
Executable StateMachines

ENTERPRISE ARCHITECT

User Guide Series

Author: Sparx Systems

Date: 2021-09-02

Version: 15.2

CREATED WITH

Table of Contents

Executable StateMachines 3
Executable StateMachine Artifact 5
Modeling Executable StateMachines 7
Code Generation for Executable StateMachines 11
Debugging Execution of Executable StateMachines 16
Execution and Simulation of Executable StateMachines 18
Example: Executable StateMachine 19
Example: Simulation Commands 23
Example: Simulation in HTML with JavaScript 31

CD Player 32
Regular Expression Parser 36

Example: Entering a State 38
Example: Fork and Join 47
Example: Deferred Event Pattern 51
Example: Entry and Exit Points (Connection Point References) 57
Example: History Pseudostate 62

Executable StateMachines 2 September, 2021

Executable StateMachines

Executable StateMachines provide a powerful means of rapidly generating, executing and simulating complex state
models. In contrast to dynamic simulation of State Charts using Enterprise Architect's Simulation engine, Executable
StateMachines provide a complete language-specific implementation that can form the behavioral 'engine' for multiple
software products on multiple platforms. Visualization of the execution is based on a seamless integration with the
Simulation capability. Evolution of the model now presents fewer coding challenges. The code generation, compilation
and execution is taken care of by Enterprise Architect. For those having particular requirements, each language is
provided with a set of code templates. Templates can be customized by you to tailor the generated code in any ways you
see fit.

These topics introduce you to the basics of modeling Executable StateMachines and help you to understand how to
generate and simulate them.

The creation and use of Executable StateMachines, and generating code from them, are supported by the Unified and
Ultimate Editions of Enterprise Architect.

Overview of Building and Executing StateMachines

Building and using Executable StateMachines is quite straightforward, but does require a little planning and some
knowledge of how to link the different components up to build an effective executing model. Luckily you do not have to
spend hours getting the model right and fixing compilation errors before you can begin visualizing your design.

Having sketched out the broad mechanics of your model, you can generate the code to drive it, compile, execute and
visualize it in a matter minutes. These points summarize what is required to start executing and simulating
StateMachines.

Facility Description

Build Class and State
Models

The first task is to build the standard UML Class and State models that describe the
entities and behavior to construct. Each Class of interest in your model should have
its own StateMachine that describes the various states and transitions that govern its
overall behavior.

Create an Executable
StateMachine Artifact

Once you have modeled your Classes and State models, it is time to design the
Executable StateMachine Artifact. This will describe the Classes and objects
involved, and their initial properties and relationships. It is the binding script that
links multiple objects together and it determines how these will communicate at
runtime. Note that it is possible to have two or more objects in an Executable
StateMachine Artifact as instances of a single Class. These will have their own state

(c) Sparx Systems 2021 Page 3 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

and behavior at run-time and can interact if necessary.

Generate Code and
Compile

Whether you use JavaScript, C++, Java or C#, Enterprise Architect's engineering
capabilities provide you with a powerful tool, allowing you to regenerate the
executable at any time, and without the loss of any customized code you might have
made. This is a major advantage over a project's lifetime. It is probably also worth
noting that the entire code base generated is independent and portable. In no way is
the code coupled with any infrastructure used by the simulation engine.

Execute StateMachines So how do we see how these StateMachines behave? One method is to build the
code base for each platform, integrate it in one or more systems, examining the
behaviors, 'in-situ', in perhaps several deployment scenarios. Or we can execute it
with Enterprise Architect. Whether it is Java, JavaScript, C, C++ or C#, Enterprise
Architect will take care of creating the runtime, the hosting of your model, the
execution of its behaviors and the rendition of all StateMachines.

Visualize StateMachines Executable StateMachine visualization integrates with Enterprise Architect's
Simulation tools. Watch state transitions as they occur on your diagram and for
which object(s). Easily identify objects sharing the same state. Importantly, these
behaviors remain consistent across multiple platforms. You can also control the
speed at which the machines operate to better understand the timeline of events.

Debug StateMachines When states should change but do not, when a transition should not be enabled but
is, when the behavior is - in short - undesirable and not immediately apparent from
the model, we can turn to debugging. Enterprise Architect's Visual Execution
Analyzer comes with debuggers for all the languages supported by
ExecutableStateMachine code generation. Debugging provides many benefits, one
of which might be to verify / corroborate the code attached to behaviors in a
StateMachine to ensure it is actually reflected in the executing process.

(c) Sparx Systems 2021 Page 4 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

Executable StateMachine Artifact

An Executable StateMachine Artifact is key to generating StateMachines that can interact with each other. It specifies
the objects that will be involved in a simulation, their state and how they connect. A big advantage in using Executable
StateMachine Artifacts is that each of several parts in an Artifact can represent an instance of a StateMachine, so you can
set up simulations using multiple instances of each StateMachine and observe how they interact. An example is provided
in the Example Executable StateMachine Help topic.

Creating the Properties of an Executable StateMachine

Each Executable StateMachine scenario involves one or more StateMachines. The StateMachines included are specified
by UML Property elements; each Property will have a UML Classifier (Class) that determines the StateMachine(s)
included for that type. Multiple types included as multiple Properties can end up including many StateMachines, which
are all created in code and initialized on execution.

Action Description

Drop a Class from the
Browser window on to the
<<Executable
StateMachine>> Artifact

The easiest way to define properties on an Executable StateMachine is to drop the
Class onto the Executable StateMachine from the Browser window. On the dialog
that is shown, select the option to create a Property. You can then specify a name
describing how the Executable StateMachine will refer to this property.

Note: Depending on your options, you might have to hold down the Ctrl key to
choose to create a property. This behavior can be changed at any time using the
'Hold Ctrl to Show this dialog' checkbox.

Use and Connect Multiple
UML Properties

An Executable StateMachine describes the interaction of multiple StateMachines.
These can be different instances of the same StateMachine, different StateMachines
for the same instance, or completely different StateMachines from different base
types. To create multiple properties that will use the same StateMachine, drop the
same Class onto the Artifact multiple times. To use different types, drop different
Classes from the Browser window as required.

Defining the Initial State for Properties

The StateMachines run by an Executable StateMachine will all run in the context of their own Class instance. An
Executable StateMachine allows you to define the initial state of each instance by assigning property values to various
Class attributes. For example you might specify a Player's age, height, weight or similar if these properties have
relevance to the scenario being run. By doing this it is possible to set up detailed initial conditions that will influence
how the scenario plays out.

Action Description

Set Property Values Dialog The dialog for assigning property values can be opened by right-clicking on a
Property and selecting 'Features | Set Property Values', or by using the keyboard
shortcut Ctrl+Shift+R.

Assign a Value The 'Set Property Values' dialog allows you to define values for any attribute
defined in the original Class. To do this, select the variable, set the operator to '='
and enter the required value.

(c) Sparx Systems 2021 Page 5 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

Defining Relationships Between Properties

In addition to describing the values to assign to variables owned by each property, an Executable StateMachine allows
you to define how each property can reference others based on the Class model that they are instances of.

Action Description

Create a Connector Connect multiple properties using the Connector relationship from the Composite
toolbox.

Alternatively, use the Quick Linker to create a relationship between two Properties
and select 'Connector' as the relationship type.

Map to Class Model Once a connector exists between two properties, you can map it back to the
Association it represents in the Class model. To do this, select the connector and
use the keyboard shortcut Ctrl+L. The 'Choose an Association' dialog displays,
which allows the generated StateMachine to send signals to the instance filling the
role specified in the relationship during execution.

(c) Sparx Systems 2021 Page 6 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

Modeling Executable StateMachines

Most of the work required to model an Executable StateMachine is standard UML-based modeling of Classes and State
models, although there are a couple of conventions that must be observed to ensure a well formed code base. The only
novel construct is the use of a stereotyped Artifact element to form the configuration of an Executable StateMachine
instance or scenario. The Artifact is used to specify details such as:

The code language (JavaScript, C#, Java, C++ including C)·
The Classes and StateMachines involved in the scenario·
The instance specifications including run-state; note that this could include multiple instances of the same·
StateMachine, for example where a 'Player' Class is used twice in a Tennis Match simulation

Basic Modeling Tools and Objects for Executable StateMachines

These are the primary modeling elements used when building Executable StateMachines.

Object Details

Classes and Class
Diagrams

Classes define the object types that are relevant to the StateMachine(s) being
modeled. For example, in a simple Tennis Match scenario you might define a Class
for each of a Player, a Match, a Hit and an Umpire. Each will have its own
StateMachine(s) and at runtime will be represented by object instances for each
involved entity. See the UML Modeling Guide for more information on Classes and
Class diagrams.

StateMachines For each Class you define that will have dynamic behavior within a scenario, you
will typically define one or more UML StateMachines. Each StateMachine will
determine the legal state-based behavior appropriate for one aspect of the owning
Class. For example, it is possible to have a StateMachine that represents a Player's
emotional state, one that tracks his current fitness and energy levels, and one that
represents his winning or losing state. All these StateMachines will be initialized
and started when the StateMachine scenario begins execution.

Executable StateMachine
Artifact

This stereotyped Artifact is the core element used to specify the participants,
configuration and starting conditions for an Executable StateMachine. From the
scenario point of view it is used to determine which Instances (of Classes) are
involved, what events they might Trigger and send to each other, and what starting
conditions they operate under.

From the configuration aspect, the Artifact is used to set up the link to an analyzer
script that will determine output directory, code language, compilation script and
similar. Right-clicking on the Artifact will allow you to generate, build, compile
and visualize the real time execution of your StateMachines.

StateMachine Constructs Supported

This table details the StateMachine constructs supported and any limitations or general constraints relevant to each type.

Construct Description

StateMachines Simple StateMachine: StateMachine has one region·
Orthogonal StateMachine: StateMachine contains multiple regions·

(c) Sparx Systems 2021 Page 7 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

Top level region (owned by StateMachine) activation semantics:

Default Activation: When the StateMachine starts executing.

Entry Point Entry: Transitions from Entry Point to vertices in the contained
regions.

Note 1: In each Region of the StateMachine owning the Entry Point, there is at·
most a single Transition from the entry point to a Vertex within that Region

Note 2: This StateMachine can be referenced by a Submachine State -·
connection point reference should be defined in the Submachine State as
sources/targets of transitions; the Connection point reference represents a
usage of an Entry/Exit Point defined in the StateMachine and referenced by the
Submachine State

Not Supported

Protocol StateMachine·
StateMachine Redefinition·

States Simple State: has no internal Vertices or Transitions·
Composite State: contains exactly one Region·
Orthogonal State: contains multiple Regions·
Submachine State: refers to an entire StateMachine·

Composite State Entry Default Entry·
Explicit Entry·
Shallow History Entry·
Deep History Entry·
Entry Point Entry·

Substates Substates and Nested Substates·
Entry and Exit semantics, where the transition includes multiple nested levels of
states, will obey correct execution of nested behaviors (such as OnEntry and
OnExit).

