

Keyboard
Shortcuts

F4

Notes

When you save the Profile defining the stereotyped·

(c) Sparx Systems 2021 Page 80 of 461

MDG Technologies 2 September, 2021

elements and connectors, select the 'Color and
Appearance' checkbox on the 'Save UML Profile' dialog

(c) Sparx Systems 2021 Page 81 of 461

MDG Technologies 2 September, 2021

Special Attributes

It is possible to define a number of special features and
behaviors of a stereotyped model element, such as the icon
to represent it in the Browser window and Diagram
Toolbox, the default location of any image files associated
with the stereotype, the dimensions of the element in a
diagram, or whether the appearance is defined by a Shape
Script. You define these features in your Profile, using
special attributes that can be applied to either the:

Stereotype elements or·

Metaclass elements, referring to the stereotypes that·

extend them

Access

Ribbon Design > Element > Features > Attributes

Context
Menu

Right-click on element | Features |
Attributes

Keyboard
Shortcuts

F9

(c) Sparx Systems 2021 Page 82 of 461

MDG Technologies 2 September, 2021

Set the attribute(s)

Field/Button Description

Name Type the name of the attribute (as listed
in these tables).

Initial Type or select the initial value of the
attribute.

Close Click on this button to close the dialog.

Stereotype element Attributes

Attribute Meaning

_defaultAttri
buteType

Defines the default type of the new
attributes created from the Diagram
Toolbox. Use this in a Stereotype
element that extends an Attribute
Metaclass, and set the 'Initial Value' field
to the required attribute type.
If you do not provide this, the system
creates attributes with the default type
int.

(c) Sparx Systems 2021 Page 83 of 461

MDG Technologies 2 September, 2021

icon Contains the bitmap file location of the
16x16-pixel icon displayed beside all
elements defined by the Stereotype, in the
Browser window. This does not apply to
Package elements. The icon is also
automatically used as the Diagram
Toolbox image wherever the stereotyped
element is listed.
For a transparent background, you can
use light gray - RGB (192,192,192).
For this attribute to work correctly, also
set the _metatype attribute.

_image Identifies a Shape Script definition, the
script for which is created in the 'Initial
Value' field.
For this attribute to take effect, you need
to set the 'Alternate Image' option when
you save the Profile.

_instanceMo
de

Define what happens when an instance is
created of a stereotyped element.

_instanceOw
ner

Deprecated.

_instanceTyp
e

Deprecated.

(c) Sparx Systems 2021 Page 84 of 461

MDG Technologies 2 September, 2021

_metatype Defines stereotypes as metatypes, so that
the identity of an element as a custom,
stereotyped element is hidden.

_sizeY Sets the initial height of the element, in
pixels, at 100% zoom.
For this attribute to take effect, you need
to set the 'Element Size' option when you
save the Profile.

_sizeX Sets the initial width of the element, in
pixels, at 100% zoom.
For this attribute to take effect, you need
to set the 'Element Size' option when you
save the Profile.

_strictness Defines the degree to which a stereotyped
element can have more than one
stereotype applied to it.

Metaclass element Attributes

Attribute Meaning

_AttInh If set to 1, sets the 'Inherited Features:

(c) Sparx Systems 2021 Page 85 of 461

MDG Technologies 2 September, 2021

Show Attributes' checkbox to selected on
each new stereotyped model element.

_AttPkg If set to 1, sets the 'Attribute Visibility:
Package' checkbox to selected on each
new stereotyped model element.

_AttPri If set to 1, sets the 'Attribute Visibility:
Private' checkbox to selected on each new
stereotyped model element.

_AttPro If set to 1, sets the 'Attribute Visibility:
Protected' checkbox to selected on each
new stereotyped model element.

_AttPub If set to 1, sets the 'Attribute Visibility:
Public' checkbox to selected on each new
stereotyped model element.

composition
Kind

When applied to an Association, defines
whether the source or target end is an
aggregate or composite. Permitted values
are:

None·

Aggregate at Source·

Aggregate at Target·

Composite at Source·

Composite at Target·

(c) Sparx Systems 2021 Page 86 of 461

MDG Technologies 2 September, 2021

_ConInh If set to 1, sets the 'Show Element
Compartments: Inherited Constraints'
checkbox to selected on each new
stereotyped model element.

_Constraint If set to 1, sets the 'Show Element
Compartments: Constraints' checkbox to
selected on each new stereotyped model
element.

_defaultDiagr
amType

Defines the type of child diagram created
when an element is made composite.

direction Automatically created when any type of
connector Metaclass element is dragged
from the 'Profile' toolbox page onto a
diagram. You can set a value for this
attribute in preference to using the
_SourceNavigability or
_TargetNavigability attributes.

_HideMetacl
assIcon

Set to True if you are extending an
element that will be shown in Rectangle
Notation and you do not want it to
display the 'Metaclass' icon in the
top-right corner. Affects elements such as
Requirements, Components and
UseCases.

(c) Sparx Systems 2021 Page 87 of 461

MDG Technologies 2 September, 2021

_HideStype Set the 'Initial Value' field to a
comma-separated list of stereotypes to
hide those stereotypes by setting the 'Hide
Stereotyped Features' filter for each new
stereotyped model element.

_HideUmlLi
nks

Set to True if you are using a metamodel
to create your Quick Linker definitions
and you want to exclude UML Quick
Linker definitions from your stereotyped
source element's Quick Linker. (The
UML Quick Linker definitions would
otherwise be inherited from the base
UML Metaclass.)

_isVertical Set to True for a stereotyped
ActivityPartition to make the default
Activity Partition orientation vertical.

_lineStyle Sets the line style of a stereotyped
connector; the 'Initial Value' of the
attribute can be one of:

direct·

auto·

custom·

bezier·

treeH (horizontal)·

(c) Sparx Systems 2021 Page 88 of 461

MDG Technologies 2 September, 2021

treeV (vertical)·

treeLH (lateral horizontal)·

treeLV (lateral vertical)·

orthogonalS (orthogonal, square·

corners)
orthogonalR (orthogonal, rounded·

corners)

_makeComp
osite

Makes each stereotyped element a
composite element when it is created.

_MeaningBa
ckwards

A natural language meaning for a
relationship when read from target to
source. For example, a <<Flow>>
relationship might have
_MeaningBackwards set to 'Flows from'.
Used in the Traceability window and
elsewhere.

_MeaningFor
wards

A natural language meaning for a
relationship when read from source to
target. For example, a <<Flow>>
relationship might have
_MeaningForwards set to 'Flows to'.
Used in the Traceability window and
elsewhere.

_OpInh If set to 1, sets the 'Inherited Features:
Show Operations' checkbox to selected

(c) Sparx Systems 2021 Page 89 of 461

MDG Technologies 2 September, 2021

on each new stereotyped model element.

_OpPkg If set to 1, sets the 'Operation Visibility:
Package' checkbox to selected on each
new stereotyped model element.

_OpPri If set to 1, sets the 'Operation Visibility:
Private' checkbox to selected on each new
stereotyped model element.

_OpPro If set to 1, sets the 'Operation Visibility:
Protected' checkbox to selected on each
new stereotyped model element.

_OpPub If set to 1, sets the 'Operation Visibility:
Public' checkbox to selected on each new
stereotyped model element.

_PType If set to 1, sets the 'Show element type
(Port or Part only)' checkbox to selected
on each new stereotyped model element.

_ResInh If set to 1, sets the 'Show Element
Compartments: Inherited Responsibilities'
checkbox to selected on each new
stereotyped model element.

_Responsibili
ty

If set to 1, sets the 'Show Element
Compartments: Requirements' checkbox

(c) Sparx Systems 2021 Page 90 of 461

MDG Technologies 2 September, 2021

to selected on each new stereotyped
model element.

_Runstate If set to any non-blank value, sets the
'Hide Object Runstate in current diagram'
checkbox to selected on each new
stereotyped model element.
To show the runstate, omit this attribute
or give it a blank value.

_SourceAggr
egation

Deprecated. See compositionKind.

_SourceMulti
plicity

Sets the multiplicity of the source
element, such as 1..* or 0..1.

_SourceNavi
gability

If the connector is non-navigable, set this
attribute to 'Non-Navigable'.
If other values are more appropriate, use
the direction attribute.

_subtypeProp
erty

Specifies the fully qualified name of the
Tagged Value that is used to generate a
popup submenu each time an element
with the stereotype is created from the
Toolbox.
The Tagged Value is an enumeration and
the submenu consists of a command for
each enumeration literal. The Tagged

(c) Sparx Systems 2021 Page 91 of 461

MDG Technologies 2 September, 2021

Value is initialized with whichever
command is selected on the submenu; if
none is selected (such as if the user clicks
off the submenu) then the default value is
used as normal.
For example, if you create a BPMN 2
Activity element, a submenu displays
listing the task types such as
'BusinessRule', 'Manual' and 'Receive'.
Selecting one of these values sets it as the
value of the taskType Tagged Value.
The Tagged Value is effectively the
Activity's subtype; in the BPMN 2
profile, in the format
profile::stereotype::tag, the
subtypeProperty for the Activity
stereotype would be:
 BPMN2.0::Activity::taskType.

_Tag If set to 1, sets the 'Show Element
Compartments: Tags' checkbox to
selected on each new stereotyped model
element.

_tagGrouping
s

Maps the Tagged Values into the tag
groups displayed in the 'Tags' tab of the
Properties window, in the form:

tagName1=groupName1;tagName2=grou

(c) Sparx Systems 2021 Page 92 of 461

MDG Technologies 2 September, 2021

pName2;
This facility currently is available for
object types only, not for other types such
as attributes.

_tagGroups Defines a comma-separated list of
required groups in the order in which they
are to be displayed in the 'Tags' tab of the
Properties window. For example:

groupName1,groupName2,groupName3
This facility currently is available for
object types only, not for other types such
as attributes.

_tagGroupSta
tes

Maps _tagGroups displayed in the 'Tags'
tab of the Properties window to the state
of open or closed, in the form:

groupName1=open;groupName2=closed;
This facility currently is available for
object types only, not for other types such
as attributes.

_TagInh If set to 1, sets the 'Show Element
Compartments: Inherited Tags' checkbox
to selected on each new stereotyped
model element.

(c) Sparx Systems 2021 Page 93 of 461

MDG Technologies 2 September, 2021

_TargetAggr
egation

Deprecated. See compositionKind.

_TargetMulti
plicity

Sets the multiplicity of the target element,
such as 1..* or 0..1.

_TargetNavig
ability

If the connector is non-navigable, set this
attribute to Non-Navigable.
If other values are more appropriate, use
the direction attribute.

_UCRect (Only applicable to element types that
have a distinct rectangle notation, or to
elements that have Shape Scripts that
evaluate the 'rectanglenotation' property,
which can include element types that do
not normally have rectangle notation.)
If set to 1, initially displays the element
in rectangle notation. If set to 0, initially
displays the element in standard notation.

Notes

Where an attribute is set to 1 to turn a feature on, setting it·

to 0 turns the feature off

(c) Sparx Systems 2021 Page 94 of 461

MDG Technologies 2 September, 2021

(c) Sparx Systems 2021 Page 95 of 461

MDG Technologies 2 September, 2021

Define a Stereotype as a Metatype

If you want to hide the identity of a custom element as a
stereotyped UML element, you can set the _metatype
special attribute in the Stereotype element that defines it.
The _metatype attribute also makes custom element types
appear in contexts where only Enterprise Architect's inbuilt
types would normally appear; for example, in the lists of
element types in the Relationship Matrix.

In this example from SysML, Block is defined as a
Stereotype element that extends a UML Class.

However, a SysML user is not interested in UML Classes,
only in SysML Blocks. If you set the _metatype attribute to
Block, any element created from that stereotype, while
behaving in the same way as a stereotyped Class in most
contexts, will:

Show Block <name> rather than Class <name> as the title·

of its 'Properties' dialog

(c) Sparx Systems 2021 Page 96 of 461

MDG Technologies 2 September, 2021

Be auto-numbered as Block1 not Class1 on creation, and·

Appear as Block not Class in many other contexts·

throughout Enterprise Architect

(c) Sparx Systems 2021 Page 97 of 461

MDG Technologies 2 September, 2021

Define Multiple-Stereotype Level

An element can have more than one stereotype applied to it.
You can define the level to which multiple stereotypes can
be applied, by creating the _strictness special attribute in the
defining Stereotype element. The type of the attribute is
StereotypeStrictnessKind, with one of four values in the
'Initial Value' field:

profile, which states that an element of this type cannot be·

given more than one stereotype from the same Profile

technology, which states that an element of this type·

cannot be given more than one stereotype from the same
technology

all, which states that an element of this type cannot have·

multiple stereotypes at all, or

none, which is the default behavior and states that there·

are no restrictions on the use of multiple stereotypes

This example is from SysML and shows that a «flowPort»
cannot have any other stereotype applied to it.

(c) Sparx Systems 2021 Page 98 of 461

MDG Technologies 2 September, 2021

(c) Sparx Systems 2021 Page 99 of 461

MDG Technologies 2 September, 2021

Define Creation of Instance

A stereotyped element can be the classifier of instances
created from it. You can define how an instance is created
from that stereotyped element, by adding special attributes
to the defining Stereotype. The attributes modify the text on
the 'Paste As' dialog that displays when a stereotyped
element is dragged out of the Browser window onto a
diagram.

Attributes

This example from SysML shows the definition of any
instances of a SysML Block element that might be created.

When a user drags a SysML Block element from the
Browser window onto a diagram, the system checks the
_instanceType attribute value and searches the SysML
Profile for an element template with a matching _metatype
attribute value, and generates the instance from that. With
the example definition you would get a Block element with
the «property» stereotype.

(c) Sparx Systems 2021 Page 100 of 461

MDG Technologies 2 September, 2021

Attribute Meaning

_instanceMo
de

Changes the second option for the 'Paste
as' field on the dialog to either:

Instance (<element type>) or·

Property (Object)·

The text is determined by the value
('Instance' or 'Property') of the attribute's
'Initial Value' field.
If the attribute is not applied, the option
defaults to 'Instance'.

_instanceOw
ner

DEPRECATED
Modifies the second option of the 'Paste
as' field on the dialog to:

as Instance of <element type>·

The text is determined by the value of the
attribute's 'Initial Value' field, such as
'Block'.
If the attribute is not applied, the option
defaults to 'Element'.

_instanceTyp
e

Modifies the second option of the 'Paste
as' field on the dialog to:

as Instance of Element·

(ProfileName::<<stereotype>>)
The <<stereotype>> value is defined in
the 'Initial Value' field of the attribute,

(c) Sparx Systems 2021 Page 101 of 461

MDG Technologies 2 September, 2021

and corresponds to the metatype given to
the stereotyped element using the
'_metatype' attribute.

(c) Sparx Systems 2021 Page 102 of 461

MDG Technologies 2 September, 2021

Define Composite Elements

A stereotyped element can be created automatically as a
composite element. You can define this, and whether the
child diagrams of the composite are of a specific type, using
special attributes.

To define whether an element is always made composite on
creation, you apply the _makeComposite special attribute to
the appropriate metaclass element (not to a stereotype
element). A stereotyped class, when created, does not
default to having a child diagram, so you use the
_makeComposite attribute to trigger creation of the child
diagram. For a stereotyped composite, the child diagram is
of the usual default diagram type for the metaclass; you can
change the child diagram type using the
_defaultDiagramType special attribute to identify the
preferred diagram type,

This example from BPMN shows that a BusinessProcess
element is always created as a Composite element with a
BPMN custom child diagram.

(c) Sparx Systems 2021 Page 103 of 461

MDG Technologies 2 September, 2021

(c) Sparx Systems 2021 Page 104 of 461

MDG Technologies 2 September, 2021

Define Child Diagram Type

If you define a stereotyped element type as being a
composite, its child diagram type is initially the same as the
default for the Metaclass element you extend. You can
change the diagram type to any other of the inbuilt UML or
Extended types, or to any of your own Custom diagram
types, using the _defaultDiagramType special attribute. As
the diagram type defaults from the Metaclass element, you
set the attribute on that Metaclass element (and not the
Stereotype element) to change the default.

You identify the child diagram type in the 'Initial Value'
field for the attribute. The actual values for the inbuilt UML
and Extended diagram types are listed in the Initial Values
section. If you want to set a Custom diagram type, you
prefix the diagram type name with the diagram profile name
and '::'. The diagram profile name is the name given to the
profile when you save it, which by default is the name of the
Profile Package or Profile diagram. We recommend that the
diagram profile name is based on the technology name. You
can also use the _defaultDiagramType attribute for
Packages, extending the Package Metaclass element.

These examples show a «BusinessProcess» Activity that,
when made a composite element, automatically creates an
Analysis diagram, and a «block» stereotype that creates a
SysML InternalBlock Custom diagram.

(c) Sparx Systems 2021 Page 105 of 461

MDG Technologies 2 September, 2021

Initial Values

These strings can be used in the 'Initial Value' field for
_defaultDiagramType, to identify the inbuilt UML and
Extended diagram types:

UML Behavioral::Use Case·

UML Behavioral::Activity·

UML Behavioral::StateMachine·

UML Behavioral::Communication·

UML Behavioral::Sequence·

UML Behavioral::Timing·

UML Behavioral::Interaction Overview·

UML Structural::Package·

UML Structural::Class·

UML Structural::Object·

UML Structural::Composite Structure·

UML Structural::Component·

UML Structural::Deployment·

(c) Sparx Systems 2021 Page 106 of 461

MDG Technologies 2 September, 2021

Extended::Custom·

Extended::Requirements·

Extended::Maintenance·

Extended::Analysis·

Extended::User Interface·

Extended::Data Modeling·

Extended::ModelDocument.·

Notes

Although we recommend that the diagram profile name·

for Custom diagram types is based on the technology
name, the attribute prefix is not a direct reference to the
technology name

(c) Sparx Systems 2021 Page 107 of 461

MDG Technologies 2 September, 2021

Define Tag Groupings

In developing a stereotyped element in a Profile, you might
define a large number of Tagged Values. For example, a
BPMN Activity element in the BPMN 2.0 Profile has 30
Tagged Values. By default, in the 'Tags' tab of the
Properties window for the element, these Tagged Values
would initially all be displayed in alphabetical order, which
might split related tags if they happen to have alphabetically
distant names. To keep related tags together and control
which tags are initially shown, in the BPMN 2.0 Profile the
Tagged Values have been grouped. You can apply the same
solution, using three tag grouping special attributes in the
Metaclass element extended by the Stereotype element in
which the tags are defined as attributes.

You apply the grouping using:

_tagGroups to define the group names·

_tagGroupings to define which tags go into each group·

_tagGroupStates to define which tag groups are initially·

expanded in the 'Tags' tab of the Properties window, and
which are collapsed

The 'Tags' tab of the Properties window for the BPMN 2.0
Activity element initially displays as shown:

(c) Sparx Systems 2021 Page 108 of 461

MDG Technologies 2 September, 2021

Activity Metaclass Attributes

To achieve that display of the BPMN 2.0 Activity Tagged
Values, the Technology Developer defined the special
attributes in the Activity Metaclass element as shown:

Attribute Values

_tagGroups Base
Element,Activity,Task,AdHoc,Loop,Sub-
Process,Callable
Element,Execution,Other

_tagGrouping
s

auditing=Base
Element;categoryValue=Base
Element;documentation=Base

(c) Sparx Systems 2021 Page 109 of 461

MDG Technologies 2 September, 2021

Element;monitoring=Base
Element;activityType=Activity;calledAct
ivityRef=Activity;instantiate=Activity;is
ACalledActivity=Activity;isATransaction
=Activity;isForCompensation=Activity;re
sources=Activity;messageRef=Task;oper
ationRef=Task;rendering=Task;script=Ta
sk;scriptFormat=Task;taskType=Task;ad
Hoc=AdHoc;adHocOrdering=AdHoc; ...
(and so on)

_tagGroupSta
tes

Base
Element=closed;Activity=open;Task=ope
n;AdHoc=closed;Loop=closed;Sub-Proce
ss=closed;Callable
Element=closed;Execution=closed;Other
=closed

Example

Shown here, is an simple example of how to use the tag
grouping attributes.

(c) Sparx Systems 2021 Page 110 of 461

MDG Technologies 2 September, 2021

Notes

This facility currently is available for object types only,·

not for other types such as attributes

(c) Sparx Systems 2021 Page 111 of 461

MDG Technologies 2 September, 2021

Introducing the Metamodel Views

Enterprise Architect includes an extremely powerful and
flexible system of Views of both system-defined and
user-defined metamodels. The Views system provides
highly focused diagrams that limit the number of elements
and connections available to only the core required to
achieve a specific task. For example, a Hierarchy View
imposed on a Class diagram might limit the only element
available to 'Class' and the only connector to 'Inheritance'.

Using the Views system to guide the modeling palette and
relationships available, you will build tight and purposeful
diagrams that use only the required elements within the
current modeling context. Cutting out the noise and
reducing the set of constructs available is a great way of
making sure a design is addressing the intended purpose and
avoiding extraneous elements that might negatively impact
the readability and correctness of the model.

Metamodel Views

Category Description

System Enterprise Architect provides a wide
range of built-in Metamodel Views that
address numerous modeling scenarios
and domains. Many of the Model

(c) Sparx Systems 2021 Page 112 of 461

MDG Technologies 2 September, 2021

Wizard patterns are pre-set with a
Metamodel View, and the 'New Diagram'
dialog includes many derivative diagram
views that extend and refine the
capabilities of the base diagram types.

Custom In addition to using the system-defined
Metamodel based views in Enterprise
Architect, it is also possible to create your
own Metamodels and easily add them to
the current model, where you and other
modelers can then apply them to various
diagrams as needed. For example, you
might define a specific Metamodel set
that addresses the needs of Requirements
modeling in your organization, and then
mandate that all Requirement diagrams
use that Metamodel View.

View System Facilities

Facility Description

Diagram
Filter

In addition to limiting the available
palette, the View system also allows the
modeler to enable a diagram filter that

(c) Sparx Systems 2021 Page 113 of 461

MDG Technologies 2 September, 2021

will gray out any elements that are not
part of the current view set. This allows
the modeler to correct any parts of their
model that don't meet the purpose of the
selected View, or to filter out elements
that are required to be there, but do not
form part of the current modeling goal.

Diagram
Properties

The 'Properties' dialog for a diagram
includes a drop-down list of available
Views for the currently selected diagram
type. Selecting one of these Views will
reduce the palette of constructs available
and limit the entries in the Quick Linker.
Modelers can easily activate a View or
even remove one if necessary - the actual
model content will not change.

Diagram
Views

The 'New Diagram' dialog includes a
number of different Views that offer
different palette sets and focus goals for
diagram types such as UML, SysML,
BPMN and UAF, amongst others. If you
have the goal of modeling a simple
Activity diagram with no advanced
features, the Simple Activity View under
the UML Activity diagram section could
be a better option than using the full
Activity diagram set.

(c) Sparx Systems 2021 Page 114 of 461

MDG Technologies 2 September, 2021

(c) Sparx Systems 2021 Page 115 of 461

MDG Technologies 2 September, 2021

Built-in Metamodel Diagram View

The 'New Diagram' dialog includes a number of different
Views that offer different palette sets and focus goals for
diagram types such as UML, SysML, BPMN and UAF,
amongst others. As an example, if you have the goal of
modeling a simple SysML Block Definition diagram with
no advanced features, the 'Basic Blocks View' under the
'SysML 1.5 Block Definition Diagram' section might be a
better option than using the full Block Definition diagram
set. This example is used to provide values in the procedures
in this topic.

Working with Diagram Views

Ste
p

Action

1 In the Browser window, click on the Package or
element under which to place the diagram.
Open the 'New Diagram' dialog, select 'SysML 1.4
Views:: Basic Blocks' and click on the OK button to
create the diagram.

(c) Sparx Systems 2021 Page 116 of 461

MDG Technologies 2 September, 2021

2 In the Properties window for the created diagram,
the 'Applied Metamodel' field will show the applied
diagram View. You can also click on the drop-down
arrow in this field and select another of the available
diagram Views from the list.

(c) Sparx Systems 2021 Page 117 of 461

MDG Technologies 2 September, 2021

3 In the Diagram Toolbox, the restricted set of
elements and relationships associated with the
diagram view will be visible.

(c) Sparx Systems 2021 Page 118 of 461

MDG Technologies 2 September, 2021

Changing the diagram views in the 'Applied
Metamodel' option list will change the elements and
relationships in the Toolbox.

4 Selecting the 'Filter to Metamodel' option in the
Properties window will gray out any elements that
are not part of the current diagram View set. This
allows you to correct any parts of your model that
don't meet the purpose of the selected View, or to
filter out elements that might be required to be there,
but do not form part of the current modeling goal.

(c) Sparx Systems 2021 Page 119 of 461

MDG Technologies 2 September, 2021

(c) Sparx Systems 2021 Page 120 of 461

MDG Technologies 2 September, 2021

Custom Metamodel Diagram View

Enterprise Architect has a wide range of built-in diagram
views, but you can also create your own Metamodels that
define custom diagram Views. For example, you might
define a specific Metamodel that addresses the needs of
Requirements modeling in your organization, and then
mandate that all Requirements diagrams use that diagram
View instead of the built-in Requirement diagram Views.
You can quickly add your diagram Views to the current
model, where you or other modelers can apply them to your
diagrams.

As an illustration, suppose you decide to make available a
new SysML 1.4 Block Definition diagram View in your
project, called 'MyView'. Users will access it through the
'New Diagram' dialog, expanding the Block Definition
diagram type.

(c) Sparx Systems 2021 Page 121 of 461

MDG Technologies 2 September, 2021

The fully extended name of the diagram View reflects the
parent Profile name (MyProfile) and the View name
(MyView) - hence 'MyProfile::MyView'. You could call the
example View SysML 1.4 Views:: MyView to indicate that
it is a member of the SysML 1.4 View suite.

If you are extending a UML base diagram type, with the
Profile name 'UML', the equivalent View name could be
something such as 'UML::Full Class'.

The users select the example diagram View to create a very
simple SysML 1.4 Block diagram that can have:

Two types of element:·

 - a SysML 1.4 Block element (an extended Class
from the SysML 1.4 technology)
 - a MyStereo element that you are defining within
your new metamodel 'MyView' as a
 Class with the stereotype MyStereo

(c) Sparx Systems 2021 Page 122 of 461

MDG Technologies 2 September, 2021

One type of connector - a standard SysML Block·

Generalization (which is the same as a standard UML
Generalization)

The diagram View makes the elements and connector
available from the Toolbox, as shown, and from the Quick
Linker.

The table Create Custom Diagram View in a Profile
explains how to create a Metamodel that defines a new
diagram View, finishing with the MyView example.

Access

Ribbon Design > Diagram > Toolbox: >
Profile > Metamodel

Keyboard Ctrl+Shift+3 : > Profile > Metamodel

(c) Sparx Systems 2021 Page 123 of 461

MDG Technologies 2 September, 2021

Shortcuts

Create Custom Diagram View in a Profile

Operation Action

Create the
Profile
diagram

In your profile Package, create a new
Package diagram and, in the Diagram
Toolbox, open the 'Profile' page (select
the 'Design > Diagram > Toolbox' ribbon
option, then click on and select
'Profile').
Drag the 'Profile' icon onto the diagram
and give it the name 'MyProfile',
selecting to add a child Class diagram of
the name 'MyView', which you open.
Expand the 'Metamodel' page in the
Toolbox and note the:

'View Specification' element, which·

you can use to create a custom diagram
View
'Exposes' connector, which you use to·

specify the contents of the Toolbox
page associated with the custom
diagram View

(c) Sparx Systems 2021 Page 124 of 461

MDG Technologies 2 September, 2021

Add View
Specification

Within a Profile, you use the 'View
Specification' stereotyped element to
identify the new custom diagram View as
an extension of an existing built-in or
stereotyped diagram.
Drag the 'View Specification' icon onto
the Profile diagram, and give the element
a name; in our example, 'MyView'.
The first thing to consider when defining
a new View, is what diagram type or
types it should be available for. The next
two rows show how to define a View for
a UML diagram and a Profile diagram.
In both cases, click on the 'Extension'
icon and drag from the View
Specification to the diagram-type
element, to create the Extension
connector.

Extending a
UML
Diagram
Type

To extend a base UML diagram type,
drag the 'Class' icon from the Toolbox
onto the diagram and, on the Properties
window, give the element:

The exact name of the diagram type (as·

listed in the Built-in Diagram Types
Help topic) such as 'Logical' (for a
Class diagram), and
The stereotype <<metaclass>>·

This example shows 'MyView' as

(c) Sparx Systems 2021 Page 125 of 461

MDG Technologies 2 September, 2021

previously created, extending the UML
Component diagram.

«view specification»
MyView

«metaclass»
Component

The result is that in the 'New Diagram'
dialog, an extra View is added under the
UML Component Diagram type.

Extending a
Profiled
Diagram
Type

To extend a profiled diagram type, such
as a BPMN or SysML diagram type, drag
the 'Stereotype' icon onto the diagram and
give the Stereotype element the exact
fully qualified name of the diagram type.
Because this is a reference to an external
stereotype, it should also be marked as
Abstract to prevent it being exported into
the profile. To do that, display the
Properties window, expand the
'Advanced' section and select the
'Abstract' checkbox.
This example shows 'MyView' as
previously created, extending the
GRA-UML Component Diagram type.

«view specification»
MyView

GRA-UML::
GRA

Component
{abstract}

The result is that the 'New Diagram'
dialog will show the View we are

(c) Sparx Systems 2021 Page 126 of 461

MDG Technologies 2 September, 2021

defining under the GRA-UML
component diagram.
Note: If you do not know the fully
qualified name of the diagram type you
are extending, query the API to get the
'Metatype' field. In a JavaScript console
you can use:
 ?GetCurrentDiagram().MetaType

Exposing
Objects in the
Diagram
View
Toolbox

An Exposes connector adds an object to
the Toolbox page for the diagram View.
For each element and connector to add to
the diagram View's Toolbox page, you
drag a 'definition element' onto the
diagram and then click on the 'Exposes'
icon in the Toolbox 'Profile' page and
drag the cursor from the View
Specification element to the 'definition
element' to create the connector.
The type of definition element depends
on whether you are exposing a base UML
element or a stereotyped element, as
shown in the next two rows.

Exposing
UML
Element
Types

If you are using base UML element or
connectors in your custom diagram View,
then for each element or connector:

Drag the 'Metaclass' icon from the1.
Toolbox 'Profile' page onto the diagram

(c) Sparx Systems 2021 Page 127 of 461

MDG Technologies 2 September, 2021

and give it the name of the base
element or connector type it represents
and
Add the Exposes connector between2.
the View Specification element and the
Metaclass element

For example:

Exposing
Profiled
Element
Types

If you are defining a new stereotyped
object in the diagram view, or using
stereotyped elements already defined in
other profiles, then for each element or
connector:

Drag the 'Stereotype' icon from the1.
Toolbox 'Profile' page onto the
diagram, and give the element the
name of the stereotyped element or
connector it represents
If the Stereotype is defined in another2.
profile, expand the 'Advanced' section
of the Properties window and select

(c) Sparx Systems 2021 Page 128 of 461

MDG Technologies 2 September, 2021

the 'Abstract' checkbox
If the Stereotype is being defined here,3.
add to the diagram the base element
that the Stereotype extends, and create
an Extension connector between the
Stereotype and base element
Add the Exposes connector between4.
the View Specification element and the
Stereotype element

For example:

Completing
the Example

With reference to the earlier rows in the
table, on the MyView Class diagram (the
child of the MyProfile diagram):

Create the View Specification element1.
MyView.
Create the Stereotype element2.
SysML1.4::Block Definition and set it

(c) Sparx Systems 2021 Page 129 of 461

MDG Technologies 2 September, 2021

to Abstract.
Connect the View Specification to the3.
SysML1.4::Block Definition with an
Extension connector.
Create a Metaclass element called4.
Generalization.
Create a Stereotype element called5.
SysML1.4::Block and set it to Abstract.
Create a Stereotype element called6.
MyStereo and a Metaclass element
called UML Class and connect the
Stereotype to the Metaclass with an
Extension connector.
Connect the View Specification7.
element to the Generalization element,
the SysML1.4::Block element and the
MyStereo element, each with an
Exposes connector.

This illustration represents the diagram
that you have created:

(c) Sparx Systems 2021 Page 130 of 461

MDG Technologies 2 September, 2021

As you complete your diagram view, you
might decide that elements of one type
should be connected to elements of the
same type or of other types by using
specific kinds of connector. You would
define this using Meta-Relationship
connectors, as discussed in the Define
Metamodel Constraints Help topic.
Save the View Specification diagram.
You can now can add it to an MDG
Technology file as part of its parent
Profile; you add the parent Profile to the
'MDG Technology Wizard - Profile files
selection' page. See the Add a Profile
Help topic.

(c) Sparx Systems 2021 Page 131 of 461

MDG Technologies 2 September, 2021

Define Metamodel Constraints

When extending UML to develop a domain-specific Profile,
Enterprise Architect allows you to specify constraints to
restrict the connectors that can be drawn from a Stereotype,
either using the Quick Linker or from the Toolbox. These
constraints are defined using the relationships under the
'Metamodel' page of the 'Profile' toolbox.

