SIPARX

SYSTEMS

ENTERPRISE ARCHITECT

Guide to MBSE with SysML

Author: Sparx Systems

Date: 2022-10-03

CREATED WITH @ ENTERPRISE

Table of Contents

Guide to MBSE with SysML 7
An Equation with Four Variables 9
The Engineering Method or Process 10
Modeling as a Discipline 13
Getting Started 15
Defining a Model's Purpose 17
Deciding Where to Start 19
Connecting Parts of the Model 20
Ensuring a Model's Quality 21

The Systems Modeling Language (SysML) 22
Enterprise Architect the Modeling Tool 23
Collaboration Platform 26
Project Management Workbench 27
Model Repository 28
Getting Started 29
Setting Up a Model Structure 31
Tailoring the Application 32
Setting a Perspective 33
Selecting a Visual Style 35
Selecting a Workspace 36
Setting Preferences 37
Importing Existing Material 38
Creating Diagrams Elements and Relationships 42
Visualizing the Models 46
Synchronizing with External Data 47
Where we are Heading 48
Getting to Know the SysML Diagrams 53
Common Aspects of Diagrams 61
Block Definition Diagram 71
Requirement Diagram 74
Use Case Diagram 77
Package Diagram 79
Activity Diagrams 81
Internal Block Diagram 83
Parametric Diagram 85
Sequence Diagram 87
StateMachine Diagram 90
Systems Modeling Language Overview 92
Language Architecture 94
Key Grammatical Concepts 100
Models, Diagrams, Elements and Views 102
Collaborating as an Engineering Team 107
Central Shared Repository 108
Cloud Computing 109
Discussions and Chat 111
Kanban Resources and Calendars 112

Model Reviews 113

Sharing Resources in the Model Library 116

Viewing Models on Mobile Devices 117
Modeling the Future 118
Version Control and Baselines 122
Reusable Asset Server 124
Using Packages to Structure the Repository 127
The Function of Packages 129
Introducing Package Diagrams 130
Package Organization Regimes 135
The Browser Window 138
Accessing the Repository using Model Views 141
Requirement Definition and Management 142
Requirements as First Class Citizens 147
Introducing Requirement Diagrams 151
Developing Requirements 155
Elicitation 157
Document Sources 158
User Observations 159
Stakeholder Workshops 160
Creating Requirements 163
External and Internal Requirements 164
Requirement Categories 165
Requirement Properties 167
Specification 169
Meet the Specification Manager 170
Analysis 173
Prioritize the Requirements 174
Validation 177
Visualizing Requirements 179
Requirements Diagrams 180
Specification Manager 181
Browsers and Views 182
Relationship Matrix 184
Requirements Tables 185
Managing Requirements 186
Tracing Requirements 187
Tracking Requirements 190
Managing Changing Requirements 192
Impact Analysis of Changes 194
Requirement Volatility 196
Requirement Reuse 198
Requirement Relationships 200
Adding Refinement to a Requirement 203
Containment Relationship 204
Copying Existing Requirements 206
Deriving a Requirement from Another 207
Ensuring a Requirement is Satisfied 208
Traceability to Model Elements 210
Verify Relationship 211
Visualizing Requirement Relationships 213

Documenting Requirements 219

Project Glossary 220

Software Requirement Specification 221
Describing User Goals with Use Cases 222
Requirements and Use Cases 223
Introducing Use Case Diagrams 226
Meet the Scenario Builder 230
Structuring a Use Case Model 232
Generating Behavior Diagrams 233
Use Case Report 234
Using Blocks to Model Structure and Constraints 236
Getting Started with Blocks 241
Modelling Constraints as Blocks 244
Introducing Block Definition Diagrams 245
The Fundamental Structural Building Blocks 251
Modeling Structural Features 252
Modeling Behavioral Features 258
Other Block Relationships 264
Modeling Interaction Points 269
Modeling Quantity using Value Types 272
Using Properties and Parts to Model Block Usage 274
Introducing Internal Block Diagrams 275
Modeling and Connecting Parts 277
Modeling Parametric Equations 280
Introducing Parametric Diagrams 281
Systems of Equations using Part Associations 284
Measures of Effectiveness using Parametrics 286
Coordinating Behavior with Activities 288
Actions the Fundamental Behavioral Building Blocks 290
Introducing Activity Diagrams 293
Creating Activity Hierarchies 296
Specifying Action Sequence with Control Flows 297
Specifying Item Flow with Object Flows 299
Modeling Inputs and Outputs with Parameters and Pins 301
Visualizing Activities with Simulations 304
Allocations and other Relationships 306
Modeling Change with StateMachines 308
States and Behaviors 310
Introducing StateMachine Diagrams 311
Triggers and Transitions 314
Composite States and Regions 318
Pseudostates - The Traffic Police 320
State Tables - Another View 324
Visualizing and Implementing with Simulations 327
Interactions as a Sequence of Messages 329
Lifelines, Messages and Activations 330
Introducing the Sequence Diagram 335
Message Orchestration with Fragments 339
Visualizing with Simulations 341
SysML Simulation in Modelica and Simulink 342
How SysML Simulation Works 344

Getting Started with OpenModelica 346

Creating Models for Simulation 351

Example SysML Model 358
Package Overview (Structure of the Sample Model) 359
Package Diagram - Applying the SysML Profile 360
Package Diagram - Showing Package Structure of the Model 361
Setting the Context (Boundaries and Use Cases) 364
Operational Domain Model - Setting Context 365
Use Case Diagram - Top Level Use Cases 367
Use Case Diagram - Operational Use Cases 369
Elaborating Behavior (Sequence and StateMachine Diagrams) 371
Sequence Diagram - Drive Black Box 372
StateMachine Diagram - HSUV Operational States 376
Sequence Diagram - Start Vehicle Black Box and White Box 378
Establishing Requirements (Requirements Diagrams and Tables) 380
Requirement Diagram - HSUV Requirement Hierarchy 381
Requirement Diagram - Derived Requirements 382
Requirement Diagram - Acceleration Requirement Relationships 383
Table - Requirements Table 384
Breaking Down the Pieces (Block Definition Diagrams, Internal Block Diagrams) 385
Block Definition Diagram - Automotive Domain 386
Block Definition Diagram - Hybrid SUV 387
Internal Block Diagram - Hybrid SUV 388
Block Definition Diagram - Power Subsystem 389
Internal Block Diagram for the Power Subsystem 390
Defining Ports and Flows 392
Block Definition Diagram - ICE Flow Properties 393
Internal Block Diagram - CAN Bus 394
Block Definition Diagram - Fuel Flow Properties 395
Parametric Diagram - Fuel Flow 396
Analyze Performance (Constraint Diagrams, Timing Diagrams, Views) 397
Block Definition Diagram - Analysis Context 398
Package Diagram - Performance View Definition 399
Package Diagram - Viewpoint Definition 400
Package Diagram - View Definition 401
Package Diagram - View Hierarchy 402
Parametric Diagram - Measures of Effectiveness 403
Parametric Diagram - Economy 404
Parametric Diagram - Dynamics 405
(Non-Normative) Timing Diagram - 100hp Acceleration 406
Defining, Decomposing, and Allocating Activities 407
Activity Diagram - Acceleration (top level) 408
Block Definition Diagram - Acceleration 409
Activity Diagram (EFFBD) - Acceleration (detail) 410
Internal Block Diagram - Power Subsystem Behavioral and Flow Allocation 411
Internal Block Diagram: Property Specific Values - EPA Fuel Economy Test 412
Meet the Systems Engineering Tools 413
Requirements Diagram 414
Activity Diagram 417
Use Case Diagram 419
Scenario Builder 421

Auditing 423

Calendar

425

Block Definition Diagram 427
Internal Block Diagram 428
Dashboard Diagrams 430
Decision Tree Diagram 432
StateMachine Diagram 434
Documentation 436
Gap Analysis Matrix 438
Heat Map 440
Import and Export Spreadsheets 441
Parametric Diagram 442
Patterns 443
Relationship Matrix 445
Roadmap Diagram 447
Specification Manager 449
Strategy Map 451
Library 453
Time Aware Modeling 455
Traceability Window 457
Value Chain 459

Guide to MBSE with SysML

3 October, 2022

Guide to MBSE with SysML

Model Based Systems Engineering (MBSE) has emerged as a valuable approach to the management and engineering of
complex systems. It is a shift away from the document-centric approach and allows models to be developed and used for
a wide range of purposes, including Requirement specification, design, trade-offs, architecture, verification, validation,

simulations and support, and more.

The models act as an 'insurance policy' against catastrophic engineering errors and help to reduce the high cost of failure

at the specification, design, test, implementation and support phases.

yesterday, today

document centric

tomorrow

belel [package] Strig lumination [Strig llumination] /

ablocks
Strip lllumination

parts
hs : Housing
de : DC Connector

|z : LED Array

4

+hs |1

#a |15

+de |1

wblogks
Housing

ablocks
LED Array

o
DC Connector

model centric

When you use Enterprise Architect for MBSE you open the door to a completely new way of thinking and working.
Enterprise Architect is a rigorous collaboration platform that allows ideas, problems, solutions and implementations to be
shared by a wide range of stakeholders including:

Customers

Executives

Engineering Managers
Engineering Team leaders
Architects and Designers
Systems Engineers
Software Engineers
Testers

Suppliers

System Integrators
Support Staff

Users or their surrogates

The models are also available in real-time for view, contributions, reviews and discussions through a secured Browser
interface, utilizing the power of collaboration to create robust and well formed architectures and designs.

(c) Sparx Systems 2022

Page 7 of461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Discussions

4 & Guys what is the current status of this requirement, did the customer reply to allofour € 1l

guestions?
2017-03-30 03:35:10 PM Project Manager

'{. Gareth Edwards from London replied to with the answers to question 1 to 8 but waiting on a
reply regarding the others

2017-03-30 03:38:

PM Junior Developer

=]

ﬂ Just got off the phone with Beth McSimmons in Scotland and she is emailing the answers to
the remaining questions.

2017-03-30 02:41:24 PM Senior Developer

& OK thanks

2017-03-30 03:42:50 PM Project Manager

Post reply

In this guidebook we will explore many of the features of Enterprise Architect that can be harnessed to take an individual
engineer, a team, an organization or an entire industry segment to the level of practice and performance that is required
in an age dominated by innovation and unprecedented technical change. The guidebook will provide background for the
Systems Modeling Language and show how the language constructs can be created in Enterprise Architect. It is intended
to give a newcomer to both the language and the tool exposure to all that is possible in the field of Systems Engineering
using this engineering and collaboration platform. In the words of the famous 17th Century physicist, Sir Isaac Newton:

v

'If I have seen further than others it is because I have stood on the shoulders of giants.'

Enterprise Architect provides a platform where this vision can take place, where through the Collaboration features and
facilities such as simulations and automation an engineer can see opportunity, design solutions, and architect the future.

Enterprise Architect includes major features for systems engineers, technical architects and others wishing to couple their
modeling and simulation work in Enterprise Architect with MATLAB, Octave, OpenModelica and more. 'Solver' classes

and an extensive Math Library in the JavaScript engine provide a significantly expanded Simulation capability. For more
information, see the Mathematical Simulations Help topic.

(c) Sparx Systems 2022 Page 8 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/advanced_simulation.htm

Guide to MBSE with SysML 3 October, 2022

An Equation with Four Variables

The title of this guidebook implies that there are only two disciplines to learn:
o Model Based Systems Engineering (MBSE) and
e The Systems Modeling Language (SysML)

However, there are four aspects to be considered when taking on this approach. This is like an equation with four
unknowns, each of which must be addressed before a team can be successful with an MBSE project or initiative. The
variables in the equations are:

e The engineering method or process

e The discipline of modeling

e The Systems Modeling Language (SysML)

e Enterprise Architect, the modeling tool of choice

It is not imperative that these four aspects be mastered straight away, but it is important that they are known and worked
on and that the team develops the skills to understand them individually and how they relate to each other. For example,
how to create a SysML Requirements diagram using Enterprise Architect and what properties should be included, when
should it be done and what other parts of the model should it be related to.

MBSE Approach = Process + Language + Modeling + Tool

The guidebook will address all of these concerns, and by the end the reader will not be confronted with unknown
variables, but the equation will have values based on the learning, thus solving the equation with the four variables that
we started with. At this point the reader will be well on their way towards a sound engineering modeling practice.

(c) Sparx Systems 2022 Page 9 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

The Engineering Method or Process

The Systems Modeling Language is process agnostic and can be used with any method or process. This point is
sometimes not understood by newcomers to the language who expect that it should be prescriptive and give clear
guidelines as to what elements, diagram and models should be created and when. This agnostic position provides great
flexibility and allows the language to be used in ways that are applicable to the process and the underlying problem or
solution domain.

The elements, connectors, diagrams, and language definitions defined as part of the Systems Modeling language have all
been created with the express purpose of allowing engineers to create models of the:

® mission

e stakeholders

e requirements

e measures of effectiveness

e structural and behavioral aspects of a system such as the components that ultimately implement the requirements

The process that is used by a team to create, manage and disseminate the Artifacts is completely arbitrary and must be
defined at an organization or team level.

System Engineering typically requires a collaborative or multidisciplinary approach where teams work together to
produce a result that meets the stakeholders' needs. There are two important aspects to any process:

e A management process - which governs stakeholders, risk, schedule, budget and quality
e A technical process - which manages architecture, analysis, design, integration and testing

The two processes, however, clearly require touch points to ensure that the overall mission and the goals and objectives
of the project are being met.

Enterprise Architect allows you to use any type of process regardless of whether it is formally defined, part of a standard
or crafted in-house. There are also facilities within Enterprise Architect that allow you to define, publish and share a
bespoke process.

A Well Supported Team

Enterprise Architect provides a large range of tools that will help teams collaborate regardless of where they are
geographically located or how they are separated by time and distance. The product has been built as a collaborative
platform from the ground up, allowing engineering and non-engineering, technical and non-technical stakeholders to
work together in a collaborative and integrated structure.

The repository can be Cloud-based, and users can connect securely from anywhere on the globe, effectively creating a
virtual team. This is important for a number of projects where expertise is not available locally or where the project
itself is global. The users and teams can use the collaboration features such as Discussions, Chats, Reviews and Model
Mail to work together. The result will be collaborative architecture and design that is not the result of one engineer's
work, but the output of many minds, and the work will be more than the sum of its parts.

(c) Sparx Systems 2022 Page 10 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Discuss & Review v I X

Journal Discuss Review

= Start the vehicle .

> S when can we expect the status
of this Use Case to be changed o
‘accepted’ as the analysis teams
are wanting to progress with it?

#an Mialsar 30425018 0 Reglias

> S Daes this incorporate the new #
retinal recognition system?

Greg Nichols 3/04/2018 © 1 Reply
;Last reply by Ker Mislsan
3048018

These tools are effective because they can be used to annotate models, elements and diagrams, allowing users to work
together as though they were working collaboratively on a whiteboard in the same room.

The Model Library is another handy collaboration tool that allows any type of file to be either included in the repository
or listed with a hyperlink and/or URL reference to its external location on a web site. Documents such as standards,
specifications, guidelines, guidance, examples, mentors and other material can all be catalogued in the Model Library.

Library v 1 X

¥y % <Cument Model: 2@
I [Admin

[> & Archimate

I @ EADE Modeling Upgrade 2019
I @ EA PMProfile for Agile

I B EA version 14

I B Eaversion 15

[@ Guidance Madels

[> @ 150 Technical Standards

[@ MG Technical Standards

[> @ Other Technical Standards

There is a wide range of other tools that can be used to facilitate team work, including the Image Manager, Calendars,
Publishing, Kanban, Project Management features and many more. This example shows a Kanban diagram that can be
used to visualize what is being worked on in an Agile team developing physical or software components of a system. For
more information see the The Modeling Team Help topic.

(c) Sparx Systems 2022 Page 11 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/team_development.htm

Guide to MBSE with SysML

3 October, 2022

Queue

-
As a Customer | want to be
able to add new orders to
existing ones if they have not
shipped

Defect

Paulene Dean

EF—— 1 Busin..

-

As a Customer | 'want to be

r Al
As a Sale Representative |
want to be able to view

historical leads

UserStory

lane Ward
""" Devel.

, i
As a Reviewer | want to be
able to be able to add and edit

Test/Review

-

o
As a Warehouse Manager |
want to be able to determine
the best product location to
minimize picking errors

UserStory

Yuki Kotabashi
TestA...

-

. 2
As a Customer | want to be

able to view the status of my rules in the online grammar able to rent an item for a
order checker specified duration
UserStory UserStory UserStory
Pat Taylor Paulene Dean
CasPr.. """ TestA.
(c) Sparx Systems 2022 Page 12 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Modeling as a Discipline

Most people, systems engineers included, typically find it easier to write a long description of a topic rather than a
succinct, concise summary - this is analogous to the challenge of modeling.

The question isn't so much what to include, but rather what to leave out.

One of the advantages of model based system engineering is precisely this - it encourages engineers to create models that
are descriptive, crisp and concise. The long (and sometimes rambling) sentences of document based processes are
replaced with clear and laconic diagrams that unambiguously describe the requirements, the structure and the behavior of
the system.

=hlocks= sblock=
Control Tower Aircraft
Height: int 0. Aircraft Type: int

Location: int - Departure Time: int
Flight Mumber: int

There are those who describe modeling as a hermetic discipline and speak of it as one of the 'dark arts' practiced by
alchemist engineers robed in purple gowns. This underlies the issue that modeling is seldom taught as a subject in our
universities, nor are there vast quantities of literature on the topic, making it appear to be a mysterious art rather than
what it is - a science that can be learnt.

There are a number of different types of model including:
e Scale Models

e Physical Models

e Abstract Models

In this guidebook we are most interested in Abstract models, as they are the models we will typically be creating using
Enterprise Architect and the Systems Modeling Language.

(c) Sparx Systems 2022 Page 13 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

These models are - as the name suggests - abstractions of reality that seek to highlight the most important aspects of an
entity, subsystem or system, while leaving out the things that are not important or are irrelevant from that viewpoint. For
more information see the Models Help topic.

(c) Sparx Systems 2022 Page 14 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/models.htm

Guide to MBSE with SysML 3 October, 2022

Getting Started

An abstract model is a representation of a real world thing in a way that helps us to reason about it without needing to
view the real thing. Typically a model is much smaller and is a simplified view of a system or one of its parts. A model
can also be created that focuses on just one aspect or facet of a system; for example, the communication or navigation
system of an aircraft.

A Dbuilding is a complex structure that has a number of different systems including Structural, Electrical, Ventilation,
Plumbing, Landscape and more.

Landscape Model

2

Yentilation Model

Electrical Model

m|
m|
[m|

m]

m]

m]

m]
=)

o o o o o o o o o o
T =]

o o o o o o o o |
DOoooooooooo
o o o o o o o o o

3>

Plumbing Model /{,” Ty 4 Structural Model
IE

Human Usage Model

By constructing a number of models we are able to create a simplified view of each of the subsystems, which makes it
easier to understand that aspect of the building. The models themselves also need to be resolved against each other. For
example, it is critical that the power system represented in the electrical model provide electricity to the air-conditioning
equipment modeled in the ventilation system. The Human Usage model needs to be resolved against the Landscape
model to ensure that the gardens and landscaping meet the recreational needs of the occupants and their visitors.

A model will typically be viewed by a number of different stakeholders who commonly have quite disparate roles with
respect to the part of the system being modeled. To ensure the model is useful to a particular stakeholder, views can be
created representing what is seen when looking at the model from a particular viewpoint.

The electrical model of the building is useful to a number of different stakeholders, all of whom have a different
viewpoint with respect to the system, including the Electrical Grid Officer, the Safety Inspector, the Electrician and the
Purchasing officer.

(c) Sparx Systems 2022 Page 15 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

—]

Power Source
Inlets View

Electrical
Grids Officer

Safety
Inspector

Electrical
Safety View

N

/ Electrical Model

AN

Room Switch

Electrical

/Cumpunents View

O

Purchasing
Officer

[To

Electrician

Location Room

(c) Sparx Systems 2022

Page 16 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Defining a Model's Purpose

Moving to Model Based System Engineering brings with it a number of challenges and traps for teams who are more
accustomed to working with document-centric methods. Probably the commonest trap is to start modeling without
having a clear understanding or definition of the purpose of the models.

In comparison with document-centric modeling approaches, it is more difficult to define the purpose of a model than it is
to define the purpose of a suite of documents. The model is orders of magnitude more useful and effective than a
document and can be used to perform work that is unimaginable with a document-based system. Some of the advantages
of the model based approach are:

e Consistency checks can be easily applied

e Alternative views can be readily created and kept consistent

e If documentation is required it can be generated automatically
e Models are interlocking and consistent

e Change impact can be visualized and automated

e Models can be kept compliant with an underpinning metamodel
e Models can be versioned and baselined

e Requirements traceability can be easily managed

e Models can be easily manipulated and changed

e The model can be used to generate code and standards

e Models can be simulated producing rich visualizations

e Models can be transformed from one level of abstraction to another
e Parts of the model can be easily reused creating efficiency

This diagram shows how traceability can be visualized and managed in the tool, allowing you to view the way that parts
of the models interlock and how elements form a graph of connections, helping you to describe and comprehend your
model.

(c) Sparx Systems 2022 Page 17 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

Traceability
6 @ E-@
4 [PowerSourceManagement
4 ¥ needed by
4 B H5UVOperationalStates
| ﬁembeds
[- ©Operate
[©Off
[= owns
[» —* owned by
[: -t depends on
4 —¥depends on
B < Power
4 A FuelEconomy
4 =* owned by
I £l Performance
4 ¥ needed by
I» [zl RegenerativeBraking
[IzRange
I» [PowerSourceManagement

3 October, 2022

Enterprise Architect harnesses the power of the SysML, along with a large set of tools built with System Engineering
Managers, Systems Engineers and other stakeholders in mind, providing simple but effective ways to take advantage of

the Model-Based Systems Engineering approach.

There are other profound benefits that can be achieved by moving to a model-based approach, including ensuring that
projects and programs of work are performed with rigor, productivity and efficiency using a tool that encourages
excellence and collaboration. For more information see the Why Enterprise Architect? Help topic.

(c) Sparx Systems 2022 Page 18 of 461

Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/benefits_and_features.htm

Guide to MBSE with SysML 3 October, 2022

Deciding Where to Start

The process of modeling can be quite daunting for engineers new to Model Based Systems Engineering. More than
anything else is, apparently, the issue of where to start modeling - the engineer's equivalent of the artist's 'blank canvas'
inertia.

Enterprise Architect provides a welcomed solution to this issue, by providing a series of patterns that can be used to
create starting points for an initiative or project, including all of the SysML diagram types with a number of patterns for
each type. For more information see the The Model Wizard Help topic,

@Start Page x | ElSpecification Manager EFind in Project 4

Open Project Create from Pattern Add Diagram Guidance

Syrshil

o

Systll 1.5 Project Structures

Syshll 1.5 Requirernents Diagrams

Syshdl 1.5 Use Case Diagrams

Syshdl 1.3 Activity Diagrarms Simple State Machine

SyshiL 1.5 Block Definition Diagrams

SyshiL 1.5 Internal Block Diagrams

SyshL 1.5 Parametric Diagrams The Simple State Machine Pattern describes an entity (e.g. Black, Actor, Use Case or Test Case) from the
SyshL 1.5 State Machine Diagrams point of view of the important states that it exhibits. When a state is entered an entry Action can be fired

[

Simple State Machine | and while in the state a do action can be fired and upon leaving the state an exit action can be fired.
Corposite States
Mested States
State with Histonye
State with Regions
SwshlL 1.5 Libraries - -

stm [package] Simple State Machine [Simple State Machine] /

-

Create Modells) Add To: | SystemsEngineering =) Combine with selected Package

Textbooks typically describe a series of steps that should be carried out in a prescribed order, but in practice these
recipes don't work because projects are substantially more complex than the generic ways described in the books, and
complex project and resource dependencies mean that tasks cannot be performed in a prescribed order.

The starting point will typically be determined by the engineering method or process being used for the project, which
could be a waterfall, an iterative, a combination of both or another type of process. Regardless of the type of process
being used, having a clear understanding of the mission is often a good starting point, and defining the affected
stakeholders and their concerns and requirements is often a good next step.

(c) Sparx Systems 2022 Page 19 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/model_wizard.htm

Guide to MBSE with SysML 3 October, 2022

Connecting Parts of the Model

The Systems Modeling Language encourages engineers to create a series of models, which will seem to the novice or
newcomer to model-based systems engineering to be fragmenting the view of the system. In reality the SysML describes
a network of models, each addressing particular concerns but connected together to describe the system and its parts as a
whole.

arequirement =
The system shall not allow unauthorized vehicles to
enter the car park

=block=

Boom Gate

Restrict Unauthorized
Entry

«allocates

id="spQo9* . TTT T ———T
temt ="The car park is a restricted area and entry need «allocates
to be controlled to allow authorized vehicles to enter|
but unauthorized wehicles need to be restricted .

In this illustration we see a compelling Enterprise Architect diagram that depicts the connections between parts of the
model using specialized elements and connectors, namely a Requirement, an Activity and a Block using the Allocate
relationship. The elements can be reused in any number of diagrams, and changing their properties in one location will
update them in every context. Diagrams can be created quickly and easily using a number of features, and they can be
visualized in a wide range of ways such as lists, tables and spreadsheets. The diagrams can be filtered, and elements can
be replaced with graphic icons to create more interest for non-technical audiences. For more information see the Model

Diagrams Help topic.

This is the real power of the Model Based Systems Engineering approach, as it allows a system to be viewed in a
multitude of ways, from a complete and high level view down through multiple layers of decomposition or hierarchy.
Each level is connected, gaps or breaks in the models can be easily identified, and remedies can be found.

(c) Sparx Systems 2022 Page 20 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/umldiagram.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/umldiagram.htm

Guide to MBSE with SysML 3 October, 2022

Ensuring a Model's Quality

The quality of a model will ultimately be reflected in the quality of the system that it represents. Enterprise Architect has
been designed to provide a platform for the creation and management of high quality collaborative models. There are a
number of features that assist the modeler attain the required level of quality, including facilities such as:

® Metamodel - that can be defined by a user to effectively create a grammar for the model, ensuring that users create
'compliant’' modeling sentences; for more information see the Developing Profiles Help topic

® Model Validation - that allows the model to be checked for compliance with the underlying metamodel
e Discussions and Chat - that allow modelers to work collaboratively on a problem or solution

® Reviews - that allow internal or external experts to view and critique models

e Model Patterns - that provide expertly created model Packages to provide a starting point for modeling
e Searches - that assist in finding particular problems in the model

@start Page x [ESpecification Manager 8Find in Project 4P

Open Project Create from Pattern Add Diagram Guidance

Systll

ol

B SyshL 1.5 Project Structures One Level Requirement Hierarchy
A SyshAL 1.5 Requirernents Diagrams

One Level Requirernent Hierarchy |

Twva Level Requirement Hierarchy The One Level Requirement Hierarchy pattern allows requirements to be visualized in a hierarchy
Composite Requirement Hierarchy permitting complex reguirements to be decomposed into more granular ones down to a single level.
Requirements Traceability

SyshL 1.5 State Machine Diagrams ’
SyshAL 1.5 Libraries
SyshdL 1.5 Model Elerments - hd

Create Model(s] Add Ter SystemsEnginesring =) Combine with selected Package

[> SyshdL 1.5 Use Case Diagrams

[> SyshL 1.5 Bctivity Diagrams =

= SyshdL 1.5 Black Definition Diagrams

= SyshdL 1.5 Internal Block Diagrarns “requermnLs
Requirement A

[+ SyshAL 1.5 Parametric Diagrams P

I

>

3

This diagram shows the Model Patterns in action, where novice and experienced modelers alike can, with a single button
press, create well formed models and diagrams using a productive corpus of industry best practice models - all SysML
compliant. There is also a detailed explanation and discussion on how to use the pattern, where to get further help and
more. For more information see the The Model Wizard Help topic.

(c) Sparx Systems 2022 Page 21 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/umlprofiles_2.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/model_wizard.htm

Guide to MBSE with SysML 3 October, 2022

The Systems Modeling Language (SysML)

The Systems Modeling Language (SysML) has been defined for the purpose of representing the Artifacts of Systems
Engineering problems and solutions or programs of work in a consistent, efficient and robust way.

oE=E=
mEYen SY

SysML is designed to provide simple but effective constructs for modeling a wide range of systems engineering
problems and solutions. It can be used for a variety of purposes but is particularly effective in specifying requirements,
structure, behavior, allocations, and constraints on system properties to support engineering analysis including
parametric analysis and simulation. SysML can be used with multiple processes and methods such as structured,
object-oriented, iterative, waterfall and many others.

The language has been designed and augmented over more than ten years to be suitable for modeling systems of an ever
increasing complexity. These changes have seen a relatively compact and concise language become broader and more
diverse; nevertheless, the majority of systems engineering projects can still be modeled with a smaller part of the
language, which we might term 'Core SysML'. For more information see the Modeling Systems in Enterprise Architect
Help topic.

(c) Sparx Systems 2022 Page 22 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/sysmodl_in_ea.htm

Guide to MBSE with SysML

3 October, 2022

Enterprise Architect the Modeling Tool

Enterprise Architect is both a Model Repository and a Collaboration Platform, making it an effecitve tool for Model
Based Systems Engineering projects. It enables team members - including project sponsors, engineering managers,
customers and engineers - to collaborate on projects in a rigorous and productive environment. Using WebEA and
Prolaborate, the collaboration can continue on mobile devices such as mobile 'phones, Tablets and Notebooks.

In the information and innovation age, a tool is required to do a lot more than store information or allow users to view
diagrams and models. Enterprise Architect has taken up this challenge and propelled its Systems Engineering offering to

another level, with tools such as the:

e Scenario Builder, which automatically creates Activity diagrams from Use Case steps, and generates Test Cases

from Scenarios; for more information see the Scenario Builder Help topic

| General I Requirements | Constraints | Scenarios | Files | Links | Templates

Scenario: Type:
In+hiouse Account Processing + Basic Path

Description | Structured Specification

FIE IR AR 2P I

-

Step Action |Ises Results State
% 1 Customer inserts ATM-card into ATM ~ ATM-Card Initiate Transaction START
Tagged Values O =
Sten EERSAC S ARG
= Activity (Customer inserts ATM-card into ATM)
result <memo=" (]
state <memo:"
step_guid {FS5E88CD-5B44-4faa-8C7D-FFEECC1ABED. ..
trigger User
Customer inserts ATM- uses LMEm0s
card inte ATM
resuli
Initiate Tranzaction

e Executable StateMachines, which allow programming code to be automatically generated from StateMachines; for

more information see the Executable StateMachines Help topic

(c) Sparx Systems 2022 Page 23 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/tools_ba_scenario_builder.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/executable_statemachines_main.htm

Guide to MBSE with SysML 3 October, 2022

START

SHUTDOWM

ACTIVATE TICK [cumentHeat >= heatToclerance]
I%MSEMD_EVENT"ACTIVATE",
CONTEXT_REF{next))%;

e Parametric Simulations using OpenModelica or Simulink, bringing models to life and allowing complex and often
intractable problems to be visualized and analyzed to support trade-off analysis and engineering investigations; for
more information see the Simulation Help topic

In this example the relationships between the factors controlling a fluid flowing between two tanks are defined:

(c) Sparx Systems 2022 Page 24 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/sysml_parametric_models_2.htm

Guide to MBSE with SysML

3 October, 2022

.

Level Sensor

[]

Pl Controller

Liquid Flow In

Liquid Flow Out

The models can then be simulated using the advanced OpenModelica simulation features.

par [block] Tank [Tank] /

gln: LiquidFlow

Iflow : Real

tSensor: ReadSignal

val : Real

qOut: LiquidFlow

Iflow : Real

tActuator: ActSignal

e ~
waqual»
—‘ X el: Mass_Balance Y
{der(h) = (x-y) /a}
eguala] . o [
equal» L) cequals
(N h: Real
area: Real
e2: SensorValue
fa=b} equal»
] a [
wequal» _ Y,
e E wequal»
a
e3:Q_OutFlow
{a=LimitValue{min, max, -b*c)}
o[]
b max min wequal»
N (1. [1
wequal» wequal» «equal»
flowGain: Real ‘ maxV: Real ‘ minV: Real

act : Real

(c) Sparx Systems 2022

Page 25 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Collaboration Platform

The information age has been transmuted to the innovation age almost while we were sleeping, and now more than ever
there is an imperative that teams will work together in new and cohesive ways. Sharing documents and files on disk and
working with static diagrams are now things that we expect to see in museums. Responsive, robust and innovative
solutions can only be achieved by teams working with exceptional tools that not only allow models to be constructed and
facilitate collaboration, but also perform work. Enterprise Architect is a multi-featured toolkit that allows teams to
collaborate, bringing together the best minds and most experienced hands from a wide range of interlocking disciplines.
The people that contribute to update and view the models might be dispersed geographically, operate in different time
zones, be from different organizations or even speak different natural languages.

az—} Q @ EI E ﬁéﬁ’ 1 My Kanban

1 My Gantt

Discussions Review Team Mail Calendar Journal
< < Library

Collaborate

This image shows some of the useful collaboration features available from the Start ribbon. Discussions and Reviews are
also available from WebEA and Prolaborate, allowing modeling and non-modeling staff to collaborate, resulting in more
robust and fit-for-purpose solutions. For more information see the Teams & Collaboration Help topic.

(c) Sparx Systems 2022 Page 26 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/use_today_panel.htm

Guide to MBSE with SysML 3 October, 2022

Project Management Workbench

Enterprise Architect provides a wide range of tools for managing a Model Based Systems Engineering project. In this
way it can act as a project management workbench that can be used to manage an engineering project. The entire
Systems Life Cycle can be modeled in the tool, from the conceptualization of business needs through design,
implementation, utilization, support and ultimately to the system's retirement or disposal.

There are Gantt charts, Calendars, Model Libraries, Risk, Defect, Task, Effort and Metric Registers, to name a few.
Roadmaps are another valuable feature that allow a project manager to visualize the development of a project over time
from a current state to any number of transition or future states.

» BB 1stage workflow. Kanban Diagram v x
@ start Page [S specification Manager | Tig 1 stage workflow 4 b

Element Role or Task Start End Complete || Degember 2020
As a Customer | want to be able to view the status of my order 5/12/2020

As a Stock Manager | want to be able to predict product demand 501272020

Stock levels on financial reports don't include returned items 11/12/2020 al
11A12/2020 155 [}

5/12/2020

Theresa Moranti Java Programmer

As a Customer | want to be able to delete items from my arder before it is ship..

As a Sales Representative | want to be able to view historical leads 19/12/2020

A Adam Goodchild Solution Architect 4/12/2020 10/12/2020

s0 I —)
FatTaylor C+= Programmer 15/12/2020 505 | | —
Jane Ward Developer 19/12/2020 159
The Online Shop web site country drop down list is missing a number of small... 11/12/2020 1
Benjamin Hutton C++ Programmer 11/12/2020 96 5 | ||

A5 a Reviewer | want to be able to be able to add and edit rules in the online ... 5/12/2020

A team can also work cohesively using the built-in Kanban boards which allow items such as Requirements, User
Stories, Defects and Changes and more to be visualized as they are actively being worked on. Resource allocation and
Properties such as Priority and Status can be viewed through the board items and over-fill limits are displayed.

Backlog Queue In Progress (4/6) Test/Review

As a Customer | want to be
able to add new orders to
existing ones if they have not

As an Administrator | want to
be able to have a
maintenance window to

As a3 Sale Representative |
want to be able to view
historical leads

As a Warehouse Manager |
want to be able to determine
the best product location to
update online web pages and
content

shipped

minimize picking errors
UserStory

Defect UserStory

Jane Ward
Paulene Dean] Devel... Yuki Kotabashi
E_——] Busin.. S] TestA..

UserStory

This proven technique, which has its origin in the Japanese Automotive sector has been implemented in Enterprise
Architect in a way that will greatly enhance the productivity of your team and its project management. For more
information see the Project Build & Deploy Help topic.

(c) Sparx Systems 2022 Page 27 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/projectmanagement.htm

Guide to MBSE with SysML 3 October, 2022

Model Repository

Enterprise Architect is primarily a model repository that allows models to be managed from their creation through to
their retirement. The repository is stored in a relational database that can be hosted in a client server configuration or as
part of a Cloud services facility, either on or off premise in a Cloud environment. So even though modelers will be
working with diagrams and visual elements, these diagram are all codified and stored in the repository database. The
repository can contain any number of models and can be organized for reuse and for enterprise and project models. For
more information see the The Model Repository topic.

(c) Sparx Systems 2022 Page 28 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/configuration_management.htm

Guide to MBSE with SysML 3 October, 2022

Getting Started

Getting started with a new tool is often one of the most difficult challenges, but Enterprise Architect makes this easy by
providing a number of facilities to assist the newcomer to the tool. Enterprise Architect is a large, multi-featured
application and the breadth of its coverage might overwhelm a person new to the program, but fortunately a solution to
this has been built into the design.

Perspectives can be used to limit the functionality to a specific area, such as System Engineering, making it easy for a
System Engineer or Manager to get started. A user still has the ability to utilize other functionality that might be useful,
such as Strategic Modeling, Mind Mapping, Code Engineering and more, simply by changing Perspectives, all without
having to open a different tool. It is worth noting that Perspectives exist for a wide range of modeling disciplines that
Enterprise Architect supports. For more information see the Model Perspectives Help topic.

Portals

= Perzpectives -
Model-Based Sets
UML
Strategy
Analysis
Requirements
UX Design
Business Modeling
Software Engineering
Systems Engineering
All Systems Engineering
SysML
LAF
UPDM
Executable State Machine
Simulation

AUTOSAR
MARTE

Database Engineering
Enterprise Architecture
Information Exchange
Publishing
Construction

Management

A user also has tremendous flexibility in tailoring their own environment and the user interface by setting preferences
and selecting workspaces and visual styles. For more information see the Advanced Customization Help topic.

(c) Sparx Systems 2022 Page 29 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/what_perspectives.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/defaultsandusersettings.htm

Guide to MBSE with SysML 3 October, 2022

s TS s NS == EE @ a4 Full Screen

& Visual Style
Design Edit Construct Share Run Workspace Perspective Preferences

- - T View ~
Application

Setting up a new project is straightforward with the use of the Model Wizard Patterns (with accompanying
documentation) that can be used to automatically create an MBSE project structure to get you started. The Model Wizard
(Start Page 'Create from Pattern' tab) can then be used to create any number of SysML diagrams as the model is
developed and the problem and solution spaces are fleshed-out.

= = BE List View
O & w == B2 Gantt
Perspective. Add Manage Specification
il - il Manager
Insert
v Tasks & Sch Package... ganization » Staff »
Maodel Wizard
v I X

All of these facilities make it easy for a newcomer to get started, helping them to become productive members of a team
and start contributing to models quickly and without any delay. A novice engineer will be surprised at how productive
they can be when compared to working in text-based or other more rudimentary modeling tools. There will be challenges
along the way as you push yourself and the tool to new limits but an in-depth Help system, a large community of users,
comprehensive forums, a community site and first-class support services will make the journey easy and informative.

(c) Sparx Systems 2022 Page 30 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Setting Up a Model Structure

Enterprise Architect has been designed as a productivity tool from the ground up, and setting up a model structure -
sometimes a daunting task for the beginner and tedious for the experienced user - is made simple in Enterprise Architect
by the use of the Model Wizard (Start Page 'Create from Pattern' tab).

The structure for a new initiative (project) can be created using the Model Wizard, which will create an entire project
structure that can be tailored on import, providing all the Packages ready to start the project.

@start Page x | ElSpecification Manager EFind in Project ar

Open Project Create from Pattern Add Diagram Guidance

SyshiL = |- =
o
4 Sy3ML 1S Project Structures Basic MBSE Project Structure
Basic MBSE Project]
[+ SyshAL 1.5 Requirements Diagrams
b SyshL 1.5 Use Case Diagrams The Basic MBSE Project pattern creates a set of packages in the Project Browser suitable for a
b SyshL 1.3 Activity Diagrams small or medium hModel Based Software Engineering (MBSE) project. The packages can be
PRSEMBISIBlocHREtinitioolBiagrar reordered or renamed and packages can be added or deleted as required.
[SyshL 1.5 Internal Black Diagrams
[SyshL 1.5 Pararmetric Diagrams
[+ SyshAL 1.5 State Machine Diagrams fae MBSE P =
A s T A Analysis
[SyshAL 1.5 Libraries _a - .mJEC LEebe
[» [Model Guide Analysis
b SysML 1.3 Model Elements I I:IManagement 9 Trade Studies
b SysML Glossary [References £ Engineering
[+ Modelica Case Studies I £7Context 9 cost
I» SysPhS - I: £3Requirements 1 Performance hd
Create Model[s) Add To: SystemsEngineering =) Combine with selected Package

The structure of the repository is a subject that is explored in a later topic, because it is critical to the success of a
model-based engineering approach to Systems Engineering. We will learn later that Packages are important units in the
organization and maintenance of a model repository, and there is an entire topic dedicated to the subject of using
Packages to structure the repository. For more information see the The Model Wizard Help topic.

(c) Sparx Systems 2022 Page 31 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/model_wizard.htm

Guide to MBSE with SysML 3 October, 2022

Tailoring the Application

Enterprise Architect is a tool with a vast amount of functionality, which is one of the reasons why it is so popular as a
tool for modeling systems of any kind. To ensure that the tool provides the most benefit to an organization, team, project
or individual, some tailoring of the interface to suit the modeling intent will ensure that all parties achieve the best
outcomes. Most of the settings can be changed by a single button click, transforming the tool to be fit for purpose, which
- for us - is collaborating on Model Based Systems Engineering projects.

We will look at a number of places where we can change the application from a generic modeling tool to a systems
engineering tool. We will look at these topics.

Selecting a Perspective

Selecting a Perspective is similar to putting a filter on an optical lens. It allows a modeler to just see application facilities
relevant to that Perspective - in our case the Systems Modeling Language (SysML).

Selecting a Workspace

Selecting a workspace is important because it allows the user to ensure that the windows, ribbons, toolbars and other
visual elements provide an efficient working environment and easy access to the important facilities that are needed.

Setting Visual Styles

Visual styles provide a series of options for the look and feel of the application, including things such as colors and tab
positions.

Setting Preferences

Preferences provide a wide range of options for tailoring how Enterprise Architect looks and functions from General
settings such as Browser window options to Diagram, Objects and Engineering options. Many of the options apply to an
individual user with others pertaining to the entire repository.

(c) Sparx Systems 2022 Page 32 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

Setting a Perspective

3 October, 2022

Enterprise Architect is a tool packed with features for a wide range of disciplines, methods, languages and frameworks.
Perspectives provide a way for a user to select a facet of the tool that allows them to focus on a particular subset of the
tools features and facilities. The Systems Engineering group of Perspectives provides a natural starting point for
Systems Engineers, but at any point if you decide to use other facilities in the tool you can simply change Perspectives
and the tool will change to provide a focus on the selected area.

Portals

= Perzpectives
Model-Based Sets
UML
Strategy
Analysis
Requirements
UX Design
Business Modeling
Software Engineering
Systems Engineering
All Systems Engineering
SyshiL
LAF
UPDM
Executable State Machine
Simulation

AUTOSAR
MARTE

Database Engineering
Enterprise Architecture
Information Exchange
Publishing
Construction

Management

Portals

= Perzpectives -

Model-Based Sets

UML

Strategy

Analysis

Requirements

UX Design

Business Modeling
Software Engineering
Systems Engineering

All Systems Engineering
SyshIL

UAF

UPDM

Executable State Machine
Simulation

AUTOSAR
MARTE

Database Engineering
Enterprise Architecture
Information Exchange
Publishing
Construction

Management

Selecting one of the Systems Engineering Perspectives will change the tools to focus on the selected aspect of Systems
Engineering. For example, choosing the SysML Perspective will display a series of model patterns giving a user a jump
start by being able to load a pattern for a standard model fragment or diagram. The 'New Diagram' dialog will also just

display SysML diagram types.

(c) Sparx Systems 2022

Page 33 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Model Patterns | Diagram Process Guidance Application Patterns VEA Examples

4
»
»

SysML Perspective

4 SysML 1.5 Project Structures BaSiC MBSE PrOject Structure
[E] Basic MBSE Project

4 SysML 1.5 Requirements Diagrams

One Level Requirement Hierarchy

Two Level Requirement Hierarchy The Basic MBSE Project pattern creates a set of packages in the

Composite Requirement Hierarchy Project Browser suitable for a small or medium Model Based
Requirements Traceability Software Engineering (MBSE) project. The packages can be

o SysML L5 Use Case Diagrams reordered or renamed and packages can be added or deleted as
Basic Use Case Model required.

Structured Use Case Model
4 SysML 1.5 Activity Diagrams
One Level Activity Hierarchy

[E] Two Level Activity Hierarchy 4 []Basic MBSE Project 4 [JAnalysis
Composite Activity Hierarchy I» 53 Model Guide B Analysis
Activity with Actions and Control Flows I» & Management EITrade Studies
Activity with Actions and Partitions P COReferences £ Engineering
Actions with Pins and Datastore b £3 Context £ Cost
4 SysML L5 Block Definition Diagrams I £3Requirements £ Performance
One Level Block Hierarchy I» £7Use Cases £ Reliability
Two Level Block Hierarchy I £7Parametrics £ Trade-Off
Composite Block Hierarchy - I: 3 Analysis 4 [Architecture =
Create Pattern(s) Add To: Setting a Perspective =] | Combine with selected Package

There is also the convenient facility for a user to create any number of their own Perspectives, adding sets of
technologies to each Perspective. This allows a modeler whose primary concern is SysML diagrams to add other
facilities such as strategic models, Kanban diagrams and dozens of other useful diagramming and modeling mechanisms.
For more information see the Model Perspectives topic.

(c) Sparx Systems 2022 Page 34 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/what_perspectives.htm

Guide to MBSE with SysML 3 October, 2022

Selecting a Visual Style

Every modeler will have their own preferences about the color scheme and style of the user interface, and Enterprise
Architects allows these to be set and saved for each user, making the application more appealing. For example, some
modelers will want a dark color scheme and others will prefer a light or colorful scheme.

Microsoft® Office 2016 -
Theme Colorful T
Accent Color: Blue (Default) &

Visual Appearance

Code Editor: Light -

Diagram: Use current theme 7

Workspace Left M

Default Note Zoom: 10094 -
Window Styles

Show Menu Icons
+| Docked Windows Tabs on bottom (restart)
Main View Tabs at bottom (restart)
+| Property Sheets use Tree style
Use Property List for Elements
Increase Mote Paragraph Spacing

There is a range of options here, including setting the position of the main window tabs, the size of the text in the notes
window, and much more. Setting the visual style will assist in personalizing the modeling environment and making
individual modelers feel comfortable while maintaining consistent and rigorous models. For more information see the

Visual Styles Help topic.

(c) Sparx Systems 2022 Page 35 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/visualstyles.htm

Guide to MBSE with SysML 3 October, 2022

Selecting a Workspace

Enterprise Architect has a helpful way of quickly changing the layout of the User Interface to facilitate particular tasks or
ways of working. This is achieved by simply selecting a workspace that will change the visible windows and tools, to
provide the most efficient way of working to suit the task. For example, there is a workspace defined for Systems
Engineering Simulations, one for Use Case Modeling, and another one for Testing. You can also define any number of
your own workspace layouts that you find useful, by opening windows and tools and positioning them in an arrangement
that facilitates working on a particular task or set of tasks, and saving them. In this example, a modeler has defined three
custom workspace layouts. For more information see the Workspace Layouts topic.

Available Custom Workspace Layouts:

Type Workspace Layout Name
Hl custom Engineering Management
Hl custom Requirements and Use Case Modeling
Hl custom Waorkshop Presentations

(c) Sparx Systems 2022 Page 36 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/manage_workspace_layout.htm

Guide to MBSE with SysML 3 October, 2022

Setting Preferences

Enterprise Architect has a formidable set of preferences, some of which can be set for the entire repository and others for
each user. These allow the application to be tailored to suit an individual engineer or an entire team. For more
information see the User Preferences topic.

This diagram shows how diagram themes can be set and elements of the style can be specified, including fonts, colors,
line thickness and gradients.

4 [{h General Themes
[CA'Window Behavior
4 [Diagram Diagram Theme
A Themes
[3 Gradients and Background Name: | High Contrast White -

% Standard Colors

3 Appearance

3 Behavior
T Sequence
) Objects
q'-h Links Applied Styles
i Cu:ummumf:..atmp Colors 7| Font Gradient
@XML Specifications v Col Back il
[E Source Code Engineering e SrarTeHne mags
+| Line Thickness Element Shadows

(c) Sparx Systems 2022 Page 37 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/configurelocaloptions.htm

Guide to MBSE with SysML 3 October, 2022

Importing Existing Material

When Enterprise Architect has been set up for use it is likely that you will still have some existing project artifacts in the
form of diagrams, documents, spreadsheets and items in other formats. Many of these can be conveniently imported into
Enterprise Architect or referenced from within the tool. The tool also provides extensive server-side connectivity to a
wide range of other tools, including Requirements Management tools such as DOORS Next Generation, project
management tools such as Wrike, and project implementation tools such as Jira, via the Pro Cloud Server (a separately
licensed server-side component).

Importing Spreadsheets

Spreadsheets are commonly used as a general purpose container for a wide range of numerical and textual project data.
Uses include:

e Requirements

e Stakeholder Analysis
e Planning

e Roadmaps

e Subsystems

e Components

e Interface Definitions

e Task Management

While the spreadsheet is a very familiar tool it lacks many of the rigorous and useful features of an information
management platform such as Enterprise Architect, including:

e (Collaboration,
e Diagramming
e Traceability,

e Baselines,

e Visualizations,
e Simulations

e Versions and more.

Enterprise Architect has built in support for all these and many other forms of information that are commonly stored in
Spreadsheets. The tool also conveniently comes with facilities to import and export the spreadsheet data using the CSV
file format.

CSV Import/Export Specification

Specification Name: | |nterface Control Document = | Delimiter. -

Notes: This specification allows Interface Definitions to be imported from
an Interface Control Document (ICD) spreadsheet (CSV) specified

in the Company's Engineering Standards Format ENGOTU-0045

Default Filename:

Default Direction:

Default Types:

(c) Sparx Systems 2022

SYSEMG-P-032 -Component Interface

Impaort -

Preserve Hierarchy

Page 38 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

The most typical scenario is for the information in the Spreadsheets to be imported into Enterprise Architect and then the
spreadsheet can be decommissioned and the information assets can be managed in Enterprise Architect from that point
forward.

There might be situations where using the numerical analysis aspects of a spreadsheet would be useful, and Enterprise
Architect conveniently provides a tool to export information to CSV file format for import into a spreadsheet. For more
information see the Import and Export Spreadsheets topic.

Importing Visio Diagrams

Microsoft Visio is commonly used by engineering teams, often because there are no other more sophisticated tools
available and it serves the purpose of creating general purpose diagrams. It is common for a team that adopts Enterprise
Architect as their engineering platform of choice to have a collection of preexisting Visio diagram. All these diagrams
can be imported into Enterprise Architect but the results are more effective when these Visio diagram have been
constructed with consistency or using standard industry palettes rather than free-form geometric shapes such as square
and circles that have no shared meaning. Once imported the diagrams can be massaged and updated to form part of the
repository, and the original Visio diagrams can be decommissioned.

Enterprise Architect provides a free tool that can be used to connect to an MS Visio engine and import selected diagrams
into the repository.

A decision has to be made whether to decommission the diagrams in Visio and to allow Enterprise Architect to manage
the diagrams from this point on. Having the diagrams in the repository provides great power, as elements on the
diagrams can be related to other elements in the repository. For more information see the Extensions - MDG

Technologies the topic.

MDG Link for Visio

Free Download Now!

Visio®

-
2

Using the Model Library

Even if an engineering team has transitioned to Model Based Systems Engineering it is likely that there will still be a
range of documents and web based material that is critical for the management and development of engineering
solutions. Enterprise Architect provides a pragmatic approach to this need by incorporating a Model Library feature
where documents and web resources (both local and remote) can be collected together as references.

Any of the references catalogued in the Model Library can be included on a diagram as an Internal or External Artifact
but more conveniently they can also be imported or referenced. For more information see the The Model Library Help
topic.

(c) Sparx Systems 2022 Page 39 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/tools_ea_import_and export_spreadsheets.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/mdg_products.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/mdg_products.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/discussionforum.htm

Guide to MBSE with SysML 3 October, 2022

Library v 1 X

¥ % <Cument Model 2@

I [Admin

[B Archimate

> @ EA DB Modeling Upgrade 2019
I B EA PMProfile for Agile

I [EA version 14

I B Eaversion 15

[+ @ Guidance Madels

[B 150 Technical Standards

[+ @ OMG Technical Standards

[@ Other Technical Standards

Microsoft Office Integration

Enterprise Architect has the ability to integrate with the Microsoft Office suite of applications using the MDG Link for
Microsoft Office, making it easy to exchange information between any Enterprise Architect model and MS Powerpoint,
MS Word and MS Excel. There are options to import, export and synchronize the content.

Microsoft PowerPoint

PowerPoint integration provides easy access to Enterprise Architect's model repository within PowerPoint presentations.
You can insert references to the model, use hyperlinked model element names, insert diagrams as images and tabulate
Package contents on slides.

Microsoft Excel

The Microsoft Excel Importer tool allows you to import contents from Microsoft Excel workbooks into Enterprise
Architect as model elements. This includes importing spreadsheet data as UML elements, connectors, attributes and
operations.

Microsoft Word

The Microsoft Word Importer tool brings Requirements, Use Cases, Processes, Classes and other data from Microsoft
Word documents into Enterprise Architect as model elements. The Microsoft Word Importer provides a step-by-step
approach that helps you map items such as sections, tables and delimited name-value pairs to Enterprise Architect
elements and properties — including defining custom Tagged Values.

Integration with External Tools

Enterprise Architect provides an interface (as part of the Pro Cloud Server) for connecting your model repositories to
external tools. This enables Enterprise Architect to synchronize elements in external tools with views of the elements in
Enterprise Architect, which is particularly useful if Enterprise Architect and another tool share an interest in particular
types of information. An example is the integration with the DOORS Next Generation (NG) product, where requirements
modeled in DOORS can be viewed inside Enterprise Architect, and local surrogates of the elements can be placed on
diagrams and related to any number of other modeling elements, including strategies, trade studies, Use Cases and
Components. (There is also an in-model facility available to connect to older versions of DOORS.)

(c) Sparx Systems 2022 Page 40 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

A &As a manager, I'd like a historical story to show in reports
As a User, |'dlilra = hictrrical et dn chonsae in rannrte
A QAS a user, I'd ik Add WebEA Hyperlink to External Object
As a user, I'¢
4 € Asauser, I'd lik
As a user, I'¢
4 € Asauser, I'd lik

Pull - Update Local Element with External Data
Push - Update External ltem with Local Data
Disconnect from External Object

04 As a user, I'c Add to Open diagram
A 0 Instructions for Find in Project Browser
Instructions Find in Dagrams...

- - =

There is a wide range of integrations available, and teams can create their own integrations using the Open Services for
Lifecycle Collaboration (OSLC) facility, available as part of the Pro Cloud Server. For more information see the

Integrate Data from External Providers Help topic.

(c) Sparx Systems 2022 Page 41 of 461

Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/integrate_external_provider_data.htm

Guide to MBSE with SysML 3 October, 2022

Creating Diagrams Elements and Relationships

Once a model structure has been set up and the application has been tailored to suit your needs, including the selection of
the SysML Perspective and an appropriate workspace, you are ready to start creating elements and diagrams. While it is
possible to create an element without first creating a diagram it is common practice to first create a diagram as a canvas
for how the elements will be visualized. The first thing you will need to do is choose a location for the diagram in the
Browser window. For example, you might be defining the fundamental architecture of your system and have defined a
Package called 'Subsystems'. By selecting this Package you are telling Enterprise Architect that this is where you want a
new Subsystems diagram inserted.

Creating a New Diagram

Enterprise Architect is a flexible tool and provides a number of ways of inserting a new diagram, including:

Selection from the Ribbons:

Layout Develop Publish Simulate Specialize Cons

A & BEa EI 08 I8 OB

O Gantt
Search Portals Perspectives Add Manage Specify Toolbox Add Manage View
- - - - - - Asv
Explore Model Diagram

Selection from the Browser window header bar:

Browser
#16 t 4+ L =-

Project | Context Diagram Element

Selection from the context (right click) menu:

Specialize k
Collaborate r
Properties r
Open Package in r
Add a Model using Wizard... Control+ Shift+M

Add a Package...
Add Diagram...

5 [B ©

Add Element...

Package Control k

Regardless of the method you choose you will be able to select the SysML diagram type from the 'Diagram Types' panel
of the 'New Diagram' dialog.

(c) Sparx Systems 2022 Page 42 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Diagram Types:

[+ Activity
b 5 Block Definition
|E| Internal Block
Package
|E| Parametric
> Tz Requirement

IEESEIJLIEHEE
[> [State Machine

22 Use Case

Let's continue on to create a Block Definition diagram to represent the Subsystem. Select the Block Definition diagram
as the diagram type and enter an appropriate name. Once you click on the OK button, a new (blank) BDD diagram will
be created and the Block Definition Diagram Toolbox will be displayed ready for you, or a member of your team, to
create elements and relationships.

Enterprise Architect will create a diagram canvas with a visible frame that represents the border of the diagram. The
diagram frame is included because some users prefer to see it, but it can be hidden with no loss of meaning or
compliance; once hidden the canvas then becomes the frame and the header information is contained at the top of the
canvas. The frame can be included in saved or published diagrams by choosing this option in the 'Preferences' dialog.

« Ta bdd [package] Vehicle Subsystems [Subsystem Hierarchy]

bhdd [package] Vehicle Subsystems [Subsystem Hierarchy] /

Adding Elements to a Diagram

With the new diagram opened you are ready to start creating elements and relationships to describe the subsystems.
There are essentially two types of Object that can be added to a diagram:

o New clements - Created by dragging an item from the Toolbox and dropping it onto the diagram canvas
e Existing elements - Placed on the diagram by drag-and-dropping an element from the Browser window

If you are starting a new project and have just set up your repository, you will not typically have elements in the Browser
window so you will make more use of the first option and create elements from the Toolbox. As your project progresses
it will become more common to use the second option and drag existing elements from the Browser window.

We will create a number of Blocks. Firstly we need a Block to represent the entire vehicle, so we will drag and drop a
Block item from the Toolbox onto the diagram canvas. The tool will resize the frame to include the Block regardless of
where you placed it on the canvas. The element will be given a default name of 'Block1'. Now using the Properties
window, typically docked on the side of the diagram, change the element's name to 'Vehicle' by typing over the default
name 'Block1".

(c) Sparx Systems 2022 Page 43 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Element Properties O x

—

Element SysML 1.5 Templates Files

General

Mame Vehicle
Type Block E}
Sterectype block

Alias

This will change the element's name in the Browser window and the diagram. Returning to the diagram you will see the
newly added Block with the name 'Vehicle' enclosed in the diagram frame.

« %E bdd [package] Vehicle Subsystems [Subsystem Hierarchy]

bdd [package] Vehicle Subsystems [Subsystem Hierarchy] /

sblocks
Vehicle

We could now use the same method to add a series of Blocks to represent each of the Subsystems.

Adding Relationships to a Diagram

Once you have added two or more elements you can connect them with relationships, which provide the semantic glue
between the different elements in the model. For example, a Block element can connected to another Block element
using an Part Association relationship. There are two primary ways that connectors can be added to a diagram:

1. Quick Linker - an intuitive diagram device initiated by dragging a link between the Quick Linker arrow (at the top
right of the element) and another diagram object

2. ToolBox Items - connectors can be selected in the Toolbox and then dragged between two diagram objects.

Either method will result in the specified connector being drawn between the two elements. Care needs to be exercised to
ensure you are dragging in the right direction; the Part Association relationship, for example, should be dragged from the
Block that is at the part end to the Block that is at the whole end. This will ensure that the little diamond marker at the
end of the relationship is positioned at the correct end, indicating the whole-part relationship.

(c) Sparx Systems 2022 Page 44 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

bdd [package] Boom Gate [Boom Gate]/

0

wblock»
Boom Gate

1
g%
Q

« block »
Control Unit

3 October, 2022

Regardless of the method that is used the result will be an Information Requirement relationship connecting the two
Blocks. The direction and style of the connector can be altered, and any number of way-points can be added to route it
differently as the model is developed. This diagram shows the added relationship where the modeler has also added a
role name (+cu) and a multiplicity (1..2), indicating that a Boom Gate must have at least one control unit but could have
as many as two. If a modeler were to inadvertently add the connector in the wrong direction it can be conveniently
reversed by accessing options from the Advanced submenu of the connector's context menu.

bdd [package] Boom Gate [Boom Gate]/

«block »
Boom Gate

parts
: Control Unit

+cu 1.2

«block»
Control Unit

(c) Sparx Systems 2022

Page 45 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Visualizing the Models

You might have been introduced to the SysML by reading introductory material in textbooks or in lecture notes as part of
a tertiary qualification or in online pages. Much of this content presents the SysML as a language of diagrams, but
Enterprise Architect expands the horizons of the language - and modeling in general - by providing a variety of ways to
visualize information in the repository. The diagrams still play an important part, but in many circumstances there are
more compelling ways to visualize or work with the repository content, including:

e Specification View - a spreadsheet or document view for those who are more familiar working this way
e List View - a table-based view similar to a spreadsheet where the properties of multiple elements can be viewed

e Traceability View - a hierarchical and graphical view where element relationships can be viewed to any level of
nesting

e Gap Analysis Matrix - shows source and target elements and gaps in architectural models

e Relationship Matrix - a grid based view with two axes containing sets of elements

e State Table View - a view available for StateMachine diagrams to display the state transitions in a table
e Gantt Chart View - view a timeline when resources have been assigned

e Searches - view element lists that comply with a built-in or user defined set of criteria

e Publications - view elements in a publication using built-in or user defined templates

e Graphical View - view the elements as a diagram (this is the default view)

Construct Execute Configure Find Command...

60 & 5 B E TEHE E

View Editors Add Manage Behavior Feature Trace Matrix Gap Decisions

As~- i - Matrix - Analysis h

Switch View ment Impact Tools
B Listview h [package] Requirements [Low Light Visibility]

B Gantt View | Low Light Visibility X

1 sSpecification View

1 Relation Matrix View

il

Construct View Requirements [Low Light Visibility] /

Inline Specification

This diagram shows a Gantt Chart that has been automatically created from the resource information entered against
elements that were visualized on a Kanban diagram. For more information see the Gantt View Help topic.

» B 1stage workflow. Kanban Diagram v x

(@ start Page (S Specification Manager | T 1 stage workflow & 4

Element Role or Task start End Complete || DEcember 2020
[o7 [® 10 1 12

As a Customer | want to be able to view the status of my order 47122020 5/12/2020

As a Stock Manager | want to be able to predict product demand 41272020 5/12/2020

Stock levels on financial reports don't include retumed items 471272020 114272020 1
Theresa Moranti Java Programmer 4/12/2020 11/12/2020 15% 1

As 3 Customer | want ta be able to delete items from my order before it is ship. 4/12/2020 5/12/2020

A5 a Sales Representative | want to be able to view historical leads 4/12/2020 19/12/2020
£ Adam Goodchild Solution Architect ~ 4/12/2020 10/12/2020 80%

— ——]

Pat Taylor C++ Programmer 4/12/2020 15/12/2020 50 % ||
[
—]

Jane Ward Developer 4/12/2020 19/12/2020 15%

The Online Shop web site country drop down ist is missing a number of small.. 40272000 111272020
Benjamin Hutton C++ Programmer 4/12/2020 11/12/2020 96%
As a Reviewer | want to be able to be able to add and edit rules in the online .. 41272020 51272020

(c) Sparx Systems 2022 Page 46 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/tools_ba_gantt_view.htm

Guide to MBSE with SysML 3 October, 2022

Synchronizing with External Data

While Enterprise Architect is a central tool for the management of Model Based Systems Engineering projects, there are
likely to be a number of other tools that an engineering office will have in place or will acquire for the purposes of
ensuring that an endeavor meets its outcomes. These might include Project Management tools, visualization tools,
Requirements Management catalogues, configuration management systems and issue tracking software.

Enterprise Architect, through the Pro Cloud Server (a separately licensed server-side component), provides bi-directional
integration with a large number of tools including:

e Doors Next Generation - used for Requirements Management

e Wrike - used for general purpose Project Management

e Jira - used for issue tracking

e ServiceNow - used for Configuration Management

e Share Point - used for document management

e Team Foundation Server - used for Version Control in the software discipline

Representations of the elements from these external data sources can be included in diagrams and related to other
elements in the repository. This allows Enterprise Architect to become an engineering information hub, connecting and
integrating with a wide range of tools to provide a single view of a project. This image shows a current list of providers.

5, External Data X

=- .

Object B> sharepoint
m Service Mow

-Q Jira

ﬂ Autodesk

g Jazz

@' Application Lifecycle Management

g

@ Enterprise Architect

& Wrike

& Confluence

I":J Team Foundation 5erver
(% Bugzilla

g Dropbox

¢ salesforce

E All ttems Linked to Model

(c) Sparx Systems 2022 Page 47 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Where we are Heading

The discipline of Systems Engineering dates back to the early 1900's; the term is thought to have been first coined by
Bell Laboratories in the early 1940's. Sixty-odd years would pass before the need for a dedicated language for modeling
systems was perceived in 2001, but it wasn't until 2006 that the Systems Modeling Language (SysML) was adopted by
the Object Management Group and became the language of choice for describing systems.

In the field of Systems Engineering, Enterprise Architect has become the tool of choice for many leaders in the industry,
because of its flexible, extensible and pragmatic approach to modeling complex systems and its strong compliance with
the Systems Modeling Language specification.

ibd[block] Automotive Domain [Autnmﬂtivenﬂmairy

«LightCondition»

X1 %5
‘\\ @
Driver .
- HSUV: HybridSUV Mechanic
. xa:
«externaly «external»
drivingConditions: Environment
Passenger
«externaly «externaly
.
5 E ot
vehicleCargo: (]

Baggage 5 75
weather: Weather

object:
ExternalObject

«diagramDescription» external»
version="0.1"
description="Initial concept to identify top level domain entities"
reference="0ps Concept Description”
completeness="partial. Does not include gas pump and various other
extemal interfaces.” road: Road

As a platform, Enterprise Architect offers a unique capability in supporting the integration of strategic, business,
engineering and technology models, from motivation models through to the implementation of systems and continuing
on to support. The tool helps the System Engineer to create Strategic models - including diagrams such as the Balanced
Scorecard - Capability models, Tactical models - such as Gap Analysis and Roadmaps - and Operational models,
appealing to stakeholders including the senior executives, engineering managers, solution and implementation teams, and
engineers.

How it will help you

Readers will typically come to the topic of Model Based Systems Engineering with some existing knowledge or
experience even if it is something that has been learnt in lectures or by on the job training, or perhaps by using a different
tool. Readers will benefit by understanding Enterprise Architect's features and the tools that are available to develop and
manage Model Based Systems Engineering models in Enterprise Architect. This knowledge will enable them to be more
productive as an individual and also as a member of a team. The reader will also learn about the syntax and semantics of
the Systems Modeling Language popularly know as SysML and how it can be used to model and even to simulate
complex engineering systems.

Who will benefit

Anyone involved in the development, management or support of Model Based Systems Engineering initiatives whether
at a:

e Strategic level,

(c) Sparx Systems 2022 Page 48 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

e Business Value level,
e Management Level or

e Engineering level
will benefit from reading this information. This covers a wide range of roles including:

e Customers,

e Strategic Thinkers,

e Senior Management,

e Engineering Management,

e System Designers and Architects,
e Software Designer and Architects,
e Systems Engineers,

e Software Engineers,

e Fabrication Teams,

e Implementation Teams,

e Support Staff.

The real power of this way of working and using Enterprise Architect as a tool is in the unification of the
interdisciplinary teams. Thus allowing people from a wide range of disciplines, potentially geographically dispersed and
working at a wide range of levels from strategy to support, to share a common view of the product or system being
developed.

What you will learn

This guidebook will teach you how to use the rich features of Enterprise Architect to develop and manage Model Based
Systems Engineering initiatives, to write and read the Systems Modeling Language (SysML), create documentation and
to work collaboratively as a member of a team using a formal or informal engineering process.

'E—} E m El ﬁ “g 1 My Kanban

& My Gantt

Discussions Review Team Mail Calendar |ournal
- i Library

Collaborate

You will learn what tool facilities are available and which tools should be used to perform a particular technique and
using links to help topics how to use them . For example, regardless of the process or framework that is adopted, at some
point Allocation between Structural and Behavioral elements will need to be performed; this topic will describe the
technique and how to best achieve it using the tools and facilities you have at your fingertips by adopting Enterprise
Architect.

(c) Sparx Systems 2022 Page 49 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

srequirement= «blocks=
The systern must be able detect fraudulent Bar Bar Code Analyzer
Codes
id = "SR-O0987" 'Ei———#;t;w—‘_———- S

text = "Customers could exchange the Bar Code
from acheaper item to a more expensice one
thus atternpting to fraud the system.”

Overview of the Documentation

This table provides a list and a description of the subjects that are included in this work, giving an overview of the
material.

An Equation with Four This topic describes Model Based Systems Engineering from a mathematical
Variables perspective as an equation with four variables namely: Modeling, Enterprise
Architect the tool of choice, the Systems modeling language, and an Engineering
Process. Elementary mathematics would suggest that we need four simultaneous
equations to solve such a problem. This topic will introduce these four variables
and suggest ways you as an engineer or manager can become proficient in this
discipline without the need to solve the equations simultaneously.

We will see how Enterprise Architect can play an important part in all four parts of
the equation and has been designed to help make your engineering initiatives
successful.

Getting Started This topic introduces newcomers to the tool to the most important aspects of the
application, including setting up a model structure, tailoring the application,
working with diagrams, other ways of visualizing content and integrations with
other tools. It also includes discussions on the user interface, including Ribbons and
Perspectives which are fundamental to working with the tool.

The tool has an extensive Help system that has been developed over more than
twenty years and that can provide answers to almost any question that an engineer
or other stakeholder might have while working in the tool.

Where we are Heading This topic describes the list of the topics in the Guide, giving an overview of each
topic.

Getting to Know the This topic introduces the diagram as the preferred and most commonly used method
SysML Diagrams for visualizing models and repository content. It gives a brief introduction to each
diagram and allows the reader to build up a mental map of what the diagrams are
and how that can be used both to express one's ideas and to interpret the ideas of
others.

Systems Modeling This topic provides insight into the anatomy and the physiology of the Systems
Language Overview Modeling Language. It provides a useful synopsis of the notation and describes the
language architecture. It also introduces the fundamental concepts including:
Elements, Diagrams, Models and Views. While this information can be gleaned
from the Specification itself it is summarized in this topic in enough detail to shield
the newcomer from the need to wade through the specification.

Enterprise Architect provides example models and an extensive help system that
will act as useful resources to help the newcomers and experienced practitioners
alike gain experience with the language.

Collaborating as an This topic introduces the formidable collaboration tools where system engineers,
Engineering Team managers, customers, consulting engineers, regulators and standards bodies can all

(c) Sparx Systems 2022 Page 50 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

Using Packages to
Structure the Repository

Requirements Definition
and Management

Describing User Goals
with Use Cases

Using Blocks to Model
Structure and
Constraints

Using Properties and
Parts to Model Block
Usage

Coordinating Behavior
with Activities

Visualizing with
Parametrics and
Simulations

(c) Sparx Systems 2022

3 October, 2022

contribute to models. This includes discussions, chats, model mail, a team library,
reviews and more.

This topic covers the fundamental aspect of the repository structure and how it is
used as an organizing principle to ensure that the repository is fit for purpose. It
also covers how the Package can be used as a container that both allows content to
be added but also provides a mechanism for the management of the elements,
properties, diagrams and views that are added to each Package.

This topic introduces the engineer and other stakeholders to this all important and
central discipline that forms the basis for all other aspects of a modeling endeavor.
Enterprise Architect has a formidable and unparalleled set of tools for developing,
managing, visualizing and documenting requirements and these are introduced and
practical examples are given on how the tool can be used.

This topic describes a user-centric way of articulating requirements where the goal
that the user is trying to achieve is the foundation upon which a requirement is
written. The users' goals are codified in Use Cases, which are represented simply on
a diagram but the details of which are fleshed out in Enterprise Architect using the
Scenario Builder. This facility allows the description, constraints such as
preconditions and post-conditions, and the steps of the scenarios to be written in a
compelling and productive user interface. It also describes how behavioral
diagrams can be automatically generated from the tool, and the elements such as
Activities can be linked to up-stream modeling elements such as Requirements and
down-stream elements such as Components - creating effective and useful
traceability.

The Block, which is introduced in this topic, is the fundamental unit of structure in
the language and can also be used to model constraints. It is the atom of the SysML
language and can have Features, Properties and Interaction Points that describe in
detail the anatomy. This topic also describes the relationships that Blocks have with
other model elements, including the all-important Allocation relationship that
relates Blocks to Activities. Allocations tie together the two important pillars of the
SysML: Structure and Behavior. It also introduces devices for modeling Quantity
and Value Types that can be used to model dimensions in the physical world.

This topic follows on from the previous topic and introduces the Internal Block
diagram, which is used to visualize how Blocks are used in a given context. These
diagrams show how a Block's part properties can be connected together. The
owning Block is represented as a diagram frame and the parts that appear at the part
end of the Part Association on a Block Definition diagram appear on the Internal
Block diagram as a Part element

This topic introduces Activities and the more atomic unit, the Action, which are
both used to describe the behavioral aspects of a system at different levels. These
all-important elements are equivalent to the verbs in our natural languages and, like
verbs, have an organizing function in the model. Enterprise Architect has a number
of useful devices such as Simulations that can bring these models to life and allow
complex real world problems to be simplified and visualized.

This topic explores the use of Parametric diagrams in connection with Block
Definition diagrams, which define ConstraintBlocks that model mathematical
equations and the parameters they use. The topic describes how these constraints
and parameters can be represented on the Parametric diagram, which is a cousin of
the Internal Block diagram. Simulation of the Parametric diagrams is also
introduced and you will learn how to install and work with the OpenModelica
interface. You will learn how advanced plots of equations can be visualized without
the need to leave the Enterprise Architect environment.

Page 51 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Modeling Change with This topic introduces the StateMachine as a method of describing the discrete
StateMachines conditions (States) that an entity such as a Block can exhibit. This behavioral
device can bring great clarity to a model and solve otherwise intractable problems.
Enterprise Architect has a number of tool features that can bring these models to
life, namely the State Table and Executable StateMachines that allow the States and
the Transitions to be active in compelling visualizations.

Interactions as a In this topic the Sequence diagram is introduced as a way of modeling messaged
Sequence of Messages based behaviors. You will learn how to use this diagram to model a range of
engineering concepts. The diagrams model the interaction between Blocks that are
internal to the system, or between the system itself and its environment, and they
can be used to model the communication that occurs with the steps of a Use Case.
Lifelines and Activations are studied and Message orchestration is introduced with
the use of Fragments.

A First Example SysML In this topic we explore the diagrams that specify, design and test a Hybrid SUV
Model vehicle that utilizes fuel and electricity as power sources, featuring mechanisms like
regenerative breaking to meet its fuel efficiency requirements. The example model
is published in an annex of the SysML specification; in this topic we explore the
diagrams that have been created in Enterprise Architect, explaining significant
language and tool features.

Meet the Systems This topic introduces some of the most important tools for working with Systems
Engineering Tools Engineering models, describing what they are, where they can be found, and how
they can be used, including options and where to find more help. There are many
other tools that modelers might find useful; these are introduced at relevant points
in the document.

(c) Sparx Systems 2022 Page 52 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Getting to Know the SysML Diagrams

The diagrams of the SysML can be regarded as types of canvas, where an engineer will create visual representations of
the engineering concepts that form part of the model. There are nine SysML diagram types, each focused on a particular
aspect of the problem or solution. While the diagram types typically contain different types of elements, they all conform
to a standard representation composed of: a Frame that contains, a Header and a Contents Area.

SysML Diagram

Behavior Requirement Structure
Diagram Diagram Diagram

Ligeel}

Block Definition
Diagram

State Machine
Diagram

Internal Block
Diagram

Parametric
Diagram

Sequence

Diagram Diagram Diagram

Activity
Diagram

‘UsaCasa‘

‘ Package ‘

Legend

D Behavior Diagrams
D Structure Diagrams
D Requirement Diagram

This section describe some of the most useful tools and features that can be used when working with diagrams, but there
are many others that can be helpful. For more information see the Model Diagrams Help topic.