Transitions Support External Transition·
Local Transition·
Internal Transition (draw a self Transition and change Transition kind to·
Internal)

Completion Transition and Completion Events·
Transition Guards·
Compound Transitions·
Firing priorities and selection algorithm·

For further details, refer to the OMG UML Specification.

Trigger and Events An Executable StateMachine supports event handling for Signals only.

To use Call, Timing or Change Event types you must define an outside mechanism
to generate signals based on these events.

Signal Attributes can be defined in Signals; the value of the attributes can be used as event
arguments in Transition Guards and Effects.

For example, this is the code set in the effect of a transition in C++:

 if(signal->signalEnum == ENUM_SIGNAL2)

(c) Sparx Systems 2021 Page 8 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

 {

 int xVal = ((Signal2*)signal)->myVal;

 }

Signal2 is generated as this code:

 class Signal2 : public Signal{

 public:

 Signal2(){};

 Signal2(std::vector<String>& lstArguments);

 int myVal;

 };

Note: Further details can be found by generating an Executable StateMachine and
referring to the generated 'EventProxy' file.

Initial An Initial Pseudostate represents a starting point for a Region. It is the source for at
most one Transition; there can be at most one Initial Vertex in a Region.

Regions Default Activation & Explicit Activation:

Transitions terminate on the containing State:

If an initial Pseudostate is defined in the Region: Default activation·
If no initial Pseudostate is defined, the Region will remain inactive and the·
containing State is treated as a Simple State

If the transition terminates on one of the Region's contained vertices: Explicit·
activation, resulting in the default activation of all of its orthogonal Regions,
unless those Regions are also entered explicitly (multiple orthogonal Regions
can be entered explicitly in parallel through Transitions originating from the
same Fork Pseudostate)

For example, if there are three Regions defined for an Orthogonal State, and
RegionA and RegionB have an Initial Pseudostate, then RegionC is explicitly
activated. Default Activation applies to RegionA and RegionB; the containing State
will have three active Regions.

Choice Guard Constraints on all outgoing Transitions are evaluated dynamically, when the
compound transition traversal reaches this Pseudostate.

Junction Static conditional branch: guard constraints are evaluated before any compound
transition is executed.

Fork / Join Non-threaded, each active Region moves one step alternately, based on a
completion event pool mechanism.

EntryPoint / ExitPoint
Nodes

Non-threaded for orthogonal State or orthogonal StateMachine; each active Region
moves one step alternately, based on a completion event pool mechanism.

History Nodes DeepHistory: represents the most recent active State configuration of its·
owning State

ShallowHistory: represents the most recent active Substate of its containing·
State, but not the Substates of that Substate

Deferred Events Draw a self Transition, and change the Transition kind to Internal. Type 'defer();' in
the 'Effect' field for the transition.

Connection Point A Connection Point Reference represents a usage (as part of a Submachine State) of

(c) Sparx Systems 2021 Page 9 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

References an Entry/Exit Point defined in the StateMachine referenced by the Submachine
State. Connection Point References of a Submachine State can be used as sources
and targets of Transitions. They represent entries into or exits out of the
StateMachine referenced by the Submachine State.

State behaviors State 'entry', 'doActivity' and 'exit' behaviors are defined as operations on a State.
By default, you type the code that will be used for each behavior into the 'Code'
panel of the Properties window for the Behavior operation. Note that you can
change this to type the code into the 'Behavior' panel, by customizing the
generation template.

The 'doActivity' behavior generated will be run to completion before proceeding.
The code is not concurrent with other entry behavior; the 'doActivity' behavior is
implemented as 'execute in sequence after entry' behavior.

References to Behaviors Within Other Contexts/Classes

If the Submachine State references behavior elements outside the current context or Class, you must add an <<import>>
connector from the current context Class to the container context Class. For example:

 Submachine State S1 in Class1 refers to StateMachine ST2 in Class2

Therefore, we add an <<import>> connector from Class1 to Class2 in order for Executable StateMachine code
generation to generate code correctly for Submachine State S1. (On Class 1, click on the Quick Linker arrow and drag to
Class 2, then select 'Import' from the menu of connector types.)

Reusing Executable StateMachine Artifacts

You can create multiple models or versions of a component using a single executable Artifact. An Artifact representing a
resistor, for example, could be re-used to create both a foil resistor and a wire wound resistor. This is likely to be the case
for similar objects that, although represented by the same classifier, typically exhibit different run states. A property
named 'resistorType' taking the value 'wire' rather than 'foil' might be all that is required from a modeling point of view.
The same StateMachines can then be re-used to test behavioral changes that might result due to variance in run-state.
This is the procedure:

Step Action

Create or open Component
diagram

Open a Component diagram to work on. This might be the diagram that contains
your original Artifact.

Select the Executable
StateMachine to copy

Now find the original Executable StateMachine Artifact in the Browser window.

Create the New Component Whilst holding the Ctrl key, drag the original Artifact on to your diagram. You will
be prompted with two questions.

The answer to the first is Object and to the second All. Rename the Artifact to
differentiate it from the original and then proceed to alter its property values.

(c) Sparx Systems 2021 Page 10 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

Code Generation for Executable StateMachines

The code generated for an Executable StateMachine is based on its language property. This might be Java, C, C++, C# or
JavaScript. Whichever language it is, Enterprise Architect generates the appropriate code, which is immediately ready to
build and run. There are no manual interventions necessary before you run it. In fact after the initial generation, any
Executable StateMachine can be generated, built and executed at the click of a button.

Language Supported

An Executable StateMachine supports code generation for these platform languages:

Microsoft Native C/C++·
Microsoft .NET (C#)·
Scripting (JavaScript)·
Oracle Java (Java)·

From Enterprise Architect Release 14.1, code generation is supported without dependency on the simulation environment
(compilers). For example, if you don't have Visual Studio installed, you can still generate code from the model and use it
in your own project. The compilers are still needed if you want to simulate models in Enterprise Architect.

Simulation Environment (Compiler Settings)

If you want to simulate the Executable StateMachine model in Enterprise Architect, these platforms or compilers are
required for the languages:

Language Platform Example of Framework Path

Microsoft Native (C/C++) C:\Program Files (x86)\Microsoft Visual Studio 12.0

C:\Program Files (x86)\Microsoft Visual Studio\2017\Professional (or other
editions)

Microsoft .NET (C#) C:\Windows\Microsoft.NET\Framework\v3.5 (or higher)

Scripting (JavaScript) N/A

Oracle Java (Java) C:\Program Files (x86)\Java\jdk1.7.0_17 (or higher)

Access

Ribbon Simulate > Executable States > Statemachine > Generate, Build and Run or

Simulate > Executable States > Statemachine > Generate

Generating Code

(c) Sparx Systems 2021 Page 11 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

The 'Simulate > Executable States > Statemachine' ribbon options provide commands for generating code for the
StateMachine. Select the Executable StateMachine Artifact first, then use the ribbon option to generate the code. The
'Executable Statemachine Code Generation' dialog displayed depends on the code language.

Generating Code (Java on Windows)

Project output directory Displays the directory in which the generated code files will be stored. If
necessary, click on the button at the right of the field to browse for and select a
different directory. The names of the generated classes and their source file paths
are displayed after this.

Executable Statemachine
Target Machine

Select the 'Local' option.

Java JDK Enter the installation directory of the Java JDK to be used.

(c) Sparx Systems 2021 Page 12 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

Generating Code (Java on Linux)

Project output directory: Displays the directory in which the generated code files will be stored. If
necessary, click on the button at the right of the field to browse for and select a
different directory. The names of the generated classes and their source file paths
are displayed when the path is changed.

Executable Statemachine
Target Machine

Select the 'Remote' option.

Operating System Select Linux.

Port This is the debugger Port to be used. You will find references to this Port number in
the 'Debug' and 'DebugRun' sections of the Analyzer Script generated.

(c) Sparx Systems 2021 Page 13 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

Generating Code (Other Languages)

At the same time the System Output window opens at the 'Executable StateMachine Output' page, on which progress
messages, warnings or errors are displayed during code generation.

On the 'Executable StateMachine Code Generation' dialog, the 'Artifact' field and 'Language' field display the element
name and coding language as defined in the element's 'Properties' dialog.

Field/Option Description

Project output directory Displays the directory in which the generated code files will be stored. If
necessary, click on the button at the right of the field to browse for and select a
different directory.

Project build environment The fields and information in this panel vary depending on the language defined in
the Artifact element and in the script. However, each supported language provides
an option to define the path to the target frameworks that are required to build and
run the generated code; examples are shown in the Languages Supported section of
this topic.

This path, and its Local Paths ID, are defined in the 'Local Paths' dialog and shown
here on the 'Executable StateMachine Code Generation' dialog.

Generate

Click on this button to generate the StateMachine code. The code generation will overwrite any existing files in the
project output directory. The set of files will include all required files including those for each Class referenced by the
StateMachine.

(c) Sparx Systems 2021 Page 14 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

Each Executable StateMachine that is generated will also generate an Execution Analyzer script, which is the
configuration script for building, running and debugging the Executable StateMachine.

Building Code

The code generated by an Executable StateMachine can be built by Enterprise Architect in one of three ways.

Method Description

Ribbon Generate, Build
and Run Command

For the selected Executable StateMachine, generates the entire code base again.
The source code is then compiled and the simulation started.

Ribbon Build Command Compiles the code that has been generated. This can be used directly after
generating the code, if you have made changes to the build procedure (the Analyzer
Script) or modified the generated code in some way.

Execution Analyzer Script The generated Execution Analyzer script includes a command to build the source
code. This means that when it is active, you can build directly using the built-in
shortcut Ctrl+Shift+F12.

Build Output When building, all output is shown on the 'Build' page of the System Output
window. You can double-click on any compiler errors to open a source editor at the
appropriate line.

Leveraging existing code

Executable StateMachines generated and executed by Enterprise Architect can leverage existing code for which no Class
model exists. To do this you would create an abstract Class element naming only the operations to call in the external
codebase. You would then create a generalization between this interface and the StateMachine Class, adding the required
linkages manually in the Analyzer Script. For Java you might add .jar files to the Class path. For native code you might
add a .dll to the linkage.

(c) Sparx Systems 2021 Page 15 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

Debugging Execution of Executable StateMachines

Creation of Executable StateMachines provides benefits even after the generation of code. Using the Execution
Analyzer, Enterprise Architect is able to connect to the generated code. As a result you are able to visually debug and
verify the correct behavior of the code; the exact same code generated from your StateMachines, demonstrated by the
simulation and ultimately incorporated in a real world system.

