
Software Engineering

ENTERPRISE ARCHITECT

User Guide Series

Author: Sparx Systems

Date: 2022-10-03

Version: 16.0

CREATED WITH

Table of Contents

Software Engineering 7
Getting Started 9
Example Diagram 11
Integrated Development 12

Feature Overview 14
Generate Source Code 16

Generate a Single Class 18
Generate a Group of Classes 19
Generate a Package 20
Update Package Contents 22

Synchronize Model and Code 24
Namespaces 25

Importing Source Code 26
Import Projects 28
Import Source Code 30
Notes on Source Code Import 31
Import Resource Script 33
Import a Directory Structure 35
Import Binary Module 37
Classes Not Found During Import 38

Editing Source Code 39
Languages Supported 42
Configure File Associations 43
Compare Editors 44
Code Editor Toolbar 45
Code Editor Context Menu 48

Create Use Case for Method 51
Code Editor Functions 53

Function Details 54
Intelli-sense 57
Find and Replace 59
Search in Files 62

Find File 65
Search Intelli-sense 67

Code Editor Key Bindings 69
Application Patterns (Model + Code) 73
MDG Integration and Code Engineering 75

Behavioral Model Code Generation 76
Code Generation - Activity Diagrams 79
Code Generation - Interaction Diagrams 81
Code Generation - StateMachines 82

Legacy StateMachine Templates 86
Java Code Generated From Legacy StateMachine Template 88

StateMachine Modeling For HDLs 94
Win32 User Interface Dialogs 96

Modeling UI Dialogs 98
Import Single Dialog from RC File 100

Import All Dialogs from RC File 101
Export Dialog to RC File 102
Design a New Dialog 103

Gang of Four (GoF) Patterns 106
ICONIX 108
Configuration Settings 110

Source Code Engineering Options 111
Code Generation Options 113

Import Component Types 115
Source Code Options 116
Options - Code Editors 118

Editor Language Properties 120
Options - Object Lifetimes 122
Options - Attribute/Operations 123

Modeling Conventions 125
ActionScript Conventions 127
Ada 2012 Conventions 129
C Conventions 132

Object Oriented Programming In C 134
C# Conventions 136
C++ Conventions 139

Managed C++ Conventions 142
C++/CLI Conventions 143

Delphi Conventions 145
Java Conventions 147

AspectJ Conventions 149
PHP Conventions 150
Python Conventions 152
SystemC Conventions 153
VB.NET Conventions 155
Verilog Conventions 158
VHDL Conventions 160
Visual Basic Conventions 163

Language Options 165
ActionScript Options - User 167

ActionScript Options - Model 168
Ada 2012 Options - User 169

Ada 2012 Options - Model 170
ArcGIS Options - User 171

ArcGIS Options - Model 172
C Options - User 173

C Options - Model 174
C# Options - User 176

C# Options - Model 177
C++ Options - User 178

C++ Options - Model 179
Delphi Options - User 181

Delphi Options - Model 182
Delphi Properties 183

Java Options - User 184
Java Options - Model 185

MySQL Options - User 187
MySQL Options - Model 188

PHP Options - User 189
PHP Options - Model 190

Python Options - User 191
Python Options - Model 192

SystemC Options - User 193
SystemC Options - Model 194

Teradata Options - User 195
Teradata Options - Model 196

VB.NET Options - User 197
VB.NET Options - Model 198

Verilog Options - User 199
Verilog Options - Model 200

VHDL Options - User 201
VHDL Options - Model 202

Visual Basic Options - User 203
Visual Basic Options - Model 204

MDG Technology Language Options 205
Reset Options 206

Set Collection Classes 207
Example Use of Collection Classes 209

Local Paths 212
Local Paths Dialog 213

Language Macros 215
Developing Programming Languages 217
Code Template Framework 219

Code Template Customization 220
Code and Transform Templates 221

Base Templates 223
Export Code Generation and Transformation Templates 226
Import Code Generation and Transformation Templates 227
Synchronize Code 228

Synchronize Existing Sections 230
Add New Sections 231
Add New Features and Elements 232

The Code Template Editor 233
Create New Custom Template 235

Code Template Syntax 236
Literal Text 237
Variables 238
Macros 240

Template Substitution Macros 242
Field Substitution Macros 244

Substitution Examples 245
Attribute Field Substitution Macros 247
Class Field Substitution Macros 249
Code Generation Option Field Substitution Macros 252
Connector Field Substitution Macros 256
Constraint Field Substitution Macros 260
Effort Field Substitution Macros 261

File Field Substitution Macros 262
File Import Field Substitution Macros 263
Link Field Substitution Macros 264
Linked File Field Substitution Macros 266
Metric Field Substitution Macros 267
Operation Field Substitution Macros 268
Package Field Substitution Macros 270
Parameter Field Substitution Macros 271
Problem Field Substitution Macros 272
Requirement Field Substitution Macros 273
Resource Field Substitution Macros 274
Risk Field Substitution Macros 275
Scenario Field Substitution Macros 276
Tagged Value Substitution Macros 277
Template Parameter Substitution Macros 279
Test Field Substitution Macros 280

Function Macros 281
Control Macros 287

List Macro 288
Branching Macros 290
Synchronization Macros 292
The Processing Instruction (PI) Macro 293

Code Generation Macros for Executable StateMachines 294
EASL Code Generation Macros 304

EASL Collections 307
EASL Properties 310

Call Templates From Templates 317
The Code Template Editor in MDG Development 318

Create Custom Templates 319
Customize Base Templates 321
Add New Stereotyped Templates 322
Override Default Templates 324

Grammar Framework 325
Grammar Syntax 326

Grammar Instructions 327
Grammar Rules 328
Grammar Terms 329
Grammar Commands 330
AST Nodes 332

Editing Grammars 340
Parsing AST Results 342
Profiling Grammar Parsing 343
Macro Editor 344
Example Grammars 345

Code Analyzer 346
Code Miner Framework 355

Code Miner Libraries 357
Creating a New Code Miner Database 360

Code Miner Queries 365
Code Miner Query Language (mFQL) 366

The mFQL Language 367

Set Extraction 374
Set Traversal 376
Set Joining 378

Sparx Intel Service 380
Sparx Intel Service Configuration 381
Sparx Intel Service Automatic Update 386
Service Configuration 389
Client Configuration - Configuring Enterprise Architect to Use a Code Miner Service 390

Software Engineering 3 October, 2022

Software Engineering

Create and Manage Effective and Productive Structural and Behavioral Models of Software

Software engineering is the discipline of designing, implementing and maintaining software. The process of software
engineering starts with requirements and constraints as inputs, and results in programming code and schemas that are
deployed to a variety of platforms, creating running systems.

Enterprise Architect has a rich set of tools and features that assist Software Engineers to perform their work efficiently
and reduce the number of errors in implemented solutions. The features include design tools to create models of
software, automated code generation, reverse engineering of source code, binaries and schemas, and tools to synchronize
source code with the design models. The programming code can be viewed and edited directly in the integrated Code
Editors within Enterprise Architect, which provide Intelli-sense and other features to aid in coding.

Another compelling aspect of the environment is the ability to trace the implementation Classes back to design elements
and architecture, and then back to the requirements and constraints and other specifications, and ultimately back to
stakeholders and their goals and visions.

Enterprise Architect supports a wide range of programming languages and platforms and provides a lightweight and
seamless integration with the two most prevalent Integrated Development Environments: Visual Studio and Eclipse. In
addition there is a fully featured Execution Analyzer that allows the Software Engineer to design, build debug and test
software modules right inside Enterprise Architect.

Facilities

Facility Description

Development Tools Discover the tightly Integrated Development Environment with outstanding tools
and functionality.

(c) Sparx Systems 2022 Page 7 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Code, Build and Debug Model, develop, debug, profile and manage an application from within the
modeling environment.

Visual Analysis of
Executing Code

Understand your code base by visually analyzing running code. Use Test Points,
profiling and automated diagram generation.

Generate Source Code Explore some of the ways to generate source code for a single Class, a selection of
Classes, or a whole Package. Generate from structural or behavioral models.

Importing Source Code Examine existing systems by importing source code into Enterprise Architect. View
and modify dialog definitions. Synchronize the model with the latest updates to
source code.

(c) Sparx Systems 2022 Page 8 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Getting Started

Configuration Settings

Selecting the Perspective

Enterprise Architect partitions the tool's extensive features into Perspectives, which ensures that you can focus on a
specific task and work with the tools you need without the distraction of other features. To work with Software Model
features you first need to select one of these Perspectives:

The Software Engineering Set:

<perspective name> > Software Engineering > Code Engineering

<perspective name> > Software Engineering > GoF Patterns

<perspective name> > Software Engineering > ICONIX

The UX Design Set:

<perspective name> > UX Design > Win 32 UI Models

Setting the Perspective ensures that the Case Management Model and Notation diagrams, their tool boxes and other
features of the Perspective will be available by default.

Example Diagram

An example diagram provides a visual introduction to the topic and allows you to see some of the important elements
and connectors that you use to specify or describe classes for the visualization of software and the forward and reverse
engineering to and from a wide range of programming languages.

Integrated Development

In this topic you will learn how to use the fully featured integrated development environment. You will learn how to
create structural and behavioral models of software artifacts in a rich code editor, generate and reverse engineer code,
customize the way code is generated, run analyzer scripts to optimize code, use the debugger and set units test and much
more.

Behavioral Models

Behavioral Models

In this topic you will learn how to generate code for software, system and hardware description languages directly from
behavioral diagrams including: StateMachine, Sequence and Activity Diagrams. This will add new dimensions and

(c) Sparx Systems 2022 Page 9 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

precisions to the way you work with software and engineering systems.

Gang of Four (GoF) Patterns

This topic introduces the renowned twenty-three design patterns collected together as the Gang of Four (GoF) patterns
which refers to their four authors. You will have at hand the solutions to common problems facing software engineers
and be able to inject these patterns into your own models adding to the quality and rigor to your software systems.

Win32 User Interface Dialogs

In this topic you will learn how to work with Enterprise Architect's User Interface modeling capability that allows you to
model user interface screens using Win32® controls. The models can be forward or reverse engineered and can also
provide an interface for StateMachine and Activity diagram simulation, allowing them to receive and process user input.

Code Template Framework

In this topic you will learn how to work with the Code Template Framework which governs how models and converted
to code. There are a standard set of templates but you can extended these to create your own templates and to generate
code to suit your needs. There are also templates that control transformations and the generation of Database Definition
Language (DDL.

Grammar Framework

In this topic you will learn how to create a grammar to convert an unsupported programming language into a UML
model. Enterprise Architect has built in support for a wide range of programming languages but if you need to work with
an unsupported language you can use the Grammar Framework to write your own parser. The grammar is used to reverse
engineer programming code in the form of text and is the direct compliment of the Code Template Framework which you
would you to specify how a UML model for an unsupported language is converted to code.

Code Miner Framework

In this topic you will learn how to work with a database of source code which provides access to the data hidden within
source code in a timely and effective manner. Source code is parsed creating a tree structure which can be used to
analyze program structure, calculate metrics, trace relationships and even perform refactoring.

(c) Sparx Systems 2022 Page 10 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Example Diagram

Software diagrams allow you to model the structure and behavior of software including User Interfaces. Enterprise
Architect has at its core fundamental support for modelling software and the tool supports a wide range of programming
languages and paradigms. In this diagram we see Classes used to model an online shop, including Classes that contain
compartments for Attributes, Operations and Properties. An Enumeration has also been used to model Order Status.

(c) Sparx Systems 2022 Page 11 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Integrated Development

Enterprise Architect provides an unmatched set of tools and features for the Software Engineer, to assist in the process of
creating robust and error free software systems. The engineer can start by defining the architecture and ensuring that it
traces back to the requirements and specification. Technology neutral models can be transformed to target a
comprehensive range of programming languages. The Model Driven Development Environment fits the bill for various
technologies.

Features

Development Tools Model driven development with best-in-class UML tools·
Generate and reverse engineer code·
Customize code generation with templates·
Analyzer Scripts to manage your applications·
Code editors to author the code base·
Debuggers to investigate behavior·
Profilers to visualize behavior·
Analyzers to record behavior·
Testpoints for validation of programming contracts·
Integration with jUnit and nUnit·
Eclipse or Visual Studio Integration where required·

Traceability At a glance traceability of Generalizations, Realizations, Associations,
Dependencies and more. Customize relationship views. Easily navigate related
elements in the model.

Usage Quickly browse element usage across all diagrams. Perform effective element
searches using sophisticated queries.

Popular Languages C/ C++·
Java·

(c) Sparx Systems 2022 Page 12 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Microsoft .NET family·
ADA·
Python·
Perl·
PHP·

Toolboxes Toolboxes are provided for a vast array of modeling technologies and programming
languages.

Application Patterns Enterprise Architect provides complete starter projects, including model
information, code and build scripts, for several basic application types.

(c) Sparx Systems 2022 Page 13 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Feature Overview

Code Engineering with Enterprise Architect broadly encompasses various processes for the design, generation and
transformation of code from your UML model.

Features

Model Driven Code
Engineering

Source code generation and reverse engineering for many popular languages,·
including C++, C#, Java, Delphi, VB.Net, Visual Basic, ActionScript, Python
and PHP

A built in 'syntax highlighting' source code editor·
Code generation templates, which enable you to customize the generated·
source code to your company specifications

Transformations for
Rapid Development

Advanced Model Driven Architecture (MDA) transformations using·
transformation templates

Built-in transformations for DDL, C#, Java, EJB and XSD·
One Platform Independent Model can be used to generate and synchronize·
multiple Platform Specific Models, providing a significant productivity boost

XSL Transform diagram, toolbox, editor and debugger.·

Visual Execution Analysis
/ Debugging, Verification

and Visualization

Execute build, test, debug, run and deploy scripts·
Integrate UML development and modeling with source development and·
compilation

Generate NUnit and JUnit test Classes from source Classes using MDA·
Transformations

Integrate the test process directly into the Enterprise Architect IDE·
Debug .NET, Mono, Java and Microsoft Native (C, C++ and Visual Basic)·
applications

Design and execute Test suites based on Programming by Contract principles·
XSL Stylesheet debugging·

Database Modeling Enterprise Architect enables you to:

Reverse engineer from many popular DBMSs, including SQL Server, My SQL,·
Access, PostgreSQL and Oracle

Model database tables, columns, keys, foreign keys and complex relationships·
using UML and an inbuilt data modeling profile

Forward generate DDL scripts to create target database structures·

XML Technology
Engineering

Enterprise Architect enables you to rapidly model, forward engineer and reverse
engineer two key W3C XML technologies:

XML Schema (XSD)·
Web Service Definition Language (WSDL)·

XSD and WSDL support is critical for the development of a complete Service
Oriented Architecture (SOA), and the coupling of UML 2.5 and XML provides the
natural mechanism for implementing XML-based SOA artifacts within an
organization.

(c) Sparx Systems 2022 Page 14 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

(c) Sparx Systems 2022 Page 15 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Generate Source Code

Source code generation is the process of creating programming code from a UML model. There are great benefits in
taking this approach as the source code Packages, Classes and Interfaces are automatically created and elaborated with
variables and methods.

Enterprise Architect can also generate code from a number of behavioral models, including StateMachine, Sequence and
Activity diagrams. There is a highly flexible template mechanism that allows the engineer to completely tailor the way
that source code is generated, including the comment headers in methods and the Collection Classes that are used.

From an engineering and quality perspective, the most compelling advantage of this approach is that the UML models
and therefore the architecture and design are synchronized with the programming code. An unbroken traceable path can
be created from the goals, business drivers and the stakeholder’s requirements right through to methods in the
programming code.

Facilities

Facility Description

Languages Enterprise Architect supports code generation in each of these software languages:

Action Script·
Ada·
ArcGIS·
C·
C# (for .NET 1.1, .NET 2.0 and .NET 4.0)·
C++ (standard, plus .NET managed C++ extensions)·
Delphi·
Java (including Java 1.5, Aspects and Generics)·
JavaScript·
mFQL·
MySql·
PHP·
Python·
Teradata SQL·
Visual Basic·
Visual Basic .NET·
WorkFlowScript·

You can also generate Hardware Definition Language code in these languages:

VHDL·
Verilog·
SystemC·

(c) Sparx Systems 2022 Page 16 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Elements Code is generated from Class or Interface model elements, so you must create the
required Class and Interface elements to generate from. All other types of element
to contribute to the code (such as StateMachines or Activities) must be child
elements of a Class.

Add attributes (which become variables) and operations (which become methods).
Constraints and Receptions are also supported in the code.

Settings Before you generate code, you should ensure the default settings for code
generation match your requirements; set up the defaults to match your required
language and preferences.

Preferences that you can define include default constructors and destructors,
methods for interfaces and the Unicode options for created languages.

Languages such as Java support 'namespaces' and can be configured to specify a
namespace root.

In addition to the default settings for generating code, Enterprise Architect
facilitates setting specific generation options for each of the supported languages.

Code Template Framework The Code Template Framework (CTF) enables you to customize the way Enterprise
Architect generates source code and also enables generation of languages that are
not specifically supported by Enterprise Architect.

Local Paths Local path names enable you to substitute tags for directory names.

Behavioral Code You can also generate software code from three UML behavioral modeling
paradigms:

Interaction (Sequence) diagrams·
Activity diagrams·
StateMachine diagrams (using Legacy StateMachine Templates in the code·
generation operations under 'Tasks')

StateMachine diagrams (using an Executable StateMachine Artifact)·

Live Code Generation On the 'Develop > Source Code > Options' drop-down menu, you have the option to
update your source code instantly as you make changes to your model.

Tasks When you generate code, you perform one or more of these tasks:

Generate a Single Class·
Generate a Group of Classes·
Generate a Package·
Update Package Contents·

Notes

Most of the tools provided by Enterprise Architect for code engineering and debugging are available in the·
Professional and higher editions of Enterprise Architect; Behavioral Code Generation is available in the Unified and
Ultimate Editions

When security is enabled you require the access permissions 'Generate Source Code and DDL' and 'Reverse·
Engineer from DDL and Source Code'

(c) Sparx Systems 2022 Page 17 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Generate a Single Class

Before you generate code for a single Class, you:

Complete the design of the model element (Class or Interface)·
Create Inheritance connectors to parents and Associations to other Classes that are used·
Create Inheritance connectors to Interfaces that your Class implements; the system provides an option to generate·
function stubs for all interface methods that a Class implements

Generate code for a single Class

Step Action

1 Open the diagram containing the Class or Interface for which to generate code.

2 Click on the required Class or Interface and select the 'Develop > Source Code > Generate > Generate
Single Element' ribbon option, or press F11.

The 'Generate Code' dialog displays, through which you can control how and where your source code is
generated.

3
In the 'Path' field, click on the button and select a path name for your source code to be generated to.

4 In the 'Target Language' field, click on the drop-down arrow and select the language to generate; this
becomes the permanent option for that Class, so change it back if you are only doing one pass in another
language.

5 Click on the Advanced button.

The 'Object Options' dialog displays, providing subsets of the 'Source Code Engineering' and code
language options pages on the 'Preferences' dialog.

6 Set any custom options (for this Class alone), then click on the Close button to return to the 'Generate
Code' dialog.

7 In the 'Import(s) / Header(s)' fields, type any import statements, #includes or other header information.

Note that in the case of Visual Basic this information is ignored; in the case of Java the two import text
boxes are merged; and in the case of C++ the first import text area is placed in the header file and the
second in the body (.cpp) file.

8 Click on the Generate button to create the source code.

9 When complete, click on the View button to see what has been generated.

Note that you should set up your default viewer/editor for each language type first; you can also set up the
default editor on the 'Code Editors' page of the Preferences window ('Start > Application > Preferences >
Preferences > Source Code Engineering > Code Editors').

(c) Sparx Systems 2022 Page 18 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Generate a Group of Classes

In addition to being able to generate code for an individual Class, you can also select a group of Classes for batch code
generation. When you do this, you accept all the default code generation options for each Class in the set.

Generate Class Group

Step Detail

1 Select a group of Classes and/or interfaces in a diagram.

2 Click on an element in the group and select the 'Develop > Source Code > Generate > Generate Selected
Element(s)' ribbon option (or press Shift+F11).

If no code exists for the selected elements, the 'Save As' dialog displays on which you specify the file path
and name for each code file; enter this information and click on the Save button.

3 The 'Batch Generation' dialog displays, showing the status of the process as it executes (the process might
be too fast to see this dialog).

If code already exists for the selected Class elements, and changes have been made to the Class name or
structure, the 'Synchronize Element <package name>.<element name>' dialog might also display; this
dialog helps synchronize the model and code.

Notes

If any of the elements selected are not Classes or interfaces the option to generate code is not available·

(c) Sparx Systems 2022 Page 19 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Generate a Package

In addition to generating source code from single Classes and groups of Classes, you can generate code from a Package.
This feature provides options to recursively generate code from child Packages and automatically generate directory
structures based on the Package hierarchy. This helps you to generate code for a whole branch of your project model in
one step.

Access

Ribbon Develop > Source Code > Generate > Generate All

Keyboard Shortcuts Ctrl+Alt+K

Generate code from a Package, on the Generate Package Source Code dialog

Step Action

1 In the 'Synchronize' field, click on the drop-down arrow and select the appropriate synchronize option:

'Synchronize model and code': Code for Classes with existing files is forward synchronized with that·
file; code for Classes with no existing file is generated to the displayed target file

'Overwrite code': All selected target files are overwritten (forward generated)·
'Do not generate': Generate code for only those selected Classes that do not have an existing file; all·
other Classes are ignored

2 Highlight the Classes for which to generate code; leave unselected any to not generate code for.

If you want to display more of the information within the layout, you can resize the dialog and its
columns.

3 To make Enterprise Architect automatically generate directories and filenames based on the Package
hierarchy, select the 'Auto Generate Files' checkbox; this enables the 'Root Directory' field, in which you
select a root directory under which the source directories are to be generated.

By default, the 'Auto Generate Files' feature ignores any file paths that are already associated with a Class;
you can change this behavior by also selecting the 'Retain Existing File Paths' checkbox.

4 To include code for all sub-Packages in the output, select the 'Include Child Packages' checkbox.

5 Click on the Generate button to start generating code.

As code generation proceeds, Enterprise Architect displays progress messages. If a Class requires an
output filename the system prompts you to enter one at the appropriate time (assuming Auto Generate
Files is not selected). For example, if the selected Classes include partial Classes, a prompt displays to
enter the filename into which to generate code for the second partial Class.

Further information on the dialog options

(c) Sparx Systems 2022 Page 20 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Option Action

Root Package Check the name of the Package for which code is to be generated.

Synchronize Select options that specify how existing files should be regenerated.

Auto Generate Files Specify whether Enterprise Architect should automatically generate file names and
directories, based on the Package hierarchy.

Root Directory If Auto Generate Files is selected, display the path under which the generated
directory structures are created.

Retain Existing File Paths If Auto Generate Files is selected, specify whether to use existing file paths
associated with Classes.

If Auto Generate Files is unselected, Enterprise Architect generates Class code to
automatically determined paths, regardless of whether source files are already
associated with the Classes.

Include all Child Packages Also generate code for all Classes in all sub-Packages of the target Package in the
list.

This option facilitates recursive generation of code for a given Package and its
sub-Packages.

Select Objects to Generate List all Classes that are available for code generation under the target Packages;
only code for selected (highlighted) Classes is generated.

Classes are listed with their target source file.

Select All Mark all Classes in the list as selected.

Select None Mark all Classes in the list as unselected.

Generate Start the generation of code for all selected Classes.

Cancel Exit the 'Generate Package Source Code' dialog; no Class code is generated.

(c) Sparx Systems 2022 Page 21 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Update Package Contents

In addition to generating and importing code, Enterprise Architect provides the option to synchronize the model and
source code, creating a model that represents the latest changes in the source code and vice versa. You can use either the
model as the source, or the code as the source.

The behavior and actions of synchronization depend on the settings you have selected on the 'Attributes and Operations'
page of the 'Preferences' dialog. Working with these settings, you can either protect or automatically discard information
in the model that is not present in the code, and prompt for a decision on code features that are not in the model. In these
two examples, the appropriate checkboxes have been selected for maximum protection of data:

You generated some source code, but made subsequent changes to the model; when you generate code again,·
Enterprise Architect adds any new attributes or methods to the existing source code, leaving intact what already
exists, which means developers can work on the source code and then generate additional methods as required from
the model, without having their code overwritten or destroyed

You might have made changes to a source code file, but the model has detailed notes and characteristics you do not·
want to lose; by synchronizing from the source code into the model, you import additional attributes and methods
but do not change other model elements

Using the synchronization methods, it is simple to keep source code and model elements up to date and synchronized.

Access

Ribbon Develop > Source Code > Synchronize > Synchronize Package

Synchronize Package contents against source code

Field/Button Action

Update Type Select the radio button to either Forward Engineer or Reverse Engineer the Package
Classes, as appropriate.

Include child packages in
generation

Select the checkbox to include child Packages in the synchronization.

OK Click on the button to start synchronization.

Enterprise Architect uses the directory names specified when the project source was
first imported/generated and updates either the model or the source code depending
on the option chosen. If:

Performing forward synchronization AND·
There are differences between the model and code AND·
The 'On forward synch, prompt to delete code features not in model' checkbox·
is selected in the 'Options - Attributes and Operations' dialog

THEN the 'Synchronize Element <package name>.<element name>' dialog
displays.

Otherwise, no further action is required.

(c) Sparx Systems 2022 Page 22 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Notes

Code synchronization does not change method bodies; behavioral code cannot be synchronized, and code generation·
only works when generating the entire file

In the Corporate, Unified and Ultimate Editions of Enterprise Architect, if security is enabled you must have·
'Generate Source Code and DDL' permission to synchronize source code with model elements

(c) Sparx Systems 2022 Page 23 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Synchronize Model and Code

You might either:

Synchronize the code for a Package of Classes against the model in the Browser window, or·
Regenerate code from a batch of Classes in the model·

In such processes, there might be items in the code that are not present in the model.

If you want to trap those items and resolve them manually, select the 'On forward synch, prompt to delete code features
not in model' checkbox in the 'Options - Attributes and Operations' dialog, so that the 'Synchronize Element <package
name>.<element name>' dialog displays, providing options to respond to each item.

Synchronize Items

Button Detail

Select All Highlight and select all items in the Feature column.

Clear All Deselect and remove highlighting from all items in the Feature column.

Delete Mark the selected code features to be removed from the code (the value in the
Action column changes to Delete).

Reassign Mark the selected code features to be reassigned to elements in the model.

This is only possible when an appropriate model element is present that is not
already defined in the code.

The Select the Corresponding Class Feature dialog displays, from which you select
the Class to reassign the feature to. Click on the OK button to mark the feature for
reassignment.

Ignore Mark the selected code elements not present in the model to be ignored completely
(the default; the value in the Action column remains as or changes to <none>).

Reset to Default Reset the selected items to Ignore (the value in the Action column changes to
<none>).

OK Make the assigned changes to the items, and close the dialog.

(c) Sparx Systems 2022 Page 24 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Namespaces

Languages such as Java support Package structures or namespaces. In Enterprise Architect you can specify a Package as
a namespace root, which denotes where the namespace structure for your Class model starts; all subordinate Packages
below a namespace root will form the namespace hierarchy for contained Classes and Interfaces.

To define a Package as a namespace root, click on the Package in the Browser window and select the 'Develop > Source
Code > Options > Set as Namespace Root' ribbon option. The Package icon in the Browser window changes to show a
colored corner indicating this Package is a namespace root.

Generated Java source code, for example, will automatically add a Package declaration at the beginning of the generated
file, indicating the location of the Class in the Package hierarchy below the namespace root.

To clear an existing namespace root, click on the namespace root Package in the Browser window and deselect the
'Develop > Source Code > Options > Set as Namespace Root' ribbon option

To view a list of namespaces, select the 'Settings > Reference Data > Settings > Namespace Roots' ribbon option; the
'Namespaces' dialog displays. If you double-click on a namespace in the list, the Package is highlighted in the Browser
window; alternatively, right-click on the namespace and select the 'Locate Package in Browser' option.

You can also clear the selected namespace root by selecting the 'Clear Namespace Attribute' option.

To omit a subordinate Package from a namespace definition, select the 'Develop > Source Code > Options > Suppress
Namespace' ribbon option; to include the Package in the namespace again, deselect the ribbon option.

Notes

When performing code generation, any Package name that contains whitespace characters is automatically treated as·
a namespace root

(c) Sparx Systems 2022 Page 25 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Importing Source Code

The ability to view programming code and the models it is derived from at the same time brings clarity to the design of a
system. One of Enterprise Architect's convenient code engineering features is the ability to Reverse Engineer source code
into a UML model. A wide range of programming languages are supported and there are options that govern how the
models are generated. Once the code is in the model it is possible to keep it synchronized with the model regardless of
whether the changes were made directly in the code or the model itself. The code structures are mapped into their UML
representations; for example, a Java class is mapped into a UML Class element, variables are defined as attributes,
methods modeled as operations, and interactions between the Java classes represented by the appropriate connectors.

The representation of the programming code as model constructs helps you to gain a better understanding of the structure
of the code and how it implements the design, architecture and the requirements, and ultimately how it delivers the
business value.

It is important to note that if a system is not well designed, simply importing the source into Enterprise Architect does
not turn it into an easily understandable UML model. When working with a poorly designed system it is useful to assess
the code in manageable units by examining the individual model Packages or elements generated from the code; for
example, dragging a specific Class of interest onto a diagram and then using the 'Insert Related Elements' option at one
level to determine the immediate relationships between that Class and other Classes. From this point it is possible to
create Use Cases that identify the interaction between the source code Classes, providing an overview of the application's
operation.

Several options guide how the code is reversed engineered, including whether comments are imported to notes and how
they are formatted, how property methods are recognized and whether Dependency relationships are created for
operation return and parameter types.

Copyright Ownership

Situations that typically lend themselves to reverse engineering tend to operate on source code that:

You have already developed·
Is part of a third-party library that you have obtained permission to use·
Is part of a framework that your organization uses·
Is being developed on a daily basis by your developers·

If you are examining code that you or your organization do not own or do not have specific permission to copy and edit,
you must ensure that you understand and comply with the copyright restrictions on that code before beginning the
process of reverse engineering.

Supported languages for Reverse Engineering

Language

Action Script

Ada 2012 (Unified and Ultimate Editions)

(c) Sparx Systems 2022 Page 26 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

C

C#

C++

CORBA IDL (MDG Technology)

Delphi

Java

PHP

Python

SystemC (Unified and Ultimate Editions)

Verilog (Unified and Ultimate Editions)

VHDL (Unified and Ultimate Editions)

Visual Basic

Visual Basic .NET

Notes

Reverse Engineering is supported in the Professional, Corporate, Unified and Ultimate Editions of Enterprise·
Architect

If security is enabled you must have 'Reverse Engineer From DDL And Source Code' permission to reverse engineer·
source code and synchronize model elements against code

Using Enterprise Architect, you can also import certain types of binary file, such as Java .jar files and .NET PE files·
Reverse Engineering of other languages is currently available through the use of MDG Technologies listed on the·
MDG Technology pages of the Sparx Systems website

(c) Sparx Systems 2022 Page 27 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Import Projects

Enterprise Architect provides support for importing software projects authored in Visual Studio, Mono, Eclipse and
NetBeans. Importing and working on projects in Enterprise Architect has multiple benefits, not least the immediate
access to Enterprise Architect's renowned modeling tools and management features, but also the access to development
tools such as simulation, debugging and profiling.

Access

Ribbon Develop > Source Code > Solutions > Import a <project type>

Import a Visual Studio Solution

This option allows you to import one or more projects from an existing Visual Studio Solution file or a running instance
of Visual Studio. The wizard will generate a Class model for each of the projects and the appropriate Analyzer Scripts
for each Visual Studio configuration.

Import a Mono Solution

This option allows you to import Mono projects from a solution file. The dialog that is presented is the same as the
'Visual Studio Import' dialog, but you can choose to target either Linux or Windows. The wizard will generate a Class
model for each of the projects and configure them for debugging. The generated Analyzer Scripts reference msbuild to
build the projects.

Import an Eclipse Project

The Eclipse 'Wizard' can reverse engineer a Java project described by its Eclipse .project file and ANT build. The feature
will result in a UML Class model and Analyzer Scripts for each of the ANT targets you select. The process will also
generate a script for each debug protocol you select through the 'Wizard'. You will be presented with the choice of JDWP
(Java Debug Wire Protocol), good for servers, and JVMTI (Java Virtual Machine Tools Interface), which is suited to
standalone Java applications. These scripts should be used for debugging the project in Enterprise Architect.

Import a NetBeans Project

The NetBeans 'Wizard' can reverse engineer a Java project described by a NetBeans XML project file and ANT build.
The 'Wizard' will create a UML Class model of the project and Analyzer Scripts for each of the ANT targets you select.
The process will also generate a script for each debug protocol you select through the 'Wizard'. These scripts should be
used for debugging the project in Enterprise Architect. You will be presented with the choice of JDWP (Java Debug
Wire Protocol), good for servers, and JVMTI (Java Virtual Machine Tools Interface), which is suited to standalone Java
applications.

Import Options

(c) Sparx Systems 2022 Page 28 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

When you select to import a Visual Studio or Mono Solution, the 'Visual Studio Solution Import' dialog displays.
Complete the fields as directed in this table.

When you select to import an Eclipse or Netbeans solution, the appropriate Wizard start screen displays. Work through
the screens as directed by the prompts on each screen.

Option Description

<list of projects> After you have selected the solution file, the projects in the solution are listed in the
panel. Select the projects to be imported by the Wizard.

You can use the All button to select all projects, and the None button to clear the
selection of projects.

Select Solution File Browse for and select the Solution file to import from. The Mono Solution files and
Visual Studio Solution files have a .sln file extension.

Perform a Dry Run Select this option to perform the import as a dry run, to check for any errors in the
process or output before you repeat the import to change the model content. Click
on the View Log button to check the log of the import.

Create Package per File Select this option to perform the import with finer granularity, creating a separate
Package for each file.

Import Click on this button to start the import process.

Prompt for Missing Macro
Definitions

Not applicable to Mono Solution imports.

For C++ projects in Visual Studio, the parser might encounter unrecognized
macros. If you select this option, you will be prompted when such an event occurs
and will have the opportunity to define the macro. If you do not select this option,
the resultant Class model could be missing certain items.

Create Diagram for Each
Package

When selected, a Class diagram is created depicting the Class model for each
Package. The result is a larger but more colorful model. Deselecting this option will
cause diagram creation to be skipped and the import to run faster.

Generate Analyzer Scripts For Visual Studio Solutions, selecting this option will generate Analyzer Scripts for
each project configuration in addition to scripts for each Solution configuration.
The scripts will allow for building and debugging the program(s) described by the
solution immediately after the import completes. Select the 'Windows' checkbox; if
you do not select this option, no Execution Analyzer features will be configured.

For Mono Solutions, this option allows you to target either Linux or Windows. If
you select Linux, it is assumed the machine on which Enterprise Architect is
running is Linux, that the platform (Java or Mono) is installed there, and that the
compiled programs run on Linux.

Startup Project When this option is selected, the script for this Project will become the model
default. The debugging tools, Execute ribbon and Toolbar buttons will
automatically target this program.

(c) Sparx Systems 2022 Page 29 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Import Source Code

You can import source code into your Enterprise Architect model, to reverse-engineer a module. As the import proceeds,
Enterprise Architect provides progress information. When all files are imported, Enterprise Architect makes a second
pass to resolve associations and inheritance relationships between the imported Classes.

Procedure - Import source code

Step Action

1 In the Browser window, select (or add) a diagram into which to import the Classes.

2 Click on the diagram background and either:

Select the 'Develop > Source Code > Files' ribbon option and click on the appropriate language, or·
If the Code Generation toolbar is displayed, click on the 'Import' drop-down arrow and select the·
language to import

The list of languages will include any customized languages you have created model structures for.

3 From the file browser that appears, locate and select one or more source code files to import.

4 Click on the Open button to start the import process.

(c) Sparx Systems 2022 Page 30 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Notes on Source Code Import

You can import code into your Enterprise Architect project, in a range of programming languages. Enterprise Architect
supports most constructs and keywords for each coding language. You select the appropriate type of source file for the
language, as the source code to import.

If there is a particular feature you require support for that you feel is missing, please contact Sparx Systems.

Notes

When reverse engineering attributes with parameter substitutions (templated attributes):·
 - If a Class with proper template parameter definitions is found, an Association connector is
 created and its parameter substitutions are configured
 - An Association connector is also created if a matching entry is defined as a Collection Class or
 in the 'Additional Collection Classes' option (for C#, C++ and Java); for an example, see Example
 Use of Collection Classes

Programming Language notes

Language Notes

ActionScript Appropriate type of source file: .as code file.

C Appropriate type of source file: .h header files and/or .c files.

When you select a header file, Enterprise Architect automatically searches for the
corresponding .c implementation file to import, based on the options for extension
and search path specified in the C options.

Enterprise Architect does not expand macros that have been used, these must be
added into the internal list of Language Macros.

C++ Appropriate type of source file: .h header file.

Enterprise Architect automatically searches for the .cpp implementation file based
on the extension and search path set in the C++ options; when it finds the
implementation file, it can use it to resolve parameter names and method notes as
necessary.

When importing C++ source code, Enterprise Architect ignores function pointer
declarations.

To import them into your model you could create a typedef to define a function
pointer type, then declare function pointers using that type; function pointers
declared in this way are imported as attributes of the function pointer type.

Enterprise Architect does not expand macros that have been used; these must be
added into the internal list of Language Macros.

C# Appropriate type of source file: .cs.

Delphi Appropriate type of source file: .pas.

Java Appropriate type of source file: .java.

Enterprise Architect supports the AspectJ language extensions.

(c) Sparx Systems 2022 Page 31 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Aspects are modeled using Classes with the stereotype aspect; these aspects can
then contain attributes and methods as for a normal Class.

If an intertype attribute or operation is required, you can add a tag 'className' with
the value being the name of the Class it belongs to.

Pointcuts are defined as operations with the stereotype <<pointcut>>, and can occur
in any Java Class, Interface or aspect; the details of the pointcut are included in the
'behavior' field of the method.

Advice is defined as an operation with the stereotype <<advice>>; the pointcut this
advice operates on is in the 'behavior' field and acts as part of the method's unique
signature.

afterAdvice can also have one of the Tagged Values returning or throwing.

PHP Appropriate type of source file: .php, .php4, or .inc.

Nested if condition syntax is enabled.

Python Appropriate type of source file: .py.

Visual Basic Appropriate type of source file: .cls Class file.

Visual Basic .NET Appropriate type of source file: .vb Class file.

(c) Sparx Systems 2022 Page 32 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Import Resource Script

Enterprise Architect supports the import and export of Microsoft Windows Resource Scripts (as .rc files), which contain
the Win32® dialog definitions (those with the stereotype «win32Dialog») for an application's graphical user interface.
Dialog resources are imported and exported for a specific language, defaulting to the locale of the current computer
system.

Access

Ribbon Develop > Source Code > Files > Import Resource Script

Keyboard Shortcuts F7 (synchronize element with code)

Import dialog resources from a .rc file

Option Action

Resource File
Click on the button and locate the .rc file to import the screen elements(s)
from.

Resource ID Either:

Leave the default value 'All' to import all screen elements from the file, or·
Click on the drop-down arrow and select the screen ID of a specific dialog to·
import

Language Click on the drop-down arrow and select the language version (such as English -
United States) of the dialog(s) to import.

Import Click on this button to import the screens from the resource file.

The progress of the import is reported in the field underneath the 'Language' field.

Export a dialog to a .rc file

Option Action

Screen ID Defaults from the Win32UI ID Tagged Value of the selected Screen element.

(If the dialog does not have this ID, open the 'Win32UI' page of the element's
'Properties' dialog and provide a value for the ID tag.)

Resource File
Click on the button and locate the .rc file into which to export the screen
element(s).

(c) Sparx Systems 2022 Page 33 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

If the element was previously imported, this field defaults to the source file.

Language Click on the drop-down arrow and select the language version (such as English -
United States) of the exported dialog.

Export Click on this button to export the screens from the resource file.

The progress of the export is reported in the field underneath the 'Language' field.

Notes

New dialogs are exported to an existing .rc file·
In an export to an existing .rc file, no dialogs are ever deleted from the file, even when they are deleted from the·
model

In an import, no dialogs are deleted from the model even when omitted from the original .rc file·

(c) Sparx Systems 2022 Page 34 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Import a Directory Structure

You can import from all source files in a complete directory structure, which enables you to import or synchronize
multiple files in a directory tree in one pass.

Enterprise Architect creates the necessary Packages and diagrams during the import process.

Access

Ribbon Develop > Source Code > Files > Import Source Directory

Keyboard Shortcuts Ctrl+Shift+U

Import a directory structure, using the 'Import Source Directory' dialog

Field Action

Root directory Type in or browse for the name of the directory to import.

Source Type Type in or select from the drop-down list the coding language of the files to import
in the source directory.

File Type in or select from the drop-down list, the file extensions to include in the
import. Use a ';' to separate values.

Perform a Dry Run If you want to perform the import as a dry run when you click on the OK button,
select this check box. When processing is complete, click on the View Log button
to check the predicted outcome of the process.

Recursively Process
Subdirectories

If you want to include the contents of subdirectories in the import process, select
this check box.

Import components from If you want to import additional files (as described in the 'Import Component
Types' dialog) select this checkbox. You then complete the prompt to specify where
the components will come from.

Do not import private
members

If you want to exclude private members from the model when importing libraries,
select this checkbox.

Prompt for Missing Macro
Definitions

During the import, the parser might encounter unrecognized macros. If you select
this check box, you will be prompted when such an event occurs and will have the
opportunity to define the macro. If you do not select this option, the resultant
Package structure could be missing certain items.

Package Structure Select the appropriate radio button to create a Package for every directory, every
namespace or every file; this might be restricted depending on the source type
selected.

(c) Sparx Systems 2022 Page 35 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Create Diagram for each
Package

Select this checkbox to create a diagram in each Package created in the import.
Click on the Options button to identify which element features to include on the
diagrams.

Synchronization Select the appropriate radio button to synchronize existing classes or overwrite
existing classes.

If a model Class is found that matches the one in code:

'Synchronize' updates the model Class to include the details from the one in·
code, which preserves information not represented in code, such as the location
of Classes in diagrams

'Overwrite' deletes the model Class and generates a new one from code; any·
additional information is not preserved.

If the option 'Use timestamps' is selected, then the representation with the latest
time stamp (either model or code) will take precedence.

Remove Classes not found
in code

Select the appropriate radio button to specify how to handle existing model classes
that are not present in the imported code.

'Never delete' retains all existing Classes in the model.·
'Prompt for action' enables you to review Classes individually·
'Always' delete' removes from the model any Class that is not present in the·
imported code.

OK Click on this button to start the import.

(c) Sparx Systems 2022 Page 36 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Import Binary Module

Enterprise Architect enables you to reverse-engineer certain types of binary module.

Access

Ribbon Develop > Source Code > Files > Import Binary Module

Use

Currently the permitted types are:

Java Archive (.jar)·
.NET PE file (.exe, .dll) - Native Windows DLL and EXE files are not supported, only PE files containing .NET·
assembly data

Intermediate Language file (.il)·
Enterprise Architect creates the necessary Packages and diagrams during the import process; selecting the 'Do not import
private members' checkbox excludes private members from libraries from being imported into the model.

When importing .NET files, you can import via reflection or via disassembly, or let the system select the best method -
this might result in both types being used.

The reflection-based importer relies on a .NET program, and requires the .NET runtime environment to be installed.

The disassembler-based importer relies on a native Windows program called Ildasm.exe, which is a tool provided with
the MS .NET SDK; the SDK can be downloaded from the Microsoft website.

A choice of import methods is available because some files are not compatible with reflection (such as mscorlib.dll) and
can only be opened using the disassembler; however, the reflection-based importer is generally much faster.

You can also configure:

Whether to Synchronize or Overwrite existing Classes when found; if a model Class is found matching the one in·
the file:
 - Synchronize updates the model Class to include the details from the one in the file, which
 preserves information not represented in the file, such as the location of Classes in diagrams
 - Overwrite deletes the model Class and generates a new one from the file, which deletes and
 does not replace the additional information

Whether to create a diagram for each Package·
What is shown on diagrams created by the import·

(c) Sparx Systems 2022 Page 37 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Classes Not Found During Import

When reverse engineering from your code, there might be times when Classes are deliberately removed from your source
code.

The 'Import Source Directory' functionality keeps track of the Classes it expects to synchronize with and, on the 'Import
Directory Structure' dialog, provides options for how to handle the Classes that weren't found.

You can select the appropriate option to make Enterprise Architect, at the end of the import, ignore the missing Classes,
automatically delete them or prompt you to manage them.

On the 'Import Directory Structure' dialog, if you select the 'Prompt For Action' radio button to manually review missing
Classes, a dialog displays on which you specify the handling for each Class that was missing in the imported code.

By default, all Classes are marked for deletion; to keep one or more Classes, select them and click on the Ignore button.

(c) Sparx Systems 2022 Page 38 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Editing Source Code

Enterprise Architect contains a feature-rich source code editor that helps you to view, edit and maintain your source code
directly inside the tool. Once source code has been generated for one or more Classes it can be viewed in this flexible
editing environment. Seeing the code in the context of the UML models from which it is derived brings clarity to both
the code and the models, and bridges the gap between design and implementation that has historically introduced errors
into software systems.

The Source Code Editor is fully-featured, with a structure tree for easy navigation of attributes, properties and methods.
Line numbers can be displayed and syntax highlight options can be configured. Many of the features that software
engineers are familiar with in their favorite IDE, such as Intelli-sense and code completion are included in the editor.
There are many additional features, such as macro recording that makes it easy to manage the source code inside
Enterprise Architect. There are also many options for managing the code, available through the code editor context
menu, toolbar and function keys.

For most programming languages a single file is created from a UML Class, but in the case of C++ both header and
implementation classes are created and the source code editor displays these files in separate tabs.

A number of options change the way the source code editor works; they can be altered using the 'Preferences' dialog
available from the Start ribbon:

 'Start > Appearance > Preferences > Preferences > Source Code Engineering > Code Editors'

There are variants of the Source Code Editor, with different access methods. The variants are discussed in the Compare
Editors topic.

Access

Ribbon Execute > Source > Edit > Open Source File (external file) or

Execute > Source > Edit > Edit Element Source (for an existing source file) or

Execute > Source > Edit > Edit New Source File or

Design > Element > Behavior or

(c) Sparx Systems 2022 Page 39 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Develop > Source Code > Behavior

Keyboard Shortcuts F12 or Ctrl+E (for existing code for model elements)

Ctrl+Alt+O (to locate external files)

Facilities

Facility Description

Source Code editor By default the Source Code editor is set to:

Parse all opened files, and show a tree of the results·
Show line numbers·

If you are editing an XML file, the structure tree mirrors the exact order and
structure of the document.

Structure Tree The file structure tree is available for supported language files, such as C++, C#,
Java and XML. The tree can be helpful to navigate content quickly in much the
same way a table of contents would for other documents.

Simulation Behaviors If you are editing the behaviors of the elements in a StateMachine or Activity
diagram, the Code Editor allows you to list and edit the behaviors of all elements in
the diagram together, using a structure tree.

(c) Sparx Systems 2022 Page 40 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

In this illustration you can see a number of States within a StateMachine, each of
which has operations and Behaviors, and all of which are listed together and can be
selected without leaving or changing the editor window.

Notes

For most selected elements you can use the keys F12 or Ctrl+E to view the source code.·
When you select an element to view source code, if the element does not have a generation file (that is, code has not·
been or cannot be generated, such as for a Use Case), Enterprise Architect checks whether the element has a link to
either an operation or an attribute of another element - if such a link exists, and that other element has source code,
the code for that element displays

You can also locate the directory containing a source file that has been created in or imported to Enterprise·
Architect, and edit it or its related files using an external editor such as Notepad or Visual Studio; click on the
element in the Browser window and press Ctrl+Alt+Y

(c) Sparx Systems 2022 Page 41 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Languages Supported

The Source Code Editors can display code in a wide range of languages, as listed here. For each language, the editor
highlights - in colored text - the standard code syntax.

Ada (.ada, .ads, .adb)·
ActionScript (.as)·
BPEL Document (.bpel)·
C++ (.h, .hh, .hpp, .c, .cpp, .cxx)·
C# (.cs)·
DDL Structured Query Language (.sql)·
Delphi/Pascal (.pas)·
Diff/Patch Files (.diff, .patch)·
Document Type Definition (.dtd)·
DOS Batch Files (.bat)·
DOS Command Scripts (.cmd)·
HTML (.html)·
Interface Definition Language (.idl, .odl)·
Java (.java)·
JavaScript (.javascript)·
JScript (.js)·
Modified Backus-Naur Form Grammar (.mbnf)·
PHP (.php, .php4, .inc)·
Python (.py)·
Standard Generalized Markup Language (.sgml)·
SystemC (.sc)·
Visual Basic 6 (.bas)·
VB.NET (.vb)·
VBScript (.vbs)·
Verilog (.v)·
VHSIC Hardware Description Language (.vhdl)·
Visual Studio Resource Configuration (.rc)·
XML (eXtensible Markup Language) (.xml)·
XSD (XML Schema Definition)·
XSL (XML Stylesheet Language)·

(c) Sparx Systems 2022 Page 42 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Configure File Associations

If you are a Windows® user, you can configure Enterprise Architect to be the default document handler for your
language source files.

Access

Ribbon Start > Appearance > Preferences > Preferences > Source Code Engineering >

Code Editors : Configure Enterprise Architect File Associations

Actions

For each file type that you would prefer to open in Enterprise Architect, click on the checkbox to the left of the file type
name. After selecting all of the document types you require, click on the Save button.

After this, clicking on any corresponding file in Windows® Explorer will open it in Enterprise Architect.

Notes

You can change the default programs, or documents handled by them, directly through the 'Default Programs' option·
in Windows ® Control panel.

(c) Sparx Systems 2022 Page 43 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Compare Editors

Enterprise Architect provides four principal code editor variants, available through a number of access paths. The most
direct access options are identified in these descriptions.

The first three code editor variants listed have the same display format, option toolbar, context menu options and internal
function keys. They differ in their method of access and display mechanism.

