SIPARX

SYSTEMS

ENTERPRISE ARCHITECT

Unified Modeling Language
(UML)

Author: Sparx Systems
Date: 2022-10-03

Version: 16.0

CREATED WITH @ ENTF_RPF.“S_E

Table of Contents

Unified Modeling Language (UML)

UML Diagrams

10

UML Structural Models

11

Class Diagram

Composite Structure Diagram

12
15

Properties

Component Diagram

17
19

Deployment Diagram

21

Object Diagram

25

Package Diagram

27

Profile Diagram

29

UML Behavioral Models

31

Activity Diagram

32

Use Case Diagram

Example Use Case Diagram

35
37

StateMachines

Pseudostates

38
44

Regions

45

Create a Connection Point Reference

StateMachine Table

46
48

StateMachine Table Options

50

StateMachine Table Operations

Change StateMachine Table Position

Change StateMachine Table Size

52
53
54

Insert Trigger

55

Insert/Change Transition

56

Insert New State

57

Reposition State or Trigger Cells

58

Add Legend

59

Find Cell in StateMachine Diagram
StateMachine Table Conventions

60

Export State Table To CSV File

Example State-Trigger Table

Example State-Next State Table

61
62
63
64

StateMachine Table Simulation

Timing Diagram

65
67

Create a Timing Diagram

69

Set a Time Range

70

Edit a Timing Diagram

Add and Edit State Lifeline

Add States to a State Lifeline

71
72
74

Edit States in a State Lifeline

75

Delete States in a State Lifeline

76

Edit Transitions In State Lifeline

77

Add and Move Transitions

78

Add and Edit Value Lifeline

Add States In Value Lifeline

80
81

Edit Transitions In Value Lifeline
Configure Timeline - States

82

84

Numeric Range Generator

86

Configure Timeline - Transitions

87

Time Intervals

89

Create Time Intervals

90

Compress Time Intervals

92

Select Time Intervals

94

Time Interval Operations

95

Messages (Timing Diagram)

98

Create a Timing Message

99

Sequence Diagram

101

Denote Lifecycle of an Element

104

Layout of Sequence Diagrams

Sequence Elements

Messages (Sequence Diagram)

Self-Message

Call

105
106
107
110
112

Message Examples

Change the Timing Details

General Ordering

113
115
117

Asynchronous Signal Message
Co-Region Notation

118
119

Sequence Diagrams and Version Control

Sequence Element Activations

120
121

Lifeline Activation Levels

Sequence Message Label Visibility
Change the Top Margin

Inline Sequence Elements

Communication Diagram

124
125
126
127
128

Communication Diagrams in Color

Messages (Communication Diagrams)
Create a Communication Message

Re-Order Messages

130
131
132

Interaction Overview Diagram

UML Elements

Behavioral Diagram Elements

133
135
139
140

Action

Action Types

Variable Actions

Local Pre/Post Conditions

Class Operations in Diagrams

141
143
147
149
150

Action Pin

Assign Action Pins

Activity

Activity Notation

152
153
154
156

Activity Parameter Nodes

Activity Partition

Actor

157
159
161

Central Buffer Node

162

Choice

163

Combined Fragment 165
Create a Combined Fragment 168
Interaction Operators 169

Constraint 172

Datastore 173

Decision 174

Diagram Frame 176

Gate 178

Endpoint 179

Entry Point 180

Event 181

Exception 182

Expansion Node 183

Expansion Region 184

Exit Point 187

Final 188

Flow Final 190

Fork/Join 192
Fork 194
Join 196

History 197

Initial 199

Interaction 201

Interaction Occurrence 203

Interruptible Activity Region 205

Junction 207

Lifeline 209

Merge 210

Message Endpoint 211

Message Label 212

Note 213

Object Node 214

Partition 215

Receive 217

Region 218

Send 219

State 220
Composite State 221

State/Continuation 223
Continuation 224
State Invariant 226

State Lifeline 227

StateMachine 229

Structured Activity 230
Structured Node 232
Sequential Node 233
Loop Node 234
Conditional Node 238

Synch 240

System Boundary 241
System Boundary Properties 243

Terminate 248

Trigger 249
Use Case 251
Use Case Extension Points 253
Value Lifeline 255
Structural Diagram Elements 257
Artifact 258
Create File Artifacts 263
Using the Checklist and Audited Checklist Artifacts 264
Using the Reading List Artifact 268
Document Artifact 270
Custom Table Artifact 271
Class 277
Active Classes 279
Parameterized Classes (Templates) 280
Collaboration 282
Collaboration Use 284
Component 286
Data Type 288
Deployment Specification 289
Device 290
Enumeration 291
Execution Environment 292
Expose Interface 293
Information Item 294
Interface 295
Node 296
Object 297
Run-time State 298
Object State 300
Package 301
Packaging Component 302
Part 303
Add Property Value 304
Port 305
Add a Port to an Element 306
Inherited and Redefined Ports 307
Ports as Owners of Parts 308
Properties Window - Property, Redefined/Subsetted 309
Primitive 310
Signal 311
Reception 312
Properties Window for Receptions 314

UML Connectors 316
Abstraction 317
Aggregation 318
Change Aggregation Connector Form 319
Assembly 320
Association 321
Qualifiers 322

Qualifiers Dialog 324

Association Class 326

Connect New Class to Existing Association 328
Communication Path 329
Composition 330
N-Ary Association 332
Connector 333
Control Flow 334
Delegate 335
Dependency 336

Apply a Stereotype 337
Deployment 338
Extend 339
Generalization 342
Include 343
Information Flow 344

Using Information Flows 346

Convey Information on a Flow 349

Realize an Information Flow 350
Interrupt Flow 352
Manifest 353
Message 354
Nesting 355
Notelink 356
Object Flow 357

Object Flows in Activity Diagrams 358
Occurrence 359
Package Import 360
Package Merge 361
Realization 362
Recursion 363
Role Binding 364
Represents 365
Representation 366
Substitution 367
Template Binding 368

Parameter Substitution 369
Trace 371
Transition 372

Internal Transition 374
Usage 376
Use 377

UML Stereotypes 378
Apply Stereotypes 379
Stereotype Selector 380
Stereotype Visibility 382
Standard Stereotypes 384
Stereotypes with Alternative Images 386
Custom Stereotypes 388

Extending UML 390
Using UML Profiles 391

Add Profile Objects to a Diagram 392

Tagged Values in Profiles

393

Synchronize Tagged Values and Constraints 394
Extension Stereotypes 396
Boundary 397
Create a Boundary 398
Control 399
Create a Control Element 400
Entity 401
Create an Entity 402
Hyperlink 403
Image 405
Process 406
Risk 407
Task 408
Test Element 409
Test Case 410
Design Patterns 411
Publish a Pattern 412
Save a Pattern as an Artifact 414
Import a Model Pattern 416
Use a Pattern 417
Add Pattern Dialog 419

Unified Modeling Language (UML) 3 October, 2022

Unified Modeling Language (UML)

Enterprise Architect provides a wealth of tools a modeler can use to create models that comply with a wide range of
formal and informal modeling languages. One of these languages is the Unified Modeling Language (UML), and
Enterprise Architect has comprehensive support for all the elements, relationships and diagrams specified in the
language. The UML is governed by the Object Management Group (OMG), of which Sparx Systems is an active member
and contributor to the process of managing and improving the language.

Facilities

Facility Description

The Unified Modeling The UML standard defines notations and rules for specifying business and software

Language (UML) systems; the notation supplies a rich set of graphic elements for modeling object
oriented systems, and the rules state how those elements can be connected and
used.

UML is not a tool for creating software systems; instead, it is a visual language for
communicating, modeling, specifying and defining systems.

UML is not a prescriptive process for modeling software systems; it does not
supply a method or process, simply the language. You can therefore use UML in a
variety of ways to specify and develop your software engineering project.

This language is designed to be flexible, extendable and comprehensive, yet generic
enough to serve as a foundation for all system modeling requirements. With its
specification, there is a wide range of elements characterized by the kinds of
diagrams they serve, and the attributes they provide. All can be further specified by
using stereotypes, Tagged Values and profiles.

Enterprise Architect supports many different kinds of UML elements (as well as
some custom extensions); together with the connectors between elements, these
form the basis of the model.

Wide Range of Although initially conceived as a language for software development, UML can be

Applications used to model a wide range of real world domains and processes (in business,
science, industry, education and elsewhere), organizational hierarchies, deployment
maps and much more.

Enterprise Architect also provides additional Custom diagrams and elements, to
address further modeling interests.

Extending UML for New Using UML Profiles, Patterns, Grammars, Data Types, Constraints, MDG

Domains Technologies and other extensions, UML and Enterprise Architect can be tailored
to address a particular modeling domain not explicitly defined in the original UML
specification.
Enterprise Architect makes extending UML simple and straightforward and, best of
all, the extension mechanism is still part of the UML Specification.

Recommended Reading In addition to the UML Specification available from the OMG, two books that
provide excellent introductions to UML are:

(c) Sparx Systems 2022 Page 8 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

e Schaum's Outlines: UML by Bennett, Skelton and Lunn (2nd Edn.)
Published by McGraw Hill.
ISBN: 0-07-710741-1
ISBN-13: 978-0-07-710741-3

e Developing Software with UML by Bernd Oestereich
Published by Addison Wesley.
ISBN-10: 0201398265
ISBN-13: 978-0201398267

(c) Sparx Systems 2022 Page 9 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

UML Diagrams

A UML diagram is a graphical representation of part of a model, typically showing a number of elements connected by
relationships. Diagrams are one of the most expressive and appealing views of the repository; the diagram has a name
and type and is typically constructed for a particular audience to convey an idea or to create a narrative description of
part of the model. Diagrams can also be used to generate useful system Artifacts such as XML schemas, database
schemas, programming code and more.

The UML specification defines fourteen types of diagram and lists elements and relationships that can be included on
each diagram. These elements are conveniently provided in the Enterprise Architect default Toolboxes for each diagram
type. While these Toolboxes act as a guide for the novice modeler, the experienced modeler can create highly expressive
diagrams by including a wide range of element types on the same diagram.

Diagrams are created and viewed in the main workspace and are stored in Packages or other elements in the repository.

Diagram Grouping

Group Detail

Structural Diagrams Structural diagrams depict the structural elements composing a system or function,
reflecting the static relationships of a structure, or run-time architectures.

Behavioral Diagrams Behavioral diagrams show a dynamic view of the model, depicting the behavioral
features of a system or business process.

Extended Diagrams Enterprise Architect provides a set of additional diagram types that extend the core
UML diagrams for domain-specific models.

Custom Diagrams Enterprise Architect also supports diagram types specific to MDG Technologies,
including integrated technologies.

(c) Sparx Systems 2022 Page 10 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

UML Structural Models

UML Structural diagrams depict the elements of a system that are independent of time and that convey the concepts of a
system and how they relate to each other. The elements in these diagrams resemble the nouns in a natural language, and
the relationships that connect them are structural or semantic relationships. For example, a structural diagram of a vehicle
reservation system might contain elements such as Car, Reservation, Drivers License and Credit Card, and connectors
linking these elements. Experienced modelers will also show relationships to behavioral elements on these diagrams.

The UML defines seven types of UML structural diagram.

Structural Diagram types

Diagram Type Detail
Class Class diagrams capture the logical structure of the system, the Classes and objects
that make up the model, describing what exists and what attributes and behavior it
has.
Composite Structure Composite Structure diagrams reflect the internal collaboration of Classes,

Interfaces and Components (and their properties) to describe a functionality.

Component Component diagrams illustrate the pieces of software, embedded controllers and
such that make up a system, and their organization and dependencies.

Deployment Deployment diagrams show how and where the system is to be deployed; that is, its
execution architecture.

Object Object diagrams depict object instances of Classes and their relationships at a point
in time.
Package Package diagrams depict the organization of model elements into Packages and the

dependencies amongst them.

Profile Profile diagrams are those created in a «profile» Package, to extend UML elements,
connectors and components.

(c) Sparx Systems 2022 Page 11 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Class Diagram

The Class diagram captures the logical structure of the system - the Classes - and things that make up the model. It is a
static model, describing what exists and what attributes and behavior it has, rather than how something is done. On a
Class diagram you can illustrate relationships between Classes and Interfaces using Generalizations, Aggregations and
Associations, which are valuable in reflecting inheritance, composition or usage, and connections respectively.

You generate Class diagram elements and connectors from the 'Class' pages of the Diagram Toolbox.

Example Diagram

In this example Class diagram, there are two forms of the Aggregation relationship:
e The pale form indicates that the Class Account uses AddressBook, but does not necessarily contain AddressBook

e The dark Composite Aggregation form indicates ownership or containment by the target Classes (at the diamond
end) of the source Classes

Account
AddressBook
name: Sthng
+|sAcocessedBy #lzes
[+ getContact() : Contact
1 0.*|+ getContacts() : Contact]]
+lsContainedin [+ getMamea{) : String
+ insertContacticontact) : woid
+ setMame(String) : void
-lsContsinedin 1
Contact -Contains
+Contsins |0 *
emsilfdddress: String Q.- forderad}
faxMumber: String §
name: Sting ContactGroup #Parent 1
prmaryContacthethod: Stnng
names: String
+ getEmeildddress() : String . +Child 0=
+ getFaxMumber() : String i ?ethmel_‘,-. Stnng] -
+ getMame() : String + setMame(Strng) : void
+ getF'rim.s ryC:JntsctrJl-lEth od() :. String +GroupadEy a.-
+ setEmsildddress(String) : void
+ setFaxMumber(String) : void . .
v #Contains
+ setMame(String) : void ontamn
+ setPrimanyContactMethod(String) - void |g =
Class Diagram Element Toolbox Icons
Icon Description
B cass A Class is a representation of a type of object that reflects the structure and
behavior of such objects within the system.
@ Interface An Interface is a specification of behavior (or contract) that implementers agree to

meet.

(c) Sparx Systems 2022 Page 12 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Data Type - A Data Type is a specific kind of classiﬁer, similar to a Class except. that a Data
Type cannot own sub Data Types, and instances of a Data Type are identified only
by their value.

Enumeration - An Enumeration is a data type, whose instances can be any of a number of
user-defined enumeration literals.