Debugging a StateMachine

Being able to debug an Executable StateMachine gives additional benefits, such as being able to:

Interrupt the execution of the simulation and all executing StateMachines·
View the raw state of each StateMachine instance involved in the simulation·
View the source code and Call Stack at any point in time·
Trace additional information about the execution state through the placement of tracepoints on lines of source code·
Control the execution through use of actionpoints and breakpoints (break on error, for example)·
Diagnose changes in behavior, due to either code or modeling changes·

If you have generated, built and run an Executable StateMachine successfully, you can debug it! The Analyzer Script
created during the generation process is already configured to provide debugging. To start debugging, simply start
running the Executable StateMachine using the Simulation Control. Depending on the nature of the behavior being
debugged, however, we would probably set some breakpoints first.

Breaking execution at a state transition

Like any debugger we can use breakpoints to examine the executing StateMachine at a point in code. Locate a Class of
interest in either the diagram or Browser window and press F12 to view the source code. It is easy to locate the code for
State transitions from the naming conventions used during generation. If you want to break at a particular transition,
locate the transition function in the editor and place a breakpoint marker by clicking in the left margin at a line within the
function. When you run the Executable StateMachine, the debugger will halt at this transition and you will be able to
view the raw state of variables for any StateMachines involved.

Breaking execution conditionally

Each breakpoint can take a condition and a trace statement. When the breakpoint is encountered and the condition
evaluates to True the execution will halt. Otherwise the execution will continue as normal. You compose the condition
using the names of the raw variables and comparing them using the standard equality operands: < > = >= <=. For
example:

 (this.m_nCount > 100) and (this.m_ntype == 1)

To add a condition to a breakpoint you have set, right-click on the breakpoint and select 'Properties'. By clicking on the
breakpoint while pressing the Ctrl key, the properties can be quickly edited.

Tracing auxiliary information

It is possible to trace information from within the StateMachine itself using the TRACE clause in, for example, an effect.
Debugging also provides trace features known as Tracepoints. These are simply breakpoints that, instead of breaking,
print trace statements when they are encountered. The output is displayed in the Simulation Control window. They can
be used as a diagnostic aid to show and prove the sequence of events and the order in which instances change state.

(c) Sparx Systems 2021 Page 16 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

Viewing the Call Stack

Whenever a breakpoint is encountered, the Call Stack is available from the Analyzer menu. Use this to determine the
sequence in which the execution is taking place.

(c) Sparx Systems 2021 Page 17 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

Execution and Simulation of Executable StateMachines

One of the many features of Enterprise Architect is its ability to perform simulations. An Executable StateMachine
generated and built in Enterprise Architect can hook into the Simulation facilities to visually demonstrate the live
execution of the StateMachine Artifact.

Starting a Simulation

The Simulation Control toolbar provides a Search button that you use to select the Executable StateMachine Artifact
to run. The control maintains a drop-down list of the most recent Executable StateMachines for you to choose from. You
can also use the context menu on an Executable StateMachine Artifact itself to initiate the simulation.

Controlling Speed

The Simulation Control provides a speed setting. You can use this to adjust the rate at which the simulation executes.
The speed is represented as a value between 0 and 100 (a higher value is faster). A value of zero will cause the
simulation to halt after every step; this requires using the toolbar controls to manually step through the simulation.

Notation for Active States

As the Executable StateMachine executes, the relevant StateMachine diagrams are displayed. The display is updated at
the end of every step-to-completion cycle. You will notice that only the active State for the instance completing a step is
highlighted. The other States remain dimmed.

It is easy to identify which instance is in which State, as the States are labeled with the name of any instance currently in
that particular state. If two or more Artifact properties of the same type share the same State, the State will have a
separate label for each property name.

Generate Timing Diagram

After completing the simulation of an Executable StateMachine, you can generate a Timing diagram from the output. To
do this:

In the Simulation window toolbar, click on 'Tools | Generate Timing Diagram'.

(c) Sparx Systems 2021 Page 18 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

Example: Executable StateMachine

Example Class Model

This image shows a sample Class model that is used by the StateMachines described in this topic.

TurbineController

+ simulationLength: int
+ tickLength: double

Turbine

+ currentHeat: double
+ heatDissipation: double
+ heatProduction: double
+ heatTolerance: double

+ cool(int): void
+ warm(int): void

Next

+nextOwns
+master

Example StateMachines

These two diagrams show the definitions of two StateMachines. The first references another StateMachine of the same
type, while the second drives any instances of the first that exist.

stm RunningState

Standby

TICK /
cool(1)

SPEEDUP /
defer();

SPEEDDOWN /
defer();

Initial

On

[Speed]

[Heat]

High

Medium

Low

History

Heating

TICK [currentHeat < heatTolerance] /
warm(1)Initial

Off

SPEEDDOWN

TICK [currentHeat >= heatTolerance]
/%SEND_EVENT("ACTIVATE",

CONTEXT_REF(next))%;

START

SPEEDUP

SPEEDUP

SHUTDOWN

SPEEDDOWN

ACTIVATE

The top level controller.

(c) Sparx Systems 2021 Page 19 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

stm TurbineControl

Initial

Start

entry / entry

Stop

entry / entry

Run

do / do

Terminate

/%SEND_EVENT("ACTIVATE", CONTEXT_REF(master))%;

[simulationLength > 0]
/%BROADCAST_EVENT("TICK")%;

[simulationLength <= 0]

Example Artifacts

From the example Class and StateMachine diagrams, we can create Executable StateMachines as shown here.

(c) Sparx Systems 2021 Page 20 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

«executable statemachine»
FourUniqueTurbineTest

controller: TurbineController

simulationLength = 200
tickLength = 1

turbine1: Turbine

heatDissipation = 1
currentHeat = 0
heatProduction = 1
heatTolerance = 10

turbine2: Turbine

heatDissipation = 2
currentHeat = 0
heatProduction = 0.5
heatTolerance = 12

turbine3: Turbine

heatDissipation = 0.5
currentHeat = 0
heatProduction = 2
heatTolerance = 15

turbine4: Turbine

heatDissipation = 2
currentHeat = 0
heatProduction = 2
heatTolerance = 8

«executable statemachine»
PairedTurbineTest

controller: TurbineController

simulationLength = 100
tickLength = 1

a: Turbine

heatDissipation = 1
currentHeat = 0
heatProduction = 1
heatTolerance = 10

b: Turbine

heatDissipation = 1
currentHeat = 0
heatProduction = 1
heatTolerance = 10

:Next

:Next

:Owns

:Next

:Next

:Next

:Next

:Owns

Note how property values have been set for each property, and the links between elements identify the relationships that
exist in the Class model.

Simulation Results

When running a simulation, Enterprise Architect will highlight the currently active States in any StateMachines. Where
multiple instances of a StateMachine exist, it will also show the names of each instance in that State.

(c) Sparx Systems 2021 Page 21 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

(c) Sparx Systems 2021 Page 22 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

Example: Simulation Commands

This example demonstrates how we can use the Simulation window to observe Trace messages or send commands to
control a StateMachine. Through the example, you can examine:

An attribute of a context - the member variable defined in the Class, which is the context of the StateMachine; these·
attributes carry values in the scope of the context for all State behaviors and transition effects, to access and modify

Each attribute of a Signal - the member variable defined in the Signal, which is referenced by an Event and which·
can serve as an Event Parameter; each Signal Event occurrence might have different instances of a Signal

The use of the 'Eval' command to query the runtime value of a context's attribute·
The use of the 'Dump' command to dump the current state's active count; it can also dump the current event deferred·
in the pool

This example is taken from the EAExample model:

 Example Model.Model Simulation.Executable StateMachine.Simulation Commands

Access

Ribbon Simulate > Dynamic Simulation > Simulator > Open Simulation Window)·
Simulate > Dynamic Simulation > Events (for the Simulation Events·
window)

These two windows are frequently used together in the simulation of Executable
StateMachines.

Create Context and StateMachine

In this section we will create a Class called TransactionServer, which defines a StateMachine as its behavior. We then
create an Executable StateMachine Artifact as the simulation environment.

Create the Context of the StateMachine

TransactionServer

- authorizeCnt: int = 0

Create a Class element called TransactionServer.1.

In this Class, create an attribute called authorizeCnt with initial value 0.2.

In the Browser window, right-click on TransactionServer and select the 'Add | StateMachine' option.3.

(c) Sparx Systems 2021 Page 23 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

Create the StateMachine

stm ServerStateMachine

Final

busy

NEW_REQUEST /
defer();

idle

Initial

QUITAUTHORIZED
/this.authorizeCnt++;

NEW_REQUEST

Create an Initial pseudostate called Initial.1.

Transition to a State called idle.2.

Transition to a State called busy, with the trigger NEW_REQUEST.3.

Transition:4.
 - To a Final pseudostate called Final, with the trigger QUIT
 - Back to idle, with the trigger AUTHORIZED, with the Effect 'this.authorizeCnt++;'

Create a Deferred Event for the State busy

Draw a self-transition for busy.1.

Change the 'kind' of the transition to 'internal'.2.

Specify the Trigger to be the event you want to defer.3.

In the 'Effect' field, type 'defer();'.4.

Create a Signal and Attributes

Create a Signal element called RequestSignal.1.

Create an attribute called requestType with type 'int'.2.

Configure the Event NEW_REQUEST to reference RequestSignal.3.

Create the Executable StateMachine Artifact

«executable statemachine»
Simulation with Deferred Event

server: TransactionServer

From the 'Artifacts' page of the Diagram Toolbox, drag an Executable StateMachine icon onto the diagram and call1.
the element Simulation with Deferred Event.

Ctrl+Drag the TransactionServer element from the Browser window and drop it onto the Artifact as a property, with2.
the name server.

Set the language of the Artifact to JavaScript, which does not require a compiler (for the example; in production you3.
could also use C, C++, C#, or Java, which also support Executable StateMachines).

Click on the Artifact and select the 'Simulate > Executable States > Statemachine > Generate, Build and Run' ribbon4.
option.

Simulation Window and Commands

When the simulation starts, idle is the current state.

(c) Sparx Systems 2021 Page 24 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

The Simulation window shows that the Transition Effect, Entry and Do behavior is finished for state idle, and the
StateMachine is waiting for a trigger.

Event Data via Values for Signal Attributes

For the Trigger Signal Event NEW_REQUEST, the 'Trigger Parameter Entry' dialog displays to prompt for values for the
listed attributes defined in the Signal RequestSignal, referenced by NEW_REQUEST.

Type the value '2' and click on the OK button. The Signal attribute values are then passed to invoked methods such as
the State's behaviors and the Transition's effects.