Diagram Frames

A Diagram Frame is a visual device that encloses the elements and relationships on a diagram. The frame has two parts:

® A Header Area that contains a qualified name for the model element within the frame, which is provided if it is not
contained within default namespace associated with the frame; it has the form:

diagramKind [modelElementType] modelElementName [diagramName]

e A Contents Area that contains the visual elements that make up the diagram

(c) Sparx Systems 2022 Page 53 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/umldiagram.htm

Guide to MBSE with SysML 3 October, 2022

bdd [package] Aerospace [Aerospace] /
«blocks
Aircraft
ublocks sblocks
Engine Airframe
«blocks sblocks sblocks ublocks
Fuselage Wing Empennage Landing Gear

Enterprise Architect by default displays the frames within a diagram window, but in compliance with the SysML
specification the frame can be suppressed to create a less cluttered diagramming interface. (Remembering that Enterprise
Architect conveniently displays the frame header information in the diagram header).

bdd [package] Aerospace [Aerospace] /

Specialize }

x4 Properties...
«blocks &' prop

Aircraft Insert "

Paste }

Hide Diagram Frame b

A frame can be switched back on whenever needed, and diagrams being sent to the clipboard or printer can be
configured to display frames regardless of whether they have been hidden in the user interface.

Diagram Frames
On Saved Images
On Clipboard Images
E}On Printed Images!

If set to non-selectable, the frame will auto-resize to fit the bounds of the diagram, expanding from its default size but not
shrinking smaller. They can, however, be made selectable and adjusted to suit a modeler's preference.

(c) Sparx Systems 2022 Page 54 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

bdd [package] Aerospace [Aerospace] /

Specialize b

x4 Properties...
«blocks &' prop

Aircraft Insert "

Paste b

Hide Diagram Frame b

Note that diagrams showing Diagram Frames applied using release 14.0 or later of Enterprise Architect will draw the
parent object on the diagram when opened using a release of Enterprise Architect earlier than release 14.0.

Diagram Descriptions (Notes)

In addition to the meta information contained in the Header a diagram can have a description that is useful for
newcomers to understand the purpose and intent of the diagram. The description can be added, viewed and maintained in
the diagram's notes window,

Diagram Notes v R X
B/ U&-iZ:= x¥*@
This Block Definition Diagram shows a structural type hierarchy
for an Aircraft that is broken down to a number of levels. A Part

Association is used to describe the structural relationship. Other
levels in the hierarchy can be viewed if required.

N

Diagram Properties | Diagram Motes

A diagram is often created to describe aspects of a model or system. While the diagram itself and the elements and
connectors it contains tell a story there is often the need to annotate the diagram with some extra information in the form
of descriptive text. This text might for example:

e Describe the purpose of the diagram,
e Highlight how to interpret the diagram,
e Contain link to other information in the model,

e Provide an explanation of the symbols used.

The notes will be generated to documentation and are visible through the WebEA interface.

Diagram Properties

Each diagram has a series of properties that describe the diagram at a meta level including such items as the:

e Date the diagram was created,

(c) Sparx Systems 2022 Page 55 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Date the diagram was modified,

Model author who created the diagram,

Hand Drawn and Whiteboard Mode

Visual theme, and many more.

Diagram Properties

i

Diagram Compartments

—T

General Settings
Mame

Type

Stereotype

Authar

Applied Metamodel
Filter to Metamodel
Filter to Context
Wersion

Version

Filter to Version
Mew to Version
Appearance
Display as

Hand Drawn
Whiteboard

Disable fully scoped obj...

Swimlanes and Matrix

Blocks

SysML Block Definition

Greg Michols
Default

v

v

1.0

Diagram
W

Display Element Lock St...

Theme

Advanced

Enterprise Architect 11

In addition there is a tab dedicated to specifying which compartments are visible in the diagram and another tab used to
specify matrices and swimlanes.

Changing Themes and Appearance

Enterprise Architect provides a facility that allows you to apply a selected theme to all diagrams presented on your
device. You can use this to create a particular style of the diagram and it can effect color, font, gradient, line thickness
and background image (tile). It is a useful mechanism to give your diagram more appeal or to unify their appearance.

(c) Sparx Systems 2022

Page 56 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

req [package] Requirements [Reguirements] /

srequirements
The system must be able detect fraudulent
Bar Codes

id = "SR-00987"

text = "Customers could exchange the Bar
Code from a cheaper item to a more
expensice one thus attempting to fraud the
system.”

4"\-\. .
wsatisfys

blocks
Bar Code Analyzer

3 October, 2022

Colors and styles can also be set for each diagram element individually either as a default (every diagram the element
appears in) or only for the element on the current diagram.

Alternative Visualizations of Diagrams

Whilst being compliant with the SysML specification and providing all of the diagram functionality expected in a
modeling tool, Enterprise Architect provides a number of ways for modelers to view the diagram differently, bringing

rich visualizations of the diagram and its elements. These include:

e Specification View - presents the elements in a familiar word processor or spreadsheet format, allowing elements and

text to be updated

e [List View - presents the elements in a list that can be sorted and grouped, and the fields updated

e [nline Specification View - presents the diagram alongside a narrative view similar to the Specification View

® Gantt View - presents the elements in a Gantt view showing resource allocation and other temporal information

H E 8 B |

View Insert Edit Properties F
AET - - *

1 List
Gantt i

i
1 specification

Togale Inline Specification View |

In addition, the diagram can be viewed in two modes that change the appearance of diagrams suitable for presentations,

adding great appeal and attenuating the focus on the strictness of the underlying modeling language.

(c) Sparx Systems 2022

Page 57 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

bddpackage] Security and Safety Mechanisms [Eoom Gate Parkigdl}

wrequirements:
The sysiern shall not allow unauthorized
wvehicles 1o enter the car park Restrict Unauthorized
id = "SR-009" - _ _asatistys ___ Entry

fext = "The car park is a restricted area and|
eniry needs 1o be controlled 1o allow
authorized vehicles to enter but

unawthorized vehicles need 10 be resuicted. :

«aﬂo#ate»

v
whlock»
Boom Garte

L

Creating Appeal with Alternative Images

The diagrams created as part of a model are intended to communicate ideas to an audience and the intent of the diagram
is often better conveyed to a non technical or business audience by the use of an image. Enterprise Architect provides a
mechanism to replace the vanilla (and sometimes) unappealing graphical notation of the Systems Modeling Language
with an image in a variety of formats including vector based images.

(c) Sparx Systems 2022 Page 58 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

bdd [package] Production Line [Robots in Manufactu ringy

«block» «block»
Production Line Automated

Assembly Unit

parts
: Automated Assembly Unit

grequirement» 00 | oo oo oo =
Automation wsatisfy»

id ="7085"

text ="The system must use robots to
automate tasks that are beyond human
capabilities of accuracy, enduance, speed,
size, weight and that potentially must be
carried out in hazardous environments."

Spot Weld Body Robot

(from Requirements) whlock»

The image can be applied to every instance of the image in diagram or just for a particular diagram. A set of default
images can be imported into the Image Manager or a user or team is free to create their own images specific to a
particular domain or industry.

Diagram Filters

Diagram Filters provide a mechanism for filtering out parts of a diagram or list of elements that are not of interest,
leaving just the elements and connectors that are relevant to the view. The filters can be defined for elements or
connectors and there is a wide range of criteria that can be set, such as filter out all elements that don't have a status of
'Validated' and were created since a milestone date. More simply an element type or stereotype can be filtered out. The
elements that do not meet the criteria can be hidden, gray-scaled or simply dimmed (faded) so they are visible but not
prominent.

wrequirements
The system must be able detect fraudulent
Bar Codes

id = "SR-00787"

text = "Customers could exchange the Bar
Code from a cheaper item to a more
expensice one thus attempting to fraud the
system.”

(c) Sparx Systems 2022 Page 59 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Diagram Legends

Diagram Legends provide a way of describing the elements and connectors used in the diagram. The legends can
dynamically change the visual aspects of elements and connectors in the diagram, for example by changing fill color, line
color and line width based on element properties or Tagged Values.

Element Priority

" High
Medium
Low

w— Aggregation
=== Fealization

Any number of legends can be created and they can be applied to one or more diagrams.

(c) Sparx Systems 2022 Page 60 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Common Aspects of Diagrams

Diagrams are one of the most important ways to visualize the contents of a model and represent a diagram author's
expression of what they consider important. Its compelling visual appeal and its ability to act as a narrative telling a
story about some aspect of the system being modeled makes the diagram one of the most important views. Each diagram
in the SysML has common aspects (or features) including:

e adiagram Frame

e adiagram Header

e adiagram Contents Area (Canvas)
e adiagram Description (Notes)

e adiagram Properties Sheet

e A diagram Legend

e And more

There is also a wide range of other facilities and that will help the engineer when working with diagrams these include:
e Traceability Window

e Relationships Window

e Panand Zoom

e Diagram Layout

e Diagram Filters

e Roadmaps

e Kanban

e Zoom options

e Appearance, Alignment and Style tools

Diagram Frame

The Diagram Frame resembles a curtain enclosing the elements that form part of the diagram. While it is more important
when viewing diagrams in line with written text, some modelers prefer to have the diagram visible when modeling.

(c) Sparx Systems 2022 Page 61 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

bdd [package] Airport Security [Airport Smart Gate Scanners] /

wblock»
Airport System

wblock»
Security Subsystem

: Security Subsystem

parts ‘

parts
: Smart Gate Scanner

=

Smart Gate Scanner

whlock»

The frame can be conveniently shown or hidden for each diagram, and when it is hidden the diagram information - such
as the type, parent and the name of the diagram - is still visible in the diagram header.

bdd [package] Aerospace [Aerospace] /

uleEk:l
Aircraft

Specialize L4
@' Properties...

Insert L4

Paste r

Hide Diagram Frame h

Preferences can also be set to show the Diagram Frame when diagrams are exported as part of documentation, to the

clipboard or in saved images. These options are located on the 'Diagram' page of the 'Preferences' dialog.

Diagram Frames
On Saved Images
On Clipboard Images
ﬁDn Printed Images

(c) Sparx Systems 2022

Page 62 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

The frame contains a header in the top left hand corner, which contains useful information on the diagram. This syntax
describes the contents of the header.

diagramKind [modelElementType] modelElementName [diagramName]

diagramKind - is a code for the type of diagram, such as bdd (Block Definition diagram),
modelElementType - is the type of element that is acting as the namespace of the diagram,

modelElementName - is the name of the namespace element,

L=

diagramName - is the name of the diagram, provided by the user.

bdd [package] Security and Safety Mechanisms [Boom Gate Parking] /

Diagram Header Bar

The diagram header bar provides useful information about the diagram and tools to work with all open diagrams. Even
when the frame is not visible, the header will show the diagrams details.

b %E bdd [package] Security and Safety Mechanisms [Boom Gate Parking] « r X

bdd [package] Security and Safety Mechanisms [BEoom Gate Parking] /

It also has a number of other useful icons that are used to control aspects of the display, including:

e Toolbox Chevron - that hides or shows the toolbox for all displayed diagrams,

® Document Chevron - that shows or hides the Inline Specification view of the diagram,

e Open Diagrams Arrow - which displays a list of open diagrams, indicating the one with unsaved changes,

e Close Diagram Icon - that allows the diagram to be closed.

Diagram Contents

The diagram content is the canvas where you view and work on your diagram. It is a highly flexible work area with lots
of useful tools for both creating and visualizing existing diagrams. Pictures can be added and mixed with the standard
geometric SysML elements, allowing expressive and compelling diagrams that help convey important engineering
concepts to both technical and non-technical audiences.

(c) Sparx Systems 2022 Page 63 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

» ?E bdd [package] H5LV Structure [Automotive Domain Breakdown] &«

bdd [package] HSUW Structure [Automotive Domain Breakdown] /

abilocks
Automotive Domain

owned behaviors
sinteractions StartVehicleBlack Box
sinteraction DriveBlack Box v

¢

wehicleCargo drivimgConditions
asystem, block s aexternals
HybridSUW Ernvironment

Diriver Maintainer Passenger properties
b : BodySubsystem

bk : BrakeSubsystem
¢ : ChassisSubsystem

i : InteriorSubsystem
I : LightingSubsystem
p: PowerSubsystem weather object | 1% road | 4 ¢
Property 1 ="
agxternal aexternals aexternals
Weather ExternalQbject Road

Enterprise Architect extends the way to view a diagram using a number of visualization techniques. These will provide
you with alternative ways to work with diagram content and are welcomed by newcomers who might be more familiar
with working with elements in spreadsheets, list and documents. Notice also in this diagram that images can be used as
an alternative to the vanilla SysML shapes.

Document View

This is a convenient view that displays the elements on the diagram in a narrative form in a document. It is also known as
the 'Inline Specification' panel and is not a separate view but a panel related to the selected diagram. The document is
conveniently opened to the right of the diagram so both diagram and document can be viewed simultaneously. Each
element present in the diagram will have a heading in the document with the element's notes (description) displayed in
position under the heading. Elements and their notes presented in this view can be conveniently edited, all the while
viewing both the document view and the diagram, and the two are kept synchronized. The elements are by default listed
in alphabetical order but this sort order can be changed from the context menu to follow top to bottom or left to right.

« B8 bdd [package] Security and Safety Mechanisms [Boom Gate Parking] » v

bdd [package] Security and Safety Mechanisms [Boom Gate Parking] /

[m

Boom Gate

A boom gate, also known as a boom barrier, is
a bar, or pole pivoted to allow the boom to
srequirements block vehicular access through a controlled

The system shall not allow unauthorized opening. Commonly the tip of a boom gate
vehicles to enter the car park Restrict Unauthorized rises in a vertical described arc to a near vertical
id = "SR-009" ~ _ _ _usatisfys Entry position. Boom gates are often

text = "The car park is a restricted area and counterweighted, so the pole is easily tipped.

entry needs to be controlled to allow
authorized vehicles to enter but
unauthorized vehicles need to be restricted.”

: @ Restrict Unauthorized
«al\u.llaten Entry
|

Entry beyond a specified point must be
| restricted and only authorized personnel
blocke should be allowed entry to the area beyond the
Boom Gate point. There needs to be some type of
authorization handshake that can validate and
record the people and vehicles that are granted
access and those that are not.

(c) Sparx Systems 2022 Page 64 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

List View

This is a useful way of viewing the elements in a diagram while allowing them to be viewed, updated and created in a
familiar spreadsheet-like view. Element properties including standard properties, Tagged Values and notes can be
managed, and drop down lists for properties with a discrete list of values are available, providing a welcomed way of
viewing these properties across multiple elements.

oy %E bdd [package] Security and Safety Mechanisms [Boom Gate Parking] * X
TE XS R M - BhE&-PT@

Drag a column header here to group by that column.

¥ Mame ¥ Status ¥ Type ¥ Maodified &7
| Security and Safety Mechanis... Proposed Package 3/06/2018 |

This packages contains the elements and diagrams related to the Safety and Security mechanism at the airport. It does not
apply to the aircraft themselves but just the airport facilities and operations both-side land and air-side.

@ Restrict Unauthorized Entry Proposed Activity 3/06/2018

Entry beyond a specified point must be restricted and only authorized personnel should be allowed entry to the area
beyond the point. There needs to be some type of authorization handshake that can validate and record the people and
wehicles that are granted access and those that are not.

L] The system shall not allow un... Proposed Requirement 1212/2017

Boom Gate Proposed Class 3/06/2018

Aboom gate, also known as a boom barrier, is a bar, or pole pivoted to allow the boom to block vehicular access through
acontrolled opening. Commaonly the tip of a boom gate rises in a vertical described arc to a near vertical position. Boom
gates are often counterweighted, so the poleis easily tipped.

Specification View

The Specification Manager resembles the inline document viewer, but gives more power and opens in a separate
dockable window. It is the perfect tool, designed for engineers and other stakeholders who are more familiar with
working with spreadsheets or documents. It essentially allows a modeler or viewer to visualize the contents of a diagram
(or Package) as a document or spreadsheet. The document view resembles the familiar word processor document, which
can be edited in-line to create new elements and their descriptions. The visualization can be changed to resemble a
spreadsheet where properties are displayed in columns.

(c) Sparx Systems 2022 Page 65 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Item

1 REQO19 - Manage Inventory

The system MUST include a complete inventory management facility to
store and track stock of books for the on-line bookstaore.

1.1 REQ122 - Inventory Reports

Inventory reports are required that detail the available stock for each
item including back orders. Future stock level reports should be able
to predict the quantity of stock at a specified future date.

1.2 REQOD23 - Store and Manage Books

A book storage and management facility will be required.

1.2.1 REQOD22 - Order Books
A book order facility will be required to allow on-line ordering
from major stockist's.

1.2.2 REQOD21 - List Stock Levels

A facility will exist to list current stock levels and to manually
update stock gquantities if physical checking reveals
inconsistencies.

It is a highly welcomed view for those transitioning from document-based systems engineering processes, and a favorite
for engineers entering test-based information such as a set of requirements, activities, components and other elements.

Gantt Chart

This provides a typical Gantt chart view of the elements in the diagram where resource allocation has been applied to the
elements this can be visualized to give an engineering or project manager a view on progress within the model.

@ start Page [2] Specification Manager & Find in Project | g Project Gantt View x 4 b

Resource View Element View Report View

Resource Role or Task Start End Complete November 2020 December 2020 -
28 29 30 o1 0z 03 M4 05
REQ027 - Secure Access Java Programmer 1/09/2020 4/01/2021 25%
REQO27 - Secure Access Java Programmer 1/09/2020 22/01/2021 5%
Account Developer 18/11/2020 401212020 20 % |
22 Login Business Analyst 30/11/2020 4/12/2020 65% [|
Customerl 30/11/2020 5/12/2020 F |
< Service Customer customer! 30/11/2020 3/12/2020 100% [
3 Service Customer customer! 3/12/2020 5/12/2020 50% [——
A Derek 1/06/2020 11/12/2020
Game mechanics Review 1/06/2020 5/12/2020 90%)
Game mechanics Review 1/06/2020 11/12/2020 90%
Game mechanics Review 1/06/2020 4/12/2020 90%]
Location 1 - Puzzles Design 3/06/2020 5/12/2020 0%)
Lacation 1 - Puzzles Design 3/06/2020 741212020 0%
Game mechanics Review 3/12/2020 0%]

Diagramming Tools

(c) Sparx Systems 2022 Page 66 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

There is also a wide range of other tools that can be used to display the information in the repository that will assist the
engineer when working with elements in diagrams, including but not limited to:

Traceability Window

Used to view how element in the model are connected in a graph of elements and their relationships. For more
information see the The Traceability Window topic.

Relationships Window

Used to view the relationship between a selected element and other elements in the model; these relationship are not
visible but can be conveniently visualized in this separate window. For more information see the The Relationships
Window topic.

Pan and Zoom

Used to move around a large diagram by using a small rectangle that represents the view-port, and to zoom in using a
slider control. For more information see the Pan and Zoom topic.

Diagram Layout

Used to create attractive layouts of a diagram, using selected visual layout patterns such as digraphs and springs. For
more information see the Layout Diagrams topic.

Diagram Filters

Used to filter elements from view in a diagram either by making hiding them, changing them to a gray scale, or fading
them. You can also reverse the behavior and select element to include. For more information see the Diagram Filters
topic.

Roadmaps

Used to create time based representations of elements, with an applied timescale that can be configured to suit the project
or modeler to show a roadmap for strategic and development purposes. For more information see the Roadmap Diagram
topic.

Kanban

Used to manage items in a traditional Kanban diagram, where elements are moved between columns that represent their
order in a staged process; resources working on the items can be visualized, providing a useful way for a team to manage
its model or product development. For more information see the Kanban Boards topic.

Diagram Ribbons and Menus

There are a number of ribbons that are useful when working with diagrams. The starting point, as described earlier, is the
'Diagram' panel of the Design ribbon, which allows you to insert new diagrams and edit and change the view of existing
diagrams.

g | 72 D2 o8|

Toolbox Insert Edit View
- AST
Diagram

The 'Element' panel on the Design ribbon will also be useful when working with elements on the diagram (or selected in

(c) Sparx Systems 2022 Page 67 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/hierarchy.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/linktab.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/linktab.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/tools_ba_pan_and_zoom.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/layout_diagrams.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/diagram_filters_window.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/tools_ea_roadmap_diagram.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/kanban_facilities.htm

Guide to MBSE with SysML 3 October, 2022

the Browser window) allowing you to insert new elements, edit existing ones and manage element properties, features
and responsibilities. For more information see the Design Ribbon Help topic.

E E E % = Attributes

Operations
Mew Manage Insert Scenarios Decisions
- z Related - - Tagged Values

Element

Another important ribbon is the Layout ribbon, which contains a number of panels that will be useful for working with
diagrams. This includes the 'Diagram' panel, which contains options to set themes and change the diagram mode, for
example to Hand-Drawn. For more information see the Layout Ribbon topic.

E D—S "‘D [T swimlanes n ¥} Undo
M =l Roadmap J
Appearance Options Select Save
- - - foom™

Diagram

The 'Style' panel allows the visual style properties of diagram elements to be set either as a group or for individual
elements.

Default Style = | B - X F
- =
AS-%-g-h o

Style

bdd [package] Production Line [Robots in Manufacturing] /

[l A E]
ublocks sblocks
Production Line fau Automated <
e .

Assembly Unit o}

parts 1.7 ! ;

: Automated Assembly Unit
L [1

The 'Alignments' Panel provides a rich set of tools for aligning elements in a diagram. These are very useful and provide
a range of alignment options that are not typically available in most drawing Packages, allowing elements - for example -
to be spaced evenly horizontally or vertically.

The 'Tools' Panel provides a series of tools for working with diagrams, allowing for filtering content in diagrams - for
example, allowing a modeler to display only Constraint elements with a specified status, that were created after a
specified date - Pan and Zoom and Layout options. The Filter panel provides a quick and ad-hoc way to filter content in
the diagram without the need to create a diagram filter.

(c) Sparx Systems 2022 Page 68 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/overview_design_ribbon.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/overview_layout_ribbon.htm

Guide to MBSE with SysML 3 October, 2022

bdd [package] HSUW Analysis [Definition of Dynamics] /

sconstraints
StraightLineVehicleDynamics

values
acc: Accel
Cd : Real
Cf: Real
dt : Time
incline : Real
twr - Weight
vel : Vel
whipowr : Horsepwr
x: Dist

constraints
: AccelerationEquation
: PositionEquation
: PowerEquation
: VelocityEquation

pos

wconstraints
PaositionEquation

constraints
{xln+1)=x(nkv"5280,/3600"dt}

values
deltat: Time
v Vel
x: Dist

A series of helpers are also available for working with diagrams and their elements, controlling such things as horizontal
and vertical hold to restrict element diagonal movement.

Diagram Properties

A diagram in Enterprise Architect has a rich set of properties, some being descriptive - such as the name - and others
being prescriptive, specifying how the diagram should be displayed and what elements, compartments and other features
should be visible, including line styles.

Many of these properties can be set both at a diagram level and at an element or connector level, allowing individual
parts of the diagram to be displayed differently to others.

The ability to set the visibility of element compartments is particularly useful for engineering diagrams, as the SysML
provides a rich set of compartments for a wide range of items. These compartments, if not managed, can clutter a
diagram and attenuate a reader's ability to understand the meaning of the diagram.

The compartments, as with other properties, can be set at a diagram level or an element level, which allows a modeler to
select the compartments to display for specific elements.

(c) Sparx Systems 2022 Page 69 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Show Compartments

Attributes [TTags -
[] Inherited Attributes [] inherited Tags

Operations O Fully Qualified Tags

[] Inherited Operations Receptions

| Requirements [] constraints

[] inherited Requirements [] inherited Constraints

O Testing [[] Maintenance -
4 - >

(c) Sparx Systems 2022 Page 70 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Block Definition Diagram

The Block Definition diagram is the most widely-used of the SysML diagrams; it is used to model Blocks, their
relationships to other elements (including other Blocks) and their features in the form of Properties, Operations and
Receptions. Blocks are modular units of system description and provide a way of modeling systems as a graph or tree of
modular units. Other elements, such as ConstraintBlocks and Properties, can also appear on the diagram and help
describe the system being modeled. For more information see the Block Definition Diagrams (BDDs) Help topic.

bdd [block] Automotive Domain [HybridSUV Breakdowny

«LightCondition»
Hybridsuv

properties
b BodySubsystem
bk : BrakeSubsystem
¢ : ChassisSubsystem
i InteriorSubsystem
I : LightingSubsystem
p: PowerSubsystem
Propertyl OO

1

P bk

b i

«block» «block»
PowerSubsystem BrakeSubsystem
oo

«block»

«block» ‘ «block» ‘
A Lig

!

«block»
ChassisSubsystem

bkp

«block»
BrakePedal

«rationalex»

2 wheel drive is the only way to get acceptable

fuel economy, even though it limits off-road
capability

«blockn
WheelHubAssembly

Elements

The main elements that can appear in Block Definition diagrams are provided by the Diagram Toolbox for this diagram

type:

(c) Sparx Systems 2022

Page 71 of 461

Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/Block_Definition_Diagrams.htm

Guide to MBSE with SysML 3 October, 2022

Toolbox v ox

Search PP =
SysML Block Definition o
B Block

Actor

Interface Block
Constraint Block
Value Type
Enumeration
Interface

Signal

Instance Specification
Unit

Quantity Kind
Property

Flow Property
Directed Feature
Port

Procey Port

oo o B E E A e § R I e

Full Port

The main connectors that can appear in Block Definition diagrams are as shown:

SysML Block Relationships
"7 Item Flow

e Dependency

A Generalization

A Containment

A Part Association

/ Reference Association
A Shared Association

/% Association Block

&7 Allocate

Ef Connector

Tools

A variety of tools can be used with structural modeling and Block Definition diagrams, including:
e Diagram Filters - which allows a user to filter elements out of the diagram to achieve a more specific focus
e Pan and Zoom - which allows a modeler or viewer to easily move around large diagrams

e Spreadsheet (CSV) Import and Export - which allows content in spreadsheets to be imported or exported from the
model

e Documentation - which allows formal or informal documentation to be generated from the model in a variety of

(c) Sparx Systems 2022 Page 72 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

formats
e Traceability - which provides a hierarchical view of an element's relationships to other model elements

e Responsibility Window - which provides a composite view of the important responsibilities of an element, including
Constraints, Requirements and Scenarios

e Relationship Matrix - which allows the connections between Blocks (or other elements) and other elements such as
Requirements and Use Cases to be visualized in a matrix

Usage

The Block Definition Diagram is a general-purpose diagram that can be used to describe the structural aspects of a
system.

(c) Sparx Systems 2022 Page 73 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Requirement Diagram

The Requirements diagram is used to create and view Requirements and their relationships to other elements, including
other Requirements. Requirements can be specified at any level, from strategic enterprise or business requirements
through stakeholder requirements down to low-level engineering and even software and transition requirements. For
more information see the SysML Requirements Modeling Help topic.

req [package] HSUV Requirements [Requirementnerivatimnl/
«requirements» «requirement» «requirement» «requirement» «requirement» «requirement»
Braking FuelEconomy FuelCapacity OffRoadCapability Acceleration CargoCapacity
N A NUR N ™ N A
1 i i \ i \ 1 L,
1 ! | N I \ ! ’
1 ! | N | s | ‘
| ! | A | \ 1 ’
l i i E I N 1 /
| i | \ N p
i ’ | «deriveReqts «deriveReqts ederiveRegt» «deriveReqgt» «deriveRegt»
. ’ Y : : i .
«deriveReqts deriveRegt» | Y |

| /] \ I

| \ I

|

! «requirements

| Power

|

|

l

«deriveReqt»

! -

| «problem» s

: Power needed for acceleration, off- . -7

| road performance and cargo capacity -

: canflicts with fuel economy ,/’

| P

-

| -

| e

| -

| -7

| «deriveReqts

| P

1 -7 «rationale»

| P Power delivery shall happen by

1 . - coordinated control of gas and electric

crecuirements /,’ motors. See "Hybrid Design
a - Guidance"
PowerSourceManagement e
refinedBy
HSUVOperationalStates

The elements contained in this diagram can be viewed in a number of different ways, including:

e Specification View - allowing the elements and their notes to be displayed in word processor or spreadsheet format
in a separate dockable window

e [nline Specification View - allowing the diagram and a list of its elements in a narrative form to be viewed
side-by-side

e List View - allowing the diagram elements to be viewed in a list that can be sorted and the elements grouped by

properties

e Gantt View - allowing the diagram elements to be represented on a Gantt chart showing how resources are utilized
over time

Elements

The main elements that can appear in Requirements diagrams are:
e Requirement

o Test Case

The main connectors that can appear in Requirements diagrams are:

(c) Sparx Systems 2022 Page 74 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/create_a_requirements_model.htm

Guide to MBSE with SysML 3 October, 2022

e Containment

e Trace
e Copy
e Derive
e Verify
e Refine
e Satisfy
Tools

A variety of tools can be used with requirements modeling, including:

e Specification Manager - which allows a user to work with requirements in a spreadsheet or word processor type of
format

e Spreadsheet (CSV) Import and Export - which allows content in spreadsheets to be imported or exported from the
model

e Documentation - which allows formal or informal documentation to be generated from the model in a variety of
formats

e Traceability - which provides a hierarchical view of an element's relationships to other model elements

e Responsibility Window - which provides a composite view of the important responsibilities of an element, including
Constraints, Requirements and Scenarios

e Relationship Matrix - which allows the connections between Requirement (or other elements) and other elements
such as stakeholder needs to be visualized in a matrix

e Mind Mapping - which provides a way of recording the progress of a meeting, thus recording - for example - the
stakeholders' needs

Probably the most widely used of these requirement tools would be the Specification Manager, which will provide a
welcome and familiar way of working with textual specifications such as requirements or constraints. The Specification
Manager can be used to view a list of elements contained within a Package or a diagram.

(c) Sparx Systems 2022 Page 75 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

« Specification Manager:: Package: "HSUV Specification" [Requirement] =
° « HSUW Model » HSUWV Requirements P HSUWV Specification Find Package
[temn SysML1.4id SysML1 .4 text

Performance

Acceleration

Braking

FuelEconomy

OffRoadcCapability

Usage

2.4

21

2.2

The Hybrid SUV shall have the braking, acceleration,
and off-road capability of a typical SUV, but have
dramatically better fuel economy.

The Hybrid SUV shall have the acceleration of a typical
SUV.

The Hybrid SUV shall have the braking capability of a

typical
SUv.

The Hybrid SUV shall have dramatically better fuel
economy
than a typical SUV.

The Hybrid SUV shall have the off-road capability of a
typical SUV.

3 October, 2022

The Requirements diagram can be used to show a hierarchy of requirements using the containment relationship allowing
a viewer to see how the structural relationships of the requirements. It is however most compelling when Requirements
are viewed in a diagram with other elements using other relationships including other requirements. An example of this
is the relationship between Requirements and Test Cases or Requirements and the Components of a solution.

(c) Sparx Systems 2022

Page 76 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Use Case Diagram

The Use Case diagram is used to define and view Use Cases and the Actors that derive value from the system. The Use
Case diagram describes the relationship between the Actors and the Use Cases, enclosing the Use Case within a
Boundary that defines the border of the system; the Actors, by definition, lie outside the Boundary. While the Use Case
diagram can appear simplistic, it is a useful communication device that describes the value or goals that external roles
obtain from interacting with the system. Each Use Case can be detailed with descriptions, constraints and any number of
scenarios that contain sets of steps performed alternately by Actor and system to achieve the desired goal.

uc [package] HSUV Use Cases [Operational Use Cases] /

Hybrid SUV

Start the vehicle

wextend»
-
P
-
-
-
-
L
Drivethevehicle }--------—-—-—-—-—--= Accelerate
~ «include»
. = ~
Driver e
~
-~
~ -
~ o «include»
o R ~o
-
~ ~
2
~. N
~
~
~
wincludex»
~
~
~
~
Y
~
~
Y
~
~
=\
_____________ Brake
«includex»

Elements

The main elements that can appear in Use Case diagrams are:

e Boundary
e Actor
e Use Case

e Scenario

The main connectors that can appear in Use Case diagrams are:
e Communication Path

e Generalization

(c) Sparx Systems 2022 Page 77 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

o Includes
e Extends
Tools

There are a variety of tools available for working with Use Cases in addition to the Use Case diagram itself. These
include:

Scenario window - which provides a way of detailing the descriptions, constraints and the step of each scenario

Documentation Generator - which allows corporate, reports or ad-hoc documentation to be created in a variety of
formats, including docx, pdf and rtf

Traceability - which provides a hierarchical view of an elements relationships to other model elements

Responsibility window - which provides a composite view of the important responsibilities of an element including
Constraints, Requirements and Scenarios

Relationship Matrix - which allows the connections between Requirement (or other elements) and other elements
such as stakeholder needs to be visualized in a matrix

The main tool used for working with Use Cases is the Scenario window, which is a comprehensive and purpose built
facility for working with Use Cases and Scenarios. The tool can be used to define the details of a Use Case and its
scenarios and constraints, which provides a productive alternative to the traditional text-document based approach to
defining Use Cases. This ensures that the Use Case diagram and the textual details of the Use Cases and its Scenarios
and Constraints are all contained in the same model and can be traced.

If the Use Cases are required in a document format for contractual or process reasons, a Use Case Report can be
generated automatically from the models using the in-built documentation engine.

Scenario Builder

Usage

The Use Case diagram can be used to define the details of a Use Case and its Scenarios and Constraints. This is a
welcomed alternative to the traditional text-document based approach commonly used to define Use Cases. This ensures
that the Use Case diagram and the textual details of the Use Cases and its Scenarios and Constraints are all contained in
the same model and can be traced. If the Use Cases are required to be presented in a document format for contractual or
process reasons, a Use Case Report can be generated automatically from the models using the in-built documentation
engine.

(c) Sparx Systems 2022 Page 78 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/tools_ba_scenario_builder.htm

Guide to MBSE with SysML 3 October, 2022

Package Diagram

The SysML Package diagram is used to define or view the Packages that provide the fundamental organization of the
repository. These can include name-spaces and their sub-Packages and other less formally defined groups of elements.
The Packages that appear in diagrams can also be viewed in the Browser window and their hierarchy can be navigated by
expanding and collapsing the tree.

pkg [package] HSUV Model [HSUV Model Views] /

HSUV Views HSUV Viewpoints HSUV Viewpoint Methods |

«viewn «viewpoint» wactivity»
Operational View Operational Viewpoint Requirements Query
(from HSUV Viewpoint
Methods)
wviews wviewpoint»
Performance View Performance Viewpoint

The main element that is represented in the Package diagram is the Package itself, with the elements it contains. There
are a number of important relationships between Packages, including Dependencies that show that one Package is
dependent on one more other Packages. Packages can be organized into a number of different types of hierarchy.

Elements

The main elements that can appear in Package diagrams are:

e Model

e Model Library
e Package

e View

e View Point
e Stakeholder

The main connectors that can appear in Package diagrams are:
e Conform

e Dependency

e Import

e Containment

e Realization

e Refine
e Expose
Tools

(c) Sparx Systems 2022 Page 79 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

A variety of tools can be used with structural modeling and Block Definition diagrams, including:

e Documentation - which allows formal or informal documentation to be generated from the model in a variety of
formats

e Traceability - which provides a hierarchical view of an element's relationships to other model elements

e Responsibility Window - which provides a composite view of the important responsibilities of an element, including
Constraints, Requirements and Scenarios

e Relationship Matrix - which allows the connections between Packages(or other elements) and other elements such as
Requirements and Use Cases to be visualized in a matrix

Usage

The Package diagram can be used to describe the relationship between Packages and the elements that they contain.
While structural information is visible in the Browser window there is a range of relationships that can exist between
Packages themselves and between Packages and elements, that cannot be visualized in the Browser window. Package
diagrams can also be included in documentation and can assist in orientating an audience by giving them an overview of
a section of the architecture or design in a similar way to providing a table of contents in a publication.

(c) Sparx Systems 2022 Page 80 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Activity Diagrams

The Activity diagram is the most important behavior diagram and can be used to model flow (discrete or continuous)
based behavior where inputs are converted to outputs by traversing a sequence of actions that perform work on the items.
They are analogous to the common flow chart diagram but have more sophisticated semantics and also allow Activities
and Actions to be related to elements such as Blocks, Requirements and Use Cases.

The Actions that appear on the Activity diagrams can contain input or output pins that represent the interaction points
where inputs are fed into an action and outputs are emitted.

wactivitys
Accelerate

]

«continuous» drivePower

Horsepwr

:Provide Power

«Continuous»

accelPosition

:MeasureVehicle
Conditions

]

transModeCmd: Integer

:PushAccelerator

h

s

Usage

The Activity diagram can be used to model flow based behavior and is similar to the widely-available Flow Chart or
Functional Flow diagrams that had been used extensively before the SysML specification was devised. They are
typically used to show the way parts of the system behave, including the input and output of items and signals.

Elements

The main elements that can appear in Activity diagrams are:

e Activity

e Action (Various kinds)
e Action Pin

e Partition

e Object Node

e Central Buffer Node

e DataStore

(c) Sparx Systems 2022 Page 81 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

e Decision

e Merge
e Initial
e Final

The main connectors that can appear in Activity diagrams are:
e Control Flow

e Object Flow

e Interrupt Flow

e Dependency

Tools

A variety of tools can be used with behavioral modeling and Activity diagrams, including:
e Diagram Filters - which allows a user to filter elements out of the diagram to achieve a more specific focus
e Pan and Zoom - which allows a modeler or viewer to easily move around large diagrams

e Spreadsheet (CSV) Import and Export - which allows content in spreadsheets to be imported or exported from the
model

e Documentation - which allows formal or informal documentation to be generated from the model in a variety of
formats

e Traceability - which provides a hierarchical view of an element's relationships to other model elements

e Responsibility Window - which provides a composite view of the important responsibilities of an element, including
Constraints, Requirements and Scenarios

e Relationship Matrix - which allows the connections between Activities (or other elements) and other elements such
as Blocks, Requirements and Use Cases to be visualized in a matrix

(c) Sparx Systems 2022 Page 82 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Internal Block Diagram

The Internal Block diagram provides a way of viewing the composition of a block using part properties connected
together using ports and connectors. The diagram is useful for showing a Block's (represented by the diagram frame)
composition and the flow of inputs and outputs between the various parts that make up the block, when required the
direction of flow can be indicated on the connectors.

ibd[block] PowerSubsystem [CAN Bus Descriptiony

epc: ElectricalPowerController ‘ t: Transmission ‘ ice: InternalCombustionEngine
SN =sn835012
3 (t]
fip: FS_EPC ’T fp: FS_ICE
T fp: FS_TRSM
:CAN_Bus
eepc: “IFS_EPC etrsm: “IFS_TRSM eice: "IFS_ICE
¥ d L&)

pecu: PowerControlUnit

Elements

The main elements that can appear in Block Definition diagrams are:
e Property

e Connector Property

e Distributed Property

e Flow Property

e Bound Reference

e End Path Multiplicity

e Signal

e Port

The main connectors that can appear in Block Definition diagrams are:
e Jtem Flow

e Connector

e Binding Connector

e Dependency

(c) Sparx Systems 2022 Page 83 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Tools

A variety of tools can be used with structural modeling and Internal Block diagrams, including:

Diagram Filters - which allows a user to filter elements out of the diagram to achieve a more specific focus

Pan and Zoom - which allows a modeler or viewer to easily move around large diagrams

e Spreadsheet (CSV) Import and Export - which allows content in spreadsheets to be imported or exported from the
model

e Documentation - which allows formal or informal documentation to be generated from the model in a variety of
formats

e Traceability - which provides a hierarchical view of an element's relationships to other model elements

e Responsibility Window - which provides a composite view of the important responsibilities of an element, including
Constraints, Requirements and Scenarios

e Relationship Matrix - which allows the connections between Blocks (or other elements) and other elements such as
Requirements and Use Cases to be visualized in a matrix

Usage

The Internal Block diagram is used to model the internal structure of a block including its parts and the relationship
between those parts.

(c) Sparx Systems 2022 Page 84 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

Parametric Diagram

3 October, 2022

The SysML Parametric Diagram is a type of Internal Block Diagram (with some restrictions) that is used to model

equation with parameters. They are an important tool that can be used to describe equations and their parameters and are
important when performing trade off analysis and assessing design alternatives as they can be combined into systems of
equations and related to Measures of Effectiveness MOEs.

par [block] Tank [Tank] /

gln: LiquidFlow

Iflow : Real

tSensor: ReadSignal

val : Real

qOut: LiquidFlow

Iflow : Real

s ™
waqual»
—‘ X el: Mass_Balance Y I:
{der(h) = (x-y) /a}
eguala] . o [
equal» L) cequals
(0 h: Real
area: Real
e2: SensorValue
fa=b} equal»
] a [
wequal» Y J
r lf wequal»
a
e3:Q_OutFlow
{a=LimitValue{min, max, -b*c)}
o[]
b max min wequal»
L (1. [1

«equaly

wagpal» «

equal»

flowGain: Real

‘ maxV: Real ‘

minV: Real

tActuator: ActSignal

act : Real

Parametric diagrams describe the usage of constraint blocks and provide a mechanism for integrating engineering
analysis such as performance and reliability and other factors of interest with other SysML models and diagrams.

Parametric diagrams define the way that constraint blocks are used to constrain the properties of another block. The
usage of a constraint is said to bind the parameters of the constraint (e.g. F=m*a), such as F, m, and a, to specific
properties of a block, such as a mass and acceleration, that provide values for the parameters.

Elements

The main elements that can appear in Parametric diagrams are:

e ConstraintProperty
e Property

e Objective Function

o Measure of Effectiveness

The main connectors that can appear in Parametric diagrams are:

e Connector
e Binding Connector
e Jtem Flow

e Dependency

(c) Sparx Systems 2022

Page 85 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Tools

A variety of tools can be used with structural modeling and Internal Block diagrams, including:

e Modelica Integration - which provides a mechanism for simulation,
e Diagram Filters - which allows a user to filter elements out of the diagram to achieve a more specific focus,
e Pan and Zoom - which allows a modeler or viewer to easily move around large diagrams,

e Spreadsheet (CSV) Import and Export - which allows content in spreadsheets to be imported or exported from the
model,

e Documentation - which allows formal or informal documentation to be generated from the model in a variety of
formats,

e Traceability - which provides a hierarchical view of an element's relationships to other model elements,

Usage

The Parametric diagram can be used to show how the physical properties of a system are constrained by specifying a
network of constraints that represent mathematical expressions such as {F=m*a} and {a=dv/dt}.

They can also be used for trade-off analysis, where a Constraint Block can define an objective function used to make a
comparison between alternative solutions.

Critical performance parameters and their relationships to other parameters can be modeled, which can then be tracked
throughout the system life cycle.

(c) Sparx Systems 2022 Page 86 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Sequence Diagram

A Sequence diagram is a type of Interaction diagram that shows the time ordered interaction between objects. The
diagram has two axes; the vertical axis represents time and the horizontal axis represents the objects that take part in the
interaction, typically ordered in a way that best illuminates the interaction. These diagrams have their origin in the
modeling of software interactions, but they can be used with systems engineering to be prescriptive of how elements
(such as Blocks) should interact, or descriptive in showing how they do interact, in practice.

This Sequence diagram shows the interactions and sequence of message flows between a driver and a vehicle. The
diagram expresses the necessary interactions for the 'Drive the Vehicle' Use Case. The interaction is owned by the
'AutomotiveDomain' Block.

(c) Sparx Systems 2022 Page 87 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

sd [interaction] Drive Black Box [Drive Black Box] /
% vehiclelnContext: HybridSUV
driver: Driver
I T
| |
I I
I I
1 1
ref
Start Vehicle Black Box
I I
| |
I I
T T
par) I |
I I
| |
I I
T T
alt controlSpeed) |
I
[self.collnst}ate{idle}] :
| |
ref
Idle
| |
I I
_________ P R
[self.colinState(braking)] :
ref
Accelerate/Cruise
T T
I I
I I
_________ P R
[self.collnStFte{braking}] :
1 1
ref
Brake
I I
I I
| |
| |
| |
I I
_____________ I
| |
I I
| |
ref
Steer
T T
I I
I I
| |
| |
I I
| |
ref
Park/Shutdown Vehicle
I I
I I
| |
I I
I I
I I
I I
| |
I I

Elements

(c) Sparx Systems 2022 Page 88 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

The main elements that can appear in Parametric diagrams are:

Sequence
Fragment
Endpoint
Diagram Gate

State/Continuation

The main connectors that can appear in Parametric diagrams are:

e Message

e Self Message
e Recursion

e Dependency
Tools

A variety of tools can be used with behavioral modeling and Activity diagrams, including:

Diagram Filters - which allows a user to filter elements out of the diagram to achieve a more specific focus,
Pan and Zoom - which allows a modeler or viewer to easily move around large diagrams,

Spreadsheet (CSV) Import and Export - which allows content in spreadsheets to be imported or exported from the
model,

Documentation - which allows formal or informal documentation to be generated from the model in a variety of
formats,

Traceability - which provides a hierarchical view of an element's relationships to other model elements,

Responsibility Window - which provides a composite view of the important responsibilities of an element, including
Constraints, Requirements and Scenarios

Relationship Matrix - which allows the connections between Activities (or other elements) and other elements such as
Blocks, Requirements and Use Cases to be visualized in a matrix.

Usage

The very fact that we are modeling a system implies that it has a degree of complexity that can not be managed without
the use of tools. Sequence diagrams can be used to represent system scenarios showing how parts of a system interact
together to achieve some specified outcome. Messages are said to be exchanged between lifelines representing the
lifetime of the object, the messages represent operations or signals sent and received by the objects.

(c) Sparx Systems 2022 Page 89 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

StateMachine Diagram

A StateMachine diagram is an effective way of presenting information about the lifetime of a system element such as a
Block. It can be used to describe the important conditions (States) that occur in an entity's lifetime or cycles. Typically
only entities that have important stages in their lifetime are modeled with StateMachine diagrams. The entity is said to
transition from one State to another as specified by the StateMachine. Triggers and Events can be described that allow
the state transition to occur and Guards can be defined that restrict the change of state. Each State can define the
behaviors that occur on entry, during and exit from the State.

stm HSUVOpera‘tionalStates/

Refines

<<Reguirements>
keyoOff ° Power Source M anagement

a

start shutOff

Mominal states only

/_ Operate \

accelerate stopped

releaseBrake

=

Accelerating/Cruising Braking

engageBrake

Elements

The main elements that can appear in Parametric diagrams are:
e State
e StateMachine

e Initial
e Final

e Choice
e History

e Fork and Join
The main connectors that can appear in Parametric diagrams are:

e Transition

e Dependency

(c) Sparx Systems 2022 Page 90 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Tools

A wide variety of tools are available for working with StateMachine diagrams, in addition to the StateMachine diagram
itself. These include:

e State Table Editor - Which allows the StateMachine diagram to be visualized in a table that, for some analysts, is
easier to understand than a diagram; it contains the same information as the diagram and can be viewed in a number
of different ways

e Dynamic Simulation - Allows StateMachines to be visualized, showing how an entity transitions from one state to
another

e Executable StateMachines - As well as utilizing the simulation engine and allowing StateMachines to be visualized,
provide a complete language-specific implementation that can form the behavioral 'engine' for multiple software
products on multiple platforms

Usage

Complex systems are often composed of entities such as Blocks that have complex behavior and might have lifetimes
that are difficult to understand.

StateMachines can be used to describe the important conditions (States) that occur in an entity's lifetime or cycles.
Typically, only entities that have important stages in their lifetime are modeled with StateMachine diagrams. These
diagrams provide insight into the way an entity transitions from state to state, ignoring conditions that are not important
to the analysis.

(c) Sparx Systems 2022 Page 91 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Systems Modeling Language Overview

Model Based System Engineering heralds a new era of communication and real time model collaboration. It brings with
it the concept of the model as a machine rather than a cabinet full of documents. A machine that can do work such as
validate requirements, generate parametric simulations of complex mathematics and physics equations, bring to life
executable StateMachines and simulate business and decision logic, evolve in response to reviews, and create
documentation, to list a few. These benefits are realized by the power of Enterprise Architect and because a standard and
shared language is used to create the models - the Systems Modeling Language, commonly abbreviated to just SysML.

arequirement «blocks:
The systern must be able detect fraudulent Bar Bar Code Analyzer
Codes
id = "SR-00987" s ————————]

tent = "Customers could exchange the Bar Code Slandanas and are inre
from a cheaper item to a more expensice one ENENTPRBIC 1theth
thus attempting to fraud the system.”

SysML allows both humans and machines to understand the models - the humans adding ingenuity, engineering and
design and the machines performing the tedious and error-prone tasks such as validation, doing the heavy lifting such as
generating parametric simulations and performing what-If analysis, and carrying out the more mundane tasks such as
searching and report generation.

The acquisition of a language is not something that happens for free, but it is something that can happen without pain or
frustration and without what some skeptics call a 'flair for languages'. Enterprise Architect will also be a friend that will
assist you in learning the language by providing many in-tool devices to assist with the learning, and a rich and replete
library of model patterns that will help you get started, ensuring you are creating industry best-practice models.

Model Patterns | Diagram Process Guidance Application Patterns VEA Examples

SysML Perspective - |~ -

R . . .

4 Sy L5 Block Defimition Diagrams Constraint Block Parametric Diagram
[=] One Level Block Hierarchy

[E] Two Level Block Hierarchy

[E] composite Block Hierarchy The Constraint Block Parametric Diagram pattern creates elements and a diagram representing
[E] Constraint Block Hierarchy the usage of three Constraint Blocks in the context of a bounding Constraint Block. The
[E] Block with Properties parameters of the constraint properties are bound to each other and in turn to the parameters of

[] Block with Properties Compartment
[E] Block References
[=] Block Substitution

the bounding Constraint Block effectively describing a system of equations.

4 SysML 15 Internal Block Diagrams
[E] Block with Four Parts par [constraint block] Constraint Block A [Constraint Block A] /

4 SysML 1.5 Parametric Diagrams

i [£] Constraint Block Parametrics Diagram |
4 SysML 1.5 State Machine Diagrams
[=] simple State Machine eq1 : Constraint Block A.1

[E] compaosite States b Integer j—j p la=brd
[E] Nested States ¢ intgr]] .
[=] state with History

[E] state with Regions

4 SysML L5 Libraries

[=] Quantity Kinds and Units IS0 80000-1
[E] Primitive Value Types Library :‘ A
[E] Unit and Quantity Kind Library

42 : Constraint Block A.2
[g=a+d}

B :Integer

S eq3: Constraint Block 4.3 1 ‘ -

Create Pattern(s) Add To: Systems Modeling Language Overv | (5 Combine with selected Package

When you begin your journey with Enterprise Architect you immediately and effortlessly become part of an extensive
international community of users and practitioners, who work with the tool day-in day-out to specify, design, implement
and support system engineering models that are used to solve real world problems. Many of these problems and
opportunities are complex and often seemingly intractable, but can be worked through by the collaboration of modelers
applying the SysML to express and solve problems.

(c) Sparx Systems 2022 Page 92 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

E_.% .gﬁ' E EI ﬁ ﬁ@ 1 My Kanban

™ My Gantt
Discussions Review Team Mail Calendar Journal
= < Library

Collaborate

Enterprise Architect seamlessly facilitates this collaboration with its rich desktop and Cloud platforms that help to ensure
the models are both robust and expressive, and the result of not just one but any number of engineers and other
stakeholders, working together no matter what natural language they speak, what device they are using or where they are
located in the world.

(c) Sparx Systems 2022 Page 93 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Language Architecture

The Systems Modeling Language (SysML) is fundamentally a set of conventional symbols that allow humans and tools
to communicate about systems engineering. It is an international standard that defines and describes a general-purpose
modeling language for systems engineering. Enterprise Architect is one of the world's leading tools that implements this
standard and allows Systems Engineers to apply the approach that is known as Model Based Systems Engineering. In
addition Enterprise Architect offers tool features that support a wide range of ancillary aspects of engineering practice
and management. We will explore these useful and productive tool features throughout this guidebook.

The SysML is based on another standard, the Unified Modeling Language (UML), that has been adopted and used by
Software Engineers since the late nineties. This is important, as many Systems Engineering projects involve both system
and software aspects and so both system and software engineers are able to understand each others models, leading to
greater transparency, less chance of errors and mutually intelligible language constructs, resulting in a system that is less
likely to fail or exhibit faults. This Venn diagram shows the relationship between the two standards. SysML reuses the
Use Case, Activity and Sequence Diagrams.

SysML

SysML
extensions

UML
reused by
SysML
(UML4SYsML)

UmML
not required
by SysML
(UML - UM L4ASysML)

Requirements Driven

The creation of the Systems Modeling Language (SysML) was driven by user requirements; the design of the SysML
responded to the needs set out in the Request for Proposal for the Unified Modeling Language for Systems Engineering.
This document specifies a customization of UML for Systems Engineering (SE) and mandates that this customization
should support modeling of a broad range of systems, which could include hardware, software, data, personnel,
procedures, and facilities. The document states:

'"The customization of UML for Systems Engineering should support the analysis, specification, design, and verification
of complex systems by:

e Capturing the systems information in a precise and efficient manner that enables it to be integrated and reused in a
wider context

e Analyzing and evaluating the system being specified, to identify and resolve system requirements and design issues,
and to support trade-offs

(c) Sparx Systems 2022 Page 94 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

e Communicating systems information correctly and consistently among various stakeholders and participants'

The designers of Enterprise Architect have read these documents and the resulting SysML specification in detail and
created a sophisticated and highly usable tool that implements all these requirements and adds a rich set of additional
features to ensure an organization's engineering and business success.

===

0
SYSTE
MODELI
A

L
LANGU

OMG Systems Modeling Language™

Version 1.5

For a language to be useful and relevant it must evolve in response to the needs of its communities of users. In so
responding, the SysML specification is updated regularly and the teams at Sparx Systems also update and extend
Enterprise Architect to ensure it complies with the evolving standard and, more fundamentally, meets the diverse needs
of its community of users.

Unified Modeling Language Reuse and Extensions

The Systems Modeling Language (SysML) is built on top of the Unified Modeling Language (UML). The UML had
been ratified and adopted by the Object Management Group (OMG), who continue as the custodians of the specification.
In 2005 UML was also published by the International Organization for Standardization (ISO) as an approved ISO
standard. The language provided a specification for modeling software centric systems. The SysML language dates back
to 2001 and had its origins in an open source specification, but when the International Council on Systems Engineering
(INCOSE) began working with the OMG a final version of the SysML was adopted by the OMG in 2006.

In many ways SysML is theoretically the more primitive language as it is a general purpose modeling language, and
UML is more specialized, being designed for modeling software centric systems. However, history and the languages'
genesis has inverted this position. In practice, SysML has been created using the UML profiling system and is an
extended subset of the UML. What this means is that SysML did not take all of UML and it also defined some additional
language constructs. The Venn diagram we saw in an earlier section describes mathematically the two intersecting sets of
language constructs.

The Enterprise Architect implementation of the SysML specification is highly compliant, with the developers working
closely with the specification and in constant communication with industry experts, thought leaders and the systems
engineering communities in a wide range of industries. This has resulted in a world class tool that not only implements
the specification but also provides a wide range of additional tools such as Executable StateMachines, Parametric
Simulations, Gantt Charts, Kanban Boards, Mind Mapping, Strategic models and literally hundreds of other features.

In addition there continues to be an increase in the interaction between system and software engineering problems and
solutions in a wide range of disciplines, from rail systems to aeronautical systems, energy systems and many more.
Enterprise Architect is uniquely positioned because of its formidable features supporting both these disciplines and also

(c) Sparx Systems 2022 Page 95 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

its strengths as an architectural tool.

Braking Controller %:]

sblocks
Collision Detection::Braking
e — - —————
Subsystemn

onent that computes

ind time

sequences for the braking system.

Partitioning with Packages

Packages are the fundamental unit of partitioning in the language and are designed to prevent circular dependencies. The
language is formally partitioned into sets of model elements that group the elements logically and allow a language user
to understand the elements as a collection of linguistic units.

They are also the fundamental structural unit in user defined models and act as a general purpose mechanism used to
group elements based on user defined factors. Formally they can be used to specify a namespace, which is important in
some modeling constructs such as the definition of XML schemas or code generation. Packages can be created and
viewed either in the Browser window or in diagrams, and both locations provide different ways to work with the
Packages. Diagrams are useful for displaying the contents of Packages visually or to describe the relationships that exist
between Packages.

pkg [package] HSUV Model [HSUV Model Relations]/

Hybrid SUV Constraints «modelLibrary»
Sl Definitions
. o) .
(from HSUV Analysis) ~. . (from M%ehng Domain)
- ~
e wconform»
~
.
s |
HSUV Requirements HSUV Specification | HSUV Structure

(from HSUV Requirements)

Architect provides numerous ways to display Packages in diagrams that will assist users in understanding the structural
relationships between Packages and the elements and diagrams they contain. When a Package is included in a diagram,
the tool allows the user to choose from a number of display options and the compartment visibility can be changed to
show the Package content. In this diagram the author wants to show the contents of two Packages that have significance
in the unlikely event of a collision. The 'Show Package Contents' option has been selected in the element compartment
visibility making it clear what elements are contained in each Package.

(c) Sparx Systems 2022 Page 96 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

pkg [package] Hybrid Suv Blocks [Collision Detectiony
Fuel Tank Collision Detection
E + Communication Subsystem + Braking Subsystem
g + Fuel Guage + Collision Detection Subsystem
g + Fuel Subsystem + Communication Subsystem
E + Fuel Tank + Laser Detection
E + Vehicle + Radar Detection
D + Left Tank + Reversing Camera
[+rightTank
D +fs
D +v

The same Packages and their contents can be viewed in the Browser window, it is important to remember that while it is
possible to include the diagrams in publications such as reports, the contents of the Browser window would not be visible

in these documents.

4 (7 Hybrid Suv Blocks
B Collision Detection
5 Hybrid Suv Blocks
T Requirements Use Case and Subsystem Components
4 [Collision Detection
5 Collision Detection
«block= Braking Subsystem
=block= Collision Detection Subsystem
«block= Communication Subsystem
ablocks Laser Detection
«block= Radar Detection
«block= Reversing Camera
4 [Fuel Tank
5 Fuel Tank
5 Fuel Tank Instances
=block= Communication Subsystemn
«block= Fuel Guage
=block= Fuel Subsystem
«block» Fuel Tank
[Left Tank: Fuel Tank
1 Right Tank: Fuel Tank
b [fs: Fuel Subsystem
& v: Vehicle

v A

Interoperability and Model Exchange

(c) Sparx Systems 2022 Page 97 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Enterprise Architect is one of the leading SysML tools with a requisite set of features, but the designers are aware that
organizations will have the need to use a variety of tools to accomplish the complex business and engineering tasks that
confront every organization in the Twenty-First Century. To ensure that the important engineering and business
information is available to be exchanged with other tools and platforms, there is rich support for model exchange in
compliance with the ISO 10303-233 data interchange standard to support interoperability among other engineering tools.
This is implemented based on the UML XMI interchange capability, which is supported in the tool at the Package level,
allowing any Package and its contained hierarchy to be exchanged with other compliant tools.

Fa

@ [ED EEE

Reusable Publish 5V Package Export Import
Assets As... w Control~ Package~ Package~

Model Exchange

(2 Import from DOORS
DOORS Module #MyProject/Functional Requirements - | Module Manager |
Profile Name Mon-Functional Requirement - | Profile Manager |
[| Impart Connectors [] Import Attachments [] Import Discussions

Enterprise Architect goes further than this and provides exchange mechanisms with a wide variety of business, project
management, analytical and project delivery tools. This is achieved at the modeling tool level with the provision to
exchange data contained in spreadsheets using the CSV file format, and text in word processors. Reference data such as
lists of Priorities, Statuses, Complexities, Constraints, and other data such as Glossaries, Roles and Authors, Calendars
and more can all be imported and exported from the repository.

Select one or more tables for export

Mame

| i |Genera|T},.r|:|es

¥l People
*| Model Authors
¥| Project Clients
Project Resources
Project Roles
¥l Project Indicators
¥l Maintenance

UML Types

g
i
I
>

Estimation Factors bl

Geospatial information forms a critical data set in a world where geo-location is an important aspect of almost every
project and initiative. Enterprise Architect provides a data exchange with the leading geospatial modeling tools, allowing
two previously disparate and heterogeneous data sets to be viewed and managed together.

(c) Sparx Systems 2022 Page 98 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Import Package from ArcGIS XML

Package: |Language Architecture ||[f|'

Filename: Rail Network Geo-Database xml I:I

GUII [] write Log File

| View XML | | Import | Close | | Help

J
N

Import Progress

(c) Sparx Systems 2022 Page 99 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Key Grammatical Concepts

The SysML, like its parent the UML, is a visual language where diagrams are central to the communication strategy of
the language. Even though the emphasis of the language is on this visual codification and transmission of ideas, the
language also has facilities to express ideas textually, which is an important complement to the visual mechanisms. A
number of elements, such as the Requirement element, have a visual form, but the details of the Requirement are written
in a property called Requirement 'text' as shown in this diagram.

» T req [package] Requirements [Requirements - Copy Relationship] «

req [package] Requirements [Requirements - Copy Relationship] /

urequirements

N A wreguirements
Minimize Power Utilization =

Minimize Power Utilization of Boom
Gate

Custodian = "Operations Manager”
WVaolatility = "Medium”

id ="9001"

text = "The system must minimize the
power used by all of its components”

wcopys id ="1006"
text = "The system must minimize the
power used by all of its components”

(from Car Park Boom Gate)

Enterprise Architect has also been carefully designed to respect the way in which different users work with information.
The design team works closely with its community of users and is aware that some users work better with diagrammatic
visualization and others with text. Many of the tools available in Enterprise Architect have been designed with these
different types of user in mind. For example, in the Requirements Management discipline, users are often more familiar
with working in documents and spreadsheets. To cater for this Enterprise Architect has a number of views that users can
switch to, that allow them to enter, edit and manage Requirements through these types of interface. One of these tools is
the Specification Manager, which provides a flexible and familiar way of working with Requirements from both a
document-based view and a spreadsheet view, allowing Requirements to be viewed, created and managed with ease.

(c) Sparx Systems 2022 Page 100 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

» Specification Manager: Package: "HSWV Specification" [Reguirement]

Q € SysML Example Model b SysML 1.5 » Modeling Domain » HSUW Model » HSWW Requirements b HSLWV Specification

Requirement Stereotype Status
Capacity requirement Proposed
CargoCapacity requirement Proposed

The system will have a Cargo Capacity: Seats folded down of 2 cubic
metres (70 cubic feet) and with the seats folded up 1 cubic metre (36
cubic feet). Cargo capacity sometimes also referred to as Cargo volume s
the total volume (measured in cubic metres or feet) of space in a car's
cargo area. In SUVs, minivans and hatchbacks, there are two operational
contexts that must be considered requiring two distinct values: Cargo
Capacity Seats Up and Cargo Capacity seats folded down.

1 FuelCapacity requirement Proposed

The system will have two separate fuel tanks one will be the main fuel
storage and will have a capacity of 80 liters (approx. 21.1 US Gallons) and
areserve fuel tank with a storage of 10 Ljtres (approx. 2.6 US Gallons).
Both tanks will be fitted with gauges capable of reporting fuel levels to a
3% accuracy and the volumes value in terms of percentage of tank and
number of kilometres (or miles) will be capable of being displayed on the
dashboard. Fuel (Tank) Capacity is the volume of fuel that can be stored in
the fuel tank system of the Hybrid SUV.

Passenger(:apa(:il:yl reguirement Froposed

Find Package

Difficu... Priority

Medium Medium

Medium Medium

Medium Medium

Medium Medium

(c) Sparx Systems 2022 Page 101 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Models, Diagrams, Elements and Views

Models

The word model is quite overused and over-loaded with meaning. Some people use model to signify an entire repository
whereas others use it to refer to a section of a complete repository. Models are the structural divisions in the repository.

Diagrams

The SysML specification defines nine diagram types. This is the canonical list and the SysML in addition defines the
elements that are typically used on each diagram. Many newcomers and even some experienced users are not aware that
even though these lists of elements describe the commonly used elements for a particular diagram type, that does not
preclude a modeler from using other elements on these diagrams. In fact, using a number of element types on the same
diagram results in an expressive model and allows stakeholders and engineers from different disciplines to understand
the inter-diagram connections between the models.

In this section we will also learn that there are a number of 'universal' model elements that the specification suggests can
be incorporated as part of any diagram, including Comments, Constraints and Rationales. This diagram shows a range of
element types including a Block, a Use Case, a Requirement and a Test Case, all expressed on a Block Definition
Diagram (BDD).

req [package] HSUV Requirements [Acceleration Reguirement Refinement and Verificatioy

areguirement»
Acceleration

’-’ ““""
- | ~

- wderiveReqgt»
- ~
- | ~
~
] -~

«refine» -
- werlfyil

~

«regquirement» «testCasen
Power Max Acceleration

N

Accelerate

I
wsatisfy»
I

«hblock»
PowerSubsystem

As stated earlier, the Systems Modeling Language specifies nine different types of diagram.

Elements

The nine diagrams described earlier are individually specified to convey a particular aspect of an engineering opportunity
or solution; for example, the Parametric diagram is intended to show how equations are constructed. There are, however,
a number of types of element that are universal to the model endeavor and can appear on any type of diagram. Many of
these elements are used on diagrams to convey important annotations to a model or to help explain a particular aspect of

(c) Sparx Systems 2022 Page 102 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

the model. They include elements such as Notes, Constraints, Rationales and Views. In this diagram a stakeholder who
has been viewing the model has added a comment to question a part of the model.

wrequirements
The system shall not allow unauthorized
vehicles to enter the car park

id = "SR-009" b= - -
text = "The car park is a restricted area and b
entry needs to be controlled to allow
authorized vehicles to enter but
unauthorized vehicles need to be restricted.”

Have we dealt with the
motor bikes and bicycles
in this requirement?

For more information, see the Common Pages Help topic.

While Enterprise Architect is highly compliant with the SysML specification it has a number of collaborative features
that allow such comments to be managed, such as through its Discussion feature. This allows discussions to be kept
separate from the elements proper that comprise the model. This screen image shows the same comment added using the
Discussion feature, which allows replies and a range of other collaborative devices.

Collaborate v B x

Discuss Review Chat Journal

= The system shall not allow unauthorized vehicles to enter the car park -

4 : Have we dealt with the motor bikes and bicycles in this requirement? | know Greg bought up the issue #
in the workshop, but | have forgotten what the outcome was. Any assistance would be appreciated.

Paulene Dean 3:06 PM
0 Replies

5] : !
- Greg Michols 3:32 PM

Motor Bikes and Bicycles are to be treated as Wehicles and have been defined that way. Have a
look at the Mind Map that relates the stakeholders' requirements to the workshop notes.

N

For more information, see the Discussions Help topic.

The responder could also have sent a Model Mail message, which might include a link to an Enterprise Architect element
or diagram as shown.

(c) Sparx Systems 2022 Page 103 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/common_group.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/tools_ea_element_discussions.htm

Guide to MBSE with SysML 3 October, 2022

Tox Paulene Dean <paulenedean=, AI

Subject: Maotor Bikes and Bicycle access tothe boom gated car parks

@, Insert Quick Link + Flag: b Yellow =

B /7 U&-IZE £ %@

Hi Paulene,
Here is a link to the diagram that correlates the notes from the stakeholder

workshop (as a mind map) and the requirements that were developed from
those notes. It should make things|c|earer for you.

Security and Safety Mechanisms : Requirements and Mind Map Traces

Best Regards

Greg

b€ Send

For more information, see the Model Mail Help topic.

When the user opens the mail message, they are able to follow the link and open the diagram referenced in the link. This
is a useful mechanism allowing dynamic and real-time views of the modeling information to be referenced and accessed
rather than an image sent in a static document. This image shows the diagram that would be displayed in the tool when
the link is opened.

req [package] Security and Safety Mechanisms [Requirements and Mind Map Traces]/

«requirement»
The system shall not allow unauthorized
vehicles to enter the car park

Motor Bikes and Bicycle Access - These
modes of transport have been defined as
id="sR009" === ==--=

vehicles in the Project Glossary so shoud
text ="The car park is a restricted area and entry «trace» ! n

be handled along with Cars and Trucks.
needs to be controlled to all ow authorized vehid es
to enter but unauthorized vehicles need to be
restricted."”

The ability to link elements from different modeling domains is one of Enterprise Architect's great strengths as a unifying
platform for teams and disciplines, and nowhere is this more true than in the relationship between business strategy and

(c) Sparx Systems 2022 Page 104 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/tools_ea_model_mail.htm

Guide to MBSE with SysML 3 October, 2022

engineering, and between software development and engineering. The result is a consistent and harmonized model where
the possibility of faults resulting from seams between different teams is significantly reduced. For more information see
the Traceability Window Help topic.

Views

Fundamentally a system is conceived of, analyzed, designed and built for its stakeholders. Systems Engineers gather
concerns and interests from stakeholders and apply analysis to create requirements and constraints. These are used as
input for analysis and design and before the system is delivered for validation and verification. Stakeholders need to be
able to visualize how their interests are being addressed at various stages in the engineering process and this visualization
can be provided by views and viewpoints. The concepts of viewpoint and view are articulated in ISO-42010 (formerly
IEEE-1471) and the SysML specification was written to be consistent with the ISO-42010 standard. There are a number
of commonly used viewpoints including:

e Operational

e Performance

e Manufacturing
e Security

A viewpoint is a prescription for constructing a view that will address the needs, interests and concerns of a given
stakeholder. A view is what the stakeholder sees from a given viewpoint and should enable them to visualize the parts of
the system that are of concern to them while leaving out, or obscuring, the aspects of the system that are not of interest.

pkg [package] HSUV Views [Viewpoints]/

«stakeholder»
Customer

aviewpoint»
Requirements

concern ="What are the system
requirements?; Will the system
perform adequately?"

«create»
view()

<

«conform»

wviewpoint»

concern ="What are the system
requirements?"

language ="SysmL"

method ="Requirements Query"
presentation = "Reguirements table epot
style-sheet in slide format"

purpose ="What are the system
reguirements"

stakeholder = "Customer"

“views
Hybrid SUV Requirements

wuiews
stakeholder = "Customer"
viewpoint = "Requirements"

aviewpoint» wview»
VnVv Hybrid SUV Verification and
Validation Plan
«Create» Qi
View() wconforms» wview»
stakeholder = "Customer"
aviewpoint» viewpoint = "VnV"
concern = "Will the system perform

adequately?"

language ="SysmL"

method ="VnvVQuery"

presentation = "nV report stylesheetin slide
format"

purpose ="Describe the vnVv"
stakeholder = "Customer"

In addition to the formal mechanism described by the SysML specification in the form of View and Viewpoint elements,
Enterprise Architect has a wide range of tools to assist with the creation and management of viewpoints, views and

representations. There are several tools that can be used to create different views of the elements in the repository; these
include the Working Sets and the Model Views. Working Sets allow a collection of diagrams, Matrices, Model Libraries

(c) Sparx Systems 2022 Page 105 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/tools_ba_traceability_window.htm

Guide to MBSE with SysML 3 October, 2022

and other items to be saved and reopened as a set, which is useful when working with different groups of stakeholders.
For more information see the Working Sets Help topic

Model Views can be used to create views of elements grouped together irrespective of their location in the Browser
window. There are also several tools that can hide or obscure parts of a diagram to make it more appealing to a particular
audience. The appearance of diagrams can be altered by changing the appearance of elements, including using an image,
and Diagram Filters can obscure or hide elements from view. For more information see the Visual Filters Help topic. The
Documentation engine can create high quality publications directly from the model into pdf or docx formats. For more
information see the Documentation Help topic.

(c) Sparx Systems 2022 Page 106 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/tools_ea_working_sets.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/tools_ba_visual_filters.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/tools_ba_documentation.htm

Guide to MBSE with SysML 3 October, 2022

Collaborating as an Engineering Team

An engineering team is multidisciplinary and consists of strategists, managers, system engineers, software engineers,
testers and others. The commercial pressures to release a product or provide a solution means that teams have to work
more cleverly and cohesively to ensure engineering outcomes. Enterprise Architect has been built from the ground up as
a collaborative platform, not just for engineers but for all disciplines. It facilitates individuals and teams working together
and sharing information, models, designs and solutions with a full range of tools from discussions, reviews, a team
library and chat to Version Control and Baselines.

(c) Sparx Systems 2022 Page 107 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Central Shared Repository

Enterprise Architect is not just a sophisticated drawing tool but a modeling platform that allows models to be validated,
simulated, transformed and manipulated programmatically. This can be achieved because the tool does not store the
diagrams in raster or vector format but rather the images are coded in a relational database along with all the reference
data and other repository metadata. The platform uses this relational database to store all modeling information and
metadata and this provides the back-end storage that is accessed by client and web based tools. For more information see
the The Model Repository Help topic.

This product architecture allows users to share models, diagrams and other repository information such as reference data,
images in the Image Library and documents in the Model Library and many other tool features that facilitate
collaboration and working together in a co-located or distributed team. For more information see the Help topic The

Modeling Team.

Library v @ X

¥ % <Curent Models P2 @

I [Admin

[B Archimate

> @ EA DB Modeling Upgrade 2019
I B EA PMProfile for Agile

I [EA version 14

I B Eaversion 15

[+ @ Guidance Madels

[B 150 Technical Standards

[+ @ OMG Technical Standards

[@ Other Technical Standards

(c) Sparx Systems 2022 Page 108 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/configuration_management.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/team_development.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/team_development.htm

Guide to MBSE with SysML 3 October, 2022

Cloud Computing

The central repository described in the previous topic can be accessed directly from the Enterprise Architect desktop
client, using appropriate database connectivity layers (ODBC) and the accompanying drivers. There is, however, another
easier way to access a repository hosted in a Cloud, and that is via Cloud services using the http or https protocols. The
Cloud can be on-premise or off-premise and there are many ways the Cloud could be configured. There is also a Server
comprising a number of modules that can be purchased, called the Pro Cloud Server, which provides a variety of tools,
facilities and ways to view the models via a browser on a computer or hand held device, such as a tablet or smart phone.
For more information see the Pro Cloud Server Repositories topic.

o Fr— EA Example - Full

#. Stang-akona Choreography Diagram

@ -

-]

This provides a platform for working with a variety of stakeholders, from Engineering Managers to Consulting
Engineers, locally located or distributed across the globe. The power of this way of working can be realized with
minimal set up and the benefit of having all team members and stakeholders viewing and contributing to the same
models cannot be underestimated.

Productivity gains can be achieved by being able to get valuable and timely feedback, or to discuss a diagram with an
engineering consultant while they are traveling on a train to a trade show, or from the engineering lead while on a break
from a symposium - all in real time and within the model from a smart phone or tablet.

The Pro Cloud Server also provides connectivity to a wide range of other tools and platforms, spanning Requirements
Management systems, Configuration Management Tools, Issue Tracking Systems, Project Management Systems and
more.

This screenshot shows a list of some of the available integrations, although this list is being added to regularly so it is
worthwhile checking whether additional integrations have been included. For more information see the Integrate Data
from External Providers topic.

(c) Sparx Systems 2022 Page 109 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/connect_to_the_cloud.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/integrate_external_provider_data.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/integrate_external_provider_data.htm

Guide to MBSE with SysML 3 October, 2022

i

,; External Data > |
=- -
Object B> sharepoint
Service Now
0 lira
h Autodesk
@ Jazz
@ Application Lifecycle Management
@ Enterprise Architect
+ Wrike
: Confluence
Q Team Foundation Server

(D Bugzilla
;; Dropbox

P salesforce

E All ltems Linked to Model

(c) Sparx Systems 2022 Page 110 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Discussions and Chat

Central to the notion of collaboration is a modeler's ability to discuss and chat with colleagues or industry and standards
specialists about a problem or solution. Enterprise Architect allows engineers, managers and others to enter into
discussions about elements, diagrams and connectors. A post can be created that starts a thread or conversation which
other modelers can then enter into by replying. The discussions are kept separately from element and diagram meta
information allowing rich and constructive comments to be made without affecting documentation or reports generated
from the models. The discussions and chat are two of the options available, discussions from the Discuss & Review
window and chats from the Chat & Mail window.

Discuss & Review v B X

Journal Discuss Review

=— Start the vehicle .

L s Mwhencan we expect the status
of this UUse Case to be changed o
‘arcepted’ as the analysis teams
are wanting to progress with it?