O Primitive A Primitive element identifies a predefined data type, without any relevant
substructure (that is, it has no parts in the context of UML).
Signal A Signal is a specification of Send request instances communicated between

objects, typically in a Class or Package diagram.

An n-Ary Association element is used to model complex relationships between
three or more elements, typically in a Class or Object diagram.

<P' Association

Class Diagram Connector Toolbox Icons

Icon Description

/ Associate An Association implies that two model elements have a relationship, usually

implemented as an instance variable in one or both Classes.

A Generalize A Generalization is used to indicate inheritance.

A Composition is used to depict an element that is made up of smaller components,
typically in a Class or Package diagram.

A Compose

An Aggregation connector is a type of association that shows that an element
contains or is composed of other elements.

/A Aggregate

An Association Class is a UML construct that enables an Association to have
attributes and operations (features).

/% Association Cl

]

Realize A source object implements or Realizes its destination object.

You create a Template Binding connector between a binding Class and a
parameterized Class.

X Template Bin

Class Diagram Composite Parts

Icon Description

E= Part Parts are run-time instances of Classes or Interfaces.

0 Port Ports define the interaction between a classifier and its environment.

(c) Sparx Systems 2022 Page 13 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

T2 ExposeInterface The Expose Interface element is a graphical method of depicting the required or
supplied interfaces of a Component, Class or Part, in a Class, Component or
Composite Structure diagram.

-& Assembly An Assembly connector bridges a component's required interface (Component!)
with the provided interface of another component (Component2), typically in a
Component diagram.

A Connector Connectors illustrate communication links between Parts to fulfill the structure's
purpose, typically in a Class or Composite Structure diagram.

"7 Delegate A Delegate connector defines the internal assembly of a component's external Ports
and Interfaces, on a Class diagram or Component diagram.

Class Diagram UML Standard Profile

The UML Standard Profile is a collection of stereotyped Classes, operations and relationships provided as modeling tools
in compliance with the UML 2.5 Specification (Chapter 22, Standard Profile).

Some of these modeling elements are directly available through the 'UML Standard Profile' Toolbox page in the Class or
Package Diagram Toolboxes; others can be applied as stereotypes on the base UML modeling object.

(c) Sparx Systems 2022 Page 14 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Composite Structure Diagram

A Composite Structure diagram reflects the internal collaboration of Classes, Interfaces or Components (and their
properties) to describe a functionality. Composite Structure diagrams are similar to Class diagrams, but whilst Class
diagrams model a static view of Class structures, including their attributes and behaviors, Composite Structure diagrams
model a specific usage of the structure. You can use them to express run-time architectures, usage patterns and the
participating elements' relationships, which might not be reflected by static diagrams.

In a Composite Structure diagram, Classes are accessed as Parts or run-time instances fulfilling a particular role. These
Parts can have multiplicity, if the role filled by the Class requires multiple instances. Ports defined by a Part's Class
should be represented in the composite structure, so that all connecting Parts provide the required interfaces specified by
the Port. There is extensive flexibility, and a consequent complexity, that come with modeling composite structures. To
optimize your modeling, consider building Collaborations to represent reusable Patterns responding to your design
issues.

You generate Composite Structure diagram elements and connectors from the 'Composite' pages of the Diagram
Toolbox.

Example Diagram

This diagram shows a Collaboration used in a Composite Structure diagram to show a relationship for performing an
installation. Collaborations are often used to model common patterns.

————

L Install .y
-~ i
-~ ™,
- ~,
- B
& '\
i Computer %
FJ A"
£ b1
f L1
I 1
|
| !
\

% ;
1"“ Backup Device Software Fi
5 J
h #
™, F
™, -

R -
= e
., -

Ty - ..-r'.'

The next diagram uses this Install Collaboration in a Collaboration Use, and applies it to the UtilLoad Class via a
«representsy relationship. This indicates that the classifier UtilLoad uses the Collaboration Pattern within its
implementation.

UtilLoad 7" i
s \
e — - —— — — — = = — — NwDsinstall : 4
«represents: b Install !
“ ’

-‘- e — .:-"-”

Composite Structure Diagram Element Toolbox Icons

Icon Description

(c) Sparx Systems 2022 Page 15 of 420 Created with Enterprise Architect

Unified Modeling Language (UML)

£+

Class

Interface

Part

Port

Collaboration

Collaboration Use

Expose Interface

3 October, 2022

A Class is a representation of a type of object that reflects the structure and
behavior of such objects within the system.

An Interface is a specification of behavior (or contract) that implementers agree to
meet.

Parts are run-time instances of Classes or Interfaces.

Ports define the interaction between a classifier and its environment.

A Collaboration defines a set of cooperating roles and their connectors.

Use a Collaboration Use to apply a Pattern defined by a Collaboration to a specific
situation, in a Composite Structure diagram.

The Expose Interface element is a graphical method of depicting the required or
supplied interfaces of a Component, Class or Part, in a Component or Composite
Structure diagram.

Composite Structure Diagram Connector Toolbox Icons

Icon

7

(1]

Connectar

Assembly

Delegate

Rale Binding

Represents

Oceurrence

(c) Sparx Systems 2022

Description

Connectors illustrate communication links between Parts to fulfill the structure's
purpose, typically in a Composite Structure diagram.

An Assembly connector bridges a component's required interface (Component!)
with the provided interface of another component (Component2), typically in a
Component diagram.

A Delegate connector defines the internal assembly of a component's external Ports
and Interfaces, on a Component diagram.

Role Binding is the mapping between a Collaboration Use's internal roles and the
respective Parts required to implement a specific situation, typically in a Composite
Structure diagram.

The Represents connector indicates that a Collaboration is used in a classifier,
typically in a Composite Structure diagram.

An Occurrence relationship indicates that a Collaboration represents a classifier, in
a Composite Structure diagram.

Page 16 of 420

Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Properties

A property is a nested structure within a classifier, usually a Class or an Interface, on a Composite Structure diagram.
The contained structure reflects instances and relationships reflected within the containing classifier. Properties can have
multiplicity, and can be displayed as:

e Parts (preferred) or

e Association Roles

Parts

Library

libBooks :Books records ‘Computer
[bookCount] barcode

In this diagram there are two Parts, 'libBooks' and 'records', which are instances corresponding to the Classes 'Books' and
'Computer' respectively. The relationship between the two Parts is indicated by the connector, reflecting that
communication between the Parts is via the barcode. This contained structure and its Parts are properties owned by the
Library Class.

After dragging Parts from the Diagram Toolbox onto the Class, right-click on a Part and select 'Advanced | Set Property
Type' to connect to a classifier. If Parts disappear when dragged onto the Class, adjust the Z-order of the Class to move it
behind the Parts (right-click on the Class and select the 'Z-Order' option).

To indicate a property that is not owned by composition to the containing classifier, use a box symbol with a dashed
outline, indicating association; to do this:

1. Right-click on the Part and select the 'Properties' option.
2. Select the 'Advanced' page of the Properties' dialog.

3. Set the 'IsReference' option to True.

Association Roles

Properties can also be reflected using a normal composite structure (without containing it in a Class), with the
appropriate connectors, Parts and relationships indicated through connections to the Class.

The alternative representation is shown here; however, this representation fails to express the ownership immediately
reflected by containing properties within a classifier.

(c) Sparx Systems 2022 Page 17 of 420 Created with Enterprise Architect

Unified Modeling Language (UML)

Library

libBooks bookCount

Books

barcode

records

Computer

(c) Sparx Systems 2022

Page 18 of 420

3 October, 2022

Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Component Diagram

A Component diagram illustrates the pieces of software, embedded controllers and such that make up a system, and their

organization and dependencies.

A Component diagram has a higher level of abstraction than a Class diagram; usually a component is implemented by
one or more Classes (or Objects) at runtime. They are building blocks, built up so that eventually a component can
encompass a large portion of a system.

You generate Component diagram elements and connectors from the '‘Component’ pages of the Diagram Toolbox.

Example Diagram

This diagram demonstrates a number of components and their inter-relationships.

Assembly connectors connect the provided interfaces supplied by Product and Customer to the required interfaces
specified by Order. A Dependency relationship maps a customer's associated account details to the required interface
Payment, also specified by Order.

Product

=
Sample Diagrams :

Class Diagram

Item Code

Customer

Customer Details E

P t —-—_
aymen Account

Component Diagram Element Toolbox Icons

Icon Description

&Y Packaging Component A Packaging Component is an element that appears very similar to a Component in
a diagram but behaves as a Package in the Browser window.

2| Component A Component is a modular part of a system, whose behavior is defined by its
provided and required interfaces.

B cass A Class is a representation of a type of object that reflects the structure and
behavior of such objects within the system.

2 Interface An Interface is a specification of behavior (or contract) that implementers agree to
meet.

(c) Sparx Systems 2022 Page 19 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

1 oObject An Object is a particular instance of a Class at run time.
0 Port Ports define the interaction between a classifier and its environment.
T2 ExposeInterface The Expose Interface element is a graphical method of depicting the required or

supplied interfaces of a Component, Class or Part, in a Component or Composite
Structure diagram.

Component Diagram Connector Toolbox Icons

Icon Description

& Assembly An Assembly connector bridges a component's required interface (Component!)
with the provided interface of another component (Component?2), typically in a
Component diagram.

"7 Delegate A Delegate connector defines the internal assembly of a component's external Ports
and Interfaces, on a Component diagram.

/ Associate An Association implies that two model elements have a relationship, usually
implemented as an instance variable in one or both Classes.

Realize A source object implements or Realizes its destination object. Realize connectors
are used in a Use Case, Component or Requirements diagram to express traceability
and completeness in the model.

A Generalize A Generalization is used to indicate inheritance.

(c) Sparx Systems 2022 Page 20 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Deployment Diagram

A Deployment diagram shows how and where the system is to be deployed; that is, its execution architecture.

Hardware devices, processors and software execution environments (system Artifacts) are reflected as Nodes, and the
internal construction can be depicted by embedding or nesting Nodes. Deployment relationships indicate the deployment
of Artifacts, and Manifest relationships reveal the physical implementation of Components. As Artifacts are allocated to
Nodes to model the system's deployment, the allocation is guided by the use of Deployment Specifications. A
Deployment diagram can also indicate that a Node has a State, or show an instance of a Node with an actual run-time
value for the state, representing a specific condition or scenario.

You generate Deployment diagram elements and connectors from the 'Deployment' pages of the Diagram Toolbox.

Example Diagram
This is a simple Deployment diagram, representing the arrangement of servers at a head office. The elements are

instances of Nodes and show specific run-time states.

The servers are represented by Nodes linked by either simple or aggregate Association relationships.

(c) Sparx Systems 2022 Page 21 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

deployment HD Servers /

DME

Web Server :Dell E
PowerEdge 2650

216.239.46.96 :
Ethernet Adaptor

FRRED1 :Intel 19510

Frame Relay Router HOES01 :Ethernet
Switched Hub

WebDataServer :Dell E
PowerEdge 6650

+Intemet
N 216.239.46.95 :
+DNMEZ e s
HOFW : ﬁ Ethernet Adaptor
WatchGuard
111 Firewall

Mail Server :HP E
192 168.02 : ProLiant DLIE0

Ethernet Adaptor

HOE 502 :Ethernet
Switched Hub

Client Data Server :Dell Bl
PowerEdge 1650

182.168.0.3 :
Ethernet Adaptor

Deployment diagrams are ideal for applying alternative images to depict the objects that the elements represent. Such
images can be substituted for the elements in the diagram, as shown here:

(c) Sparx Systems 2022 Page 22 of 420 Created with Enterprise Architect

Unified Modeling Language (UML)

3 October, 2022

deployment HO Server Images /I

FRRO1 :Intel 19510 Frame
Relay Routar

216.239.46.96 :
Ethernet
Adaptor

HOESD1 :Ethernet

#Intamet

Switc Td Hulx

216.239.48.95 :

ChMZ

Web Server :Dell
PowerEdge 2850

—-

WebData Server :Dell

wDC SEMVET

RAM =2 x 1024 MB
Frocessor=2x2.8
GHZ

Dizks = 4 x 80 GB
Disk Controlier =
RAID B

wps S2VarE
RAM= 1024 Mb
Procassor= 3.0 GHz
Disks =3 x 120 3B
Disk Controller = RAID 5

Dell PowerEdge
1650

Ethernet Adaptor PowerEdge 6650
HOFW :‘WatchGuard
1l Firgwall
wSECUTES
wDC SEMVET
AN —ll—ll-' RAM = 2048 Mo
FProcessor=3.10
182.168.02 : Ghe
Ethernet Adaptor Dizks = &
Disk Controller =
Mail Server :HP RAIDS
ProLiant DL380
HOESD2 :Ethernet
Switchgd Hub
wUSSEr Don
l l Frocessor=3.0
—— GHE
I RAM = 1024 MB
192.168.0.3 : gistz- =4x |ED GE
isk Controller =
Ethernet Client Data Server: RAID 5
Adaptor

Deployment Diagram Element Toolbox Icons

Icon Description
5 Mode - A Node is a physical piece of equipment on which the system is deployed, such as a
workgroup server or workstation.
J Device - A Device is a physical electronic resource with processing capability upon which

Artifacts can be deployed for execution, as represented in a Deployment diagram.

An Execution Environment is a node that offers an execution environment for
specific types of component that are deployed on it in the form of Executable

(c) Sparx Systems 2022

Page 23

of 420

Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Artifacts.

A Component is a modular part of a system, whose behavior is defined by its
provided and required interfaces.

E:l Component

@ Interface An Interface is a specification of behavior (or contract) that implementers agree to

meet.

Artifact An Artifact is any physical piece of information used or produced by a system.

A Deployment Specification (spec) specifies parameters guiding deployment of an
artifact, as is necessary with most hardware and software technologies.

Deployment 5

Deployment Diagram Connector Toolbox Icons

Icon Description

/ Associate - An Association implies that two model elements have a relationship, usually
implemented as an instance variable in one or both Classes.

<A [ummunicaﬁun_ A Communication Path defines the path through which two DeploymentTargets are
able to exchange signals and messages.

A5 Association Class - An Association Class is a UML construct that enables an Association to have
attributes and operations (features).