These messages are output to the Simulation window:

 [03612562] Waiting for Trigger

 [03611358] Command: broadcast NEW_REQUEST.RequestSignal(2)

 [03611362] [server:TransactionServer] Event Queued: NEW_REQUEST.RequestSignal(requestType:2)

 [03611367] [server:TransactionServer] Event Dispatched: NEW_REQUEST.RequestSignal(requestType:2)

 [03611371] [server:TransactionServer] Exit Behavior: ServerStateMachine_idle

 [03611381] [server:TransactionServer] Transition Effect: idle__TO__busy_61772

(c) Sparx Systems 2021 Page 25 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

 [03611390] [server:TransactionServer] Entry Behavior: ServerStateMachine_busy

 [03611398] [server:TransactionServer] Do Behavior: ServerStateMachine_busy

 [03612544] [server:TransactionServer] Completion: TransactionServer_ServerStateMachine_busy

 [03612562] Waiting for Trigger

We can broadcast events by double-clicking on the item listed in the Simulation Events window. Alternatively, we can
type a command string in the text field of the Simulation window (underneath the toolbar).

 [03612562] Waiting for Trigger

 [04460226] Command: broadcast NEW_REQUEST.RequestSignal(3)

 [04460233] [server:TransactionServer] Event Queued: NEW_REQUEST.RequestSignal(requestType:3)

 [04461081] Waiting for Trigger

The Simulation message indicates that the event occurrence is deferred (Event Queued, but not dispatched). We can run
further commands using the text field:

 [04655441] Waiting for Trigger

 [04664057] Command: broadcast NEW_REQUEST.RequestSignal(6)

 [04664066] [server:TransactionServer] Event Queued: NEW_REQUEST.RequestSignal(requestType:6)

 [04664803] Waiting for Trigger

 [04669659] Command: broadcast NEW_REQUEST.RequestSignal(5)

 [04669667] [server:TransactionServer] Event Queued: NEW_REQUEST.RequestSignal(requestType:5)

 [04670312] Waiting for Trigger

 [04674196] Command: broadcast NEW_REQUEST.RequestSignal(8)

 [04674204] [server:TransactionServer] Event Queued: NEW_REQUEST.RequestSignal(requestType:8)

 [04674838] Waiting for Trigger

dump: Query 'active count' for a State and Event Pool

Type dump in the text field; these results display:

(c) Sparx Systems 2021 Page 26 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

From the 'active count' section, we can see that busy is the active state (active count is 1).

Tips: For a Composite State, the active count is 1 (for itself) plus the number of active regions.

From the 'Event Pool' section, we can see that there are four event occurrences in the Event Queue. Each instance of the
signal carries different data.

The order of the events in the pool is the order in which they are broadcast.

eval: Query Run Time Value of the Context

 Trigger AUTHORIZED,

 [04817341] Waiting for Trigger

 [05494672] Command: broadcast AUTHORIZED

 [05494678] [server:TransactionServer] Event Queued: AUTHORIZED

 [05494680] [server:TransactionServer] Event Dispatched: AUTHORIZED

 [05494686] [server:TransactionServer] Exit Behavior: ServerStateMachine_busy

 [05494686] [server:TransactionServer] Transition Effect: busy__TO__idle_61769

 [05494687] [server:TransactionServer] Entry Behavior: ServerStateMachine_idle

 [05494688] [server:TransactionServer] Do Behavior: ServerStateMachine_idle

 [05495835] [server:TransactionServer] Completion: TransactionServer_ServerStateMachine_idle

 [05495842] [server:TransactionServer] Event Dispatched: NEW_REQUEST.RequestSignal(requestType:3)

 [05495844] [server:TransactionServer] Exit Behavior: ServerStateMachine_idle

 [05495846] [server:TransactionServer] Transition Effect: idle__TO__busy_61772

 [05495847] [server:TransactionServer] Entry Behavior: ServerStateMachine_busy

 [05495850] [server:TransactionServer] Do Behavior: ServerStateMachine_busy

 [05496349] [server:TransactionServer] Completion: TransactionServer_ServerStateMachine_busy

 [05496367] Waiting for Trigger

(c) Sparx Systems 2021 Page 27 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

The transition from busy to idle is made, so we expect the effect to be executed·
One event is recalled from the pool and dispatched when idle is completed, causing busy to become the active state·
Type dump and notice that there are three events left in the pool; the first one is recalled and dispatched·

 [05693348] Event Pool: [

 [05693349] NEW_REQUEST.RequestSignal(requestType:6),

 [05693351] NEW_REQUEST.RequestSignal(requestType:5),

 [05693352] NEW_REQUEST.RequestSignal(requestType:8),

 [05693354]]

Type eval server.authorizeCnt in the text field. This figure indicates that the run time value of 'server.authorizeCnt' is 1.

Trigger AUTHORIZED again. When the StateMachine is stable at busy, there will be two events left in the pool. Run
eval server.suthorizeCnt again; the value will be 2.

Access Context's Member Variable from State Behavior and Transition Effect

Enterprise Architect's Executable StateMachine supports simulation for C, C++, C#, Java and JavaScript.

For C and C++, the syntax differs from C#, Java and JavaScript in accessing the context's member variables. C and C++
use the pointer '->' while the others simply use '.'; however, you can always use this.variableName to access the
variables. Enterprise Architect will translate it to this->variableName for C and C++.

So for all languages, simply use this format for the simulation:

 this.variableName

Examples:

In the transition's effect:

 this.authorizeCnt++;

In some state's entry, do or exit behavior:

 this.foo += this.bar;

Note: by default Enterprise Architect is only replacing 'this->' with 'this' for C and C++; For example:

 this.foo = this.bar + myObject.iCount + myPointer->iCount;

will be translated to:

 this->foo = this->bar + myObject.iCount + myPointer->iCount;

A Complete List of Supported Commands

(c) Sparx Systems 2021 Page 28 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

Since the Executable StateMachine Artifact can simulate multiple contexts together, some of the commands can specify
an instance name.

run StateMachine:

As each context can have multiple StateMachines, the 'run' command can specify a StateMachine to start with.

run instance.statemachine·
run all.all·
run instance·
run all·
run·

For example:

 run

 run all

 run server

 run server.myMainStatemachine

broadcast & send Event:

broadcast EventString·
send EventString to instance·
send EventString (equivalent to broadcast EventString)·

For example:

 broadcast Event1

 send Event1 to client

dump Command:

dump·
dump instance·

For example:

 dump

 dump server

 dump client

eval Command:

eval instance.variableName·
For example:

 eval client.requestCnt

 eval server.responseCnt

exit Command:

exit·

The EventString's Format:

(c) Sparx Systems 2021 Page 29 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

EventName.SignalName(argument list)·
Note: the argument list should match the attributes defined in the signal by order.

For example, if the Signal defines two attributes:

foo·
bar·

Then these EventStrings are valid:

Event1.Signal1(10, 5) --------- foo = 10; bar = 5·
Event1.Signal1(10,) --------- foo = 10; bar is undefined·
Event1.Signal1(,5) --------- bar = 10; foo is undefined·
Event1.Signal1(,) --------- both foo and bar are not defined·

If the Signal does not contain any attributes, we can simplify the EventString to:

EventName·

(c) Sparx Systems 2021 Page 30 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

Example: Simulation in HTML with JavaScript

We already know that users can model an Executable StateMachine and simulate it in Enterprise Architect with the
generated code. Using the two examples CD Player and the Regular Expression Parser, we will now demonstrate how
you can integrate the generated code with your real projects.

Enterprise Architect provides two different mechanisms for client code to use a StateMachine:

Active State Based - the client can query the current active state, then 'switch' the logic based on the query result·
Runtime Variable Based - the client does not act on the current active state, but does act on the runtime value of the·
variables defined in the Class containing the StateMachine

In the CD Player example, there are very few states and many buttons on the GUI, so it is quite easy to implement the
example based on the Active State Mechanism; we will also query the runtime value for the current track.

In the Regular Expression Parser example the StateMachine handles everything, and a member variable bMatch changes
its runtime value when states change. The client does not register how many states are there or which state is currently
active.

In these topics, we demonstrate how to model, simulate and integrate a CD Player and a Parser for a specified Regular
Expression, step by step:

CD Player·
Regular Expression Parser·

(c) Sparx Systems 2021 Page 31 of 70 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/15.2/cd_player.htm
https://sparxsystems.com/enterprise_architect_user_guide/15.2/reg_exp_pars.htm

Executable StateMachines 2 September, 2021

CD Player

The behavior of a CD Player application might appear intuitive; however, there are many rules related to when the
buttons are enabled and disabled, what is displayed in the text fields of the window and what happens when you supply
events to the application.

Suppose our example CD Player has these features:

Buttons - Load Random CD, Play, Pause, Stop, Previous Track, Next Track and Eject·
Displays - Number Of Tracks, Current Track, Track Length and Time Elapsed·

StateMachine for CD Player

A Class CDPlayer is defined with two attributes: currentTrack and numberOfTracks.

CDPlayer

- currentTrack: int
- numberOfTracks: int

+ next(): void
+ previous(): void

A StateMachine is used to describe the states of the CD Player:

stm StateMachine

CD UnLoaded

entry / entry
this.currentTrack=0;

CD Loaded

CD Stopped

entry / entry
this.currentTrack=1;

CD Playing CD Paused

Initial
Initial

PlayLoad

Stop

Eject

Next
/this.next();

Pause

Pause, Play

Previous
/this.previous();

Next
/this.next();

Stop

Previous
/this.previous();

On the higher level, the StateMachine has two States: CD UnLoaded and CD Loaded·
CD Loaded can be composed of three simple States: CD Stopped, CD Playing, CD Paused·
Transitions are defined with triggers for the events Load, Eject, Play, Pause, Stop, Previous and Next·
State behaviors and transition Effects are defined to change the value of attributes defined in CDPlayer; for·
example, the 'Previous' event will trigger the self transition (if the current state is CD Playing or CD Paused) and the
Effect will be executed, which will decrement the value of currentTrack or wrap to the last track

We can create an Executable StateMachine Artifact and create a property typing to CDPlayer, then simulate the

(c) Sparx Systems 2021 Page 32 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

StateMachine in Enterprise Architect to make sure the model is correct.

Inspect the code generated

Enterprise Architect will generate these files in a folder that you have specified:

Back-end code: CDPlayer.js, ContextManager.js, EventProxy.js·
Client code: ManagerWorker·
Front-end code: statemachineGUI.js, index.html·
Other code: SimulationManager.js·

File Description

/CDPlayer.js This file defines the Class CDPlayer and its attributes and operations. It also defines
the Class's StateMachines with the State behaviors and the transition effects.