Ky Misiser 2042008 » 0 Renliss

A4 Does this incorporate the new &
retinal recognition system?

Grag Nichols 3/04/2018 : 1 Reply
; Last ragly by Kan Mialsan
242018

Chat is useful for quick and responsive communication with colleagues or experts that have been defined as part of a
security defined group of users. Chats are not related to model elements in the way that discussions are but rather are
global and when the Chat & Mail window is opened and a group is selected, the items are listed in date-time order. For
more information see the Teams & Collaboration Help topic.

(c) Sparx Systems 2022 Page 111 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/use_today_panel.htm

Guide to MBSE with SysML 3 October, 2022

Kanban Resources and Calendars

The Kanban technique has been implemented in Enterprise Architect in a way that will greatly enhance the productivity
of your team and the project management of software and system engineering projects or sets of tasks. Within Enterprise
Architect it is a simple to use feature, enabling you to manage items in a backlog and move them into any number of
lanes, or even to other boards, representing stages in a process. The facility can be incorporated into existing or new
engineering or software development processes, resulting in unprecedented efficiencies.

One of the great advantages of using this feature is that elements that participate in the Kanban diagrams can be linked to
other elements in the repository, allowing full traceability from, for example, a requirement up to a strategic intent or to a
component of a design and down to an element of a released product. Kanban can be used to visualize the resources,
effort and state of completion of items as they move through any number of linked Kanban boards. This is an example
from a software development process related to a warehouse systems engineering project.

Backlog Queue In Progress (4/6) Test/Review

As a Sale Representative |
want to be able to view
historical leads

As a Customer | want to be
able to add new orders to
existing ones if they have not
shipped

As an Administrator | want to
be able to have a
maintenance window to

As a Warehouse Manager |
want to be able to determine
the best product location to
update online web pages and minimize picking errors
content

Userstory
Defect UserStory
Jane Ward

= 1 Devel.

Userstory
Paulene Dean

| — V], T

Yuki Kotabashi
S] TestA..

For more information see the Kanban Boards and Resources & Work Items Help topics.

(c) Sparx Systems 2022 Page 112 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/kanban_facilities.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/kanban_allocating_resources.htm

Guide to MBSE with SysML 3 October, 2022

Model Reviews

Model Reviews provide an ability for project stakeholders to collaborate formally in the assessment (review) of model
content, including elements and diagrams. This handy collaboration tool utilizes a number of built in features - such as
the Review view - to manage the process of the review and to visualize discussions and contributions to the review. A
review diagram provides a mechanism for participants to add elements and diagrams to the review. This diagram
contains a number of elements related to the review topic.

« :E'E Technical Architecture Review. Review Diagram « y X
Tz Technical Architecture Review X | T Earthquake Analyzer q F
Y
Technical Ed
Architecture Review
28/0ct to 04/Nov

Author: The Administrator

ublock» ablock» ainterfaces
Structure::Signal Analyser Earthquake Structure::Signal Registration
Unit Analyzer::Seismic Service
Wave
+ authenticateUser(int, int): int

+ registerSignal(int): long
+ sendMaotification(): void

Any number of reviews can be created and modelers can join and participate in the reviews. The launching pad for the
review facility is the 'Collaborate' panel of the Start ribbon.

= @iz 2w (a B

Journal Discuss Review Chat fail Dviary Library Calendar

- - - -

Collaborate

Selecting the 'Review > Manage Reviews' option will open the Reviews view, where all existing reviews will be listed
and - with a right-mouse-click - new reviews can be created. The view shows the Review metadata in the left hand panel
(including start and end dates) and the review details in the right hand panel, including the element and diagrams that
form part of the review and the posts and replies for each item.

(c) Sparx Systems 2022 Page 113 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Element Topics Open Complete Posts (Recent)

4 [Z] Technical Architecture Review 2 1
Approved. 28 Oct to 04 Moy
4 [E] Set: Technical Architecture Review
Seismic Wave
Signal Analyser Unit 1 1
= Signal Registration Service 1 1
4 [E] Other Items

[Z] Technical Architecture Review 1 2

The review comments can be entered and viewed in the 'Review' tab of the Discuss & Review window. These will keep a
running tally of all the posts and replies annotating the post, and replies with the author and the date. In this way highly
collaborative outcomes can be achieved and - through the WebEA product available on smart phones and tablets -
stakeholders such as external consultants and industry experts could contribute to the review without having to use the
Enterprise Architect desktop application.

Collaborate O x

Discuss Rewiew Chat Journal

=— In Review : Technical Architecture Review -

4 [Technical Architecture Review

d ﬂ Connections to External Interfaces ™
Paulene Dean 10:08 AM
1 Replies

8 .
- Pat Taylor 10:32 AM

We have commenced looking at the
units and dimensions used in all external
service interfaces.

Properties | Collaborate

Each of the items in the Review view can have a number of properties set, including the Status and Priority of the review
item; these can be seen as two small icons (a flag and a quantity icon) to the right of the item.

(c) Sparx Systems 2022 Page 114 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Discuss Rewiew Chat Journal

= In Review : Technical Architecture Review -

Y Technical Architecture Review

P = Connections to External Interfaces ™
Paulene Dean 10:08 AM

Post Reply
Status r
Priority P+« High b
Delete Selected Medium
Low
Leave Review
<none=
Refresh -

=
Properties | Collaborate

(c) Sparx Systems 2022 Page 115 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Sharing Resources in the Model Library

Teams that are using processes centered around Model Based Systems Engineering will invariably rely on a vast array of
documents in the form of policies, methods, instructions, process descriptions, guidance documents, standards and other
types of engineering or project documentation. Some of these will be document based and others will be resource based
and available on an internal network, shared system, an Intranet or Extranet or more broadly the public Internet.

Regardless of where the documents or pages are located they can be either imported into Enterprise Architect or
referenced as external resources via a URL. They can be included on a diagram as an Internal or External Artifact but
more conveniently they can also be imported or referenced from the Model Library.

Library > 1 X

¥ % <CumentMode - SO @

I [Admin

[@ Archimate

> @ EA DB Modeling Upgrade 2019
I @ EAPMProfile for Agile

I [EA version 14

I @ Eaversion 15

[> @ Guidance Madels

[@ 150 Technical Standards

[> @ OMG Technical Standards

[@ Other Technical Standards

Consideration could also be given to importing some, or all, of the items in these documents as first class model
elements. For example, a policy could be created as a metamodel element and the list of policies could be imported,
allowing individual policies to be traced to particular system components. For more information see the The Model

Library Help topic.

(c) Sparx Systems 2022 Page 116 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/discussionforum.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/discussionforum.htm

Guide to MBSE with SysML 3 October, 2022

Viewing Models on Mobile Devices

The modern workplace has changed significantly in recent years, with organizations encouraging flexibility in the form
of hot desks and working from a home office, leading to more and more people working on portable devices. Also, the
pace of change in our modern world increases every year, being driven by innovation and disruption - for example, a
pandemic affecting every country in which suppliers, customers or colleagues are based, requiring people to be absent
from offices everywhere, and unable to travel to consult or deliver expertise directly. . Strategists, Technologists and
Engineers need to collaborate to achieve engineering outcomes and in a dispersed workforce this typically means they
need to contribute to models from mobile devices, both while on the move and under restricted isolation.

Enterprise Architect repository content can be viewed in real-time through a browser on a mobile device such as a tablet
or smart phone. This allows engineers, managers and others to collaborate while they are between meetings, at offsite
inspections, on public transport or anywhere they happen to be. Never before has this been possible, and now the
velocity of a project does not need to be slowed while waiting for reviews or for people to return to the office; the models
can be updated at Internet speed from anywhere. For more information see the Pro Cloud Server Repositories Help topic.

(c) Sparx Systems 2022 Page 117 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/connect_to_the_cloud.htm

Guide to MBSE with SysML 3 October, 2022

Modeling the Future

The world is being driven by an almost insatiable appetite for change and innovation and this has resulted in Systems
Engineers needing to work smarter and faster and come up with clever ways of solving problems. Time Aware Modeling
is a unique modeling facility that allows engineers and other stakeholders to model any number of future states. This
introduction of state into the models provides a mechanism to visualize what a proposed solution might look like, and
allows engineers to compare a number of proposed solutions. A given solution can be analyzed and reasoned about and
potential pitfalls and problems can be identified in the models. Reviews and walk-throughs can be carried out by any
number of stakeholders and these can be used to determine which of a number of solutions is suitable.

The process can be initiated by making a clone of a Package for which you need a future state model. This can be done
using the ribbon options or from the Browser window context menu.

Package Control ¥
Clone Structure as New Version... b

Copy [Paste b
Contents ¥

4 Delete 'Reviews and Model Views'
':@' Help...

The tool will display a prompt allowing the engineer to specify a name and a version number for the cloned structure.
The version number is critical to the operation of the feature and is used by Enterprise Architect as a way of tracking
elements and diagrams that form part of this future version with the specified version number. The tool will also prompt
for a location within the repository for the cloned Package structure. Typically it can be given a name that includes its
version and the contained-in parent of the Package being cloned; it might also, however, be kept in a separate part of the
repository designated for future state versions.

Enter Name and Version x

Name: |5tri|:-IIIuminatin:|n |

Version: 20

8] Cancel

The step just performed simply sets up the structure for the cloning and does not itself create future states of element; it
does, however, make a copy of any diagrams contained in the Package. This illustration shows a Package that has been
cloned, containing two diagrams that are copies of the diagrams in the original Package.

(c) Sparx Systems 2022 Page 118 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

| Car Park Boomn Gate
[£ Documents
[+ & Requirements
4 £ Strip lllumination
?E Strip Nlurnination
Strip Illumination
«blocks DC Connector
«block» Housing
«blocks LED Array
[+ «blocks Strip llumination
4 £1:Strip Nlumination V2!
Strip Illumination
?E Strip Nlurnination
£ Activities
[+ 1 Boom Gate Security States
B Security and Safety Mechanisms

The diagram is assigned the version number specified in the version dialog, set by the user in the previous step. The
cloning of individual elements is by selecting an element on a diagram, but until this is done all elements on the diagram

will be the previous version. Enterprise Architect has a facility available from the diagram property sheet that allows the
modeler to filter the elements on the diagram to the version of the diagram.

Properties o x
A = -8

Diagram Compartments Swimlanes and Matrix

Filter to Context o
Version

Version 20

Filter to Version v

Mew to Version h’

Appearance

Display as Diagram

Hand Drawn

Setting this property on a newly cloned diagram will display all the elements in a gray-scale as they are all from the
previous version. From this point, individual elements can be cloned and Enterprise Architect will make a copy of the
selected element, creating copies of all its connectors. This is important as it will allow the element to be promoted as the
updated current version once the change has been implemented. Individual diagram elements can be cloned by selecting
the element in the diagram and displaying the context menu, as shown in this illustration.

(c) Sparx Systems 2022 Page 119 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Insert Related Elements...

Advanced ¥
Mew Child Diagram r
Mew Child Element b
Find »
Copy [Paste F
Cl
e W Appearance '
cblocks Behavior b

Strip llumination =D

a Lock Element...
Connector

Z-Order ¥

Type Information...
e W K e s e

4 Delete 'DC Connector' Control+D

Once again you will be prompted for the version number, conveniently the tool will default to the one chosen for the
cloned Package. Once this has been accepted Enterprise Architect will create a copy of the selected element and because
the diagram is still filtered to version this element will appear normally in the diagram, with the other elements still
displayed in gray-scale.

bdd [package] Strip llumination W2 [Strip Nlumination]

eblocks
Strip llumination-:Strip
lNlumination

parts
hs : Housing
dc : DC Connector
la : LED Array

llb‘ll:!'ck"‘ ||b|D'Ck|P (blﬂfkr
Strip Mumination:: strip llumination:LED DC Connector
Housing Array

- voltage: double

The Browser will show the newly created (version 2) element that will be collated with the diagram. In this way the
cloned Package will only contain elements and diagrams with the new version number. For more information see the
Time Aware Modeling Help topic.

(c) Sparx Systems 2022 Page 120 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/tools_ea_time_aware_modeling.htm

Guide to MBSE with SysML 3 October, 2022

| Car Park Boomn Gate

[£ Documents

[+ & Requirements

4 £ Strip lllumination

?E Strip Nlurnination

E Strip Illumination
«blocks DC Connector
«block» Housing
«blocks LED Array

[[I E (S

> B «blocks Strip llumination
4 £1:Strip Nlumination V2!
Strip Illumination
?E Strip Nlurnination
£ Activities
[+ 1 Boom Gate Security States

B Security and Safety Mechanisms

(c) Sparx Systems 2022 Page 121 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Version Control and Baselines

We live and work in a world which is moving at Internet speed and consequently engineering problems and opportunities
change at the same speed. It is the engineers challenge to record, analyze, conjure and implement engineering solutions
in this timescale. This means that almost before an engineer has described a problem fully it will have changed or the
business or engineering context of the problem will have changed. Most times the new direction or the changes will be
described and adopted, but other times an engineer will be required to back-track and return to a previous version of the
problem, opportunity or solution. Enterprise Architect has sophisticated tools for performing this back-tracking.

Enterprise Architect has two fundamental tools for working with prior versions of modeling content.

e Version Control - Once configured, any change point can be returned to; users check-out model fragments, make
changes, and check-in the fragments, thus creating versions - for more information see the Version Control Help
topic

® Baselines - Created at milestone or significant points in a model's development; a user creates a Baseline, and then at
a future point the evolved model is compared to the Baseline at any level of granularity, and prior content can be
restored - for more information, see the Baselines Help topic.

There is an important difference between the two methods, and that is: Baselines must be created intentionally. For
example, if a team of engineers creates a model and it is signed off by a product owner, and then work continues onto
phase two. If for some reason the team wants to back-track and return to the phase one model, without a Baseline in
place this would not be possible. In contrast, once Version Control is configured, the same team could easily return to the
phase one milestone so long as they knew the date it was completed.

Baselines

Baselines are an effective way to ensure that a team can back-track a model to a milestone or significant point in the
model's evolution. They provide a user-driven way of managing change and give the modeling teams a sense of comfort
that if they go off-track for some reason or some dimension of the problem, opportunity or solution changes and they
need to return to a previous point it can easily be done. It is important to remember that a baseline is simply a snapshot of
a Package (potentially including sub-Packages) in the repository but it must be created intentionally and needs to be
created at the point in time that it represents. For more information see the Baseline Tool Help topic.

« Comparing package Robotic Manufacturing against baseline version 3.2 r X

Tt RERERERBEEL@

Model Elements Status Property Model Baseline
A [£7 Robotic Manufacturing Abstract false false
A [F7 Production Line Alias o ! :
«block» Automated Assembly Unit Changed Author Theresa Morantini Yuki Kotabashi
i «block: red A i L Date 27/03/2018 10:0201AM 27/03/2018 10:02:01 AM
g «block» Production Line Changed Date 7/04/2019 10:28:17 AM 27/03/2018 10:09:09 AM
| EE Robots in Manufacturing Changed Complexity 3 1
A [# Visual Elements Filename
. . Language Java C#
e « t= Aut t Ch d
I requiremen : utomation ange IsLeaf false false
E «blocks» Spot Weld BodyR... Changed IsSpec false false
E «blocks» Production Line Changed IsRoot false false
] Production Line Changed Keywords
4 [Visual Connectors Multiplicity } }
Iib Dependency Changed mgtrgi Automated Assembly Unit Automated Assembly Unit
& Association Changed Parent Production Line Production Line
|i[> Aggregation Changed Persistence
Phase 2.0 10
Scope Public Public
Status Validated Proposed
Stereotype block block
Type Class Class
Version 3.2 1.0

Version Control

(c) Sparx Systems 2022

Page 122 of 461

Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/versioncontrol.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/baselinesanddifferences.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/tools_ea_baseline_tool.htm

Guide to MBSE with SysML 3 October, 2022

Enterprise Architect allows an engineering team to manage changes and revisions to projects by placing individual
model Packages, view nodes or root nodes under Version Control. Version Control is configured within Enterprise
Architect through any number of third-party source-code control applications that manage access to and store revisions
of the controlled Packages. Once the Version Control software has been installed and configured a team can save a
history of changes to Packages, view and retrieve prior revisions of work, check out and check in content as it is being
worked on and more. This facility allows a team to work collaboratively while providing an isolated way for engineers to
work on particular parts of the model. For more information see the Version Control Help topic.

(c) Sparx Systems 2022 Page 123 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/versioncontrol.htm

Guide to MBSE with SysML 3 October, 2022

Reusable Asset Server

The Reusable Asset Server (RAS) is a team productivity feature that allows teams to store modeling content in a location
that can be accessed by distributed groups of modelers for reuse. Any team or organization can set up a RAS, store
content and - through security settings - make it available. The atomic unit of storage is an asset that can be both
modeling- and file-based information:

e Packages contained in a repository and viewable in the Browser
e Files in a range of text, code and graphic formats, including .qea files

The Reusable Asset Server is available from the 'Publish' ribbon using the '"Model Exchange' panel. This puts this service
at your fingertips.

NN e IRE

Reusable Publish €5V Package Export Import
Assets As.. ~ Control~ Package~ Package~

Model Exchange

The assets are stored in the Cloud and require a connection to be specified to a Pro Cloud Service model that has been set
up for this purpose. Typically, this task is performed by the infrastructure section of an IT department, and the details of
how to connect would be simply provided to the engineering team. This screen capture shows the details that are
required to make the Cloud-based connection.

Cloud Connection x

Mame:

Robotic Warehouse Engineering

Protocal: Senver. Port:

httpff - some-cCloud-location a0 -

Model Name:

robotic-warehousel

DK Cancel Help

Once a server has been set up it is possible to add any asset to it. Formally, the server is a registry and content is set to be
registered on the server.

(c) Sparx Systems 2022 Page 124 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Mew Storage x
Mame :
Type: Draft -

Storage Access Password
Complete Access :

Corfirn Pasgword :

Set this password to allow access to the Storage for registering,
retrieving and deleting packages.

Read-Onhy Access

Corfirn Password :

Set this password to restrict access to the Storage for retrieving
packages only.

QK Cancel Help

The Reusable Asset Server can be used to store information and modeling assets between projects, and is particularly
useful for storing information for reuse between projects or programs. When a project has delivered its value to the
business it is quite common for the project artifacts to be archived and effectively made inaccessible to other teams. The
Reusable Asset Server is a convenient place to store these artifacts so they can be reused by other teams. For example, a
project that has developed models for a new or upgraded hospital could store these valuable modeling artifacts in the
RAS and then any time another hospital is being worked on they could be reused, saving potentially thousands of hours
of work. This image shows the details of a Package registered within the RAS, including the version number, the Global

User Identifier and comments that will help an engineer browsing for reusable content find the assets they are looking
for.

Packaoge Details

Mame : Manage Cards
GUID : {E3B450D6-7187-4b2a-B280-E26 565696444}

Cument Version ;1.0

Comments :

Manage Cards

Motes :
This package is used to manage cards and can be used by other banking projects.|

Additional Files... Close Help

One of the key advantages of using this feature is that the RAS holds assets in a dependency tree, allowing a potential
user of the asset to understand the Packages that it depends on. This is an analogous mechanism used by software
installation programs that determine if a software item selected for installation depends on other items that are not

(c) Sparx Systems 2022 Page 125 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

present on the target machine, and if these items in turn have other dependencies. The Reusable Asset Service does this
work for the engineer and performs a traversal of the dependency graphs, allowing the user to understand what the
required asset depends on. This screen capture shows how dependencies can be managed in the RAS.

Packages to Reaqister

Package Status Latest Registrny Version Last Registered Cument Versi
Manage Cards Pending 1.0
4 2

Chechk Qﬁendenw -

For more information see the Reuseable Asset Service (RAS) Help topic.

(c) Sparx Systems 2022 Page 126 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/reuseable_asset_service.htm

Guide to MBSE with SysML 3 October, 2022

Using Packages to Structure the Repository

The Package is one of the most fundamental and important elements in the SysML. It functions as a container and,
viewed simply, it resembles a folder in your favorite file explorer software for your computer. So, in this way it is firstly
a container that groups together other elements, including other Packages, but we will learn in this topic that it also has
other important functions in Enterprise Architect.

4 [IHSUV Use Cases
22 Operational Use Cases
22 Top Level Use Cases
4 [JActors
% Department Of Motor Vehicles
% Driver
% Insurance Company
% Registered Owner
4 [Use Cases
@ Accelerate
@ Brake
@ Drive the vehicle
@ Idle

@ Insure the vehicle

T v

@ Maintain the vehicle
@ Operate the vehicle

[@ Park
@ Register the vehicle

[@ Start the vehicle

[@ Steer

b £ HSUV Viewpaint Methods
In a deeper sense a Package is a namespace that provides a way of uniquely identifying any element in a repository,

similar to the way URL works. The path shown here has been extracted automatically from Enterprise Architect; it
allows you to visualize the namespace.

SysML Example. HSUV Model. HSUV Use Cases.Use Cases.Drive the vehicle

Setting up the Package structure is an important and often dreaded task, but fortunately Enterprise Architect takes away a
lot of the anguish that newcomers (and experienced modelers) feel when approaching this task.

The next few topics will introduce you to best practice in setting up a Package structure, and to some of the additional
tools and facilities that will make working with Packages a lot easier.

(c) Sparx Systems 2022 Page 127 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

pkg [package] HSUV Model [HSUV Model Views] /

HSUV Views HSUV Viewpoints H5UV Viewpoint Methods

aview» «viewpoint» «activity»
Operational View Operational Viewpoint Requirements Query

(from HSUV Viewpoint
Methods)

«views «viewpaoint»
Performance View Performance Viewpoint

(c) Sparx Systems 2022 Page 128 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

The Function of Packages

In addition to the previous discussion Packages are an important element in the use of Enterprise Architect as they are
used as the basis for a number of facilities in the tool, including:

e Container for elements,

e Namespace Definition,

e Security,

e Version Control,

e Baselines,

e Importing and Exporting,
e Documentation,

e Auditing,

e Time Aware Modeling, and much more.

These things all have to be considered when deciding upon the structure of the Packages. Containership and namespace
are the most critical, but all the other functions must be kept in mind when deciding on an initial model structure or when
the model structure is being re-factored. It is often the case that some of the functions are not initially used and only
brought into play when the repository has gained a degree of maturity. This is often a trigger for the repository to be
reorganized, but fortunately - because of the ease of drag-and-drop - this can be done easily and effectively and is not a
time consuming exercise.

(c) Sparx Systems 2022 Page 129 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Introducing Package Diagrams

The Package diagram is a simple diagram that visually describes the structure of the repository including relationships
between Packages and other Packages and elements. Package diagrams appear quite simplistic with a small number of
elements:

e Model

e Model Library
e Package

e View

e View Point
e Stakeholder

These are connected by a series of relationships.

pkg [package] HSUV Model [HSUV Model Relations]/

Hybrid SUV Constraints «modelLibrary»
Sl Definitions
- - -
(from HSUV Analysis) ~o (from M/ \eling Domain)
- ~
~
N «conform»
~ ~ |
-
HSUV Requirements HSUV Specification | HSUV Structure

(from HSUV Requirements)

Again, the number of relationships is quite limited, but each has specific meaning in the diagram.

e Conform

e Dependency
e Import

e Containment
e Realization
e Refine

e Expose

As with all SysML elements, there is both a graphical and textual aspect to the elements, notes can be added to each of
the Packages and the relationships to clarify the purpose of the element or the connector. The Package diagram can

(c) Sparx Systems 2022 Page 130 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

contain any type of model element but typically it contains Packages. Enterprise Architect extends the SysML
specification by providing a number of different and innovative ways to visualize Packages and their content on a
Package diagram. These options can be seen in the menu that is displayed when a Package is dragged from the Browser
window onto a diagram.

Package element

Report Specification linked to package

Graph based on package contents

Matrix profile

Package as List

In this diagram we can see that the modeler has chosen the 'Package Element' option and has set the Compartment
Visibility of the Package diagram object to display the Package contents. The Compartment Visibility options are
available from a diagram object's context menu for any element, and Enterprise Architect dynamically changes the

options depending on the element type and the available compartments.

pkg [package] HSUV Package Overview [HSUV Requirements and Use Cases] /

HSUV Specification

Use Cases ‘

1]
1]
1]
]
1]
1]
1]
]
1]

+ Capacity

+ Eco-Friendliness

+ Ergonomics

+ Performance

+Power

+ PowerSourceManagement
+ Qualification

+Range

+RegenerativeBraking

(from HSUV Requirements)

(O +Start the vehicle
(O +Accelerate

(O +Brake

(O +Drive the vehicle
O +1dle

(O +Insure the vehicle
(O +Maintain the vehicle
(O +0perate the vehicle
O +Park

(O +Register the vehicle
(O +steer

(from HSUV Use Cases)

In the next diagram the engineer has chosen the 'Package as List' option, which relies upon auto-generated but
user-configurable SQL code to create a dynamic list of elements based on any of the Package element's metadata. Here
we see the same list of requirements but this time a number of properties are also displayed.

(c) Sparx Systems 2022

Page 131 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

pkg [package] HSUV Package Overview [HSUV Reguirements List] /
List of Elements in Package HSUV Specification
NAME TYPE STATUS

E Decomposition of Performance Requirement Class Proposed
E Tree of Performance Requirements Class Proposed
V] Acceleration Requirement Validated
Braking Requirement Implemented
Capacity Requirement Proposed
CargoCapacity Requirement Proposed
Eco-Friendliness Requirement Proposed
Emissions Requirement Proposed
Ergonomics Requirement Proposed
FuelCapacity Requirement Approved
M# FuelFranamu Rennirement Walidater
Showing 1 - 10 of 20 items

Any number of Package diagrams can be created to define or help visualize the structure of the repository. For more
information see the Package Diagram Help topic.

Creating Package Diagrams

A Package diagram can be created from a number of places in the User Interface, by selecting:
e Design ribbon - Add icon on the Diagram panel

e Browser window toolbar - New Diagram icon

e Browser window context menu - Add Diagram

The access options will all display the same dialog, they are simply different entry points to the same tool features. We
will use the Design ribbon to create a Package diagram.

Firstly select the location in the Browser window where you want the Package diagram to be located. This can be either a
Package or an element, but it is common to insert Package diagrams into a Package. Once the Package location has been
selected in the Browser window, select the ribbon option:

Design > Diagram > Add Diagram

Toolbox Add Manage WViews Options
Diagram W W ~

Diagram

Selecting this option will open the New Diagram dialog, on which you name the diagram; the name initially defaults to
the name of the Package or element that contains the diagram. With the SysML perspective chosen and the version of
SysML selected, a list of diagrams will be displayed from which you select the Package diagram. Click on the OK button
to create a new Package diagram in the location selected in the Browser window. The Diagram View will be opened,
allowing you to start adding elements and connectors that describe the structure of the system and its division into these
structural groups. Enterprise Architect will also display the "Package' Toolbox pages that contain the elements and
relationships as defined by the SysML specification to be applicable for constructing Package diagrams. Any number of
other Toolbox pages can be opened, if required, in addition to the 'Common' elements and 'Common Relationships' pages
that will always be available.

(c) Sparx Systems 2022 Page 132 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/packagediagram.htm

Guide to MBSE with SysML 3 October, 2022

Toolbox v R ox
Search PP =
SysML Model
B Model

B Model Library
B3 Package
B view
B view Point
& stakeholder
SysML Model Relationships
A Conform
Dependency
Impaort
A Containment
Realization
= Refine

e Expose

SysML Common
The most import elements and connectors that are used with the Package diagram are:
Elements
e Model - used to define a high level part of the system
e Model Library - used to define a reusable set of elements
e Package - used to create a basic structural unit
e View - used to define what a stakeholder will see when viewing
e Viewpoint - used to define a reference point for a view

e Stakeholder - used to describe people or parties with material interest

Connectors

e Conform

e Dependency
e Import

e Containment
e Realization
e Refine

e Expose

Elements can be added to the diagram by dragging-and-dropping them from the Toolbox onto the Diagram View. It is
considered good practice to start by defining Model and Model Libraries. When a Model or Model Library icon is
dragged from the Toolbox to a diagram, the modeler will be prompted to enter a new Package name using this dialog:

(c) Sparx Systems 2022 Page 133 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Enter Value: |

DK Cancel

Once the Package name has been entered a new Package element will be created on the diagram. When creating a
Package from the Toolbox or inserting one into the Browser window, a modeler is given a number of options as
indicated on the dialog in this screen capture.

Cwner: Seismographic System

Mame: Earthquake Analyzer | -

Initial Content:

Select and Apply Model Pattern
Create Diagram

* Package Only

DK Cancel Help

As described earlier, when an existing Package is dragged from the Browser window (or copied from an existing
diagram) Enterprise Architect allows you to create it in a number of different ways, as indicated in this screen capture:

Package element h
Report Specification linked to package
Graph based on package contents
Matrix profile

Package as List

(c) Sparx Systems 2022 Page 134 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Package Organization Regimes

As suggested earlier, the librarians, administrators or engineers involved with the set up of the repository can find
themselves conflicted about which direction to take because there is a wide range of organizing principles that can be
used to structure the contents of the repository. Some of these are:

e A Breakdown structure - Systems | Subsystems | Components | Parts

e Engineering Teams, working on different aspects of a system - Team One | Team Two
e Programs of work and Projects - Program One | Project One, Project Two

e Divisions within a method - Architecture | Requirements | Design

e Security and Access Control

e FEase of Navigation

Any one or any combination of these principles can be used to structure the repository, and they can be changed over
time to suit the evolution of the engineering practice and the model usage and experience of the users. Possibly the most
difficult of these principles is the need to make the repository friendly to its inhabitants, to ensure ease of navigation so
that they can easily find what they are looking for. Enterprise Architect has some useful facilities to reduce this tension,
allowing other mechanisms to be used for navigation and freeing the repository design to develop based on a number of
the other more important principles. Some of these tool features are listed here.

Model Views

Provide a flexible and effective mechanism allowing an engineer or team to create any view of the model that they find
useful. Using this facility removes the need for modelers and engineers to access the Browser window, as they can locate
the elements of interest through the Model Views window.

Model Views o x
F HE @RS v Y X@
G Working Sets
4 [Model Views
4 [%] Components
#z| Externally Developed
2z| Internally Developed
4 [2]Requirements
[- [#%] Conflicting Stakeholder Concerns
[: [l Incomplete and Critical
A g My Views
4 ["]Work in Progress
[= %Unresnlued Faults
[ﬁﬂecent Team Reviews

N

For example, views can be created based on a search that returns elements from any part of the repository; an engineer
could define a view that returned all requirements that were high priority, with the status 'Approved' and flagged as
'Difficult', regardless of which project they were part of or where in the Package hierarchy they were located.
Alternatively, a modeler might just cherry-pick particular elements and diagrams of importance to them and include them
in a Favorites View, or create a view based on newly created Components. This facility provides a highly flexible
mechanism for accessing the important parts of the repository, and views can be created at modeler or team level. We

(c) Sparx Systems 2022 Page 135 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

will return to the Model Views facility in a later topic, as it is an extremely useful part of the tool.

Diagram Navigation Cells

Enterprise Architect has made it easy for users to navigate through a repository by providing a diagram mechanism to
hyperlink to any diagram in the repository.

Retail Self Checkout Project- Home

(50) G0)
Stakeholder \E-E/ Interfaces \E_EE/

Requirements

7

(50) G0)
Components \E-E/ Measures of \E_EE/

Effectiveness

Y VA

This allows librarians and even modelers themselves to create any number of diagrams that act as launch pads that will
take a viewer to diagrams of interest, effectively shielding them from needing to know how the repository is structured.
These diagrams are viewable through the Internet browser and Cloud products, and provide a compelling experience for
casual users and non-modelers.

Search Facility

This is a power feature that provides built-in and user defined searches to retrieve a list of elements or diagrams that meet
a specified set of criteria. The amount of information contained in a repository can grow exponentially as more people
contribute to the models and information is imported from external sources such as Risks, Policies, Rules, Principles and
more. There is a rich and useful set of searches that are defined as part of the product and in many circumstances one of
these built-in searches will suffice for a modeler or engineer to locate the elements or diagrams they are looking for.
These searches can be parameter driven providing a mechanism to reuse a search to find a variety of elements. For
example a search could be written that has a user input parameter of Status allowing users to input a status, for example
'Proposed' at the time the search is run.

(c) Sparx Systems 2022 Page 136 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

« Find in Project

Discussions & Recently Discussed Elements =

Drag a column header here to group by that|Recently Discussed Elements

Recent Element Posts
L] Object Type Stereotype e

Recently Modified Reviews

Recently Discussed Reviews

Open Reviews

Searches can be created by non-technical staff using the intuitive Query Builder but there are also a number of other
ways that searches can be created including SQL based queries that do require knowledge of the database tables and
Add-in queries that require a technical person to create a program that defines the search. These searches can be used by

a number of other facilities including, as discussed earlier, Model Views.

(c) Sparx Systems 2022 Page 137 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

The Browser Window

The Browser window is the primary tool for structuring and navigating the repository, using expanding and collapsing
tree nodes. The key structural element is the Package, which is a folder-like element that can contain other elements and
diagrams, including other Packages. The elements in turn can contain other elements, features and diagrams, but not
Packages.

Browser v & X
F1oa + 4+ 8 =- b
Project | Context Diagram Element
4 1 H5UV Model -
B HSUV Madel

£ HSUV Model Relations

EF HSUV Model Viewpoints

B HSUV Model Viewpoints Two
Er HSUV Model Views

£ «ModelLibrary» Automotive Value Types
1 HSUV Analysis

£1 HSUV Behavior

1 HsUV MOEs

3 Hsuv Requirements

1 HSUV Structure

3 HSUV Use Cases

L= -
T2 Operational Use Cases

b v — & W v w7

s Top Level Use Cases
[7 Actors
4 B Use Cases
[+ ' Start the vehicle
b Accelerate
[' Brake
r = Drive the vehicle
B Idle

Root nodes are the highest nodes in the tree; these root Packages can contain Views that in turn can contain any level of
Packages and elements. Tree nodes including Packages, elements, Features and diagrams can be copied and pasted
between locations, or dragged and dropped to new locations. Many important tools, functions and windows are applied at
the level of the Package, such as import or export of model content, documentation and Package Control, including
Baselines. For more information see the The Browser Window topic.

Context Diagram and Element Browsers

Enterprise Architect provides a number of additional browsers that help an engineer or modeler to focus on a subset of
the repository content. These browsers can be selected as tabs from the main Browser window.

The Context Browser provides a filtered view just of a particular branch of the model, to work on just the section of the
repository that is relevant at a particular time. This spotlight view takes away the noise and complexity of the Project

(c) Sparx Systems 2022 Page 138 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/projectexplorer.htm

Guide to MBSE with SysML 3 October, 2022

view and shows just the part of the model of interest, allowing the engineer to view it in isolation.

Browser v & x
i o S R)
Project | Context | Diagram Element

£1iHSUV Use Cases!
+

L Operational Use Cases
12 Top Level Use Cases
£ Actors

£ Use Cases

In our example, the modeler wants to focus his attention on the Use Case Package. Using the B button you can move
back up the tree, or by clicking on a Package or element that contains other elements these can be displayed, but the view
always remains at a single level of hierarchy.

The Diagram Browser lists the objects present on the active diagram. Each object's connectors can also be displayed,
making this a valuable view of the diagram.

Browser v 1 x
ot oty L=)
Project Context | Diagram | Element

Diagram Items

£ HSUV Use Cases

4 3 Driver
= Association to Drive the vehicle
= Association to Park

A T Accelerate
4= UseCase from Drive the vehicle

[= Brake

[* < Drive the vehicle

[+ < Park

[- < Start the vehicle

[= Steer

The Element Browser displays information about the currently selected element. This provides a way of visualizing all of
the elements relationships, scenarios, requirement, features and much more.

(c) Sparx Systems 2022 Page 139 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Browser v I X
e+t 8 =- b

Project Context Diagram | Element

= Start the vehicle ¢
4 | Relationships
n"h LseCase:Drive the vehicle [UseCase]
'® Operations
B Attributes
B Linked Features
'® Requirements
B Constraints

4 @ Scenarios

% The Driver users the remote control for keyless entry.
= The system checks the signal and opens the doors.
% The Driver enters the vehicle and inserts the key to the
'® Files
B Testing
B Resources
® Project
B Maintenance
4 '8 Discussions
[Does this incorporate the new retinal recognition system?
™ When can we expect the status of this Use Case to be
B Integration

(c) Sparx Systems 2022 Page 140 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Accessing the Repository using Model Views

Model Views provide alternative views of the elements in the Repository. Whereas the Browser window is designed to
organize the Packages and elements structurally, the Model Views facility allows the modeler to create a number of
views that can group elements and diagrams differently. This is a handy facility that can be used by individuals and
engineering teams to see the repository contents in any number of proprietary views designed to present only the
information that is important or relevant. It effectively allows you to create windows through which to view the
repository in unique and compelling ways that will provide insight and clarity, allowing the modeler to see things that
might not have been possible using the Browser window.

Model Views m
B OER O e S +34 xX@
@Wnrking Sets
4 [Model Views
4 [*]Requirements
4 [#z] Conflicting Stakeholder Concerns
«requirement» Short Battery Recharge Time
«requirement= Smallest Possible Size
srequirement» Long Battery Life
L My Views
[ﬁﬂecentTeam Reviews

The views can be based on a wide range of criteria, including Favorites folders containing hand picked items of interest,
and folders based on a search such as 'all elements created last week that have a status of Proposed' or 'all Components
provided by a particular engineering supplier'. For more information see the Model Views Help topic.

(c) Sparx Systems 2022 Page 141 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/tools_ea_model_views.htm

Guide to MBSE with SysML 3 October, 2022

Requirement Definition and Management

The field of Requirement Engineering is one of the most critical disciplines in the solution development lifecycle, and it
has a documented impact on the success of projects. In the words of the renowned Twentieth Century physicist, Albert
Einstein:

'If you define a problem carefully enough the solution will jump out at you.'

Enterprise Architect has an unparalleled range of tools for developing, managing, visualizing and documenting
requirements, including tools to import or integrate and synchronize with external requirement management systems.

» Specification Manager: Package: "HSWV Specification" [Reguirement]
o € SysML Example Model b SysML 1.5 » Modeling Domain » HSUW Model » HSWW Requirements b HSLWV Specification Find Package
Requirement Stereotype Status Difficu... Priority
Capacity requirement Proposed Medium Medium
CargoCapacit}(reguirement Froposed Medium Medium

The system will have a Cargo Capacity: Seats folded down of 2 cubic
metres (70 cubic feet) and with the seats folded up 1 cubic metre (36
cubic feet). Cargo capacity sometimes also referred to as Cargo volume s
the total volume (measured in cubic metres or feet) of space in a car's
cargo area. In SUVs, minivans and hatchbacks, there are two operational
contexts that must be considered requiring two distinct values: Cargo
Capacity Seats Up and Cargo Capacity seats folded down.

IE Fl.,lel(:apal::il:)lr requirement Proposed Medium Medium

The system will have two separate fuel tanks one will be the main fuel
storage and will have a capacity of 80 liters (approx. 21.1 US Gallons) and
areserve fuel tank with a storage of 10 Ljtres (approx. 2.6 US Gallons).
Both tanks will be fitted with gauges capable of reporting fuel levels to a
3% accuracy and the volumes value in terms of percentage of tank and
number of kilometres (or miles) will be capable of being displayed on the
dashboard. Fuel (Tank) Capacity is the volume of fuel that can be stored in
the fuel tank system of the Hybrid SUV.

PassengerCapacity requirement Proposed Medium Medium

These tools implement all aspects of requirements that are defined in the SysML specification, but the tool features go far
beyond this to create a sophisticated requirements platform replete with tools for all disciplines associated with the
management and definition of requirements. Not only are the tools useful for those engineers or managers working
directly with requirements, but there is a range of facilities such as the Traceability window that will assist any
discipline, and that can be used by the Architecture and Design Teams who are responsible for ensuring the requirements
are built into the designs, and consequently implemented into the delivered product or service. For more information see
the The Requirements Model Help topic.

Developing Requirements

Requirement Development consists of all the activities and tasks associated with discovering, evaluating, recording,
documenting and validating the requirements for a particular project. Requirements are discovered, analyzed, specified
and verified. Enterprise Architect has a wide range of tools and features to assist the Systems Engineer as they develop
requirements. The centerpiece for Requirement Development is the Specification Manager, through which the Engineer
can enter, view and manage requirements in textual form as if in a spreadsheet or document. Requirement properties such
as Status, Priority and Author can be edited in-line, and filters can be applied to restrict the display to particular
requirements.

(c) Sparx Systems 2022 Page 142 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/requirements_engineering.htm

Guide to MBSE with SysML 3 October, 2022

« Specification Manager: Package: "Physical Requirements" [Requirement] > X
o b [b SysML Assets b Car Park Boom Gate F Requirements P Physical Requirements Find Package ,O
ltem SysML1.4:text Status =

Operational VlSl bl | |ty The boom must be visible in all operating Approved

conditions including weather events such as
fog and low light conditions such as at night.

Fog and Rain Visibility The boom must be visible in any weather Validated
conditions including Fog and Rain and there
must be enocugh time in these conditions for
a driver to stop at the control unit.

Low Light Visibility The boom must be visible in low light Proposed -
conditions including night and shadows and [Approved “

there must be enough time in these
conditions for a driver to stop at the control |Mandatory =

. Froposed
unit. \alidated - |
Vehicle He|g ht The boom must allow tall vehicles such as Approved

trucks or pantechs to enter and exit the
carpark without restriction.

Add New |»

Item

1 REQO19 - Manage Inventory

The system MUST include a complete inventory management facility to
store and track stock of books for the on-line bookstore.

1.1 REQ122 - Inventory Reports

Inventory reports are required that detail the available stock for each
item including back orders. Future stock level reports should be able
to predict the quantity of stock at a specified future date.

1.2 REQOD23 - Store and Manage Books

A book storage and management facility will be required.

1.2.1 REQOD22 - Order Books

A book order facility will be required to allow on-line ordering
from major stockist's.

1.2.2 REQO21 - List Stock Levels

A facility will exist to list current stock levels and to manually
update stock quantities if physical checking reveals
inconsistencies.

The Specification Manager can be used in conjunction with a platform of other tools such as diagrams, the Traceability
window and the Discussions facility.

(c) Sparx Systems 2022 Page 143 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

req [package] HSUV Requirements [Acceleration Requirement Refinement and Verificatioy

«reguirements
Acceleration

- - ~
-
P A -
wrefines

~
- «deriveReqgty wverify»
- el -
-
I -
-
1 -~

~

«requirement» wtestCasen
Power Max Acceleration

N

Accelerate

I
wsatisfy»
|

i

«block»
PowerSubsystem

Managing Requirements

This consists of the activities to maintain a set of requirements that represent an accord or agreement between the project
team and the customer. It also has a focus on ensuring that the requirements are acceptable to the Design and
Development teams, and that they are sufficiently specific to be implemented into working business, software or
hardware systems. Enterprise Architect is a sophisticated platform for managing requirements, and regardless of the
domain, the size of the project or the method being followed, Enterprise Architect provides tools that make it easy to
manage the largest of requirement repositories in complex projects.

N
Elements by Status ()
This diagram shows a Bar
12 Chart element depicting
element status for all the
10 reguirements in a selected
B Approved package. It provides a
useful summary fora
Requirements M anager
6 - B In Progress andis dynamically updated

when the status changes
B Mandatory andthe diagram is

4 4 T
[Proposed recpened. There area
2 B Validated range of other pre-defined
charts and user defined
0 - i charts can also be added.
| T I I T

Approved In Progress Proposed

o
1

B Implemented

3

Requirement Relationships

There is a rich set of requirement relationships that allow the Requirement elements to be connected to other modeling
elements including other Requirements. The relationships include:

e Containment

e Trace

(c) Sparx Systems 2022 Page 144 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

We will explore these relationships fully in the body of this topic.

Copy

Derive
Verify
Refine
Satisfy

Visualizing Requirements

3 October, 2022

The visualization of requirements is an important aspect of the requirements process as it is critical that the catalogue of
requirements can be viewed by all stakeholders as they are specified, analyzed, developed and managed. The
requirements represent an engineer's interpretation of the discussions, observations and articulations made by
stakeholders concerning the problem or opportunity at hand. Enterprise Architect has a wide range of mechanisms not
only to present these requirements to the stakeholder community but also to allow the requirements to be discussed,
reviewed and curated.

Discus

Journal

= startt

s & Review

Discuss Review

he vehicle

When can we expect the status
of this Use Case 1o be changed

o

‘srcepted’ as the analysis teams
are wanting to progress with it?

Kan Mialsar 3040018 © 0 Reglies

Dioes this incorporate the new
retinal recognition system?

£

Greg Nichols 3/04/2018 : 1 Reply

2 Last renly by Karm Mislsan
3049018

Documenting Requirements

There are a number of documents that are commonly produced as part of the requirements engineering discipline such as
the System Requirements Specification and Use Case Reports and these can be generated automatically from a
requirements model using built-in templates or user defined templates. In addition a wide range of other documents can
be produced using built-in or customized templates.

(c) Sparx Systems 2022

Page 145 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

System Requirements
Specification

Hybrid Suv Project

Version 1.0 e Proposed

There is also the possibility of viewing the models in a web browser on a portable device such as a phone or tablet or a
PC. This facility is available as part of the Pro Cloud Server product and provides an alternative to producing static
documentation and allows an engineering team to communicate and collaborate with an extended audience outside the
modeling environment without the need for any software installation or configuration.

(c) Sparx Systems 2022 Page 146 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Requirements as First Class Citizens

Enterprise Architect provides a wide range of facilities that can be used for the development, visualization, management
and documentation of Requirements as first class elements. People reading general SysML textbooks will often come
away with the idea that Requirements are expressed on diagrams, but Enterprise Architect provides a wide range of other
ways to visualize Requirements that will assist the engineer when working with them as text based elements, including
being able to visualize them in a hierarchy in the Browser window.

4 [HSUV Requirements
Tz Acceleration Requirement Refinement and Verification
T HSUV Specification
i Requirement Derivation
4 [CIHSUV Specification
| «requirements Capacity
srequirement» CargoCapacity
wrequirement» FuelCapacity
«requirements PassengerCapacity
I Ul wrequirements Eco-Friendliness
[+ Ll «requirements Ergonomics
[Wl wrequirement= Performance
] wrequirements Power
<] wrequirement» PowerSourceManagement
[+ L wrequirements Qualification
<] wrequirement» Range

[-] «requirement= RegenerativeBraking

Requirements can be created as part of a specification or tender, or form part of a contractual document, in which case
they can be easily imported into Enterprise Architect. However, it is more common for them to be developed as part of
an elicitation effort typically conducted with workshops and reviews. Enterprise Architect has a number of features that
can be used to record the proceeds of these meetings, such as Mind Map diagrams. Once the workshops have been
completed, the ideas recorded in these meetings can be converted to Requirements or mapped to the meeting elements in
a way that allows them to be developed collaboratively.

The Requirements often form part of a contractual relationship between organizations, or an agreement between different
sections of the same organization, and as such need to be maintained and managed with rigor. Enterprise Architect
provides a wide range of facilities to assist with this rigor, including Baselines, Audit tools, Version Control and more.

(c) Sparx Systems 2022 Page 147 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Comparing package Manage Inventory against baseline wersion 3.2
EY Baseline Comparison =
T bt hRkBRFEET@
Meodel Elements Status

-1] Manage Inventany
= wFunctional» REQDTS - Manage Inventory
=1 [E Links
= /" Realization
IIT Target: («Functionals REQD1S - Manage Inventony) Changed
eFunctional» REQDZ0 - Receive tems Changed
eFunctionals REQDZT - List Stock Levels Changed

Requirements Auditing

Auditing can be turned on in a model and can track the details of a requirement change, including when it was changed,
who changed it and the delta - before and after the change. Auditing can be used to track what was changed in a model,
who changed it and when. There are a number of modes and a repository administrator can use the settings to specify
what is recorded in the audit. While a Baseline can be used to show the difference between a model and a snapshot at a
point in time, the Auditing tool records each individual change; it cannot, however, be used to revert to a previous state
(the Baseline tool would be used if that was required).

Audit View o x
User smaguire Load Sort By))
Time 2018-08-15 12:02:07 <) Type Filter By Date/Time
Deta... Requirement.(«physicalRequirements Audit Settings Search User Displaying sets of audit da

Vehicle Height)
Mode - Help

[£ Audit Settings Property Original Change
4 [IRequirement Elements LI SITIE VIO
4 [FuphysicalRequirements Vehicle Height
[ElementTags
v 2018-08-15 11:59:40
2018-08-15 11:59:40

2018-08-15 12:02:07

This is a particularly useful feature in Systems Engineering, where there are regulatory or compliance aspects to a
process or when faults have to be traced back to their design or requirement specification. Auditing would typically be
set up and administered by a librarian or administration function within the team. Auditing can be enabled, set up and
viewed using the ribbon option 'Settings > Model > Auditing'.

Auditing is by default disabled and must be enabled (turned on) before the system will start to keep an audit log. This,
along with a range of other options, is available from the Audit Settings window.

(c) Sparx Systems 2022 Page 148 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

x
Audit Settings

3 October, 2022

| Enable Auditing Auditing Level
Core
Auadit #MI [mport # Standard
Audit #h| Export E stended
.-“-‘-.udit He*_werse Diebug
Engineering Sadit Options
Uze Databaze]
Timestarmp Maintenance
Core Structural
Clear Logz o A
Cuazt
Save Logs s
Load Logz
Cancel Help

For more information see the Auditing Help topic.

Requirements Baselines

Baselines are user initiated snapshots of a Package in a model. The Baseline effectively makes a copy of a branch of the
Package hierarchy and its contents. At a subsequent point in time, the model can be compared with the Baseline and, if
the model has changed, these changes will be presented in a visualization tool, allowing a user to view each part of the
model that has changed, including the content that exists in the Baseline and the model. It is then possible to inject the
contents from the Baseline into the model at the level of a discrete change.

« Comparing package Stakeholder against baseline version 2.3.5 r X

T bt RRERBET@

Model Elements Status Property Model Baseline
A Itl Stakeholder Abstract false false

«physicalRequirement» All Visibility Operation Changed filas

1 «physicalRequirement= Vehicle Height Changed i pratlEnE e paulEnEcan

Y a g g Date 15/08/2018 12:26:50 PM 15/08/2018 12:26:50 PM
Date 15/08/2018 12:30:20 PM 15/08/2012 12:26:50 PM
Complexity 2 1
Filename
Language =none= =none=
IsLeaf false false
IsSpec false false
IsRoot false false
Keywords
Multiplicity
Name All Visibility Operation All Visibility Operation
Notes
Parent Stakeholder Stakeholder
Persistence
Phase 1.0 10
Scope Public Public
Status Approved Proposed
Stereotype physicalRequirement physicalRequirement
Type Requirement Requirement
Version 12 10
Classifier
Visibility
Concurrency
Cardinality
Style

Baselines provide a convenient way for Systems Engineering teams to ensure that models are evolving the right way, and
when a model direction needs to be reverted to a previous version they can be used to reinstate atomic parts of the model.
Baselines can be set up and viewed by pressing Ctrl+Alt+B or from the ribbon location:

Ribbon: Design > Package > Manage > Manage Baselines

(c) Sparx Systems 2022 Page 149 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/tools_ba_auditing.htm

Guide to MBSE with SysML 3 October, 2022

As discussed previously, Baselines are user initiated and are stored inside the repository, so if the repository is copied the
Baselines would be copied as well. It is quite common for most users to be given permission to create Baselines, but the
ability to restore from a Baseline is typically reserved for a librarian or administration role. For more information see the
Baseline Tool Help topic.

Version Control

Version Control allows Packages within a model to be versioned. To commence work on a part of the model, a user is
required to check out a Package (including its sub-Packages) and then to work on a local copy. When the work is
complete or at any point a user can check in the Package allowing the changes to be seen by other model users.

Version Control provides a sophisticated and robust way of working with models, and in contrast to Baselines does not
require a user to initiate a version other than to check-out the Package. The system is automatically creating a version in
the background as the work is done and changes are being made. Version Control can be set up and viewed from these
ribbon options.

Settings > Version Control > Project-VC, Package-VC

Version Control provides an effective mechanism for managing model content and allows a user or a team to keep
fine-grained control over the way a Package and its content change over time. For more information see the Version
Control of Model Data Help topic.

(c) Sparx Systems 2022 Page 150 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/tools_ba_baseline_tool.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/applying_version_control_to_en.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/applying_version_control_to_en.htm

Guide to MBSE with SysML 3 October, 2022

Introducing Requirement Diagrams

A Requirement diagram provides a way of visualizing Requirements and their connections. It is not just the relationship
between any two Requirements, but the relationships between Requirements and other types of element such as Use
Case, Activity and Block that can be visualized on these diagrams. Two of the elements provided in the Toolbox are:

e Requirement
e Test Case

These elements can be connected to each other, or to other elements, creating rich expressions.

bdd [package] Production Line [Robots in Manufactu ringy

«hlock»
Production Line

Automated
Assembly Unit

‘ «block»

parts
: Automated Assembly Unit

grequirement» 00 | oo oo oo =
Automation wsatisfy»

id ="7085"

text = "The system must use robots to
automate tasks that are beyond human
capabilities of accuracy, enduance, speed,
size, weight and that potentially must be
carried out in hazardous environments."

Spot Weld Body Robot
(from Requirements) whlock»

In this diagram we see a Requirement that has been connected to a Block using a Satisfy relationship, which describes
how other elements will ensure that the Requirement's intent is met. The Block has an alternative image defined, this
being the image of a robot.

Again, the number of relationships is quite limited, but each has specific meaning in the diagram.

e Containment

e Trace
e Copy
e Derive
e Verify
e Refine
e Satisfy

As with all SysML elements, there is both a graphical and a textual aspect to the elements. The Requirement has two
properties defined:

e id - a unique identifier for the Requirement

(c) Sparx Systems 2022 Page 151 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

e Text - a textual description of the Requirement

Any number of Requirement diagrams can be created to describe the needs and concerns of stakeholders and others. For
more information see the SysML Requirements Modeling topic.

Creating Requirement Diagrams

A Requirement diagram can be created from a number of places in the User Interface, such as:
e Design ribbon - 'Add Diagram' icon on the 'Diagram' panel

e Browser window Toolbar - New Diagram' icon

e Browser window context menu - 'Add Diagram' option

We will use the Design ribbon to create a Requirement diagram. Firstly, select the location in the Browser window where
you want the Requirement diagram to be created. As with all diagrams, this can be either a Package or an element, but it
is common to insert Requirement diagrams into a Package. Once the Package location has been selected in the Browser
window, click on the ribbon option 'Design > Diagram > Add Diagram'.

Toolbox Add Manage Views Options
Diagram w w ~

Diagram

This option opens the 'New Diagram' dialog, allowing you to re-name the diagram - the name initially defaults to the
name of the Package or element that contains the diagram. When you select the SysML Perspective and the version of
SysML, a list of diagrams will be displayed, allowing you to select the Requirement diagram. You click on the OK
button to create a new Requirement diagram in the specified location in the Browser window. The Diagram View will be
opened, allowing you to start adding elements and connectors that describe the Requirements and their relationships.
Enterprise Architect will also display the 'Requirements' page of the Toolbox, which contains the elements and
relationships defined by the SysML specification to be applicable for constructing Requirement diagrams. Any number
of other Toolbox pages can be opened as required, in addition to the 'Common' elements and 'Common Relationships'
Toolbox pages that are displayed by default.

Fackage: | Introducing Requirement Diagrams Parent : | Introducing Requirement Diagrams
Diagram . Introducing Requiremnent Diagramms Auto
Type
GpshL * | Diagrarn Types:
Je)
Select Fram:
go b Activity

i B3 BlockDefinition

I B InternalBlack
7 Package

I [Parametric

[> g Requirement

DEE Sequence

[» [Eg] Statefachine

232 UseCase

2] SysML 1.5 |

SwsML Requirernents Diagrams specify text-based requirements, and their relationship with
other model elements that satisfy or werify them,

Cancel Help

(c) Sparx Systems 2022 Page 152 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/create_a_requirements_model.htm

Guide to MBSE with SysML 3 October, 2022

Type
Select From: = Diagram Types:
R Fe
(2] SysML 15 [» 1 Activity

[> Ta Block Definition
ﬁ Internal Block
Package
ﬁ Parametric
> T= Requirement
TE Sequence
[> [F§ State Machine

i %% Use Case

SysML Use Case Diagrams capture the behavioral requirements of a system using use
case elements, and their interaction with participant actors.

The most important elements and connectors used with the Requirement diagram are:

Elements

Requirement - used to define a Requirement

e Test Case - used to describe a Test

Connectors

e Containment - used to provide additional information that helps clarify the Requirement

e Trace - used to connect a Requirement to any other modeling element

e Copy - used to show that one Requirement is a copy of another

e Derive - used to describe the fact that one Requirement is based on or is an extension or derivation of another
Requirement

e Verify - used to indicate that a Requirement has been fulfilled

e Refine - used to add refinement or additional information that helps clarify the Requirement

e Satisfy - used to show that one or more model elements in the architecture or design fulfills the notion expressed in

the Requirement

Requirement Extensions

Extended Requirement - used for extended Requirements

Functional Requirement - used for Requirements related to function

Interface Requirement - used for Requirements related to Interfaces

Performance Requirement - used for Requirements related to performance

Physical Requirement - used for Requirements related to physical aspects of a system

Design Requirement - used for Requirements related to design

(c) Sparx Systems 2022 Page 153 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Toolbox v 1 ox
Search o ,D

SysML Reguirements

1=

Requirement

(A Test Case

SysML Regquirement Relationships -
A Containment TDDIbDK r i x
A —
< Trace Search 2L =
m

<" Copy SysML Use Cases

" Derive

= % Actaor

= Werify

T et > Use Case

= Refine

- Boundary

- Satisfy

SysML Use Case Relationships
SysML Requirement Extensions

/ Communication Path
/' Generalize

A Include

= Eﬁ Extend

Extended Requirement

Functional Requirement

Interface Requirement

Performance Requirement
Physical Requirement SysML Patterns
Design Constraint ¥3 Basic Use Case

Elements can be added to the diagram by dragging-and-dropping them from the Toolbox into the Diagram View.
Relationships can be created by first selecting the required relationship in the toolbox and then dragging-and-dropping
between a source and target element. It is common not to create Requirement diagrams that simply list the Requirements
but rather to create diagrams that show the relationships between any two Requirements or the relationships the
Requirements have with other elements such as Use Cases, Activities and Blocks.

(c) Sparx Systems 2022 Page 154 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Developing Requirements

Requirement Development includes all the activities and tasks associated with discovering, evaluating, recording,
documenting and validating the requirements for a particular project or program of work. Requirements are discovered,
analyzed, specified and verified, and Enterprise Architect has a wide range of tools and features to assist the Systems
Engineer as they develop requirements. The centerpiece for Requirement Development is the Specification Manager,
allowing the Requirement Engineer to enter, view and manage requirements in textual form in a spreadsheet format.

« Specification Manager: Package: "Physical Requirements" [Requirement] ¥y X
a b [¥ SysML Assets P Car Park Boom Gate P Requirements P Physical Requirements Find Package ,O
Item SysML1 4:text Status =

Operational VISI bi I |ty The boom must be visible in all operating Approved

conditions including weather events such as
fog and low light conditions such as at night.

Fog and Rain Visibility The boom must be visible in any weather Validated
conditions including Fog and Rain and there
must be enough time in these conditions for
a driver to stop at the control unit.

Low Light Visibility The boom must be visible in low light Proposed -
conditions including night and shadows and [Approved -

there must be enough time in these
conditions for a driver to stop at the control |Mandatory -

; Proposed
| unit. Validated d |
Veh icle He|g ht The boom must allow tall vehicles such as Approved

trucks ar pantechs to enter and exit the
carpark without restriction.

Add New |w

The Specification Manager can be used in conjunction with a platform of other tools, such as diagrams, the Traceability
window and the Discussions facility. These windows provide other views of the requirements, giving the modeler and
the viewer a deep understanding of how a requirement relates to other parts of the repository, and providing detail not
visible through the Specification Manager.

(c) Sparx Systems 2022 Page 155 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Traceability
¢ B E -
4 [PowerSourceManagement
4 ¥ needed by
A H5UVOperationalStates
| ﬁembeds
[- ©Operate
[©Off
[= owns
[» —* owned by
[: -t depends on
4 —¥depends on
> L« Power
4 A FuelEconomy
4 =* owned by
I £l Performance
4 ¥ needed by
I» [zl RegenerativeBraking
[IzRange

[PowerSourceManagement

(c) Sparx Systems 2022 Page 156 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Elicitation

Elicitation is the process of information discovery, the information gleaned from this process will form the precursors to
requirements. The information will typically be raw and often heterogeneous, and it will not be until the requirements
analysis phase is performed that true requirements will be able to be derived from it. Elicitation will take many forms,
and all of the skills of the requirements engineer will be needed to determine which documents, machines, tools, people
and processes to examine to discover the information.

(c) Sparx Systems 2022 Page 157 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Document Sources

Requirements can often be sourced from a wide range of locations, including documents such as a:
e Business Case

e Concept of Operation

e Requirement Specifications (of an Existing System)

e User Manual

e Standards Document

e Policy Document

e Regulatory or Compliance Document

While all of these documents can be developed in Enterprise Architect using the Document Artifact facility, they are
typically developed in other tools and live outside the repository. They can be dragged onto a diagram and either
imported into the repository or saved as a reference or surrogate for the external document.

req [package] Documents [DucumentAnalysisV

Stakeholder Workshop Minutes

Occupational Health and Safety
Boom Gate Instruction Manual ‘ Policy

_____________ Boom Operation

Managed and maintained by the
atracen Workshop

corporate office in compliance with
Federal and State Government Laws.

The Boom Gate Instruction Manual is a
PDF document that was written at the
time the existing system was
implemented.

)

I
wiracen»

Access Control

«requirements

Concept of Operation Carpark 2 Remote Control of Access List

Management System

id ="3078"

text ="The system must allow the
permitted vehciles Control List to be
managed remotely including assigning
temporay access to guest vehicles.”

This CONOPS document was
developed by the Senior Engineering =--- wtracen
team and describes the complete

overhaul of the existing Boom Gate
facilities into a Carpark Management
System

Remote Management
of Access List Ideas

«trace»

Another, and perhaps more useful, option is to add them to the Model Library, which is a document and web page library
used to create a catalogue of items that can be referenced by requirements. It is also worth considering reviewing the
contents of the documents and incorporating the information as model elements. This has the benefit of an Engineer
being able to create traceability relationships between elements such as Business Motivations and problem and solution
elements such as Requirements, Use Cases and Components. For more information see the The Model Library Help
topic.

(c) Sparx Systems 2022 Page 158 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/discussionforum.htm

Guide to MBSE with SysML 3 October, 2022

User Observations

Observing users perform their work is a helpful and unobtrusive way of gaining an understanding of:

e The tasks they carry out and

e How they use information and other software and hardware devices to achieve an outcome from their interaction
with a system

Even if the processes that support the planned system will be different, the observations of the current processes will
provide a useful context for discussions. It will also help the engineer empathize with the user, which can result in a
deeper understanding of the issues they face and provide the basis for the discovery of potential solutions. An engineer
will often discover unmentioned documents, checklists and clue cards that can help illuminate the process. Equipped
with a mobile phone or camera, it is also useful for the engineer to take photographs of the user working, which will help
engineers and others recall and discuss the task during the requirements analysis phase.

Enterprise Architect supports the modeler in representing files such as photos and scanned documents directly in the
model, creating a rich and expressive representation of the user at work. There is the option to represent these as an
Artifact (which, with a single key stroke (F12), will launch the file) or to use a hyperlink or even to include the image
itself in a diagram. For more information see the Changing Element Appearance topic.

bdd [package] Production Line [Robots in Manufacturingy

«hlock» «block»
Production Line

Automated
Assembly Unit

parts
: Automated Assembly Unit

«requirement» | _ __ _ _ ___=
Automation wsatisfy»

id ="7085"

text ="The system must use robots to
automate tasks that are beyond human
capabilities of accuracy, enduance, soeed,
size, weight and that potentially must be
carried out in hazardous environments."

Spot Weld Body Robot

{from Requirements) ablock»

This diagram represents a photograph taken by an engineer of an advanced production line robot assisting with a
manufacturing system. The image can be placed into diagrams, and relationships can be drawn between the robot and
other parts of the system description, including requirements.

(c) Sparx Systems 2022 Page 159 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/appearancemenusection.htm

Guide to MBSE with SysML 3 October, 2022

Stakeholder Workshops

The Requirements Engineer is charged with the difficult task of eliciting requirements, which necessitates excellent
communication with the stakeholders, including the customer and the analysis team. One very successful way of
facilitating the elicitation of the stakeholders' needs is to run a workshop with all the key stakeholders present. The
Requirements Engineer's skills as a communicator, diplomat and mediator are important to create a collaborative and
respectful environment conducive to the exploration of the stakeholders' needs and concerns. It is imperative that the
engineer uses terminology that the stakeholders understand, and also displays an understanding of or a willingness to
learn about the elements that make up the engineering domain.

There is sometimes a misconception that what will be articulated during these workshops is a set of clearly defined
requirements that can be entered into the tool as Stakeholder Requirements. This is far from the reality of what happens.
Stakeholders will typically articulate a wide range of ideas, including Policies, Business Rules, Data Definitions, Project
Management Constraints, Functional Requirements, Business Requirements, existing system problems and even
suggested solutions. Even when an external consultant is used to run these meetings, the engineer will not have time to
categorize all of these statements inside the meetings. What is needed is a way for the scribe who is tasked with
documenting the statements to get them into the tool without any concern for what type of information is being recorded.
Having them recorded in the tool rather than scribbled in the engineer's notebook is best practice because it allows them
to be displayed during the meeting and for stakeholders to see each others' comments.

Enterprise Architect has a number of facilities that can help with these workshops. One method that is very practical is to
use the Mind Mapping diagram to record the stakeholders statements, which is very effective because it is a well known
method and doesn't introduce any of the formality that comes with modeling languages such as SysML. This diagram
shows a starter Mind Map created from a pattern that can be altered to suit the workshop need.

‘ MainTopicH ‘— ——
-H.\-\"'-\
CantralTopici e —aa Y
- === ~ \
" TopicB
N |~
‘ MainTopicT ‘ k
rd ™,
& LY MainTopic1 L
I 1 -
I I .Hk‘\\
SubTopicT SubTopici2 A o
| Topict .
™, SubTopicP
A
II
]
SubTopic3

The Mind Mapping facility is available by switching to that Perspective or, if it is used commonly, it can be added to a
user-defined Perspective Set using the My Perspectives facility.

(c) Sparx Systems 2022 Page 160 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Portals

SEUo

= Perspective -
umML
All UML
Structural
Behavioral
Strategy
Mindmap
Strategy b
Risk Analysis

Analysis

This Perspective, like others, requires the appropriate technology to be enabled, which in this case is Mind Mapping.

| Technology | Enabled * . .
B MindMapping MindMapping
[=] NIEM Yersion 1.1.1
=} oom
% Project Management
% Risk Taxonaomy
=} spo
SOMF™ 2,1
SPEM
% Simple User Interface Modelling
[=j SoaML™
|Z| Strateqic Modeling

B L L L L o

Location: Mindhapping xmil

As important terms are uncovered they could be entered into the Project Glossary and, even if there is not time to discuss
and debate the agreed meaning, the words will act as an initial list of important entities in the domain. Alternatively, the
terms could be created as Blocks in a Block Definition diagram and related to each other with connectors that describe
the important relationships between the terms.

The stakeholders can also be modeled and their organizational relationships to each other can be described in a diagram.
This is a useful technique that allows key stakeholders to identify themselves in the models, which creates buy-in.

(c) Sparx Systems 2022 Page 161 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

rief Executive Officer

Business Manager

IT Manager

Finance Manager

NG
G

&

Stock Control Manager

-®

Process Manager

—®

Operation Managers

-®

Development Manager

H
— A

Credit
Controller

e "

(&

This diagram shows the
organizational structure of
stakeholders using analtemate
image. Using graphics on
diagrams tends to make the
diagrams more appealing,
particularly to high-level
business stak eholders. An
Alternate Image can be selected
by choosing this option from the
Appearance submenu available
from the element Context Menu.

(c) Sparx Systems 2022

Page 162 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Creating Requirements

Enterprise Architect has extensive support for developing Requirements and provides a number of specialized tools for
this purpose. As with all model content, a Modeler is encouraged to check whether the Requirements have been entered
into the repository by someone else before embarking on the task of creating new Requirements. It is also possible that
the Requirements have been defined in another tool such as a spreadsheet and could be imported into Enterprise
Architect without the need to create each Requirement manually.

CSV Import/Export Specification

Specification Name: | interface Control Document = | Delimiter: | -

Motes: This specification allows Interface Definitions to be imported from
an Interface Control Document (ICD) spreadsheet (C5V) specified
in the Company's Engineering Standards Format ENGOTU-0045

Default Filename: SYSEMG-P-032 -Component Interface

Default Direction: Impaort -

Default Types: | |

Preserve Hierarchy

Enterprise Architect has two locations for Requirements; they can be created in the model as an element that will appear
in the Browser window, or they can be created inside another element as an Internal Requirement or Responsibility.

(c) Sparx Systems 2022 Page 163 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

External and Internal Requirements

Enterprise Architect can support any type of Requirement process and allows Requirements to be defined as elements in
the model. These are called External Requirements, but the tool also allows Requirements to be defined for a specific
element, and these are called Internal Requirements. An engineer who wants to define a user Requirement such as:

The system must allow bus schedules to be updated.

would use an External Requirement. A modeler wanting to describe how a Component should behave would use an
Internal Requirement for the Component such as:

The editor must support Unicode.

There is often contention between Analysts and Developers as to whether a Requirement should be Internal or External,
and Enterprise Architect provides a facility to move Internal Requirements to be external to the element. When they are
moved they are still linked to the original element.

(c) Sparx Systems 2022 Page 164 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Requirement Categories

The SysML specification provides a non-normative list of Requirement categories (types). These are stereotyped
Requirements that refine or extend the base SysML Requirement, providing a mechanism to create Requirements that
serve a particular purpose or describe a particular aspect of a system. For example Physical Requirements can be used to
describe some physical aspect of a system such as the weight or size of a component. These and other user-created
categories can have any number of additional properties defined such as:

e RiskKind
e VerificationMethodKind
Enterprise Architect conveniently provides these Requirement categories as elements on the SysML Requirement's

Toolbox pages.

Toolbox O

Search P ,':'

Il

4

SysML Requirement Extensions
Extended Reguirement
Functional Requirement
Interface Reguirement

Performance Requirement

B EE & E

Physical Requirement

3

Design Constraint

The tool also provides a sophisticated and fully functional profile system, allowing users to create extensions to the base
SysML Requirement and any number of user-defined Requirement categories applicable to the modeling domain or
problem space. These stereotyped Requirements can have user-defined properties added that are needed to model the
specific Requirement element (or other model element).

Toolbox O x
Search Llp =
Profile -

B3 Profile

Q? Sterectype
E Metaclass

Enumeration

Profile Helpers

= MDG Technology

B3 Add Stereotype

B3 create Custom Toolbox
BE5 Add Toolbox Page

B add Diagram Extension

For example a team might decide to include a property of volatility to a Requirement to ensure work is not commenced
until the Requirement is stable (i.e. not volatile). As another example, a team might be creating medical devices and need
to comply with various statutory standards. Each component that is used as part of the solution might be required to be
compliant. A compliance-level property could be created and the component could be assigned a level indicating its
compliance from a range of values defined in a spin control or a drop-down list. For more information see the

(c) Sparx Systems 2022 Page 165 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Developing Profiless Help topic.

(c) Sparx Systems 2022 Page 166 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/umlprofiles_2.htm

Guide to MBSE with SysML

Requirement Properties

3 October, 2022

Requirement Development and Management is critical to the success of any project, and the properties of Requirements
are important to prioritization and the way they will be elaborated and used within an implementation or development
team. All Enterprise Architect elements have standard properties such as Status, Author and Phase, but the Requirement

element has additional properties such as Difficulty and Priority.

Properties
A= -3

Element SysML 1.5

General
Mame
Type
Stereotype
Alias
Keywords
Authaor
State
Status
Complexity
Priority
Difficulty
Version
Phase
Project
Package
Created
Modified
GUID

Minimize Power Litilization
Requirement
requirement

PWR-UTIL

Power Energy Environment

Greg Michols

Proposed
Easy
High
Medium
1.0

20

Car Park Boom Gate
2070272012 11.02:34 AM
2770872018 3:30:34 PM

O =

{C3AF8164-0E1C-450c-ABBL-ABZIBDCTIBTZ} |

Some Requirement processes will prescribe specific properties such as Custodian and Volatility (Stability) and these can
be configured using Tagged Values that can be applied to each Requirement. The 'Notes' field for a Requirement has
special significance as it often contains a formal and contractual description of how the system must behave or perform.

For more information see the Element Property Displays Help topic.

(c) Sparx Systems 2022

Page 167 of 461

Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/element_property_displays.htm

Guide to MBSE with SysML

» =

reqg [package] Requirements [Requirements - Copy Relationship]

req [package] Requirements [Requirements - Copy Relationship] /

urequirements
Minimize Power Utilization

Custodian = "Operations Manager”
WVaolatility = "Medium”

id ="9001"

text = "The system must minimize the

power used by all of its components”

(from Car Park Boom Gate)

srequirements
Minimize Power Utilization of Boom
Gate

id ="1006"
text = "The system must minimize the
power used by all of its components”

(c) Sparx Systems 2022

Page 168 of 461

3 October, 2022

«

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Specification

Requirements specification is an important aspect of the evolution of a Requirement. It provides an important catalogue
of statements about the system's behavior in both normal and abnormal conditions. The Requirements will be of interest
to a wide range of stakeholders including:

e Engineering Managers

e Architects

e Designers

e Customers or their surrogates
e System Engineers

e Software Engineers

e Testers

e Compliance Managers

e Quality Engineers

e Safety Engineers

All these groups will have both input to the Requirements and a need to use the catalog of Requirements in their work.
There is a variety of ways in which requirements can be specified in Enterprise Architect, including:

e Directly in the Browser window
e On adiagram

e Using the Specification Manager

We will look at the Specification Manager in the next section, and you will see that it provides great flexibility when
working with Requirements and other elements with textual content.

(c) Sparx Systems 2022 Page 169 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Meet the Specification Manager

The Specification Manager is a unique and effective tool providing a spreadsheet or word processor view that can be
used to manage any element, although it is particularly useful when working with Requirements that always have
descriptive text to describe the Requirement in detail. New Requirements can be created with names and detailed
descriptions, and properties such as Status and Priority can be added or changed from drop-down lists. Existing
Requirements can be viewed and managed in a convenient view - such as diagrams and windows - and changing them in
the Specification Manager will change them in all other places in the repository.

« Specification Manager:: Package: "HSUV Specification" [Requirement] ¥y X

G <« HSUW Model » HSWW Requirements * HSUWV Specification Find Package ,O

[tem SysML1.4:id SysMLL.4: text =
Pe rro rmance 2 The Hybrid SUV shall have the braking, acceleration,

and off-road capability of a typical SUV, but have
dramatically better fuel economy.

%]

Acceleration 24 The Hybrid SUV shall have the acceleration of a typical
SUV.

I Braking 21 The Hybrid SUV shall have the braking capability of a

typical
SUV.

%]

FueIEconomy 2.2 The Hybrid SUV shall have dramatically better fuel
economy
than a typical SUV.

%]

OffRoadCapability 23 The Hybrid SUV shall have the off-road capability of a
typical SUV.

The Specification Manager is the perfect tool for those analysts who are more comfortable working with text rather than
diagrams, and who are accustomed to working in a Word Processor or Spreadsheet. It has the added advantage that the
Requirements are part of a model and can be traced to other element, including Business Drivers, Stakeholders and
Solution Components. In this image it can be seen that the Requirement status and other element properties can be edited
from drop-down lists.

(c) Sparx Systems 2022 Page 170 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

« Specification Manager: Package: "Physical Requirements" [Requirement] > X
o b [b SysML Assets b Car Park Boom Gate F Requirements P Physical Requirements Find Package ,O
ltem SysML1.4:text Status =

Operational VlSl bl | |ty The boom must be visible in all operating Approved

conditions including weather events such as
fog and low light conditions such as at night.

Fog and Rain Visibility The boom must be visible in any weather Validated
conditions including Fog and Rain and there
must be enocugh time in these conditions for
a driver to stop at the control unit.