Access

Ribbon Design > Diagram > Toolbox: >
Profile

Keyboard
Shortcuts

Ctrl+Shift+3

Add Metamodel Constraints to a Profile

Ite
m

Detail

M A «metarelationship» connector between two

(c) Sparx Systems 2021 Page 132 of 461

MDG Technologies 2 September, 2021

et
a-
R
el
ati
on
sh
ip

Stereotypes is used to specify a valid UML
Connector between these two Stereotypes.
The name of the UML Connector should be set in the
tag 'metaclass' on the «metarelationship» connector.

In the Profile example, a «metarelationship»
connector is drawn from ServiceSpecification to
ServiceInterface and the name of the UML
Connector is specified in the 'Tags' tab of the
Properties window for the connector.
After importing this Profile into a model, Enterprise

(c) Sparx Systems 2021 Page 133 of 461

MDG Technologies 2 September, 2021

Architect will show the UML Connector when the
Quick Linker is used to draw a relationship between
a ServiceSpecification and ServiceInterface.

M
et
a-
C
on
str
ai
nt

A «metaconstraint» connector between two
Stereotypes is used to specify a constraint between
these two Stereotypes.
The constraint should be set in the tag 'umlRole' on
the Meta-Constraint connector.

In the Profile example, a «metaconstraint» connector
is drawn from ActualProjectMilestone to
ProjectMilestone and the constraint is specified as
classifier on the tag 'umlRole' in the connector's
Tagged Values.
After importing this Profile into a model, Enterprise
Architect will show only the ProjectMilestone
stereotyped elements when assigning a classifier for
ActualProjectMilestone element.

(c) Sparx Systems 2021 Page 134 of 461

MDG Technologies 2 September, 2021

Constraint values for the tag 'umlRole' include:
classifier – restricts the classifier for the source·

Stereotype element to the target Stereotype
element
type – restricts the type for the source Stereotype·

element to the target Stereotype element
behavior - restricts the behavior for the source·

Stereotype element to the target Stereotype
element
conveyed - restricts the conveyed element for the·

source Stereotype element to the target Stereotype
element
slot - restricts the slot for the source Stereotype·

element to the target Stereotype element
client/source/end[0].role/informationSource –·

restricts the source of a connector to the target
Stereotype element
supplier/target/end[1].role/informationTarget -·

restricts the target of a connector to the target
Stereotype element
realizingConnector/realizingActivityEdge/realizin·

gMessage - restricts the relationship that can
realize an information flow
typedElement/instanceSpecification – when·

dropping as classifier from the Browser window,
this constraint restricts the type to the target
Stereotype element
owner/class/activity/owningInstance – restricts the·

(c) Sparx Systems 2021 Page 135 of 461

MDG Technologies 2 September, 2021

container of this element to the target Stereotype
element; this constraint is used to create embedded
element rules for the Quick Linker and validate
nesting during Model Validation
ownedElement/ownedAttribute/ownedOperation/o·

wnedParameter/ownedPort – restricts the
element/attribute/operation/parameter/port that can
be owned by the source Stereotype element; this
constraint is typically used to validate nesting
during Model Validation
annotatedElement/constrainedElement – restricts·

the target of a Note Link connector to the target
Stereotype element

St
er
eo
ty
pe
d
R
el
ati
on
sh
ip

You can use a «stereotypedrelationship» connector
between two Stereotypes or Metaclasses to specify a
valid stereotyped connector between instances of
those elements.
When specifying the relationship, if the relationship
being referenced is defined in the profile in which
the rule is defined, the stereotype property can be set
to only the name of that stereotype. However, if the
relationship is defined in another profile you must
use a fully qualified stereotype name corresponding
to where the stereotype is defined.

(c) Sparx Systems 2021 Page 136 of 461

MDG Technologies 2 September, 2021

In the Profile example, a «stereotypedrelationship»
connector is drawn from ApplicationComponent to
ApplicationEvent and the stereotype of the
relationship is set to 'Assignment' in the connector's
Tagged Values.
After importing this Profile into a model, Enterprise
Architect will show the 'Assigned' option when the
Quick Linker is used to draw a relationship between
an ApplicationComponent and ApplicationEvent.

(c) Sparx Systems 2021 Page 137 of 461

MDG Technologies 2 September, 2021

Special Metaclasses

You can specify the source of a connector to be a superclass
of all specialized forms, and the target to a special metaclass
that specifies a relationship to the actual metaclass when it is
used. You use one of these terms as the element name for a
Class element with the stereotype «metaclass».

Ite
m

Detail

so
ur
ce
.m
et
at
yp
e

The target element must match the exact stereotype
defined at the source.

so
ur
ce
.m
et
at

The target element can match the exact stereotype
used at the source, and any concrete
(isAbstract=false) generalized stereotypes.

(c) Sparx Systems 2021 Page 138 of 461

MDG Technologies 2 September, 2021

yp
e.
ge
ne
ral

so
ur
ce
.m
et
at
yp
e.
sp
ec
ifi
c

The target element can match the exact stereotype
used at the source, and any concrete
(isAbstract=false) specialized stereotypes.

so
ur
ce
.m
et
at
yp
e.
bo
th

The target element can match the exact stereotype
used at the source, and any concrete
(isAbstract=false) generalized or specialized
stereotypes.

(c) Sparx Systems 2021 Page 139 of 461

MDG Technologies 2 September, 2021

<n
on
e>

Use this metaclass name when you want to prevent
the source element from inheriting the specified
connector from its supertypes.

(c) Sparx Systems 2021 Page 140 of 461

MDG Technologies 2 September, 2021

Constraints on Meta-Constraint
connector

When creating a domain-specific Profile, Enterprise
Architect allows you to specify constraints between related
Stereotypes. As an example, you can restrict the element
that can be set as a classifier on a Stereotyped element.

A Meta-Constraint connector, on the 'Metamodel' page of
the 'Profile' toolbox, between two Stereotypes is used to
specify the constraint between the two Stereotypes. The
constraint should be set in the tag 'umlRole' on the
Meta-Constraint connector.

Access

Ribbon Design > Diagram > Toolbox : >
Profile > Metamodel

Keyboard
Shortcuts

Ctrl+Shift+3 : > Profile > Metamodel

Constraint values for tag 'umlRole'

(c) Sparx Systems 2021 Page 141 of 461

MDG Technologies 2 September, 2021

Constraint values for the tag 'umlRole' on the
Meta-Constraint connector are:

Co
nst
rai
nt

Description

cl
as
sif
ier

Set this constraint to restrict the classifier for the
source Stereotype element as the target Stereotype
element.

In the Profile example, a Meta-Constraint connector
is drawn from the stereotype ActualCondition to
Condition and the constraint is specified as
'classifier' on the tag 'umlRole' in the connector's list
of Tagged Values. This means that only a 'Condition'
stereotyped element can be set as the classifier for an
ActualCondition stereotyped element.
After importing this Profile into a model, Enterprise

(c) Sparx Systems 2021 Page 142 of 461

MDG Technologies 2 September, 2021

Architect will show only Condition stereotyped
elements in the 'Select DataType' dialog when
setting the DataType for an ActualCondition
stereotyped element.

ty
pe

Set this constraint to specify the type for the target
Stereotype element when it is dropped from the
Browser window into a diagram while pressing and
holding the Ctrl key.

In the Profile example, a Meta-Constraint connector
is drawn from the stereotype CapabilityProperty to
Capability and the constraint is specified as 'type' on
the tag 'umlRole' in the 'Tags' tab of the connector's
Properties window.
After importing this Profile into a model, when a
Capability stereotyped element is dropped from the
Browser window into a diagram while pressing and
holding the Ctrl key, the 'Paste <item>' dialog will

(c) Sparx Systems 2021 Page 143 of 461

MDG Technologies 2 September, 2021

display CapabilityProperty as one of the options in
the 'Drop as' list.

be
ha
vi
or

Set this constraint to restrict the behavior for the
source Stereotype element to the same as the target
Stereotype element.

In the Profile example, a Meta-Constraint connector
is drawn from stereotype FunctionAction to Function
and the constraint is specified as 'behavior' on the tag
'umlRole' in the 'Tags' tab of the Properties window
for the connector. This means that only a 'Function'
stereotyped element can be set as classifier for a
FunctionAction stereotyped element.
After importing this Profile into a model, Enterprise
Architect will show only Function stereotyped
elements in the 'Select Activity' dialog when setting
the behavior for a FunctionAction stereotyped
element.

co Set this constraint to restrict the Information Items

(c) Sparx Systems 2021 Page 144 of 461

MDG Technologies 2 September, 2021

nv
ey
ed

that can be conveyed on a Stereotype that extends
the Information Flow connector.

In the Profile example, a Meta-Constraint connector
is drawn from stereotype OperationalExchange to
OperationalExchangeItem and the constraint is
specified as 'conveyed' on the tag 'umlRole' in the
'Tags' tab of the Properties window for the
connector. This means that when an
OperationalExchange connector is drawn, the
Information Items that can be conveyed on the
connector are restricted to OperationalExchangeItem
stereotyped elements.

sl
ot

Set this constraint to restrict the slot for the
Stereotype element as the target Stereotype element.

In the Profile example, a Meta-Constraint connector
is drawn from the stereotype ActualProject to
ActualProjectRole and the constraint is specified as
'slot' on the tag 'umlRole' in the connector's Tagged

(c) Sparx Systems 2021 Page 145 of 461

MDG Technologies 2 September, 2021

Values. Note that the stereotype 'ActualProject'
extends UML Object and can classify stereotype
'Project'. When an instance specification for the
Project element is created (by dropping it from the
Browser window into a diagram while pressing and
holding the Ctrl key) in the model:

The created instance specification will be·

stereotyped ActualProject
Any Property in the 'Project' stereotyped element·

will be created as an 'ActualProjectRole'
stereotyped Property in the instance specification

cli
en
t/
so
ur
ce
/
en
d[
0]
.r
ol
e/
in
fo
r
m

Set this Model Validation constraint to restrict the
start element of a Stereotyped connector.

In the Profile example, a Meta-Constraint connector
is drawn from stereotype 'FunctionControlFlow' to
'FunctionAction' and the constraint is specified as
'source' on the tag 'umlRole' in the connector's
Tagged Values. This means that when a

(c) Sparx Systems 2021 Page 146 of 461

MDG Technologies 2 September, 2021

ati
on
So
ur
ce

FunctionControlFlow connector is drawn, the source
element should be a FunctionAction stereotyped
element. Otherwise, Enterprise Architect will flag an
error when performing a Model Validation.

su
pp
lie
r/
tar
ge
t/
en
d[
1]
.r
ol
e/
in
fo
r
m
ati
on
Ta
rg
et

Set this model validation constraint to restrict the
target element of a Stereotyped connector.

(c) Sparx Systems 2021 Page 147 of 461

MDG Technologies 2 September, 2021

re
ali
zi
ng
C
on
ne
ct
or
/
re
ali
zi
ng
A
cti
vit
y
E
dg
e/
re
ali
zi
ng
M
es
sa
ge

Set this constraint to restrict the relationship that can
realize an Information Flow connector.

In the Profile example, a Meta-Constraint connector
is drawn from stereotype OperationalExchange
(which extends a UML InformationFlow metaclass)
to OperationalConnector and the constraint is
specified as 'realizingConnector' on the tag 'umlRole'

(c) Sparx Systems 2021 Page 148 of 461

MDG Technologies 2 September, 2021

in the connector's Tagged Values. This means that
when an OperationalConnector connector is drawn,
the Information Flow connector that can be realized
on this connector can be an OperationalExchange
stereotyped connector.

ty
pe
d
El
e
m
en
t/
in
st
an
ce
Sp
ec
ifi
ca
tio
n

When dropping as classifier from the Browser
window, this constraint restricts the available type to
the target Stereotype element.

o
w
ne
r/

Set this constraint to restrict the container/owner of
the element to the target Stereotype element. This
constraint is used to create embedded element rules
for the Quick Linker and to validate nesting during

(c) Sparx Systems 2021 Page 149 of 461

MDG Technologies 2 September, 2021

cl
as
s/
ac
tiv
ity
/
o
w
ni
ng
In
st
an
ce

Model Validation.

In the Profile example, a Meta-Constraint connector
is drawn from the stereotype DataElement to
DataModel and the constraint is specified as 'owner'
on the tag 'umlRole' in the connector's Tagged
Values. This means that DataElement stereotyped
elements can be children of DataModel stereotyped
element. In other words, only DataModel can
contain/own DataElements in the Model.

o
w
ne
d
El
e
m
en
t/
o
w
ne
d

Set this constraint to restrict the
element/attribute/operation/parameter/port that can
be owned by the source Stereotype element. This
constraint is typically used to validate nesting during
Model Validation.

(c) Sparx Systems 2021 Page 150 of 461

MDG Technologies 2 September, 2021

At
tri
bu
te/
o
w
ne
d
O
pe
rat
io
n/
o
w
ne
dP
ar
a
m
et
er/
o
w
ne
dP
or
t

In the Profile example, a Meta-Constraint connector
is drawn from stereotype ProjectMilestone to
ProjectTheme and the constraint is specified as
'ownedAttribute' on the tag 'umlRole' in the
connector's Tagged Values. This means that
ProjectMilestone stereotyped elements can contain
'ProjectTheme' stereotyped attributes in the model.

(c) Sparx Systems 2021 Page 151 of 461

MDG Technologies 2 September, 2021

an
no
tat
ed
El
e
m
en
t/
co
ns
tra
in
ed
El
e
m
en
t

Set this model validation constraint to restrict the
target of a NoteLink connector.

In the Profile example, a Meta-Constraint connector
is drawn from stereotype SecurityControlFamily to
SecurityControl and the constraint is specified as
'annotatedElement' on the tag 'umlRole' in the
connector's Tagged Values.
When the Profile is imported into a model, the target
of a NoteLink connector from a
SecurityControlFamily stereotyped element should
be a SecurityControl stereotyped element.
Otherwise, Enterprise Architect will flag an error
when performing a Model Validation.

(c) Sparx Systems 2021 Page 152 of 461

MDG Technologies 2 September, 2021

Metamodel Constraints and the Quick
Linker

When you drag the Quick Linker arrow to create a
relationship to another element, a menu of available
connector types and - if no target element is selected on the
diagram - a menu of available element types display. The
two tables in this topic show where the names of the
connector and element types are drawn from when you have
- or have not - provided values for the Metamodel constraint
properties.

Connector Labels

This table identifies the points from which the Quick Linker
can retrieve names to display in the menu for the available
connector types.

Ite
m

Detail

M
ea
ni
ng
Fo
rw
ar

Stereotypes with values defined in the
_MeaningForwards and _MeaningBackwards
properties will use those values to describe the
connector in the Quick Linker menu.
Note: If _MeaningBackwards is not defined for a
stereotype, the Quick Linker will offer an option to
create the relationship in the backwards or reverse

(c) Sparx Systems 2021 Page 153 of 461

MDG Technologies 2 September, 2021

ds
an
d
M
ea
ni
ng
B
ac
k
w
ar
ds

direction.

M
et
at
yp
e
N
a
m
e

Stereotypes with values defined in the _Metatype
properties will use those values to describe the
connector in the Quick Linker menu when no 'name'
properties are defined.

St
er
eo
ty
pe
N

If no _MeaningForwards, _MeaningBackwards or
_Metatype values are defined, the stereotype name
will be used as the menu label for a relationship.

(c) Sparx Systems 2021 Page 154 of 461

MDG Technologies 2 September, 2021

a
m
e

M
et
ac
la
ss
N
a
m
e

When using a Metarelationship connector to include
UML relationships between your stereotypes, you do
not have control of the labels used for the
relationship. The Quick Linker will use the same
labels as are used when those relationships are
available between UML elements.

Element Labels

When you have dragged the Quick Linker to empty space, a
menu displays the types of target element available. This
table identifies where the Quick Linker retrieves names
from to display in the menu of available elements.

Ite
m

Detail

M
et
at

Stereotypes with values defined in the _metatype
properties will use those values to describe the
element in the Quick Linker menu.

(c) Sparx Systems 2021 Page 155 of 461

MDG Technologies 2 September, 2021

yp
e
N
a
m
e

St
er
eo
ty
pe
N
a
m
e

If no _MeaningForwards, _MeaningBackwards or
metatype values are defined, the name of the
stereotype will be used as the menu label for an
element.

M
et
ac
la
ss
N
a
m
e

When using a Metarelationship connector or
Stereotypedrelationship connector to link your
stereotypes to UML elements, you do not have
control of the labels used for the element. The Quick
Linker will use the same labels as are used when
those elements are connected under UML.

(c) Sparx Systems 2021 Page 156 of 461

MDG Technologies 2 September, 2021

Quick Linker

When a user is creating new elements and connectors on a
diagram they can simplify the process by using the Quick
Linker arrow, which displays a list of the common
connectors that can issue from a selected element and a list
of the common elements each connector can connect to.
These lists are derived from a Quick Linker definition,
which is a Comma Separated Value (CSV) format file.

As part of a Profile, you can add to or replace the built-in
Quick Linker definitions using your own definitions. These
can be derived from:

A Quick Linker Definition Format CSV file that you·

integrate with the Profile by adding the CSV text to a
Document Artifact element on the Profile diagram
(preferred method) - see the Quick Linker Definition
Format Help topic

A custom metamodel diagram View, including a set of·

metamodel constraints that define what types of element
are connected by what type(s) of connector (second
preferred method) - see the Introducing the Metamodel
Views and Define Metamodel Constraints Help topics)

A Relationship Table CSV file that you integrate with the·

Profile also by adding the CSV text to a Document
Artifact element on the Profile diagram (best only for
implementing complex relationship rules that don't
necessarily correspond to a defined metamodel) - see the
Relationship Table help topic

(c) Sparx Systems 2021 Page 157 of 461

MDG Technologies 2 September, 2021

Notes

The philosophy behind a Quick Linker definition is not to·

provide a complete list of valid or legal connections, but a
short and convenient list of the commonest connections
for the given context

(c) Sparx Systems 2021 Page 158 of 461

MDG Technologies 2 September, 2021

Quick Linker Definition Format

In order to replace or change the Quick Linker menus that
are displayed when a user drags the Quick Linker arrow
from one of your profile elements on a diagram, you can
create or edit the corresponding Quick Linker definition.
This is a Comma Separated Value (CSV) text file consisting
of records (rows), each record consisting of 23
comma-separated fields as defined in the table.

Some of these fields define the menu command and some
act as filters, with the entry being ignored if the filter
condition isn't met.

A Quick Linker definition can include comments: all lines
in which // are the first two characters are ignored by
Enterprise Architect. Quotes (" ") in the field values are not
required.

Each record of the Quick Linker definition represents a
single combination of entries on the Quick Linker menus;
that is, for the selected source element, a specific connector
type and specific target element type. A menu is populated
from all rows that satisfy the filters; that is, the first menu
lists all defined connectors that are legal and valid for the
source element type, and the second menu lists all target
elements that are legal and valid for the combination of
source element and connector type.

Quick Linker Definition fields

(c) Sparx Systems 2021 Page 159 of 461

MDG Technologies 2 September, 2021

Column Title (enter as comment for guidance)

A Source Element Type
Description: Identifies a valid source
element in the Profile. To indicate that
the source element can be any
specialization of an abstract UML
Metaclass, add the prefix '@' to the
Metaclass name; for example,
'@Classifier', '@NamedElement'.
If a connector is being dragged away
from this type of element, the row is
evaluated. Otherwise, the row is ignored.
If the source is another connector, prefix
the connector type with the word 'link:';
for example, 'link:ControlFlow'.

B Source Stereotype Filter
Description: Identifies a stereotype of the
source element base type (for example,
an Event source element can be a normal
Event, or a Start Event, Intermediate
Event or End Event stereotyped element).
The stereotype can be a fully qualified
stereotype or the name of a stereotype
within the current profile.
If set, and if a connector is being dragged

(c) Sparx Systems 2021 Page 160 of 461

MDG Technologies 2 September, 2021

away from an element of this stereotype,
the row is evaluated. Otherwise, the row
is ignored.

C Target Element Type
Description: Identifies a valid target
element in the Profile. To indicate that
the target element can be any
specialization of an abstract UML
Metaclass, add the prefix '@' to the
Metaclass name; for example,
'@Classifier', '@NamedElement'.
If set, and if a connector is being dragged
onto this type of element, the row is
evaluated.
If blank, and if a connector is being
dragged onto an empty space on the
diagram, the row is evaluated.
Otherwise the row is ignored.
If the target is another connector, prefix
the connector type with the word 'link:';
for example, 'link:ControlFlow'.

D Target Stereotype Filter
Description: Identifies a stereotype of the
target element base type.
If set, if Target Element Type is also set,
and if a connector is being dragged onto

(c) Sparx Systems 2021 Page 161 of 461

MDG Technologies 2 September, 2021

an element of this stereotype, the row is
evaluated. Otherwise, the row is ignored.

E Diagram Filter
Description: Contains either an inclusive
list or an exclusive list of diagram types,
which limits the diagrams the specified
connector can be created on.

Each diagram name is terminated by a·

semi-colon; for example:
 Collaboration;Object;Custom;
Custom diagram types from MDG·

Technologies can be referenced using
the fully qualified diagram type
(DiagramProfile::DiagramType); for
example:
 BPMN2.0::Business
Process;BPMN2.0::Choreography;BP
MN2.0::Collaboration;
As a shorthand for all diagram types in·

a diagram profile you can use the '*'
wildcard, which must be preceded by
the diagram profile ID; for example:
 BPMN2.0::*;
Each excluded diagram name is·

preceded by an exclamation mark; for
example:
 !Sequence;

This column overrides the 'Filter to

(c) Sparx Systems 2021 Page 162 of 461

MDG Technologies 2 September, 2021

Toolbox' setting for the Quick Linker,
which is enabled by default on diagrams.
To force a connector to be visible on all
diagrams, you can exclude a diagram
type that doesn't exist. For example:
 !TBFilter
Note: the preferred mechanism for
executing a diagram filter is now the
Toolbox filter. This automatically shows
the relevant connector types based on the
current diagram, including for diagram
types as they are defined in the future by
other technologies.

F New Element Type
Description: Defines the type of element
to be created if the connector is dragged
into open space, provided that the 'Create
Element' field is set to True.
This value cannot be a connector type.

G New Element Stereotype
Description: Defines the type of element
stereotype to be created if the connector
is dragged into open space, provided that
the 'Create Element' field is set to True.
This can be a fully qualified stereotype,
or the name of a stereotype within the
current profile.

(c) Sparx Systems 2021 Page 163 of 461

MDG Technologies 2 September, 2021

H New Link Type
Description: Defines the type of
connector to create, if 'Create Link' is
also set to True.

I New Link Stereotype
Description: Defines the stereotype of the
connector created, if 'Create Link' is also
set to True. This field is required when
adding Quick Linker records to built-in
types. The stereotype can be a fully
qualified stereotype, or the name of a
stereotype within the current profile.

J New Link Direction
Description: Defines the connector
direction, which can be:

directed (always creates an Association·

from source to target)
from (always creates an Association·

from target to source)
undirected (always creates an·

Association with unspecified direction)
bidirectional (always creates a·

bi-directional Association), or
to (creates either a directed or·

undirected Association, depending on

(c) Sparx Systems 2021 Page 164 of 461

MDG Technologies 2 September, 2021

the value of the 'Association Direction'
field)

Not all of these work with all connector
types; for example, you cannot create a
bi-directional Generalization.

K New Link Caption
Description: Defines the text to display in
the 'Quick Linker' menu if a new
connector is being created but not a new
element.

L New Link & Element Caption
Description: Defines the text to display in
the 'Quick Linker' menu if a new
connector AND a new element are being
created.

M Create Link
Description: If set to True, results in the
creation of a new connector; leave blank
to stop the creation of a connector.

N Create Element
Description: If set to True and a
connector is being dragged onto an empty
space on the diagram, results in the
creation of a new element.

(c) Sparx Systems 2021 Page 165 of 461

MDG Technologies 2 September, 2021

Leave blank to stop the element from
being created. This overrides the values
of 'Target Element Type' and 'Target
Stereotype Filter'.

O Disallow Self connector
Description: Set to True if self
connectors are invalid for this kind of
connector; otherwise leave this field
blank.

P Exclusive to ST Filter +
No inherit from Metatype
Description: Set to True to indicate that
elements of type 'Source Element Type'
with the stereotype 'Source Stereotype
Filter' do not display the Quick Linker
definitions of the equivalent
unstereotyped element.
This field is ignored if the 'Source
Stereotype Filter' field (Column B) is
empty.

Q Menu Group
Description: Indicates the name of the
submenu in which a menu item is created.
This column only applies when creating a
new element; that is, the user is dragging

(c) Sparx Systems 2021 Page 166 of 461

MDG Technologies 2 September, 2021

from an element to an empty space on the
diagram, or over a target element to
create a new embedded element.

R Complexity Level
Description: Contains numerical bitmask
values that identify complex
functionality.

0 = no complex functionality·

4 = Force blank source stereotype; this·

row will be skipped unless the source
element has no stereotype
8 = force blank target stereotype; this·

row will be skipped unless the target
element has no stereotype
16 = treat the value in the 'Source·

Stereotype Filter' column (column B)
as a Source Name Filter instead
32 = treat the value in the 'Target·

Stereotype Filter' column (column D)
as a Target Name Filter instead, and
use the value in the 'New Element
Stereotype' column (column G) as the
name of the newly created element
64 = treat the value in the 'Source·

Stereotype Filter' column (column B)
as a Source Classifier Name Filter
instead

(c) Sparx Systems 2021 Page 167 of 461

MDG Technologies 2 September, 2021

128 = treat the value in the 'Target·

Stereotype Filter' column (column D)
as a Target Classifier Name Filter
instead, and use the value in the 'New
Element Stereotype' column (column
G) as the name of the classifier of the
newly created element, creating an
additional new element if an element of
that name doesn't exist in the current
model

The values can be added together to
combine functionality; for example, 192
combines the functionality of 64 and 128.

S Target Must Be Parent
Description: Set to True if the menu item
should only appear when dragging from a
child element to its parent; for example,
from a Port to its containing Class.
Otherwise leave this field blank.

T Embed element
Description: Set to True to embed the
element being created in the target
element; otherwise leave this field blank.

U Precedes Separator LEAF
Description: Set to True to add a menu
item separator to the 'Quick Linker'

(c) Sparx Systems 2021 Page 168 of 461

MDG Technologies 2 September, 2021

menu, underneath this entry; otherwise
leave this field blank.

V Precedes Separator GROUP
Description: Set to True to add a menu
item group separator to the 'Quick Linker'
sub-menu; otherwise leave this field
blank.

W Dummy Column
Description: Depending on which
spreadsheet application you use, this
column might require a value in every
cell to force a CSV export to work
correctly with trailing blank values.

(c) Sparx Systems 2021 Page 169 of 461

MDG Technologies 2 September, 2021

Relationship Table

An additional method for specifying the Quick Linker links
between elements is using a relationship table, which you
initially create as a CSV file using a spreadsheet application
such as MicrosoftTM Excel. Having created and populated the
file, you import it into a Document Artifact element in your
profile.

This method results in behavior equivalent to using
stereotyped relationship connectors between the described
stereotypes in your profile.

In most circumstances we recommend using the original
method of defining links in the Quick Linker Definition
Format, or modeling relationships in a Metamodel View
rather than using this Relationship Table method. However,
this method is supported for the purpose of implementing
complex relationship rules that don't necessarily correspond
to a defined metamodel.

Format

The format for the relationship table is based on the format
used in the ArchiMate specification, with the addition of
two extra rows that map names to stereotypes. Set up the
table according to these format guidelines:

Section Description

(c) Sparx Systems 2021 Page 170 of 461

MDG Technologies 2 September, 2021

Connector
Aliases

The first row in the definition provides a
list of single letter connector identifiers
mapped to fully qualified connector
stereotypes. For example:
a=ArchiMate3::ArchiMate_Access;c=Ar
chiMate3::ArchiMate_Composition;
That is, in the body of the file a indicates
an ArchiMate 3 ArchiMate Access
connector, and c indicates an ArchiMate
3 ArchiMate Composition connector.

Element
Aliases

The second row in the definition provides
a list of identifiers mapped to fully
qualified element stereotypes. For
example:
Assessment=ArchiMate3::ArchiMate_As
sessment;Constraint=ArchiMate3::Archi
Mate_Constraint;
That is, in the body of the file
'Assessment' refers to an ArchiMate 3
ArchiMate Assessment element.

Source
Elements

The third row in the definition lists all of
the possible source elements defined
against the identifiers in the second row.
These are the column headers in the table.
For example:
,Assessment,Constraint,

(c) Sparx Systems 2021 Page 171 of 461

MDG Technologies 2 September, 2021

Target
Element

The first column, from row four onwards,
lists all of the possible target elements
defined against the identifiers in the
second row. These are the row headers in
the table.

Link
Definitions

The cells at the intersections of rows and
columns identify the connectors that are
valid between the source and target
elements, using the single letter
identifiers defined on line 1. For example:
scg n o, indicates that elements of
the type in this column can be connected
to elements of the type in this row by
Specialization, Composition,
Aggregation, Influence and Association
connectors

Add Relationship Table to Profile

Ste
p

Discussion

1 Open the Profile child diagram containing the
Stereotype elements for the Profile.

(c) Sparx Systems 2021 Page 172 of 461

MDG Technologies 2 September, 2021

2 Select the 'Documentation' page of the Diagram
Toolbox (click on to display the 'Find Toolbox
Item' dialog and specify 'Documentation'), and drag
a Document Artifact element onto the diagram. Give
this element the name 'relationship table'.

3 Double-click on the element to open the Linked
Document Editor; cancel the prompt for a template
name.

4 Open your CSV file in a text editor such as Notepad,
and copy and paste the contents into the Document
Artifact element Linked Document.
Save and close the document.

5 Continue working on the Profile until it is complete,
and save it.
The QuickLink definitions are saved with the Profile
and are processed and applied when the Profile is
imported (within its MDG Technology) into another
model.
A technology can contain a number of Profiles and
therefore have a number of Quick Link definitions,
one for each Profile.

(c) Sparx Systems 2021 Page 173 of 461

MDG Technologies 2 September, 2021

Quick Linker Example

If you want to create a Quick Linker definition, the easiest
way is to set it up in a spreadsheet, with each menu item
definition constructed across a row, as in this example:

The first row of the example is a comment line identifying
the column headings. The subsequent lines define the
connector/target element options for a Class element with
the stereotype «quick». When a connector is dragged away
from an element of this type, you want the user to create a
Dependency either to or from a Component element. When
they drag a connector onto an existing Port or Component
element, you want a Dependency either to or from the
Component or, in the case of a Component, you want the
user to be able to create an embedded Port element.

(c) Sparx Systems 2021 Page 174 of 461

MDG Technologies 2 September, 2021

These requirements are defined in eight records in the Quick
Linker definition file:

Dependency to new Component1.

Dependency from new Component2.

Dependency to existing Component3.

Dependency from existing Component4.

Dependency to existing Port5.

Dependency from existing Port6.

Dependency to existing Component, create new Port7.

Dependency from existing Component, create new Port8.

The records save to this CSV file:

//Source Element Type,Source ST filter,Target Element
Type,Target ST Filter,Diagram Filter,New Element
Type,New Element ST,New Link Type,New Link ST,New
Link Direction,New Link Caption,New Link & Element
Caption,Create Link,Create Element,Disallow Self
connector,Exclusive to ST Filter + No inherit from
metatype,Menu Group,Complexity Level,Target Must Be
Parent,Embed element,Precedes Separator LEAF,Precedes
Separator GROUP,DUMMY COLUMN

Class,quick,,,,Component,,Dependency,,to,,Dependency
to,TRUE,TRUE,TRUE,TRUE,Component,0,,,,,

Class,quick,,,,Component,,Dependency,,from,,Dependency
from,TRUE,TRUE,TRUE,TRUE,Component,0,,,TRUE,,

Class,quick,Component,,,,,Dependency,,to,Dependency
to,,TRUE,,TRUE,TRUE,,0,,,,,

Class,quick,Component,,,,,Dependency,,from,Dependency

(c) Sparx Systems 2021 Page 175 of 461

MDG Technologies 2 September, 2021

from,,TRUE,,TRUE,TRUE,,0,,,TRUE,,

Class,quick,Port,,,,,Dependency,,to,Dependency
to,,TRUE,,TRUE,TRUE,,0,,,,,

Class,quick,Port,,,,,Dependency,,from,Dependency
from,,TRUE,,TRUE,TRUE,,0,,,TRUE,,

Class,quick,Component,,,Port,,Dependency,,to,,Dependency
to,TRUE,TRUE,TRUE,TRUE,Port,0,,TRUE,,,

Class,quick,Component,,,Port,,Dependency,,from,,Depende
ncy from,TRUE,TRUE,TRUE,TRUE,Port,0,,TRUE,TRUE,,

If you want to test the effect, you can create this Profile and
cut and paste the CSV lines into the QuickLink Document
Artifact element.

(c) Sparx Systems 2021 Page 176 of 461

MDG Technologies 2 September, 2021

Hide Default Quick Linker Settings

If you create your own Quick Linker definition for an
element, you might want to hide the default UML Quick
Linker options between the given source and target
elements. How you do this depends on whether you are
using the metamodel definition method or the spreadsheet
definition method to define your Quick Linker links.

Metamodel Method

In the <<metaclass>> element for each source stereotype
element, add the attribute _HideUmlLinks set to "True" so
that quicklinks with this stereotype as the source element
will not include quicklinks inherited from the base UML
metaclass.