Editor Variants

Variant Details

Source Code View F12

Ctrl+E

Class context menu | 'View Source Code'

Description: Displays the code on a tab of the Diagram View; the tab label shows
the file name and extension (such as .java); again, for C++, there are two tabs for
the Header and Implementation files.

You can display the source code for other Classes on additional tabs, by reselecting
the menu option/keys on the next Class.

Source Code window
(Dockable)

Alt+7

'Execute > Source > Edit > Open Source File'

Description: Displays the contents of the source file for a selected Class (except if
the language is C++, when the window displays a tab for the Header file and a tab
for the Implementation file).

If you select a different Class, the window changes to show the code for the new
Class (unless the first Class calls the second, in which case the window scrolls
down to the second Class's code instead).

Internal Editor, External
Source Code

Ctrl+Alt+O

'Execute > Source > Edit > Open Source File' ribbon option

Description: Use this option if you intend to edit external code, XML or DDL files
(that is, code not imported to or generated in Enterprise Architect).

Displays an external browser, then opens the specific selected code file as a tab of
the Diagram View (for C++, not two code files); otherwise this is identical to the
F12 option.

External Editor, Internal or
External Source Code

Ctrl+Alt+Y

Class context menu | Open Source Directory

Description: Displays an external file browser, open to the directory containing the
selected Class's source files; you can open the files in Notepad, Visual Studio or
other tools you might have on your system.

(c) Sparx Systems 2022 Page 44 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Code Editor Toolbar

When you are reviewing the code for a part of your model in the Source Code editor, you can access a wide range of
display and editing functions from the editor toolbar.

Code Editor Toolbar

Toolbar Options

Structure Tree Click on this icon to show or hide the element hierarchy panel (the left panel of the
Source Code editor).

Line Numbers Click on this icon to show or hide the line numbers against the lines of code.

Source Code Engineering
Properties

Click on the drop-down arrow to display a menu of options to select individual
'Source Code Engineering' pages of the 'Preferences' dialog, from which you can
configure display and behavior options for source code engineering:

Language·
Syntax Highlighting Options·
Code Editor Options·
Code Engineering Options·
Code Editor Key Bindings·

Editor Functions Click on the drop-down arrow to display a menu providing access to a range of
code editing functions:

Open Corresponding File (Ctrl+Shift+O) - opens the header or implementation·
file associated with the currently-open file

Go to Matching Brace (Ctrl+E) - for a selected opening or closing brace,·
highlights the corresponding closing or opening brace in the pair

Go to Line (Ctrl+G) - displays a dialog on which you select the number of the·
line to highlight; click on the OK button to move the cursor to that line

Cursor History Previous (Ctrl+-) - the Source Code viewer keeps a history of·
the previous 50 cursor positions, creating a record when the cursor is moved
either more than 10 lines away from its previous position, or in a
find-and-replace operation; the menu option moves the cursor to the position in
the immediately-previous cursor history record

Cursor History Next (Ctrl+Shift+-) - if you have moved to an earlier cursor·
position, this option moves the cursor to the position in the
immediately-following cursor history record

Find (Ctrl+F) - displays a dialog in which you define a text string and search·
options to locate that text string in the code

Replace (Ctrl+R) - displays a dialog in which you define a text string and·
search options to locate that text string in the code and replace it with another
text string; the dialog has options to locate and replace each occurrence as you
decide, or to replace all occurrences immediately

Highlight Matching Words - (Ctrl+3) Enables or disables the highlighting of·

(c) Sparx Systems 2022 Page 45 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

matching words during a find operation; by default this option is enabled

Record Macro - records your next keystrokes to be saved as a macro·
Stop Recording and Save Macro - stops recording the keystrokes and displays·
the 'Save Macro' dialog on which you specify a name for the macro

Play Macro - displays the 'Open Macro' dialog from which you select and·
execute a saved macro, to repeat the saved keystrokes

Toggle Line Comment (Ctrl+Shift+C) - comments out (//) or re-establishes the·
code for each full line in which text is highlighted

Toggle Stream Comment (Ctrl+Shift+X) - inserts a stream comment (/* */) at·
the cursor position (comments out only the highlighted characters and lines), or
re-establishes the commented text as code

Toggle Whitespace Characters (Ctrl+Shift+W) - shows or hides the spacing·
characters: --> (tab space) and . (character space)

Toggle EOL Characters (Ctrl+Shift+L) - shows or hides the end-of-line·
characters: CR (carriage return) and LF (line feed)

Toggle Tree Synchronization - selects the tree item automatically as context·
changes within code editor

Open Containing Folder - opens the file browser at the folder containing the·
code file; you can open other files in your default external editor for
comparison and parallel work

Save Source and
Resynchronize Class

Click on this icon to save the source code and resynchronize the code and the Class
in the model.

Code Templates Click on this icon to access the Code Templates Editor, to edit or create code
templates for code generation.

Find in Project Browser For a selected line of code, click on this icon to highlight the corresponding
structure in the Browser window. If there is more than one possibility the 'Possible
Matches' dialog displays, listing the occurrences of the structure from which you
can select the required one.

Search in Files Click on this icon to search for the selected object name in associated files, and
display the results of the search in the File Search window. You can refine and
refresh the search by specifying criteria on the Find in Files window toolbar.

Search in Model Click on this icon to search for the selected text throughout the model, and display
the results of the search in the Find in Project view.

Go to Declaration Click on this icon to locate the declaration of a symbol in the source code.

Go to Definition Click on this icon to locate the definition of a symbol in the source code (applicable
to languages such as C++ and Delphi, where symbols are declared and defined in
separate files).

Autocomplete List Click on this icon to display the autocompletion list of possible values; double-click
on a value to select it.

Parameter Information When the cursor is between the parentheses of an operation's parameter list, click
on this icon to display the operation's signature, highlighting the current parameter.

Find Current Class in
Browser Window

Click on this icon to display the name of the currently-selected Class in the code,
and highlight that name in the Browser window; if there is more than one
possibility the 'Possible Matches' dialog displays, listing the occurrences of the

(c) Sparx Systems 2022 Page 46 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Class from which you can select the required one.

Find Member Click on this icon to display the name of the currently-selected attribute or method
in the code, and highlight that name in the Browser window; if there is more than
one possibility the 'Possible Matches' dialog displays, listing the occurrences of the
feature from which you can select the required one.

Notes

The 'Record Macro' option disables Intelli-sense while the macro is being recorded·
You can assign key strokes to execute the macro, instead of using the toolbar drop-down and 'Open Macro' dialog·

(c) Sparx Systems 2022 Page 47 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Code Editor Context Menu

When working on a file with a code editor, you can perform a number of code search and editing operations to review
the contents of the file. These options are available through the editor context menu, and can vary depending on which
code editor you are using.

Access

Context Menu Right-click on the code text string you are working on

Options

Go to Declaration Locate and highlight the declaration of a symbol in the source code.

Go to Definition Locate and highlight the definition of a symbol in the source code (applicable to
languages such as C++ and Delphi, where symbols are declared and defined in
separate places).

Open in Grammar Editor Opens a view that lets you examine or validate the code using the appropriate
grammar.

Synchronize Tree to
Editor

Finds and displays the current element (method for example) in the structure tree.

Auto Synchronize Tree
and Editor

When selected, the structure tree will automatically show the element being worked
on in the editor.

XML Schema Validation Allows an XML schema to validated.

Search for '<string>' Display a submenu providing options to locate the selected text string in a range of
locations.

'Find in Project Browser' - Highlight the object containing the selected text in·
the Browser window

'Search in Open Files' - Search for the selected text string in associated open·
files and display the results of the search in the Find in Files window; you can
refine and refresh the search by specifying criteria on the Find in Files window
toolbar

'Search in Files' - Search for the selected text string in all associated files·
(closed or open), and display the results of the search in the Find in Files
window; you can refine and refresh the search by specifying criteria on the
Find in Files window toolbar (shortcut key: F12)

'Search in Model' - Perform an 'Element Name' search in the Model Search·
facility, and display the results on the Model Search tab

'Search in Scripts' - (Available while working in the Script Editor) Open the·
Find in Files window, set the 'Search Path' field to 'Search in Scripts' and the
'Search Text' field to the selected text, then search all scripts for the text string
and display the results of the search; you can refine and refresh the search by

(c) Sparx Systems 2022 Page 48 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

specifying criteria on the Find in Files window toolbar

'EA User Guide' - Display the description of the code item in the Enterprise·
Architect User Guide

'Google' - Display the results of a Google search on the text·
'MSDN' - Display the results of a search on the text in the Microsoft Developer·
Network (MSDN)

'Sun Java SE' - Display the results of a search on the text in the Sun·
Microsystems 'Sun Search' facility

'Wikipedia' - Display any entry on the object on the Wikipedia web site·
'Koders' - Display the results of a search for the text string on Koders.com·

Search Intelli-sense Perform a search on the specified string using the Code Miner service or library
specified in the current Analyzer Script. The results are displayed in the 'Code
Miner' tab of the Find in Files window.

Shortcut key: Shift+F12

Set Debugger to Line (If the debugger is executing and has reached a breakpoint.) Move the execution
point to the current line. Check that you do not skip over any code or declarations
that affect the next section of code being debugged.

Display Variable (If the debugger is executing.) Open the Locals window and highlight the local
variable for the current point in the code.

Show in String Viewer Display the full contents of a variable string in the String Viewer.

Create Use Case for
'<string>'

Display the 'Create Use Case For Method' dialog, through which you create a Use
Case for the method containing the text string.

Breakpoint Display a submenu of options for creating a recording marker on the selected line
of code. The recording markers you can add include:

Breakpoint·
Start Recording Marker·
End Recording Marker·
Stack Auto Capture Marker·
Method Auto Record Marker·
Tracepoint·

Testpoints Display options to add a new Testpoint, show the Testpoints Manager (Testpoints
window) or edit an existing Testpoint if one or more are already defined at the
selected location.

(The sub-options depend on the type of code file you are reviewing.)

XML Validation Allows an XML document to be checked for compliance with its own schema
references or using a user-specified schema; either a local schema file or a URL.

Open (Close) IME Open (or close) the Input Method Editor, so that you can enter text in a selected
foreign language script, such as Japanese. You set the keyboard language using the
Windows Control Panel - Regional and Language Options facility.

Copy Position Hyperlink Copies the cursor position as a hyperlink that can be pasted into Rich Notes editors,
such as a message in the 'Chat' tab of the Chat & Mail window. Simply use the
'Paste' context menu option in the message, and specify the link text.

(c) Sparx Systems 2022 Page 49 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

The reader can click on the link to open the source file and move the cursor to the
selected cursor position in the file.

Copy Text Hyperlink Copies the selected text string as a hyperlink that can pasted into Rich Notes
editors, such as a message in the 'Chat' tab of the Chat & Mail window. Simply use
the 'Paste' context menu option in the message.

The reader can click on the link to open the source file and move the cursor to the
first occurrence of that text string in the file.

Line Numbers (Script Editor only.) Show or hide the code line numbers on the left hand side of the
editor screen.

Undo
Cut

Copy
Paste

Delete
Select All

These six options provide simple functions for editing the code.

Notes

The options in the lower half of the 'Search for <string>' submenu (after 'Search in Scripts') are configurable; you·
can add new search tools or remove existing ones by editing the searchProviders.xml file in the Sparx Systems > EA
> Config folder - this file is in OpenSearch description document format

(c) Sparx Systems 2022 Page 50 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Create Use Case for Method

Using the code editor context menu, you can create a Use Case element for a method that you select from the code. You
can also:

Link the Use Case directly to the method·
Add the parent Class to a diagram (if it is not already in the selected diagram) and/or add the Use Case element to·
the diagram

Block from display any attributes or methods that are not also the targets of feature links·

Create a Use Case for a method, through the code editor

Step Action

1 (If you want to depict the Use Case and its link to the method in a diagram) click on the diagram name in
the Browser window.

2 In the code editor, right-click on either the method name or any part of the method body, and select the
'Create Method for <methodname>' option.

The 'Create Use Case for Method' dialog displays.

3 The basic function of this dialog is to create a Use Case for the selected method:

If this is all that is required, click on the OK button; the Use Case element is created in the Browser·
window, in the same Package as the parent Class for the method, and with the same name as the
method

If you intend to make the relationship tangible, continue with the procedure·

4 To create a Trace connector linking the Use Case to the method, select the 'Link Use Case to Method'
checkbox.

5 To add the method's parent Class to the diagram, if it is not already there, select the 'Add Class to
Diagram' checkbox.

6 To add the newly-created Use Case to the diagram, select the 'Add Use Case to Diagram' checkbox; this
would now show the Use Case, Class and Trace connector on the diagram.

7 To only show the features (attributes and methods) of the parent Class that are the targets of 'link to
feature' relationships, select the 'Display only linked features in Class' checkbox.

The Class might contain any number of attributes and methods, but those without a 'link to feature'
relationship are hidden.

8 Click on the OK button to create and depict the Use Case and relationship; if you selected all options, the
diagram now contains linked elements resembling this illustration:

(c) Sparx Systems 2022 Page 51 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

(c) Sparx Systems 2022 Page 52 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Code Editor Functions

The common Code Editor provides a variety of functions to assist with the code editing process, including:

Syntax Highlighting·
Bookmarks·
Cursor History·
Brace Matching·
Automatic Indentation·
Commenting Selections·
Scope Guides·
Zooming·
Line Selection·
Intelli-sense·
Find and Replace·
Find in Files·

A range of these functions is available through keyboard key combinations and/or context menu options.

You can customize several of the Code Editor features by setting properties in the Code Editor configuration files; for
example, by default the line containing the cursor is always highlighted, but you can turn the highlighting off.

(c) Sparx Systems 2022 Page 53 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Function Details

Code Editor Functions

Function Description

Syntax Highlighting The Code Editor highlights - in colored text - the standard code syntax of all
language file formats supported by Enterprise Architect

You can define how the Code Editor implements syntax highlighting for each
language, through the 'Code Editors' page of the 'Preferences' dialog.

Bookmarks Bookmarks denote a line of interest in the document; you can toggle them on and
off for a particular line by pressing Ctrl+F2.

Additionally, you can press F2 and Shift+F2 to navigate to the next or previous
bookmark in the document.

To clear all bookmarks in the code file, press Ctrl+Shift+F2.

Cursor History The Code Editor Control keeps a history of the previous 50 cursor positions; an
entry in the history list is created when:

The cursor is moved more than 10 lines from its previous position·
The cursor is moved in a find/replace operation·

You can navigate to an earlier point in the cursor history by pressing Ctrl+-, and to
a later point by pressing Ctrl+Shift+-.

Brace Matching When you place the cursor over a brace or bracket, the Code Editor highlights its
corresponding partner; you can then navigate to the matching brace by pressing
Ctrl+E.

Automatic Indentation For each supported language, the Code Editor adjusts the indentation of a new line
according to the presence of control statements or scope block tokens in the lines
leading up to the cursor position.

(c) Sparx Systems 2022 Page 54 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

The levels of indent are indicated by pale horizontal lines.

You can also manually indent selected lines and blocks of code by pressing the Tab
key; to un-indent the selected code, press Shift+Tab.

Commenting Selections For languages that support comments, the Code Editor can comment entire
selections of code.

The Code Editor recognizes two types of commenting:

Line Commenting - entire lines are commented from the start (for example:·
 // This is a comment)

Stream Commenting - sections of a line are commented from a specified start·
point to a specified end point (for example:
 /* This is a comment */)

You can toggle comments on the current line or selection by pressing:

Ctrl+Shift+C for line comments, or·
Ctrl+Shift+X for stream comments·

Scope Guides If the cursor is placed over an indentation marker, the Code Editor performs a 'look
back' to find the line that started the scope at that indentation level; if the line is
found and is currently on screen, it is highlighted in light blue.

Alternatively if the line is off screen, a calltip is displayed advising of the line
number and contents:

Zooming You can zoom into and out of the contents of the Code Editor using:

Ctrl+keypad + and·
Ctrl+keypad -·

Zoom can be restored to 100% using Ctrl+keypad /.

Line Selection If you want to move the cursor to a specific line of code, press Ctrl+G and, in
response to the prompt, type in the line number.

Press the OK button; the editor displays the specified line of code with the cursor at

(c) Sparx Systems 2022 Page 55 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

the left.

(c) Sparx Systems 2022 Page 56 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Intelli-sense

Intelli-sense is a feature that provides choices of code items and values as you type. Not all code editors use Intelli-sense;
for example, Intelli-sense is disabled while you record a macro in the Source Code Viewer.

Intelli-sense provides you with context-based assistance through autocompletion lists, calltips and mouseover
information.

Facilities

Facility Description

Autocompletion List An autocompletion list provides a list of possible completions for the current text;
the list is automatically invoked when you enter an accessor token (such as a period
or pointer accessor) after an object or type that contains members.

You can also invoke the autocompletion list manually by pressing Ctrl+Space; the
Code Editor then searches for matches for the word leading up to the invocation
point.

Select an item from the list and press the Enter key or Tab key to insert the item
into the code; to dismiss the autocompletion list, press Esc.

Calltips Calltips display the current method's signature when you type the parameter list
token (for example, opening parenthesis); if the method is overloaded, the calltip
displays arrows that you can use to navigate through the different method
signatures

Mouseover Information You can display supporting documentation for code elements (for example,

(c) Sparx Systems 2022 Page 57 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

attributes and methods) by hovering the cursor over the element in question.

(c) Sparx Systems 2022 Page 58 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Find and Replace

Each of Enterprise Architect's code editors facilitates searching for and replacing terms in the editor, through the 'Find
and Replace' dialog.

Access

Keyboard Shortcuts Highlight the required text string and press:

Ctrl+F for the find controls only, or·
Ctrl+R for both find and replace controls·

In each instance, the 'Find what' field is populated with the text currently selected in
the editor. If no text is selected in the editor, the 'Find what' field is populated with
the word at the current cursor position. If no word exists at the current cursor
position, the last searched-for term is used.

Basic Operations - Commands

Command Action

Find Next Locate and highlight the next instance (relative to the current cursor position) of the
text specified in the 'Find what' field.

Replace Replace the current instance of the text specified in the 'Find what' field with the
text specified in the 'Replace with' field, and then locate and highlight the next
instance (relative to the current cursor position) of the text specified in the 'Find
what' field.

Replace All Automatically replace all instances of the text specified in the 'Find what' field with
the text specified in the 'Replace with' field.

Basic Operations - Options

Option Action

Match Case Specify that the case of each character in the text string in the 'Find what' field is
significant when searching for matches in the code.

Match whole word Specify that the text string in the 'Find what' field is a complete word and should
not be matched with instances of the text that form part of a longer string.

For example, searches for ARE should not match those letters in instances of the
words AREA or ARENA.

Search up Perform the search from the current cursor position up to the start of the file, rather

(c) Sparx Systems 2022 Page 59 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

than in the default direction of current cursor position to end of file.

Use Regular Expressions Evaluate specific character sequences in the 'Find what' and 'Replace with' fields as
Regular Expressions.

Concepts

Concept Description

Regular Expressions A Regular Expression is a formal definition of a Search Pattern, which can be used
to match specific characters, words or patterns of characters.

For the sake of simplicity, the Code Editor's 'find and replace' mechanism supports
only a subset of the standard Regular Expression grammar.

Text in the 'Find what' and 'Replace with' fields is only interpreted as a Regular
Expression if the 'Use Regular Expressions' checkbox is selected in the 'Find and
Replace' dialog.

Metasequences If the 'Use Regular Expressions' checkbox is selected, most characters in the 'Find
what' field are treated as literals (that is, they match only themselves).

The exceptions are called metasequences; each metasequence recognized in the
Code Editor 'Find and Replace' dialog is described in this table:

\< - Indicates that the text is the start of a word; for example: \<cat is matched·
to catastrophe and cataclysm, but not concatenate

\> - Indicates that the text is the end of a word; for example: hat\> is matched·
to that and chat, but not hate

(...) - Indicates alternative single characters that can be matched - the characters·
can be specific (chr) or in an alphabetical or numerical range (a-m); for
example: (hc) at is matched to hat and cat but not bat, and (a-m) Class is
matched to any name in the range aClass-mClass

(^...) - Indicates alternative single characters that should be excluded from a·
match - the characters can be specific (^chr) or in an alphabetical or numerical
range (^a-m); for example: (^hc) at is matched to rat and bat, but hat and cat
are excluded, and (^a-m) Class is matched to any name in the range nClass to
zClass, but aClass to mClass are excluded

^ - Matches the start of a line·
$ - Matches the end of a line·
* - Matches the preceding character (or character set) 0 or more times; for·
example: ba*t is matched to bt, bat, baat, baaat and so on, and b(ea) *t is
matched to bt, bet, bat, beat, beet, baat and so on

+ - Matches the preceding character (or character set) 1 or more times; for·
example: ba+t is matched to bat, baat and baaat but not bt, and b(ea) +t is
matched to bet, bat, beat, beet and baat but not bt

If a single character metasequence is preceded by a backslash (\) it is treated as a
literal character: c\(at\) matches c(at) as the brackets are treated literally.

When the 'Use Regular Expressions' checkbox is selected, a metasequence helper
menu is available to the right of both of the 'Find what' and 'Replace with' fields;
selecting a metasequence from this menu inserts the metasequence into the field,
replacing or wrapping the currently selected text as appropriate.

Tagged Regions When 'find and replacing' with Regular Expressions, up to nine sections of the

(c) Sparx Systems 2022 Page 60 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

original term can be substituted into the replacement term.

The metasequences '\(' and '\)' denote the start and the end of a tagged region; the
section of the matched text that falls within the tagged region can be included in the
replacement text with the metasequence '\n' (where n is the tagged region number
between 1 and 9).

For example:

 Find: \((A-Za-z) +\)'s things

 Replace with items that belong to \1

 Original text: These are all Michael's things.

 Replaced text: These are all items that belong to Michael.

(c) Sparx Systems 2022 Page 61 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Search in Files

File Text Searches are provided by the Find in Files window and from within the Code Editors, to search files for data
names and structures. These files can be external code files, code files that you have already opened in Enterprise
Architect, internal model scripts or the Help subsystem.

The 'File Search' tab maintains a history of the file paths you have explored, helping you to quickly return to
frequently-used folders in your file system. You can similarly select a previously-used search string, if you need to repeat
a search several times. When you are searching code files, you can also confine the search to files of specific types, by
selecting the file extensions, and to include just the selected folder or all of its sub-folders as well. Another useful facility
is being able to select to show the results of the search as either a list of every instance of the string, or a list of files
containing the string with the instances grouped under the file in which they are found.

For all searches, you can qualify the search to be case-sensitive and/or to match the search string to complete words.

Access

Ribbon Explore > Search > Files

Execute > Source > Find

Execute > Source > Edit > Search in Files

Context Menu Right-click on selected text | Search for <selected text> | Search in Files

Keyboard Shortcuts F12, Ctrl+Shift+Alt+F

Search Toolbar

You can use the toolbar options in the Find in Files window to control the search operation. The state of each button
persists over time to always reflect your previous search criteria.

Options

Option Action

The 'Search Text' field. Type the text string to search for.

Any text you type in is automatically saved in the drop-down list, up to a maximum
of ten strings; text added after that overwrites the oldest text string in the list. You
can click on the drop-down arrow and select one of these saved text strings, if you
prefer.

The 'Search Path' field. Specify the folder to search, or the type of search.

(c) Sparx Systems 2022 Page 62 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

You can type the folder path to search directly into the text box, or click on the
drop-down arrow and select 'Browse for folder' to search using the 'Browse for
Folder' dialog.

Any paths you enter are automatically saved in the drop-down list, up to a
maximum of ten; paths added after that overwrite the oldest path in the list. You
can select one of these saved paths if you prefer.

Apart from 'Browse for folder', there are three other fixed options in the drop-down
list:

'Search in scripts', which searches the local and user-defined scripts in the·
Scripting window

'Search in open files', which confines the search to the files that you have open·
in Enterprise Architect

'Search in local help', which searches the local Help files that have been·
installed from the Sparx Systems web site; the results list the Help topics
containing the search term, and the line number and line in which the text
occurs

These options disable the 'Search File Types' list box.

The 'Search File Types' field. Click on the drop-down arrow and select the file
types (file extensions) to search.

Click on this icon to begin the search.

During the course of the search all other buttons in the toolbar are disabled. You
can cancel the search at any time by clicking on the Search button again.

If you switch any of these toggle buttons, you must run the search again to change
the output.

Click on this icon to toggle the case sensitivity of the search. The tool-tip message
identifies the current setting.

Click on this icon to toggle between searching for any match and searching for only
those matches that form an entire word. The tool-tip message identifies the current
setting.

Click on this icon to toggle between limiting the search to a single path and
including all subfolders under that path. The tool-tip message identifies the current
setting.

Click on this icon to select the presentation format of the search results; you have
two options:

List View - (as shown) each result line consists of the file path and line·
number, followed by the line text; multiple lines from one file are listed as
separate entries

Tree View - () each result line consists of the file path that matches the·
search criteria, and the number of lines matching the search text within that
file; you can expand the entry to show the line number and text of each line

Click on this icon to add a new search tab. You can create up to four new search
tabs. Searches can also run concurrently.

(c) Sparx Systems 2022 Page 63 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Click on this icon to clear the results.

If necessary, click on this icon to remove all the entries in the Search Path, Search
Text and Search File Types drop-down lists.

(c) Sparx Systems 2022 Page 64 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Find File

The Find in Files window 'Find File' tab provides a tool that can help you find files quicker. The tab acts as a file system
explorer and offers a speedy alternative to the common open file dialog. File searches are quick and simple, allowing you
to look up files of interest without losing your current workflow. The display can be switched between report and list
view.

Access

Ribbon Explore > Search > Files > Find File

Keyboard Shortcuts Ctrl+Shift+Alt+F

Toolbar

The toolbar provides a search filter and folder navigation combo box. The toolbar provides options to remember search
locations and alternate between list and report views.

Options

Click to navigate to the parent folder.

The filter control allows you to exclude files that do not match the criteria you type.
The wildcard symbol * is automatically appended to the text so it is not necessary
to add it yourself. To search for all files that contain the term 'jvm' simply type
'jvm'. To find .png images containing the term 'red' you could type *red*.png. Press
the Enter key to update the results.

Enter the path of a directory and press the Enter key to display the files in that
location

Use the drop down list to select from book-marked locations for the current model.
Locations can be managed by using the toolbar menu.

Allows you to manage the locations displayed in the directory combo.

Remember Path - stores the current value of the 'Directory' field so that, when·
you return to the Find in Files window at a later point the 'Directory' field
either defaults to that value (if it is the only 'remembered' value) or offers the
value in the drop-down list

Forget Path - clears the current value from memory so that it is not offered as a·
possible value for the 'Directory' field

Remember Filter - stores the current value in the 'Filter' field so that when you·
return to the Find in Files window at a later point the 'Filter' field defaults to

(c) Sparx Systems 2022 Page 65 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

that value

Forget Filter - removes the 'Filter' field value from memory so that it is not·
placed in the field next time you access the window

In this view the list displays the columns 'Name', 'Modified Date', 'Type' and 'Size'.

Columns can be sorted in either ascending or descending order. Click the column a
third time to remove the sort order.

The list view removes columns and is convenient when a folder contains many
files.

Keyboard Shortcuts

Sets focus to the filter control.

Navigates to the parent folder.

Navigates to the parent folder.

If a folder is selected, opens the folder, otherwise opens the selected files.

(c) Sparx Systems 2022 Page 66 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Search Intelli-sense

The Intelli-sense capabilities of Enterprise Architect are built using Sparx Systems' Code Miner tool. The Code Miner
provides fast and comprehensive access to the information in an existing code base. The system provides complete
access to all aspects of the original source code, either 'on the fly' as one might search in a code editor, or as search
results produced by queries written in the Code Miner mFQL language.

Access

On the Find in Files window, click on the 'Code Miner' tab.

Ribbon Explore > Search > Files

Keyboard Shortcuts Ctrl+Shift+Alt+F

The Code Miner Control

This control presents an interface for performing queries on several code bases at once. The code bases it uses are
databases built using Enterprise Architect's Code Miner tool. These databases form a library, which can also be shared
when deployed as a service. The queries that can be run are listed and selected using the toolbar, which allows easy
access to the source code for the queries, for editing and composition. Queries do not need to be compiled; they are
viewed, edited and saved as one would any source code file. Queries that take a single parameter can utilize any selection
in an open code editor. The interface also supports manual parameter entry for queries that take multiple arguments.

The first control on the toolbar lists the namespaces available. Selecting a namespace limits the queries that are displayed
to those within that namespace.

The next control provides a drop-down list of all the queries in the query file for the selected namespace.

The third control is an edit combo box. By default a single query parameter is taken from the selected text in an open
code editor, but you can also type the parameter(s) directly into this field. Multiple parameters should be separated by
commas. This is followed by the Search button to run the query. Queries can be edited at any time using the Edit button
next to the Search button.

The 'Result' panel is a tree control that lists the results of the query grouped by file.

Code Miner Libraries

(c) Sparx Systems 2022 Page 67 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Code Miner libraries are a collection of databases that can be used by Enterprise Architect Intelli-sense providers to
obtain and query for information across several code bases. Each database is created from the root source code directory
of a code base, using a specialized grammar appropriate for its language (C++, Java or C#).

The libraries are created, updated, removed or added in the 'Analyzer Script Editor'. A typical scenario for using this
feature would be to create a database for a development project and additional databases for frameworks referenced by
the project. Your development database can be updated frequently as code changes accrue, while the static frameworks
would be updated less often. Libraries can be searched in a similar way to the 'File Search' tool, but Code Miner offers
advanced search capabilities due to its mFQL language.

Multiple domains / frameworks can be searched at once·
A query can be run in a fraction of the time required for a File Search·
Queries can be coded to assist with complex search criteria·
Queries can take multiple parameters·
All files are indexed based on equivalent UML constructs, allowing intelligent searches producing meaningful·
results in a modeling setting

Code Miner Query Files

Code Miner queries are maintained in a single source code file which should have the .mFQL extension. A basic set of
queries is provided with each Enterprise Architect installation; these can be located in the config\codeminer sub
directory. This query file should be named by default in any Analyzer Script you edit.

Before editing any queries it is advisable that you copy this file to a working location and name the copy in any Analyzer
Script you use. This way you will always have a reference file to go back to.

Queries are best considered as functions that are written in the mFQL language. As such they have unique names, can be
qualified by a single namespace and can specify parameters. The file provides the queries listed in the Intelli-sense
control's toolbar. Whenever edits to a query file are saved, the queries listed in the search toolbar combo box will be
updated accordingly. This image is an example of a simple query written in mFQL.

(c) Sparx Systems 2022 Page 68 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Code Editor Key Bindings

Keys

Key Description

Ctrl+G Move cursor to a specified line

↓ Move cursor down one line

Shift+↓ Extend selection down one line

Ctrl+↓ Scroll down one line

Alt+Shift+↓ Extend rectangular selection down one line

↑ Move cursor up one line

Shift+↑ Extend selection up one line

Ctrl+↑ Scroll up one line

Alt+Shift+↑ Extend rectangular selection up one line

Ctrl+(Move cursor up one paragraph

Ctrl+Shift+(Extend selection up one paragraph

Ctrl+) Move cursor down one paragraph

Ctrl+Shift+) Extend selection down one paragraph

← Move cursor left one character

Shift+← Extend selection left one character

Ctrl+← Move cursor left one word

Ctrl+Shift+← Extend selection left one word

Alt+Shift+← Extend rectangular selection left one character

→ Move cursor right one character.

Shift+→ Extend selection right one character

Ctrl+→ Move cursor right one word

Ctrl+Shift+→ Extend selection right one word

(c) Sparx Systems 2022 Page 69 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Alt+Shift+→ Extend rectangular selection right one character

Ctrl+/ Move cursor left one word part

Ctrl+Shift+/ Extend selection left one word part

Ctrl+\ Move cursor right one word part

Ctrl+Shift+\ Extend selection right one word part

Home Move cursor to the start of the current line

Shift+Home Extend selection to the start of the current line

Ctrl+Home Move cursor to the start of the document

Ctrl+Shift+Home Extend selection to the start of the document

Alt+Home Move cursor to the absolute start of the line

Alt+Shift+Home Extend rectangular selection to the start of the line

End Move cursor to the end of the current line

Shift+End Extend selection to the end of the current line

Ctrl+End Move cursor to the end of the document

Ctrl+Shift+End Extend selection to the end of the document

Alt+End Move cursor to the absolute end of the line

Alt+Shift+End Extend rectangular selection to the end of the line

Page Up Move cursor up a page

Shift+Page Up Extend selection up a page

Alt+Shift+Page Up Extend rectangular selection up a page

Page Down Move cursor down a page

Shift+Page Down Extend selection down a page

Alt+Shift+Page Down Extend rectangular selection down a page

Delete Delete character to the right of the cursor

Shift+Delete Cut selection

(c) Sparx Systems 2022 Page 70 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Ctrl+Delete Delete word to the right of the cursor

Ctrl+Shift+Delete Delete until the end of the line

Insert Toggle overtype

Shift+Insert Paste

Ctrl+Insert Copy selection

Backspace Delete character to the left of the cursor

Shift+Backspace Delete character to the left of the cursor

Ctrl+Backspace Delete word to the left of the cursor

Ctrl+Shift+Backspace Delete from the start of the line to the cursor

Alt+Backspace Undo delete

Tab Indent cursor one tab

Ctrl+Shift+I Indent cursor one tab

Shift+Tab Unindent cursor one tab

Ctrl+keypad(+) Zoom in

Ctrl+keypad(-) Zoom out

Ctrl+keypad(/) Restore Zoom

Ctrl+Z Undo

Ctrl+Y Redo

Ctrl+X Cut selection

Ctrl+C Copy selection

Ctrl+V Paste

Ctrl+L Cut line

Ctrl+T Transpose line

Ctrl+Shift+T Copy line

Ctrl+A Select entire document

Ctrl+D Duplicate selection

(c) Sparx Systems 2022 Page 71 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Ctrl+U Convert selection to lowercase

Ctrl+Shift+U Convert selection to uppercase

Ctrl+E Move cursor to matching brace

Ctrl+Shift+E Extend selection to matching brace

Ctrl+Shift+C Toggle line comment on selection

Ctrl+Shift+X Toggle stream comment on selection.

Ctrl+F2 Toggle bookmark

F2 Go to next bookmark

Shift+F2 Go to previous bookmark

Ctrl+Shift+F2 Clear all bookmarks in current file

Ctrl+Shift+W Toggle whitespace characters

Ctrl+Shift+L Toggle EOL characters

Ctrl+Space Invoke autocomplete.

Ctrl+- Go backwards in cursor history

Ctrl+Shift+- Go forwards in cursor history

F12 Start/Cancel search for keyword in file(s).

Ctrl+F Find text

Ctrl+R Replace text

Notes

In addition to these keys, you can assign (Ctrl+Alt+<n>) key combinations to macros that you define within the·
Source Code Editor

(c) Sparx Systems 2022 Page 72 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Application Patterns (Model + Code)

To get you going with a code based project as fast as possible, Enterprise Architect helps you to generate starter projects
including model information, code and build scripts for one of several basic application types. Patterns include:

MFC Windows applications·
Java programs·
ASP.NET web services·

Access

Ribbon Develop > Source Code > Create From Pattern > Application Patterns

Generate Models

Option Action

Technology Select the appropriate technology.

(c) Sparx Systems 2022 Page 73 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Name Displays the Application Patterns available for the selected technology; select the
required Pattern to import.

<description> Displays a description of the selected Pattern.

Destination folder Browse for and select the directory in which to load the source code for the
application.

Use Local Path Enable the selection of an existing local path to place the source code under;
changes the 'Destination folder' field to a drop-down selection.

Compiler command Displays the default compiler command path for the selected technology; you must
either:

Confirm that the compiler can be found at this path, or·
Edit the path to the compiler location·

Edit Local Paths Many application Patterns specify their compiler using a local path.

The first time you use any Pattern you must click on this button to ensure the local
path points to the correct location.

The 'Local Paths' dialog displays.

Notes

If required, you can publish custom application Patterns by adding files to the AppPatterns directory where·
Enterprise Architect is installed; top level directories are listed as Technologies and can contain an icon file to
customize the icon displayed for the technology
Directories below this are defined as groups in the Patterns list; the Patterns are identified by the presence of four
files with a matching name: a zip file (.zip), XMI file (.xml), config file (.cfg) and optional icon (.ico)

The config file supports these fields:·
 - [provider], [language], [platform], [url], [description], [version] - all displayed in the <description>
 field
 - [xmirootpaths] - the root path of the source code in the exported XMI; this is replaced with the
 selected destination folder when the user applies the Application Pattern

(c) Sparx Systems 2022 Page 74 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

MDG Integration and Code Engineering

MDG Integration for Eclipse and MDG Integration for Visual Studio are products that help you to create and maintain
your UML models directly inside these two popular Integrated Development Environments, using the Enterprise
Architect Browser window. Models can be generated to source code using the rich and flexible template engine that
gives the engineer complete control over how the code is generated. Existing source code can also be reverse engineered
and synchronized with the UML models. With the integration installed the IDE will become a feature-rich modeling
platform, saving time and effort and reducing the risk of error by linking Requirement Management, Architecture and
Design to Source Code Engineering.

Rich and expressive documentation can be generated automatically into a wide range of formats including DOCX, PDF
and HTML. The documentation can include diagrams of requirements, design and architecture as well as source code
descriptions, putting the source code into context.

You can purchase MDG Integration for EclipseTM and MDG Integration for Visual StudioTM or download Trial Editions,
from the Sparx Systems web site.

(c) Sparx Systems 2022 Page 75 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Behavioral Model Code Generation

Enterprise Architect’s multi-featured system engineering capability can be used to generate code for software, system
and hardware description languages directly from behavioral models, such as StateMachine, Sequence (Interaction) and
Activity diagrams. The supported languages include C(OO), C++, C#, Java, VB.Net, VHDL, Verilog and SystemC.

Software code can be generated from StateMachine, Sequence and Activity diagrams, and hardware description
languages from StateMachine diagrams (using the Legacy StateMachine templates).

Access

Ribbon Develop > Source Code > Generate

Behavioral Model Specifics

Behavioral model code generation is supported for the three key types of behavioral model; however, each behavioral
model-type has its own characteristics based on the element-type involved. These topics provide guidance and references
for the core element-types used.

Type Description

Activity An Overview of the key Action-types and details on using these in code generation.

Interaction Details covering using Messages and Fragments for code generation of Interaction
(Sequence) diagrams.

StateMachines Details covering the options for defining the code to be generated using States,
including behaviors - Entry/Exit/Do, and Transitions in a StateMachine.

Structure

Behavioral model code generation primarily requires that all behavioral constructs are be contained within a Class (as a
child of that Class).

(c) Sparx Systems 2022 Page 76 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

If any behavioral constructs refer to external elements outside the current Package, you must add an Import connector
from the current Package to the Package containing the external elements. For more detail see the Import connector-type
in the Package Diagram Help topic.

Generate code from behavioral diagrams using the EAExample project

Step Action

1 Open the EAExample.eap file by selecting the 'Start > Help > Help > Open the Example Model' ribbon
option.

2 From the Browser window, select any of these Packages:

Software Language Examples:

Example Model > Software Engineering > Java Model With Behaviors·
Generate the Account and Order classes

Example Model > Systems Engineering > Implementation Model > Software > C#·
Generate the DataProcessor Class

Example Model > Systems Engineering > SysML Example > Implementation Model > Software >·
C++

Generate the IO Class

Example Model > Systems Engineering > SysML Example > Implementation Model > Software >·
Java

Generate the IO Class

Example Model > Systems Engineering > SysML Example > Implementation Model > Software >·
VBNet

Generate the IO Class

Hardware Language Examples:

Example Model > Systems Engineering > SysML Example: Portable Audio Player > Implementation·
Model > Hardware > SystemC

Generate the PlayBack Class

Example Model > Systems Engineering > SysML Example: Portable Audio Player > Implementation·
Model > Hardware > VHDL

Generate the PlayBack Class

Example Model > Systems Engineering > SysML Example: Portable Audio Player > Implementation·
Model > Hardware > Verilog

Generate the PlayBack Class

(c) Sparx Systems 2022 Page 77 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

3 When completed:

Select the Class that was used for the generation·
Press Ctrl+E to open the generated source code.·

You should see methods generated in the code.

Notes

Software code generation from behavioral models is available in the Unified and Ultimate Editions of Enterprise·
Architect

Hardware code generation from StateMachine models is available in the Unified and Ultimate Editions of Enterprise·
Architect

For C(OO), on the 'C Specifications' page of the 'Manage Model Options' dialog, set the 'Object Oriented Support'·
option to True.
See the C Options - Model Help topic.

Code synchronization is not supported for behavioral code.·

(c) Sparx Systems 2022 Page 78 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Code Generation - Activity Diagrams

Code generation from Activity diagrams in a Class requires a validation phase, during which Enterprise Architect uses
the system engineering graph optimizer to analyze the diagram and render it into various constructs from which code can
be generated. Enterprise Architect also transforms the constructs into one of the various action types (if appropriate),
similar to the Interaction diagram constructs.

Actions

Action Description

Call Actions (Invocation
Actions)

Used to invoke operations or behaviors in an Activity diagram; the two main
variants of Call Actions supported in behavioral code generation are:

CallOperation Action - used to invoke operations, which can be within the·
same Class or in other Classes within the same Package; if referencing
operations from other Classes within the same Package, you must have a target
to which the request is passed

CallBehavior Action - used to invoke another Activity in an activity flow; the·
referenced Activity is expected to be within the same Class

Arguments

Call Actions can specify argument values corresponding to the parameters in the
associated behavior or behavioral feature.

You can add the arguments manually or create them automatically using the
Synchronize button of the 'Arguments' dialog.

CreateObjectAction Used to denote an object creation in the activity flow; you can set the result Pin of
the CreateObjectAction as the object to be created, using the Properties window for
the Action element.

The Classifier of the CreateObjectAction signifies the Classifier for which an
instance is to be created.

DestroyObjectAction Used to denote an object deletion in the activity flow; you can set the target Pin of
the DestroyObjectAction as the object to be destroyed, using the Properties window
for the Action element.

Loops Enterprise Architect's system engineering graph optimizer is also capable of
analyzing and identifying loops; an identified loop is internally rendered as an
Action Loop, which is translated by the EASL code generation macros to generate
the required code.

You can have a single loop, nested loops, and multiple levels of nested loops.

Conditional Statements To model a conditional statement, you use Decision/Merge nodes.

Alternatively, you can imply Decisions/Merges internally; the graph optimizer
expects an associated Merge node for each Decision node, to facilitate efficient
tracking of various branches and analysis of the code constructs within them.

Notes

(c) Sparx Systems 2022 Page 79 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

To be able to generate code from behavioral models, all behavioral constructs should be contained within a Class·

(c) Sparx Systems 2022 Page 80 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Code Generation - Interaction Diagrams

During code generation from Interaction (Sequence) diagrams in a Class, Enterprise Architect applies its system
engineering graph optimizer to transform the Class constructs into programmatic paradigms. Messages and Fragments
are identified as two of the several action types based on their functionality, and Enterprise Architect uses the code
generation templates to render their behavior accordingly.

Actions

Action Description

Action Call A Message that invokes an operation.

Action Create A Message with Lifecycle = New.

Action Destroy A Message with Lifecycle = Delete.

Action Loop A Combined Fragment with Type = Alt.

Action If A Combined Fragment with Type = loop.

Assign To A Call Message with a valid target attribute set using the 'Assign To' field is
rendered in the code as the target attribute of a Call Action.

Notes

To be able to generate code from behavioral models, all behavioral constructs should be contained within a Class·
For an Interaction (Sequence) diagram, the behavioral code generation engine expects the Sequence diagram and all·
its associated messages and interaction fragments to be encapsulated within an Interaction element

(c) Sparx Systems 2022 Page 81 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Code Generation - StateMachines

A StateMachine illustrates how an object (represented by a Class) can change state, each change of state being a
transition initiated by a trigger arising from an event, often under conditions or constraints defined as guards. As you
model how the object changes state, you can generate and build (compile) code from it in the appropriate software
language and execute the code, visualizing the execution via the Model Simulator.

It is also possible, in Enterprise Architect, to combine the StateMachines of separate but related objects to see how they
interact (via Broadcast Events), and to quickly create and generate code from variants of the model. For example, you
might model the behavior of:

The rear off-side wheel of a vehicle in rear-wheel drive and front-wheel drive modes (one StateMachine)·
The steering wheel and all four drive wheels of a vehicle in 4-wheel drive mode (five StateMachines)·
The wheels of an off-road vehicle and of a sports car (two Artifacts, instances of a combination of StateMachines)·

Of critical importance in generating and testing code for all of these options is the Executable StateMachine Artifact
element. This acts as the container and code generation unit for your StateMachine models.

You do not use this method to generate code for Hardware Definition Languages, but you can also generate both HDL
code and software code from StateMachines using the generic Code Generation facilities in Enterprise Architect (see the
Generate Source Code procedures).

Prerequisites

Select 'Settings > Model > Options > Source Code Engineering' and, for the appropriate software coding language·
(Java, C, C# or ANSI C++), set the 'Use the new Statemachine Template' option to 'True'

If working in C++, select 'Settings > Model > Options > Source Code Engineering > C++' and set the 'C++ Version'·
option to 'ANSI'

This code generation method does not apply to the Legacy StateMachine code generation templates developed prior to
Enterprise Architect Release 11.0, nor to generating Hardware Definition Language code.

Access

Drag an Executable StateMachine Artifact from the 'Simulation' page of the Diagram Toolbox, onto your diagram. The
'Simulation' page of the Diagram Toolbox can be accessed using any of the methods outlined in this table.

Ribbon Design > Diagram > Toolbox > Simulation

Keyboard Shortcuts Ctrl+Shift+3 > Simulation

Other You can display or hide the Diagram Toolbox by clicking on the or icons at
the left-hand end of the Caption Bar at the top of the Diagram View.

Prepare your StateMachine diagram(s)

Step Action

1 For each StateMachine you want to model, create a Class diagram.

(c) Sparx Systems 2022 Page 82 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

2 From the 'Class' page of the Diagram Toolbox, drag the 'Class' icon onto your diagram and give the
element an appropriate name.

3 Right-click on the Class element and select the 'New Child Diagram | StateMachine' context menu option.

Give the StateMachine diagram an appropriate name.

4 Create the StateMachine model to reflect the appropriate transitions between States.

Set up the Executable StateMachine Artifact

Step Action

1 Create a new Class diagram to contain the modeled StateMachine(s) from which you intend to generate
code.

2 From the 'Simulation' page of the Diagram Toolbox, drag the 'Executable StateMachine' icon onto the
diagram to create the Artifact element. Name the element and drag its borders out to enlarge it.

3 From the Browser window, drag the (first) Class element containing a StateMachine diagram onto the
Artifact element on the diagram.

The 'Paste <element name>' dialog displays. In the 'Drop as' field, click on the drop-down arrow and
select the value 'Property'.

(If the dialog does not display, press Ctrl as you drag the Class element from the Browser window.)

4 Click on the OK button. The Class element is pasted inside the Artifact as a Part.

5 Repeat steps 3 and 4 for any other Classes with StateMachines that you want to combine and generate
code for. These might be:

Repeat 'drops' of the same Class and StateMachine, modeling parallel objects·
Different Classes and StateMachines, modeling separate interacting objects·

6 Right-click on the Artifact element and select the 'Properties > Properties' option, expand the 'Advanced'
category and, in the 'Language' field, click on the drop-down arrow and set the code language to the same
language as is defined for the Class elements.

You can now drag this Executable StateMachine Artifact element from the Browser window onto the
diagram any number of times, and modify the Parts to model variations of the system or process, or the
same system or process with different programming languages.

Generate Code From Artifact

Step Action

1 Click on the Executable StateMachine Artifact element and select the 'Simulate > Executable States >
Statemachine > Generate' ribbon option.

The 'Executable Statemachine Code Generation' dialog displays.

(c) Sparx Systems 2022 Page 83 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

2 In the 'Project output directory' field, type or browse for the directory path under which to create the
output files.

During code generation, all existing files in this directory are deleted.

3 Select the Target System. If you are running on Windows select the 'Local' option. If you are working on
Linux choose the 'Remote' option. The choice affects the scripts generated to support the Simulation.

4 In the 'Location of <compiler> installation directory' field, type or browse for the path of the compiler
installation directory, to be automatically mapped to the local path (displayed to the left of the field). For
each programming language, the paths might resemble these examples:

Java·
JAVA_HOME C:\Program Files (x86)\Java\jdk1.7.0_17

C/C++·
VC_HOME C:\Program Files (x86)\Microsoft Visual Studio 9.0

C#·
CS_HOME C:\Windows\Microsoft.NET\Framework\V3.5

5 Click on the Generate button. The code files are created appropriate to the programming language.

The System Output window displays with an 'Executable StateMachine Output' tab, showing the progress
and status of the generation.

During code generation, an automatic validation function is executed to check for diagram or model errors
against the UML constraints. Any errors are identified by error messages on the 'Executable StateMachine
Output' tab.

Double-click on an error message to display the modeling structure in which the error occurs, and correct
the mistake before re-generating the code.

6 When the code generates without error, click on the Artifact element and select the 'Simulate > Executable
States > Statemachine > Build' ribbon option to compile the code.

The System Output window displays with a 'Build' tab, showing the progress and status of the
compilation. Notice that the compilation includes configuration of the simulation operation.

Code Generation Macros

You can also use two macros in the code generation for StateMachines.

Macro Name Description

SEND_EVENT Send an event to a receiver (the Part). For example:

 %SEND_EVENT("event1", "Part1")%

BROADCAST_EVENT Broadcast an event to all receivers. For example:

 %BROADCAST_EVENT("event2")%

Execute/Simulate Code From Artifact

Step Action

(c) Sparx Systems 2022 Page 84 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

1 Select the ribbon option 'Simulate > Dynamic Simulation > Simulator > Apply Workspace' to display the
Simulation window and the Simulation Events window together

Dock the two windows in a convenient area of the screen.

2 On the diagram or Browser window, click on the Artifact element and select the 'Simulate > Executable
States > Statemachine > Run' ribbon option.