/ContextManager.js This file is the abstract manager of contexts. The file defines the contents that are
independent of the actual contexts, which are defined in the generalization of the
ContextManager, such as SimulationManager and ManagerWorker.

The simulation (Executable StateMachine Artifact) can involve multiple contexts;
for example, in a tennis game simulation there will be one umpire typed to Class
Umpire, and two players - playerA and playerB - typed to Class Player. Both Class
Umpire and Class Player will define their own StateMachine(s).

/EventProxy.js This file defines Events and Signals used in the simulation.

(c) Sparx Systems 2021 Page 33 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

If we are raising an Event with arguments, we model the Event as a Signal Event,
which specifies a Signal Class; we then define attributes for the Signal Class. Each
Event occurrence has an instance of the Signal, carrying the runtime values
specified for the attributes.

/SimulationManager.js This file is for simulation in Enterprise Architect.

/html/ManagerWorker.js This file serves as a middle layer between the front-end and back-end.

The front-end posts a message to request information from the ManagerWorker·
Since the ManagerWorker generalizes from ContextManager, it has full access·
to all the contexts such as querying the current active state and querying the
runtime value of a variable

The ManagerWorker will post a message to the front-end with the data it·
retrieved from the back-end

/html/statemachineGUI.js This file establishes the communication between the front-end and the
ManagerWorker, by defining stateMachineWorker. It:

Defines the functions startStateMachineWebWorker and·
stopStateMachineWebWorker

Defines the functions onActiveStateResponse and onRuntimeValueResponse·
with place-holder code:
 //to do: write user's logic

 You could simply replace this comment with your logic, as will be demonstrated
later in this topic

/html/index.html This defines the HTML User Interface, such as the buttons and the input to raise
Events or display information. You can define CSS and JavaScript in this file.

Customize index.html and statemachineGUI.js

Make these changes to the generated files:

Create buttons and displays·
Create a CSS style to format the display and enable/disable the button images·
Create an ElapseTimeWorker.js to refresh the display every second·
Create a TimeElapsed function, set to Next Track when the time elapsed reaches the length of the track·
Create JavaScript as the button 'onclick' event handler·
Once an event is broadcast, request the active State and runtime value for cdPlayer.currentTrack·
On initialization, request the active State·

In statemachineGUI.js find the function onActiveStateResponse_cdPlayer

In CDPlayer_StateMachine_CDUnLoaded, disable all buttons and enable btnLoad·
In CDPlayer_StateMachine_CDLoaded_CDStopped, disable all buttons and enable btnEject and btnPlay·
In CDPlayer_StateMachine_CDLoaded_CDPlaying, enable all buttons and disable btnLoad and btnPlay·
In CDPlayer_StateMachine_CDLoaded_CDPaused, enable all buttons and disable btnLoad·

In statemachineGUI.js find the function onRuntimeValueResponse

(c) Sparx Systems 2021 Page 34 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

In cdPlayer.currentTrack, we update the display for current track and track length·

The Complete Example

The example can be accessed from the 'Resources' page of the Sparx Systems website, by clicking on this link:

CD Player Simulation

Click on the Load Random CD button, and then on the Start Simulation button.

(c) Sparx Systems 2021 Page 35 of 70 Created with Enterprise Architect

https://sparxsystems.com/resources/examples/cd_player/html/index.html

Executable StateMachines 2 September, 2021

Regular Expression Parser

StateMachine for Regular Expression Parser

The Class RegularExpressionParser is defined with one attribute: bMatch.

RegularExpressionParser

+ bMatch: boolean = false

A StateMachine is used to describe the regular expression (a|b)*abb

stm StateMachine

State6

State1 State2 State3
State4

entry / SetMatch
this.bMatch=true;

exit / SetNotMatch
this.bMatch=false;

State5

entry / SetNotMatch
this.bMatch=false;

Initial

Regular Expression (a|b)*abb implemented in Statemachine.

Initial

b

b b

b

a

a

reset

a

x

a

reset
/this.bMatch=false;

The transition triggers are specified as events a, b, x and reset·
On entry to State4, bMatch is set to True; on exit from State4, bMatch is set to False·
On entry to State5, bMatch is set to False·
On self transition of State6, bMatch is set to False·

Customize index.html and statemachineGUI.js

Make these changes to the generated files:

Create an HTML input field and an image to indicate the result·
Create JavaScript as the field's oninput event handler·
Create the function 'SetResult' to toggle the pass/fail image·
Create the function 'getEventStr', which will return 'a' on 'a' and 'b' on 'b', but will return 'x' on any other character·
On initialize, broadcast 'reset'·
On the broadcast event, request the runtime variable 'regxParser.bMatch'·

In statemachineGUI.js, find the function 'onRuntimeValueResponse'.

In 'regxParser.bMatch', we will receive 'True' or 'False' and pass it into 'SetResult' to update the image·

(c) Sparx Systems 2021 Page 36 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

The Complete Example

The example can be accessed from the 'Resources' page of the Sparx Systems website, by clicking on this link:

Regular Expression Parser Simulation

(c) Sparx Systems 2021 Page 37 of 70 Created with Enterprise Architect

https://sparxsystems.com/resources/examples/regular_expression_parser/html/index.html

Executable StateMachines 2 September, 2021

Example: Entering a State

The semantics of entering a State depend on the type of State and the manner in which it is entered.

In all cases, the entry Behavior of the State is executed (if defined) upon entry, but only after any effect Behavior
associated with the incoming Transition is completed. Also, if a doActivity Behavior is defined for the State, this
Behavior commences execution immediately after the entry Behavior is executed.

For a Composite State with one or more Regions defined, a number of alternatives exist for each Region:

Default entry: This situation occurs when the owning Composite State is the direct target of a Transition; after·
executing the entry Behavior and forking a possible doActivity Behavior execution, State entry continues from an
initial Pseudostate via its outgoing Transition (known as the default Transition of the State) if it is defined in the
Region
If no initial Pseudostate is defined, this Region will not be active

Explicit entry: If the incoming Transition or its continuations terminate on a directly contained Substate of the·
owning composite State, then that Substate becomes active and its entry Behavior is executed after the execution of
the entry Behavior of the containing composite State
This rule applies recursively if the Transition terminates on an indirect (deeply nested) Substate

Shallow history entry: If the incoming Transition terminates on a shallowHistory Pseudostate of this Region, the·
active Substate becomes the Substate that was most recently active (except FinalState) prior to this entry, unless this
is the first entry into this State; if it is the first entry into this State or the previous entry had reached a Final, a
default shallow history Transition will be taken if it is defined, otherwise the default State entry is applied

Deep history entry: The rule for this case is the same as for shallow history except that the target Pseudostate is of·
type deepHistory and the rule is applied recursively to all levels in the active State configuration below this one

Entry point entry: If a Transition enters the owning composite State through an entryPoint Pseudostate, then the·
outgoing Transition originating from the entry point and penetrating into the State in this region is taken; if there are
more outgoing Transitions from the entry points, each Transition must target a different Region and all Regions are
activated concurrently

For orthogonal States with multiple Regions, if the Transition explicitly enters one or more Regions (in the case of a
Fork or entry point), these Regions are entered explicitly and the others by default.

In this example, we demonstrate a model with all these entry behaviors for an orthogonal State.

Modeling a StateMachine

(c) Sparx Systems 2021 Page 38 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

stm StateMachine

Initial

State1

State2

[RegionB]

[RegionC]

[RegionD]

[RegionE]

EP1

StateB2 StateB3

StateB1

StateC1 StateC3StateC2

StateD2

StateD3

StateD4StateD1

StateE3

InitialE

StateE1 StateE2

HistoryD

HistoryC

InitialB

Final

C

D

DEFAULT

E

B

SHALLOW C

ENTRYPOINT

*

E

BQUIT

BACK

*

DEEP

EXPLICIT

Context of StateMachine

Create a Class element named MyClass, which serves as the context of the StateMachine.1.

Right-click on MyClass in the Browser window and select the 'Add | StateMachine' option.2.

StateMachine

Add to the diagram an Initial Node, a State named State1, a State named State2, and a Final element named final.1.

Enlarge State2 on the diagram, right-click on it and select the 'Advanced | Define Concurrent Substates' option, and2.
define RegionB, RegionC, RegionD and RegionE.

Right-click on State2 and select the 'New Child Element | Entry Point' option to create the Entry Point EP1.3.

In RegionB, create the elements InitialB, transition to StateB1, transition to StateB2, transition to StateB3; all4.
transitions triggered by Event B.

In RegionC, create the elements shallow HistoryC (right-click on History node | Advanced | Deep History |5.
uncheck), transition to StateC1, transition to StateC2, transition to StateC3; all transitions triggered by Event C.

In RegionD, create the elements deep HistoryD (right-click on History node | Advanced | Deep History | check),6.
transition to StateD1, create StateD2 as parent of StateD3, which is parent of StateD4; transition from StateD1 to
StateD4; triggered by Event D.

In RegionE, create the elements InitialE, transition to StateE1, transition to StateE2, transition to StateE3; all7.
transitions triggered by Event E.

Draw transitions from the Entry Point EP1 to StateC1 and StateD1.8.

Draw transitions for different entry types:

Default Entry: State1 to State2; triggered by Event DEFAULT.1.

Explicit Entry: State1 to StateB2; triggered by Event EXPLICIT.2.

Shallow History Entry: State1 to HistoryC; triggered by Event SHALLOW.3.

Deep History Entry: State1 to HistoryD; triggered by Event DEEP.4.

Entry Point Entry: State1 to EP1; triggered by Event ENTRYPOINT.5.

(c) Sparx Systems 2021 Page 39 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

Other Transitions:

Composite State Exit: from State2 to State1; triggered by Event BACK.1.

State1 to Final, triggered by Event QUIT.2.

Simulation

Artifact

Enterprise Architect supports C, C++, C#, Java and JavaScript. We use JavaScript in this example because we don't need
to install a compiler. (For other languages, either Visual Studio or JDK are required.)

On the 'Artifacts' page of the Diagram Toolbox, drag the Executable StateMachine icon onto a diagram and create1.
an Artifact named EnteringAStateSimulation. Set the language to JavaScript.

Ctrl+drag the MyClass element from the Browser window onto the EnteringAStateSimulation Artifact, select the2.
'Paste as Property' option and give the Property the name myClass.

«executable statemachine»
EnteringAStateSimulation

myClass: MyClass

Code Generation

Click on EnteringAStateSimulation and select the 'Simulate > Executable States > Statemachine > Generate, Build1.
and Run' ribbon option.

Specify a directory for the generated source code.2.

Note: The contents of this directory will be cleared before generation; make sure you specify a directory that is used only
for StateMachine simulation purposes.