Low Light Visibility The boom must be visible in low light Proposed -
conditions including night and shadows and [Approved “

there must be enough time in these
conditions for a driver to stop at the control |Mandatory

. Froposed
unit. \alidated - |
Vehicle He|g ht The boom must allow tall vehicles such as Approved

trucks or pantechs to enter and exit the
carpark without restriction.

Add New |»

There is a wide range of options that provide great flexibility when working with the Specification Manager, including
showing notes in columns as in a spreadsheet or inline as in a document, and adjusting the size of the text. These options
are available from the 'Specification - Specify' ribbon, which is conditionally displayed when the Specification Manager
is launched.

Simulate Code Execute Configure @ Find Command...
& Level Numbering ~ +| Bold Names +| Filter Bar A Font Size, ~
™ Show Columns Collapsible Regions [+ Element Icon small h’
Motes - .
v
Format] Tagged Value Column Highlight Selection Add New Button v Medium
Display Large

Filters provide a useful way to restrict the display to elements that contain a word or text fragment in a selected column.
In this illustration a modeler has decided to restrict the display to all Requirements that contain the word 'light' in the text
of the Requirement. This is a great productivity tool when working with large sets of Requirements, and it can be used to
locate all Requirements with a particular status, priority, complexity or even all Requirements owned by a specified
stakeholder or team, if they have been defined in the model.

(c) Sparx Systems 2022 Page 171 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

« Specification Manager:: Package: "Physical Requirements" [Requirement]
o b [¥ SysML Assets P Car Park Boom Gate » Requirements * Physical Requirements
ltern SysML1 4 text Status
o [k X P
Operational The system must ensure any barrier is visible Approved
e e et in all operating conditions including weather
VlSl bl I |ty events such as fog and low light conditions
such as at night.
Low Light Visibility The system must ensure any barrier is visible Implemented

in low light conditions including night and
shadows and there must be enough time in
these conditions for a driver to stop at the
control unit.

A diagram can also be opened from the Specification Manager, allowing you to edit the elements on the diagram as a
group. This is a compelling and welcomed view for some non-technical staff, including managers and customers. For

more information see the Specification Manager Help topic.

req [package] Physical Requirements [Requirements - Containment Relationship] /

wphysicalReguirements
Operational Visibility

id="1024"

text = "The system must ensure any harrier is
visible in all operating conditions including
weather events such as fog and low light
conditions such as at night."

Specialize

Iﬁ Properties. ..
wphysicalRequirements

Insert ' Low Light Visibility
Paste ¢
id = "1026"
Hide Diagram Frame text = "The system must ensure any barrier is
wisible in low light conditions including

ws and there must be
- these conditions for a driver
List View -

antrol unit.

Open Diagram in P [Specification Manager b

Swimlanes and Matrix...

O Gantt View
Roadmap e ——

Kanban

(c) Sparx Systems 2022 Page 172 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Analysis

The analysis phase of requirements development ensures that the requirements discovered in the elicitation phase have
been articulated correctly and have the correct format, level of detail and properties, and form a correct and cohesive set.
As a result of the disparate sources and methods of elicitation the requirements recorded in the elicitation phase will need
some massaging and balancing - it is quite common for example, to find repeated or overlapping requirements or for a
systems engineer to inadvertently have omitted to record the concerns of one or more stakeholders. Tools such as the
Relationship Matrix and the Traceability window will help reveal omissions and issues with requirements. The Discuss
& Review window and Chat & Mail window - including the Model Mail facility - will also provide mechanisms for
discussing, reviewing and chatting about the Requirements with other team members.

Target |+ —
] [
[1E]
E
== e
£ B =
[
2|2 |, = g
i
2 le (2| |8 < | £ =
=L @ a |2 | 2 o | = w [m
= c | = w | 4 = @ S| = =
@ = = m a b @ o 1} 2]
w | | (g | & w (3| = |[o |3 |x
-] [} o | O © =2 c = om S =
w (g (w [|w |2 |o |2 o o = |8
o5 |o|&a = = o |o|= |8
@ s |BE|la|lB8 2 8(lg |8 | |?|s
s | 2|5 |2|2|8B|gs|e |5 |2 |8 |E
= o = w o =L o o = o — o
- |a|o|s|o|le|n|la|le|lc|=|«
— — — — — — — — —] (]]
= = = = = = = = = = = =
&) o &) o &) o &) o &) o &) o
W W |w|w | w|w | w) w|w|w|w|Lw
+ | Source r| x| r || || ||| || ©
Add New Titles
Add To Shopping Basket T
Close Account T
Create Account T
Create Orders T
Delete User T

(c) Sparx Systems 2022 Page 173 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Prioritize the Requirements

Prioritizing Requirements is imperative to the success of a project, as it ensures that analysis, development, testing and
implementation resources are focused on the most critical aspects of the system. Prioritization is a decision process that
allocates a priority to each Requirement; the most common criteria for categorization is business value. Business value is
typically determined by the cost-benefit analysis of the value the implemented Requirement will produce for the
organization or its customers. Other factors might be policy or regulatory compliance, urgency, business or technical risk
and the likelihood of success. Requirements can be visualized in a Kanban board which can be used to indicate priority
by moving items from a Backlog lane to a Queue Lane and also allowing items to be ordered within the lanes. For more
information see the Kanban Boards Help topic.

Backlog Queue

)
Low Light Visibility Vehicle Height

Proposed Validated
Backlog Cueue

8 r

p

Minimize Power Litilization of Boom
Gate

Validated
Queue

8 r

N

Alternatively, Searches or Model Views could be used to create a list of requirements based on some criteria that would
enable the Requirements to be prioritized.

Requirement Priority Property

There is a wide range of criteria that can be used for prioritization, and each organization and project will typically use
some type of weighted average to determine the priority. Enterprise Architect has flexible and complete support for
Requirement prioritization, as each element has a built-in "Priority' property that can be set to indicate its priority,
allowing the user to select the allocated priority from a drop down list.

(c) Sparx Systems 2022 Page 174 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/kanban_facilities.htm

Guide to MBSE with SysML 3 October, 2022

Authar: Paulene Dean -

Difficutty: Medium -

Pricrity: Medium [+]
High

Version: Medium

Phaze: L0

The list of priorities is conveniently pre-loaded when you install Enterprise Architect, but these can be edited or
completely revised to suit an organization or project. They can even be imported as reference data from a previous
project or, if the current project was created based on a template, the organization's priorities could be pre-loaded from
the base model. They can be set up using this ribbon option:

Settings > Reference Data > Model Types > General Types > Priority

Changing the Priority Collaboratively

The process of selecting criteria and assigning priority is typically collaborative, and is often done in a workshop with
stakeholders or their representatives debating the categorization. In previous eras this was a laborious and difficult
process, but Enterprise Architect has some useful features for working with Requirement properties, including priority.
There are a number of windows - including the Package List and the Diagram List - that support working with the
Requirements and editing the priority in-line, automatically filtering or sorting the list of Requirements based on the
newly assigned priority. The Specification Manager is a useful tool for this purpose, providing a text-based interface
where the Requirements and their notes can be viewed and priorities can be selected from a drop down list. The interface
also displays a number of other properties that are typically useful for prioritization, such as Status and Complexity. For
more information see the Editing Elements Help topic.

Requirement Priority SysML1.4:text Stereotype Status Difficulty

H H Medium ip lighti requirement Proposed Low
|||umlnatI0n :rhes.vstt?m must use strip lighting for] p
illuminating the boom.

Mlnlmlze Power Low - Thesvstt.em must minimize the power used requirement Froposed High
e . Critical by all of its components
Utilization of High
Medium
Boom Gate
Operational High T-ht.esys:tem muste.nsureariy.barr.ieris) requirement Approved Medium
e e visible in all operating conditions including
Visibil |ty weather events such as fog and low light

conditions such as at night.

Fog and Rain High The system must ensure any barrier is requirement Validated High
Visibility visible in any weather conditions including
Fog and Rain and there must be enough
time in these conditions for a driver to
stop at the control unit.

Low Light Visibility Critical The system must ensure any barrier is requirement Implemented Low
visible in low light conditions including
night and shadows and there must be
enough time in these conditions for a
driver to stop at the control unit.

When a Requirement property is changed and saved in any window or diagram, the property will be changed in all other
views and any other users viewing the repository will immediately be able to see the change.

(c) Sparx Systems 2022 Page 175 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/specification_element_menu.htm

Guide to MBSE with SysML 3 October, 2022

Dashboard Diagams

Enterprise Architect has a series of Dashboard diagrams that can be used to create a compelling view of the Priority of
Requirements in a Package, with the option to include sub-Packages. There are a number of pre-configured Charts that
can be used to display the ratio of Priority values for Requirements in a part of the model. Filters add another level of
user configuration, allowing a modeler to, for example, exclude Requirements of a particular Status or ensure only
Requirements for the current phase are displayed. For more information, see the Dashboard Diagrams Help topic.

Q
Elements by Priority This diagram shows a Pie Chart element
depicting element priorities forall the
Requirements in a selected Package.
Itprovides a useful summary fora

No Value, 3.6% Critical, 3.6% Requirements Managerand is
dynamically updated when the priority
High, 21.4% changes and the diagram is reopened.

Arange of other pre-defined Charts and
user-defined Charts can also be added.
A filter has been added to exclude all
elements other than Requirements.

Medium, 46.4%

Low, 25.0%

Visualization with Kanban Boards

Enterprise Architect has a Kanban Board diagram that can be used to manage Requirements and other specification or
project management elements such as Change. The Kanban Board is particularly useful for managing the priority of
Requirements and other elements. The elements can simply be dragged onto the diagram and then between columns,
allowing teams to manage and visualize the progress a Requirement makes between specification and implementation.

Backlog Queue In Progress Test/Review Done Deploy

B B {IEG N
Low Light Visibility Vehicle Height Fog and Rain Visibility
Proposed Validated Validated
Backiog Queve In Progress

&
Minimize Power Utilization of Boom Gate

Validated
Queve

Electrical Power

Proposed
InProgress

The Kanban diagram can be configured so that when an element is dragged between columns the priority of the element
is automatically changed. For more information see the Kanban Boards Help topic.

(c) Sparx Systems 2022 Page 176 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/tools_ea_dashboard_diagrams.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/kanban_facilities.htm

Guide to MBSE with SysML 3 October, 2022

Validation

Requirements validation is necessary to make sure the Requirements are of a high standard, suitably define the
Customer's problem (or opportunity) and are sufficient for the implementation teams to design and implement the
product. It is imperative that the requirements have the desired level of quality and are complete and necessary. There are
a number of ways that Requirements can be validated, but probably the two most common ways are to perform team
reviews and to assign test cases to the requirements.

The team reviews are typically conducted by team members or other analysts who have some familiarity with the
domain, but were not themselves responsible for the requirements development or management. Enterprise Architect has
a handy tool to assist with this process, called the Model Library, which works across the entire model and allows
reviewers to record their findings in discussion documents and to reference model elements. There is also a
Requirements Checklist element available from the 'Extended Requirements' page of the Requirements Toolbox, which
provides a useful mechanism for checking the quality of Requirements.

, ~ Q
Requirements Checklist
REQ117 - The system must This diagram shows the use of a
provide a mechanism Atomic Requirements Checklist that acts as
allowing students to identi - indi \
g Ty :‘;3. Attainable an indicator (check) to ensure the

themselves requirement is complia nt with best

FilrzlE practice, The check items are
Complete editable and a general checklist
Current elementis available thatcanbe
Independent used with any element.
Modifiable

Traceable

Unambiguous

LOPOR-EOEEE

Verifiable

Test Cases can be defined at a number of levels from User Acceptance tests down to Unit tests. Defining the test cases
early in the requirements development process creates a double check on the Requirements, because when test cases are
defined issues with the Requirements are often uncovered. Enterprise Architect has a number of facilities to define test
cases and a modeler can select whichever is the most appropriate for the endeavor.

(c) Sparx Systems 2022 Page 177 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

req [package] Requirements [Requirements - Verify Relationshipy

wtestCase»
After Dark Test

Verdict = inconclusive

equinox under a cloudless, moonless sky.

I—___“ The test was conducted at the winter
I
I Ambient lights were present from

«requirements wyerifyn neighboring buildings.
Low Light Visibility |
|
id ="1025" :
text ="The system must ensure any barrier is |
visible in low light conditions induding nightand <= — — - — -
shadows and there must be enough time in these "E— o
conditions for a driver to stop at the control unit.” _}
|
satisfiedBy ! «testCasen
Strip Illumination averify» Shadow Test
|
|
| Verdict = pass
|
| I

The test was conducted at the winter
equinox and under a cloudy sky using a
shade to simulate shadow.

(c) Sparx Systems 2022 Page 178 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Visualizing Requirements

Requirements can be visualized in a number of different ways using different features of the product. Some of the
methods allow the user to create new and edit existing requirements while others simply provide a way of viewing the
requirements. Requirements, like all elements in the SysML, can form part of a graph and many of the important
semantics are expressed in these relationships; for example the relationship between a requirement and the test cases that
verify it. It is, however, quite common for requirement analysts, managers and other stakeholders to want to view the
requirements independently of any relationships that a requirement might participate in. We will look at a number of
these facilities now and others will be covered in the Visualizing Requirement Relationships topic.

(c) Sparx Systems 2022 Page 179 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Requirements Diagrams

The Requirements diagram can be used to visualize Requirements and their relationships to other elements, including
other Requirements. You can of course view Requirements in a number of other ways, but for many stakeholders the
Requirements diagram will be more appealing as it provides a graphical way to view the Requirements' connections to
other important parts of the model, including stakeholders, architecture, design and tests. This diagram shows how
Requirements can be viewed along with their connection to other elements. A Requirement stating that unauthorized
vehicles should not be allowed to gain access to the car park is allocated to the Activity 'Restrict Unauthorized Vehicles',
which in turn is allocated to a Block representing the Boom Gate.

arequirements
The system shall not allow unauthorized vehicles to
enter the car park

Restrict Unauthorized
Entry

«hlock=
Boom Gate

id="spgQ%* . [T TT—-————T
tewt = "The car park is a restricted area and entry need sallocates
to be controlled to allow authorized wehicles to enter
but unauthorized vehicles need to be restricted.”

sallocates

A Requirements diagram can be created from a number of different locations in the user interface, including from the
ribbon option 'Design > Diagram > Add Diagram'.

The New Diagram' dialog will be displayed, and the Requirements diagram can be selected from the list of SysML
diagram types. For more information, see the SysML Requirements Modeling Help topic.

(c) Sparx Systems 2022 Page 180 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/create_a_requirements_model.htm

Guide to MBSE with SysML 3 October, 2022

Specification Manager

The Specification Manager is the central tool for working with Requirements in Enterprise Architect, and has been
designed from the ground up to be a tool that allows Requirements to be created and managed through an intuitive and
fully featured interface. For those engineers or other stakeholders who are accustomed to working with spreadsheets or
word processor documents, the tool will seem natural and emulates both these modes of visualization, allowing a user to
toggle between spreadsheet mode and document mode.

« Specification Manager: Package: "Physical Requirements" [Requirement] ¥y X
a b [¥ SysML Assets P Car Park Boom Gate P Requirements P Physical Requirements Find Package ,O
Item SysML1 4:text Status =

Operational VISI bi I |ty The boom must be visible in all operating Approved

conditions including weather events such as
fog and low light conditions such as at night.

Fog and Rain Visibility The boom must be visible in any weather Validated
conditions including Fog and Rain and there
must be enough time in these conditions for
a driver to stop at the control unit.

Low Light Visibility The boom must be visible in low light Proposed -
conditions including night and shadows and [Approved -

there must be enough time in these
conditions for a driver to stop at the control |Mandatory -

; Proposed
| unit. Validated d |
Veh icle He|g ht The boom must allow tall vehicles such as Approved

trucks ar pantechs to enter and exit the
carpark without restriction.

Add New |w

The Specification Manager can be opened from the ribbon: 'Design > Package > Specification View'.

The Specification Manager can be used to view any type of element, but is particularly suited to elements with a large
textual component such as Requirements. Any elements that are changed in the tool will also automatically be changed
in Requirements diagrams, in the Browser window and in other catalogs such as tables. For more information see the
Specification Manager Help topic.

(c) Sparx Systems 2022 Page 181 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/tools_ea_specification_manager.htm

Guide to MBSE with SysML 3 October, 2022

Browsers and Views

The Browser is the central navigation tool, which can be used to structure and explore the contents of a repository
including working with requirements. The Browser has a number of tabs that allow the contents of the repository to be
viewed in particular ways. We have looked at the Browser in an earlier topic, but will speak about its relevance for
visualizing requirements.

Most system engineers will try and keep their requirements for a particular project or endeavor in a single location,
although there might be circumstances where they need to be separated; for example, for contractual or schedule reasons.
Once a Requirements Package has been selected in the 'Project' tab, a user can switch to the 'Context' tab to get a focused
view - effectively removing the noise of the other elements outside that context. An individual requirement can then be
selected and the 'Details' tab selected on the Inspector window to focus on the properties of the selected requirement.

The elements and relationships contained in an open diagram can also be visualized through the 'Diagram' tab of the
Browser, providing an alternative way of viewing the contents of a diagram.

Project Context | Diagram | Element

Diagram: Requirement Derivation

1 Hsuw Requirements
[+ ¥ Power
[[PowerSourceManagement
[[Range
4 [+] RegenerativeBraking
=¥ Derive to Braking
=+ Derive to FuelEconomy
[] Acceleration
[+ Braking
[+] FuelEconomy
| OffRoadCapability
[+] CargoCapacity

R R v

[+] FuelCapacity

Browser | Resources
Any Package or diagram can also be visualized in a number of different ways, including the list view that provides an

often welcomed view of the elements in a list, similar to a spreadsheet where the requirements are listed in rows and their
properties are listed in columns.

(c) Sparx Systems 2022 Page 182 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Status
¥ Status > MName > Type * Modified w7
4 Status: Approved
Approved OffRoadCapability Requirement 30/01,2020
I+ Approved FuelCapacity Requirement 30/01/2020
4 Status: Implemented
Implemented Braking Requirement 30/01/2020
4 Status: Proposed
Proposed Power Requirement 27/03/20N8
[+] Proposed Range Requirement 27/03/2018
Proposed CargoCapacity Requirement 03/2019
Proposed RegenerativeBraking Requirement 27/03/2018
[+] Proposed PowerSourceManagement Requirement 27/03/2018

(c) Sparx Systems 2022

Page 183 of 461

Created with Enterprise Architect

Guide to MBSE with SysML

Relationship Matrix

3 October, 2022

The Relationship Matrix is a valuable tool for visualizing the connections between the elements in any two Packages, in
an interface resembling a spreadsheet with rows and columns. The tool is particularly useful when used with
Requirements, and allows an engineer to see how Requirements are related to other elements, including other

Requirements.
ol Relationships between Requirements and Requirements * X
Source: Requirements ..| Type: Requirement = Link Type: Dependency ~ Profilel |Requirements = Refresh
Target: [Reguirements .| Type: | zAll> - Direction: Bath ~ Owerlays: <MNone> - Dptions
Target |+ é
B
[=
=l
|
z = =
3 z 3 :
" w B I £ (& -
g s [g | E |2 |2 S
& L] = = a = c] o
% 55 A e |2 BT
S |8 £ |3 E |8 % M
] w |5 z | E] 7 AN c
= - 2 2 q
+ | Source £ |£€ |2 |5 |2 |0 |0 E=
Fog and Rain Visibility
Illumination /T
Low Light Visibility = =

Minimize Power Utilization of Boom Gate

Operational Visibility

Vehicle Height

The Relationship Matrix can be opened from the ribbon option 'Design > Package > Package/Matrix'. Select whether the

current Package is the source Package, target Package, or both.

Where a relationship exists, an arrow icon is displayed in the cell at the intersection of the source and target elements,
with the arrowhead showing the direction of the relationship. The matrix can also be configured to highlight the rows or
columns that do not have any relationships, in a separate color. This and other options can be configured on the Options
window, (click on the Options button in the Relationship Matrix header).

Matrix Options x

*| Include Source Children
+| Include Target Children
Include All Extended Meta Types
+| Sort Axes
Show Package Mames
Use Element Alias If Available
Show Level Numbering If Available
+| Highlight source elements without relationships.
+| Highlight target elements without relationships.

Cancel Help

These options allow you to tailor the way that the matrix is displayed, including whether elements are sorted or their
names prefixed with the Package name, and whether source and target element rows and columns without connections
are highlighted. For more information see the Relationship Matrix Help topic.

(c) Sparx Systems 2022

Page 184 of 461

Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/tools_ea_relationship_matrix.htm

Guide to MBSE with SysML 3 October, 2022

Requirements Tables

Requirements Tables are views resembling spreadsheets that can be created using a SQL statement to select
Requirements (or any other elements) based on a select statement, which effectively filters out a particular group of
Requirements. For example, a table could be used to display all Requirements related to the power subsystem that are
approved and are of high priority or for the decomposition of performance requirements. Any number of tables can be
created and they are refreshed dynamically as underlying properties are updated in the repository. This provides more
flexibility than the List view because of the ability to select a group of Requirements from anywhere in the repository
based on specified criteria.

req [requirement] Performance [Decompasition of Performance Requirement] /

Decomposition of Performance Requirement

ID NAME TEXT

2 Performance The Hybrid SUV shall have the braking, acceleration, and off-road capability of a typical SUV
2.1 Braking The Hybrid SUV shall have the braking capability of a typical SUV.

2.2 FuelEconomy The Hybrid SUV shall have dramatically better fuel economy than a typical SUV.

2.3 OffRoadCapability The Hybrid SUV shall have the off-road capability of a typical SUV.

2.4 Acceleration The Hybrid SUV shall have the acceleration of a typical SUV.
Showing 1 - 5 of 10 items

(c) Sparx Systems 2022 Page 185 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Managing Requirements

This consists of the activities to maintain a set of requirements that represent an accord or agreement between the project
team and the customer. It also involves ensuring that the requirements are acceptable to the design and implementation
teams and that they are sufficient so that what they specify can be implemented into working business, software or
hardware systems. Enterprise Architect is a sophisticated platform for managing requirements, and regardless of the
domain, the size of the project or the method being followed, there are tools that will make it straightforward to manage
even large repositories of requirements in complex projects.

N
Elements by Status (@)

This diagram shows a Bar
12 Chart element depicting

element status for all the
10 requirements in a selected
B Approved package. It provides a

8 useful summary fora

o Implemented Requirements M anager

6 - B In Progress andis dynamically updated
when the status changes

3]
4 - T B Mandatory andthe diagram is
- @ Proposed recpened. There area
. fother pre-defined
B Validated rEneeo
charts and user defined
0 - l) : - - charts can also be added.

T
Approved In Progress Proposed

]
1

(c) Sparx Systems 2022 Page 186 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Tracing Requirements

Most Requirement processes mandate that Requirements are traced from high level concepts such as Business Drivers,
Visions and Goals down to the parts of Components that implement them. For many projects this is an intractable
problem because much of the information lives in a set of heterogeneous tools such as word processor documents,
spreadsheets, diagram tools, corporate presentation tools and more. Some Project Managers attempt to solve the problem
by creating a spreadsheet that acts as a register of all the disparate information but the management of this file takes up
considerable project resources and the file is almost impossible to keep up to date. With Enterprise Architect there is the
ability to model all of this project information in the one tool and to create easy-to-maintain and analyzable traces
between all the elements, from the organization's mission statement right down to the level of programming code, if
required.

Visualizing Traces in diagrams

Regardless of whether you have entered the project’s Requirements using a diagram, using a text-based tool such as the
Specification Manager, or by importing them from another tool, viewing the requirement traces in a diagram gives an
easily understood view of their relationships. The diagrams can be created easily by dragging and dropping elements
from the Browser window, or automatically by using the 'Insert Related Elements' option. This function can be
configured and used to draw a graph of elements to any depth, and can be restricted to selected types of element and
connector. It is a handy productivity tool in a team environment, and even modelers with deep knowledge of the domain
and the repository are surprised at the connections that are displayed in the diagrams.

Q

Traceability can be used to
keep track of how thing are
related in the models from
the highest level business
(from Policies) Um,%\;ogw goals down to the execution
I environments and hardware
! that solutions are deployed
to. The most common
relationships used are: Trace,
: Realization, Dependency and
L Generalization. Annotations
REQO14 - Shopping Basket under the elements indicate
their Package location in the
Browser window.

Crm TS mer e o Provide customers with a competitive
online shopping experience

The bookstore will provide «goal» []:]
encourage learning «trace»

I
wiracen

The system must provide a shopping Basket
facility that remembers the contents between
sessions.

A (from Take Orders) A
I

BrowseCatalogue & B View Basket

Add To Shopping
Basket

View Shopping Basket &= - ——————
«realize»

wiracen

(from Browse Catalogue) (from Tq -' Orders) (from TI e Orders) (from View Basket)

] |
«trace» «tralce»

1 I

i i

BasketManager Web Server: Dell PDwerEdE
2650
__________ Disk Controller = RAID 5
requirements «lrace» Disks =4 x 80 GB

Manages addition and deletion of items from the basket Processor=2x 2.8 GHZ
and serializes contents between sessions. RAM =2 x 1024 MB

Visualizing Traces using the Relationship Matrix

The Relationship Matrix provides an alternative way of visualizing the relationships between Requirements and other

(c) Sparx Systems 2022 Page 187 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

elements, or even between different levels or types of Requirement. It is quite common for some stakeholders to prefer a
spreadsheet-like view of the Requirements and their relationships, and the Relationship Matrix provides an excellent way
of presenting the relationships without resorting to a diagram. In Use Case driven requirements methods, Use Cases are
said to realize one or more Requirements, and these relationships can be displayed visually in the Relationship Matrix.
The list of Use Cases would appear on one axis of the matrix and the Requirements would be listed on the other axis. A
marker in the intersection of a row and column would display if a relationship exists, indicating that a particular Use
Case realizes a Requirement. Relationships between elements can be created or deleted using the Relationship Matrix,
and the Matrix can be saved and reopened at any time or saved to a CSV file so it could be opened in a spreadsheet.
Documentation can also be created that includes the Relationship Matrix, providing a useful communication tool for
people who do not have access to the model.

Target |+ o=
] =
o
=
o m =
= o o 3
= @ = =
E ™ $ m o =
= wl = her L =L = w
=L @ @ = e = = w W
= (= = w - = o = & =
@ = = m @ b @ o @ w
wn = w o = w a = o 1 =
Do | a|lo |2 |2 (c|E&E | m|x |2
@ @ @ = w Lk a o @ @ w EGD
= T = T = |l |l=|= |8
@z |2|la|l8|2 8| |2 | |? |5
s |8 |m |2 |2 |B|a|le|d|a |2 |B
= o = o o =1 o o = o — L
— (o] L] =t Lo o - ao [as] = — L]
— — — — — — — — — o o o
= = = = = = = = = = = =
[L) [L) [L) [L) [L) [L)
wlw | w | w | w|w | w| o |w|w o |w
™ oo r | or| | x |orv|r ||l || |0 |o
Add Mew Titles
Add To Shopping Basket T
Close Account 1
Create Account T
Create Orders T
Delete User T

Visualizing Traces using the Traceability Window

While diagrams and the Relationship Matrix allow modelers to view traces between requirement elements it is possible
that the creators of these views of the repository have deliberately omitted elements from the view. For example a
diagram does not need to show all the requirements owned by a particular stakeholder. The Traceability window will,
however, present a complete and unabridged view of the relationships between elements. The element relationships will
be displayed regardless of the location of the elements in the Browser window.

(c) Sparx Systems 2022 Page 188 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Traceability

60" (B G | iY -
= REGQ020 - Receive Books
= === realized by
= & Receive Onders
= -+ implements
REQ020 - Receive Books
REQD3Z - Update Inventory
== realized by
&= Association from

= =& part of
REQ01S - Manage Inventory

Visualizing Traces using the Relationships Window

Modelers often choose to hide one or more relationships on a diagram for the purpose of making the diagram simpler to
understand or to hide detail. The Relationships window is a useful window to have open as it will display all the
relationships that exist between the elements in the diagram indicating whether they are visible or hidden in the diagram.

Relationships

Relationship Source
Abstraction RECQ014 - Shopping Basket
Realization Add To Shopping Basket
Realization View Shopping Basket

Aggregation REQ014 - Shopping Basket

Target

Provide customers with a competitive ...
REQ014 - Shopping Basket

RECQ014 - Shopping Basket

[REQOLZ - Provide Online Sales)

Wiew
Wisible
Wisible
Hidden

If relationships have been hidden in a diagram they can be made visible by selecting the 'Show Relationships' option on
the 'Connectors' page of the 'Properties' dialog for the diagram.

(c) Sparx Systems 2022

Page 189 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Tracking Requirements

The status of a requirement is a fundamental indicator of where it is positioned in the requirement's development process.
For example requirements that have a status of 'Proposed' indicate that they are not yet ready and available for
development work to begin. Enterprise Architect has a variety of tools to allow status to be tracked, analyzed and
managed, starting with the fact that each requirement can be assigned a status and the list of status codes are completely
configurable. The status is conveniently displayed in list views of the requirements including when using the
Specification Manager. There are also a set of pre-defined and extensible dashboard charts and graphs that can be used to
get a compelling visual representation of the status and other properties of requirements.

Tools for tracking requirements

Tool Description

Status Codes Status codes are a controlled list of statuses that can be applied to any element
including Requirements. Enterprise Architect comes with a pre-defined list of codes
but the list can be configured and codes in the list can be changed and deleted and
new codes can be added. The status of Requirements can be displayed in a diagram
as a color coded band on the side of the element.

REQO16 - Add Users O

This diagram shows the use of
the color code barindicating the
status of the requirement. It is a
handy visual cue thatis useful in
workshops and printed material
REQO17 - Remove toconvey the status of a series
User of requirements ina diagram.

The status codes and the colors
are completely configurable and
a legend canbe placed onthe
diagram to convey their
REQ018 - Report on meaning.

User Account

REQO11 - Manage
User Accounts

. Validated REQO24 - Secure

D Proposed Access

Dashboards charts and Dashboard diagrams are an extended diagram type and allow high quality charts

graphs and graphs to be created to display repository information in a visually compelling
way. Any number of diagrams and charts can be created and the data can be
sourced from any level in the repository Package hierarchy. Enterprise Architect
comes with a toolbox page of pre-configured charts and graphs, but new charts can
be created based on any information in the repository.

(c) Sparx Systems 2022 Page 190 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Elements by Status Q

This diagram shows a Bar
Chart element depicting
element status for all the
reguirements in a selected
B Approved package. Itprovides a
useful summary fora

L] Implemented Requirements Manager

B In Progress and is dynamically updated
when the status changes

@ Mandatory andthe diagram is
[Proposed reopened. There area
B Validated range of other pre-defined

charts and user defined
charts can also be added.

Approved In Progress Proposed

(c) Sparx Systems 2022 Page 191 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Managing Changing Requirements

It is inevitable that requirements will change during the specification and solution phases of a project, and most
requirements management processes have some type of mechanisms for embracing these changes. Typically, a set of
requirements will have been specified and groomed for the solution teams to implement; any subsequent changes are
specified as Change Requests. Regardless of the rigor of the process being used, inadvertent changes will occur that need
to be managed along with the Change Requests. Enterprise Architect is a sophisticated requirements management
platform, with a range of tools to assist the requirements manager. Change Requests can be managed in the Maintenance
window, which allows the requested change to be recorded and described, along with whoever requested it and when it
was done and whoever completed the change. Inadvertent changes can be discovered and analyzed using a number of
tool features, including Auditing, Baselines and Version Control; these tools have some overlapping features and can be
used in isolation or together. The built-in Security system will also assist in preventing inadvertent changes to models, by
allowing modelers to intentionally lock Packages and elements in the model.

Mechanisms for managing changing requirements

Mechanism Description
Element change task and Changes to requirements can happen inadvertently but it is more common for there
effort items to be an intentional change in response to a wide variety of factors such as

Stakeholders revising their needs, the business changing or a problem being poorly
understood. Inadvertent changes can be picked up using a number of tools but
deliberate changes can be assigned using the Change item, which can be recorded
against each element. Once the impact of the change has been analyzed Tasks can
be created to specify what needs to be done to implement the change and Effort can
be assigned using the Requirements Effort item.

Name: For normal transactions the approval ime should be reduced to less than 40 seconds | Auto
Requested by: | Tim Howard ~ | Requested: 10/05/2015 * Status: |New -
Completed by: | Pat Taylor - | Completed: []13/05/2015 ~ Pronty: |High -
Versian / 1D: Copy ID

Description | History
d — 1l —
BIUMRAIZE| X @B

The currently stated processing time of 2 minutes is too long and during testing it has been
discovered that users are assuming that something has gone wrong and resending the
reguest. This can result in a deadlock with the providers APl and will cause both requests to
be rejected.

Auditing Auditing is a built-in tool that, when enabled, automatically records changes to the
repository. It has a number of different modes and views, and can be configured to
assist in the management of Requirements. It can track what was changed in the
model, who made the change and when it was made, showing the before and after
views. So if the text of a Requirement was updated or its status was changed, this
would be recorded. Auditing functionality overlaps with the Baseline tool, but
unlike the Baseline tool the changes are being recorded automatically and every
discreet change is recorded. In contrast, the Baseline tool will only compare the
current model to a Baseline regardless of how many intervening changes had been
made. Auditing will not assist with the impact of the changes but just what changes
have occurred. Once the changes have been established, tools such as the

(c) Sparx Systems 2022 Page 192 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Relationship Matrix can be used to determine the impact.

@start Page 3 Specification Manager [&Find in Project @ Audit View x
Gioup By
User spapsysthloyd) Configuie Load ® Type Displaying sets of audit data

Time 2020-11-3010:3%:34 Mode = Search User Viewing log tems recorded in the past year

{Details Requirerent.(«Functional> REQ116 -The system rmust

email the client a copy of the receipt) liine[Rsiod Helo

Property Original Change

Objecthiode Elements | pdata? In Progress Approved
Package Elements modifieddate 26/05/2020 3071142020
e status In Progress Approved
Providedinterface Elements
ProxyConnector Elements
RenuiredInterface Elements
Requiremert Elements
«Functionals REQO1S - Process Credit Card Payment,
EA sFunctionals REQ116 -The system must email the disnt

2020-11-30 10:39:34

2020-11-30 10:39:47

2020-11-30 10:39:47

2020-11-30 10:41:53

2020-11-30 10:43:38

<HonfunctionalRequirement= Return Custamers 10 Perc

AT T T T T T
v OO0 D

-

Version Control Version Control can be implemented in Enterprise Architect to manage changes and
revisions to any Package including Requirements Packages. Once implemented
changes to Requirements will be recorded and a requirements analyst will be able
to view previous version and roll back to these versions if required. There is some
overlap between this tool feature and Auditing and Baselines. The difference
between this facility and Auditing is that Auditing simply records the changes but
does not allow you to revert to a previous version. The difference between Version
Control and Baselines is that a modeler must intentionally create a baseline whereas
with Version Control the changes are being recorded automatically in the
background. Also with Baselines the intervening changes are not recorded, just the
difference between the current requirement and the one captured in the Baseline.

Baselines Baselines provide a versatile mechanism for managing changes to Requirements.
Any number of baselines can be created and when requirements are changed these
changed requirements can be compared to one of the baselines. Baselines are
typically created at important milestones in a project such as after a stakeholder
meeting or before a development iteration is commenced. When differences are
found and these changes were not intended or contravene project management
practice the requirements from the baseline can be restored to the current model.
Baselines will not help with assessing the impact of a change but once a change has
been identified tools such as the Relationship Matrix and element traces can be
used to determine the impact of a change.

Comparing package Manage Inventory against baseline version 3.2
2r Baseline Comparison =
Yoed t RReEREBEET@
Model Elements Status

=[] Manage Inventony
- wFunctionals REQ01S - Manage Invertony

-1 @ Links
=/ Realization
IIT Target: («Functional» REQ01S - Manage Inventony) Changed
wFunctionals REQ020 - Receive tems Changed
el «Functionals REQO21 - List Stock Lewvels Changed

(c) Sparx Systems 2022 Page 193 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Impact Analysis of Changes

When the development of a system has started and requirements change there will be an impact of the change and the
effect will need to be determined, understood and managed. Having traceability established both to up-process elements
such as Stakeholders and Business Drivers and down-process elements such as Use Cases, Components, Test Cases and
source code operations is critical to determining the impact of the change. Enterprise Architect has a number of facilities
that can assist with this including the ability to visualize traces in diagrams, a Relationship Matrix, a Traceability
window, element Change, Task and Effort items that can be used to record impact and what is required to implement it.

Tools to record and analyze the impact of change

Tool Description
Analysis using requirement The ability to visualize requirements and the way they are connected to other
traces elements is a practical tool for analyzing the impact of change. Requirements often

form a hierarchy and when one requirement is affected it typically has a ripple
effect to the requirement's children and being able to visualize this in a diagram or
in a hierarch is very useful. Requirements are also typically traced to up-process
and down process elements and a diagram provides a way of viewing and analyzing
these connections. The Insert Related Elements function can discover these
connections and automatically draw and layout a diagram allowing the modeler to
spend their time analyzing the impact.

Tracing Requirements

This diagram shows the expressive power of putting disparate elements onto a diagram.

It shows the traceability between different layers ofa system. The traceability can be from the
Requirements to the Use Cases that Realize them, to the logical Com ponents that will
deliver the required functionality.

«realize»
REQ019 - Manage Inventory
<J-------- |
REQO32 - Update Inventory
,,,,, 1
wrealize»

Analysis using a The Relationship Matrix can be used to visualize the requirements and their

relationship matrix connections by placing the Requirement on one axis of the matrix and the
connected elements on the other. This method is very useful in workshops when
working with people who might not be familiar with modeling languages such as
UML or who work better with spreadsheet types of view. Any number of matrices
can be created and their specification can be stored so they can easily be recalled.

Inventory Manager

requirements
Provides services for the
management of Titles.

«trace»

(c) Sparx Systems 2022 Page 194 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Tar —
get + | -
k]
E
= -—
£ a 5
5|8, D 2
[=]
L | g |@ 2|2 S| E | »|@
e | =2 | w |T =B |5 |= |=
w = = m @ € @ o o [
w = 7] o = (%] - = o 2 e
2 |lg |& o | O [l (e | c | E |m | = [=]
v g |2 E|w|2 o2 o |a e 8
L= T = T =T zlc|l=2|lz2]|8
Sl |28 |2|8|2|8le|l8 |2 |2 =
@ 2 |m |22 |8 |cs|a|m|a|&B | E
= |o |=E|®w o ||| |=|e|3|c
N T T = o = == T =T Iy
—_ | |= | | = |= | = |=— | — | ™ |4 | v
= = = = = = = = = = = =
& e e (e (e e e e fler e e (e
L L L L L L L Ly L L L L
+| Source r ||| ||| |2 ||| |o
Add MNew Titles
Add To Shopping Basket T
Close Account
Create Account T
Create Orders T
Delete User T
Analysis using the The Traceability window is a handy window that shows the hierarchy of elements
traceability window in the Repository. It is particularly useful because it unconditionally shows how

elements are related to each other. Other views of the repository could be
configured just to display particular elements for the purpose of communicating an
idea whereas the Traceability window will display all relationship that an element
participates in which makes it particularly useful for analyzing the impact of
change.

Traceability 1 =

o' [Fd | iE -
= RECQI020 - Receive Books
= === realized by
= & Receive Orders
= -+ implements
RECQ020 - Receive Books
REQ032 - Update Inventory
k== realized by
= Association from
[E =& part of
REG01S - Manage Inventory

(c) Sparx Systems 2022 Page 195 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Requirement Volatility

There are ever increasing market place pressures to release products and systems as early as possible, putting stress on
project teams to develop, test and deploy products in shorter and shorter periods of time. The requirements processes
have changed significantly in recent years to ensure that stable, correct and well-articulated specifications are provided to
architects, designers and developers when they need them. There has been a move to iterative and incremental processes
and this necessitates providing a set of stable requirements for every iteration. The churning of requirements is often an
indicator that a problem is not clearly understood, that stakeholders have not been compromised and there are unresolved
political issues, the scope is not defined or the business itself is in fluctuation. Enterprise Architect has a number of
mechanisms that can be used to assist with this problem. Enterprise Architect does not have a built-in property for
requirement volatility (stability) but using the general purpose UML extension mechanism of Tagged Values a tag could
be created to record this property.

Note: Internal requirements do have a stability property but external requirements do not.

Mechanisms for managing requirement volatitlity

Mechanism Description
Volatility as a Tagged Enterprise Architect provides a series of properties for Requirements, but additional
Value properties can be created to record other properties such as a Requirement's

volatility or the source of the Requirement. This is achieved using the UML Tagged
Value mechanism, which allows any element including Requirements to have one
or more tags applied, representing some property that can be assigned a value.
Enterprise Architect has extended this mechanism and allows the modeler to create
a list of values that can be chosen from a drop down list using the Predefined
Structured Tagged Values. This allows a team to define their own list of volatility
values, such as extreme, high, medium low, minimal.

RECI0Z1 - List Stock Levels

F p—
[ags

Walatility = Medium

Using Baselines The Baseline facility is an effective tool that enables a user to take a snapshot of a
model or more typically a model fragment and then as the model is developed to
compare the new version of the model to the baseline thus identifying anything that
has changed since the baseline was taken. Baselines have general applicability but
are particularly useful with requirements management where requirements are often
said to be signed-off or frozen and any alterations to them must be registered as a
change. The Baseline tool has a Compare utility that conveniently lists changes
between the current model and the baseline.

(c) Sparx Systems 2022 Page 196 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Comparing package Manage Inventory against baseline version 3.2
EP Baseline Comparison X
vttt RRkBEHET@
Model Elements Status

-1 |_] Manage Inventony
- wFunctional» REQD1S - Manage Inventony

=| [Links
= /" Realization
IET Tanget: («Functional» REQDTS - Manage Inventony) Changed
wFunctionals REQDZ0 - Receive kems Changed
wFunctionals REQ0Z1 - Lst Stock Levels Changed
Searches for churning Enterprise Architect has a sophisticated search facility that allows a user to search
requirements across either a selected Package or the entire repository, to locate elements that

meet fine-grained criteria. This can be used to locate requirements that have not
changed by searching for a change in the modification date before a specified date,
thus providing a list of stable requirements. Alternatively, if volatility has been set
using a Tagged Value, all elements with a specified volatility could be located. The
search facility returns a list of elements that can be located in the Browser window;
the search can be used as the basis of a Model View to be used to view either
volatile or non-volatile requirements.

(c) Sparx Systems 2022 Page 197 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Requirement Reuse

The concept of reusing artifacts of a system development process has been written about in many papers and text books
but has traditionally been confined to software components. In more recent years the notion of reusing specifications,
including requirements, has started to get traction. The reuse is particularly important where organizations create a
family of products with similar features, or where there is a community of users within an industry or domain. Other
types of requirement such as security and regulatory requirements will typically apply to a number of projects. Business
Rules and Stakeholders Concerns will also typically apply across many projects and are best catalogued outside
individual project structures. Enterprise Architect provides a number of sophisticated mechanisms for managing the
reuse of elements across projects, including structuring the repository for reuse, importing requirements from other
sources, and a Reusable Asset Service.

Mechanism for requirements reuse

Mechanism Description
Structuring the repository When you set up a repository, you have the choice of structuring it for a single
for requirements reuse project or for multiple projects, which in turn could be organized by a number of

programs of work. Enterprise Architect gives the modeler complete control on how
the repository is structured, allowing Packages to be set up above the level of
projects where some requirements such as Business, Regulatory and Architectural
Requirements can be added.

Creating a base model When you create a new repository in Enterprise Architect, you have the option of
creating a blank model using the Model Wizard (Start Page 'Create from Pattern’
tab) to help set up a repository structure, or you can use a base model as a template
for the new model. The base model is a good place to store reusable assets such as
Business, Regulatory and Architectural Requirements, and Policies and Business

Rules.
Importing requirements It is quite common to have a number of Enterprise Architect Repositories in an
from other models organization and it is very easy to copy and reuse Requirements (or any other

elements) from one model in another. This can be achieved by simply copying a
selection of Requirements or an entire Package from one repository to another, or
even from one project to another in the same repository. Enterprise Architect works
in the same way as any other Windows program, simply copying the selection to
the clipboard and then allowing it to be pasted in another location in the same
model or in another open repository.

(c) Sparx Systems 2022 Page 198 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Browser 0 x
| L= >
Project | Context Diagram Element

4 B Functional Requirements e
B Functional Requirements
B Functional Requirements Dashboard Priority
4 £ Manage Users

:EIE Functional Requirements Dashboard Status
e Manage Users
[+1 «FunctionalRequirement» REQD11 - Manage User Accounts
[v] «FunctionalRequirements REQO16 - Add Users
[v] «FunctionalRequirement» REQO17 - Remove User
[+] «FunctionalRequirement» REQO18 - Report on User Account
[+ «FunctionalRequirements REQ024 - Secure Access
[¥] «FunctionalRequirement» REQO25 - Store User Details

[le I Y . P Y ArsAne "'1I|dateU5er
[1M Generate Documentation
[£1 12 Copy to Clipboard r ID for Pasting as Link
b B R Delete selected items) Full 5tructure f%Duplication
4 B non-p -
< Help... 3
Using the Reusable Asset The Reusable Asset Service (RAS) is particularly useful for distributed teams and
Service provides a simple and convenient mechanism for modelers to distribute or

download reusable model structures and elements such as Requirements through a
shared repository, accessible via a Pro Cloud Server connection. Enterprise or
organizational level Requirements could be stored in the RAS and different teams
could incorporate them into their models, governance of the assets would typically
be managed by the owner of the asset (register) at the Reusable Asset Service level.

(c) Sparx Systems 2022 Page 199 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Requirement Relationships

Enterprise Architect supports all the SysML Requirement relationships, which can be visualized in a number of different
locations within the user interface, providing a flexible way of working with these important connectors. The
relationships between elements (including Requirements) are not visible in the Browser window, as this would clutter the
elements when there are more effective ways of viewing the connections.

The Relationships window is useful to have docked while viewing elements, either in the Browser window or in a
diagram. As an element is selected in the Browser window or in a diagram, the context changes and the Relationships
window will display just the relationships that exist between the selected element and other elements in the model,
including other Requirements.

The relationships between Requirements and other elements, including other Requirements, can be visualized in any
diagram including Requirements diagrams, in three different ways:

e A connector between two elements
e A compartment in the Requirement element
® A callout notation in the form of a note attached to either a Requirement or another model element

All three diagram notations have their purpose, and provide flexibility for the modeler to choose the appropriate
representation for a particular purpose and audience.

The relationship drawn between two elements visible in a diagram is the most common way to visualize Requirement
relationships; the dashed line is drawn from the client (the dependent element) to the supplier (the providing element). So
in this example the 'Strip Illumination' Block is the client and it depends on the 'Low Light Visibility' Requirement, so
the arrow points from the Block (client) to the Requirement (supplier).

req [package] Requirements [Requirements - Satisfy Relationshipy

«block»
strip lllumination

«requirement»

Low Light Visibility parts
hs : Housing
id ="1026" dc: DC Connector
- wsatisfy» .
text ="The system must ensure any bamieris e e e la: LED Array

visible in low light conditions i nd uding night and
shadows and there must be enough time in

these conditions for a driver to stop at the The strip illumination runs the length of the

beam and illuminates the reflecting surfaces of
«rationale» the boom orthogonal to the light direction.

The design of the strip lighting and Making it visible to approaching vehicles.

its illumination properties satisfies

the State Govemment O ccupational

Health and Safety Standards.

control unit."

Notice also in this example that the modeler has chosen to display the Parts compartment, showing the Parts that make
up the Block, and the Notes compartment that describes the Block. A rationale has also been added to qualify the 'Satisfy’
relationship, and to provide an explanation as to why the Block was chosen in the context of standards.

Compartments can be used to display the relationships that a Requirement participates in, which is a compact and useful
way of visualizing the Requirement relationships without the need to include the related elements in the diagram.

(c) Sparx Systems 2022 Page 200 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

req [package] Requirements [Requirements - Compar‘tmen‘tsy

«requirements
Low Light Visibility

id = "1026"

text ="The system must ensue any banier is visble in low light
conditions including night and shadows and there must be
enough time in these conditions for a diver to stop at the contrdl
unit."

refinedBy
Operate at Night

tracedFrom
Trade Study - Light Condition

verifiedBy
After Dark Test
Shadow Test

satisfiedBy
Strip Hlumination

The list of visible compartments can be configured for each diagram element or for the entire diagram, providing fine
granular control on how the relationships are visualized.

Mew Child Diagram L
New Child Element ’ |
Features & Properties ¥
a“l‘_;| Linked Document Control+Alt+D
@ Compartment Visibility... h Control+5Shift+Y

Insert Related Elements...

Alternatively, a Callout notation can be used to display the relationship in a note attached to either the Requirement
element or the dependent element that the relationship relates to. This notation is particularly useful when elements
appear in diagrams in which either the connector or compartment displays are not suitable, such as an Internal Block
diagram, Sequence diagram or Use Case diagram, or in other diagrams as a modeler sees fit. The Requirement
relationships are binary, meaning they have two ends: a supplier and a client. This means that the Callout can be attached
to either a Requirement or the related model element which, depending on the relationship, could be a Block, Test Case,
Use Case or other model element, including another Requirement.

In this diagram the modeler's focus is on the Requirement and the Block element is listed in the note stereotyped as
<<satisfiedBy>>.

(c) Sparx Systems 2022 Page 201 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

req [package] Requirements [Requirements - Satisfy Relationship Callout - Requiremery

«reguirement»
Low Light Visibility

id ="1026"

text = "The system must ensure any
barrier is visble in low li ght conditions
including night a nd shadows and there
must be enough time in these
conditions for a driver to stop at the
control unit."

satisfiedBy
Strip Hlumination

In this diagram, the modeler's focus has switched to a Block and the Requirement element is listed in the note
stereotyped as <<satisfies>>.

req [package] Requirements [Requirements - Satisfy Relationship Callout - Blocy

«hlock»
Strip lllumination

parts
hs : Housing
dc: DC Connector

la : LED Array satisfies
““““““““ «reguirement» Low Light Visibility

The strip illumination runs the length of the
beam and illuminates the reflecting surfaces of
the boom orthogonal to the light direction.
Making it visible to approaching vehicles.

The next section details the Requirement relationships, providing an example of each relationship.

(c) Sparx Systems 2022 Page 202 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Adding Refinement to a Requirement

The Refine relationship is a relationship between a Requirement and another model element that adds refinement or
additional information that helps clarify the requirement so that its meaning is more apparent. The Refine relationship is
available from the 'Relationships' page of the SysML Requirements Toolbox.

SysML Requirement Relationships

A Containment
Trace

Copy

Derive

Verify

Refine h
Satisfy
The Refine relationship can be drawn between a Requirement and any model element such as a Use Case, a

StateMachine, or an Activity. The choice of model element will depend on the information expressed in the requirement
and the discretion of the modeler or engineer.

1 T T R

req [package] Requirements [Requirements - Refine Relationshi;y

«requirements
Low Light Visibility

id ="1026"

text ="The system must ensue any bamier
is visible in low light conditions including
night and shadows and there must be
enough time in these conditions fora diver
to stop at the control unit."

_________ Operate at Night
wrefines

In this example the Use Case does not extend or embellish the requirement but rather adds detail in the form of
descriptions and Scenarios that will make the meaning of the requirement easier to understand.

(c) Sparx Systems 2022 Page 203 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Containment Relationship

The Containment relationship's name well describes its purpose - it is used to show that one or more Requirements are
contained in, or are grouped by, another higher-level Requirement. It is a fundamental and highly used relationship when
modeling requirements for any system of even moderate complexity. A large system could have thousands, if not tens of
thousands, of requirements, and these are best grouped together in hierarchies. An alternative to the use of the
Containment relationship is to group Requirements using Packages. This method works when there are just two levels in
the hierarchy or when you group Requirements by type - such as Stakeholder or Physical - but it has limitations when
used more extensively.

The Containment relationship is available from relationships page of the SysML Requirements Toolbox.

SysML Requirement Relationships

A Containment D}
Trace

Copy

Derive

Verify

Refine

Satisfy

B I I I N Y|

This diagram shows the use of the Containment relationship to show two lower-level Requirements that are 'contained'
by a higher-level Requirement.

req [package] Requirements [Requirements - Containment Relationshi[y

«requirements
Operational Visibility

id ="1024"

text ="The system must ensure any barrier is
visible in all operati ng conditions ind uding weather
events such as fog and low light conditions such as

at night."
arequirements» «requirement»
Fog and Rain Visibility Low Light Visibility

id="1025" id ="1026"

text = "The system must ensure any barrier is text = "The system must ensure any barrier is
visible in any weather conditions i nd uding Fog and visible in low light conditions including night and
Rain and there must be enough time in these shadows and there must be enough time in these
conditions for a driver to stop at the contrd unit.” conditions for a driver to stop at the control unit."

(c) Sparx Systems 2022 Page 204 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

The containment of Requirements can also be visualized in the Browser window, where containment is represented by
elements being nested or, more formally, the contained elements are children of another Requirement. This leveling is
possible for any elements in the repository, but has special meaning with Requirements. This image shows the same
Requirements as in the previous diagram, but in the Browser window.

4 [JRequirements
4 7 Physical Requirements
o Boom Gate Physical Requirements
F «physicalReguirement= Operational Visibility
«physicalRequirement» Fog and Rain Visibility
«physicalRequirement» Low Light Visibility
«physicalReguirement= Vehicle Height

Note that nesting the Requirements in the Browser window does not create Containment relationships between
Requirements. In fact, it is possible that the two different methods could be out-of-synch with each other because they
are independent mechanisms.

(c) Sparx Systems 2022 Page 205 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Copying Existing Requirements

The Copy relationship is a relationship between two Requirements; it is used to show that one Requirement is a copy of
another. The relationship is a type of Dependency and is represented by a dashed line with the keyword <<copy>>, with
an open arrow head pointing from the Copied (Client) to the Base Requirement (Supplier). Given that Requirements
elicitation, and management are expensive and time consuming activities, and that many projects often have an overlap
of interests, it is useful to re-use Requirements; the Copy relationship provides a mechanism to do this. The base
Requirement is typically stored in another project's namespace but it is considered good practice to move the common
(base) Requirements to a namespace that sits above the level of individual projects.

The Copy relationship is available from the Relationships page of the SysML Requirements Toolbox.
SysML Requirement Relationships [

A Containment

Trace

Copy

Derive b
Verify

Refine

Satisfy

oy "y T IRl ey

This diagram depicts a power utilization Requirement that has been copied for re-use in a number of projects.

req [package] Requirements [Requirements - Copy Relationshi;:y

«requirement» «requirement»
Minimize Power Utilization Minimize Power Utilization of Boom
Gate
id ="9001" {E ___________
text ="The system must mi nimize the power “copy» id = "1006"
used by all of its components" text ="The system must mi nimize the power
used by all of its components"

(from Car Park Boom Gate)

When the Copy relationship is used the new Requirements are assigned a new id, but the text of the new Requirement
will be a read-only copy of the base Requirement.

(c) Sparx Systems 2022 Page 206 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Deriving a Requirement from Another

The Derive relationship is a relationship between two Requirements, used to describe the fact that one Requirement is
based on or is an extension or derivation of another Requirement.

The Derive relationship is available from relationships page of the SysML Requirements Toolbox.

SysML Requirement Relationships
A Containment

Trace

Copy

Derive

Verify b

Refine

Satisfy

I Y R DN Y|

The two Requirements are typically at different levels of abstraction or resolution. A Requirement in a low level
specification might have a Derive relationship to a Requirement in a higher level specification. The lower level
Requirement is typically derived from the higher level Requirement as a result of investigation, elaboration or analysis.
The important aspect of this relationship is that if the Requirement at the arrow end of the relationship is changed, it is
highly likely that the derived Requirement will need to be reanalyzed.

req [package] Requirements [Requirements - Derive Relationshipy

«requirements
Low Light Visibility

«reguirements»

lllumination
id ="1026"
text ="The system must ensure any < id ="1029"
barrier is visible in low light conditions «deriveReqts text = "The system must use strip

including night and shadows and there
must be enough time in these
conditions for a driver to stop at the
control unit."

lighting for illuminating the boom."

(c) Sparx Systems 2022 Page 207 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Ensuring a Requirement is Satisfied

The Satisfy relationship is used to show that one or more model elements in the architecture or design fulfills the notion
expressed in the Requirement. It is an important connection or bridge between what might be described as the problem or
opportunity and the architecture, design and - when verified - the implementation.

The Satisfy relationship is available from 'Relationships' page of the SysML Requirements Toolbox.

SysML Requirement Relationships
A Containment

Trace

Copy

Derive

Verify

Refine

Satisfy [s

I I RN N Y|

The relationship is a type of Dependency and is represented by a dashed line with the keyword <<satisfy>>, with an
open arrow head pointing from the design element (Client) to the Requirement (Supplier).

req [package] Requirements [Requirements - Satisfy Relationshipy

«block»
strip lllumination

«requirement»

Low Light Visibility parts
hs : Housing
id ="1026" dc: DC Connector
- wsatisfy» .
text ="The system must ensure any bamieris e e e la: LED Array

visible in low light conditions i nd uding night and
shadows and there must be enough time in
these conditions for a driver to stop at the
control unit."

The strip illumination runs the length of the

beam and illuminates the reflecting surfaces of
«rationale» the boom orthogonal to the light direction.

The design of the strip lighting and Making it visible to approaching vehicles.

its illumination properties satisfies

the State Govemment O ccupational

Health and Safety Standards.

In this diagram it can be seen that the Block 'Strip Illumination' satisfies the Requirement that speaks of the visibility of
the boom in low light conditions. There is also a rationale added that describes the compliance with respect to State
Government regulations.

In this diagram the Satisfy relationship has been displayed using Callout notation.

(c) Sparx Systems 2022 Page 208 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

req [package] Requirements [Requirements - Satisfy Relationship Callout - Requiremely

«reguirement»
Low Light Visibility

id ="1026"

text = "The system must ensure any
barrier is visble in low li ght conditions.
including night a nd shadows and there
must be enough time in these
conditions for a driver to stop at the
control unit."

satisfiedBy
Strip Hlumination

In the next diagram callout notation has been used but this time the Block is referenced in the callout.

req [package] Requirements [Requirements - Satisfy Relationship Callout - Blocy

«hlock»
Strip lllumination

parts
hs : Housing
dc: DC Connector

la: LED Array satisfies
““““““““ «requirement» Low Light Visibility

The strip illumination runs the length of the
beam and illuminates the reflecting surfaces of
the boom orthogonal to the light direction.
Making it visible to approaching vehicles.

(c) Sparx Systems 2022 Page 209 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Traceability to Model Elements

The Trace relationship is a general purpose, widely-used relationship that connects a Requirement to any other modeling
element. The relationship is expressed as a dashed line with the keyword <<trace>>, which indicates the meaning; the
arrow head points to an up-process element (one that was created earlier in the process).

In this diagram the modeler wants to show that a Requirement has a relationship to a trade study represented by a
Document Artifact. The document might have been written in Enterprise Architect or it might be a linked external
document.

req [package] Requirements [Requirements - Trace RelationshipV

«requirement»
Low Light Visibility

Trade Study - Light Condition 24

id="1026"
text = "The system must ensue any bamierisvisidlein| _ _ _ _ _ _ _ _=

This trade study was conducted by Lumino-
Technical Solutions to identify how light conditi ons
wtrace»

low light conditions including night and shadows and
there must be enough time in these conditions for a
driver to stop at the control unit.”

would effect the operation of a boom gate and the
requirements for driver and autonomous vehicle
visibility.

The Trace relationship acts as a catch-all, and is useful when a modeler wants to show that a Requirement has a
semantic relationship to an up-process element, and none of the other relationships are appropriate.

SysML Requirement Relationships

p:l

Containment
Trace

Copy b
Derive
Verify

Refine

Satisfy

I I RN BN

(c) Sparx Systems 2022 Page 210 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Verify Relationship

The Verify relationship is used to indicate that a Requirement has been fulfilled. The relationship is a type of
Dependency and is represented by a dashed line with the keyword <<verify>>, with an open arrow head pointing from
the Test Case (Client) to the Requirement (Supplier).

The Verify relationship is available from relationships page of the SysML Requirements Toolbox.

SysML Requirement Relationships
A Containment

- Trace

- Copy

' Derive

- Verify [:?

o -

-~ Refine

~ Sati sfy

The Test Case can describe the method or testing process; it contains a tag that defines the verdict (test result), which can
be:

® pass
e fail
e inconclusive

o €rror

a user defined value

The Satisfy relationship has a related purpose in that it describes which part of the design or system is actually used to
carry out the notion expressed in the Requirement.

(c) Sparx Systems 2022 Page 211 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

req [package] Requirements [Requirements - Verify Relationshipy

wtestCase»
After Dark Test

Verdict = inconclusive

equinox under a cloudless, moonless sky.
Ambient lights were present from
neighboring buildings.

F~7771 Thetestwas conducted at the winter
I
I
I
I

«requirement» wyerifyn»
Low Light Visibility

|
|
|
id ="1026" :
|

text ="The system must ensure any barrier is
visible in low light conditions induding nightand <= — — — = -
shadows and there must be enough time in these <£— o
conditions for a driver to stop at the control unit.” —:
1
satisfiedBy ! atestCase»
Strip lllumination wverify» Shadow Test

Verdict = pass

I
I
I
| —

The test was conducted at the winter
equinox and under a cloudy sky using a
shade to simulate shadow.

In this diagram a Requirement describes Low Light Conditions, and there are two separate Test Cases used to verify the
Requirement. The modeler has chosen to display the 'satisfiedBy' compartment to help clarify what part of the
implementation is being subjected to the test. Notice that the verdict is different for each Test Case: the After Dark Test
is inconclusive whereas the Shadow Test passes. A modeler can choose to show or hide the Verdict tag in individual
diagrams.

(c) Sparx Systems 2022 Page 212 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Visualizing Requirement Relationships

Relationships between Requirements and other elements - including other Requirements - are a critical aspect of Model
Based Systems Engineering. In many ways these relationships are the important bridges between specification and
design, or problem and solution. These relationships can be viewed in a wide range of specialized windows and user
interface mechanisms. One of the first things a newcomer to Enterprise Architect will observe is that these relationships
are not visibly nested under elements in the 'Project’ tab of the Browser window. It has been a conscious design decision
not to clutter the 'Project’ tab with these relationships, but rather to make them visible in other displays that can be
docked and viewed at the same time as the elements they relate to.

This illustration shows the 'Details' tab of the Inspector window with the 'Relationships' node expanded to show all the
relationships that are connected to the "Low Light Visibility' Requirement, which has been selected in the 'Project’ tab.
There is also a dedicated Relationships window.

Inspector O x
& @

Details Trace Summary

Loy Light Yisibility
4 B Relationships
n"u Dependency:bfter Dark Test [Activity]
"o DependencynShadow Test [Activity]
‘o Dependency:Trade Study - Light Condition [&rtifz
o DependencyStrip lurmination [Class)
o Dependencytlllumination [Requirernent]
o Dependency:Operate at Might [UseCase]
“n Mesting:Operational Visibility [Requirernent]
“o Motelink: [Mote]
Discussions
Requirerments
Constraints
Scenarios
Linked Features
Files
Testing
Maintenance
Project

Resources

S 1 S T S r S 1 S 11 S 1 S 1 S 1 S 1 S T

Integration

There is also a wide range of other windows where relationships can be visualized. For more information see the The
Browser Window topic.

Traceability Window

The Traceability window is a helpful and unique feature of Enterprise Architect that allows relationships to be explored,
so that the modeler can effectively take walks through the graph of elements and their connections. It is a useful window
to have open when you want to view how an element is connected and also what the connected elements are connected
to. So, for example, in this model of the Boom Gate when the "Low Light Visibility' Requirement is selected, the

(c) Sparx Systems 2022 Page 213 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/projectexplorer.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/projectexplorer.htm

Guide to MBSE with SysML 3 October, 2022

Traceability window will show that it is connected to the 'Strip Lighting' Block that satisfies the requirement.

Traceability O x
@@ @
¥ Low Light Visibility
4 =¥ owned by
I» I Operational Visibility
4 ¥ needed by
[@ Shadow Test
| Strip Hlurnination
| El'emheds
[+ == 5trip llumination.: DC Connector
[[E=]Strip llumination.: Housing
[+ == 5Strip llumination.: LED Array
4 = composed of
> E LED Array
[Housing
[+ DC Connector
[: -t depends on
b L Tlumination

The Traceability window can be opened from the ribbon option 'Design > Element > Trace'.

The modeler in this situation might also be interested in the structural aspects of the 'Strip Lighting' Block and so can
follow this element's relationships to discover its structural relationships, walking the graph to find answers to questions
and exploring the model.

If you are not concerned about viewing the relationships it is best not have this window open, as its contents must be
rendered each time you change focus to another element and, for well connected elements, this can take some time,
increasing the time it takes to move around the model. For more information see the Traceability Window Help topic.

Relationships Window

The Relationships window is a useful window to have open when working with crosscutting concerns, as is typically the
case with Requirements. When an element is selected in a window, the Browser window or a diagram, the Relationships
window displays a list of the connectors that either target the selected element (target) or emanate from the element
(source). Another useful aspect of this window is that the 'View' column indicates whether the relationship is visible in
the currently open diagram.

The Relationships window can be opened from the ribbon option 'Start > All Windows > Properties > Responsibilities >
Relations'.

A modeler can also locate all diagrams that contain the selected relationship, by choosing the 'Find in all Diagrams'
option from the context menu. In this illustration it can be seen that the 'deriveReqt' relationship that connects the "Low
Light Visibility' Requirement and the '[llumination’ Requirement exists in two diagrams. For more information see the
The Relationships Window Help topic.

Usage Type Diagram Type Diagram
Link SysML Requirements Low Light Visibility
Link SysML Requirements Requirements - Verify Relationship

(c) Sparx Systems 2022 Page 214 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/tools_ea_traceability_window.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/linktab.htm

Guide to MBSE with SysML

Relationship Matrix

3 October, 2022

The Relationship Matrix is a great tool for visualizing the connections between the elements in any two Packages, in an
interface resembling a spreadsheet with rows and columns. The tool is particularly useful when used with Requirements,
and allows an engineer to see how Requirements are related to other elements, including other Requirements.

» Relationships between Requirements and Requirements * X
Source: Reguirements .| Type: Requirement = Link Type: Dependency ~ Profile: Requirements - Refresh
Target: Reguirements .| Type: <an> - | Direction: | Both - | Owerlays: | «<None> - Dptions
Target |+ é
B
[=
=2
"
z E z
| |z|3]. |3
E 5 |8 |§ |E "
2 |c |2 |2 |2 = %
S |® |8 |+ |a 2 [o
£ = |% £ |8 |8 |5 KM=
- N -
: w5 3|5 I |: EM:s
k= o = Qo = = o a
+ | Source <L [r = =3 = Q [s] b >
Fog and Rain Visibility
Illumination /f
Low Light Visibility = =

Minimize Power Utilization of Boom Gate

Operational Visibility

Vehicle Height

The Relationship Matrix can be opened from the ribbon option 'Design >Package > Package/Matrix'. Select whether the

current Package is the source Package, target Package, or both.

Where a relationship exists an arrow icon will be displayed in the cell at the intersection of the source and target
elements, with the arrowhead showing the direction of the relationship. The matrix can also be configured to highlight
the rows or columns that do not have any relationships in a separate color. This and other options can be configured on
the Options window, available from the Options button in the Relationship Matrix header.

Matrix Options x

*| Include Source Children
¥|Include Target Children

Include All Extended Meta Types
+| Sort Axes

Show Package Names

Use Element Alias If Available

Show Level Numbering If Available

+| Highlight source elements without relationships.

+|Highlight target elements without relationships.

Cancel Help

These options allow you to tailor the way that the matrix is displayed, including whether elements are sorted and their
names are prefixed with the Package name, and whether source and target element rows and columns without
connections are highlighted. For more information see the Relationship Matrix Help topic.

Insert Related Elements

(c) Sparx Systems 2022

Page 215 of 461

Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/tools_ea_relationship_matrix.htm

Guide to MBSE with SysML 3 October, 2022

The Insert Related Elements feature is a productivity tool that allows an engineer or other stakeholder to quickly
construct a diagram by inserting a central element and then asking the tool to find all elements related to this element,
down to an arbitrary depth of connectivity. This helps the engineer to effectively explore the graph of elements and
create a diagram that shows how other elements in the repository directly relate to this central element and how other
elements relate to those elements. Element and connector types can be specified for inclusion or exclusion, and the depth
can be changed to bring more or fewer elements and connectors into the diagram. The diagram can be automatically laid
out or the diagram layout tool can be used to reorganize the layout to make it more appealing or relevant.

b ?E req [package] Reguirements [Requirements Related Elements] @ * X E|em(
req [package] Requirements [Require d
Connector types: - “ Element types: -~ -
= Derive % B Artifact %
0 P = Nesting ¥ Block %
srequirement] = Refine ! Requirement o
Lm Light ViSibi s CadicFar il Sl A Tk ™ arn e B
id = "1026" Link Direction: <All= - Find relationships to: 1 % levels
; text = "The system must ens
visible in low light conditions| Limit to Namespace: =None> -
and shadows and there must]
in these conditions for a drive Refresh Clear
control unit." All Clear
= LF

Drag a column header here to group by that column.

Depth Mame Package In Diagram
1 Operational Visibility Requirements No
1 @ Operate at Night Requirements No
1 D Trade Study - Light Condition Requirements No
1 Strip Hlumination strip llumination No
1 @ After Dark Test Requirements No
1 @ Shadow Test Requirements No
1 Hllumination Requirements No

The Insert Related Elements feature can be used by selecting an element in a diagram and then using the ribbon option
'Design > Element > Add Element > Related Element'.

The feature can be used as an exploratory tool where the rendered diagrams are constructed as part of an enquiry process
and are discarded after they have served their purpose. Alternatively, the feature can be used to create more permanent
diagrams that can be saved and reused for visualization. Either way the tool will save the engineer time, and enable the
creation of accurate and expressive diagrams that are bound to impress stakeholders who would otherwise not have been
able to visualize the connections between elements. For more information see the Insert Related Elements Help topic.

Kanban Diagrams

Kanban diagrams can be used to visualize requirements (and other elements) as they pass through the stages of an
industry standard or proprietary process or methodology. The concept of Kanban has its origins in process efficiency
analysis in the automotive industry in the latter years of 20™ Century Japan. It has since then been adopted by a number
of software and system communities as an effective way of managing requirements from the backlog or queue to their
implementation. Enterprise Architect has a full and pragmatic implementation of Kanban that can support a number of
different requirement processes.

(c) Sparx Systems 2022 Page 216 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/tools_ba_insert_related_elements.htm

Guide to MBSE with SysML

3 October, 2022

K« -

« ?E Boom Gate Requirement. Kanban Diagram
Backlog Queue In Progress Test/Review
Low Light Visibility Vehicle Height Fog and Rain Visibility
Proposed Validated Validated
Backlog Queue In Progress
Minimize Power Utilization of Boom lllumination
Gate
Approved
Validated In Progress
Queue
Pe N
Electrical Power
Proposed
In Progress

"

In this diagram we see a number of columns that represent the stages in the requirements process, allowing elements to
be dragged between columns - typically from left to right but occasionally elements can be returned to a Backlog, for
example. The diagram is completely configurable by the engineer, allowing the number of columns and their names and
a wide range of other aspects of the diagram to be configured, including Bound Properties, Work in Progress limits and

colors to name a few.

Line Color: 1~

Fort Color: - A

Title Calor: O Defaut -

Owverfiled Color: . -]

IUndefill Colar: O Default

Line Width: 1

Vertical Spacing: | Medium

4

Hide Mames

Bold Font

Hand Drawn

Enable Owverdill Highlight

Enable Underfill Highlight

It is also possible to show the progress that has been made on a particular requirement, by applying resource allocations
and displaying each resource as a progress bar showing the percentage completion for the task. In this diagram we see a
number of elements, one of which shows three resources working on the same element. For more information see the

Kanban Boards Help topic.

(c) Sparx Systems 2022

Page 217 of 461

Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/kanban_facilities.htm

Guide to MBSE with SysML

In Progress (5/6)

-

dint
As a Sales Representative |
want to be able to view

historical leads

Userstory
Validated
Medium

Adam Goodchild
[—— | Soluti...
lane Ward

(=]
Pat Taylor
(—] C++Pr..

Devel...

Test/Review

. £~
As a Warehouse Manager |
want to be able to determine
the best product location to
minimize picking errors

Userstory
Proposed
Low

Yuki Kotabashi

(c) Sparx Systems 2022

[—— | TestA
L .

r Ly
As aCusto mer lwant to be able

to rent an item for a specified

Page 218 of 461

3 October, 2022

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Documenting Requirements

A number of documents are commonly produced as part of the Requirements Engineering discipline, such as the
Software (System) Requirements Specification and Use Case Report. These can be generated automatically from a
requirements model using built-in templates. In addition a wide range of other documents can be produced using built-in
or customized templates. The documentation facility in Enterprise Architect is highly configurable and many reports can
be produced using the template system, but for more complex reports there is a facility called Virtual Documents that
allows a publisher to model the structure of the document and to cherry pick content from anywhere in the repository,
applying different templates to each section of the document. There is also a wide variety of options that can be applied
at the template or document generation level, and the Scripting engine can be used to inject content into a document or to
produce the entire report.

Requirement Report - Details

Fulfill Orders

Version 1.0 » Proposed

There is also a Custom Document facility that allows a modeler to define a dynamically created document by simply
dragging content from the Browser in the form of elements, diagrams or Packages and applying a built-in or a user
defined template to each item that specifies how the content will be rendered. This allows a document to be visualized
and can include any handcrafted content or images in addition to the content injected from the Browser.

(c) Sparx Systems 2022 Page 219 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Project Glossary

A Project Glossary lists and defines the terms that are important for a project or program of work. The Project Glossary
can be generated as an isolated document, or it can be included as a section in one or more other documents. It provides a
single point of truth for the important project terms and their meanings; when new documentation is generated the terms
will automatically be updated. The Glossary can be generated to a DOCX or PDF format, or to HTML that could be
included in a project or organization level web site. The Glossary allows the modeler to categorize the terms into
user-defined Types, which can have styles applied when they are generated in documentation.

Glossary kem Details

Tem: Type:
Stock Ttem Business ~
Meaning:

B 7 U™ iZ:=| %

The Stock Item defines the items (books) that are stocked in the warehouse for
on-line purchase.

The Project Glossary can be viewed and managed from this ribbon location:

Design > Dictionary > Glossary > Glossary View

(c) Sparx Systems 2022 Page 220 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Software Requirement Specification

This document describes the Requirements of the system, its behavior under defined conditions, and the constraints that
it must operate under; it will typically be read by a variety of stakeholders. There is a built-in Requirements template that
can be used to generate the document, although the modeler is free to create a new template that could be either based on
this or created from a blank template. When the document has content from a variety of locations in the Browser
window, it would be most expedient to use the Virtual Documents facility, which allows the user to create a model of the
document (similar to a Master document in a Word Processor) that has a number of sections called Model Documents.
These can have content picked from anywhere in the Browser window.

Software Requirements
Specification

Online Bookstore

WVersion 1.0 & Proposed

(c) Sparx Systems 2022 Page 221 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Describing User Goals with Use Cases

Use Cases were originally devised by Ivar Jacobson, a Swedish electrical engineer who was also an important proponent
in the development of the Unified Modeling Language (UML). Use Cases are used as a method for representing
functional requirements from the users' perspective. They are said to be goal driven, because the Use Case defines the
goal that the user is trying to achieve while interacting with the system. Enterprise Architect fully supports the
development of Use Case diagrams, but also fully supports the modeling and management of Use Case text; it has a
unique and highly productive tool for working with Use Cases, called the Scenario Builder.

This innovative tool not only allows Use Cases to be modeled at any level of detail, but also automatically creates
behavioral models that allow the detailed steps of a Use Case and the interaction between the Actor and the System to be
visualized and related to other parts of the model.

The Use Case is a close cousin to the User Story, which is used in a number of Agile Software development techniques.
The term originally coined in Swedish is more naturally translated as Usage Scenario, which provides a more compelling
explanation of the method.

(c) Sparx Systems 2022 Page 222 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Requirements and Use Cases

The Use Case technique is fundamentally very simple and was originally devised to ensure that functional requirements
were written from the perspective of the User. This standpoint helped to ensure that deployed systems would be fit for
purpose and be accepted by the diverse community of users. There is however a vast amount of conflicting literature and
an equally large number of styles for defining Use Cases. This has led to confusion and uncertainty and has tended to
attenuate the value that can be derived from this effective and simple technique.