The first StateMachine diagram in the series displays with the simulation of the process already started. In
the Simulation window, the processing steps are indicated in this format:

 [03516677] Part1[Class1].Initial_367_TO_State4_142 Effect

 [03516683] Part1[Class1].StateMachine_State4 ENTRY

 [03516684] Part1[Class1].StateMachine_State4 DO

 [03518375] Blocked

3 Click on the appropriate Simulation window toolbar buttons to step through the simulation as you prefer.

When the simulation finishes at the Exit or Terminate element, click on the Stop button in the Simulation
window toolbar.

4 Where the trace shows Blocked, the simulation has reached a point where a Trigger event has to occur
before processing can continue. On the Simulation Events window, in the 'Waiting Triggers' column,
double-click on the appropriate Trigger.

When the Trigger is fired, the simulation continues to the next pause point, Trigger or exit.

Notes

If you are making small changes to an existing StateMachine model, you can combine the code generation, build and·
run operations by selecting the 'Simulate > Executable States > Statemachine > Generate, build and run' ribbon
option

You can also generate code in JavaScript·

(c) Sparx Systems 2022 Page 85 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Legacy StateMachine Templates

Code generation operates using a set of generation templates. From Release 11.0 of Enterprise Architect, a different set
of templates are available as the default for software code generation from a StateMachine diagram into Java, C, ANSI
C++ or C# code. You can still use the original templates, as described here, for models developed in earlier releases of
Enterprise Architect, if you do not want to upgrade them for the new template facilities.

Switch Between Legacy and Release 11 templates

Access

Display the 'Manage Model Options' dialog, then show the 'Language Specifications' page for your chosen language,
using one of the methods outlined in this table. If necessary, expand the 'StateMachine Engineering (for current model)'
grouping and set the 'Use the new StateMachine Template' option to True (to use the later templates) or False (to use the
Legacy templates).

Ribbon Settings > Model > Options > Source Code Engineering > [language name]

Legacy Template Transformations

A StateMachine in a Class internally generates a number of constructs in software languages to provide effective
execution of the States' behaviors (do, entry and exit) and also to code the appropriate transition's effect when necessary.

Model Objects Code Objects

Enumerations StateType - consists of an enumeration for each of the States contained within·
the StateMachine

TransitionType – consists of an enumeration for each transition that has a valid·
effect associated with it; for example,
ProcessOrder_Delivered_to_ProcessOrder_Closed

CommandType – consists of an enumeration for each of the behavior types that·
a State can contain (Do, Entry, Exit)

Attributes currState:StateType - a variable to hold the current State's information·
nextState:StateType - a variable to hold the next State's information, set by·
each State's transitions accordingly

currTransition:TransitionType - a variable to hold the current transition·
information; this is set if the transition has a valid effect associated with it

transcend:Boolean - a flag used to advise if a transition is involved in·
transcending between different StateMachines (or Submachine states)

xx_history:StateType - a history variable for each StateMachine/Submachine·
State, to hold information about the last State from which the transition took
place

Operations StatesProc - a States procedure, containing a map between a State's·
enumeration and its operation; it de-references the current State's information

(c) Sparx Systems 2022 Page 86 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

to invoke the respective State's function

TransitionsProc - a Transitions procedure, containing a map between the·
Transition's enumeration and its effect; it invokes the Transition's effect

<<State>> - an operation for each of the States contained within the·
StateMachine; this renders a State's behaviors based on the input
CommandType, and also executes its transitions

initializeStateMachine - a function that initializes all the framework-related·
attributes

runStateMachine - a function that iterates through each State, and executes·
their behaviors and transitions accordingly

Notes

To be able to generate code from behavioral models, all behavioral constructs should be contained within a Class·

(c) Sparx Systems 2022 Page 87 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Java Code Generated From Legacy StateMachine Template

 private enum StateType: int

 {

 ProcessOrder_Delivered,

 ProcessOrder_Packed,

 ProcessOrder_Closed,

 ProcessOrder_Dispatched,

 ProcessOrder_New,

 ST_NOSTATE

 }

 private enum TransitionType: int

 {

 ProcessOrder_Delivered_to_ProcessOrder_Closed,

 TT_NOTRANSITION

 }

 private enum CommandType

 {

 Do,

 Entry,

 Exit

 }

 private StateType currState;

 private StateType nextState;

 private TransitionType currTransition;

 private boolean transcend;

 private StateType ProcessOrder_history;

 private void processOrder_Delivered(CommandType command)

(c) Sparx Systems 2022 Page 88 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

 {

 switch(command)

 {

 case Do:

 {

 // Do Behaviors..

 setStatus(Delivered);

 // State's Transitions

 if((status==Delivered))

 {

 nextState = StateType.ProcessOrder_Closed;

 currTransition = TransitionType.ProcessOrder_Delivered_to_ProcessOrder_Closed;

 }

 break;

 }

 default:

 {

 break;

 }

 }

 }

 private void processOrder_Packed(CommandType command)

 {

 switch(command)

 {

 case Do:

 {

 // Do Behaviors..

 setStatus(Packed);

 // State's Transitions

 nextState = StateType.ProcessOrder_Dispatched;

 break;

 }

 default:

 {

 break;

 }

 }

 }

 private void processOrder_Closed(CommandType command)

 {

 switch(command)

(c) Sparx Systems 2022 Page 89 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

 {

 case Do:

 {

 // Do Behaviors..

 // State's Transitions

 break;

 }

 default:

 {

 break;

 }

 }

 }

 private void processOrder_Dispatched(CommandType command)

 {

 switch(command)

 {

 case Do:

 {

 // Do Behaviors..

 setStatus(Dispatched);

 // State's Transitions

 nextState = StateType.ProcessOrder_Delivered;

 break;

 }

 default:

 {

 break;

 }

 }

 }

 private void processOrder_New(CommandType command)

 {

 switch(command)

 {

 case Do:

 {

 // Do Behaviors..

 setStatus(new);

 // State's Transitions

 nextState = StateType.ProcessOrder_Packed;

 break;

(c) Sparx Systems 2022 Page 90 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

 }

 default:

 {

 break;

 }

 }

 }

 private void StatesProc(StateType currState, CommandType command)

 {

 switch(currState)

 {

 case ProcessOrder_Delivered:

 {

 processOrder_Delivered(command);

 break;

 }

 case ProcessOrder_Packed:

 {

 processOrder_Packed(command);

 break;

 }

 case ProcessOrder_Closed:

 {

 processOrder_Closed(command);

 break;

 }

 case ProcessOrder_Dispatched:

 {

 processOrder_Dispatched(command);

 break;

 }

 case ProcessOrder_New:

 {

 processOrder_New(command);

 break;

 }

 default:

 break;

 }

 }

 private void TransitionsProc(TransitionType transition)

 {

(c) Sparx Systems 2022 Page 91 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

 switch(transition)

 {

 case ProcessOrder_Delivered_to_ProcessOrder_Closed:

 {

 setStatus(closed);

 break;

 }

 default:

 break;

 }

 }

 private void initalizeStateMachine()

 {

 currState = StateType.ProcessOrder_New;

 nextState = StateType.ST_NOSTATE;

 currTransition = TransitionType.TT_NOTRANSITION;

 }

 private void runStateMachine()

 {

 while (true)

 {

 if (currState == StateType.ST_NOSTATE)

 {

 break;

 }

 currTransition = TransitionType.TT_NOTRANSITION;

 StatesProc(currState, CommandType.Do);

 // then check if there is any valid transition assigned after the do behavior

 if (nextState == StateType.ST_NOSTATE)

 {

 break;

 }

 if (currTransition != TransitionType.TT_NOTRANSITION)

 {

 TransitionsProc(currTransition);

 }

 if (currState != nextState)

 {

 StatesProc(currState, CommandType.Exit);

 StatesProc(nextState, CommandType.Entry);

 currState = nextState;

 }

(c) Sparx Systems 2022 Page 92 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

 }

 }

(c) Sparx Systems 2022 Page 93 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

StateMachine Modeling For HDLs

To efficiently generate Hardware Description Language (HDL) code from StateMachine models, apply the design
practices described in this topic. Hardware Description Languages include VHDL, Verilog and SystemC.

In an HDL StateMachine model, you might expect to:

Designate Driving Triggers·
Establish Port–Trigger Mapping·
Add to Active State Logic·

Operations

Operation Description

Designate Driving Triggers A 'Change' Trigger is deemed to be an asynchronousTrigger if:·
 - There is a transition from the actual SubMachine State (which
 encapsulates the actual logic) that it triggers, and
 - The target State of that transition has a self transition triggered
 by the same Trigger

Asynchronous Triggers should be modeled according to this pattern:·
 - The Trigger should be of type Change (specification: True / False)
 - The active State (SubMachine State) should have a transition
 triggered by it
 - The target State of the triggered transition should have a self
 transition with the same Trigger

A Trigger of type 'Time', which triggers the transitions to the active state·
(SubMachine State), is deemed to be the Clock; the specification of this trigger
should conform to the target language:
 - VHDL - rising_edge / falling_edge
 - Verilog - posedge / negedge
 - SystemC - positive / negative

Establish Port-Trigger
Mapping

After successfully modeling the different operating modes of the component, and
the Triggers associated with them, you must associate the Triggers with the
component's Ports.

A Dependency relationship from the Port to the associated Trigger is used to
signify that association.

Active State Logic Designating the driving Trigger and establishing the Port-Trigger mapping put in
place the preliminaries required for efficiently interpreting the hardware

(c) Sparx Systems 2022 Page 94 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

components.

We now model the actual StateMachine logic within the Active (SubMachine)
State.

Notes

To be able to generate code from behavioral models, all behavioral constructs should be contained within a Class·
The current code generation engine supports only one clock Trigger for a component·

(c) Sparx Systems 2022 Page 95 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Win32 User Interface Dialogs

Using the MDG Win32 UI Technology, you can design user interface screens that render as Win32® controls. The user
interface produced can be used in any resource definition script. Resource definition scripts, or RC files, are a Microsoft
technology that - as for other code - can be compiled and the assets used by native desktop applications. User interface
screens or dialogs can be created from scratch or reverse engineered. User interface models can also be forward
engineered using the synchronize code function (F7). Interface modeling takes place on diagrams in the exact same
fashion as you would work with any technology in Enterprise Architect. An interesting aspect of User Interface design in
Enterprise Architect is that components can take an active role in the simulation of StateMachines and Activities,
enabling a simulation to interact with users, much like a real program!

Access

Ribbon Design > Diagram > Add Diagram > Type > User Interface Win32

Context Menu Right-click on Package | Add Diagram > Type | User Interface Win32

Other Browser window caption bar menu | New Diagram | User Interface Win32

Support

The MDG Win32® User Interface Technology is available in the Enterprise Architect Professional, Corporate, Unified
and Ultimate editions

Enabling Win32 User Interface Technology

(c) Sparx Systems 2022 Page 96 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

The Win32® UI Technology in Enterprise Architect is enabled or disabled using the 'MDG Technologies' dialog (select
the 'Specialize > Technologies > Manage Technology' ribbon option).

Default technology

You can set the MDG Win32® UI Technology as the active default technology to access the Toolbox pages directly.

(c) Sparx Systems 2022 Page 97 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Modeling UI Dialogs

The Win32 User Interface MDG Technology provides the tools to help you design a user interface that closely emulates
the visual style and available options for Windows dialogs.

Win32 Dialog

These user interface components are supported, each matching the equivalent-named RC resource.

Component Details

win32Dialog The equivalent of the RC format DIALOG and DIALOGEX resources.

win32StaticText The equivalent of the RC format LTEXT, RTEXT, CTEXT resources.

win32Edit The equivalent of the RC format EDITTEXT resource.

win32Button The equivalent of the RC format BUTTON, DEFPUSHBUTTON and other
resources.

win32CheckBox The equivalent of the RC format CHECKBOX resource.

win32ScrollBarH The equivalent of the RC format SCROLLBAR resource with SBS_HORZ style

win32ScrollBarV The equivalent of the RC format SCROLLBAR resource with SBS_VERT style.

win32GroupBox The equivalent of the RC format GROUPBOX resource.

(c) Sparx Systems 2022 Page 98 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

win32ComboBox The equivalent of the RC format COMBOBOX resource.

Note: When you initially drag the 'Combo Box' icon - of type 'Drop Down' or 'Drop
Down List' - onto a diagram, the middle 'tracking handle' on each side of the
element is white, indicating that you can only adjust the width of the element. To
adjust the height of the element as well as the width, click on the drop-down arrow
part of the image; the middle 'tracking handle' on the bottom edge is now white,
indicating that you can drag the base down to set the virtual height (the height of
the element when it is expanded to show all possible values in the drop-down list).

win32ListBox The equivalent of the RC format LISTBOX resource.

win32RadioButton The equivalent of the RC format RADIOBUTTON resource.

win32TabPane The equivalent of the RC format TABPANE resource.

win32Picture The equivalent of the RC format STATIC resource with SS_BITMAP style.

The control can render an image when applied from your model. An image can be
applied by selecting it first and pressing Ctrl+Shift+W to display the Image
Manager. Afterwards, you might need to change the value of the resource ID in the
appropriate Tagged Value.

win32CustomControl The equivalent of the RC format CONTROL resource.

(c) Sparx Systems 2022 Page 99 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Import Single Dialog from RC File

You can quickly import a single dialog by name.

Access

In the Browser window, click on the target Package.

Ribbon Develop > Source Code > Files > Import Resource Script

(c) Sparx Systems 2022 Page 100 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Import All Dialogs from RC File

All dialogs in a single RC file can be imported into your model. This image was captured one minute into the import, at
which time over 200 large dialog definitions had been imported.

Access

Ribbon Develop > Source Code > Files > Import Resource Script

(c) Sparx Systems 2022 Page 101 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Export Dialog to RC File

Once a screen design is modified or a new one created, you might want to get it back to the RC file you use to build your
application, so that you can see how it looks with real data. Begin by selecting the Win32Dialog element in the Browser
window, then use the ribbon to perform the synchronization.

Access

Click on the win32Dialog element.

Ribbon Develop > Source Code > Generate > Generate Single Element

Keyboard Shortcuts F11

(c) Sparx Systems 2022 Page 102 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Design a New Dialog

Creating a new Win32 dialog is easy and mostly visual. You will probably need a workspace that shows:

The new diagram (select the 'Design > Diagram > Add Diagram > User Interface - Win32 > User Interface - Win32'·
ribbon path)

The Win32 User Interface Toolbox (select the 'Design > Diagram > Tooolbox' ribbon option) and·
The Tagged Values tab of the Properties window·

The UI Toolbox

All of the common RC elements can be found on the UI toolbox

(c) Sparx Systems 2022 Page 103 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

The Tags Tab

This tab is provided on the Properties window and 'Properties' dialog for an object, and is where all the properties of a
control can be viewed and edited.

(c) Sparx Systems 2022 Page 104 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Using the Picture Control

Images from your model (see Image Manager) can be applied by selecting the control on the dialog and pressing
Ctrl+Shift+W. You might have to enter the value of the resource ID in the appropriate Tagged Value.

Note

You can copy and paste dialog Packages·

(c) Sparx Systems 2022 Page 105 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Gang of Four (GoF) Patterns

A Design Pattern is a template for solving commonly recurring design problems; it consists of a series of elements and
connectors that can be reused in a new context. The advantage of using Patterns is that they have been tested and refined
in a number of contexts and so are typically robust solutions to common problems. Enterprise Architect provides the
Gang of Four Patterns as an MDG Technology that can be loaded into the current repository.

The Gang of Four (Gof) Patterns are a group of twenty three Design Patterns originally published in a seminal book
entitled Design Patterns: Elements of Reusable Object-Oriented Software; the term 'Gang of Four' refers to the four
authors. Enterprise Architect displays these Patterns in its Pattern engine, helping you to visualize the elements of the
Pattern and adjust the Pattern to the context of your software design problem.

GoF Patterns in Enterprise Architect

Features Description

GoF Pattern Facilities The GoF Patterns are provided in the form of:

GoF Behavioral Patterns, GoF Creational Patterns and GoF Structural Patterns·
pages in the Toolbox

Gang of Four Pattern entries in the Toolbox Shortcut Menu·
GoF Pattern Toolbox Pages

You can access the 'GoF Pattern' pages of the Toolbox by clicking on to
display the 'Find Toolbox Item' dialog and specifying 'GoF Patterns'; these icons are
available:

(c) Sparx Systems 2022 Page 106 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

When you drag one of the Pattern elements onto a new diagram, the 'Add Pattern
GoF <pattern group><pattern type>' dialog displays; if necessary, modify the action
and/or default for the component elements, then click on the OK button to create a
diagram based on the Pattern.

(c) Sparx Systems 2022 Page 107 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

ICONIX

The ICONIX process is a proprietary software development methodology based on UML. The process is Use Case
driven and uses UML-based diagrams to define four milestones. The main feature of the process is a concept called
robustness modeling, based on the early work of Ivar Jacobson, which helps bridge the gap between analysis and design.

This text is derived from the ICONIX entry in the online Wikipedia:

'The ICONIX Process is a minimalist, streamlined approach to Use Case driven UML modeling that uses a core subset of
UML diagrams and techniques to provide thorough coverage of object-oriented analysis and design. Its main activity is
robustness analysis, a method for bridging the gap between analysis and design. Robustness analysis reduces the
ambiguity in use case descriptions, by ensuring that they are written in the context of an accompanying domain model.
This process makes the use cases much easier to design, test and estimate.'

The ICONIX Process was developed by Doug Rosenberg; for more information on ICONIX, refer to ICONIX Software
Engineering Inc.

Aspects

Aspect Detail

ICONIX in Enterprise
Architect

Enterprise Architect enables you to develop models under ICONIX quickly and
simply, through use of an MDG Technology integrated with the Enterprise
Architect installer.

The ICONIX facilities are provided in the form of:

A set of ICONIX pages in the Toolbox·
ICONIX element and relationship entries in the 'Toolbox Shortcut' menu and·
Quick Linker

To further help you develop and manage a project under ICONIX, Enterprise
Architect also provides a white paper on the ICONIX Roadmap.

ICONIX Toolbox Pages Within the Toolbox, Enterprise Architect provides ICONIX versions of the pages
for UML Analysis, Use Case, Class, Interaction (Sequence), Activity and Custom
diagrams (which often form the basis for Robustness diagrams).

Compared to the standard Toolbox pages, these have slightly different element and
relationship sets; you can access them by either:

Specifying 'ICONIX' in the 'Find Toolbox Item' dialog and selecting a specific·
Toolbox page

Selecting the 'ICONIX' option in the drop-down field of the Default Tools·
toolbar, which adds all six pages to the Toolbox; all pages are closed up

(c) Sparx Systems 2022 Page 108 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

(c) Sparx Systems 2022 Page 109 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Configuration Settings

You can set the default code options such as the editors for each of the programming languages available for Enterprise
Architect and special options for how source code is generated or reverse engineered. These options are defined
according to whether they apply to:

All users of the current model, set on the 'Manage Model Options' dialog, or·
All models that you access (other users can define their own settings that apply to the same models), set on the·
'Preferences' dialog

You can also:

For each programming language used in the model, for all users working on the model, define Collection Classes for·
generating code from Association connectors where the target role has a multiplicity setting greater than 1

Define a local path for yourself, using the 'Local Path' dialog; these settings apply to all Enterprise Architect models·
that you access

Define language macros within the model, which are useful in reverse engineering and can be exported from and·
imported to the model

(c) Sparx Systems 2022 Page 110 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Source Code Engineering Options

The 'Source Code Engineering' options apply to the languages in which you generate code from Enterprise Architect.
They are divided into Model-specific options and User-specific options, as explained here.

Model-Specific Options

These options are defined on the 'Manage Model Options' dialog.

Access

Ribbon Settings > Model > Options > Source Code Engineering

Types of Option

Option Type Detail

Source Code Generation
Options

You can define a number of settings for generating code in the model, such as the
default language to generate code in and the Unicode character set for code
generation.

Options - Object Lifetimes You can configure various options concerning Object Lifetimes.

Code Language Options For each of the code languages that Enterprise Architect supports, you can define
the model-specific options and set any Collection Classes required.

User-Specific Options

These options are defined on the 'Preferences' dialog.

Access

On the 'Preferences' dialog, click on 'Source Code Engineering' in the left-hand list.

Ribbon Start > Appearance > Preferences > Preferences

Keyboard Shortcuts Ctrl+F9

(c) Sparx Systems 2022 Page 111 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Types of Option

Option Type Detail

Source Code Generation
Options

You can define a number of settings for generating code in any model that you
access under the same user ID.

Code Editors These are options for accessing and configuring the source code editor.

Attributes/Operations Use these options for configuring attributes and operations.

Code Language Options For each of the code languages that Enterprise Architect supports, you can define
the user-specific options that apply to any model that you access under your user
ID.

(c) Sparx Systems 2022 Page 112 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Code Generation Options

When you generate code for your model, you can set certain options. These include:

The default language·
Whether to generate methods for implemented interfaces·
The Unicode options for code generation·

Access

Ribbon Settings > Model > Options > Source Code Engineering

Configure code generation options

Option Action

Always synchronize with
existing file
(recommended)

Select the radio button to synchronize imported code with an existing file.

Replace (overwrite)
existing source file

Select the radio button to overwrite the existing source file with imported code.

Component Types Click on this button to open the 'Import component types' dialog, to set up the
importation of component types.

Default Language for Code
Generation

Click on the drop-down arrow and select the default language for code generation.

DDL Name Templates
Click on the button to define the template names for Primary Key, Unique
Constraint, Foreign Key and Foreign Key Index Name templates.

Default name for
associated attrib

Type in a default name to be generated from imported attributes.

Generate methods for
implemented interfaces

Select the checkbox to indicate that methods are generated for implemented
interfaces.

Code page for source
editing

Click on the drop-down arrow and select the appropriate Unicode character
embedding format to apply.

Notes

It is worthwhile to configure these settings, as they serve as the defaults for all Classes in the model; you can·

(c) Sparx Systems 2022 Page 113 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

override most of these on a per-Class basis using the custom settings (from the 'Code Generation' dialog)

(c) Sparx Systems 2022 Page 114 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Import Component Types

Using the 'Import Component Types' dialog you can configure what elements you want to be created for files of any
extension found while importing a source code directory.

Access

Ribbon Settings > Model > Options > Source Code Engineering: Component Types

Define Import Component Types

Option Action

Extension Type in the extension name for a component type.

Type Click on the drop-down arrow and select the component type.

Stereotype Type in any stereotype name that further identifies a component of this type.

Component List Lists the currently-defined component types.

Save Click on this button to saves the component definition and add it to the component
list.

New Click on this button to clear the dialog fields so that you can define a new
component type.

Delete Click on this button to delete the selected component type from the component list.

Notes

You can transport these import component types between models, using the 'Settings > Model > Transfer > Export·
Reference Data' and 'Import Reference Data' ribbon options

(c) Sparx Systems 2022 Page 115 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Source Code Options

You can set a wide range of options for generating code in the models you work with. These include:

How to format the generated code·
How to respond to certain events during code generation·
Whether to generate a diagram from the code·

Access

On the 'Preferences' dialog, select the 'Source Code Engineering' option

Ribbon Start > Appearance > Preferences > Preferences

Keyboard Shortcuts Ctrl+F9

Configure code generation options

Field Action

Wrap long comment lines
at

Type in the number of characters to allow in a comment line before wrapping the
text to the next line.

Auto Layout Diagram on
Import

Click on the drop-down arrow and select if and when a diagram is automatically
generated on code import.

Default Layout Diagram
type

Click on the drop-down arrow and select the layout type to apply to diagrams
generated from code.

Output files use both CR &
LF

Select the checkbox to include carriage returns and line feeds; set this option
according to what operating system is currently in use, as code might not render
correctly.

Prompt when
synchronizing (reversing)

Select the checkbox to display a prompt when synchronization occurs.

Remove hard breaks from
comments on import

Select the checkbox to remove hard breaks from commented sections on
importation.

Auto generate role names
when creating code

Select the checkbox to generate role names when creating code.

Do not generate members
where association direction
is 'Unspecified'

Select the checkbox to prevent generation of members if the Association direction
is unspecified.

Create dependencies for
operation returns and

Select the checkbox to generate dependencies for operation returns and parameter
types.

(c) Sparx Systems 2022 Page 116 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

parameter types

Comments: Generate Select the checkbox to generate comments.

Comments: Reverse Select the checkbox to generate reverse comments.

Remove prefixes when
generating Get/Set
properties

Type in the prefixes, separated by semi-colons, used in your variable naming
conventions, to be removed in the variables' corresponding get/set functions.

Treat as suffixes Select the checkbox to use the prefixes defined in the 'Remove prefixes when
generating Get/Set properties' field as suffixes.

Capitalized Attribute Name
for Properties

Select the checkbox to capitalize attribute names for properties.

Use 'Is' for Boolean
property Get()

Select the checkbox to use the Is keyword for the Boolean property Get().

Notes

It is worthwhile to configure these settings, as they serve as the defaults for all Classes in the model; you can·
override most of these on a per-Class basis using the custom settings (from the 'Code Generation' dialog)

(c) Sparx Systems 2022 Page 117 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Options - Code Editors

You access the source code editor options via the 'DDL' page of the 'Preferences' dialog. On this page you can configure
options for Enterprise Architect's internal editor, as well as the default editor for DDL scripts. You can configure external
editors for code languages on each language options page.

Access

On the 'Preferences' dialog, select the 'Source Code Engineering > Code Editors' option.

Ribbon Start > Appearance > Preferences > Preferences

Keyboard Shortcuts Ctrl+F9

Options

Option Action

DDL Editor Defaults to blank, indicating that the Enterprise Architect code editor is the DDL
editor in use.

You can select a different default editor if necessary; click on the button to
browse for and select the required DDL editor. The editor name then displays in the
'DDL Editor' field.

Default Database Click on the drop-down arrow and select the default database to be used.

MySQL Storage Engine Click on the drop-down arrow and select the MySQL storage engine to be used.

Use inbuilt editor if no
external editor set

Select the checkbox to use the inbuilt editor for code in any language if no external
editor is defined for that language in the user-specific options.

Show Line Numbers Select the checkbox to display line numbers in the editor.

Show Structure Tree Select the checkbox to show a tree with the results of parsing the open file (if the
file is parsed successfully).

Automatically Reverse
Engineer on File Save

If you select this checkbox, pressing Ctrl+S to save in the source code editor
automatically reverse engineers the code in the same way as the Save Source and
Re-Synchronize Class button does.

Don't parse files larger than Click on the drop-down arrow and select the upper limit on file size for parsing.

Setting this option prevents performance decrease due to parsing very large files.

Font, Style and Syntax
Highlighting Click on the button to display the 'Editor Language Properties' dialog, in

which you can set both global and language-specific editor language properties.

Configure Enterprise

(c) Sparx Systems 2022 Page 118 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Architect File Associations
Click on the button to display the 'Set Associations for a Program' dialog, and
select the file extensions for files that you want to open through the Enterprise
Architect Document Handler.

(c) Sparx Systems 2022 Page 119 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Editor Language Properties

Using the 'Editor Language Properties' dialog, you can specify syntax highlighting properties for any of the programming
languages that Enterprise Architect supports at installation.

Access

In the 'Preferences' dialog, select the 'Source Code Engineering | Code Editors' option and click on the button next
to 'Syntax Highlighting Options'.

Ribbon Start> Appearance > Preferences > Preferences, select 'Source Code Engineering |

Code Editors' option > click on the button next to 'Syntax Highlighting
Options'

Other
In the Code Editor window, click on the toolbar icon | Syntax Highlighting
Options

Options

Panel Description

Language Panel The panel on the left of the dialog lists the languages for which you can set
properties.

At the top of the list are three non-language options:

(Dark Theme) - assigns a dark background to the property fields and to the·
code panel in the code editor screen (you can apply a different color to specific
properties)

(Light Theme) - assigns a pale background to the property fields and to the·
code panel in the code editor screen (you can apply a different color to specific
properties)
You can also set the background themes on the 'Application Look' dialog

(Global) provides properties that you can set for all programming languages;·
however, you can reset a global property to a different value for a particular
language, in the properties specifically for that language
Resetting a global property for one language does not affect that property's
value for the other languages

Click on the required language in the list, to display the properties for that
language:

Properties shown in bold indicate that this is the highest level at which this·
property can be defined (for most language options other than 'Global', this is
effectively the only point at which the property is defined)

Properties shown in normal font are generally the global properties that you·
can reset just for the current language

Properties Panel Scroll through the property categories and individual properties for the language.
You can collapse and expand categories as necessary, using the expansion box next

(c) Sparx Systems 2022 Page 120 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

to the category name ().

When you click on a property name, an explanation of that property displays in the
panel at the bottom right of the dialog.

To define a property, click on the value field following the property name;
depending on the type of property, either the field is enabled for direct editing or a

drop-down arrow or button displays (as described for the 'Tags' tab of the
Properties window) so that you can select the values to define the property.

Select or type in the required values.

Use the Toolbar icons to:

Save your changes to the properties·
Reset all properties fields to the default settings shipped with Enterprise·
Architect

Reset the current style field to the default setting (not enabled for non-style·
fields)

Assign Keys to Macros In the 'Macros' category of the properties, you can assign (Ctrl+Alt+<n>) keystroke
combinations to coding macros that you have created yourself in the 'Source Code
Viewer'.

When you click on the Browse button in a selected 'Macro' field, the 'Open Macro'
dialog displays; this dialog lists the existing macros and, if a key combination has
been assigned to a macro, what that key combination is.

Click on the name of the macro and on the Open button to assign the selected keys
to the macro.

Notes

You cannot currently set properties for any additional languages you include through an MDG Technology·
You can resize this dialog, if required·

(c) Sparx Systems 2022 Page 121 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Options - Object Lifetimes

You can use these options to configure various Object Lifetime settings such as:

Defining constructor details when generating code·
Specifying whether to create a copy constructor·
Defining Destructor details·

Access

Ribbon Settings > Model > Options > Source Code Engineering > Object Lifetimes

Options

Option Action

Constructor If necessary, select the checkboxes to specify that a constructor is generated and
(for C++) that the constructor is in-line.

Click on the drop-down arrow and select the appropriate visibility of the default
constructor - Private, Protected or Public.

Copy Constructor If necessary, select the checkboxes to specify that a copy constructor is generated
and (for C++) that the copy constructor is in-line.

Click on the drop-down arrow and select the appropriate visibility of the default
copy constructor - Private, Protected or Public.

Destructor If necessary, select the checkboxes to specify that a destructor is generated and (for
C++) that the destructor is in-line and/or virtual.

Click on the drop-down arrow and select the appropriate visibility of the default
destructor - Private, Protected or Public.

(c) Sparx Systems 2022 Page 122 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Options - Attribute/Operations

Your use of attributes and operations can be configured in a number of ways. You can set options to:

Delete model attributes not included in the code during reverse synchronization·
Delete model methods not included in the code during reverse synchronization·
Delete code from features contained in the model during forward synchronization·
Delete model associations and aggregations that correspond to attributes not included in the code during reverse·
synchronization

Define whether or not the bodies of methods are included and saved in the model when reverse engineering·
Create features in quick succession, clearing the Properties window when you click on 'Save' so that you can enter·
another feature name

You configure these options on the 'Attribute/Operations' page of the 'Preferences' dialog.

Access

On the 'Preferences' dialog, select the 'Source Code Engineering > Attribute/Operations' option.

Ribbon Start > Appearance > Preferences > Preferences

Keyboard Shortcuts Ctrl+F9

Options

Field Action

On reverse synch, delete
model attributes not in
code

Select the checkbox to indicate that on reverse synchronization, attributes in the
model that are not included within code are automatically removed from the model.

On reverse synch, delete
model associations not in
code

Select the checkbox to indicate that on reverse synchronization, associations in the
model that are not included within code are automatically removed from the model.

On reverse synch, delete
model methods not in code

Select the checkbox to indicate that on reverse synchronization, methods in the
model that are not included within code are automatically removed from the model.

Include method bodies in
model when reverse
engineering

Select the checkbox to indicate that on reverse engineering code, method bodies in
the code are included within your model.

After save, re-select edited
item

Select the checkbox to indicate that after saving an attribute or operation, the
properties definition continues to display the details of the selected feature.

If deselected, indicates that the fields of the properties definition will clear so that
you can enter another attribute or operation name and details immediately.

On forward synch, prompt Select the checkbox to indicate that, during forward synchronization, the

(c) Sparx Systems 2022 Page 123 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

to delete code features not
in model

'Synchronize Element <package name>.<element name>' dialog displays, so that
you can either ignore, reassign or delete features in the code that are not in the
model.

(c) Sparx Systems 2022 Page 124 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Modeling Conventions

The synchronization between UML models and programming code is achieved using a set of modeling conventions
(mappings) between UML constructs and programming code syntax. The Software Engineer is advised to become
familiar with these conventions in order to work with the code generation process for the programming languages they
intend to target. There are a range of constructs used, including elements, features, connectors, connector ends,
stereotypes and Tagged Values. The newcomer will require a little time to become familiar with these conventions but
after a short time they will be translating between programming code and UML constructs without effort.

Supported Languages

Language

Action Script

Ada 2012 (Unified and Ultimate Editions)

C

C#

C++

Delphi

Java

PHP

Python

SystemC (Unified and Ultimate Editions)

Verilog (Unified and Ultimate Editions)

VHDL (Unified and Ultimate Editions)

Visual Basic

Visual Basic .NET

(c) Sparx Systems 2022 Page 125 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Notes

Enterprise Architect incorporates a number of visibility indicators or scope values for its supported languages; these
include, for:

All languages - Public (+), Protected (#) and Private (-)·
Java - Package (~)·
Delphi - Published (^)·
C# - Internal (~), Protected Internal (^)·
ActionScript - Internal (~)·
VB.NET - Friend (~), Protected Friend (^)·
PHP - Package (~)·
Python - Package (~)·
C - Package (~)·
C++ - Package (~)·

(c) Sparx Systems 2022 Page 126 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

ActionScript Conventions

Enterprise Architect supports round trip engineering of ActionScript 2 and 3, where these conventions are used.

Stereotypes

Stereotype Applies To

literal Operation

Corresponds To: A literal method referred to by a variable.

property get Operation

Corresponds To: A 'read' property.

property set Operation

Corresponds To: A 'write' property.

Tagged Values

Tag Applies To

attribute_name Operation with stereotype property get or property set

Corresponds To: The name of the variable behind this property.

dynamic Class or Interface

Corresponds To: The 'dynamic' keyword.

final ActionScript 3: Operation

Corresponds To: The 'final' keyword.

intrinsic ActionScript 2: Class

Corresponds To: The 'intrinsic' keyword.

namespace ActionScript 3: Class, Interface, Attribute, Operation

Corresponds To: The namespace of the current element.

override ActionScript 3: Operation

Corresponds To: The 'override' keyword.

prototype ActionScript 3: Attribute

Corresponds To: The 'prototype' keyword.

rest ActionScript 3: Parameter

Corresponds To: The rest parameter (...)

(c) Sparx Systems 2022 Page 127 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Common Conventions

Package qualifiers (ActionScript 2) and Packages (ActionScript 3) are generated when the current Package is not a·
namespace root

An unspecified type is modeled as 'var' or an empty 'Type' field·

ActionScript 3 Conventions

The Is Leaf property of a Class corresponds to the sealed keyword·
If a namespace tag is specified it overrides the Scope that is specified·

(c) Sparx Systems 2022 Page 128 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Ada 2012 Conventions

Enterprise Architect supports round trip engineering of Ada 2012, where these conventions are used.

Stereotypes

Stereotype Applies To

adaPackage Class

Corresponds To: A Package specification in Ada 2012 without a tagged record.

adaProcedure Class

Corresponds To: A procedure specification in Ada 2012.

delegate Operation

Corresponds To: Access to a subprogram.

enumeration Inner Class

Corresponds To: An enumerated type.

struct Inner Class

Corresponds To: A record definition.

typedef Inner Class

Corresponds To: A type definition, subtype definition, access type definition,
renaming.

Tagged Values

Tag Applies To

Aspect Inner Class with stereotype typedef

Operation

Corresponds to: Aspect specification (Precondition and Postcondition of
Subprogram type 'invariant', subtype 'predicate').

InstantiatedUnitType Inner Class with stereotype typedef

Corresponds To: The instantiated unit's type (Package / Procedure / Function).

IsAccess Parameter

Corresponds To: Determination of whether the parameter is an access variable.

IsAliased Function parameter

Corresponds to: Aliased function parameter.

(c) Sparx Systems 2022 Page 129 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Discriminant Inner Class with stereotype typedef

Corresponds To: The type's discriminant.

PartType Inner Class with stereotype typedef

Corresponds To: The part type ('renames' or 'new').

Type Inner Class with stereotype typedef

Corresponds To: If 'Value' = 'SubType', set 'subtype'

If 'Value' = 'Access', set 'access type'.

Other Conventions

Appropriate type of source files: Ada specification file, .ads·
Ada 2012 imports Packages defined as either <<adaPackage>> Class or Class, based on the settings in the Ada 2012·
options

A Package in the Ada specification file is imported as a Class if it contains a Tagged Record, the name of which is·
governed by the options 'Use Class Name for Tagged Record' and 'Alternate Tagged Record Name'; all attributes
defined in that Tagged Record are absorbed as the Class's attributes

A procedure / function in an Ada specification file is considered as the Class's member function if its first parameter·
satisfies the conditions specified in the options 'Ref Param Style', 'Ignore Reference parameter name' and 'Ref
parameter name'

The option 'Define Reference for Tagged Record', if enabled, creates a reference type for the Class, the name of·
which is determined by the option 'Reference Type Name'; for example:

 HelloWorld.ads

 package HelloWorld is

 type HelloWorld is tagged record

 Att1: Natural;

 Att3: Integer;

 end record;

 -- Public Functions

 function MyPublicFunction (P: HelloWorld) return String;

 procedure MyPublicFunction (P1: in out HelloWorld; AFlag: Boolean);

 private

 -- Private Functions

 function MyPrivateFunction (P: HelloWorld) return String;

 procedure MyPrivateFunction (P1: in out HelloWorld; AFlag: Boolean);

 end HelloWorld;

(c) Sparx Systems 2022 Page 130 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Notes

Ada 2012 support is available in the Unified and Ultimate Editions of Enterprise Architect·

(c) Sparx Systems 2022 Page 131 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

C Conventions

Enterprise Architect supports round trip engineering of C, where these conventions are used:

Stereotype

Stereotype Applies To

enumeration Inner Class

Corresponds To: An enumerated type.

struct Inner Class

Corresponds To: A 'struct' type.

Attribute A keyword struct in variable definition.

typedef Inner Class

Corresponds To: A 'typedef' statement, where the parent is the original type name.

union Inner Class

Corresponds To: A union type.

Attribute A keyword union in variable definition.

Tagged Values

Tag Applies To

anonymous Class also containing the Tagged Value typedef

Corresponds To: The name of this Class being defined only by the typedef
statement.

bitfield Attribute

Corresponds To: The size, in bits, allowed for storage of this attribute.

bodyLocation Operation

Corresponds To: The location the method body is generated to; expected values are
header, classDec or classBody.

typedef Class with stereotype other than 'typedef'

Corresponds To: This Class being defined in a 'typedef' statement.

typeSynonyms Class

Corresponds To: The 'typedef' name and/or fields of this type.

(c) Sparx Systems 2022 Page 132 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

C Code Generation for UML Model

UML C Code

A Class A pair of C files (.h + .c)

Notes: File name is the same as Class name

Operation (public &
protected)

Function declaration in .h file and definition in .c file

Notes:

Operation (private) Function definition in .c file only

Notes:

Operation (static) Function definition in .c file only

Notes: Static functions will only appear in the .c file regardless of their scope.

Attribute (public &
protected)

Variable definition in .h file

Notes:

Attribute (private) Variable definition in .c file

Notes:

Inner Class (without
stereotype)

(N/A)

Notes: This inner Class would be ignored

Capture #define value to be generated in C code

For example, #define PI 3.14.

Step Process

1 Add an attribute to the Class, with Name = PI and Initial Value = 3.14.

2 In the properties panel of the 'Attributes' page, update the 'Static' and 'Const' fields.

3 On the 'Tagged Values' tab of the 'Attributes' page, add a tag called 'define' with the value True.

Notes

Separate conventions apply to Object Oriented programming in C·

(c) Sparx Systems 2022 Page 133 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Object Oriented Programming In C

In Enterprise Architect, you apply a number of conventions for Object-Oriented programming in C.

To configure the system to support Object-Oriented programming using C, you must set the 'Object Oriented Support'
option to True on the 'C Specifications' page of the 'Preferences' dialog.

Stereotypes

Stereotype Applies To

enumeration Class

Corresponds To: An enumerated type.

struct Class

Corresponds To: A 'struct' type.

Attribute A keyword struct in variable definition.

typedef Class

Corresponds To: A 'typedef' statement, where the parent is the original type name.

union Class

Corresponds To: A union type.

Attribute A keyword union in variable definition.

Tagged Values

Tag Applies To

anonymous Class with stereotype of 'enumeration', 'struct' or 'union'

Corresponds To: The name of this Class being defined only by the typedef
statement.

bodyLocation Operation

Corresponds To: The location the method body is generated to; expected values are
'header', 'classDec' or 'classBody'.

define Attribute

Corresponds To: '#define' statement.

typedef Class with stereotype of 'enumeration', 'struct' or 'union'

Corresponds To: This Class being defined in a 'typedef' statement.

(c) Sparx Systems 2022 Page 134 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Object-Oriented C Code Generation for UML Model

The basic idea of implementing a UML Class in C code is to group the data variable (UML attributes) into a structure
type; this structure is defined in a .h file so that it can be shared by other Classes and by the client that referred to it.

An operation in a UML Class is implemented in C code as a function; the name of the function must be a fully qualified
name that consists of the operation name, as well as the Class name to indicate that the operation is for that Class.

A delimiter (specified in the 'Namespace Delimiter' option on the 'C Specifications' page) is used to join the Class name
and function (operation) name.

The function in C code must also have a reference parameter to the Class object - you can modify the 'Reference as
Operation Parameter', 'Reference Parameter Style' and 'Reference Parameter Name' options on the 'C Specifications' page
to support this reference parameter.

Limitations of Object-Oriented Programming in C

No scope mapping for an attribute: an attribute in a UML Class is mapped to a structure variable in C code, and its·
scope (private, protected or public) is ignored

Currently an inner Class is ignored: if a UML Class is the inner Class of another UML Class, it is ignored when·
generating C code

Initial value is ignored: the initial value of an attribute in a UML Class is ignored in generated C code·

(c) Sparx Systems 2022 Page 135 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

C# Conventions

Enterprise Architect supports the round trip engineering of C#, where these conventions are used.

Stereotypes

Stereotype Applies To

enumeration Class

Corresponds To: An enumerated type.

event Operation

Corresponds To: An event.

extension Operation

Corresponds To: A Class extension method, represented in code by a 'this'
parameter in the signature.

indexer Operation

Corresponds To: A property acting as an index for this Class.

partial Operation

Corresponds To: The 'partial' keyword on an operation.

property Operation

Corresponds To: A property possibly containing both read and write code.

record Class

Corresponds To: A 'record' type.

struct Class

Corresponds To: A 'struct' type.

Tagged Values

Tag Applies To

argumentName Operation with stereotype extension

Corresponds To: The name given to this parameter.

attribute_name Operation with stereotype property or event

Corresponds To: The name of the variable behind this property or event.

className Operation with stereotype extension

(c) Sparx Systems 2022 Page 136 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Corresponds To: The Class that this method is being added to.

const Attribute

Corresponds To: The const keyword.

definition Operation with stereotype partial

Corresponds To: Whether this is the declaration of the method, or the definition.

delegate Operation

Corresponds To: The 'delegate' keyword.

enumType Operation with stereotype property

Corresponds To: The datatype that the property is represented as.

expressionBody Operation, Operation with stereotype property or indexer

Corresponds To: 'True' if the 'Behavior Code' is from an expression body function
member.

extensionAttribute Operation with stereotype extension.

Corresponds to: The attribute given to this parameter.

extern Operation

Corresponds To: The 'extern' keyword.

fixed Attribute

Corresponds To: The 'fixed' keyword.

generic Operation

Corresponds To: The generic parameters for this operation.

genericConstraints Templated Class or Interface, Operation with tag 'generic'

Corresponds To: The constraints on the generic parameters of this type or
operation.

Implements Operation

Corresponds To: The name of the method this implements, including the interface
name.

ImplementsExplicit Operation

Corresponds To: The presence of the source interface name in this method
declaration.

initializer Operation

Corresponds To: A constructor initialization list.

new Class, Interface, Operation

Corresponds To: The 'new' keyword.

override Operation

Corresponds To: The 'override' keyword.

(c) Sparx Systems 2022 Page 137 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

params Parameter

Corresponds To: A parameter list using the 'params' keyword.

partial Class, Interface

Corresponds To: The 'partial' keyword.

propertyInitializer Operation with stereotype property

Corresponds To: A property initializer.

readonly Operation, <<struct>>Class

Corresponds To: The 'readonly' keyword.

positionalParameters <<record>> Class

Corresponds To: The position parameter in the record definition.

ref Operation, <<struct>>Class

Corresponds To: The 'ref' keyword.

sealed Operation

Corresponds To: The 'sealed' keyword.

static Class

Corresponds To: The 'static' keyword.

unsafe Class, Interface, Operation

Corresponds To: The 'unsafe' keyword.

virtual Operation

Corresponds To: The 'virtual' keyword.

writeonly Operation with stereotype property

Corresponds To: This property only defining 'write' code.

Other Conventions

Namespaces are generated for each Package below a namespace root·
The Const property of an attribute corresponds to the readonly keyword, while the tag const corresponds to the const·
keyword

The value of inout for the Kind property of a parameter corresponds to the ref keyword·
The value of out for the Kind property of a parameter corresponds to the out keyword·
Partial Classes can be modeled as two separate Classes with the partial tag·
The Is Leaf property of a Class corresponds to the sealed keyword·

(c) Sparx Systems 2022 Page 138 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

C++ Conventions

Enterprise Architect supports round trip engineering of C++, including the Managed C++ and C++/CLI extensions,
where these conventions are used.

Stereotypes

Stereotype Applies To

enumeration Class

Corresponds To: An enumerated type.

friend Operation

Corresponds To: The 'friend' keyword.

property get Operation

Corresponds To: A 'read' property.

property set Operation

Corresponds To: A 'write' property.

struct Class

Corresponds To: A 'struct' type.

typedef Class

Corresponds To: A 'typedef' statement, where the parent is the original type name.

alias Class

Corresponds to an 'Alias' declaration, where the parent is the original type name.

union Class

Corresponds To: A union type.

Tagged Values

Tag Applies To

afx_msg Operation

Corresponds To: The afx_msg keyword.

anonymous Class also containing the Tagged Value typedef

Corresponds To: The name of this Class being only defined by the typedef
statement.

(c) Sparx Systems 2022 Page 139 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

attribute_name Operation with stereotype property get or property set

Corresponds To: The name of the variable behind this property.

bitfield Attribute

Corresponds To: The size, in bits, allowed for storage of this attribute.

bodyLocation Operation

Corresponds To: The location the method body is generated to; expected values are
header, classDec or classBody.

callback Operation

Corresponds To: A reference to the CALLBACK macro.

constexpr Attribute and Operation

Corresponds To: The constexpr keyword.

explicit Operation

Corresponds To: The 'explicit' keyword.

initializer Operation

Corresponds To: A constructor initialization list.

inline Attribute and Operation

Corresponds To: The 'inline' keyword and inline generation of the member variable
definition and method body.

mutable Attribute

Corresponds To: The 'mutable' keyword.

scoped Class with stereotype enumeration

Corresponds To: Either the 'class' or 'struct' keyword.

throws Operation

Corresponds To: The exceptions that are thrown by this method.

typedef Class with stereotype other than 'typedef'

Corresponds To: This Class being defined in a 'typedef' statement.

typeSynonyms Class

Corresponds To: The 'typedef' name and/or fields of this type.

volatile Operation

Corresponds To: The 'volatile' keyword.

Other Conventions

Namespaces are generated for each Package below a namespace root·

(c) Sparx Systems 2022 Page 140 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

By Reference attributes correspond to a pointer to the type specified·
The Transient property of an attribute corresponds to the volatile keyword·
The Abstract property of an attribute corresponds to the virtual keyword·
The Const property of an operation corresponds to the const keyword, specifying a constant return type·
The Is Query property of an operation corresponds to the const keyword, specifying the method doesn't modify any·
fields

The Pure property of an operation corresponds to a pure virtual method using the "= 0" syntax·
The Fixed property of a parameter corresponds to the const keyword·

(c) Sparx Systems 2022 Page 141 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Managed C++ Conventions

These conventions are used for managed extensions to C++ prior to C++/CLI. In order to set the system to generate
managed C++ you must modify the C++ version in the C++ Options.

Stereotypes

Stereotype Applies To

property Operation

Corresponds To: The '__property' keyword.

property get Operation

Corresponds To: The '__property' keyword and a read property.

property set Operation

Corresponds To: The '_ _property' keyword and a 'write' property.

reference Class

Corresponds To: The '__gc' keyword.

value Class

Corresponds To: The '__value' keyword.

Tagged Values

Tag Applies To

managedType Class with stereotype reference, value or enumeration; Interface

Corresponds To: The keyword used in declaration of this type; expected values are
'class' or 'struct'.

Other Conventions

The typedef and anonymous tags from native C++ are not supported·
The Pure property of an operation corresponds to the keyword __abstract·

(c) Sparx Systems 2022 Page 142 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

C++/CLI Conventions

These conventions are used for modeling C++/CLI extensions to C++. In order to set the system to generate managed
C++/CLI you must modify the C++ version in the C++ Options.

Stereotypes

Stereotype Applies To

event Operation

Description: Defines an event to provide access to the event handler for this Class.

property Operation, Attribute

Description: This is a property possibly containing both read and write code.

reference Class

Description: Corresponds to the 'ref class' or 'ref struct' keyword.

value Class

Description: Corresponds to the 'value class' or 'value struct' keyword.

Tagged Values

Tag Applies To

attribute_name Operation with stereotype property or event

Description: The name of the variable behind this property or event.

generic Operation

Description: Defines the generic parameters for this Operation.

genericConstraints Templated Class or Interface, Operation with tag generic

Description: Defines the constraints on the generic parameters for this Operation.

initonly Attribute

Description: Corresponds to the 'initonly' keyword.

literal Attribute

Description: Corresponds to the literal keyword.

managedType Class with stereotype reference, value or enumeration; Interface

Description: Corresponds to either the 'class' or 'struct' keyword.