Spreadsheet Method

Firstly, you can hide the default UML Quick Linker options
by setting the 'Exclusive to stereotype' filter flag (column P)
to True, in the definition CSV file, on each row as required.

Alternatively, you might want to hide the default Quick
Linker options without having a replacement custom option.
For example, normally if you don't define any Quick Links
for one «quick» Class to another «quick» Class, the Quick

(c) Sparx Systems 2021 Page 177 of 461

MDG Technologies 2 September, 2021

Linker arrow displays the default Quick Links for one Class
to another Class. To override this behavior, create a Quick
Linker definition in which you set the:

Source Element Type (column A)·

Source Stereotype Filter (column B)·

Target Element Type (column C)·

Target Stereotype Filter (column D)·

New Link Type (column H) to <none>·

Exclusive to stereotype + No inherit from Metatype·

(column P) to TRUE

Try adding this line to the Quick Linker Example:

 Class,quick,Interface,,,,,<none>,,,,,,,,TRUE,,0,,,,,

With this line in the definition, when a Quick Link is
dragged from a «quick» Class to an Interface element, the
default Class-to-Interface Quick Links are hidden.

Note that the 'Exclusive to stereotype' filter hides all
context-sensitive relationships that do not have this filter set,
and this will take effect wherever a source element
stereotype has been defined.

(c) Sparx Systems 2021 Page 178 of 461

MDG Technologies 2 September, 2021

Quick Linker Object Names

When you create a Quick Linker definition file, you use a
range of base element and connector types to identify the:

Source element type (column A)·

Target element type (column C)·

New element type (column F) and·

New link type (column H)·

These are then qualified by the stereotypes you specify in
the definition. The base element and connector types you
can use are identified here.

Object Type Names

Object Group Object Type

Element
Types

Action
ActionPin
Activity
ActivityParameter
ActivityPartition
Actor
Artifact
Boundary

(c) Sparx Systems 2021 Page 179 of 461

MDG Technologies 2 September, 2021

CentralBufferNode
Change
ChoiceState
Class
Collaboration
Component
DataType
Decision
DeepHistoryState
Deployment Specification
Device
DiagramGate
Entity
EntryPoint
EntryState
ExecutionEnvironment
ExitPoint
ExitState
ExpansionNode
ExpansionRegion
Feature
FinalActivity
GUIElement
HistoryState
InformationItem

(c) Sparx Systems 2021 Page 180 of 461

MDG Technologies 2 September, 2021

InitialActivity
InitialState
InteractionOccurrence
Interface
Issue
InterruptableActivityRegion
JunctionState
MergeNode
MessageEndpoint
n-ary Association
Node
Object
ObjectNode
Package
Part
Port
PrimitiveType
ProvidedInterface
Receive
RequiredInterface
Requirement
Screen
Send
Sequence
Signal

(c) Sparx Systems 2021 Page 181 of 461

MDG Technologies 2 September, 2021

State
StateLifeline
StateMachine
Synchronization_H
Synchronization_V
SynchState
UMLDiagram
UseCase
ValueLifeline

Connector
Types

Abstraction
Aggregation
Association
AssociationClass
CommunicationPath
Composition
ConnectorLink
ControlFlow
DelegateLink
Dependency
Deployment
Extension
Generalization
InformationFlow
InterfaceLink
Manifest

(c) Sparx Systems 2021 Page 182 of 461

MDG Technologies 2 September, 2021

Nesting
ObjectFlow
PackageImport
PackageMerge
Realization
Redefinition
Sequence
StateFlow
Substitution
TemplateBinding
UCExtends
UCIncludes
Usage
UseCase

(c) Sparx Systems 2021 Page 183 of 461

MDG Technologies 2 September, 2021

Add Quick Linker Definition To Profile

When you have set up your Profile Quick Linker definitions
as a CSV file, you can incorporate them into the Profile. To
do this, you copy the file contents into the Linked Document
of a Document Artifact element that exists in the same
diagram as the Stereotype elements of the Profile.

Add Definition to Profile

Ste
p

Discussion

1 Open the Profile child diagram containing the
Stereotype elements for the Profile.

2 Select the 'Documentation' page of the Diagram
Toolbox (click on to display the 'Find Toolbox
Item' dialog and specify 'Documentation'), and drag
a Document Artifact element onto the diagram. Give
this element the name 'QuickLink'.

3 Double-click on the element to open the Linked
Document Editor; cancel the prompt for a template
name.

4 Open your CSV file in a text editor such as Notepad

(c) Sparx Systems 2021 Page 184 of 461

MDG Technologies 2 September, 2021

and copy and paste the contents into the Document
Artifact element Linked Document.
Save and close the document.

5 Continue working on the Profile until it is complete,
and save it.
The QuickLink definitions are saved with the Profile
and are processed and applied when the Profile is
imported (within its MDG Technology) into another
model.
A technology can contain a number of Profiles and
therefore have a number of Quick Link definitions,
one for each Profile.

(c) Sparx Systems 2021 Page 185 of 461

MDG Technologies 2 September, 2021

Export a Profile

Once you have created a Profile, defined the Stereotype
elements, and added any Tagged Values, Shape Scripts,
Constraints and Quick Linker definitions you need, you can
save (export) the Profile to disk. The Profile can then be
integrated with an MDG Technology and deployed to other
models for use.

Save a Profile

Ste
p

Description

1 If your Profile is:
A single Profile spread over multiple diagrams·

within the same Profile Package, find the Profile
Package in the Browser window, and select the
'Specialize > Technologies > Publish-Tech >
Publish Package as UML Profile' ribbon option
One of multiple Profiles within the same Profile·

Package, click anywhere in the background of the
Profile diagram and select either of the ribbon
options 'Design > Diagram > Manage > Save as
Profile' or 'Specialize > Technologies >
Publish-Tech > Publish Diagram as UML Profile'
A single diagram within the Profile Package, click·

(c) Sparx Systems 2021 Page 186 of 461

MDG Technologies 2 September, 2021

anywhere in the background of the Profile diagram
and select either of the ribbon options 'Design >
Diagram > Manage > Save as Profile' or
'Specialize > Technologies > Publish-Tech >
Publish Diagram as UML Profile'

The 'Save UML Profile' dialog displays.

2 Click on the button, and select the destination
directory path for the XML Profile file.
If necessary, edit the Profile filename, but do not
delete the .xml extension.

3 In the 'Profile Type' field, use the default value 'EA
(UML)2.X' (or, if necessary, click on the drop-down
arrow and select this value).

4 Set the required export options for all stereotypes
defined in the Profile:

Element Size - select the checkbox to export the·

element size attributes
Color and Appearance - (enabled if saving the·

profile from a diagram; disabled if saving from a
Package in the Browser window) select the
checkbox to export the background color, border
color, text color and border thickness attributes
Alternate Image - select the checkbox to export the·

metafile images
Code Templates - select the checkbox to export·

(c) Sparx Systems 2021 Page 187 of 461

MDG Technologies 2 September, 2021

the code templates, if they exist

5 Click on the Save button to save the Profile to disk.

Avoiding Profile Name and ID conflicts

Each Profile should have a unique name and ID. The Profile
name is specified when saving the Profile, while the ID is
derived from the GUID of the diagram or Package that was
used to save the Profile. To avoid name and ID conflicts:

When creating multiple Profiles, use a new diagram or·

Package for each Profile

When saving Profiles enter a Profile name that is unique·

On starting Enterprise Architect or enabling an MDG
Technology,if a duplicate Profile name or duplicate Profile
ID is detected, a warning will be displayed in the System
Output window.

Notes

To quickly test a Profile, you can import the XML file on·

its own into the 'Resources' tab of the Browser window;
for final deployment, incorporate the Profile into an MDG
Technology

(c) Sparx Systems 2021 Page 188 of 461

MDG Technologies 2 September, 2021

(c) Sparx Systems 2021 Page 189 of 461

MDG Technologies 2 September, 2021

Save Profile Options

When you save a Profile, you can save it either from its
parent Package or from the Profile diagram, depending on
whether the Profile is:

A single Profile spread over multiple diagrams within the·

same Profile Package, which is typically the case for a
Stereotypes Profile

One of multiple Profiles within the same Profile Package;·

for example, when creating multiple Toolbox profiles

A single diagram within the Profile Package·

Access

Ribbon Design > Diagram > Manage > Save as
Profile
Specialize > Technologies >
Publish-Tech > Publish Diagram as UML
Profile
Specialize > Technologies >
Publish-Tech > Publish Package as UML
Profile

(c) Sparx Systems 2021 Page 190 of 461

MDG Technologies 2 September, 2021

Option Comparison

Save From
Diagram

Save From Package

The Profile
takes the
diagram
name.

The Profile takes the Package name.
Notes: Package and diagram names are
not necessarily the same, although you
can save a lot of confusion if you make
them the same or very similar.
For example: Package GL with diagrams
GL1, GL2, GL3.

The Profile
takes the
diagram's
notes.

The Profile takes the Package's notes.
Notes: Diagram notes can be significant
in the Profile definition, such as for
Toolbox Profiles.
See Create Toolbox Profiles

You can take
the default
size and
appearance
(including
alternate
image) from
the diagram
object.

You cannot take the default size and
appearance from the diagram object.
You can use the _sizeX, _sizeY and
_image properties, but there is no
equivalent for default colors.
Notes:

(c) Sparx Systems 2021 Page 191 of 461

https://sparxsystems.com/enterprise_architect_user_guide/15.2/toolbox_profiles.htm

MDG Technologies 2 September, 2021

This option
can be much
faster.

This option can be much slower.
Notes: The difference arises because
diagram objects are kept in memory and
Browser window elements are not.
This is only likely to be an issue if the
Profile is a large one and you are using a
slow network connection to a remote
repository.

(c) Sparx Systems 2021 Page 192 of 461

MDG Technologies 2 September, 2021

UML Profiles in the Resources Tab

The 'Resources' tab of the Browser window contains a tree
structure with entries for a range of items including UML
Profiles. The UML Profiles node initially contains no
entries; to be able to use Profiles from the 'Resources' tab
you must import them into the project from external XML
files.

Items in a Profile represent stereotypes. These can be
applied to UML elements in the several ways; for example,
stereotypes that apply to:

Elements such as Classes and interfaces can be dragged·

directly from the 'Resources' tab to the current diagram,
automatically creating a stereotyped element;
alternatively, they can be dragged onto existing elements,
automatically applying them to the element

Attributes can be drag-and-dropped onto a host element·

(such as a Class); a stereotyped attribute is automatically
added to the element's feature list

Operations are the same as those that apply to attributes;·

drag-and-drop onto a host element to add the stereotyped
operation

Connectors such as Associations, Generalizations,·

Messages and Dependencies are added by selecting them
in the 'Resources' tab of the Browser window, then
clicking on the start element in a diagram and dragging to
the end element (in the same manner as adding normal
connectors); a stereotyped connector is added

(c) Sparx Systems 2021 Page 193 of 461

MDG Technologies 2 September, 2021

Association ends can be added by dragging the connector·

end element over the end of an Association in the diagram

(c) Sparx Systems 2021 Page 194 of 461

MDG Technologies 2 September, 2021

Import UML Profiles Into the
Resources Tab

Profiles exist as XML files, which can be imported into any
project to provide tailored modeling structures for specific
domains. A number of Profile XML files are available to
you on the Sparx Systems website, for importing into your
models. You can also import Profile XML files that you
have created yourself. If a Profile includes references to any
metafiles, copy these metafiles into the same directory as the
Profile XML file.

Access

Ribbon Start > Desktop > Share > Resources >
right-click on 'UML Profiles' folder >
Import Profile

Keyboard
Shortcuts

Alt+6 | Right-click on 'UML Profiles'
folder | Import Profile

Import a Profile

(c) Sparx Systems 2021 Page 195 of 461

MDG Technologies 2 September, 2021

Field/Button Action

Filename Click on the button and locate the
XML Profile file to import.

Element Size Select the checkbox to import the element
size attributes for all stereotypes defined
in the Profile.

Color and
Appearance

Select the checkbox to import the color
(background, border and font) and
appearance (border thickness) attributes
for all stereotypes defined in the Profile.

Alternate
Image

Select the checkbox to import the
metafile image for all stereotypes defined
in the Profile.

Code
Templates

Select the checkbox to import the code
templates, if they exist, for all stereotypes
defined in the Profile.

Overwrite
Existing
Templates

Select the checkbox to overwrite any
existing code templates defined in the
current project, for all stereotypes defined
in the Profile.

Import Click on this button to add the Profile to
the UML Profiles folder.

(c) Sparx Systems 2021 Page 196 of 461

MDG Technologies 2 September, 2021

If the Profile already exists, a prompt
displays for you to overwrite the existing
version and import the new one.
When the import is complete, the Profile
is ready to use.

(c) Sparx Systems 2021 Page 197 of 461

MDG Technologies 2 September, 2021

MDG Technologies - Creating

If you want to access and use resources pertaining to a
specific technology within Enterprise Architect, you can do
so using a Model Driven Generation (MDG) Technology.
There are various options for an administrator or individual
user to bring existing MDG Technologies into use with
Enterprise Architect. Technology Developers can also
develop new MDG Technologies and deploy them to the
project team as necessary, providing a solution tailored to
your working domain or environment.

(c) Sparx Systems 2021 Page 198 of 461

MDG Technologies 2 September, 2021

Using the Profile Helpers

MDG Technologies and Profiles are developed using
diagrams and elements within Enterprise Architect. These
diagrams and elements use specific attributes and properties
that determine the content and behavior of the resulting
MDG Technology. Profile Helpers assist in creating new
MDG Technologies, and these Profile types:

Stereotype Profiles·

Toolbox Profiles and·

Diagram Profiles·

The Profile Helpers consist of two components:

MDG Technology Builder templates in the Model·

Wizard, which provide a starting point for creating a new
MDG Technology

Profile Helper items in the 'Profile' Toolbox, which·

provide dialogs that simplify the creation of Stereotype,
Toolbox and Diagram Profiles

Access

Select a Package under which to add the MDG Technology
Builder templates, then display the Model Wizard window
using one of the methods outlined here.

Ribbon Design > Model > Add > Model Wizard

(c) Sparx Systems 2021 Page 199 of 461

MDG Technologies 2 September, 2021

> Model Patterns

Context
Menu

Right-click on Package | Add a Model
using Wizard | Model Patterns

Keyboard
Shortcuts

Ctrl+Shift+M

Other Browser window caption bar menu |
New Model from Pattern | Model Patterns

Create a new MDG Technology

Ste
p

Description

1 In the Model Wizard, click on the '... Perspective'
drop-down arrow and select 'Management | MDG
Technology Builder'.
In the 'MDG Technology Builder' group select the
'Basic Template' Pattern.
Click on the Create Pattern(s) button. A prompt
displays for the Technology name.

2 Enter a name for your new MDG Technology, and

(c) Sparx Systems 2021 Page 200 of 461

MDG Technologies 2 September, 2021

click on the OK button.
This will create a basic template of Packages and
example elements, which can be used as a starting
point for creating an MDG Technology. The
template includes three Packages, each having the
same name as the technology but a different
stereotype corresponding to the type of Profile they
define:

<<profile>> - Package for defining a Profile·

containing the Stereotypes users will apply to
elements
<<diagram profile>> - Package for a Profile·

describing the diagram types users will create
<<toolbox profile>> - Package for a Profile·

describing the elements to show in a toolbox

3 Within each Package, open the diagram and,
referring to the sample elements provided, add
additional items to the Profile.
The Profile Toolbox contains a page of Profile
Helper icons that, when dragged onto the diagram,
help you create and populate the elements of the
various Profiles.

4 Save each of these Profiles to disk.

5 Incorporate the saved Profiles into an MDG
Technology.

(c) Sparx Systems 2021 Page 201 of 461

MDG Technologies 2 September, 2021

(c) Sparx Systems 2021 Page 202 of 461

MDG Technologies 2 September, 2021

Create Stereotype Profiles using
Profile Helpers

When creating a technology to provide a domain-specific
toolset, the typical starting point is to define each element,
connector, feature and structural component you want to
provide. These are defined by a Profile.

All Stereotypes defined in a Profile are either extensions of
Core UML objects (Metaclasses) defined by Enterprise
Architect, or extensions of non-UML objects (Stereotypes)
defined by other existing Profiles and technologies.

When development of a Profile is complete, it is saved to an
external XML file and then incorporated into an MDG
Technology for final deployment.

Each Stereotype defined in a Profile modifies the behavior
of the Metaclass or Stereotype that it extends. These
modifications might include:

Tagged Values to provide additional properties·

Constraints to define the conditions and rules that apply to·

each Stereotype

A Shape Script to customize the overall appearance of the·

new object

A change to the default appearance of the object, such as·

background, border and font colors

Quick Linker definitions to provide a list of the most·

common connection types from each Stereotype

(c) Sparx Systems 2021 Page 203 of 461

MDG Technologies 2 September, 2021

Special attributes that define the specific appearance and·

behavior of the new object, including the initial element
size and Browser window icon

Create a UML Profile

Ste
p

Description

1 In the Browser window, locate the Package with the
<<profile>> stereotype and open its child diagram.
If you do not have an existing <<profile>> Package,
use the 'MDG Technology Builder' Perspective in
the Model Wizard to create a new technology, then
open the diagram from the newly created
<<profile>> Package.

2 (Optional) If you intend your Stereotype elements to
include Tagged Values with a drop-down list of
several pre-defined values, each set of values must
be defined by an Enumeration element on the Profile
diagram.
If you intend your Stereotype elements to include a
Structured Tagged Value to provide a composite set
of information, each structure must be defined by a
Class element on the Profile diagram.
The Enumeration and Class elements have to exist
before you can define these Tagged Value types for

(c) Sparx Systems 2021 Page 204 of 461

MDG Technologies 2 September, 2021

your Stereotype; you can either create the elements
at this point, or add these Tagged Values to your
Stereotype at a later time.

3 Add a new Stereotype by dragging the 'Add
Stereotype Profile Helper' from the Diagram
Toolbox. The dialog opened by the 'Add Stereotype
Profile Helper' will allow you to specify various
general Properties, Tagged Values, and the Shape
Script for your Stereotype.

4 (Optional) Define Constraints for the Stereotype.

5 (Optional) Set the Default Appearance for the
Stereotype.

6 Repeat steps 3 to 5 for each new Stereotype element
you want to create.

7 (Optional) Add a Quick Linker Definition to the
Profile.

8 Save the Package as a Profile.
When saving the Profile, the name used should
match the name of the Profile Package; this is
necessary for the references within a Toolbox profile
to function correctly

9 Incorporate the Profile into an MDG Technology.

(c) Sparx Systems 2021 Page 205 of 461

MDG Technologies 2 September, 2021

Notes

A Profile Package cannot contain other Packages; do not·

add any other Packages to the Profile

(c) Sparx Systems 2021 Page 206 of 461

MDG Technologies 2 September, 2021

Add Stereotypes and Metaclasses
using Profile Helpers

You can define Stereotypes in a Profile to either extend:

Core UML objects (Metaclasses pre-defined in Enterprise·

Architect), or

Objects (Stereotypes) defined by other Profiles and·

technologies (for instance objects defined in ArchiMate or
SysML)

Stereotypes can extend Metaclasses in several ways:

One Stereotype extending one Metaclass, for a specific·

definition of one object type

One Stereotype extending more than one Metaclass,·

where the definition applies to more than one object type -
such as modifying both a Class and an Object in the same
way

Several Stereotypes extending one Metaclass, where you·

are creating several variations of the same base object
type; for example, to define types of Association
connector, representing Parent, Sibling, Grandparent,
Uncle/Aunt and Cousin relationships

Add Metaclasses and Stereotypes to a
Profile

(c) Sparx Systems 2021 Page 207 of 461

MDG Technologies 2 September, 2021

Ste
p

Description

1 If you are extending a non-UML type defined by an
existing Profile or technology, follow the process
described in the Create Stereotypes Extending
non-UML Objects Help topic.

2 In the Browser window, locate the Package with the
<<profile>> Stereotype and open its child diagram.

3 Drag the 'Add Stereotype' icon from the 'Profile
Helpers' page of the Diagram Toolbox onto the
diagram.
The 'Add Stereotype' dialog displays.

4 In the 'Name' field, type the Stereotype name (which
will also be the name of the new modeling object).

5 Select one of these object groups by clicking on the
'Type' drop-down arrow:

Element Extension - to create a Stereotype that·

extends an element
Connector Extension - to create a Stereotype that·

extends a connector
Abstract Metaclass - to create a Stereotype that·

extends a structural or behavioral modifier
Metaclass Extension - to create a Stereotype that·

(c) Sparx Systems 2021 Page 208 of 461

MDG Technologies 2 September, 2021

extends a Metaclass that already exists within your
model (and most likely within the diagram you are
currently working in)

6 Click on the Add Metaclass button.
The 'Extend Metaclass' dialog displays, showing a
list of object types associated with the object group
selected in step 5.
Select the Metaclass to be extended from the list and
click on the OK button.
If you selected 'Metaclass Extension' in step 5, the
'Select a Profile Element browser/search' dialog
displays; search for and select the existing Metaclass
element to extend with this Stereotype.
The Metaclass name is added to the 'Extensions'
field.

7 If you want to extend more than one Metaclass with
the Stereotype, click on the Add Metaclass button
again and select the next object type to extend. You
can repeat this for as many Metaclasses as you want
to extend with this Stereotype.
To delete a selected Metaclass from the 'Extensions'
list click on the Remove button.

8 Review the available properties in the 'Stereotype'
panel. These properties modify the behavior of the
Stereotype.

(c) Sparx Systems 2021 Page 209 of 461

MDG Technologies 2 September, 2021

To apply a property, click in the 'Value' field and
type or select the appropriate value.
When you select a property field, a description of the
property's effect is displayed at the bottom of the
'Stereotype' panel.
Only provide values for properties that you want to
apply to this Stereotype.

9 Click on the name of a Metaclass in the 'Extensions'
field and review the available properties in the
'Metaclass' panel. These properties further modify
the behavior of the stereotype based on options
specific to the Metaclass being extended.
To apply a property, click in the 'Value' field and
type or select the appropriate value.
When you select a property field, a description of the
property's effect is displayed at the bottom of the
'Metaclass' panel.
Do not provide values for any properties that you do
not want to apply to this Stereotype.
If you are extending more than one Metaclass, click
on the next Metaclass name in the 'Extensions' field
and review the properties for that object type.

10 Click on the Next button. The 'Define Tagged
Values' page displays.

11 In the 'Property' panel right-click to display a context

(c) Sparx Systems 2021 Page 210 of 461

MDG Technologies 2 September, 2021

menu with options for creating and grouping Tagged
Values of different types. These options include:

Add Tagged Value: Create a simple Tagged Value·

- a prompt displays for the Tagged Value name.
Add a name and click on the OK button to
display the name in the 'Property' column; to set a
default value, type it in to the 'Default Value' field
Add Specialized Tagged Value:·

 - Enumeration: create an enumeration Tagged
Value, based
 on an existing Enumeration element
 - Predefined: select a Predefined Tagged
Value Type from a
 list and, in the 'Default Value' field, type or
select an initial
 value if necessary
 - Structured: create a Structured Tagged Value
composed of
 several other simple Tagged Values, typed by
an existing
 Class element
 - Reference: create a Tagged Value with which
the user can
 locate and reference an element created with
a specified
 Stereotype (a form of RefGUID Tagged
Value); in creating this,
 you must select the existing Stereotype
element that defines

(c) Sparx Systems 2021 Page 211 of 461

MDG Technologies 2 September, 2021

 the stereotype
 - Reference List: create a Tagged Value with
which the user
 can locate and reference a list of elements
created with a
 specified Stereotype (a form of RefGUIDList
Tagged Value);
 in creating this, you must select an existing
Stereotype element
 that defines the stereotype
Edit Tagged Value Name: displays a simple·

prompt in which you overtype the current name to
correct or change it
Create Tag Group: create Tag Groups in the·

Metaclass element, through which to organize the
Tagged Values you have created in the Stereotype
element
Move Tag to Group (displayed when you·

right-click on an existing Tagged Value): displays
the 'Move Tag to Group' dialog, on which you can
select an existing Tag Group to contain the
selected Tagged Value
Remove Grouping: remove the selected Tag·

Group, leaving its member Tagged Values listed at
the end of the 'Property' column
Delete: remove the selected Tagged Value from·

the list and from the Stereotype

12 Click on the Next button. The 'Define a Shape

(c) Sparx Systems 2021 Page 212 of 461

MDG Technologies 2 September, 2021

Script' page displays.
A Shape Script can be used to define the appearance
of the Stereotype. To include a Shape Script, click on
the Edit button.
The Shape Editor window displays. Create your
Shape Script using this editor.
When you have finished creating the Script, click on
the OK button. The image defined by the Shape
Script is shown in the 'Preview' panel.
Note: For the Shape Script to take effect, you must
select the 'Alternate Image' option when you save the
Profile.
Alternatively, you can define a simple default
appearance (background color, line color) for the
model object, after you have created the Stereotype
element.

13 Click on the Finish button. The Stereotype element
and Metaclass element(s) are now displayed on the
Profile diagram.

14 You can now:
Repeat steps 2 to 13 for each of the other·

Stereotype elements you want to create
Edit the Stereotype (and through it, the Metaclass)·

element properties you have defined, using the
Profile Helper
Add Constraints to your Stereotype element·

(c) Sparx Systems 2021 Page 213 of 461

MDG Technologies 2 September, 2021

If a shape has not been set then you can now·

define the object's default appearance (background
color, line color)
Set up the Quick Linker definitions for the·

stereotyped elements and connectors in the Profile

Notes

If you intend to extend a large number of model elements,·

rather than putting all of them on one diagram you can
create additional child Class diagrams under the
<<profile>> Package and add different types of Metaclass
element to different diagrams; in this case you save the
Package as the Profile, not the individual diagrams

Stereotype elements must have unique names, but·

Metaclass elements can have the same name (for example,
there can be several Action Metaclasses, each with a
different ActionKind attribute)

If you have a number of Tagged Values in the Stereotype·

element, and you have assigned them to groups, you can
define which of those groups default to expanded (open)
in the 'Tags' tab of the Properties window, and which
default to closed; open the Features window for the
Metaclass, at the 'Attributes' page, and add the attribute
_tagGroupStates with the initial value
<groupname>=closed;<groupname>=closed;<groupname

(c) Sparx Systems 2021 Page 214 of 461

MDG Technologies 2 September, 2021

>=open; ...

(c) Sparx Systems 2021 Page 215 of 461

MDG Technologies 2 September, 2021

Edit a Stereotype Element

If you want to add to or correct the properties of a
Stereotype or Metaclass element in a Profile, you can edit it
using the standard facilities such as the element 'Properties'
dialog and the 'Tags' tab. However, you can also update the
Stereotype element through the Profile Helper 'Stereotype
Properties' dialog and, through the Stereotype, also update
the Metaclass elements that the Stereotype extends.

Any changes you have made to the elements by other
means, such as through the element 'Properties' dialog, are
reflected in the contents of the Profile Helper.

Access

Context
Menu

Right-click on Stereotype element | Edit
with Profile Helper

Edit the Stereotype element

Ste
p

Description

(c) Sparx Systems 2021 Page 216 of 461

MDG Technologies 2 September, 2021

1 The 'Stereotype Properties' dialog defaults to the
'General' tab. On this tab you can:

Change the Stereotype element name·

Add further Metaclass elements to be extended by·

this Stereotype element
Add or change values for the attributes of the·

Stereotype element
Add or change values for the attributes of each·

Metaclass element

2 Click on the 'Tagged Values' tab. On this tab you
can:

Edit the default value of a tag·

Add a new tag of one of a range of types·

Create a tag group·

Assign or reassign a tag to a group·

Remove a tag group·

Delete a Tagged Value from the Stereotype·

3 Click on the 'Shape Script' tab. On this tab you can:
Add a Shape Script (if one does not exist)·

Edit the existing Shape Script using the Shape·

Editor

4 When you have finished editing the Stereotype
element, click on the OK button.
The Profile Class diagram redisplays, with the edited

(c) Sparx Systems 2021 Page 217 of 461

MDG Technologies 2 September, 2021

elements showing the changes you have made.

(c) Sparx Systems 2021 Page 218 of 461

MDG Technologies 2 September, 2021

Create Diagram Profiles using the
Profile Helpers

When you develop an MDG Technology, it is possible to
create extended diagram types and include them in your
MDG Technology as custom Diagram Profiles. For
example, you might create a DFD Diagram Profile that
defines a DFD diagram as an extension of the built-in
Analysis diagram, as shown:

The 'Add Diagram Extension' Profile Helper can assist you
in defining your Diagram Profile, adding the necessary
elements and giving them the appropriate attributes to define
the functionality of the resulting Custom diagram types.

Create extended diagram types

Ste
p

Action

1 If you have not done so already, use the Model
Wizard's 'MDG Technology Builder' Perspective to

(c) Sparx Systems 2021 Page 219 of 461

MDG Technologies 2 September, 2021

create a set of Packages for defining Profiles.
In the Browser window, locate the Package with the
<<diagram profile>> stereotype and open its child
diagram.

2 Drag the 'Add Diagram Extension' item from the
'Profile Helpers' page of the Toolbox onto the
diagram.
The 'Add Diagram Extension' dialog displays.

3 In the 'Name' field, type the name for the Custom
diagram type.

4 In the 'Extension Type' field click on the drop-down
arrow and select the built-in diagram type that the
Custom diagram type will extend.

5 In the 'Description' field type a brief description of
what the diagram is used for.
When a user selects this diagram type in the 'New
Diagram' dialog, this description will be displayed in
the bottom right of the dialog.

6 Within the 'Properties' pane enter values for these
fields:

Alias: Defines the diagram type displayed before·

the word 'Diagram' on the diagram title bar; for
example: 'Block Diagram'

(c) Sparx Systems 2021 Page 220 of 461

MDG Technologies 2 September, 2021

Frame ID: Defines the diagram type that will·

appear in the diagram frame label
Frame Format String: Enter a string containing·

substitution macros for defining the frame title,
with or without additional delimiters such as ();
macros that can be used are:
 - #DGMALIAS#
 - #DGMID#
 - #DGMNAME#
 - #DGMNAMEFULL#
 - #DGMOWNERNAME#
 - #DGMOWNERNAMEFULL#
 - #DGMOWNERTYPE#
 - #DGMSTEREO#
 - #DGMTYPE#
Toolbox Profile: Click on the drop-down arrow·

and select the diagram type that defines the
required Toolbox Profile (the name entered when
saving the profile); the Toolbox will be opened
automatically each time a diagram of this type is
opened
Swimlanes: Defines swimlanes that will be·

displayed on the diagram; for example:

Lanes=2;Orientation=Horizontal;Lane1=Title1;La
ne2=Title2;
(where Lanes can be any value, but the number of
Lane<n> values must equal the value of Lanes;
Orientation can be omitted, in which case the

(c) Sparx Systems 2021 Page 221 of 461

MDG Technologies 2 September, 2021

swimlanes default to vertical)

7 The remaining fields in the 'Properties' pane can be
used to customize the diagram's default options. Any
attributes left blank will not be applied.
When a user selects a field, a description of the
property's effect is displayed at the bottom of the
'Properties' pane.

8 Click on the OK button. The appropriate Stereotype
and Metaclass elements are added to the diagram.

9 Repeat steps 2 to 8 for each diagram extension to
include in the diagram Profile.

10 Save the diagram as a Profile.

11 Incorporate the Profile into an MDG Technology.

Notes

After a diagram extension has been added you can modify·

its properties again by right-clicking the appropriate
Stereotype element on the diagram and selecting 'Edit
with Profile Helper'

(c) Sparx Systems 2021 Page 222 of 461

MDG Technologies 2 September, 2021

(c) Sparx Systems 2021 Page 223 of 461

MDG Technologies 2 September, 2021

Create Toolbox Profiles using the
Profile Helpers

Within an MDG Technology you can create multiple
Toolbox Profiles. Each Toolbox Profile defines a single
Toolbox. A Toolbox consists of one or more
expandable/collapsible regions, referred to as Toolbox
Pages.

Create a Toolbox Profile

Ste
p

Action

1 If a group of Packages for defining Profiles has not
been created, use the Model Wizard's 'MDG
Technology Builder' Perspective to create this group.
In the Browser window, locate the Package with the
<<toolbox profile>> stereotype and open its child
diagram.

2 Drag the 'Create Custom Toolbox' item from the
'Profile Helpers' Toolbox Page onto the diagram.
The 'Select a Toolbox Profile Package' dialog
displays.

(c) Sparx Systems 2021 Page 224 of 461

MDG Technologies 2 September, 2021

3 Select the Package with the <<toolbox profile>>
stereotype referred to in step 1.
Click on the OK button. The 'Create Toolbox Page'
dialog displays.

4 In the 'Toolbox Name' field type the name for your
Toolbox page.
This is the name that will be displayed for the
Toolbox page when using the item search facilities
in the Diagram Toolbox.

5 In the 'Description' field type a description for the
Toolbox.
This description acts as a default tool-tip for your
Toolbox, unless you define a specific tool-tip for a
Toolbox Page as mentioned in step 10.