(c) Sparx Systems 2021 Page 40 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

Run Simulation

Tips: You can view the execution trace sequence from the Simulation window, which you open by selecting the
'Simulate > Dynamic Simulation > Simulator > Open Simulation Window' ribbon option

When the simulation begins, State1 is active and the StateMachine is waiting for events.

Open the Simulation Events (Triggers) window using the 'Simulate > Dynamic Simulation > Events' ribbon option.

1) Select the Default Entry: Trigger Sequence [DEFAULT].

(c) Sparx Systems 2021 Page 41 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

RegionB is activated because it defines InitialB; the transition outgoing from it will be executed, StateB1 is the·
active state

RegionE is activated because it defines InitialE; the transition outgoing from it will be executed, StateE1 is the·
active state

RegionC and RegionD are inactive because no Initial Pseudostates were defined·
Select the Trigger [BACK] to reset.

2) Select the Explicit Entry: Trigger Sequence [EXPLICIT].

RegionB is activated because the transition targets the contained vertex StateB2·
RegionE is activated because it defines InitialE; the transition outgoing from it will be executed, StateE1 is the·
active state

RegionC and RegionD are inactive because no Initial Pseudostates were defined·
Select the Trigger [BACK] to reset.

3) Select the Default History Transition: Trigger Sequence [SHALLOW].

(c) Sparx Systems 2021 Page 42 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

RegionC is activated because the transition targets the contained vertex HistoryC; since this region is entered for the·
first time (and the History pseudostate has nothing to 'remember'), the transition outgoing from HistoryC to StateC1
is executed

RegionB is activated because it defines InitialB; the transition outgoing from it will be executed, StateB1 is the·
active state

RegionE is activated because it defines InitialE; the transition outgoing from it will be executed, StateE1 is the·
active state

RegionD is inactive because no Initial Pseudostate was defined·
4) Prepare for testing Shallow History Entry: Trigger Sequence [C, C].

(c) Sparx Systems 2021 Page 43 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

We assume shallow history pseudostate HistoryC can remember StateC3·
Select the Trigger [BACK] to reset.

5) Select the Shallow History Entry: Trigger Sequence [SHALLOW].

For RegionC, StateC3 is activated directly·
Select the Trigger [BACK] to reset.

6) Select the Entry Point Entry: Trigger Sequence [ENTRYPOINT].

RegionC is activated because the transition from EP1 targets the contained StateC1·
RegionD is activated because the transition from EP1 targets the contained StateD1·

(c) Sparx Systems 2021 Page 44 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

RegionB is activated because it defines InitialB; the transition outgoing from it will be executed, StateB1 is the·
active state

RegionE is activated because it defines InitialE; the transition outgoing from it will be executed, StateE1 is the·
active state

7) Prepare for testing Deep History: Trigger Sequence [D].

We assume deep history pseudostate HistoryD can remember StateD2, StateD3 and StateD4·
Select the Trigger [BACK] to reset.

8) Select the Deep History Entry: Trigger Sequence [DEEP].

For RegionD, StateD2, StateD3 and StateD4 are entered; the traces are:·

(c) Sparx Systems 2021 Page 45 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

 - myClass[MyClass].StateMachine_State1 EXIT

 - myClass[MyClass].State1__TO__HistoryD_105793_61752 Effect

 - myClass[MyClass].StateMachine_State2 ENTRY

 - myClass[MyClass].StateMachine_State2 DO

 - myClass[MyClass].InitialE_105787__TO__StateE1_61746 Effect

 - myClass[MyClass].StateMachine_State2_StateE1 ENTRY

 - myClass[MyClass].StateMachine_State2_StateE1 DO

 - myClass[MyClass].InitialB_105785__TO__StateB1_61753 Effect

 - myClass[MyClass].StateMachine_State2_StateB1 ENTRY

 - myClass[MyClass].StateMachine_State2_StateB1 DO

 - myClass[MyClass].StateMachine_State2_StateD2 ENTRY

 - myClass[MyClass].StateMachine_State2_StateD2_StateD3 ENTRY

 - myClass[MyClass].StateMachine_State2_StateD2_StateD3_StateD4 ENTRY

(c) Sparx Systems 2021 Page 46 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

Example: Fork and Join

Fork pseudostates split an incoming Transition into two or more Transitions, terminating in Vertices in orthogonal
Regions of a Composite State. The Transitions outgoing from a Fork pseudostate cannot have a guard or a trigger, and
the Effect behaviors of the individual outgoing Transitions are, at least conceptually, executed concurrently.

Join pseudostates are a common target Vertex for two or more Transitions originating from Vertices in different
orthogonal Regions. Join pseudostates perform a synchronization function, whereby all incoming Transitions have to
complete before execution can continue through an outgoing Transition.

In this example, we demonstrate the behavior of a StateMachine with Fork and Join pseudostates.

Modeling StateMachine

stm StateMachine

State1

[RegionA]

[RegionB]

StateA1

StateB1

StateA2

StateB2
Initial Final

Y

X

Context of StateMachine

Create a Class element named MyClass, which serves as the context of a StateMachine·
Right-click on MyClass in the Browser window and select the 'Add | StateMachine' option·

StateMachine

Add an Initial Node, a Fork, a State named State1, a Join, and a Final to the diagram·
Enlarge State1, right-click on it on the diagram and select the 'Advanced | Define Concurrent Substates | Define'·
option and define RegionA and RegionB

In RegionA, define StateA1, transition to StateA2, triggered by event X·
In RegionB, define StateB1, transition to StateB2, triggered by event Y·
Draw other transitions: Initial to Fork; Fork to StateA1 and StateB1; StateA2 and StateB2 to Join; Join to Final·

Simulation

Artifact

Enterprise Architect supports C, C++, C#, Java and JavaScript; we will use JavaScript in this example because we don't
need to install a compiler (for the other languages, either Visual Studio or JDK are required).

From the Diagram Toolbox select the 'Artifacts' page and drag the Executable StateMachine icon onto the diagram·
to create an Artifact; name it ForkNJoinSimulation and set its 'Language' field to 'JavaScript'

Ctrl+Drag MyClass from the Browser window and drop it on the ForkNJoinSimulation Artifact as a Property; give·
it the name myClass

(c) Sparx Systems 2021 Page 47 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

«executable statemachine»
ForkNJoinSimulation

myClass: MyClass

Code Generation

Click on ForkNJoinSimulation and select the 'Simulate > Executable States > Statemachine > Generate, Build and·
Run' ribbon option

Specify a directory for the generated source code·
Note: The contents of this directory will be cleared before generation; make sure you point to a directory that exists only
for StateMachine simulation purposes.

Run Simulation

When the simulation is started, State1, StateA1 and StateB1 are active and the StateMachine is waiting for events.

(c) Sparx Systems 2021 Page 48 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

Select the 'Simulate > Dynamic Simulation > Events' ribbon option to display the Simulation Events window.

On Trigger event X, StateA1 will exit and enter StateA2; after the entry and doActivity behavior has run, the completion
events of StateA2 are dispatched and recalled. Then the transition from StateA2 to the Join pseudostate is enabled and
traversed.

Note: Join must wait for all incoming Transitions to complete before execution can continue through an outgoing
Transition. Since the branch from RegionB is not complete (because StateB1 is still active and waiting for triggers) the
transition from Join to Final will not be executed at this moment.

On Trigger event Y, StateB1 will exit and enter StateB2; after the entry and doActivity behavior has run, completion
events of StateB2 are dispatched and recalled. Then the transition from StateB2 to the Join pseudostate is enabled and
traversed. This satisfies the criteria of all the incoming transitions of Join having completed, so the transition from Join
to Final is executed. Simulation has ended.

Tips: You can view the execution trace sequence from the Simulation window ('Simulate > Dynamic Simulation >
Simulator > Open Simulation Window' ribbon option).

 myClass[MyClass].Initial_82285__TO__fork_82286_82286_61745 Effect

(c) Sparx Systems 2021 Page 49 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

 myClass[MyClass].StateMachine_State1 ENTRY

 myClass[MyClass].StateMachine_State1 DO

 myClass[MyClass].fork_82286_82286__TO__StateA1_57125 Effect

 myClass[MyClass].StateMachine_State1_StateA1 ENTRY

 myClass[MyClass].StateMachine_State1_StateA1 DO

 myClass[MyClass].fork_82286_82286__TO__StateB1_57126 Effect

 myClass[MyClass].StateMachine_State1_StateB1 ENTRY

 myClass[MyClass].StateMachine_State1_StateB1 DO

 Trigger X

 myClass[MyClass].StateMachine_State1_StateA1 EXIT

 myClass[MyClass].StateA1__TO__StateA2_57135 Effect

 myClass[MyClass].StateMachine_State1_StateA2 ENTRY

 myClass[MyClass].StateMachine_State1_StateA2 DO

 myClass[MyClass].StateMachine_State1_StateA2 EXIT

 myClass[MyClass].StateA2__TO__join_82287_82287_57134 Effect

 Trigger Y

 myClass[MyClass].StateMachine_State1_StateB1 EXIT

 myClass[MyClass].StateB1__TO__StateB2_57133 Effect

 myClass[MyClass].StateMachine_State1_StateB2 ENTRY

 myClass[MyClass].StateMachine_State1_StateB2 DO

 myClass[MyClass].StateMachine_State1_StateB2 EXIT

 myClass[MyClass].StateB2__TO__join_82287_82287_57132 Effect

 myClass[MyClass].StateMachine_State1 EXIT

 myClass[MyClass].join_82287_82287__TO__Final_105754_57130 Effect

(c) Sparx Systems 2021 Page 50 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

Example: Deferred Event Pattern

Enterprise Architect supports the Deferred Event Pattern.

To create a Deferred Event in a State:

Create a self transition for the State.1.

Change the 'kind' of the transition to 'internal'.2.

Specify the Trigger to be the event you want to defer.3.

In the 'Effect' field, type 'defer();'.4.

To Simulate:

Select 'Simulate > Dynamic Simulation > Simulator > Open Simulation Window'. Also select 'Simulate > Dynamic1.
Simulation > Events' to open the Simulation Events window.

The Simulator Events window helps you to trigger events; double-click on a trigger in the 'Waiting Triggers'2.
column.

The Simulation window shows the execution in text. You can type 'dump' in the Simulator command line to show3.
how many events are deferred in the queue; the output might resemble this:
 24850060] Event Pool: [NEW,NEW,NEW,NEW,NEW,]

Deferred Event Example

This example shows a model using Deferred Events, and the Simulation Events window showing all available Events.

We firstly set up the contexts (the Class elements containing the StateMachines), simulate them in a simple context and
raise the event from outside it; then simulate in a client-server context with the Send event mechanism.

Create Context and StateMachine

Create the server context

TransactionServerTestClient
+server

Create a Class diagram and:

A Class element TransactionServer, to which you add a StateMachine ServerStateMachine.1.