(c) Sparx Systems 2022 Page 143 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Other Conventions

The typedef and anonymous tags are not used·
The property get/property set stereotypes are not used·
The Pure property of an operation corresponds to the keyword abstract·

(c) Sparx Systems 2022 Page 144 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Delphi Conventions

Enterprise Architect supports round trip engineering of Delphi, where these conventions are used:

Stereotypes

Stereotype Applies To

constructor Operation

Corresponds To: A constructor.

destructor Operation

Corresponds To: A destructor.

dispinterface Class, Interface

Corresponds To: A dispatch interface.

enumeration Class

Corresponds To: An enumerated type.

metaclass Class

Corresponds To: A metaclass type.

object Class

Corresponds To: An object type.

operator Operation

Corresponds To: An operator.

property get Operation

Corresponds To: A 'read' property.

property set Operation

Corresponds To: A 'write' property.

struct Class

Corresponds To: A record type.

Tagged Values

Tag Applies To

attribute_name Operation with stereotype property get or property set

Corresponds To: The name of the variable behind this property.

(c) Sparx Systems 2022 Page 145 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

overload Operation

Corresponds To: The 'overload' keyword.

override Operation

Corresponds To: The 'override' keyword.

packed Class

Corresponds To: The 'packed' keyword.

property Class

Corresponds To: A property; see Delphi Properties for more information.

reintroduce Operation

Corresponds To: The 'reintroduce' keyword.

Other Conventions

The Static property of an attribute or operation corresponds to the 'class' keyword·
The Fixed property of a parameter corresponds to the 'const' keyword·
The value of inout for the Kind property of a parameter corresponds to the 'Var' keyword·
The value of out for the Kind property of a parameter corresponds to the 'Out' keyword·

(c) Sparx Systems 2022 Page 146 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Java Conventions

Enterprise Architect supports round trip engineering of Java - including AspectJ extensions - where these conventions
are used.

Stereotypes

Stereotype Applies To

annotation Interface

Corresponds To: An annotation type.

CompactConstructor Operation

Corresponds to: A compact canonical constructor for the record.

record Class

Corresponds To: A record type.

default Operation

Corresponds To: The 'default' keyword.

enum Attributes within a Class stereotyped enumeration

Corresponds To: An enumerated option, distinguished from other attributes that
have no stereotype.

enumeration Class

Corresponds To: An enumerated type.

operator Operation

Corresponds To: An operator.

property get Operation

Corresponds To: A 'read' property.

property set Operation

Corresponds To: A 'write' property.

static Class or Interface

Corresponds To: The 'static' keyword.

Tagged Values

Tag Applies To

(c) Sparx Systems 2022 Page 147 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

annotations Anything

Corresponds To: The annotations on the current code feature.

arguments Attribute with stereotype enum

Corresponds To: The arguments that apply to this enumerated value.

attribute_name Operation with stereotype property get or property set

Corresponds To: The name of the variable behind this property.

dynamic Class or Interface

Corresponds To: The 'dynamic' keyword.

generic Operation

Corresponds To: The generic parameters to this operation.

parameterList Parameter

Corresponds To: A parameter list with the ... syntax.

RecordHeader <<record>>Class

Corresponds To: The record header of the record definition.

throws Operation

Corresponds To: The exceptions that are thrown by this method.

transient Attribute

Corresponds To: The 'transient' keyword.

Other Conventions

Package statements are generated when the current Package is not a namespace root·
The Const property of an attribute or operation corresponds to the final keyword·
The Transient property of an attribute corresponds to the volatile keyword·
The Fixed property of a parameter corresponds to the final keyword·

(c) Sparx Systems 2022 Page 148 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

AspectJ Conventions

These are the conventions used for supporting AspectJ extensions to Java.

Stereotypes

Stereotype Applies To

advice Operation

Corresponds To: A piece of advice in an AspectJ aspect.

aspect Class

Corresponds To: An AspectJ aspect.

pointcut Operation

Corresponds To: A 'pointcut' in an AspectJ aspect.

Tagged Values

Tag Applies To

className Attribute or operation within a Class stereotyped aspect

Corresponds To: The Classes this AspectJ intertype member belongs to.

Other Conventions

The specifications of a pointcut are included in the 'Behavior' field of the method·

(c) Sparx Systems 2022 Page 149 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

PHP Conventions

Enterprise Architect supports the round trip engineering of PHP 4 and 5, where these conventions are used.

Stereotypes

Stereotype Applies To

trait Class

Corresponds To: A 'trait'.

property get Operation

Corresponds To: A 'read' property.

property set Operation

Corresponds To: A 'write' property.

Tagged Values

Tag Applies To

attribute_name Operation with stereotype property get or property set

Corresponds To: The name of the variable behind this property.

final Operations in PHP 5

Corresponds To: The 'final' keyword.

Common Conventions

An unspecified type is modeled as var·
Methods returning a reference are generated by setting the Return Type to var*·
Reference parameters are generated from parameters with the parameter Kind set to inout or out·

PHP 5 Conventions

The final Class modifier corresponds to the Is Leaf property·
The abstract Class modifier corresponds to the Abstract property·
Parameter type hinting is supported by setting the Type of a parameter·
The value of inout or out for the Kind property of a parameter corresponds to a reference parameter·

(c) Sparx Systems 2022 Page 150 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

(c) Sparx Systems 2022 Page 151 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Python Conventions

Enterprise Architect supports the round trip engineering of Python, where these conventions are used.

Tagged Values

Tag Applies To

async Operation

Corresponds To: The "async" keyword in function definition.

Decorators Class, Operation

Corresponds To: The decorators applied to this element in the source.

Other Conventions

Model members with Private Scope correspond to code members with two leading underscores·
Attributes are only generated when the Initial value is not empty·
All types are reverse engineered as var·

(c) Sparx Systems 2022 Page 152 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

SystemC Conventions

Enterprise Architect supports round-trip engineering of SystemC, where these conventions are used.

Stereotypes

Stereotype Applies To

delegate Method

Corresponds To: A delegate.

enumeration Inner Class

Corresponds To: An enum type.

friend Method

Corresponds To: A friend method.

property Method

Corresponds To: A property definition.

sc_ctor Method

Corresponds To: A SystemC constructor.

sc_module Class

Corresponds To: A SystemC module.

sc_port Attribute

Corresponds To: A Port.

sc_signal Attribute

Corresponds To: A signal.

struct Inner Class

Corresponds To: A struct or union.

Tagged Values

Tag Applies To

kind Attribute (Port)

Corresponds To: Port kind (clocked, fifo, master, slave, resolved, vector).

mode Attribute (Port)

Corresponds To: Port mode (in, out, inout).

(c) Sparx Systems 2022 Page 153 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

overrides Method

Corresponds To: The Inheritance list of a method declaration.

throw Method

Corresponds To: The exception specification of a method.

Other Conventions

SystemC also inherits most of the stereotypes and Tagged Values of C++·

SystemC Toolbox Pages

To model a SystemC design, drag these icons onto a diagram from the 'SystemC Constructs' page of the Diagram
Toolbox.

Page Icon

SystemC Module

Action: Defines a SystemC Module.

An sc_module -stereotyped Class element.

SystemC Features Port

Action: Defines a SystemC Port.

An sc_port- stereotyped attribute.

Access

Ribbon
Design > Diagram > Toolbox : > Specify 'SystemC Constructs' in the 'Find
Toolbox Item' dialogs

Keyboard Shortcuts
Ctrl+Shift+3 : > Specify 'SystemC Constructs' in the 'Find Toolbox Item'
dialog

Other You can display or hide the Diagram Toolbox by clicking on the or icons at
the left-hand end of the Caption Bar at the top of the Diagram View.

(c) Sparx Systems 2022 Page 154 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

VB.NET Conventions

Enterprise Architect supports round-trip engineering of Visual Basic.NET, where these conventions are used. Earlier
versions of Visual Basic are supported as a different language.

Stereotypes

Stereotype Applies To

event Operation

Corresponds To: An event declaration.

import Operation

Corresponds To: An operation to be imported from another library.

module Class

Corresponds To: A module.

operator Operation

Corresponds To: An operator overload definition.

partial Operation

Corresponds To: The 'partial' keyword on an operation.

property Operation

Corresponds To: A property possibly containing both read and write code.

Tagged Values

Tag Applies To

Alias Operation with stereotype import

Corresponds To: The alias for this imported operation.

attribute_name Operation with stereotype property

Corresponds To: The name of the variable behind this property.

Charset Operation with stereotype import

Corresponds To: The character set clause for this import - one of the values 'Ansi',
'Unicode' or 'Auto'.

delegate Operation

Corresponds To: The 'delegate' keyword.

(c) Sparx Systems 2022 Page 155 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

enumTag Operation with stereotype property

Corresponds To: The datatype that this property is represented as.

Handles Operation

Corresponds To: The 'handles' clause on this operation.

Implements Operation

Corresponds To: The 'implements' clause on this operation.

Lib Operation with stereotype import

Corresponds To: The library this import comes from.

MustOverride Operation

Corresponds To: The 'MustOverride' keyword.

Narrowing Operation with stereotype operator

Corresponds To: The 'Narrowing' keyword.

NotOverrideable Operation

Corresponds To: The 'NotOverrideable' keyword.

Overloads Operation

Corresponds To: The 'overloads' keyword.

Overrides Operation

Corresponds To: The 'overrides' keyword.

parameterArray Parameter

Corresponds To: A parameter list using the 'ParamArray' keyword.

partial Class, Interface

Corresponds To: The 'partial' keyword.

readonly Operation with stereotype property

Corresponds To: This property only defining 'read' code.

shadows Class, Interface, Operation

Corresponds To: The 'Shadows' keyword.

Shared Attribute

Corresponds To: The 'Shared' keyword.

Widening Operation with stereotype operator

Corresponds To: The 'Widening' keyword.

writeonly Operation with stereotype property

Corresponds To: This property only defining 'write' code.

(c) Sparx Systems 2022 Page 156 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Other Conventions

Namespaces are generated for each Package below a namespace root·
The Is Leaf property of a Class corresponds to the NotInheritable keyword·
The Abstract property of a Class corresponds to the MustInherit keyword·
The Static property of an attribute or operation corresponds to the Shared keyword·
The Abstract property of an operation corresponds to the MustOverride keyword·
The value of in for the Kind property of a parameter corresponds to the ByVal keyword·
The value of inout or out for the Kind property of a parameter corresponds to the ByRef keyword·

(c) Sparx Systems 2022 Page 157 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Verilog Conventions

Enterprise Architect supports round-trip engineering of Verilog, where these conventions are used.

Stereotypes

Stereotype Applies To

asynchronous Method

Corresponds To: A concurrent process.

enumeration Inner Class

Corresponds To: An enum type.

initializer Method

Corresponds To: An initializer process.

module Class

Corresponds To: A module.

part Attribute

Corresponds To: A component instantiation.

port Attribute

Corresponds To: A Port.

synchronous Method

Corresponds To: A sequential process.

Tagged Values

Tag Applies To

kind Attribute (signal)

Corresponds To: The signal kind (such as register, bus).

mode Attribute (Port)

Corresponds To: The Port mode (in, out, inout).

Portmap Attribute (part)

Corresponds To: The generic/Port map of the component instantiated.

sensitivity Method

Corresponds To: The sensitivity list of a sequential process.

(c) Sparx Systems 2022 Page 158 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

type Attribute

Corresponds To: The range or type value of an attribute.

Verilog Toolbox Pages

Access: 'Design > Diagram > Toolbox : 'Hamburger' icon > HDL | Verilog Constructs'

Drag these icons onto a diagram to model a Verilog design.

Item Action

Module Defines a Verilog Module. A module-stereotyped Class element.

Enumeration Defines an Enumerated Type. An enumeration element.

Port Defines a Verilog Port. A port-stereotyped attribute.

Part Defines a Verilog component instantiation. A part-stereotyped attribute.

Attribute Defines an attribute.

Procedure Defines a Verilog process:

Concurrent - An asynchronous-stereotyped method·
Sequential - A synchronous-stereotyped method·
Initializer - An initializer-stereotyped method·

(c) Sparx Systems 2022 Page 159 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

VHDL Conventions

Enterprise Architect supports round-trip engineering of VHDL, where these conventions are used.

Stereotypes

Stereotype Applies To

architecture Class

Corresponds To: An architecture.

asynchronous Method

Corresponds To: An asynchronous process.

configuration Method

Corresponds To: A configuration.

enumeration Inner Class

Corresponds To: An enumerated type.

entity Interface

Corresponds To: An entity.

part Attribute

Corresponds To: A component instantiation.

port Attribute

Corresponds To: A Port.

signal Attribute

Corresponds To: A signal declaration.

struct Inner Class

Corresponds To: A record definition.

synchronous Method

Corresponds To: A synchronous process.

typedef Inner Class

Corresponds To: A type or subtype definition.

Tagged Values

Tag Applies To

(c) Sparx Systems 2022 Page 160 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

isGeneric Attribute (port)

Corresponds To: The 'port' declaration in a generic interface.

isSubType Inner Class (typedef)

Corresponds To: A subtype definition.

kind Attribute (signal)

Corresponds To: The signal kind (such as 'register', 'bus').

mode Attribute (Port)

Corresponds To: The Port mode ('in', 'out', 'inout', 'buffer', 'linkage').

portmap Attribute (part)

Corresponds To: The generic/Port map of the component instantiated.

sensitivity Method (synchronous)

Corresponds To: The 'sensitivity' list of a synchronous process.

type Inner Class (typedef)

Corresponds To: The 'type' indication of a 'type' declaration.

typeNameSpace Attribute (part)

Corresponds To: The 'type' namespace of the instantiated component.

VHDL Toolbox Pages

Access

To model a VHDL design, drag icons from the VHDL toolbox pages and drop them on your diagram.

Ribbon
Design > Diagram > Toolbox : > Specify 'VHDL Constructs' in the 'Find
Toolbox Item' dialog

Keyboard Shortcuts
Ctrl+Shift+3 : > Specify 'VHDL Constructs' in the 'Find Toolbox Item' dialog

Other You can display or hide the Diagram Toolbox by clicking on the or icons at
the left-hand end of the Caption Bar at the top of the Diagram View.

VHDL Toolbox Page

(c) Sparx Systems 2022 Page 161 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Item Action

Architecture Defines an architecture to be associated with a VHDL entity.

An architecture-stereotyped Class element.

Entity Defines a VHDL entity to contain the Port definitions.

An entity-stereotyped interface element.

Enumeration Defines an Enumerated Type.

An Enumeration element.

Struct Defines a VHDL record.

A struct-stereotyped Class element.

Typedef Defines a VHDL type or subtype.

A typedef-stereotyped Class element.

VHDL Features Toolbox Page

Item Action

Part Defines a VHDL component instantiation.

A part-stereotyped attribute.

Port Defines a VHDL Port.

A port-stereotyped attribute.

Signal Defines a VHDL signal.

A signal-stereotyped attribute.

Procedure Defines a VHDL process:

Concurrent - An asynchronous-stereotyped method·
Sequential - A synchronous-stereotyped method·
Configuration - An configuration-stereotyped method·

(c) Sparx Systems 2022 Page 162 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Visual Basic Conventions

Enterprise Architect supports the round trip engineering of Visual Basic 5 and 6, where these conventions are used.

Visual Basic .NET is supported as a different language.

Stereotypes

Stereotype Applies To

global Attribute

Corresponds To: The 'Global' keyword.

import Operation

Corresponds To: An operation to be imported from another library.

property get Operation

Corresponds To: A property 'get'.

property set Operation

Corresponds To: A property 'set'.

property let Operation

Corresponds To: A property 'let'.

with events Attribute

Corresponds To: The 'WithEvents' keyword.

Tagged Values

Tag Applies To

Alias Operation with stereotype import

Corresponds To: The alias for this imported operation.

attribute_name Operation with stereotype property get, property set or property let

Corresponds To: The name of the variable behind this property.

Lib Operation with stereotype import

Corresponds To: The library this import comes from.

New Attribute

Corresponds To: The 'new' keyword.

(c) Sparx Systems 2022 Page 163 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Other Conventions

The value of in for the Kind property of a parameter corresponds to the ByVal keyword·
The value of inout or out for the Kind property of a parameter corresponds to the ByRef keyword·

(c) Sparx Systems 2022 Page 164 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Language Options

You can set up various options for how Enterprise Architect handles a particular language when generating and
reverse-engineering code. These options are either specific to:

Your user ID, for all models or·
The model in which they are defined, for all users·

Access

Ribbon Start > Appearance > Preferences > Preferences > Source Code Engineering >
<language name>

Settings > Model > Options > Source Code Engineering > <language name>

Keyboard Shortcuts Ctrl+F9 ('Preferences' dialog)

Languages Supported

Language

Action Script

Ada 2012 (in the Unified and Ultimate Editions of Enterprise Architect)

ArcGIS

ANSI C

C#

C++

Delphi

Java

PHP

Python

SystemC

Verilog (Unified and Ultimate Editions)

VHDL (Unified and Ultimate Editions)

(c) Sparx Systems 2022 Page 165 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Visual Basic

Visual Basic .NET

(c) Sparx Systems 2022 Page 166 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

ActionScript Options - User

If you intend to generate ActionScript code from your model, you can configure the code generation options using the
'ActionScript Specifications' page of the 'Preferences' dialog to:

Specify the default source directory·
Specify the editor for ActionScript code·

Access

Ribbon Start > Appearance > Preferences > Preferences > Source Code Engineering >
ActionScript

Keyboard Shortcuts Ctrl+F9

Options

Option Action

Disable Language Leave this checkbox unselected to support ActionScript code generation.

Select this checkbox to disable ActionScript code support.

Options for the current user
In the 'Default Source Directory' and 'Editor' fields, click on the button and
browse for the source directory and external file editor that you will use.

Notes

These options apply to all models that you access·

(c) Sparx Systems 2022 Page 167 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

ActionScript Options - Model

If you intend to generate ActionScript code from your model, you can configure the model-specific code generation
options using the 'ActionScript Specifications' page of the 'Manage Model Options' dialog to:

Specify default ActionScript version to generate (AS2.0 or AS3.0)·
Specify default file extensions·
Specify the Collection Class definitions for Association connectors·

Access

Ribbon Settings > Model > Options > Source Code Engineering > ActionScript

Options

Option Action

Options for the current
model

Type in the default ActionScript version and default file extension to apply when
generating ActionScript source code.

Collection Classes Click on this button to open the 'Collection Classes for Association Roles' dialog,
through which you specify the Collection Class definitions for Association
connectors.

Notes

These options affect all users of the current model; however, they do not apply to other models·

(c) Sparx Systems 2022 Page 168 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Ada 2012 Options - User

If you intend to generate Ada 2012 code from your model, you can configure the code generation options using the 'Ada'
page of the 'Preferences' dialog to:

Inform the reverse engineering process whether the name of the Tagged Record is the same as the Package name·
Advise the engine of the alternative Tagged Record name to locate·
Specify whether the engine should create a reference type for the Tagged Record (if one is not defined)·
Supply the name of the reference type to be created (default is Ref)·
Specify the reference parameter of a Reference / Access type·
Tell the engine to ignore the name of the reference parameter·
Indicate the name of the reference parameter to locate·

Access

Ribbon Start > Appearance > Preferences > Preferences > Source Code Engineering > Ada

Keyboard Shortcuts Ctrl+F9

Options

Option Action

Disable Language Leave this checkbox unselected to support Ada 2012 code generation.

Select this checkbox to disable Ada 2012 code support.

Options for the current user Specifies the options used for the current user; these options apply to all models
that are accessed by the user.

Notes

Ada 2012 support is available in the Unified and Ultimate Editions of Enterprise Architect·

(c) Sparx Systems 2022 Page 169 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Ada 2012 Options - Model

If you intend to generate Ada 2012 code from your model, you can configure the model-specific code generation options
using the 'Ada' page of the 'Manage Model Options' dialog to:

Specify the default file extension and·
Specify the Collection Class definitions for Association connectors·

Access

Ribbon Settings > Model > Options > Source Code Engineering > Ada

Options

Option Action

Options for the current
model

Type in the default file extension to apply when generating Ada source code.

Collection Classes Click on this button to open the 'Collection Classes for Association Roles' dialog,
through which you specify the Collection Class definitions for Association
connectors.

Notes

These options affect all users of the current model; however, they do not apply to other models·
Ada 2012 support is available in the Unified and Ultimate Editions of Enterprise Architect·

(c) Sparx Systems 2022 Page 170 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

ArcGIS Options - User

If you intend to generate ArcGIS code from your model, you can configure the code generation options using the
'ArcGIS' page of the 'Preferences' dialog to:

Specify the default source directory·
Specify the editor for ArcGIS code·

ArcGIS must be enabled in the 'MDG Technologies' dialog ('Specialize > Technologies > Manage Technology') in order
for the 'ArcGIS' page to be available.

Access

Ribbon Start >Appearance > Preferences > Preferences > Source Code Engineering >
ArcGIS

Keyboard Shortcuts Ctrl+F9

Options

Option Action

Disable Language Leave this checkbox unselected to support ArcGIS code generation.

Select this checkbox to disable ArcGIS code support.

Options for the current user Specifies the options used for the current user; these options apply to all models
that are accessed by the user.

(c) Sparx Systems 2022 Page 171 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

ArcGIS Options - Model

If you intend to generate ArcGIS code from your model, you can configure the model-specific code generation options
using the 'ArcGIS' page of the 'Manage Model Options' dialog to:

Specify default file extensions·
Specify the Collection Class definitions for Association connectors·

Access

Ribbon Settings > Model > Options > Source Code Engineering > ArcGIS

Options

Option Action

Options for the current
model

Type in the default file extension to apply when generating ArcGIS source code.

Collection Classes Click on this button to open the 'Collection Classes for Association Roles' dialog,
through which you specify the Collection Class definitions for Association
connectors.

Notes

These options affect all users of the current model; however, they do not apply to other models·

(c) Sparx Systems 2022 Page 172 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

C Options - User

If you intend to generate C code from your model, you can configure the code generation options using the 'C
Specifications' page of the 'Preferences' dialog.

Access

Ribbon Start > Appearance > Preferences > Preferences > Source Code Engineering > C

Keyboard Shortcuts Ctrl+F9

Options

Option Action

Disable Language Leave this checkbox unselected to support C code generation.

Select this option to disable C code support.

Options for the current user In the value fields, specify the options that apply under your own user ID in all
models that you access:

The default attribute type to create (fixed as int)·
Whether a #define constant is imported as an attribute in imported C code (if·
'Object Oriented programming' is set to True on the 'C Specifications' page of
the 'Manage Model Options' dialog)

Whether to generate comments for C methods to the declaration, and to reverse·
engineer comments from the declaration

Whether to generate comments for C methods to the implementation, and to·
reverse engineer comments from the implementation

Whether to update comments in regenerating code from the model·
Whether to update the implementation file in re-generating code from the·
model

The default source code directory location (click on the button)·
The default file extensions to read when importing a directory of C code·

The Code Editor to use (click on the button)·
The search path for the implementation file relative to the header file path·

(c) Sparx Systems 2022 Page 173 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

C Options - Model

If you intend to generate C code from your model, you can configure the model-specific code generation options using
the 'C Specifications' page of the 'Manage Model Options' dialog to:

Specify default file extensions (header and source)·
Define support for Object Oriented programming·
Set the StateMachine engineering options·
Specify the Collection Class definitions for Association connectors·

Access

Ribbon Settings > Model > Options > Source Code Engineering > C

Options

Option Action

Options for the current
model

In the value fields, specify these options:

The default header and source file extensions for the code files·
Support for Object Oriented programming; if this is True, then set:·
 - The Namespace delimiter character
 - Whether the first parameter of an operation is a Class reference
 - The parameter reference style in generated C code
 - The reference parameter name in generated code
 - The default Constructor name in generated code
 - The default Destructor name in generated code

StateMachine Engineering In the value fields, use the drop-down arrows to set the options to True or False;
these options apply to generating code from StateMachine models in the current
model only:

'Use the new StateMachine Template' - set to True to use the code generation·
templates from Enterprise Architect Release 11 and later, set to False to apply
the EASL Legacy templates

Generate Trace Code - set to True to generate Trace code, False to omit it·

Collection Classes Click on this button to open the 'Collection Classes for Association Roles' dialog,
through which you specify the Collection Class definitions for Association
connectors.

Notes

These options affect all users of the current model; however, they do not apply to other models·

(c) Sparx Systems 2022 Page 174 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

(c) Sparx Systems 2022 Page 175 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

C# Options - User

If you intend to generate C# code from your model, you can configure the code generation options using the 'C#
Specifications' page of the 'Preferences' dialog

Access

Ribbon Start > Appearance > Preferences > Preferences > Source Code Engineering > C#

Keyboard Shortcuts Ctrl+F9

Options

Option Action

Disable Language Leave this checkbox unselected to support C# code generation.

Select this checkbox to disable C# code support.

Options for the current user In the value fields, specify the options that apply under your own user ID in all
models that you access:

The default attribute type to create·
Whether Namespaces should be generated when generating C# Classes·
Whether to remove new lines (hard carriage returns) from the summary tag·
when importing XML.NET style comments

Whether to generate a Finalizer method when generating code for a C# Class·
Whether to generate a Dispose method when generating code for a C# Class·

The default source code directory location (click on the button)·

The Code Editor to use (click on the button)·

(c) Sparx Systems 2022 Page 176 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

C# Options - Model

If you intend to generate C# code from your model, you can configure the model-specific code generation options using
the 'C# Specifications' page of the 'Manage Model Options' dialog to:

Specify the default file extension·
Indicate additional Collection Classes - to define custom Collection Classes, which can be simple substitutions (such·
as CArray<#TYPE#>) or a mix of other strings and substitutions (such as
Cmap<CString,LPCTSTR,#TYPE#*,#TYPE#*>); these Collection Classes are defined by default:
 - List<#TYPE#>;Stack<#TYPE#>;Queue<#TYPE#>;

Set the StateMachine Engineering options·
Specify the Collection Class definitions for Association connectors·

Access

Ribbon Settings > Model > Options > Source Code Engineering > C#

Options

Option Action

Options for the current
model

Type in the default file extension to apply when generating C# source code, and a
list of any additional Collection Classes you want to define.

StateMachine Engineering In the value fields, use the drop-down arrows to set the options to True or False;
these options apply to generating code from StateMachine models in the current
model only:

'Use the new StateMachine Template' - set to True to use the code generation·
templates from Enterprise Architect Release 11 and later, set to False to apply
the EASL Legacy templates

'Generate Trace Code' - set to True to generate Trace code, False to omit it·

Collection Classes Click on this button to open the 'Collection Classes for Association Roles' dialog,
through which you specify the Collection Class definitions for Association
connectors.

Notes

These options affect all users of the current model; however, they do not apply to other models·

(c) Sparx Systems 2022 Page 177 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

C++ Options - User

If you intend to generate C++ code from your model, you can configure the code generation options using the 'C++
Specifications' page of the 'Preferences' dialog.

Access

Ribbon Start > Appearance > Preferences > Preferences > Source Code Engineering > C++

Keyboard Shortcuts Ctrl+F9

Options

Option Action

Disable Language Leave this checkbox unselected to support C++ code generation.

Select this option to disable C++ code support.

Options for the current user In the value fields, specify the options that apply under your own user ID in all
models that you access:

The default attribute type to create·
Whether Namespaces should be generated when generating C++ Classes·
What style to apply when generating and processing comments for C++·
Whether to generate comments for C++ methods to the declaration, or reverse·
engineer comments from the declaration

Whether to generate comments for C++ methods to the implementation, or·
reverse engineer comments from the implementation

Whether to update comments in re-generating code from the model·
Whether to update the implementation file in re-generating code from the·
model

The default source code directory location (click on the button)·
The default file extensions to read when importing a directory of C++ code·

The Code Editor to use (click on the button)·
The search path for the implementation file relative to the header file path·

(c) Sparx Systems 2022 Page 178 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

C++ Options - Model

If you intend to generate C++ code from your model, you can configure the model-specific code generation options using
the 'C++ Specifications' page of the 'Manage Model Options' dialog to:

Indicate the version of C++ to generate; this controls the set of templates used and how properties are created·
Specify the default reference type used when a type is specified by reference·
Specify the default file extensions·
Specify default Get/Set prefixes·
Specify the Collection Class definitions for Association connectors·
Define additional Collection Classes - to define custom Collection Classes, which can be simple substitutions (such·
as CArray<#TYPE#>) or a mix of other strings and substitutions (such as
Cmap<CString,LPCTSTR,#TYPE#*,#TYPE#*>); these Collection Classes are defined by default:
 - CArray<#TYPE#>;CMap<CString,LPCTSTR,#TYPE#*,#TYPE#*>;

Set the StateMachine Engineering options·

Access

Ribbon Settings > Model > Options > Source Code Engineering > C++

Options

Option Action

Options for the current
model

In the value fields, specify the options that affect all users of the current model:

The version of C++ you are using (which determines which templates to use·
when generating code)

The default reference type to use when creating properties for C++ attributes·
by reference

The default header and source file extensions for the code files·
The default 'Get' prefix·
The default 'Set' prefix·
The additional Collection Classes·

StateMachine Engineering
Options

In the value fields, use the drop-down arrows to set the options to True or False;
these options apply to generating code from StateMachine models in the current
model only:

'Use the new StateMachine Template' - set to True to use the code generation·
templates from Enterprise Architect Release 11 and later, set to False to apply
the EASL Legacy templates

'Generate Trace Code' - set to True to generate Trace code, False to omit it·

Collection Classes Click on this button to open the 'Collection Classes for Association Roles' dialog,
through which you specify the Collection Class definitions for Association
connectors.

(c) Sparx Systems 2022 Page 179 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Notes

These options affect all users of the current model; however, they do not apply to other models·

(c) Sparx Systems 2022 Page 180 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Delphi Options - User

If you intend to generate Delphi code from your model, you can configure the code generation options using the 'Delphi
Specifications' page of the 'Preferences' dialog to:

Set the default attribute type·
Indicate a default source directory·
Set the default code editor to use to edit Delphi source code·

Access

Ribbon Start > Appearance > Preferences > Preferences > Source Code Engineering >
Delphi

Keyboard Shortcuts Ctrl+F9

Options

Option Action

Disable Language Leave this checkbox unselected to support Delphi code generation.

Select this option to disable Delphi code support.

Options for the current user Specifies the options used for the current user; these options apply to all models
that are accessed by the user.

(c) Sparx Systems 2022 Page 181 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Delphi Options - Model

If you intend to generate Delphi code from your model, you can configure the model-specific code generation options
using the 'Delphi Specifications' page of the 'Manage Model Options' dialog to:

Specify default file extensions (header and source)·
Specify the Collection Class definitions for Association connectors·

Access

Ribbon Settings > Model > Options > Source Code Engineering > Delphi

Options

Option Action

Options for the current
model

Type in the default file extension to apply when generating Delphi source code.

Collection Classes Click on this button to open the 'Collection Classes for Association Roles' dialog,
through which you specify the Collection Class definitions for Association
connectors.

Notes

These options affect all users of the current model; however, they do not apply to other models·

(c) Sparx Systems 2022 Page 182 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Delphi Properties

Enterprise Architect has comprehensive support for Delphi properties. These are implemented as Tagged Values, with a
specialized property editor to help create and modify Class properties. By using the 'Feature Visibility' element context
menu option, you can display the 'tags' compartment that contains the properties. Imported Delphi Classes with
properties have this feature automatically made visible for your convenience.

Manually activate the property editor

In the selected Class set the code generation language to 'Delphi'·
Right-click on the Class and select 'Delphi Properties' to open the editor·

Using the Delphi Properties editor, you can build properties quickly and simply; from here you can:

Change the name and scope (only Public and Published are currently supported)·
Change the property type (the drop-down list includes all defined Classes in the project)·
Set the Read and Write information (the drop-down lists have all the attributes and operations from the current·
Class; you can also enter free text)

Set 'Stored' to True or False·
Set the Implements information·
Set the default value, if one exists·

Notes

When you use the 'Create Property' dialog from the 'Attribute' screen, the system generates a pair of Get and Set·
functions together with the required property definition as Tagged Values; you can manually edit these Tagged
Values if required

Public properties are displayed with a '+' symbol prefix and published with a '^'·
When creating a property in the 'Create Property Implementation' dialog (accessed through the 'Attributes' dialog),·
you can set the scope to 'Published' if the property type is Delphi

Only 'Public' and 'Published' are supported·
If you change the name of a property and forward engineer, a new property is added, but you must manually delete·
the old one from the source file

(c) Sparx Systems 2022 Page 183 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Java Options - User

If you intend to generate Java code from your model, you can configure the code generation options using the 'Java
Specifications' page of the 'Preferences' dialog.

Access

Ribbon Start > Appearance > Preferences > Preferences > Source Code Engineering > Java

Keyboard Shortcuts Ctrl+F9

Options

Option Action

Disable Language Leave this checkbox unselected to support Java code generation.

Select this checkbox to disable Java code support.

Options for the current user In the value fields, specify the options that apply under your own user ID in all
models that you access; the:

Default attribute type to create (select from the drop-down list)·

Default source code directory location (click on the button)·

Code Editor to use (click on the button)·

(c) Sparx Systems 2022 Page 184 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Java Options - Model

If you intend to generate Java code from your model, you can configure the model-specific code generation options using
the 'Java Specifications' page of the 'Manage Model Options' dialog to:

Specify the default file extension·
Specify a default 'Get' prefix·
Specify a default 'Set' prefix·
Set the StateMachine Engineering options·
Specify the Collection Class definitions for Association connectors·
Define additional Collection Classes - to define custom Collection Classes, which can be simple substitutions (such·
as CArray<#TYPE#>) or a mix of other strings and substitutions (such as
Cmap<CString,LPCTSTR,#TYPE#*,#TYPE#*>); these Collection Classes are defined by default:
 - HashSet<#TYPE#>;Map<String,#TYPE#>;

Access

Ribbon Settings > Model > Options > Source Code Engineering > Java

Options

Option Action

Options for the current
model

In the value fields, specify the options that affect all users of the current model; the:

Default file extension for the code files·
The default Get and Set prefixes·
The default and additional Collection Classes·

StateMachine Engineering In the value fields, use the drop-down arrows to set the options to True or False;
these options apply to generating code from StateMachine models in the current
model only:

'Use the new StateMachine Template' - set to True to use the code generation·
templates from Enterprise Architect Release 11 and later, set to False to apply
the EASL Legacy templates

'Generate Trace Code' - set to True to generate Trace code, False to omit it·

Collection Classes Click on this button to open the 'Collection Classes for Association Roles' dialog,
through which you specify the Collection Class definitions for Association
connectors.

Notes

These options affect all users of the current model; however, they do not apply to other models·

(c) Sparx Systems 2022 Page 185 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

(c) Sparx Systems 2022 Page 186 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

MySQL Options - User

If you intend to generate MySQL code from your model, you can configure the code generation options using the
'MySQL' page of the 'Preferences' dialog to:

Specify a default attribute type·
Specify a default source directory·
Specify file name extensions for files to import·
Specify an editor for changing code·
Specify a default owner·

Access

Ribbon Start > Appearance > Preferences > Preferences > Source Code Engineering >
MySQL

Keyboard Shortcuts Ctrl+F9

Options

Option Action

Disable Language Leave this checkbox unselected to support MySQL code generation.

Select this option to disable MySQL code support.

Options for the current user Specifies the options used for the current user; these options apply to all models
that are accessed by the user.

(c) Sparx Systems 2022 Page 187 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

MySQL Options - Model

If you intend to generate MySQL code from your model, you can configure the model-specific code generation options
using the 'MySQL' page of the 'Manage Model Options' dialog to:

Specify the default file extension·
Specify the Collection Class definitions for Association connectors·

Access

Ribbon Settings > Model > Options > Source Code Engineering > MySQL

Options

Option Action

Options for the current
model

Type in the default file extension to apply when generating MySQL source code.

Collection Classes Click on this button to open the 'Collection Classes for Association Roles' dialog,
through which you specify the Collection Class definitions for Association
connectors.

Notes

These options affect all users of the current model; however, they do not apply to other models·

(c) Sparx Systems 2022 Page 188 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

PHP Options - User

If you intend to generate PHP code from your model, you can configure the code generation options using the 'PHP
Specifications' page of the 'Preferences' dialog to:

Define a semi-colon separated list of extensions to look at when doing a directory code import for PHP·
Set a default directory for opening and saving PHP source code·
Specify the default editor to use when editing PHP code·

Access

Ribbon Start > Appearance > Preferences > Preferences > Source Code Engineering > PHP

Keyboard Shortcuts Ctrl+F9 | Source Code Engineering | PHP

Options

Option Action

Disable Language Leave this checkbox unselected to support PHP code generation.

Select this option to disable PHP code support.

Options for the current user Specifies the options used for the current user; these options apply to all models
that are accessed by the user.

(c) Sparx Systems 2022 Page 189 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

PHP Options - Model

If you intend to generate PHP code from your model, you can configure the model-specific code generation options
using the 'PHP Specifications' page of the 'Manage Model Options' dialog to:

Specify the default PHP version to generate·
Define the default file extension·
Specify a default 'Get' prefix·
Specify a default 'Set' prefix·

Access

Ribbon Settings > Model > Options > Source Code Engineering > PHP

Options

Option Action

Options for the current
model

Type in the default PHP version, the default file extension to apply when generating
PHP source code, and the default 'Get' and 'Set' prefixes.

Notes

These options affect all users of the current model; however, they do not apply to other models·

(c) Sparx Systems 2022 Page 190 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Python Options - User

If you intend to generate Python code from your model, you can configure the code generation options using the 'Python
Specifications' page of the 'Preferences' dialog to:

Specify the default source directory to be used·
Specify the default editor used to write and edit Python code·

Access

Ribbon Start > Appearance > Preferences > Preferences > Source Code Engineering >
Python

Keyboard Shortcuts Ctrl+F9

Options

Option Action

Disable Language Leave this checkbox unselected to support Python code generation.

Select this option to disable Python code support.

Options for the current user Specifies the options used for the current user; these options apply to all models
that are accessed by the user.

(c) Sparx Systems 2022 Page 191 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Python Options - Model

If you intend to generate Python code from your model, you can configure the model-specific code generation options
using the 'Python Specifications' page of the 'Manage Model Options' dialog to:

Specify the default file extension·

Access

Ribbon Settings > Model > Options > Source Code Engineering > Python

Options

Option Action

Options for the current
model

Type in the default file extension to apply when generating Python source code.

Notes

These options affect all users of the current model; however, they do not apply to other models·

(c) Sparx Systems 2022 Page 192 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

SystemC Options - User

If you intend to generate SystemC code from your model, you can configure the code generation options using the
'SystemC' page of the 'Preferences' dialog to:

Specify a default source directory·
Specify an editor for changing code·

Access

Ribbon Start > Appearance > Preferences > Preferences > Source Code Engineering >
SystemC

Keyboard Shortcuts Ctrl+F9

Options

Option Action

Disable Language Leave this checkbox unselected to support SystemC code generation.

Select this option to disable SystemC code support.

Options for the current user Specifies the options used for the current user; these options apply to all models
that are accessed by the user.

(c) Sparx Systems 2022 Page 193 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

SystemC Options - Model

If you intend to generate SystemC code from your model, you can configure the model-specific code generation options
using the 'SystemC' page of the 'Manage Model Options' dialog to:

Specify the default file extension·
Specify the Collection Class definitions for Association connectors·

Access

Ribbon Settings > Model > Options > Source Code Engineering > SystemC

Options

Option Action

Options for the current
model

Type in the default file extension to apply when generating SystemC source code.

Collection Classes Click on this button to open the 'Collection Classes for Association Roles' dialog,
through which you specify the Collection Class definitions for Association
connectors.

Notes

These options affect all users of the current model; however, they do not apply to other models·

(c) Sparx Systems 2022 Page 194 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Teradata Options - User

If you intend to generate Teradata code from your model, you can configure the code generation options using the
'Teradata' page of the 'Preferences' dialog to:

Specify a default attribute type·
Specify a default source directory·
Specify an editor for changing code·

Access

Ribbon Start > Appearance > Preferences > Preferences > Source Code Engineering >
Teradata

Keyboard Shortcuts Ctrl+F9

Options

Option Action

Disable Language Leave this checkbox unselected to support Teradata code generation.

Select this option to disable Teradata code support.

Options for the current user Specifies the options used for the current user; these options apply to all models
that are accessed by the user.

(c) Sparx Systems 2022 Page 195 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Teradata Options - Model

If you intend to generate Teradata code from your model, you can configure the model-specific code generation options
using the 'Teradata' page of the 'Manage Model Options' dialog to:

Specify the default file extension·
Specify the Collection Class definitions for Association connectors·

Access

Ribbon Settings > Model > Options > Source Code Engineering > Teradata

Options

Option Action

Options for the current
model

Type in the default file extension to apply when generating Teradata source code.

Collection Classes Click on this button to open the 'Collection Classes for Association Roles' dialog,
through which you specify the Collection Class definitions for Association
connectors.

Notes

These options affect all users of the current model; however, they do not apply to other models·

(c) Sparx Systems 2022 Page 196 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

VB.NET Options - User

If you intend to generate VB.NET code from your model, you can configure the code generation options using the
'VB.NET Specifications' page of the 'Preferences' dialog to:

Specify the default attribute type·
Indicate whether to generate namespaces·
Specify a default source directory·
Specify an editor for changing code·

Access

Ribbon Start > Appearance > Preferences > Preferences > Source Code Engineering >
VB.Net

Keyboard Shortcuts Ctrl+F9

Options

Option Action

Disable Language Leave this checkbox unselected to support VB.NET code generation.

Select this option to disable VB.NET code support.

Options for the current user Specifies the options used for the current user; these options apply to all models
that are accessed by the user.

(c) Sparx Systems 2022 Page 197 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

VB.NET Options - Model

If you intend to generate VB.NET code from your model, you can configure the model-specific code generation options
using the 'VB.Net Specifications' page of the 'Manage Model Options' dialog to:

Specify the default file extension·
Specify the Collection Class definitions for Association connectors·

Access

Ribbon Settings > Model > Options > Source Code Engineering > VB.Net

Options

Option Action

Options for the current
model

Type in the default file extension to apply when generating VB.Net source code.

Collection Classes Click on this button to open the 'Collection Classes for Association Roles' dialog,
through which you specify the Collection Class definitions for Association
connectors.

Notes

These options affect all users of the current model; however, they do not apply to other models·

(c) Sparx Systems 2022 Page 198 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Verilog Options - User

If you intend to generate Verilog code from your model, you can configure the code generation options using the
'Verilog' page of the 'Preferences' dialog to:

Specify a default source directory·
Specify an editor for changing code·

Access

Ribbon Start > Appearance > Preferences > Preferences > Source Code Engineering >
Verilog

Keyboard Shortcuts Ctrl+F9

Options

Option Action

Disable Language Leave this checkbox unselected to support Verilog code generation.

Select this option to disable Verilog code support.

Options for the current user Specifies the options used for the current user; these options apply to all models
that are accessed by the user.

(c) Sparx Systems 2022 Page 199 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Verilog Options - Model

If you intend to generate Verilog code from your model, you can configure the model-specific code generation options
using the 'Verilog' page of the 'Manage Model Options' dialog to:

Specify the default file extension·
Specify the Collection Class definitions for Association connectors·

Access

Ribbon Settings > Model > Options > Source Code Engineering > Verilog

Options

Option Action

Options for the current
model

Type in the default file extension to apply when generating Verilog source code.

Collection Classes Click on this button to open the 'Collection Classes for Association Roles' dialog,
through which you specify the Collection Class definitions for Association
connectors.

Notes

These options affect all users of the current model; however, they do not apply to other models·

(c) Sparx Systems 2022 Page 200 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

VHDL Options - User

If you intend to generate VHDL code from your model, you can configure the code generation options using the 'VHDL'
page of the 'Preferences' dialog to:

Specify a default source directory·
Specify an editor for changing code·

Access

Ribbon Start > Appearance > Preferences > Preferences > Source Code Engineering >
VHDL

Keyboard Shortcuts Ctrl+F9

Options

Option Action

Disable Language Leave this checkbox unselected to support VHDL code generation.

Select this option to disable VHDL code support.

Options for the current user Specifies the options used for the current user; these options apply to all models
that are accessed by the user.

(c) Sparx Systems 2022 Page 201 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

VHDL Options - Model

If you intend to generate VHDL code from your model, you can configure the model-specific code generation options
using the 'VHDL' page of the 'Manage Model Options' dialog to:

Specify the default file extension·
Specify the Collection Class definitions for Association connectors·

Access

Ribbon Settings > Model > Options > Source Code Engineering > VHDL

Options

Option Action

Options for the current
model

Type in the default file extension to apply when generating VHDL source code.

Collection Classes Click on this button to open the 'Collection Classes for Association Roles' dialog,
through which you specify the Collection Class definitions for Association
connectors.

Notes

These options affect all users of the current model; however, they do not apply to other models·

(c) Sparx Systems 2022 Page 202 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Visual Basic Options - User

If you intend to generate Visual Basic code from your model, you can configure the code generation options using the
'VB Specifications' page of the 'Preferences' dialog to:

Specify the default attribute type·
Define the default source directory·
Define the file extensions to search for code files to import·
Define the default editor to use for editing source code·

Access

Ribbon Start > Appearance > Preferences > Preferences > Source Code Engineering >
Visual Basic

Keyboard Shortcuts Ctrl+F9

Options

Option Action

Disable Language Leave this checkbox unselected to support Visual Basic code generation.

Select this option to disable Visual Basic code support.

Options for the current user Specifies the options used for the current use; these options apply to all models that
are accessed by the user.

(c) Sparx Systems 2022 Page 203 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Visual Basic Options - Model

If you intend to generate Visual Basic code from your model, you can configure the model-specific code generation
options using the 'VB Specifications' page of the 'Manage Model Options' dialog to:

Specify the default Visual Basic version to generate·
Indicate the default file extension when reading/writing·
Indicate the Microsoft Transaction Server (MTS) transaction mode for MTS objects·
Specify if a Class uses Multi use (True or False)·
Specify if a Class uses the Persistable property·
Indicate data binding and data source behaviors·
Set the global namespace·
Set the Exposed attribute·
Indicate if the Creatable attribute is True or False·
Specify the Collection Class definitions for Association connectors·

Access

Ribbon Settings > Model > Options > Source Code Engineering > Visual Basic

Options

Option Action

Options for the current
model

Type in the default file extension to apply when generating Visual Basic source
code, and click on the drop-down arrow in each of the other fields and select the
appropriate value.

Collection Classes Click on this button to open the 'Collection Classes for Association Roles' dialog,
through which you specify the Collection Class definitions for Association
connectors.

Notes

These options affect all users of the current model; however, they do not apply to other models·

(c) Sparx Systems 2022 Page 204 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

MDG Technology Language Options

If you have loaded an MDG Technology that specifies a code module into your Sparx Systems > EA > MDG
Technologies folder, the language is included in the 'Source Code Engineering' list on the 'Preferences' dialog. The
language is only listed on the 'Preferences' dialog if an MDG Technology file actually uses it in your model.

Access

Ribbon Start > Appearance > Preferences > Preferences > Source Code Engineering >
MDG

Keyboard Shortcuts Ctrl+F9

Options

Field Action

Default Extension Default extension for generated source files; shown if the option is in the
technology.

This is saved per project.

Import File Extensions Default folder to import source files from; shown if the technology supports
namespaces.

This is saved once for all projects.

Generate Namespaces Indicates if namespaces are generated or not.

Default Source Directory The default directory to save generated source files.

This is always shown.

Editor Indicates the editor that is used to edit source files.

Att Type Indicates the default attribute type.

Notes

These options are set in the technology inside the <CodeOptions> tag of a code module, as shown:·
 <CodeOption name="DefaultExtension">.rb</CodeOption>

(c) Sparx Systems 2022 Page 205 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Reset Options

Enterprise Architect stores some of the options for a Class when it is first created. Some are global; for example,
$LinkClass is stored when you first create the Class, so in existing Classes the global change in the 'Preferences' dialog
will not automatically be picked up. You must modify the options for the existing Class.

Modify options for a single Class

Step Action

1 Click on the Class to change, and select the 'Develop > Source Code > Generate > Generate Single
Element' ribbon option.

The 'Generate Code' dialog displays.

2 Click on the Advanced button.

The 'Object Options' dialog displays.

3 Click on the 'Attributes/Operations' option.

4 Change the options, and click on the Close button to apply the changes.

Modify options for all Classes within a Package

Step Action

1 Click on the Package in the Browser window, and select the 'Develop > Preferences > Options > Reset
Source Language' ribbon option.

The 'Manage Code Generation' dialog displays.

2 In the 'Where language is:' field, click on the drop-down arrow and select the language that you want to
change from.

3 In the 'Convert to:' field, click on the drop-down arrow and select the language that you want to change to.

4 Select the checkbox against each option to apply to the changed Class elements in the Package:

Clear Filenames of the files to generate code to·
Reset Default options on each Class·
Process Child Packages under the selected Package·

5 Click on the OK button to apply the changes.

(c) Sparx Systems 2022 Page 206 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Set Collection Classes

Using Enterprise Architect, you can define Collection Classes for generating code from Association connectors where
the target role has a multiplicity setting greater than 1.

Tasks

Task Detail

Defining Collection
Classes

On the 'Source Code Engineering' section of the 'Manage Model Options' dialog
(select the 'Settings > Model > Options > Source Code Engineering' ribbon option),
on each language page click on the Collection Classes button.

The 'Collection Classes for Association Roles' dialog displays. On this dialog, you
can define:

The default Collection Class for 1..* roles·
The ordered Collection Class to use for 1..* roles·
The qualified Collection Class to use for 1..* roles·

Defining Collection
Classes for a specific Class

Class-specific Collection Classes can be defined by clicking the Collection Classes
button in the Class 'Properties' dialog of the element.

Code Generation
Precedence

When Enterprise Architect generates code for a connector that has a multiplicity
role >1:

1. If the Qualifier is set, use the qualified collection:

 - for the Class if set

 - else use the code language qualified collection

2. If the 'Order' option is set, use the ordered collection:

 - for the Class if set

 - else use the code language ordered collection

3. Else use the default collection:

 - for the Class if set

 - else use the code language default collection

Using Markers You can include the marker #TYPE# in the collection name; Enterprise Architect
replaces this with the name of the Class being collected at source generation time
(for example, Vector<#TYPE#> would become Vector<foo>).