In software engineering, many methods prescribe the use of Use Cases as an alternative to Requirements development,
because the Unified Modeling Language (UML) does not include a formal Requirement element. In contrast, most
Model Based Systems Engineering methods using SysML combine the application of Use Cases and Requirements. This
is a result of the fact that SysML defines both a Use Case and a Requirement element so these two elements can be
related to each other and compliment the system specification to bring clarity a precision to the important discipline of
requirements engineering and management.

req [package] Hybrid Suv Requirements [Requirements - Refine Relationshiyzy

«reguirement»
Master Cylinder Efficacy

id="55.4.1"

text ="A master cylinder shall have a
reservoir compartment for each service le—_ _ _ _ _ _ _ _ _ __ _ Decelerate Car
brake subsystem serviced by the master arefine»
cylinder. Loss of fluid from one
compartment shall not result in a compl e
loss of brake fluid from another
compartment.”

In these two diagrams the modeler has used the <<refine>> relationship to indicate that the Decelerate Car Use Case
refines or adds additional explanation to clarify the Requirement Master Cylinder Efficacy. This provides a mechanism
to trace implementation level components that are connected to the Use Case back up to the Requirement and ultimately
to the Stakeholder.

(c) Sparx Systems 2022 Page 223 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

req [package] Hybrid Suv Blocks [Requirements Use Case and Subsystem Componentsy

«reguirements
Master Cylinder Efficacy

id="55.4.1"

text ="A master cylinder shall have a

reservoir compartment for each service <<----- T
urefine»

brake subsystem serviced by the master

cylinder. Loss of fluid from one

compartment shall not e tina complete |

loss of brake fluid from another 1

compartment."” 1|

[

Decelerate Car

wtrace»
|

+dba

Disk Brake Assembly
whlock» ABS Braking Subsystem

whlock»

The Traceability window can also be used to view the connections between model elements at different levels of

abstraction and to see the connection from a Block that forms part of a subsystem assembly back to the Requirement that
specified the functionality.

Traceability O x
wE@E K-
4 I Master Cylinder Efficacy
4 ¥ needed by
4 @ Decelerate Car
4 —¥needed by
P ABS Braking Subsystem
[@'Embeds
4 *= composed of
[+ Disk Brake Assembly
[-t depends on
[-+ depends on

Use Cases are typically used to refine the high level requirements and to express the communication and interaction
between the User and the System.

(c) Sparx Systems 2022 Page 224 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

(c) Sparx Systems 2022 Page 225 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Introducing Use Case Diagrams

The Use Case diagram is a simple diagram that visually describes the users' goals with respect to the system or part of
the system. This could be paraphrased to 'the value that the system provides to the Actors'. Use Case diagrams appear
quite simplistic, with a small number of elements:

Subject
Actors

Use Cases

These are connected by a series of relationships.

uc [package] Hybrid Suv Use Cases [Maintain the Vehicley

HybridSuv

Maintain the vehicle

Maintainer

(from (from Use Cases)

Actors)

The Subject (boundary) provides a context for the definition and represents a system or part of a system; the Actors by
definition lie outside the Subject and the Use Cases within. The Communication Path relationship by definition crosses
the perimeter of the Subject as it connects an Actor with a Use Case. Again, the number of relationships is quite limited,
but each has specific meaning in the diagram.

Communication path
Extend (also with Condition)
Include

Generalization

As with all SysML elements, there is both a graphical and textual aspect to the elements, and in the description of Use
Cases there is typically more emphasis on the textual or narrative aspect.

(c) Sparx Systems 2022 Page 226 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

uc [package] HSUV Use Cases [Top Level Use Cases] /

HybridSuv

Operate the vehicle

Driver

Insure the vehicle

/ Insurance Company
Registered Gwner\

Register the vehicle

Department Of Motor
Vehicles

Maintain the vehicle

Maintainer

Any number of Use Case diagrams can be created to represent the users' interaction with the system or part of a system.
It is important to understand that Use Cases are intended to describe the value the system provides for its users and they
are not intended to be broken down by functional decomposition. This is unquestionably the most common mistake made
by novice modelers, resulting in the attenuation of the profound benefits that can be gained by this technique.

The Use Case model can be embellished by a mechanism called 'structuring the Use Case Model', which factors out
repeating text, classifies Actors and Use Cases, and specifies extension points. This mechanism will be discussed later in
this chapter. For more information see the SysML Use Case Models Help topic.

Creating a Use Case Diagram

A Use Case diagram can be created from a number of places in the User Interface by selecting:
e Design ribbon - Add Diagram icon on the Diagram panel

e Browser window toolbar - New Diagram icon

e Browser window context menu - Add Diagram

We will use the Design ribbon to create a Use Case diagram. Firstly, select the location in the Browser window where
you want the Use Case diagram to be located. As with all diagrams, this can be either a Package or an element, but it is
common to insert Use Case diagrams into a Package. Once the Package location has been selected in the Browser
window, select:

Design > Diagram > Add Diagram

(c) Sparx Systems 2022 Page 227 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/SysML_Use_Cases.htm

Guide to MBSE with SysML 3 October, 2022

E 0 s0 op =B

Toolbox Add Manage Views Options
Diagram b w ~

Diagram

Selecting this option will open the New Diagram dialog, allowing you to name the diagram; the name initially defaults to
the name of the Package or element that contains the diagram. With the SysML perspective chosen and the version of
SysML selected, a list of diagrams will be displayed allowing you to choose the Use Case diagram. Click on the OK
button to create a new Use Case diagram in the location selected in the Browser window. The Diagram View will be
opened, allowing you to start adding elements and connectors that describe the value that the system will provide to its
users. Enterprise Architect will also display the 'Use Case' pages of the Diagram Toolbox that contain the elements and
relationships defined by the SysML specification to be applicable for constructing Use Case diagrams. Any number of
other Toolbox pages can be opened, if required, in addition to the Common elements and Common Relationships
Toolbox pages that will always be available.

Type
Select From: = Diagram Types:
Fe P
(=] SysML 15 I» g Activity

[Ta Block Definition
ﬁ Internal Block
Package
ﬁ Parametric
["E'g Requirement
TE Sequence
[» [5g State Machine
: 2% Use Case

SysML Use Case Diagrams capture the behavioral requirements of a system using use
case elements, and their interaction with participant actors.

The most important elements and connectors that are used with the Use Case diagram are:

Elements
e Actor - used to describe a role a user plays with respect to the system
e Use Case - used to describe the value a system provides to its users

e Boundary - used to show the scope of the systems (typically one per diagram)

Connectors

e Communication Path - used to connector Actors to Use Cases

e Generalize - used between two Actors or between two Use Cases
e Include - used between to Use Case to reuse scenario steps

e Extend - used to embellish a Use Case with extra detail

(c) Sparx Systems 2022 Page 228 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Toolbox v R x
Search L P =
SysML Use Cases
% Actor
D Use Case

Boundary
SysML Use Case Relationships

Communication Path
A Generalize

.'f‘ Include

Eﬁ Extend

SysML Patterns
¥3 Basic Use Case

Elements can be added to the diagram by dragging-and-dropping them from the Toolbox onto the Diagram View. It is
considered good practice to start with a Boundary element, which should be named appropriately to describe the system,
sub-system or entity being modeled by the Use Case diagram. Leaving the name blank, or giving it a name that does not
make it clear to the reader what system or part of a system is being modeled, can lead to misinterpretation of the diagram.
With the Boundary added and appropriately sized in the diagram, Actors and Use Cases can be added - Actors positioned
outside the Boundary and Use Cases inside. The next step is to add Communication Path relationships between Actors
and Use Cases, thus defining the value that the Actors derive from the system.

Once a basic diagram has been created, and as knowledge of the domain and the system's behaviors are further revealed,
it is possible to structure or embellish the diagram using the additional relationships of Include, Extend and Generalize.
The newcomer is cautioned against using these relationships too liberally, and any attempt to use functional
decomposition will attenuate the value of the Use Case model, which is intentionally broad in its description to allow
stakeholders to get a 10,000 meter view of the services provided by the system, sub-system or entity being modeled.

(c) Sparx Systems 2022 Page 229 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Meet the Scenario Builder

There is a wide range of tools for working with Use Cases, but none more important and useful than the Scenario
Builder. This unique tool bridges the gap between what has traditionally been done within Word Processors or isolated
tools that separate the Use Case diagram with its Actors and Use Cases, and the steps of the scenarios.

=£ Scenarios & Requirements

BAEHEX:= O @
= [Scenarios 4 4 F M | Scenarios . Constraints Requirements
T Basic Path]
) i Scenario:
&= List Stock Levels by Publisher
Basic Path
&= Update Stock levels
L:? Constraints Description | Structured Specification
R. i t & P
L Requirements | B | & | 4 L|§;¢,,V;,|/{ @

= [E] Linked Requirements

@ REQOZL - List Stock Levels Step Adtion

% 1 The Actor selects the List Stock Levels option
Eg!, 2 The System displays a List of Stock Items

% 3 The Actor multi selects items in the list

2 4 The Actor submits the selected items
=]

5 The System displays the Stock Levels

The Scenario Builder also provides a mechanism to automatically generate behavioral models directly from the Scenario
steps, allowing elements of the architecture and design to be related to individual steps.

ﬁh | o vl 3{ |§:|
Activity
Activity with ActivityParameter

Activity with Action
Activity with ActionPin

RuleFlow

State

Sequence

Robustness

The tool provides a whole range of options that will be suitable for any Use Case or Requirements process, ranging from
what is commonly termed a basic process where the Actor and Use Cases are named and the Use Case is given a
description, to a partially-dressed process where the basic flow is completed. A fully-dressed process will typically detail
all the steps in the basic flow and define and detail the steps of Alternate and Exception Scenarios. For more information
see the Scenario Builder topic.

In addition any number of constraints can be added, such as pre-conditions and post-conditions and invariants.

(c) Sparx Systems 2022 Page 230 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/tools_ba_scenario_builder.htm

Guide to MBSE with SysML 3 October, 2022

Constraint Type Status
The customer has signed the workshop agreement. Pre-condition Approved
The customer's driver settings and preferences are unchanged Invariant Approved

The vehicle has new parts and lubricants in compliance with the service schedule. Post-condition Approved
The vehicle is road worthy. Pre-condition Proposed

The vehicle is safe, road worthy and performing optimally. Post-condition Approved

(c) Sparx Systems 2022 Page 231 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Structuring a Use Case Model

While the Use Case model provides a high level of visualization, and a systems engineer is cautioned against applying
functional decomposition, SysML does provide a number of mechanisms that can help to structure a Use Case model to
ensure that discrete pieces of functionality can be reused. These mechanisms consist of the <<include>> Dependency,
<<extend>> Dependency and Generalization relationship.

uc [package] HSUV Use Cases [Operational Use Cases] /

Drive the vehicle

Driver

Hybrid SUV

Start the vehicle

wextend»
-
P
-
-
-
-
L
——————————————— Accelerate
~ «include»
~
~
~
~
.
e
«include»
s
= ~
~ -~
Y ~
2
. AN
~
~
~
wincludex»
~
~
~
~
Y
~
Y
Y
~
~
=\
_____________ Brake
«includex»

(c) Sparx Systems 2022

Page 232 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Generating Behavior Diagrams

Enterprise Architect has a helpful productivity tool that allows behavior diagrams to be automatically generated from
Use Case specifications defined in the Scenario Builder. This provides a way of visualizing these otherwise textual
descriptions. It also allows relationships to be drawn between steps in a Use Case description and other modeling

elements.

Type: Scenario:

Basic Path -~ Basic Path -
A WM& & 4+ B-v- X

Step Action Uses Results State

% 1 The driver clicks the remote control for
keyless entry.

E:'m 2 The system validates the signal and unlocks
the car doors.

% 3 The driver opens the driver's door and sits in
the driving seat.

™ 4

(c) Sparx Systems 2022 Page 233 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Use Case Report

The creation of Use Case documentation has traditionally been a manual process and with the documents in many
projects running into hundreds of pages their production consumes valuable project resources. These hand-crafted
documents become difficult to maintain and remain isolated from other parts of the project such as Requirements,
Business Rules and solution Components. Enterprise Architect has a multi-featured tool called the Scenario Builder that
allows the modeler to specify Use Cases and Scenarios inside the model and these can be automatically generated to high
quality documentation using built-in templates. There are two built-in templates that can be used for generating a Use
Case report: one documents the Use Case at a summary level and the other at a detailed level.

Use Case Details

List Stock Levels

Version 1.0 e Proposed

Example content from a Use Case Report

The detailed Use Case report will list all the details of the Use Case and the detailed steps, including Basic Paths,
Alternate and Exception Scenarios. Other information, including Internal Requirements, Pre- and Post-Conditions and
other Constraints will also be included in the report. If a Behavioral diagram such as an Activity diagram has been
automatically created, this diagram will also be displayed in the report.

(c) Sparx Systems 2022 Page 234 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Atternate. List Stock Levels by Publisher

The List Stock Levels by Publisher allows a user to obtain stock level information for a selected publisher. The Stock Control
Manager and Storeroom Worker need this information to plan logistics and to ensure that stock remains at adequate levels to
service incoming requests. There is also the need to predict the date that the stock items will fall below an acceptable level

Page 3 of 4

Use Case Details 19 May, 2013

SCENARIOS
based on purchase cycles and promotional periods.

1. User selects "List Stock Levels by Publisher”
Uses:

2. System returns a list of publishers to select ffom
Uses:

3. User Selects a publisher
Uses:

4. System returns a listing of tifles and quantity in stock for the publisher
Uses:

(c) Sparx Systems 2022 Page 235 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Using Blocks to Model Structure and Constraints

The language constructs and expressions in SysML, as with our natural languages, can be divided into structural and
behavioral types. In languages such as English, German or Japanese, nouns describe structure and verbs describe
behavior. Sentences typically contain a combination of nouns and verbs that bring to light some aspect of the speaker's
world. The SysML has a similar division, with elements that describe Structure and other elements that describe
Behavior. In SysML the structural things (nouns) are described using a Block. When engineers create diagrams they will
often have a mixture of behavior or structure elements and they will describe a particular aspect of a system - bringing to
light some aspect of the system being modeled.

The Block is the fundamental unit of system structure; it can be used to describe an entire system, a subsystem, a
component, an item that flows through a system, a constraint, or entities that reside outside a system. In a similar way to
our natural languages, a Block can represent something abstract, logical or physical. This is an important concept, and
writers and readers of the SysML must be clear as to the intention of the representation. For example, in a logical
architecture there are typically Blocks representing conceptual ideas or designs that at the time of detailed design and
construction might be realized by physical and tangible components. A systems architect might define a Block called
Collision Detection Subsystem that is an expression of a logical system component that could at the detailed design
phase, be in part, realized by a set of radar and laser transmitters, detectors and cameras.

bdd [block] Automotive Domain [HybridSUvV Ereakdowmy

«LightCondition»
Hybridsuv

properties
b BodySubsystem
bk : BrakeSubsystem
¢ : ChassisSubsystem
i InteriorSubsystem
I : LightingSubsystem
p: PowerSubsystem
Propertyl OO

1

P bk b i 1 ¢

«block» ablock» ablock» «block» «blocks «block»
PowerSubsystem BrakeSubsystem Y : Lighti ChassisSubsystem
oo

!

bkp

«block»
BrakePedal

A number of our natural languages have a grammatical term called classifiers, which group the things (nouns) of a
lexicon into classes of things that share common characteristics and behavior. This same principle applies to Blocks,
which are essentially a type of classifier that groups a collection of instances that share the same structural and
behavioral features. Instances of a Block can be modeled in a generic way or they can be given precise values, such as
the volume of petrol contained in a fuel tank at a particular point in a journey or at the time of an accident.

«rationalex
2 wheel drive is the only way to get acceptable «blockn
fuel economy, even though it limits off-road WheelHubAssembly
capability

(c) Sparx Systems 2022 Page 236 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

bdd [package] Fuel Tank [Fuel Tank]/

«block»
Vehicle

parts
: Communication Subsystem
: Fuel Subsystem

wblock» whlock»
Fuel Subsystem Communication Subsystem
parts parts
: Fuel Tank : Fuel Guage
+reservoir 1.2 +indicator 1..2
{ordered}
ublock» wblock»

Fuel Tank Fuel Guage
Capacity: volume - Warning State: int
Material: string
Reserve: volume O

In the Fuel Tank diagram the car is modeled as a classifier (Block) level, where the model is describing a generic vehicle
and representing the fact that a vehicle could have one, or a maximum of two, fuel tanks. This Fuel Tank Instances
diagram, however, describes a particular vehicle that has two fuel tanks that have different capacities and reserve
volumes.

(c) Sparx Systems 2022 Page 237 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

bdd [package] Fuel Tank [Fuel Tank Instances]/

v: Vehicle

fs: Fuel Subsystem

properties
: Fuel Tank
Left Tank: Fuel Tank ‘ | Right Tank: Fuel Tank
Material = high-density polyethylene Reserve =3
Reserve =5 Capacity =50
Capacity = 80 Material = high-density polyethylene

A Block defines a collection (or set) of features that are used to describe a system, subsystem, component or other
element of interest. These features can include both structural and behavioral features, such as properties, operations and
receptions, to represent the state of the system and the behavior that the system is capable of exhibiting.

Enterprise Architect has a set of tools that help the systems engineer to work with Blocks and to visualize the structure
and behavior of these all-important elements in a system's definition. These facilities include the:

e Block Definition Diagram, which describes the Blocks, their features, interaction points and structural relationships

e Internal Block Diagram, which captures the internal structure of a Block in terms of properties and connectors
between properties

This Internal Block Diagram shows how a number of sub-systems cooperate to create the structure of the vehicle. For
example the Lighting Subsystem has a connection with the Interior Subsystem which in turn has a connection to the
Body Subsystem.

(c) Sparx Systems 2022 Page 238 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

ibd[LightCondition] HybridSUV [HybridSUV]/

b: BodySubsystem iz InteriorSubsystem

b-c: b-I:

¢: ChassisSubsystem bk: BrakeSubsystem |: LightingSubsystem

bk-I:

p-c:

p: PowerSubsystem ‘

Some relationships have been suppressed in the diagram; for example, the Power Subsystem would typically have a
connection to the Lighting Subsystem. This point is important, as newcomers to SysML and Enterprise Architect often
think that every defined relationship should be displayed in a diagram. While this statement appears to be true it is
important to remember that a modeler, like a cartoonist creating a caricature, will often leave details out of illustrations to
focus the viewer's attention on other subjectively more important elements and connectors.

This screen capture shows how an engineer can set the visible relationships for a diagram.

Set Visible Relations B

Eelations

¥| Connector < Property.b -—— Property.c = 'b-c'

v| Connector = Property.b — Property.i = 'b-i:'

¥| Connector < Property:b — Property:l = 'b-l"'

¥| Connector = Property.bk — Property:| = "bk-I'

¥| Connector < Property.c -— Property.bk = 'c-bk:’'

v| Connector = Property.i -— Property:l = "i-l;'

¥| Connector < Property.p — Property bk = 'p-bk:'

¥| Connector < Property.p -—— Property.c > 'p-c'
_____ D}C onnector < Property.p -—— Propertyl = 'p-I'

If a connector is not checked in this dialog it will not be displayed in the current diagram. It might, however, be visible in
other diagrams where the connected elements are displayed. This can be set from the 'Layout > Diagram > Appearance >
Visibility > Set Visible Relationships' ribbon option.

Regardless of which connectors are displayed in a diagram, a modeler can always view all of an element's connectors by
selecting the element in the diagram and viewing the Traceability window. In this screen capture the Power Subsystem
has been selected, and even though the connector between the Power Subsystem and the Lighting Subsystem has been
set to 'not Visible' in the diagram, the relationship can be seen in the Traceability window.

(c) Sparx Systems 2022 Page 239 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Traceability v B ox
0 B E @
4 p

4 —* owned by
[Automotive Domain. HybridSUV
4 =¥ Connector to
i> B Automotive Domain.HybridSUV.c: ChassisSubsystem
I B Automotive Domain.HybridSUV.I: LightingSubsystem
t> = Automotive Domain.HybridSUV.bk: BrakeSubsystem
4 ¥ instance of

[Automaotive Domain.PowerSubsystem

The features of a Block are either structural or behavioral.

The structural features are of three kinds:

® Parts - that describe the composition of a Block; for example, that a vehicle's chassis is composed of two axles and
four wheel assemblies

® References - that describe the Block's relationship with other Blocks (including itself); for example, that a
metropolitan train has a relationship to a station and an overhead wiring system

e Values - that describe quantifiable aspects of a Block; for example, such things as dimensions, temperature and
luminosity

The Behavioral features include:
e Operations - typically representing synchronous requests

® Receptions - representing asynchronous requests from a signal

(c) Sparx Systems 2022 Page 240 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Getting Started with Blocks

The designers of Enterprise Architect have created great flexibility for the Systems Engineers and other disciplines,
recognizing that team members often perform a variety of roles and need to effectively change hats multiple times within
a project, or even within a day. Perspectives and Workspaces provide a convenient and efficient way for a Systems
Engineer to effectively change roles without the need to launch another tool.

Setting the Perspective and Workspace

Systems Engineers who have been working with the tool for some time will have selected a Perspective from the
Systems Engineering Perspective Set; typically this might be the SysML Perspective, giving them access to all the
patterns and Toolbox pages to create any one of the SysML diagrams, including the Block Definition and Internal Block
diagrams.

Portals

= Perzpectives -
Model-Based Sets
UML
Strategy
Analysis
Requirements
UX Design
Business Modeling
Software Engineering
Systems Engineering
All Systems Engineering
SyshL
UAF
LUPDM
Executable State Machine
Simulation

AUTOSAR
MARTE

Database Engineering
Enterprise Architecture
Information Exchange
Publishing
Construction

Management

(c) Sparx Systems 2022 Page 241 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

As explained in the introductory topic, workspaces can be set to facilitate modeling of a particular type; in the case of
Block Definition diagrams, any one of the workspaces contained in the Core Workspace Set will be useful for modeling,
including:

e Basic Diagramming

e Core Modeling

e Default

An Engineer who is working at a project level might also find some of the construction workspaces useful, including:
e Roadmaps

e Kanban

e Document Publishing

e Reviews and Discussions

Creating Block Definition or Internal Block Diagrams

There are two diagrams that you will typically create when working with Blocks:

e Block Definition diagram (BDD) - used to show the structural relationships between Blocks, including hierarchies of
both Parts and type, and reference connections to other Blocks

e Internal Block diagram (IBD) - used to show how the Part properties are connected directly, or through interaction
points such as Ports and interfaces

We will discuss the Block Definition diagram in this chapter of the Guide; in the next chapter we will discuss the Internal
Block diagram, which will demonstrate how Blocks can be used in a given context.

Internal Block Diagram - Setting Context

One of the most important diagrams to create early in an initiative is a Context diagram, which describes the product or
service being modeled in the context of its environment or domain. This helps a model viewer get a clear picture and
understanding of how the product sits within one or more of the environments it will need to operate in. It also gives an
early indication of what is in scope and out of scope in the project. Elements in the diagram have been marked 'External'
(using a stereotype) indicating that they form part of the product or service environment or context.

Images have been used to soften the diagram, making it more appealing to a wide range of stakeholders, including
business and non-technical audiences.

This Internal Block diagram shows the Hybrid SUV in the context of a typical city environment. It is envisaged that at
least one other diagram could be created, showing an off-road environment where roads would be replaced by dirt tracks
and rivers, and buildings by mountains and trees.

(c) Sparx Systems 2022 Page 242 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

ibd [block] A ive Domain [A i "Inmain]/

«system,blo..
HSUV: HybridSuv
Driver

«external
vehicleCargo:
Baggage

Passenger

Maintainer

wdiagramDescription»
version="0.1"

description="Initial concept to identify top level domain entities”
reference="0ps Concept Description”

completenass="partial Doesnot include gas pump and other
external interfaces.”

drivingCon

«external
ditions: Environment

wexternals
weather: Weather

wexternal =

road: Road

«external =
ohject:
ExternalObject

(c) Sparx Systems 2022

Page 243 of

461

3 October, 2022

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Modelling Constraints as Blocks

Engineering Analysis requires the Engineer to perform a variety of functions that include the construction of
performance and reliability models, trade-off analysis, alternatives analysis and trade studies. These analyses often
require the use of mathematical expressions and equations that are used to constrain the elements of an analysis. SysML
provides a language mechanism in the form of a ConstraintBlock that is used to model the equations graphically. This is
a useful mechanism that allows the expression to be articulated along with its parameters and their types. The modeled
equations can then be reused in a number of different contexts, allowing an Engineer to define the formula for Newton's
second law of motion {F=m*a} or Carnot's definition, resulting in a fundamental theorem of thermodynamics {p= W/t
=(mg)h/t}. One of the helpful results of modeling these equations graphically is that they can be related to other model
elements such a stakeholder's Requirements, mission goals and lower level elements such as Blocks and implementation
artifacts.

Enterprise Architect allows these ConstraintBlocks to be modeled and then reused as Constraint Properties on Parametric
diagrams. The Constraint definitions can be grouped into libraries, and not only used in the current initiative but reused
across multiple projects and initiatives. In a later topic we will see how the constraints can be built up into a network of
equations and used on Parametric diagrams to evaluate alternatives, and to conduct trade-off and alternative analysis.
The tool's precision and technical excellence will ensure that equations defined in this way can be created, maintained
and used with rigor.

bdd [package] HSUV Analysis [Definition of Dynamicsy

«constraint»
StraightLine VehicleDynamics

values
acc: Accel
Cd: Real
Cf: Real
dt: Time
incline : Real
tw : Weight
vel : Vel
whlpowr : Horsepwr
x : Dist

constraints
: AccelerationEquation
: PositionEquation
: PowerEquation
: VelocityEquation

T

pwr pos vel acc

«constraint»
PowerEquation

«constraint»
PositionEquation

«constraint»
VelocityEquation

«constraint»
AccelerationEquation

constraints
{tp = whi powr - (Cd*v) - (CF*tw=v)}

constraints
{x{n+1) = x(n)+v=5280/3600*dt}

constraints
{v[n+1) =v(n)+a*32*3600/5280%dt}

constraints
{a =(550/32)*tp(hp)*dt=tw}

values
Cf: Real
Cd : Real
i:Real
tp : Horsepwr
tw : Weight
v:vel
whlpowr : Horsepwr

values
delta-t: Time
v:Vel
x : Dist

values
a:Accel
delta-t: Time
v:iVel

values
a: Accel
delta-t: Time
tp : Horsepwr
tw : Weight

(c) Sparx Systems 2022

Page 244 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Introducing Block Definition Diagrams

Blocks provide a unifying concept to describe the structure of an element or system, including:

e Systems

e Hardware
e Software

e Data

e Procedures
e Facilities

e People

Blocks can have multiple standard compartments that can be made visible on diagrams to describe the Block's
characteristics, including:

e Properties (parts, references, values, ports)

e QOperations

e Constraints

e Allocations from/to other model elements (such as Activities)
e Requirements that the Block satisfies

e User defined compartments

Any of the compartments can be suppressed. A separator line is not drawn for a missing compartment. If a compartment
is suppressed, no inference can be drawn about the presence or absence of elements in it. In this diagram a Pendulum has
been modeled and a number of compartments have been made visible in preparation to create a parametric simulation.

(c) Sparx Systems 2022 Page 245 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

sblock:
Pendulum
properties
F
g=9.01
L=0.5
m=1
Pl=3.141
VK
vy
x=0.5
y=0

constraints
e_newton_x : MNewton_pendulum_balance_x
e_newton_y : Newton_pendulum_balance_y
eRightTrangle : RightTriangle
ex : SimpleDer
ey : SimpleDer

Additional compartments can be supplied as a tool extension to show other predefined or user-defined model properties
(for example, to show business rules, responsibilities, variations, events handled, raised, and so on).

Each Block must have a non-null name that is unique within its namespace. The scope of a name is its containing
Package and other Packages that can see the containing Package.

Creating a Block Definition Diagram

A Block Definition diagram can be created from a number of places in the User Interface by using any of these options:
e Design ribbon - Add Diagram icon on the Diagram Panel

e Browser window Toolbar - New Diagram icon

e Browser window Context Menu - Add Diagram

We will use the Design ribbon to create a Block Definition diagram. Firstly, select the location in the Browser window

where you want the Block Definition diagram to be located. As with all diagrams, this can be under either a Package or
an element, but it is common to insert Block Definition diagrams into a Package. Once the location has been selected in
the Browser window, select the ribbon option:

Design > Diagram > Add Diagram

E 0 s0 op =B

Toolbox Add Manage Views Options
Diagram b w ~

Diagram

Selecting this option will open the 'New Diagram' dialog, allowing you to name the diagram. The name initially defaults
to the name of the Package or element that contains the diagram. With the SysML perspective chosen and the version of
SysML selected, a list of diagrams will be displayed; select the Block Definition diagram and click on the OK button. A
new Block Definition diagram will be created in the location selected in the Browser window. The Diagram View will be
opened allowing you to start adding elements and connectors that describe the Blocks and other important structural
elements such as Ports, Interfaces and Value Types. Enterprise Architect will also display the 'Block Definition' pages of

(c) Sparx Systems 2022 Page 246 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

the Diagram Toolbox, which contain the elements and relationships defined by the SysML specification as applicable for
constructing Block Definition diagrams. Any number of other Toolbox pages can be opened if required, in addition to the

'Common' elements and 'Common Relationships' pages that will always be available.

Type

Select From:

=y sysML 1.5

Diagram Types:

b Fa Activity

i Block Definition

ﬁ Internal Block
Package
ﬁ Parametric
I Fo Requirement
T sequence
> [E2] State Machine

22 Use Case

MDG Technology for SysML 1.4/1.5

The most import elements and connectors that are used with the Block Definition diagram are:

Elements

e Block

e Constraint Block
e Value Type

e Property

e Unit

e Quantity Kind

e Proxy Port
e Full Port
Connectors

e Reference Association
e Part Association

e Shared Association

e Generalization

e Dependency

e Jtem Flow

(c) Sparx Systems 2022

Page 247 of 461

Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Toolbox -
L L =

Search

SysML Block Definition

B Block

Actor

Interface Block
Constraint Block
Value Type
Enumeration
Interface

Signal

Instance Specification
Unit

Quantity Kind
Property

Flow Property
Directed Feature
Port

Procey Port

coc B UOOE § ED @ m-e

Full Port

1 x

F s

Toolbox v 1 X
PP

Search
SysML Use Cases
% Actar
@ Use Case
Boundary
SysML Use Case Relationships

/ Communication Path
A Generalize

,:.-«3’1 Include

Ef‘ Extend

SysML Patterns
ﬁ Basic Use Case

Elements can be added to the diagram by drag-and-dropping them from the Toolbox onto the Diagram View. For more
information see the Block Definition Diagrams (BDDs) Help topic.

Creating a Block Element

Block elements, as with any other type of element, can be created using the 'Add Element' option on a Package context
menu, or by using the 'SysML Block Definition' page of the Diagram Toolbox to place a Block on a Block Definition

diagram (BDD).

(c) Sparx Systems 2022

Page 248 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/Block_Definition_Diagrams.htm

Guide to MBSE with SysML

Toolbox

Search

SysML Block Definition

B Block

Actor

Value Type
Enumeration
Interface

Signal

Unit

Quantity Kind
Property

Flow Property

Port
Procey Port

o oo 5 G MR ¢ E E e

Full Port

Interface Block

Constraint Block

Directed Feature

Instance Specification

3 October, 2022

It is common for Blocks to appear on multiple BDDs, where each diagram is designed to address the concerns of a
particular stakeholder or stakeholder group. Enterprise Architect has a wide range of display options both at the level of
individual Blocks (or any element) or at the level of the diagram. These can be used to decide, for example, which
compartments to display or even which features to display for individual elements, There is also a wide range of generic
element and diagram settings to style both the element and the diagram. For example, it is possible to set the element
colors including fill, borders and text, or to change the appearance of an element by applying a graphical image that
better conveys the Block's function. In this example, a modeler has decided to use an alternative image for a Spot
Welding Robot to convey more clearly the automation taking place on the production line.

(c) Sparx Systems 2022

Page 249 of 461

Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

bdd [package] Production Line [Robots in Manufactu ringy

«block»
Production Line

parts
: Automated Assembly Unit

«block»
Automated
Assembly Unit

«requirements
Automation

wsatisfy»

id ="7085"

text ="The system must use robots to
automate tasks that are beyond human
capabilities of accuracy, enduance, speed,

carried out in hazardous environments."

size, weight and that potentially must be

Spot Weld Body Robot

(from Requirements)

whlock»

(c) Sparx Systems 2022

Page 250 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

The Fundamental Structural Building Blocks

Blocks are the fundamental and discrete modular units of system description. A Block defines a collection of features
that are used to define an aspect of a system or a system itself. The features are of two fundamental types: structural
(what a Block consists of) and behavioral (what it does) features. A Block's relationships with other Blocks (including
itself) and with elements of other types, help to describe the structure of a system, subsystem or component.

System modelers use Block Definition Diagrams (BDDs) to define the structure of Blocks, and Internal Block Diagrams
(IBDs) to describe their usage.

These diagrams can be created from the 'New Diagram' dialog, accessible from the Browser window toolbar.

Diagram Types:
D

™ Activity |
fF= Block Definition a
H Internal Block |
EY Package
H Parametric

» o Requirement |
TT Sequence

> [5g) State Machine |

2 Use Case

sysML Internal Block Diagrams capture the internal structure of a block in terms of i
yroperties and connectors between properties. I

(c) Sparx Systems 2022 Page 251 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Modeling Structural Features

Blocks typically are defined using a series of structural features. These are the properties of the Block and define the
nature of the Block. For example, a train engine (Rolling Stock) will have properties such as Engine Class, Identity
Number, Number of Wheel Assemblies, Motive Force, Motors and a range of other properties. An important point to
remember is that the Block is a classifier that describes a set of Engines. The engine at the front of the train set that you
board for your summer holiday is an instance of an engine and it will have a particular Class, for example OSE class 660,
and an identifier of SM-09873, and 8 wheel assemblies.

Enterprise Architect supports three basic kinds of structural feature and each is important for modeling different aspects
of the structure of a Block. We will look at each of them in these sections.

e Parts - a block is composed of parts
e References - refer to features of other blocks
e Values - describe quantities

This diagram shows all three types of structural feature.

bdd [package] Truck [Brake Assembly - Detail]/

«hlock»
Brake Assembly

properties
: Master Cylinder
Back Left : Wheel Cylinder
Back Right : Wheel Cylinder
Front Left : Wheel Cylinder
Front Right : Wheel Cylinder&o-O

+we | 4..10 +mc |1
whlock» «hblock»
pWheelCylinder +slave +master MastenCylindey
Di ter: - i :
|a_me er:m 4.10 1 Diameter: m
Height: m - Height: m
Volume: L - Volume:L
+reservoir +reservoir
whlock»
. +fluid
+luid Brake Fluid

Hygroscopicity: che
Viscosity: Pa s

The Braking System is made up of a number of parts, two of which have been shown on this diagram. The Part
Association has been used to indicate that the Master Cylinder and Wheel Cylinders are fundamental constituents of the
braking system. A Reference Association has been used to show both a relationship between the two types of cylinders
and also between the cylinders and the Brake Fluid. Values that have been entered as attributes are displayed with their
accompanying Value Types; for example, Volume has a Value Type of L, which is the symbol for the Dimension of
Volume whose SI Unit is Litre.

(c) Sparx Systems 2022 Page 252 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Blocks Composed of Parts

A Part is a structural Feature of a Block and forms one of the strongest relationships between a Block and its properties.
It is important to understand that an Instance of a Block might have multiple instances of a Part; for example, a truck
might have multiple wheel assemblies and - depending on the size and type of truck - this could be as low as 2 or as high
as 10. These possible configurations can be specified in the definition of the Block and its Parts, which are formally
known as multiplicities - the lower number is referred to as the lower bound and the higher number as the upper bound.
A Part will typically be typed by another Block, thus in the example the type of the Part will be another Block named
"Wheel Assembly', which would typically itself comprise an axle and two wheel assemblies. Thus each Part will be
defined in the Block with a name, a type and a multiplicity. The tool allows the Part Composition relationship to be
created in a number of ways, but perhaps the most immediate way is to drag both the Chassis Block (the whole) and the
Wheel Assembly Block (the Part) onto the diagram and then use the Quick Linker to drag from the Part (Wheel Assembly)
to the whole (Chassis).

O ST r
eblock: j_%

; Wheel Assembly ﬁ

£ T _IQ

Dragging from the source object to the target will display a menu of possible connectors, and the engineer would choose
the Composition to Whole connector. The result will be a relationship with the diamond marker at the Chassis end of the
line, indicating it is the whole and the element at the Wheel Assembly end is the Part.

bdd [package] Truck [Chassis - Part Composition] /

Association

Aggregation to Whole
. Aggregation to Part

- Composition to Whole

' Composition to Part

' Generalization

. : Hr|l
- —— - Allocate
ablocks Containment ahlocks
; Wheel Assembly ; Item Flow ansmission
[LT | Dependency

Trace

Information Flow

The connector properties will allow you to set the source role and multiplicities which, as discussed, specify the name
and the possible number of Parts for each Instance of a Chassis.

(c) Sparx Systems 2022 Page 253 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

bdd [package] Truck [Chassis - Part Compositiony

«block»

Chassis

+r|1 +Hr|1
«blockx» «block» «block»
Axle Assembly Frame Transmission

«block»

Wheel Assembly

«block»

Brake Asse rEBI_b

In the diagram the modeler has expressly defined the Parts by using the Part Association, available from the SysML
Block Definition toolbox.

In this diagram the modeler has used the Owning Block's Part compartment to display the Parts owned by the Chassis
Block.

bdd [package] Truck [Chassis - Parts Compartment]/

whlock»
Chassis

parts
ba : Axle Assembly[2..6] {unique}
fr: Frame
tr: Transmission

properties
: Frame
: Transmission
Front Primary : Axle Assembly
Front Secondary : Axle Assembly
Rear Primary : Axle Assembly
Rear Secondary : Axle Assembly OO

The Parts compartment will display by default, but its visibility can be controlled at a diagram level using the diagram
Properties, or at an individual element level using the element's 'Compartment Visibility' option on the element's context
menu. Setting the visibility at the diagram level will result in all elements in the diagram complying with the specified
visibility - displayed or not displayed as specified - whereas setting it at the element level will only affect the selected

(c) Sparx Systems 2022 Page 254 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

element.

Show Element Compartments

[T Attributes r Tags

[T Inherited Attributes [T Inherited Tags

r Operations r Fully Qualified Tags
[T nherited Operations r Receptions

r Requirements ¥ constraints

[T Inherited Requirements " Inherited Constraints
r Testing [T Maintenance

" Discussions " Reviews

I Resources I Project

[T Notes I Package Contents
[T scenarios ¥ Parts

The repository elements will be updated regardless of whether they are edited in the diagram or the Browser or any other
window. In the example, the engineer created the Parts in the diagram by dragging a Part Association from the Toolbox;
in response to this Enterprise Architect creates three new Parts, which are placed under the Chassis node in the Browser
as indicated in this screen shot.

b B «blocks Truck

Vi ablocks Chassis

&2 fr: Frame

E= tr: Transmission

B wa: Wheel Assembly
zblock= Body

«block= Engine

=

ablocks Frame

«blocks Transmission

The Part Association is the strongest type of Association relationship - the strength continuum from weakest to strongest
being:

1. Reference Association
2. Shared Association
3. Part Association

We will explore the other relationships in later sections of this guide.

References to Other Blocks

As stated earlier the Part Association is the strongest type of relationship in the SysML and implies a sense of
responsibility on the part of the whole:

e [tis responsible for the lifetime of its parts from which it is comprised

e A part can only participate in a part composition with a single block

The second condition means that the multiplicity at the whole end of a Part composition is always 1..1 which can be
abbreviated as 1.

(c) Sparx Systems 2022 Page 255 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

There is however another relationship, the Reference Association (or Reference for short) that can be used to specify
relationships between Blocks independent of composition or the notion of one block being a part of another. This
provides a very useful mechanism for creating relationships between blocks that are part of different part hierarchies or
between any two blocks that are related to each other. For example the Master Cylinder and Wheel Cylinders both have a
relationship to Brake Fluid which is used to fill their reservoirs. The Wheel Cylinder could in turn have a relationship to
a mechanic that periodically checks the cylinder for leaks that would compromise the efficacy of the braking system.

bdd [package] Truck [Master and Wheel Cylinder References]/

«block» ‘ +slave +master| block
Wheel Cylinder i
o ‘ 4..10 1‘ Master Cylinder
treservair +reservoir

+fluid «block» +fluid
Brake Fluid

Values used to Describe Quantities

Blocks can have properties with some type of quantifiable value; for example, an Engine has a Power Output, a
Reservoir has a Volume, an Automobile has a Color, a Railway carriage has a number of Bogies. The types can be a
primitive type defined as Number, Integer, Real, Complex, Boolean or String, as illustrated in this diagram.

bdd [package] Primitive Value Types [Primitive Value Typesy

Number Boolean

A

wvalueType» wvalueType» wvalueType»
String

avalueType» wvalueTypes» wvalueTypes»
Integer Real Complex

- imaginaryPart: Real
realPart: Real

An engineer, team or community of practice can also define any number of Value Types that can be simple or structured.
These can be based on any number of Systems of Units, such as the International System of Units (SI). An automotive
engineer designing a braking system might find themselves using a number of Standard SI Value Types and a number of
Derived Types, as well as other Values not defined as part of that standard. This diagram illustrates how these Values
can be defined, using the Value Type element available in the SysML Block Definition Toolbox.

(c) Sparx Systems 2022 Page 256 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

bdd [package] Value Types [Value Types - User Deﬁned]/

Pas

‘ wvalueType» ‘ ‘ «valueTypex»

L

avalueTypes
che

unit = Pascal Second unit = Litre

quantityKind = Viscosity ‘

quantityKind =Volume

quantityKind = Hygroscopicity

unit = Coefficient of Hygroscopic Expansion ‘

The Value Type has two defined properties - the quantityKind and the Unit. These can also be modeled in Enterprise
Architect and give rigor to the application of the Value Type. An engineer will know that the type is based on a quantity
(dimension) and a defined Unit. This diagram shows these elements for the (Viscosity) Value Type.

bdd [package] Value Types [Value Types—\fiscosityy

Pascal Second

avalueTypen ‘ ‘ Viscosity
Pas
definitionURI =
quantityKind = Viscosity description =
unit = Pascal Second symbol =

(from Quantity Kinds)

guantityKind =
symbol =
description =
definitionURI =

(from Units)

(c) Sparx Systems 2022

Page 257 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Modeling Behavioral Features

When a system is in operation, Instances of the Blocks that have been defined as part of the architecture and detailed
design are instantiated. At this time if a Block has a Classifier Behavior defined this behavior will typically begin and
will continue operating until the Block is destroyed. Thus in the example of our Car Park System, when the system has
been activated the Card Reader will begin operating and its prime behavior will come into effect. In addition to this a
Block (even though fundamentally structural in nature) has behavioral features that will be called upon to carry out work.
In summary, there are two fundamental definitions of behavior that are defined within the context of a Block, namely:

e Classifier Behavior - the native behavior that is initiated when a Block is instantiated
e Behavior Features - these are the Operations and Receptions (and their related Signals)

We will look at these different behaviors in the next sections of the Guide, but it is important to understand that they will
work in unison, coordinated by system interactions that will ensure that the operations are called in sequence and that the
Signals are received and acted upon by the Receptions.

A Blocks Classifier Behavior

A Block has the potential to do work, but by itself it is a somewhat latent entity and needs to be commanded into action
by some type of call to its operations or by the receipt of a signal, state change or other behavioral trigger. A Block has a
concept of its native or classifier behavior, as it is formally called. This diagram shows a Block in the Browser window
that has a nested Activity that will be defined as the Classifier Behavior for the Block.

| «blocks Card Reader
=% Card Inserted()
=% Card Removed()

=% House Keeping Initiated()

 Monitor Entrants;

=% Metwork Unavailable()

=% System Shutdown()

To select this behavior for the classifier behavior, open the Properties window and change the Classifier Behavior
property by selecting the [...] icon and locating the appropriate Behavior (Activity) as indicated in this illustration.

Class

Abstract

Active

Classifier Behavior Monitor Entrants
Final Specialization

Leaf

Visibility Public

Project

Operations as Behavioral Features

Blocks can define operations essentially as the 'muscles' of the Block, as it is the operations that do most of the work
required of the system. In Enterprise Architect an engineer can access the operations from a number of points in the user
interface, but all of these points will open the Features window, which lists the operations on the 'Operations' tab as
shown here:

(c) Sparx Systems 2022 Page 258 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Features v 3 x

Attributes Operations Receptions Parts/ Properties Interaction Points

Mame Parameters Return Type Scope Stereotype Alias
i readCard int, int, byte® - int Public

W validateCard void Public

W retainCard void Public

& ejectCard void Public

The Features window is useful as a summary of all the structural and behavioral features, including Parts and Interaction
Points owned by the Block. The easiest way to create an operation is to select the Block in a diagram or in the Browser
window and click on the ribbon item:

Design > Element > Editor > Features > Operations

Element Tools

Element Features Responsibilities

H Properties H Responsibilities
H Notes B Attributes H Requirements

B Document B oOperations [:“ B cConstraints

B Tagged Values B Receptions B Scenarios

B Properties Dialog B Parts / Properties B Find Scenarios
B Element Browser B Interaction Points

Operations are simply created by selecting the 'Operations' tab and adding the name and other details in a row of the
window. Any number of operations can be created, and each operation can define any number of parameters, which
specify the inputs and outputs to the operation. Their importance will be discussed later in this section when we describe
the relationship between Activity Parameters and Action Pins. Operations can also be displayed in a diagram, either on
their own or with other features, each type of which is displayed in a separate compartment of the parent element.

eblock:
Card Reader

readCard(int, char{8), char{1)*): int
validateCard(): void

retainCard(): void

ejectCard(): void

+ + + +

classifier behavior
wactivity» Monitor Entrants ()

There is a wide range of options that govern how the operations are displayed, including the ability not to display the
entire compartment or to only display particular operations by suppressing others from display.

(c) Sparx Systems 2022 Page 259 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Feature Type

Attributes '*' Operations AAE M

Filter by All -

Checked operations will be hidden on the diagram

Mame Return T... Parameters
+| =i ejectCard void
{[w| < retainCard void
@validateCard wvoid
W readCard int {int, char(d), char{1)*)

This will result in selected operations being hidden on the diagram, which is a very useful presentation device as it helps
an engineer create a diagram focused on a particular aspect of the Block, suppressing or hiding irrelevant and distracting
content. This diagram fragment shows the result of suppressing operations:

whlock:
Card Reader

+ readCardiint, char(8), char{1)*): int
+ validateCard(): void

classifier behavior
wactivity» Monitor Entrants ()

The same can be done for attributes at an element level, and a similar function is available to suppress particular
operations, attributes and Tagged Values at a diagram level. An engineer might use the diagram-level function when
there is a particular operation that appears on multiple Blocks and they want to suppress it for every element in the
diagram.

Show Attribute Detail: MName and Type -
Show Parameter Detail: Type Only -

Suppress Compartment Items

Attributes: Operations: Tag Names:

;I ejectCard ;I ;l

retainCard

| | | | | |

Operations can be invoked in two modes, either synchronously or asynchronously, and can be initiated in a number of
different ways depending on the type of behavior that is orchestrating the systems behavior, including:

e A Call Operation Action (invocation of an Activity)
e A Message as part of an Interaction (Sequence diagram)

e A StateMachine

(c) Sparx Systems 2022 Page 260 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

This means that the operation can be visualized in a range of SysML diagrams and will appear differently in different
contexts. For example, in a Sequence diagram where messages are sent between instances of Blocks or other classifiers,
the operation will appear as an annotation to one of the Block's incoming messages to show that the operation will be
initialized as a result of the message. Enterprise Architect allows an engineer to access the Block's operation list directly
from this diagram and will also allow operations to be created directly from the diagram.

Usage Type Diagram Type Diagram

Classifier Sequence Card Reader and Control Unit
Classifier Sequence Interactions

Classifier Sequence Interactions Basic

Lirik SysML Block Definition Verify Entrant

Link SysML Block Definition Boom gate Dependencies
Link Activity Card Reader and Controller

In the case of the Call Operation Action, the element's Pins must be aligned by type and name to the called operation's
parameters; Enterprise Architect helps you visualize this mapping on a diagram, using the 'Link to Feature' facility.

act [activity] Monitor Entrants [Card Reader Activity Connec‘tiony

«block»
Card Reader

Validate Entrant
(Validate Entrant)

+ ejectCard(): void e cardType: Integer
+ readCard(cardType: int, cardID: char(8), validity: char{1)*): int =" F: CardiD:
+ retainCard{):void | p==== o
+ String

validateCard(): void validity: String

Receptions as Behavioral Features

Receptions are another behavioral feature of a Block but, in contrast to an operation, Receptions can only be called
asynchronously. Receptions also work differently to operations in that an Operation Call specifically identifies an
operation to be invoked, whereas the receipt of an instance of a Signal is deemed to be a request for any Reception of the
receiving object that references that Signal or any direct or indirect generalization of it. In this way there is a level of
indirection between the calling element and the Reception. A Reception has parameters corresponding to the attributes of
the Signal referenced by the Reception, and these are considered as 'in' parameters of the Reception.

The easiest way to create a Reception is to click on the Block in a diagram or in the Browser window and select the
ribbon item 'Design > Element > Editor > Receptions'.

Element Features Responsibilities

H Properties H Responsibilities
H Notes B Attributes H Requirements

H Document B Operations B Constraints

B Tagged Values B Receptions B Scenarios

B Properties Dialog B Parts/ Prcpe&s B Find Scenarios
B Element Browser B Interaction Points

(c) Sparx Systems 2022 Page 261 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

Element Tools

Properties Dialog Parts / Properties

Interaction Points

Find Scenarios
Element Browser

Element Features Responsibilities
B Properties B Responsibilities
H Notes B Attributes H Requirements
B Document B oOperations h B constraints

B Tagged Values B Receptions B Scenarios

H H =

H H

3 October, 2022

To create a new Reception you must first have created the appropriate Signal to relate the Reception to. When you create

the Reception you will be prompted to locate the appropriate Signal in the Browser window as shown here:

| Car Park Boom Gate
[+ 9 Card Reader and Controller
[= 7 Functional Allocations

[+ 7 Interactions
4 £ Signals

Card Inserted
Card Removed

¢
House Keeping Initiated
¢

Metwork Unavailable
System Shutdown

Receptions, like operations, can be displayed in a specialized compartment in a Block on a diagram. It is possible to
customize the display and suppress all Receptions or configure which particular Receptions are displayed. In this screen
capture the engineer has decided to make all Receptions visible, but each diagram and each Block within a diagram can

be configured differently.

(c) Sparx Systems 2022

Page 262 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

ubloclk:
Card Reader

readCard(int, char(8), char{1)*): int
validateCardl(): void

retainCard(): void

ejectCard(): void

+ + + +

receptions
asignal» Card Inserted()
asignal» Card Removed()
asignals House Keeping Initiated()
asignal» Network Unavailablel)
asignals System Shutdown()

+ 4+ + + +

classifier behavior
wactivity» Monitor Entrants ()

(c) Sparx Systems 2022 Page 263 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Other Block Relationships

Blocks are the key structural elements in the SysML and can participate in a variety of relationships, some of which have
been discussed in earlier sections of the Guide while we were discussing Associations. There are a number of other
relationships that can be used when defining Blocks.

Generalization a Relationship of Family

In an earlier section we spoke of the Part Association being the strongest type of Association relationship, but there is
another relationship - the Generalization - which is also very strong and essentially is used to model the fact that Blocks
(and other Classifiers) belong to the same family. The word 'classifier' comes from our natural languages, such as
Chinese and Thai, that have an abstract way of classifying or grouping classes of nouns that have similar characteristics;
for example, a belt and a road are long thin things, whereas a berry and a ball are round things. So too with the SysML,
the Generalization relationship is used to classify things and the structure can be an arbitrary depth. In many ways it is
more natural for engineers to read the relationship in reverse and say something is a specialized version of something.

bdd [package] Vehicle Types [Vehicle Types - separate connec‘tors]/

wblock»
Vehicle

length: m
weight: Kg

+ Accelerate(Real): void
+ Brake(Real): void
+ Cruise(Real): void

whlock» whlock» wblock»
Car Bus Train

Enterprise Architect allows an engineer to create these classification hierarchies for Blocks, Value Types, Signals,
Interfaces, Activities and more. A diagram typically contains a single family.

SysMLBlock Relationships

" Item Flow
e Dependency
A Generalization b
A Containment
A Part Association
Reference Association
A Shared Association
KE, Association Block
27 Allocate
ffp Connector
The relationship can be drawn by first selecting the 'Generalization' icon in the Toolbox and then dragging-and-dropping

from the more specialized element to the more generalized element. Alternatively this can be done using the Quick
Linker.

(c) Sparx Systems 2022 Page 264 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Line Style ¥ Direct Control+5Shift+D
Apply Line Style on Diagram r Auto Routing Control+5Shift+A
Visibility » Custom Line Control+5hift+C
Appearance...

¥ Tree Style - Vertical

B [l

Attach Mote or Constraint...)
Tree Style - Horizontal

Attach Rationale

Lateral - Vertical

Pin End(s »
(s) Lateral - Horizontal

Tidy Line Angles
Orthogonal - Square

T Inf tion...
e —— Orthogonal - Rounded

}(Delete Connector

When a Block participates in a generalization hierarchy and has a number of specializations, the connectors emanating
from the Block can become untidy. Enterprise Architect provides a mechanism to change the line style to any one of a

number of styles, but probably the most useful style is the Vertically-oriented Tree style, which groups the heads of the
relationship together and allows their tails to be aligned in parallel.

bdd [package] Vehicle Types [Vehicle Types - vertical tree connectorsy

wblock»
Vehicle

lemgth: m
weight: Kg

+ Accelerate(rate): void
+ Brake(rate): void
+ Cruise(speed): void

A\

whlock» whlock» whlock»
Car Bus Train

One of the useful language mechanisms that results from Generalization is for the specialized elements to inherit the
structural and behavioral features from the generalized element. So far in the example diagrams the engineer has chosen
not to display these inherited features, but they can be set to be displayed using the compartments sections of the
element's Property sheet.

(c) Sparx Systems 2022 Page 265 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Properties O x|
A = -

Diagram Compartments Swimlanes and Matrix

Show Compartments A
Attributes
Inherited Attributes

Operations

A A IR

Inherited Operations
Tags

Inherited Tags

Fully Qualified Tags
Receptions o
Requirements

Inherited Requireme...
Constraints

Tnherited Canstraints
Properties | Diagram Filters

The result will be that the specialized Blocks will display the attributes and operations that have been inherited from the
parent Block. These will be shown grouped by the name of the parent Block. This mechanism is used extensively in
software engineering but also is useful for the systems engineer where the specialized Block automatically inherits the
features of its parent by virtue of being a 'member of the family'. Just as in a human family a specialized Block (child)
can override the structural or behavioral features inherited from a parent.

bdd [package] Vehicle Types [Vehicle Types - inherited ‘Featurey

«block»
Vehicle

length: m
weight: Kg

+ Accelerate(rate): void
+ Brake(rate): void
+ Cruise(speed): void

A

wblock» «block»

Car Bus
:Wehicle :Vehicle
+ Accelerate(rate): void + Accelerate(rate): void
+ Brake(rate): void + Brake(rate): void
+ Cruise(speed): void + Cruise(speed): void

«hlock»
Train

Vehicle

+
+
+

Accelerate(rate): void
Brake(rate): void
Cruise(speed): void

Blocks belong to families base upon certain criteria, and this can be modeled using the Generalization Set, which is a

(c) Sparx Systems 2022 Page 266 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

mechanism used to define the basis for membership of a family.

Dependency

The Dependency is a useful but semantically weak relationship. It is the 'pawn' of the engineers' toolkit of relationships,
often used early in the modeling process when the details of the relationships between system elements have not been
analyzed or are simply not known. It models the fact that the element (Client) at the tail end of the relationship relies in
some way on the element (Supplier) at the arrow-head end of the relationship. Novice modelers can be forgiven for
drawing this relationship in the reverse direction, since anecdotally material is often thought to pass in the direction from
the supplier to the client. Once the semantics of the relationship are understood and it is realized that the relationship
does not say anything about the direction of flow, the mistake will not be made.

There are a number of types of dependency, all of which are supported by Enterprise Architect. The connector can be
created by selecting the 'Dependency’ icon in the 'SysML Block Relationships' page of the Toolbox and then clicking on
the client (tail end) element and dragging the cursor across to the supplier (arrow-head end) element. The connector can
also be created using the Quick Linker arrow at the top right corner of a selected diagram element. Once the relationship
has been created, a stereotype can be chosen from the connector's Properties window to make the dependency more
specific. This screen capture shows all the available stereotypes, some of which are used between different types of
element other than Blocks; for example, Packages and Requirements.

bdd [package] Card Reader and Controller [Boom gate Dependenciesy

«block»
Control Unit

+ checkAccessRight(): void ‘

whlock» «hlock»
Boom Controller Card Reader
+ closeBoom(): void > + ejectCard(): void
+ lockBoom():void | 77 + readCard(int, char(8), char(1)*): int
+ openBoom(): void + retainCard(): void
+ wunlockBoom(): void + validateCard(): void

receptions
wsignal» Card Inserted()
«signal» Card Removed()
«signal» House Keeping Initiated()
wsignal» Network Unavailable()
«signal» System Shutdown()

+ o+ o+ o+ o+

classifier behavior
wactivity» Monitor Entrants ()

Allocating between Blocks and Activities

The Allocation relationship can be used in a variety of circumstances but it is particular useful for expressing a
fundamental relationship between the two most canonical Behavioral and Structural elements, namely the Activity and
the Block. This is similar to our natural languages, where a verb is meaningless without the presence of a noun that
carries out the action described by the verb. This type of allocation is referred to as Functional Allocation, and the

(c) Sparx Systems 2022 Page 267 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

engineer bridges the divide between these two aspects of a system by finding a Block that can carry out the behavior

described by an Activity.

bdd [package] Functional Allocations [Verify Entranty

whblock»
Camera System

+ determinelicencePlate(): void ‘

)

I
wallodate»
I

wactivity»

I
I
I
I
L Verify Entrant

«hlock»
Card Reader

ejectCard(): void

readCard(int, char(8), char{1)*): int
retainCard(): void

validateCard(): void

+ o+ o+ o+

receptions
wsignal» Card Inserted()
wsignal» Card Removed()
«signal» House Keeping Initiated()
«signal» Network Unavailable()
wsignal» System Shutdown()

+ o+ o+ o+ o+

classifier behavior
wactivity» Monitor Entrants ()

In this diagram the engineer has created two functional allocation relationships that describe how the work specified in
the Activity Verify Entrant will be carried out. One relationship targets the Camera System that is used to capture the
vehicle's licence plate in order to determine if the particular vehicle has been authorized for entry. The other relationship
targets the Card Reader Block that is used to determine that the card owner has a relationship with the Parking Station.

(c) Sparx Systems 2022

Page 268 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Modeling Interaction Points

Blocks - and the Parts that are typed by Blocks - reside in an environment and will interact with this environment and the
other elements it contains. In general terms the SysML provides a language construct called Interaction Points, which are
locations on the boundary of an element that act as entry and exit points for communication with the owning element.
Ports are a type of Interaction Point and provide a mechanism for the Block to expose its behaviors - either those that it
owns innately or those that are provided by its Parts. The Port is represented by a small rectangle (usually a square)
mounted on the boundary of a Block or Part. SysML currently supports two types of Port that are intended to eventually
replace the earlier concepts of Flow Port and Standard Port:

® Proxy Port - Acts as a relay to expose the behavioral features provided by the owning Block and is typed by an
Interface that describes these services

e Full Port - Acts as a Part and is typed by a Block, which means that it can itself contain Parts

Enterprise Architect has full support for both these types of Port, and has backward compatibility to the earlier Standard
and Flow Ports (which are still available for use but will be deprecated in later versions of the standard).

Once a Block Definition diagram has been created and a Block has been placed on the diagram, Ports can be created by
either:

e Drag-and-dropping the appropriate Port from the Toolbox onto the Block - this diagram shows the section of the
Block Definition Toolbox that lists the Ports

Property

Flow Property
Directed Feature
Port

Proxy Port

ceo@DE

Full Port

e Selecting the New Child Element' option from the Block's context menu and select the appropriate type of Port, as

shown:

MNew Child Element » Port

Find ¥ Full Port
Copy [Paste Y Proxy Port
Behavior } Flow Property

Whichever method you choose, the Port will then be automatically placed on the boundary of the Block and can be
moved into the required position and named. Note also that the Port can be added from the 'Element' panel of the
'Design' ribbon. This screen image is of a section of diagram showing two Ports with direction indicators inside the Port
element. The Ports have been named 'in' and 'out' respectively, and have been typed by 'Fluid', which indicates the type
of the item arriving at the Port.

-drain

uwblock:»
WValve

in: Fluid EI |:—> out: ~Fluid

(c) Sparx Systems 2022 Page 269 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Ports can contain Interfaces and also nested Ports; Enterprise Architect provides a useful feature that allows the engineer
to customize the Port size, effectively changing the small squares into small rectangles.

Interfaces and Ports

An Interface is a useful way of encapsulating a group of services provided by a Block, providing a simple way of
exposing those services to clients. The Interface has the same appearance as a Block and can have defined operations and
Receptions, but no attributes (Properties).

sinterfaces
Signal Registration Service

+ authenticateUser(): void
+ registerSignal(): void
+ sendMotification(): void

An Interface can be created by simply dragging the 'Interface' icon from the Toolbox page. Behavioral features can be
added by selecting the appropriate Feature from the Interface's context menu.

Features P | @ Attributes...
Appearance b g Operations...
Receptions...
J‘f_;| Linked Document Control+Alt+D ’ =
Open in Code Editor
@ Compartment Visibility... Control+5Shift+Y =
Set Bookmark Value ¥ All Features

Another easy way to create an interface's operations is to select the Block in a diagram or in the Browser window and
click on the ribbon item:

Design > Element > Editor > Features > Operations

Element Tools

Element Features Responsibilities

H Properties H Responsibilites
B Notes B Attributes B Requirements

B Document B operations h B Constraints

B Tagged Values B Receptions B scenarios

B Properties Dialog B Parts / Properties B Find Scenarios
B Element Browser B Interaction Points

Operations are simply created by selecting the 'Operations' tab and adding the name and other details in a row of the
window. Any number of operations can be created, and each operation can define any number of parameters that specify

(c) Sparx Systems 2022 Page 270 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

the inputs and outputs to the operation. Receptions - the other behavioral feature - can be added in a similar way using
the 'Receptions' tab. Any of these items can be reordered using the <Ctrl>+ up- and down-arrow keyboard keys.

Interfaces can be added to Ports, which are a common mechanism in the Unified Modeling Language and provide a way
of publishing the services that are available at a Port. The interfaces are of two fundamental types:

o Provided - available for use

® Required - required for use

With a Port selected on the boundary of a Block in a diagram, an Interface can be added as for any other structural
element - from the Port's context menu items:

e New Child Element | Provided
e New Child Element | Required

Interfaces added in this way must be typed by an Interface proper (an element stereotyped as <<interface>>). This can be
achieved by first selecting the Interface in the diagram and then selecting the Properties window from the Interface's
context menu. You can then name the interface and use the [...] icon to navigate or search for the Interface element. This
diagram demonstrates the step for a Signal Registration Interface.

bdd [package] Structure [Signal Analyser Interfaces] /

sinterfaces . «block»
Signal Registration Service El;lgnall signal Analyser Unit
Registration
+ authenticateUser(int, int): int ;Vgﬂ////ET -
+ registersignal(int): long e W _Id

+ sendMotification(): void

Exposed Interface x

Interface: I_W—|
A

Type

* Provided

Required

DK Cancel

(c) Sparx Systems 2022 Page 271 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Modeling Quantity using Value Types

A Block can have simple properties called Value Properties, which define attributes of a Block that represent a scalar or
vector quantity. Values are used to express information about a Block and provide a slot for an actual value to be entered
in an instance of a Block. For example, a Tank can have a properties of diameter, height and volume defined. The value
types allow an engineer to create a universal way of quantifying a property; for example:

e A centrifuge has a maximum speed specified in revolutions per minute (rpm)
e A train carriage has a weight specified in kilograms (kg)

e A tank has a volume specified in liters (1)

e A light source has a luminous intensity specified in Candela (cd)

e A dialysis machine has a blood flow rate specified in milliliters per minute (ml/min)

This diagram shows a number of different Value Types that can be defined in Enterprise Architect and then applied to
any number of attributes defined in Blocks.

bdd [package] Value Types [Examples]/

«enumeration»
Flow Rate

avalueType» avalueTypen»
Arrivals per Hour 3D Coordinates

literals
Rapid
Fast
Medium
Slow
Torpid

The intent of the Value Type is to allow an engineer, team or industry to define standard types that can be reused to
characterize the value properties defined for any number of Blocks. For example, the value type of 'Kilogram' could be
applied to a value property specifying the weight of a train or the weight of a bus or the seating capacity of either.

bdd [package] Rolling Stock [Rolling Stock]/

«block» «block» avalueType»
Carriage Bus Kilograms

- Seated Capacity: int - Seated Capacity: int
Weight: Kilograms Weight: Kilograms

These value types, as the name suggests, have a value that describes the quantity of the property; they can be defined
using the 'Attribute’ tab of the Features window, as shown here.

(c) Sparx Systems 2022 Page 272 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Features v 1 x

Attributes Operations Receptions Parts/ Properties Interaction Points

Mame Type Scope Stere.. Alias Initial ...
{H Seated Capacity int Private
i Weight Kilograms Private

For example, two Blocks representing a Train and a Bus could have a property of "Weight' defined that is typed by the
value type 'Kilogram'. If an attribute such as 'Seating Capacity' has a simple type such as 'Integer' this can be directly
selected in the '"Type' drop down, but if "Type' is based on a Value Type this can be selected using the 'Select type..'
option from the drop-down.

Instances of Blocks that have an attribute (Value Property) defined in Enterprise Architect can have an actual value
specified for the attribute. For example, each instance of the Bus and Train with, say, a particular model number could
have a different weight defined. Other properties such as 'Seating Capacity' could have a primitive type of 'Integer’
defined, and these also could be set for particular instances of 'Carriage’'.

Enterprise Architect allows an engineer to set the values for each of the defined attributes by using the 'Set Run State'
option from the 'Features' sub-menu for a Block instance.

Features r Find Classifier... Control+Alt+G
Appearance ¥ Parts [Properties
Interaction Points
a‘u Linked Document Control+Alt+D
@ Compartment Visibility... Control+5Shift+Y E Set Run State... b Control+5Shift+R

Set Book k Val
et Bookmark Value + All Features

The attribute values (slots) can be displayed on a diagram, allowing an engineer to create compelling examples or
catalogues of Block instances, as shown here.

bdd [package] Rolling Stock [Carriage and Bus Instances]/

Model P: Bus Engine Type A: Carriage
Seated Capacity =30 Seated Capacity =60
Weight = 8,000 Weight = 33,270

Model R: Bus Wagon Type B: Carriage
Seated Capacity =30 Seated Capacity =70
Weight =9,450 Weight = 27,450

(c) Sparx Systems 2022 Page 273 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Using Properties and Parts to Model Block Usage

Blocks are classifiers and describe the characteristics of a set of elements that represent the way the Block is used in a
context. When the Block has attributes (value properties) defined these are given specific values in the instances of the
Block. Effectively, each Block instance has an identity and typically would have different values assigned that define the
Block's state. Enterprise Architect allows these values to be specified using a Set Run State option available from the
context menu.

Internal Block diagrams often show how a Block's parts are connected together in a usage context. Enterprise Architect
allows Blocks to be dragged from the Browser window onto a diagram and dropped as Part Properties. These are
effectively Parts and represent instances of the Block classifier. An engineer has the opportunity to name these in the
context of the diagram. For example, this diagram represents a Brake Assembly that has been modeled, which is
indicated in the diagram frame in this format:

ibd [block] Brake Assembly [Master and Wheel Cylinder Parts]

® jbd - signifies that it is an Internal Block diagram
® block - signifies the owing element type
® Brake Assembly - is the name of the element

e Master and Wheel Cylinder Parts - is the name of the diagram

The engineer has named each of the wheel cylinder parts (Front Left, Front Right, Back Left, Back Right) as these need
to be identified with respect to their location in the vehicle, but has decided not to name the master cylinder as no further
qualification is required.

ibd[block] Brake Assembly [Master and Wheel Cylinder Par‘ts]/

Front Left: Wheel Cylinder Front Right: Wheel Cylinder

‘ : Master Cylinder ‘

Back Left: Wheel Cylinder Back Right: Wheel Cylinder

(c) Sparx Systems 2022 Page 274 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Introducing Internal Block Diagrams

An Internal Block diagram provides a way of visualizing the internal structure of a Block, including its Properties and
Parts and the way that these Parts relate to each other. The diagram is not required to display all the Parts that a given
Block is composed of and it is common for an engineer to create a diagram that focuses on a particular aspect of a system
or subsystem.

The frame of an Internal Block diagram represents the owning Block, so it will be named as such and the elements that
appear on the diagram will be Parts that are instances of the Blocks that the owning Block is composed of. This Internal
Block diagram shows an instance of a vehicle in a given context; it uses a number of images in place of the conventional
SysML language symbols as a way of adding appeal and making the diagram more compelling to a non-engineering
audience. For more information see the Internal Block Diagrams Help topic.

Ibd[block] Automotive Domain [Autnmu(ivenumairy

aLightCondition»

x1: X3

e <%

Driver .
X2 HSUV: HybliﬂSUV Mechanic

«external» wexternaly
drivingConditions: Environment

Passenger
«external» «external»
=
vehicleCargo:
Baggage

weather: Weather

object:
ExternalObject

«diagramDescription» «external»
version="0.1"
description="Initial concept to identify top level domain entities”
reference="0ps Concept Description”
completeness="partia|. Does not include gas pump and various other
extemal interfaces.” road: Road

Creating an Internal Block Diagram

An Internal Block diagram can be created from a number of places in the User Interface, such as:
e Design ribbon - Add Diagram Icon on the Diagram Panel

e Browser window toolbar - New Diagram icon

e Browser window context menu - Add Diagram

We will use the Design ribbon to create an Internal Block diagram. Firstly, select the location in the Browser window
where you want the diagram to be located. In contrast to most other SysML diagrams the Internal Block diagram is
typically inserted under its owning Block. Once the location has been selected in the Browser window, select the ribbon
item:

Design > Diagram > Add Diagram

Toolbox Add Manage Views Options
Diagram b W V

Diagram

Selecting this option will open the New Diagram dialog, allowing you to name the diagram; the diagram name defaults to
the name of the Block that contains the diagram. With the SysML perspective chosen and the version of SysML selected,
a list of diagram types is displayed from which you select the Internal Block diagram. Click on the OK button to create a

new Internal Block diagram in the location selected in the Browser window. The diagram canvas will be opened,

(c) Sparx Systems 2022 Page 275 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/Internal_Block_Diagram.htm

Guide to MBSE with SysML 3 October, 2022

allowing you to start adding elements and connectors that describe the internal structure of the Block. Enterprise
Architect will also display the 'Internal Block' page of the Toolbox, which contains the elements and relationships
defined by the SysML specification to be applicable for constructing this diagram type. Any number of other Toolbox
pages can be opened if required, in addition to the 'Common Elements' and 'Common Relationships' pages that are
always available.

(c) Sparx Systems 2022 Page 276 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Modeling and Connecting Parts

When a Block is composed of a number of other Blocks, it is typically the case that when the system is instantiated the
contained Blocks will perform much of the work that is required of the owning Block. The Internal Block diagram
provides a language mechanism to visualize how the parts interact, to show the structure of the Blocks in context and to
provide the overall behavior specified by the owning Block. In an earlier topic we viewed a Block Definition diagram of
the chassis of a truck, describing the Blocks that make up the chassis based on Blocks.

bdd [package] Truck [Chassis - Part Compositiony

«block»

Chassi
assis

+Hr|1 +r|1
«block» «block» «hlock»
Axle Assembly Frame Transmission

«block»
Wheel Assembly

+or |1

wblock»

Brake Asse %

The diagram includes multiplicities at the part ends of the Association showing how many of a particular part can be
included in a single instance of the owning Block. These numbers represent the cardinality expressed as an upper and
lower bound, which can be defined in the Properties window for the connector. This screen capture shows a portion of
the Properties window used to define multiplicities and other properties of the Association End, all of which add rich
semantics to the association.

(c) Sparx Systems 2022 Page 277 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Properties v X
A = - H

Connector Source Target Constraints Tags

SOURCE Wheel Assembly

|wa| -
Multiplicity .
Multiplicity 2.4 <
Ordered False
Allow Duplicates False

This Internal Block diagram of the chassis shows the parts that make up the chassis in an actual context. The number of
axles is defined for the particular instance of the truck.

ibd[block] Chassis [Chassis Parts]/

Front Primary: Axle Assembly 4{ Front Secondary: Axle Assembly

: Frame
Rear Primary: Axle Assembly : Transmission Rear Secondary: Axle Assembly
: properties : properties
left-rpl : Wheel Assembly left-rs1 : Wheel Assembly
right-rpl : Wheel Assembly right-rs : Wheel Assembly
rpl: Axle rs: Axle

Enterprise Architect allows an engineer to create diagrams with parts nested to any level, which helps demonstrate the
structure of a Block and the way the parts would be connected in a real world context.

This diagram shows parts nested on two levels, but any number of levels are possible and can be created on a diagram.
This type of expression can lead to quite large diagrams, and Enterprise Architect supports paper size up to A0, allowing
large diagrams to be created and printed.

(c) Sparx Systems 2022 Page 278 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

ibd[block] Chassis [Chassis Parts Explodedy

Front Primary: Axle Assembly ‘ Front Secondary: Axle Assembly
J

| : Frame |

Rear Primary: Axle Assembly Rear Secondary: Axle Assembly
: properties
left-rpl: Wheel Assembly
right-rpl : Wheel Assembly left-rs1: Wheel right-rs: Wheel
rpl: Axle Assembly Assembly

rpl: Axle right-rp1:
Wheel

Assembly

In the
diagram the Rear Primary and Secondary Axle Assemblies have been shown in detail, where each Axle is composed of a
right and left wheel assembly, which themselves could be shown as a nested structure comprising the Brake Assembly,
which in turn could show the Wheel Cylinder Assemblies.

In the case where a part is added to the diagram but the modeler for some reason needs to change the Block classifier that
types the Block, this can be done from the 'Parts' context menu that provides an option for the Property Type to be
changed. This can be convenient where an elaborate diagram has been created and it is easier to leave the visual element
in place and just update the Block it is based on.

Advanced » Set Property Type... hu

AEF

Mew Child Element » Multiplicity. ..

Bind to Connector Role...
Find ¥

(c) Sparx Systems 2022 Page 279 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Modeling Parametric Equations

Engineers are charged with finding solutions to problems and opportunities, and use models as a way of visualizing
simplifications of both the system under consideration and the world context that the system will need to operate in.
Systems engineering models created in Enterprise Architect provide a valuable tool for analysis, design, architecture,
testing and visualization. This includes being able to predict how a system will behave in a given context, balancing
competing requirements and design considerations in the form of stakeholder negotiations and trade-off analysis.
Parametric diagrams are an advanced tool that can assist the engineer to address these concerns in a model and
pre-emptively represent how a system is likely to behave.

In an earlier topic we learnt how equations can be modeled using the Block Definition diagram, with the Part Association
relationship articulating the variables (parameters) of the equation. This provides an essential mechanism for re-use. As a
refresher of how we use a Constraint Block to model equations refer to this diagram, which uses a Constraint (which is a
stereotyped Block) to model a vehicle's fuel. The Fuel Flow Rate is based on an equation that has fuel pressure (press)
and fuel demand as variables (parameters).

bdd [block] PowerSubsystem [PowerSubsystem Constraintsy

wconstraint»
FuelFlow

constraints
{flowrate=press/({4*injectorDemand)}

values
flowrate : Real
injectorDemand: : Real
press : Real

Any equation, or system of equations can be modeled using the constraint.

This constraint can potentially be re-used in a number of different contexts. It is on the Parametric diagram that we see
how it is used. For more information, see the Parametric Diagrams Help topic.