A Generalize - A Generalization is used to indicate inheritance.

Realize - A source object implements or Realizes its destination object.

YA Deployment - A Deployment is a type of Dependency relationship that indicates the deployment
of an artifact onto a node or executable target, typically in a Deployment diagram.

1A Manifest - A Manifest relationship indicates that the Artifact source embodies the target model
element, typically in Component and Deployment diagrams.

(c) Sparx Systems 2022 Page 24 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Object Diagram

An Object diagram is closely related to a Class diagram, with the distinction that it depicts object instances of Classes
and their relationships at a point in time. Object diagrams do not reveal architectures varying from their corresponding
Class diagrams, but reflect multiplicity and the roles instantiated Classes could serve. They are useful in understanding a
complex Class diagram, by creating different cases in which the relationships and Classes are applied

This might appear similar to a Composite Structure diagram, which also models run-time behavior; the difference is that
Object diagrams exemplify the static Class diagrams, whereas Composite Structure diagrams reflect run-time
architectures different from their static counterparts. An Object diagram can also be a kind of Communication diagram
(which also models the connections between objects, but additionally sequences events along each path).

You generate Object diagram elements and connectors from the 'Object' pages of the Diagram Toolbox.

Example Diagram

This example shows a simple Class diagram, with two Class elements connected.

Repository

S

Computer

These Classes are instantiated as Objects in an Object diagram. There are two instances of Computer in this model,
demonstrating the usefulness of Object diagrams in considering the relationships and interactions Classes might have in
practice.

nw_Repository

ws 101 :Computar ws 104 ‘Computar

Object Diagram Element Toolbox Icons

Icon Description

2 Ador An Actor is a user of the system; user can mean a human user, a machine, or even

(c) Sparx Systems 2022 Page 25 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

another system or subsystem in the model.

Bl object An Object is a particular instance of a Class at run time.
{# Collaboration A Collaboration defines a set of cooperating roles and their connectors.
7 Collaboration Use Use a Collaboration Use to apply a Pattern defined by a Collaboration to a specific

situation, in a Composite Structure diagram.

k2 Boundary A Boundary is a stereotyped Object that models some system boundary, typically a
user interface screen.

& Control A Control is a stereotyped Object that models a controlling entity or manager.

[©

Entity An Entity is a stereotyped Object that models a store or persistence mechanism that
captures the information or knowledge in a system.

<> Association An n-Ary Association element is used to model complex relationships between
three or more elements, typically in a Class or Object diagram.

Object Diagram Connector Toolbox Icons

Icon Description

"A Information Flow An Information Flow represents the flow of Information Items (either Information
Item elements or classifiers) between two elements in any diagram.

/ Associate An Association implies that two model elements have a relationship, usually
implemented as an instance variable in one or both Classes.

.1 Dependengy Dependency relationships are used to model a wide range of dependent
relationships between model elements in Use Case, Activity and Structural
diagrams, and even between models themselves.

(c) Sparx Systems 2022 Page 26 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Package Diagram

Package diagrams depict the organization of model elements into Packages and the dependencies amongst them,
including Package imports and Package extensions. They also provide a visualization of the corresponding namespaces.

You generate Package diagram elements and connectors from the 'Package' pages of the Diagram Toolbox.

Example Diagram

This example illustrates a basic Package diagram.

GenApply ‘ Controller Integer

E +Loader }E +Loader E +Integer
E +Shape «merge» E +Time «import»

E +Time B + ConnSeg

P

ConnSeg

E +ConnSeg
E + MetAbstract

(from Controller)

Package Diagram Element Toolbox Icons

Icon Description

B Package Packages are used to organize your project contents, but when added onto a
diagram they can be used to depict the structure and relationships of your model.

1 Profile I Generates a Profile Package that has the stereotype «profile» in the Package
diagram in your technical development model. A Profile Package is used in
defining new types of structure in a model.

B Model Generates a Model Package with the stereotype «model», to represent the parent
node in a model structure.

Package Diagram Relationship Toolbox Icons

Connector Description

c_nesting The Nesting Connector is an alternative graphical notation for expressing
containment or nesting of elements within other elements.

(c) Sparx Systems 2022 Page 27 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

The Nesting connector between ConnSeq and Controller reflects what the Package
contents reveal. The Package contents can be listed by clicking on the diagram
background to display the diagram's 'Properties' dialog, selecting the 'Elements' tab
and selecting the 'Package Contents' checkbox in the 'Show Compartments' panel.

¢ pkgmerge In a Package diagram, a Package Merge indicates a relationship between two
Packages whereby the contents of the target Package have been merged with those
of the source Package.

In the example diagram, the «merge» connector indicates that the Controller
Package's elements have been imported into GenApply, including Controller's
nested and imported contents.

If an element already exists within GenApply, such as Loader and Time, these
elements' definitions are expanded by those included in the Package Controller. All
elements added or updated by the merge are noted by a generalization relationship
back to that Package.

c_pkgimport A Package Import relationship is drawn from a source Package to a Package whose
contents have been imported.

The «import» connector indicates that the elements within the target Integer
Package, which in this example is the single Class Integer, have been imported into
the Package Controller.

The Controller's namespace gains access to the Integer Class; the Integer
namespace is not affected.

c_profileapplication A Profile Application relationship indicates that the source Profile has been applied
to the target Package.

UML Standard Profile Toolbox Icons

Icon Description

B Framework Generates a Model Package with the stereotype «framework», to represent the
parent node in framework structure.

B Metamodel Generates a Model Package with the stereotype «metamodel», to represent the
parent node in metamodel structure.

B3 Model Library Generates a Model Package with the stereotype «modelLibrary», to represent the
parent node in model library structure.

B system Model Generates a Model Package with the stereotype «systemModel», to represent the
parent node in system model structure.

(c) Sparx Systems 2022 Page 28 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Profile Diagram

A Profile diagram is any diagram created in a «profile» Package.

Profiles provide a means of extending the UML. They are based on additional stereotypes and Tagged Values that are
applied to UML elements, connectors and their components. A Profile is a collection of such extensions that together
describe some particular modeling problem and facilitate modeling constructs in that domain.

You generate Profile diagram elements and connectors from the 'Profile' pages of the Diagram Toolbox.

Example Diagram

A typical unit on a Profile diagram resembles this:

ametaclassy
Port

+ isBehavior: Boolean = falsa
+ igService: Boolean = trus

N

wextendss

flowPort Q;

- _strctness: StersotypeSinctnessKind = sl

Profile Diagram Element Toolbox Icons

Icon Description

B Profile The first stage in creating a UML Profile is to create a Profile Package that has the
stereotype «profile» in your technical development model.

&» Stereotype Stereotype elements represent the way in which each object is extended.

B Metaclass Metaclass elements represent the types of object that you are extending in your
Profile Package.

Enumeration An Enumeration is a data type, whose instances can be any of a number of

user-defined enumeration literals.

Profile Diagram Connector Toolbox Icons

Icon Description

(c) Sparx Systems 2022 Page 29 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

2R Extension Connectors of type Extension represent an 'extents' relationship between two
elements.

A Generalize A Generalization is used to indicate inheritance.

/' Tagged Value A Tagged Value connector defines a reference-type (that is, RefGUID) Tagged

Value owned by the source stereotyped element; the Tagged Value name is the
name of the target role of this connector, and the Tagged Value is limited to
referencing elements with the stereotype of the target element.

(c) Sparx Systems 2022 Page 30 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

UML Behavioral Models

UML Behavioral Diagrams depict the elements of a system that are dependent on time and that convey the dynamic
concepts of the system and how they relate to each other. The elements in these diagrams resemble the verbs in a natural
language and the relationships that connect them typically convey the passage of time. For example, a behavioral
diagram of a vehicle reservation system might contain elements such as Make a Reservation, Rent a Car, and Provide
Credit Card Details. Experienced modelers will show the relationship to structural elements on these diagrams.

The UML defines seven types of behavioral diagram.

Diagram Types
Diagram Type Detail

Activity Diagrams Activity diagrams model the behaviors of a system, and the way in which these
behaviors are related in an overall flow of the system.

Use Case Diagrams Use Case diagrams capture Use Cases and relationships among Actors and the
system; they describes the functional requirements of the system, the manner in
which external operators interact at the system boundary, and the response of the
system.

StateMachine Diagrams StateMachine diagrams illustrate how an element can move between states,
classifying its behavior according to transition triggers and constraining guards.

Timing Diagrams Timing diagrams define the behavior of different objects within a time-scale,
providing a visual representation of objects changing state and interacting over
time.

Sequence Diagrams Sequence diagrams are structured representations of behavior as a series of
sequential steps over time. They are used to depict workflow, Message passing and
how elements in general cooperate over time to achieve a result.

Communication Diagrams Communication diagrams show the interactions between elements at run-time,
visualizing inter-object relationships.

Interaction Overview Interaction Overview diagrams visualize the cooperation between Interaction

Diagrams diagrams (Timing, Sequence, Communication and other Interaction Overview

diagrams) to illustrate a control flow serving an encompassing purpose.

(c) Sparx Systems 2022 Page 31 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Activity Diagram

Activity diagrams are used to model system behaviors, and the way in which these behaviors are related in an overall
flow of the system (that is, dynamic element interactions). The logical paths a process follows, based on various
conditions, concurrent processing, data access, interruptions and other logical path distinctions, are all used to construct a
process, system or procedure.

You generate Activity diagram elements and connectors from the 'Activity' pages of the Diagram Toolbox.

Example Diagram

This diagram illustrates some of the features of Activity diagrams, including Activities, Actions, Start Nodes, End Nodes
and Decision points.

é Contact Sales Staff A Receive Order J

.@ a——
Dirder

N
Discuss o
Price Agree Price
o v

Check Credit Card [Check Stock

X

V4

Cancel Order \ e

J\ N

ActivityFinal

Deliver Goods Process Credit Card

Activity Diagram Element Toolbox Icons

(c) Sparx Systems 2022 Page 32 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Icon Description
I Activity An Activity element organizes and specifies the participation of subordinate
behaviors, such as sub-Activities or Actions, to reflect the control and data flow of
a process.

An Action element describes a basic process or transformation that occurs within a
system, and is the basic functional unit within an Activity diagram.

I Partition A Partition element is used to logically organize an Activity's elements.

= send The Send element depicts the action of sending a signal, in an Activity diagram.

=3 Recend A Receive element defines the acceptance or receipt of a request, in an Activity
diagram.

[=l Structured Activity A Structured Activity is an activity node that can have subordinate nodes as an

independent Activity Group.

E1 Expansion Region Enterprise Architect supports two types of Region element: Expansion Regions and
Interruptible Region Interruptible Activity Regions.
An Expansion Region surrounds a process to be imposed multiple times on the
incoming data, once for every element in the input collection.

An Interruptible Activity Region surrounds a group of Activity elements, all
affected by certain interrupts in such a way that all tokens passing within the region
are terminated should the interruption(s) be raised.

7 Exception The Exception Handler element defines the group of operations to carry out when
an exception occurs.

@ Activity Parameter An Activity Parameter Node accepts input to an Activity or provides output from an

Activity.
1 object An Object is a particular instance of a Class at run time.
= Central Buffer Node A Central Buffer Node is an object node for managing flows from multiple sources

and destinations, represented in an Activity diagram.

Datastore A Datastore defines permanently stored data.

mm Expansion Node An Expansion Node is a shorthand notation to indicate that the Action/Activity
consists of an Expansion Region.

@ [Initial An Initial element is used to define the start of a flow when an Activity is invoked.

<» Dedision In an Activity diagram or Interaction Overview diagram, a Decision indicates a
point of conditional progression: if a condition is True, then processing continues
one way; if not, then another.

4 Merge A Merge Node brings together a number of alternative flow paths in Activity,
Analysis and Interaction Overview diagrams.

(c) Sparx Systems 2022 Page 33 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

& Ssynch A Synch state is useful for indicating that concurrent paths of a StateMachine are
synchronized. It is used to split and rejoin periods of parallel processing.

== Fork/Join A Fork/Join element can be used to:
| Forkioin 1) Split a single flow into a number of concurrent flows
2) Join a number of concurrent flows or

3) Both join and fork a number of incoming flows to a number of outgoing flows

& Flow Final The Flow Final element depicts an exit from the system, as opposed to the Activity
Final, which represents the completion of the Activity.

@® Final The Activity Final element indicates the completion of an Activity; upon reaching
the Final, all execution in the Activity diagram is aborted.

Activity Diagram Connector Toolbox Icons

Icon Description
/A Control Flow The Control Flow connects two nodes in an Activity diagram, modeling an active
transition.
B2 Object Flow An Object Flow connects two elements, with specific data passing through it,

modeling an active transition.

Interrupt Flow The Interrupt Flow defines the two UML concepts of connectors for Exception
Handler and Interruptible Activity Region.

Notes

® You can create Analysis diagrams (Simplified Activity diagrams) containing the elements most useful for business
process modeling, using the New Diagram' dialog

® You can perform model simulations on Activity models, and the model that you simulate can contain elements from
more than one Package; to include the external elements in the simulation, you must create a Package diagram
containing the 'parent' Package and the 'external' Packages containing the external elements, then create a Package
Import connector from the parent Package to each external Package

(c) Sparx Systems 2022 Page 34 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Use Case Diagram

Use Case diagrams capture Use Cases and the relationships between Actors and the subject (system). You can use them
to:

e Describe the functional requirements of the system
e Describe the manner in which outside things (Actors) interact at the system boundary
e Describe the response of the system

You generate Use Case diagram elements and connectors from the 'Use Case' pages of the Diagram Toolbox.

Example Diagram

This diagram illustrates some features of Use Case diagrams:

BN

This diagram illustrates the use cases
that support searching for a book and
browsing the resultant record set. The
customer can enter browse oriteria and
sorell through the results. The user can
select an itern for addition to their
current shopping cart.

Browse Book Catalogue

Q Locate Bock by Title or

Author

Customer

Reguest Unlisted Book

Use Case Diagram Element Toolbox Icons

Icon Description

2 Ador An Actor is a user of the system; user can mean a human user, a machine, or even
another system or subsystem in the model.

> Use Case A Use Case is a UML modeling element that describes how a user of the proposed
system interacts with the system to perform a discrete unit of work.