Conversely, when reverse engineering, an Association connector is also created if a
matching entry (for example, foo if foo is found in the model) is defined as a
Collection Class.

Additional Collection
Classes

Additional Collection Classes can be defined within the model-specific language
options pages for C#, C++ and Java.

Member Type On the 'Role(s)' tab of the Association 'Properties' dialog (accessible from the
right-click context menu of any Association) there is a 'Member Type' field for each
of the Source and Target Roles.

If you set this, the value you enter overrides all the listed options.

(c) Sparx Systems 2022 Page 207 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

(c) Sparx Systems 2022 Page 208 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Example Use of Collection Classes

Consider this source code:

 class Class1

 {

 public:

 Class1();

 virtual ~Class1();

 CMap<CString,LPCTSTR,Class3*,Class3*> att;

 Vector<Class2> *att1;

 TemplatedClass<class1,class2> *att2;

 CList<Class4> *att3;

 };

 class Class2

 {

 public:

 Class2();

 virtual ~Class2();

 };

 class Class3

 {

 public:

 Class3();

 virtual ~Class3();

 };

 class Class4

 {

 public:

 Class4();

 virtual ~Class4();

 };

 template<class TParam1, class TParam2>

 class TemplatedClass

 {

 public:

 TemplatedClass() {

 }

 virtual ~TemplatedClass() {

 }

 };

(c) Sparx Systems 2022 Page 209 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

If this code is imported into the system with default import options, this diagram is generated:

If, however, you enter the value 'CList<#Type#>' in the 'Additional Collection Classes' field in the model-specific
language options page (C#, Java, C++), an Association connector is also created to Class 4:

(c) Sparx Systems 2022 Page 210 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

(c) Sparx Systems 2022 Page 211 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Local Paths

When a team of developers are working on the same Enterprise Architect model, each developer might store their
version of the source code in their local file system, but not always at the same location as their fellow developers. To
manage this scenario in Enterprise Architect, you can define local paths for each user, on the 'Local Paths' dialog.

You can use local paths in generating code and reverse engineering, and in Version Control, developing XML schemas
and generating document and web reports.

Local paths might take a little time to set up, but if you want to work collaboratively on source and model concurrently,
the effort is well worth while.

For example, if:

Developer A stores her .java files in a C:\Java\Source directory, while developer B stores his in D:\Source, and·
Both developers want to generate and reverse engineer into the same Enterprise Architect model located on a shared·
(or replicated) network drive

Developer A might define a local path of:

 JAVA_SOURCE = "C:\Java\Source"

All Classes generated and stored in the Enterprise Architect project are stored as:

 %JAVA_SOURCE%\<xxx.java>

Developer B defines a local path as:

 JAVA_SOURCE ="D:\Source"

Now, Enterprise Architect stores all java files in these directories as:

 %JAVA_SOURCE%\<filename>

On each developer's machine, the filename is expanded to the correct local version.

Access

Ribbon Develop > Source Code > Options > Configure Local Paths

(c) Sparx Systems 2022 Page 212 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Local Paths Dialog

Using the 'Local Paths' dialog, you can set up local paths for a single user on a particular machine. For a description of
the use of local paths, see the Local Paths topic.

Access

Ribbon Develop > Source Code > Options > Configure Local Paths

Options

Option Action

Path Type in or browser for the path of the local directory in the file system (for
example, d:\java\source).

ID Type in the shared ID that is substituted for the Local Path (for example,
JAVA_SRC).

Type Click on the drop-down arrow and select the type of path to apply to (for example,
Java).

Relative Paths Lists the paths currently defined for the model, defaulting to most recent at the top.

If you want to change the sequence of paths in the list, click on a path and use the

 buttons to move the path up or down one position in the list.

Apply Path Click on a path in the 'Relative Paths' list and click on this button to update any
existing full path names in the model to the shared relative path name. For example:

 d:\java\source\main.java might become %JAVA_SRC%\main.java

Expand Path Click on a path in the 'Relative Paths' list and click on this button to remove the
relative path and substitute the full path name (the opposite effect of the Apply Path
button).

New Click on this button to clear the data fields so that you can define another local
path.

Save When you have defined a local path, click on this button to save it and add it to the
'Relative Paths' list.

Delete Click on a path in the 'Relative Paths' list and click on this button to remove the
path from the list altogether.

Close Click on this button to close the dialog, saving any changes to the list.

(c) Sparx Systems 2022 Page 213 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Notes

You can also set up a hyperlink (for an Enterprise Architect command) on a diagram to access the 'Local Paths'·
dialog, to switch, update or expand your current local path

If the act of expanding or applying a path for a linked file will create a duplicate record, the process will skip that·
record and display a message at the end of the process

(c) Sparx Systems 2022 Page 214 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Language Macros

When reverse engineering a language such as C++, you might find preprocessor directives scattered throughout the code.
This can make code management easier, but can hamper parsing of the underlying C++ language.

To help remedy this, you can include any number of macro definitions, which are ignored during the parsing phase of the
reverse engineering. It is still preferable, if you have the facility, to preprocess the code using the appropriate compiler
first; this way, complex macro definitions and defines are expanded out and can be readily parsed. If you don't have this
facility, then this option provides a convenient substitute.

Access

Ribbon Settings > Reference Data > Settings > Preprocessor Macros or

Develop > Source Code > Options > Configure > Define Preprocessor Macros

Define a macro

Step Action

1 Select the 'Preprocessor Macros' menu option.

The 'Language Macros' dialog displays.

2 Click on the Add New button.

3 Enter details for your macro.

4 Click on the OK button.

Macros Embedded Within Declarations

Macros are sometimes used within the declaration of Classes and operations, as in these examples:

 class __declspec Foo

 {

 int __declspec Bar(int p);

 };

If declspec is defined as a C++ macro, as outlined, the imported Class and operation contain a Tagged Value called
DeclMacro1 with value __declspec (subsequent macros would be defined as DeclMacro2, DeclMacro3 and so on).

During forward engineering, these Tagged Values are used to regenerate the macros in code.

Define Complex Macros

(c) Sparx Systems 2022 Page 215 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

It is sometimes useful to define rules for complex macros that can span multiple lines; Enterprise Architect ignores the
entire code section defined by the rule.

Such macros can be defined in Enterprise Architect as in these two examples; both types can be combined in one
definition.

Block Macros

 BEGIN_INTERFACE_PART ^ END_INTERFACE_PART

The ^ symbol represents the body of the macro - this enables skipping from one macro to another; the spaces surrounding
the ^ symbol are required.

Function Macros

 RTTI_EMULATION()

Enterprise Architect skips over the token including everything inside the parentheses.

Function Macros can also include the function body:

 RTTI_EMULATION() {}

In this case, Enterprise Architect skips over the token including everything inside the parentheses and inside the braces.
Note that if the Function Macro includes the function body, it cannot be combined with a Block Macro.

Notes

You can transport these language macro (or preprocessor macro) definitions between models, using the 'Settings >·
Model > Transfer > Export Reference Data' and 'Import Reference Data' options; the macros are exported as a Macro
List

(c) Sparx Systems 2022 Page 216 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Developing Programming Languages

You can make use of a range of established programming languages in Enterprise Architect, but if these are not suitable
to your needs you can develop your own. You would then apply it to your models through an MDG Technology that you
might develop just for this purpose, or for broader purposes. After developing the language, you could also write MDA
Transformation templates to convert a Platform Independent Model or a model in another language into a model for your
new language, or vice-versa.

Access

Ribbon Develop > Source Code > Options > Edit Code Templates

Keyboard Shortcuts Ctrl+Shift+P

Develop a Programming Language

Step Description

1 In the Code Template Editor, click on the New Language button and, on the 'Programming Languages
Datatypes' dialog, click on the Add Product button.

Enter your new programming language name and define the datatypes for it. You cannot access the new
language in the Code Template Editor until at least one datatype has been added to the language.

2 After you have defined all the datatypes you need, click on the Close button, select the language in the
'Language' field of the Code Template Editor, and start to edit or create the code templates for the new
language.

The code templates define how the system should perform:

Forward code engineering of your models in the new language·
Behavioral Code generation (if this is appropriate)·

3 If you prefer, you can also define source code options for your new language. These are additional
settings for the language that are not provided by the data types or code templates, and that help define
how the system handles that language when generating and reverse-engineering code.

The code options are made available to your models only through an MDG Technology.

4 Defining a grammar for your language is an optional step that provides two primary benefits:

Reverse engineering of existing code into your model·
Synchronization during code generation so that changes made to the file since it was last generated·
are not lost.

To access the grammar editor select the 'Develop > Source Code > Grammar Editor' ribbon option.

5 If you intend MDA transformations to be made to (or from) your new programming language, you can
also edit and create transformation templates for it. The process of creating transformation templates is
very similar to that for creating code templates.

6 Having created the datatypes, code templates, code options, grammar and transformation templates for

(c) Sparx Systems 2022 Page 217 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

your new language, you can incorporate and distribute them in an MDG Technology.

(c) Sparx Systems 2022 Page 218 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Code Template Framework

When you use Enterprise Architect to generate code from a model, or transform the model, the system refers to the Code
Template Framework (CTF) for the parameters that define how it should:

Forward engineer a UML model·
Generate Behavioral Code·
Perform a Model Driven Architecture (MDA) Transformation·
Generate DDL in database modeling·

A range of standard templates is available for the direct generation of code and for transformation; if you do not want to
use the standard CTF configurations, you can customize them to meet your needs.

CTF Templates

Template Type Detail

Code Templates When you forward engineer a Class model, the code templates define how the
skeletal code is to be generated for a given programming language. The templates
for a language are automatically associated with the language.

The templates are written as plain text with a syntax that shares some aspects of
both mark-up languages and scripting languages.

Model Transformation
Templates

Model Transformation Templates provide a fully configurable method of defining
how Model Driven Architecture (MDA) Transformations convert model elements
and model fragments from one domain to another.

This process is two-tiered. It creates an intermediary language (which can be
viewed for debugging) which is then processed to create the objects.

Behavioral Code
Generation Templates

Enterprise Architect supports user-definable code generation of the UML
Behavioral models.

This applies the standard Code Template Framework but includes specific
Enterprise Architect Simulation Library (EASL) code generation macros.

DDL Templates DDL Templates are very similar to Code generation templates, but they have been
extended to support DDL generation with their own set of base templates, macros,
function macros and template options.

(c) Sparx Systems 2022 Page 219 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Code Template Customization

Enterprise Architect helps you to generate source code from UML models for a wide range of programming languages.
Standard templates (mappings) are provided out-of-the-box but you can customize the way that code is generated by
using the practical and flexible Code Template Framework (CTF). This sophisticated framework allows you to customize
every detail of the way code is generated, including the facility to create new templates for languages not supported in
the base product. For example, JavaScript is not one of the supported languages but a series of templates can be written
quickly to generate JavaScript from UML models. In these cases existing templates act as a useful starting point and
reference for new languages.

The code template framework also provides the mechanism for generation of behavioral models and is used for the
transformation templates.

Features

Feature Detail

Default Templates Default Code Templates are built into Enterprise Architect for forward engineering
supported languages.

Code Template Editor A Code Template Editor is provided for creating and maintaining user-defined
Code Templates.

Customizing Code
Templates

Descriptions of the template syntax and the macros and functions you can use to
control the effects of the templates.

Synchronize Code A subset of the default Code Templates to synchronize code.

(c) Sparx Systems 2022 Page 220 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Code and Transform Templates

Code templates and transform (Model Transformation) templates define how the system should generate or transform
code in one or other of the programming languages that Enterprise Architect supports. Each language has a wide range of
base templates, each of which defines how a particular code structure is generated. You can use these base templates as
they are, or you can customize and add to the templates to better support your use of the standard languages, or of other
languages that you might define to the system. You review, update and create templates through the Code Template
editor or Transformation Template editor.

The order in which the base templates are listed in the two editors relates to the hierarchical order of the objects and their
parts that are to be processed. Calls are made from certain base templates to others, and you can add further calls to both
base templates and to your own custom templates. By default, the File template is the starting point of a code generation
process through the templates; a File consists of Classes that can contain Attributes and Operations.

Access

Ribbon Develop >Source Code > Options > Edit Code Templates

Design > Package > Transform > Transform Templates

Keyboard Shortcuts Ctrl+Shift+P (Code Generation Templates)

Ctrl+Alt+H (MDA Transformation Templates)

Application of Templates

Action Detail

Calling Templates Within any template, you can call other templates using %TemplateName%. The
enclosing percent (%) signs indicate a macro.

You would use this for a single call to the ClassBody template, %ClassBody%, as
shown:

 % list = "TemplateName" @separator= "\n" @indent= " " %

The %list macro performs an iterative pass on all the objects in the scope of the
current template and calls the TemplateName for each of them:

 % list = "ClassBody" @separator= "\n" @indent= " " %

After generation or transformation, each macro is substituted to produce the
generated output; for a language such as C++, the result of processing this template
might be:

 /**

 * This is an example Class note generated using code templates

 * @author Sparx Systems

 */

 class ClassA: public ClassB

 {

 ...

 }

(c) Sparx Systems 2022 Page 221 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Execution of Code
Templates

Each template might act only on a particular element type; for example, the
ClassNotes template only acts on UML Class and Interface elements.

The element from which code is currently being generated is said to be in scope; if
the element in scope is stereotyped, the system searches for a template that has been
defined for that stereotype. If a specialized template is found, it is executed;
otherwise the default implementation of the base template is used.

Templates are processed sequentially, line by line, replacing each macro with its
underlying text value from the model.

Transfer Templates
Between Projects

If you edit a base Code Generation or Transformation template, or create a
customized template, you can copy them from one project to another as Reference
Data.

(c) Sparx Systems 2022 Page 222 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Base Templates

The Code Template Framework consists of a number of base templates. Each base template transforms particular aspects
of the UML to corresponding parts of object-oriented languages.

The base templates form a hierarchy, which varies slightly across different programming languages. In a typical template
hierarchy relevant to a language such as C# or Java (which do not have header files) the templates can be modeled as
Classes, but usually are just plain text. This hierarchy would be slightly more complicated for languages such as C++ and
Delphi, which have separate implementation templates.

Each of the base templates must be specialized to be of use in code engineering; in particular, each template is
specialized for the supported languages (or 'products'). For example, there is a ClassBody template defined for C++,
another for C#, another for Java, and so on; by specializing the templates, you can tailor the code generated for the
corresponding UML entity.

Once the base templates are specialized for a given language, they can be further specialized based on:

A Class's stereotype, or·
A feature's stereotype (where the feature can be an operation or attribute)·

This type of specialization enables, for example, a C# operation that is stereotyped as «property» to have a different
Operation Body template from an ordinary operation; the Operation Body template can then be specialized further, based
on the Class stereotype.

Base templates used in the CTF

Template Description

Attribute A top-level template to generate member variables from UML attributes.

Attribute Declaration Used by the Attribute template to generate a member variable declaration.

Attribute Notes Used by the Attribute template to generate member variable notes.

Class A top-level template for generating Classes from UML Classes.

Class Base Used by the Class template to generate a base Class name in the inheritance list of a
derived Class, where the base Class doesn't exist in the model.

Class Body Used by the Class template to generate the body of a Class.

Class Declaration Used by the Class template to generate the declaration of a Class.

Class Interface Used by the Class template to generate an interface name in the inheritance list of a
derived Class, where the interface doesn't exist in the model.

Class Notes Used by the Class template to generate the Class notes.

File A top-level template for generating the source file.

For languages such as C++, this corresponds to the header file.

Import Section Used in the File template to generate external dependencies.

Linked Attribute A top-level template for generating attributes derived from UML Associations.

(c) Sparx Systems 2022 Page 223 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Linked Attribute Notes Used by the Linked Attribute template to generate the attribute notes.

Linked Attribute
Declaration

Used by the Linked Attribute template to generate the attribute declaration.

Linked Class Base Used by the Class template to generate a base Class name in the inheritance list of a
derived Class, for a Class element in the model that is a parent of the current Class.

Linked Class Interface Used by the Class template to generate an Interface name in the inheritance list of a
derived Class, for an Interface element in the model that is a parent of the current
Class.

Namespace A top-level template for generating namespaces from UML Packages (although not
all languages have namespaces, this template can be used to generate an equivalent
construct, such as Packages in Java).

Namespace Body Used by the Namespace template to generate the body of a namespace.

Namespace Declaration Used by the Namespace template to generate the namespace declaration.

Operation A top-level template for generating operations from a UML Class's operations.

Operation Body Used by the Operation template to generate the body of a UML operation.

Operation Declaration Used by the Operation template to generate the operation declaration.

Operation Notes Used by the Operation template to generate documentation for an operation.

Parameter Used by the Operation Declaration template to generate parameters.

Templates for generating code for languages with separate interface and
implementation sections

Template Description

Class Impl A top-level template for generating the implementation of a Class.

Class Body Impl Used by the Class Impl template to generate the implementation of Class members.

File Impl A top-level template for generating the implementation file.

File Notes Impl Used by the File Impl template to generate notes in the source file.

Import Section Impl Used by the File Impl template to generate external dependencies.

Operation Impl A top-level template for generating operations from a UML Class's operations.

Operation Body Impl Used by the Operation template to generate the body of a UML operation.

(c) Sparx Systems 2022 Page 224 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Operation Declaration Impl Used by the Operation template to generate the operation declaration.

Operation Notes Impl Used by the Operation template to generate documentation for an operation.

(c) Sparx Systems 2022 Page 225 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Export Code Generation and Transformation Templates

It is possible to export Code Generation and Transformation templates from your model to a .xml file. You can then
import that file - and hence the templates - into other models, as reference data. You can export customized templates,
which includes those that you or other users have created and updated, and base (standard) templates that have been
tailored. You do not need to export base templates that have not been changed, as these are available in every installation
of Enterprise Architect.

Access

Ribbon Settings > Model > Transfer > Export Reference Data

Export a Code Generation template or Transformation template

Step Action

1 On the 'Export Reference Data' dialog, in the 'Name' list, select the templates to export.

The list includes any standard Code Generation or Transformation templates that have been changed, and
any customized templates that you have created or changed.

You can select one or more templates to be exported to a single XML file, by pressing Ctrl or Shift as you
click on the template names.

2 Click on the Export button.

3 When prompted to do so, enter a valid file name with a .xml extension.

4 Click on the Save button and on the OK button.

This exports the template(s) to the file; you can use any text or XML viewer to examine the file.

(c) Sparx Systems 2022 Page 226 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Import Code Generation and Transformation Templates

If you have exported Code Generation and/or Transformation templates from an Enterprise Architect model, you can
import them into other Enterprise Architect models as reference data.

Access

Ribbon Settings > Model > Transfer > Import Reference Data

Import Code Generation and/or Transformation Templates

Step Action

1 On the 'Import Reference Data' dialog, click on the Select File button and browse to the .xml file
containing the required Code Generation or Transformation templates.

2 Select the name of one or more template datasets and click on the Import button.

(c) Sparx Systems 2022 Page 227 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Synchronize Code

Enterprise Architect uses code templates during the forward synchronization of these programming languages:

ActionScript·
C·
C++·
C#·
Delphi·
Java·
PHP·
Python·
VB·
VB.Net·

Three types of change can occur in the source when it is synchronized with the UML model:

Existing sections are synchronized: for example, the return type in an operation declaration is updated·
New sections are added to existing features: for example, Notes are added to a Class declaration where there were·
previously none

New features and elements are added: for example, a new operation is added to a Class·
Each of these changes has a different effect on the CTF and must be handled differently by Enterprise Architect, as
described in these topics:

Synchronize Existing Sections·
Add New Sections to Existing Features·
Add New Features and Elements·

Code sections that can be synchronized

Only a subset of the CTF base templates is used during synchronization. This subset corresponds to the distinct sections
that Enterprise Architect recognizes in the source code.

Code Template Code Section

Class Notes Comments preceding the Class declaration.

Class Declaration Up to and including the Class parents.

Attribute Notes Comments preceding an Attribute declaration.

Attribute Declaration Up to and including the terminating character.

Operation Notes Comments preceding an operation declaration.

Operation Notes Impl As for Operation Notes.

Operation Declaration Up to and including the terminating character.

Operation Declaration Impl Up to and including the terminating character.

(c) Sparx Systems 2022 Page 228 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Operation Body Everything between and including the braces.

Operation Body Impl As for Operation Body.

(c) Sparx Systems 2022 Page 229 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Synchronize Existing Sections

When an existing section in the source code differs from the result generated by the corresponding template, that section
is replaced.

Consider, for example, this C++ Class declaration:

 (asm) class A: public B

Now assume that you add an inheritance relationship from Class A to Class C; the entire Class declaration would be
replaced with something resembling this:

 (asm) class A: public B, public C

(c) Sparx Systems 2022 Page 230 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Add New Sections

These sections can be added to existing features in the source code, as new sections:

Class Notes·
Attribute Notes·
Operation Notes·
Operation Notes Impl·
Operation Body·
Operation Body Impl·

Assume that, in this example, Class A had no note when you originally generated the code:

 (asm) class A: public B, public C

If you now specify a note in the model for Class A, Enterprise Architect attempts to add the new note from the model
during synchronization, by executing the Class Notes template.

To make room for the new section to be inserted, you can specify how much white space to append to the section via
synchronization macros.

(c) Sparx Systems 2022 Page 231 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Add New Features and Elements

These features and elements can be added to the source code during synchronization:

Attributes·
Inner Classes·
Operations·

They are added by executing the relevant templates for each new element or feature in the model.

Enterprise Architect attempts to preserve the appropriate indenting of new features in the code, by finding the indents
specified in list macros of the Class; for languages that make use of namespaces, the 'synchNamespaceBodyIndent'
macro is available.

Classes defined within a (non-global) namespace are indented according to the value set for this macro, during
synchronization.

The value is ignored:

For Classes defined within a Package set up as a root namespace, or·
If the 'Generate Namespaces' option is set to False in the appropriate language page (C#, C++ or VB.Net) on the·
'Preferences' dialog ('Start > Appearance > Preferences > Preferences > Source Code Engineering > <language>')

(c) Sparx Systems 2022 Page 232 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

The Code Template Editor

The Code Template Editor provides the facilities of the Common Code Editor, including Intelli-sense for the various
macros. For more information on Intelli-sense and the Common Code Editor, see the Editing Source Code topic.

Access

Ribbon Develop > Source Code > Options > Edit Code Templates

Keyboard Shortcuts Ctrl+Shift+P

Options

Option Action

Language Select the programming language.

New Language Display the 'Programming Languages Datatypes' dialog, which enables you to
include programming languages other than those supported for Enterprise
Architect, for which to create or edit code templates.

Template Display the contents of the active template, and open the editor for modifying
templates.

Templates List the base code templates; the active template is highlighted.

The 'Modified' field indicates whether you have changed the default template for
the current language.

Stereotype Overrides List the stereotyped templates, for the active base template.

The 'Modified' field indicates whether you have modified a default stereotyped
template.

Add New Custom
Template

Invoke a dialog for creating a custom stereotyped template.

Add New Stereotyped
Override

Invoke a dialog for adding a stereotyped template, for the currently selected base
template.

Get Default Template Update the editor display with the default version of the active template.

Save Overwrite the active templates with the contents of the editor.

Delete If you have overridden the active template, the override is deleted and replaced by
the corresponding default code template.

(c) Sparx Systems 2022 Page 233 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Notes

User-modified and user-defined Code Templates can be imported and exported as reference data (see the Sharing·
Reference Data topic); the templates defined for each language are indicated in the 'Export Reference Data' dialog
by the language name with the suffix _Code_Templates - if no templates exist for a language, there is no entry for
the language in the dialog

(c) Sparx Systems 2022 Page 234 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Create New Custom Template

The Create New Custom Template dialog provides the ability to create a custom template for the current Programming or
Database Management System (DBMS) Language, depending on what information is being edited with the Code
Template Editor.

When this dialog is loaded you will be prompted to enter a value for Template Type and Template Name. In order to
save a new template both Type and Name are required.

Options

Option Action

Template Type Choose the type of Template for the new Custom Template.

Template Name Enter a Name for the new Custom Template.

OK Save the details of the new Custom Template.

Cancel Close the Create New Custom Template dialog and loose any unsaved changes.

Note:

All templates of type "<none>" are treated as functions, therefore Enterprise Architect will automatically remove all
space characters entered into the Name.

(c) Sparx Systems 2022 Page 235 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Code Template Syntax

Code Templates are written using Enterprise Architect's Code Template Editor. The Code Template Editor supports
syntax highlighting of the Code Template Framework language.

Syntax Elements

Elements Detail

Basic Constructs Templates can contain:

Literal Text·
Variables·
Macros·
Calls to other templates·

Comments If you want to add comments to the templates, use the command:

 $COMMENT="text"

where "text" is the text of the comment; this must be enclosed in quotes.

The command is case-sensitive, and must be typed in upper case.

(c) Sparx Systems 2022 Page 236 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Literal Text

All text within a given template that is not part of a macro or a variable definition/reference, is considered literal text.
With the exception of blank lines, which are ignored, literal text is directly substituted from the template into the
generated code.

Consider this excerpt from the Java Class Declaration template:

 $bases = "Base"

 class % className % $bases

On the final line, the word 'class ', including the subsequent space, would be treated as literal text and thus for a Class
named 'foo' would return the output:

 class fooBase

A blank line following the variable $bases would have no effect on the output.

Inserting System Characters:

The %, $, " and \ characters have special meaning in the template syntax and cannot always be used as literal text. If
these characters must be generated from within the templates, they can be safely reproduced using these direct
substitution macros:

Macro Action

%dl% Produce a literal $ character.

%pc% Produce a literal % character.

%qt% Produce a literal " character.

%sl% Produce a literal \ character

Notes

String conjunction operators (“+”, “+=”) are not required but can be used

(c) Sparx Systems 2022 Page 237 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Variables

Template variables provide a convenient way of storing and retrieving data within a template. This section explains how
variables are defined and referenced.

Variable Definitions

Variable definitions take the basic form:

 $<name> = <value>

where <name> can be any alpha-numeric sequence and <value> is derived from a macro or another variable.

A simple example definition would be:

 $foo = %className%

Variables can be defined using values from:

Substitution, function or list macros·
String literals, enclosed within double quotation marks·
Variable references·

Definition Rules

These rules apply to variable definitions:

Variables have global scope within the template in which they are defined and are not accessible to other templates·
Each variable must be defined at the start of a line, without any intervening white space·
Variables are denoted by prefixing the name with $, as in $foo·
Variables do not have to be declared, prior to being defined·
Variables must be defined using either the assignment operator (=), or the addition-assignment operator (+=)·
Multiple terms can be combined in a single definition using the addition operator (+)·

Examples

Using a substitution macro:

 $foo = %opTag:"bar"%

Using a literal string:

 $foo = "bar"

Using another variable:

 $foo = $bar

Using a list macro:

 $ops = %list="Operation" @separator="\n\n" @indent="\t"%

Using the addition-assignment operator (+=):

 $body += %list="Operation" @separator="\n\n" @indent="\t"%

That definition is equivalent to:

 $body = $body + %list="Operation" @separator="\n\n" @indent="\t"%

(c) Sparx Systems 2022 Page 238 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Using multiple terms:

 $templateArgs = %list="ClassParameter" @separator=", "%

 $template ="template<" + $templateArgs + ">"

Variable References

Variable values can be retrieved by using a reference of the form:

 $<name>

where <name> can be a previously defined variable.

Variable references can be used:

As part of a macro, such as the argument to a function macro·
As a term in a variable definition·
As a direct substitution of the variable value into the output·

It is legal to reference a variable before it is defined. In this case, the variable is assumed to contain an empty string
value: ""

Variable References - Example 1

Using variables as part of a macro. This is an excerpt from the default C++ ClassNotes template.

 $wrapLen = %genOptWrapComment%

 $style = %genOptCPPCommentStyle% (Define variables to store the style and wrap length options)

 %if $style == "XML.NET"% (Reference to $style as part of a condition)

 %XML_COMMENT($wrapLen)%

 %else%

 %CSTYLE_COMMENT($wrapLen)% (Reference to $wrapLen as an argument to function macro)

 %endIf%

Variable References - Example 2

Using variable references as part of a variable definition.

 $foo = "foo" (Define our variables)

 $bar = "bar"

 $foobar = $foo + $bar ($foobar now contains the value foobar)

Variable References - Example 3

Substituting variable values into the output.

 $bases=%classInherits% (Store the result of the ClassInherits template in $bases)

 Class %className%$bases (Now output the value of $bases after the Class name)

(c) Sparx Systems 2022 Page 239 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Macros

Macros provide access to element fields within the UML model and are also used to structure the generated output. All
macros are enclosed within percent (%) signs, as shown:

 %<macroname>%

In general, macros (including the % delimiters) are substituted for literal text in the output. For example, consider this
item from the Class Declaration template:

 ... class %className% ...

The field substitution macro, %className%, would result in the current Class name being substituted in the output. So if
the Class being generated was named Foo, the output would be:

 ... class Foo ...

The CTF contains a number of types of macro:

Template Substitution Macros·
Field Substitution Macros·
Substitution Examples·
Attribute Field Substitution Macros·
Class Field Substitution Macros·
Code Generation Option Field Substitution Macros·
Connector Field Substitution Macros·
Constraint Field Substitution Macros·
Effort Field Substitution Macros·
File Field Substitution Macros·
File Import Field Substitution Macros·
Link Field Substitution Macros·
Linked File Field Substitution Macros·
Metric Field Substitution Macros·
Operation Field Substitution Macros·
Package Field Substitution Macros·
Parameter Field Substitution Macros·
Problem Field Substitution Macros·
Requirement Field Substitution Macros·
Resource Field Substitution Macros·
Risk Field Substitution Macros·
Scenario Field Substitution Macros·
Tagged Value Substitution Macros·
Template Parameter Substitution Macros·
Test Field Substitution Macros·
Function Macros·
Control Macros·
List Macro·
Branching Macros·
Synchronization Macros·

(c) Sparx Systems 2022 Page 240 of 392 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/templatesubstitutionmacros.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/fieldsubstitutionmacros.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/substitution_examples.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/attribute_field_substitution_m.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/class_field_substitution_macro.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/generation_option_field_substi.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/connector_field_substitution_m.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/constraint_field_substitution_.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/effort_field_substitution_macr.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/file_field_substitution_macros.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/file_import_field_substitution.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/link_field_substitution_macros.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/file_link_field_substitution_m.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/metric_field_substitution_macr.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/operations_field_substitution_.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/package_field_substitution_mac.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/parameter_field_substitution_m.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/problem_field_substitution_mac.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/requirement_field_substitution.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/resource_field_substitution_ma.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/risk_field_substitution_macros.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/scenario_field_substitution_ma.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/taggedvaluemacros.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/template_parameter_substitutio.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/test_field_substitution_macros.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/functionmacros.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/controlmacros.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/list_macro.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/branching_macros.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/synchronization_macros.htm

Software Engineering 3 October, 2022

The Processing Instruction (PI) Macro·
EASL Code Generation Macros·

(c) Sparx Systems 2022 Page 241 of 392 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/the_pi_macro.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/easl_code_generation_macros.htm

Software Engineering 3 October, 2022

Template Substitution Macros

Template substitution macros correspond to Base templates, and result in the execution of the named template. By
convention, template macros are named according to Pascal casing.

 Structure: %<TemplateName>%

where <TemplateName> can be one of the templates listed in this topic.

When a template is referenced from within another template, it is generated with respect to the elements currently in
scope. The specific template is selected based on the stereotypes of the elements in scope.

As noted previously, there is an implicit hierarchy among the various templates. Some care should be taken in order to
preserve a sensible hierarchy of template references. For example, it does not make sense to use the %ClassInherits%
macro within any of the Attribute or Operation templates. Conversely, the Operation and Attribute templates are
designed for use within the ClassBody template.

Template substitution macros in the CTF

Attribute·
AttributeDeclaration·
AttributeDeclarationImpl·
AttributeNotes·
Class·
ClassBase·
ClassBody·
ClassBodyImpl·
ClassDeclaration·
ClassDeclarationImpl·
ClassImpl·
ClassInherits·
ClassInterface·
ClassNotes·
ClassParameter·
File·
FileImpl·
ImportSection·
ImportSectionImpl·
InnerClass·
InnerClassImpl·
LinkedAttribute·
LinkedAttributeDeclaration·
LinkedAttributeNotes·
LinkedClassBase·
LinkedClassInterface·
Namespace·
NamespaceBody·

(c) Sparx Systems 2022 Page 242 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

NamespaceDeclaration·
NamespaceImpl·
Operation·
OperationBody·
OperationBodyImpl·
OperationDeclaration·
OperationDeclarationImpl·
OperationImpl·
OperationNotes·
Parameter·

(c) Sparx Systems 2022 Page 243 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Field Substitution Macros

The field substitution macros provide access to data in your model. In particular, they are used to access data fields from:

Packages·
Classes·
Attributes·
Operations, and·
Parameters·

Field substitution macros are named according to Camel casing. By convention, the macro is prefixed with an
abbreviated form of the corresponding model element. For example, attribute-related macros begin with att, as in the
%attName% macro, to access the name of the attribute in scope.

Macros that represent checkboxes return a value of T if the box is selected. Otherwise the value is empty.

This table lists a small number of project field substitution macros. Type-specific macros are listed in the subtopics of
this Field Substitution Macros section.

Project Macros

Macro Name Description

eaDateTime The current time with format: DD-MMM-YYYY HH:MM:SS AM/PM.

eaGUID A unique GUID for this generation.

eaVersion Program Version (located in the 'About Enterprise Architect' dialog by selecting
'Start > Help > Help > About EA').

(c) Sparx Systems 2022 Page 244 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Substitution Examples

Field substitution macros can be used in one of two ways:

Direct Substitution or·
Conditional Substitution·

Direct Substitution

This form directly substitutes the corresponding value of the element in scope into the output.

Structure: %<macroName>%

Where <macroName> can be any of the macros listed in the Field Substitution Macros tables.

Examples

%className%·
%opName%·
%attName%·

Conditional Substitution

This form of the macro enables alternative substitutions to be made depending on the macro's value.

Structure: %<macroName> (== "<text>") ? <subTrue> (: <subFalse>) %

Where:

() denotes that values between the parentheses are optional·
<text> is a string representing a possible value for the macro·
<subTrue> and <subFalse> can be a combination of quoted strings and the keyword value; where the value is used,·
it is replaced with the macro's value in the output

Examples

%classAbstract=="T" ? "pure" :""%·
%opStereotype=="operator" ? "operator" :""%·
%paramDefault != "" ? " = " value : ""%·

These three examples output nothing if the condition fails. In this case the False condition can be omitted, resulting in
this usage:

%classAbstract=="T" ? "pure"%·
%opStereotype=="operator" ? "operator"%·
%paramDefault != "" ? " = "value%·

The third example of both blocks shows a comparison checking for a non-empty value or existence. This test can also be
omitted.

%paramDefault ? " = " value : ""%·

(c) Sparx Systems 2022 Page 245 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

%paramDefault ? " = " value%·
All of these examples containing paramDefault are equivalent. If the parameter in scope had a default value of 10, the
output from each of them would normally be:

= 10

Notes

In a conditional substitution macro, any white space following <macroName> is ignored; if white space is required·
in the output, it should be included within the quoted substitution strings

(c) Sparx Systems 2022 Page 246 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Attribute Field Substitution Macros

This table lists each of the attribute field substitution macros.

Field substitution macros are named according to Camel casing. Macros that represent checkboxes return a value of 'T' if
the box is selected. Otherwise the value is empty.

Attribute Macros

Macro Name Description

attAlias 'Attributes' dialog: Alias.

attAllowDuplicates 'Attributes Detail' dialog: 'Allow Duplicates' checkbox.

attClassifierGUID The unique GUID for the classifier of the current attribute.

attCollection 'Attributes Detail' dialog: 'Attribute is a Collection' checkbox.

attConst 'Attributes' dialog: 'Const' checkbox.

attContainerType 'Attributes Detail' dialog: Container Type.

attContainment 'Attributes' dialog: Containment.

attDerived 'Attributes' dialog: 'Derived' checkbox.

attGUID The unique GUID for the current attribute.

attInitial 'Attributes' dialog: Initial.

attIsEnumLiteral 'Attributes' dialog: 'Is Literal' checkbox.

attIsID 'Attributes Detail' dialog: 'isID' checkbox.

attLength 'Column' dialog: Length.

attLowerBound 'Attributes Detail' dialog: Lower Bound.

attName 'Attributes' dialog: Name.

attNotes 'Attributes' dialog: Notes.

attOrderedMultiplicity 'Attributes Detail' dialog: 'Ordered Multiplicity' checkbox.

attProperty 'Attributes' dialog: 'Property' checkbox.

attQualType The attribute type qualified by the namespace path (if generating namespaces) and
the classifier path (dot delimited). If the attribute classifier has not been set, is
equivalent to the attType macro.

(c) Sparx Systems 2022 Page 247 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

attScope 'Attributes' dialog: Scope.

attStatic 'Attributes' dialog: 'Static' checkbox.

attStereotype 'Attributes' dialog: Stereotype.

attType 'Attributes' dialog: Type.

attUpperBound 'Attributes Detail' dialog: Upper Bound.

attVolatile 'Attributes Detail' dialog: 'Transient' checkbox.

(c) Sparx Systems 2022 Page 248 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Class Field Substitution Macros

This table provides a list of methods for accessing each available Class property in the Code Generation and
Transformation templates.

Field substitution macros are named according to Camel casing. Macros that represent checkboxes return a value of 'T' if
the box is selected. Otherwise the value is empty.

Class Macros

Macro Name Description

elemType The element type: Interface or Class.

classAbstract Class 'Properties' dialog: 'Abstract' checkbox ('Details' tab).

classAlias Class 'Properties' dialog: 'Alias' field.

classArguments Class 'Detail' dialog: C++ Templates: Arguments.

classAuthor Class 'Properties' dialog: 'Author' field.

classBaseName 'Type Hierarchy' dialog: Class Name (for use where no connector exists between
child and base Classes).

classBaseScope The scope of the inheritance as reverse engineered. (For use where no connector
exists between child and base Classes.)

classBaseVirtual The virtual property of the inheritance as reverse engineered. (For use where no
connector exists between child and base Classes.)

classComplexity Class 'Properties' dialog: 'Complexity' field.

classCreated The date and time the Class was created.

classGUID The unique GUID for the current Class.

classHasConstructor Looks at the list of methods in the current object and, depending on the conventions
of the current language, returns T if one is a default constructor. Typically used
with the genOptGenConstructor macro.

classHasCopyConstructor Looks at the list of methods in the current object and, depending on the conventions
of the current language, returns T if one is a copy constructor. Typically used with
the genOptGenCopyConstructor macro.

classHasDestructor Looks at the list of methods in the current object and, depending on the conventions
of the current language, returns T if one is a destructor. Typically used with the
genOptGenDestructor macro.

classHasParent True, if the Class in scope has one or more base Classes.

(c) Sparx Systems 2022 Page 249 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

classHasStereotype True, if the Class in scope has a stereotype that matches a stereotype name (which
you can optionally specify as fully qualified). It therefore checks all stereotypes that
a Class has and returns 'T' if any of them is the specified stereotype or a
specialization of it. For example:

%classHasStereotype:"block"% will return 'T' for any block-stereotyped Class·
from any SysML version, including associationBlock

%classHasStereotype:"SysML1.4::block"% will specifically match the SysML·
1.4 versions

Compare this with classStereotype, later.

classImports 'Code Gen' dialog: Imports.

classIsActive Class 'Advanced' dialog: 'Is Active' checkbox.

classIsAssociationClass True, if the Association is an AssociationClass connector.

classIsInstantiated True, if the Class is an instantiated template Class.

classIsLeaf Class 'Advanced' dialog: 'Is Leaf' checkbox.

classIsRoot Class 'Advanced' dialog: 'Is Root' checkbox.

classIsSpecification Class 'Advanced' dialog: 'Is Specification' checkbox.

classKeywords Class 'Properties' dialog: 'Keywords' field.

classLanguage Class 'Properties' dialog: 'Language' field.

classMacros A space separated list of macros defined for the Class.

classModified The date and time the Class was last modified.

classMultiplicity Class 'Advanced' dialog: Multiplicity.

className Class 'Properties' dialog: 'Name' field.

classNotes Class 'Properties' dialog: 'Note' field.

classParamDefault Class 'Detail' dialog.

classParamName Class 'Detail' dialog.

classParamType Class 'Detail' dialog.

classPersistence Class 'Properties' dialog: 'Persistence' field ('Details' tab)

classPhase Class 'Properties' dialog: 'Phase' field.

classQualName The Class name prefixed by its outer Classes. Class names are separated by double
colons (::).

classScope Class 'Properties' dialog: 'Scope' field.

(c) Sparx Systems 2022 Page 250 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

classStereotype Class 'Properties' dialog: 'Stereotype' field. Retrieves the name of the first
stereotype applied to the Class. When used in a comparison, it checks whether that
first stereotype exactly matches a string.

For example: %classStereotype=="enumeration" ? "enum" : "class"%

Compare this with classHasStereotype, earlier.

classStatus Class 'Properties' dialog: 'Status' field.

classVersion Class 'Properties' dialog: 'Version' field.

(c) Sparx Systems 2022 Page 251 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Code Generation Option Field Substitution Macros

Code generation option field substitution macros operate on the source code generation options defined in the 'Source
Code Engineering' pages of either the:

'Preferences' dialog ('Start > Appearance > Preferences > Preferences > Source Code Engineering') for user-specific·
options, or

'Manage Model Options' dialog ('Settings > Model > Options') for model-specific options·
For more information on the division of the options, see the Source Code Engineering Options topic.

Field substitution macros are named according to Camel casing. Macros that represent checkboxes return a value of 'T' if
the box is selected. Otherwise the value is empty. This table lists each of the code generation option field substitution
macros.

Code Generation Option Macros

Macro Name Description

genOptActionScriptVersio
n

ActionScript Specifications page: Default Version.

genOptCDefaultAttributeT
ype

C Specifications page: Default Attribute Type.

genOptCGenMethodNotesI
nBody

C Specifications page: Method Notes In Implementation.

genOptCGenMethodNotesI
nHeader

C Specifications page: Method Notes In Header.

genOptCSynchNotes C Specifications page: Synchronize Notes in Generation.

genOptCSynchCFile C Specifications page: Synchronise Implementation file in Generation.

genOptCDefaultSourceDir
ectory

C Specifications page: Default Source Directory.

genOptCNamespaceDelimi
ter

C Specifications page: Namespace Delimiter.

genOptCOperationRefPara
m

C Specifications page: Reference as Operation Parameter.

genOptCOperationRefPara
mStyle

C Specifications page: Reference Parameter Style.

genOptCOperationRefPara
mName

C Specifications page: Reference Parameter Name.

genOptCConstructorName C Specifications page: Default Constructor Name.

genOptCDestructorName C Specifications page: Default Destructor Name.

(c) Sparx Systems 2022 Page 252 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

genOptCPPCommentStyle C++ Specifications page: Comment Style.

genOptCPPDefaultAttribut
eType

C++ Specifications page: Default Attribute Type.

genOptCPPDefaultReferen
ceType

C++ Specifications page: Default Reference Type.

genOptCPPDefaultSource
Directory

C++ Specifications page: Default Source Directory.

genOptCPPGenMethodNot
esInHeader

C++ Specifications page: 'Method Notes In Header' checkbox.

genOptCPPGenMethodNot
esInBody

C++ Specifications page: Method Notes In Body checkbox.

genOptCPPGetPrefix C++ Specifications page: Get Prefix.

genOptCPPHeaderExtensio
n

C++ Specifications page: Header Extension.

genOptCPPSetPrefix C++ Specifications page: Set Prefix.

genOptCPPSourceExtensio
n

C++ Specifications page: Source Extension.

genOptCPPSynchNotes C++ Specifications page: Synchronize Notes.

genOptCPPSynchCPPFile C++ Specifications page: Synchronize CPP File.

genOptCSDefaultAttribute
Type

C# Specifications page: Default Attribute Type.

genOptCSSourceExtension C# Specifications page: Default file extension.

genOptCSGenDispose C# Specifications page: Generate Dispose.

genOptCSGenFinalizer C# Specifications page: Generate Finalizer.

genOptCSGenNamespace C# Specifications page: Generate Namespace.

genOptCSDefaultSourceDi
rectory

C# Specifications page: Default Source Directory.

genOptDefaultAssocAttNa
me

Source Code Engineering page: Default name for associated attribute.

genOptDefaultConstructor
Scope

Object Lifetimes page: Default Constructor Visibility.

genOptDefaultCopyConstr Object Lifetimes page: Default Copy Constructor Visibility.

(c) Sparx Systems 2022 Page 253 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

uctorScope

genOptDefaultDatabase Code Editors page: Default Database.

genOptDefaultDestructorS
cope

Object Lifetimes page: Default Destructor Constructor Visibility.

genOptGenCapitalisedProp
erties

'Source Code Engineering' page: 'Capitalize Attribute Names for Properties'
checkbox.

genOptGenComments 'Source Code Engineering' page: 'Comments - Generate' checkbox.

genOptGenConstructor Object Lifetimes page: 'Generate Constructor' checkbox.

genOptGenConstructorInli
ne

Object Lifetimes page: 'Constructor Inline' checkbox.

genOptGenCopyConstruct
or

Object Lifetimes page: 'Generate Copy Constructor' checkbox.

genOptGenCopyConstruct
orInline

Object Lifetimes page: 'Copy Constructor Inline' checkbox.

genOptGenDestructor Object Lifetimes page: 'Generate Destructor' checkbox.

genOptGenDestructorInlin
e

Object Lifetimes page: 'Destructor Inline' checkbox.

genOptGenDestructorVirtu
al

Object Lifetimes page: 'Virtual Destructor' checkbox.

genOptGenImplementedInt
erfaceOps

'Code Generation' page: 'Generate methods for implemented interfaces' checkbox.

genOptGenPrefixBoolProp
erties

'Source Code Engineering' page: 'Use 'Is' for Boolean property Get()' checkbox.

genOptGenRoleNames 'Source Code Engineering' page: 'Autogenerate role names when creating code'
checkbox.

genOptGenUnspecAssocDi
r

'Source Code Engineering' page: 'Do not generate members where Association
direction is unspecified' checkbox.

genOptJavaDefaultAttribut
eType

Java Specifications page: Default attribute type.

genOptJavaGetPrefix Java Specifications page: Get Prefix.

genOptJavaDefaultSource
Directory

Java Specifications page: Default Source Directory.

genOptJavaSetPrefix Java Specifications page: Set Prefix.

(c) Sparx Systems 2022 Page 254 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

genOptJavaSourceExtensio
n

Java Specifications page: Source code extension.

genOptPHPDefaultSource
Directory

PHP Specifications page: Default Source Directory.

genOptPHPGetPrefix PHP Specifications page: Get Prefix.

genOptPHPSetPrefix PHP Specifications page: Set Prefix.

genOptPHPSourceExtensio
n

PHP Specifications page: Default file extension.

genOptPHPVersion PHP Specifications page: PHP Version.

genOptPropertyPrefix 'Source Code Engineering' page: Remove prefixes when generating Get/Set
properties.

genOptVBMultiUse VB Specifications page: 'Multiuse' checkbox.

genOptVBPersistable VB Specifications page: 'Persistable' checkbox.

genOptVBDataBindingBeh
avior

VB Specifications page: 'Data binding behavior' checkbox.

genOptVBDataSourceBeha
vior

VB Specifications page: 'Data source behavior' checkbox.

genOptVBGlobal VB Specifications page: 'Global namespace' checkbox.

genOptVBCreatable VB Specifications page: 'Creatable' checkbox.

genOptVBExposed VB Specifications page: 'Exposed' checkbox.

genOptVBMTS VB Specifications page: MTS Transaction Mode.

genOptVBNetGenNamesp
ace

VB.Net Specifications page: Generate Namespace.

genOptVBVersion VB Specifications page: Default Version.

genOptWrapComment 'Source Code Engineering' page: Wrap length for comment lines.

(c) Sparx Systems 2022 Page 255 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Connector Field Substitution Macros

This table lists each of the connector field substitution macros.

Field substitution macros are named according to Camel casing. Macros that represent checkboxes return a value of 'T' if
the box is selected. Otherwise the value is empty.

Connector Macros

Macro Name Description

connectorAlias Connector 'Properties' dialog: 'Alias' field.

connectorAssociationClass
ElemGUID

The GUID of the connector's Association Class element.

connectorAssociationClass
ElemName

The name of the connector's Association Class element.

connectorDestAccess Connector 'Properties' dialog, 'Target Role' tab: Access.

connectorDestAggregation Connector 'Properties' dialog, 'Target Role' tab: Aggregation.

connectorDestAlias Connector 'Properties' dialog, 'Target Role' tab: Alias.

connectorDestAllowDuplic
ates

Connector 'Properties' dialog, 'Target Role' tab: 'Allow Duplicates' checkbox.

connectorDestChangeable Connector 'Properties' dialog, 'Target Role' tab: Changeable.

connectorDestConstraint Connector 'Properties' dialog, 'Target Role' tab: Constraint(s).

connectorDestContainment Connector 'Properties' dialog, 'Target Role' tab: Containment.

connectorDestDerived Connector 'Properties' dialog, 'Target Role' tab: 'Derived' checkbox.

connectorDestDerivedUnio
n

Connector 'Properties' dialog, 'Target Role' tab: 'DerivedUnion' checkbox.

connectorDestElem* A set of macros that access a property of the element at the target end of a
connector. The * (asterisk) is a wildcard that corresponds to any Class substitution
macro in the Class macro list. For example:

connectorDestElemAlias (classAlias)·
connectorDestElemAuthor (classAuthor)·

connectorDestElemType The element type of the connector destination element. (Separate from the
connectorDestElem* macros because there is no classType substitution macro.)

connectorDestFeature* A set of macros that access a property of the feature at the target end of a connector.
The * (asterisk) is a wildcard that corresponds to any attribute or operation
substitution macro in the Attribute macro or Operation macro list, depending on the

(c) Sparx Systems 2022 Page 256 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

connectorDestFeatureType.