A Class element TestClient, to which you add a StateMachine ClientStateMachine.2.

An Association from TestClient to TransactionServer, with the target role named server.3.

Modeling for ServerStateMachine

stm ServerStateMachine

Initial

idle busy

NEW_REQUEST /
defer(); Final

AUTHORIZED

NEW_REQUEST
QUIT

(c) Sparx Systems 2021 Page 51 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

Add an Initial Node Initial to the StateMachine diagram, and transition to a State idle.1.

Transition (with event NEW_REQUEST as Trigger) to a State busy.2.

Transition (with event QUIT as Trigger) to a Final State Final.3.

Transition (with event AUTHORIZED as Trigger) to idle.4.

Transition (with event NEW_REQUEST as Trigger and defer(); as effect) to busy5.

Modeling for ClientStateMachine

stm ClientStateMachine

State0

State5

Final

State4

State3

State2

State1

Initial

/%BROADCAST_EVENT("NEW_REQUEST")%;

/%SEND_EVENT("AUTHORIZED", CONTEXT_REF(server))%;

/%SEND_EVENT("NEW_REQUEST", CONTEXT_REF(server))%;

/%SEND_EVENT("NEW_REQUEST", CONTEXT_REF(server))%;

RUN_TEST

Add an Initial Node Initial to the StateMachine diagram, and transition to a State State0.1.

Transition (with event RUN_TEST as trigger) to a State State1.2.

Transition (with effect: %SEND_EVENT("NEW_REQUEST", CONTEXT_REF(server))%;) to a State State2.3.

Transition (with effect: %SEND_EVENT("NEW_REQUEST", CONTEXT_REF(server))%;) to a State State3.4.

Transition (with effect: %BROADCAST_EVENT("NEW_REQUEST")%;) to a State State4.5.

Transition (with effect: %SEND_EVENT("AUTHORIZED", CONTEXT_REF(server))%;) to a State State5.6.

Transition to a Final State Final.7.

Simulation in a simple context

Create the Simulation Artifact

(c) Sparx Systems 2021 Page 52 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

«executable statemachine»
Simulation with Deferred Event

server: TransactionServer

Create an Executable StateMachine Artifact with the name Simulation with Deferred Event and the 'Language' field1.
set to JavaScript.

Enlarge it, then Ctrl+drag the TransactionServer element onto the Artifact and paste it as a property with the name2.
server.

Run the Simulation

Select the Artifact, then select the 'Simulate > Executable States > Statemachine > Generate, Build and Run' option,1.
and specify a directory for your code (Note: all the files in the directory will be deleted before simulation starts).

Click on the Generate button.2.

Select the 'Simulate > Dynamic Simulation > Events' option to open the Simulation Event window.3.

When simulation starts, idle will be the active state.

Double-click on NEW_REQUEST in the Simulation Event window to execute it as the Trigger; idle is exited and1.
busy is activated.

Double-click on NEW_REQUEST in the Simulation Event window to execute it again as the Trigger; busy remains2.
activated, and an instance of NEW_REQUEST is appended in the Event Pool.

Double-click on NEW_REQUEST in the Simulation Event window to execute it a third time as the Trigger; busy3.
remains activated, and an instance of NEW_REQUEST is appended in the Event Pool.

Type dump in the Simulation window command line; notice that the event pool has two instances of4.
NEW_REQUEST.

(c) Sparx Systems 2021 Page 53 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

Double-click on AUTHORIZED in the Simulation Event window to execute it as the Trigger; these actions take5.
place:
 - busy is exited and idle becomes active
 - a NEW_REQUEST event is retrieved from the pool, idle is exited and busy becomes active

Type dump in the Simulation window command line; there is now only one instance of NEW_REQUEST in the6.
Event Pool.

Interactive simulation via Send/Broadcast Event

Create the Simulation Artifact

«executable statemachine»
Interactive Simulation with Deferred Event

server: TransactionServerclient: TestClient

Create an Executable StateMachine Artifact with the name Interactive Simulation with Deferred Event and the1.
'Language' field set to JavaScript; enlarge the element.

Ctrl+Drag the TransactionServer element onto the Artifact, and paste it as a property with the name server.2.

Ctrl+Drag the TestClient element onto the Artifact, and paste it as a property with the name client.3.

(c) Sparx Systems 2021 Page 54 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

Create a connector from client to server.4.

Click on the connector and press Ctrl+L to select the association from the TestClient element to the5.
TransactionServer element.

Run Interactive Simulation

Launch the simulation in the same way as for the simple context.1.

Once the simulation has started, the client remains at State0 and the server remains at idle.

Double-click on RUN_TEST in the Simulation Event window to trigger it. The event NEW_REQUEST will be2.
triggered three times (by SEND_EVENT and BROADCAST_EVENT) and AUTHORIZED will be triggered once
by SEND_EVENT.

(c) Sparx Systems 2021 Page 55 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

Type dump in the Simulation window command line, There is one instance of NEW_REQUEST left in the Event
Pool. The result matches our manual triggering test.

(c) Sparx Systems 2021 Page 56 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

Example: Entry and Exit Points (Connection Point
References)

Enterprise Architect provides support for Entry and Exit points, and for Connection Point References. In this example,
we define two StateMachines for MyClass - StateMachine and SubMachine.

stm StateMachine

Final1

State2: SubMachine

CPR_Entry
CPR_Exit2

CPR_Exit3

State1

[RegionA]

[RegionB]

[RegionC]

EntryPoint1
ExitPoint1

Final2

StateC1

InitialC

StateA1

StateB1

Initial1

*

EVENT_C

*

EVENT_A

EVENT_A

stm SubMachine

[RegionX]

[RegionY]

[RegionZ]

ExitPoint2

ExitPoint3

EntryPoint2

StateZ2

StateX1

StateZ1
FinalZ

StateY1

InitialZ

StateY2

InitialY

EVENT_C EVENT_C

*

EVENT_BEVENT_B

EVENT_A

*

State1 is a Composite State (also called an Orthogonal State because it has multiple Regions) with three Regions:·
RegionA, RegionB and RegionC

(c) Sparx Systems 2021 Page 57 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

State2 is a SubMachine State calling SubMachine, which has three Regions: RegionX, RegionY, and RegionZ·
EntryPoint1 is defined on State1 to activate two of the three Regions; EntryPoint2 is defined on SubMachine to·
activate two of the three Regions

ExitPoint1 is defined on State1; two exit points ExitPoint2 and ExitPoint3 are defined on SubMachine·
Connection Point References are defined on State2 and bind to the Entry/Exit Points of the typing SubMachine·
Initial nodes are defined to demonstrate default activation of the Regions·

Entering a State: Entry Point Entry

EntryPoint1 on State1

When a Transition targeted on EntryPoint1 is enabled, State1 is activated followed by the contained Regions.

Explicit activation occurs for RegionA and RegionB, because each of them is entered by a Transition terminating on·
one of the Region’s contained Vertices

Default activation occurs for RegionC, because it defines an Initial pseudostate InitialC and the Transition·
originating from the InitialC to StateC1 starts execution

EntryPoint2 on SubMachine

The Trigger Sequence to be simulated is: [EVENT_C, EVENT_A].

When a Transition targeted on Connection Point Reference CPR_Entry on State2 is enabled, State2 is activated, followed
by the SubMachine's activation through the binding entry points.

(c) Sparx Systems 2021 Page 58 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

Explicit activation occurs for RegionX and RegionY, because each of them is entered by a Transition terminating on·
one of the Region’s contained Vertices - StateX1 in RegionX, StateY1 in RegionY

Default activation occurs for RegionZ, because it defines an Initial pseudostate InitialZ and the Transition·
originating from InitialZ to StateZ1 starts execution

Entering a State: Default Entry

This situation arises when the Composite State is the direct target of a Transition.

Default Entry of State2

The Trigger Sequence to be simulated is: [EVENT_A, EVENTC].

When a Transition targeted directly on State2 is enabled, State2 is activated, followed by default activation for all the
Regions of the SubMachine.

(c) Sparx Systems 2021 Page 59 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

RegionX's State is inactive because it does not define an Initial node·
RegionY is activated through InitialY and the Transition to StateY2 is executed·
RegionZ is activated through InitialZ and the Transition to StateZ1 is executed·

State Exit

State1 Exit

Trigger Sequence [EVENT_C, EVENT_A]: RegionC is inactivated first, then RegionA and RegionB; after the exit·
behavior of State1 is executed, the Transition outgoing from ExitPoint1 is enabled

Trigger Sequence [EVENT_A, EVENT_C]: RegionA and RegionB are inactivated first, then RegionC; after the exit·
behavior of State1 is executed, the Transition outgoing directly from State1 is enabled

State2 Exit

Trigger Sequence [EVENT_C, EVENT_A], so the current state resembles this:

(c) Sparx Systems 2021 Page 60 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

Trigger Sequence [EVENT_A, EVENT_C, EVENT_C, EVENT_B, EVENT_B]: RegionX is inactivated first, then·
RegionY, and RegionZ is the last; after the exit behavior of State2 is executed, the Transition outgoing directly from
State2 is enabled

Trigger Sequence [EVENT_A, EVENT_B, EVENT_B, EVENT_C, EVENT_C]: RegionX is inactivated first, then·
RegionZ, and RegionY is the last; after the exit behavior of State2 is executed, the Transition outgoing from
CPR_Exit3 is enabled (ExitPoint3 on SubMachine is bound to CPR_Exit3 of State2)

Trigger Sequence [EVENT_C, EVENT_C, EVENT_B, EVENT_B, EVENT_A]: RegionY is inactivated first, then·
RegionZ, and RegionX is the last; after the exit behavior of State2 is executed, the Transition outgoing from
CPR_Exit2 is enabled (ExitPoint2 on SubMachine is bound to CPR_Exit2 of State2)

(c) Sparx Systems 2021 Page 61 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

Example: History Pseudostate

State History is a convenient concept associated with Regions of Composite States, whereby a Region keeps track of the
configuration a State was in when it was last exited. This allows easy return to that State configuration, if necessary,
when the Region next becomes active (for example, after returning from handling an interrupt), or if there is a local
Transition that returns to its history.

Enterprise Architect supports two types of History Pseudostate:

Deep History - representing the full State configuration of the most recent visit to the containing Region; the effect·
is the same as if the Transition terminating on the deepHistory Pseudostate had, instead, terminated on the innermost
State of the preserved State configuration, including execution of all entry Behaviors encountered along the way

Shallow History - representing a return to only the top-most substate of the most recent State configuration, which is·
entered using the default entry rule

In this example, the Classes DeepTurbineManager and ShallowTurbineManager are exactly the same except that the
contained StateMachine for the first has a deepHistory Pseudostate and for the second has a shallowHistory Pseudostate.