A Test Case is a stereotyped Use Case element which enables you to give greater
visibility to tests.

& Test Case

Z# Collaboration A Collaboration defines a set of cooperating roles and their connectors.

A Collaboration Use element allows for a Pattern defined by a Collaboration to

(c) Sparx Systems 2022 Page 35 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

& Collaboration Use applied to a specific situation.

Boundary A System Boundary element is a non-UML element used to define conceptual
boundaries.

1 Package Packages are used to organize your project contents, but when added onto a

diagram they can be used to depict the structure and relationships of your model.

Use Case Diagram Connector Toolbox Icons

Icon Description
LY Use A Use relationship indicates that one element requires another to perform some
interaction.
/ Associate An Association implies that two model elements have a relationship, usually

implemented as an instance variable in one or both Classes.

A Generalize A Generalization is used to indicate inheritance.

A Incude An Include connection indicates that the source element includes the functionality
of the target element.

EA Extend An Extend connector is used to indicate that an element extends the behavior of
another.
7 Realize A Realizes connector represents that the source object implements or Realizes its

destination object.

L7 Invokes An Invokes connector indicates that source object, at some point, causes the
destination object to happen.

"7 Precedes A Precedes connector indicates that the source object must be completed before the

destination object can begin.

Notes

Invokes and Precedes are stereotyped Dependency relationships, defined by the OPEN Modeling Language (OML -
Object-oriented Process, Environment and Notation Modeling Language - is an international de facto standard
object-oriented development method developed and maintained by the OPEN Consortium). They have been incorporated
into the Use Case modeling elements).

e Invokes indicates that Use Case A, at some point, causes Use Case B to happen

e Precedes indicates that Use Case C must complete before Use Case D can begin

(c) Sparx Systems 2022 Page 36 of 420 Created with Enterprise Architect

Unified Modeling Language (UML)

Example Use Case Diagram

This diagram illustrates some features of Use Case diagrams:

Browse Book Catalogue

Q Locate Book by Title or

Customer

Reguest Unlisted Book

Author

(c) Sparx Systems 2022

Page 37 of 420

3 October, 2022

AN

This diagram illustrates the use cases
that support searching for a book and
browsing the resultant record set. The
customer can enter browse oriteria and
sorell through the results. The user can
select an itemn for addition to their
cumrent shopping cart.

Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

StateMachines

StateMachines illustrate how an element (often a Class) can move between States, classifying its behavior according to
transition triggers and constraining guards.

You generate StateMachine elements and connectors from the 'State’ pages of the Diagram Toolbox.

Naming
e StateMachines were formerly known as State diagrams

e StateMachine representations in UML are based on the Harel State Chart Notation and therefore are sometimes
referred to as State Charts

State Tables

You can display a StateMachine as a diagram, or as a table in one of three relationship formats.

Select the display format

Step Action

1 Right-click on the diagram background and select the 'Statechart Editor' option.

2 Select the appropriate display option:
e Diagram
e Table (State-Next State)
e Table (State-Trigger)
e Table (Trigger-State)

Example Diagram

This diagram illustrates some features of StateMachines.

(c) Sparx Systems 2022 Page 38 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

?

Compose
Sawe
L Composed [Save]
[Send]
[| i Sawed T
Cancel]
[Send] |
L
®
Discarded [Restore] [Delete]

I/F Deleted _\ Account Limit Reached [HighPriority]

/SendMessage
®)

Archived

[Purge]

Purged

Composite Diagram States
The chain-link symbol in the bottom right corner of the Saved State indicates that it is a State with a Composite diagram.

You have two options for displaying the contents of a State's Composite diagram. Firstly, you can double-click on the
parent element to display its child diagram separately, as shown here:

(c) Sparx Systems 2022 Page 39 of 420 Created with Enterprise Architect

Unified Modeling Language (UML)

3 October, 2022

stm Sawved

Sent

Transmit Via Gateway [ExternalContact)

' In Transit Y

I.-" Deliverad

) L

W

[ReachRecipient]

[Read)

Read

J

e
—

Final

By default, the child diagram displays within a labeled frame that represents the parent object in the context of the child
diagram. You can right-click on the background and select the 'Hide Diagram Frame' option to hide the frame, and on the
'Show Diagram Frame' option to show the frame again.

Alternatively, you can right-click on the composite element on the main diagram and select the 'Advanced | Show
Composite Diagram' option, which again displays the child diagram in a labeled frame, but this time within the context

of the parent diagram.

(c) Sparx Systems 2022

Page 40 of 420

Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

?

Compose
Composed . Save)
1 [Save] [
[Send]
Saved
Cancel]
[Send)
@ Sent Transmit via Gateway [ExternalContact) - In Transit .,

Discarded —g

[ReachRecipient]

Delivered Read
¢ Delivered ™

[Restore) [Delete] ‘
Account Limit Reached [HighPricrity]
ISendMessage
Deleted
k. A Archived

[Purge]

Purged

ProtocolStateMachines

The OMG UML specification (UML Superstructure Specification, v2.5, sect. 14.4) states:

"ProtocolStateMachines are used to express usage protocols. ProtocolStateMachines express the legal sequences of
Event occurrences to which the Behaviors of an associated BehavioredClassifier must conform. The StateMachine
notation is a convenient way to define the order of invocations of the behavioral features of a Classifier.
ProtocolStateMachines can be associated with Classifiers, Interfaces, and Ports."

To create a ProtocolStateMachine, create a StateMachine element and open the Properties window for that element.
Select the 'Behavior' tab and, on that, select the "Protocol StateMachine' checkbox. The element on the diagram now has
the word <<protocol>> above the element name.

StateMachine Diagram Element Toolbox Icons

Icon Description

(c) Sparx Systems 2022 Page 41 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

@ state A State represents a situation where some invariant condition holds; this condition
can be static (waiting for an event) or dynamic (performing a set of activities).

0= state Machine A StateMachine element is a container for groups of related State elements.

@ Initial The Initial element represents a pseudostate used to denote the default state of a
Composite State; there can be one Initial vertex in each Region of the Composite
State.

@ Final The Activity Final element indicates the completion of an Activity; upon reaching

the Final, all execution in the Activity diagram is aborted.

& History There are two types of History pseudostate defined in UML: shallow and deep
history.
& Synch A Synch state is useful for indicating that concurrent paths of a StateMachine are

synchronized. They are used to split and rejoin periods of parallel processing.

(1 objed An Object is a particular instance of a Class at run time.

<» Choice The Choice pseudostate is used to compose complex transitional paths, where the
outgoing transition path is decided by dynamic, run-time conditions.

@ Juncion Junction pseudostates are used to design complex transitional paths in
StateMachine diagrams. A Junction can be used to combine or merge multiple paths
into a shared transition path.

3 Entry Entry Point pseudostates are used to define the beginning of a StateMachine. An
Entry Point exists for each region, directing the initial concurrent state
configuration.

& Exit Exit Points are used in StateMachine elements and StateMachine diagrams to
denote the point where the machine is exited and the transition sourcing this exit
point.

M Terminate The Terminate pseudostate indicates that upon entry of its pseudostate, the
StateMachine's execution ends.

= Fork/Join A Fork/Join element can be used to: 1) split a single flow into a number of
concurrent flows, 2) join a number of concurrent flows or 3) both join and fork a
number of incoming flows to a number of outgoing flows.

| Fork/oin A Fork/Join element can be used to:
1) Split a single flow into a number of concurrent flows
2) Join a number of concurrent flows or

3) Both join and fork a number of incoming flows to a number of outgoing flows

StateMachine Diagram Connector Toolbox Icons

(c) Sparx Systems 2022 Page 42 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Icon Description

| A Transition A Transition connector represents the logical movement from one State to another
in a StateMachine diagram.

A Object Flow An Object Flow connects two elements, with specific data passing through it,
modeling an active transition.

Notes

e State elements can display either with or without a line across them; the line - as shown - displays when the element
has features such as operations (which could be hidden) or when the 'Show State Compartment' checkbox is selected
in the 'Objects' page of the 'Preferences' dialog

e tis possible to add Entry Point and Exit Point elements to the border of a State or StateMachine element -
right-click on the element in the diagram and select the 'New Child Element| Entry Point' or 'Exit Point' option; if the
element is a composite element and represented by a frame, you can also right-click on the selected frame and add
the Entry Point or Exit Point elements

e Ifyou have Entry Points and/or Exit Points on a StateMachine that is a classifier for another State, you can create
Connection Point References to the classifier from the other State

e Itis also possible to add Regions to a State element or StateMachine element frame; right-click on the selected frame
and select the 'Define Concurrent Substates' option

e You can perform model simulations on StateMachine models, and the model that you simulate can contain elements
from more than one Package; to include the external elements in the simulation, you must create a Package diagram
containing the 'parent' Package and the 'external' Packages containing the external elements, and then create a
Package Import connector from the parent Package to each external Package

(c) Sparx Systems 2022 Page 43 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Pseudostates

Pseudostates are a UML abstraction for various types of transient vertex used in StateMachine diagrams. Pseudostates
are used to express complex transition paths.

You can create a Pseudostate by dragging one of these element icons onto a diagram in Enterprise Architect.

Diagram Toolbox Icons

Icon Description

@ Initial The Initial element represents a pseudostate used to denote the default state of a
Composite State; there can be one Initial vertex in each Region of the Composite
State.

() Entry Entry Point pseudostates are used to define the beginning of a StateMachine. An
Entry Point exists for each region, directing the initial concurrent state
configuration.

@ Exit Exit Points are used in StateMachine elements and StateMachine diagrams to
denote the point where the machine is exited and the transition sourcing this exit
point.

& Choice The Choice pseudostate is used to compose complex transitional paths, where the

outgoing transition path is decided by dynamic, run-time conditions.

@ Jundtion Junction pseudostates are used to design complex transitional paths in
StateMachine diagrams. A Junction can be used to combine or merge multiple paths
into a shared transition path.

@ History There are two types of History pseudostate defined in UML: shallow and deep
history.
% Terminate The Terminate pseudostate indicates that upon entry of its pseudostate, the

StateMachine's execution ends.

@ Final The Activity Final element indicates the completion of an Activity; upon reaching
the Final, all execution in the Activity diagram is aborted.

— Eorii A Fork/Join element can be used to: 1) split a single flow into a number of
concurrent flows, 2) join a number of concurrent flows or 3) both join and fork a

Fork/loin . . .
! number of incoming flows to a number of outgoing flows.

Notes

e All the listed types of pseudostate can be represented in code, and can generate code under the StateMachine code
generation templates from Enterprise Architect release 11 onwards

(c) Sparx Systems 2022 Page 44 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Regions

If you are modeling an active State configuration on a StateMachine diagram, and you need to represent several States as
being active concurrently, you can achieve this by firstly creating a StateMachine element or Composite State element
and secondly subdividing that element into Regions. You set out the State configuration such that there is only ever one
of the concurrently active States per Region. Multiple transitions can occur from a single event dispatch, so long as the
similarly-triggered transitions are divided by Regions.

Regions display on an element on a diagram as subdivisions of a structured compartment, underneath other
compartments such as tags, responsibilities, attributes and operations.

Access

Context Menu Right-click on element | Advanced | Define Concurrent Substates

Create a Region in a Composite State or StateMachine element

Step Action

1 On the 'State Regions' dialog, the 'Name' field defaults to '<anonymous>".
2 If you want to create Regions that have no title, simply click on the Save button once for each Region to
create.

If you want to create named Regions, type the name and click on the Save button for each Region.

3 When you have created as many Regions as you need, click on the Close button.

You can now populate the Regions with elements from the 'State' pages of the Diagram Toolbox.

Notes

e Changes to the elements in a Region are committed when the diagram is saved; if you want to undo the changes,
reload the diagram without saving

e Any States, State Nodes (Pseudo-States) or Synch elements added to a Region are owned by that Region and,
ordinarily, cannot be dragged into another Region; however, if you attempt to drag a State between Regions, the
'Move embedded element to region' menu option displays which - if you select it - allows the transfer to complete

(c) Sparx Systems 2022 Page 45 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Create a Connection Point Reference

A Connection Point Reference represents the use, by a Submachine State, of an Entry Point or Exit Point pseudostate
defined in the State element's classifier StateMachine. You initially create the Connection Point Reference elements
themselves as Entry Points or Exit Points.

Create Entry Points and/or Exit Points

Step Action

1 Create or open the classifier StateMachine (as a child diagram of a Class element).

The StateMachine is represented by a labeled frame.

2 If the Entry Points and/or Exit Points do not already exist, right-click on the inside edge of the frame and
select the 'New Element | Entry Point' or 'New Element | Exit Point' option, as necessary.

The corresponding pseudostate element is immediately created on the edge of the frame. If you prefer,
you can double-click on the element and give it a specific name.

3 Create as many additional Entry Point and/or Exit Point elements as you need.
4 If the corresponding State element does not already exist, drag a State icon from the Diagram Toolbox

into the frame.

Create the appropriate connectors between the State element and the Entry Point and Exit Point elements.

stm SubMachine
EntryPointi
(: ExitPoint]
__ /,,2@
(: ExitPoint2
EntryPoint2
5 Save the diagram.
Create Connection Point References
Step Action
1 Create or open the calling StateMachine (as a child diagram of a Class element).

If the elements do not already exist, create the appropriate State and pseudostate elements and connectors

(c) Sparx Systems 2022 Page 46 of 420 Created with Enterprise Architect

Unified Modeling Language (UML)

2 in the diagram.

3 October, 2022

3 Click on the calling State element and press Ctrl+L to display the 'Select Element' dialog.

Browse for and select the classifier StateMachine from the 'Create Entry Points and/or Exit Points' stage.

4 Right-click on the State element, and select the 'New Element | Entry Point' or 'New Element | Exit Point'

option, as you need.

The corresponding pseudostate element is immediately created on the border of the element.

stm StateMachine /

EntryPointd - ¢ State2: SubMachine ™ ExitPoint3

hd < 7

=®

Final
5 Double-click on the Entry Point element.
The 'Edit ConnectionPointReference' dialog displays.
6 If you prefer, in the 'Name' field type a new name for the selected Entry Point.

In the 'Specify submachine's EntryPoints as reference' panel, select the checkbox against each of the
classifier's Entry Points to create a reference to. You can select more than one checkbox.