For example:

connectorDestFeatureReturnClassifierGUID - an operation's return classifier·
GUID

connectorDestFeatureContainment - an attribute's containment·

connectorDestFeatureType The type of the connector destination feature.

connectorDestFeatureType="Attribute" or "Operation"·

connectorDestMemberTyp
e

Connector 'Properties' dialog, 'Target Role' tab: Member Type.

connectorDestMultiplicity Connector 'Properties' dialog, 'Target Role' tab: Multiplicity.

connectorDestNavigability Connector 'Properties' dialog, 'Target Role' tab: Navigability.

connectorDestNotes Connector 'Properties' dialog, 'Target Role' tab: Role Notes.

connectorDestOrdered Connector 'Properties' dialog, 'Target Role' tab: 'Ordered' checkbox.

connectorDestOwned Connector 'Properties' dialog, 'Target Role' tab: 'Owned' checkbox.

connectorDestQualifier Connector 'Properties' dialog, 'Target Role' tab: Qualifier(s).

connectorDestRole Connector 'Properties' dialog, 'Target Role' tab: Role.

connectorDestScope Connector 'Properties' dialog, 'Target Role' tab: Target Scope.

connectorDestStereotype Connector 'Properties' dialog, 'Target Role' tab: Stereotype.

connectorDirection Connector Properties: Direction.

connectorEffect 'Transition Constraints' dialog: 'Effect' field.

connectorGuard 'Object Flow' and 'Transition Constraints' dialogs: 'Guard' field.

connectorGUID The unique GUID for the current connector.

connectorIsAssociationCla
ss

True, if the connector is an AssociationClass connector.

connectorName Connector Properties: Name.

connectorNotes Connector Properties: Notes.

connectorSourceAccess Connector 'Properties' dialog, 'Source Role' tab: Access.

connectorSourceAggregati
on

Connector 'Properties' dialog, 'Source Role' tab: Aggregation.

connectorSourceAlias Connector 'Properties' dialog, 'Source Role' tab: Alias.

(c) Sparx Systems 2022 Page 257 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

connectorSourceAllowDup
licates

Connector 'Properties' dialog, 'Source Role' tab: Allow Duplicates checkbox.

connectorSourceChangeabl
e

Connector 'Properties' dialog, 'Source Role' tab: Changeable.

connectorSourceConstraint Connector 'Properties' dialog, 'Source Role' tab: Constraint(s).

connectorSourceContainme
nt

Connector 'Properties' dialog, 'Source Role' tab: Containment.

connectorSourceDerived Connector 'Properties' dialog, 'Source Role' tab: 'Derived' checkbox.

connectorSourceDerivedU
nion

Connector 'Properties' dialog, 'Source Role' tab: 'DerivedUnion' checkbox.

connectorSourceElem* A set of macros that access a property of the element at the source end of a
connector. The * (asterisk) is a wildcard that corresponds to any Class substitution
macro in the Class macro list. For example:

connectorSourceElemAlias (classAlias)·
connectorSourceElemAuthor (classAuthor)·

connectorSourceElemType The element type of the connector source element. (Separate from the
connectorSourceElem* macros because there is no classType substitution macro.)

connectorSourceFeature* A set of macros that access a property of the feature at the source end of a
connector. The * (asterisk) is a wildcard that corresponds to any attribute or
operation substitution macro in the Attribute macro or Operation macro list,
depending on the connectorSourceFeatureType. For example:

connectorSourceFeatureCode - Operation's Code·
connectorSourceFeatureInitial - Attribute's Initial·

connectorSourceFeatureTy
pe

The type of the connector source feature.

connectorSourceFeatureType="Attribute" or "Operation"·

connectorSourceMemberT
ype

Connector 'Properties' dialog, 'Source Role' tab: Member Type.

connectorSourceMultiplicit
y

Connector 'Properties' dialog, 'Source Role' tab: Multiplicity.

connectorSourceNavigabili
ty

Connector 'Properties' dialog, 'Source Role' tab: Navigability.

connectorSourceNotes Connector 'Properties' dialog, 'Source Role' tab: Role Notes.

connectorSourceOrdered Connector 'Properties' dialog, 'Source Role' tab: 'Ordered' checkbox.

connectorSourceOwned Connector 'Properties' dialog, 'Source Role' tab: 'Owned' checkbox.

connectorSourceQualifier Connector 'Properties' dialog, 'Source Role' tab: Qualifier(s).

(c) Sparx Systems 2022 Page 258 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

connectorSourceRole Connector 'Properties' dialog, 'Source Role' tab: Role.

connectorSourceScope Connector 'Properties' dialog, 'Source Role' tab: Target Scope.

connectorSourceStereotype Connector 'Properties' dialog, 'Source Role' tab: Stereotype.

connectorStereotype Connector 'Properties' dialog: 'Stereotype' field.

connectorTrigger 'Transition Constraints' dialog: 'Trigger' field.

connectorType The connector type; f or example, Association or Generalization.

connectorWeight 'Object Flow Constraints' dialog: 'Weight' field.

(c) Sparx Systems 2022 Page 259 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Constraint Field Substitution Macros

This table lists each of the 'Constraint' field substitution macros.

Field substitution macros are named according to Camel casing. Macros that represent checkboxes return a value of 'T' if
the box is selected. Otherwise the value is empty.

Constraint Macros

Macro Name Description

constraintName 'Class' dialog, 'Constraints' tab: Name.

constraintNotes 'Class' dialog, 'Constraints' tab: Notes.

constraintStatus 'Class' dialog, 'Constraints' tab: Status.

constraintType 'Class' dialog, 'Constraints' tab: Type.

constraintWeight 'Class' dialog, 'Constraints' tab: ordering (hand up/down) keys.

(c) Sparx Systems 2022 Page 260 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Effort Field Substitution Macros

This table lists each of the 'Effort' field substitution macros.

Field substitution macros are named according to Camel casing. Macros that represent checkboxes return a value of 'T' if
the box is selected. Otherwise the value is empty.

Effort Macros

Macro Name Description

effortName Effort window: Effort.

effortNotes Effort window: Notes (unlabelled).

effortTime Effort window: Time.

effortType Effort window: Type.

(c) Sparx Systems 2022 Page 261 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

File Field Substitution Macros

This table lists each of the file field substitution macros.

Field substitution macros are named according to Camel casing. Macros that represent checkboxes return a value of 'T' if
the box is selected. Otherwise the value is empty.

File Macros

Macro Name Description

fileExtension The file type extension of the file being generated.

fileName The name of the file being generated.

fileNameImpl The filename of the implementation file for this generation, if applicable.

fileHeaders 'Code Gen' dialog: Headers.

fileImports 'Code Gen' dialog: Imports. For supported languages this also includes
dependencies derived from these types of relationship:

Aggregation·
Association·
Attribute classifier·
Method return type·
Method parameter classifier·
Generalization·
Realization (to interface)·
Template Binding (C++)·
Dependency·

filePath The full path of the file being generated.

filePathImpl The full path of the implementation file for this generation, if applicable.

(c) Sparx Systems 2022 Page 262 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

File Import Field Substitution Macros

This table lists each of the file import field substitution macros.

Field substitution macros are named according to Camel casing. Macros that represent checkboxes return a value of T if
the box is selected. Otherwise the value is empty.

File Import Macros

Macro Name Description

importClassName The name of the Class being imported.

importFileName The filename of the Class being imported.

importFilePath The full path of the Class being imported.

importFromAggregation T if the Class has an Aggregation connector to a Class in this file, F otherwise.

importFromAssociation T if the Class has an Association connector to a Class in this file, F otherwise.

importFromAtt T if an attribute of a Class in the current file is of the type of this Class, F
otherwise.

importFromDependency T if the Class has a Dependency connector to a Class in this file, F otherwise.

importFromGeneralization T if the Class has a Generalization connector to a Class in this file, F otherwise.

importFromMeth T if a method return type of a Class in the current file is the type of this Class, F
otherwise.

importFromParam T if a method parameter of a Class in the current file is of the type of this Class;
otherwise F.

importFromPropertyType T if the Class has a property (Part/Port) typing to another Class, F otherwise.

importFromRealization T if the Class has a Realization connector to a Class in this file, F otherwise.

importFromTemplateBindi
ng

T if the Class has a TemplateBinding connector to a Class in this file, F otherwise.

importInFile T if the Class is in the current file, F otherwise.

importPackagePath The Package path with a '.' separator of the Class being imported.

ImportRelativeFilePath The relative file path of the Class being imported from the file path of the file being
generated.

(c) Sparx Systems 2022 Page 263 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Link Field Substitution Macros

If you want to provide access to data concerning connectors in the model, particularly Associations and Generalizations,
you can use the 'Link field substitution' macros. The macro names are in Camel casing. Macros that represent
checkboxes return a value of 'T' if the box is selected; otherwise the value is empty.

Link Macros

Macro Name Description/Result

linkAttAccess Association 'Properties' dialog, Target Role: 'Access' field.

linkAttAggregation Association 'Properties' dialog, Source or Target Role: Aggregation.

linkAttCollectionClass The collection appropriate for the linked attribute in scope.

linkAttContainment Association 'Properties' dialog, Target Role: Containment.

linkAttName 'Association Properties' dialog: Target.

linkAttNotes Association 'Properties' dialog, Target Role: Role Notes.

linkAttOwnedByAssociatio
n

True, if the 'Owned' checkbox on the 'Role(s)' page of the Association 'Properties'
dialog is not selected.

linkAttOwnedByClass True, if the 'Owned' checkbox on the 'Role(s)' page of the Association 'Properties'
dialog is selected.

linkAttQualName The Association target qualified by the namespace path (if generating namespaces)
and the classifier path (dot delimited).

linkAttRole Association 'Properties' dialog, Target Role: Role.

linkAttRoleAlias 'Association Properties Target Role' dialog: Alias

linkAttStereotype Association 'Properties' dialog, Target Role: Stereotype.

linkAttTargetScope Association 'Properties' dialog, Target Role: Target Scope.

linkCard Link 'Properties' dialog, Target Role: Multiplicity.

linkGUID The unique GUID for the current connector.

linkIsAssociationClass True, if the Association is an AssociationClass connector.

linkIsBound Returns T if any TemplateBindings are specified on the connector.

linkParamSubs Returns a comma-separated list of the arguments specified.

linkParentName Generalization 'Properties' dialog: 'Target' field.

(c) Sparx Systems 2022 Page 264 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

linkParentQualName The Generalization target qualified by the namespace path (if generating
namespaces) and the classifier path (dot delimited).

linkStereotype The stereotype of the current connector.

linkVirtualInheritance Generalization 'Properties' dialog: 'Virtual Inheritance' field.

(c) Sparx Systems 2022 Page 265 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Linked File Field Substitution Macros

This table lists each of the 'Linked File' field substitution macros.

Field substitution macros are named according to Camel casing. Macros that represent checkboxes return a value of 'T' if
the box is selected. Otherwise the value is empty.

Linked File Macros

Macro Name Description

linkedFileLastWrite Class 'Properties' dialog: 'Files' tab, 'Last Write' field.

linkedFileNotes Class 'Properties' dialog: 'Files' tab, 'Notes' field.

linkedFilePath Class 'Properties' dialog: 'Files' tab, 'File Path' field.

linkedFileSize Class 'Properties' dialog: 'Files' tab, 'Size' field.

linkedFileType Class 'Properties' dialog: 'Files' tab, 'Type' field.

(c) Sparx Systems 2022 Page 266 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Metric Field Substitution Macros

This table lists each of the Metric field substitution macros.

Field substitution macros are named according to Camel casing. Macros that represent checkboxes return a value of 'T' if
the box is selected. Otherwise the value is empty.

Metric Macros

Macro Name Description

metricName Metrics screen: 'Metric' field.

metricNotes Metrics screen: (Notes) field.

metricType Metrics screen: 'Type' field.

metricWeight Metrics screen: 'Weight' field.

(c) Sparx Systems 2022 Page 267 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Operation Field Substitution Macros

The 'Operation field substitution' macros provide access to data concerning operations in the model. The macro names
are in Camel casing. Macros that represent checkboxes return a value of 'T' if the box is selected; otherwise the value is
empty.

Operation field substitution macros

Macro Name Description/Result

opAbstract 'Operation' dialog: 'Virtual' checkbox.

opAlias 'Operation' dialog: Alias.

opBehavior 'Operation Behavior' dialog: Behavior.

opCode 'Operation Behavior' dialog: Behavior Code.

opConcurrency 'Operation' dialog: Concurrency.

opConst 'Operation' dialog: 'Const' checkbox.

opGUID The unique GUID for the current operation.

opHasSelfRefParam Scans the list of parameters in the current Operation, returning 'T' if one type is the
Class reference (this could be ClassA* or ClassA&, depending on the value of the
genOptCOperationRefParamStyle code generation option field substitution macro).

opImplMacros A space-separated list of macros defined in the implementation of this operation.

opIsQuery 'Operation' dialog: 'IsQuery' checkbox.

opMacros A space-separated list of macros defined in the declaration for this operation.

opName 'Operation' dialog: Name.

opNotes 'Operation' dialog: Notes.

opPure 'Operation' dialog: 'Pure' checkbox.

opReturnArray 'Operation' dialog: 'Return Array' checkbox.

opReturnClassifierGUID The unique GUID for the classifier of the current operation.

opReturnQualType The operation return type qualified by the namespace path (if generating
namespaces) and the classifier path (dot delimited). If the return type classifier has
not been set, it is equivalent to the opReturnType macro.

opReturnType 'Operation' dialog: Return Type.

(c) Sparx Systems 2022 Page 268 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

opScope 'Operation' dialog: Scope.

opStatic 'Operation' dialog: 'Static' checkbox.

opStereotype 'Operation' dialog: Stereotype.

opSynchronized 'Operation' dialog: 'Synchronized' checkbox.

(c) Sparx Systems 2022 Page 269 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Package Field Substitution Macros

This table lists the Package Field Substitution macros.

Field Substitution macros are named according to Camel casing. Macros that represent checkboxes return a value of 'T' if
the box is selected. Otherwise the value is empty.

Package Macros

Macro Name Description

packageAbstract 'Package' dialog: Abstract.

packageAlias 'Package' dialog: Alias.

packageAuthor 'Package' dialog: Author.

packageComplexity 'Package' dialog: Complexity.

packageGUID The unique GUID for the current Package.

packageKeywords 'Package' dialog: Keywords.

packageLanguage 'Package' dialog: Language.

packageName 'Package' dialog: Name.

packagePath The string representing the hierarchy of Packages, for the Class in scope. Each
Package name is separated by a dot (.).

packagePhase 'Package' dialog: Phase.

packageScope 'Package' dialog: Scope.

packageStatus 'Package' dialog: Status.

packageStereotype 'Package' dialog: Stereotype.

packageVersion 'Package' dialog: Version.

(c) Sparx Systems 2022 Page 270 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Parameter Field Substitution Macros

This table lists each of the Parameter field substitution macros.

Field substitution macros are named according to Camel casing. Macros that represent checkboxes return a value of 'T' if
the box is selected. Otherwise the value is empty.

Parameter Macros

Macro Name Description

paramClassifierGUID The unique GUID for the classifier of the current parameter.

paramDefault Operation 'Parameters' dialog: 'Default' field.

paramFixed Operation 'Parameters' dialog: 'Fixed' checkbox.

paramGUID The unique GUID for the current parameter.

paramIsEnum True, if the parameter uses the enum keyword (C++).

paramKind Operation 'Parameters' dialog: 'Kind' field.

paramName Operation 'Parameters' dialog: 'Name' field.

paramNotes Operation 'Parameters' dialog: 'Notes' field.

paramQualType The parameter type qualified by the namespace path (if generating namespaces) and
the classifier path (dot delimited). If the parameter classifier has not been set, is
equivalent to the paramType macro.

paramType Operation 'Parameters' dialog: 'Type' field.

(c) Sparx Systems 2022 Page 271 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Problem Field Substitution Macros

This table lists each of the Problem field substitution macros.

Field substitution macros are named according to Camel casing. Macros that represent checkboxes return a value of 'T' if
the box is selected. Otherwise the value is empty.

Problem Macros

Macro Name Description

problemCompletedBy 'Maintenance' dialog, 'Element Issues' tab: Completed by.

problemCompletedDate 'Maintenance' dialog, 'Element Issues' tab: Completed.

problemHistory 'Maintenance' dialog, 'Element Issues' tab: History.

problemName 'Maintenance' dialog, 'Element Issues' tab: Name.

problemNotes 'Maintenance' dialog, 'Element Issues' tab: Description.

problemPriority 'Maintenance' dialog, 'Element Issues' tab: Priority.

problemRaisedBy 'Maintenance' dialog, 'Element Issues' tab: Raised by.

problemRaisedDate 'Maintenance' dialog, 'Element Issues' tab: Raised.

problemStatus 'Maintenance' dialog, 'Element Issues' tab: Status.

problemVersion 'Maintenance' dialog, 'Element Issues' tab: Version.

(c) Sparx Systems 2022 Page 272 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Requirement Field Substitution Macros

This table lists each of the Requirement field substitution macros with a description of the result.

Field substitution macros are named according to Camel casing. Macros that represent checkboxes return a value of 'T' if
the box is selected. Otherwise the value is empty.

Requirement Macros

Macro Name Description

requirementDifficulty 'Properties' dialog: 'Require' tab: Difficulty.

requirementLastUpdated 'Properties' dialog: 'Require' tab: Last Update.

requirementName 'Properties' dialog: 'Require' tab: Short Description.

requirementNotes 'Properties' dialog: 'Require' tab: Notes.

requirementPriority 'Properties' dialog: 'Require' tab: Priority.

requirementStatus 'Properties' dialog: 'Require' tab: Status.

requirementType 'Properties' dialog: 'Require' tab: Type.

(c) Sparx Systems 2022 Page 273 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Resource Field Substitution Macros

This table lists each of the Resource field substitution macros.

Field substitution macros are named according to Camel casing. Macros that represent checkboxes return a value of 'T' if
the box is selected. Otherwise the value is empty.

Resource Macros

Macro Name Description

resourceAllocatedTime Resource Allocation window: Allocated Time.

resourceEndDate Resource Allocation window: End Date.

resourceExpectedTime Resource Allocation window: Expected Time.

resourceExpendedTime Resource Allocation window: Time Expended.

resourceHistory Resource Allocation window: History.

resourceName Resource Allocation window: Resource.

resourceNotes Resource Allocation window: Description.

resourcePercentCompleted Resource Allocation window: Completed(%).

resourceRole Resource Allocation window: Role.

resourceStartDate Resource Allocation window: Start Date.

(c) Sparx Systems 2022 Page 274 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Risk Field Substitution Macros

This table lists each of the Risk field substitution macros.

Field substitution macros are named according to Camel casing. Macros that represent checkboxes return a value of 'T' if
the box is selected. Otherwise the value is empty.

Risk Macros

Macro Name Description

riskName Risks window: Risk.

riskNotes Risks window: (Notes).

riskType Risks window: Type.

riskWeight Risks window: Weight.

(c) Sparx Systems 2022 Page 275 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Scenario Field Substitution Macros

This table lists each of the Scenario field substitution macros with a description of the result.

Field substitution macros are named according to Camel casing. Macros that represent checkboxes return a value of 'T' if
the box is selected. Otherwise the value is empty.

Scenario Macros

Macro Name Description

scenarioGUID The unique ID for a scenario. Identifies the scenario unambiguously within a
model.

scenarioName 'Properties' dialog, 'Scenario' tab: Scenario.

scenarioNotes 'Properties' dialog, 'Scenario' tab: (Notes).

scenarioType 'Properties' dialog, 'Scenario' tab: Type.

(c) Sparx Systems 2022 Page 276 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Tagged Value Substitution Macros

Tagged Value macros are a special form of field substitution macros, which provide access to element tags and the
corresponding Tagged Values. They can be used in one of two ways:

Direct Substitution·
Conditional Substitution·

Direct Substitution

This form of the macro directly substitutes the value of the named tag into the output.

Structure: %<macroName>:"<tagName>"%

<macroName> can be one of:

attTag·
classTag·
connectorDestElemTag·
connectorDestTag·
connectorSourceElemTag·
connectorSourceTag·
connectorTag·
linkAttTag·
linkTag·
opTag·
packageTag·
paramTag·

This corresponds to the tags for attributes, Classes, operations, Packages, parameters, connectors with both ends,
elements at both ends of connectors and connectors including the attribute end.

<tagName> is a string representing the specific tag name.

Example

%opTag:"attribute"%

Conditional Substitution

This form of the macro mimics the conditional substitution defined for field substitution macros.

Structure: %<macroName>:"<tagName>" (== "<test>") ? <subTrue> (: <subFalse>) %

Note:

<macroName> and <tagName> are as defined here·
(<text>) denotes that <text> is optional·
<test> is a string representing a possible value for the macro·
<subTrue> and <subFalse> can be a combination of quoted strings and the keyword value; where the value is used,·
it gets replaced with the macro's value in the output

(c) Sparx Systems 2022 Page 277 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Examples

%opTag:"opInline" ? "inline" : ""%

%opTag:"opInline" ? "inline"%

%classTag:"unsafe" == "true" ? "unsafe" : ""%

%classTag:"unsafe" == "true" ? "unsafe"%

Tagged Value macros use the same naming convention as field substitution macros.

(c) Sparx Systems 2022 Page 278 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Template Parameter Substitution Macros

If you want to provide access in a transformation template to data concerning the transformation of a Template Binding
connector's binding parameter substitution in the model, you can use the Template Parameter substitution macros. The
macro names are in Camel casing. Macros that represent checkboxes return a value of 'T' if the box is selected; otherwise
the value is empty.

Template Parameter substitution macros

Macro Name Description

parameterSubstitutionForm
al

'Template Binding Properties' dialog, 'Binding Parameter' tab, 'Parameter
Substitution(s)' panel: Formal Template Parameter name.

parameterSubstitutionActu
al

'Template Binding Properties' dialog, 'Binding Parameter' tab, 'Parameter
Substitution(s)' panel: Actual parameter name/expression.

parameterSubstitutionActu
alClassifier

'Template Binding Properties' dialog, 'Binding Parameter' tab, 'Parameter
Substitution(s)' panel: Actual parameter classifier.

(c) Sparx Systems 2022 Page 279 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Test Field Substitution Macros

This table lists each of the Test field substitution macros with a description of the result.

Field substitution macros are named according to Camel casing. Macros that represent checkboxes return a value of 'T' if
the box is selected. Otherwise the value is empty.

Test Macros

Macro Name Description

testAcceptanceCriteria Testing dialog: Acceptance Criteria.

testCheckedBy Test Cases window: Checked By.

testDateRun Test Cases window: Last Run.

testClass Test Cases window: Test Class (the type of test defined: Unit, Integration, System,
Acceptance, Inspection, Scenario)

testInput Testing dialog: Input.

testName Test Cases window: Test.

testNotes Test Cases window: Description.

testResults Testing dialog: Results.

testRunBy Test Cases window: Run By. (Values are derived from the Project Author
definitions in the 'People' dialog - 'Settings > Reference Data > Model Types >
People > Project Authors'.)

testStatus Test Cases window: Status.

testType Test Cases window: Type.

(c) Sparx Systems 2022 Page 280 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Function Macros

Function macros are a convenient way of manipulating and formatting various element data items. Each function macro
returns a result string. There are two primary ways to use the results of function macros:

Direct substitution of the returned string into the output, such as: %TO_LOWER(attName)%·
Storing the returned string as part of a variable definition such as: $name = %TO_LOWER(attName)%·

Function macros can take parameters, which can be passed to the macros as:

String literals, enclosed within double quotation marks·
Direct substitution macros without the enclosing percent signs·
Variable references·
Numeric literals·

Multiple parameters are passed using a comma-separated list.

Function macros are named according to the All-Caps style, as in:

 %CONVERT_SCOPE(opScope)%

The available function macros are described here. Parameters are denoted by square brackets, as in:

 FUNCTION_NAME([param]).

CONVERT_SCOPE([umlScope])

For use with supported languages, to convert [umlScope] to the appropriate scope keyword for the language being
generated. This table shows the conversion of [umlScope] with respect to the given language.

Language Conversions

C++ Package ==> public

Public ==> public

Private ==> private

Protected ==> protected

C# Package ==> internal

Public ==> public

Private ==> private

Protected ==> protected

Delphi Package ==> protected

Public ==> public

Private ==> private

Protected ==> protected

Java Package ==> {blank}

Public ==> public

Private ==> private

Protected ==> protected

PHP Package ==> public

Public ==> public

(c) Sparx Systems 2022 Page 281 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Private ==> private

Protected ==> protected

VB Package ==> Protected

Public ==> Public

Private ==> Private

Protected ==> Protected

VB .Net Package ==> Friend

Public ==> Public

Private ==> Private

Protected ==> Protected

COLLECTION_CLASS([language])

Gives the appropriate collection Class for the language specified for the current linked attribute.

CSTYLE_COMMENT([wrap_length])

Converts the notes for the element currently in scope to plain C-style comments, using /* and */.

DELPHI_PROPERTIES([scope], [separator], [indent])

Generates a Delphi property.

DELPHI_COMMENT([wrap_length])

Converts the notes for the element currently in scope to Delphi comments.

EXEC_ADD_IN(, [function_name],, ...,)

Invokes an Enterprise Architect Add-In function, which can return a result string.

[addin_name] and [function_name] specify the names of the Add-In and function to be invoked.

Parameters to the Add-In function can be specified via parameters [prm_1] to [prm_n].

 $result = %EXEC_ADD_IN("MyAddin", "ProcessOperation", classGUID, opGUID)%

Any function that is to be called by the EXEC_ADD_IN macro must have two parameters: an EA.Repository object, and
a Variant array that contains any additional parameters from the EXEC_ADD_IN call. Return type should be Variant.

 Public Function ProcessOperation(Repository As EA.Repository, args As Variant) As Variant

FIND([src], [subString])

(c) Sparx Systems 2022 Page 282 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Position of the first instance of [subString] in [src]; -1 if none.

GET_ALIGNMENT()

Returns a string where all of the text on the current line of output is converted into spaces and tabs.

JAVADOC_COMMENT([wrap_length])

Converts the notes for the element currently in scope to javadoc -style comments.

LEFT([src], [count])

The first [count] characters of [src].

LENGTH([src])

Length of [src]. Returns a string.

MATH_ADD(x,y) MATH_MULT(x,y) and MATH_SUB(x,y)

In a code template or DDL template, these three macros perform, respectively, the mathematical functions of:

Addition (x+y)·
Multiplication (x*y) and·
Subtraction (x-y)·

The arguments x and y can be integers or variables, or a combination of the two. Consider these examples, as used in a
'Class' template for C++ code generation:

$a = %MATH_ADD(3,4)%·
$b = %MATH_SUB(10,3)%·
$c = %MATH_MULT(2,3)%·
$d = %MATH_ADD($a,$b)%·
$e = %MATH_SUB($b,$c)%·
$f = %MATH_MULT($a,$b)%·
$g = %MATH_MULT($a,10)%·
$h = %MATH_MULT(10,$b)%·

These compute, in the same sequence, to:

a = 3 + 4 = $a·
b = 10 - 3 = $b·
c = 2 * 3 = $c·
d = a + b = $d·
e = b - c = $e·

(c) Sparx Systems 2022 Page 283 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

f = a * b = $f·
g = a * 10 = $g·
h = 10 * b = $h·

When the code is generated, the .h file (for C++) contains these corresponding strings:

a = 3 + 4 = 7·
b = 10 - 3 = 7·
c = 2 * 3 = 6·
d = a + b = 14·
e = b - c = 1·
f = a * b = 49·
g = a * 10 = 70·
h = 10 * b = 70·

MID([src], [start]) MID([src], [start], [count])

Substring of [src] starting at [start] and including [count] characters. Where [count] is omitted the rest of the string is
included.

PI([option], [value], {[option], [value]})

Sets the PI for the current template to [value]. Valid values for [value] are:

"\n"·
"\t "·
“ “·
“”·

<option> controls when the new PI takes effect. Valid values for <option> are:

I, Immediate: the new PI is generated before the next non-empty template line·
N, Next: the new PI is generated after the next non-empty template line·

Multiple pairs of options are allowed in one call. An example of the situation where this would used is where one
keyword is always on a new line, as illustrated here:

%PI=" "%

%classAbstract ? "abstract"%

%if classTag:"macro" != ""%

%PI("I", "\n", "N", " ")%

%classTag:"macro"%

%endIf%

class

%className%

For more details, see The Processing Instruction (PI) Macro.

PROCESS_END_OBJECT([template_name])

(c) Sparx Systems 2022 Page 284 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Enables the Classes that are one Class further away from the base Class, to be transformed into objects (such as
attributes, operations, Packages, parameters and columns) of the base Class. [template_name] refers to the working
template that temporarily stores the data.

REMOVE_DUPLICATES([source], [separator])

Where [source] is a [separator] separated list; this removes any duplicate or empty strings.

REPLACE([string], [old], [new])

Replaces all occurrences of [old] with [new] in the given string <string>.

RESOLVE_OP_NAME()

Resolves clashes in interface names where two method-from interfaces have the same name.

RESOLVE_QUALIFIED_TYPE() RESOLVE_QUALIFIED_TYPE([separator])
RESOLVE_QUALIFIED_TYPE([separator], [default])

Generates a qualified type for the current attribute, linked attribute, linked parent, operation, or parameter. Enables the
specification of a separator other than. and a default value for when some value is required.

RIGHT([src], [count])

The last [count] characters of [src].

TO_LOWER([string])

Converts [string] to lower case.

TO_UPPER([string])

Converts [string] to upper case.

TRIM([string]) TRIM([string], [trimChars])

Removes trailing and leading white spaces from [string]. If [trimChars] is specified, all leading and trailing characters in
the set of <trimChars> are removed.

(c) Sparx Systems 2022 Page 285 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

TRIM_LEFT([string]) TRIM_LEFT([string], [trimChars])

Removes the specified leading characters from <string>.

TRIM_RIGHT([string]) TRIM_RIGHT([string], [trimChars])

Removes the specified trailing characters from <string>.

VB_COMMENT([wrap_length])

Converts the notes for the element currently in scope to Visual Basic style comments.

WRAP_COMMENT([comment], [wrap_length], [indent], [start_string])

Wraps the text [comment] at width [wrap_length] putting [indent] and [start_string] at the beginning of each line.

 $behavior = %WRAP_COMMENT(opBehavior, "40", " ", "//")%

<wrap_length> must still be passed as a string, even though WRAP_COMMENT treats this parameter as an integer.

WRAP_LINES([text], [wrap_length], [start_string] {, [end_string] })

Wraps [text] as designated to be [wrap_length], adding [start_string] to the beginning of every line and [end_string] to
the end of the line if it is specified.

XML_COMMENT([wrap_length])

Converts the notes for the element currently in scope to XML-style comments.

(c) Sparx Systems 2022 Page 286 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Control Macros

Control macros are used to control the processing and formatting of the templates. The basic types of control macro
include:

The list macro, for generating multiple element features, such as attributes and operations·
The branching macros, which form if-then-else constructs to conditionally execute parts of a template·
The PI macro for formatting new lines in the output, which takes effect from the next non-empty line·
A PI function macro that enables setting PI to a variable and adds the ability to set the PI that is generated before the·
next line

The synchronization macros·
In general, control macros are named according to Camel casing.

(c) Sparx Systems 2022 Page 287 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

List Macro

If you need to loop or iterate through a set of Objects that are contained within or are under the current object, you can do
so using the %list macro. This macro performs an iterative pass on all the objects in the scope of the current template,
and calls another template to process each one.

The basic structure is:

 %list=<TemplateName> @separator=<string> @indent=<string> (<conditions>) %

where <string> is a double-quoted literal string and <TemplateName> can be one of these template names:

Attribute·
AttributeImpl·
Class·
ClassBase·
ClassImpl·
ClassInitializer·
ClassInterface·
Constraint·
Custom Template (custom templates enable you to define your own templates)·
Effort·
InnerClass·
InnerClassImpl·
LinkedFile·
Metric·
Namespace·
Operation·
OperationImpl·
Parameter·
Problem·
Requirement·
Resource·
Risk·
Scenario·
Test·

<conditions> is optional and looks the same as the conditions for 'if' and 'elseIf' statements.

Example

In a Class transform, the Class might contain multiple attributes; this example calls the Attribute transform and outputs
the result of processing the transform for each attribute of the Class in scope. The resultant list separates its items with a
single new line and indents them two spaces respectively. If the Class in scope had any stereotyped attributes, they would
be generated using the appropriately specialized template.

%list="Attribute" @separator="\n" @indent=" "%

The separator attribute, denoted by @separator, specifies the space that should be used between the list items, excluding
the last item in the list.

(c) Sparx Systems 2022 Page 288 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

The indent attribute, denoted by @indent, specifies the space by which each line in the generated output should be
indented.

Special Cases

There are some special cases to consider when using the %list macro:

If the Attribute template is used as an argument to the %list macro, this also generates attributes derived from·
Associations by executing the appropriate LinkedAttribute template

If the ClassBase template is used as an argument to the %list macro, this also generates Class bases derived from·
links in the model by executing the appropriate LinkedClassBase template

If the ClassInterface template is used as an argument to the %list macro, this also generates Class bases derived from·
links in the model by executing the appropriate LinkedClassInterface template

If InnerClass or InnerClassImpl is used as an argument to the %list macro, these Classes are generated using the·
Class and ClassImpl templates respectively; these arguments direct that the templates should be processed based on
the inner Classes of the Class in scope

(c) Sparx Systems 2022 Page 289 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Branching Macros

Branching macros provide if-then-else constructs. The CTF supports a limited form of branching through these macros:

if·
elseIf·
else·
endIf·
endTemplate (which exits the current template)·

The basic structure of the if and elseIf macros is:

 %if <test> <operator> <test>%

where <operator> can be one of:

==·
!=·
< (mathematics comparison, less than)·
> (mathematics comparison, greater than)·
<= (mathematics comparison, less than or equal to)·
>= (mathematics comparison, greater than or equal to)·

and <test> can be one of:

a string literal, enclosed within double quotation marks·
a direct substitution macro, without the enclosing percent signs·
a variable reference·

Note that if you are using one of the mathematics comparison operators, <test> must be a decimal number in string
format.

Branches can be nested, and multiple conditions can be specified using one of:

and, or·
or·

When specifying multiple conditions, 'and' and 'or' have the same order of precedence, and conditions are processed left
to right.

If conditional statements on strings are case sensitive, 'a String' does not equal 'A STRING'. Hence in some situations it
is better to set the variable $str=TO_LOWER(variable) or TO_UPPER(variable) and then compare to a specific case.

Macros are not supported in the conditional statements. It is best to assign the results of a macro (string) to a variable,
and then use the variable in the comparison.

 $fldType = % TO_LOWER ($parameter1)%

 $COMMENT = "Use the first 4 characters for Date and Time field types"

 $fldType4 = % LEFT ($fldType, 4)%

 %if $fldType4 == "date"%

 Datetime

 %endif%

This takes a parameter of value “Datetime”, “DATETIME” or “Date”, and returns “Datetime”.

The endif or endTemplate macros must be used to signify the end of a branch. In addition, the endTemplate macro causes
the template to return immediately, if the corresponding branch is being executed.

Example 1

(c) Sparx Systems 2022 Page 290 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

%if elemType == "Interface"%

;

%else%

%OperationBody%

%endIf%

In this case:

If the elemType is "Interface" a semi-colon is returned·
If the elemType is not "Interface", a template called Operation Body is called·

Example 2

$bases="ClassBase"

$interfaces=""%

%if $bases !="" and $interfaces !=""%

: $bases, $interfaces

%elseIf $bases !=""%

: $bases

%elseIf $interfaces !=""%

: $interfaces

%endIf%

In this case the text returned is ':ClassBase'.

Conditions using Boolean Value

When setting up branching using conditions that involve a system checkbox (Boolean fields), such as Attribute.Static
(attStatic) the conditional statement would be written as:

 %if attStatic == "T"%

For example:

 % if attCollection == "T" or attOrderedMultiplicity == "T" %

 % endTemplate %

(c) Sparx Systems 2022 Page 291 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Synchronization Macros

The synchronization macros are used to provide formatting hints to Enterprise Architect when inserting new sections into
the source code, during forward synchronization. The values for synchronization macros must be set in the File
templates.

The structure for setting synchronization macros is:

%<name>=<value>%

where <name> can be one of the macros listed here and <value> is a literal string enclosed by double quotes.

Synchronization Macros

Macro Name Description

synchNewClassNotesSpace Space to append to a new Class note. Default value: \n.

synchNewAttributeNotesS
pace

Space to append to a new attribute note. Default value: \n.

synchNewOperationNotesS
pace

Space to append to a new operation note. Default value: \n.

synchNewOperationBodyS
pace

Space to append to a new operation body. Default value: \n.

synchNamespaceBodyInde
nt

Indent applied to Classes within non-global namespaces. Default value: \t.

(c) Sparx Systems 2022 Page 292 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

The Processing Instruction (PI) Macro

The PI (Processing Instruction) macro provides a means of defining the separator text to be inserted between the code
pieces (which represent entities) that are generated using a template.

The structure for setting the Processing Instruction is:

 %PI=<value>%

In this structure, <value> is a literal string enclosed by double quotes, with these options:

"\n" - New line (the default)·
" " - Space·
"\t" - Tab·
"" - Null·

By default, the PI is set to generate a new line (\n) for each non-empty substitution, which behavior can be changed by
resetting the PI macro. For instance, a Class’s Attribute declaration in simple VB code would be generated to a single
line statement (with no new lines). These properties are derived from the Class-Attribute properties in the model to
generate, for example:

 Private Const PrintFormat As String = "Portrait"

The template for generating this starts with the PI being set to a space rather than a new line:

 % PI = " " %

 % CONVERT_SCOPE (attScope)%

 % endIf %

 % if attConst == "T" %

 Const

 % endIf %

On transforming this, attscope returns the VB keyword 'Private' and attConst returns 'Const' on the same line spaced by a
single space (fitting the earlier VB Class.Attribute definition example).

Alternatively, when generating a Class you might want the Class declaration, the notes and Class body all separated by
double lines. In this case the %PI is set to '/n/n' to return double line spacing:

 % PI = "\n\n" %

 % ClassDeclaration %

 % ClassNotes %

 % ClassBody %

PI Characteristics

Blank lines have no effect on the output·
Any line that has a macro that produces an empty result does not result in a PI separator (space/new line)·
The last entry does not return a PI; for example, %Classbody% does not have a double line added after the body·

(c) Sparx Systems 2022 Page 293 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Code Generation Macros for Executable StateMachines

The templates listed here are available through the Code Template Editor (the 'Develop > Source Code > Options > Edit
Code Templates' ribbon option); select 'STM_C++_Structured' in the 'Language' field.

The templates are structured as shown:

StmContextStateMachineEnum

 StmStateMachineEnum

StmContextStateEnum

 StmAllStateEnum

StmContextTransitionEnum

 StmTransitionEnum

StmContextEntryEnum

 StmAllEntryEnum

StmContextStateMachineStringToEnum

 StmStateMachineStringToEnum

StmContextStateEnumToString

 StmStateEnumToString

StmContextTransitionEnumToString

 StmTransitionEnumToString

StmContextStateNameToGuid

 StmStateNameToGuid

StmContextTransitionNameToGuid

 StmTransitionNameToGuid

StmContextDefinition

 StmStateMachineEnum

 StmAllStateEnum

 StmTransitionEnum

 StmAllEntryEnum

 StmAllRegionVariableInitialize

 StmStateWithDeferredEvent

 StmDeferredEvent

 StmTransitionProcMapping

(c) Sparx Systems 2022 Page 294 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

 StmTransitionProc

 StmTransitionExit

 StmTransitionEntry

 StmTargetOutgoingTransition

 StmTargetParentSubmachineState

 StmStateProcMapping

 StmStateProc

 StmStateEntry

 StmOutgoingTransition

 StmConnectionPointReferenceEntry

 StmParameterizedInitial

 StmSubMachineInitial

 StmRegionInitial

 StmRegionDeactive

 StmStateExitProc

 StmStateTransition

 StmStateEvent

 StmStateTriggeredTransition

 StmStateCompletionTransition

 StmStateIncomingTransition

 StmStateOutgoingTransition

 StmSubmachineStateExitEvent

 StmVertexOutgoingTransition

 StmConnectionPointReferenceExitEvent

 StmStateExitEvent

 StmVertexOutgoingTransition

 StmAllRegionVariable

 StmStateMachineStringToEnum

 StmStateMachineRun

 StmStateInitialData

 StmStateMachineEntry

 StmOutgoingTransition

 StmStateMachineRunInitial

 StmStateMachineInitial

 StmStateMachineRuns

StmContextManager

StmSimulationManager

 StmContextInstanceDeclaration

 StmContextInstance

 StmContextVariableRunstate

(c) Sparx Systems 2022 Page 295 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

 StmContextInstanceAssociation

 StmContextInstanceClear

StmEventProxy

 StmSignalEnum

 StmContextJoinEventEnum

 StmJoinEventEnum

 StmEventEnum

 StmSignalDefinition

 StmSignalAttributeAssignment

 StmSignalAttribute

 StmSignalInitialize

 StmEventStringToEnum

 StmEventEnumToString

 StmEventNameToGuid

StmConsoleManager

 StmContextInstanceDeclaration

 StmContextInstance

 StmContextVariableRunstate

 StmContextInstanceAssociation

 StmContextInstanceClear

StmStateMachineStrongToEnum

StmInitialForTransition

StmVertextOutgoingTransition

StmSendEvent

StmBroadcastEvent

StmContextRef

Signal & Event

Macro name Description

stmEventEnum The name of the Event with the prefix 'ENUM_', all upper case.

StmEventGuid The GUID of the Event.

(c) Sparx Systems 2022 Page 296 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

stmEventName The name of the Event with spaces and asterisks removed.

stmEventVariable The name of the Event with the prefix 'm_' in lower case.

stmIsSignalEvent Is 'T' if the element is a SignalEvent.

stmSignalEnum The name of the Signal with the prefix 'ENUM_', all upper case.

stmSignalFirstEvent The name of the Event with the prefix 'ENUM_', all upper case.

stmSignalGuid The GUID of the Signal.

stmSignalName The name of the Signal with spaces and asterisks removed.

stmSignalVariable The name of the Signal with the prefix 'm_' in lower case.

stmTriggerName Transition Properties: The name of the Trigger.

stmTriggerSpecification Transition Properties: The specification of the Trigger.

stmTriggerType Transition Properties: The type of the Trigger.

Context

Macro name Description

stmContextName The name of the Class with spaces and asterisks removed.

stmContextQualName The qualified name of the Class for which code is being generated.

stmContextVariableName

stmContextFileName The output file name for the Class for which code is being generated.

Writing Object Runstate to StateMachine Initialization

Macro name Description

stmContextVariableRunstat
eName

stmContextVariableRunstat
eValue

stmContextHasStatemachin Is 'T' if the current context has one or more StateMachines.

(c) Sparx Systems 2022 Page 297 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

e

stmHasHistoryPattern Is 'T' if the StateMachine has a History Pattern.

stmHasTerminatePattern Is 'T' if the StateMachine has a Terminate Pattern.

stmHasDeferredEventPatte
rn

Is 'T' if the StateMachine has a Deferred Event Pattern.

stmHasSubmachinePattern Is 'T' if the StateMachine has a Submachine Pattern.

stmHasOrthogonalPattern Is 'T' if the StateMachine has an Orthogonal Pattern.

StateMachine

Macro name Description

stmStatemachineName The name of the StateMachine with asterisks and spaces removed.

stmStatemachineEnum The name of the StateMachine plus 'ENUM_' plus the name of the StateMachine in
upper case.

stmStatemachineGuid The GUID of the StateMachine element.

stmStateCount The number of State elements in the StateMachine.

stmSubmachineInitialCoun
t

The number of Initial elements in the Sub Machine State element.

stmStatemachineHasSubm
achineState

Is 'T' if the StateMachine has at least one SubMachine State.

stmStatemachineInitialCou
nt

The number of Initial elements in the StateMachine.

Region

Macro name Description

stmRegionEnum The name of the State Region plus 'ENUM_' plus the name of the State Region in
upper case.

stmRegionFQName The fully qualified name of the State Region.

stmRegionName The name of the State Region with spaces and asterisks removed.

(c) Sparx Systems 2022 Page 298 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

stmRegionVariable The name of the State Region with the prefix 'm_' in lower case.

stmRegionFQVariable The fully qualified name of the State Region with the prefix 'm_' in lower case.

stmRegionGuid The GUID of the Region.

stmRegionInitial

stmRegionIsOwnedByState
Machine

Is 'T' if the Region is owned by a StateMachine.

Transition

Macro name Description

stmTransitionEnum The name of the Transition with the prefix 'ENUM_', plus the name of the
Transition in upper case.

stmTransitionGuid The GUID of the Transition.

stmTransitionName The name of the Transition with spaces and asterisks removed.

stmTransitionSourceGuid The GUID of the Source element in the Transition.

stmTransitionTargetGuid The GUID of the Target element in the Transition.

stmTransitionVariable The name of the Transition with the prefix 'm_' in lower case.

stmTransitionSourceVariab
le

stmTransitionTargetVariab
le

stmTransitionFQVariable

stmSourceVertexEnum The name of the Transition's source vertex plus '_ENUM' plus the name of the
Transition's source vertex in upper case.

stmTargetVertexEnum The name of the Transition's target vertex plus '_ENUM' plus the name of the
Transition's target vertex in upper case.

stmSourceIsInitial Is 'T' if the Transition's source is an Initial.

stmSourceIsState Is 'T' if the Transition's source is a State.

stmSourceIsEntryPoint Is 'T' if the Transition's source is an Entry Point.

stmSourceIsExitPoint Is 'T' if the Transition's source is an Exit Point.

(c) Sparx Systems 2022 Page 299 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

stmSourceIsFork Is 'T' if the Transition's source is a Fork.

stmSourceIsJoin Is 'T' if the Transition's source is a Join element.

stmTargetIsFinalState Is 'T' if the Transition's target is a Final State element.

stmTargetIsExitPoint Is 'T' if the Transition's target is an Exit Point element.

stmTargetIsState Is 'T' if the Transition's target is a State element.

stmTargetIsChoice Is 'T' if the Transition's target is a Choice element.

stmTargetIsJunction Is 'T' if the Transition's target is a Junction element.

stmTargetIsEntryPoint Is 'T' if the Transition's target is an Entry Point element.

stmTargetIsConnectionPoi
ntReference

Is 'T' if the Transition's target is a Connection Point Reference element.

stmTargetIsFork Is 'T' if the Transition's target is a Fork element.

stmTargetIsJoin Is 'T' if the Transition's target is a Join element.

stmTransitionEffect The Effect of the Transition.

stmTransitionGuard The Guard of the Transition.

stmTransitionKind The type or kind of the Transition.

stmTargetInitialTransition

stmTargetIsSubmachineSta
te

Is 'T' if the Transition's target is a Submachine State.

stmSourceStateEnum The name of the Transition's source state with the prefix '_ENUM' in upper case.

stmTargetStateEnum The name of the Transition's target state, with the prefix '_ENUM' in upper case.

stmTargetVertexFQName The fully qualified name of the Transition's target vertex.

stmTargetIsDeepHistory Is 'T' if the Transition's target is a Deep History State.

stmTargetIsShallowHistory Is 'T' if the Transition's target is a Shallow History State.

stmTargetIsTerminate Is 'T' if the Transition's target is a Terminate element.

stmParentIsStateMachine Is 'T' if the vertex is an Entry Point or Exit Point, or if the container is a
StateMachine.

stmSourceParentStateEnu
m

(c) Sparx Systems 2022 Page 300 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

stmTargetParentStateEnum

stmTargetSubmachineEnu
m

stmTargetRegionIndex

stmIsSelfTransition Is 'T' if the Transition's source is the same as its target.

stmHistoryOwningRegionI
nitialTransition

stmDefaultHistoryTransitio
n

Vertex and State

Macro name Description

stmVertexName The name of the Vertex.

stmStateName The name of the State.

stmVertexGuid The GUID of the Vertex.

stmVertexFQName The fully qualified name of the Vertex.

stmStateFQName The fully qualified name of the State.

stmVertexType The type of the vertex; one of 'State', 'FinalState', 'Pseudostate',
'ConnectionPointReference' or ' ' (empty).

stmPseudostateKind The kind of the Pseudostate; one of 'initial', 'deepHistory', 'shallowHistory', 'join',
'fork', 'junction', 'choice', 'entryPoint', 'exitPoint' or 'terminate'.

stmPseudostateName The name of the Pseudostate.

stmPseudostateVariable The name of the Pseudostate with the prefix 'm_' in lower case.

stmPseudostateStateMachi
neName

The name of the Pseudostate StateMachine.

stmPseudostateStateMachi
neVariable

The name of the Pseudostate StateMachine with the prefix 'm_' in lower case.

stmVertexVariable The name of the Vertex with the prefix 'm_' in lower case.

stmVertexEnum The name of the Vertex plus '_ENUM' plus the name of the Vertex in upper case.

(c) Sparx Systems 2022 Page 301 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

stmStateEnum The name of the State plus '_ENUM' plus the name of the State in upper case.

stmConnectionPointRefere
nceStateName

 The name of the Connection Point Reference.

stmConnectionPointRefere
nceStateVariable

The name of the Connection Point Reference with the prefix 'm_' in lower case.

stmConnectionPointRefere
nceEntryCount

stmParameterizedInitialCo
unt

stmInitialCountForTransiti
on

stmStateVariable The name of the State with the prefix 'm_' in lower case.

stmStateEntryBehavior The behavior defined for an 'entry' Action operation for a State (the text on the
'Behavior' tab for the 'entry' Action operation on the Features window for the
element).

stmStateEntryCode The initial code defined for an 'entry' Action operation for a State (the text for the
'entry' Action operation on the Behavior's 'Code' tab).

stmStateDoBehavior The behavior defined for a 'do' Action operation for a State (the text on the
'Behavior' tab for the 'do' Action operation on the Features window for the
element).

stmStateDoCode The initial code defined for a 'do' Action operation for a State (the text for the 'do'
Action operation on the Behavior's 'Code' tab).

stmStateExitBehavior The behavior defined for an 'exit' Action operation for a State (the text on the
'Behavior' tab for the 'exit' Action operation on the Features window for the
element).

stmStateExitCode The initial code defined for an 'exit' Action operation for a State (the text for the
'exit' Action operation on the Behavior's 'Code' tab).

stmStateSubmachineName The name of the Submachine.

stmStateSubmachineVariab
le

The name of the Submachine with the prefix 'm_' in lower case.

stmStateIsFinal Is 'T' if the State is a FinalState.

stmStateIsSubmachineState Is 'T' if the State is a Submachine State ('Properties' page | Advanced |
'isSubmachineState' property).

stmSubMachineEnum The name of the Submachine followed by '_ENUM' plus the name of Submachine
in upper case.

stmStateHasChildrenToJoi

(c) Sparx Systems 2022 Page 302 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

n

stmStateIsTransitionTarget

stmThisIsSource

stmThisIsSourceState

stmStateParentIsSubmachi
ne

Is 'T' if the State's container is a StateMachine.

stmStateContainerMatchTr
ansitionContainer

stmVertexRegionIndex

stmStateRegionCount The number of regions in the State.

stmStateInitialCount The number of Initial elements in the StateMachine.

stmVertexContainerVariabl
e

stmVertexParentEnum

stmStateHasUnGuardedCo
mpletionTransition

stmStateEventHasUnGuard
edTransition

stmInitialTransition

Instance Association

Macro name Description

stmSourceInstanceName

stmTargetInstanceName

stmSourceRoleName

stmTargetRoleName

(c) Sparx Systems 2022 Page 303 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

EASL Code Generation Macros

Enterprise Architect provides a number of Enterprise Architect Simulation Library (EASL) code generation macros to
generate code from behavioral models. These are:

EASL_INIT·
EASL_GET·
EASLList and·
EASL_END·

EASL_INIT

The EASL_INIT macro is used to initialize an EASL behavior model. The behavior model code generation is dependent
on this model.