6 Click on the OK button.
The diagram that you will use to define your
Toolbox is created and displayed.

7 (Optional) When dragging an item from a Toolbox
onto a diagram, the item will typically create an
element or a connector.
It is also possible to have a single Toolbox item that,
when dragged onto a diagram, will provide a
selection of items to choose from. This is referred to
as a hidden sub-menu.

(c) Sparx Systems 2021 Page 225 of 461

MDG Technologies 2 September, 2021

If you want your Toolbox to contain one or more
hidden sub-menus you should define these before
proceeding with the steps on this page.

8 You can now define one or more Toolbox Pages that
will appear on the Toolbox.
Drag the 'Add Toolbox Page' item from the 'Profile
Helpers' Toolbox page onto the diagram.
The 'Add Toolbox Page' dialog displays.

9 In the 'Name' field, type a name for the Toolbox
Page.
This is text that will display in the title bar of the
corresponding Toolbox Page.

10 In the 'Tool Tip' field, type the tool-tip for the
corresponding Toolbox Page.

11 The 'Icon' field in this case will be disabled. This
field is only used when defining hidden sub-menu
toolboxes.

12 These options can be used to determine the
appearance and functionality of the Toolbox Page.
When enabled:

'Images Only': displays the Toolbox Page without·

the text labels next to the icons
'Is Hidden': defines the Toolbox Page as a hidden·

(c) Sparx Systems 2021 Page 226 of 461

MDG Technologies 2 September, 2021

sub-menu
'Is Common': the Toolbox Page is common to all·

defined Toolboxes while your technology is
active; the page is initially displayed as collapsed
'Is Collapsed': the Toolbox Page is initially·

minimized

13 You can now define items to be added to the
Toolbox.
Click on the down arrow on the right of the Add
button. Select one of these options:

'Add Stereotype': adds a Toolbox item for a·

Stereotype that is defined in a UML Profile in the
current model; this Profile must be included with
the Toolbox Profile in the MDG Technology
After you select this option, the 'Select a Profile
Element' dialog displays; use this to select the
Stereotype element(s) you want to add (hold down
the Ctrl key while you click on multiple elements,
if required)
'Add Built in Type':·

 - Element: adds a Toolbox item for a UML
element type
 After you select this option the 'Create new
Toolbox Item' dialog displays; in the 'Alias' field,
type
 the label to appear on the Toolbox item, and
click on the OK button
 The 'Select Metaclass' dialog then displays;

(c) Sparx Systems 2021 Page 227 of 461

MDG Technologies 2 September, 2021

select the UML element type to add to your
Toolbox,
 and click on the OK button
 - 'Connector': adds a Toolbox item for a UML
connector type
 After you select this option the 'Create new
Toolbox Item' dialog displays; in the 'Alias' field,
type
 the label to appear on the Toolbox item, and
click on the OK button
 The 'Select Metaclass' dialog then displays;
select the UML connector type to add to your
Toolbox,
 and click on the OK button
'Add Hidden Toolbox': adds a hidden Toolbox·

sub-menu item; the hidden Toolbox must be
defined before you use this option
After you select this option, the 'Create new
Toolbox Item' dialog displays; in the 'Alias' field,
type the label to appear on the Toolbox item and
click on the OK button
The 'Select a Hidden Toolbox Stereotype' dialog
then displays; select the hidden Toolbox to add to
your Toolbox, and click on the OK button
'Add New Item': adds a Toolbox item with an·

Alias only
This option alone will not create a functional
Toolbox item; a Toolbox item added in this way
must be later modified via the Toolbox Items list

(c) Sparx Systems 2021 Page 228 of 461

MDG Technologies 2 September, 2021

Clicking on the Add button, and not on the
drop-down arrow, is the same as selecting the 'Add
Stereotype' option.

14 (Optional) Define a Toolbox item that will create an
item from an external MDG Technology. For
example, adding a Toolbox item that creates a
SysML1.3 Block element.

Click on the down-arrow on the right of the Add1.
button.
Select the 'Add New Item' option.2.
The 'Create new Toolbox Item' dialog displays.
In the 'Alias' field, type the label to appear on the3.
Toolbox item, and click on the OK button.
The Toolbox item will be added to the 'Toolbox
Items' list.
In the 'Stereotype' field for this Toolbox item,4.
type:
 Profile::Stereotype(UML::BaseUMLType)
 - Profile is the name of the Profile that the
Stereotype is defined in
 - Stereotype is the name of the
Stereotype/Metatype that this toolbox item will
create
 - BaseUMLType is the base UML type of the
non-UML object
For example, to include a SysML Block in a
Toolbox you would type:
 SysML1.3::Block(UML::Class)

(c) Sparx Systems 2021 Page 229 of 461

MDG Technologies 2 September, 2021

To identify the Profile::Stereotype string, create an5.
element of the type to include in your Toolbox (for
example; a SysML 1.3 Block), then select the
element and display the Properties window.
Any predefined tags for this element will be
grouped under the Profile::Stereotype heading; for
example, a SysML 1.3 Block's tags are grouped
under SysML1.3::Block.

All non-UML objects in Enterprise Architect are an
extension of a UML Type. You can reveal an
element's base UML type by deleting its Stereotypes.
For example, create a SysML1.3 Block and then,
using the Properties window, delete the Block
element's Stereotype. The element type will change
from Block to Class.

15 (Optional) Create a Toolbox item that will drop a
Pattern onto a diagram.

Click on the down arrow on the right of the Add1.
button.
Select the 'Add New Item' option.2.
The 'Create new Toolbox Item' dialog displays.
In the 'Alias' field, type the label to appear on the3.
Toolbox item, then click on the OK button.
The Toolbox item will be added to the 'Toolbox4.
Items' list.
In the 'Stereotype' field for this Toolbox item,5.
type:
 TechnologyID::PatternName(UMLPattern)

(c) Sparx Systems 2021 Page 230 of 461

MDG Technologies 2 September, 2021

 - TechnologyID is the ID of the Technology, as
entered in the MDG Technology Creation
Wizard
 - PatternName is the name that was entered
when saving the Pattern; for example:
 BusFramework::Builder(UMLPattern)
If you want to avoid displaying the 'Add Pattern'
dialog, replace (UMLPattern) with
(UMLPatternSilent).
To define a model-based Pattern in a custom6.
Toolbox (such as the GoF Patterns), create an
attribute with a name of the format:
 PatternCategory::PatternName(UMLPattern)
For example:
 GoF::Mediator(UMLPattern)

16 After you add the Toolbox item it will appear in the
'Toolbox Items' list. You can optionally add a
custom icon image for a Toolbox item.
The icon image must be a 16x16 pixel bitmap file;
for a transparent background use light gray -
RGB(192,192,192).
To set the icon for a Toolbox item:

Locate the item in the 'Toolbox Items' list and1.
click within the 'Toolbox Icon' column.
Click on the button within this column. The2.
'Select a Toolbox Icon' dialog displays.
Locate the image file and click on the Open3.

(c) Sparx Systems 2021 Page 231 of 461

MDG Technologies 2 September, 2021

button.

17 Repeat steps 13 to 16 for each item you want to add
to the Toolbox Page.
To remove a Toolbox item, select it in the 'Toolbox
Items' list and click on the Delete button.
Once all the appropriate Toolbox items have been
added, click on the OK button. A Stereotype
element will be added to your Toolbox Profile
diagram.

18 Repeat steps 8 to 17 for each Toolbox Page you want
to include in the Toolbox.

19 Save the Toolbox Profile by clicking on the
background of the open diagram and selecting either
of the ribbon options:

Design > Diagram > Manage > Save as Profile·

or
Specialize > Technologies > Publish-Tech >·

Publish Diagram as UML Profile

20 Incorporate the Profile into an MDG Technology.

Notes

(c) Sparx Systems 2021 Page 232 of 461

MDG Technologies 2 September, 2021

A Toolbox Page can by modified by right-clicking the·

appropriate Stereotype element on the Toolbox Profile
diagram and selecting the 'Edit with Profile Helper' option

When assigning a name for a Toolbox Page, be aware that·

'elements' is a reserved word; if the word 'elements' is
used, it will not appear in the title bar of the
corresponding Toolbox Page

The sequence of Toolbox Pages in the Toolbox is·

determined by the sequence of their Stereotype elements
in the Profile diagram or Profile Package; if you create
and save the Profile from a:
 - Diagram, the Toolbox Page sequence is determined
by the Z-order of the Stereotype elements on
 the diagram - the higher the Z-order number of the
Stereotype element, the further down the
 Toolbox its Toolbox Page is placed; if you change
the Z-order of a Stereotype element in the
 diagram it changes the position of the element's page
on the Toolbox
 - Package in the Browser window, the Toolbox Page
sequence is determined by the list order of the
 Stereotype elements in the Package - the Toolbox
Page for the first listed element is at the top of
 the Toolbox; if you re-order the elements in the
Browser window, you produce the same
 re-ordering of pages in the Toolbox

(c) Sparx Systems 2021 Page 233 of 461

MDG Technologies 2 September, 2021

Create Hidden Sub-Menus using the
Profile Helpers

When you create Toolbox items, some of them could be
very similar in that they are based on the same type of
Metaclass. For example, there are many different types of
Action element. Rather than populate a Toolbox Page with
every variation, you can create a 'base' Toolbox item and
offer a choice of variant from a sub-menu, which is
displayed when the base item is dragged onto the diagram.

Define a hidden sub-menu

Ste
p

Action

1 If you have not already done so, create and display
the diagram you will be using to define your
Toolbox, as described in steps 1 to 6 of Create
Toolbox Profiles using the Profile Helpers.

2 Drag the 'Add a Toolbox Page' item from the 'Profile
Helpers' Toolbox page onto the diagram.
The 'Add Toolbox Page' dialog displays.

3 In the 'Name' field, type the name for the sub-menu

(c) Sparx Systems 2021 Page 234 of 461

MDG Technologies 2 September, 2021

Toolbox item.

4 The 'Tool Tip' field can be left blank in this case.

5 Select the 'Is Hidden' checkbox.
The 'Images Only', 'Is Common' and 'Is Collapsed'
checkboxes should be left unselected.

6 After selecting the 'Is Hidden' checkbox, the 'Icon'
field should become active. You can optionally add a
custom icon image for the sub-menu Toolbox item.
The icon image must be a 16x16 pixel bitmap file;
for a transparent background use light gray -
RGB(192,192,192).
To set the icon for the sub-menu Toolbox item, click
on the folder icon to the right of the 'Icon' field.
Select the image file and click on the Open button.

7 You can now add items such as elements and
connectors to the sub-menu.
Click on the down arrow on the right of the Add
button, and select one of these options:

'Add Stereotype': adds a Toolbox item for a·

Stereotype that is defined in a UML Profile in the
current model; this Profile must be included with
the Toolbox Profile in the MDG Technology
After you select this option, the 'Select a Profile
Element' dialog displays; use this to select the

(c) Sparx Systems 2021 Page 235 of 461

MDG Technologies 2 September, 2021

Stereotype you want to add
'Add Built in Type':·

 - Element: adds a Toolbox item for a UML
element type
 After you select this option the 'Create new
Toolbox Item' dialog displays; in the 'Alias' field,
type
 the label to appear on the Toolbox item, and
click on the OK button
 The 'Select Metaclass' dialog then displays;
select the UML element type to add to your
Toolbox,
 and click on the OK button
 - Connector: adds a Toolbox item for a UML
connector type
 After you select this option the 'Create new
Toolbox Item' dialog displays; in the 'Alias' field,
type
 the label to appear on the Toolbox item, and
click on the OK button
 The 'Select Metaclass' dialog then displays;
select the UML connector type to add to your
Toolbox,
 and click on the OK button
'Add Hidden Toolbox': adds a hidden Toolbox·

sub-menu item; do not use this option when
creating the 'Hidden Toolbox' sub-menu itself
'Add New Item': adds a Toolbox item with an·

Alias only

(c) Sparx Systems 2021 Page 236 of 461

MDG Technologies 2 September, 2021

This option alone will not create a functional
Toolbox item; a Toolbox item added in this way
must be later modified via the 'Toolbox Items' list

Clicking on the Add button, and not on the
drop-down arrow, is the same as selecting the 'Add
Stereotype' option.

8 (Optional) After adding the Toolbox item it will
appear in the 'Toolbox Items' list, and you can add a
custom icon image for the item.
The icon image must be a 16x16 pixel bitmap file;
for a transparent background use light gray -
RGB(192,192,192).
To set the icon for a Toolbox item, locate the item in
the 'Toolbox Items' list and click within the 'Toolbox
Icon' column. Click on the button within this
column. The 'Select a Toolbox Icon' dialog displays.
Locate the image file and click on the Open button.

9 Repeat steps 7 and 8 for each item to add to the
sub-menu.
To remove a Toolbox item, select it from the
'Toolbox Items' list and click on the Delete button.
Once all the appropriate sub-menu items have been
added, click on the OK button. A Stereotype
element will be added to your Toolbox Profile
diagram.

Repeat steps 2 to 9 for each Toolbox sub-menu to

(c) Sparx Systems 2021 Page 237 of 461

MDG Technologies 2 September, 2021

10 create.

11 The sub-menu(s) created earlier can now be included
as an item in a Toolbox Page.

Notes

A sub-menu can be modified by right-clicking the·

appropriate Stereotype element on the Toolbox Profile
diagram and selecting the 'Edit with Profile Helper' option

(c) Sparx Systems 2021 Page 238 of 461

MDG Technologies 2 September, 2021

Create MDG Technology File

When you create an MDG Technology file, you can include
a wide range of facilities and tools, including UML Profiles,
code modules, scripts, Patterns, images, Tagged Value
Types, report templates, Linked Document templates and
Toolbox pages. Building all of these into the MDG
Technology file in a logical sequence is easy, using the
MDG Technology Creation Wizard.

Access

Ribbon Specialize > Technologies >
Publish-Tech > Generate MDG
Technology

Create an MDG Technology file

Ste
p

Description

1 Select the 'Generate MDG Technology File' option.
The MDG Technology Creation Wizard screen

(c) Sparx Systems 2021 Page 239 of 461

MDG Technologies 2 September, 2021

displays.

2 Click on the Next button.
The MDG Technology Wizard prompts you to:

Create an MDG Technology file based on a new·

MDG Technology Selection (MTS) file
Create an MDG Technology file based on an·

existing MTS file, or
Not use any MTS file·

An MTS file stores the selected options that you
define during the creation of an MDG Technology; if
you use an MTS file, you can later modify it to add
or remove specific items in the MDG Technology,
which is the recommended process.

3 Select the appropriate MTS file option.
Click on the Next button.
If you selected an MTS file, the MDG Technology
Wizard prompts you to save the changes in the
existing MTS file or into a new MTS file; this
enables you to create a modification based on the
existing MTS file, while preserving the original file.

4 If necessary, type in or browse for the required file
path and name.
Click on the Next button.
The 'MDG Technology Wizard - Create' dialog
displays.

(c) Sparx Systems 2021 Page 240 of 461

MDG Technologies 2 September, 2021

5 Complete the fields on this screen:
Filename - Type or select the path and filename of·

the MDG Technology File; the file extension for
this file is .xml
ID - Type a unique reference for the MDG·

Technology File, up to 12 characters long
Version - Type the version number of the MDG·

Technology File
Icon - (Optional) Type or select the path and file·

name of the graphics file containing the
technology icon; the icon is a 16- or 24-bit color
depth, 16x16 bitmap image that is shown in the list
of technologies on the left of the 'MDG
Technologies' dialog
Logo - (Optional) Type or select the path and file·

name of the graphics file containing the
technology logo; the logo is a 16 or 24-bit color
depth, 64x64 or 100x100 bitmap image that is
shown in the display pane on the top-right corner
of the 'MDG Technologies' dialog
URL - (Optional) If you have any website product·

information that might be helpful for users of this
Technology, type or paste the URL in this field
Support - (Optional) If you have any web-based or·

other support facility that might be helpful for
users of this Technology, type or paste the contact
address in this field
Notes - Type a short explanation of the·

(c) Sparx Systems 2021 Page 241 of 461

MDG Technologies 2 September, 2021

functionality of the MDG Technology

6 Click on the Next button.
The MDG Technology Wizard - Contents screen
displays.

7 Select the checkbox for each item to be included in
the MDG Technology file.
When you have selected the checkboxes for all the
items you want to include, click on the Next button.
Each selection runs specific dialogs to enable
definition of the specific items to be included in the
MDG Technology.

8 Work through the dialogs displayed in response to
your choices, and when all are complete, click on the
Next button.
The 'MDG Technology Wizard - Finish' screen
displays, providing information on the items
included in the MDG Technology File.

9 If you have used an MTS file and want to update it,
select the 'Save to MTS' checkbox.

10 If you are satisfied with the selection of items, click
on the Finish button.
You can now edit the MTS file, if required, to add
further items such as:

(c) Sparx Systems 2021 Page 242 of 461

MDG Technologies 2 September, 2021

Model Validation configurations·

Model Wizard Templates·

When you have edited the MTS file and regenerated
the Technology (.xml) file, you can add another
'Scripts' section to include Package XMI Export
and/or Import scripts. Save the edited Technology
file.
To make the MDG Technology .xml file accessible
to an Enterprise Architect model, you must add the
technology file path to the 'MDG Technologies -
Advanced' dialog (accessed by clicking the
Advanced button on the 'MDG Technologies'
dialog, via the 'Specialize > Technologies >
Manage-Tech' ribbon option).

(c) Sparx Systems 2021 Page 243 of 461

MDG Technologies 2 September, 2021

Add a Profile

When creating an MDG Technology file, you can include
one or more UML 2.5-compliant Profiles that you have
defined to create new types of model element.

Access

Ribbon Specialize > Technologies >
Publish-Tech > Generate MDG
Technology

Add Profiles to the MDG Technology File

Ste
p

Description

1 Follow the steps in the Create MDG Technologies
topic up to and including Step 6, where you select
the 'Profiles' checkbox.
The 'MDG Technology Wizard - Profile files
selection' page displays.

(c) Sparx Systems 2021 Page 244 of 461

MDG Technologies 2 September, 2021

2 In the 'Directory' field, navigate to the directory
containing the required Profile or Profiles.
The Profile files are automatically listed in the
'Available Files' panel.

3 To select each required Profile individually,
highlight the Profile in the 'Available Files' list and
click on the --> button.
The file name displays in the 'Selected Files' list.
Alternatively:
To select every available Profile click on the -->>
button, and return each one you do not want by
selecting it and clicking on the <-- button.

DO NOT select Diagram Profiles or Toolbox·

Profiles on this dialog; this would generate
conflicting commands in the .mts file
Make sure you do include your UML Profiles·

4 Click on the Next button to proceed.

(c) Sparx Systems 2021 Page 245 of 461

MDG Technologies 2 September, 2021

Add a Pattern

When creating an MDG Technology file, you can include
special Design Patterns that you want to make available in
the 'Resources' tab of the Browser window and, if you
prefer, in the Technology Toolbox pages. You will have
published these Patterns previously.

Access

Ribbon Specialize > Technologies >
Publish-Tech > Generate MDG
Technology

Add Design Patterns to the MDG Technology
File

Ste
p

Description

1 Follow the steps in the Create MDG Technologies
topic up to and including Step 6, where you select
the 'Patterns' checkbox.

(c) Sparx Systems 2021 Page 246 of 461

MDG Technologies 2 September, 2021

The 'MDG Technology Wizard - Pattern files'
selection page displays.

2 In the 'Directory' field, navigate to the directory
containing the required Pattern XML file or files.
The Pattern files are automatically listed in the
'Available Files' panel.

3 To select each required Pattern individually,
highlight the Pattern in the 'Available Files' list and
click on the --> button.
The file name displays in the 'Selected Files' list.
Alternatively, to select all available Patterns click on
the -->> button, and return each one you do not
want by selecting it and clicking on the <-- button.

4 Click on the Next button to proceed.

(c) Sparx Systems 2021 Page 247 of 461

MDG Technologies 2 September, 2021

Add a Diagram Profile

When creating an MDG Technology file, you can include
Diagram Profiles that you have defined to generate new
types of diagram.

Access

Ribbon Specialize > Technologies >
Publish-Tech > Generate MDG
Technology

Add Diagram Profiles to the MDG
Technology File

Ste
p

Description

1 Follow the steps in the Create MDG Technologies
topic up to and including Step 6, where you select
the 'Diagram Types' checkbox.
The 'MDG Technology Wizard - Diagram Types'
page displays.

(c) Sparx Systems 2021 Page 248 of 461

MDG Technologies 2 September, 2021

2 In the 'Directory' field, navigate to the directory
containing the required Diagram Profiles.
The Profiles in the directory are automatically listed
in the 'Available Files' panel.

3 To select each required Diagram Profile individually,
highlight the file name in the 'Available Files' list
and click on the --> button.
The file name displays in the 'Selected Files' list.
Alternatively, to select all available Profiles (if they
are all Diagram Profiles) click on the -->> button,
and return each one you do not want by selecting it
and clicking on the <-- button.

4 Click on the Next button to proceed.

(c) Sparx Systems 2021 Page 249 of 461

MDG Technologies 2 September, 2021

Add a Toolbox Profile

When creating an MDG Technology file, you can include
Diagram Toolbox page definitions that you have created to
provide Toolbox pages to support customized diagrams.

Access

Ribbon Specialize > Technologies >
Publish-Tech > Generate MDG
Technology

Add Toolbox Profiles to the MDG Technology
File

Ste
p

Description

1 Follow the steps in the Create MDG Technologies
topic up to and including Step 6, where you select
the 'Toolboxes' checkbox.
The 'MDG Technology Wizard - Toolboxes' page
displays.

(c) Sparx Systems 2021 Page 250 of 461

MDG Technologies 2 September, 2021

2 In the 'Directory' field, navigate to the directory
containing the required Toolbox Profiles.
The Profile files are automatically listed in the
'Available Files' panel.

3 To select each required Toolbox Profile individually,
highlight the file name in the 'Available Files' list
and click on the --> button.
The file name displays in the 'Selected Files' list.
Alternatively, to select all available Profiles (if they
are all Toolbox Profiles) click on the -->> button,
and return each one you do not want by selecting it
and clicking on the <-- button.

4 Click on the Next button to proceed.

(c) Sparx Systems 2021 Page 251 of 461

MDG Technologies 2 September, 2021

Add Tagged Value Types

When creating an MDG Technology file, you can include
Tagged Value Types, from which the technology users can
create domain-specific Tagged Values.

Access

Ribbon Specialize > Technologies >
Publish-Tech > Generate MDG
Technology

Add Tagged Value Types to the MDG
Technology File

Ste
p

Description

1 Follow the steps in the Create MDG Technologies
topic up to and including Step 6, where you select
the 'Tagged Value Types' checkbox.
The 'MDG Technology Wizard - Tagged Value
Types' page displays.

(c) Sparx Systems 2021 Page 252 of 461

MDG Technologies 2 September, 2021

2 To select each required Tagged Value Type
individually, highlight the name in the 'Available
Tagged Values' list and click on the --> button.
The name displays in the 'Selected Tagged Values'
list, and the name, description and notes on the
Tagged Value Type are displayed in the panel at the
bottom of the page.
Alternatively, to select all available Tagged Value
Types, click on the -->> button, and return each one
you do not want by selecting it and clicking on the
<-- button.

3 Click on the Next button to proceed.

(c) Sparx Systems 2021 Page 253 of 461

MDG Technologies 2 September, 2021

Add Code Modules

When creating an MDG Technology file, you can include
code modules for which you have set up code templates and
data types. The modules can be for modifications to the
system default languages, or for languages you have defined
yourself using the code templates and the Code Template
Editor. Before you can set up a code template for a new
language in the editor, you must define at least one data type
for the language. You can also specify code options for the
language, which are additional settings that are not
addressed by the data types or code templates; they are held
in an XML document that you include in the MDG
Technology file with the module.

Access

Ribbon Specialize > Technologies >
Publish-Tech > Generate MDG
Technology

Add Code Modules to the MDG Technology
File

(c) Sparx Systems 2021 Page 254 of 461

MDG Technologies 2 September, 2021

Ste
p

Description

1 Follow the steps in the Create MDG Technologies
topic up to and including Step 6, where you select
the 'Code Modules' checkbox.
The 'MDG Technology Wizard - Code Modules'
page displays, listing the code modules defined in
your current project.

2 Click on the checkboxes ('Product', 'Data Types',
'Code Grammar', and 'Code Templates') for each of
the code modules you want to include in the
technology.

3 If you have created a code options XML document
for a selected module, click on the button in the
'Code Options' column for that module. A browser
displays, through which you locate and select the
XML document.

4 Click on the Next button to proceed.

(c) Sparx Systems 2021 Page 255 of 461

MDG Technologies 2 September, 2021

Define Code Options

When modifying code generation templates for an existing
programming language, or defining a new programming
language, there are additional options that are only available
when building an MDG Technology. These additional
options can affect how Enterprise Architect handles code
generation and reverse-engineering for this language. These
options are specified using an XML file, created using your
preferred text editor.

The root node in the XML document is named
CodeOptions. The child nodes are named CodeOption. Each
CodeOption contains a name attribute corresponding to the
name of one of the available code options. The body of each
node contains the option value. For example:

<CodeOptions>

 <CodeOption
name="DefaultExtension">.h</CodeOption>

 <CodeOption
name="HasImplementation">true</CodeOption>

 <CodeOption
name="ImplementationExtension">.cpp</CodeOption>

 <CodeOption
name="Editor">C:\Windows\notepad.exe</CodeOption>

</CodeOptions>

Supported code options

(c) Sparx Systems 2021 Page 256 of 461

MDG Technologies 2 September, 2021

Code Option Description

ConstructorN
ame

The name of a function used as a
constructor. Used by the
classHasConstructor code template
macro.

CopyConstru
ctorName

The name of a function used as a copy
constructor. Used by the
classHasCopyConstructor code template
macro.

DefaultExten
sion

The default extension when generating
code.

DefaultSourc
eDirectory

The default path to which Enterprise
Architect generates new files.

DestructorNa
me

The name of a function used as a
destructor. Used by the
classHasDestructor code template macro.

Editor The external editor used for editing
source of this language.

HasImpleme
ntation

Specifies if code generation for this
language generates both a source file and

(c) Sparx Systems 2021 Page 257 of 461

MDG Technologies 2 September, 2021

implementation file.

Implementati
onExtension

The extension used by Enterprise
Architect to generate an implementation
file.

Implementati
onPath

The relative path from the source file to
generate the implementation file.

PackagePath
Separator

The delimiter used to separate Package
names when using the packagePath
macro from the code templates.

Notes

Once a language is available for use in a model (by·

importing and activating the MDG Technology), you can
display and edit the code options on the 'Preferences'
dialog ('Start > Desktop > Preferences > Preferences')

(c) Sparx Systems 2021 Page 258 of 461

MDG Technologies 2 September, 2021

Add MDA Transforms

When creating an MDG Technology file, you can include
any MDA Transformation templates that you have created
or modified in the model and that you want to deploy as part
of the technology.

Access

Ribbon Specialize > Technologies >
Publish-Tech > Generate MDG
Technology

Add MDA Transformation Templates to the
MDG Technology File

Ste
p

Description

1 Follow the steps in the Create MDG Technologies
topic up to and including Step 6, where you select
the 'MDA Transforms' checkbox.
The 'MDG Technology Wizard - Transform

(c) Sparx Systems 2021 Page 259 of 461

MDG Technologies 2 September, 2021

Modules' page displays, listing the MDA transform
templates available on your system.

2 Click the checkbox against the name of each
transformation template you want to add to your
MDG Technology.

3 Click on the Next button to proceed.

(c) Sparx Systems 2021 Page 260 of 461

MDG Technologies 2 September, 2021

Add Document Report Templates

When creating an MDG Technology file, you can include
user-defined Document Report templates.

Access

Ribbon Specialize > Technologies >
Publish-Tech > Generate MDG
Technology

Add Report Templates to the MDG
Technology File

Ste
p

Description

1 Follow the steps in the Create MDG Technologies
topic up to and including Step 6, where you select
the 'RTF Templates' checkbox.
The 'MDG Technology Wizard - RTF Report
Templates' dialog displays.

(c) Sparx Systems 2021 Page 261 of 461

MDG Technologies 2 September, 2021

2 For each required user-defined report template
available in the current model, select the checkbox
next to the template name.

3 Click on the Next button to proceed.

(c) Sparx Systems 2021 Page 262 of 461

MDG Technologies 2 September, 2021

Add Linked Document Templates

When creating an MDG Technology file, you can include
Linked Document templates.

Access

Ribbon Specialize > Technologies >
Publish-Tech > Generate MDG
Technology

Add Linked Document Templates to the
MDG Technology File

Ste
p

Description

1 Follow the steps in the Create MDG Technologies
topic up to and including Step 6, where you select
the 'Linked Document Templates' checkbox.
The 'MDG Technology Wizard - Linked Document
Templates' dialog displays.

(c) Sparx Systems 2021 Page 263 of 461

MDG Technologies 2 September, 2021

2 For each required document template available in the
current model, select the checkbox next to the
template name.

3 Click on the Next button to proceed.

(c) Sparx Systems 2021 Page 264 of 461

MDG Technologies 2 September, 2021

Add Images

When creating an MDG Technology file, you can
incorporate images to be used in all models in which the
technology is deployed. These images must already be
available in the model in which the technology is being
developed; you can import the images into this model using
the Add New button on the Image Manager.

Access

Ribbon Specialize > Technologies >
Publish-Tech > Generate MDG
Technology

Add Images to the MDG Technology File

Ste
p

Description

1 Follow the steps in the Create MDG Technologies
topic up to and including Step 6, where you select
the 'Images' checkbox.

(c) Sparx Systems 2021 Page 265 of 461

MDG Technologies 2 September, 2021

The 'MDG Technology Wizard - Image Selection'
dialog displays.

2 For each required model image available in the
current model, select the checkbox next to the image
name.
A preview of each image displays on the right of the
dialog as you select the checkbox.

3 Click on the Next button to proceed.

(c) Sparx Systems 2021 Page 266 of 461

MDG Technologies 2 September, 2021

Add Scripts

When creating an MDG Technology file, you can include
scripts that you have created in the model.

Access

Ribbon Specialize > Technologies >
Publish-Tech > Generate MDG
Technology

Add Scripts to the MDG Technology File

Ste
p

Description

1 Follow the steps in the Create MDG Technologies
topic up to and including Step 6, where you select
the 'Scripts' checkbox.
The 'MDG Technology Wizard - Scripts' dialog
displays.

2 For each required script available in the current

(c) Sparx Systems 2021 Page 267 of 461

MDG Technologies 2 September, 2021

model, select the checkbox next to the script name.

3 Click on the Next button to proceed.

Notes

This facility is available in the Corporate, Unified and·

Ultimate Editions of Enterprise Architect

(c) Sparx Systems 2021 Page 268 of 461

MDG Technologies 2 September, 2021

Add Workspace Layouts

When developing an MDG Technology file, you can include
user-defined workspace layouts. Workspace layouts are
arrangements of toolbars and windows appropriate to an
area of work such as Requirements Management and Code
Engineering. The workspace layout automatically opens and
organizes all the tools to suit the way in which you use the
system.

Access

Ribbon Specialize > Technologies >
Publish-Tech > Generate MDG
Technology

Add Workspace Layouts to the MDG
Technology File

Ste
p

Description

1 In your model, create the workspace layouts you

(c) Sparx Systems 2021 Page 269 of 461

MDG Technologies 2 September, 2021

want to include in your Technology.

2 Follow the steps in the Create MDG Technologies
topic up to and including Step 6, where you select
the 'Workspace Layouts' checkbox.
The 'MDG Technology Wizard - Workspace
Layouts' dialog displays, listing the user-defined
workspace layouts available to you.

3 For each workspace layout that you want to
incorporate in the Technology, select the checkbox
next to the layout name.

4 Click on the Next button to proceed.

(c) Sparx Systems 2021 Page 270 of 461

MDG Technologies 2 September, 2021

Add Model Views

When developing an MDG Technology file, you can include
user-defined Model Views. Model Views are based on
searches that extract specific information from a model to
provide different perspectives of, and 'entry points' into, the
model.

Access

Ribbon Specialize > Technologies >
Publish-Tech > Generate MDG
Technology

Add Model Views to the MDG Technology
File

Ste
p

Description

1 In your model, create the Model Views you want to
include in your Technology.

(c) Sparx Systems 2021 Page 271 of 461

MDG Technologies 2 September, 2021

2 Follow the steps in the Create MDG Technologies
topic up to and including Step 6, where you select
the 'Model Views' checkbox.
The 'MDG Technology Wizard - Model Views'
dialog displays, listing the user-defined views
available in the current model.

3 For each Model View that you want to incorporate
in the Technology, select the checkbox next to the
view name.

4 Click on the Next button to proceed.

Notes

Technology views do not store Favorite Packages, only·

Views

If you incorporate a Model View that runs searches that·

you have defined, you must also include those searches in
your MDG Technology

(c) Sparx Systems 2021 Page 272 of 461

MDG Technologies 2 September, 2021

Add Model Searches

When developing an MDG Technology file, you can include
user-defined Model Searches. You can set these searches up
using the Model Search facility, in SQL, in the Query
Builder or as an Add-In, and then link them into your MDG
Technology.