Type: |entry Mame : EntryPoint3

Spedfy submachine's EntryPoints as reference:

Mame Type
| EntryPoint1 EntryPoint
| EntryPoint2 EntryPoint
7 Click on the OK button.
8 If necessary, repeat steps 4 to 7 for the State element's Exit Point.
(c) Sparx Systems 2022 Page 47 of 420

Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

StateMachine Table

A StateMachine table is one of two variants of a StateMachine (the other is the StateMachine diagram). It displays the
information of the StateMachine in table form, and is a method of specifying the discrete behavior of a finite
state-transition system; that is, what state the StateMachine moves to and the conditions under which the transition takes
place.

Access

Context Menu Right-click on the background of a StateMachine diagram | Statechart Editor |
Table (option)

StateMachine Table Display

You can display the State transition in the table as one of two different types of relationship:

Type Description

State - Trigger The rows indicate the current states and the columns indicate trigger events.

The cell at the intersection of a row and column identifies the target state in the
transition if the trigger occurs, and the condition (or guard) of the transition, or the
other way around if you prefer, in a Trigger - State format.

State - Next State The rows and columns both indicate states, and the cell at the intersection of a row
and column indicates:

e The event that triggers a transition from the current (row) state to the next
(column) state

e The condition (or guard) of the event, and

e The effect of the transition

Select the display format

Step Action

1 Right-click on the diagram background and select the 'Statechart Editor' option.

2 Select the appropriate display option:
e Diagram
e Table (State-Next State)
e Table (State-Trigger)
e Table (Trigger-State)

(c) Sparx Systems 2022 Page 48 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

(c) Sparx Systems 2022 Page 49 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

StateMachine Table Options

You can choose the StateMachine table layout and set other options from the 'StateMachine Diagram: Options' dialog,
which you display by either:

e Double-clicking on the StateMachine table background or
e Right-clicking on the background and selecting the 'State Table Options' option

Options

Option

Table Format

Cell Size

Transition Cell Width
Transition Cell Height
Left Edge Cell Width
Top Edge Cell Height
Cell Color
State/Trigger Cell

State/Trigger Enumeration

Transition Cell
Highlight Options

Highlight Zones Related to

(c) Sparx Systems 2022

Action

Select the required table format.

State - Trigger:

e Rows represent States, each State name in a left edge cell

e Columns represent Triggers, each Trigger name in a column header cell

e The intersection of a row and column identifies the Transition (if there is one)

e The Transition cell displays information about the next State and the condition
(guard) of the Transition

Trigger - State: as for State - Trigger, except that rows represent Triggers and
columns represent States.

State - Next State:

e Both rows and columns represent States

e The intersection of row and column defines the transition (if there is one) from
the row State to the column State

Complete the next four fields.

Specify the width of the transition cells (that is, the column width).

Specify the height of the transition cells (that is, the row height).

Specify the width of the left edge (row title) cells.

Specify the height of the top edge (column title) cells.

Complete the next three fields.

Select the color of the row and column title cells.

Select the color of the enumeration (row/column numbering) cells.

You must select at least one of the 'Enable State Enumeration' and 'Enable Event

Enumeration' checkboxes to set this color.

Select the color of the transition cells (in the main body of the table).

Highlight the cells for all elements involved in a selected transition - the initial

Page 50 of 420

Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Selected Transition state, the target state, and the trigger.

Highlight Color Select the color of the highlight.

Use Different Color for Highlight the cell for the target element in a transition in a different color to the cell
Target State for the source element.

Target Zone Color Select the color of the highlight.

Display Options

Always Display an Empty Add an empty row (and, on a State - Next State table, an empty column) to the end
State Zone of the table.

The title cell contains a l_l button. You can click twice (not double-click) on the
button to edit the cell and identify a new state. In this case, another empty state
zone is automatically added.

Enable State Enumeration Add a cell to each state title cell, to number the state. Numbering starts at 0.

Prefix If required, type a prefix for the state number or delete the default 'S' to have no
prefix.

Enable Event Enumeration Add a cell to each event or trigger title cell, to number the event. Numbering starts
at 0.

Prefix If required, type a prefix for the event number or delete the default E to have no
prefix.

Sample State Table Display a preview of the table format as you define it.

Advanced Define diagram options. The StateMachine diagram 'Properties' dialog displays.

Restore Defaults Reapply the State Table diagram default values.

Apply Apply the changed options to the State Table diagram.

(c) Sparx Systems 2022 Page 51 of 420 Created with Enterprise Architect

Unified Modeling Language (UML)

3 October, 2022

StateMachine Table Operations

As a StateMachine table is a variant of a StateMachine diagram, most of the operations for manipulating the data are the
same as for StateMachine diagrams. The operations specific to StateMachine tables are described in these topics:

Operations

Operation

Change StateMachine Table Position

Change StateMachine Table Size

Insert New State

Insert Trigger

Insert/ChangeTransition

Reposition State or Trigger Cells

Add Legend

Locate Cell in StateMachine diagram

StateMachine Table Conventions

Export State Table To CSV File

(c) Sparx Systems 2022

Page 52 of 420

Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Change StateMachine Table Position

If necessary, you can move the StateMachine table around in the Diagram View.

Change the position of the StateMachine table

Step Action
1 Press Ctrl+A or double-click on the top left cell to select the whole StateMachine table.
2 Drag and drop the StateMachine table to the required position.

Alternatively, use Shift+Right Arrow, Left Arrow, Up Arrow or Down Arrow to move the StateMachine
table.

(c) Sparx Systems 2022 Page 53 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Change StateMachine Table Size

There are three ways to change the size of the StateMachine table:
e Change the cell size on the 'StateMachine Diagram: Options' dialog

e Press Ctrl+A or double-click on the top left cell to select the whole StateMachine table, then press Ctrl+ 'Left', 'Up',
'Right', or 'Down' to change the size

e Select the StateMachine table, then drag the shape handles to change the size

(c) Sparx Systems 2022 Page 54 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Insert Trigger

If the StateMachine table format is either State-Trigger or Trigger-State, you can use any of these methods to insert a
new Trigger:

Methods

Step Action

1 In the top left cell in the StateMachine table, move the cursor to the word 'Event' to display a + at the end
of the word; click on the + to create a new Trigger.

2 In the top left cell in the StateMachine table, right-click and select the 'Add Trigger' option to create a new
Trigger.
3 Select an existing Trigger in the StateMachine table, then press the Insert key to insert a new Trigger

before the existing Trigger.

4 Click on an existing Trigger in the StateMachine table, right-click and select either the:
e 'Insert New Trigger Before' option to insert a new Trigger before the current Trigger, or

e 'Insert New Trigger After' option to insert a new Trigger after the current Trigger

(c) Sparx Systems 2022 Page 55 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Insert/Change Transition

This topic explains how you can insert or modify a transition link between two State elements.

Options

Action Description

Insert a new Transition You can insert a new Transition using one of these methods.
Right-click on the cell in which to create a Transition:

e Ifthe StateMachine table format is State-Trigger or Trigger-State, the context
menu lists the States you can choose as the target of the Transition; click on the
required State name to create the Transition

e [fthe StateMachine table format is State-Next State, click on the 'Insert
Transition' context menu option to create the Transition

Alternatively, in the 'State Relationships' page of the Toolbox, select the Transition
element, then click on the cell in the StateMachine table in which to create the
Transition; double-click on the Transition to define it in the '"Transition Properties'
dialog.

Change the Transition As for the State Chart diagram, to change the properties of a Transition
double-click on the 'Transition' cell and edit the details on the '"Transition Properties
dialog.

Change Transition States You can change the source and target of the Transition by right-clicking the
Transition and selecting the 'Advanced | Set Source and Target' option.

Alternatively, you can change the Transition source, target or Trigger by clicking
on the Transition and dragging it to a different cell.

If the StateMachine table format is either State-Trigger or Trigger-State, you can
change the target state of a Transition by:

1. Highlighting the target state name in the Transition cell and clicking on it to
display a list of the states in the table.

2. Clicking on the preferred target state name.

Highlight States and You can select options to highlight the source State, target State and Trigger cells
Trigger Related to associated with a Transition, using the 'Highlight Options' panel on the
Transition 'StateMachine Diagram: Options' dialog.

When you click on the Transition cell its associated State and Trigger cells are
highlighted.

Alternatively, click on the Transition cell and press and hold the L key.

(c) Sparx Systems 2022 Page 56 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Insert New State
Options

Action Description

Insert a new State in the You can insert a new State in the StateMachine table, using one of these methods:

StateMachine table 3. Inthe top left cell in the StateMachine table, move the cursor to the word State

to display a + at the end of the word; click on the + to create a new State
4. Right-click in the top left cell in the StateMachine table and select 'Add State'

5. Right-click on an existing State cell in the StateMachine table and select:
- 'Insert New State Before' to insert a new State before the
current State, or
- 'Insert New State After' to insert a new State after the current
State

6. Click on an existing State cell in the StateMachine table, and press the Insert
key to create and insert a new State above the selected State

7. In the Toolbox, on the 'State Elements' page, click on an element and then click
on:
- The diagram background to add a new State to the end of
the table, or
- An existing State cell to add the new State just above it

From the 'State Elements' page of the Toolbox you can insert State, Initial, Final,
Entry, Exit and Terminate elements.

Add a Substate to a To add a Substate to a selected State, right-click on the required State cell in the
selected State StateMachine table, and select '"Add Substate'; Enterprise Architect adds the
Substate to the State.

If the selected State does not allow a Substate, the 'Add Substate' option is grayed
out.

You can also drag one existing State over another; if the second State allows
Substates, the dragged State then becomes its Substate.

Similarly, you can change the parent State of a Substate by dragging the Substate
from the original parent State to a different State.

Remove the parent relation To remove the parent relation of a Substate and make it a separate State, right-click
of a Substate and make it a on the Substate in the StateMachine table and select 'Remove Parent Relation'; the
separate State Substate cell becomes a State cell.

You can also drag and drop the Substate onto the top left cell of the StateMachine
table; the dragged Substate again becomes a State cell.

(c) Sparx Systems 2022 Page 57 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Reposition State or Trigger Cells

You can change the position of a selected State or Trigger cell in one of these ways:
e Right-click on the State or Trigger title cell and select the appropriate 'Order | Move xxx' option
e Click on the cell and press Shift+Right Arrow, Left Arrow, Up Arrow or Down Arrow

(c) Sparx Systems 2022 Page 58 of 420 Created with Enterprise Architect

Unified Modeling Language (UML)

Add Legend

3 October, 2022

You can add a simple legend to any StateMachine Table cell that has no transition. The two legend symbols are:

e [-Ignore

e N - Never Happen

Assign a legend symbol to a StateMachine Table cell

Step Action

1 Click on the cell to which to assign the legend and press:
e The I key to insert the 'Ignore' legend, or
e The N key to insert the 'Never Happen' legend
The required symbol displays in the center of the cell.

Alternatively

Step Action

1 Right-click on the cell to which to assign the legend.

2 Select the appropriate context menu option:
e Legend | Ignore
e Legend | Never Happen
The required symbol displays in the center of the cell.

Notes

e Toremove a legend symbol from a cell, either:
e Click on the cell and press Delete, or

e Right-click on the cell and select Legend | Remove Legend

(c) Sparx Systems 2022 Page 59 of 420

Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Find Cell in StateMachine Diagram

Locate In State Chart

On the StateMachine table, to locate a selected State or Trigger element in a StateMachine diagram:
e Select 'Find | Locate in State Chart'

Enterprise Architect switches to the StateMachine diagram and highlights the selected element.
You can locate a Transition relationship in a similar way, by selecting "Locate in State Chart'.

A Trigger on a StateMachine table might or might not exist on the corresponding StateMachine diagram; if the Trigger
does not exist on the StateMachine diagram, the 'Locate in State Chart' option is disabled.

Locate In State Table

On the StateMachine diagram, to locate a selected State or Trigger element in the corresponding StateMachine table:
e Select 'Find | Locate in State Table'
Enterprise Architect switches to the StateMachine table and highlights the selected element.

You can locate a Transition relationship in a similar way, by selecting 'Locate in State Table'.

(c) Sparx Systems 2022 Page 60 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

StateMachine Table Conventions

Trigger
e Deleting a Trigger removes it completely from the model, therefore you cannot UNDO a Trigger deletion

e There is a <None> column at the end of the Event heading row; this is for Transitions that have no Trigger
information

State

From the Toolbox you can insert these State element types only (although the StateMachine table might pick up and
display other types, such as Submachine State):

e State
e Initial
e Final
e Entry
e Exit

e Terminate

Transition

The Transition cell displays its properties in one of two ways, depending on the StateMachine table format; if the
StateMachine table format is State - Trigger or Trigger - State, the Transition cell displays the Guard and Target as
shown:

[quard]

S54

If the StateMachine table format is State - Next State, then the Transition cell displays the Trigger, Guard and Effect in
this format:

Event3 [guard]

Effect 1

In the StateMachine table, you can edit the Guard and Effect in place. If the Guard or Effect is empty for your selected
Transition cell, the cell displays an ellipsis (...) instead; click twice (not double-click) on the ellipsis to type in the Guard
and Effect names.

(c) Sparx Systems 2022 Page 61 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Export State Table To CSV File

Export a StateMachine Table to a CSV file

Step Action
1 Open the required StateMachine Table.
2 Right-click on the diagram background and select the 'Export Statechart to CSV file' option.
The 'Save As browser' dialog displays.
3 Select the appropriate directory location and type in the .csv filename.
4 Click on the Save button.

(c) Sparx Systems 2022 Page 62 of 420 Created with Enterprise Architect

Unified Modeling Language (UML)

3 October, 2022

Example State-Trigger Table

The rows indicate the current states and the columns indicate trigger events (or the other way around if you prefer, in a

Trigger - State format).

The cell at the intersection of a row and column identifies the target state in the transition if the trigger occurs, and the
condition (or guard) of the transition.