Aspect Description

Syntax %EASL_INIT(<<GUID>>)%

where:

<<GUID>> is the GUID of the Object (usually a Class element) that is the·
owner of the behavior model

EASL_GET

The EASL_GET macro is used to retrieve a property or a collection of an EASL object. The EASL objects and the
properties and collections for each object are identified in the EASL Collections and EASL Properties topics.

Aspect Description

Syntax $result = %EASL_GET(<<Property>>, <<Owner ID>>, <<Name>>)%

where:

<<Property>> is one of "Property", "Collection", "At", "Count", or "IndexOf"·
<<OwnerID>> is the ID of the owner object for which the property/collection·
is to be retrieved

<<Name>> is the name of the property or Collection being accessed·
$result is the returned value; this is “” if not a valid property·

If <<Property>> is:

"At", then <<OwnerID>> is the ID of a collection and <<Name>> is the index·
into the collection for which the item is to be retrieved

"Count", then <<Owner ID>> is the ID of a collection and <<Name>> is not·
used; it will retrieve the item number in the collection

"IndexOf", then <<Owner ID>> is the ID of a collection and <<Name>> is the·
ID of the item in the collection; it will retrieve the index (string format) of the
item within the collection

Example $sPropName = %EASL_GET("Property", $context, "Name")%

(c) Sparx Systems 2022 Page 304 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

EASLList

The EASLList macro is used to render each object in an EASL collection using the appropriate template.

Aspect Description

Syntax $result = %EASLList=<<TemplateName>> @separator=<<Separator>>

 @indent=<<indent>> @owner=<<OwnedID>>

 @collection=<<CollectionName>> @option1=<<OPTION1>>

 @option2=<<OPTION2>>......... @optionN=<<OPTIONN>>%

where:

<<TemplateName>> is the name of any behavioral model template or custom·
template

<<Separator>> is a list separator (such as “\n”)·
<<indent>> is any indentation to be applied to the result·
<<OwnedID>> is the ID of the object that contains the required collection·
<<CollectionName>> is the name of the required collection·
<<OPTION1>...<<OPTION99>> are miscellaneous options that might be·
passed on the template; each option is given as an additional input parameter to
the template

$result is the resultant value; this is “” if not a valid collection·

Example $sStates = %EASLList="State" @separator="\n" @indent="\t"

@owner=$StateMachineGUID @collection="States" @option=$sOption%

EASL_END

The EASL_END macro is used to release the EASL behavior model.

Aspect Description

Syntax %EASL_END%

Behavioral Model Templates

Action·
Action Assignment·
Action Break·
Action Call·
Action Create·
Action Destroy·
Action If·
Action Loop·

(c) Sparx Systems 2022 Page 305 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Action Opaque·
Action Parallel·
Action RaiseEvent·
Action RaiseException·
Action Switch·
Behavior·
Behavior Body·
Behavior Declaration·
Behavior Parameter·
Call Argument·
Decision Action·
Decision Condition·
Decision Logic·
Decision Table·
Guard·
Property Declaration·
Property Notes·
Property Object·
State·
State CallBack·
State Enumerate·
State EnumeratedName·
StateMachine·
StateMachine HistoryVar·
Transition·
Transition Effect·
Trigger·

(c) Sparx Systems 2022 Page 306 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

EASL Collections

This topic lists the EASL collections for each of the EASL objects, as retrieved by the EASL Code Generation Macros
code generation macro.

Action

Collection Name Description

Arguments The Action's arguments.

SubActions The sub-actions of the Action.

Behavior

Collection Name Description

Actions The Behavior's Actions.

Nodes The Behavior's nodes.

Parameters The Behavior's parameters.

Variables The Behavior's variables.

Classifier

Collection Name Description

AllStateMachines All StateMachines for the Classifier.

AsynchProperties The asynchronous properties of the Classifier.

AsynchTriggers The asynchronous triggers of the Classifier.

Behaviors The behaviors of the Classifier.

Properties The properties of the Classifier.

TimedProperties The timed properties of the Classifier.

TimedTriggers The timed triggers of the Classifier.

(c) Sparx Systems 2022 Page 307 of 392 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/easl_code_generation_macros.htm

Software Engineering 3 October, 2022

Triggers All triggers of the Classifier.

Construct

Collection Name Description

AllChildren The Construct's children.

ClientDependencies The client dependencies on the Construct.

StereoTypes The stereotypes of the Construct.

SupplierDependencies The supplier dependencies on the Construct.

Node

Collection Name Description

IncomingEdges The Node's incoming edges.

OutgoingEdges The Node's outgoing edges.

SubNodes The sub-nodes of the Node.

State

Collection Name Description

DoBehaviors The State's Do behaviors.

EntryBehaviors The State's Entry behaviors.

ExitBehaviors The State's Exit behaviors.

StateMachine

Collection Name Description

AllFinalStates The StateMachine's final States.

(c) Sparx Systems 2022 Page 308 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

AllStates All States within the StateMachine, including those within Submachine States.

DerivedTransitions The StateMachine's derived Transitions with the associated valid effect.

States The States within the StateMachine.

Transitions The transitions within the StateMachine.

Vertices The StateMachine's vertices.

Transition

Collection Name Description

Effects The Transition's effects.

Guards The Transition's guards.

Triggers The Transition's triggers.

Trigger

Collection Name Description

TriggeredTransitions The triggered transitions associated with the Trigger.

Vertex

Collection Name Description

DerivedOutgoingTransition
s

The Vertex's derived outgoing transitions after traversing the pseudo-nodes.

IncomingTransitions The Vertex's incoming transitions.

OutgoingTransitions The Vertex's outgoing transitions.

(c) Sparx Systems 2022 Page 309 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

EASL Properties

This topic lists the EASL properties for each of the EASL objects, as retrieved by the EASL Code Generation Macros
code generation macro.

Action

Property Name Description

Behavior The Action's associated behavior (Call Behavior Action or Call Operation Action).

Body The Action's body.

Context The Action's context.

Guard The Action's guard.

IsFinal A check on whether the action is a final Action.

IsGuarded A check on whether the action is a guarded Action.

IsInitial A check on whether the action is an initial Action.

Kind The Action's kind.

Next The Action's next action.

Node The Action's associated node in the graph.

Argument

Property Name Description

Parameter The ID of the Argument's associated parameter.

Value The default value of the argument.

Behavior

Property Name Description

InitialAction The Behavior's initial action.

(c) Sparx Systems 2022 Page 310 of 392 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/easl_code_generation_macros.htm

Software Engineering 3 October, 2022

isReadOnly The isReadOnly of the Behavior.

isSingleExecution The isSingleExecution of the Behavior.

Kind The kind of Behavior.

ReturnType The return type of the Behavior.

Specification The specification of the Behavior.

CallEvent

Property Name Description

Operation The operation of the CallEvent.

ChangeEvent

Property Name Description

ChangeExpression The change expression of the ChangeEvent.

Classifier

Property Name Description

HasBehaviors A check on whether the Classifier has behavioral models (Activity and Interaction).

Language The Classifier's language.

StateMachine The StateMachine of the Classifier.

Condition

Property Name Description

Expression The Condition's expression.

Lower The Condition's lower value.

(c) Sparx Systems 2022 Page 311 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Upper The Condition's upper value.

Construct

Property Name Description

GetTaggedValue The Property's Tagged Value.

IsStereotypeApplied A check on whether a particular stereotype is applied to the Property.

Notes Notes on the Property.

UMLType The UML type of the Property.

Visibility The visibility of the Property.

Edge

Property Name Description

From The ID of the node from which the Edge arises.

To The ID of the node at which the Edge is targeted.

EventObject

Property Name Description

EventKind The event kind of the Event Object.

Instance

Property Name Description

Classifier The classifier of the Instance.

Value The value of the Instance.

(c) Sparx Systems 2022 Page 312 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Parameter

Property Name Description

Direction The direction of the Parameter.

Type The type of the Parameter.

Value The value of the parameter.

Primitive

Property Name Description

FQName The FQ name of the Primitive.

ID The ID of the Primitive.

Name The name of the Primitive.

ObjectType The object type of the Primitive.

Parent The IDParent of the Primitive.

PropertyObject

Property Name Description

BoundSize The bound size of the PropertyObject (if it is a collection).

ClassifierStereoType The stereotype of the PropertyObject's classifier.

IsAsynchProp A check on whether the PropertyObject is an asynchronous property.

IsCollection A check on whether the PropertyObject is a collection.

IsOrdered A check on whether the PropertyObject is ordered (if it is a collection).

IsTimedProp A check on whether the PropertyObject is a timed property.

Kind The PropertyObject's kind.

(c) Sparx Systems 2022 Page 313 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

LowerValue The PropertyObject's lower value (if it is a collection).

Type The PropertyObject's type.

UpperValue The PropertyObject's upper value (if it is a collection).

Value The PropertyObject's value.

SignalEvent

Property Name Description

Signal The signal of the SignalEvent.

State

Property Name Description

HasSubMachine A check on whether the State is a Submachine state.

IsFinalState A check on whether the State is a final state.

SubMachine Get the ID of the Submachine contained by the State (if applicable).

StateMachine

Property Name Description

HasSubMachineState A check on whether the StateMachine has a Submachine state.

InitialState The StateMachine's initial state.

SubMachineState The StateMachine's Submachine State.

TimeEvent

Property Name Description

When The 'when' property of the TimeEvent.

(c) Sparx Systems 2022 Page 314 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Transition

Property Name Description

HasEffect A check on whether the transition has a valid effect.

IsDerived A check on whether the transition is a derived transition.

IsTranscend A check on whether the transition transcends from one StateMachine (Submachine
State) to another.

IsTriggered A check on whether the transition is triggered.

Source The Transition's source.

Target The Transition's target.

Trigger

Property Name Description

AsynchDestinationState The asynchronous destination state of the Trigger (if it is an asynchronous trigger).

DependentProperty The ID of the property associated with the Trigger.

Event The Trigger's event.

Name The Trigger's name.

Type The Trigger's type.

Vertex

Property Name Description

IsHistory A check on whether the vertex is a history state.

IsPseudoState A check on whether the vertex is a pseudo state.

PseudoStateKind The Vertex's pseudostate kind.

(c) Sparx Systems 2022 Page 315 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

(c) Sparx Systems 2022 Page 316 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Call Templates From Templates

Using function calls with parameters, you can call templates from other templates, whether standard templates or
user-defined templates created within your project. Also, called templates can return a value, and can be called
recursively.

Examples

A call statement returning a parameter to a variable:

 $sSource = %StateEnumeratedName($Source)%

A call statement to a template that has parameters:

 %RuleTask($GUID, $index)%

Using the $parameter statement in the called template:

 $GUID = $parameter1

 $index = $parameter2

Templates support recursive calls, such as this recursive call on the template RuleTask:

 $GUID = $parameter1

 $index = $parameter2

 % PI = "" %

 $nul = "Initialize condition and action object"

 $count = %BR_GET("RuletCount")%

 % if $count == "" or $count == $index %

 %ComputeRulet($GUID)%

 \n

 % endTemplate %

 %Rulet($index)%

 \n

 $index = %MATH_ADD($index, "1")%

 %RuleTask($GUID, $index)%

(c) Sparx Systems 2022 Page 317 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

The Code Template Editor in MDG Development

These topics describe how you use the Code Template Editor window to create custom templates:

Create Custom Templates·
Customize Base Templates·
Add New Stereotyped Templates·

The Code Template Editor provides the facilities of the Common Code Editor, including Intelli-sense for the code
generation template macros. For more information on Intelli-sense and the Common Code Editor, see the Editing Source
Code topic.

(c) Sparx Systems 2022 Page 318 of 392 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/customtemplates.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/creatingtemplatesforcustom.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/addingnewstereotypedtemplat.htm

Software Engineering 3 October, 2022

Create Custom Templates

Enterprise Architect provides a wide range of templates that define how code elements are generated. If these are not
sufficient for your purposes - for example, if you want to generate code in a language not currently supported by
Enterprise Architect - you can create completely new custom templates. You can also add stereotype overrides to your
custom templates; for example, you might list all of your parameters and their notes in your method notes.

Access

Ribbon Develop > Source Code > Options > Edit Code Templates

Design > Package > Transform > Transform Templates

Keyboard Shortcuts Ctrl+Shift+P (code generation templates)

Ctrl+Alt+H (MDA transformation templates)

Create custom templates using the Code Templates Editor

Step Description

1 In the 'Language' field, click on the drop-down arrow and select the appropriate programming language.

2 Click on the Add New Custom Template button.

The 'Create New Custom Template' dialog displays.

3 In the 'Template Type' field, click on the drop-down arrow and select the appropriate modeling object.

The '<None>' option requires special treatment; it enables the definition of a function macro that doesn't
actually apply to any of the types, but must be called as a function to define variables $parameter1,
$parameter2 and so on for each value passed in.

4 In the 'Template Name' field, type an appropriate name.

Click on the OK button.

5 On the 'Code Templates Editor' tab, the new template is included in the 'Templates' list, with the value
'Yes' in the 'Modified' field.

The template is called <Template Type>__<Template Name>.

Note the double underscore character between the template type and template name.

6 Select the template from the Templates list and edit the contents in the Template field to meet your
requirements.

7 Click on the Save button.

This stores the new template, which is now available from the list of templates for use. You can also add a
stereotype override to the template, if necessary.

(c) Sparx Systems 2022 Page 319 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Notes

For a custom language, you must define the File template so that it can call the Import Section, Namespace and·
Class templates, and any other templates that you decide are applicable

(c) Sparx Systems 2022 Page 320 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Customize Base Templates

Enterprise Architect provides a wide range of templates that define how code elements are generated. If you want to
change the way a code element is generated, you can customize the appropriate existing system-provided templates.
Your changes might be to the effect of the template itself, or to its calls to other templates. You can also add stereotype
overrides to your customized templates; for example, you might list all of your parameters and their notes in your method
notes.

When you customize a system-provided (base) template, you effectively create a copy of the template that is used in
preference to the original. All subsequent changes are to that copy, and the original base template is hidden. If you
subsequently delete the copy it can no longer override the original, which is then brought into use again.

Access

Ribbon Develop > Source Code > Options > Edit Code Templates

Keyboard Shortcuts Ctrl+Shift+P

Customize a base template

Step Description

1 On the Code Template Editor, in the 'Language' field, click on the drop-down arrow and select the
programming language for which you want to customize the base templates.

2 In the Templates list, click on the base template to edit.

3 Update the template.

4 Click on the Save button to store your changes.

5 Repeat steps 2 to 4 for each of the relevant base templates you want to customize.

6 If you prefer, add one or more stereotype overrides to any of the templates.

(c) Sparx Systems 2022 Page 321 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Add New Stereotyped Templates

Sometimes it is useful to define a specific code generation template for use with elements of a given stereotype. This
enables different code to be generated for elements, depending on their stereotype. Enterprise Architect provides some
default templates, which have been specialized for commonly used stereotypes in supported languages. For example, the
'Operation Body' template for C# has been specialized for the property stereotype, so that it automatically generates its
constituent 'get' and 'set' methods. You can override the default stereotyped templates as described in the Override
Default Templates topic. Additionally, you can define templates for your own stereotypes, as described here.

Access

Ribbon Develop > Source Code > Options > Edit Code Templates

Keyboard Shortcuts Ctrl+Shift+P

Add a new stereotyped template using the Code Template Editor

Step Description

1 Select the appropriate language, from the Language list.

2 Select one of the base templates, from the Templates list.

3 Click on the 'Add New Stereotyped Override' button.

The 'New Template Override' dialog displays.

4 Select the required Feature and/or Class stereotype.

Click on the OK button.

5 The new stereotyped template override displays in Stereotype Overrides list, marked as modified.

6 Make the required modifications in the Code Templates Editor.

7 Click on the Save button to store the new stereotyped template in the project file.

Enterprise Architect can now use the stereotyped template, when generating code for elements of that
stereotype.

Notes

Class and feature stereotypes can be combined to provide a further level of specialization for features; for example,·
if properties should be generated differently when the Class has a stereotype MyStereotype, then both property and
MyStereotype should be specified in the New Template Override dialog

(c) Sparx Systems 2022 Page 322 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

(c) Sparx Systems 2022 Page 323 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Override Default Templates

Enterprise Architect has a set of built-in or default code generation templates. The Code Templates Editor enables you to
modify these default templates, hence customizing the way in which Enterprise Architect generates code. You can
choose to modify any or all of the base templates to achieve your required coding style.

Any templates that you have overridden are stored in the project file. When generating code, Enterprise Architect first
checks whether a template has been modified and if so, uses that template. Otherwise the appropriate default template is
used.

Access

Ribbon Develop > Source Code > Options > Edit Code Templates

Keyboard Shortcuts Ctrl+Shift+P

Reference

Override a default code generation template using the Code Templates Editor.

When generating code, Enterprise Architect now uses the overriding template instead of the default template.

Field/Button Description

Language Select the appropriate language from the list.

Templates Select one of the base templates from the list.

Stereotype Overrides If the base template has stereotyped overrides, you can select one of these from the
list.

<Other fields> Make any other modifications required.

Save Click on this button to store the modified version of the template to the project file.
The template is marked as modified.

(c) Sparx Systems 2022 Page 324 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Grammar Framework

Enterprise Architect provides reverse engineering support for a number of popular programming languages. However, if
the language you are using is not supported, you can write your own grammar for it, using the in-built Grammar Editor.
You can then incorporate the grammar into an MDG Technology to provide both reverse engineering and code
synchronization support for your target language.

The framework for writing a grammar and importing it into Enterprise Architect is the direct complement to the Code
Template Framework. While code templates are for converting a model to a textual form, grammars are required to
convert text to a model. Both are required to synchronize changes into your source files.

An example language source file and an example Grammar for that language are provided in the Code Samples directory,
which you can access from your installation directory (the default location is C:\Program Files\Sparx Systems\EA). Two
other grammar files are also provided, illustrating specific aspects of developing Grammars.

Components

Component Description

Grammar Syntax Grammars define how a text is to be broken up into a structure, which is necessary
when you are converting code into a UML representation. At the simplest level, a
grammar is instructions for breaking up an input to form a structure.

Enterprise Architect uses a variation of Backus–Naur Form (nBNF) to include
processing instructions, the execution of which returns structured information from
the parsed results in the form of an Abstract Syntax Tree (AST), which is used to
generate a UML representation.

Grammar Editor The Grammar Editor is an in-built editor that you can use to open, edit, validate and
save grammar files.

Grammar Debugging You can debug the grammar files you create using two facilities:

The Parser, which generates the AST for the Grammar·
The Profiler, which also parses the Grammar and generates the AST but which·
exposes the Profiling pathway to show exactly what happened at each step of
the process

(c) Sparx Systems 2022 Page 325 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Grammar Syntax

Grammars define how a text is to be broken up into a structure, which is exactly what is needed when you are converting
code into a UML representation. At the simplest level, a grammar is just instructions for breaking up an input to form a
structure. Enterprise Architect uses a variation of Backus–Naur Form (BNF) to express a grammar in a way that allows it
to convert the text to a UML representation. What the grammar from Enterprise Architect offers over a pure BNF is the
addition of processing instructions, which allow structured information to be returned from the parsed results in the form
of an Abstract Syntax Tree (AST). At the completion of the AST, Enterprise Architect will process it to produce a UML
model.

Syntax

Syntax Detail

Comments Comments have the same form as in many programming languages.

// You can comment to the end of a line by adding two /s.

/* You can comment multiple lines by adding a / followed by a *.

The comment is ended when you add a * followed by a /. */

Instructions Instructions specify the key details of how the grammar works. They are generally
included at the top of the grammar, and resemble function calls in most
programming languages.

Rules Rules make up the body of a grammar. A rule can have one or more definitions
separated by pipe delimiters (|).

For a rule to pass, any single complete definition must pass. Rules are terminated
with the semi-colon character (;).

Definitions A definition is one of the paths a rule can take. Each definition is made up of one or
more terms.

Definition Lists A definition list corresponds to one or more sets of terms. These will be evaluated
in order until one succeeds. If none succeed then the containing rule fails. Each pair
of definitions is separated by a | character.

This is a simple rule with three definitions:

<greeting> ::= "hello" | "hi" | ["good"] "morning";

Terms A term can be a reference to a rule, a specific value, a range of values, a sub-rule or
a command.

Commands Like instructions, commands resemble function calls. They serve two main
purposes:

To process tokens in a specific way or·
To provide a result to the caller·

(c) Sparx Systems 2022 Page 326 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Grammar Instructions

Instructions specify the key details of how the grammar works. They are generally included at the top of the grammar,
and resemble function calls in most programming languages.

Instructions

Instruction Description

caseSensitive() One of these two instructions is expected to specify if token matching needs to be
case sensitive or not. For example, languages in the BASIC family are case
insensitive while languages in the C family are case sensitive.

caseInsensitive()

delimiters(DelimiterRule:
Expression)

The delimiters instruction tells the lexical analyzer which rule to use for delimiter
discovery. Delimiters are used during keyword analysis, and can be defined as the
characters that can be used immediately before or after language keywords.

lex(TokenRule:
Expression)

The lex instruction tells the lexical analyzer the name of the root rule to use for its
analysis.

parse(RootRule:
Expression)

parse(RootRule:
Expression, SkipRule:
Expression)

The parse instruction tells the parser the name of the root rule to use for its
processing. The optional second argument specifies a skip (or escape) rule, which is
generally used to handle comments.

(c) Sparx Systems 2022 Page 327 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Grammar Rules

Rules are run to break up text into structure. A rule is made up of one or more definitions, each of which is made up of
one or more terms.

Types of Rule

Rule Description

Named rules A name, followed by a definition list. For example:

 <rule> ::= <term1> <term2> | "-" <term1>;

Inline Rules Inside a definition, a rule defined within parentheses. These act in exactly the same
way as if they were a named rule being called by a term. For example:

 <rule> ::= (<inline>);

Optional Rules Inside a definition, a rule defined within square brackets. This rule succeeds even if
the contents fail. For example:

 <rule> ::= [<inline>];

Repeating Rules Inside a definition, a term followed by a plus sign. This rule matches the inner rule
once or more than once. For example:

 <rule> ::= <inline>+;

 rule ::= (<term1> <term2>)+;

Optional Repeating Rules Inside a definition, a rule followed by a star. This rule matches the inner rule zero
or more times, meaning it succeeds even if the inner rule never succeeds. For
example:

 <rule> ::= <inline>*;

 rule ::= (<term1> <term2>)*;

(c) Sparx Systems 2022 Page 328 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Grammar Terms

Terms identify where tokens are consumed.

Types of Term

Type Description

Concrete terms Quoted strings.

For example, "class"

Unicode characters A lexer-only term, having the prefix of U+0x followed by a hexadecimal number.

For example: U+0x1234

Ranges A lexer-only term, matching any character between the two characters specified.

For example, "a".."z" or U+0x1234..U+2345

References The name of another rule, in angled brackets. The token will match if that rule
succeeds.

For example, <anotherRule>

Commands A call to a specific command.

(c) Sparx Systems 2022 Page 329 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Grammar Commands

Commands, like Instructions, resemble function calls. They serve two main purposes:

To process tokens in a specific way or·
To provide a result to the caller·

Commands

Command Description

attribute(Name: String,
Value: Expression)

Creates an attribute on the current AST node. The attribute will be created with the
Name specified in the grammar source, and will be given the value of all tokens
consumed as a part of executing the Value expression.

This command produces the AST node attributes that Enterprise Architect operates
on in code engineering.

attributeEx(Name: String)

attributeEx(Name: String,
Value: String)

Creates an attribute on the current AST node without consuming any tokens. The
attribute will be created with the same name as is specified in the grammar source,
and with either an empty value or the value specified by the optional Value
argument.

This command produces the AST node attributes that Enterprise Architect operates
on in code engineering.

node(Name: String, Target:
Expression)

Creates an AST node under the current AST node (the nodes that Enterprise
Architect operates on in code engineering). The node will be created with the Name
specified in the grammar source.

token(Target: Expression) Creates a token during lexical analysis for processing during parsing. The value of
the token will be the value of all characters consumed as a result of executing the
Target expression.

keywords() Matches any literal string used as a grammar term; that is, if you enter an explicit
string that you are searching for, it becomes a key word.

skip(Target: Expression)

skip(Target: Expression,
Escape: Expression)

Consumes input data (characters when lexing, and tokens when parsing) until the
'Target' expression is matched. The optional 'Escape' expression can be used to
handle instances such as escaped quotes within strings.

skipBalanced(Origin:
Expression, Target:
Expression)

skipBalanced(Origin:
Expression, Target:
Expression, Escape:
Expression)

Consumes input data (characters or tokens) until the 'Target' expression is matched
and the nesting level reaches zero. If the 'Origin' expression is matched during this
process, the nesting level is increased. If the 'Target' expression is matched, the
nesting level is decreased. When the nesting level reaches zero, the command exits
with success. An optional 'Escape' expression can be provided.

skipEOF() Consumes all remaining data (characters or tokens) until the end of the file.

fail() Causes the parser to fail the current rule, including any remaining definitions.

(c) Sparx Systems 2022 Page 330 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

warning() Inserts a warning into the resulting AST.

except(Target: Expression,
Exception: Expression)

Consumes input data that matches the Target expression, but fail on data that
matches the Exception expression. This operates somewhat similar to, but exactly
the opposite of, the skip command.

preProcess(Target:
Expression)

Evaluates an expression and uses that pre-processed data in multiple definitions.
This is most useful within expression parsing, where the same left hand side
expression will be evaluated against a number of operators. This command reduces
the work the parser must do to make this happen.

(c) Sparx Systems 2022 Page 331 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

AST Nodes

In defining a grammar, you would use AST nodes and AST node attributes that can be recognized in code engineering in
Enterprise Architect, in the AST results that are returned by the attribute, attributeEx and node commands. The nodes
and attributes are identified in these tables. Any others will be ignored in code engineering.

FILE Node

The FILE node represents a file. It isn't mapped to anything, but contains all the required information.

Multiplicity / Nodes Description

0..* / PACKAGE See PACKAGE Node.

0..* / CLASS See CLASS Node.

0..* / IMPORT The node to represent the imported namespace/Package or equivalent. The 'NAME'
attribute of the node will be the name of imported namespace/Package or
equivalent.

0..* / COMMENT Field labels as part of a skip rule will be at the root level; the code generator looks
for comments of this sort by position relative to the node.

0..1 /
INSERT_POSITION

This gives the position where new Classes, Packages and method implementations
can be inserted into the file. If it is not found, the code generator will automatically
insert new items immediately after the last one is found in code.

PACKAGE node

The PACKAGE node corresponds to a namespace or equivalent in the file. When importing with 'package per
namespace', Enterprise Architect will create a Package directly under the import for this and place all Classes within it.
When not importing namespaces, Enterprise Architect will look for Classes under this point, but it will do nothing with
this node.

Additionally, if you are generating with namespaces enabled (see the Code Options Help topics for generic languages) a
generated Class will not match a Class in code unless they are under the same Package structure.

Contained in nodes: FILE

Multiplicity / Nodes Description

1 / NAME See NAME Node.

0..* / CLASS See CLASS Node.

0..* / PACKAGE The child Package node.

0..1 / OPEN_POSITION Gives the position where the Package body opens. This can also be used as an insert
position.

0..1 / Gives the position where new Classes and Packages can be inserted into the file. If
it is not found, the code generator will automatically insert new items immediately

(c) Sparx Systems 2022 Page 332 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

INSERT_POSITION after the last one is found in code.

0..1 / SUPPRESS Prevents indenting when inserting into this Package.

CLASS/INTERFACE Node

The CLASS (or INTERFACE) node is the most important in code generation. It is brought in as Class (or Interface)
Objects.

See Class DECLARATION and Class BODY.

Contained in Nodes: FILE, PACKAGE, Class BODY

CLASS Declaration

Contained in Nodes: CLASS/INTERFACE

Multiplicity / Nodes Description

1 / NAME See NAME Node.

0..* / PARENT See PARENT Node.

0..* / TAG See TAG Node.

0..1 / DESCRIPTION See DESCRIPTION Node.

1 / NAME The name of the Class. If there is a node NAME, that will overwrite this attribute.

0..1 / SCOPE The UML Scope of the Class - Public, Private, Protected or Package.

0..1 / ABSTRACT If present, indicates that this is an abstract Class.

0..1 / VERSION The version of the Class.

0..1 / STEREOTYPE The stereotype that Enterprise Architect should assign to the Class. This does not
support multiple stereotypes.

0..1 / ISLEAF If present, indicates that this is a leaf/final/sealed Class which cannot be inherited
by any sub-Class.

0..1 / MULTIPLICITY If present, represents the multiplicity of the Class.

0..1 / LANGUAGE Generally, you do not need to set this.

0..1 / NOTE Generally not used as it is addressed by the comments above the Class.

0..1 / ALIAS If present, represents the Alias of any identifier, such as a Namespace, Class or
variable.

(c) Sparx Systems 2022 Page 333 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

0..* / MACRO Adds a numbered Tagged Value that Enterprise Architect can use to round trip
macros.

Class BODY Node

Contained in Nodes: CLASS/INTERFACE

Multiplicity / Nodes Description

0..* / METHOD See METHOD Node.

0..* / ATTRIBUTE See ATTRIBUTE Node.

0..* / FIELD See FIELD Node.

0..* / CLASS See CLASS Node.

0..* / SCOPE See SCOPE Node.

0..* / PROPERTY This node represents the Property definition within the Class Body.

0..* / TAG See TAG Node.

0..* / PARENT See PARENT Node.

0..1 / OPEN_POSITION Gives the position where the Class body opens. This can also be used as an insert
position.

0..1 /
INSERT_POSITION

Gives the position where new Class members can be inserted into the file. If it is
not found, the code generator will automatically insert new items immediately after
the last one is found in code.

SCOPE Node

This is an optional feature for languages resembling C++ that have Blocks that specify the scope of elements. The
language needs to have a name specified that is used for the scope of all elements in the Block. In all other respects it
behaves identically to the Class BODY node.

Contained in Nodes: Class BODY

Multiplicity / Nodes Description

1 / NAME Used as the scope for all methods and attributes contained within the scope.

METHOD Node

Contained in Nodes: Class BODY, SCOPE

(c) Sparx Systems 2022 Page 334 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Multiplicity / Nodes Description

1 / Method
DECLARATION

See Method DECLARATION Node.

Method DECLARATION Node

Contained in Nodes: METHOD

Multiplicity / Nodes Description

0..1 / TYPE See TYPE Node.

0..* / PARAMETER See PARAMETER Node.

0..* / TAG See TAG NODE.

0..1 / DESCRIPTION See DESCRIPTION Node.

0..1 / MULTI
PARAMETER

Supports Delphi's parameter list style of declaration. This is the equivalent of
FIELD.

1 / NAME The name of the method.

0..1 / TYPE The return type of the method.

0..1 / SCOPE The UML Scope of the method - Public, Private, Protected or Package.

0..1 / ABSTRACT If present, indicates that the method is Abstract.

0..1 / STEREOTYPE The stereotype that Enterprise Architect should assign to the Method. This does not
support multiple stereotypes.

0..1 / STATIC If present, indicates that the method is static.

0..1 / CONST or
CONSTANT

If present, indicates that the method is constant.

0..1 / PURE If present, indicates that the method is a Pure method.

0..1 / ISQUERY If present, indicates that the method is query/read only.

0..1 / ARRAY If present, indicates that the method type (return type) is an array.

0..1 / SYNCHRONIZED If present, indicates that the method is a synchronized method.

0..* / MACRO The Macro specified in the method declaration.

0..1 /
CSHARPIMPLEMENTS

Specifies special behavior for C#.

(c) Sparx Systems 2022 Page 335 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

0..1 / BEHAVIOR Provides support for Aspect J, using behavior.

0..1 / SHOWBEHAVIOR Provides support for Aspect J, using behavior, and shows the reverse-engineered
behavior on the diagram.

ATTRIBUTE Node

Contained in Nodes: Class BODY, SCOPE

Multiplicity / Nodes Description

1 / TYPE See TYPE Node.

0..* / TAG See TAG Node.

0..1 / DESCRIPTION See DESCRIPTION Node.

1 / NAME The name of the Attribute.

0..1 / TYPE The type of the Attribute.

0..1 / SCOPE The UML Scope of the Attribute - Public, Private, Protected or Package.

0..1 / DEFAULT The default value of the Attribute.

0..1 / CONTAINER or
ARRAY

If present, indicates the container for the Attribute.

0..1 / CONTAINMENT Reference or value.

0..1 / STEREOTYPE The stereotype that Enterprise Architect should assign to the Attribute. This does
not support multiple stereotypes.

0..1 / STATIC If present, indicates that it is a static Attribute.

0..1 / CONST or
CONSTANT

If present, indicates that it is a constant Attribute.

0..1 / ORDERED If present, indicates that the Attribute (value) is ordered.

0..1 / LOWBOUND If present, represents the lower boundary of the Attribute value.

0..1 / HIGHBOUND If present, represents the higher boundary of the Attribute value.

0..1 / TRANSIENT or
VOLATILE

If present, indicates that the Attribute is Transient or Volatile.

(c) Sparx Systems 2022 Page 336 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

FIELD Node

A field corresponds to multiple attribute declarations in one. Anything not defined in the Declarators but defined in the
field itself will be set for each declarator. Everything supported in an attribute is supported in the field. If no declarators
are found then this works in the same way as an attribute.

Contained in Nodes: Class BODY, SCOPE

Multiplicity / Nodes Description

0..* / DECLARATOR See ATTRIBUTE Node.

PARAMETER Node

Contained in Nodes: Method DECLARATION, TEMPLATE

Multiplicity / Nodes Description

1 / TYPE See TYPE Node.

0..* / TAG See TAG Node.

0..1 / DESCRIPTION See DESCRIPTION Node.

0..1 / NAME The name of the parameter.

0..1 / TYPE The type of the parameter.

0..1 / KIND Expected to be in, inout, out or return.

0..1 / DEFAULT The default value of the parameter.

0..1 / FIXED If present, indicates that the parameter is fixed/constant.

0..1 / ARRAY If present, indicates that the parameter type is an array.

NAME Node

Contained in Nodes: PACKAGE, Class DECLARATION

Multiplicity / Nodes Description

1 / NAME The name portion.

0..* / QUALIFIER The qualifier portion.

0..* / NAMEPART An alternative to using NAME and QUALIFIER. A string of values, all except the
last one taken as qualifiers. The last one is taken as the Name.

(c) Sparx Systems 2022 Page 337 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

TYPE Node

Contained in Nodes: Method DECLARATION, ATTRIBUTE, PARAMETER

Multiplicity / Nodes Description

0..1 / TEMPLATE The entire text of the template is the name of the type.

Only used if NAME is undefined.

See TEMPLATE Node.

1 / NAME The name portion.

0..* / QUALIFIER The qualifier portion.

0..* / NAMEPART An alternative to using NAME and QUALIFIER. A string of values, all except the
last one taken as qualifiers. The last one is taken as the Name.

TEMPLATE Node

Contained in Nodes: TYPE

Multiplicity / Nodes Description

0..* / PARAMETER See PARAMETER Node.

1 / NAME

PARENT Node

Contained in Nodes: Class DECLARATION

Multiplicity / Nodes Description

0..1 / TYPE Has the value Parent, Implements or VirtualP.

1 / NAME The name portion of the Parent.

0..* / QUALIFIER The qualifier portion of the Parent.

0..* / NAMEPART An alternative to using NAME and QUALIFIER. A string of values, all except the
last one taken as qualifiers. The last one is taken as the Name.

0..1 / INSTANTIATION If present, indicates the instantiation of a template parameter.

(c) Sparx Systems 2022 Page 338 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

TAG Node

Contained in Nodes: Class DECLARATION, Method DECLARATION, ATTRIBUTE, PARAMETER

Multiplicity / Nodes Description

1 / NAME The name of the Tagged Value (the Tag).

0..* / VALUE The value of the Tagged Value.

0..1 / MEMO If present, indicates that the type of the Tagged Value is <memo>.

0..1 / NOMEMO If present, indicates that the type of the Tagged Value is not <memo>.

0..1 / GROUP If present, indicates that the value is a Tagged Value group.

DESCRIPTION Node

Contained in Nodes: Class DECLARATION, Method DECLARATION, ATTRIBUTE, PARAMETER

Multiplicity / Nodes Description

0..* / VALUE The text that Enterprise Architect should assign to the Note.

(c) Sparx Systems 2022 Page 339 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Editing Grammars

If you need to write and edit a grammar for code imported in a new programming language, you can do so using the
built-in Grammar Editor.

Access

Ribbon Develop > Source Code > Grammar Editor

Create and Edit Grammar

Field/Button Action

Open Grammar Display a browser through which you can locate and open the file containing the
grammar you want to edit.

Recent Recently used grammars can be quickly accessed using this combo box.

Save Save the current file.

Save As Saves a copy of the current file

Validate Grammar The grammar validation will run a series of tests on the current grammar to ensure
its validity. Errors and warnings will be displayed informing you of both errors that
will make the grammar unusable, and conditions where you might get unexpected
results.

Help Display this Help topic.

Context Menu Options

Field/Button Action

Open File Display a browser through which you can locate and open the file containing the
grammar you want to edit.

Validate The grammar validation will run a series of tests on the current grammar to ensure
its validity. Errors and warnings will be displayed informing you of both errors that
will make the grammar unusable, and conditions where you might get unexpected
results.

Language The Grammar Editor defaults to normal Backus–Naur Form (nBNF). The mBNF
option is also available.

(c) Sparx Systems 2022 Page 340 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Line Numbers Turn line numbers on or off in the grammar editor.

(c) Sparx Systems 2022 Page 341 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Parsing AST Results

The Abstract Syntax Tree (AST) is the code that Enterprise Architect sees as it processes a grammar.

You parse the text in the bottom half of the Grammar Editor window and review what is displayed as a result. You can
either open a file or paste text in. If you have pasted text that corresponds to something that cannot appear at the file level
(such as Operation Parameters) you can select an alternative rule to use as a starting point. The parse will then commence
from that rule.

Access

Ribbon Develop > Source Code > Grammar Editor > Grammar Debugger > AST Results

Toolbar Options

Option Action

Open File Open a sample input file to test against.

Recent Recently opened source files can be selected from this combo box.

Parse Perform the parse operation. If the parse is successful, the 'AST Results' tab will
contain the resulting AST.

Select Rule This drop down allows you to select an alternative root rule for processing your
sample source.

Help Display this Help topic.

(c) Sparx Systems 2022 Page 342 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Profiling Grammar Parsing

When you parse a grammar that you have created, it might show errors that you cannot immediately diagnose. To help
you resolve such errors, you can review the process that the parser followed to generate the AST you can see, using the
Grammar Profiler.

You again parse the text in the bottom half of the Grammar Editor window, but this time the tree shows each rule that the
parser attempted, where it got to and if it passed or not. Rules for opening a file, pasting a file and setting the starting rule
remain the same.

Access

Ribbon Develop > Source Code > Grammar Editor > Grammar Debugger > Profiler Results

Toolbar Options

Option Action

Open File Display a browser through which you can locate and open the file containing the
grammar you want to edit.

Parse Perform the parse operation. If the parse is successful, the 'AST Results' tab will
contain the resulting AST, and the 'Profile Results' tab will contain debug
information regarding the path that the parser took through your grammar. The
profile data is extremely useful when debugging a new grammar.

Select Rule If you want to use a different root rule for processing your sample source, click on
the drop-down arrow and select the alternative rule.

Help Display this Help topic.

Notes

Because profiling can take a very long time for large files, the 'Profile Results' tab is not filled if you are not·
displaying that tab when you begin parsing

(c) Sparx Systems 2022 Page 343 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Macro Editor

The macro editor allows a user to supplement the grammar with a list of keywords and rules to exclude macros during
grammar parse operations. The macro definition list is particularly useful when developing grammars for languages that
support macros such as C++. It avoids the necessity of describing these rules in the grammar itself, and can be used with
multiple grammars.

This feature is available from Enterprise Architect Release 14.1.

Access

Ribbon Develop > Source Code > Grammar Editor > Macro Editor

Editing Macros

Open File Open an existing macro definition list

Recent Recently opened macro definition lists can be selected from this combo box

Save Saves changes to the opened macro definition list

Save As Saves a copy of the existing macro definition list

Validate Validates the grammar of the macro definition list

(c) Sparx Systems 2022 Page 344 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Example Grammars

The Code Samples directory set up by the Enterprise Architect installer contains an example Grammar that you can load
into the Grammar editor to review, and into the Grammar Debugger to parse and profile.

The Grammar example consists of two files:

test.ssl - a simple sample language source file, in the style of C, and·
ssl.nbnf - a grammar for the simple sample language·

The example illustrates:

Tokenization (using the Lexer)·
Creation of a Package·
Creation of a Class or Interface·
Creation of an attribute·
Creation of an operation (with parameters)·
Importing comments·

The Code Samples directory also contains two other Grammar files that you can examine:

Expressions Sample.nBNF - this illustrates how expression parsing is set up and processed, with detailed comment·
text providing explanations

CSV Sample.nBNF - an example grammar for processing CSV files·

(c) Sparx Systems 2022 Page 345 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Code Analyzer

The Code Analyzer is an essential tool for anyone who deals with source code every day.

It can perform very complex queries on source code repositories at lightning speed either locally or on a Sparx Intel
cloud service. The queries are composed using a high level language developed by Sparx System. The language uses a
small but expressive vocabulary that is easily learned and permits code metrics to be queried much faster than
conventional methods.

Access

Ribbon Develop > Source Code > Code Analyzer

Code Analyzer Menu

The Code Analyzer menu is displayed when you click on the icon in the top-left corner of the window.

(c) Sparx Systems 2022 Page 346 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

The menu provides various commands for activities associated with the use of the Code Analyzer, including such things
as choosing a Code Miner database to use, updating the Code Miner database and Opening a Query File for editing.

This table describes each of the menu commands.

Command Description

Recent Displays a sub-menu that provides a list of recent connections to services and local
database files.

Browse for Database Displays a 'file chooser' dialog, allowing you to browse for a Code Miner database
on your machine.

Connect to Service Displays the 'Code Miner Database Connection' dialog, in which you specify
connection details for a (list of) Code Miner Database services.

Default to Analyzer Selecting this option results in the Code Analyzer automatically connecting to the
Code Miner service configured for the active Execution Analyzer Script, when the
Code Analyzer is started.

Create Database Displays the 'Create Code Miner Database' dialog, which allows you to create a
Code Miner database from a source code repository in the file system.

Update Database Displays the 'Code Miner Database Update' dialog, which allows you to perform an
incremental update to an existing Code Miner database, to incorporate recent
changes to source code files.

Close/Disconnect Closes or disconnects from the Code Miner Database library or service.

Open Query File Shows a 'file open' dialog allowing you to choose an mFQL query file from the file
system.

Save Query File Shows a 'file save' dialog allowing you to save the current mFQL query to a named
file.

(c) Sparx Systems 2022 Page 347 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Run Query Runs the entire query or selected contents of the query entered in the 'Query' tab
editor.

Shortcut F6.

Before Using the Analyzer

Before you can use the Code Analyzer, you must first create a Code Miner database or locate an existing one that the
Code Analyzer can access. Creating a Code Miner database is summarized here, or you can read a detailed description in
the Help topic Creating a New Code Miner Database.

Depending on the location of the library you will be using, you should either:

Select a Code Miner library file to use, or·
Connect to a service that is hosting a Code Miner database.·

Once you have completed these steps, you are ready to begin writing and running queries in the Code Analyzer.

Creating a Code Miner Database

Code Miner databases are built from source code repositories. The process is similar to code compilation, using the
language grammar to analyze individual files.

There are two types of build - full and incremental. The initial full build might take some time, but the subsequent
incremental builds are incredibly quick.

(c) Sparx Systems 2022 Page 348 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Using a Directory as input

You can select a single folder as the root of the source code you want to compile. With this option you can choose to
include subdirectories

Using a Directory List

Sometimes, you want to use more than a single project, but not all the projects are under a single directory. In this case,
you can create a text file that lists the full path to each folder you want to include and you specify that text file in the
'Source' field. Each directory path should be listed on a separate line.

c:\myprojects\project1\tools\scintilla

c:\myprojects\project2\src

d:\mylibs\lib1\src

If you want to recursively process the sub-directories within a directory, precede the path with an exclamation mark like
this:

!d:\mylibs\lib1\src

Any line that begins with a # character is treated as a comment.

include scintilla

(c) Sparx Systems 2022 Page 349 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

c:\myprojects\project1\tools\scintilla

Language

In this field, you specify the language used in the source code from which this Code Miner database is being built.

Available languages are: C++, C#, Java, XML, MDGTechnology and Custom.

Macro List

When the language selected is 'C++', the 'Macro List' selection field is displayed . For C++, the success and depth of
information compiled into the database can be inextricably linked to the use of macros. This field can be used to select an
nBNF macro file that will be used as an auxiliary grammar component for the compilation.

By default the macro file will default to the macro file in the Enterprise Architect installation folder. You are free to
modify or extend the content of this file to suit your requirements - for example, when you need to correct errors reported
in the compilation log file.

Grammar

Sparx Systems has developed grammars for all of the languages listed in the drop-down selection list; C++, C#, Java,
XML and also MDGTechnology. For these languages a built-in grammar file is used.

There is also an option to select a 'Custom' language. When 'Custom' is selected, the 'Grammar' field is displayed. This
field is used to specify a file containing the grammar for your custom language. The Code Miner will then use that
grammar to parse the source code written in that language.

Users that develop a Custom language, will need to specify grammar rules for that language and save them into an nBNF
file. Enterprise Architect's Grammar Editor is designed specifically for that purpose.

The Help Topic Grammar Framework provides detailed information on writing an nBNF grammar.

Updating a Code Miner Database

From time to time, you will want to update your Code Miner database. Typically, when you have made changes to your
source code, but also after updating a grammar file or extending a macro file.

The process to update a database is very similar to creating a new database, but faster because you are not starting from
scratch. Simply choose the menu option 'Update Database'. The 'Code Miner Database Update' dialog will display. The
input fields will be populated with values from the last build. Proceed as for 'Creating a Code Miner Database'.

(c) Sparx Systems 2022 Page 350 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Selecting a Code Miner Database File

If you choose to use a library file for your Code Miner database, choose the menu option 'Browse for Database'. This
will display a 'File Chooser', where you can browse for and select a *.cdb file.

Connecting to a Service

When connecting to a service, the dialog lists all databases hosted by the service.

You can choose to select an individual database in the list, or simply click the Select button, in which case queries will
be executed across all databases listed by the service.

(c) Sparx Systems 2022 Page 351 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Running Queries

Once you have connected to a Code Miner database, you are ready to start running queries.

To run a query, select the Query tab in the Code Analyzer window, type in your query, then click on the icon to
execute the query.

In this example, we have run a simple query node("CLASS"), which will return all 'Class' nodes found in the Code
Miner database.

By selecting a result in the lower-left panel, the 'Source' tab is activated and displays the source code corresponding to
the selected node. Details for that class node are displayed in the lower-right panel.

(c) Sparx Systems 2022 Page 352 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Selecting a detail item in the lower-right panel, results in narrowing the selection within the source code, as shown here.

Query Example - Intersection

As an example, this mFQL query finds all the classes that have an operation named GetOption.

 andat("CLASS", item("OPERATION", "NAME", "GetOption"), node("CLASS"))

This clause returns a set of operations for which the 'NAME' value is "GetOption":

 item("OPERATION", "NAME", "GetOption")

This clause returns a set of all Class nodes:

 node("CLASS")

Formal syntax:

 andat(string:rule, set:left, set:right)

(c) Sparx Systems 2022 Page 353 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

'andat' takes the set of operations (left), applies the rule "CLASS" (only include rows that have a CLASS parent), then
intersects that set with the set of all known classes (right). If the intersection succeeds, the operation node is added to the
result set, otherwise it is excluded.

The Query Language - mFQL

The query language used with the Code Analyzer is described in full, in the Code Miner Query Language (mFQL) Help
topic.

A brief description and some examples are also presented here.

The mFQL language is based on sets. Each statement works using the various types of set operations of which there are
only a few.

(c) Sparx Systems 2022 Page 354 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Code Miner Framework

The Code Miner system provides fast and comprehensive access to the information in existing source code. By parsing
all source code and storing the resulting Abstract Syntax Tree in a read-optimized database, the system provides
complete access to all aspects of the original source code, in a machine understandable format.

The core goal behind the system is to provide access to the data hidden within source code in a timely and effective
manner. Great pains have been taken to ensure maximum performance, while providing the simplest interfaces possible.
As a result the system can be used to analyze program structure, calculate metrics, trace relationships and even perform
refactoring.

Information from Code Miner databases is retrieved using queries written in Code Miner NBNF Query Language
(mFQL), Code Miner's own language. The language itself is reasonably simple, providing a small number of commands.
Simple as the language is, it supports queries of arbitrary size and complexity. The design provides extreme performance
for all queries, great and small.

This feature is available from Enterprise Architect Release 14.1.

Enterprise Architect's Code Analyzer, its search tools and the Intelli-sense features of its code editors all make use of the
information mined from these databases.