Access

Ribbon Specialize > Technologies >
Publish-Tech > Generate MDG
Technology

Add Model Searches to the MDG Technology
File

Ste
p

Description

1 In your model, create the Model Searches you want
to include in your Technology.

(c) Sparx Systems 2021 Page 273 of 461

MDG Technologies 2 September, 2021

2 Follow the steps in the Create MDG Technologies
topic up to and including Step 6, where you select
the 'Model Searches' checkbox.
The 'MDG Technology Wizard - Model Searches'
dialog displays, listing the user-defined searches
available in the current model.

3 For each Model Search that you want to incorporate
in the Technology, select the checkbox next to the
search name.

4 Click on the Next button to proceed.

Notes

If you use a custom SQL search, the SQL must include·

ea_guid AS CLASSGUID and the object type

If you incorporate a Model View that runs searches that·

you have defined, you must also include those searches in
your MDG Technology

(c) Sparx Systems 2021 Page 274 of 461

MDG Technologies 2 September, 2021

Working with MTS Files

When you are creating an MDG Technology File using the
MDG Technology Wizard, you have the choice of storing
all of the options and structures that you have defined in an
MDG Technology Selection (.mts) file. This captures all the
information you enter into the Technology Wizard, so that
you do not have to type it in again. If you use a .mts file,
you can subsequently edit it to change the features you
selected when you generated the Technology file, and to add
or remove additional, advanced features.

Access

Ribbon Specialize > Technologies >
Publish-Tech > Generate MDG
Technology

Manage the .MTS file

Action Description

Create a To create a .mts file, launch and work

(c) Sparx Systems 2021 Page 275 of 461

MDG Technologies 2 September, 2021

.MTS File through the MDG Technology Wizard;
on the second page, select the 'Create a
new MTS file' option.

Advanced
Options For
Your .MTS
File

Once you have worked through the MDG
Technology Wizard and set up the .mts
file, you can add, separately:

Model Validation configurations·

Model Templates·

Firstly define the XMI for the model
validation configurations and model
templates, then open the .mts file in a text
editor and copy in the validation and/or
template description just before the
</MDG.Selections> line.
Save the .mts file.

Update the
MDG
Technology

Again launch the MDG Technology
Wizard, but this time on the second page
select the 'Open an Existing MTS file'
option and specify the file path of the
.mts file you have been working on.
Click on the Next button until the
Wizard is finished; your MDG
Technology .xml file is updated.

(c) Sparx Systems 2021 Page 276 of 461

MDG Technologies 2 September, 2021

Notes

Having created your MDG Technology with the Wizard·

and the .mts file, you can add Import and Export scripts
via the Technology .xml file

(c) Sparx Systems 2021 Page 277 of 461

MDG Technologies 2 September, 2021

Create Toolbox Profiles

As a facility of your MDG Technology, you might want to
provide Diagram Toolbox pages that give access to any
elements and connectors that you have created within the
technology. You define these Toolbox pages within specific
Profiles, each Profile defining the element and connector
Toolbox pages that open or can be selected for a diagram
type.

Create custom Toolboxes

Ste
p

Action

1 Create a set of Toolbox Profiles that contain the
definitions required to generate the Toolbox pages.

2 Edit the definitions, where appropriate, to:
Include hidden sub-menus·

Override the default Toolboxes·

Change the default icons for Toolbox items·

3 Create a .mts file containing instructions on how to
build your MDG Technology, and include the
Toolbox Profiles in the technology.

(c) Sparx Systems 2021 Page 278 of 461

MDG Technologies 2 September, 2021

(c) Sparx Systems 2021 Page 279 of 461

MDG Technologies 2 September, 2021

Create Toolbox Profiles

Within an MDG Technology you can create multiple
Toolbox Profiles. Each Toolbox Profile contains definitions
that determine what pages appear in the Diagram Toolbox
when it is opened, either by selection from the search
facilities in the Diagram Toolbox, or by opening or creating
a diagram of the type that is linked to the Toolbox Profile.

Toolbox Profile Errors

When a Diagram Toolbox defined in your MDG
Technology is in use, certain error messages might be
displayed. This table explains what those error messages
mean.

Message Meaning

Missing base
type <name>

For example: 'Missing base type:
'SysML1.3::Block' does not extend
'UML::State'
The base type is either missing or does
not correspond to the extended element
type (in the example, SysML::Block
actually extends UML::Class).

No profile
found with id

This error message could mean that the
profile cannot be found, or that the MDG

(c) Sparx Systems 2021 Page 280 of 461

MDG Technologies 2 September, 2021

<name> Technology containing the profile has
been disabled (check using 'Specialize>
Technologies > Manage').

No
stereotype
<name>
found in
profile
<name>

For example: 'No stereotype 'ProxyPort'
found in profile 'SysML 1.2'.
This message indicates that there is a
mismatch between the stereotype
required and the profile it is supposed to
be in. In the example, SysML1.2 does not
have ProxyPorts, so perhaps the
stereotype should be 'FlowPort', or the
profile 'SysML 1.3'.

Unknown/Ille
gal base type:
<name>

There can be a number of reasons for this
message being displayed. For example:

Unknown/Illegal base type:·

UML::Capability - displayed because
there is no such UML metaclass as
'Capability'
Unknown/Illegal base type: SysML·

1.3::Block - displayed because you are
trying to extend a stereotype from
another profile, in this case <<Block>>
from the SysML 1.3 profile; you must
extend the same thing as the stereotype
you are specializing extends (in this
case 'UML::Class')

(c) Sparx Systems 2021 Page 281 of 461

MDG Technologies 2 September, 2021

Create a Toolbox Profile

Ste
p

Action

1 In a Profile Package, create a Class diagram with an
appropriate name by which you can refer to it later,
such as MyClassDiagram.

2 Double-click on the diagram background to display
the diagram 'Properties' dialog and, in the 'Notes'
field, give the diagram an alias and a description in
this format:
 Alias=MyClass;Notes=Structural elements for
Class diagrams;

3 On the diagram, create a Metaclass element with the
name ToolboxPage.

4 Create a Stereotype element for each of the Toolbox
pages to create within your Toolbox, such as
MyClassElements and MyClassRelationships.
Double-click on each element to display the
'Properties' dialog and, in the 'Alias' field, type the
text to display in the title bar of the corresponding
Toolbox page, such as My Classes or My Class

(c) Sparx Systems 2021 Page 282 of 461

MDG Technologies 2 September, 2021

Relationships.
In the 'Notes' field of each element, type the tool-tip
for the corresponding Toolbox page; for example,
'Elements for Class Diagrams' or 'Relationships for
Class Diagrams'.
Create an Extension connector between each
Stereotype element and the ToolboxPage Metaclass
element.

5 In each of the Stereotype elements, press F9 and
create an attribute for each Toolbox item in the page
defined by that element.
The name of each attribute is the name of the
element or connector to be dropped, including the
element's namespace; for example, UML::Package,
UML::Class and UML::Interface. You might not
want to display names including text such as
UML::Package or UML::Class in your Toolbox, so
give the attributes an 'Initial Value' of, for example,
Package or Class.
The Toolbox items display in the same sequence as
their attributes in the element, so use the attribute
ordering options in the 'Attributes' page of the
Features window to define the order of icons in
your Toolbox page.
In the name of an attribute for an element or
connector from your own technology, use your
Profile name as the namespace, and then follow the
item name with the element or connector type that

(c) Sparx Systems 2021 Page 283 of 461

MDG Technologies 2 September, 2021

you are extending, in brackets (to identify to
Enterprise Architect what type of object to create);
for example, a SysML Block element would appear
as:
 SysML::Block(UML::Class)
Many elements and connectors can be extended for
use in Toolboxes.

6 To define a Toolbox item to drop a Design Pattern
onto a diagram, name the attribute:
 My Technology::MyPattern(UMLPattern)
'MyTechnology' is the ID of the technology and
'MyPattern' is the name of the Pattern to drop; for
example:
 BusFramework::Builder(UMLPattern)
If you want to avoid displaying the 'Add Pattern'
dialog, replace (UMLPattern) with
(UMLPatternSilent).
To define a model-based Pattern in a custom
Toolbox (such as the GoF Patterns), create an
attribute with a name of the format:
 PatternCategory::PatternName(UMLPattern)
For example:
 GoF::Mediator(UMLPattern)

7 Define any attributes you need to modify the display
of the Toolbox pages, such as whether the Toolbox
pages are minimized or displayed without item

(c) Sparx Systems 2021 Page 284 of 461

MDG Technologies 2 September, 2021

names (labels).

8 To save the Toolbox profile, click on the background
of the open diagram and select either of the ribbon
options:

Design > Diagram > Manage > Save as Profile·

or
Specialize > Technologies > Publish-Tech >·

Publish Diagram as UML Profile

Notes

When assigning an Alias for a Toolbox page, 'elements' is·

a reserved word; if the word 'elements' is used, it will not
appear in the title bar of the corresponding Toolbox page

Each Profile element incorporated into an MDG Toolbox·

page enables a context menu option to synchronize the
Tagged Values and Constraints of all objects created from
it

The sequence of Toolbox pages in the Toolbox is·

determined by the sequence of their Stereotype elements
in the Profile diagram or Profile Package; if you create
and save the Profile from a:
 - Diagram, the Toolbox page sequence is determined
by the Z-order of the Stereotype elements
 on the diagram - the lower (closer to 1) the Z-order

(c) Sparx Systems 2021 Page 285 of 461

MDG Technologies 2 September, 2021

number of the Stereotype element (the closer
 it is to the 'surface' of the diagram), the further down
the Toolbox its Toolbox page is placed;
 if you change the Z-order of a Stereotype element in
the diagram, it changes the position of the
 element's page on the Toolbox
 - Package in the Browser window, the Toolbox page
sequence is determined by the list order of
 the Stereotype elements in the Package - the Toolbox
page for the first listed element is at the
 top of the Toolbox; if you re-order the elements in
the Browser window, you produce the same
 re-ordering of pages in the Toolbox

(c) Sparx Systems 2021 Page 286 of 461

MDG Technologies 2 September, 2021

Toolbox Page Attributes

When you create a Stereotype element to define a Toolbox
page in an MDG Technology, you can add a number of
attributes to control how the page itself behaves in the
Diagram Toolbox. The Stereotype element can be one of
several that extend the ToolboxPage Metaclass.

The attributes you can add are:

Icon - see Assign Icons To Toolbox Items·

ImagesOnly - if you set Initial Value to true, the Toolbox·

page displays without the text labels next to the icons

isCollapsed - if you set Initial Value to true, the Toolbox·

page is initially minimized

isCommon - if you set Initial Value to true, the Toolbox·

page is common to all defined Toolboxes while your
technology is active; the page is initially displayed as
collapsed

isHidden - see Create Hidden Sub-Menus·

(c) Sparx Systems 2021 Page 287 of 461

https://sparxsystems.com/enterprise_architect_user_guide/15.2/icons_for_toolbox_items.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/hidden_sub-menus.htm

MDG Technologies 2 September, 2021

Create Hidden Sub-Menus

When you create items on a Toolbox page, some of them
might be very similar and be based on the same type of
Metaclass. For example, there are many different types of
Action element and, in BPMN 2.0, you can create each type
of Event element either stand-alone or edge-mounted on
another element. Rather than populate a Toolbox page with
every variation, you can create a 'base' Toolbox item and
offer a choice of variant from a sub-menu, which is
displayed when the base item is dragged onto the diagram
but is otherwise hidden. This technique is very useful for
'disambiguating' Stereotypes that can be applied to multiple
Metaclasses.

In the submenu, you define just the variant types (as for the
Action element list). However, if the variant also has a
ToolboxItemImage defined for it, that icon is displayed
against the variant name in the sub-menu (as for the BPMN
2.0 Events). You can also use this method to specifically
define icons that will be applied to the submenu options.

Define a hidden sub-menu

Ste
p

Action

1 Create a Stereotype element on the same diagram as

(c) Sparx Systems 2021 Page 288 of 461

MDG Technologies 2 September, 2021

the ToolboxPage Metaclass, with a name prefixed by
the Profile name (this is mandatory). For example:
 MyProfile::MyClass
The name must not match the name of any external
stereotype that exists in any other Profile.
The sub-menu element can have an alias.

2 In this sub-menu Stereotype element, create the
attribute isHidden with an initial value of True.
For each sub-menu item, add an attribute to identify
that item. Set the 'Initial Value' to the name to
display in the menu. For example, if the «MyClass»
stereotype could be applied to a UML Class or
UML Interface, the attributes for these two options
would be:
 MyProfile::MyClass(UML::Class) Initial Value =
Class
 MyProfile::MyClass(UML::Interface) Initial
Value = Interface

3 Create a second Stereotype element and define an
attribute with the same name as the sub-menu
Stereotype element, and with the initial value of the
text to display in the Toolbox item. For example:
 MyProfile::MyClass = Class Object
Define additional attributes for the rest of the items
in the Toolbox, as normal.

(c) Sparx Systems 2021 Page 289 of 461

MDG Technologies 2 September, 2021

4 Create <<Extension>> relationships between each
Stereotype element and the ToolboxPage Metaclass
element, as illustrated.

When this Profile is in use, and when the Class
Object item is dragged onto a diagram from the
Toolbox, the hidden menu displays giving the choice
of Class or Interface; on selection, the element is
dropped onto the diagram.

5 If no icon has been assigned to the Toolbox item
from existing definitions, and you want to display
one, define the image as a ToolboxItemImage icon.

(c) Sparx Systems 2021 Page 290 of 461

MDG Technologies 2 September, 2021

Assign Icons To Toolbox Items

When you create a stereotyped model element to define an
element or connector that is represented in a Diagram
Toolbox page, you can define the image that is displayed
against both the element name in the Browser window and
the element or connector type in the Toolbox page, by
assigning the special attribute icon to the Stereotype
element.

This image definition for the Toolbox item can be
overridden or replaced by extending the ToolboxItemImage
Metaclass, a process that is generally optional. However, if
you want to show an icon against an item on a hidden
sub-menu, you must use this method; the system picks up
the ToolboxItemImage definition as the icon for the hidden
menu item.

If you do not use either the icon attribute or the
ToolboxItemImage Metaclass to define the Toolbox icon,
the image defaults to the one used for the standard UML
model element that has been extended. If there is no such
image, the icon uses the system default generic 'Toolbox
Item' image.

Extend the ToolboxItemImage Metaclass

Ste
p

Action

(c) Sparx Systems 2021 Page 291 of 461

MDG Technologies 2 September, 2021

1 Create a new Stereotype element in the same
Toolbox profile as the Toolbox item.

2 Give the Stereotype element the same name as the
element that it is assigning an image to; for example:
 MyProfile::MyStereo(UML::Class)

3 Give the Stereotype element the special attribute
Icon with Initial Value set to the full path and file
name of the image to be used.
The icon image is a 16x16 pixel bitmap file; for a
transparent background use light gray -
RGB(192,192,192).

4 Create a Metaclass element named
ToolboxItemImage and create an Extension
association from the Stereotype element to this
Metaclass.

(c) Sparx Systems 2021 Page 292 of 461

MDG Technologies 2 September, 2021

(c) Sparx Systems 2021 Page 293 of 461

MDG Technologies 2 September, 2021

Override Default Toolboxes

When you are creating a diagram of one of the inbuilt
diagram types, the system displays a Diagram Toolbox
based on the corresponding default Toolbox Profile. If you
have customized a diagram type, it will still apply the
system default Toolbox for the base diagram type that you
have extended, unless you override that default with an
alternative Toolbox that you might have created yourself.
For example, you might have your own version of the
UML::Class Toolbox that you want to be displayed every
time a Class diagram is opened, when your technology is
active.

Note that for the default Toolboxes to be overridden by the
custom Toolboxes in your MDG Technology, the MDG
Technology must be set to 'Active'. ('Specialize >
Technologies > Manage-Tech', then select the checkbox
against your MDG Technology name and click on the Set
Active button.)

Access

To replace a system default Toolbox with one of your own:

Use one of the methods outlined here to display the
'Properties' dialog for your Toolbox Profile diagram, and
display the 'General' tab.

Then, in the 'Notes' field type a RedefinedToolbox clause.

(c) Sparx Systems 2021 Page 294 of 461

MDG Technologies 2 September, 2021

For example:

RedefinedToolbox=UML::Class;Alias=Class;Notes=Structu
ral elements for Class diagrams;

This states that the Toolbox defined by this Profile replaces
the system Toolbox UML::Class as the default Toolbox for
all UML Class diagrams.

Ribbon Design > Diagram > Manage > Properties
> General

Context
Menu

Right-click on the Toolbox Profile
diagram | Properties | General

Names of system default toolboxes that can
be overridden

UML::Activity·

UML::Class·

UML::Communication·

UML::Component·

UML::Composite·

UML::Deployment·

UML::Interaction·

UML::Metamodel·

(c) Sparx Systems 2021 Page 295 of 461

MDG Technologies 2 September, 2021

UML::Object·

UML::Profile·

UML::State·

UML::Timing·

UML::UseCase·

Extended::Analysis·

Extended::Custom·

Extended::DataModeling·

Extended::Maintenance·

Extended::Requirements·

Extended::UserInterface·

Extended::WSDL·

Extended::XMLSchema·

(c) Sparx Systems 2021 Page 296 of 461

MDG Technologies 2 September, 2021

Elements Used in Toolboxes

When you are creating Toolbox pages for your MDG
Technology, you can incorporate both standard UML
elements and new elements that you have created by
extending the UML elements. You define the elements you
want to use in the Toolbox Profile. The table lists the names
you use to identify either:

The standard elements to include in the Toolbox page or·

The standard elements you are extending to define new·

elements to include in the Toolbox page

Each name you list in the Toolbox Page Stereotype elements
is preceded by the namespace UML::. The text in
parentheses indicates the label name displayed in the default
Toolbox pages, where this differs in any way from the
UML:: statement text.

Element names for Toolbox Page definitions

Action·

ActionPin·

Activity·

ActivityFinal (Final)·

ActivityInitial (Initial)·

ActivityParameter·

ActivityPartition (Partition)·

(c) Sparx Systems 2021 Page 297 of 461

MDG Technologies 2 September, 2021

ActivityRegion (Region)·

Actor·

Artifact·

AssociationElement (Association)·

Boundary (for Use Cases)·

CentralBufferNode (Central Buffer Node)·

Change·

Choice·

Class·

Collaboration·

CollaborationOccurrence (Collaboration Use)·

Comment (Note)·

Component·

Constraint·

Datastore·

Decision·

DeploymentSpecification (Deployment Specification)·

Device·

DiagramLegend (Diagram Legend)·

DiagramNotes (Diagram Notes)·

DocumentArtifact (Document Artifact or Document)·

Entity (Information)·

EntityObject (Entity)·

EntryPoint (Entry)·

Enumeration·

(c) Sparx Systems 2021 Page 298 of 461

MDG Technologies 2 September, 2021

ExceptionHandler (Exception)·

ExecutionEnvironment (Execution Environment)·

ExpansionRegion·

ExitPoint (Exit)·

Feature·

FinalState (Final)·

FlowFinalNode (Flow Final)·

ForkJoinH (Fork/Join - Horizontal)·

ForkJoinV (Fork/Join - Vertical)·

Gate (Diagram Gate)·

GUIElement (UI Control)·

HistoryState (History)·

Hyperlink·

InformationItem (Information Item)·

InitialState (Initial)·

Interaction·

InteractionFragment (Fragment)·

InteractionState (State/Continuation)·

Interface·

InterruptibleActivityRegion·

Issue·

Junction·

Lifeline·

MergeNode (Merge)·

MessageEndPoint (Endpoint or Message Endpoint)·

(c) Sparx Systems 2021 Page 299 of 461

MDG Technologies 2 September, 2021

MessageLabel (Message Label)·

Metaclass·

Node·

Object·

ObjectBoundary (Boundary)·

ObjectControl (Control)·

ObjectEntity (Entity)·

Package·

PackagingComponent·

Part·

Port·

Primitive·

PrimitiveType·

Process·

Profile·

ProvidedInterface (Expose Interface)·

ReceiveEvent (Receive)·

Requirement·

RobustBoundary (Boundary)·

RobustControl (Control)·

RobustEntity (Entity)·

Screen·

SendEvent (Send)·

SequenceBoundary (Boundary)·

SequenceControl (Control)·

(c) Sparx Systems 2021 Page 300 of 461

MDG Technologies 2 September, 2021

SequenceEntity (Entity)·

Signal·

State·

StateMachine (StateMachine)·

StateTimeLine (State Lifeline)·

Stereotype·

StructuredActivity (Structured Activity)·

SynchState (Synch)·

Table·

Terminate·

TestCase (Test Case)·

Text·

UseCase (Use Case)·

UMLBoundary (Boundary)·

ValueTimeLine (Value Lifeline)·

Notes

You can also identify standard or extended UML·

connectors to add to the Toolbox Page definition

When the element items are deployed in an MDG·

Toolbox page, you can also synchronize the Tagged
Values and Constraints of all elements created from them

(c) Sparx Systems 2021 Page 301 of 461

MDG Technologies 2 September, 2021

Connectors Used in Toolboxes

When you are creating Toolbox pages for your MDG
Technology, you can incorporate both standard UML
connectors and new connectors that you have created by
extending the UML connectors. You define the connectors
you want to use in the Toolbox Profile. The Connector
names for Toolbox Page definitions table lists the names
you use to identify either:

The standard connectors to include in the Toolbox page or·

The standard connectors you are extending to define new·

connectors to include in the Toolbox page

Each name you list in the 'Toolbox Page Stereotype
elements' is preceded by the namespace UML::. The text in
brackets indicates the label name displayed in the default
Toolbox pages, where this differs in any way from the
UML:: statement text.

Connector names for Toolbox Page
definitions

Abstraction·

Aggregation (Aggregate)·

Assembly·

Association (Associate)·

AssociationClass (Association Class)·

(c) Sparx Systems 2021 Page 302 of 461

MDG Technologies 2 September, 2021

CallFromRecursion (Call)·

CommunicationPath (Communication Path)·

Composition (Compose)·

Connector·

ControlFlow (Control Flow)·

Delegate·

Dependency·

Deployment·

Extension·

Generalization (Generalize or Inheritance)·

InformationFlow (Information Flow)·

InterruptFlow (Interrupt Flow)·

Invokes·

Manifest·

Message·

Nesting·

NoteLink (Note Link)·

ObjectFlow (Object Flow)·

Occurrence·

PackageImport (Package Import)·

PackageMerge (Package Merge)·

Precedes·

ProfileApplication (Application)·

Realization (Realize or Implements)·

Recursion·

(c) Sparx Systems 2021 Page 303 of 461

MDG Technologies 2 September, 2021

Redefinition·

Representation·

Represents·

RoleBinding (Role Binding)·

SelfMessage (Self-Message)·

Substitution·

TagValAssociation (Tagged Value)·

TemplateBinding (Template Binding)·

TraceLink (Trace)·

Transition·

UCExtend (Extend)·

UCInclude (Include)·

Usage·

UseCaseLink (Use)·

Notes

You can also identify standard or extended UML elements·

to add to the Toolbox Page definition

(c) Sparx Systems 2021 Page 304 of 461

MDG Technologies 2 September, 2021

Create Custom Diagram Profiles

When you develop an MDG Technology, it is possible to
create extended diagram types and include them in your
MDG Technology as custom Diagram Profiles. For
example, you might create a DFD Diagram Profile that
defines a DFD diagram as an extension of the built-in
Analysis diagram, as shown:

Create extended diagram types

Ste
p

Action

1 Create a Profile, with the same name as the MDG
Technology in which it is to be included; for
example, SysML.
This Profile automatically contains one child Class
diagram. Depending on how many new diagram
types you intend to create, you can define:

One diagram type on one child diagram·

Several diagram types on one diagram, or·

(c) Sparx Systems 2021 Page 305 of 461

MDG Technologies 2 September, 2021

Several diagram types grouped on several·

diagrams
In the third case, create any further child Class
diagrams you need. The diagram names do not have
to reflect the technology name.

2 Open the child Class diagram and create a
Stereotype element, giving it the name of the
Custom diagram type; for example, BlockDefinition.
Also on the Stereotype element 'Properties' dialog, in
the 'Notes' field, type a brief description of what the
diagram is used for.
When the Technology is deployed and a diagram of
this Custom type is being created, this description
will display in the bottom right-hand corner of the
'New Diagram' dialog.

3 Create a Metaclass element and give it the name of
the selected built-in diagram type, with the prefix
Diagram_.
For example Diagram_Logical to customize the
Class diagram type, or Diagram_Use Case to
customize the Use Case diagram type.

4 Drag an Extension connector from the Stereotype
element to the Metaclass element.

5 Click on the Diagram_xxxx Metaclass element,
press F9 and create any or all of these attributes, to

(c) Sparx Systems 2021 Page 306 of 461

MDG Technologies 2 September, 2021

set properties of the Custom diagram type:
alias: string = Type (where Type will appear·

before the word 'Diagram' on the diagram title bar;
for example, 'Block Diagram')
diagramID: string = abc (where abc is the diagram·

type that will appear in the diagram frame label)
toolbox: string = ToolboxName (where·

ToolboxName is the name of the Toolbox Profile
for the Toolbox that opens automatically each time
a diagram of this type is opened)
toolboxPage: string = list of status values in the·

form "PageName=1;" (where PageName is the
name of the stereotype element that extends
ToolboxPage; if this string is not empty, all
toolbox pages with the value "1" will be expanded
and all other toolbox pages will be collapsed)
frameString: string = FrameFormatString (where·

FrameFormatString is a string containing
substitution macros for defining the frame title,
with or without additional delimiters such as ();
macros that can be used are:
 - #DGMALIAS#
 - #DGMID#
 - #DGMNAME#
 - #DGMNAMEFULL#
 - #DGMOWNERNAME#
 - #DGMOWNERNAMEFULL#
 - #DGMOWNERTYPE#
 - #DGMSTEREO#

(c) Sparx Systems 2021 Page 307 of 461

MDG Technologies 2 September, 2021

 - #DGMTYPE#
swimlanes: string =·

Lanes=2;Orientation=Horizontal;Lane1=Title1;La
ne2=Title2; (where Lanes can be any value, but
the number of Lane<n> values must equal the
value of Lanes; Orientation can be omitted, in
which case the swimlanes default to vertical)
styleex: string = one or more of a range of values·

pdata: string = one or more of a range of values·

6 Depending on what Profile Package organization
you adopted at step 1, and whether you need any
further Stereotype-Metaclass element pairs, repeat
steps 2 - 5 on this diagram or on another child
diagram.

7 Save the diagram(s) as a Diagram Profile, using the
method most appropriate to the Profile Package
organization you have set up.

8 Add the Diagram Profile(s) to the .mts file used in
the MDG Technology.

(c) Sparx Systems 2021 Page 308 of 461

MDG Technologies 2 September, 2021

Built-In Diagram Types

In customizing Enterprise Architect to better suit your
needs, you might create a Profile that:

Redefines the type of built-in child diagram created under·

a new composite element

Defines the types of built-in diagram on which a Quick·

Linker menu offers a type of connector, or

Extends a built-in diagram type to create a custom·

diagram type

In each case, you provide the precise name of each built-in
diagram type you are working with; these names are:

Activity·

Analysis·

Collaboration·

Component·

CompositeStructure·

Custom·

Deployment·

InteractionOverview·

Logical (for Class diagrams)·

Object·

Package·

Sequence·

Statechart·

(c) Sparx Systems 2021 Page 309 of 461

MDG Technologies 2 September, 2021

Timing·

Use Case (note the space between the two words)·

(c) Sparx Systems 2021 Page 310 of 461

MDG Technologies 2 September, 2021

Attribute Values - styleex & pdata

When creating a diagram profile you can define a range of
characteristics of the diagrams created with the profile,
using the pdata and styleex attributes. If one of these
attributes is defining several characteristics at once, you put
the values in a single string separated by semicolons; for
example:

HideQuals=0;AdvanceElementProps=1;ShowNotes=1;

Access

Select the Metaclass element, then display the 'Attributes'
dialog and define or update the attributes 'styleex' or 'pdata'.

Specify the attribute type as 'string', then specify the
diagram characteristics you require, in the 'Initial Value'
field.

Use any of these methods to display the 'Attributes' dialog.

Ribbon Design > Element > Editors > Attributes

Context
Menu

In the Browser window or a diagram |
Right-click on Metaclass element |
Features | Attributes

Keyboard F9

(c) Sparx Systems 2021 Page 311 of 461

MDG Technologies 2 September, 2021

Shortcuts

styleex: string =

AdvancedConnectorProps=1; (to show connector property·

strings)

AdvancedElementProps=1; (to show the element property·

string)

AdvancedFeatureProps=1; (to show the feature property·

string)

AttPkg=1; (to show Package visible Class members)·

DefaultLang=Language; (to set the default language for·

the diagram; Language can be one of the built-in
languages such as C++ or Java, or it can be a custom
language)

ExcludeRTF=1; (to exclude the diagram image from·

generated reports)

HandDraw=1; (to apply hand drawn mode)·

HideConnStereotype=1; (to hide the connector stereotype·

labels)

HideQuals=0; (to show qualifiers and visibility indicators)·

NoFullScope=1; (to hide fully scoped element names, e.g.·

"ParentClass::ChildClass" will be shown as "ChildClass")

SeqTopMargin=50; (to set the height of the top margin on·

Sequence diagrams)

(c) Sparx Systems 2021 Page 312 of 461

MDG Technologies 2 September, 2021

ShowAsList=1; (to make the diagram open directly into·

the Diagram List)

ShowMaint=1; (to show the element Maintenance·

compartment)

ShowNotes=1; (to show the element Notes compartment)·

ShowOpRetType=1; (to show the operation return type)·

ShowTests=1; (to show the element Testing compartment)·

SuppConnectorLabels=1; (to suppress all connector·

labels)

SuppressBrackets=1; (to suppress brackets on operations·

without parameters)

TConnectorNotation=Option; (where Option is one of·

UML 2.1, IDEF1X, or Information Engineering)

TExplicitNavigability=1; (to show non-navigable·

connector ends)

VisibleAttributeDetail=1; (to show attribute details on the·

diagram)

Whiteboard=1; (to apply whiteboard mode)·

pdata: string =

HideAtts=0; (to show the element Attributes·

compartment)

HideEStereo=0; (to show element stereotypes in the·

diagram)

(c) Sparx Systems 2021 Page 313 of 461

MDG Technologies 2 September, 2021

HideOps=0; (to show the element Operations·

compartment)

HideParents=0; (to show additional parents of elements in·

the diagram)

HideProps=0; (to show property methods)·

HideRel=0; (to show relationships)·

HideStereo=0; (to show attribute and operation·

stereotypes)

OpParams =3; (to show operation parameters)·

ShowCons=1; (to show the element Constraints·

compartment)

ShowIcons=1; (to use stereotype icons)·

ShowReqs=1; (to show the element Requirements·

compartment)

ShowSN=1; (to show sequence notes)·

ShowTags=1; (to show the element Tagged Values·

compartment)

SuppCN=0; (to show collaboration numbers)·

UseAlias=1; (to use the aliases or elements in the·

diagram, if available)

(c) Sparx Systems 2021 Page 314 of 461

MDG Technologies 2 September, 2021

Set Up Technology Element Images

As you define the elements available for use in your
technology, you might want to represent those elements
with graphical images that will be displayed on the diagrams
the users create through the technology, when it is deployed
in the users' model.

Capture images to represent MDG
Technology elements

Ste
p

Action

1 Display the Image Manager and, using the Add
New button, import suitable images into the MDG
Technology development model from their source
locations.

2 Design and create a Stereotype (UML) Profile
containing (if appropriate) a stereotype definition for
each element or connector to be owned by the
technology.
These stereotype definitions can contain Shape
Scripts that in turn incorporate the imported images.

3 Design and create a Toolbox Profile with stereotype

(c) Sparx Systems 2021 Page 315 of 461

MDG Technologies 2 September, 2021

elements that contain an attribute for each element or
connector that can be dropped onto a diagram from
the Toolbox.
These attributes identify the name of the technology
element or connector, any modifying stereotype
(which might incorporate the required image) and
the UML or Extended element or connector on
which the technology object is based.
For example:
 SysML::Block(UML::Class)

SysML is the Technology Profile·

UML::Class is the UML element used as the base,·

and
Block is the stereotype that modifies the Class to·

turn it into a SysML Block element

4 Design and create a Diagram Profile that identifies
the Toolbox Profile.
When a diagram of the type defined in the Diagram
Profile is opened, it in turn opens a set of toolbox
pages as defined by the Toolbox Profile.

5 Create or update the technology as required, adding
the UML Profile, Diagram Profile, Toolbox Profile
and Image files to the technology from the
development model.

6 Deploy the technology as appropriate.

(c) Sparx Systems 2021 Page 316 of 461

MDG Technologies 2 September, 2021

When a user applies the technology to their own
model, and creates a diagram under that technology,
the elements they create on the diagram should be
represented by the images you assigned to those
elements when you created the technology.

Notes

It is recommended that if you create a Shape Script·

incorporating an MDG Technology image (step 2), you
should use the fully qualified image name to avoid
conflicts with images used in other technologies

You would probably work backwards and forwards·

through the steps many times, adding objects as you
identify the requirement for them

(c) Sparx Systems 2021 Page 317 of 461

MDG Technologies 2 September, 2021

Define Validation Configuration

Using the 'Model Validation Configuration' dialog, you can
choose which sets of validation rules are and are not
executed when a user performs a validation.