Both StateMachines have three Composite States: Turbine_01, Turbine_02 andTurbine_03, each of which has Off and
On States and a History Pseudostate in its Region.

In order to better observe the difference between Deep History and Shallow History, we execute the two StateMachines
in one simulation.

«executable statemachine»
TurbineSimulation

shallowManager: ShallowTurbineManager

deepManager: DeepTurbineManager

The StateMachine in DeepTurbineManager is illustrated in this diagram:

(c) Sparx Systems 2021 Page 62 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

stm StateMachine Turbine_01

On

Initial

High

Low

Off

History1

Turbine_03Initial

On

Initial

High

Low

Off
History3

Turbine_02

On

Initial

High

Low

Off

History2

Initial

MODE

NEXT

SPEED

MODE

SPEED

SPEED

NEXT

SPEED

SPEED

MODE

MODE

NEXT

SPEED

MODE

MODE

The StateMachine in ShallowTurbineManager is illustrated in this diagram:

(c) Sparx Systems 2021 Page 63 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

stm StateMachine Turbine_01

History1
Off

On

Low

High

Initial

Turbine_03

History3

Off

On
Low

High

Initial

Initial

Turbine_02

History2

Off

On
Low

High

Initial

Initial

SPEED

SPEED

MODE

NEXT

MODE

SPEED SPEEDSPEED

MODE

NEXTMODE

MODE

MODE

SPEED

NEXT

Tip: If you right-click on the History node on the diagram and select the 'Advanced | Deep History' option, you can
toggle the type of History Pseudostate between shallow and deep.

First Time Activation of States

After simulation starts, Turbine_01 and its substate Off are activated.

Trigger Sequence: [MODE, SPEED]

(c) Sparx Systems 2021 Page 64 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

Then the active State configuration includes:

Turbine_01·
Turbine_01.On·
Turbine_01.On.High·

This applies to both deepManager and shallowManager.

Trigger Sequence: [NEXT]

This trace sequence can be observed from the Simulation window (Simulate > Dynamic Simulation > Simulator > Open
Simulation Window):

 01 shallowManager[ShallowTurbineManager].StateMachine_Turbine_01_On_High EXIT

 02 shallowManager[ShallowTurbineManager].StateMachine_Turbine_01_On EXIT

(c) Sparx Systems 2021 Page 65 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

 03 shallowManager[ShallowTurbineManager].StateMachine_Turbine_01 EXIT

 04 shallowManager[ShallowTurbineManager].Turbine_01__TO__History2_105720_61730 Effect

 05 shallowManager[ShallowTurbineManager].StateMachine_Turbine_02 ENTRY

 06 shallowManager[ShallowTurbineManager].StateMachine_Turbine_02 DO

 07 shallowManager[ShallowTurbineManager].History2_105720__TO__Off_61731 Effect

 08 shallowManager[ShallowTurbineManager].StateMachine_Turbine_02_Off ENTRY

 09 shallowManager[ShallowTurbineManager].StateMachine_Turbine_02_Off DO

Note: Since deepManager has exactly the same trace as shallowManager, the trace for deepManager is filtered out from
this sequence.

We can learn that:

Exiting a Composite State commences with the innermost State in the active State configuration (see lines 01 - 03 in·
the trace sequence)

The Default History Transition is only taken if execution leads to the History node (see line 04) and the State has·
never been active before (see line 07)

Then the active State configuration includes:

Turbine_02·
Turbine_02.Off·

This applies to both deepManager and shallowManager.

Trigger Sequence: [NEXT, MODE]

This trace sequence can be observed from the Simulation window:

 Trigger [NEXT]

 01 shallowManager[ShallowTurbineManager].StateMachine_Turbine_02_Off EXIT

 02 shallowManager[ShallowTurbineManager].StateMachine_Turbine_02 EXIT

(c) Sparx Systems 2021 Page 66 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

 03 shallowManager[ShallowTurbineManager].Turbine_02__TO__History3_105713_61725 Effect

 04 shallowManager[ShallowTurbineManager].StateMachine_Turbine_03 ENTRY

 05 shallowManager[ShallowTurbineManager].StateMachine_Turbine_03 DO

 06 shallowManager[ShallowTurbineManager].Initial_105706__TO__Off_61718 Effect

 07 shallowManager[ShallowTurbineManager].StateMachine_Turbine_03_Off ENTRY

 08 shallowManager[ShallowTurbineManager].StateMachine_Turbine_03_Off DO

 Trigger [MODE]

 Message omitted...

Note: Since deepManager has exactly the same trace as shallowManager, the trace for deepManager is filtered out from
this sequence.

We can learn that:

Since there is no default History Transition defined for History3, the standard default entry of the State is performed;·
an Initial node is found in the Region contained by Turbine_03, so the Transition originating from Initial is enabled
(see line 06)

Then the active state configuration includes:

Turbine_03·
Turbine_03.On·
Turbine_03.On.Low·

This applies to both deepManager and shallowManager.

History Entry of States

As a reference, we show the Deep History snapshot of each Turbine after its first activation:

Turbine_01

Turbine_01.On·
Turbine_01.On.High·

Turbine_02

Turbine_02.Off·
Turbine_03

Turbine_03.On·
Turbine_03.On.Low·

When we further Trigger NEXT, Turbine_01 will be activated again.

(c) Sparx Systems 2021 Page 67 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

This trace sequence can be observed from the Simulation window:

For shallowManager:

 Trigger [NEXT]

 01 shallowManager[ShallowTurbineManager].StateMachine_Turbine_03_On_Low EXIT

 02 shallowManager[ShallowTurbineManager].StateMachine_Turbine_03_On EXIT

 03 shallowManager[ShallowTurbineManager].StateMachine_Turbine_03 EXIT

 04 shallowManager[ShallowTurbineManager].Turbine_03__TO__History1_105711_61732 Effect

 05 shallowManager[ShallowTurbineManager].StateMachine_Turbine_01 ENTRY

 06 shallowManager[ShallowTurbineManager].StateMachine_Turbine_01 DO

 07 shallowManager[ShallowTurbineManager].StateMachine_Turbine_01_On ENTRY

 08 shallowManager[ShallowTurbineManager].StateMachine_Turbine_01_On DO

 09 shallowManager[ShallowTurbineManager].Initial_105721__TO__Low_61729 Effect

 10 shallowManager[ShallowTurbineManager].StateMachine_Turbine_01_On_Low ENTRY

 11 shallowManager[ShallowTurbineManager].StateMachine_Turbine_01_On_Low DO

We can learn that:

The shallowHistory node restores Turbine_01 as far as Turbine_01.On·
Then the Region contained by Composite State Turbine_01.On will be activated by the Initial node, which activated·
at Low

For deepManager:

 Trigger [NEXT]

 01 deepManager[DeepTurbineManager].StateMachine_Turbine_03_On_Low EXIT

 02 deepManager[DeepTurbineManager].StateMachine_Turbine_03_On EXIT

 03 deepManager[DeepTurbineManager].StateMachine_Turbine_03 EXIT

 04 deepManager[DeepTurbineManager].Turbine_03__TO__History1_105679_61708 Effect

 05 deepManager[DeepTurbineManager].StateMachine_Turbine_01 ENTRY

(c) Sparx Systems 2021 Page 68 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

 06 deepManager[DeepTurbineManager].StateMachine_Turbine_01 DO

 07 deepManager[DeepTurbineManager].StateMachine_Turbine_01_On ENTRY

 08 deepManager[DeepTurbineManager].StateMachine_Turbine_01_On_High ENTRY

We can learn that:

The deepHistory node restores Turbine_01 as far as Turbine_01.On.High·

Trigger [NEXT] to exit Turbine_01 and activate Turbine_02

Both shallowManager and deepManager activate Turbine_02.Off, which is the History snapshot when they exited.

Trigger [NEXT] to exit Turbine_02 and activate Turbine_03

Both shallowManager and deepManager activate Turbine_03.On.Low. However, the sequences of shallowManager and
deepManager are different.

For shallowManager, the shallowHistory can only restore as far as Turbine_03.On. Since an Initial node is defined in
Turbine_03.On, the Transition originating from Initial will be enabled and Turbine_03.On.Low is reached.

 01 shallowManager[ShallowTurbineManager].StateMachine_Turbine_02_Off EXIT

 02 shallowManager[ShallowTurbineManager].StateMachine_Turbine_02 EXIT

 03 shallowManager[ShallowTurbineManager].Turbine_02__TO__History3_105713_61725 Effect

 04 shallowManager[ShallowTurbineManager].StateMachine_Turbine_03 ENTRY

 05 shallowManager[ShallowTurbineManager].StateMachine_Turbine_03 DO

 06 shallowManager[ShallowTurbineManager].StateMachine_Turbine_03_On ENTRY

 07 shallowManager[ShallowTurbineManager].StateMachine_Turbine_03_On DO

 08 shallowManager[ShallowTurbineManager].Initial_105727__TO__Low_61728 Effect

 09 shallowManager[ShallowTurbineManager].StateMachine_Turbine_03_On_Low ENTRY

 10 shallowManager[ShallowTurbineManager].StateMachine_Turbine_03_On_Low DO

For deepManager, the deephistory can restore as far as Turbine_03.On.Low directly.

 01 deepManager[DeepTurbineManager].StateMachine_Turbine_02_Off EXIT

 02 deepManager[DeepTurbineManager].StateMachine_Turbine_02 EXIT

 03 deepManager[DeepTurbineManager].Turbine_02__TO__History3_105680_61701 Effect

 04 deepManager[DeepTurbineManager].StateMachine_Turbine_03 ENTRY

 05 deepManager[DeepTurbineManager].StateMachine_Turbine_03 DO

 06 deepManager[DeepTurbineManager].StateMachine_Turbine_03_On ENTRY

 07 deepManager[DeepTurbineManager].StateMachine_Turbine_03_On_Low ENTRY

(c) Sparx Systems 2021 Page 69 of 70 Created with Enterprise Architect

Executable StateMachines 2 September, 2021

(c) Sparx Systems 2021 Page 70 of 70 Created with Enterprise Architect

	Executable StateMachines
	Executable StateMachine Artifact
	Modeling Executable StateMachines
	Code Generation for Executable StateMachines
	Debugging Execution of Executable StateMachines
	Execution and Simulation of Executable StateMachines
	Example: Executable StateMachine
	Example: Simulation Commands
	Example: Simulation in HTML with JavaScript
	CD Player
	Regular Expression Parser

	Example: Entering a State
	Example: Fork and Join
	Example: Deferred Event Pattern
	Example: Entry and Exit Points (Connection Point References)
	Example: History Pseudostate

