SIPARX

SYSTEMS

ENTERPRISE ARCHITECT

User Guide Series

Model Based Systems
Engineering

Author: Sparx Systems
Date: 2021-09-02

Version: 15.2

CREATED WITH ENTEFF:F'“ S_E.

Table of Contents

Model Based Systems Engineering

Model Based Systems Engineering 2 September, 2021

Model Based Systems Engineering

Systems Engineering is, very broadly, the work of researching, designing and managing complex physical or electronic
systems over their lifecycles. It focuses on the whole system and typically involves a number of sub-disciplines such as
requirements, reliability, logistics, design, testing and maintenance; it considers not only the system itself but also
processes, optimization and risk management, and requires sophisticated project management techniques.

In earlier decades a large but localized team might consider a very specific set of objects within a very specific and
controlled environment, to be delivered to a small user base and maintained by perhaps an, again, localized team of
experts who each might have responsibility for only a part of the system. Even for such a controlled and structured
scenario, a huge volume of documentation was required to define the system requirements, the components, the
engineering process, the standards applied and complied with, and the tests to be run on the system. Keeping this
documentation cross-referenced, up to date and integrated was a major task.

Advancing into computing and basing Systems Engineering work on graphical models (Model Based Systems
Engineering) provided huge benefits, allowing engineers to store and retrieve data from repositories, associate data with
documentation also held in the repositories, and develop both master structures and variants from templates, all of which
reduced the need to recreate and repeat work. The model initially represented the organization of the developing system,
but grew to reflect the development process and the factors that supported and directed that process. As computing
capabilities grew, and more specialized and sophisticated applications were made available, it became possible to
represent the components of a system with increasingly varied and detailed model elements, and with increasingly varied
and detailed relationships between them. Engineers could 'load' the model components and relationships with an array of
properties, characteristics and parameters, which could be varied to reflect different scenarios. The standards that the
system must apply or meet could be automatically enforced on the components as constraints, conditions and rules.
More and more of the development process - such as testing - could be represented by element or model features, and
more and more aspects of the process could be performed on the model by the application - such as automatic generation
of code to make the system operational, and simulation of the system in action under various conditions.

These days, the Systems Engineer is likely to be a member of an interdisciplinary team that has to consider a wide range
of factors in designing and modeling a system - a much broader, diverse and inexpert user base, a much broader
maintenance base, how the system interacts with many other systems, how the system operates in many different and
sometimes extreme environments, the impact the system has on the global environment - both within its operating
framework and within its pre-use production and final disposal - the socio-economic environment controlling its
acceptability and popularity, and how the system compares with its increasing range of competitors. To see how the work
of the Systems Engineer has become vastly more complex one has only to think of a single development, such as the
quantum leap from the relatively recent fixed-site landline telephone handset for making voice calls, to the modern
mobile smartphone used as a camera, computer, cinema, music center, navigator, and audio, visual and text
communicator.

Today, large projects and industries are being developed around systems and products for which the use cases are
increasingly complex. Controlling this complexity grows further and further beyond the capacity of the engineer,
increasing the level of risk to the product, the end user and the manufacturer. Examples of systems with dramatically
increased risk include the manufacture of passenger air bags to be fitted to many different brands and types of car
manufactured in different parts of the globe; or the requirements for the development of space probes intended to travel
to the planets of the solar system and beyond.

It is the advances in Systems Engineering tools and methodologies that have increased this complexity, whilst
simultaneously providing the capability to manage and mitigate the associated risk, and reducing the difficulty and effort
involved in managing and maintaining highly complex models.

For additional information, see the Representing Systems with Models section of the 'SEBoK - Guide to the Systems
Engineering Body of Knowledge' website.

Model-Based Systems Engineering in Enterprise Architect

Enterprise Architect provides a Model Based Systems Engineering platform that integrates many high-end features for
Systems Engineers and model-based development, with these built-in features.