Rather than perform this configuration manually and
potentially have to change the settings back for your
Technology every time Enterprise Architect is started and a
different Technology has been set active, you can define the
configuration settings within the MDG Technology
Selection (MTS) file of your Technology.

Access

Locate and open the .MTS file in whatever file browser you
use in your work. You edit the file as indicated in these two
tables, and then save the file.

White List

To specify a set of rules as a white-list (that is, anything
added to this list is turned ON), open your MTS file in a text
editor and copy and paste this <ModelValidation> block at
the top level inside the <MDG.Selections> block:

 <ModelValidation>

(c) Sparx Systems 2021 Page 318 of 461

MDG Technologies 2 September, 2021

 <RuleSet name="BPMNRules"/> <!-- ruleset ID
defined in the Project.DefineRuleCategory call -->

 <RuleSet name="MVR7F0001"/> <!-- notice you can
turn on/off system rules as well! -->

 </ModelValidation>

Ensure that the ruleset IDs do not contain any spaces.

Black List

To specify a set of rules as a black-list (that is, anything
added to this list is turned OFF), open your MTS file in a
text editor and copy and paste this <ModelValidation>
block at the top level inside the <MDG.Selections> block:

 <ModelValidation isBlackList="true">

 <RuleSet name="BPMNRules"/>

 <RuleSet name="MVR7F0001"/>

 </ModelValidation>

In this example, "BPMNRules" is the rule-set ID defined in
the Project.DefineRuleCategory call - see Project Class for
details. "MVR7F0001" is a built-in rule-set. These
validation options are applied when you activate the
appropriate technology. The global (default) technology has
all rules turned on.

(c) Sparx Systems 2021 Page 319 of 461

MDG Technologies 2 September, 2021

Incorporate Model Wizard Templates

When a user creates a model within their project, they can
choose the type of model to develop from a range of
system-supplied model templates presented through the
Model Wizard. You can also develop custom model
templates and add them to this list via your MDG
Technology.

Access

You edit the .mts file directly, using whatever file browser
you work with to locate and open the file.

Add custom model wizard templates to MDG
Technology

Ste
p

Action

1 Create a Package that contains all sub-Packages,
diagrams, elements, notes and information links that
you want to provide in your model template.
See the EAExample.eap model for illustrations of

(c) Sparx Systems 2021 Page 320 of 461

MDG Technologies 2 September, 2021

what you might include, or create a model from a
standard template and see what is generated.
As a model template, the Package would be self
contained and not contain any dependencies or other
links to elements outside the Package.

2 Export your Package to XML.
If you want your template to have supporting
documentation displayed in the right-hand panel of
the Model Wizard, create a .rtf file containing this
documentation in the same directory location as the
XML file. The .rtf file must also have the same
filename as the XML file. You could also create the
.rtf file within a Document Artifact element in the
model, and then export the file (the 'Document-Edit
> File > Save as (Export to File)' ribbon option) to
the location of the Pattern XML file. This keeps the
documentation within your development model.

3 Create a reference to the XML file in the .mts file;
open your .mts file in a text editor and copy and
paste this <ModelTemplates> block at the top level
inside the <MDG.Selections> block:

 <ModelTemplates>
 <Model name="Template Name"
 location="MyTemplatePackage.xml"
 default="yes"

(c) Sparx Systems 2021 Page 321 of 461

MDG Technologies 2 September, 2021

 icon = "34"
 isFramework="false"/>
 </ModelTemplates>

You can include as many <ModelTemplates> blocks
in your .mts file as you have model templates.
The attributes within a <ModelTemplates> block
have these meanings:

Model name: The name of the model template to·

show in the Model Wizard window, which
displays when you create a new model or when
you execute the 'Add a Model using Wizard' menu
option
location: The path of the XML file that contains·

the export of the model template Package, relative
to the location of the ModelPatterns directory in
the Enterprise Architect install path:
 - If the XML file is directly in the
ModelPatterns directory then the path just contains
the file name (for example, MyPattern1.xml)
 - If you have placed all your files in a
subdirectory of ModelPatterns, the path includes
the directory name (for example,
MyTechnology\MyPattern2.xml)
 - You can also specify a fixed path (for
example, C:\Program
Files\MyTechnology\MyPattern3.xml)
icon: Contains an index to Enterprise Architect's·

(c) Sparx Systems 2021 Page 322 of 461

MDG Technologies 2 September, 2021

base icons list; to show the appropriate view icon,
use one of these values:
 - 29 = Use Case
 - 30 = Dynamic
 - 31 = Class
 - 32 = Component
 - 33 = Deployment
 - 34 = Simple
isFramework: Defines the possible uses of a model·

Pattern; there are three possible values:
 - isFramework="true" - never strip GUIDs; the
Pattern is intended
 as a re-usable Package for any model
 - isFramework="optional" - prompt to strip
GUIDs; the Pattern is
 intended as a re-usable Package, but the user
can choose
 - isFramework="false" - always strip GUIDs
(the default, if not
 stated); the Pattern could be applied multiple
times within the
 one model

4 Regenerate the MDG Technology using the edited
MTS file. The .rtf documentation file you created for
each Template is automatically paired with the
template XML file and incorporated into the
technology.

(c) Sparx Systems 2021 Page 323 of 461

MDG Technologies 2 September, 2021

5 To allow multiple custom categories per technology,
go to the <Documentation> row of the MDG
Technology file and add the attributes:

categoryList, which contains either a·

comma-separated list of custom category names,
or the name of a single built-in category (such as
'Business')
categoryMappings, which contains a list of option·

pairs of the form 'Group Name 1=Category Name
A;Group Name 2=Category Name B;" and so on;
the category names must all be in 'categoryList'

In the <ModelTemplates> block of the MDG
Technology file, each <Model> row will have an
attribute groupName. The group name must be in
categoryMappings.

(c) Sparx Systems 2021 Page 324 of 461

MDG Technologies 2 September, 2021

Add Import/Export Scripts

In Enterprise Architect, it is possible to import Packages
from and export (or Publish) Packages to external files in a
range of XMI and XML formats. You can also incorporate
this facility in your MDG Technology, adding a script that
contains your own Extensible Stylesheet Language
Transformation (XSLT) to convert between the file formats.

Incorporate an Export (Publish) script

Ste
p

Description

1 In your preferred editor, create an XSLT to convert
from the source format (as listed on the 'Publish
Model Package' dialog) into the target format you
are generating.

2 In Enterprise Architect, open the Scripter window
and create a script under your preferred script engine
as a Normal script.
Cut and paste the XSLT into the script editor.

3 Add the script to your MDG Technology, in the
MDG Technology Creation Wizard.

(c) Sparx Systems 2021 Page 325 of 461

MDG Technologies 2 September, 2021

4 Make any additions to the technology .mts file you
require, then use the MDG Technology Creation
Wizard again to fully generate the technology .xml
file.
Open the technology .xml file (not the .mts file) in a
text editor and locate the <Script section.

5 Edit the <Script line to set the appropriate name,
type and language:

name is the technology option text to display in·

the 'Publish > Technologies' ribbon panel
type is the word 'Publish-' followed by the name of·

the file format to export, as listed on the 'Publish
Model Package' dialog
language is XSLT·

For example:
 <Script
 name="YourTechnology"
 type="Publish-UML 2.1(XMI 2.1)"
 language="XSLT">
 <Content

xmlns:dt="urn:schemas-microsoft-com:datatypes"
dt:dt="bin.base64">
 </Content>
 </Script>

6 Save the MDG Technology .xml file, and deploy it

(c) Sparx Systems 2021 Page 326 of 461

MDG Technologies 2 September, 2021

on your system.

Incorporate an Import script

Ste
p

Description

1 In your preferred editor, create an XSLT to convert
from the source format into the target XMI format.

2 In Enterprise Architect, open the Scripter window
and create a script under your preferred script engine
as a Normal script.
Cut and paste the XSLT into the script editor.

3 Add the script to your MDG Technology, in the
MDG Technology Creation Wizard.

4 Make any additions to the technology .mts file you
require, then use the MDG Technology Creation
Wizard again to fully generate the technology .xml
file.
Open the technology .xml file (not the .mts file) in a
text editor and locate the <Script section.

Edit the <Script line to set the appropriate name,

(c) Sparx Systems 2021 Page 327 of 461

MDG Technologies 2 September, 2021

5 type and language:
name is the technology option text to display in·

the 'Publish > Technologies > Publish' ribbon
option in Enterprise Architect
type is the word 'Import-' followed by the name of·

the XMI file format to generate, as listed on the
'Publish Model Package' dialog
language is XSLT·

For example:
 <Script
 name="YourTechnology"
 type="Import-UML 2.1(XMI 2.1)"
 language="XSLT">
 <Content

xmlns:dt="urn:schemas-microsoft-com:datatypes"
dt:dt="bin.base64">
 </Content>
 </Script>

6 Save the MDG Technology .xml file, and deploy it
on your system.

Notes

(c) Sparx Systems 2021 Page 328 of 461

MDG Technologies 2 September, 2021

Create the content of your scripts in XSLT 1.0·

(c) Sparx Systems 2021 Page 329 of 461

MDG Technologies 2 September, 2021

Deploy An MDG Technology

An MDG Technology can be deployed in one of two ways:
as a .xml file or from an Add-In.

Deploy From a .xml File

To deploy your technology as a file, you have a number of
choices:

Import the technology .xml file into the·

%APPDATA%\Sparx Systems\EA\MDGTechnologies
folder (for your personal use)

Import the technology .xml file into the 'Resources' tab of·

the Browser window (for all project users to access)

Copy the file to the MDGTechnologies folder under your·

Enterprise Architect installation directory (by default this
is C:\Program Files\Sparx Systems\EA); when you restart
Enterprise Architect, your MDG Technology is deployed

Copy the file to any folder in your file system, including·

network drives - use the 'Specialize > Technologies >
Manage-Tech' ribbon option, click on the Advanced
button and add the folder to the 'Technologies' path; this
deployment method enables you to quickly and easily
deploy a technology to all Enterprise Architect users on a
LAN

Upload the file to an internet or intranet location: use the·

'Specialize > Technologies > Manage-Tech' ribbon

(c) Sparx Systems 2021 Page 330 of 461

MDG Technologies 2 September, 2021

option, click on the Advanced button and add the URL to
the 'Technologies' path; this deployment method enables
you to quickly and easily deploy a technology to an even
wider group of Enterprise Architect users

Deploy From an Add-In

To deploy your Technology from an Add-In, you must
write an EA_OnInitializeTechnologies function. This
example is written in VB.Net:

 Public Function EA_OnInitializeTechnologies(ByVal
Repository As EA.Repository) As Object

 EA_OnInitializeTechnologies =
My.Resources.MyTechnology

 End Function

(c) Sparx Systems 2021 Page 331 of 461

MDG Technologies 2 September, 2021

Shape Scripts

The elements and connectors you initially use in modeling
conform to the standard UML notation in terms of shape,
color and labeling. You can, however, extend the standard
objects to create new ones, and customize the appearance of
these new objects using Shape Scripts to define the exact
feature you want to impose on the default - or main - shape.
You create a Shape Script in a dedicated scripting language,
to define the new shape, orientation, color and labeling of
the element or connector. Each script is associated with a
stereotype, and every element or connector that has that
stereotype will adopt the appearance defined by the Shape
Script.

If you want to standardize the appearance, to apply to many
elements, you can attach the Shape Script to an attribute of a
Stereotype element in an MDG Technology Stereotype
Profile.

If you have applied Shape Scripts to certain elements and/or
connectors but do not want to show those Shape Scripts on a
particular diagram, you can turn off the display of Shape
Scripts on that diagram using the 'Properties' dialog for the
diagram.

(c) Sparx Systems 2021 Page 332 of 461

MDG Technologies 2 September, 2021

Getting Started With Shape Scripts

As Shape Scripts are associated with stereotypes, you define
them through the 'Stereotypes' tab of the 'UML Types'
dialog; each stereotype can have one Shape Script. The
process of setting up a Shape Script is quite simple yet very
flexible.

Access

Ribbon Configure > Reference Data > UML
Types > Stereotypes

Shape Script Process

Ste
p

Action

1 Select the stereotype to which to attach the Shape
Script, from the list on the right of the dialog.
You select an existing stereotype, but if a suitable
one is not available you can create a new stereotype
that, once saved, displays in the list and can be

(c) Sparx Systems 2021 Page 333 of 461

MDG Technologies 2 September, 2021

selected.

2 In the 'Override Appearance' panel, select the 'Shape
Script' radio button and then click on the Assign
button.
The Shape Editor displays.

3 Type or copy the script into the Edit window.
To review the shape in the 'Preview' panel, click on
the Refresh button.

4 If you define a composite Shape Script (a main
shape with decorations and labels, or separate parts
such as a connector with source-end and target-end
shapes), click on the Next Shape button to page
through the components of the shape, in the
'Preview' panel.

5 Once you have finished writing your Shape Script,
click on the OK button to return to the 'Stereotypes'
tab.
Then click on the Save button to save the Shape
Script and its assignment to the stereotype.

6 Drag and drop the appropriate standard UML
element or connector into your diagram. The object
will be of the type you selected as the 'Base Class' of
the stereotype.
Right-click on the object and select the 'Properties'

(c) Sparx Systems 2021 Page 334 of 461

MDG Technologies 2 September, 2021

option.
On the 'Properties' dialog, click on the 'Stereotype'
drop-down arrow, select the stereotype you created
and click on the OK button.
The object's shape now reflects the Shape Script
assigned to the stereotype.

Notes

Using a Shape Script to modify an element's appearance·

makes some of the normal 'Appearance' context menu
options redundant for that element, so they will be
disabled

It is not possible to modify or override Shape Scripts for·

types that are defined in an MDG Technology

Font selection is not supported in Shape Scripts because·

the best user experience is achieved by allowing the user
to set fonts themselves

UML defines the standard mechanism for extending the·

syntax of UML to be through Profiles; for this reason
Shape Scripts can not be applied to any element
independently of a stereotype

Shape Scripts cannot be used for connectors that use the·

Bezier line style

Shape Scripts do not currently support:·

(c) Sparx Systems 2021 Page 335 of 461

MDG Technologies 2 September, 2021

 - Looping constructs
 - String Manipulation
 - Arithmetical Operations
 - Variable declaration

(c) Sparx Systems 2021 Page 336 of 461

MDG Technologies 2 September, 2021

Shape Editor

When you create a Shape Script through the 'Stereotypes'
tab of the 'UML Types' dialog, you write the script using the
Shape Editor. This provides the facilities of the Common
Code Editor, including Intelli-sense for Shape Script
attributes and functions.

Access

Ribbon Configure > Reference Data > UML
Types > Stereotypes : (select or specify
stereotype) : Shape Script + Assign

Editor Options

Option Action

Format Click on the drop-down arrow and
select the Shape Script version (currently
only EAShapeScript 1.0 is available).

Import Click on this button to import a Shape

(c) Sparx Systems 2021 Page 337 of 461

MDG Technologies 2 September, 2021

Script from a text file (.txt). A file
browser displays through which you can
locate the file to import.
When you have located and selected the
file, click on the Open button to import
the script into the editing panel.

Export Click on this button to export a Shape
Script to a text file. A file browser
displays through which you can specify
the file to export to.
When you have identified the file, click
on the Save button to complete the
export and return to the Shape Editor.

<editing
panel>

Type the script commands in this panel.

OK Click on this button to exit from the
Shape Editor.
To SAVE your Shape Script, click on the
Save button on the 'Stereotypes' tab.

Next Shape If you have a shape made up of different
components, click on this button to rotate
through the multiple shape definitions in
the 'Preview' panel.

Refresh Click on this button to parse your script

(c) Sparx Systems 2021 Page 338 of 461

MDG Technologies 2 September, 2021

and display the result in the Preview
window.

(c) Sparx Systems 2021 Page 339 of 461

MDG Technologies 2 September, 2021

Write Scripts

To create an alternative representation for an element or
connector, you write a Shape Script that defines the size,
shape, orientation and color of the representation. A Shape
Script contains a number of sections for defining different
aspects of the shape; for an element these include:

Main object·

Labels·

Decoration (for example, a Document element might·

contain an icon depicting a document)

For a connector the sections include:

Main object·

Shape Source·

Shape Target·

Labels·

Shape Scripts operate on the basis that the default (UML)
representation is used unless the script contains an
alternative definition. That is:

If you have a Shape Script containing just a decoration,·

this decoration is added on top of the normally-drawn
object

If you have an empty shape routine, it overrides the·

default; so, a blank 'shape label' prevents the creation of
the normal floating text label for elements that have them

You can also comment your scripts using C-style comments;

(c) Sparx Systems 2021 Page 340 of 461

MDG Technologies 2 September, 2021

for example:

 // C Style Single Line comment

 /* Multi Line

 comment supported */

Scripting is not case-sensitive: 'Shape' is the same as
'shape'.

Script Structure

Layout Description

Example of
Element
Script Layout

shape main
 {
 // draw the object
 }
 shape label
 {
 // draw a floating text label
 }
 decoration <identifier>
 {
 // draw a 16x16 decoration inside
the object
 }

(c) Sparx Systems 2021 Page 341 of 461

MDG Technologies 2 September, 2021

The < identifier > string is an
alphanumeric word.

Example of
Connector
Script Layout

shape main
 {
 // draw the line
 }
 shape target
 {
 // draw the shape at the target end
 }
 shape source
 {
 // draw the shape at the source end
 }
 label <positionLabel>
 {
 // define the text for the label
 }

The <positionLabel> string can be any of:
lefttoplabel·

leftbottomlabel·

middletoplabel·

middlebottomlabel·

righttoplabel·

(c) Sparx Systems 2021 Page 342 of 461

MDG Technologies 2 September, 2021

rightbottomlabel·

Sub-shapes A shape can have Sub-shapes, which
must be declared after the main Shape
Script, but called from the Method
commands.
This is an example of the ordering for
declarations:

 shape main
 {
 // Initialisation Attributes - these
must be before drawing commands
 noshadow = "true";
 h_align = "center";

 //drawing commands (Methods)
 rectangle (0,0,100,100);
 println ("foo bar");

 // call the sub-shape
 addsubshape ("red", 20, 70);

 // definition of a sub-shape
 shape red
 {

(c) Sparx Systems 2021 Page 343 of 461

MDG Technologies 2 September, 2021

 setfillcolor (200,50,100);
 rectangle (50,50,100,100);
 }
 }

 //definition of a label
 shape label
 {
 setOrigin ("SW",0,0);
 println ("Object: #NAME#");
 }

 //definition of a Decoration
 decoration triangle
 {
 // Draw a triangle for the
decoration
 startpath ();
 moveto (0,30);
 lineto (50,100);
 lineto (100,0);
 endpath ();
 setfillcolor (153,204,255);
 fillandstrokepath ();
 }

(c) Sparx Systems 2021 Page 344 of 461

MDG Technologies 2 September, 2021

The shape resulting from this script is:

Order of
declaration

Shapes can consist of Attribute
declarations, Command calls and
Sub-shape definitions, which must appear
in that order; that is, Attribute
declarations must appear before all
Command calls and Sub-shape
definitions must appear last.

(c) Sparx Systems 2021 Page 345 of 461

MDG Technologies 2 September, 2021

Shape Attributes

When you define a shape using a Shape Script, you define
the properties of that shape using attributes. Properties
include:

The position of the shape relative to the diagram and to·

other elements

The positions of components of the shape relative to the·

shape borders

Whether the shape has user-editable regions·

Whether the shape can be resized, scaled, rotated or·

docked

Attribute Syntax

attribute "=" value ";"

Example

 shape main

 {

 //Initialisation attributes - must be before drawing
commands

 noshadow = "true";

(c) Sparx Systems 2021 Page 346 of 461

MDG Technologies 2 September, 2021

 h_align = "center";

 //drawing commands

 rectangle (0,0,100,100);

 println ("foo bar");

 }

Attributes

Attribute
Name

Description

bold string
Description: Set to True if you want all
print commands in the current shape or
sub-shape to be displayed in bold.
Valid values: True or False (default =
False)

italic string
Description: Set to True if you want all
print commands in the current shape or
sub-shape to be displayed in italics.
Valid values: True or False (default =
False)

bottomAncho (int,int)

(c) Sparx Systems 2021 Page 347 of 461

MDG Technologies 2 September, 2021

rOffset Description: When creating a Shape
Script for an embedded element (such as
a Port), use this attribute to offset the
shape from the bottom edge of its parent.
For example:
 bottomAnchorOffset= (0,-10);
 move embedded element up 10 pixels
from the bottom edge.

dockable string
Description: Makes the shape default to
dockable, so that it can be aligned with
and joined to other elements (both other
Shape Scripts and standard elements) on
a diagram. You cannot reverse the
dockable status with the 'Appearance'
menu option; to change the status, you
must edit the Shape Script.
Valid values: standard or off

editableField string
Description: Defines a shape as an
editable region of the element.
This field impacts element shapes only,
line glyphs are not supported.
Valid Values: alias, name, note,
stereotype

(c) Sparx Systems 2021 Page 348 of 461

MDG Technologies 2 September, 2021

endPointY,
endPointX

integer
Description: Only used for the reserved
target and source shapes for connectors;
this point determines where the main
connector line connects to the end shapes.
Default: 0 and 0

fixedAspectR
atio

string
Description: Set to True to fix the aspect
ratio. Do not use this if you do not want
to fix the aspect ratio.

h_Align string
Description: Affects horizontal placement
of printed text and sub-shapes depending
on the layoutType attribute.
Valid values: left, center, or right

layoutType string
Description: Determines how sub-shapes
are sized and positioned.
Valid values: leftright, topdown, border

leftAnchorOf
fset

(int,int)
Description: When creating a Shape
Script for an embedded element (such as
a Port), use this attribute to offset the
shape from the left edge of its parent.

(c) Sparx Systems 2021 Page 349 of 461

MDG Technologies 2 September, 2021

For example:
 leftAnchorOffset= (10,0);
 move embedded element right 10
pixels from the left edge

noShadow string
Description: Set to True to suppress the
shape's shadow from being rendered.
Valid values: True or False (default =
False)

orientation string
Description: Applies to decoration shapes
only, to determine where the decoration
is positioned within the containing
element glyph.
Valid values: NW, N, NE, E, SE, S, SW,
W

preferredHei
ght

Description: Used by the border
layoutType - north and south.
Used in drawing the source and target
shapes for connectors to determine how
wide the line is.

preferredWid
th

Description: Used by the border
layoutType - east and west.
Used by leftright layoutType shapes

(c) Sparx Systems 2021 Page 350 of 461

MDG Technologies 2 September, 2021

where scalable is false to determine how
much space they occupy for layout
purposes.

rightAnchor
Offset

(int,int)
Description: When creating a Shape
Script for an embedded element (such as
a Port), use this attribute to offset the
shape from the right edge of its parent.
For example:
 rightAnchorOffset= (- 10,0);
 move embedded element left 10 pixels
from the right edge.

rotatable string
Description: Set to False to prevent
rotation of the shape. This attribute is
only applicable to the source and target
shapes for line glyphs.
Valid values: True or False (default =
True)

scalable string
Description: Set to False to stop the
shape from being relatively sized to the
associated diagram glyph.
Valid values: True or False (default =
True)

(c) Sparx Systems 2021 Page 351 of 461

MDG Technologies 2 September, 2021

topAnchorOf
fset

(int,int)
Description: When creating a Shape
Script for an embedded element (such as
a Port), use this attribute to offset the
shape from the top edge of its parent.
For example:
 topAnchorOffset= (0,10);
 move embedded element down 10
pixels from the top edge.

v_Align string
Description: Affects vertical placement of
printed text and sub-shapes depending on
the layoutType attribute.
Valid values: top, center, or bottom

(c) Sparx Systems 2021 Page 352 of 461

MDG Technologies 2 September, 2021

Drawing Methods

When you create a shape using a Shape Script, you define
the values of the shape using methods. The values include
things such as:

What the shape is - a rectangle, a line, a sphere·

The size of the shape·

The colors of the shape and borders·

The compartments and compartment text the shape has·

The text and labels displayed in and around the shape·

Whether the shape consists of or includes a captured·

image

You can list the valid methods (commands) for any point in
a script by pressing Ctrl+Space.

Method Syntax

<MethodName> "(" <ParameterList> ")";";

Example

shape main

{

 // Initialisation Attributes - these must be before drawing

(c) Sparx Systems 2021 Page 353 of 461

MDG Technologies 2 September, 2021

commands

 noshadow = "true";

 h_align = "center";

 //drawing commands (Methods)

 rectangle (0,0,100,100);

 println ("foo bar");

}

Methods

Method
Name

Description

addsubshape(
string
shapename(in
t width, int
height))

Adds a sub-shape with the name
'shapename' that must be defined within
the current shape definition.

appendcompa
rtmenttext(str
ing)

Appends additional strings to a
compartment's text.
The compartment the text is added to
depends on the compartment name set
using 'setcompartmentname' prior to
using 'appendcompartmenttext'.
This method must be called to have the

(c) Sparx Systems 2021 Page 354 of 461

MDG Technologies 2 September, 2021

compartment displayed.

arc(int left,
int top, int
right, int
bottom, int
startingpointx
, int
startingpointy
, int
endingpointx,
int
endingpointy
)

Draws an elliptical anticlockwise arc with
the ellipse having extents at left, top,
right and bottom.
The start point of the arc is defined by the
intersection of the ellipse and the line
from the center of the ellipse to the point
(startingpointx, startingpointy).
The end of the arc is similarly defined by
the intersection of the ellipse and the line
from the center of the ellipse to the point
(endingpointx, endingpointy).
For example:
 Arc(0, 0, 100, 100, 95, 0, 5, 0);

arcto(int left,
int top, int
right, int
bottom, int
startingpointx

As for the arc method, except that a line
is drawn from the current position to the
starting point of the arc, and then the
current position is updated to the end
point of the arc.

(c) Sparx Systems 2021 Page 355 of 461

MDG Technologies 2 September, 2021

, int
startingpointy
, int
endingpointx,
int
endingpointy
)

bezierto(int
controlpoint1
x, int
controlpoint1
y, int
controlpoint2
x, int
controlpoint2
y, int
endpointx, int
endpointy)

Draws a bezier curve and updates the pen
position.

defSize(int
width, int
height)

Sets the default size of the element.
This can appear in IF and ELSE clauses
with different values in each, and causes
the element to be resized automatically
each time the values change.
 if(HasTag("horizontal","true"))
 {
 defSize(100,20);
 rectangle(0,0,100,100);

(c) Sparx Systems 2021 Page 356 of 461

MDG Technologies 2 September, 2021

 }
 else
 {
 defSize(20,100);
 rectangle(0,0,100,100);
 }
This example sets the shape to the
specified default size each time the
Tagged Value 'horizontal' is changed.
When this is set, Alt+Z also resizes the
shape to the defined dimensions.
The minimum value for both int width
and int height is 10.

drawnativesh
ape()

Renders the shape in its usual, non Shape
Script notation; subsequent drawing
commands are superimposed over the
native notation.
This method is only supported for
element Shape Scripts; line Shape Scripts
are not supported.

drawparentsh
ape()

Used when extending non-UML Object
types.
Renders the shape as defined from a
parent stereotype. Behaves identically to
drawnativeshape() if no inherited Shape
Script is available.

(c) Sparx Systems 2021 Page 357 of 461

MDG Technologies 2 September, 2021

ellipse(int
left, int top,
int right, int
bottom)

Draws an ellipse with extents defined by
left, top, right and bottom.

endpath() Ends the sequence of drawing commands
that define a path.

fillandstrokep
ath()

Fills the previously defined path with the
current fill color, then draws its outline
with the current pen.

fillpath() Fills the previously defined path with the
current fill color.

getdefaultfill
color()

Gets the default fill color for an element.
This can be the standard fill color for all
elements or, if the 'Use Element Group
Style' option is selected on the 'Diagram
> Appearance' page of the 'Preferences'
dialog, the default fill color defined for
the element type.

getdefaultline
color()

Gets the default line color for an element.
This can be the standard line color for all
elements or, if the 'Use Element Group
Style' option is selected on the 'Diagram
> Appearance' page of the 'Preferences'

(c) Sparx Systems 2021 Page 358 of 461

MDG Technologies 2 September, 2021

dialog, the default line color defined for
the element type.

hidelabel(stri
ng
labelname)

Hides the label specified by labelname,
where labelname is one of these values:

middletoplabel·

middlebottomlabel·

lefttoplabel·

leftbottomlabel·

righttoplabel·

rightbottomlabel·

Note: This functions by setting the
specified label to hidden. Any subsequent
changes to the script will not show the
label again.

The recommended way to suppress a
label is to override that shape. For
example, suppress the default stereotype
label:
shape middlebottomlabel
{

print("");
}

image(string Draws the image that has the name

(c) Sparx Systems 2021 Page 359 of 461

MDG Technologies 2 September, 2021

imageId, int
left, int top,
int right, int
bottom)

imageId in the Image Manager.
The image must exist within the model in
which the stereotype is used; if it does not
already exist in the model, you must
import it as reference data or select it
from within a technology file.
If the image is in a technology file, it
should have a filename of the format
<technology
ID>::<imagename>.<extension>.

lineto(int x,
int y)

Draws a line from the current cursor
position to a point specified by x and y,
and then updates the pen cursor to that
position. (See the Notes section also.)

moveto(int x,
int y)

Moves the pen cursor to the point
specified by x and y.

polygon(int
centerx,int
centery, int
numberofside
s, int radius,
float rotation)

Draws a regular polygon with center at
the point (centerx, centery), and
numberofsides number of sides.

print(string
text)

Prints the specified text string.
You cannot change the font size or type
of this text.

(c) Sparx Systems 2021 Page 360 of 461

MDG Technologies 2 September, 2021

printifdefined
(string
propertyname
, string
truepart(,
string
falsepart))

Prints the 'truepart' if the given property
exists and has a non-empty value,
otherwise prints the optional 'falsepart'.
You cannot change the font size or type
of this text.

println(string
text)

Appends a line of text to the shape and a
line break.
You cannot change the font size or type
of this text.

printwrapped
(string text)

Prints the specified text string, wrapped
over multiple lines if the text is wider
than its containing shape.
You cannot change the font size or type
of this text.

rectangle(int
left, int top,
int right, int
bottom)

Draws a rectangle with extents at left,
top, right, bottom. Values are
percentages.

roundrect(int
left, int top,
int right, int
bottom, int

Draws a rectangle with rounded corners,
with extents defined by left, top, right and
bottom.
The size for the corners is defined by

(c) Sparx Systems 2021 Page 361 of 461

MDG Technologies 2 September, 2021

abs_cornerwi
dth, int
abs_cornerhe
ight)

abs_cornerwidth and abs_cornerheight;
these values do not scale with the shape.

setcompartm
entname(strin
g)

Sets a compartment name to the string
provided.
This method must be used before calling
appendcompartmenttext; calling this after
calling appendcompartmenttext clears
any text that has already been added to
the compartment.

setdefaultcol
ors()

Returns the brush and pen color to the
default settings, or to the user-defined
colors if available.

setfillcolor(in
t red, int
green, int
blue) or
setfillcolor(C
olor
newColor)

Sets the fill color.
You can specify the required color by
defining RGB values or using a color
value returned by any of the Color
Queries such as:
 GetUserFillColor() or
 GetUserBorderColor()
In all cases setfillcolor takes precedence
over any color definition that applies to
the element.

(c) Sparx Systems 2021 Page 362 of 461

MDG Technologies 2 September, 2021

setfixedregio
n(int xStart,
int yStart, int
xEnd, int
yEnd)

Fixes a region in a connector into which a
sub-shape can be drawn, so that the
sub-shape is not rescaled with the length
or orientation of the connector line.
For an example, see the 'Rotation
Direction' script in the Example Scripts
topic.

setfontcolor(i
nt red, int
green, int
blue) or
setfontcolor(
Color
newColor)

Sets the font color of a text string.
You can specify the required color by
defining RGB values or using a color
value returned by any of the Color
Queries such as:
 GetUserFontColor() or
 GetUserFillColor()
You can use this command with any of
the text print commands.

setlinestyle(st
ring
linestyle)

Changes the stroke pattern for commands
that use the pen.
string linestyle: has these valid styles:

solid·

dash·

dot·

dashdot·

dashdotdot·

double·

(c) Sparx Systems 2021 Page 363 of 461

MDG Technologies 2 September, 2021

(See the Notes section also.)

setorigin(stri
ng
relativeTo,
int xOffset,
int yOffset)

Positions floating text labels relative to
the main shape.

relativeTo is one of N, NE, E, SE, S,·

SW, W, NW, CENTER
xOffset and yOffset are in pixels, not·

percentage values, and can be negative

setpen(int
red, int green,
int blue, int
penwidth) or
setpen(Color
newcolor, int
penwidth)

Sets the pen to the defined color and sets
the pen width.
This method is only for line-drawing
commands. It does not affect any text
print commands.

setpencolor(i
nt red, int
green, int
blue) or
setpencolor(
Color
newColor)

Sets the pen color.
You can specify the required color by
defining RGB values or using a color
value returned by any of the Color
Queries such as:
 GetUserFillColor()
This method is only for line-drawing
commands. It does not affect any text
print commands.

setpenwidth(i Sets the width of the pen. Pen width

(c) Sparx Systems 2021 Page 364 of 461

MDG Technologies 2 September, 2021

nt penwidth) should be between 1 and 5.
This method is only for line-drawing
commands. It does not affect any text
print commands.

showlabel(str
ing
labelname)

Reveals the hidden label specified by
labelname, where labelname is one of
these values:

middletoplabel·

middlebottomlabel·

lefttoplabel·

leftbottomlabel·

righttoplabel·

rightbottomlabel·

startcloudpat
h(puffWidth,
puffHeight,
noise)

Similar to startpath, except that it draws
the path with cloud-like curved segments
(puffs).
Parameters:

float puffWidth (default = 30), the·

horizontal distance between puffs
float puffHeight (default = 15), the·

vertical distance between puffs
float noise (default = 1.0), the·

randomization of the puffs' positions

startpath() Starts the sequence of drawing

(c) Sparx Systems 2021 Page 365 of 461

MDG Technologies 2 September, 2021

commands that define a path.

strokepath() Draws the outline of the previously
defined path with the current pen.