(c) Sparx Systems 2022 Page 280 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/parametric_diagrams.htm

Guide to MBSE with SysML 3 October, 2022

Introducing Parametric Diagrams

A Parametric diagram provides a way of visualizing equations and their parameters in a particular context in the form of
constraint properties. Each of these properties represents a usage of a ConstraintBlock that has typically been defined on
a Block Definition diagram.

The frame of a Parametric diagram represents the owning ConstraintBlock, so it will be named as such and the elements
that appear on the diagram will be constraint properties, which are instances of the ConstraintBlocks that the owning
Block is composed of, thus showing the composition of the constraint.

Creating Parametric Diagrams

A Parametric diagram can be created from a number of places in the User Interface, using any of these options:
e Design ribbon - Add Diagram icon on the Diagram panel

e Browser window toolbar - New Diagram icon

e Browser window context menu - Add Diagram

We will use the 'Design' ribbon option to create a Parametric diagram. Firstly you select the Package in the Browser
window where you want the diagram to be located.

In contrast to most other SysML diagrams, the Parametric diagram is typically inserted under its owning Constraint
Block. Once the location has been selected in the Browser window, select:

Design > Diagram > Add Diagram

E 0 s0 op =B

Toolbox Add Manage Views Options
Diagram b w ~

Diagram

Selecting this option opens the 'New Diagram' dialog, allowing you to name the diagram; the name will initially default
to the name of the Constraint Block that owns the diagram. With the SysML Perspective chosen and the version of
SysML selected, a list of diagrams will be displayed allowing you to select the Parametric diagram. Click on the OK
button to create a new Parametric diagram in the location selected in the Browser window. The Diagram View will be
opened, allowing you to start adding elements and connectors that describe the equations and the parameters. Enterprise
Architect will also display the 'Parametric’ pages of the Diagram Toolbox, which contain the elements and relationships
defined by the SysML specification to be applicable for constructing this diagram type. Any number of other Toolbox
pages can be opened if required, in addition to the 'Common' elements and 'Common Relationships' pages that are
displayed by default and that allow diagram notes, legends and other common elements to be added.

(c) Sparx Systems 2022 Page 281 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Toolbox v X
Search e p

SysML Parametrics

v Il

L3 Constraint Property

Eal Property

SysML Parametrics Extensions
E=l Objective Function

E=l Measure of Effectiveness
SysML Block Internal

E= Property

B2 cConnector Property

E=l Distributed Property

E= Flow Property

E=l Participant Property

SysML Block Internal Relationships

' Dependency

'.F-:" Item Flow

Connector

? Binding Connector

The most important elements and connectors used with the Parametric diagram are:

Elements
e ConstraintProperty
e Property

Element Extensions
e Objective Function

o Measure of Effectiveness

Connectors

e Dependency
e Jtem Flow

e Connector

e Binding Connector

(c) Sparx Systems 2022 Page 282 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Toolbox v X
Search e ,D

4 SysML Parametrics

v Il

L3 Constraint Property
Eal Property

4 SysML Parametrics Extensions

E=l Objective Function

E=l Measure of Effectiveness

4 SysML Block Internal
E= Property
B2 cConnector Property
E=l Distributed Property
E= Flow Property
E=l Participant Property

4 SysML Block Internal Relationships

' Dependency

'.F-:" Item Flow

Connector

? Binding Connector

Elements can be added to the diagram by dragging-and-dropping them from the Toolbox page onto the diagram canvas.

(c) Sparx Systems 2022 Page 283 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Systems of Equations using Part Associations

Engineering problems and systems typically require detailed analysis to determine how a particular proposed solution
will perform. The analysis can involve any number of equations that are often related to each other to determine a
particular value. Enterprise Architect allows an engineer to construct systems of equations using a Block Definition
diagram and then to use these equations in multiple Parametric diagrams to describe proposed solutions.

This Block Definition diagram describes parameters of the straight line dynamics of a vehicle - the HSUV - and includes
a number of equations that are represented on the diagram as Constraints, which are a type of Block.

bdd [package] HSUV Analysis [Definition of Dymamicsy

«constraint»
StraightLine VehicleDynamics

values
acc: Accel
Cd: Real
Cf:Real
dt: Time
incline : Real
tw : Weight
vel : Vel
whlpowr : Horsepwr
x : Dist

constraints
: AccelerationEquation
: PositionEquation
: PowerEquation
: VelocityEquation

pwr pos vel acc

«constraint»
PowerEquation

«constraint»
PositionEquation

wconstraint»
VelocityEquation

«constraint»
AccelerationEquation

constraints
{tp = whi powr - (Gd*v) - (CF*tw*v)}

constraints
{x{n+1) = x(n)+v*5280/3600=dt}

constraints
{v(n+1) =v(n)+a*32*3600/5280dt}

constraints
{a =(550/32)>tp(hp)dt=tw}

values
Cf: Real
Cd : Real
i:Real
tp : Horsepwr
tw : Weight
v:vel
whlpowr : Horsepwr

values
delta-t: Time
viVel
x : Dist

values
a:Accel
delta-t: Time
v:vel

values
a: Accel
delta-t: Time
tp : Horsepwr
tw : Weight

The next diagram, a Parametric diagram, shows how the ConstraintBlocks are used in a particular context, being
represented on the diagram as ConstraintProperties. We can visualize how the total power parameter is calculated, with a
connection between the Power Equation and the equivalent parameter on the Acceleration Equation. Connections can be
seen between the Position Equation and the Velocity Equation, which is ultimately connected back to the Acceleration
Equation.

(c) Sparx Systems 2022 Page 284 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

par [constraint block] StraightLine VehicleDynamics [StraightLineVehicleDynamics) J

tw : Weight

Cf:|Real

whlpowr : Horsepwr

incline : Real

Cd :Real
whipowr: H

[I B

: PowerEquation
{tp =whlpowr - (Cd*v) - (Cf*tw*v)}

rsepwr

tw : Weight

tp : Horsepwr

LJ

N AccelerationEquation
{a = (550/32)tp(hp) *dt*tw}

[_] delta-t: Time
: BedREERRfon : AccelerationEguation
viVvel a: Accel
—
L
a:Accel acc: Accel
: VelocityEquation
{v[n+1) =v(n)+a*32*3600/5280*dt}
Y. rlat:ﬁéEcT{'JQ ion
v:Vel {
]
vel : Vel

v:vel

L

: PositionEquation
[x{n+1) = x{n)+v*5280/3600*dt}

.

% : Dist

delta-t: Time

: PositionEquation

(c) Sparx Systems 2022

Page 285 of 461

Created with Enterprise Architect

3 October, 2022

Guide to MBSE with SysML 3 October, 2022

Measures of Effectiveness using Parametrics

Measures of Effectiveness (MOEs) are an important engineering mechanism used to quantify the achievement of mission
objectives or specified desired outcomes. They can be modeled using the Parametric diagram, and the Measure of
Effectiveness element is available from the 'Parametrics' page of the Diagram Toolbox, from which it can be dragged
onto a diagram and related to parameters of equations represented as ConstraintProperties.

SysML Parametrics

(3 Constraint Property

Ed Property

SysML Parametrics Extensions

4 Objective Function
=] Measure of Effectiveness b

The Measures of Effectiveness can be reused to evaluate any number of design alternatives and allow these designs to be
systematically compared and evaluated. This diagram shows the overall cost effectiveness of a Hybrid SUV (HSUV) for
a proposed solution entitled 'Alternative One' (altl) based on a number of MOEs including:

e FuelEconomy - Expression of fuel economy

e QuarterMile - Time taken to travel 0.25 miles

e Zero60Time - Time taken to accelerate to 60/mph
e CargoCapacity - The volume of the cargo spaces
e UnitCost - Cost of the vehicle

Each one of these would have its own Parametric model that would be able to determine the effective value and
contribute to the overall equation, which is a series of weighted sums {CE = Sum (W i*P i)}. Enterprise Architect allows
any number of alternatives to be defined, and the engineer can reuse the MOE elements and the ConstraintBlocks used to
define the contributing equations.

par [block] MeasuresOfeffectiveness [HSUV MOEs] /

f:Real
. «moe» «moex»
: EconomyEquation

FuelEconomy CostEffectiveness

«moe»

rterMileTil
N q ‘ ATl «objectiveFunction»

: MaxAccelerationAnalysis [MyObjectiveFunction

[

/

«moen

Zero60Time

s ™

Ve
: CapacityEquation “maes
{pcap = Sum{Vi)} E

CargoCapacity

A _4

uc: Real «moen

: UnitCostEquation
l: UnitCost

. _

Enterprise Architect has a useful search feature that allows the type that a property is based on to be located in the
Browser window. This function is particularly useful for finding the owning Block or constraint of a Block or

(c) Sparx Systems 2022 Page 286 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

ConstraintProperty found on Parametric and Internal Block diagrams.

Find |G In Project Browser Alt+G

Copy [Paste ¥ Locate Property Type in Project Browser

Behavior ¥ ﬁ Find in all Diagrams... Control+U
I‘E?i Lock Element... O Custom References... Control+)

Z-Order v |3 Add to Favorites

It is possible to setup a slide show using the Model Views' tab of the Focus window. For more information see the
Diagram Slide Show Help topic.

(c) Sparx Systems 2022 Page 287 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/diagram_slideshow.htm

Guide to MBSE with SysML 3 October, 2022

Coordinating Behavior with Activities

As discussed in an earlier topic, the Systems Modeling Language (SysML) has two fundamental aspects that are
analogous to two important grammatical categories in the natural languages humans use to communicate, namely nouns
and verbs. In the SysML these are Structural and Behavioral Constructs; Structural Constructs being analogous to nouns
in our natural languages, and Behavioral Constructs being analogous to verbs.

We referred to the structural aspects of the Language in previous topics, when we discussed both Packages and Blocks.
We will now turn our attention to the main Behavioral diagram, namely the Activity diagram. There are a number of
other behavior diagrams, and indeed behavior is visible in structural diagrams in the form of operations and also in the
Behavior that is assigned directly to a Block.

While the newcomer to SysML, viewing the Activity diagrams for the first time, might be reminded of the flow chart,
they will soon learn that the Activity diagram has syntax and semantics that go far beyond the flow chart. The Activity
diagram is formally based on a branch of mathematics called Petri Nets and it uses a system of tokens to indicate both
the sequence of actions and also the items that flow through the system. The items that flow can be information items,
physical items or even control signals. We will reference this token system as a way to illuminate the working of the
Activity diagram.

This diagram, describing a vehicle's acceleration, shows many of the elements that are commonly seen on an Activity
diagram. You will see in the subsequent topics that it is a very expressive diagram that, if crafted carefully, can
rigorously convey a lot of information.

wactivitys
Accelerate

®
v

]

«continuous» drivePower

Horsepwr

:Provide Power

«Continuous»

accelPosition

:MeasureVehicle
Conditions

]

1
|

|

|

|

|

1 transModeCmd: Integer
1

1

|

|

|

|

:PushAccelerator

h

«Continuous»
vehCond

s

In fact the syntax of the Activity diagram is one of the richest of any of the SysML diagrams, and when you add to this
the rich and effective mechanisms and tools that Enterprise Architect includes to work with these diagrams, the
opportunities for a modeler to express themselves makes these one of the most versatile but also challenging parts of
system representation.

The SysML Activity diagram is based on the UML diagram of the same name, but additional semantics have been added
in two areas:

e Continuous Flow, allowing restrictions on the rate at which entities flow along edges in an Activity, and mechanisms
to ensure that the most recent information is available to Actions

e Probability, introduced into Activities to include the likelihood that a value will be available to an edge or output on
a parameter set

While the diagram might be said to be based on verb serialization mechanisms (strings of verbs connected together with
nouns) in our natural language, as mentioned earlier it has its formal origins in a branch of mathematics called Petri Nets
and token flow. It is imperative that a modeler understands the token flow aspect of the language, and can learn to

(c) Sparx Systems 2022 Page 288 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

visualize these invisible items that flow through Object Flows, are detained at buffers, and are controlled by other
language mechanisms that direct how items flow from Actions. Without this understanding it is difficult to interpret an
Activity diagram, including how the sequence of Actions is controlled, how the inputs are consumed and how the outputs
are created.

The significant difference between Activity diagrams and any of their close cousins, such as Flow Charts or Process
diagrams, is the ability to create relationships between these behavioral elements and structural elements.

A fundamental aspect of the discipline of Systems Engineering is the ability to segregate function from form, but also to
be able to create a mapping between them that exposes the seams that relate these two integral parts of architecture and
design. Empirical evidence on large scale, complex systems engineering problems has proven that profound benefit
results from this approach.

Enterprise Architect provides a rich toolbox to work with these relationships, including the ability not only to allocate
system behavior in the form of Activities and Actions to Blocks, but also to relate these elements to behavioral features
owned by Blocks, such as operations.

(c) Sparx Systems 2022 Page 289 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Actions the Fundamental Behavioral Building Blocks

Actions are the behavioral atoms that are connected together to describe the behavior of an Activity, Sub-system, system
or one of its parts. Effectively an Activity is made up of a set of Actions that work together to convert items (tokens) that
are input into the Activity to items (tokens) that are output by the Activity. The first Action in a sequence will receive its
inputs from one of the owning Activity's Input Parameter Nodes and the last Action in the sequence will place the output
onto one of the Activity's Output Parameter Nodes. The Actions themselves have input and output devices called Pins -
an Action will receive tokens on its Input Pins, perform its work and place the resulting tokens on its Output Pins.

bdd [package] Accelerate [Accelerate Parameters]/

Provide Power]
drivePower: Integer
vehCond: Integer £
accelPosition: Integer transModeCmd: Integer
[

+al

P rtionPow B: .
transModeCmd: Integer roportenraneEr accelPosition: Integer

speed: Integer battCond: Integer

Enterprise Architect has rich support for modeling Actions and their inputs and outputs, and various parts of the user
interface can be used while working with these fundamental building blocks of behavior. There are a number of different
types of Action available from the Toolbox.

& Action

& Action (call behavior)

2 Action (accept event)

Z Action (accept event timer)

[Z action (send signal)
An engineer can add an Action directly from the Toolbox, but it is more common to create Actions from existing
Activities that have been defined in hierarchies, as described in the topic Creating Activity Hierarchies. To do this an

Activity would be dragged NOT from the Toolbox but from the Browser window and dropped onto an open Activity
diagram as an Invocation - this has the effect of creating an Action based on the Activity and placing it in the diagram.

(c) Sparx Systems 2022 Page 290 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Paste Register Earthquake bl

Drop as: | Invocation (Action) &

Mame: Register Earthquake

Structural Elements:
Dialog Settings
Copy connectors Remember selection

Onily show if Ctrl pressed

oK Cancel Help

The integrated Properties window makes it easy to work with Actions and their Pins. An engineer can specify a range of
properties for the Action and its Pins, including the Pin Name, Type, Multiplicity, Direction and much more. The
Properties window can be docked or made to float, and even dragged onto a different monitor; as elements are selected in

the Browser window or a diagram the properties can be viewed, created or changed.

Properties v
A = -

Element Pin Tags

TYPE! Integer -

Multiplicity

(=

Lower bound:

Upper bound: *

+| Multiplicity is Ordered
+| Allow Duplicates

Argument
Behavior:
Parameter: ~
Value:
Ordering: FIFD -
Kind: output =
Stream
Control Type
Exception

Dbject State:

As a diagram is created, the elements that are added are automatically inserted into the Browser window, allowing an
engineer to see a structural view of the Activity, Actions, Pins and other elements. Even if the diagram is not open the
elements can be selected in the Browser window and edited directly in the Properties window.

(c) Sparx Systems 2022 Page 291 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

4 [CIHSUV Behavior
4 (7 Activities
4 [Accelerate
FHAccelerate Parameters
5 Activity and Object Flow Breakdown
4 OAccelerate
ﬁ Accelerate
® :MeasureVehicle Conditions
4 @ :Provide Power
B drivePower: Integer
EJ' transModeCmd: Integer
® :PushAccelerator
[«Continuous» accelPosition
@ Activit yFinal
@ Activity Initial
A number of these properties will be displayed in the diagram in the Pin label, including name, type and multiplicity. The
Multiplicity specifies both a lower bound and an upper bound. The lower bound specifies, for a given execution of the

action, the allowable number of tokens that the pin can consume or create, and the upper bound specifies the maximum
number of tokens that are consumed or created on that pin.

act [package] Eartthquake Detector [Quake Analyzer]/

4)

Register Earthquake

Severity Level:

Quake Measurement: Determine Severity Integer(1..]

Real[0..¥]

There is also a wide range of windows that can be useful when working with the Actions, including the Traceability
Window, which shows how elements are related regardless of where they are located in the repository; it also displays
their structural features such as Pins and Parameters.

Traceability O x
g & G i -
4 = Determine Severity
4 ¥ embeds
[+ } Register Earthquake.Determine Severity.Quake Measurement
[+ S Register Earthquake.Determine Severity.Severity Level
4 —* owned by
[» &2 Register Earthquake

(c) Sparx Systems 2022 Page 292 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Introducing Activity Diagrams

The Activity diagram is a diagram that can be used to show the sequence of Actions that describe the behavior of a Block
or other structural element. The Actions are sequenced using control flows, and can contain input and output Pins that act
as buffers for items that flow from one Action to another (or from Control or buffer Nodes). The work carried out by the
Actions either consumes or produces these items. The items can be either material, energy, or information, depending on
the system and the activity being described.

Creating Activity Diagrams

An Activity diagram can be created from a number of places in the User Interface such as the:
e Design Ribbon - 'Add' Diagram icon on the 'Diagram’' panel

e Browser Toolbar - New Diagram icon

e Browser Context Menu - New Diagram

We will use the Design Ribbon to create an Activity diagram. Firstly, select the location in the Browser where you want
the Activity diagram to be created. As with all diagrams, this can be either a Package or an element, but it is common to
insert Activity diagrams into a Package. Once the Package location has been selected in the Browser, select the ribbon
option:

Design > Diagram > Add Diagram

E &P 0 of =B

Toolbox Add Manage Views Options
Diagram w w ~

Diagram

Selecting this option will open the New Diagram dialog, allowing you to change the name of the diagram (which defaults
to the name of the Package or element that contains the diagram, as selected in the Browser). With the SysML
perspective chosen and the version of SysML selected, a list of diagrams will be displayed from which you select the
Activity diagram. When you click on the OK button, a new Activity diagram will be created in the location selected in
the Browser. The diagram canvas will be opened, allowing you to start adding elements and connectors that describe the
value that the system will provide to its users. Enterprise Architect will also display the 'Activity' pages of the Toolbox,
which contain the elements and relationships defined by the SysML specification to be applicable for constructing
Activity diagrams. Any number of other Toolbox pages can be opened if required, in addition to the Common Elements
and Common Relationships Toolbox pages that are always available.

(c) Sparx Systems 2022 Page 293 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Type
Select From: = Diagram Types:
L e
(= SysML 15 L b Activity

The most import elements and connectors used with the Activity diagram are:

Elements
o Activity
e Action

e Action Pin

e Partition

e Parameter

e Initial

e Final

e Decision

e Fork and Join

e Data Store

Connectors
e Control Flow
e Object Flow

e Interrupt Flow

[» %g Block Definition
ﬁ Internal Block
Package
ﬂ Parametric
[» :EIE Requirement
T sequence
[> [FE State Machine

22 Use Case

MDG Technology for SysML 1.4/1.5

There are many other elements and connectors that can be used on these diagrams that are important for more advanced
modeling; some of these might be needed as modelers become more experienced, or more complex parts of a system's
behavior are being described or designed. These include Activity Parameter, Merge, Central Buffer Node, Regions, Fork

and Join, Decision and Merge.

(c) Sparx Systems 2022

Page 294 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Toolbox v 2 x

Search Jo! ’Q =
SysML Activities -
L2 Activity S :
(& structured Activity : B2 object Node .
@ Action . €% Object Node (no buffer)... '
S0 Action (call behaviar) : Q? Object Node (overwrite)... I
=0 Action (accept event) Central Buffer Node
Z Action (accept event timer) ' Datastore :
[&* Action (send signal) : < Decision :
} Action Pin... : 4 Merge .
I Partition i ® synch i
€¥ Control Operator... . @ Initial .
M Parameter : @ Final :
0 Parameter (continuous) ' @ Flow Final :
M Parameter (discreta) : t..! Region :
I Parameter (optional) : Y2 Exception .
0 Parameter (probability) uFDrkamn

Elements can be added to the diagram by dragging-and-dropping them from the Toolbox onto the diagram canvas. It is
considered good practice to start with an /nitial and one or more Final elements, which are named appropriately to
describe the way the Activity starts and the potentially multiple ways it might finish. Leaving the name of these elements
blank or giving them a name that is hackneyed such as 'starts' or 'end' will not help to make it clear to the reader what
system or part of a system is being modeled, and can lead to misinterpretation of the diagram. When these nodes have
been added and appropriately placed in the diagram, Actions and Object Nodes can be added to the diagram. The Actions
can be connected using the Control Flow relationship, defining the sequence in which the Actions will be executed.

Once a basic diagram has been created, and as knowledge of the domain and the system's behaviors is further accrued, it
is possible to structure or embellish the diagram using the additional elements and relationships including:

e Control Structures for Object flows: Forks and Joins, Decision and Merge nodes

e Activity Input and Output Structures: Activity Parameters (Streaming and Non-Streaming)
e Grouping sets of Actions: Interruptible Regions and Edges

e Token Storage Structures: Data Stores and Central Buffers

As stated earlier, the Activity diagram has a rich set of language devices and the engineer is encouraged to use these
devices to make the system description richer, but some caution needs to be exercised to ensure that these language
mechanisms can be understood by the intended audience.

(c) Sparx Systems 2022 Page 295 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

Creating Activity Hierarchies

3 October, 2022

Newcomers to the Systems Modeling Language and Enterprise Architect might be surprised to learn that it is not
Activities but Actions that are used on Activity diagrams. Activities that are the classifiers of Actions are typically
visualized on Block Definition diagrams. This might seem a little counter-intuitive, but when you understand that the
Action is the fundamental atom of system behavior it makes more sense. Activities are classifiers and as such can, like
Block elements, participate in a wide range of structural relationships, which is why the relationships such as
Associations marked with Composition can be used between Activities.

bdd [package] Car Operation [Car Operatiun]/

«activity»
Operating Car

¢ | g toc | 0.1 toc | 0.1 toc | 0.1 toc | 0.1
+turnKeyon | 0.1 +drivi 0.1 +braking | 0.1 +monitorTraction | 0.1
¥ rving +enableO nBrakePressure>0 | 0.1
wactivity» wactivity» «activity» wactivity»
Turn Key To On Driving Braking Meonitor Traction «activity,controlOperator»
Enable on Brake Pressure >0

+calculateTraction 01

«activity»
Calculate Traction

+calculateM odulationFrequency 0.1

«activity»
Calculate Modulation

Frequency

In this diagram a break-down structure has been used where an activity is decomposed into a number of more granular
activities using the Composition relationship. There are a number of relationships which have been grouped together to
make the diagram more appealing, using one of the flexible line styles available from the diagram context menu.

(c) Sparx Systems 2022

Page 296 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Specifying Action Sequence with Control Flows

Actions are executed within the context of an Activity, and the order in which the Actions are executed is largely
controlled by the use of special connectors called Control Flows. These connectors are directed lines drawn between
Actions and act essentially as a conduit for control tokens - allowing the tokens to flow from one Action to the next in
the direction of the arrow. An Action cannot commence its work until all incoming Control Flows have received a token;
once they have and the Action is executed a token is said to be placed on the outgoing Control Flow, which implies it
will travel to the next Action in the sequence. Control Flow relationships are available from the 'Activity' pages of the
Diagram Toolbox

A Control Flow

A Control Flow (Continuous)
A Control Flow (Discrate)
/" Control Flow (Probability)

There are also Control Nodes that can be used with Control Flows to orchestrate the way the Flows work with the use of
Forks, Joins, Decisions and Merges. There are three specialized nodes: Initial, Final and Flow Final, that act as the start
and finish of the flow respectively. The Final (formally Activity Final) node is used to indicate that when a token arrives
the entire Activity terminates, whereas the Flow Final will consume incoming tokens but will have no effect on the
enclosing Activity.

Decision
Merge
Synch
Initial

Final

@ e d e

Flow Final

i..! Region

Exception

=

Fork/]oin...

Interrupting Normal Flow

There are a number of circumstances during the execution of an Activity when a modeler might want to specify a way of
stopping the behavior in a part of an Activity. For example, in a real-world scenario a user might get part way though
using a machine function such as calibrating a centrifuge, and then decide that they want to end a particular part of the
calibration process. This scenario might be provided by a Cancel button on the interface. The SysML allows this
situation to be modeled using an Interruptible Region and an Interrupting Edge. The notation allows the Interruptible
Region to be drawn to include a number of elements such as Actions and other Nodes. Typically, when something
unusual occurs an Event is fired in the Activity and received by an Accept Signal Action; this element has no incoming
control flows and a single outgoing Interrupting Edge, which targets an Action that resides outside the Region.

(c) Sparx Systems 2022 Page 297 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

act [package] Cetrifuge Callibration [Cetrifuge Speed Callibratio;])

/ Callibrate Cetrifuge \
_____________ \
‘F abort
| |
|
Callibrate | Abort Abort >©
Tachometer } Callibration | Operation
| : Callibration
I
| : | Aborted
1
|
1
I
Erre e | e Set Rotor Speed _—- RunTests |__ j__ _= Record >©
to 12000 'PITI I times : Results
|
I : callibrated
\

In this diagram, an engineer has modeled the process used for performing a speed calibration for a centrifuge. The
centrifuge calibration process can be interrupted for various reasons; for example, if the centrifuge has become unstable
or the operator is called away to perform other duties. An Accept Event Action is used to show that the Activity has a
mechanism to listen for a required interruption within a specified Region of the Activity. The special Interrupt Flow
connector then targets an Action outside the Region, which is used to shut down the centrifuge; finally this flows to the
calibration Activity being terminated.

(c) Sparx Systems 2022 Page 298 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Specifying Item Flow with Object Flows

Activities, and the Actions they are composed of, typically do work by processing items that arrive on Input nodes and,
when the work is complete, placing the resultant items onto Output nodes. As was discussed earlier, Activity modeling in
the SysML is based on a branch of mathematics called Petri Nets, which is concerned with discrete State Event systems.
The items that arrive at the input structures must pass through the graph of Activities and their contained Actions in an
orderly and systematic way. The passage is created by Object Flows that act as conduits to carry tokens from one node to
another. The tokens represent a number of different types of 'thing' including information, structures or physical items
such as solids, liquids and gases. There are thus two important parts to the way that items pass through the Activity - the
nodes that act as origins and destination of tokens, and the connectors (conduits) that transmit the items.

Enterprise Architect has full support for modeling these flows, and when a diagram is created or opened for editing, the
Toolbox contains the Object Nodes as shown:

Parameter
Parameter (continuous)

Parameter (discrete)

B BB B

Parameter (optional)

OO Parameter (probability)
B object Node

4% Object Node (no buffer)...
Q? Object Node {overwrite)...

It also contains a section that lists the Object Flow relationships that can be used to connect the nodes, creating the
conduit for the tokens to flow from one node to another.

BA Object Flow

-?5' Object Flow (Continuous)
-iﬁf' Object Flow (Discrete)
-?5' Object Flow {Probability)

Orchestrating the Flow of Tokens

When modeling complex systems there is often the need to create more elaborate paths (conduits) for the token flow,
such as forking and joining paths to allow tokens to be sent to a number of object nodes so that work can be done
simultaneously, or to allow tokens to be routed down a particular path based on some condition. These Control Nodes
control flow and are grouped together on a page of the Diagram Toolbox.

Decision
Merge
Synch
Initial

Final

Q@ e &

Flow Final

L. Region

Exception

=

Fork/]oin...

(c) Sparx Systems 2022 Page 299 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Enterprise Architect allows the connectors to be manipulated to create any path that is required. This can be done by
utilizing the line styles from a connector's context menu; the most flexible of these is the Custom Line Style, but there
are several other styles that are very useful. A modeler can also fix the connector ends to a specific part of the Source or
Target element.

Storage for Tokens in Transit

During the execution of an Activity it is sometimes necessary to store tokens for a longer period of time than is possible
with Activity Parameters and Action Pins, which act simply as temporary storage devices. A common circumstance is
when a number of Actions require access to a stream of tokens - the tokens can be stored in a Central Buffer and made
available to the nodes that require them. The Central Buffer accepts all tokens on its incoming flows, then makes the
tokens available to downstream nodes; once accepted, the tokens are then removed from the buffer.

The Central Buffer can be created by dragging the 'Central Buffer' icon from the Toolbox onto an open Activity diagram;
it can then be connected to other object nodes using Object Flows.

& central Buffer Node

Datastore

Thus the Central Buffer can, during the execution of the Activity, be replete with tokens or empty depending on the
consumption of tokens. Another type of node is the Data Store, a specialization of the Central Buffer where, as tokens

are consumed by downstream actions, a copy is made and stored back in the buffer. This has the effect of the Data Store
having the appearance of a permanent store - but only for the lifetime of the Activity's execution.

The Data Store can be created by dragging the 'Data Store' icon from the Toolbox onto an open Activity diagram; it can
then be connected to other object nodes using Object Flows.

(c) Sparx Systems 2022 Page 300 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Modeling Inputs and Outputs with Parameters and Pins

Activities and their constituent Actions are the workforce of systems; while structural elements such as Blocks and Parts
define the structure or anatomy of a system, the Activities define the physiology. When an Activity is executing we see
the structural elements being called into action to accomplish some type of system behavior. Much of the work that a
system does, and the behaviors that define what the work is, are dependent on system inputs that the executing Activity
consumes in order to produce outputs.

act [package] Earthquake Analyzer [Earthquake Analyzer - parameters] /

Earthquake Signal: Analyze Earthquake
Seismic Wave[1..4] Visualization Output:
Video[1..2
Social Media Feed: :
String[1..7]

Inputs and outputs vary greatly between systems and can include things such as control signals, materials, light, fluids,
energy, numbers and information. The inputs and outputs are called parameters, which can be typed and can have
multiplicities. Typing ensures that the Activity specifies what kind (type) of 'thing' it is expecting. Thus if a distiller had
an input parameter with a type of liquid defined or, even more specifically, a liquid-contaminant, then the Activity would
be ill-formed if it received a gas or an Integer Value as an input on this parameter. The types can be any one of a defined
set ranging from a simple Integer to a compound Structure. Inputs and outputs can be typed by a Block, so that you have
a well defined structural element - for example, a grocery item that passes through a self scanning system at a
supermarket checkout. There is a range of other properties that can be defined for a parameter, including Streaming or
Non Streaming, Multiplicities, and Direction. Streaming is used when there is a continuous flow into the parameter, such
as with a fluid, or a communication or information signal such as an audio or visual stream. Multiplicities define the
upper and lower bounds of the number of tokens that are consumed by an input parameter or produced by an output
parameter. While Direction defines if the parameter is receiving input (in) or producing output (out) or a combination of
both (inout).

When Activities are placed on an Activity diagram as invocations they are represented by Actions, and any Parameters
owned by an Activity will be modeled as Pins on these Actions. The Pins receive tokens on incoming Object Flows and
the owning Action performs its work and places any specified number of tokens on the output Pins. The Pins can have a
simple type such as an Integer, a complex Structure such as a matrix or even a Block such as a video stream.
Multiplicities specify a lower and upper bound that define the minimum and maximum number of tokens permissible to
arrive and depart from any given Pin. This unfinished diagram shows an Action with an input and an output Pin and the
transmission of the tokens from the Owning Activity's input parameter along the Object Flow.

(c) Sparx Systems 2022 Page 301 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

act [package] Earthquake Analyzer [Earthquake Analyzer—Pins]/

4 N

Analyze Earthquake

Earthguake as: Analyze
Signal: Seismic | Signal
| gna
Wave[1..4] |-|-|

The Parameters and Pins are collectively known as Interaction Points, signifying that they are locations where an element
interacts with its environment; they can be selected for inclusion on a diagram by using the multi-purpose Features
window.

Features

Attributes Operations Receptions Parts/ Properties Interaction Points

Name Element Type Stereotype Visible Owner

v| Social Media Feed ActivityParameter True Analyze Earthquake
w| Earthquake Signal ActivityParameter True Analyze Earthquake
| Visualization Output ActivityParameter True Analyze Earthquake

Enterprise Architect allows you to create a diagram that shows the owning Activity as a container for the other Activities
included on the diagram as Actions. In this diagram, the Activity Parameters defined on the owning Activities are
expressed as Pins on the boundaries of the Actions that have been included as invocations of the Activities. The diagram
shows an Activity with two input parameters and a single output parameter. The inputs in the form of tokens can be
traced through the diagram as they arrive at Pins. Once the Action has completed its work, tokens are placed on the
output Pins. The Control Flows show the sequencing of the enclosed Actions. Notice that a Fork and Join are used to
show that two Actions can be carried out in parallel. Notice also that a number of the Pins have been defined as a stream,
which is indicated on the diagram by the solid color of the Pin.

act [packag] Analyzer juake Analyzer-Mai l/

Analyze Earthquake

Input:

. ds: Determine

Earthquake $ignal: Output Speed Data:
Seismic Wave[1..4] Visualizafion Output:

videp[1..2]

]

as: Analyze Signal il: Identify

Location

=

Imagery Out:

coo)
|
|
1

Output Intensity
Data:

L_=

Med ed FI'\

1
cess
ia Fe
. Feed Input:

e
Social Media Feed:
String[1..7]

(c) Sparx Systems 2022 Page 302 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

(c) Sparx Systems 2022 Page 303 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Visualizing Activities with Simulations

Any of the SysML Activity diagrams in your models can be simulated using the built-in dynamic model Simulator. This
provides a compelling way of visualizing the diagrams and is useful for running demonstrations or walk-throughs with
the user and others in the engineering community.

Using the Model Simulator, you can simulate the execution of conceptual model designs containing behavior. When you
start a Simulation, the current model Package is analyzed and a dynamic Simulation process spawned to execute the
model. As the Simulator analyzes and works with UML constructs directly, there is no requirement to generate
intermediary code or compile simulation 'executables'. This results in a very rapid and dynamic simulation environment
in which changes can be made and tested very rapidly.

Simulation Window

The Simulation window provides the main interface for starting, stopping and stepping through your Simulation. During
execution it displays output relating to the currently executing step and other important information. See the Run Model
Simulation Help topic for more information on the toolbar commands.

Simulation O x
oo [E 5z

||||J+

O Interpreted - Tools - (50 2

[02434152] Configuration: mode: Interpreted simulation, platform: UML Basic
[02434153] Preparing Simulation Data
[02443108] Loading Machine
[02443209] Simulation Started
[02443212] Process Order
! [02442738] Process Order ActivityInitial '
[02444284] Process Order.Receive Order
[02444787] Process Order.Decision

I 4 4

Note the text entry box just underneath the toolbar. This is the Console input area - here you can type simple JavaScript
commands such as: this.count = 4, to dynamically change a Simulation variable named 'count' to 4. In this way you can
dynamically influence simulation at run-time.

Breakpoints and Events Window

The Simulation process also makes use of the 'Simulation Breakpoints' tab of the Breakpoints & Markers window
('Simulate > Dynamic Simulation > Breakpoints'). Here you set execution breakpoints on specific elements and messages
in a Simulation. See the Simulation Breakpoints Help topic for more details.

Breakpoints & Events w0
Ay gy J @ | BreakpointSet " B @)
Enabled MName

i Setup

=2 VehiclesGreen
4 |] | .
M 4 » M | DebugBreakpoints | Simulation Breakpoints.

(c) Sparx Systems 2022 Page 304 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/run_model_simulation.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/run_model_simulation.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/using_simulation_breakpoints.htm

Guide to MBSE with SysML

3 October, 2022

Simulation Events Window

The Simulation Events window ('Simulate > Dynamic Simulation > Events') provides tools to manage and execute
triggers. Triggers are used to control the execution of StateMachine transitions.

Simulation Events

[<no event set> 'Lg -3t § 45 X

Sequence Trigger Status Type Parameters Event
= PlayList not signalled Signal Marme PlayList
= PlaySong not signalled Signal Marme PlaySong
= PowerOn not signalled Signal PowerOn
= PowerOff not signalled Signal PowerQff
= SetRepeat not signalled Signal SetRepeat
& Stop not signalled Signal Stop

Time

(L}

-~

m

Waiting Triggers
& PowerOn

(c) Sparx Systems 2022

Page 305 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Allocations and other Relationships

A fundamental aspect or discipline in Systems Engineering is to relate structural elements with behavioral elements.
These two important aspects of a model will become intertwined as a model develops, but when a number of engineers
start work to define the system it is often difficult to say exactly how the behavior and the structure will be related. The
Allocation relationship is particularly useful in these situations. It can be used as a way of showing the relationship
between behavioral elements and structural elements that will inform the more rigorous modeling that will be employed
as the notions described in the model become more certain.

bdd [package] Structure [Signal Analysis Allocation Relationshiyzy

«block»

wactivity» Signal Analyser Unit
Analyze Signal

wallocatex»

ports
initialise

(from Earthquake Analyzer)

Enterprise Architect also supports a number of other ways of representing the Allocation relationship, including as a
compartment in either the behavior or structure element.

act [package] Structure [Signal Analysis Allocation Compar‘tment]/

aactivity»
Analyze Signal

«block» Signal Analyser Unit

allocatedTo ‘

(from Earthquake Analyzer)

Any element that allows compartments can be configured to hide or show any number of available compartments. The
list of compartments is specific to an element and is dynamic, meaning that a compartment will only be visible if the
element participates in one or more relationships of the specified type and the relationship is not visible on the containing
diagram. The same options can be used to display a range of other structural or semantic aspects of the elements as
shown here.

(c) Sparx Systems 2022 Page 306 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Show Element Compartments

% L o e e L o

Attributes

Inherited Attributes
Operations

Inherited Operations
Requirements
Inherited Requirements
Testing

Discussions
Resources

Motes

Allocatedto

L e e e e

Tags

Inherited Tags

Fully Qualified Tags
Receptions
Constraints

Inherited Constraints
Maintenance
Reviews

Project

Package Contents

It is also possible to show the relationship in a callout notation, where a note is connected to the element and displays the
name of the relationship and the details of the related element. This diagram shows the notation for an Activity, showing

the Block that it has been allocated to. To achieve this an engineer must:

L.
2.
3.

Ensure the relationship is displayed in the diagram.

Select the relationship and display the context menu.

Choose the 'Create Linked Note' option.

This callout notation can be used with any type of SysML element or relationship, and is a useful way of displaying the

relationship for some types of audiences.

act [package] Structure [Signal Analysis allocation Callouly

wactivity»
Analyze Signal

(from Earthquake Analyzer)

allocatedTo

«block» Signal Analyser Unit

(c) Sparx Systems 2022

Page 307 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Modeling Change with StateMachines

Our world is in constant flux as 'things' change or evolve, passing from one state to another. Water freezes, glaciers
deform and flow, ice melts, traffic lights cycle between green, amber and red, aircraft take off, climb, cruise, descend and
land. The SysML StateMachine is used to describe how structure, in the form of Blocks, changes its state in a time-boxed
life cycle. Our concern is not with the structure of the Block Instance but its behavior, which can in turn impact its
structure. We are not interested in every single state a 'thing' can be in but rather the significant states. So the important
states for water molecules could be a solid, liquid or gas but we are not normally interested in liquid water at a
temperature of 67 degrees Centigrade. If we were looking at a movie reel of an object's life time, a StateMachine would
pick out the significant frames where important and relevant changes occurred.

Deciding what is relevant is the prerogative and privilege of the modeling engineer, and the same Block could have any
number of StateMachines defined by the same or different engineers. An aircraft's state could be modeled from the
perspective of passenger embarkation and disembarkation, from the perspective of its maintenance schedule, from the
perspective of lift, or any number of other perspectives.

This StateMachine diagram describes the operational states of an SUV motor vehicle. The diagram uses Composite
States, which nest States inside other States. There are three high level States - Off, Operate, and the unnamed End State.
The Operate State has a number of sub-states, namely Idle, Accelerating/Cruising and Braking. Together with the
transitions this describes the states of the vehicle as it Starts, Accelerates, Breaks, Stops and finally when the ignition is
turned off.

stm HSUVOpEratimnaIStates/

Refines

<<Reguirement>>
keyOff ° Power Source M anag ement

start shutOff

Nominal states only

// Operate \

accelerate stopped

releaseBrake

=

Accelerating/Cruising Braking

engageBrake

. /

Using Enterprise Architect an engineer can create StateMachines and define the transitions from one state to another,
including Events that trigger state change and Actions that are fired. In addition to these standard modeling
representations, the tool has a range of features that can help to visualize and reason about this important linguistic
mechanism that ties structure and behavior together. One of these facilities - which we will look at in this topic - is
Executable StateMachines, available from the Simulate ribbon.

n) t -
3 F NY o ~
Statemachine DKM EPSIM Modelica/Simulink

Executable States Decision Analysis = Process Analysis = System Behavior

(c) Sparx Systems 2022 Page 308 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

StateMachines can be defined at any level of granularity as they are an expression of a Block's behavior. Many
newcomers to SysML are confused about this point. Because a Block can represent something very simple - such as a
switch on a submarine control panel - or something complex like the submarine itself, so too can a StateMachine
represent the states of both the switch and the submarine. The two StateMachine models could have the same
complexity, even though the things being modeled are themselves clearly at either end of the spectrum when it comes to
complexity.

StateMachine diagrams can appear quite simplistic to the inexperienced modeler, but they are highly effective tools for
the description and analysis of complex problems that cannot be solved in other ways. It takes a different mindset and
approach, and often the kernel of the problem is focused on the selection of the level of Block, its context and the
perspective for the StateMachine, rather than the details of the diagram. Often the best results are achieved heuristically
by a number of engineers working together. This can be accomplished using Enterprise Architect's collaboration features,
allowing engineers dispersed geographically to communicate within the model, either by mail, discussions, chats and
formal reviews via the desktop client, or in a Browser on a Smart Phone, Tablet or Notebook.

ENTERPRISE
ARCHITECT

€ | EFacelmageTy... Ta © |

—
I L

FacelmageType

Class

=/ A data type for an image of a human face

Properties
Location
(1 Biometrics

73 PersonalizedMessage Request

T3 PersonalizedMessage Biometrics subset
Relationships
Attributes

Discussions

Hey Richard,
These are taking shape, did you check |
compliance with the vendor's schema files?

Copyright ® 2016 - 2017 Sparx Systems Py Lid. All rights reserved.

The StateMachine has its origin in discrete event-driven Behaviors, using a finite StateMachine based on an
object-oriented variant of David Harel’s StateCharts formalism.

(c) Sparx Systems 2022 Page 309 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

States and Behaviors

A State is created within the context of a StateMachine and is used to model the engineer-defined significant condition of
the owning Block. It is important to remember that the StateMachine is describing the lifetime of the Block from a
particular perspective, and the States must be defined from this point of view - not all States, but the significant ones

such as On/Off, Open/Closed, Green/Amber/Red or Ice/Water/Vapor. Formally, a State models a situation in the
execution of a StateMachine Behavior where some invariant condition holds for a particular duration.

A Block typically spends some time in a given State, which might last nanoseconds or days depending on the context;
this temporal aspect is not typically codified in the models but can be set in a simulation. There are three behaviors
(called Actions) that can be defined with respect to any given State:

e Entry - Fired when a State is entered
e Do - Fired after the Entry behavior and before the Exit behavior
e FExit - Fired before the State is exited

This diagram shows how these States are represented in a StateMachine diagram. Enterprise Architect can conditionally
display these and other compartments at the level of an individual element, or collectively for all elements on the
diagram.

g State A N

1,\-' Action C j‘,_.r

It is also important to note that the Final node is formally also a State, but it does not have the same semantics of
behavior as the States represented on diagrams as rectangles with rounded corners.

There are three fundamental types of State, each of which is important for modeling a different class of problem:
e Simple State - does not contain internal States

e Composite State - contains a least one region that owns States

e Submachine State - represents an entire StateMachine that is nested within the owning State

Enterprise Architect allows you to model each of these State types, and a modeler can use them productively in
StateMachine diagrams to express real world engineering problems and solutions.

(c) Sparx Systems 2022 Page 310 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Introducing StateMachine Diagrams

The StateMachine diagram is one of the nine core SysML diagram types; it is used to create and visualize the behavior of
Blocks as they change states. The key elements on the diagram are States, Transitions and Pseudostates. The States
represent the significant time in the lifetime of the Block from a particular perspective, the Transitions represent the
movement from one State to another and the Pseudostates, as we will see, act as traffic controllers that influence the way
that transitions work.

Enterprise Architect helps a modeler to create any number of StateMachine diagrams, and each diagram can have any
number of States, Transitions and Pseudostates. Each of these diagram elements and connectors can in turn have other
information added that will embellish the diagrams with more detail. The application has a pattern library productivity
tool that is very useful for newcomers and welcome equally to experience modelers. This screen capture shows the list of
model patterns that can be used to create StateMachine diagrams.

Model Patterns | Diagram Process Guidance Application
SysML Perspective

4 SysML 1.5 State Machine Diagrams
Simple State Machine
Composite States
Mested States
State with History
State with Regions

The pattern can be used to create a number of different StateMachines; in this example we create a simple (single region)
diagram that has all the appropriate detail added to the States and the Transitions. A modeler can create this diagram in
the appropriate location in the repository and then edit the States and Transitions and diagram to make it suit their own
modeling context. The initial StateMachine diagram created from the pattern will resemble this:

stm [package] Simple StateMachine [Simple State Machiney

Trigger Four [Guard Four]

[Effect Four

Two) /Effect Two

JEffect

/ State C \
entry / Action A(typeOne)
do/ Action B
exit / Action C /

/ State A N Trigger One [Guard e state B ™
One] /Effect One
entry / Action A(typeOne) entry / Action AftypeOne)
H do / Action B do / Action B %@)
Initial exit / Action C exit / Action C Final
F / Trigger Two [Guard N y

Trigger Three [Guard Three]

Three

This handy feature prompts engineers to complete details such as the Trigger and Guard conditions on a Transition, or
the Entry and Exit actions on a State, that they might not otherwise have been aware of - the result being diagrams that

are aligned with best engineering practice, producing better outcomes for customers.

Creating StateMachine Diagrams

A StateMachine diagram can be created from a number of places in the User Interface by using the:

(c) Sparx Systems

2022

Design ribbon - 'Add Diagram' Icon on the 'Diagram' panel

Page 311 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

e Browser window toolbar - 'New Diagram' icon
e Browser window context menu - 'Add Diagram' option

We will use the Design ribbon to create a StateMachine diagram. Firstly you select the location in the Browser window
where you want the StateMachine diagram to be located. As with all diagrams, this can be either a Package or an
element, but it is common to insert StateMachine diagrams into an element such as a Block to describe the important
phases in a Block's lifetime. Once the location has been selected in the Browser window then select:

Ribbon: Design > Diagram > Add Diagram

E 4B s8 op =B

Toolbox Add Manage Views Options
Diagram w w ~

Diagram

Selecting this option will open the New Diagram dialog, allowing you to name the diagram; the name will default to the
name of the Package or element that contains the diagram, but you can change it. With the SysML perspective chosen
and the version of SysML selected, a list of diagrams will be displayed from which you can select the StateMachine
diagram. Once the OK button is selected a new StateMachine diagram will be created in the location selected in the
Browser. The diagram canvas will be opened, allowing you to start adding elements and connectors that describe the
important phases in the lifetime of the subject. Enterprise Architect will also display the StateMachine pages of the
Diagram Toolbox, which contain the elements and relationships defined by the SysML specification to be applicable for
constructing StateMachine diagrams. Any number of other Toolbox pages can be opened if required, in addition to the
Common (Elements) and Common Relationships pages that are always available.

Type
Select From: = Diagram Types:
{[=] SysML 1.5 I & Activity

f» 8 Block Definition
|E| Internal Block
Package
ﬁ Parametric
[= "E'g Requirement
lf'_.'f'SEl:]LnancE
[+ [5%)State Machine

22 Use Case

MDG Technology for SysML 1.4/1.5

The most important elements and connectors used with the StateMachine diagram are:

Elements

e State - defines a significant phase in an entity's lifetime
e StateMachine - defines a set of States

e Initial - defines the entry point to a Region

e Final - defines the last State an entity will have

e History - acts a memento or bookmark when a State is exited and re-entered

(c) Sparx Systems 2022 Page 312 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Connectors

e Transition - represents the movement from one State to another

Toolbox v & x
search ye _..':' =

SysML Use Cases

% Actar
@ Use Case
Boundary

SysML Use Case Relationships

Communication Path
A Generalize

,:.ﬁ Include

Ef‘ Extend

SysML Patterns

¥3 Basic Use Case

Elements can be added to the diagram by dragging-and-dropping them from the Toolbox pages onto the diagram canvas.
It is considered good practice to start with an Initial and one or more Final State elements, which should be named
appropriately to describe the way the StateMachine starts and the potentially multiple ways it might finish. Leaving the
name blank or giving it a name that is hackneyed such as 'starts' or 'end' will not help to make it clear to the reader what
system or part of a system is being modeled, and can lead to misinterpretation of the diagram. With these nodes added
and appropriately placed in the diagram, States and Transitions can be added, thus defining the important phases in the
lifetime of the entity being modeled.

Once a basic diagram has been created, and as knowledge of the domain and the system's behaviors is further developed,
it is possible to add Triggers, Events and Guards to the Transitions, and Entry, Do and Exit behaviors to the States. The
newcomer can often perceive these diagrams to be trivial, but they can reveal profound insights that would not otherwise
be possible to see.

(c) Sparx Systems 2022 Page 313 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Triggers and Transitions

The majority of connectors that you see on a StateMachine Diagram will be Transitions; these are the lines that connect
one State to another, indicating the allowable ways the owning Block (instance) can change. The order in which they
change and the behaviors that are executed will depend on the conditions and real world context of the Block. For
example, a traffic light might flash amber until the maintenance engineer has rectified a fault, or an aircraft might
maintain a holding pattern until the Control Tower at the destination airport gives landing clearance. This diagram shows
two transitions that are directed in different directions, effectively creating the possibility of a cycle between the two
States.

r/_ State A _\] Trigger One [Guard One] / r/_ State B \

Effect One

\-: B _/’-‘-" Trigger Two [Guard Twao)] / \ B _/)

/P Effect Two ‘

The transitions always originate from one State and target another, including the special case of a self-transition where
the origin and the target are one and the same. The lines in the diagram have a label that can display a number of
different options: Trigger, Guard and Effect. We will discuss these options in detail because they express important
semantics about the transitions, including whether the transition will be executed at all. A transition can be in three
conditions:

® Reached - the originating State (or Vertex) is active and ready to complete its behaviors
e Traversed - the transition is being executed (including any defined effect behaviors)
o Completed - the target state has been reached and is ready to execute entry behaviors

These terms will be useful to system engineers and others when working collaboratively, discussing the execution of a
StateMachine and its description of the behavior of the owning Block.

Triggers

Triggers are the initiators of a transition and are mapped to events that are said to trigger event occurrences. It is these
triggers and their related events that result in a transition executing (firing) and the owning Block moving from one state
to another. When a state is active it is effectively waiting to be triggered by an event, and as long as its entry action is
completed - regardless of any other factors - it is ready to receive and respond to events.

This screen capture demonstrates how the Trigger, Guard and Effect can be entered and viewed in Enterprise Architect.

(c) Sparx Systems 2022 Page 314 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

d=-

Connector Constraints

Guard: Boom at Rest

Effect: raiseCodeRedAlert()

~|Effect is a Behawior

Triggers
Mame: Security Code Red
Type: Call -

Specification:

This diagram illustrates the way the Trigger, Guard and Effect are displayed on a diagram. The Effect in this case has
been defined as a behavior and has been linked to an Operation defined on the Block.

State Operating Locked

Trigger 50 51

——— [Boom at Rest]
yCode |
Red
51

<None> El

Guards

Guards are the 'gate keepers' of a transition and it is only when the guard's expression evaluates to True that the transition
will fire. If the expression evaluates to false the event will be consumed and there will be no observable change in the
Block's state resulting from the trigger.

A guard's expression can be defined in plain English, but typically it is written in the form of a constraint using a formal
constraint language such as the Object Constraint Language. When working with simulations or Executable
StateMachines the condition is expressed in the syntax of the code language that it is to be generated in, for example
JavaScript or C++. This also applies to Effects. In this diagram we can see a mathematical expression that can be
evaluated by a human or a machine.

(c) Sparx Systems 2022 Page 315 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Guard: Alert Level| == 7

Effect: Carpark access secured.

Effect is a Behavior

Effects

Apart from moving the owning Block from one state to another, the significance of the Transition relationship is that it
can execute a behavior that could be an Activity or an Operation on the Owning Block or on any other Block. This
behavior is in addition to the Exit behavior that might have been defined on the source State, and the Entry behavior on
the target state. This ensures that there is a mechanism to change the behavior during the execution of the Transition.

Bezier Curves

Enterprise Architect has a wide range of tools and facilities for working with diagrams, including StateMachine

diagrams, and these can be used to help create and visualize the information codified in the StateMachines. Particularly
useful when working with Transitions is the ability to route connectors that help make the diagram more appealing. The
line style for the connector in this diagram has been set to a Bezier Curve, giving the Transition a less rigid appearance.

stm [package] Simple State Machine [Simple State Machine Bezier]/

4 State A \
Initial \ ALHE .

i
Trigger Four [Guard Four]
[Effect Four

1

_/

/ State C

The shape of the curve can be altered by dragging the construction point to a new location. Any one of a number of line
styles can be used, providing the modeler with a toolkit of options for diagram presentation. This context menu can be
selected and the line style set for each connector individually. The color and thickness of the line can also be set from the
Layout ribbon.

(c) Sparx Systems 2022 Page 316 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Direct
Auto Routing

Custom Line

Bezier b

Tree Style - Vertical

Tree Style - Horizontal

Lateral - Vertical

Lateral - Horizontal

Orthogonal - Square
Orthogonal - Rounded

Control+5Shift+D
Control+5Shift+4
Control+5hift+C
Control+5Shift+ 2

(c) Sparx Systems 2022

Page 317 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Composite States and Regions

The modeling of states has to be hierarchical to deal with the complexity of engineering systems; the SysML provides
two mechanism for modeling this hierarchy in a StateMachine:

e Regions - which are separate parts of a StateMachine
e Composite States - which are States that contain other States

Systems and the objects they contain often exhibit concurrent behavior where two things can be occur at the same time;
often these separate behaviors interact with each other to create complex state-based behavior. These behaviors are
typically represented in the Block that the StateMachine is describing and might involve parts that have differing
lifetimes. These situations can be modeled using regions; a StateMachine can contain any number of regions, each with
its own set of States, Pseudostates and the transitions that connect them.

A State itself might need to be hierarchical where a single State can be decomposed into a number of sub-States
representing the states that form part of the composite State. For example a Robot might have Operating and
Maintenance States; the Maintenance State could be decomposed into a number of sub-states such as Recharging
Battery, Updating Environment and Updating Software Modules. Each of these States could in turn be decomposed into
a number of other States.

Enterprise Architect provides a useful starting point for modeling complex state behavior, by providing a series of model
patterns that can be used to model all aspects of StateMachines, including modeling Composite States and Regions.

Composite States are indicated by the oo ('infinity') symbol and reference a child diagram. The child diagram can be

previewed by clicking on the Qi icon. Double-clicking on the element or on the diagram preview will open the
diagram for editing.

stm [package] StateMachine [Com posite States] /
State A Trigger One [Guard
One] /Effect One
entry / Action AltypeOne)
. =] do/ Action B S
nitial exit/ Action C Trigger Two [Guard st [State] State € [state]
\ Two) /Effect Two
Trigger Four [Guard Four] @ ./ StateC.1 \ V' State (2 \
/) Trigger d One] /Effect-
Effect Four State C t -] entry / Action AltypeOne} ‘entry / Action AltypeOne)
d = | do/ Adion B =»{ do/Action B
7] entry / Action AltypeOne) 7 nitial it/ ActnC Gl Finsl
71 do / Action B ol
exit / Action C o
oo o

These patterns can be accessed using the Model Wizard (Start Page 'Create from Pattern' tab).

@start Page x B Specification Manager BFind in Project b

Open Project Create from Pattern Add Diagram Guidance

Syshll

ol Il

SPRIL L FTUJELL SUULLITES . .
SyshL 1.5 Requirements Diagrams State WIth Reglons
Syshdl 1.5 Use Case Diagrams
Syshdl 1.5 Activity Diagrams

) . The State with Regions pattern creates elements and a diagram that contains an orthogonal
Syshdl 1.5 Block Definition Diagrams

composite State that contains two regions each containing a number of Substates. The regions are

Syshdl 1.5 Internal Block Diagrams
indicated by compartments separated by a dotted line. When the composite state is transitioned

ByshAL 1.5 Pararnetric Diagrarms
IyshAL 1.5 State Machine Diagrams
Simple State Machine
Composite States
Mested States
State with History
State with Regions .
SyshdL 1.5 Libraries i
SyshL 1.5 Madel Elerents =T Trsger Two Guard
Two] fEffect Two
TyshAL Glossary [<
Modelica Case Studies . B _d

SysPh3 Trigger One [Guard
i b One) /Effect One -

LAY VTV YOV W

to each region will have its own independent state and both regions will have its own active State.

st [package] State with Regions [Scate with Regions]

R

[

Create Maodels] Add To; More Information Combine with selected Package

(c) Sparx Systems 2022 Page 318 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

This image shows a diagram that has been created from the State with Regions pattern, which has been simply injected
into the model and acts as a starting point for the modeler. The modeler can tailor the diagram by replacing the names of

States and Transitions and adding or deleting regions as required.

stm [package] State with Regions [State with Reginnsy

- /

Initial
State A Trigger Two [Guard Two] /Effect
Two
entry / Action A(typeOne)
do / Action B
exit / Action C
Trigger One [Guard One] /Effect
One
/ State B \
[Region One]
Trigger Three [Guard Three]
/ State B.1 N\ [Effect Three / State B.2 N
. = entry / Action A{typeOne) entry / Action A(typeOne)
do / Action B do / Action B
Initial exit / Action C exit / Action C
Trigger Four [Guard Four]
[Effect Four
[Region Two]
Trigger Five [Guard Five]
/ State B.3 \ /Effect Five (State B.4 \
. ~ entry / Action A{typeOne) entry / Action A(typeOne)
do / Action B do / Action B
Initial exit [Action C exit / Action C
Trigger Six [Guard Six] /Effect [::
Six
Final

The regions in State B provide a parallel flow of processes in Region One and Region Two.

(c) Sparx Systems 2022 Page 319 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Pseudostates - The Traffic Police

The Transition relationships that connect States in a StateMachine diagram need to be orchestrated to ensure that the
StateMachine is representative of the freedoms that a Block has to change its state in the physical world. Pseudostates are
nodes that are used to direct the flow along transitions. The nodes can appear at the beginning, along the path of a
transition or at the end. Types of pseudostate include:

e [nitial - used to initiate a StateMachine

e Fork and Join - used to split and reunite a Transition

e Terminate - used to end a StateMachine

e Join - used to reunite a number of Transitions

® Junction - used to split a Transition

e Entry and Exit Point - used on the boundary of a SubMachine State

® Deep and Shallow History - used as mementoes when a composite State is exited

We will look at each in a little more detail and show how Enterprise Architect can be used to create and manage these
important nodes. it is important to understand that the Final State - which has an analogous icon to the Initial pseudostate
- is in fact a State in its own right.

Initial

The Initial pseudostate is the most widely used of all the nodes and represents the stating point for a region. There can
only be one Initial in a region and a single transition is permitted to emerge from the Initial pseudostate. Because it is the
starting point it would not make sense to have a trigger or a guard - the pseudostate simply becomes active when the
region is entered, a modeler can however define an effect. Some system engineers will leave this all-important
pseudostate off diagrams, reasoning that its position is implied, but it is considered good practice to include them as
formally the starting point is undefined without them. It is, however, common practice to leave the Initial pseudostate
unnamed.

Enterprise Architect will also rely on the StateMachines being well formed, and that each region has an initial
pseudostate defined, when a modeler is working with Executable StateMachines or running simulations to visualize the
States a Block instance will transition through in its lifetime.

Fork and Join

When Regions are used in StateMachine diagrams, it often necessary to split a transition that targets the State into
multiple transitions such that each outgoing transition targets a given State in each orthogonal Region. The outgoing
transitions from a Fork pseudostate are restricted and cannot have a guard or a trigger defined but an Effect can be
defined. This ensures that multiple regions can simultaneously have active states.

(c) Sparx Systems 2022 Page 320 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

stm [block] Smart Phone [Smart Phone]/

/_ Stream Recording \

[Streaming]

Streaming

Initializing

Stream
Ended

Writing

[Recording]
Recording

Finding Media
Complete

- J

Joins work in an analogous but opposite way to unite incoming transitions from multiple regions. The reverse restriction
applies such that the incoming transitions cannot have a guard or a trigger defined but an Effect can be defined. The
Effects for all incoming transitions must be completed before the outgoing transition can fire.

Terminate

The Terminate pseudostate is a useful node to ensure that an entire StateMachine is shut down. Regardless of what level
in a State hierarchy the node is located, all regions and all levels of the hierarchy will terminate. It is a final node in the
sense that the owning StateMachine will immediately stop executing. The termination is not 'graceful' and any behaviors
that are currently being executed will simply stop; no exit behaviors will be executed. This diagram shows a Composite
State with a single region; if there is a Pressure Leak the operation of the Autoclave must be immediately terminated, so
there is a transition from the operating state to the Cycle Aborted Terminate pseudostate.

(c) Sparx Systems 2022 Page 321 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

stm [block] Medical Autoclave [Medical Autoclavey

Idle

/_ Operating \

Pre-Vacuum

Ready

Sterilization

Cool Down

Cycle

Complete

Pressure Leak

)

Cycle Aborted Shutdown

Enterprise Architect allows this node to be placed at any level and in any region and will honor its semantics in
Executable StateMachine simulations.

Junction

The junction pseudostate is used to model transitions with compound paths There are both inbound and outbound
transitions that are connected to a junction, but during the execution of the StateMachine only one of the inbound and
one of the outbound transitions will fire. The outbound transitions are protected by guards and only the transition with a
guard whose expression first evaluates to Boolean true will fire and carry the outgoing token.

Entry and Exit Point

The Entry point and Exit point pseudostates are used to allow a StateMachine to be reused as a sub-machine State in
multiple contexts; they can also be used on a composite State. These pseudostates appear as small circles that straddle the
boundary of a composite State or a sub-machine State; the entry point is empty whereas the exit point has a small x
inside the circle.

(c) Sparx Systems 2022 Page 322 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Fa) .r;:)\
L 9.9,

EntryPoint ExitPoint

Their position on the boundary is significant because, from a visual syntax point of view, they allow messages between
the inside and outside of the element to be conveyed.

Deep and Shallow History

The History pseudostate is like a bookmark or memento for a Composite State, and simply stores the name of the
sub-state that was active when the region was exited. When the region is subsequently re-entered, the StateMachine
resumes its transitions from the sub-state specified by the History. It is possible that for some reason a region could be
re-entered and the History is unable to provide the last State; this situation can be handled by a modeler pre-emptively
creating a Transition from the History pseudostate to a target default sub-State; the Transition would only be used in the
event that the History was unable to provide the memento.

In this example of a Tubular Centrifuge, a System Engineer has placed a Shallow History State in the operating
Composite State, indicating that if that start is exited while a given State is active, and then the State is subsequently
re-entered, the execution will resume at the active sub-state. The transition exiting the History indicates, in the event that
the owning State is re-entered and the machine did not know which State to make active, Rinsing would be selected.

Next State Operating

Initial idle Shutdown

Concentrating

Initial Loading Separating | Draining Liquid
Discharge

Cleaning Rinsing History

State so s1 s2 s3 54 S5 56 57 s8 s9 510 si1

Initial so

idle 51

Initial 52

Loading sa

Separating | S5

Operating | Draining Liquid| 6

Concentrating
Discharge

Cleaning s8

Rinsing 59

History s10

Shutdown s11

Both Shallow and Deep History States work the same way except that a Shallow History pseudostate only remembers the
active sub-states in the owning Region, a Deep History can remember down to any level in a sub-state hierarchy. The
Deep History is indicated visually by an asterisk placed after the H*.

(c) Sparx Systems 2022 Page 323 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

State Tables - Another View

A StateMachine can be visualized in a number of different ways. We have already looked at a diagram view of the
StateMachine, but Enterprise Architect has a useful tool that allows the StateMachine to be visualized in a table. There
are three variants of the table visualization:

Statechart Editor b ¥ | + Diagram

Swimlanes and Matrix... Table (State-Next State)
Roadmap Table (State-Trigger)
Kanban Table (Trigger-State)

e State Next State View - where the States and Sub-States are organized as rows and columns and the cells represent
the Transitions

e State Trigger View - where the triggers are organized as columns and the states as rows and the cells represent the
Transitions

e Trigger State View - where the triggers are organized as rows and the triggers as columns and the cells represent the
Transitions.

This diagram of the changes of a traffic light, like any StateMachine diagram, can be converted to a State Table.

stm [block] Traffic Light [Traffic Lighty

The StateMachine has explicit
values defined for the timing
these can be replaced by
variables e.g. green-wait-
time =60

Red Wait [0 <t<60]

[t=123]

[t > 60]

Amber Wait [120 <t < 123]

[t =120]

Green Wait [60 <t < 120]

This view will be appealing and more natural to some audiences, and the engineer can simply toggle from one view to
another. The States and their Sub-States are represented on both the rows and the columns of the table, and the
transitions (representing the pathways between States) are represented in the cells.

(c) Sparx Systems 2022 Page 324 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

MWext State Red Amber Green
50 51 52
State
50
Red... O<.. t=60
Red
51
t>123 Amb... 12
Amber
52
t =120 Gree... 60 ..
Green

The two other table views, as outlined previously, allow the States to be viewed against the Triggers that initiate them.
These are helpful views when the engineer is more interested in the causal analysis and wants to view or analyze how
events and triggers result in State behavior of the owning Block. This diagram shows the same Traffic Light machine
represented as a table of triggers and States.

State Red Amber Green
, 50 51 52
Trigger
ED
[60 =t < 120]
Green Wait -
52
El
[120 < t < 123]
Amber Wait -
51
E2
[0=t<&0]
Red Wait _—
50
E3
[t > 60] [t > 123] [t >120]
<Mone>
52 50 51

Enterprise Architect also allows these tables to be exported so that they can be analyzed using a spreadsheet. This is a
useful mechanism, particularly when the StateMachine is complex and there are large numbers of transitions.

(c) Sparx Systems 2022 Page 325 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

State Table Options...

Properties...

[60 <t =< 120]
_— Lock Diagram

52

Lo B

Save Current Changes Control+5

[120 < t < 123] Statechart Editor '

51

Execute Simulation r

@ Help...

[0 =t = 60]

(c) Sparx Systems 2022 Page 326 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Visualizing and Implementing with Simulations

Enterprise Architect is not only a platform for creating and managing StateMachine diagrams, it also provides
sophisticated Simulation facilities for engineers and other stakeholders to visualize the StateMachines. This brings the
models to life and provides a visualization tool, not only for the Engineer who is developing the models, but also for the
other audiences, both technical and non-technical, who need to understand what the model is saying. It is somewhat like
an author reading a newly written passage of text out aloud, and it can help the engineer find errors in the models or
aspects of the models that should be corrected or reworked. It is particularly useful as the models become more complex,
with nested sub-states, complex Triggers and Guards, and pseudostates such as Forks and Joins that split and reunite
transitions.

With extensive support for Triggers, Trigger Sets, nested States, concurrent States, dynamic effects and other advanced
simulation capabilities, the feature provides a sophisticated environment in which to build interactive and working
models that help explore, test and visually trace complex business, software and system behavior. There is a ribbon
dedicated to simulation, which provides a range of items that can be used for both dynamic and executable simulations of
StateMachines. This image shows the core tools for working with dynamic simulations.

Statemachine

o

Executable States

The second image shows the other advanced tools, including the Executable StateMachine, that can be used to create
executions of the StateMachine to produce fully implementable and compilable programming code directly from the
simulated StateMachines. The image also shows a number of other facilities, including Modelica and Simulink, which
are sophisticated tools for running complex parametric simulations.

5 E fﬁ'f 'IE} ¥

Statemachine DN EPSIM Modelica/Simulink

L w L

Executable States Decision Analysis | Process Analysis = System Behavior

This diagram shows a simple dynamic simulation of the traffic light system that we looked at in the previous exercise. It
shows the dynamic simulation in action.

(c) Sparx Systems 2022 Page 327 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

st [block] Traffic Light [Traffic Ligl'[]/

[t> 123

[t > 120]

__

Red Wait [0 < t < 60]

-_\\

L
Amber Wait [120 < t < 123
r

i

(c) Sparx Systems 2022

Page 328 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Interactions as a Sequence of Messages

Systems are made up of parts and the overall behavior of a system is provided by these parts working together in an
orchestrated way. Communication between the parts and the synchronization of their behaviors is critical, both from a
design perspective and from a visualization perspective. The structural units of a system, represented primarily by the
Blocks, exchange messages and signals that trigger behaviors, resulting in coordinated system behavior that represents
the system's functions.

vehiclelnContext:
HybridSUV

driver: Driver

I

I

I

I

I

I

| 1.0

| Startvehicle(} ref

[5] Start Vehicle White Box

This exchange of messages and signals, and the consequent behaviors, can be represented on a Sequence diagram that
shows the time-sequenced messages and signals between Block instances that participate in a specific interaction.

(c) Sparx Systems 2022 Page 329 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Lifelines, Messages and Activations

In a Sequence diagram, the Blocks that participate in the interaction have a lifetime that is represented by a dashed line,
emanating from the base of the element and continuing vertically for the life of the element. Elements can be created or
destroyed at any time during the period represented by the Sequence diagram, and the lifeline therefore represents their
existence. Elements that are present at the top of the diagram are created at the beginning of the interaction. A message
exchange between a sender and a receiver will originate in one lifeline (the sender) and end in another (the receiver).

sd [package] Interactions [Card Reader and Control Unit]/

% cr: Card Reader cu: Control Unit

Diriver

|
|
| 1.0readCard()
|

11
checkAccessRight()

The sender is effectively calling or activating some behavior provided by the receiving lifeline. Enterprise Architect
provides useful mechanisms to utilize behaviors already defined in the form of operations. This illustration shows the
properties of an existing message, which the modeler is able to select from a drop down list of previously defined
operations. Alternatively, the modeler can define a new operation by selecting the Operations button.

Connector Properties v 1 x

i
Fil —

Message

Signature

Message: readCard() - Operations

Parameters

Argument(s):

Return Value: void +| Show Inherited Methods
Assign To -

Stereotype: -

Alias:

Formally, when a message targets a lifeline an execution occurs, meaning that a behavior is initiated or augmented. This
execution is represented visually by an activation, which is drawn on the diagram as a thin rectangular overlay on the
lifeline, the length of which represents the relative duration of the behavior. The extent of the rectangle activation is
ended when a reply message is sent back to the caller.

(c) Sparx Systems 2022 Page 330 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

sd [package] Interactions [Card Reader and Control Unit]/
% cr: Card Reader cu: Control Unit
Diriver
| I 1
: 1.0 : :
I readCard() I I
L 11 I
checkAccessRight() |
12
e ————-— ————
T T
| | |

A Block (Instance) can be both the sender and the receiver of a message, which can be referred to as a reflexive message
because it starts and ends on the same lifeline. In this case a second and shorter activation rectangle is overlaid on the
first activation but offset to the right.

1.2 logAccessRequest()

Messages that Create and Destroy Blocks

Any number of Block Instances can form part of an interaction, and often a set of these instances will be present for the
duration of the time represented by the Sequence diagram. These Blocks will be positioned in a row across the top of the
diagram. It is, however, possible for Blocks to be created and destroyed during the sequence of the diagram. For
example, a particular Block might only be needed for a short time and so could be instantiated, perform its function and
then be destroyed. Enterprise Architect allows an Engineer to specify that a message is a Create message, which means
that the receiving Block will be instantiated at that point in the diagram's time sequence. This is achieved by setting the
Life Cycle message action to 'New' as indicated in this illustration.

Control Flow Type

Synch: Synchronous = Lifecycle: m -

Kind:

B 7 UM&-.-IZ:©= x@ B

Setting this property has the effect of moving the targeted Block to a position lower in the diagram, signifying that the
Block Instance would not be created until this point in the overall time sequence of the diagram. The message line style
is also altered to a dashed line with an open arrow-head to reflect that it is a Create message. Other aspects of the
semantics and effect of this message are unchanged.

(c) Sparx Systems 2022 Page 331 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

sd [package] Interactions [Interactiuns]/
% cr: Card Reader cu: Control Unit bec: Boom Controlle
:Diriver
|
1.0 readCard()		
B B @ 11		
checkAccessRight()	I	
L 12 :		
determinelicencePlatef)] cs: CameraSystem		
i		
L= = — ___#		
o		
o		
e		
7 Q		
b	b	
b b		
&	&	
b		
1.3 openBoom()	Z	
~ ' 7 O		
~r T L Z l Z]		
s	s	
		= =
I I & I &		
H] Z | Z H

In an analogous way the lifetime of an Instance can be ended by sending a Destroy message. Practically, this means that
the Instance has served its purpose and is no longer required. This can be achieved easily by once again setting a
message property but this time we set the Life Cycle message action to Delete’.

Control Flow Type

Synch: Synchronous = Lifecycle: | RS =
Kind: ;nune:
W
Motes

B U&-ZE %@

Setting this property has the effect of immediately terminating the lifetime of the Instance; this is represented visually by
the dashed lifeline being arrested by a small cross on the lifeline at the point in time that the message arrives.

sd [package] Interactions [Interactiuns]/
% cr: Card Reader cu: Control Unit
:Diriver
|
1.0 readCard()		
B B @ 11		
checkAccessRight()	I	
L 12 :		
determinelicencePlatef)] cs: CameraSystem		
L= = — ___"'ﬁ		
o		
o		
I		
1.3 bed Z		
0 9		
o o		
7 z O		
% I 7		
b b		
Z [Z i		
7 % 7		
b b		
b b		
b b		
o =		
1.4 apenBoom() =z		
~ 7 0		
T T T o o		
Z Z		
		Z Z
		“ “

When a Sequence diagram is representing a software system that has bounded memory available, the destruction of the
targeted instance will result in allocated memory being returned to the memory pool. In systems engineering there can be
a variety of other pay-offs from managing the lifetime of electro-mechanical objects, such as power consumption,
over-heating, availability, or even risks such as security.

(c) Sparx Systems 2022 Page 332 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Synchonous and Asynchronous Messages

Messages essentially represent sending some type of request from a sender to a receiver. There are two fundamental
ways the sender of a message can interact with the recipient. The first type of message is called a Synchronous message
because the messages occur at approximately the same point in time. With this type of message the sender waits until the
recipient replies before sending additional messages. The second type of message is called Asynchronous because the
sender does not wait for a reply from the recipient before continuing on with the execution, including sending additional
messages to this or other recipients.

Enterprise Architect by default creates Synchronous messages, but the message type can be altered by setting the 'Synch
type' property on the 'Properties' dialog. When the message type is set to Synchronous (default) this sets the line style to
solid with a closed arrow head pointing to the recipient Instance. The line can be annotated with the name and parameters
of the message.

Control Flow Type

Synch: Synchronous = Lifecycle: | pelete -
Kind: m

Asynchronous Lt
Motes

Asynchronous messages represent calls to operations, or signals that are sent to recipients; in either case the sender does
not expect a reply nor pause its execution in wait of one. In the case of the call to an operation, the operation itself would
be defined as asynchronous and the system or machine represented by the diagram would know not to wait for a message
return (reply). Enterprise Architect allows this message type to be set through the 'Synch' property as explained
previously. When the message type is set to Asynchronous this sets the line style to dashed with an open arrow head
pointing to the recipient Instance. The line can be annotated with the name and parameters of the message.

There is a third type of message that can optionally be used with a Synchronous message, this being the Reply Message.
This message signifies an operation that has been invoked on the recipient returning a receipt that the behavior has been
executed and is complete. The inclusion of Reply messages in a diagram is a stylistic decision. Some engineers and
modelers prefer to leave them off diagrams to reduce the visual clutter. If a return type and value have been set, this will
be returned as part of the Reply message.

sd [package] Interactions [Card Reader and Control Unit]/
% cr: Card Reader cu: Control Unit
Drriver
| I I
: 1.0 : :
I readCard() I I
- 1.1 I
checkAccessRight() |
N 1.2
T T
| | |

Blocks can have both Operations and Receptions specified as part of their definition; this paradigm describes the
relationship of Operations and Receptions to messages and signals.