Feature Description

(c) Sparx Systems 2021 Page 3 of 6 Created with Enterprise Architect

Model Based Systems Engineering 2 September, 2021

SysML Enterprise Architect is integrated with the Systems Modeling Language (SysML)
versions 1.1, 1.2, 1.3, 1.4 and 1.5. For details, see the Systems Modeling Language
(SysML) Help topic.
Enterprise Architect provides a number of engineering model templates from which
models of engineering structures and concepts can be developed. This is an image
of 'a SysML 1.5 Block Definition diagram. It is part of the HSUV Model that can be
found in the 'Systems Engineering' section of Enterprise Architect's Example
Model.

bdd [package] HSUV Analysis [Analysis Contex]

«block»
UnitCostContext

«constra
CapacityEquation

constraints
{pcap = Sum(Vi)}
values ol w adrag b
o i nstrainty «con »

V2: Vol
V1:vol
V3: Vol

Conformance to Standards As well as applying the standards defined by the OMG for UML and SysML, the
Enterprise Architect Model Based Systems Engineering platform also complies
with these international standards:

e International Council of Systems Engineering (INCOSE) 2012

e Ontology Definition Metamodel (ODM) (OMG document ptc/2013-12-03,
pub. February 2014)

e Systems Modeling Language (SysML) (OMG document formal/2017-05-01)

e Unified Profile for United States Department of Defense Architecture
Framework (DoDAF) and United Kingdom Ministry of Defense Architecture
Framework (MODAF) (UPDM) (OMG document formal/2013-01-01)

Executable Code You can quickly generate executable software code from your model elements,

Generation using Executable StateMachines. The code generated for an Executable
StateMachine is based on its language property. This might be Java, C, C++, C# or
JavaScript. Whichever language it is, Enterprise Architect generates the appropriate
code, which is immediately ready to build and run. There are no manual
interventions necessary before you run it. For more information, see the Code
Generation for Executable StateMachines Help topic.

Model to Code You can not only generate executable software code, but you can generate

Transformations for HDLs Hardware Description Languages and Ada from your model elements, for the chips
and circuits in system hardware components. For more information, see the
StateMachine Modeling for HDLs Help topic.

Parametric Model Enterprise Architect provides facilities to create Parametric diagrams using the

Simulation Parametric Diagram Modeling Assistant, and to perform Parametric Model
Simulation through OpenModelica. Being able to simulate a system through the
model is a huge advantage where live-testing would be dangerous (defense
systems) or prohibitively expensive (space probes).

This image shows an Internal Block diagram used in a Parametric Model
Simulation. The diagram is part of the 'Two Tanks' example that can be found in the
'Systems Engineering > Modelica Examples' section of Enterprise Architect's

(c) Sparx Systems 2021 Page 4 of 6 Created with Enterprise Architect

Model Based Systems Engineering

System-of-Systems
Modeling

Requirements Management

Project Management

(c) Sparx Systems 2021

2 September, 2021

Example Model.

par [block] BaseController [BaseController] /

cln: ReadSignal
e6: ErrorValue b ref: Real
{a=b-c} «equal»
: Real
= error: Real
«equal»

va

«equal»

outCtr: Real

«equal»

e5: CoutAct cOut: ActSignal

{a=b}

«equal»
act : Real

For further information, see the Parametric Diagrams, Parametric Diagram
Modeling Assistant and Parametric Simulation Using OpenModelica Help topics.

In addition to developing system models, you can also design 'system-of-system'
models, or system architectures, using the Unified Profile for DoODAF and MODAF
(UPDM) or the Unified Architecture Framework (UAF); these are both accessible
through the Systems Engineering Perspective with SysML.

Enterprise Architect has an extensive suite of Requirements Management tools that
can be applied to System Engineering, dove-tailed to the SysML Requirements
modeling facility. See the SysML Requirements Model and Requirement Models
Help topics. This image shows an example of a SysML Requirements diagram.

req [package] Hybrid Suv Requirements [Requirements Satisfy Relationship] /

«block»
BrakeSystem
«requirement» parts
Master Cylinder Efficacy f:FrontBrake
11: BrakeLine
id="s5.4.1" r : RearBrake
text ="A master cylinder shall have a
reservoir compartment for each service
brake subsystem serviced by the master
cylinder. Loss of fluid from one
compartment shall not resultin a +f 4 +1
complete loss of brake fluid from anothei
compartment.” «block» «block» «block»
FrontBrake RearBrake Brakeline

Enterprise Architect has extensive Project Management and team support facilities
to help you organize, support and manage both the Systems Engineering model
content and the staff working on the project. Amongst other things, you can apply
user security, organize and monitor resources, schedule tasks, apply Version
Control and enable a range of discussions from simple messaging through informal
topic discussion threads to formal reviews. For more information, see the Project
Management and The Modeling Team Help sections.

Page 5 of 6 Created with Enterprise Architect

Model Based Systems Engineering 2 September, 2021

(c) Sparx Systems 2021 Page 6 of 6 Created with Enterprise Architect

	Model Based Systems Engineering