Trgger Eventi Event2 Evant3 Eventd =Mona>=
State ED E1 E2 E3 E4
Initial 50 51
State1 51 52
[Guard]
52 56
54
SubStateq 53 54
State2
[Cond]
SubState2 Sa
52
SubState3 55
Stated 56 =T
Final S

(c) Sparx Systems 2022

Page 63 of 420

Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Example State-Next State Table

The rows and columns both indicate states, and the cell at the intersection of a row and column indicates:
e The event that triggers a transition from the current (row) state to the next (column) state
e The condition (or guard) of the event, and

o The effect of the transition

Mext State State2

Initial Statet Stated Final

SubState1 SubState2 SubState3

State =0 51 52 =32 =4 85 =6 57
Initial 50
Ewventd
State1 51
Event2 [Guard] Eventi
52 —_—
Event2

SubState1 53

Stet=2
Event3 [Cond]
SubState2 =4 _
SubState3 55
State3 55
Final 57

(c) Sparx Systems 2022 Page 64 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

StateMachine Table Simulation

A StateMachine Table is a representation of a StateMachine, and can be simulated in exactly the same way as a
StateMachine diagram.

Access

With a StateMachine displayed in Table form, use any of the methods outlined in this table to start the simulation.

Ribbon Simulate > Run Simulation > Start, or
Simulate > Dynamic Simulation > Simulator > Open Simulator Window > b
(Start icon)

Context Menu Right-click on view background | Execute Simulation | <Interpreted or Manual>

Highlight active cells

As the simulation executes, the table cells change color to indicate the:

e Currently active State(s) - the color set in the 'Highlight Color' field of the 'StateMachine Options' dialog, and a dark
border

e Potential next States(s) - A variant of the color in the 'Highlight Color' field or, if the 'Use Different Color for Target
State' checkbox is selected on the 'StateMachine Options' dialog, the color set in the 'Target Zone Color' field

e Active Transition(s) - the color set in the "Transition Cell' field of the 'StateMachine Options' dialog
e Trigger(s) - the color set in the 'Highlight Color' field of the 'StateMachine Options' dialog

e Non-active States - gray

For example:

Finished
E1
Idle 51
52 51
Signal Triggers

(c) Sparx Systems 2022 Page 65 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

As when running a simulation as a diagram, the simulation will automatically traverse transitions with no guards or
validated guards. Transitions with a Trigger will not be followed unless that Trigger has been fired. They can be fired
automatically from the Simulation Events window or you can fire a Trigger manually by right-clicking on the Transition
or Trigger cell and selecting 'Signal Trigger in Simulation'.

(c) Sparx Systems 2022 Page 66 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Timing Diagram

A Timing diagram defines the behavior of different objects within a time scale. It provides a visual representation of
objects changing state and interacting over time. You can use it to:

e Define hardware-driven or embedded software components; for example, those used in a fuel injection system or a
microwave controller

e Specify time-driven business processes

You generate Timing diagram elements and connectors from the '"Timing' pages of the Diagram Toolbox.

Example Diagram

- fd.dt3y o
WaitAcocess
T Code
z WaitCard
Idle
Start OK {t.t+3}
E
% Mo Card
=
o
o Has Card
B R C I - S
.
ﬁ Idle X WaitCard w%m-:m;{s Idle
o
1]
|
"ttt F+——+—+——F—+—F+—1+—
0 10 20 30 40 50 80 70 S0 90 100 110 120 130 140 150 180 170 180 180

Timing Diagram Element Toolbox Icons

Icon Description

= state Lifeline A State Lifeline element represents the state of an object across a measure of time,
using changes in y-axis to represent discrete transitions between states.

B4 Value Lifeline A Value Lifeline element represents the state of an object across a measure of time,
using parallel lines indicating a steady state, along the x-axis.

B Message Label A Message Label is an alternative way of denoting Messages between Lifelines,
which is useful for 'uncluttering' Timing diagrams strewn with messages.

@ Message Endpoaint A Message Endpoint element indicates that a Message:

e Terminates at an undefined point outside the State or Value Lifeline, having

(c) Sparx Systems 2022 Page 67 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

started at an identified point within the Lifeline, or

e Originates from an undefined point outside a State or Value Lifeline,
terminating at an identified point within the Lifeline

O Diagram Gate A Diagram Gate element indicates that a Message:

e Terminates at a defined point outside the State or Value Lifeline, having started
at an identified point within the Lifeline, or

e Originates at a defined point outside a State or Value Lifeline, terminating at
an identified point within the Lifeline

The defined point that the Diagram Gate is anchored to is the border of an
Interaction Fragment, indicating that the Message issues from or delivers to that
Fragment.

Timing Diagram Connector Toolbox Icon

Icon Description

= Message Messages indicate a flow of information or transition of control between elements.

(c) Sparx Systems 2022 Page 68 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Create a Timing Diagram

Create a Timing diagram

Step Action

1 Right-click on a Package in the Browser window and select 'Add Diagram'.

The "New Diagram' dialog displays.

2 In the 'Select From' panel, select 'UML Behavioral'.
3 In the 'Diagram Types' panel, select 'Timing'.
4 Click on the OK button.

The Diagram View displays, on which you create the Timing elements for the diagram.

(c) Sparx Systems 2022 Page 69 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Set a Time Range
Set a time range before adding Lifeline elements to your Timing diagram

Step Action

1 Right-click on the diagram and select 'Set Timeline Range'.

The 'Set Timeline Range' dialog displays.

2 In the 'Start Time' and 'End Time' fields, type the numeric values for the start and end points of the
timeline; for example, set the range 0 to 100.

The start time must be less than the end time.

3 In the 'Time Units' field, type the unit in which the time is measured; for example, seconds or minutes.
4 If it is not necessary to show the time range on the diagram, select the 'Suppress In Diagram' checkbox.
5 Click on the OK button.

If you have not suppressed it, the time range displays underneath the Lifeline elements that you create on
the diagram.

(c) Sparx Systems 2022 Page 70 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Edit a Timing Diagram

On a Timing diagram, you can add State Lifeline elements and Value Lifeline elements. You can maintain the states and
transitions on these Lifeline elements either on the diagram itself or via the 'Configure Timeline' dialog.

(c) Sparx Systems 2022 Page 71 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Add and Edit State Lifeline

From the 'Timing elements' page of the Toolbox drag a State Lifeline icon onto your diagram. The element displays on
the diagram.

Edit Properties

Task Action
Define the name of the 1. Right-click on the element and select the 'Properties | Properties' option; the
State Lifeline 'Properties window for the element displays, showing the 'Element' tab.

2. Overtype the 'Name' field.
Click off the Properties window.

Sizing and Scale In the top left corner of a selected Lifeline element are the left and right quick
sizing buttons (€).

These buttons increase or decrease the width of the Lifeline element, which in turn
controls the scale width of each time unit; by increasing the width of the element
you increase the resolution when adding transitions, which makes them easier to
edit.

In order to edit the State Lifeline element, you must click on it to select it.

Set Timeline Start Position You might require more space at the start of your timelines; for example, to use
long state names.

To insert more space in all the timelines on a diagram:

1. Right-click on the diagram background and select the 'Set Timeline Start
Position' option; the 'Set Timeline Start Position' dialog displays.

2. The 'Value 80 to 300' field defaults to 80 as the minimum distance in pixels
between the start of the timeline element and the start of the timeline itself; type a
new value up to 300 pixels and click on the OK button to increase the space at the
start of the timeline.

These two diagrams have start positions of 80 pixels and 150 pixels respectively.

<1:I ED |'E{d--d'3}%1
FWaitaccess
5 Code
£ Tyaitcard
2 5
4pldle
- Start
g ﬁ‘ 1 1 1
[}
=
= 1Y
| N
=
[l [l 1
T T I
ms 0 3 10 1

(c) Sparx Systems 2022 Page 72 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Q:' ED) Hd..d’S}_){
SWWaitaccess
& Code
£ “"\Waitcard
o g Waitcar
seldle —
- Start
g ﬁ’ 1 1 1
[|
|
- Al
| 0
=
1 1 [
T T I
ms 0 5 10 1

You now edit the states and transitions in the State Lifeline.

(c) Sparx Systems 2022 Page 73 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Add States to a State Lifeline
Add States to a State Lifeline

Step Description

1 Click on the State Lifeline element.

The New State button (ﬁ) and Edit States button (ﬁ) display at the bottom left of
the element.

2 Click on the New State button.
The 'New State' dialog displays.

3 In the 'State' field, type the name of the state.

4 Click on the OK button.

You must add at least two states; for example, 'On' and 'Off".

5 As you add states, increase the height of the element by dragging one of the 3=
icons on the edge of the element.

You can also add states using the 'States' tab of the 'Configure Timeline' dialog.
Add either:
e Discrete states to the Timeline, or

e A continuous range of numeric states

(c) Sparx Systems 2022 Page 74 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Edit States in a State Lifeline
Edit States in a State Lifeline

Step Description

1 Click on the State Lifeline element and click on the required state.
The 'Edit State' dialog displays.

2 In the 'State’ field, change the name as required.
3 Click on the OK button.
4 If necessary, change the order of the states by either:

-
e Clicking on the up or down arrows (#) beside each state name, or
e Right-clicking on the state name and selecting the 'Move Up' or Move Down' options

You can also edit the states using the 'States' tab of the 'Configure Timeline' dialog.

(c) Sparx Systems 2022 Page 75 of 420 Created with Enterprise Architect

Unified Modeling Language (UML)

3 October, 2022

Delete States in a State Lifeline

Delete States in a State Lifeline

Step Description
1 Right-click on the state name and select the 'Delete' option.
Alternatively
Step Description
1 Click on the State Lifeline element.
2 Hold down Ctrl and move the cursor over the state name.
The cursor changes form ().
3 Click the mouse button.
The state name is deleted.

(c) Sparx Systems 2022 Page 76 of 420

Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Edit Transitions In State Lifeline

In a Timing diagram you can show the transitions (changes of state) that occur within a StateMachine over a fixed time
period and at certain timing points. This is similar in many respects to an Interaction lifeline with State changes
highlighted. As events and changes occur within the instance this Timing diagram represents, state changes occur and are
mapped onto this Timeline. In that respect it is a record of how a particular aspect of the system behaves over time.

When building a Timeline it is necessary to define the States first, and then to add the explicit transitions between those
States at particular timing points.

Edit Transitions
Task Action

Add and Move Transitions After you have added states, you can add transitions between states directly on the
timeline using the mouse.

Change the Transition Move the cursor over one or other of the vertical transition lines and drag the line

Time left or right to change the time of the transition.
While on the line, the cursor shape changes to the horizontal movement cursor
().

Merge Transitions If necessary, you can 'push' a transition to merge it with the next or previous
transition point on any Lifeline element on the diagram.
Position the cursor off the appropriate side of the transition line; the cursor changes
form (—*! orl‘_).
Click the mouse button; the system locates the nearest transition in the required
direction, on any element on the diagram, and merges the current transition with
that transition.

Delete Transitions Transitions are automatically deleted when you move the transition to the same

state as the previous transition state, and release the cursor.

Alternatively, right-click on the transition line and select the 'Delete’ option.

(c) Sparx Systems 2022 Page 77 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Add and Move Transitions

After you have added states, you can configure state changes (transitions) directly on the Timeline using the mouse. This
is a fast and effective means of building a detailed model of state changes over time.

In order to modify the Timeline, place the mouse over the existing Timeline. As you move the cursor over the Timeline,
the cursor changes to one of three shapes, described here.

Access

Context Menu Right-click on the transition line | Edit

Other Click directly on the appropriate transition line, after the transition begins
Modify Timeline

As you move the cursor over the vertical line of a transition, the time at which the transition occurs displays next to the
line.

Task Action
The move cursor
_@ Displays when it is directly over the timeline.

Hold down the mouse button and drag the line to move the timeline to a state above
or below the current position; you can move the transition more than one state up or
down, if necessary.

The new transition up
cursor Displays when it is just below the timeline, and there is another state above the line.

=

i Press and hold the Alt key; the cursor changes (T).

Click to create a new transition to the state above the line.

To push the transition up more than one state, move the cursor onto the line and
drag it up.

The transition is for one interval unit; you can make it longer by changing the
transition time.

If you do not hold the Alt key, the cursor does not change and the whole timeline
from the transition onwards moves up.

The new transition down

cursor Displays when it is just above the transition line, and there is another state below
+ the line.
—

+
Press and hold the Alt key; the cursor changes ().
Click to create a new transition to the state below the line.

To push the transition down more than one state, move the cursor onto the line and
drag it down.

The transition is for one interval unit; you can make it longer by changing the
transition time.

If you do not hold the Alt key, the cursor does not change and the whole timeline
from the transition onwards moves down.

(c) Sparx Systems 2022 Page 78 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Edit Transition

Edit the transitions as required, on the 'Edit Transition' dialog.

Option Action
At Time Type the point on the timescale at which the transition occurs.
Transition To Type the name of the state to which the transition occurs.
Event Type the name of the event that the transition represents.

This displays on the Timeline element just above the transition line.

Duration Constraint Type any constraint on the duration of the transition.
This displays on the Timeline element, along the top of the element over the
transition.

Time Constraint Type any constraint on the start of the transition.

This displays on the Timeline element at the start of the transition.

OK Click on this button to save the changes.

Notes

e Once Event, Duration Constraint or Time Constraint are displayed on the diagram, you can edit them directly by
clicking on them to display their specific dialog

e You can delete them by pressing and holding the Ctrl key as you click on them; the cursor changes form when you
press the Ctrl key

® You can also edit transitions using the 'Transitions' tab of the 'Configure Timeline' dialog

(c) Sparx Systems 2022 Page 79 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Add and Edit Value Lifeline

From the Toolbox drag a 'Value Lifeline' element onto your diagram. The element displays on the diagram.

Edit the Value Lifeline name

Step Action

1 Right-click on the element and select the '"Properties | Properties' option.

The Properties window displays for the Timeline element, showing the 'Element’ tab.
2 Overtype the 'Name' field.

3 Click off the Properties window.

Sizing and Scale

In the top left corner of a selected Lifeline element are the left and right quick sizing buttons (<3:I I:‘r>) These buttons
increase or decrease the width of the Lifeline element, which in turn controls the scale width of each time unit. By
increasing the width of the element you increase the resolution when adding transitions, which makes them easier to edit.

(c) Sparx Systems 2022 Page 80 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Add States In Value Lifeline

Adding states to a Value Lifeline is similar to adding states to a State Lifeline element.