(c) Sparx Systems 2022 Page 333 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

e Synchronous Invocation of Operation - Synchronous Message
e Asynchronous Invocation of Operation - Asynchronous Message

e Reception Receipt of Signal - Asynchronous Message

(c) Sparx Systems 2022 Page 334 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Introducing the Sequence Diagram

The Sequence diagram has its origins in the Unified Modeling Language, and in that language has primarily been used to
represent interactions between components in software centric systems. Its usage has been broadened in the context of
Systems Engineering, where it is used in a more generic way to represent the time-sequenced exchange of messages and
signals between structural units of a system or part of a system.

The Sequence diagram has two axes; by convention the horizontal (x) axis represents the Block (Instances) that
participate in the interaction and the vertical (y) axis represents time. The Blocks do not have to be ordered in any
prescribed way, but a modeler will typically place them in the order that is most illustrative and that order is often based
on when they are used in the interaction. Time does not run on a linear scale and the time scale between any two
diagrams could be quite different. For example, the time scale on Sequence diagram representing a high speed
photographic system would be very different to the scale on a diagram representing a grocery checkout machine. This
diagram shows the location of two Sequence diagrams ('Start Vehicle Black Box' and 'Start Vehicle White Box') that are
child nodes of a Use Case named 'Start the Vehicle'.

4 £1 HSUV Use Cases
2s Operational Use Cases
2s Top Level Use Cases
[+ 7 Actors
4 01 Use Cases
4 7 Start the vehicle
4 Start Vehicle Black Box
T Start Vehicle Black Box
= driver: Driver
Ell Start Vehicle White Box: Start Vehicle White Box
[» O vehicleInContext: HybridSUV
i Start Vehicle White Box
T Start Vehicle White Box
u]
=% StartVehicle()
b Accelerate
[+ ' Brake

The tree structure acts as a navigation aid, and by double-clicking the item in the Browser window you would open the
diagram from this view.

(c) Sparx Systems 2022 Page 335 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

ecu: PowerControlUnit epc: ElectricalPowerController

D 1.0 StartVehicle()

1.1 Enable()

1.2 Ready()

In the second diagram we see a simple Sequence diagram that represents the sequence of messages involved in starting a
vehicle. It can be seen from the diagram that there are two Blocks (Instances) that form part of the interaction, and
messages are exchanged between the two Blocks and the initiator of the interaction, and ultimately the Use Case.

Creating Sequence Diagrams

A Sequence diagram can be created from a number of places in the User Interface by using:
e Design ribbon - Add Diagram Icon on the Diagram Panel

e Browser window Toolbar - New Diagram Icon

e Browser window Context Menu - Add Diagram

We will use the Design ribbon to create a Sequence diagram. Firstly you will need to select the location in the Browser
window where you want the Sequence diagram to be created. As with all diagrams, this can be either a Package or an
element, but it is common to add Sequence diagrams to a Package as it typically involves a number of objects in the
Package. Once the Package location has been selected in the Browser window, select:

Ribbon: Design > Diagram > Add

E 0 s0 op =B

Toolbox Add Manage Views Options
Diagram b W V

Diagram

Selecting this option will open the 'New Diagram' dialog allowing you to name the diagram; initially the name will
default to the name of the Package or element that contains the diagram. With the SysML perspective chosen and the
version of SysML selected a list of diagrams will be displayed, allowing the selection of the Sequence diagram. Once the
OK button is selected a new Sequence diagram will be created in the location selected in the Browser window. The
diagram canvas will be opened allowing you to start adding elements and connectors that describe the important
interactions between objects. Enterprise Architect will also display the Sequence diagram Toolbox pages that contain the
elements and relationships defined by the SysML specification as applicable for constructing Sequence diagrams. Any
number of other Toolbox pages can be opened if required, in addition to the Common Elements and Common

(c) Sparx Systems 2022 Page 336 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

Relationships pages that will always be available.

Type
SysML

Select From:

[sysML 1.5

The most import elements and connectors used with the Sequence diagram are:

Elements

e Interaction

e Sequence

e Fragment

e Endpoint

e Diagram Gate

e State/Continuation

Connectors

e Message

e Self Message
e Recursion

e (all from Recursion

(c) Sparx Systems 2022

Diagram Types:

b Activity

b 5 BlackDefinition

I &5 InternalBlock
EF Package

I &S] Parametric

> T Requirement

3 October, 2022

b T Sequence

I> [BE] StateMachine

#Z UseCase

MDG Technaology for SysML 1.4/1.5

Page 337 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Toolbox v X
Search L L0 =

SysML Interactions

Ed 1nteraction
? Sequence
£ Fragment

@ Endpoint

@ Diagram Gate

{3 State/Continuation
SysML Interaction Relationships

=¥ Message
& Self-Message
F Recursion

ﬂH Call from Recursion

Elements can be added to the diagram by dragging-and-dropping them from the Browser or from the Toolbox onto the
diagram canvas. The typical process is to reuse existing elements such as Blocks, which have behaviors in the form of

operations that can be selected as the basis for the messages that are exchanged between lifelines. The elements can be
added to the diagram as a link but more typically they are added as a lifeline.

Once a basic diagram has been created, and as knowledge of the domain and the system's interactions are further
revealed, it is possible to add Fragments, Endpoints, Diagram Gates and State/Continuation elements.

(c) Sparx Systems 2022 Page 338 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Message Orchestration with Fragments

Many systems are inherently complex and while simple Sequence diagrams are useful for conveying an overall picture of
a piece of software or an electro-mechanical device they need to be augmented to allow sophisticated models of these
more complex systems to be created. One of the options for modeling complexity in message flows is the Combined
Fragment. These can be used to sequence messages differently, including being able to select particular messages in
certain circumstances or to execute a message a number of times. There is a set of combined fragments that can be used
and their operator determines the type of fragment. Enterprise Architect supports all the operators, allowing engineers to
create diagrams that can adequately describe the complex engineering systems being modeled. Fragments can be added
to a diagram directly from the Interactions toolbox page and can be positioned to overlay the appropriate group of
messages.

Toolbox v Rx

search L L =
SysML Interactions =

Interaction

Sequence

Fragment

Endpoint

Diagram Gate

W o el

State/Continuation

The element placed on the diagram is a generic Fragment and will need to have its operator set. This can be achieved by
selecting a value for the type in the Combined Fragment property sheet.

Properties v 2o
d =

Element Combined Fragment Tags

Type: alt -
Name: opt
break

InteractiofPar
loop

Condition |critical

member [MEd
assert

member strict
non-memi>c 3
ignore

consider

This will change the fragment to the appropriate type and allow, for example with the alf type, to set any number of
alternative conditions that will determine which message will be fired.

(c) Sparx Systems 2022 Page 339 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

(c) Sparx Systems 2022 Page 340 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Visualizing with Simulations

Through the centuries, humans have expanded their knowledge of the world through the study of mathematics and
physics and the application of systems of thought and equations to real world problems. Using this knowledge we have
built motor cars and aircraft, sent humans to the moon, split the atom and solved innumerable other complex problems.
This knowledge, in times of antiquity, was transmitted by word of mouth, clay tablets and papyrus scrolls and later
scribes' laboriously created books. Then, with the advent of the printing press the knowledge was written down in the
form of articles, journals and books and disseminated widely. Four hundred years would pass before the Internet arrived
and much of the existing knowledge would be transferred to online material in the form of documents, pages and sites
dedicated to these disciplines - making it available to a vast number of people in all corners of the globe. Now a new era
has arrived where the knowledge can be used to construct models that allow us to visualize these equations in motion and
in context, with parametrics specific to our domain and the problems we are trying to understand and solve.

(c) Sparx Systems 2022 Page 341 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

SysML Simulation in Modelica and Simulink

Enterprise Architect, as a leading Systems Engineering tool, allows models to be constructed using industry-compliant
modeling techniques and languages for the representation of cyber-mechanical systems. These models act as devices for
communication between collaborating engineers, teams of consultants and others, but can also be used to generate
advanced visualizations using industry-standard modeling languages used by OpenModelica and MATLAB's Simulink.

This example shows the power of Enterprise Architect in leveraging existing open standards to visualize solutions. The
diagram depicts two tanks connected together, and a water source that fills the first tank. Two continuous controllers are
used to regulate the flow of water from the first tank to the second, and the output from the second tank.

Liquid Max Level
Source

i I R N

- Level Sensor | [P Controller | [l |Liquid Flow In | [Jll| Liquid Flow Out

A set of diagrams is created in Enterprise Architect that models the physical aspects of the tanks and the equations
(written in the Modelica/MATLAB language) that characterize the flows between the tanks. Once the simulation has
been configured and the Solve button selected, the output resembles this diagram:

———soure.cOuFow ——binkLooutFow ——tarklh —— bni2h

1

J N

s 100 150 0 20
tme

We will discuss the details of the constraint and parametric modeling in a later section of this topic, and see how the
models that we create are simply Block Definition and parametric diagrams that we learnt about in an earlier section of
the guide. This Parametric diagram shows an example of the modeling for the two-tank problem, using constraint
properties and connectors that bind the parameters into a system of equations. Other diagrams are necessary to produce

(c) Sparx Systems 2022 Page 342 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

the result but this is the main diagram that shows the mass, flows and the sensor determining the level in the tank.

par [block] Tank [Tank] /

gln: LiquidFlow

Iflow : Real

tSensor: ReadSignal

val : Real

qOut: LiquidFlow

Iflow : Real

s ™
waqual»
X el: Mass_Balance Y
{der(h) = (x-y) /a}
equala j 2 o [:
equal» L) cequals
(N h: Real
area: Real
e2: SensorValue
fa=b} equal»
e - [
wequal» _ Y,
e [i wequal»
a
e3:Q_OutFlow
{a=LimitValue{min, max, -b*c)}
[
b max min wequal»
N 1
wequal» wequal» «equal»
flowGain: Real ‘ maxV: Real ‘ minV: Real

tActuator: ActSignal

act : Real

(c) Sparx Systems 2022

Page 343 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

How SysML Simulation Works

Enterprise Architect has been built on open standards and the product teams are ever-aware of the power and efficiency
of utilizing existing solutions and not reinventing the wheel. The tool uses these standards to allow the visualization to
take place:

e Systems Modeling Language (SysML) - managed by the Object Management Group (OMG)
e OpenModelica - managed by the Open Source Modelica Consortium (OSMC)
e Modelica - managed by the Modelica Association

We have spent a deal of time in earlier topics learning about the SysML; in fact we have already learnt most of what we
require to create the Block Definition and Parametric examples for these visualizations. In addition we will learn how to
add some extra information that OpenModelica needs; this will be discussed in the next section.

Modelica is an open and object-oriented language based on equations, allowing the modeling of cyber-mechanical
systems utilizing sub-components. Like its mathematical cousins, Modelica is a cross-domain language that has a wide
variety of applications, including in mechanical, electrical, electronic, hydraulic, thermal, control, electric power and
process-oriented domains, to name the possible sub-components of a Modelica model and the types of system that can be
modeled using the tool.

Enterprise Architect is capable of performing basic simulations for process diagrams and StateMachines, but for
modeling complex cyber-mechanical systems it makes use of the power of OpenModelica, underpinned by the Modelica
language itself to do the heavy lifting. Enterprise Architect allows these cyber-mechanical models to be related to a wide
range of other systems and software engineering artifacts, including missions, stakeholder requirements, StateMachines,
programming code, Decision Tables, architectures, trade off analysis and much more.

Enterprise Architect

OpenModelica
Generated Modelica Model
Files
Parametric Plotter
Model
Modelica Plot

Modelica Plot

\
=
o
Q
m
r
m
>
A

Modelica Language

An overview of how it works can best be provided by way of a simplified example. To create a simple visualization of
Newton's Second Law - 'The rate of change of momentum is proportional to the force acting and takes place in the

(c) Sparx Systems 2022 Page 344 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

direction of that force.' (F = m*a), an engineer using Enterprise Architect will:

1. Create a Block diagram describing the equations using Constraints and Values.

bdd [package] Force=Mass*Acceleration(1) [Force=Mass*Acceleration(1)] /

«block»
FMA_Test

constraints
{f=m*a}

phs variables
f

phs constants

a=9.81
properties
m =10

2. Configure the SysMLSim Configuration Artifact (used to define the information needed by OpenModelica).

Configure SysML Simulation
<<SysMLSimConfiguration=>Force=Mass*Acceleration(1

B-8 » B @&-

Artifact: Force=Mass*Acceleration(l)
Package: Force=Mass*Acceleration(1)
Mame Value
block
FIA_Test SysMLSimModel
Part
a: Real SimConstant
f: Real Sim\Variable
m : Real simConstant
Constraint
f=m*a

O x

Simulation
Model: FMA_Test - Data Set: - Solve
Start: 0 Stop: | 20 Format: pit - Parametric Plot
Dependencies (Jasses to Generate) Properties to Plot
FIVIA_Test v f

3. Run the Simulation by selecting the Solve button on the window.

A chart will be plotted with f=98.1 (which is the product of the Mass (10) and Acceleration (9.81) expressed in the
equation [f=m * a] with the value in place 98.1 = 10 * 9.81). This is a simplistic example aimed at showing the
fundamental ingredients to create the visualization; we will look at more advanced examples in later sections showing
the use of Constraint Properties and User Defined Data Sets.

(c) Sparx Systems 2022

Page 345 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Getting Started with OpenModelica

An easy way to get started with OpenModelica and Enterprise Architect's machinery to produce Parametric simulations
is to view some existing examples. This is a useful learning device for any feature in Enterprise Architect, but is
particularly pertinent when learning the power of OpenModelica as there are a number of new things to learn and this is
best done with some learning aids. We will start by looking at a fully worked exemplar taken from the Example model,
which is distributed with every installation of Enterprise Architect and is available from the Help Item on the Start
ribbon.

The example we will explore is the Pendulum example, but firstly we need to open the example model, which we do by
selecting the ribbon option:

Start > Help > Help > Resources > Open Example Model

The OpenModelica features are conveniently grouped in a single location with other simulation capabilities, and can be
launched using the Modelica/Simulink menu available from the 'System Behavior' panel of the 'Simulate' ribbon. The
OpenModelica facility keeps company with other simulation tools such as Executable StateMachine, Decision Modeling
Notation and BPSim.

Publish Simulate Specialize Construct Execute
5 DNy 4)
Statemachine DM BPSIM Maodelica

- - - - b

Executable States | Decision Analysis = Process Analysis | System Behavior

With the model loaded we can use the OpenModelica features within Enterprise Architect to locate the Pendulum
example in the model. It is common for a model of a complex system to be very large, and there could be any number of
existing simulations set up, so Enterprise Architect provides a mechanism to search for these simulations.

e
¥ B
Modelica Start

-

Simulate
SysMLSim Configuration Manager
Find 5ysMLSim Configuration Artifacts
Workspace b
Apply Perspective
Apply Workspace
Help...

Selecting this option will return a list of SysML simulation configuration artifacts, which are the elements where the
OpenModelica details are specified. From this list we can select the Pendulum example, which will launch a window that
can be used to configure and solve the problem codified in the example. To be able to run the simulation, a version of
OpenModelica must be installed on the machine that is running Enterprise Architect. Details on how to install
OpenModelica are contained in the next section.

(c) Sparx Systems 2022 Page 346 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

« Find in Project

Find in Project X

Simulation & SysMLSim Configuration

Drag a column header here to group by that column.

D Object Type Stereotype

SampleTimesimulation Artifact SysMLSimConfiguration
SquareWaveSimulation Artifact SysMLSimConfiguration
TankPI Artifact SysMLSimConfiguration
Draw A Circle With Parametric Plot Artifact SysMLSimConfiguration
Electrical Circuit Artifact SysMLSimConfiguration
Mass5pringDamperOscillator Artifact SysMLSimConfiguration
Pendulum Artifact SysMLSimConfiguration
WanDerPol Artifact SysMLSimConfiguration

There are two sections to the window:

e The configuration (left hand) panel defines the Value Types, Blocks and Constraint Properties, all of which are
defined in the repository and - as we will see later - can be viewed in the Browser window and diagrams

« <= SysMLSimConfiguration=>Pendulum

% Configure SysML Simulation >

B-H & » B3 %R @
Artifact: Pendulum
Package: Pendulum
Mame Value -
[- WalueType
4 block
4 Pendulum SysMLSimClass

[Part

[+ constraintProperty

[BindingConnector

J MorePrecisePI |Clicl-r. button to configure...

) | 3.1415926

e The simulation (right hand) panel is used to select and specify options that will effect the simulation, such as the

data-set, the wait time and duration of the simulation, output file types and more.

(c) Sparx Systems 2022 Page 347 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Simulation

Meodel: TwoPendulumCompare - Data Set earthvSmoon - Solve
Start: 0 Stop: 20 Format pit - Parametric Plot

Dependencies (Classes to Generate) Properties to Plot

SimpleDer pendulum1.F
Mewton_pendulum_balance_x pendulumT.vx

RightTriangle pendulum?.wy
Newton_pendulum_balance_y ¥| penduluml.x

Pendulum penduluml.y

TwoPendulumCompare pendulum.F

pendulum.vx
pendulum.wy
¥ pendulumi.x

pendulum.y

The information in the window is automatically populated from the model that is visible in the Browser window, and the
location of the elements - including Value Types, Blocks and Constraint Properties - can be found using the 'Find in
Project Browser' option from the context menu. There is also an analogous option to find the selected element in any
diagrams in which it appears.

[+ 3 Electrical Circuit
[+ 7 Mass Spring Damper Oscillator

%E Start Here
4 [Blocks

‘%E pendulum

%E TwoPendulumCompare
[wblocks Pendulum
[+ «blocks TwoPendulumCompare
£ ConstraintBlocks
£ ValueTypes
aSyshMLSimConfiguration= Pendulum

=

Installing OpenModelica

Enterprise Architect utilizes the power of the OpenModelica platform, so when you run a simulation from the Simulation
window it is effectively calling out to OpenModelica (installed on the same machine) to do the heavy lifting and return
the simulation results. This ensures that Enterprise Architect leverages the power of this open tool and all of the brilliant
minds that have contributed to its excellence. There are both Windows and Linux version of OpenModelica and you will
need to install the one appropriate for your environment. The steps are summarized here.

1. Download the OpenModelica software (Windows or Linux).

2. Install the Software.

3. Check the Installation.

4. Configure the Solver by specifying the path in Enterprise Architect.

(c) Sparx Systems 2022 Page 348 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Full details of the installation and configuration can be found in the OpenModelica Integration Help topic.

Simulation with Data Sets

Simulation forms an import aspect of engineering analysis and provides a useful and cost effective way of analyzing a
system's behavior. The system might already have been built or it might be planned for development; either way,
simulation can be used to visualize component or system design considerations, performance optimization, safety
engineering and much more. To provide this capability it is important to have the ability to run a simulation using
different values for variables and constants. For example, in our pendulum example we might want to analyze how the
system would perform on different planets, to examine, say:

e The effect of terrestrial versus lunar (or other planet's) gravitational force
e The effect of different string length

e The effect of different masses

e The effect of different starting point

e Any combination of the above

Enterprise Architect provides a Data Set facility for simulations that can be applied at the Block level. Using the
'Simulation' tab (right hand panel) of the SysMLSim Configuration window we can select predefined data sets.

Simulation
Model: TwoPendulumCompare - Data Set | earthWSmoon - Solve
Iearth"u'Smoon I
start 0 Stop 20 Format pit - M
Dependencies (Classes to Generate) Properties to Plot -
SimpleDer pendulum1.F
Newton_pendulum_balance_x pendulum’.wvx
RightTriangle pendulum.wy
Mewton_pendulum_balance_y *| pendulum?.x
Pendulum penduluml.y
TwoPendulumCompare pendulum.F
pendulum.wx
pendulum2.wy -

Any number of data sets can be defined and can be added to the appropriate Block in the 'Configuration' (left-hand) panel
of the Simulation window. These are available as nodes under each Block and there is an option to view and edit the data
values in a window by using the Browse [...] button on the datasets row.

(c) Sparx Systems 2022 Page 349 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/sysml_sim_install_openmodelica.htm

Guide to MBSE with SysML 3 October, 2022

Mame Value
[+ WalueType
4 block
[» Pendulum SysMLSimClass
4 TwoPendulumCompare SysMLSimMaodel
[Part
4 earthVSmoon Click button to configure... |
nendulumi.g &
4 shortVslong Click button to configure...
penduluma.L 0.8
pendulum2.x.start 0.8

4 constraintBlock

When selected, the Configure Simulation Data window will be opened allowing values to be viewed and edited,
imported or exported. This mechanism means that the simulation machinery can be reused in many different contexts,
and engineering organizations that focus on particular types of problems can create libraries of simulations that could be
reused in a multitude of contexts and types of engineering problem. The window illustrated here shows a data set that
contains values pertaining to the two pendulum problems we have been looking at and we can see as an example the
acceleration due to lunar gravity has been defined as an approximation of 1.6 m/s2 approximately 16.6% of the value on
the surface of the earth. This simulation could be reused with a different data sets applicable to Mars or Jupiter or in a
more terrestrial example with a different mass or length of string.

Attribute Stereotype Type Default Value Walue
A pendulum2 S5imVariable Pendulum
X simVariable Real 0.5
I+ L SimConstant Real 0.5
I m SimConstant Real 1
F SimVariable Real
[PI SimConstant Real 3.1415926
vy SimVariable Real
[y SimVariable Real 1]
[wx SimVariable Real
P SimConstant Real .81 16
[» pendulum1 simVariable Pendulum

(c) Sparx Systems 2022 Page 350 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Creating Models for Simulation

The example that we looked at in the How it Works section of this Guide was deliberately trivial; in this section we will
look at these steps in more detail, including options for configuring the models. Enterprise Architect provides a lot of
flexibility and allows trivial once-off models to be defined, or sophisticated library based multipurpose models to be
created that can be reused across multiple projects and domains using different data sets and contexts. In this topic we
will explore some of these options for configuring the models so that they are fit for purpose and will create the required
engineering outcomes.

Creating a Simulation Model Package

A Model Package can be set up at any location in the Browser window, but typically it is considered best practice to set
up a Simulations Package under each project or initiative. This could then contain sub-Packages for each simulation. It is
anticipated that for a given project there could be a number of different simulations required. It is also likely, as
discussed in the Data-Sets section, that an organization will want to reuse some of the simulations across multiple
projects. These simulations could be set up in the Project Browser and defined at a supra-project level - for example at an
enterprise, organization or engineering department level.. They could then be included in a diagram at the project level,
indicating that they are applicable to a given project or problem context. It is also likely that an engineering team will
want to reuse Value Types and their concomitant Quantity and Unit Libraries between projects, and these, as discussed
in an earlier topic of the guide, are best defined and modeled at a supra-project level.

Enterprise Architect uses the SysML Package Import mechanism to ensure the Value Types defined at the enterprise
level can be included and reused at each Simulation Package level. The structure would typically contain these
Packages:

1. Value Types (specific to this project)
2. Blocks

3. Constraint Properties

Project | Context Diagram Element
4 2 Engineering Analysis
4 Simulations
4 £ Pendulum
[£ Blocks
[3 constraint Blocks
b 1 valueTypes

In the next section we will learn how to create and configure the SysML Simulation Artifact, which is stereotyped as
<<SysMLSimConfiguration>>.

Creating the Simulation Elements

The main effort in preparing a simulation is in the definition of the model elements, using the SySML with the
appropriate level of precision to allow the OpenModelica platform to run the simulation. There are a number of ways that
the models can be defined, and in this Guide we will focus on the most robust and flexible method as this is what will be
used by most practicing engineers and teams.

At this point it is worth looking before the topic of simulation to ensure we understand its relevance and connection to
other parts of the model, and how simulation elements might be connected to other model elements such as
Requirements, Test Cases and more. Typically, simulations are used as a way of investigating some cyber-physical

(c) Sparx Systems 2022 Page 351 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

problem without the need to construct a time-consuming and often expensive physical model. The simulation could be
part of problem analysis, trade off analysis, performance analysis or a number of other investigations. The Blocks that
are defined as part of the simulation could be allocated to behavioral elements and ultimately to Requirements.

The first elements to be created are the Blocks, which are the fundamental structural elements of the solution. We have
learnt how to do this in a previous example; this diagram shows a number of the compartments that have elements,

namely the properties.

bdd [package] Blocks [pendulum] /

wblock»
Pendulurn

F

g=981
L=0.5
m=1
Pl=3.141
X

vy

x=0.5
v=0

properties

ex : SimpleDer
ey : SimpleDer

constraints

e_newton_x : Newton_pendulum_balance_x
e_newton_y : Newton_pendulum_balance_y
eRightTrangle : RightTriangle

In preparation for defining the equations that define the behavior of the pendulum system, we will define the value types
required to ensure the model is precise and check that the simulation parameters are correctly specified. This is done
using a Block Definition diagram (bdd), using the Value Type element available from the Diagram Toolbox.

(c) Sparx Systems 2022

Page 352 of 461

Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

bdd [package] ValueTypes [ValueTypes] /

avalueTypes»
Real

avalueTypes»
Force

unit = newton

avalueTypes
Length

The next step is to define the constraints using ConstraintBlocks. These elements are where we will define the Modelica
equations that will govern the behavior of the system being modeled - in our case, a pendulum. As described earlier in
this Guide, ConstraintBlocks are defined on a Block Definition diagram, and have a series of parameters defined and a
constraint that expresses those parameters in an equation written in Modelica. For example, the equation that constrains
the vertical aspect of the pendulum is written as:

m *der(vy)=-(y/L) *F-m*g

Notice the Modelica keywords such as 'der' signifying a first order derivative. L is the length (parameter) of the
Pendulum, g is the acceleration due to gravity (constant), m is the mass (parameter) of the pendulum, x and y are the

coordinates in two-dimensional space, and F is the force. Notice that Modelica uses:

(c) Sparx Systems 2022

Page 353 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

bdd [package] ConstraintBlocks [ConstraintBlocks] /
sconstraint» sconstraint»
SimpleDer RightTriangle
constraints constraints
{der{a) = b} fa*2+b"2=c"2}
parameters parameters
a a
b b
C
sconstraint» sconstraint»
Newton_pendulum_balance_x Newton_pendulum_balance_y
constraints constraints
{m * der{vx) =-{x/L) * F} {m * derfvy) =-{y/L) * F-m * g}
parameters parameters
F F
L B
Im L
VX m
X vy
¥

The next step is to create the Parametric diagrams that bind the equations together. As discussed earlier in the Guide,
these diagrams are a specialized type of Internal Block diagram and contain instances of ConstraintBlocks called
ConstraintProperties that expose their parameters, which are bound by connectors to parameters on other
ConstraintProperties.

(c) Sparx Systems 2022 Page 354 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

par [block] Pendulum [Pendulum] /

e_newton_x:
Newton_pendulum_balance_x
{m * derfwx) =-(x/L) * F}

ex: SimpleDer

{der(a) - b} sequals

[L

cequal»

ey : SimpleDer
{der(a) = b}
a

e_newton_y:
Newton_pendulum_balance_y
{m " der(vy) =-{y/L} " F-m * g}

[Jm .
L1y L
0.

cequals

Specifying a Configuration Artifact

The SysML Simulation Artifact is the element that binds the model elements to the OpenModelica platform. The model
elements expressed in SysML in the form of Blocks, ConstraintBlocks and their related ConstraintProperties bound

together on Parametric diagrams appear in the Simulation window and can be configured with other settings to drive the
simulation.

The first step in setting up this facility is to create a SysMLSim Configuration element, available from the 'Artifact'
Toolbox page as shown in this screen capture.

(c) Sparx Systems 2022 Page 355 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Toolbox v X
Search L L0 =

Feature Mapping
Executable StateMachine
Business Process Simulation
BPSim Result Chart

BPSim Custom Result Chart
SysMLSim Canfiguration
Image Asset

Reading List

Oy oy 0P [O oo oo oy

Custom Table

Enterprise Architect does most of the heavy lifting with respect to populating the Configure SysML Simulation window.

The engineer simply has to select the Package using the icon on the 'Configuration' panel of the Simulation Artifact
window.
« << SysMLSimConfiguration==Pendulum

Conﬁgure SysML Simulation >
B- A& » B 3 %Rk 5 @
Artifact: Pendulum

Package:

MName Value

Enterprise Architect will display the Package selection window, and once the Package is selected the 'Configuration'
panel will be populated with the Blocks, ConstraintBlocks and Value Types from the model. From this point the values
can be entered for various parameters, or data-sets can be defined. The simulation configuration parameters can be
entered and the simulation is ready to run.

Element Type: <All> -

4 [=]simulations .

£ Blocks
3 constraintBlocks
EI‘JaIueT}rpes

Once the data has been entered for the simulation, including Start and Stop values and Output formats, the Simulation
can be run by selecting the Solve button as shown in this screen illustration.

(c) Sparx Systems 2022 Page 356 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Simulation

Model: |Tqu’endqumCumpare 'l Data Set: | earthVsmoon - Solve

Start: 0 stop: 20 Format pit - [| Parametric Plot

(c) Sparx Systems 2022 Page 357 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Example SysML Model

The System Modeling Language (SysML), as with any language, has to be learned. We are not lucky enough to have
grown up hearing our parents speak the language at home, but a number of readers might already be familiar with the
language for any number of reasons including:

e It has been used by colleagues or partners in projects

e [t has been taught as part of a University course

® You have attended training or read or viewed documentation

® You have taken 6 weeks off work and read the specification from cover to cover

If the last one is true you will probably have a deep knowledge of the language but might be in need of some recreational
leave as it is a fairly dense document and you will have needed to dip your toes into the Unified Modeling Language
specification as well. It is more likely that a larger number of readers will have little or no exposure to the language, and
this first example is intended to give you a quick and high level view of what can be expected when working in
Enterprise Architect to model a Model Based Systems Engineering Project using the SysML. It is based on the example
of a hybrid vehicle that appears in the Sample Problem Annex in the specification

(c) Sparx Systems 2022 Page 358 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Package Overview (Structure of the Sample Model)

The Package diagram demonstrates a way of visualizing the contents of the repository; when the diagram contents are
viewed in Enterprise Architect's Browser window the structure can be navigated. There are also important structural and
namespace relationships that can be seen on Package diagrams and these help to clarify the important high-level
relationships between groups of elements in the repository.

(c) Sparx Systems 2022 Page 359 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Package Diagram - Applying the SysML Profile

As shown in this diagram, the HSUV Model is a Package that represents the user model. The SysML Profile is applied to
this Package in order to include stereotypes from the profile. The HSUVModel might also require model libraries, such
as the SI Units Types model library. The model libraries are imported into the user model as indicated.

wprofile»
SysML

N\
I
I
I
I
I
wapply»
I
I
I
I

«modelLibrary»
51 Definitions

pkg [package] Modeling Domain [Establishing HSUV Modely

HSUV Model

«import»

(c) Sparx Systems 2022

Page 360 of 461

Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Package Diagram - Showing Package Structure of the

Model

This Package diagram shows the structure of the model used to define the HybridSUV system. The diagram provides a
useful way of viewing the high level containers (Packages) used to structure the repository and define the structural,

behavioral and requirements of the HybridSUV system.

HSUV Behavior

Deliver Power Behavior

HSUV Views

pkg [package] HSUV Model [HSUV Model] /

HSUV Structure

HSUV Requirements

HSUV Use Cases

HSUV Interfaces

«block»
Automotive Domain

(e =)

arequirements
Performance

<O

HSUV Viewpoints

HSUV Viewpoint Methods

wyiew»
Operational View

Performance View

wview»

wviewpoint»
Operational Viewpoint

aviewpoint»
Performance Viewpoint

wactivity»
Requirements Query

HSUV Analysis

«modellibrary»
Automotive Value Types

The relationships between the Operational View and the Performance View and the rest of the user model are explicitly
expressed using the «import» relationship. The Packages that appear in the diagram are defined and can also be
visualized in a hierarchical view using the Browser window.

(c) Sparx Systems 2022

Page 361 of 461

Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Project Browser

i

Global Context

+ (=~

[ESysMLAssets
[E Example Model
4 {2 SysML Example Model
4 [ElSysML1.5
5 SysML 1.5
I> [Diagram Checklists
4 [Medeling Domain
B Establishing HSUV Model
£ Values and Units
4 [CIHSUV Model

T N N Y Y Y ™

£ HSUV Model

B HSUV Model Views

£ «ModelLibrary= Automotive Value Types
£ HSUV Analysis

3 HSUV Behavior

£ HSUV MOEs

£ HSUV Requirements

£ HSUV Structure

£ HSUV Use Cases

£ HSUV Viewpoint Methods
£ HSUV Viewpaints

£ HSUV Views

-

While the Browser window provides an important mechanism for navigating through the repository, there is a wide range
of other views including - in this case - a diagram. Enterprise Architect also provides a convenient way of creating
user-defined diagrams that can act as an alternative way of navigating the repository. This mechanism allows Systems
Engineers and others to create any number of Navigation Cells to provide audience-tailored access to the model,
shielding the user from needing to know or understand how to traverse the model.

(c) Sparx Systems 2022

Page 362 of 461

Created with Enterprise Architect

Guide to MBSE with SysML

Requirement @E/
Refinement and
Verification

[~

Hybrid SUV Home

Y N
HSUV Specification @/

Requirement @%}
Derivation

/

| g'_B\
Top Level Use Cases ‘"<

I7—‘tlltl
(1
(%

=)
Operational Use Cases \” 2/

Q

A

| Y
HybridSUV Breakdown 1.0/

=

These are particularly useful when viewing the models through a Web Browser.

(c) Sparx Systems 2022

Page 363 of 461

Created with Enterprise Architect

3 October, 2022

Guide to MBSE with SysML 3 October, 2022

Setting the Context (Boundaries and Use Cases)

The context of a system is critical for all stakeholders to gain an understanding of the system in its environment. The Use
Case diagram is one of the simplest but most descriptive diagrams in the SysML tool kit. Its power lies in the fact that it
relates entities that reside outside the system (Actors) to the benefits they want from the system (Use Cases) without
articulating how the system will deliver the value. The Use Cases can be written at a descriptive level, but if more detail
is required Enterprise Architect's Scenario Builder can be used to specify the steps for each scenario, in a tool that takes
the grind out of documenting Use Cases. Behavior diagrams such as Activity diagrams and Use Case documents can also
be automatically generated from the tool.

(c) Sparx Systems 2022 Page 364 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Operational Domain Model - Setting Context

This Internal Block diagram depicts a user-defined usage of the diagram type, which depicts the system in the context of
its environment. The «system» and «external» stereotypes are user-defined and not specified in SysML, but help the
System Engineer describe the system of interest relative to its environment.

Ibd [block] Automotive Domain [Autamulivenumairy

alightCondition»

x1: x5:

I % S

Driver 5
X2 HSUV: HybridSuv Mechanic

wexternal» wexternal»
drivingConditions: Environment

Passenger
«external» «external»

vehicleCargo:
Baggage

weather: Weather

object:
ExternalObject

«diagramDescription» «external»
version="0.1"
description="Initial concept to identify top level domain entities”
reference="0ps Concept Description”
completeness="partia|. Does not include gas pump and various other
extemal interfaces.” road: Road

Enterprise Architect also allows the conventional symbols of the SysML to be replaced by more appealing and
meaningful images that assist in the acceptance of the diagram by non-technical audiences.

vehicleCargo drivingConditions
wexternal» wexternal »
Baggage Environment
Baggage
weather object | 1..° road | 1.°*
wexternal o wexternals wexternal s
Weather ExternalObject Road

This change of element appearance can be applied at a (default) global level or at a diagram specific level allowing
alternative presentations to be created for different audiences.

(c) Sparx Systems 2022 Page 365 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

x5
Find 4)
/ HSLIV: \\ Maintainer Copy / Paste r
<? Default Appearance... F4 Appearance L4
Select Default Image... Behavior L4
Select Alternate Image... Control+Shift+W a Lock Element.
Select Image Asset as Alternate Image 7-Order »
Hide Name Under Image
A Set Font... LolLe=s
l&l Copy Appearance to Painter b4 Delete 'weather: Weather' Control+D
B B [i Y A —
............ Baggage g{’weatl;elrf:{ %
B BRI oot

(c) Sparx Systems 2022 Page 366 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Use Case Diagram - Top Level Use Cases

The Use Case diagram describes the HybridSUV as a system that is utilized by a number of external roles. The diagram
helps to set the context of all the roles (human and other systems) who interact with or get value from the system. The
Use Case diagram, while appearing simplistic, provides a mechanism to ensure that all potential system interactions are
defined and understood. The system itself is represented in the diagram by a Boundary element, which acts as container
for the Use Cases, with the Actors lying outside the Boundary. In this diagram there are a number of external roles -
other than the Driver - who will interact with the HybridSUV system, including the Registered Owner, Maintainer,
Insurance Company and Department of Motor Vehicles.

uc [package] HSUV Use Cases [Top Level Use Cases] /

HybridsSuv

Operate the vehicle

Driver

Insure the vehicle

Insurance Company

Registered Gwner\

Register the vehicle

Department Of Motor
Vehicles

Maintain the vehicle

Maintainer

The Use Cases appear in the Browser window and can be conveniently grouped into Actors and Use Cases. Any number
of Use Case diagrams can then be defined that allow the Systems Engineer to visualize the Use Cases.

(c) Sparx Systems 2022 Page 367 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

4 [IHSUV Use Cases
22 Operational Use Cases
22 Top Level Use Cases
[+ £ Actors
4 [JUse Cases
[@ Accelerate
@ Brake
@@ Drive the vehicle
@ Idle

@ Insure the vehicle

=

@ Maintain the vehicle
@ Operate the vehicle
[@ Park
@ Register the vehicle
[@ Start the vehicle
[@ Steer
Enterprise Architect also provides a number of helpful and unique tools to assist the Systems Engineer to efficiently

describe the Use Cases and define Scenarios that detail the steps representing the interaction between the Actor and the
System. Once these have been defined the tool can automatically generate behavioral diagrams directly from the model.

Type: Scenario:

Basic Path - | Basic Path -
A | B A &= § rd B X

S5tep Action Uses Results State

% 1 The driver clicks the remote control for
keyless entry.

Eﬁ Z The system validates the signal and unlocks
the car doors.

2 3 The driver opens the driver's door and sits in
the driving seat.

¥ 4

Once the steps have been generated as model elements then the traceability can be added:

e Actor steps can be traced to Human Machine Interface Models

e System steps can be traced to Component Models.

(c) Sparx Systems 2022 Page 368 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Use Case Diagram - Operational Use Cases

Goal-level Use Cases associated with 'Operate the Vehicle' are depicted in the next diagram. These Use Cases help flesh
out the specific kinds of goals associated with driving and parking the vehicle. The diagram focuses on the Driver of the
vehicle as the central Actor. Higher level Use Cases such as maintenance, registration, and insurance of the vehicle are
defined under a separate set of context Use Cases.

uc[package] HSUV Use Cases [Operational Use Cases] /

Hybrid SUV

Start the vehicle

Drive the vehicle

-
-
-
-
P
,,,,,,,,,,,,,,, Accelerate
- «include»
.
~
-~
~

-

Driver

S~ «include»
~ - . ~ -
-
~ ~
N
~ RN
~
~
~
winclude»
~
~
~
~
Y
~
~
~
~
~
=\
_____________ Brake
«include»

In addition to the extensive features described in the previous section for articulating the scenarios and their detailed
steps, there are a number of other features provide by the tool that assist the System Engineer while working with Use
Cases. One of the most useful of these features is the Traceability window, which provides a compelling visualization of
what a given Use Case is connected to and in turn what the connected element is related to. As different Use Cases (or
any other elements) are selected in the Browser window or a diagram, the window refreshes to show the selected
element's connections.

(c) Sparx Systems 2022 Page 369 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Traceability
g B i -
4 @ Accelerate
4 = owns
[- Bl Accelerate/Cruise
4 = UseCase from
[@ Drive the vehicle
4 —¥depends on
4 [Acceleration
4 =% owned by
4 41 Perfarmance
4 = owns
[Decomposition of Performance Requirement
b [Acceleration
> Il OffRoadCapability
I> = FuelEconomy
[» Il Braking
[—* owned by
[+ #=realized by
[- --* needed by
[: -t needed by

Traceability | Model Views Element Notes

(c) Sparx Systems 2022 Page 370 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Elaborating Behavior (Sequence and StateMachine
Diagrams)

These topics and sections show how behavior can be represented and elaborated using Sequence and StateMachine
diagrams.

ecu: PowerControlUnit epc: ElectricalPowerController

D 1.0 StartVehicle()

1.1 Enable()

1.2 Ready()

(c) Sparx Systems 2022 Page 371 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Sequence Diagram - Drive Black Box

The Sequence diagram is a type of Interaction diagram and describes the way the Driver interacts with the vehicle in a
particular context. The elements that participate are, by convention, listed from left to right on the horizontal access of
the diagram, and time proceeds vertically in the diagram. The dotted lines that emanate from the objects are called
lifelines and represent the time the elements are in existence.

(c) Sparx Systems 2022 Page 372 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

sd [interaction] Drive Black Box [Drive Black Box]/

% vehiclelnContext: HybridSUV

driver: Driver

ref
Start Vehicle Black Box

par)
T
alt controlSpeed)

[self.collnSt}ate{idle}]
|
ref ‘

Idle

[self.colinState(braking)]

ref ‘

Accelerate/Cruise

'
1
1
1
1
1
1
Il
-——-
'
1
1
1
1
Il
1
1
1
1
1
1
Il
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
TR Rp——

[self.collnStFte{braking}]
|

ref
Brake
I I
I I
| |
| |
| |
I I
_____________ I
| |
I I
| |
ref
Steer
T T
I I
I I
| |
| |
I I
| |

ref
Park/Shutdown Vehicle

This diagram uses a type of element called a Reference, which acts as a place holder for another Sequence Diagram.
Enterprise Architect conveniently allows these diagrams to be opened by double-clicking on the 'ref' element in the
diagram.

(c) Sparx Systems 2022 Page 373 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

vehiclelnContext:
HybridSUV

driver: Driver

|

I

I

I

|

I

| 1.0

I startvehicle() | "ef))

CI:] Start Vehicle White Box

The diagram utilizes a Parallel (par) Combined Fragment to specify that the Control Speed and Steering interactions
occur at the same time (in parallel). The diagram also uses a Combined Fragment with a designation of Alternative (alt)
which specifies a number of (alternative) ways that the driver can control the speed.

alt controlspeed P

[self.collnSﬂIEItelfidIe:I]
|

ref
Idle

ref
Accelerate/Cruise

[self.mllnSflate[bra king)]
1

ref
Brake

v

Enterprise Architect allows the Sequence Diagram to be defined as a child of the 'Drive the Vehicle' Use Case making it
easy for a modeler to access the diagram and view it in the context of the goal the Driver is wanting to achieve with
respect to the vehicle.

(c) Sparx Systems 2022 Page 374 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

4 [Use Cases

[@ Accelerate

[@ Brake

4 @ Drive the vehicle

| Drive Black Box
T Drive Black Box
=
El Accelerate/Cruise: Accelerate/Cruise
] Brake: Brake
EH controlSpeed
E' driver: Driver
El Idle: Idle
[l Park/Shutdown Vehicle: Park/Shutdown Vehicle
E Start Vehicle Black Box: Start Vehicle Black Box
[Steer: Steer
4 [vehiclelnContext: HybridSUV
= fecu: PowerControlUnit

(=] /epc: ElectricalPowerController

(c) Sparx Systems 2022 Page 375 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

StateMachine Diagram - HSUV Operational States

This StateMachine diagram is used to describe the discrete states that the Hybrid SUV exhibits during a specified part of
its lifetime. A system or part of a system can have a wide range of states depending on the observer's perspective, so a
modeler must always specify the perspective or view that is being used for the diagram. The diagram then articulates the
important and relevant conditions within the specified lifetime of the entity.

stm HSUVOperationaIStates/ ’

Refines
<<Requirement=>
keyOff o Power Source M anagement
A shutoff AN
MNomina | states only

/ Operate \ i
1

accelerate stopped

releaseBrake

=

Braking

Accelerating/Cruising

engageBrake

- %

The message in the Sequence diagram Start Vehicle is the trigger that will cause the vehicle to transition from the Off
state to the Operate (on) state. Enterprise Architect allows these transitions to be defined in detail.

(c) Sparx Systems 2022 Page 376 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Connector Properties O x
H=-

Connector Constraints

Guard: required battery current
Effect:
[| Effectisa Behavior |:|
Triggers
Mame: start IZI
Type: Signal =

Specification:

New Save Delete

The States appear in the Browser window and are conveniently grouped together under the StateMachine node.

P H5UVOperationalStates

@HSUVDperatiDnalStates
i

@

raccelerate
[—rengageBrake
[keyOff

O Off

O Operate

[releaseBrake
= shutOff

> start

[stopped

(c) Sparx Systems 2022

Page 377 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Sequence Diagram - Start Vehicle Black Box and White Box

This Sequence diagram describes the interaction of the Driver starting the vehicle. It makes use of the Interaction Use
element indicated by the (ref) to make reference to another Sequence diagram. The diagram is intrinsically simple but
these diagram can be augmented with a number of other elements and connectors which elaborate the details of other
more complex interactions.

vehiclelnContext:
HybridSUV

driver: Driver

I

I

I

I

I

I

i 1.0

I startvehicle() | "ef])

[’!:] Start Vehicle White Box

Enterprise Architect provides a convenient mechanism allowing the modeler to click-through to the referenced diagram
in this case the Start Vehicle White Box diagram.

(c) Sparx Systems 2022 Page 378 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

ecu: PowerControlUnit epc: ElectricalPowerController

D 1.0 StartVehicle()

1.1Enable()

1.2 Ready()

Elements in Enterprise Architect can appear in multiple diagrams allowing for expressive narratives to be built up in a
model and providing a mechanism for modelers to create multiple views of the same element. The elements on a diagram
can be located in the Browser window showing their structural relationship to other parts of the model. In this case both
the Black and White Box views of the Start Vehicle interaction are located as children of the Start Vehicle Use Case
making it easy to relate them to each other.

4 @ Start the vehicle

4 [l Start Vehicle Black Box
"B Start Vehicle Black Box
&= driver: Driver
Bl Start Vehicle White Box: Start Vehicle White Box

b [vehiclelnContext: HybridSUV

A [Start Wehicle White Box
"B Start Vehicle White Box
@

(c) Sparx Systems 2022 Page 379 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Establishing Requirements (Requirements Diagrams and
Tables)

The purpose of this part of the model is to demonstrate the visual modeling of requirements. The vehicle system
specification contains many text based requirements which have been recreated in Enterprise Architect. There are a range
of requirements that have been modeled including the requirement for the vehicle to pass emissions standards, which is
expanded for illustration purposes.

Enterprise Architect provides a wide range of tools for creating, developing, analyzing, managing and testing
requirements. It also has integrations to the DOORS requirements management tool.

(c) Sparx Systems 2022 Page 380 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Requirement Diagram - HSUV Requirement Hierarchy

This diagram demonstrates the visualization of requirements in a hierarchy using the containment (cross-hatch)
connector to show the parent child relationship. The higher level requirements act as a type of grouping or containment
system and cover a range of high level concerns which are broken down into lower level and presumably measurable

statements.

req [package] HSUV Requirements [HSUV Specification] / N

HSUV Specification

«requirements «requirements «requirement» «requirements «requirements
Eco-Friendliness Performance Ergonomics Qualification Capadity
«requirement» «requirement» «requirement» «requirement»
Braking OffRoadCapability SafetyTest CargoCapacity

«requirement»
PassengerCapacity

arequirement»
FuelEconomy

«requirement»
Acceleration

crequirement»
Emissions

id="RL2.1"
text="The vehicle shall meet Ultra-Low
Emissions Vehicle standards.”

«requirements»
FuelCapacity

(c) Sparx Systems 2022

Page 381 of 461

Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Requirement Diagram - Derived Requirements

This requirements diagrams shows that a number of requirements have been derived from other requirements. This
relationship implies that some analysis has been conducted and the derived requirement represent a need that can meet
the intention of the original requirement. For example Regenerative breaking wasn't a requirement but it has been
derived from the need to have both Braking and Fuel Economy as expressed in the requirements at the arrow end of the

relationship.

req [package] HSUV Requirements [Requirement Derivatinnl/

‘ «requirements

«requirement» ‘

‘ «requirement» «requirement»

«requirement»

«requirement» ‘

Braking FuelEconomy FuelCapacity OffRoadCapability Acceleration CargoCapacity
A A AR A w I 7
1 ’ [A | N 1 s
|) i N i A 1 .t
| I I N 1 4
1 " | Y I N | S
! / ! \ «deriveReqty «deriveReqty «deriveRegt» «deriveReqt» «deriveRegty
. ' \ v . N ! B

«deriveReqt» «deriveReqt» : ‘\ : A : e
|) i \ I AN 1 J/
| \ | \ | ,
|
i
|
|
i
I
]
«deriveReqgt»

«problem»
Power needed for acceleration, off-
road performance and cargo capacity
conflicts with fuel economy

«requirement»
PowerSourceManagement

«rationale»
Power delivery shall happen by
coordinated control of gas and electric
motors. See "Hybrid Design
Guidance"

=~ | refinedBy
HSUVOperationalStates

(c) Sparx Systems 2022

Page 382 of 461

Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Requirement Diagram - Acceleration Requirement

Relationships

This diagram demonstrates a number of requirement relationships which would typically appear on a requirements
diagram after some analysis and modeling had been done. The focal element is the Acceleration requirement and the
diagram shows how a number of other elements are related to this requirement. The refine relationship is introduced as a
way of relating a similarly named Use Case to the Acceleration requirement. We have another derived requirement
which is subsequently satisfied by a Block. A 'Max Acceleration' Test Case is also shown on the diagram and related to
the central requirement by a Verifies relationship. The diagram also demonstrates that elements other than requirements

can be added and help to make the diagram more expressive.

wrefines
o

-
-
-

Accelerate

«requirements»
Acceleration

)

wderiveReqt»

req [package] HSUV Requirements [Acceleration Reguirement Refinement and Veriﬁcatioy

-
E
-
-
~

«reguirement»
Power

«testCases
Max Acceleration

N

wsatisfy»
|

«block»
PowerSubsystem

(c) Sparx Systems 2022

Page 383 of 461

Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Table - Requirements Table

These examples demonstrate the way that Requirements can be displayed in a tabular form as an alternative to the
graphical representation in diagrams. This is a welcomed presentation style for a range of stakeholders who are more
accustomed to working with spreadsheets. The first table lists the requirements with their IDs and textual statements.
The second table lists the source and target requirements that participate in the derive relationship.

Enterprise Architect also provides a range of tools and ways of visualizing requirements (and other elements) including
List Views, Kanban Boards, Specification Views, Gantt Charts, Graphs and more.

req [requi Performance

ion of Performance Requirsmeny

Decomposition of Performan
ID | NAME

2 Performance

2.1 Braking

2.2 FuelEconomy

2.3 OffRoadCapability

2.4 Acceleration

ce Requirement

TEXT

The Hybrid SUV shall have the braking, acceleration, and off-road capability of a typical SUV, but have dramatically better fuel economy.

The Hybrid SUV shall have the braking capability of a typical SUV.

The Hybrid SUV shall have dramatically better fuel economy than a typical SUV.

The Hybrid SUV shall have the off-road capability of a typical SUV.

The Hybrid SUV shall have the acceleration of a typical SUV.

Showing 1 -7 of 23 items

I Thn Huheid €UV chall hoven thn b e Lo M A e ATV L et At BTl e ead Frrf e
Showing 1 -5 of 10 items
renfraauiramant] Darfarmansa [Tron af Darfarmanea Raauiramantsl_J
\— Tree of Performance Requirements
DERIVED_ID DERIVED_NAME RELATION ID NAME
2.2 FuelEconomy deriveReqt d.3 Range
2.2 FuelEconomy deriveReqt d.2 PowerSourceManagement
2.2 FuelEconomy deriveReqt dl RegenerativeBraking
21 Braking deriveReqt d.1 RegenerativeBraking
4.2 FuelCapacity deriveReqt d.3 Range
4.1 CargoCapacity deriveReqt dd Power
d4a Power deriveReqt d.2 PowerSourceManagement

(c) Sparx Systems 2022

Page 384 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Breaking Down the Pieces (Block Definition Diagrams,
Internal Block Diagrams)

Blocks are the fundamental units of structure and can be used on both Block Definition and Internal Block Diagrams to
describe structural aspects of a system. The Block definition diagram is often a starting point for many engineers wanting
to gain knowledge of a system and see how it is structured. The Block itself is made up of structure and this is
represented by Features, this includes Parts which are themselves typed by other blocks for example a wheel assembly
could have a disc caliper Part. There are also Value properties, that are items that have quantity and these represent
physical and other measurable dimensions for example a car could have weight and color and have a 0-100 km
acceleration time of 5 seconds. There are also interaction points that show the points that a block can interact with its
environment.

(c) Sparx Systems 2022 Page 385 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Block Definition Diagram - Automotive Domain

This diagram shows the use of a Block Definition diagram to describe the parts that make up the Automotive domain.
The domain includes people who while performing a role will interact with the system including a Driver, Passenger and
Mechanic, so there could be a number of specific people performing the role of Driver and the Mechanic when
performing a test after repairing the braking subsystem would also shift their role from Mechanic to Driver.

bdd[package] HSUV Structure [Automotive Domain Breakdown]/

«block»
Automotive Domain

parts
: Driver
: Mechanic
: Passenger
drivingConditions : Environment
HSUV : Hybridsuv
vehicleCargo : Baggage

owned behaviors

wexternal» wexternal»
«interaction» StartVehicleBlackBox Baggage Environment
«interaction» DriveBlackBox
oo
«extefnal» ’
drivingConditions
Baggage vehicleCargo

HSUV

«LightCondition»

Hybridsuv B
weather object | 1.* road | 1.*
properties
b : BodySubsystem «external» «external» wexternal»
bk : BrakeSubsystem Weather ExternalObject Road

Driver Mechanic passenger ¢ : ChassisSubsystem
i:InteriorSubsystem

I : LightingSubsystem
p: PowerSubsystem
Propertyl

O

(c) Sparx Systems 2022 Page 386 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Block Definition Diagram - Hybrid SUV

All systems that require engineering analysis and design will be of a level of complexity that will require that the system
be broken down into a number of parts to help reduce the complexity and facilitate the project management. The first
level of breakdown is most typically called a subsystem and in the case of the Hybrid SUV or for that matter any other
automobile the sub-systems would include blocks such as Power, Brake, Lighting and Chassis.

These sub-systems would themselves in turn be broken down into a number of constituent parts for example the Braking
Subsystem could be broken down into disc assemblies and hydraulic parts.

bdd [block] Automotive Domain [HybridSUV Breakdowny

«LightCondition»
Hybridsuv

properties
b : BodySubsystem
bk : BrakeSubsystem
¢: ChassisSubsystem
i:InteriorSubsystem
I : LightingSubsystem
p: PowerSubsystem

«block» «block»
PowerSubsystem BrakeSubsystem
oo

Propertyl oo
P bk b i 1 c

«block»

Ligh

«block» «block»
y a

!

«block»
ChassisSubsystem

bkp

«block»
BrakePedal

«rationale»
2 wheel drive is the only way to get acceptable
fuel ecanomy, even though it limits off-road
capability

«block»
WheelHubAssembly

(c) Sparx Systems 2022

Page 387 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Internal Block Diagram - Hybrid SUV

The Internal Block diagram provides a mechanism to describe how the parts are related or connected to each other in the
context of the whole or owning block. In our example of the Hybrid SUV we can see a connection between the Power
sub-system and the Braking subsystem presumably to model power assisted breaking. So, while the Block Definition
diagram show the structure in terms of composition, the Internal Block is able to look inside the block and see how it is
'wired' together.

ibd[LightCondition] HybridSUV [HybridSUV]/

b: BodySubsystem iz InteriorSubsystem

b-i:

c: ChassisSubsystem bk: BrakeSubsystem I: LightingSubsystem

p-c:

p: PowerSubsystem ‘

We will see in a later section how a specialized form of the Internal Block diagram, namely the Parametric diagram is
used to model systems of mathematical equations.

(c) Sparx Systems 2022 Page 388 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Block Definition Diagram - Power Subsystem

In the previous two sections we have seen how a system can be broken down into a number of sub-systems and that this

breakdown can be represented on a Block Definition diagram. We also saw how the subsystems can be related to each in
the context of the overall system and how these could be represented on an Internal Block diagram. We will now look at
how one of these sub-systems (the Power Subsystem) can be broken down into a number of constituent parts again using

the Block definition diagram.

bdd [package] HSUV Structure [Power Subsystem Breakdown] /

«block»
PowerSubsystem

«block»
‘WheelHubAssembly

bp

«block»
bkp BatteryPack

«block»
BrakePedal

[

ecu

«block»
PowerControlUnit

«block»
FuelTankAssembly

«block»
Accelerator

Dg

«block»
FuelPump
«block»
Fuel

ice

«block»
InternalCombustionEngine

«block»
Fuellnjector

«block»
ElectricMotorGenerator

epc
«block»
ElectricalPowerController
emg

oy lrq rfwy/1

«block»
FrontWheel

L

dif

«block»
Differential

[

trsm

«blocks
Transmission

[

(c) Sparx Systems 2022

Page 389 of 461

Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Internal Block Diagram for the Power Subsystem

In an analogous way to how we showed the connections between subsystems, using an Internal Block diagram, we can
do the same thing to represent the way that the parts of a subsystem are connected together. So we see again how the two
diagram types, Block Definition diagram and an Internal Block diagram, can be used in tandem to describe the structure
of a system and how we can move down a part hierarchy to a point where the complexity is understood and does not

require further modeling.

ibd[block] PowerSubsystem [Alternative 1 - Combined Motor GE“E[EtD[]/

bp: BatteryPack

: flow ports
inout fp : FS_EPC

epc: ElectricalPowerControlle

i2: ElectricCurrent

I_TRSMData

1_TRSMCmd

i1: ElectricCurrent

c2:

emg: ElectricMotorGenerator

t: Transmission

1
|
t2: Torque 1
|
1

SN =5n89012

: flow ports
inout fp : FS_TRSM

acl: Accelerator I
3 ctrl
I_IEPCCmd
acl-ecu: I_IEPCCmd I_IEPCData |_IEPCData
Uni I_TRSMCmd
|_TRSMData

ft: FuelTankAssembly

|_ICEData

1_IcECmd

torqueln
£1: Torgque

torqueQut

LT
ice: InternalCombustionEngine

:flow ports
inout fp : FS_ICE

:| fi: Fuelinjector[4]

faist: 5540 iceruelFitting

fuelDelivery

fuelSupply: Fuel

<
fp: FuelPump Port:

“FuelTankFitting

A

fuelReturn:
Fuel

spline

tL: Torgue

rightHalfshaft

(c) Sparx Systems 2022

Page 390 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

bdd [block] PowerSubsystem [ICE Port Type Definitionsy

whlock»
ICE

setMixture(mixture: Real): void
setThrottle(throttlePosition: Real): void

values
isknocking : Boolean
rpm: Integer
Temperature : Real
wdirectedFeature» reqd isControlOn : Boolean

(c) Sparx Systems 2022 Page 391 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Defining Ports and Flows

The diagrams in the topics of this section show how items that flow can be modeled, using Ports, Flows and Flow
Specification on Block Definition, Internal Block and Parametric diagrams. Most physical systems will have items that
flow, which can be an important part of how the system works. We could consider a number of examples, including:

e A desalination plant - where both salt and fresh water and power flow through the system

e A production line where assemblies, parts, power and robot control instructions flow through the system

e An urban transport system where trains, trams, buses, ferries and passengers flow through the system

e An aircraft where fuel, air, control signals, hydraulic fluid, passenger, flight attendants flow through the system

The diagrams start by defining a Controller Area Network (CAN) bus architecture and show how a number of flow
specifications can be used to define the way that items flow between parts of the Power Subsystem. The flow of fuel is
modeled using a Block Definition diagram that exhibits Flow Ports (deprecated in SysML version 1.5) that show the
logical 'conduit’ allowing fuel to flow from the Fuel Assembly and the Internal Combustion Engine. Internal Block
diagrams take this further, and finally a Parametric diagram is used to show how a mathematical equation for fuel flow
rate, defined in a Constraint, can be used to model the equation. Simulated plots are then visualized using Enterprise
Architect's simulation capabilities.

(c) Sparx Systems 2022 Page 392 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Block Definition Diagram - ICE Flow Properties

This diagram shows the first (unfinished) steps in the definition and refinement of a bus architecture. The modeler has
used flow specifications to model the way that items will flow though the vehicle; for example, a flow specification has

been defined for:

e The Internal Combustion Engine FS_ICE

e The Transmission System

o The Electronic Power Controller

bdd [package] HSUV Structure [CAN Bus Flow Properties]/

«flowSpecification»
FS_ICE
{abstract}

wsignal»
ICEData

flow properties
in throttlePosition : Real
in mixture : Real
out engineData : ICEData

«flowSpecification»
FS_TRSM
{abstract}

rpm: Integer
temperature: Real
isknocking: Boolean

To be specified - What is being
exchanged over the bus
to/from the transmission.

«flowSpecification»
FS_EPC
{abstract}

To be specified - What is being
exchanged over the bus
to/from the electronic power
controller.

The diagram will be refined in subsequent iterations of the process, and Ports and Flows will be used to model the items
that flow through and between the various subsystems.

(c) Sparx Systems 2022

Page 393 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Internal Block Diagram - CAN Bus

This diagram continues the refinement of the bus architecture, using an Internal Block diagram to show how the various
systems are integrated into the Controller Area Network (CAN) Bus. This CAN bus architecture is a central device for
controlling and integrating various parts of the Hybrid SUV sub-systems.

ibd[block] PowerSubsystem [CAN Bus Descriptiony

‘ epc: ElectricalPowerController ‘ t: Transmission ‘ ice: InternalCombustionEngine ‘
: flow ports SN =sn89012 : flow ports
inout fp : FS_EPC inout fp : FS_ICE
,?‘ : flow ports @
inout fp : FS_TRSM
fip: FS_EPC ,? fp: FS_ICE
fp: FS_TRSM
‘ :CAN_Bus ‘
eepc: “IFS_EPC etrsm: “IFS_TRSM eice: "IFS_ICE
T [z} 7]

pecu: PowerControlUnit

(c) Sparx Systems 2022 Page 394 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Block Definition Diagram - Fuel Flow Properties

This Block Definition diagram continues modeling how the fuel flows from the Fuel Tank Assembly to the Internal
Combustion Engine, elaborating the definition of Fuel Flow. Fuel itself is modeled as a Block and has two value
properties that define the important physical characteristics, namely:

e Fuel Temperature
e Fuel Pressure

The Power Subsystem Block is broken down into two of its important parts, namely the Fuel Tank Assembly and the
Internal Combustion Engine. The two parts have Flow Ports defined and a connector has been drawn between the two
Ports indicating that the item 'Fuel' can flow from the Fuel Tank to the Engine.

bdd [block] HSUV [PowerSubsystem Fuel Flow Deﬁnitiory

wblock» «block»
PowerSubsystem Fuel
values

FuelDemand : Real temperature: Temp

pressure: Press ‘

FuelFlowRate : Real
FuelPressure : Real

properties
ft: FuelTankAssembly
ice : InternalCombustionEngine

constraints

: FuelFlow
ft ice
ablock» wblock»
FuelTankAssembly pr. «flowPort» ICEFuelFitting: FuelFlow — InternalCombustionEngine
</
. [AES .
flow properties «flowPort» FuelTankFitting: “FuelFlow flow properties

in fuelSupply : Fuel in fuelReturn : Fuel
out fuelReturn : Fuel out fuelSupply : Fuel

«flowSpecification»
FuelFlow
{abstract}

flow properties
out fuelSupply : Fuel
in fuelReturn : Fuel

(c) Sparx Systems 2022 Page 395 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Parametric Diagram - Fuel Flow

This Parametric diagram demonstrates how mathematical equations can be modeled using ConstraintProperties and
parameters that are bound to the perimeter of the ConstraintProperty. In this diagram we see that the flow rate is related
to both the Fuel Demand and the Fuel Pressure, using the equation:

{flowrate=press/(4*injectorDemand)}

The constraint is modeled in the Constraint Block and can be used in a number of different contexts, using
ConstraintProperties on Parametric diagrams. Enterprise Architect has an advanced simulation facility that uses either
OpenModelica or Simulink to create plots of modeled equations.

par [block] PowerSubsystem [PowerSubsystemV

‘ FuelDemand: Real

injectorDemand: : Real

FuelFlowRate: Real

flowrate : Real

[]

: FuelFlow

{flowrate=press/{4*injectorDemand)}

FuelPressure: Real

press : Real

(c) Sparx Systems 2022

Page 396 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Analyze Performance (Constraint Diagrams, Timing
Diagrams, Views)

The diagrams in this section of the example are largely Package diagrams that describe Viewpoints and Views used to
address stakeholder concerns. The topics also introduce Measures of Effectiveness (MOEs) that can be used in trade
studies to evaluate candidate solutions and architectures. The concepts of Viewpoint and View are articulated in
1SO-42010 (formerly IEEE-1471) and the SysML Viewpoint and View constructs are consistent with this standard.
Typical examples of Views include operational, manufacturing, or security, and these are then related to model elements.

The Viewpoint and View model are best thought of as a narrative or description model, which helps clarify and explain a
system model. A Viewpoint and View model exposes elements of one or more system models. More specifically, a
Viewpoint is a particular frame from which to view the system models and is a specification of rules for constructing a
View to address a set of concerns that are of significance to stakeholders. For example a performance architect will have
different concerns to a safety architect. The View is intended to visualize the system from the specified Viewpoint. This
provides a mechanism for stakeholders to specify aspects of the system model that are important to them from their
Viewpoint, and then represent those aspects of the system in a specific View.

The Viewpoint describes the point of view or lens through which a group of stakeholders look at a system model and, by
framing the concerns of the stakeholders along with the method for producing a View, their concerns can be addressed.
The method describes:

e The expectation of what stakeholder(s) want to see exposed from the model
e How the stakeholder wants the information to be structured and presented
e In what kind of artifact the stakeholder wants to consume the information.

In other words, the process is the set of rules that describe how the View should express the information from the model
to address the stakeholder concerns. When the Views and Viewpoints are modeled in Enterprise Architect the
relationship to modeling elements can be defined.

4 £ Hsuv MOEs

A «plock» MeasuresOfEffectiveness
H5UV MOEs
wconstraintPropertys :CapacityEquation
aconstraintProperty= :EconomyEquation
aConstraintProperty» :MaxAccelerationAnalysis

BEIEGREGEEGRE G M@

wconstraintProperty» (UnitCostEquation
amoer CargoCapacity

a«moer» CostEffectiveness

«maoe» FuelEconomy

«moex QuarterMileTime

amoer UnitCost

amoer Zerof0Time

(c) Sparx Systems 2022 Page 397 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Block Definition Diagram - Analysis Context

One of the key reasons for modeling a system is to be able to perform analysis on the models, which provides a cost
effective way to gain insights into how the built system will perform in situ. Performing analysis on a model is cheaper
and more convenient than building prototypes. This Block Definition diagram defines the various model elements that
will be used to conduct the analysis in this example. It depicts each of the ConstraintBlocks and related equations that
will be used for the analysis, and the key relationships between them. There are two types of element present on the
diagram - Blocks and Constraints. The diagram also shows the Verify relationship between a Requirement and a Test
Case.

bdd [package] HSUV Analysis [Analysis Context] /

«block» . «block» «block» o1 delta-t u:lur‘;s:r?im»
CapacityContext UnitCostContext EconomyContext GlobalTime
OO ex 1
constraints
cap : CapacityEquation A t 1
0.1
0.1 0.1
«testCase»
. © rdrag ‘e Max Acceleration
dyn

«block» «constraint» «constraint»

1
«constraint» H

Automotive Domain RollingFriction Equation FuelEfficency Equation i averify
) ']
VehicleDynamics
oo y
«requirements
Acceleration
«constraint»
CapacityEquation ol w adrag I
G «constraints «constraint» «constraint» «constraint»
{pcap = sum{Vi)} payloadEquation TotalWeight i

EfficiencyEquation

(c) Sparx Systems 2022 Page 398 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Package Diagram - Performance View Definition

The SysML allows a team to define their own viewpoints; in this example we see a user-defined Performance Viewpoint,
and the elements that populate the HSUV-specific Performance View. The Performance View itself might contain a
number of diagrams depicting the elements it contains. We can see in the diagram that a number of views have been
defined including the Hybrid SUV Performance view and SUV Functional View. Each view has a Stakeholder defined
and a View Point. The expose relationship has been used to relate the Performance View to the SUV model and the
conform relationship shows that the Performance View is conformant with the Performance Viewpoint.

pkg [package] HSUV Views [Performance View] /

HSUV Model
Drive the vehicle
Driver
«stakeholders T
Customer SUV Functional View
arequirement»
concern = "What are the system p— o S—
requirements?; WAl the system pasfom stakeholder ="Customer”
adequately?” viewpoint = "Functional Viewpoint" id="2"
text = "The Hybrid SUV shall have the
braking, acceleration, and off-road
) capability of a typical SUV, but have
«viewpoint» avalueTypen dramatically better fuel economy."
performance Viewpoint FuelEconomy o0
wiewn
«viewpoint» Hybrid SUV Performance ‘

concern ="Will the system perform
adequately?” cconformn aiews [~====-2 avalueTypen aconstraint»
language = "SysML" stakeholder = "Customer” “expose» QuarterMileTime UnitCostEquation
method = "PerformanceQuery” viewpoint = "Performance Viewpoint"
presentation = "BDD High-lelvel
stylesheet in slide format"
purpose =".." avalueTypen «constraints
stakeholder = "Customer" Zero60Time CapacityEquatisa-O

«valueTypes «constraints

CargoCapacity EconomyEquation

wvalueType» wtestCasen

CostEffectiveness EPAFuel EconomyTest

(c) Sparx Systems 2022 Page 399 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Package Diagram - Viewpoint Definition

This Package diagram shows the Requirements and Verification and Validation (VnV) viewpoint definitions with
relationships to stakeholders, concerns and views. The stakeholder and viewpoint share the same concern via comments
that are shown textually as values of the concern property. The comments could be shown graphically with annotation
relationships to stakeholders and viewpoints, if needed. Note that the value of the stakeholder property is an instance of
the stereotype not the class to which the stercotype is applied.

pkg [package] HSUV Views [Viewpoints]/

«stakeholder»
Customer

aviewpoint»
Requirements

concern = "What are the system
requirements?; Will the system
perform adequately?"

“«Ccreate»
Vview()

«conform»

aviewpoint»
concern ="What are the system
requirements?"
language ="SysML"
method ="Requirements Query"
presentation = "Requirements table eport
style-sheet in slide format"
purpose ="What are the system
reguirements"”
stakeholder = "Customer"

wwiewpoint»
VnV

«Create»
View()

<

“viewn
Hybrid SUV Requirements

wuiewn
stakeholder = "Customer"
viewpoint = "Requirements

wview»
Hybrid SUV Verification and
Validation Plan

<

«conform:»

«viewpoint»
concern = "Will the system perform
adequately?"
language ="SysmML"
method ="VnVQuery"
presentation = "nV report styleshestinslide
format"
purpose ="Describe the vnVv"
stakeholder = "Customer"

wview»
stakeholder = "Customer"
viewpoint = "Vnv"

(c) Sparx Systems 2022

Page 400 of 461

Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Package Diagram - View Definition

This diagram shows the use of the Expose relationship, which is a graphical device to indicate the elements (including
Packages) that are part of the view. The Requirements and the Verification and Validation Views have outgoing Expose
relationships that target a number of elements in the model. This provides a useful way of indicating the elements
involved in the view; for example, it can be seen from the diagram that the Hybrid SUV Requirements view exposes the
Drive Vehicle Use Case, a Performance Requirement and a Package containing a group of SUV constraints.

Using some of the feature rich visualization tools, it would also be possible to visualize which Views a given element
participated in, for example the Drive Vehicle Use Case could appear in a number of different Views.

pkg [package] HSUV Views [HSUV Views] /

«views
Hybrid SUV Requirements

«views
stakeholder ="Customer"
viewpoint = "Reguirements”

«views
Hybrid SUV Verification and
Validation Plan

wviews
stakeholder ="Customer"
viewpoint = "Vnv"

€exposen

-
-~

«exposen

HSUV Model

Drive the vehicle

N . «requirement»

Performance

id="2"

text ="The Hybrid SUV shall have the
braking, acceleration, and off-road
capability of a typical SUV, but have
— — — —=>{ dramatically better fuel economy."
oSO

«testCasen
N EPAFuel EconomyTest

N\

y
Hybrid SUV Constraints

Driver

aconstraint»
CapacityEquation
oo

aconstraint»
UnitCostEquation

«constraint»
EconomyEquation

Checklist D.29

|:| Spec shows a derived symbol '/* prefix to View Tagged Values

(c) Sparx Systems 2022

Page 401 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Package Diagram - View Hierarchy

This Package diagram shows how views, or for that matter any other elements with the same stereotype, can be collected
into a Package and presented visually.

pkg [package] HSUV Views [HSUV Views] /

wview» wviewn
Hybrid SUV Requirements Hybrid SUV Verification and Validation
. Plan
WVIew
stakeholder = "Customer" wyiew»
viewpoint = "Requirements" stakeholder = "Customer"”
viewpoint = "VnV"

wviewn wviewn
Hybrid SUV Requirements Rationale Hybrid SUV Requirements VnV Trace
aviewn “viewn
stakeholder = "Customer" stakeholder = "Customer”
viewpoint = "Requirements Analysis" viewpoint ="VnV Analysis"
wviews
Hybrid SUV Tests
wViewr
stakeholder ="Customer"
viewpoint = "Systems Test"

(c) Sparx Systems 2022 Page 402 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Parametric Diagram - Measures of Effectiveness

Measure of Effectiveness is a mechanism to evaluate a solution by setting up a set of measures that will allow the
engineering team to evaluate two or more solutions to a problem. This technique is usually called a trade study and the
Measures of Effectiveness (MOEs) are calculated for two or more solutions and compared using a utility (objective)
function. The MOE is a user defined stereotype and not formally part of the SysML core language; it relies on the
stereotype extension mechanism that permits the language grammar to be extended. This Parametric diagram shows how
the overall cost effectiveness of the HSUV will be evaluated. It shows the particular MOEs for one alternative for the
HSUV design, and can be reused to evaluate other alternatives.