Notes

If you draw a Shape Script for a line consisting of several·

segments and define different line styles for the segments,
all segments except for the center segment use the first
line style defined; the center segment uses the second line
style defined, as shown:

shape main
{

 noShadow=true;

 // This pen style will be ignored because nothing is
drawn.

 setpen(0,0,0,1);

 SetLineStyle("solid");

 // This pen style will be used for non-center
segments because it is

 // the first that is used for drawing.

 setpen(255,0,0,2);

(c) Sparx Systems 2021 Page 366 of 461

MDG Technologies 2 September, 2021

 SetLineStyle("dash");

 moveto(0,0);

 lineto(50,0);

 // This line style is used in the center segment, but
no others because it

 // isn't the first one drawn with.

 setpen(0,255,0,1);

 SetLineStyle("dot");

 lineto(100,0);

 // This line style is used for an annotation in the
center segment only.

 setpen(0,0,0,1);

 SetLineStyle("solid");

 setfixedregion(40,-10,60,10);

 ellipse(40,-10,60,10);

 }

A Dependency connector with this Shape Script might
resemble this:

(c) Sparx Systems 2021 Page 367 of 461

MDG Technologies 2 September, 2021

(c) Sparx Systems 2021 Page 368 of 461

MDG Technologies 2 September, 2021

Color Queries

In defining your shape, you might want to retain the fill,
border and font colors you have already defined for the base
shape. You can set the color definition using a color query
to retrieve arguments for the SetPenColor and SetFillColor
commands. These queries can be used in place of
arguments.

getUserFillColor() - returns the user-selected fill color of·

the current element

getUserBorderColor() - returns the user-selected·

border/line color of the current element

getUserFontColor() - returns the user-selected text font·

color of the current element

getUserPenSize() - returns the user-selected line thickness·

ofthe current element

getDefaultFillColor() - returns the default fill color for the·

current element without using the colors applied to this
element

getDefaultLineColor() - returns the default line color for·

the current element without using the colors applied to
this element

getStatusColor() - returns the status color for the current·

element; if no color is defined for this status, or status
colors are not displayed against this type, this query will
return the same as getUserFillColor

(c) Sparx Systems 2021 Page 369 of 461

MDG Technologies 2 September, 2021

For example:

 shape main

 {

 setfillcolor(getuserfillcolor());

 setpencolor(getuserbordercolor());

 rectangle(0,0,100,100);

 }

Notes

The user colors are those that would be set on the base·

object if it were not being modified by the Shape Script;
they would have been defined using - in order of
decreasing precedence - the Format toolbar options, the
'Appearance' options (F4) or the 'Preferences' dialog
('Start> Desktop > Preferences > Preferences')

Because the user colors are those defined for an element·

to which the stereotype and Shape Script are subsequently
applied, they cannot be depicted in the 'Preview' panel of
the Shape Editor

(c) Sparx Systems 2021 Page 370 of 461

MDG Technologies 2 September, 2021

Conditional Branching

You can incorporate condition branching in your Shape
Scripts, using either the 'IfElse' statement or query methods
that evaluate to True or False.

When you use these conditional branching statements, you
can use the return command to terminate execution of the
script when a branch condition has been satisfied. The
Example Scripts topic provides several examples of this,
such as the 'Return Statement Shape' script.

(c) Sparx Systems 2021 Page 371 of 461

MDG Technologies 2 September, 2021

Query Methods

When you are using IfElse statements in a Shape Script, the
condition is usually that the object has a certain tag or
property, and possibly if that tag or property has a particular
value. You can set up the conditional statement to check for
the property and value using one of the two query methods
described here.

Queries

Method Description

boolean
HasTag(strin
g tagname,
(string
tagvalue))

HasTag(tagname) evaluates to 'True' if
'tagname' exists and its value is
non-empty; otherwise it evaluates to
'false'.
HasTag(tagname,tagvalue) evaluates to
'True' if 'tagname' exists and its value is
'tagvalue'.
HasTag(tagname,tagvalue) will also
evaluate to 'True' if 'tagname' doesn't
exist and 'tagvalue' is empty, treating
'empty' and 'missing' as having the same
meaning in this context.

boolean Evaluates to True if the associated

(c) Sparx Systems 2021 Page 372 of 461

MDG Technologies 2 September, 2021

HasProperty(
string
propertyname
,
(string
propertyvalue
))

element has a property with the name
propertyname.
If the second parameter propertyvalue is
provided, the property must be present,
and the value of the property has to be
equal to propertyvalue for the method to
evaluate to True.
The propertyvalue parameter can have
multiple values, separated by commas;
for example:

if(HasProperty("Type","Class,Action,Act
ivity,Interface"))
 {
 SetFillColor(255,0,0);
 DrawNativeShape();
 }
This Shape Script will use the standard
element fill color for elements of any type
other than one of the four specified in the
if(HasProperty()) statement; elements of
any of those four types will display with a
red fill.

HasProperty and user-selected settings

(c) Sparx Systems 2021 Page 373 of 461

MDG Technologies 2 September, 2021

A particular application of the HasProperty() method is to
check for property settings where you have provided the
facility for the user to set that property for a specific
instance of use of the stereotyped element. So, the user can
drag the element onto the diagram and, through the element
context menu, set one or more properties that the Shape
Script responds to in rendering the diagram object. The
element might, therefore, have one appearance on one
diagram but a different appearance on another, because it
has different property settings on the two diagrams.

To specify user-selectable properties in your Profile, create
the appropriate Stereotype element and - for each property
being defined - add an attribute with the stereotype
«diagram property» to this element. For the attribute name,
type the text of the option that will display on the context
menu for the stereotyped element; for example, 'Is Red'.
Also give the attribute an alias, which would be the name of
the property as it is stored and which the HasProperty()
method will evaluate. If you set the attribute's initial value to
1, the context menu option will initially be set; if there is no
initial value, the property option will default to not set.

Also define an _image attribute with a Shape Script that
applies the HasProperty() method. In this example, the
Shape Script defines two Class properties (Is Red and Is
Triangle) for the HasProperty() method to check whether the
option is set or not.

shape main

{

 if (HasProperty("IsRed","1"))

(c) Sparx Systems 2021 Page 374 of 461

MDG Technologies 2 September, 2021

 {

 SetFillColor(255,128,128);

 }

 if (HasProperty("IsTriangle","0"))

 {

 Polygon(50,50,3,50,0);

 }

 else

 {

 DrawNativeShape();

 }

 }

When the Stereotype for the extended element type is
defined, it will resemble this:

After the MDG Technology is created and released to your
users, when they drag the stereotyped element from the
Toolbox it will be rendered according to current settings for
the defined properties, which the users can access and re-set

(c) Sparx Systems 2021 Page 375 of 461

MDG Technologies 2 September, 2021

through the context menu, as shown:

(c) Sparx Systems 2021 Page 376 of 461

MDG Technologies 2 September, 2021

Display Element/Connector Properties

A common component of a customized shape is a text
string, which can include the name and value of one of the
properties of the element or connector. To display the text,
you use one of the commands:

print·

println and·

printwrapped·

These all take a string parameter representing the text to be
displayed. The element or connector property can be added
to the text using the substitution macro #<propertyname>#;
for example:

 println("name: #NAME#");

You can display several properties by issuing the commands
several times, once for each property. The element and
connector properties you can display are listed here.
Additionally, you can display Tagged Values by prefixing
the tag name with TAG, as shown:

 print("#TAG:condition#");

You can also test for and display an element's custom
properties in the same way as you do the system-named
properties; for example:

 if(hasproperty("Name","Value"))

 ...

and:

(c) Sparx Systems 2021 Page 377 of 461

MDG Technologies 2 September, 2021

 print("#Name#");

Properties for Element Shape Scripts

actualname - same as 'name' except that it does not react·

to the 'Use Alias if Available' setting

addin - returns a value from an invoked Add-In function;·

syntax:
 addin:<addin_name>, <function_name>, <parameter>
[, <parameter> ...]
Note that in the hasproperty() argument, Enterprise
Architect requires the hash characters for addin values:
 if(hasproperty("#ADDIN:MyAddin,MyValue#",
"TheValue")) {

alias·

author·

cardinality·

classifier·

classifier.actualname - same as 'classifier.name' except·

that it does not react to the 'Use Alias if Available' setting

classifier.alias·

classifier.metatype·

classifier.name·

classifier.stereotype·

classifier.type·

complexity·

(c) Sparx Systems 2021 Page 378 of 461

MDG Technologies 2 September, 2021

concurrency·

datecreated·

datemodified·

diagram.handdrawn·

diagram.mdgtype·

diagram.name·

diagram.stereotype·

diagram.type·

ES (adds the End Stereotype character(s) as determined·

by the "Use extended << and >> characters" option)

haslinkeddocument·

incomingedge (returns "none", "left", "right", "top",·

"bottom", or "multiple")

isabstract·

isactive·

iscomposite·

isdrawcompositelinkicon·

isembedded·

isinparent·

isleaf·

islocked·

isroot·

isspec·

istagged·

isvisible·

(c) Sparx Systems 2021 Page 379 of 461

MDG Technologies 2 September, 2021

keywords·

language·

metatype·

multiplicity·

name·

notes·

notesvisible·

outgoingedge (returns "none", "left", "right", "top",·

"bottom", or "multiple")

packagename·

packagepath·

package.stereotype·

parentedge ("right", "left", "top", "bottom")·

parent.metatype·

partition (returns "vertical" or "horizontal")·

persistence·

phase·

priority·

propertytype·

propertytype.alias·

propertytype.metatype·

propertytype.name·

propertytype.stereotype·

qualifiedname·

rectanglenotation·

(c) Sparx Systems 2021 Page 380 of 461

MDG Technologies 2 September, 2021

scope·

showcomposeddiagram (returns "True" or "False")·

SS (adds the Start Stereotype character(s) as determined·

by the "Use extended << and >> characters" option)

status·

stereotype·

stereotypehidden·

subtype·

type·

version·

visibility·

Properties for Connector Shape Scripts

actualname - same as 'name' except that it does not react·

to the 'Use Alias if Available' setting

addin - returns a value from an invoked Add-In function;·

syntax:
 addin:<addin_name>, <function_name>, <parameter>
[, <parameter> ...]
Note that in the hasproperty() argument, Enterprise
Architect requires the hash characters for addin values:
 if(hasproperty("#ADDIN:MyAddin,MyValue#",
"TheValue")) {

alias·

(c) Sparx Systems 2021 Page 381 of 461

MDG Technologies 2 September, 2021

diagram.connectornotation·

diagram.handdrawn·

diagram.mdgtype·

diagram.name·

diagram.stereotype·

diagram.type·

direction·

effect·

ES - adds the End Stereotype character(s) as determined·

by the "Use extended << and >> characters" option

guard·

isroot·

isleaf·

name·

rotationdirection ("up", "down", "left", "right")·

source.actualname - same as 'source.name' except that it·

does not react to the 'Use Alias if Available' setting

source.aggregation·

source.alias·

source.changeable·

source.constraints·

source.element.name·

source.element.stereotype·

source.metatype - the target element must match the·

exact stereotype defined at the source

(c) Sparx Systems 2021 Page 382 of 461

MDG Technologies 2 September, 2021

source.metatype.general - the target element can match·

the exact stereotype used at the source and any concrete
(isAbstract=false) generalized stereotypes

source.metatype.specific - the target element can match·

the exact stereotype used at the source and any concrete
(isAbstract=false) specialized stereotypes

source.metatype.both - the target element can match the·

exact stereotype used at the source and any concrete
(isAbstract=false) generalized or specialized stereotypes

source.multiplicity·

source.multiplicityisordered·

source.name·

source.qualifiers·

source.stereotype·

source.targetscope·

SS - adds the Start Stereotype character(s) as determined·

by the "Use extended << and >> characters" option

stereotype·

target.actualname - same as 'target.name' except that it·

does not react to the 'Use Alias if Available' setting

target.aggregation·

target.alias·

target.changeable·

target.constraints·

target.element.name·

target.element.stereotype·

(c) Sparx Systems 2021 Page 383 of 461

MDG Technologies 2 September, 2021

target.metatype·

target.multiplicity·

target.multiplicityisordered·

target.name·

target.qualifiers·

target.stereotype·

target.targetscope·

triggers·

type·

weight·

(c) Sparx Systems 2021 Page 384 of 461

MDG Technologies 2 September, 2021

Sub-Shapes

When you define an element or connector shape using a
Shape Script, you can build the shape from separate
components, defined as sub-shapes. Using sub-shapes, you
can create complex shapes that more closely resemble the
objects that they represent.

Sub-shape Layout

To set the layout type you use the layoutType attribute,
which must be set in the initialization attributes section of
the script; in other words, before any of the methods are
called. Valid values for this attribute are:

LeftRight - Shapes with this layout position the·

sub-shapes side by side, with the first added on the left,
and subsequent sub-shapes to the right

TopDown - Places the sub-shapes in a vertical·

arrangement, with the first sub-shape added to the top and
subsequent sub-shapes added beneath

Border - This requires an additional argument to the·

addsubshape method to specify which region of the
containing shape the sub-shape is to occupy: N, E, S, W
or CENTER; each region can only be occupied by one
sub-shape
A sub-shape that is assigned to the E or W region must
have its preferredwidth attribute specified in its

(c) Sparx Systems 2021 Page 385 of 461

MDG Technologies 2 September, 2021

declaration and, similarly, sub-shapes added to N or S
must have their preferredheight attribute set; in this case,
the values for these attributes are treated as static lengths
and do not scale glyphs

Example

shape main

{

 layouttype="topdown";

 setfillcolor(0,0,255);

 rectangle(0,0,100,100);

 addsubshape("sub",50,100,20,0);

 addsubshape("sub",50,100,30,-100);

 addsubshape("sub",50,100,40,-200);

 addsubshape("sub",50,100,50,-300);

 shape sub

 {

 setfillcolor(0,255,0);

 ellipse(0,0,100,100);

 }

}

The script defines this shape:

(c) Sparx Systems 2021 Page 386 of 461

MDG Technologies 2 September, 2021

(c) Sparx Systems 2021 Page 387 of 461

MDG Technologies 2 September, 2021

Add Custom Compartments to
Element

When you display an element on a diagram in normal,
rectangular format, it is possible to show a number of
compartments within that frame to reveal added
characteristics such as attributes, operations and Notes,
using the diagram 'Properties' and element 'Compartment
Visibility' dialogs. If you want to reveal other added
characteristics, such as related elements or Ports and Parts,
you can use a Shape Script to add custom compartments to
the diagram display of the element. You would usually add
this Shape Script to a Stereotype element in a Profile.

Having created a custom compartment, you can add a linked
Note to the element to display the content of the
compartment, as you can for the other features of the
element.

Access

Define a Stereotype element in a Profile, and use the special
attribute '_image' to specify a Shape Script that adds custom
compartments.

Ribbon Design > Element > Features > Attributes
: [create an attribute named '_image'] >
click on the icon in the 'Initial Value'

(c) Sparx Systems 2021 Page 388 of 461

MDG Technologies 2 September, 2021

field
Configure > Reference Data > UML
Types > Stereotypes : (select or specify
stereotype) : Shape Script > Assign

Context
Menu

In diagram, right-click on element |
Features | Attributes : [create an attribute
named '_image'] | click on in the
'Initial Value' field

Keyboard
Shortcuts

F9 : [create an attribute named '_image']
> click on the icon in the 'Initial Value'
field

Add custom compartments to elements

This table provides notes on creating Shape Scripts that
define custom compartments, and a variety of examples.

Process Description

Develop
script

For the selected stereotype, open the
Shape Editor.
In the script, replace shape main with:

shape ChildElement or·

shape RelatedElement·

(c) Sparx Systems 2021 Page 389 of 461

MDG Technologies 2 September, 2021

You can keep shape main if you prefer,
to adjust some properties of the main
element (such as color); however, the
main shape then requires a call to
'DrawNativeShape()' in order to work
correctly.
At this point, you can use the
'HasProperty' query method to search
child or related elements for specific
properties (such as stereotypes) to be
displayed in compartments. A
RelatedElement Shape Script determines
properties of elements that are linked to
the current element via connectors.
Visibility of each individual custom
compartment defined by a Shape Script is
controlled using the 'Compartment
Visibility' dialog. ChildElement
compartments are visible by default and
can be hidden using the compartment
visibility options, whilst RelatedElement
compartments are hidden by default and
must be explicitly enabled using the
compartment visibility options.
Be aware, also, that child elements can be
shown in a custom compartment either
when they are on the diagram with the
parent element or when they are not on
the diagram (as in examples 1, 2 and 3).

(c) Sparx Systems 2021 Page 390 of 461

MDG Technologies 2 September, 2021

Related elements can only be listed in a
compartment if they are NOT on the
same diagram (as in examples 4 and 5).

Attach
Linked Note

You can use one of two methods to create
a linked Note to display custom
compartment contents:

Method 1 (the element is currently·

displaying custom compartments) -
highlight the related or child element
name in the custom compartment, then
right-click on it and select the 'Create
Linked Note' option; the custom
compartment is automatically closed,
and the linked Note added to the
diagram listing all element names in
that compartment
Method 2 (the element is not·

necessarily showing custom
compartments) - drag a Note element
from the 'Common' page of the
Diagram Toolbox and link it to the
element containing the custom
compartment with a Notelink connector
Right-click on the connector and select
the 'Link this note to an element
feature' option, to display the 'Link note
to element feature' dialog; click on the
drop-down arrow in the 'Feature

(c) Sparx Systems 2021 Page 391 of 461

MDG Technologies 2 September, 2021

Type' field and click on the name of the
custom compartment, such as
'Properties', then click on the OK
button
The contents of that compartment are
displayed in the Note

In Method 2, if the compartment is
displayed the method will NOT hide the
compartment. It is recommended that you
use this method if the compartment is
already hidden.
Any changes you make to the list of
elements in the compartment, or their
names, are immediately reflected in the
Note to maintain the accuracy of the
displayed information.

Script
Example 1:
Add
compartment
without
adjusting the
parent
element

//Add compartments for Child elements.
shape ChildElement
{
 //Check if a child element has the
property stereotype, if so set
 //the compartment name to Properties.
 if(HasProperty("stereotype",
"property"))
 {

SetCompartmentName("Properties");

(c) Sparx Systems 2021 Page 392 of 461

MDG Technologies 2 September, 2021

 }
 //Check if the child element has a
public scope and if so add the +
 //symbol to the child compartment.
 if(HasProperty("scope", "public"))
 {
 AppendCompartmentText("+");
 }
 //Add the child elements name to the
child compartment.

AppendCompartmentText("#NAME#");
}

The Shape Script checks all child
elements to see if they have a stereotype
of <<property>>. If this stereotype is
found, the 'SetCompartmentName'
function sets a compartment called
'Properties'.
The script then checks whether the child
element has a 'public' scope and, if it
does, appends the '+' symbol.
Finally, the 'AppendCompartmentText'
function adds the child element's name to
the compartment.
If a compartment has already been
declared by 'SetCompartmentName', any

(c) Sparx Systems 2021 Page 393 of 461

MDG Technologies 2 September, 2021

additional child elements that fall under
the same compartment are automatically
added to it without having to declare a
new compartment name (that is, all child
elements with the stereotype
<<property>> end up in the 'Properties'
compartment).

Script
Example 2:
Adjust the
color of the
parent
element and
add child
compartment
s

//Shape main affects the parent
shape main
{
 //Set the color of the parent element to
red
 setfillcolor(255,0,0);
 //draw the parents native shape
 drawnativeshape();
}

//Shape ChildElement adds Child
Compartments to the parent.
shape ChildElement
{
 if(HasProperty("stereotype", "part"))
 {
 SetCompartmentName("Parts");
 }
 else if(HasProperty("stereotype",

(c) Sparx Systems 2021 Page 394 of 461

MDG Technologies 2 September, 2021

"mystereotype"))
 {
 SetCompartmentName("My
Stereotype");
 }

AppendCompartmentText("#NAME#");
}

The 'shape main' section sets the color of
the main element to red and adds child
compartments based upon stereotyped
child elements.
The script checks whether a child element
has either the stereotype value 'part' or
'mystereotype' applied to it. If there are
multiple child elements, having a
combination of 'part" and 'mystereotype'
stereotypes, two compartments are
created called 'Parts' and 'My Stereotype'.
In order to display the compartments,
'AppendCompartmentText' must be
called to insert content into the
compartment.
Values passed to 'SetCompartmentName'
and 'AppendCompartmentText' can not
contain new line characters.

(c) Sparx Systems 2021 Page 395 of 461

MDG Technologies 2 September, 2021

Script
Example 3:
Only list
child element
in
compartment
if it is not
already
visible on the
diagram

shape ChildElement
{
 //Check if the child element is on the
diagram or not.
 if(hasproperty("IsVisible", "False"))
 {
 //Create a compartment for parts.
 if(hasproperty("type", "part"))
 {
 SetCompartmentName("Parts");
 }
 //Create a compartment for ports.
 else if(hasproperty("type", "port"))
 {
 SetCompartmentName("Ports");
 }
 //Add child element name to
compartment.

AppendCompartmentText("#NAME#");
 }
}

This script adds custom compartments for
Port and Part elements that belong to the
current element but that are not visible on

(c) Sparx Systems 2021 Page 396 of 461

MDG Technologies 2 September, 2021

the current diagram.
The 'IsVisible' property returns True if
the child element is already visible on the
diagram, False if the child element is not
visible.
This can be used to prevent the child
element from being listed in the custom
compartment if it is already visible on the
diagram, avoiding display of redundant
information.

Script
Example 4:
Display
elements that
are the target
of a
Dependency
connector
from the
element that
owns the
Shape Script

shape RelatedElement
{
 //Check if the current connector we
are processing has a
 //dependency type.
 if(HasProperty("Connector.Type",
"Dependency"))
 {
 //Check if the element we are
currently checking is
 //the target of the current
connector.

if(HasProperty("Element.IsTarget"))
 {
 //Set the compartment Name

(c) Sparx Systems 2021 Page 397 of 461

MDG Technologies 2 September, 2021

SetCompartmentName("dependsOn");

if(HasProperty("Element.Stereotype",
""))
 {
 }
 else
 {

AppendCompartmentText("«#Element.St
ereotype#»");
 }

AppendCompartmentText("#Element.Na
me#");
 }
 }
}

With this script, if a Class1 has a
stereotype with the 'RelatedElement'
Shape Script and Class1 is the source of a
Dependency connector to the target
Class2, then the name Class2 is displayed
in a compartment of Class 1, called
'dependsOn'.

Script
Example 5:

shape RelatedElement

(c) Sparx Systems 2021 Page 398 of 461

MDG Technologies 2 September, 2021

Display a list
of Realized
Interfaces
within a
compartment
on an
element

{
 //Check if the current connector being
processed is a Realization
 if(HasProperty("Connector.Type",
"Realization"))
 {
 //Only display this compartment if
the related element we
 //are checking is the target of the
connector that has this
 //Shape Script element as the
source

if(HasProperty("Element.IsTarget"))
 {
 //If the element is an interface,
display it in
 //'realizedInterfaces'
compartment
 if(HasProperty("Element.Type",
"Interface"))
 {

SetCompartmentName("realizedInterface
s");

AppendCompartmentText("#Element.Na
me#");

(c) Sparx Systems 2021 Page 399 of 461

MDG Technologies 2 September, 2021

 }
 }
 }
}

If an element Class 1 has this Shape
Script and is the source of a Realization
connector to an element Interface 1, the
name 'Interface 1' is displayed in the
'realizedInterfaces' compartment of Class
1.

Notes

If you use punctuation within a compartment name, it is·

stripped out when the script is saved; for example: 'Ports,
Parts and Properties' becomes 'Ports Parts and Properties'

The 'RelatedElement' Shape Scripts have extended·

capabilities to check both a connector and the element on
the other end of the connector; they are applied only to an
element and are solely used to retrieve information to be
displayed within a compartment of that element

(c) Sparx Systems 2021 Page 400 of 461

MDG Technologies 2 September, 2021

Show Composite Diagram

You can define an element as being Composite (using the
'New Diagram | Composite Structure Diagram' context
menu option), in which case the element has a child
Composite diagram depicting the substructure of the
element. You can also use context menu options to display
the Composite diagram on the element, either recasting the
element as a frame or adding a compartment to the element.
Ordinarily, a Shape Script that redefines the appearance of
the Composite element effectively circumvents the effect of
these options, but you can edit the script to respond to the
'Show Composite Diagram in Compartment' option and
show the child Composite diagram in the center
compartment of the element.

To show Composite diagrams, the script requires a layout
type of 'border', with the Composite diagram added to the
center sub-shape of the main shape when drawing. The
defining Shape Script statements are, therefore:

shape main

{

 layouttype="Border";

 if(HasProperty("ShowComposedDiagram", "true"))

 {

 addsubshape("ComposedDiagram", "CENTER");

 }

(c) Sparx Systems 2021 Page 401 of 461

MDG Technologies 2 September, 2021

 shape ComposedDiagram

 {

 DrawComposedDiagram();

 }

}

Examples

An example of a Shape Script including a composed
diagram is:

Shape main

{

 //Set the border type

 layouttype="Border";

 //Set a cream fill color

 setfillcolor(255, 255, 200);

 //Draw a base rectangle for the object.

 rectangle(0, 0, 100, 100);

 //Add some padding to the top of the shape

 addsubshape("Padding", "N");

 //Check the setting of the context menu option

 if(HasProperty("ShowComposedDiagram", "true"))

 {

 //Add the composed diagram to the center of the

(c) Sparx Systems 2021 Page 402 of 461

MDG Technologies 2 September, 2021

object

 addsubshape("ComposedDiagram", "CENTER");

 }

 //Add some padding to the bottom of the shape.

 addsubshape("Padding", "S");

 shape Padding

 {

 //Set the height of this element

 preferredHeight = 20;

 //Set the fill color to gray

 setfillcolor(128, 128, 128);

 //Draw a rectangle that will take up the width of the
object and

 //have a height of 20 pixels.

 rectangle(0, 0, 100, 100);

 }

 shape ComposedDiagram

 {

 //Draw the composed diagram.

 DrawComposedDiagram();

 }

}

This script generates the shape:

(c) Sparx Systems 2021 Page 403 of 461

MDG Technologies 2 September, 2021

Composed diagrams are currently only supported as the
center sub-shape of the main shape. Adding the diagram to
any other location will cause the composed diagram to
either not draw correctly or not draw at all. The diagram can
be a sub-shape of a sub-shape, but only if the parent shape
and sub-shape(s) all have a "CENTER" orientation. For
example:

//This shapescript is fine, because shape E is the center of
shape C, which is the center of shape D; that is, all shapes
leading to //DrawComposedDiagram are "CENTER".

shape main

{

 layouttype = "Border";

 rectangle (0, 0, 100, 100);

 addsubshape ("D", "CENTER");

 shape D

 {

(c) Sparx Systems 2021 Page 404 of 461

MDG Technologies 2 September, 2021

 layouttype= "Border";

 addsubshape ("C", "CENTER");

 shape C

 {

 layouttype= "Border";

 addsubshape ("E", "CENTER");

 addsubshape ("Padding", "N");

 addsubshape ("Padding", "S");

 shape E

 {

 DrawComposedDiagram ();

 }

 shape padding

 {

 preferredHeight = 20;

 setfillcolor (10, 30, 80);

 rectangle (0, 0, 100, 100);

 }

 }

 }

}

//This shapescript is not good - shape E is "CENTER",
shape C is "S" and shape D is "CENTER"; because shape C
is oriented "S"

(c) Sparx Systems 2021 Page 405 of 461

MDG Technologies 2 September, 2021

//the diagram will not draw.

shape main

{

 layouttype = "Border";

 rectangle (0, 0, 100, 100);

 addsubshape ("D", "CENTER");

 shape D

 {

 layouttype= "Border";

 addsubshape ("C", "S"); //<- this is bad, all parent
subshapes of a DrawComposedDiagram call MUST be

 // "CENTER" oriented

 shape C

 {

 layouttype= "Border";

 addsubshape ("E", "CENTER");

 addsubshape ("Padding", "N");

 addsubshape ("Padding", "S");

 shape E

 {

 DrawComposedDiagram ();

 }

 shape padding

 {

(c) Sparx Systems 2021 Page 406 of 461

MDG Technologies 2 September, 2021

 preferredHeight = 20;

 setfillcolor (10, 30, 80);

 rectangle (0, 0, 100, 100);

 }

 }

 }

}

Notes

To display the Composite diagram, the 'New Diagram |·

Show Composite Diagram in Compartment' option should
be selected on the element's context menu in the diagram

The composed diagram is displayed at natural size, so the·

parent element can not be resized to be smaller than the
composed diagram

(c) Sparx Systems 2021 Page 407 of 461

MDG Technologies 2 September, 2021

Reserved Names

When you write a Shape Script, there are certain terms that
are reserved because they have special meaning in the
script; use them for their specific purposes.

Elements

Elements (such as Class, State or Event) have these reserved
names for parts of the shape.

Name Description

shape main The main shape is the whole shape.

shape label The shape label gives the shape a
detached label.

decoration
<identifier>

Decoration gives the shape a decoration
as defined by the name in <identifier>.

shape
ChildElement

Allows addition of custom compartments
based on child elements belonging to the
current element.

shape
RelatedElem
ent

Allows addition of custom compartments
based on related elements belonging to
the current element.

(c) Sparx Systems 2021 Page 408 of 461

MDG Technologies 2 September, 2021

Connectors

Connectors (such as Association, Dependency or
Generalization) have these reserved names for parts of the
shape.

Name Description

shape main The main shape is the whole shape.

shape source The source shape is an extra shape at the
source end of the connector.

shape target The target shape is an extra shape at the
target end of the connector.

shape
LeftTopLabel

Shapes defines a detached label for the
connector in the left top corner.

shape
MiddleTopLa
bel

Shapes defines a detached label for the
connector in the middle top.

shape
RightTopLab
el

Shapes defines a detached label for the
connector in the right top corner.

(c) Sparx Systems 2021 Page 409 of 461

MDG Technologies 2 September, 2021

shape
LeftBottomL
abel

Shapes defines a detached label for the
connector in the left bottom corner.

shape
MiddleBotto
mLabel

Shapes defines a detached label for the
connector in the middle bottom.

shape
RightBottom
Label

Shapes defines a detached label for the
connector in the right bottom corner.

(c) Sparx Systems 2021 Page 410 of 461

MDG Technologies 2 September, 2021

Syntax Grammar

A section of a Shape Script can be quite complex,
containing a number of commands and parameters. This
table provides a breakdown of the Shape Script structure,
illustrating how commands and parameters are constructed.
The first entry is the top-level declaration, and subsequent
entries show the composition of successively more detailed
components.

Grammar Symbols

* = zero or more·

+ = one or more·

| = or·

; = terminator·

Symbol Description

ShapeScript
::=

<Shape>*;

Shape ::= <ShapeDeclaration> <ShapeBody>;

ShapeDeclara
tion ::=

<ShapeType> <ShapeName>;

ShapeType

(c) Sparx Systems 2021 Page 411 of 461

MDG Technologies 2 September, 2021

::= "shape" | "decoration" | "label";

ShapeName
::=

<ReservedShapeName> | <stringliteral>;

ReservedSha
peName ::=

See Reserved Names for full reserved
shape listing.

ShapeBody
::=

"{" <InitialisationAttributeAssignment>*
<DrawingStatement>* <SubShape>* "}";

Initialisation
AttributeAssi
gnment ::=

<Attribute> "=" <Value> ";";

Attribute ::= See Shape Attributes for full listing of
attribute names.

DrawingState
ment ::=

<IfElseSection> | <Method>;

IfElseSection
::=

"if" "("<QueryExpression>")"
<TrueSection> (<ElseSection>);

QueryExpres
sion ::=

<QueryName> "(" <ParameterList> ")";
See Query Methods for descriptions of
the queries and their parameters.

QueryName See Query Methods for the possible

(c) Sparx Systems 2021 Page 412 of 461

MDG Technologies 2 September, 2021

::= Query names.

TrueSection
::=

"{" <DrawingStatement>* "}"

ElseSection
::=

"else" "{" <DrawingStatement>* "}"

Method ::= <MethodName> "(" <ParameterList> ")"
";";

MethodName
::=

See Drawing Methods for a full listing of
method names.

(c) Sparx Systems 2021 Page 413 of 461

MDG Technologies 2 September, 2021

Example Scripts

You can create a wide range of shapes, effects and text
statements using Shape Scripts, to enhance the appearance
and information value of the elements and connectors you
create. Some examples of such scripts are provided here.