For a Value Lifeline, only the first state displays on the diagram. The other states are added to a list to access when
creating transitions; they only display on the Lifeline element as you create transitions to those states.

You can only edit or delete states in a Value Lifeline element using the 'States' tab of the 'Configure Timeline' dialog.

(c) Sparx Systems 2022 Page 81 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Edit Transitions In Value Lifeline

Add Transitions to the states on a Value Lifeline element, via the diagram

Step

1

Action
Move the cursor above the transition line.

+
The cursor changes form (<).

Click the mouse button.

The 'New Transition Event' dialog displays.
In the 'Transition To' field, click on the drop-down arrow and select a state from the list of available
states; this displays on the Lifeline element within the transition box.

The remaining fields on the dialog are optional.

In the 'Event' field, type the name of the event that the transition represents; this displays on the Lifeline
element just below and at the start of the transition line.

In the 'Duration Constraint' field, type any constraint on the duration of the transition; this displays on the
Lifeline element, along the top of the element over the transition.

In the 'Time Constraint' field, type any constraint on the start of the transition.

This displays on the Lifeline element at the start of the transition, just after the Event name.

Click on the OK button to create the new transition.

Edit a Transition

Step

1

Action

Click on the state name in the transition.
Alternatively, right-click on the state name and select the 'Edit' option.

The 'Edit Transition' dialog displays, which is the same as the 'New Transition Event' dialog, except that
the 'At Time' field is enabled.

If necessary, overtype the 'At Time' field to define a different start point.

You cannot change the 'At Time' field for the first state in the timeline; this is always '0'.
Edit the remaining fields as necessary.

Click on the OK button to save the changes.

(c) Sparx Systems 2022 Page 82 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Change the transition time

Step Action

1 To change the start or end time of a transition, click on the start or end point of the transition and drag it to
the new position.

While on the line, the cursor shape changes to the horizontal movement cursor (/).

Delete Transitions

Step Action

1 To delete a transition, press and hold Ctrl and click on the transition state name.
While you hold Ctrl on the transition state name, the cursor changes form (3).

Alternatively, right-click on the state name and select the 'Delete' option.

(c) Sparx Systems 2022 Page 83 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Configure Timeline - States

You can manage states using the 'States' tab of the 'Configure Timeline' dialog. To display this dialog, either:
e Double-click on the Lifeline element

e Right-click on the Lifeline element and select the 'Properties' option, or

e On a Value Lifeline, click on the =1 button
The 'Configure Timeline' dialog defaults to the 'States' tab.

All states currently defined for the Lifeline element are listed in the 'States' panel.

Add a new State

Step Action

1 In the 'State Name' field, type the name of the first new state in the Lifeline element; for example,
'WaitState'.
2 Click on the Save button.

The state is added to the 'States' panel and (for a State Lifeline Element) to the diagram.

3 Click on the New button.

4 In the 'State Name' field, type the name of the next state in the Lifeline element.

5 Repeat steps 2 to 5 until you have added all required states (you must add at least three to the Lifeline
element).

6 When you have added all the required states, click on the OK button to close the 'Configure Timeline'
dialog.

Edit an existing state

Step Action

1 Click on the state in the 'States:' list.
2 In the 'State Name' field, change the name of the state.
3 Click on the Save button.

Delete an existing State

(c) Sparx Systems 2022 Page 84 of 420 Created with Enterprise Architect

Unified Modeling Language (UML)

3 October, 2022

Step Action
1 Click on the state in the 'States:' list.
2 Click on the Delete button.

Change the order of States

Step Action
1 Click on the state in the 'States:' list.
2

Click on the or buttons to move the state up or down the sequence.

(c) Sparx Systems 2022 Page 85 of 420

Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Numeric Range Generator

You can also use the 'Configure Timeline' dialog to create a range of states having numeric values to be applied to the
Timeline.

Important: This operation deletes all existing states and transitions for the Timeline element.

Create a range of states having numeric values

Step Action

1 Double-click on the Lifeline element.

The 'Configure Timeline' dialog displays.

2 Click on the Create Continuous Numeric States button.

The 'Numeric Range Generator' dialog displays.
3 In the 'High Value' and 'Low Value' fields, type the upper and lower values of the range.

4 In the 'Step Value' field, type the increase interval.

Nonsense values do not parse; 'Low Value' must be less than 'High Value', and 'Step Value' must be a
positive value smaller than the total range.

5 In the 'Units' field, type the name of the measurement unit; for example, 'minutes'.

6 Click on the OK button.

Enterprise Architect displays a warning that existing states and transitions are to be deleted.

7 Click on the Yes button.
The 'Configure Timeline' dialog redisplays, with the defined range of states listed in the 'States' panel.

8 Click on the OK button.
For a:
e Value Lifeline, the first state is shown on the Timeline for the full time range of the Timeline

e State Lifeline, the range of states is displayed as the y-axis of the Timeline

(c) Sparx Systems 2022 Page 86 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Configure Timeline - Transitions

You can also manage transitions using the "Transitions' tab of the 'Configure Timeline' dialog. To display this, either:
e Double-click on the Lifeline element

e Right-click on the Lifeline element and select the 'Properties' option, or

e On a Value Lifeline, click on the =1 button
The 'Configure Timeline' dialog defaults to the 'States' tab. Click on the 'Transitions' tab.

All transitions defined for the Timeline element are listed in the 'Transition Points' panel.

Add a new transition

Step Action

1 Click on the New button.
2 In the 'New Transition' panel, type the details of the transition.
3 Click on the Save button.

Edit a transition

Step Action

1 Click on a transition in the list.
2 In the 'Edit Transition' panel, edit the fields for the transition as required.
3 Click on the Save button.

Delete a transition

Step Action

1 Click on a transition in the list.

2 Click on the Delete button.

The transition is removed from the dialog and the Lifeline.

3 Click on the OK button.

(c) Sparx Systems 2022 Page 87 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

(c) Sparx Systems 2022 Page 88 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Time Intervals

You create and manage Time Intervals using the Interval Bar (the pale line along the top of each selected Lifeline
element). With Time Intervals you can perform various operations on transitions, such as copy and paste. You can also
compress sections of the timeline so that they are not visible.

Each Time Interval displays across all Timeline elements down to the last element on the diagram.

Manage Time Intervals

Action Description

Create Time Intervals You can create a Time Interval using the:
e Interval Bar - context menu
e Interval Bar - Shift key, or

e Timeline - context menu

Compress Time Intervals You can compress Time Intervals to conserve space on long timelines.

Select Time Intervals There are a number of ways to select Time Intervals for performing other
operations.

Move Time Intervals To move a Time Interval, move the cursor over the Interval bar within the Time

Interval, hold down the mouse button and drag the interval left or right.

Time Intervals can meet, but cannot overlap.

Resize Time Intervals To resize a Time Interval, move the cursor over the Interval Bar at the start or end
edge of the Time Interval, hold down the mouse button and move the edge left or
right.

Time Intervals can meet, but cannot overlap.
Delete Time Intervals To delete Time Intervals, select each Time Interval to be deleted and press the

Delete key.

Deleting the Time Interval does not delete transitions within that interval.

(c) Sparx Systems 2022 Page 89 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Create Time Intervals

You can create time intervals on Timing elements in a number of ways.

Create a Time Interval using the Interval Bar context menu

Images

Step and Action

Create Time Interval
+100

e
el
i
Ie0

)
$s0

TimeLinet

4,
el
4,
330
s
F2

,
210

Expand all Time Intervals

Compress all Time Intervals

9 N 1. Right-click on the Interval Bar at approximately the point at which to start or

finish the Time Interval, and select the 'Create Time Interval' option.

@ =

TimweLine1

40

2. The Time Interval displays down all the timeline elements, as a narrow pale band
with a blue compression box at the top.

+100

.
e".}O

.
e’BID

“*
e’?ﬂ

60

3. Move the cursor to the edge of the Time Interval in the Interval Bar so that the
cursor changes to the drag form and drag the edge to the correct start or end point.

*

@
e’SO

TimeLine1

-,
eyli-O

.
330
.
220

&
210

40
i

L
20

(c) Sparx Systems 2022

Page 90 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Create a Time Interval using the Interval Bar and Shift key

Step Description

1 Move the cursor over the Interval Bar and press Shift.

The cursor changes shape ([iv).
2 Click to create the Time Interval.

3 Move the cursor to the edge of the Time Interval in the Interval Bar so that the cursor changes to the drag
form (/) and drag the edge to the correct start or end point.

Create a Time Interval using the Timeline context menu

Step Description

1 Right-click on the timeline just after a transition.

The context menu displays.

2 Click on the 'Select' option.

Enterprise Architect creates a Time Interval defining the period from the selected transition up to the next
transition.

If there are other Time Intervals in this period, Enterprise Architect replaces them with the single Time
Interval for the transition state; you should consider this when creating the Time Interval, as it extends
across the other Timeline elements in the diagram.

A value of this method is that it creates a Time Interval for a period in which no transitions occur, which
could be lengthy; you can then compress this Time Interval to hide the period of inactivity.

(c) Sparx Systems 2022 Page 91 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Compress Time Intervals

You can compress Time Intervals to conserve space on long timelines.

Uncompressed Time Intervals

e =

“Wiaitaccess

k- {d.c"3} %T

Code

User

. .
{}Waltcard

4 Idle

i =

Start OK ft.t+3}

TimeLine2
g
=<
2
>
&
=<

Compressed Time Intervals

e _ - {d..d*3} %T

SWaitaccess
Code

User

{I; .
1,\}1.'|.ra|tu:.alr|::|

aldle

==

o
o
pa—
pa—

Start DK ft..t+3}

10 {'){') Default i‘]i‘]

TimeLine2
=
<

-t
—_—
=
-
o
fa
(=]
fd
tn
o
on
(7]
on

ms 0

Note:

You can also compress and expand Time Intervals using context menu options.
Item Description
- | The compression toggle boxes:

e is expanded, click on this to compress the selected time interval

o Tis compressed, click on this to expand the selected time interval again

5 S The compressed sections of the timelines themselves, in all elements.

If there is space between the paired symbols, there are transitions within the

(c) Sparx Systems 2022 Page 92 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

compressed section.
If the timeline continues through the paired symbols there are no transitions in the
compressed section.

= The compressed sections in the time range underneath the elements.

(c) Sparx Systems 2022 Page 93 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Select Time Intervals

Select Intervals

Task Action
Select a Time Interval Click on the Interval Bar within the Time Interval.
across all elements on the
diagram
Select a number of Press and hold the Ctrl key while clicking on the Interval Bar within each Time
individual Time Intervals Interval.
Select all Time Intervals in Click on the Interval Bar within the first Time Interval in the range, then press and
arange hold the Shift key and click on the Interval Bar within the last Time Interval in the
range.

All Time Intervals between the two are selected.

Modify Intervals

After you have selected a Time Interval, you can modify it.

Task Action
Exclude Lifeline elements Press and hold the Ctrl key and click on any part of the selection within that
from the selection element.

Repeat the step to toggle the selection and re-include the element.

Select only one Lifeline Press and hold the Shift key and click on any part of the selection within that
element and exclude all element.
others

(c) Sparx Systems 2022 Page 94 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Time Interval Operations

You can select and update specific Time Intervals.

Right-click on the Interval Bar within an interval. A context menu displays providing these options.

Compress Timeline

The 'Compression' toggle boxes and 'Compress Interval' menu option operate on the Time Interval and compress the
timeline and all transitions within the Interval. You have an alternative option that operates on the timeline and
compresses a single transition state.

1. Right-click on the timeline (rather than the Interval Bar) just after a transition, and select the 'Compress' option.

2. Enterprise Architect creates a new Time Interval spanning the period from the selected transition up to the next
transition, and then compresses that Time Interval.

If there are other Time Intervals in this period, Enterprise Architect replaces them with the single Time Interval for the
transition state. You should consider this when creating and compressing the Time Interval, as it extends across the other
Timeline elements in the diagram.

A value of this method is that it creates a Time Interval for a period in which no transitions occur, which could be
lengthy, and then compresses this Time Interval to hide the period of inactivity.

Context Menu Options

Option Action
Select Interval Select the Time Interval or, if the interval is already selected, deselect it.
Deselect Interval You can select several Time Intervals in this way, accessing the menu separately on

each interval.

Toggle Interval Selection Switch the selection or deselection of the Time Interval within the selected
Timeline element.

You select or deselect a Time Interval across all Timeline elements, but the 'Toggle'
option acts only on the element in which you access the menu.

Compress Interval Compress the Time Interval, and hide all transitions within that Time Interval.

This is also useful for hiding long sections of inactivity on the time line.

Remove Interval Delete the Time Interval.

Copy Copy the transitions for all selected Time Intervals.

Cut Copy and delete the selected transitions from the diagram.

Cut and Remove Time Copy and delete the transitions that lie in the selected Time Intervals from the
diagram.

This option also removes time from the timeline, the amount being the duration of
the Time Interval.

All transitions and Time Intervals to the right of the selected time interval are
moved left.

(c) Sparx Systems 2022 Page 95 of 420 Created with Enterprise Architect

Unified Modeling Language (UML)

Delete

Delete and Remove Time

Insert Time

3 October, 2022

Delete the selected transitions from the diagram.

Delete the transitions that lie in the selected Time Intervals from the diagram.

This option also removes time from the timeline, the amount being the duration of
the Time Interval.

All transitions and Time Intervals to the right of the current Time Interval are
moved left.

Add time to the timeline and move all transitions and time intervals to the right.

Also expand the duration of the current Time Interval.

All Time Intervals in the Diagram

To create a new Time Interval or work across all Time Intervals in the diagram, right-click on the Interval Bar between
Time Intervals. A context menu displays, providing a number of options (The Paste ...' menu options become active after

transitions have been copied).

Menu Option

Create Time Interval
Expand all Time Intervals

Compress all Time
Intervals

Paste Combine

Paste Remove

Paste Insert

Insert Time

Action

Create a single Time Interval.

Expand all Time Intervals over the whole diagram.

Compress all Time Intervals over the whole diagram.

Paste copied transitions over any existing transitions within the copied time frame.
The diagram does not allow two consecutive transitions to the same state, and

removes the second transition automatically.