: EconomyEquation

par [block] MeasuresOfEffectiveness [HSUV MOEs] /

f:Real

«moe»

FuelEconomy

«moex

CostEffectiveness

~

«moe»

QuarterMileTime

: MaxAccelerationAnalysis E

L]

)

: CapacityEquation
{pcap = Sum(Vi)}

«moe»

Zero60Time

ve

b

: UnitCostEquation

v

«moe»

CargoCapacity

A

E uc:Real

«moe»

UnitCost

«objectiveFunctions

MyObjectiveFunction

(c) Sparx Systems 2022

Page 403 of 461

Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Parametric Diagram - Economy

This Parametric diagram is used to model the fuel economy as it has been defined as an important high level requirement
for the SUV and so needs to be assessed to ensure the final product will perform adequately. The Parametric diagram
contains constraint properties (instances of the constraint blocks). There are a number of equations that contribute to the
evaluation of the overall economy including: Aero Drag Equation, Regenerative Break Efficiency Equation, Straight
Line Vehicle Dynamics, Rolling Friction equation and the Fuel Efficiency equation. The constraint properties contain
boundary mounted parameters that are connected to other parameters by binding connectors.

par [block] EconomyContext [Ecm\nmycontaxty

PayloadCal Real

volume : Vol

adrag : AeroDragEquation

Cd : Real

peap : Real volume : Vol

pl: PayloadEquation

psgrwt: Weight cgoWt : Welight

cgoWt : Weight

psgrvt : Weight

incline: Real

]

incline : Real

rb: RegenBrake
EfficiencyEquation

ebpwr : Horsepwr

acc : Accel

dt:Time

ICEEfficiency: Real

ebpuwr : Horsepwr

n_ice:Real

dyn : StraightLine V

incline : Real

tw : Weight

w: TotalWeight

[l []

ight

vdw : Weight

fw : Weight

icleDryWeight: Weight

FuelWeight: Weight

tw : Weight

ehicleDyramics| acc : accel acc: Accel

vel:vel vel :vel

E whipwr ; Horsepwr 5

whipowr : Horsepwr

L]

* FuelEfficency Equation

L]

mpg: Real

Cf:Real| x:Dist

Cf: Real

S—

rdrag : RellingFriction Equation

MotorEffi Real

n_em: Real

(c) Sparx Systems 2022

Page 404 of 461

Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Parametric Diagram - Dynamics

In this Parametric diagram the Constraint Block - Straight Line Vehicle Dynamics - from the previous example has been
expanded to show how it can be modeled with a number of constraint properties. The Straight Line Vehicle Dynamics
constraint is represented by the diagram frame and the constituent equations that contribute to the overall equation are
modeled in the diagram as constraint properties. Each constraint on which the constraint properties are based has a
constraint equation defined, which is shown in curly braces {} on the diagram; for example, the Acceleration Equation is
defined within the Constraint Block as {a = (550/32)*tp(hp)*dt*tw}. Binding Connectors are used to relate the

parameters (variables) in one equation to the parameters (variables) in another equation.

par [constraint block] StraightLine vehicleDynamics lstraighmnevehiclewnamicsl)

tw : Weight

Cf:Real

s Weight

Cd:Real
Cf:|Real

-
; m
:

whipowr : Horsepwr

Cd:Real

whlpowr : Hbrsepwr

LT T OO U

: PowerEquation
{tp =whlpowr - (Cd*v) - (Cf*tw*v)}

incline : Real ’—|

vivel

tw : Weight

tp : Horsepwr

: BRWRARESRAYEN

[]

: AccelerationEquation
{a = (550/32)*tp(hp)*dt*tw}

[]

: AccelerationEquation

a:Accel

delta-t: Time

—
L

a:Accel

L]

: VelocityEquation
{v(n+1) =v(n)+a*32*3600/5280*dt}

. V%?Ita—t A Tim

v:vel

acc: Accel

ocityEquation

v:vel

]

: PositionEquation
{x(n+1) = x{n}+v*5280/3600*dt}

o

: PositionEquation

x : Dist

L]

wvel : vel

delta-t: Time

(c) Sparx Systems 2022

Page 405 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

(Non-Normative) Timing Diagram - 100hp Acceleration

Enterprise Architect has a power capability to generate plots of Parametric diagrams using its OpenModelica or Simulink
integration. One of the great benefits of modeling physical systems is to be able to analyze the way a system would
behave in a real world context, without the need to build expensive prototypes or to have to perform the test on the built
system itself. The ability to model mathematical equations that govern the way a system will operate, and to create
models of these as constraints using Block Definition and Parametric diagrams, provides the precursors to model
simulation.

Enterprise Architect harnesses the power of an open tool called OpenModelica, which is underpinned by the Modelica
language to generate plots and graphical representations of equations in motion.

(c) Sparx Systems 2022 Page 406 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Defining, Decomposing, and Allocating Activities

The examples in the topics of this section use Activity diagrams that describe behavioral aspects of the Hybrid SUV,
using Actions that are responsible for defining the work, which is ultimately carried out by instances of Blocks. There are
also a number of Internal Block diagrams that demonstrate the way that allocations can be represented.

(c) Sparx Systems 2022 Page 407 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Activity Diagram - Acceleration (top level)

This Activity diagram shows the top level behavior of an Activity representing the acceleration of the HSUV. It is the
intent of the System Engineer in this example to allocate this behavior to parts of the Power Subsystem. It is quickly
found, however, that the behavior as depicted cannot be allocated, and must be further decomposed. The stereotypes on
the object nodes between actions in the figure apply to parameters of the behaviors or operations called by the actions

«activity»
Accelerate

$
wcontinuous» drivePower
Horsepwr

«Continuous»
accelPosition

:MeasureVehicle j

transModeCmd: Integer

Conditions.

(c) Sparx Systems 2022 Page 408 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Block Definition Diagram - Acceleration

This Block Definition diagram shows the decomposition of the Provide Power Activity from the diagram in the previous
topic. It is important to note that this is a functional decomposition and, as such, it defines structural relationships
between the Activities in the hierarchy and so should be modeled on a Block Definition diagram.

bdd [package] Accelerate [Activity and Object Flow Breakduwny

«activity»
Provide Power

cactivity»
MeasureVehicleConditions

cactivity» activity»
ProportionPower ControlElectricPower

wactivitys ‘ ‘ «activity» «activity» ‘ «blocks «activitys

a2

drivePower
mvel mbat

MeasureVehicleVelocity MeasureBatteryConditions ProvideGasPower Power ProvideElectricPower

gasDrivePower elecDrivePower

«block» «block»
GasPower ElecPower

(c) Sparx Systems 2022 Page 409 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Activity Diagram (EFFBD) - Acceleration (detail)

This Activity diagram has the Provide Power Activity as a diagram frame, which includes Actions invoking the
decomposed Activities and Object Nodes from the previous diagram. It also uses Allocate Activity Partitions, which are
oriented vertically in the diagram. These partitions include the Power Control Unit, the Internal Combustion Engine, the
Electric Power Controller and the Electric Power Generator, which are used to show which part of the system is
responsible for the Actions defined in the diagram. There is also an allocation callout to explicitly allocate activities and
an object flow to parts in the Power Subsystem Block.

The modeling engineer has used incoming and outgoing object flows for the ProvidePower Activity. This was done to
distinguish the flow of electrically generated mechanical power and gas generated mechanical power, and to provide
further insight into the specific vehicle conditions being monitored.

act [activity] 1o U

i
! i
i i
i
i
i
T
i
! i
i
i
i
i
i
i
! i
T i
i
! i
keyoff i
|)
>C T

transModeCmd: Integer

(c) Sparx Systems 2022 Page 410 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Internal Block Diagram - Power Subsystem Behavioral and
Flow Allocation

This partially-completed Internal Block diagram elaborates on some of the allocation relationships shown in the previous
example. Here we see how Blocks that have been added to the diagram as properties communicate with each other, and
we can see the flow of items from one instance of a Block to another. Specifically, the Electric Power Controller is
connected to the Electric Motor Generator and we can see electrical current is flowing between the two properties.

ibd[block] PowerSubsystem [Flow Allocation to Power Subsystery

epc: ElectricalPowerController i2: ElectricCurrent i1: ElectricCurrent emg: ElectricMotorGenerator

: flow ports
inout fp : FS_EPC

B

«flowPort» fp: FS_EPC

can: CAN_Bus trsm: Transmission
\X4
«flowPort» fp: FS_TRSM

(c) Sparx Systems 2022 Page 411 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Internal Block Diagram: Property Specific Values - EPA Fuel
Economy Test

This Internal Block diagram demonstrates the way Test Cases can be modeled in the context of the representation of
sub-systems. The tests have been conducted for a specific instance of the Hybrid SUV that presumably has come off the
production line and has a specific VIN (vehicle identification number). The test that has been conducted is the EPA fuel
economy test. Serial numbers of specific relevant parts can also be indicated to identify any problems that instances of
the parts might have.

(c) Sparx Systems 2022 Page 412 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Meet the Systems Engineering Tools

Enterprise Architect is a sophisticated and flexible Model Based System Engineering platform that can be used as both a
repository and a tool for managing engineering projects. It can be used across the entire life cycle, from setting up a
Systems Engineering program or practice, through planning, managing, developing and documenting engineering
endeavors, to the governance of implementation projects that consume the designs and architectural output. The tool can
be used with any processes and any number of languages of representation including SysML, UML, ArchiMate or
BPMN. There is a wide range of facilities and tools that allow the engineer to work using their preferred methods, such
as word processor views, spreadsheet views, diagrams, Relationship Matrices and a range of other core and extended
features.

This Mind Map shows the landscape of the key Systems Engineering tools that can be used to set up and maintain any
number of Model Based Systems Engineering initiatives. While these are the primary tools, there is a range of other tools

that individual teams or engineers will find useful; these can be explored through the User Guide.

Gap Analysis Import and Export
) Heatmaps
Matrix Spreadsheets

Requirements
Diagram
| —

—_—

Use Case Diagram

——

—

Internal Block

{ Documentation J ‘

Bl \

—

Systems Engineering

Calendar Patterns
| —— |
- -3
Block Definition Relationship
Matrix

—_—

Activity Diagram

—

Reguirements

Diagram Tools Diagram
— -
) —
R ibili
Dashboard ESFIOHSI ility
. Assignment
Diagrams .
Matrix

7/ 1\

—

Decision Tree Roadmap
Diagram Diagram
L —— L ——
- -3
Parametric Specification
Diagram Manager
—
Time Aware Element Traceabili
. Strategy Map Team Documents) 7
Modeling Discussions Window
S A

(c) Sparx Systems 2022

Page 413 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Requirements Diagram

Getting to Know the Requirements Diagram

Introducing the The Requirements diagram provides a visual representation of how Requirements
Requirements Diagram are related to each other and to other elements in the model, including Business
Drivers, Constraints, Business Rules, Use Cases, User Stories, design Components
and more. The diagram is one of Enterprise Architect's extended diagram types. It
provides an appealing graphical representation of Requirements, that will be a
welcome change for Requirements Analysts who are accustomed to working with
text based tools.

REQ023 - Store and Manage Books O
This diagram shows a Use Case that

realizes a requirement. The realized
reguirement is part ofa hierarchy of
reguirements expressed with the
Aggregation relationship. The Use
Case has an annatation under the
elementindicating its package location

A book storage and management
facility will be required.

in the Browser window.

REQO27 - Add Books

A facility will be required to receive
and add books to the stock lists.

I
wrealizen

Add New Titles
O

(from Manage Inventory)

Where to find th . . =
Requiremeer:tsoDil:gran(: Browser window Context Menu : Add Diagram : = | Manage | Show All

Perspectives | Extended | Requirements

Usage of the Requirements One usage is to show how Requirements are connected together in a hierarchy or,
Diagram even more importantly, how Requirements are connected to other elements. The
experienced modeler will define and manage the Requirements in the
Specification Manager and then use the Requirements diagram to show how each
Requirement is related to upstream process elements such as Business Drivers, and
downstream process elements such as Use Cases, User Stories, User Experience
designs and solution Components.

Options for the The appearance of a diagram can be changed to suit the audience, and details can
Requirements Diagram be included, suppressed or altered to ensure the diagram meets its main objective
of communication. There is a wide range of options, ranging from creating a Hand
Drawn style of diagram to filtering diagram content.

(c) Sparx Systems 2022 Page 414 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Properties
H=-/

Diagram Compartments

4 General
Mame Requirements Model
Type Requirements
Stereotype
Author hbritten
Applied Metamodel Default
Filter to Metamodel |:|

Filter to Context

Context Navigation
Version

Version

Filter to Version

Mew to Version
Appearance

Display as

Hand Drawn

Whiteboard

Custom Style

Disable fully scoped object names
Display Element Lock 5tatus
Use Info Tip (global)
Theme

Advanced

MDG Technology

GUID

WebEA

Connectors

Show Relationships

Show Mon-Mavigable Ends
Show Property 5tring
Suppress All Labels

Show Stereotype Labels
Show Feature Linker

Connector Motation

b

ooz

Diagram

OoooOnE

LIse global theme

Extended::Requirements

{82528010-B2FA-4314-A1ED-2...

c BREOROE
=
L

Learn more about the Working In Diagrams
Requirements Diagram
(c) Sparx Systems 2022 Page 415 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/commondiagramtasks.htm

Guide to MBSE with SysML 3 October, 2022

(c) Sparx Systems 2022 Page 416 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Activity Diagram

The Activity diagram is one of the Unified Modeling Language (UML) Behavioral diagrams that can be used to model a
process or algorithm as a sequence of steps. It is a more sophisticated version of its close cousin the Flowchart diagram.
Activity diagrams can be used to model Business Processes as a UML alternative to the BPMN Business Process
diagram; they have the same ability to create a hierarchy of Activities in the Browser window.

Activity Diagram showing the use of Partitions

[Order Rejected]
This diagram shows the use of
A —— valid - S Partiions (swim lanes)to organize
Order? the elements and these can be
orientated herizontally or

[Order Accepted] vertically Theyactas a container
for the elements in the Browser

window. The diagram alsoc shows
Package Order the use of Outputand Input pins
connected by an Objectflow.

«Class» Order

Process.
Payment

]
)

Customer
Payment

Send Invoice

«Class» Transaction

Invoice Invoice

The elements can be given a name and detailed descriptions can be added to the Notes. By connecting the Activities,
Decisions and Forks with connectors (Control Flows) a sequence of elements can describe the business process. A
process hierarchy can be constructed by nesting Activities in the Browser window and using the child diagram
functionality to enable drill down from the value chain level to the lowest level processes.

Getting to know the Activity Diagram

Where to find the Activity Ribbon: Design > Diagram > Add Diagram > UML > Behavioral > UML
Diagram Behavioral > Activity

Browser window Toolbar : New Diagram icon > UML > Behavioral > UML
Behavioral > Activity

Browser window context Menu | Add Diagram... > UML Behavioral > Activity

Usage of the Activity The Activity diagram can be used to model any business or technical activity or
Diagram notion that has a series of steps. This includes business and technical processes
and also computer algorithms. The steps are connected by Control Flow
relationships that show the sequencing of the steps. Decisions and Merges can be
used to model choice and to further control the flow through the Activity. Forks
and Joins can be added to split and reunite the flow of control and objects added to
show how data is supplied and consumed.

Options for the Activity Activity diagrams can be drawn at different levels of formality, from a Basic Flow
Diagram Chart style of diagram used to represent a simple Business Process to a
sophisticated Action-based diagram that can be used to model a complex system.
There is a toolbox that contains a range of elements, relationships and Patterns for
creating the models.

(c) Sparx Systems 2022 Page 417 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

The Activity diagram (like any diagram) can be viewed as an Element List, which

makes working with element properties easier.

Diagram Filters can also be used when presenting the diagrams, to draw attention
to parts of the diagrams, and the diagrams can be presented in hand drawn or
whiteboard style by changing the properties of the diagram.

Toolbox

=l Activity

@eedll UeCENUIAN 0 U

= | g

Activity

Structured Activity
Action

Partition

Chject

Central Buffer Nade
Datastore
Decision

Merge

Send

Receive

Synch

Initial

Final

Flow Final

i Region

Exception
Fark/Jain
Fork/Jain

= Activity Relationships

s
&
7

Control Flow
Object Flow

Interrupt Flow

= Activity Patterns

Basic Activity

0O =

Fs

Learn more about the Activity Diagram

Activity Diagram

(c) Sparx Systems 2022

Page 418 of 461

Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/activitydiagram.htm

Guide to MBSE with SysML 3 October, 2022

Use Case Diagram

Getting to know the Use Case diagram

Introducing the Use Case The Use Case diagram is one of the Unified Modeling Language (UML)
Diagram Behavioral diagrams that can be used to describe the goals of the users and other
systems that interact with the system that is being modeled. They are used to
describe the functional requirements of a system, subsystem or entity and present a
simple but compelling picture of how the system will be used.

Online Bookstore O

Use Case diagrams can be created
showing the system as a Boundary
that contains the Use Cases. There is
a sophisticated editor that can be
used to detail the steps of scenarios
including constraints. A behavior
diagram can be automatically
generated from a scenario that
allows the steps described in the
scenario to be visualized.

Add New Titles
O

Manage Publishers

Manage Titles

Products Manager Chief Editor

Create Orders

On-line Customer

List Stock Levels

Customer Support Officer

They are typically used in conjunction with higher level Business and Stakeholder
Requirements and are often supplemented with a set of Non Functional
Requirements.

Where to find the Use Ribbon: Design > Diagram > Add Diagram> UML Behavioral > Use Case
Case Diagram g \eer window Toolbar : New Diagram icon > UML Behavioral > Use Case

Browser window context menu | Add Diagram... > UML Behavioral > Use Case

Usage of the Use Case The Use Case diagram is used to describe the goals that users or other systems
Diagram want to achieve from interacting with the system. They always describe the goal
from the Actors' perspective, the details of the Use Case will describe the goal
with more precision.

Use Cases will often act as the basis for the definition of Test Cases.

Options for the Use Case Any number of Use Case diagrams can be created to represent different parts of a

(c) Sparx Systems 2022 Page 419 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

Diagram

Learn more about the Use
Case Diagram

(c) Sparx Systems 2022

3 October, 2022

system or Packages of Use Cases. The diagrams can be kept simple or they can be
structured by the application of a number of additional connectors such as Include,
Extend and Generalization relationships.

A system Boundary can be included that is used to name the system, subsystem or
entity under discussion; the Actors lie outside the Boundary and the Use Cases
inside.

REQO165 - The solution
must allow items to be
added to the inventory

REQ164 - The solution must REQ0166 - The solution
have the ability to manage must allow inventory items
inventory items to be edited

REQ0167 - The solution
must allow inventory items
to be soft deleted

Manage Titles

: 0

| This diagram shows the expressive
wsatisfy» power of putting disparate

: elements onto a diagram to show
Inventory Manager the traceability between different
layers of a system. The tracea bility
canbe from the Requirements to
the Use Cases that Realize them to
the logical Components that will

Manages titles including providing deliver the required functionality
services to add, delete and modify and more.

titles and advanced sort and filter

services.

Use Case diagrams can be used to show how the Use Case are related to other
elements in the system, including up-stream elements such as Requirements and
down-stream elements such as Components.

The Use Case diagram (as for any diagram) can be viewed as an Element List,
which makes working with the element's properties easier.

Diagram Filters and Diagram Layers can also be used when presenting the
diagrams, to draw attention to parts of the diagrams and the diagrams can be
presented as hand drawn or in a whiteboard style by changing the properties of the
diagram.

Use Case Diagram

Page 420 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/usecasediagram.htm

Guide to MBSE with SysML

Scenario Builder

Getting to Know the Scenario Builder

Introducing the Scenario
Builder

Where to find the Scenario
Builder

Usage of the Scenario
Builder

(c) Sparx Systems 2022

3 October, 2022

The Scenario Builder is used to define the details of a Use Case including defining
detailed descriptions, creating one or more Scenarios and defining pre-conditions,
post-conditions and other constraints. The detailed steps of a Use Case can be
recorded and linked to other elements in the model and these can then be
generated out as a diagram providing a visual representation of the Use Case and
its Scenarios. The diagram and the text can be synchronized and individual steps
can then be traced to other elements such as Components that will realize the

Requirement specified in the Use Case.

Scenarios

Scenario:
Basic Path

4 3

Type:
Basic Path -

Action

{IQ' W | XK
Step Uses

The User selects the option List
Stock Levels

The System displays a List of Stock
Items

The User selects multiple items in
the list

The User submits the selection

b

Wn

The System displays the Stock Levels

Results

State

0 e

Entry Points | Context References | Constraints

Ld Name Type

> Use Case C UseCase

N

Connection

Comment

Generalization

REQOZ21 - List 5tock Levels Requirement Realization

Package
Use Cases

Requirements

Start > Application > Edit > Responsibilities > Structured Scenarios

Design > Element > Editors > Responsibilities > Structured Scenarios

Element Context Menu: Properties | Responsibilities > Scenarios | right click | Add

New : Structure Editor

To define the details of a Use Case and its scenarios and constraints, which can be
used to replace the traditional text-document based approach to defining Use

Page 421 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Cases. This ensures that the Use Case diagram and the textual details of the Use
Cases and its Scenarios and Constraints are all contained in the same model and
can be traced. If the Use Cases are required in a document format for contractual
or process reasons, a Use Case Report can be generated automatically from the
models using the in-built documentation engine.

Options for the Scenario The Scenario Builder can be viewed as a tabbed or a docked window or in an
Builder element's Properties window. The steps of a Use Case including its Scenarios can
be automatically generated into a number of different diagram types available
from the Generate Diagram toolbar icon.

B-v-IX@
Activity
Activity with ActivityParameter
Activity with Action
Adtivity with ActionPin

RuleFlow

State

Sequence

Robustness

Learn more about the Scenarios
Scenario Builder

(c) Sparx Systems 2022 Page 422 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/objectscenarios.htm

Guide to MBSE with SysML

Auditing

3 October, 2022

Getting to know Auditing

Introducing Auditing

Where to find Auditing

Use of Auditing

Options for Auditing

(c) Sparx Systems 2022

The Auditing feature can keep track of the changes to Requirements including
what was changed, when it was changed and by whom. Auditing is by default
disabled and must be enabled before the changes to requirements will be recorded.
Once enabled it is a passive tool that silently records the changes to elements. It
does not replace Version Control or Baselines and in contrast to these tools it can
not be used to return to a previous state of the model. Change management,
governance and quality control are all aided by the use of Auditing.

@Start Page = Specification Manager BFind in Project |& Audit View x
Graup By

User sparcsysthloyd) Configure Load ® Type Displaying sets of audit data
Tirne 2020-11-30 103034 Mode Search User Viewing log items recorded in the past year
Details ™ Requirernent (<Functionals REQTT6 The system must ‘ e =
| email the client a copy of the receipt)
Property Criginal Change
Objecthlade Elements 4| pdatal In Progress Approved

modifieddate 26/05/2020 30/1172020

Pork Elements status In Progress Approved

Package Elements

Frovidedinterface Elements
FrozyConnector Elements
Requiredinterface Elements

Av v v Y w e
ool

Requirement Elements
b <Functionals REQDIS - Process Credit Card Payment
Pl <«Functionals REQ116 -The system must email the dlient
2020-11-30 10:39:3+

2020-11-30 10:39:47

2020-11-30 103947

2020-11-30 1041153

2020-11-30 10:43:38

3 <MarfunctionalRequirement> Return Customers 10 Perc

Ribbon: Settings > Model > Auditing

Auditing can be used to track what was changed in a model, who changed it and
when. There are a number of modes and a repository administrator can use the
settings to specify what is recorded in the audit. While a baseline can be used to
show the difference between a model and a snapshot at a point in time, the
Auditing tool records each individual change; it can not, however, be used to
revert to a previous state.

There is a wide range of settings to configure auditing, starting with enabling or
disabling the settings that determine which elements have an audit trail and the
level of detail recorded. Audit logs can be exported from the repository to increase
performance.

Page 423 of 461

Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Learn more about

Auditing

Audit Settings

Enable Auditing Auditing Level
() Core
[Awadhit 28I [mport /® Standard
[Audit =Ml Export) Extended
0 .-“-‘-.udit He*_werse 1 Debug
ERE T Avdit Options
Uze Databaze B]
] Timestamp) Maintenance
(1 Core Structural
1 Cush
| k. || Cancel | | Help |

Auditing

(c) Sparx Systems 2022

Page 424 of 461

Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/auditing.htm

Guide to MBSE with SysML

Calendar

Getting to know the Calendar

Introducing the Calendar

Where to find the
Calendar

Usage of the Calendar

Options for the Calendar

(c) Sparx Systems 2022

3 October, 2022

The Calendar is a fully featured mechanism for recording the important events in
an initiative and displaying other information such as resource allocation. There
are day, week and month views and the display can be set to show Calendar
entries, Project Tasks and Resource Allocation. When a resource has been
allocated - for example to analyze a set of requirements - a user can drill through
from the Calendar to the requirements' location in the Browser window.

. F B rroject calendar

1 October 2020 4
Mo Tu WeTh Fr 5a Su

2[5 6 7 8 91011
22(12 13 14 15 16 17 18
23(19 20 21 22 23 24 25
|26 27 28 29 30 31

45

Movember 2020 g
MoTuWeTh Fr 5a Su
= 1
02 3 456738
2| 910 1112 13 14 15
47|16 17 18 19 20 21 22
:2[23]24 25 26 27 28 29 18
22|30
December 2020
MoTuWeTh Fr 5a Su
5 12 3 456
w7 8 910111213
=114 15 16 17 18 19 20
52|21 22 23 24 25 26 27
5328293031 1 2 3 =

4 6 8 910

46

47

«| <Al

0012 3 4 MNovember 2

Federation Day

Maryland BM Visit

=)

(%]

WEDNESDAY THUR
4 5
1:00pm ":,- ‘Weekly Stage
3:00pm 7 Fortnight Bui

ra

1:00pm ’z- Weekly Stage

18 19
1:00pm ’Z,n ‘Weekly Stage
3:00pm ’:- Fortnight Bui

25 26

1:00pm /Z. ‘Weekly Stage

2 3

1:00pm ’2,- Weekly Stage
- 3:00pm 77 Fortnight Bui

There are also fully configurable Event Types, Categories and colors. The work of
a Business Analyst will involve a wide range of events including things like:
workshops, interviews, focus groups, collaborative games, brainstorming sessions,
reviews, observations and meetings. All of these events can be conveniently
recorded and managed in the Calendar. When resources have been allocated to
elements and tasks have been assigned to individuals these can be displayed in the
Calendar.

Ribbon: Start > Collaborate > Calendar

The Calendar can be used to schedule and view events such as meetings,
milestones, reviews, workshops and more. It can be used to view the allocation of
resources to elements in the repository such as who is analyzing a set of
requirements. It can also be used to view Project Tasks. An analyst can
conveniently click through to the elements in the Browser window or the Project
Tasks.

The Calendar has a number of options including the ability to create recurrent
events. There is an options toolbar icon that allows aspects of the Calendar's
appearance to be configured.

Page 425 of 461

Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

rf
Sl
Y

Configure Event Subtypes...

Time 5cale k

Show End Time

Show Time As Clocks
Compress Weekend Days

Show ToolTips

Learn more about the The Model Calendar
Calendar

(c) Sparx Systems 2022 Page 426 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/resource_calendar2.htm

Guide to MBSE with SysML 3 October, 2022

Block Definition Diagram

Getting to know the Block Definition Diagram

Introducing the Block The Block Definition diagram is one of the Systems Modeling Language (SysML)
Definition Diagram Structural diagrams that can be used to model a wide range of things. It is a
general purpose diagram for modeling entities in the business and technical
domains, including terms and concepts, Business Rules, and Capabilities in XML
and Database Schemas.

Where to find the Block Ribbon: Design > Diagram > Add Diagram : Type = Systems Engineering >

Definition Diagram SysML Select From = SysML 1.5 Diagram Types = Block Definition > <required
type>
Browser window Toolbar : New Diagram icon : Type = Systems Engineering >
SysML Select From = SysML 1.5 Diagram Types = Block Definition > <required
type>
Browser window Context Menu | Add Diagram : Type = Systems Engineering >
SysML Select From = SysML 1.5 Diagram Types = Block Definition > <required
type>

Usage of the Block The Block Definition diagram can be used whenever a logical or structural
Definition Diagram representation of a system is required. It has applicability for modeling both
business and engineering concepts. It is the fundamental diagram for modeling the
structure of a system or subsystem or one of its components.

Options for the Block The Block Definition (like any diagram) can be viewed as an Element List, which
Definition Diagram makes working with the element's properties easier.

Diagram Filters can also be used when presenting the diagrams to draw attention
to parts of the diagrams and the diagrams can be presented as hand drawn or in a
whiteboard style by changing the properties of the diagram.

Learn more about the Using Blocks to Model Structure and Constraints
Block Definition Diagram

(c) Sparx Systems 2022 Page 427 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/useblocks_modelstrct_constr.htm

Guide to MBSE with SysML 3 October, 2022

Internal Block Diagram

Getting to know the Internal Block Diagram

Introducing the Internal The Internal Block diagram is used in conjunction with the Block Definition
Block Diagram Diagram, but it is typically used to show the internal structure of a Block including
its parts and how they work together to deliver the behaviors specified by the
block or that have been allocated to it.

Where to find the Internal Ribbon: Design > Diagram > Add Diagram : Type = Systems Engineering >

Block Diagram SysML Select From = SysML 1.5 Diagram Types = Internal Block > <required
type>
Browser window Toolbar : New Diagram icon : Type = Systems Engineering >
SysML Select From = SysML 1.5 Diagram Types = Internal Block > <required
type>
Browser window Context Menu | Add Diagram : Type = Systems Engineering >
SysML Select From = SysML 1.5 Diagram Types = Internal Block > <required
type>

Usage of the Internal The Internal Block diagram is used to model the internal structure of a block
Block Diagram including its parts and the relationship between those parts.

Options for the Internal The Internal Block diagram (like any diagram) can be viewed as an Element List,
Block Diagram which makes working with the element's properties easier.

Diagram Filters can also be used when presenting the diagrams to draw attention
to parts of the diagrams and the diagrams can be presented as hand drawn or in a
whiteboard style by changing the properties of the diagram.

(c) Sparx Systems 2022 Page 428 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Toolbox O =
More tools... |
= Class

Package
Class
Interface
Data Type
Enumeration

Primitive

Bl O OO E § @ P

-
=]
3
[}

A

=
L
i
[=]
]
=1}
=
=]
3

=l Class Relationships

/ Associate

A Generalize

A Compoase

A Aggregate

/% Association Class
-5 Assembly

A Realize

X' Template Binding
A Mesting

17 package Merge
Package Import
"7 Abstraction

57 syubstitution

LT Usage -

Learn more about the Using Properties and Parts to Model Block Usage
Internal Block Diagram

(c) Sparx Systems 2022 Page 429 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/props_and-parts-mod_blockuse.htm

Guide to MBSE with SysML 3 October, 2022

Dashboard Diagrams

Dashboard diagrams allow you to create high quality Charts and graphs to display repository information in a visually
compelling way. This diagram is an example of creating a Dashboard diagram in Sparx Systems Enterprise Architect; it
illustrates the ratio of Requirement Priorities in a Pie Chart.

Elements by Priority This diagram shows a Pie Chart element
depicting element priorities forall the
Requirements in a selected Package.
Itprovides a useful summary fora

No Value, 3.6% Critical, 3.6% Requirements Managerand is
dynamically updated when the priority
High, 21.4% changes and the diagram is reopened.

Arange of other pre-defined Charts and
user-defined Charts can also be added.
A filter has been added to exclude all
elements other than Requirements.

Medium, 46.4%

\ Low, 25.0%

Enterprise Architect provides a Toolbox page of pre-configured Charts and graphs, but you are free to create and save
any number of Charts, sourcing data from anywhere in the repository. The Charts and graphs provide valuable summary
information that assists in the management of Requirements. High level reporting and project status can be easily tracked
and documented using the numerous Charts and report elements available, which tightly link in with the model content
and status.

Getting to Know Dashboard Diagrams

Where to find Dashboard =
eretotin li)‘:agl('):l:ls Browser window | Right-click on Package | Add Diagram : ~ | Manage | Show

All Perspectives | Extended | Dashboard

Usage of Dashboard Dashboard diagrams present rich yet easily understood views of information -
Diagrams such as the status of Requirements in a particular release of the system - that can
be opened inside the model or conveniently copied directly into management or
project team presentations. They are useful for planning an iteration such as an
Agile sprint to view how ready the Requirements are for the implementation team;
for example, to view what percentage of the Requirements have been approved
and are of high priority.

Options for Dashboard The standard Charts and graphs available from the Toolbox can be configured in a
Diagrams number of ways, including changing the source, applying filters or modifying the
appearance of the Chart as indicated in this diagram, available from the Chart's
Properties window using the 'Appearance' section.

(c) Sparx Systems 2022 Page 430 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Category: Doughnut 30 Label Position: | Outside End -
Gradient: Radial Show Data Labels
- il -
Hole Size: |l| 21%
[[1] Show Index in Labels
- =
Bploded v
Fit Diagram Area
Display Legend
Learn more about e Standard Charts
Dashboard Diagrams
(c) Sparx Systems 2022 Page 431 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/charts.htm

Guide to MBSE with SysML

3 October, 2022

Decision Tree Diagram

Getting to know the Decision Tree Diagram

Introducing the Decision
Tree Diagram

Where to find the Decision
Tree Diagram

Usage of the Decision Tree
Diagram

Options for the Decision
Tree Diagram

(c) Sparx Systems 2022

Decision Trees are an effective way of graphically representing a number of
options and provide a mechanism to investigate the possible outcomes and
benefits of choosing those options. They can also assist the analyst to form a
balanced picture of the risks and benefits associated with each possible course of
action. They are a close cousin of the Decision Table but have the benefit of being
graphical. Enterprise Architect has a purpose-built diagram allowing complex
decisions to be modeled and displayed including probabilities and uncertainty.

Requirement not
Implemented

Requirement Not Stakeholders Request
Specified Overlooked

Stakeholder not
Interviewed

Poor Inteniaw Reing

Processes

Inadequate Review
Processes

Missing Feature in
Implemented Solution

stakeholders Request
Analysed but Excluded

INo User Acceptane Test
for Feature

Ribbon: Design > Diagram > Add Diagram > Strategic Modeling > Decision Tree

Browser window Toolbar : New Diagram icon > Strategic Modeling > Decision
Tree

Browser window context menu | Add Diagram... > Strategic Modeling > Decision
Tree

Decision Trees can be used to help in decision making processes, particularly
when the decision involves a complex set of conditions that have different
likelihoods of occurrence. They can be used for strategic or operational decision
analysis and can help to formalize the basis of decision making particularly when
it is imperative that actions that are taken are based on formal analysis or have
expensive consequences. A Decision Tree can be used to present a graphical
picture of a Decision Table for stakeholders who are more comfortable viewing
diagrams rather than tables and documents.

Decision Trees can be drawn with varying levels of formality from simple trees
with a series of decisions resulting in outcomes to more formal trees that involve
uncertainty with probability values assigned or formulaic expressions with input
parameters. The 'Decision Tree' toolbox page contains a range of elements that can
be used, and two Patterns that can be used to create a diagram giving the analyst a
starting point.

Page 432 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Toolbox 0 =

More tools... &
| = Decision Tree |

Test
Cutcome Activity
Cutcome Object

Evaluate

Boolean, True
Boolean, False
Decision Mode
Start Node
Uncertainty Mode
Target Mode

@O0® ¢ NNNDOM

| =l Patterns |

¥3 Decision Tree - Object

¥3 Decision Tree - Activity 2

Diagram Filters can also be used when presenting the diagrams to draw attention
to parts of the diagrams and the diagrams can be presented as hand drawn or in a
whiteboard style by changing the properties of the diagram.

Learn more about the Decision Tree
Decision Tree Diagram

(c) Sparx Systems 2022 Page 433 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/decision_tree.htm

Guide to MBSE with SysML 3 October, 2022

StateMachine Diagram

Getting to know the StateMachine Diagram

Introducing the The StateMachine diagram is one of the Systems Modeling Language (SysML)
StateMachine Diagram Behavior diagrams that can be used to model a wide range of things. It is a general
purpose diagram for modeling entities in the business and technical domains,
including terms and concepts, Business Rules, and Capabilities in XML and
Database Schemas.

Where to find the Ribbon: Design > Diagram > Add Diagram : Type = Systems Engineering >
StateMachine Diagram SysML, Select From = SysML 1.5, Diagram Types = StateMachine > <required
type>
Browser window Toolbar : Type = Systems Engineering > SysML, Select From =
SysML 1.5, Diagram Types = StateMachine > <required type>

Browser window Context Menu | Add Diagram : Type = Systems Engineering >
SysML, Select From = SysML 1.5, Diagram Types = StateMachine > <required

type>

Usage of the StateMachine The Class diagram can be used whenever a logical or structural representation of a
Diagram system is required. It has applicability for modeling both business and technical
concepts and can be used to model information and structures such as XML and
database schemas.

Options for the The Class diagram (like any diagram) can be viewed as an Element List, which
StateMachine Diagram makes working with the element's properties easier.

Diagram Filters can also be used when presenting the diagrams to draw attention
to parts of the diagrams and the diagrams can be presented as hand drawn or in a
whiteboard style by changing the properties of the diagram.

(c) Sparx Systems 2022 Page 434 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Learn more about the
StateMachine Diagram

Toolbox

= Class

L

Package
E Class

=& Interface

Data Type
Enumeration
] Primitive

B Table

Signal

< Association

=l Class Relationships
/ Associate

A Generalize

A Compoase

A Aggregate

/@ Association Class
-5 Assembly

A Realize

X' Template Binding
A Mesting

17 package Merge
Package Import
"7 Abstraction

57 syubstitution

“A Usage

O

Maore tools...

=

Fe

StateMachines

(c) Sparx Systems 2022

Page 435 of 461

Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/statediagram.htm

Guide to MBSE with SysML

Documentation

3 October, 2022

Getting to know Documentation

Introducing
Documentation

Where to find
Documentation

Use of Documentation

Options for
Documentation

(c) Sparx Systems 2022

The Documentation features can be used to automatically generate a wide range of
documentation directly from the models. These can be document-based such as
PDF and Docx format or HTML-based. Flexible templates can be used to
completely tailor the documents that are generated including company logos,
tables of content, tables of element information and diagrams. Ad-hoc reports can
also be created from a number of tools such as the Glossary and the Search
Window.

Package: Functional Requirements [_-e"
Output to File: C:\Users\Public\Documents \Functional Requirements. pdf

Template: Model Report =
Cutput Format : Portable Document Format (PDF) 2
Cover Page: Portrait -
Table of Conterts: | Portrait ~
Stylesheet: Help Style Sheet -
Diagram Theme: Ice - Fine h
Watermark:

Ribbon: Publish > Model Reports > Report Builder

Modelers, Analysts, Architects, Project Managers and others can use the facility to
produce a wide range of document-based publications and reports, such as a
System Requirements Specification, Use Case Report, Data Dictionary, Solution
Architecture Description and more. It can also be used for ad-hoc reporting to
create reports such as a list of the most volatile requirements. HTML
documentation can also be published to allow stakeholders who don't have access
to Enterprise Architect to view the models from an Intranet site that can just be
placed on a file system without the need for a Web Server.

There are several options that can be set to tailor the information that is included
in a generated document, including the ordering of elements and diagrams and
hiding certain elements. Filters and word substitutions and other options can also
be applied.

Page 436 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Order Eilter
gl BCkAgESbY. Tree Order ~ Ascending - Only include abjects:
Created ~ After - 15/052018 -
Elementsby. Trae Order - Ascending =

Where Package Phase:

Diagrams by Tree Order - Ascending - = -

With element status:

Options
DHidg'note—Iess' elements H_ide Diagram Borders -

] Propagate Package Filters [THide nan-printable objects Connector Direction:

[“IHide 'note-less' connectors ["] show status colors Both -

[JHide <Anonymous= elements [Mo bockmarks Extentwrises e Gniery Eachides
DDisabIeIarge OLE file support DSEip root package (*) Custom SQL) Custom Seript

O Use style defined in template for notes

[insert page breaks when generating a Master Document
[Jnclude child elements even if the parent element is filtered out
[]indent Linked Document Headings

Diagram Format: Metafile + [set as Default

Adjust Heading Levels: Heading 9 -

Switch generator

Learn more about Model Publishing
Documentation

(c) Sparx Systems 2022 Page 437 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/documentingprojects.htm

Guide to MBSE with SysML 3 October, 2022

Gap Analysis Matrix

Getting to know the Gap Analysis Matrix

Introducing the Gap The Gap Analysis Matrix is a specialized Relationship Matrix that is used to
Analysis Matrix record the gaps that exist between two versions of some part of an enterprise. The

gaps between two different versions of an architecture could be recorded, or the
gaps between two versions of Capabilities or Staff Competencies, or two versions
of Information or Data. The tool is structured similarly to a spreadsheet with
columns and rows. The elements that make up the baseline (starting point) are
listed as rows and the elements that make up the target (end point) are listed as
columns. There is a column for recording missing or eliminated elements and a
row for recording new elements. At the intersection of a baseline element and
target element, notes can be added that describe any details of the relationship
between the two elements.

Gap Analysis Matrix O x
T et o1l G I—
Baseline Architecture: [Basslinel ... | Fiter: | age [~ || Record Gap As:| [~ Options |
Video Enhanced Mailing List Missing /
Target Conferencing | Telephony Services Eliminated
Services Services
Baseline
Broadcast Retired service
Services : Intenticnally
eliminated
Video
Conferencing
Services
Included
Enhanced Potential
Telephony match
Services
Shared Screen Address Shared
Services Screen Service :
Unintentionally
eliminated
MNew Improve Mailing List :
Telephony Mew-To be
service: To be | produced or
enhanced developed

Where to find the Gap Ribbon: Design > Package > Gap Analysis
Analysis Matrix

Usage of the Gap Analysis The Gap Analysis Matrix can be used for both business and technical analysis. It
Matrix is a general purpose tool for recording the details of a comparison between
different versions of some part of an enterprise. In business analysis it can be used
to analyze Staff Competencies, Data and Information, Business Processes, Lines
of Business and more, comparing them within current and future states of an

(c) Sparx Systems 2022 Page 438 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

enterprise. In Enterprise Architecture the matrix can be used to record gaps
between baseline, transition and target architectures, comparing Capabilities,
Architecture and Solution Components and more.

Options for the Gap The Gap Analysis Matrix can be configured to display different parts of the
Analysis Matrix repository. Once the appropriate Packages have been chosen for the Target and

Baseline, and the types of element have been selected for the filter, the Gap
element type can be selected. The element chosen for the gap will restrict the
available elements to represent the gap for 'Missing' or 'New' elements in cells in
the matrix. There are a number of choices available from the 'Options' menu,
including being able to update, delete and save the Gap Analysis Matrix as a
profile, giving it a name so that it can be recalled at a later time.

Update Current Profile
Save as Mew Profile
Delete Current Profile
Help...

Learn more about the Gap Gap Analysis Matrix
Analysis Matrix

(c) Sparx Systems 2022 Page 439 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/gap_analysis_matrix.htm

Guide to MBSE with SysML 3 October, 2022

Heat Map

Getting to know the Heatmap

Introducing the Heatmap A Heat Map is a type of chart that can be used to visualize data in two dimensions.
It uses the color of rectangles to indicate a dimension of the data and the relative
size of the rectangles to indicate another dimension. They are typically used to
create compelling representations of data for strategic or tactical decision making.
They can be used at any level of a repository from strategic architecture down to
Technology architectures.

Database types by useage

FostaresQl

SEIServer 2005

ol

Where to find the Double-click on Chart element | Chart Details | Source > Package
Heatmap

Usage of the Heatmap Heatmaps are typically used to create compelling representations of data for
strategic or tactical decision making. They can be used with Requirements to
indicate the statuses of a group of requirements and, if the metrics are available,
the estimated implementation cost of each requirement. They could be used with
an application or technology inventory to show the prevalence of technologies. For
example, which applications were developed in a particular language or run on a
particular operating system.

Options for the Heatmap As an alternative to specifying the parameters of the Heat Map in the fields on the
'Package’ tab, you can select the 'Custom SQL' tab and create a customized Heat
Map using SQL. You still specify the chart type in the '"Type' field, but the other
dialog fields are grayed out.

Learn more about the Heat Maps
Heatmap

(c) Sparx Systems 2022 Page 440 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/heat_maps.htm

Guide to MBSE with SysML 3 October, 2022

Import and Export Spreadsheets

Import and Export Spreadsheets

Introducing Import and This facility is a useful mechanism to import Requirements that have been defined

Export Spreadsheets in a Spreadsheet or a Word Processor table into Enterprise Architect. Once in
Enterprise Architect the Requirements can be managed and traced to elements
such as business drivers and Scenarios and Components. Alternatively
Requirements in Enterprise Architect can be exported to a Spreadsheet for the
purposes of providing them to a third party or for some type of numerical or
statistical analysis. The mapping between fields in the Spreadsheet and the
analogous properties in Enterprise Architect is completely configurable using a
specification.

For more detailed information exchange, the MDG Link for Microsoft Office
(available from Sparx Systems) provides additional functionality and integration
points useful when dealing with complex Requirements.

Package: Functional Requirements [_,*-’f
Specification: | Online Store Requirements = || | Edit/New...
File: Ci\sers\Public\Documents\Online Store Reguirements, csv

Types: Requirement

Code Page: | 65001 {UTF-&)

Action
i@ Import i) Export

Where to find Import and Ribbon: Publish > Model Exchange > CSV
Export Spreadsheets

Use of Import and Export This feature can be used to import or export Requirements from a CSV file. Before
Spreadsheets a tool such as Enterprise Architect was installed, Analysts might have used a
Spreadsheet or a table in their favorite word processor to record Requirements;
these can conveniently be imported using the CSV import facility. Alternatively,
Requirements sometimes have to be provided to a third party who will typically
specify that they want them in a Spreadsheet file; this can be achieved using the
export facility.

Options to Import and The import and export facility is completely configurable and has a user-defined
Export Spreadsheets specification to facilitate the mapping of Spreadsheet fields to Requirements
properties in Enterprise Architect. This facility also includes the ability to import
and export fields in Tagged Values of the Requirement.

Learn more about Import CSV Import and Export
and Export Spreadsheets

(c) Sparx Systems 2022 Page 441 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/csvimportexport.htm

Guide to MBSE with SysML 3 October, 2022

Parametric Diagram

Getting to know the Parametric Diagram

Introducing the The Parametric diagram is one of the Systems Modeling Language (SysML)
Parametric Diagram Structural diagrams that can be used to model systems of mathematical equations.
There is an assistant that will help to convert the equations into modeled elements
including properties. Once the equations are modeled they can be used to create
simulations using the OpenModelica integration.

bdd [package] Force=Mass*Acceleration(1) [Force=Mass*Acceleration(1)] /

«block»
FMA_Test

constraints
{f=m*a}

phs variables
f

phs constants

a=9.81
properties
m=10

Where to find the Ribbon: Design > Diagram > Add Diagram : Type = Systems Engineering >
Parametric Diagram SysML, Select From = SysML 1.5, Diagram Types = Parametric

Browser window Toolbar : Type = Systems Engineering > SysML, Select From =
SysML 1.5, Diagram Types = Parametric

Browser window Context Menu | Add Diagram : Type = Systems Engineering >
SysML, Select From = SysML 1.5, Diagram Types = Parametric

Usage of the Parametric The Parametric diagram can be used whenever you need to visualize or simulate a
Diagram system of equations.

Options for the Parametric The Parametric diagram has a number of options including the modeling of a
Diagram simple equation or a system of equations.

Learn more about the e Parametric Diagrams

Parametric Diagram e Class Diagram
L1ass Diagram

(c) Sparx Systems 2022 Page 442 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/parametric_diagrams.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/classdiagram.htm

Guide to MBSE with SysML 3 October, 2022

Patterns

Getting to know Patterns

Introducing Patterns A Pattern is a general reusable design solution to a commonly occurring problem
within a given architectural context. Patterns are not resolved designs, but rather
templates for how a problem can be solved. The concept originated in the building
architecture world and was first published in a book by Christopher Alexander
entitled Design Patterns. They were then applied to the software industry and
were used extensively by the software engineering domain to solve commonly
recurring software engineering problems, even though on the surface the nature of
the problems seemed quite different.

@ Pattern Basic Patterns::DriverAndGoals (Ver: 1.0) *

cdnivers
[Drveram]

zaddressess

«goals
[GoalName]

aobjectives
[ObjectiveMam]
etrackss

=M easlre:s
[Measure Name]

Where to find Patterns Create a Pattern:
Specialize > Technologies > Publish Technology > Publish Diagram as Pattern
Use a Pattern:

Start > Application > Share > Resources > Patterns <pattern group> >
Right-click on Pattern name > Add Pattern to Diagram

Usage of Patterns Patterns can be applied in a wide range of situations from business to technology
architecture, but are always used to apply a common solution to any number of
problems or contexts that on the surface might appear quite different. Enterprise
Architect has provided a useful mechanism for mining Patterns, which means that
any diagram can be published as a Pattern and then reused in the same or a

(c) Sparx Systems 2022 Page 443 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

different context. An example of a Pattern and its usage might be a Pattern
articulating the relationship between Drivers, Goals, Objectives and Measures. An
existing diagram could be published as a Pattern and then any business
architecture could reuse the Pattern by simply dragging it onto an empty diagram.

Options for Patterns Patterns are most commonly available from the 'Resources' tab of the Browser
window but are also sometimes built into technologies and made available from a
Toolbox page. There are a number of options available when publishing a Pattern,
including the ability to describe the details of the Pattern overall and to include
notes for each of the elements that make up the Pattern.

@ Save Diagram as UML Pattern X

Pattern Name: |Driver and Goals

Filename : "\Pattems"\Business Architecture"Drivers and Goals xml
Category: Business Architecture Pattems Version: 37
Notes: Intent

Allow a business architect to define how drivers are resolved o goals which in tum are broken down into
Objectives and which in tum are validated by Measures.

MName Type Create Merge Instance Type Default Comment

[Measure Mame] Requirement |:| [Measure Ma... A element for che...
[ObjectiveMame] Requirement D [ObjectiveMa... An element that s...
[GoalMame] Requirement |:| [GoalMame] An element that s...
[CrriverMame] Requirement |:| [CrriverMame] An element that s...

(c) Sparx Systems 2022 Page 444 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Relationship Matrix

Getting to Know the Relationship Matrix

Introducing the
Relationship Matrix

Where to find the
Relationship Matrix

Usage of the Relationship
Matrix

Options for the
Relationship Matrix

(c) Sparx Systems 2022

The Relationship Matrix provides a visualizing compelling matrix-style view for a
convenient analysis of the way that Requirements are related to each other and to
other elements in the model. It can be used to view the relationships between
Stakeholders and their Requirements, how Use Cases are related to Business
Requirements or Functional Requirements, how Capabilities are related to
Business Drivers, which Components implement a set of Requirements, and more.
Any number of matrices can be defined quickly and then saved to be viewed in
workshops, or included in documentation generated automatically from the model
or exported to a spreadsheet file. When a matrix is created, connections can be
viewed by placing the Requirements on one axis of the matrix and the connected
elements on the other axis, then the cells of the matrix will indicate the direction of
the relationship.

Target |+ -
] =
[:H]
E
== —_
L] m (=
= o =]
= | = — o
o — wn = o
(=] m a m w =
e W | = |5 | O <L |5 =
L o | D | = | = 5|2 |2 | o
Sle |2 |= | & T | e |5 |5 |2
|| |8 |2 wm D= |8 |9 |£
J g |0 | e |0 |8 |2 |c|&E D |x |2
@ @ @ = %) = @ = @ @ = D‘g
= o | ‘B | @ = | = o (= | 2
m = m a |2 2 = =] m T 5] =
c | =2 |c|g |2 |w|E|la|E|le || 3
m o = S |- o [T m [T =
= o = w o = o o = o 1 L]
— ('] L] =T Lo [1=] == o (=] = — (o]
— (= el ||l |=|= |85 |o |
= = = = = = = = = = = =
o o o o o o o o o o o o
O T T i N
+ | Source ¥ |E | |F | |C|E|E ||| |&
Add Mew Titles
Add To Shopping Basket T
Close Account T
Create Account T
Create Orders T
Delete User T

In the Browser window, click on a Package and select:

e The 'Resources' tab | Matrix Profiles | Right-click on a profile | Open Matrix
Profile or

e The Start ribbon > All Windows > Design > Tools > Package Matrix

To display the relationships that exist between elements - such as which
Requirements are realized by which Use Cases - in two Packages in a visually
compelling matrix. It is useful in analyzing missing elements or relationships; for
example, to determine which Requirements are not realized by any Use Case, or
which Components do not have corresponding Requirements or Use Cases. It is
particularly useful in workshops with Business Stakeholders who might not be
familiar with seeing Requirements in Trace diagrams.

There is a range of options that can be set for the Relationship Matrix, including
saving it to the 'Resources' tab of the Browser window or to a CSV format for

Page 445 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

opening in a spreadsheet. The appearance of the Relationship Matrix can also be
altered by sorting the elements, showing an outline numbering view, and
suppressing Package names. These items are available from the Options button on
the Relationship Matrix.

Save as Metafile

- Options
Scale Setting Matrix 3
Print Profiles]
Print Preview Options
E@ Help

Save as PNG
Export to C5V...

Learn more about the Relationship Matrix
Relationship Matrix

(c) Sparx Systems 2022 Page 446 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/elementrelationshipmatrix.htm

Guide to MBSE with SysML 3 October, 2022

Roadmap Diagram

Getting to know the Roadmap Diagram

Introducing the Roadmap The Roadmap diagram is an overlay that can be applied to any diagram to describe
Diagram significant phases in elements and how they change with the passage of time.

Unit: Quarterly Component Lifecycle

‘ Qriz ‘ Q213 ‘ Q318 ‘ Q418 ‘ Qrig ‘ Q219 ‘ Q319 ‘ Q419 ‘ Qr2o ‘ Q220 ‘03‘20 ‘ Q420 ‘ Qra2i ‘ Q221 ‘ Q321 ‘ Q421 Qr22 ‘02‘22 | Q322 ‘ C
N G e e e

e eloped in 2002

The T
system il be (incumbert andthe

@)

This diagram showsthe use of 3
esertih

in parallel for
appraximanely dwesks
or et

ion
o
uppored Fu
Supported Partially

[suovorensorte

companent can befully
evaluated

There is no restriction on the type of element that can appear on the diagram, and
any diagram can have a Roadmap overlay defined. Significant user defined phases
in the element's lifetime are represented by colored bars, which can be set to show
duration. The colors and the phases can be configured using a Diagram Legend,
which automatically applies them to the elements in the diagram. They are
particularly useful in Enterprise Architecture diagrams for describing capability
and application Roadmaps.

Where to find the Ribbon: Layout > Diagram > Roadmap

Roadmap Diagram pjoram Context Menu: Roadmap

Usage of the Roadmap The Roadmap diagram has a wide range of uses in Enterprise Architecture where
Diagram they can be used to show application and capability roadmaps to Systems
Engineering, where they are used to show timing in low level components.

Options for the Roadmap The Roadmap overlay has a range of options that determine the properties of the
Diagram timeline, such as the scale of the time rulers, units, their positions, and the
appearance of the time line including fonts and colors. The height and position of
the timeline can also be configured to suit the diagram and display.

(c) Sparx Systems 2022 Page 447 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Learn more about the
Roadmap Diagram

Roadmap options x

| Enabled

Timeline Properties

Foadmap Tile: Produck Lifecycle

[iz Quarkerly -

Tick zpacing:

Timelne Start: 1041042020 ~

Timeline End: 0441142020

Scale: b arker offzet: Ticks:

Timeline Appearance

Roadmap Position: | Top =

Timeline Height:

Timeline Color: —1 -~

Line Calar: I - | Lines &t major intervalz

| Center marker labels

Fant; A

| Uze legend for phase colors

] Cancel Help

The Diagram Legend can be configured to define the phases in the element's
lifetime, to set the specification of the colored bands and more. Roadmap
segments can be shown or hidden on individual elements in cases where a

particular segment might not apply to one or more of the elements on the diagram.

Roadmap Diagrams

(c) Sparx Systems 2022

Page 448 of 461

Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/roadmap_diagram.htm

Guide to MBSE with SysML 3 October, 2022

Specification Manager

Getting to Know the Specification Manager

Introducing the The Specification Manager is the central tool for working with Requirements; it
Specification Manager provides an interface resembling a Word Processor or Spreadsheet tool for

entering, maintaining and viewing Requirements. New Requirements can be
created with names and detailed descriptions and properties such as Status and
Priority can be added from drop-down lists. Existing Requirements can be viewed
and managed in a convenient view, and changing them in the Specification
Manager will change them in all other places in the repository such as diagrams
and windows. It is the perfect tool for those analysts more comfortable working
with text rather than diagrams and who are accustomed to working in a Word
Processor or Spreadsheet. It has the added advantage that the requirements are part
of a model and can be traced to other elements, including Business Drivers,
Stakeholders and Solution Components.

Item

1 REQO19 - Manage Inventory

The system MUST include a complete inventory management facility to
store and track stock of books for the on-line bookstore.

1.1 REQ122 - Inventory Reports

Inventory reports are required that detail the available stock for each
item including back orders. Future stock level reports should be able
to predict the quantity of stock at a specified future date.

1.2 REQO23 - Store and Manage Books

A book storage and management facility will be required.

1.2.1 REQOD22 - Order Books

A book order facility will be required to allow on-line ordering
from major stockist's.

1.2.2 REQO21 - List Stock Levels

A facility will exist to list current stock levels and to manually
update stock quantities if physical checking reveals
inconsistencies.

Where to find the Browser window | Right-click on Package | Specification Manager
Specification Manager

Usage of the Specification To create, view and maintain Requirements in a text based tool that resembles
Manager working in a word processor or spreadsheet. Details can be added to the
Requirements and Requirement properties can be added from drop-down lists.
When the Requirements are changed in the Specification Manager the changes are
conveniently reflected in the Browser window and all other windows.

Options for the There are a wide range of options available from the options menu, to tailor the
Specification Manager way you use the Specification Manager. These include Level (hierarchical)

(c) Sparx Systems 2022 Page 449 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Numbering, Auto Naming, Spell Check, Documentation, Import and Export of
Requirements, access to various related tools and more.

Specification Package
Default Specification Type
Open Relationship Matrix
Specification Review

Specification Management

Documentation and QA

Appearance 3

Learn more about the The Specification Manager
Specification Manager

(c) Sparx Systems 2022 Page 450 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/specification_manager.htm

Guide to MBSE with SysML 3 October, 2022

Strategy Map

A Strategy Map is a diagram that is used to describe the primary strategic goals that are important to an organization or
business team. The diagram shows four important perspectives that are the significant questions that provide the
definition of a strategy. The defined perspectives are: ‘Financial’, ‘Customer’, ‘Internal Business Processes’ and
‘Learning and Growth’. The diagram is used as a communication device to ensure there is a common understanding of
the strategy, to focus organization effort and to assist with the assessment of progress.

Financial Perspective

Long-Term Shareholder
Productivity Strategy value Growth Strategy

Increase Asset Expand Revenue Enhance Customer
Utilization Opportunities Value

Customer Perspective /

Customer Value Proposition

Improve Cost Stuchue

Price Consistent Quality High Availability Titles Selection Service Excellence Partnership Brand

Product or Service Attributes Relationship Image

el RN

Internal Perspective / l

Y

Operations Management Customer Management Innovation Processes Regulatory and Social
Processes Processes Processes
Design/Develop

Distribution Acqguisition Launch Community

Production Growth Opportunity ID Employment

Risk Retention R&D Portfolio Environment

Supply Selection Safety and Health

Learning and Growth Frerspe:‘tive ‘ J ‘

Human Capital

Information Capital

Organization Capital

Culture Leadership Alignment Teamwork

Getting to know the Strategy Map

Where to find the Strategy Ribbon: Design > Diagram > Add Diagram > Strategic Modeling > Strategy Map

Map Browser window Toolbar : New Diagram icon > Strategic Modeling > Strategy
Map

Browser window context menu | Add Diagram... > Strategic Modeling > Strategy

(c) Sparx Systems 2022 Page 451 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

Map

Usage of the Strategy Map The Strategy Map is used to model the key strategic goals that an organization or
management team intend to achieve. Elements in each of the four perspectives can
be linked to other elements in the repository to show how they could be
implemented at a business, application or technology level.

Options for the Strategy A Strategy Map can be created using Patterns that automatically create elements
Map and a diagram that can be used as a starting point for the Strategy Map. There are
three Patterns available, ranging from a very simple expression with a single
element in each perspective to a completely worked expression with multiple
elements in each perspective. A toolbox provides a range of additional elements
and relationships to extend the base maps created using the Patterns.
Toolbox O =
More tools... |-
£l Strategy Map
[, Perspective
Mission
Vision
Attribute

Initiative

Intangible Asset
Objective

Theme

Category

Family

Process

Proposition
Strategy

Activity

Cause & Effect Flow

Eve MUMMLMEOG GO O O M m

Group

El Patterns
¥% Strategy Map1
¥3 Strategy Map 2
¥% Strategy Map 3

Learn more about the Strategy Maps
Strategy Map

(c) Sparx Systems 2022 Page 452 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/strategy_maps.htm

Guide to MBSE with SysML 3 October, 2022

Library

Getting to know The Library

Introducing The Library The Library window provides an opportunity for developers, modelers, customers
and stakeholders to comment and provide feedback on the work in progress or at
the completion of a milestone or project.

Team Review o x

¥ % | <CumentModel> ~ 2| @

& Deployment Issues
=] E Requirement Issues
= Shopping Cart facility
E [Shopping Cart Button
B £ Model Links
REQO14 - Shopping Basket
& Use Case Model

Usage of The Library The Library feature can be used to conduct model reviews from any number of
perspectives, including walk-throughs, formal model reviews, or ad-hoc reviews.

Where to find The Library To post or view an element's discussion
Ribbon: Start > Collaborate > Model Library

Options for The Library There is a wide range of settings available to configure the Library, available from
the Category and Topic context menus, and including setting the status of the
category or topic and other options. Diagrams, elements and element features can
be conveniently dragged from the Browser window to create model links that can
be used by team members to hyperlink directly from the Library window to these
items in the Browser window.

(c) Sparx Systems 2022 Page 453 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

3 October, 2022

Learn more about Model
Library

= [Weekly Design Reviews

Thursday 20 June

0

e
e
L

New Document

MNew Document from Template
Rename (F2)

Copy Path To Clipboard

Share Resource

Refresh Topic ‘Thursday 20 June’

Reload Current Connection

Review Status

Mark
Bind to Project Erowser Package
Security Options

Connections...

Options...
Delete Topic Thursday 20 June’

Help...

4 Awaiting Approval [:}
4 Approved

Rejected

Maone

The Model Library

(c) Sparx Systems 2022

Page 454 of 461

Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/discussionforum.htm

Guide to MBSE with SysML 3 October, 2022

Time Aware Modeling

Getting to know Time Aware Modeling

Introducing Time Aware The Time Aware Modeling feature allows analysts, architects and others to create
Modeling incremental versions of their models by providing tools that facilitate the

migration of elements, diagrams and Packages through the dimension of time
allowing multiple transitions or versions to be created. The baseline ('As-is',
current state) models remain unaffected and any number of target ('To-Be', future
state) models can be constructed for the purpose of visualization and analysis. It is
particularly useful when a number of future options need to be represented and
compared effectively allowing 'what-if' analysis to be conducted. Time is one of
the most important dimensions in architecture as it is the substrate upon which all
changes occur. Architects are aware of its importance and have traditionally
created models with duplicated elements; time aware modeling allows the existing
elements, diagrams and Packages to be cloned.

Large tem small item U
Mounted Tablet This Time Aware M odeling
clone diagram shows the
elements from three
(FromlPicking differentversions of the

Mechanists Manual (from picking (from bicking model. The current state
1.0) Mechanisms Manual Mechanisms Manual
i

1p) 19

version 1.0, Version 2.0
and Version 3.0. The

; diagram has a version

| filter applied to cbscure all

elements not part of
Forklift Operator Forklift Mobile Robotic the version ofthe
Drive Unit diagram.

(from Picking
Mechanisms Manual
1.0)

%

«device» «devicen
Headset (& icati

Voice (D

(from picking
Mechanigms Voice (fro

cking
Assisted 2.0)

Mechanidms Voice
Assisted 2.0)
]

Version Legend

D 1.0
D 2.0
D 3.0

Warehouse Manager
Three

«device» | fo---mmmmm !
Wearable Computer

The component contains

an integrated voice
module

Where to find Time Aware Clone Package Structure as New Version
Modeling Riphon: Design > Package > Manage > Clone Structure as New Version

Browser window Context Menu: Clone Structure as New Version

Clone Diagram as New Version

Ribbon: Design > Diagram > Manage > Clone as New Version

Clone Element as New Version

Ribbon: Design > Element > Manage > Clone Element as New Version

Usage of Time Aware Time Aware Modeling can be applied in a wide range of situations in business and
Modeling technology models; it provides a way of showing how the entities represented by
the model change over time. The baseline ('As-Is', current state) models can be left

(c) Sparx Systems 2022 Page 455 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

unaffected, while any number of target ('To-Be', future state) models can be
constructed to reflect the possible evolution of the baseline models over time.
There are many areas where an analyst or architect will find this tool useful; for
example:

e Architects use models to document the current state and then move on to the
more challenging and rewarding task of defining how the future state will
look, often in a series of transitions

e When new customers are acquired, a Business Analyst is often challenged
with describing how a base product should be configured for these different
customer groups, resulting in different versions of the same product

e Business Strategists typically prescribe how a Capability model will look for
the organization of the future, resulting in at least two versions of the
Capability model

e During Mergers and Acquisitions, Business Architects are tasked with
describing the possible states of the enterprise after the takeover is complete

e Engineers are required to develop better, more efficient solutions to meet the
challenges of the future, so define newer versions of the solution

e Testers need to be aware of different versions of a product when designing
and running test cases

e Infrastructure engineers need to define future environments in response to
performance or security concerns, creating multiple versions of servers,
devices and even whole facilities

All of the situations require that time is incorporated into the models so that it can
be reasoned about and made explicit. Enterprise Architect's Time Aware modeling
facilities can be used in these situations to ensure that time is included as a first
class citizen in the models. Time is not measured or modeled in absolute or
relative terms, but by representing any number of future states or differences in the
form of versions.

Options for Time Aware The Time Aware Modeling features allow a modeler to clone Packages, diagrams
Modeling and elements. Most models are not trivial and Enterprise Architect provides a wide
range of tools that will assist in the visualization of the models and how they
change over time. The Traceability window will be particularly useful for viewing
the connection between elements in the time aware models and other parts of the
repository. A very useful feature is the ability to apply a filter to a diagram based
on version, thus obscuring elements that are not part of a particular version.

Version: 21

| Filter to Version

Learn more about Time Time Aware Models
Aware Modeling

(c) Sparx Systems 2022 Page 456 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/time_aware_models.htm

Guide to MBSE with SysML

3 October, 2022

Traceability Window

Getting to Know the Traceability Window

Introducing the
Traceability Window

Where to find the
Traceability Window

Usage of the Traceability
Window

(c) Sparx Systems 2022

The Traceability window provides a hierarchical view of element connections,
allowing traceability to be visualized and queried as elements are traversed in the
model. This tool is particularly useful because a modeler will often choose to hide
diagram relationships, but by selecting an element in the diagram and viewing its
connections in the Traceability window all its relationships will be revealed.

Traceability v 1 X

6 B Rl 8 - @
4 T Add To Shopping Basket
[+ = s
4 ¥ implements
[+ [RECO14 - Shopping Basket
ShoppingBasket
ShoppingBasket
realized by
ShoppingBasket
ShoppingBasket
s
4 & UseCase from
% Client
4 ¥ needed by
4 & Baskethlanager
d ¥ needed by
4 E viveb Server
4 * composed of
4 F) 216230.46.96
4 € Association from
4] HOESO1
4 € Association from
4 B HoFw
[» € Association from
[» =¥ Association to

o vy

=

BrowseCatalogue

Start > Application > Design > Traceability

The Traceability window provides a hierarchical view of the way an element is
connected to other elements in the repository, along with the type of each
relationship. This window gives a complete list of all relationships that cannot be
seen by viewing elements in the Browser window and that also might not appear
in any diagrams. It is very useful for managing Requirements and tracing how a
Requirement is related to upstream process elements such as Business Drivers and
downstream process elements such as Components. It is a useful tool, enabling

Page 457 of 461 Created with Enterprise Architect

Guide to MBSE with SysML

Options for the
Traceability Window

Learn more about the
Traceability Window

(c) Sparx Systems 2022

3 October, 2022

newcomers to a model to gain a quick understanding of which are the important
and well connected elements. Before you delete an element in the model, you
should use the Traceability window to ensure that you understand that element's
existing relationships.

There is a series of options that restrict traceability to specified connector types;
these options can be set to alter what is displayed in the window. The options are
available from the toolbar at the top of the window.

R]
SRS,
4
®
oy

Generalizations
Aggregations
Mesting
Realizations
Dependencies

Transitions

R L |

Other Links

Classifiers

Embedded Element Reuse
v | Transformations

v | Custom References

Qualified Mames

The Traceability Window

Page 458 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/hierarchy.htm

Guide to MBSE with SysML 3 October, 2022

Value Chain

Getting to know the Value Chain

Introducing the Value The Value Chain is a strategic diagram that allows the primary and secondary
Chain activities in an organization to be modeled. The diagram can be created from a
Pattern that adds and connects the five primary activities in a chain and the four
supporting activities underpinning them.

Firm Infrastructure

Human Resource Management

Technology Development

Procurement
Inbound) Cutbound Marketing &)
o Operations o Service
Logistics Logistics Sales

D Primary Activities

The Gross Sales element acts as a frame for the Primary Activity and Support
Activity elements.

An Analyst working at the strategic business unit level will often be asked to
model the activities the business unit performs to provide value to its customers.
The Value Chain is the preferred tool for creating this strategic representation of
the sequence of activities that an organization performs.

Where to find the Value Ribbon: Design > Diagram > Add Diagram > Strategic Modeling > Value Chain

Chain Browser window Toolbar : New Diagram icon > Strategic Modeling > Value
Chain
Browser window context menu | Add Diagram... > Strategic Modeling > Value
Chain

Usage of the Value Chain The Value Chain is an important tool to assist with strategic planning allowing the
whole sequence (or chain) to be understood. It also allows the chain to be broken
down into its constituent activities allowing the evaluation of costs, resource and

(c) Sparx Systems 2022 Page 459 of 461 Created with Enterprise Architect

Guide to MBSE with SysML 3 October, 2022

value to be determined and potentially improved.

Options for the Value Each one of the Primary and Supporting Activities can be linked to other elements
Chain in the model including a Linked Document and elements that define benchmarks.

Toolbox O =

More tools... &

=l Value Chain

[T Gross 5ales

= Primary Activity

[support Activity
= Patterns

¥ Value Chain =

The Value Chain diagram (like any diagram) can be viewed as an element list
which makes working with the element's properties easier.

Diagram Filters can also be used when presenting the diagrams to draw attention
to parts of the diagrams.

Learn more about the Value Chains
Value Chain

(c) Sparx Systems 2022 Page 460 of 461 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/value_chain.htm

Guide to MBSE with SysML 3 October, 2022

(c) Sparx Systems 2022 Page 461 of 461 Created with Enterprise Architect

	Guide to MBSE with SysML
	An Equation with Four Variables
	The Engineering Method or Process
	Modeling as a Discipline
	Getting Started
	Defining a Model's Purpose
	Deciding Where to Start
	Connecting Parts of the Model
	Ensuring a Model's Quality

	The Systems Modeling Language (SysML)
	Enterprise Architect the Modeling Tool
	Collaboration Platform
	Project Management Workbench
	Model Repository

	Getting Started
	Setting Up a Model Structure
	Tailoring the Application
	Setting a Perspective
	Selecting a Visual Style
	Selecting a Workspace
	Setting Preferences

	Importing Existing Material
	Creating Diagrams Elements and Relationships
	Visualizing the Models
	Synchronizing with External Data

	Where we are Heading
	Getting to Know the SysML Diagrams
	Common Aspects of Diagrams
	Block Definition Diagram
	Requirement Diagram
	Use Case Diagram
	Package Diagram
	Activity Diagrams
	Internal Block Diagram
	Parametric Diagram
	Sequence Diagram
	StateMachine Diagram

	Systems Modeling Language Overview
	Language Architecture
	Key Grammatical Concepts
	Models, Diagrams, Elements and Views

	Collaborating as an Engineering Team
	Central Shared Repository
	Cloud Computing
	Discussions and Chat
	Kanban Resources and Calendars
	Model Reviews
	Sharing Resources in the Model Library
	Viewing Models on Mobile Devices
	Modeling the Future
	Version Control and Baselines
	Reusable Asset Server

	Using Packages to Structure the Repository
	The Function of Packages
	Introducing Package Diagrams
	Package Organization Regimes
	The Browser Window
	Accessing the Repository using Model Views

	Requirement Definition and Management
	Requirements as First Class Citizens
	Introducing Requirement Diagrams
	Developing Requirements
	Elicitation
	Document Sources
	User Observations
	Stakeholder Workshops
	Creating Requirements
	External and Internal Requirements
	Requirement Categories
	Requirement Properties

	Specification
	Meet the Specification Manager

	Analysis
	Prioritize the Requirements

	Validation

	Visualizing Requirements
	Requirements Diagrams
	Specification Manager
	Browsers and Views
	Relationship Matrix
	Requirements Tables

	Managing Requirements
	Tracing Requirements
	Tracking Requirements
	Managing Changing Requirements
	Impact Analysis of Changes
	Requirement Volatility
	Requirement Reuse

	Requirement Relationships
	Adding Refinement to a Requirement
	Containment Relationship
	Copying Existing Requirements
	Deriving a Requirement from Another
	Ensuring a Requirement is Satisfied
	Traceability to Model Elements
	Verify Relationship
	Visualizing Requirement Relationships

	Documenting Requirements
	Project Glossary
	Software Requirement Specification

	Describing User Goals with Use Cases
	Requirements and Use Cases
	Introducing Use Case Diagrams
	Meet the Scenario Builder
	Structuring a Use Case Model
	Generating Behavior Diagrams
	Use Case Report

	Using Blocks to Model Structure and Constraints
	Getting Started with Blocks
	Modelling Constraints as Blocks
	Introducing Block Definition Diagrams
	The Fundamental Structural Building Blocks
	Modeling Structural Features
	Modeling Behavioral Features
	Other Block Relationships
	Modeling Interaction Points
	Modeling Quantity using Value Types

	Using Properties and Parts to Model Block Usage
	Introducing Internal Block Diagrams
	Modeling and Connecting Parts

	Modeling Parametric Equations
	Introducing Parametric Diagrams
	Systems of Equations using Part Associations
	Measures of Effectiveness using Parametrics

	Coordinating Behavior with Activities
	Actions the Fundamental Behavioral Building Blocks
	Introducing Activity Diagrams
	Creating Activity Hierarchies
	Specifying Action Sequence with Control Flows
	Specifying Item Flow with Object Flows
	Modeling Inputs and Outputs with Parameters and Pins
	Visualizing Activities with Simulations
	Allocations and other Relationships

	Modeling Change with StateMachines
	States and Behaviors
	Introducing StateMachine Diagrams
	Triggers and Transitions
	Composite States and Regions
	Pseudostates - The Traffic Police
	State Tables - Another View
	Visualizing and Implementing with Simulations

	Interactions as a Sequence of Messages
	Lifelines, Messages and Activations
	Introducing the Sequence Diagram
	Message Orchestration with Fragments

	Visualizing with Simulations
	SysML Simulation in Modelica and Simulink
	How SysML Simulation Works
	Getting Started with OpenModelica
	Creating Models for Simulation

	Example SysML Model
	Package Overview (Structure of the Sample Model)
	Package Diagram - Applying the SysML Profile
	Package Diagram - Showing Package Structure of the Model

	Setting the Context (Boundaries and Use Cases)
	Operational Domain Model - Setting Context
	Use Case Diagram - Top Level Use Cases
	Use Case Diagram - Operational Use Cases

	Elaborating Behavior (Sequence and StateMachine Diagrams)
	Sequence Diagram - Drive Black Box
	StateMachine Diagram - HSUV Operational States
	Sequence Diagram - Start Vehicle Black Box and White Box

	Establishing Requirements (Requirements Diagrams and Tables)
	Requirement Diagram - HSUV Requirement Hierarchy
	Requirement Diagram - Derived Requirements
	Requirement Diagram - Acceleration Requirement Relationships
	Table - Requirements Table

	Breaking Down the Pieces (Block Definition Diagrams, Internal Block Diagrams)
	Block Definition Diagram - Automotive Domain
	Block Definition Diagram - Hybrid SUV
	Internal Block Diagram - Hybrid SUV
	Block Definition Diagram - Power Subsystem
	Internal Block Diagram for the Power Subsystem

	Defining Ports and Flows
	Block Definition Diagram - ICE Flow Properties
	Internal Block Diagram - CAN Bus
	Block Definition Diagram - Fuel Flow Properties
	Parametric Diagram - Fuel Flow

	Analyze Performance (Constraint Diagrams, Timing Diagrams, Views)
	Block Definition Diagram - Analysis Context
	Package Diagram - Performance View Definition
	Package Diagram - Viewpoint Definition
	Package Diagram - View Definition
	Package Diagram - View Hierarchy
	Parametric Diagram - Measures of Effectiveness
	Parametric Diagram - Economy
	Parametric Diagram - Dynamics
	(Non-Normative) Timing Diagram - 100hp Acceleration

	Defining, Decomposing, and Allocating Activities
	Activity Diagram - Acceleration (top level)
	Block Definition Diagram - Acceleration
	Activity Diagram (EFFBD) - Acceleration (detail)
	Internal Block Diagram - Power Subsystem Behavioral and Flow Allocation
	Internal Block Diagram: Property Specific Values - EPA Fuel Economy Test

	Meet the Systems Engineering Tools
	Requirements Diagram
	Activity Diagram
	Use Case Diagram
	Scenario Builder
	Auditing
	Calendar
	Block Definition Diagram
	Internal Block Diagram
	Dashboard Diagrams
	Decision Tree Diagram
	StateMachine Diagram
	Documentation
	Gap Analysis Matrix
	Heat Map
	Import and Export Spreadsheets
	Parametric Diagram
	Patterns
	Relationship Matrix
	Roadmap Diagram
	Specification Manager
	Strategy Map
	Library
	Time Aware Modeling
	Traceability Window
	Value Chain