Access

Ribbon Configure > Reference Data > UML
Types > Stereotypes (specify stereotype)
: Shape Script + Assign, or
Configure > Reference Data > UML
Types > Stereotypes (specify stereotype)
: Shape Script + Edit

Examples

Shape Script

// BASIC SHAPES
shape main
{

(c) Sparx Systems 2021 Page 414 of 461

MDG Technologies 2 September, 2021

 setfillcolor(255, 0, 0); // (R,G,B)
 rectangle(0, 0, 90, 30); // (x1,y1,x2,y2)

 setfillcolor(0, 255, 0); // (R,G,B)
 ellipse(0, 30, 90, 60); // (x1,y1,x2,y2)

 setfillcolor(0, 0, 255); // (R,G,B)
 rectangle(0, 60, 90, 90); //
(x1,y1,x2,y2)
}

// SINGLE CONDITIONAL SHAPE
shape main
{
 if (HasTag ("Trigger", "Link"))
 {
 // Only draw if the object has a
Tagged Value Trigger=Link
 // Set the fill color for the path
 setfillcolor(0, 0, 0);
 startpath(); // Start to trace out a
path
 moveto(23, 40);
 lineto(23, 60);
 lineto(50, 60);
 lineto(50, 76);

(c) Sparx Systems 2021 Page 415 of 461

MDG Technologies 2 September, 2021

 lineto(76, 50);
 lineto(50, 23);
 lineto(50, 40);
 endpath(); // End tracing out a
path
 // Fill the traced path with the
fill color
 fillandstrokepath();
 return;
 }
}

// MULTI CONDITIONAL SHAPE
shape main
{
 startpath();
 ellipse(0, 0, 100, 100);
 endpath();
 fillandstrokepath();
 ellipse(3, 3, 97,97);

 if (HasTag ("Trigger", "None"))
 {
 return;
 }

(c) Sparx Systems 2021 Page 416 of 461

MDG Technologies 2 September, 2021

 if (HasTag ("Trigger", "Error"))
 {
 setfillcolor(0, 0, 0);
 startpath();
 moveto(23, 77);
 lineto(37, 40);
 lineto(60, 47);
 lineto(77, 23);
 lineto(63, 60);
 lineto(40, 53);
 lineto(23, 77);
 endpath();
 fillandstrokepath();
 return;
 }
 if (HasTag ("Trigger", "Message"))
 {
 rectangle(22, 22, 78, 78);
 moveto(22, 22);
 lineto(50, 50);
 lineto(78, 22);
 return;
 }
}

// SUB SHAPES

(c) Sparx Systems 2021 Page 417 of 461

MDG Technologies 2 September, 2021

shape main
{
 rectangle(0, 0, 100, 100);

 addsubshape("red", 10, 20);
 addsubshape("blue", 30, 40);
 addsubshape("green", 50, 20);
 addsubshape("red", 100, 20);

 shape red
 {
 setfillcolor(200, 50, 100);
 rectangle(0, 0, 100, 100);
 }

 shape blue
 {
 setfillcolor(100, 50, 200);
 rectangle(0, 0, 100, 100);
 }

 shape green
 {
 setfillcolor(50, 200, 100);
 rectangle(0, 0, 100, 100);

(c) Sparx Systems 2021 Page 418 of 461

MDG Technologies 2 September, 2021

 }
}

// EDITABLE FIELD SHAPE
shape main
{
 rectangle(0, 0, 100, 100);
 addsubshape("namecompartment",
100, 20);

addsubshape("stereotypecompartment",
100, 40);

 shape namecompartment
 {
 h_align = "center";
 editablefield = "name";
 rectangle(0, 0, 100, 100);
 println("name: #name#");
 }

 shape stereotypecompartment
 {
 h_align = "center";
 editablefield = "stereotype";
 rectangle(0, 0, 100, 100);

(c) Sparx Systems 2021 Page 419 of 461

MDG Technologies 2 September, 2021

 println("stereotype:
#stereotype#");
 }
}

// RETURN STATEMENT SHAPE
shape main
{
 if (hasTag("alternatenotation",
"false"))
 {
 //draw ea's inbuilt glyph
 drawnativeshape();
 //exit script with the return
statement
 return;
 }
 else
 {
 //alternate notation commands
 //...
 rectangle(0, 0, 100, 100);
 }
}

//EMBEDDED ELEMENT SHAPE

(c) Sparx Systems 2021 Page 420 of 461

MDG Technologies 2 September, 2021

POSITION ON PARENT EDGE
shape main
{
 defsize(60,60);
 startpath();
 if(hasproperty("parentedge","top"))
 {
 moveto(0,100);
 lineto(50,0);
 lineto(100,100);
 }

if(hasproperty("parentedge","bottom"))
 {
 moveto(0,0);
 lineto(50,100);
 lineto(100,0);
 }
 if(hasproperty("parentedge","left"))
 {
 moveto(100,0);
 lineto(0,50);
 lineto(100,100);
 }
 if(hasproperty("parentedge","right"))
 {

(c) Sparx Systems 2021 Page 421 of 461

MDG Technologies 2 September, 2021

 moveto(0,0);
 lineto(100,50);
 lineto(0,100);
 }
 endpath();
 setfillcolor(153,204,255);
 fillandstrokepath();
}

// CLOUD PATH EXAMPLE SHAPE
shape main
{
 StartCloudPath();
 Rectangle(0, 0, 100, 100);
 EndPath();
 FillAndStrokePath();
}

// CONNECTOR SHAPE
shape main
{
 // draw a dashed line
 noshadow=true;
 setlinestyle("DASH");
 moveto(0,0);
 lineto(100,0);

(c) Sparx Systems 2021 Page 422 of 461

MDG Technologies 2 September, 2021

}

shape source
{
 // draw a circle at the source end
 rotatable = true;
 startpath();
 ellipse(0,6,12,-6);
 endpath();
 fillandstrokepath();
}

shape target
{
 // draw an arrowhead at the target end
 rotatable = true;
 startpath();
 moveto(0,0);
 lineto(16,6);
 lineto(16,-6);
 endpath();
 fillandstrokepath();
}

// DOUBLE LINE
shape main

(c) Sparx Systems 2021 Page 423 of 461

MDG Technologies 2 September, 2021

{
 setlinestyle("DOUBLE");
 moveto(0,0);
 lineto(100,0);
}

// ROTATION DIRECTION
shape main
{
 moveto(0,0);
 lineto(100,0);
 setfixedregion(40,-10,60,10);
 rectangle(40,-10,60,10);

if(hasproperty("rotationdirection","up"))
 {
 moveto(60,-10);
 lineto(50,0);
 lineto(60,10);
 }

if(hasproperty("rotationdirection","down"
))
 {
 moveto(40,-10);
 lineto(50,0);
 lineto(40,10);

(c) Sparx Systems 2021 Page 424 of 461

MDG Technologies 2 September, 2021

 }

if(hasproperty("rotationdirection","left"))
 {
 moveto(40,-10);
 lineto(50,0);
 lineto(60,-10);
 }

if(hasproperty("rotationdirection","right")
)
 {
 moveto(40,10);
 lineto(50,0);
 lineto(60,10);
 }
}

// GET A VALUE RETURNED BY AN
ADD-IN
shape main
{
 //Draw a simple rectangle
 Rectangle(0,0,100,100);

 //Print string value returned from
Add-In "MyAddin",

(c) Sparx Systems 2021 Page 425 of 461

MDG Technologies 2 September, 2021

 //Function "MyExample" with two
string parameters
 Print("#ADDIN:MyAddin,
MyExample, param1, param2#");
}

 // METHOD SIGNATURE FOR
ADD-IN FUNCTION:
 // Public Function
MyExample(Repository As
EA.Repository,
 // eaGuid As String, args As Variant)
As Variant

// ADD CUSTOM COMPARTMENTS
BASED UPON CHILD ELEMENTS
// OR RELATED ELEMENTS

(See the Add Custom Compartments to
Element Help topic)

// RETURN THE INCOMING AND
OUTGOING EDGE FOR
CONNECTORS
// GOING INTO AND OUT OF AN
OBJECT
shape main

(c) Sparx Systems 2021 Page 426 of 461

MDG Technologies 2 September, 2021

{
 //Draw a simple rectangle
 Rectangle(0,0,100,100);

 //Print incoming edges on the element
 Print("Incoming Edge:
#incomingedge#\n");

 //Print outgoing edges on the element
 Print("Outgoing Edge:
#outgoingedge#\n");
}

// DRAW A DECORATION ICON ON
TOP OF THE DEFAULT
// ELEMENT SHAPE
decoration mail
{
 orientation= "NE";
 image ("icon image", 0, 0, 100, 100);
 // "icon image" being the name of the
16x16 image which is loaded into the
Image Manager
}

// DRAW AN IMAGE FROM A FILE,
AND AN EDITABLE NAME FIELD

(c) Sparx Systems 2021 Page 427 of 461

MDG Technologies 2 September, 2021

shape main
{
 addsubshape ("theimage", 100, 100);
 addsubshape ("namecompartment",
100, 100);

 shape theimage
 {
 image ("element image", 0, 0,
100, 100);
 // "element image" being the
name of the image that is loaded into the
Image Manager
 }
 shape namecompartment
 {
 h_align = "center";
 editablefield = "name";
 println ("#name#");
 }
}

// CHECK WHETHER A COMPOSITE
ELEMENT ICON IS REQUIRED
// AND, IF SO, DRAW ONE
decoration comp

(c) Sparx Systems 2021 Page 428 of 461

MDG Technologies 2 September, 2021

{
 orientation="SE";

if(hasproperty("IsDrawCompositeLinkIco
n","true"))
 {
 startpath();
 ellipse(-80,29,-10,71);
 ellipse(10,29,80,71);
 moveto(-10,50);
 lineto(10,50);
 endpath();
 strokepath();
 }
}

// ALLOW A SHAPESCRIPT TO
SHOW THE FULLY SCOPED OBJECT
// NAME OF AN OWNED ELEMENT,
INCLUDING OWNING ELEMENTS
// AND OWNING PACKAGES, WHEN
THE DIAGRAM PROPERTIES
// 'DISABLE FULLY SCOPED OBJECT
NAMES' OPTION IS
// DESELECTED, JUST AS FOR AN
ELEMENT WITHOUT A
// SHAPESCRIPT.

(c) Sparx Systems 2021 Page 429 of 461

MDG Technologies 2 September, 2021

shape main
{
 layouttype= "border";
 rectangle (0, 0, 100, 100);
 addsubshape ("padding", "N");
 addsubshape ("name", "CENTER");
 shape padding
 {
 preferredheight=8;
 }
 shape name
 {
 v_align= "top";
 h_align= "center";
 printwrapped
("#qualifiedname#");
 }
}

// SHOW THE NAME OF THE
OWNING PACKAGE WHEN THE
ELEMENT
// IS USED ON A DIAGRAM NOT IN
THAT PACKAGE, AND THE
// DIAGRAM PROPERTIES 'SHOW
NAMESPACE' OPTION IS SELECTED.

(c) Sparx Systems 2021 Page 430 of 461

MDG Technologies 2 September, 2021

shape main
{
 layouttype= "border";
 v_align= "CENTER";
 h_align= "CENTER";
 ellipse (0, 0, 100, 100);
 printwrapped ("#name#");
 addsubshape ("path", "S");
 shape path
 {
 v_align= "top";
 h_align= "center";
 if (hasproperty ("packagepath",
""))
 {
 }
 else
 {
 printwrapped ("(from
#packagepath#)");
 }
 }
}

(c) Sparx Systems 2021 Page 431 of 461

MDG Technologies 2 September, 2021

Tagged Value Types

When you are working with Tagged Values, you can create
your own, custom, Tagged Values based on predefined,
system-provided Tagged Value Types. With these, you can
create:

Tagged Values that are complex and based on predefined·

types, with or without tag filters

Structured Tagged Values that are composite, containing·

other Tagged Values

Tagged Values that return values from the various·

reference data tables

Masked Tagged Values that insert user-provided data into·

a text string such as line of prompts or field names

By adding Tagged Values of any type to a Stereotype
element in a Profile, you can define additional
meta-information for the way in which a modeling element
appears and behaves in a Technology. The Tagged Values
are identified by attributes of the Stereotype element.

Notes

You can transport Tagged Value Type definitions·

between models, using the 'Configure > Model > Transfer
> Export Reference Data' and 'Import Reference Data'
ribbon options; Tagged Value Types are exported as
Property Types

(c) Sparx Systems 2021 Page 432 of 461

MDG Technologies 2 September, 2021

(c) Sparx Systems 2021 Page 433 of 461

MDG Technologies 2 September, 2021

Create Tagged Value Type from
Predefined Types

When you are working with Tagged Values, you might want
to use structured Tagged Values; that is, Tagged Values that
capture and present more complex information in a specific
format. The base types for such Tagged Values (the type
you call in when you create a tag in the 'Tags' page of the
Properties window) can be easily created specifically for
your model, as you can base the customized structured
Tagged Value types on a range of predefined Tagged Value
types and filters.

Access

Ribbon Configure > Reference Data > UML
Types > Tagged Value Types

Create a custom Structured Tagged Value
type

Field/Button Description

(c) Sparx Systems 2021 Page 434 of 461

MDG Technologies 2 September, 2021

Tag Name Type an appropriate name for your new
Tagged Value type.

Description Optionally, type a short description or the
purpose of the Tagged Value type.

Detail Either copy-and-paste or type the syntax
of the predefined structured Tagged
Value Type on which to base your new
Tagged Value type.

Save Click on this button to save the new
structured Tagged Value type.
The Tagged Value type displays in the
Defined Tag Types list.

New Optionally, click on this button to clear
the fields so that you can enter
information for another new Tagged
Value type.

(c) Sparx Systems 2021 Page 435 of 461

MDG Technologies 2 September, 2021

Predefined Structured Types

Tagged Values define a wide range of properties and
characteristics of a model element, and some of these
properties have complex values. For example, you might
want your user to select a value between upper and lower
limits (using 'Spin' arrows), set a date, select a color from a
palette, or work through a checklist.

You create these complex Tagged Values from any of a
number of predefined Tagged Value types and filters, some
of which you might have created yourself (Configure >
Reference Data > UML Types > Tagged Value Types).

Tagged Value Type Formats

For each Tagged Value Type, the description includes the
syntax for creating the initial values for use of the Tagged
Value. The name and format are case-sensitive.

Tagged Value
Type

Format

AddinBroadc
ast

Type=AddinBroadcast;
Values=YourAddinName;
Used to: Allow an Add-In to respond to
an attempt to edit this Tagged Value by
showing a dialog in which the value and
notes can be edited.

(c) Sparx Systems 2021 Page 436 of 461

MDG Technologies 2 September, 2021

Boolean Type=Boolean;
Default=Val;
Used to: Provide for the input of True or
False, either of which can be the default
value.

CheckList Type=CheckList;
Values=Val1,Val2,Val3;
Used to: Create a checklist of things to be
completed or satisfied before an action is
approved or performed.
Val1, Val2, Val3 and so on specify the
checklist items, each of which is rendered
via the 'Tags' tab of the Properties
window with a checkbox; the tag has the
value 'Incomplete' until each checkbox is
selected, at which point the value is
'Complete'.
For example:
Type=CheckList;
Values=Does the change solve the
task\issue given,Does the code have
sufficient error handling,Does the code
make sense,Does the code comply with
the coding conventions;
Whilst the element Tagged Value
compartment and the 'Tags' tab window

(c) Sparx Systems 2021 Page 437 of 461

MDG Technologies 2 September, 2021

fields display the values 'Complete' or
'Incomplete', document and web reports
will show the list of checklist items and
the status of each (True for selected,
False for unselected).

Classifier Type=Classifier;
Values=Type1,Type2;
Stereotypes=Stereotype1;
Used to: Deprecated - use RefGUID and
RefGUIDList

Color Type=Color;
Default=Val;
Used to: Input a color value from a color
chooser menu, where the value is the
color's Hex RGB value.
For example, the Hex RGB for Blue is
0000FF, whilst the Hex RGB for Green is
00FF00.

Const Type=Const;
Default=Val;
Used to: Create a read-only constant
value.

Custom Type=Custom;
Used to: Create your own template for

(c) Sparx Systems 2021 Page 438 of 461

MDG Technologies 2 September, 2021

predefined types, using a masked value.

Date Type=Date;
Used to: Input the date for the Tagged
Value, from a calendar menu.

DateTime Type=DateTime;
Used to: Deprecated - Use Date
Input the date for the Tagged Value, from
a calendar menu.

DiagramRef Type=DiagramRef
Used to: Reference a diagram in the
model.

Directory Type=Directory;
Default=Val;
Used to: Enter a directory path from a
browser.
You can set a default directory path as a
string value.

Enum Type=Enum;
Values=Val1,Val2,Val3;
Default=Val2;
Used to: Define a comma-separated list,
where Val1, Val2 and Val3 represent

(c) Sparx Systems 2021 Page 439 of 461

MDG Technologies 2 September, 2021

values in the list and Default represents
the default value of the list.

File Type=File;
Default=Val;
Used to: Input a filename from a file
browser dialog. The named file can be
launched in its default application.
You can set a default file as a string
containing the file path and file name.

Float,
Decimal,
Double

Type=Float;
Type=Decimal;
Type=Double;
Default=Val;
Used to: Enter a Float, Decimal or
Double value. These types all map to the
same type of data.
You can set a default for any or all of
these.

ImageRef Type=ImageRef;
Used to: Provide a link to an image file
held in the Image Manager.

Integer Type=Integer;
Default=Val;

(c) Sparx Systems 2021 Page 440 of 461

MDG Technologies 2 September, 2021

Used to: Enter an Integer value, and a
default.

Memo Type=Memo;
Used to: Input large and complex values
for a tag.

ProgressBar Type=ProgressBar;
Compartment=<Name>; - sets the name
of the compartment in which to display
the progress bar; more than one Tagged
Value can add a progress bar to one
compartment
Text=<Text>; - displays <text> to the
right of the progress bar; to display the
value of the tag with the text, use
#VALUE#, for example $#VALUE# or
#VALUE#%
MinVal=n; - sets the minimum value that
can be shown in the progress bar (must be
an integer)
MaxVal=n; - sets the maximum value
that can be shown in the progress bar
(must be an integer)
Used to: Display a progress bar in a
compartment of an element, when that
element is shown on a diagram and the
Tags compartment is enabled on the
'Elements' page of the diagram

(c) Sparx Systems 2021 Page 441 of 461

MDG Technologies 2 September, 2021

'Properties' dialog. The tag name displays
above the progress bar, as its label.

If neither MinVal or MaxVal are set,·

the progress bar has default values of 0
and 100
If MinVal is set but MaxVal is not, the·

maximum value defaults to
MinVal+100
If MaxVal is set but MinVal is not, the·

minimum value defaults to 0
If both MinVal and MaxVal are set,·

MinVal must be lower than MaxVal
Examples:
 Compartment=Current Progress;
 Type=ProgressBar;
 Text=#VALUE#%;

 when used in a tag
called Progress with value set to 65.

 Type=ProgressBar;
 MinVal=1000;
 MaxVal=100000;
 Text=$ #VALUE#;

 when used in a tag
called Progress with value set to 4530.

(c) Sparx Systems 2021 Page 442 of 461

MDG Technologies 2 September, 2021

 An element with multiple progress
bars.

RefGUID Type=RefGUID;
Values=Type1,Type2;
Stereotypes=Stereotype1;
Or
Type=RefGUID;
Metatype=Type;
Used to: Reference an element from the
model by specifying the element's GUID,
where:

Type1 and Type2 specify one or more·

allowed diagram objects (such as Class,
Component, attribute or operation)
Stereotype1 represents an allowed·

stereotype

(c) Sparx Systems 2021 Page 443 of 461

MDG Technologies 2 September, 2021

Metatype can be used to reference
Classifiers or Property types:

Metatype=Classifier; presents all·

Enterprise Architect-defined Classifier
types to select from
Metatype=Property; presents all Ports,·

Parts and attributes to select from
You can set the classifier, attribute or
operation for a Tagged Value of this type
by clicking on the button against the
Tagged Value in the Properties window.
You can also right-click on the RefGUID
Tagged Value name in the Properties
window and select the 'Find in Project
Browser' option to locate a referenced
object in the Browser window.
When printing a RefGUID Tagged Value,
Shape Scripts will print the name of the
referenced element.

RefGUIDList Type=RefGUIDList;
Values=Type1,Type2;
Stereotypes=Stereotype1;
OR
Type=RefGUIDList;
Metatype=Type;
Used to: Reference a list of elements
from the model by specifying each

(c) Sparx Systems 2021 Page 444 of 461

MDG Technologies 2 September, 2021

element's GUID, where:
Type1 and Type2 specify one or more·

allowed diagram objects (such as Class
or Component)
Stereotype1 represents an allowed·

stereotype
Metatype can be used to reference
Classifiers or Property types:

Metatype=Classifier; presents all·

Enterprise Architect-defined Classifier
types to select from
Metatype=Property; presents all Ports,·

Parts and Attributes to select from
You set the classifier, attribute or
operation for a Tagged Value of this type
by clicking on the button against the
Tagged Value in the 'Tags' tab of the
Properties window.

Spin Type=Spin;
LowerBound=x;
UpperBound=x;
Default=Val;
Used to: Create a spin control with the
value of LowerBound being the lowest
value and UpperBound being the highest
value.
You can also set a default within that

(c) Sparx Systems 2021 Page 445 of 461

MDG Technologies 2 September, 2021

range.

String Type=String;
Default=Val;
Used to: Enter a string value, up to 255
characters in length, and a default text
string.
For longer texts, use Type=Memo.

Time Type=Time;
Used to: Input the time for the Tagged
Value.

Timestamp Type=Timestamp;
Used to: Input the date and time for the
Tagged Value, from a calendar menu.

URL Type=URL;
Default=Val;
Used to: Enter a web URL. The URL
should start with:

'http://'·

'https://' or·

'www.'·

You can set a default URL as a string
value.

(c) Sparx Systems 2021 Page 446 of 461

MDG Technologies 2 September, 2021

Tag Filters

You can use filters to restrict where a Tagged Value can be
applied.

Filter Format

AppliesTo AppliesTo=Type1,Type2;
Description: Restricts the element types
this tag can be applied to, where Type1
and Type2 are the valid types.
Possible values are:

All element types·

All connector types·

Attribute·

Operation, and·

OperationParameter·

BaseStereoty
pe

BaseStereotype=S1,S2;
Description: Restricts the stereotypes that
this tag belongs to, where S1 and S2 are
the allowed stereotypes.

(c) Sparx Systems 2021 Page 447 of 461

MDG Technologies 2 September, 2021

Create Custom Masked Tagged Value
Type

If you are creating a custom predefined Tagged Value type,
you can achieve great flexibility in designing model
components to accept data entries, by defining a mask that
formats the data into a template.

Access

Ribbon Configure > Reference Data > UML
Types > Tagged Value Types

Create a masked Tagged Value Type

Field Action

Tag Name Type an appropriate name for the masked
Tagged Value Type.

Description Optionally, type a description or the
purpose of the Tagged Value Type.

(c) Sparx Systems 2021 Page 448 of 461

MDG Technologies 2 September, 2021

Detail Type or copy-and-paste the Tagged
Value structure:
Type=Custom;
Mask=<mask values>;
Template=<template text>;
The mask values are explained in the next
table, with an example to demonstrate
how to use the template.
The template text defines information to
be displayed in every use of this custom
Tagged Value, such as field names and
prompts for data.

Save Click on this button to save the new
masked Tagged Value type.
The Tagged Value type displays in the
Defined Tag Types list.

New Optionally, click on this button to clear
the fields so that you can enter
information for another new Tagged
Value type.

Mask Values

When defining the format of the mask in a masked Tagged

(c) Sparx Systems 2021 Page 449 of 461

MDG Technologies 2 September, 2021

Value type, use these characters:

Mask Action

D Display a digit only in this character
space.

d Display a digit or space only in this
character space.

+ Display +, - or a space in this character
space.

C Display a letter of the alphabet only in
this character space.

c Display a letter of the alphabet or a space
only in this character space.

A Display any alphanumeric character in
this character space.

a Display any alphanumeric character or a
space in this character space.

. or <space> Leave a character space, to be filled by
text from the Template parameter. Using
dots might make it easier to see how
many spaces you have set.

(c) Sparx Systems 2021 Page 450 of 461

MDG Technologies 2 September, 2021

Example

In the diagram, the Mask parameter first defines seven blank
spaces, which are occupied by characters defined by the
Template parameter.

The first two visible characters in the Mask are each
represented by a lower case c, indicating that the user can
enter information as either an alphabetic character or a
space.

The next six blank spaces again indicate characters defined
by the Template, followed by five characters each
represented by a d, which indicates that the user can input
data in the form of digits or spaces. The dot marks a space to
be filled by a hyphen from the Template, followed by four
more ds (digits or spaces).

The Template syntax defines the template for the Mask
parameter, filling in the blank spaces in the Mask. The text
is the information to be printed with every use of this

(c) Sparx Systems 2021 Page 451 of 461

MDG Technologies 2 September, 2021

Tagged Value; the underscored values indicate the character
spaces that are to be occupied by data input by the user, as
defined in the 'Mask' option.

(c) Sparx Systems 2021 Page 452 of 461

MDG Technologies 2 September, 2021

Create Reference Data Tagged Values

When working with Tagged Values, you might want to use
a Reference Data Tagged Value, which is used to return the
values held in an Enterprise Architect reference table. The
base types for such Tagged Values (the type you call in
when you create a tag in the Tags page of the Properties
window) can be easily created specifically for your model,
as you can base the customized Reference Data Tagged
Value types on a range of predefined Tagged Value types
and filters.

Access

Ribbon Configure > Reference Data > UML
Types > Tagged Value Types

Create a custom Reference Data Tagged
Value type

Field/Button Description

Tag Name Type an appropriate name for the new

(c) Sparx Systems 2021 Page 453 of 461

MDG Technologies 2 September, 2021

Tagged Value type.

Description Optionally, type the a description or the
purpose of the Tagged Value type.

Detail Either copy-and-paste or type the syntax
of the predefined Reference Data Tagged
Value type on which to base your new
Tagged Value type.

Save Click on this button to save the new
Reference Data Tagged Value type.
The Tagged Value type displays in the
Defined Tag Types list.

New Optionally, click on this button to clear
the fields so that you can enter
information for another new Tagged
Value type.

Notes

If the values in the reference data are changed after the·

Tagged Value Type is created, you must reload the
system in order to reflect the changes in the Tagged Value
Type

(c) Sparx Systems 2021 Page 454 of 461

MDG Technologies 2 September, 2021

(c) Sparx Systems 2021 Page 455 of 461

MDG Technologies 2 September, 2021

Predefined Reference Data Types

If you want to create your own, customized, Reference Data
Tagged Values, you can base them on a range of predefined
Reference Data Tagged Value types. Each of the predefined
Reference Data Tagged Value types returns the values held
in a specific reference data table.

Tagged Value Types

Each description includes the syntax for creating the initial
values for use of the Tagged Value. The Tagged Value
Type and Format entries are case-sensitive.

Tagged Value
Type

Format

Authors Type=Enum;
List=Authors;
Drop-Down List Returned, of Data
Defined for the Model: Authors.

Cardinality Type=Enum;
List=Cardinality;
Drop-Down List Returned, of Data
Defined for the Model: Cardinality types.

(c) Sparx Systems 2021 Page 456 of 461

MDG Technologies 2 September, 2021

Clients Type=Enum;
List=Clients;
Drop-Down List Returned, of Data
Defined for the Model: Clients.

ComplexityT
ypes

Type=Enum;
List=ComplexityTypes;
Drop-Down List Returned, of Data
Defined for the Model: Complexity types.
Whilst complexity types can be exported
and imported as project reference data,
they cannot be updated and so are
effectively standard across all projects.

ConstraintTy
pes

Type=Enum;
List=ConstraintTypes;
Drop-Down List Returned, of Data
Defined for the Model: Constraint types.

EffortTypes Type=Enum;
List=EffortTypes;
Drop-Down List Returned, of Data
Defined for the Model: Effort types.

Maintenance
Types

Type=Enum;
List=MaintenanceTypes;
Drop-Down List Returned, of Data

(c) Sparx Systems 2021 Page 457 of 461

MDG Technologies 2 September, 2021

Defined for the Model : Maintenance
types.

ObjectTypes Type=Enum;
List=ObjectTypes;
Drop-Down List Returned, of Data
Defined for the Model: Object types.

Phases Type=Enum;
List=Phases;
Drop-Down List Returned, of Data
Defined for the Model: Phases.

ProblemType
s

Type=Enum;
List=ProblemTypes;
Drop-Down List Returned, of Data
Defined for the Model: Problem types.

RoleTypes Type=Enum;
List=RoleTypes;
Drop-Down List Returned, of Data
Defined for the Model: Role types.

Requirement
Types

Type=Enum;
List=RequirementTypes;
Drop-Down List Returned, of Data
Defined for the Model: Requirement

(c) Sparx Systems 2021 Page 458 of 461

MDG Technologies 2 September, 2021

types.

Resources Type=Enum;
List=Resources;
Drop-Down List Returned, of Data
Defined for the Model: Resources.

RiskTypes Type=Enum;
List=RiskTypes;
Drop-Down List Returned, of Data
Defined for the Model: Risk types.

RTFTemplat
es

Type=Enum;
List=RTFTemplates;
Drop-Down List Returned, of Data
Defined for the Model: Document Report
Templates.

ScenarioType
s

Type=Enum;
List=ScenarioTypes;
Drop-Down List Returned, of Data
Defined for the Model: Scenario types.

TestTypes Type=Enum;
List=TestTypes;
Drop-Down List Returned, of Data
Defined for the Model: Test types.

(c) Sparx Systems 2021 Page 459 of 461

MDG Technologies 2 September, 2021

(c) Sparx Systems 2021 Page 460 of 461

MDG Technologies 2 September, 2021

(c) Sparx Systems 2021 Page 461 of 461

	MDG Technologies
	Specify Required MDG Technologies
	Work with MDG Technologies
	Manage MDG Technologies
	Access Remote MDG Technologies
	Import MDG Technologies to Model
	Extensions - MDG Technologies
	MDG Technology SDK
	Defining a Modeling Language
	Developing Profiles
	Create Stereotype Profiles
	Create a Profile Package
	Add Stereotypes and Metaclasses
	Create Stereotypes Extending non-UML Objects
	Redefine Stereotypes in Another Profile

	Define Stereotype Tagged Values
	Add an Enumeration to a Stereotype
	Define a Structured Tagged Value
	Use the Tagged Value Connector
	With Predefined Tag Types

	Define Stereotype Constraints
	Add Shape Scripts
	Set Default Appearance
	Special Attributes
	Define a Stereotype as a Metatype
	Define Multiple-Stereotype Level
	Define Creation of Instance
	Define Composite Elements
	Define Child Diagram Type
	Define Tag Groupings

	Introducing the Metamodel Views
	Built-in Metamodel Diagram View
	Custom Metamodel Diagram View
	Define Metamodel Constraints
	Constraints on Meta-Constraint connector
	Metamodel Constraints and the Quick Linker

	Quick Linker
	Quick Linker Definition Format
	Relationship Table
	Quick Linker Example
	Hide Default Quick Linker Settings
	Quick Linker Object Names
	Add Quick Linker Definition To Profile

	Export a Profile
	Save Profile Options

	UML Profiles in the Resources Tab
	Import UML Profiles Into the Resources Tab

	MDG Technologies - Creating
	Using the Profile Helpers
	Create Stereotype Profiles using Profile Helpers
	Add Stereotypes and Metaclasses using Profile Helpers
	Edit a Stereotype Element

	Create Diagram Profiles using the Profile Helpers
	Create Toolbox Profiles using the Profile Helpers
	Create Hidden Sub-Menus using the Profile Helpers

	Create MDG Technology File
	Add a Profile
	Add a Pattern
	Add a Diagram Profile
	Add a Toolbox Profile
	Add Tagged Value Types
	Add Code Modules
	Define Code Options

	Add MDA Transforms
	Add Document Report Templates
	Add Linked Document Templates
	Add Images
	Add Scripts
	Add Workspace Layouts
	Add Model Views
	Add Model Searches

	Working with MTS Files
	Create Toolbox Profiles
	Create Toolbox Profiles
	Toolbox Page Attributes

	Create Hidden Sub-Menus
	Assign Icons To Toolbox Items
	Override Default Toolboxes
	Elements Used in Toolboxes
	Connectors Used in Toolboxes

	Create Custom Diagram Profiles
	Built-In Diagram Types
	Attribute Values - styleex & pdata

	Set Up Technology Element Images
	Define Validation Configuration
	Incorporate Model Wizard Templates
	Add Import/Export Scripts
	Deploy An MDG Technology

	Shape Scripts
	Getting Started With Shape Scripts
	Shape Editor
	Write Scripts
	Shape Attributes
	Drawing Methods
	Color Queries
	Conditional Branching
	Query Methods
	Display Element/Connector Properties
	Sub-Shapes
	Add Custom Compartments to Element
	Show Composite Diagram
	Reserved Names
	Syntax Grammar

	Example Scripts

	Tagged Value Types
	Create Tagged Value Type from Predefined Types
	Predefined Structured Types
	Create Custom Masked Tagged Value Type
	Create Reference Data Tagged Values
	Predefined Reference Data Types