The currently active Analyzer Script, and also the query parameters, are indicated across the bottom of the 'Code Miner'
page of the search tool.

(c) Sparx Systems 2022 Page 355 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

(c) Sparx Systems 2022 Page 356 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Code Miner Libraries

Code Miner libraries are managed in Enterprise Architect using the Analyzer Script Editor. These Libraries are a
collection of Code Miner databases, one of which would normally exist for each framework or project. The Analyzer
Script Editor allows new databases to be created, and existing databases to be added, updated or removed. Together,
these databases form the Code Miner Library used by the Code Analyzer and Intelli-sense features of Enterprise
Architect. The library can be used locally, or it can be deployed to a server location where it can service multiple clients.
You select the scenario to use on the 'Sparx Intel Service' page of the Analyzer Script.

This feature is available from Enterprise Architect Release 14.1.

Access

On the Execution Analyzer window, locate and double-click on the required script - the script editor dialog will display.
On that dialog, select the 'Code Miner > Libraries' page.

Ribbon Execute > Tools > Analyzer, or

Develop > Source Code > Execution Analyzer > Edit Analyzer Scripts

Creating a New Database

On the 'Code Miner | Libraries' page of the Analyzer's Script Editor, click on the 'New' button to create a new database.

In the 'Create Code Miner Database' dialog, specify the folder(s) containing the project source code, select the
programming language and enter the destination path for the Code Miner database. When you click on the 'Compile'
button, details of the build are displayed in the log window.

(c) Sparx Systems 2022 Page 357 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

When the process is complete click on the 'Add' button to add the newly created database to the library.

For detailed information on creating new databases, please see the Help topic Creating a New Code Miner Database.

Adding an Existing Database

Select an existing Code Miner database using the "..." selection button in the database path field.

(Code Miner databases have the .CDB file extension), then click on the Add button. Details about the database are listed
in the library. The information presented displays the programming language grammar used to build the database. Also
shown is the code base path parsed during the build and whether the parsing process was applied recursively through any
sub directories.

Updating a Database

From time to time, as you update the source code for a project, you will want to update the Code Miner database built
from that source code.

To update a single Code Miner database, select it from the list, right-click and choose 'Update selected' from its context
menu. A dialog similar to the 'Create Database' dialog will display. Click on the 'Compile' button, the Code Miner will
recreate the database from the updated code base.

(c) Sparx Systems 2022 Page 358 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Removing a Database

To remove a single Code Miner database, select it from the list and choose 'Remove Selected' from its context menu.

Configuring Enterprise Architect to use a Code Miner Library

In an Enterprise Architect Analyzer Script, choose the 'Sparx Intel Service' page and select 'Use Library'. Enterprise
Architect then sources its Intelli-sense information from the databases listed in the 'Libraries' section of the currently
active Analyzer Script.

(c) Sparx Systems 2022 Page 359 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Creating a New Code Miner Database

Enterprise Architect's Code Analyzer, the Intelli-sense features of its code editors and it's search tools all make use of
Code Miner Databases.

A Code Miner Database is created by parsing source code files according to grammar rules for the selected language and
storing the resulting Abstract Syntax Tree, in a read-optimized database. One or more databases can be combined to
form a Code Miner Library.

Access

Code Analyzer window From the Code Analyzer window, click on the menu button, , in the toolbar,
then choose the menu option 'Create Database'.

Execution Analyzer Script
Editor

With the Execution Analyzer's Script Editor window open, select the page 'Code
Miner > Libraries', then click on the 'Create' button.

Create Code Miner Database Dialog

The 'Create Code Miner Database' dialog is used to initiate the process of parsing source code files to create a Code
Miner database. On the dialog, you specify a range of inputs used by the process, such as Source Code folder, Language
and Macro List file, as well as the output filename. The dialog fields are described in the table presented below.

(c) Sparx Systems 2022 Page 360 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Field Description

Use Directory Select this option when all of the source files to be processed reside under one
directory.

When this option is selected, the checkbox 'Process Subdirectories' is enabled.

Use Directory List Select this option when your project source code resides in multiple separate
directories. In this case, you use the 'Source' field to specify a file that contains a
list of directories containing the source code to be processed.

Process Subdirectories This check-box is enabled when the 'Use Directory' option is selected. When
selected, source code file residing within any subdirectories of the specified
'Source' directory will also be processed.

Source This field is used to specify the directory (or directories) containing source code
files that will be processed to create the Code Miner database.

When the option 'Use Directory' is selected, this field is used to specify the root
folder in which to search for source code files.

When the option 'Use Directory List' is selected, this field is used to specify a user
created file containing a list of path names to the directories that contain the source

files to be processed. Clicking the button opens a 'File Chooser' dialog, that

(c) Sparx Systems 2022 Page 361 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

allows you to browse for and choose a file with the extension '.ssdirlist'. For more
information, see the section Directory List File below.

Database This field specifies the full path name of the Code Miner database file that will be
created. The filename extension '.cdb' is used for this file.

Language This is a drop-down list, where you specify the language used in the source code
files being processed. There are a number of languages for which Enterprise
Architect provides 'built-in' support. (There are built-in grammars used for parsing
the supported languages).

There is also an option to choose a 'Custom' language. If you choose to use a
custom language, you will need to create your own grammar to support parsing of
that language. When the 'Custom' option is selected, the field 'Grammar File' will
be displayed, allowing you to specify the file that defines your custom grammar.

File Extensions This field lists a number of filename extensions that are typically associated with
source code files of the chosen language. Only files with filename extensions
matching those in the list will be processed by the parser. You can add or remove
filename extensions to suit your needs.

Macro List When the language selected is 'C++', the 'Macro List' selection field is displayed.
The Macro List field lets you specify a file that provides a list of macros that the
parser should skip when it encounters them.

For the C++ language, macros present a problem to the parser because they hide
native language constructs. Adding the name of a macro to the Macro List file and
updating the database will usually clear all the errors related to that macro.

For more information, see the section Extending the Macro List File below.

Grammar File Sparx Systems has developed grammars for all of the languages listed in the
drop-down selection list.

C++, C#, Java, XML and also MDGTechnology.

There is also an option to select a 'Custom' language. Users that develop a Custom
language, will need to specify grammar rules for that language and save them into
an nBNF file, so that the Code Miner can correctly parse source code written in that
language. Enterprise Architect's Grammar Editor is designed specifically for that
purpose.

When you select "Custom" as the language, you should then specify the grammar
file you created for that language, so that the Code Miner can correctly parse your
source code.

The Help Topic Grammar Framework provides detailed information on writing an
nBNF grammar.

Output Window The output window shows the progress of parsing the source code files. Upon
completion, it also shows the names of the database file and the log file that were
created along with the number of errors encountered.

Compile/Stop button The 'Compile' button is used to start the processing operation. This button changes
to a 'Stop' button once processing begins, allowing the user to abort the operation.

Add button Once a database has been compiled, the 'Add' button can be used to add that
database to a Code Miner Library.

Multiple databases can be added together to build up a library that covers many
source code projects.

Note: When the 'Create Code Miner Database' dialog is opened from the Code

(c) Sparx Systems 2022 Page 362 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Analyzer window, the 'Add' button is not displayed.

Directory List File

If you choose to specify a Directory List file, you will need to create a simple text file using the filename extension
'.ssdirlist', that lists the full path to each directory you wish to process, with one path per line. For example:

c:\myprojects\project1\tools\scintilla

c:\myprojects\project2\src

d:\mylibs\lib1\src

If you wish to recursively process the subdirectories within a listed directory, precede that path with an exclamation mark
like this:

!d:\mylibs\lib1\src

Any line that begins with a # character is treated as a comment:

include scintilla

c:\myprojects\project1\tools\scintilla

Extending the Macro List File

For the C++ language, macros present a problem for grammars because they hide native language constructs. The parser
cannot not perform substitution on macros as they are often defined conditionally and the parser has no idea about the
architecture. The Macro List file provides a list of macros that the parser should skip when it encounters them.

When you build a Code Miner database for a C++ source code repository, you might see errors listed. When an error
occurs, use the error log to find and inspect the line of code that caused the error. This almost always identifies a macro
that is causing the grammar failure. Adding that name to the macro list and updating the database will usually clear all
the errors related to that macro.

For example, the error log shows this error:

C:\ea\EA750\SQLAPITester\SQLAPI\include\asa\sqlfuncs.h, line:12, col:18, Unexpected symbol ','.

Upon inspection, the line of code causing the error is this:

 FUNC_INFO(extern, void, _esqlentry_, sqlstop, (SQLCA *))

(There are also many other similar lines using the macro 'FUNC_INFO'.)

So, we edit the default Macro List file, 'AtxAflMacros.nbnf', adding this line:

 "FUNC_INFO" "(" skipBalanced("(", ")") ")" |

This line instructs the parser, upon encountering the macro "FUNC_INFO", to apply the function skipBalanced("(", ")"),
which takes two parameters; in this case they are the opening and closing parentheses. So, the parser is instructed to
ignore everything in between the opening and closing parentheses.

When the change to the Macro List file is saved and the database is recompiled (updated), all of the errors pertaining to
the macro "FUNC_INFO" have been eliminated.

(c) Sparx Systems 2022 Page 363 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Learn more

Grammar Framework·
Code Analyzer·

(c) Sparx Systems 2022 Page 364 of 392 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.0/grammar_editor_for_imported_co.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/code-analyzer.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.0/grammar_editor_for_imported_co.htm

Software Engineering 3 October, 2022

Code Miner Queries

Code Miner queries are best considered as functions written in the Code Miner NBNF Query Language (mFQL). As
such, they have unique names, can be grouped by namespace and can take one or more parameters. Queries are bundled
together into one source file. This source file is identified to Enterprise Architect by naming it in your Analyzer Script.

When specified, the queries it contains are available in the Code Miner control. Parameters to these queries can be taken
from selected text in a code editor, the model context or typed directly into the search field of the control.

This feature is available from Enterprise Architect Release 14.1.

This image illustrates an mFQL query from the Sparx Queries file distributed with Enterprise Architect installations. The
syntax for composing an mFQL query and the mFQL language itself is described here.

Query Syntax

The syntax for composing mFQL queries is:

namespace

{

query:name([$param1 [, $param2]])

{

mfql-expression

}

}

where:

namespace names the collection of queries·
name is the 'function' name of the query·
$param1 and $param2 are placeholders for argument substitutions at runtime·
mfql-expression is an mFQL expression·

(c) Sparx Systems 2022 Page 365 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Code Miner Query Language (mFQL)

The Code Miner system provides fast and comprehensive access to the information in existing source code. By parsing
all source code and storing the resulting Abstract Syntax Tree (AST) in a read-optimized database, the system provides
complete access to all aspects of the original source code, in a machine understandable format.

The core goal behind the system is to provide access to the data hidden within source code in a timely and effective
manner. Great pains have been taken to ensure maximal performance, while providing the simplest interfaces possible.
As a result the system can be used to analyze program structure, calculate metrics, trace relationships and even perform
refactoring.

mFQL

mFQL is the query language of the Code Miner. The language itself is reasonably simple, providing a small number of
commands. Simple as the language is, it supports queries of arbitrary size and complexity. The design provides extreme
performance for all queries, great and small.

The language is set-based; it operates primarily on sets of abstract data obtained through discrete vertical indices. For our
purposes, a set is an ordered array of numbers, each of which is a pointer to a node in the AST Store. A discrete vertical
index provides a mechanism to retrieve sets by discrete value.

The language includes the three basic set-joining operations. These are 'intersect', 'union', and 'except'. The 'except' join
is, more precisely, a 'symmetric difference' join. A 'complement' join can be achieved by using a short sub-query; this is
detailed in the 'except' join documentation. The 'offsetIntersect' join is also discussed in detail there.

The Code Miner database provides three discrete vertical indices in its AST Store. These indices are 'node name',
'attribute name', and 'attribute value'. Each vertical index can be queried for a discrete value, which will return a set of all
nodes where that value is present. The three vertical indices are queried using the functions 'getByNode', 'getByName'
and 'getByValue', respectively.

Set 'traversal routines' provide mechanisms to filter sets based on patterns in the AST. The traversal routines are either
destructive (move) or non-destructive (filter). Destructive traversals modify the set member values to point to the target
node; non-destructive traversals ensure the target node exists. In both cases, nodes that cannot complete the traversal are
removed.

Please note that all traversals in mFQL are upwards. Downwards traversals are technically complex, as a node could
have any number of child nodes. Conversely, upward traversals are much simpler, with every node having zero or one
parent node. For these reasons, downward traversals are not supported in the query language.

Although there are only a small number of operations in mFQL, the language is capable of expressing very finely grained
and complex queries. The language is functional in design, and supports arbitrary nesting calls.

mFQL queries execute at lightning speed. The backend database was designed from the ground up for read performance.
The query parser was hand optimized. Knowing that it always has pure ordered sets, the low-level code takes several
shortcuts to perform joins with minimal work effort.

In order to use nBNF effectively one must possess a working knowledge of the target language, and an intimate
knowledge of the grammar used to parse it.

(c) Sparx Systems 2022 Page 366 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

The mFQL Language

This section provides a list of Code Miner NBNF Query Language (mFQL) queries with explanations and comments.

The queries shown here demonstrate different capabilities and different approaches to exploring and extracting data
using mFQL and the Code Analyzer in Enterprise Architect. The mFQL queries help make the syntax human-readable
and intuitive, and have been extended in Enterprise Architect to include additional functions necessary to do real things
with Code Miner databases.

The Query Language

String parameters are indicated by string, set parameters are indicated by set and number parameters are indicated by
numbers.

Notes

Case sensitivity is defined by the case sensitivity of the language of the source code used to populate the database.1.
If the source language is case sensitive (such as C++) all string literal parameters are case sensitive. If the source
language is case insensitive (such as SQL) all string literal parameters are case insensitive.

Hierarchical traversals in mFQL are generally upwards. Downwards traversals are not optimal, as a node might have2.
any number of child nodes. Upward traversals are much simpler, with every node having zero or one parent node.
Downward-looking queries such as 'children' only query one level down.

Synonyms of some keywords are provided to better express a query intent or action in particular circumstances, and3.
to support legacy queries. Synonyms are simple alternatives for the base function keyword. For example, 'type(str)'
can be written as 'node(str)' or 'byNode(str)' or 'getByNode(str)'. The current specified version is the preferred one,
with the synonyms only intended for use in exceptional circumstances.

Statement Description

type(value) type(value)

Extracts a set based upon node name. The exact name for a node is defined by the
grammar used to parse the original source. In this example, find all nodes within the
database of type "CLASS".

type("CLASS")

Synonyms:

node·
byNode·
getByNode·

with(name) with(name)

Searches the database for any element that has a named attribute matching the
search string. The value of the attribute is ignored - this is a query for the attribute
NAME only. All nodes with one or more attributes of the specified name are
returned. If a single node has two attributes of the same name, one instance of that
node is returned.

This example will find all elements in the database that have an attribute named
"Type":

with("Type")

Synonyms:

name·

(c) Sparx Systems 2022 Page 367 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

byName·
getByName·

find(value) find([+] value
[+ value] [+])

find(value)

find([+] value [+ value] [+])

Search the database for any element having an attribute value with the provided
search term. The match is case sensitive and must match the whole word. You can
extract a set based upon an attribute value; when extracting nodes by attribute
value, the values of all attributes for the node are considered.

Wildcards allow for specifying a subset of attribute values for a node. Wildcards
can be used at either the beginning or end of a value specification:

A leading concatenation symbol allows for any number of attributes preceding·
the first matched attribute

A trailing concatenation symbol allows for arbitrary trailing attributes·
In both cases, if the node would match without wildcards, it will match with them –
the wildcard specifies any number of leading/trailing attributes, including none.

In this example, we retrieve a set of nodes that have their last two attributes being
“.” and “sun”. The leading concatenation symbol specifies that any number of
attributes (including none), with any value, can exist before the matched attributes,
but none can follow.

 find(+ “.” + “sun”)

The next example has a trailing wildcard. Any node with “com”, “.” and “sun” as
the first three attributes will be returned. Any number of trailing attributes can
exist.

 find(“com” + “.” + “sun” +)

Both wildcards can be used together. In this example nodes with attributes with the
three specified values as names, in order, regardless of leading or trailing attributes,
will be returned.

 find(+ “com” + “.” + “sun” +)

Example: Find all nodes in the database that have any attribute with a value of
"CString":

 find("CString")

Example: Find all nodes in the database with a set of attributes having these values
in this order:

 find("com" + "." + "sun")

Synonyms:

value·
byValue·
getByValue·

has(name,value) has(name, value)

Finds all elements that have a named attribute with the value supplied. Unlike the
intersection of 'find' and 'with', this query will only return rows with an exact
name/value pair.

has("Type","CString")

having(name, value, set) having (name, value, set)

Finds all elements within the supplied set that have a named attribute with the given
value. Similar to 'has' but supplies a predefined input set to search. Whether to use

(c) Sparx Systems 2022 Page 368 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

'has' or 'having' is generally determined by the kind of query structure being used,
its depth and its readability.

Example 1: Find all Property elements with a name of "m_strName" that have a
Type attribute of CString:

 having("Type","CString",this("PROPERTY","NAME","m_strName"))

Example 2: Extend Example 1 to only include those that store a CString *:

 having("Reference","*",

 having("Type","CString",this("PROPERTY","NAME","m_strName")))

this(type,name,value) this(type, name, value)

Function finds one or more elements that have a matching TYPE, and WITH a
named attribute having the specified VALUE.

Example: Find all operations named "Import Solution":

 this("OPERATION","NAME","ImportSolution")

Synonyms:

object·
item·

like(name,like,set) like(name, like, set)

Finds a set of elements that have an attribute that starts with the search sub-string.
Note that this is not a fully wild-carded search but is case sensitive and must be an
exact match for the length of the search string.

Example: Find all Classes in the database whose NAME attribute starts with
"CMapStr":

 like("NAME","CMapStr",gettype("CLASS"))

and(set1,set2,...) and(set1, set2, ...)

Returns the intersection of nodes between two or more sets. To be included in the
final set, an element must exist in ALL the input sets.

Synonyms:

intersect(set, set,...)·
{set, set, ...}·

union(set1,set2,...) union(set1,set2, ...)

Returns the distinct union of ALL nodes present in the input sets.

Synonyms:

or(set, set ...)·
[set, set ...]·

ancestor(str,set) ancestor(str, set)

ancestor(num, set)

ancestor(num, str, set)

The ancestor function traverses each node in a set of a number of parent nodes,

(c) Sparx Systems 2022 Page 369 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

excluding any nodes that fail the traversal. The number of nodes to traverse, the
name of the target node for the traversal, or both can be provided as parameters.

When the number of nodes is provided, but the target node name is not, any nodes
with the specified number of parents will pass the traversal. Any node that runs out
of parents will be dropped from the set.

When the name of the target is specified, but the number of nodes to traverse is not,
any nodes with a parent with a matching name, at any point in the hierarchy, will
pass the traversal. Any node with no matching parent is excluded.

When both the number of nodes and the target name are provided, only nodes that
have a parent node with the specified name, at the specified offset, pass the
traversal. All other nodes are removed from the set.

In this example the set hasParameter("CString","&",1) is moved up to an ancestor
node named "OPERATION". If the move fails the node is dropped from the result.

 ancestor("OPERATION",hasParameter("CString","&",1))

In this example the set is moved up one rung to its parent. If there is no parent, the
node is dropped from the result.

 ancestor(1,hasParameter("CString","&",1))

In this example the set is moved up three steps to its parent->parent->parent . If
there is no such node, the node is dropped from the result.

 ancestor(3,hasParameter("CString","&",1))

Synonyms:

move·

filter(str,set) filter(str, set)

filter(num, set)

filter(num, str, set)

The filter function is the same as the 'ancestor' function, except that it returns nodes
from the original child set rather than new ancestor nodes. If a node is unable to
pass the specified traversal, it is removed from the set. Nodes that pass the traversal
are left in place, unmodified.

In this example the set hasParameter("CString","&",1) is tested for an ancestor
node named "OPERATION". If the move fails the node is dropped from the result.
The result set is a set of parameter types that meet the criteria.

 filter("OPERATION",hasParameter("CString","&",1))

match(NameA,setA,Name
B,setB)

match(NameA,setA, NameB,setB)

'Match' takes two input sets and two attribute names and returns all those in 'setA'
that have a matching record in 'setB', as determined by comparing the values of the
named attributes 'strA' and 'strB'. That is, a 'setA' row is included if the value of
attribute 'strA' in 'setA' exists in 'setB' as the value of an attribute of name 'strB'.

'Match' is useful for finding where one element feature is used in a different context
elsewhere in the database. For example, where a unique element name or GUID is
referenced by another element.

In this example, we match the attribute named 'TYPE' from the right set to the
attribute 'NAME' in the left set. The result will be all "CLASS" type objects from
the left set with NAME == TYPE(s) as specified in the right set.

match("NAME",type("CLASS"),"TYPE",this("PROPERTY","NAME","m_pLink")
)

(c) Sparx Systems 2022 Page 370 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

graph(targetType,
targetName, linkType,
linkName, start)

graph(targetType, targetName, linkType, linkName, start)

Find a recursive set of elements that form some kind of graph when linked by
attribute pairs, in a manner similar to 'match'. The starter set is queried for all
owned instances of the linkType with link Name and these are matched against a
new query based on the targetType with targetName. The new set is filtered in a
manner similar to 'match', and all elements in the new query that share the same
NAME/VALUE pair as from the starter set are kept; all others are discarded. The
resultant set is then fed back into the original set as the starter for the next iteration,
with the results at each stage being added together to form the final result set.

Example: Return the Class hierarchy for a Class named "Car".

graph("CLASS","NAME","GENERALIZATION","GENERAL",this("CLASS","N
AME","Car"))

prune(set_test,str,set_base) prune(set_test, str, set_base)

prune(set_test, num, set_base)

For two sets of nodes, temporarily move one set UP to the named or numeric
position in its ancestry and filter out any nodes that do not exist by strict
intersection in the TEST set. The first set is the TEST set, the right or last set is the
BASE set. The set returned is all the elements in the BASE set that, when moved to
the TEST position, matched something in the TEST set. The returned nodes are the
original nodes from the BASE set and are not moved up when returned.

Example 1 finds the set of parameter types used for operation parameters named
"CustomerName" across the whole database.

prune(this("PARAMETER","NAME","CustomerName"),"PARAMETER",type("P
ARAMETERTYPE"))

Example 2 finds all Properties of a Class named Customer, assuming the grammar
used to compile the database placed the Property definition two hierarchy levels
below the Class definition.

 prune(this("CLASS","NAME","Customer"),2,type("PROPERTY"))

andat(str,test,base) andat(str, base, test)

andat(num, base, test)

andat(num, str, base, test)

For two sets of nodes, temporarily move one set UP to the named or numeric
position in its ancestry and filter out any nodes that do not exist by strict
intersection in the TEST set. The first set is the TEST set, the right or last set is the
BASE set. The set returned is all the elements in the BASE set that, when moved to
the TEST position, matched something in the TEST set. The returned nodes are the
original nodes from the BASE set and are not moved up when returned.

Similar to 'prune', this query supports additional options and structures the inputs in
a different order to facilitate different kinds of stacked searches.

The 'andat' function performs both a non-destructive tree traversal and an intersect
join in one operation. Each node in the left set is traversed according to parameters
provided, then the result of the traversal is intersected with the right set. If the
intersect passes, the original node is added to the result set. If the intersect fails, the
node is excluded from the result set.

The traversal parameters for 'andat' are the same as for 'ancestor' and 'filter'. For
more information about the traversal parameters, see the 'ancestor' function.

(c) Sparx Systems 2022 Page 371 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Example: For the set of all "PROPERTY" nodes in the database, move them up to a
parent node of type CLASS and then intersect the result with the right hand set - in
this case a CLASS named CDiagram. All nodes that pass this test are returned as
PROPERTY nodes, effectively giving the set of all properties of the Class
CDiagram.

 andat("CLASS",type("PROPERTY"),this("CLASS","NAME","CDiagram"))

Synonyms:

offsetIntersect·
offsetx·

unique(left,right) /
except(left,right)

unique(left, right)

except(left, right)

Except joins return sets that contain any nodes from either set that do not appear in
both sets. This join is similar to a bitwise XOR operation. In set theory, this type of
join is referred to as a 'symmetric difference join'.

 {1, 2, 3} excepted with {2, 3, 4} results in {1, 4}

omit(left,right) /
exclude(left,right)

omit(left, right)

exclude(left, right)

Exclude joins return a set that contains all nodes from the left set that do not appear
in the right set. In set theory, this type of join is referred to as a 'relative
complement join'.

 {1, 2, 3} complemented with {2, 3, 4} results in {1}

differ(name,set,name,set) differ(name, set, name, set)

Return a set of nodes that do not have a matching row in another set, using a
NAME/VALUE pair from each set to match on.

Example: This more complex example tests the complete set of Generalizations for
a Class hierarchy and identifies missing or unresolved Class names in the total
inheritance hierarchy. Like the 'match()' function discussed later, this function
iterates over attribute name/value pairs as specified in the left and right input sets,
but only includes rows in the final set where there is NO match.

 differ(

 "GENERAL",

 children("GENERALIZATION",

graph("CLASS","NAME","GENERALIZATION","GENERAL",

this("CLASS","NAME","CMainFrame"))),

 "NAME",

 graph("CLASS","NAME","GENERALIZATION","GENERAL",

 this("CLASS","NAME","CMainFrame"))

)

children(type,set) children(type, set)

Return a set of child nodes of a specified type for one or more parents in the source
set. For all children regardless of type, use an empty string.

For example, in the first query we return ALL first level children of the
CMainFrame Class. In the second query we restrict the nodes returned to be of type

(c) Sparx Systems 2022 Page 372 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

"REGION" only.

 children("",this("CLASS","NAME","CMainFrame"))

 children("REGION",this("CLASS","NAME","CMainFrame"))

childcount(num,type,set) childcount (num,type,set)

Return nodes that exactly match the number of specified children of a specified
type. For example, only return operations that have 5 parameters.

An example usage is in specifying an exact operation signature, so we check firstly
that parameter1 and parameter2 match the type we are querying for, then move
those to their operation ancestor and intersect the result with the operation name
"GetFromCache" we are interested in. To rule out spurious hits with operations
having more than 2 parameters, we explicitly add childcount(2, ...) to ensure we
only get operations that have 2 parameters.

 childCount(2,"PARAMETER",

 {

 ancestor("OPERATION",hasParameter("CString","&",1)),

 ancestor("OPERATION",hasParameter("CString","&",2)),

 this("OPERATION","NAME","GetFromCache")

 }

)

byAddress(num) byAddress(num)

The byAddress function is used in applying the results of one query to another. For
example, we might have a node of particular interest, and want our query to return
only nodes that join (in some way) to the specified node.

 byAddress(node: number)

This example builds a set containing the single node related to the address
specified:

 byAddress(11256)

byPosition(File, Offset) byPosition(File, Offset)

The byPosition function is used to return the inner-most node that covers a certain
position in a file. This function is useful for locating a position in the AST based
upon a file position.

distinct(set) distinct(set)

The distinct function ensures that a set has no duplicate values. All duplicate values
are excluded from the result set.

(c) Sparx Systems 2022 Page 373 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Set Extraction

These procedures extract sets from discrete vertical indices. There are three indices available, each with a specific
extraction function. String literal parameters to these functions could be case sensitive. Case sensitivity is defined by the
language of the source code used to populate the database. If the source language is case sensitive (as C++ is) all string
literal parameters are case sensitive. If the source language is case insensitive (as SQL is) all string literal parameters are
case insensitive.

type

type(value: string)

Extract a set based upon a node name. The exact name for a node is defined by the grammar used to parse the original
source. In this example, all nodes with the name "OPERATION" are returned.

type("OPERATION")

with

with(value: string)

Extract a set based upon attribute name. All nodes with one or more attributes of the specified name are returned. If a
single node has two attributes of the same name, one instance of that node is returned. This example returns all nodes
with one or more attributes named "NAMEPART".

 with("NAMEPART")

find

find([+] value: string [+ value: string] [+])

Extract a set based upon an attribute value. When extracting nodes by attribute value, the value of all attributes for the
node are considered. Wildcards allow for specifying a subset of attribute values for a node.

When a single value is provided, all nodes that have a single attribute with the value specified are returned. If a node has
any other attributes, it is excluded. In this example, all nodes with exactly one attribute with the value of 'i' are returned.

 find("i")

More than one value can be specified by using a concatenation symbol. When more than one value is specified, the
resulting set will contain all nodes that have attributes with exactly the values specified, in the order specified. Any node
with extra leading or trailing attributes is excluded. This example retrieves a set of all nodes with a set of three attributes
with the values “com”, “.” and “sun”, in that order.

 find("com" + "." + "sun")

Wildcards can be used at either the beginning or end of a value specification. A leading concatenation symbol allows for
any number of attributes preceding the first matched attribute. A trailing concatenation symbol allows for arbitrary
trailing attributes. In both cases, if the node would match without wildcards, it will match with them – the wildcard
specifies any number of leading/trailing attributes, including none.

In this example, we retrieve a set of nodes that have their last two attributes being “.” and “sun”. The leading
concatenation symbol specifies that any number of attributes (including none), with any value, can exist before the
matched attributes, but none can follow.

 find(+ “.” + “sun”)

The next example has a trailing wildcard. Any node with attributes “com”, “.” and “sun” as the first three attributes will
be returned. Any number of trailing attributes can exist.

(c) Sparx Systems 2022 Page 374 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

 find(“com” + “.” + “sun” +)

Both wildcards can be used together. In this example, nodes with attributes named as the three values specified, in order,
regardless of leading or trailing attributes, will be returned.

 find(+ “com” + “.” + “sun” +)

(c) Sparx Systems 2022 Page 375 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Set Traversal

ancestor

ancestor(count: number, source: set)

ancestor(value: string, source: set)

ancestor(count: number, value: string, source: set)

The 'ancestor' function traverses each node in a set up a number of parent nodes, excluding any nodes that fail the
traversal. The number of nodes to traverse, the name of the target node for the traversal, or both can be provided as
parameters.

When the number of nodes is provided, but the target node name is not, any nodes with the specified number of·
parents will pass the traversal; any node that runs out of parents will be dropped from the set

When the name of the target is specified, but the number of nodes to traverse is not, nodes with a parent with a·
matching name at any point in the hierarchy will pass the traversal; any node with no matching parent is excluded

When both the number of nodes and the target name are provided, only nodes that have a parent node with the·
specified name at the specified offset pass the traversal; all other nodes are removed from the set

It is possible - even likely - that these calls will generate sets having duplicate values. This is by design, as the concrete
rules for sets do not define them as being discrete. If (as in most cases) you want your set to be discrete, use the 'distinct'
function described in the The mFQL Language Help topic.

This sample extracts a set of all nodes named 'OPERATION', then traverses each node up one level to its immediate
parent. Any 'OPERATION' node with no parent is excluded.

ancestor(1, getByNode("OPERATION"))

This sample extracts a set of all nodes named 'OPERATION', then traverses each node up to the first 'CLASS' parent
node. Any 'OPERATION' node with no 'CLASS' parent is excluded.

ancestor("CLASS", getByNode("OPERATION"))

This sample extracts a set of all nodes named 'OPERATION', then traverses each node up one level to its immediate
parent. If the parent node is not a 'CLASS' node, or the node fails to traverse though a lack of parent nodes, it is
excluded.

ancestor(1, "CLASS", getByNode("OPERATION"))

filter

filter(count: number, source: set)

filter(value: string, source: set)

filter(count: number, value: string, source: set)

The 'filter' function is the same as the 'ancestor' function, except that it does not modify nodes – it is non-destructive. If a
node is unable to pass the specified traversal, it is removed from the set. Nodes that pass the traversal are left in place,
unmodified.

It is often desirable to filter a set by the current node name. This can be used to ensure that the nodes returned from a
'with' or 'find' call are of a particular node type. This example returns all nodes with an attribute with the value of
“CFoo”, where the resulting node is a “TYPE” node.

(c) Sparx Systems 2022 Page 376 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

filter(0, “TYPE”, find(“CFoo”))

For more details on the use of the 'filter' function, see the 'ancestor' function.

(c) Sparx Systems 2022 Page 377 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Set Joining

and

and(left: set, right: set)

An 'and' join will return a set containing all nodes that exist in both the left and right set. This join is comparable to a
bitwise AND operation. In set theory, this type of join is called an 'intersection'.

 {1, 2, 3} intersected with {2, 3, 4} results in {2, 3}

This example returns a set that contains all nodes that have a single attribute with the name of "TYPE" and the value of
"int".

 and(

 find("int"),

 with("TYPE")

)

union

union(left: set, right: set [, right: set])

'Union' joins return a set that includes all nodes found in either the left or the right set. This join is used to combine the
results of two or more sub-queries into a single set. A 'union' join is similar to a logical OR operation. In set theory, the
'union' join is known as a union.

The 'union' join is able to operate on more than two sets. The result is a set that contains all nodes from all supplied sets.
The 'union' join is the only join able to operate on more than two sets.

The result of a 'union' join is always a discrete set, unless one of the source sets contained duplicates. This means that
duplicates in source sets will be preserved, but the 'union' join itself will not generate duplicates.

 {1, 2, 3} unioned with {2, 3, 4} results in {1, 2, 3, 4}

This sample creates a set containing all nodes with an attribute named “TYPE” or a single attribute with the value of
“int”.

 union(

 find("int"),

 with("TYPE")

)

except

except(left: set, right: set)

'except' joins return sets that contain any nodes from either set that do not appear in both sets. This join is similar to a
bitwise XOR operation. In set theory, this type of join is referred to as a 'symmetric difference' join.

 {1, 2, 3} excepted with {2, 3, 4} results in {1, 4}

For more information on the 'symmetric difference' join in set theory, see
https://en.wikipedia.org/wiki/Symmetric_difference

This sample returns a set of all nodes with an attribute named "TYPE" but no single attribute with the value of "int", plus
all nodes with an attribute with the value of "int" that are not named "TYPE".

(c) Sparx Systems 2022 Page 378 of 392 Created with Enterprise Architect

https://en.wikipedia.org/wiki/Symmetric_difference

Software Engineering 3 October, 2022

 except(

 find("int"),

 with("TYPE")

)

exclude

exclude(left: set, right: set)

'exclude' joins return a set that contains all nodes from the left set that do not appear in the right set. In set theory, this
type of join is referred to as a relative complement join.

 {1, 2, 3} complemented with {2, 3, 4} results in {1}

This sample returns a set of all nodes with a value of “int” that are not “TYPE” nodes:

 Exclude(

 find(“int”),

 with(“TYPE”)

)

andat

andat(count: number, left: set, right: set)

andat(value: string, left: set, right: set)

andat(count: number, value: string, left: set, right: set)

The andat function performs both a non-destructive tree traversal and an intersect join in one operation. Each node in the
left set is traversed according to parameters provided, then the result of the traversal is intersected with the right set. If
the intersect passes, the original node is added to the result set. If the intersect fails, the node is excluded from the result
set.

The traversal parameters for andat are the same as for 'ancestor' and 'filter'. For more information about the traversal
parameters, see the 'ancestor' function described in the Set Traversal Help topic.

This sample takes all “NAME” nodes, traverses them up one parent, and intersects them with a set of all “CLASS”
nodes. If a “NAME” node passes both the traversal and intersect join, it is added to the result set. The result is a set of
all “NAME” nodes whose immediate parent is a “CLASS” node.

andat(1,

type(“NAME”),

type(“CLASS”)

)

(c) Sparx Systems 2022 Page 379 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Sparx Intel Service

The Sparx Intel service program provides a means for development projects and players to gain valuable insight into the
code bases and software frameworks they are working with. The service acts as a provider to Enterprise Architect clients,
allowing access to Intelli-sense in code editing and insightful search results in search tools.

The Sparx Intel service is part of the Sparx Satellite Services umbrella. The service can run on a local network or Cloud
running Microsoft Windows. The Sparx Intel Satellite service can be installed as a Windows service or run as a
standalone process. The service allows multiple Enterprise Architect clients to access and query the same information
from many different software domains and frameworks.

This feature is available from Enterprise Architect Release 16.0

(c) Sparx Systems 2022 Page 380 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Sparx Intel Service Configuration

The program SparxIntelService.exe runs one or more intel services for Enterprise Architect. The program is located in
the same install folder as Enterprise Architect, and it uses a configuration file that names the services that can run on the
local machine.

In the examples in this topic, the program will attempt to use the file c:\mystuff\myservices.config. It will look for a
service named EA and, if found, start it.

 SparxIntelService.exe listen service=EA config=c:\mystuff\myservices.config

The Config File Format

The configuration file has this format:

comment

comment

comment

{ # start of service definition

 ... # list of directives as pairs

} # end of service definition

{ # start of service definition

 ... # list of directives as pairs

} # end of service definition

Comments are indicated by the # character.

If the config directive is omitted (not recommended), the program will look for a config file of the same name as the
program, in the same directory as the program.

In this example the program will attempt to use the file SparxIntelService.config in the same folder:

 SparxIntelService.exe listen service:EA

Directive Description

name When a service is named on the command line, the service with the matching name
attribute will be started.

status When status = ON, the service will be started; otherwise, it will not be started.

lazyload When lazyload is 'true', any Code Miner database will be delay loaded until an Intel
request is made to the service.

loglevel Defines the level of information logged, as a combination of keywords {
information, warning, error} separated by a '|'. For example:

 loglevel= Information|warning|error

logoutput Specifies the full pathname of the log file to write to. For example:

 logoutput=c:\logfiles\intel-service-project1.log

database Specifies the full path name of the Code Miner database to be loaded. For example:

 database=c:\intel--service\project1.cdb

(c) Sparx Systems 2022 Page 381 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Multiple 'database' directives are allowed, each specifying a different database.

allow Identifies the IP address that is permitted to connect to the service on the Port. For
example:

 allow=localhost

 allow=127.0.0.1

 allow=172.160.* (wildcards are allowed when the 'network'

 directive has a value of 'network' or 'public',

 but not 'local')

network Allows service connections to be restricted.

local - the service will not listen on any connection other than localhost·
network - when used with wildcard 'allow' directives, allows clients on an·
allowed IP address wild card to connect

pubic - allows any connection·

show When 'true', the Console window for the service will be shown; the default is 'false'.

port The Port on which the service will listen.

The Service Configuration Template

When choosing the 'Execute > Tools > Services > Code Miner Service > Edit Configuration File' ribbon option you
display the Windows 'Save As' browser through which you can choose either the config file to open or where a file
should be created.

If no config file is recorded in the registry and you specify a non-existent filename, that file is created, filled with a 'bare
bones' configuration skeleton and saved. The selected/new configuration is then shown in the Enterprise Architect
default editor.

The 'bare bones' template is shown here.

#--

Sparx Intel Service Configuration File

This file is used to describe one or more intel services and the code miner databases that they support

This file can be used in EA to manage a number of services on the local machine

Service Attributes

name The unique name of the service in this file

status "ON" - service can run, "OFF" service will never run

lazyload "true" - databases are loaded n demand, "false" - databases are loaded when service
starts

port Unique Port number that service will listen on and EA will connect to

network [optional,default=local] Restricts service to listening to locahost only (local), to a range
of addresses (network) or any address (public)

(c) Sparx Systems 2022 Page 382 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

allow Allows a specific IP address or wildcard IP address to connect (if network is NOT local)

(There can be multiple allow directives present)

autoupdate "true" - will detect updates to listed databases and reload them, "false" default, changes are not
detected

show [optional,default=false] shows the console window for the service

logoutput [optional] The path of a log file which service can write to

loglevel [optional] The levels of information logged. Combine with '|' character, e.g.: {
information|warning|error }

database [Required] The full path to a codeminer database which usually has the .cdb file
extension

(There can be multiple database directives present)

#

Attribute Values

#

<string> - text. (do not include quotes)

<boolean> - text, { true, false, ON, OFF }

<path> - fully specified file path to codeminer database

<number> - digits

#

{

name=<string>,

status=<boolean>,

lazyload=<boolean>,

port=<number>,

allow=<string>,

allow=<string>,

network=<string>,

autoupdate=<string>,

show=<boolean>,

logoutput=<string>,

loglevel=<string>,

database=<path>,

database=<path>,

database=<path>

},

{

name=Project1,

status=ON,

lazyload=TRUE,

allow=localhost,

(c) Sparx Systems 2022 Page 383 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

allow=127.0.0.1,

port=9999,

autoupdate=true,

database=c:\Project1\Project1.cdb

}

The Sparx Intel Service Ribbon Options

When a Service Configuration file exists, you can edit it or execute it using a number of options available from the
'Execute > Tools > Services' ribbon option within the Code Miner menu option group.

Option Description

View Status of All Services (Above all categories of Service.) This option displays a view that lists the status of
each Enterprise Architect service named in the current Configuration file, and its
state.

Start This option reads the current Service Configuration file and starts services that are
configured to run, and stops running services that are not configured to run. A
service is configured if:

It is named in the config file.1.

It has the attribute status:ON.2.

Stop All This option stops any services that are currently running.

Edit Configuration File This option prompts for the Service Configuration file to use, then opens that file in
an Enterprise Architect text editor. The system remembers where the file is held.

(c) Sparx Systems 2022 Page 384 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Auto Start with EA This option automatically starts services having the 'status:ON' attribute when the
model opens.

The messages logged to the System Output window here when the model is opened
indicate that the service was already running.

Auto Stop on Close This option automatically stops running services when Enterprise Architect is
closed down.

(c) Sparx Systems 2022 Page 385 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Sparx Intel Service Automatic Update

When you execute the Build command for an Analyzer Script , a job is added to the Job Queue.

If the Build script has the 'Update Codeminer on Completion' checkbox ticked in the Analyzer Script Editor, an
additional task is added to the job to update each of the Codeminer databases listed in the script.

The libraries can be seen in the Code Miner | Libraries section of the script.

How the Task Runs

The Code Miner update task runs the program SSCodeMiner.exe with two arguments.

The first argument specifies the database to perform the incremental build on and has this form:

 update="c:\path\ea.cdb"

The second argument is optional and specifies an auxiliary macro grammar file to use when compiling the database; it
has this form:

 macros="c:\ea\ea160\config\CodeMiner\SparxProjectMacros.nbnf"

(c) Sparx Systems 2022 Page 386 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Job Output

As the Code Miner update task runs, output from the captured SSCodeMiner.exe update process is sent to the 'Job
History' tab of the System Output window, in the same form as is displayed when performing a manual update of a Code
Miner database in Enterprise Architect. In this illustration we can see that the Analyzer Script RNO 160 -x64 has
completed successfully.

The Job Queue window shows that the job has completed. The last task to run was the Code Miner update.

The 'Job History' tab showed that no source code files had changed. If modified source code changes are detected - that
is, the Code Miner service has detected a new build of ea.cdb and automatically updated it - this information is
displayed:

(c) Sparx Systems 2022 Page 387 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

(c) Sparx Systems 2022 Page 388 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Service Configuration

Service program

The name of the service program is SparxintelService.exe.

Configuration File

The service is configured by the file SparxIntelService.config.

The file must be located in the same directory as the service program.

The file contains a number of directives and also lists the Code Miner databases to be served.

The file is read once when the service is started.

Directives Description

port The Port number on which the service will listen.

allow Names a domain or IP address that is allowed access: 198.* or 127.0.0.1

network Values can be "public", "network" or "private".

Use "private" when allow directives specify one or more single IP addresses·
Use "network" when allow directives specify a wildcard domain: 198*·
Use "public" to allow all clients·

database Names the full physical file path of a Code Miner database on the server.

Running the program standalone

From a normal console enter the command: SparxIntelService -listen

Installing as Windows Service

From an Administrative console enter the command: SparxIntelService -install

(c) Sparx Systems 2022 Page 389 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

Client Configuration - Configuring Enterprise Architect to
Use a Code Miner Service

Enterprise Architect uses components known as Analyzer Scripts for the configuration of many support systems. This is
where the location of the server is specified. This image shows the 'Code Miner Service' page of a script.

Access

Ribbon Develop > Source Code > Execution Analyzer > Edit Analyzer Scripts >
Double-click on a Script > Code Miner > Service

Configuration Fields

Use Server Select this radio button to set up the Code Miner server to use.

Host : Port Type in the number of the Port through which the Service will operate.

Use Service for
Intelli-sense

Select the checkbox to use the Intel Service for Intelli-sense field completion.

Use Service for [F12] Find
in Files

Select the checkbox if you want to use the Service instead of the Find In Files
window to run search queries, when you press F12.

Limit Query Results to Type in the number of rows of query results to display per page.

(c) Sparx Systems 2022 Page 390 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

rows

Save Click on this button to save the configuration details you have entered.

(c) Sparx Systems 2022 Page 391 of 392 Created with Enterprise Architect

Software Engineering 3 October, 2022

(c) Sparx Systems 2022 Page 392 of 392 Created with Enterprise Architect

	Software Engineering
	Getting Started
	Example Diagram
	Integrated Development
	Feature Overview
	Generate Source Code
	Generate a Single Class
	Generate a Group of Classes
	Generate a Package
	Update Package Contents
	Synchronize Model and Code

	Namespaces

	Importing Source Code
	Import Projects
	Import Source Code
	Notes on Source Code Import
	Import Resource Script
	Import a Directory Structure
	Import Binary Module
	Classes Not Found During Import

	Editing Source Code
	Languages Supported
	Configure File Associations
	Compare Editors
	Code Editor Toolbar
	Code Editor Context Menu
	Create Use Case for Method

	Code Editor Functions
	Function Details
	Intelli-sense
	Find and Replace
	Search in Files
	Find File

	Search Intelli-sense

	Code Editor Key Bindings

	Application Patterns (Model + Code)
	MDG Integration and Code Engineering

	Behavioral Model Code Generation
	Code Generation - Activity Diagrams
	Code Generation - Interaction Diagrams
	Code Generation - StateMachines
	Legacy StateMachine Templates
	Java Code Generated From Legacy StateMachine Template

	StateMachine Modeling For HDLs

	Win32 User Interface Dialogs
	Modeling UI Dialogs
	Import Single Dialog from RC File
	Import All Dialogs from RC File
	Export Dialog to RC File
	Design a New Dialog

	Gang of Four (GoF) Patterns
	ICONIX
	Configuration Settings
	Source Code Engineering Options
	Code Generation Options
	Import Component Types

	Source Code Options
	Options - Code Editors
	Editor Language Properties

	Options - Object Lifetimes
	Options - Attribute/Operations

	Modeling Conventions
	ActionScript Conventions
	Ada 2012 Conventions
	C Conventions
	Object Oriented Programming In C

	C# Conventions
	C++ Conventions
	Managed C++ Conventions
	C++/CLI Conventions

	Delphi Conventions
	Java Conventions
	AspectJ Conventions

	PHP Conventions
	Python Conventions
	SystemC Conventions
	VB.NET Conventions
	Verilog Conventions
	VHDL Conventions
	Visual Basic Conventions

	Language Options
	ActionScript Options - User
	ActionScript Options - Model

	Ada 2012 Options - User
	Ada 2012 Options - Model

	ArcGIS Options - User
	ArcGIS Options - Model

	C Options - User
	C Options - Model

	C# Options - User
	C# Options - Model

	C++ Options - User
	C++ Options - Model

	Delphi Options - User
	Delphi Options - Model
	Delphi Properties

	Java Options - User
	Java Options - Model

	MySQL Options - User
	MySQL Options - Model

	PHP Options - User
	PHP Options - Model

	Python Options - User
	Python Options - Model

	SystemC Options - User
	SystemC Options - Model

	Teradata Options - User
	Teradata Options - Model

	VB.NET Options - User
	VB.NET Options - Model

	Verilog Options - User
	Verilog Options - Model

	VHDL Options - User
	VHDL Options - Model

	Visual Basic Options - User
	Visual Basic Options - Model

	MDG Technology Language Options
	Reset Options

	Set Collection Classes
	Example Use of Collection Classes

	Local Paths
	Local Paths Dialog

	Language Macros

	Developing Programming Languages
	Code Template Framework
	Code Template Customization
	Code and Transform Templates
	Base Templates
	Export Code Generation and Transformation Templates
	Import Code Generation and Transformation Templates
	Synchronize Code
	Synchronize Existing Sections
	Add New Sections
	Add New Features and Elements

	The Code Template Editor
	Create New Custom Template

	Code Template Syntax
	Literal Text
	Variables
	Macros
	Template Substitution Macros
	Field Substitution Macros
	Substitution Examples
	Attribute Field Substitution Macros
	Class Field Substitution Macros
	Code Generation Option Field Substitution Macros
	Connector Field Substitution Macros
	Constraint Field Substitution Macros
	Effort Field Substitution Macros
	File Field Substitution Macros
	File Import Field Substitution Macros
	Link Field Substitution Macros
	Linked File Field Substitution Macros
	Metric Field Substitution Macros
	Operation Field Substitution Macros
	Package Field Substitution Macros
	Parameter Field Substitution Macros
	Problem Field Substitution Macros
	Requirement Field Substitution Macros
	Resource Field Substitution Macros
	Risk Field Substitution Macros
	Scenario Field Substitution Macros
	Tagged Value Substitution Macros
	Template Parameter Substitution Macros
	Test Field Substitution Macros

	Function Macros
	Control Macros
	List Macro
	Branching Macros
	Synchronization Macros
	The Processing Instruction (PI) Macro

	Code Generation Macros for Executable StateMachines
	EASL Code Generation Macros
	EASL Collections
	EASL Properties

	Call Templates From Templates

	The Code Template Editor in MDG Development
	Create Custom Templates
	Customize Base Templates
	Add New Stereotyped Templates
	Override Default Templates

	Grammar Framework
	Grammar Syntax
	Grammar Instructions
	Grammar Rules
	Grammar Terms
	Grammar Commands
	AST Nodes

	Editing Grammars
	Parsing AST Results
	Profiling Grammar Parsing
	Macro Editor
	Example Grammars

	Code Analyzer
	Code Miner Framework
	Code Miner Libraries
	Creating a New Code Miner Database

	Code Miner Queries
	Code Miner Query Language (mFQL)
	The mFQL Language
	Set Extraction
	Set Traversal
	Set Joining

	Sparx Intel Service
	Sparx Intel Service Configuration
	Sparx Intel Service Automatic Update
	Service Configuration
	Client Configuration - Configuring Enterprise Architect to Use a Code Miner Service