Delete all the transitions and then pastes the copied transition within the copied
time frame.

Insert time, moving all transitions and Time Intervals to the right to make room to
paste in the copied transitions.

Add time to the timeline and move all transitions and Time Intervals to the right.

This option does not change the duration of any Time Interval.

Copy and paste transitions from one timeline element to another

Step Action

1 Press and hold the Shift key and select the Timeline element within a Time Interval to copy or cut.

2 Right-click on the Interval Bar (it doesn't matter which element you select).

(c) Sparx Systems 2022

Page 96 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

The context menu displays.

3 Copy or cut the transitions.

You can also cut and remove time.

4 Select the timeline to paste transitions to and right-click on the Interval Bar.

The context menu displays.

5 Select one of the paste operations.
Note that states are created if they don't already exist in the timeline.
Any states that don't exist in the Timeline element you are pasting to are created.

Any new states created might be in the wrong order; you can change the order via the diagram 'quick’
buttons.

Shift transitions within a selected Time Interval or multiple selected Time Intervals

Step Action

1 Select all the Time Intervals containing the transitions to be shifted.

2 Press and hold Shift and click on the Interval Bar (it doesn't matter which Timeline element you select),
and move the transition left or right.

You cannot drag transitions over other transitions; the move stops when the moved transition collides with
a stationary transition.

If you have collision problems, use Shift+select to shift transitions for a single Timeline element.

(c) Sparx Systems 2022 Page 97 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Messages (Timing Diagram)

Messages are the communication links between Lifelines in a Timing diagram. In the case of a Timeline, a Message is a
connection between two Timeline objects.

T

= Stated

-

E The amrow is

= Statel the Messags
i i i i i i i i i i i i i i

o

o

c Stated

-

]

E

[State2
i i i i i i i i i i i i i i i i i i i i
T TTrT1T1T—17TT7T17"1T71T"T"1T"1T"1T"71T"71T"1
a1 2 3 4 8 & 7 8 910111213 141651617 18 120

For example:

= {1 Sl {213
Wait Approwval {0..13}
WaitAccess
b
£ waitCard
Idle
OK {t. t+3}
1 1 1 1 1 1 1 1 .I 1 1 1 1 1 1 1 1 1 1 1
TS 7
t.4+3 7% L
E P
% -“+Mo Card ?Q
ﬁ & Msg1 é
3 .
< 4rHas Card é
G ok 42,43 7
‘ g 1 ﬁ
L]
2 [(< o S|
B
]
E Idle X WaitCard XWaitﬁcc‘.essX Idle
]
@
2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 I I I I I I 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 B0 100 110 120 130 140 150 1680 170 120 1S{EOO

The OMG Unified Modeling Language specification, (v2.5.1, figures 14.30 and 14.31, p.520.)

Toolbox icon

=% Message

(c) Sparx Systems 2022 Page 98 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Create a Timing Message

You can create a Timing Message between two Lifeline objects (State or Value) on a Timing diagram, each with existing

transition points.

Create a Message between Lifelines

Step Action

1
Click on the 'Message' icon on the 'Timing Relationships' page of the Diagram Toolbox (click on
display the 'Find Toolbox Item' dialog and specify 'Timing').

2 Click on the source Lifeline at the point at which the Message will start, and drag the cursor to the
transition point on the destination Lifeline where the Message will end.
A new Timing Message is created between these two points.

3 Double-click on the new Message to open the 'Timing Message' dialog.

Review or complete the dialog as indicated in the 'Dialog Fields' table.

Dialog Fields

This diagram shows an example of a configured Message:

k- fd..d*3} -
WaitAccess
5 Code
L WaitCard
Idle @~ —
Start \ OK {t.t+3}
1 1 1 1 1 313 1 1 1 1 1
£ NoCard -
=y
o
o HasCard
1 1 1 1 1 1 1 1 1 1 1
=
2 k- fd..d*3} -
o
ﬁ Idle X WaitCard %itﬁum}é
7]
o
|
1 1 1 1 [1 1 1 1 1 1
| | | | I | | | | | |
Time {ms) 0 10 20 30 40 50 @0 70O 80 90 100

The OMG Unified Modeling Language specification, (v2.5.1, figures 14.30 and 14.31, p.520)

Field/Button Action
Start Identifies the Lifeline from which the Message originates.
End Identifies the Lifeline on which the Message terminates.

(c) Sparx Systems 2022 Page 99 of 420 Created with Enterprise Architect

S to

Unified Modeling Language (UML) 3 October, 2022

Start Time Shows the time after the timeline begins at which the Message starts. You can
change this if you need to.

End Time Shows the time after the timeline begins at which the Message ends. You can
change this if you need to, but the time must correspond to a transition point on the
target Lifeline.

Name (Optional) Type in a name for the Message.

Time Observation (Optional) Type any text to act as a label providing information on when the

Message is sent.

Duration Observation (Optional) Type any text to act as a label providing information on the interval of a
Lifeline at a particular state, begun from receipt of the Message.

Transition To The state in the target Lifeline that the Message terminates on. If necessary, you can
click on the drop-down arrow and select a different state to transition to. The head
of the Message moves accordingly.

Event (Optional) Type in the name of any event that triggers the transition.
Time Constraint (Optional) Type in the maximum time it can take to transmit the Message.
Duration Constraint (Optional) Type in the maximum time the Lifeline can remain in the changed state

after receipt of the Message.

Notes

e You can move the source end of the Message freely along the source timeline; however, the target end (arrow head)
must attach to a transition

e Ifyou create a new Message and do not give it a target transition, it automatically finds and attaches to the nearest
transition; if you move the target end, it drags the transition with it

(c) Sparx Systems 2022 Page 100 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Sequence Diagram

A Sequence diagram is a structured representation of behavior as a series of sequential steps over time. You can use it to:
e Depict workflow, Message passing and how elements in general cooperate over time to achieve a result

e Capture the flow of information and responsibility throughout the system, early in analysis; Messages between
elements eventually become method calls in the Class model

e Make explanatory models for Use Case scenarios; by creating a Sequence diagram with an Actor and elements
involved in the Use Case, you can model the sequence of steps the user and the system undertake to complete the
required tasks

Construction

e Sequence elements are arranged in a horizontal sequence, with Messages passing back and forward between
elements

e Messages on a Sequence diagram can be of several types; the Messages can also be configured to reflect the
operations and properties of the source and target elements (see the Notes in the Message Help topic)

e An Actor element can be used to represent the user initiating the flow of events

e Stereotyped elements, such as Boundary, Control and Entity, can be used to illustrate screens, controllers and
database items, respectively

e Each element has a dashed stem called a Lifeline, where that element exists and potentially takes part in the
interactions

To toggle the numbering of messages on a Sequence diagram, select or deselect the 'Show Sequence Numbering'
checkbox on the 'Preferences' dialog.

You generate Sequence diagram elements and connectors from the 'Interaction’ pages of the Toolbox.

Example Diagram

This example Sequence diagram demonstrates several different elements.

(c) Sparx Systems 2022 Page 101 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

@ :Shopping Cart O

G

Cust

5]

mer

:Order Screen
—ICEr Jereen

Order :Payment
—TRer _‘L|_

getCart

| -
L
. :Cart ltemn
EW
L EEEE—
I | T
: : oesteltemn !
: -—Lr| Mote the use of
| | New and Delete
: sdditem : messages to set
I | object lifetime
|

: I
! i
I
1 ! :
1 ! !
1 ! * !
1 | GetParent o !

+ Lol

|

|

|

| cost

ched

Sequence Diagram Element Toolbox Icons

Icon

e

Actor

Lifeline

Boundary

Cantrol

Entity

Fragment

(c) Sparx Systems 2022

Description

An Actor is a user of the system; user can mean a human user, a machine, or even
another system or subsystem in the model.

A Lifeline represents a distinct connectable element and is an individual participant
in an interaction.

Boundary elements are used in analysis to capture user interactions, screen flows
and element interactions.

A Control organizes and schedules other activities and elements.

An Entity is a stereotyped Object that models a store or persistence mechanism that
captures the information or knowledge in a system.

A Fragment element can represents iterations or alternative processes in a Sequence
diagram.

Page 102 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

@ Endpoint - An Endpoint is used in Interaction diagrams to reflect a lost or found Message in
sequence.

O Diagram Gate - A Diagram Gate is a simple graphical way to indicate the point at which messages
can be transmitted into and out of interaction fragments.

The State/Continuation element serves two different purposes for Sequence
diagrams, as State Invariants and Continuations.

= state/Contin

You can use an Interaction element to insert an Interaction diagram as a child of a
Class element.

1 Interaction

Sequence Diagram Connector Toolbox Icons

Icon Description

A Message indicates a flow of information or transition of control between
elements.

=% Message

A Self-Message reflects a new process or method invoked within the calling
lifeline's operation.

& Self-Message

A Recursion is a type of Message used in Sequence diagrams to indicate a recursive
function.

F Recursion

A Call is a type of Message connector that extends the level of activation from the
previous Message.

(c) Sparx Systems 2022 Page 103 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Denote Lifecycle of an Element

Capture element lifetimes using messages denoted as New or Delete message
types

Step Action

1 Double-click on a message within a Sequence diagram to display the Properties window for the Message.
2 In the 'Lifecycle' field, click on the drop-down arrow and select 'New' or Delete’.
3 Click on the OK button to save the changes.

Example Diagram

This example shows two elements that have specific creation and deletion times.

:Shopping Cart
I
|
|
|
|
|
|
1
1
—_
- :Cart ltem
=
poo=SStacs
H
| I
| oreateltem |
|
addltern 1
|
|
L I
|
H |
| I
I oy
Notes

e To show the termination X on the lifeline in the example diagram, you must switch on garbage collection: 'Start >
Appearance > Preferences > Preferences > Diagram > Sequence: Garbage Collect'

(c) Sparx Systems 2022 Page 104 of 420 Created with Enterprise Architect

Unified Modeling Language (UML)

3 October, 2022

Layout of Sequence Diagrams

Offset the vertical separation of Sequence messages

Step Action

1 Select the appropriate message in a Sequence diagram.

2 Use the mouse to drag the message up or down as required.

As you drag a message up or down a lifeline, any messages or fragments below that message are shifted

up or down the same amount.

If the 'Reorder Messages' option is enabled, as you drag a message up or down past the next or previous
message, the messages swap positions, rather than simply moving position. Alternatively, press and hold
the Shift key as you move the message, to achieve the same result. Under Windows (but not under Linux
or a Virtual Machine), you can also use the Alt key in the same way.

As you move one Message past another, a tool-tip displays to remind you to 'Enable Reorder Messages
from Layout | Helpers to reorder messages', regardless of whether or not the option is enabled. You can
hide this tool-tip by deselecting the 'Enable Tooltips when reordering messages' checkbox on the 'Diagram
> Sequence' page of the 'Preferences' dialog.

Example Diagram

This example shows an economical use of space in a Sequence diagram.

A :B O :DelphiCne
I I I
| | |
! 1.0 B(b, a) i :
|
1.1 '

1.2
L
—_——
1.3 getiD{)
[T |
|
|
|
I
1.4 SetClassMNama(MawllassMams) :
T T |
| | |
i] i
Page 105 of 420 Created with Enterprise Architect

(c) Sparx Systems 2022

Unified Modeling Language (UML) 3 October, 2022

Sequence Elements

This example shows some possible elements of Sequence diagrams and their stereotyped display.

sd Sequence Diagram Elements /

=10 O Q

Actor Bounedary Control Entity
: T I I I

alt Fragment .~ .. Biate
Endpoint Continuation

Element descriptions

Element Description

Actor An instance of an actor at runtime; this can be depicted either as the human figure
or in rectangle notation.

Lifeline An Object element with the stereotype Lifeline.

Boundary Represents a user interface screen or input/output device.

Entity A persistent element - typically implemented as a database table or element.
Control The active component that controls what work gets done, when and how.

(c) Sparx Systems 2022 Page 106 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Messages (Sequence Diagram)

Ohjact Ohject2

1.2
Meassage()

Sequence diagrams depict workflow or activity over time using Messages passed from element to element. In the
software model. These Messages correspond to Class operations and behavior. When you display a Sequence diagram,
the Diagram Toolbox automatically switches to the 'Interaction' pages of the Diagram Toolbox, containing the 'Message
icon.

\

Toolbox icon

=% Message

Access

Diagram Toolbox Click on the 'Message' icon, click on the source object and drag the cursor to the
target object

(If the Properties window for the Message does not display, right-click on the
Message and on the 'Properties' menu option)

Create a Message on a Sequence diagram

Option Action

Message Type the Message name.

If the Message flow is towards a Class element (dropped in from a Class diagram)
or a Lifeline element having a classifier, and the destination Class has defined
operations, you can click on the drop-down arrow and select an appropriate

(c) Sparx Systems 2022 Page 107 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

operation name; the Message then reflects the destination Class operations.

You can also include operations that the element's classifier has inherited, in the
list. To do this, select the 'Show Inherited Methods' checkbox.

Operations If the available operations on the destination Class are not appropriate, click on this
button and define a new operation in the destination element, using the 'Operations'
dialog.

If you create a Message without making reference to the target Class operations, no
new operation is added to the target Class.

Parameters Type any parameters that the Message has, as a comma-separated list.

Argument(s) (Optional) Type the actual value that corresponds to each parameter, as a
comma-separated list.

Return Value If the Message has a return value or type, specify it in this field.

Show Inherited Methods Select this checkbox to include operations that the destination element's classifier
has inherited, in the drop-down list of operations available in the 'Message' field.

Clear the checkbox to show only operations from the classifier itself.

Assign to If the Message flow is from a Class element or Lifeline element with classifier that
has defined attributes, click on the drop-down arrow and select an appropriate
attribute name.

The Message reflects the attributes from the source Class; you cannot add further
attributes to the source Class here - if no appropriate attribute is listed, open the
Class element 'Properties' dialog and add the required attribute.

Otherwise, optionally type the name of the object to assign the message flow to.

Stereotype (Optional) Type or select a stereotype for the connector (this is displayed on the
diagram, if entered).

Alias (Optional) Type an alias for the name of the Message.

On the diagram, the alias displays instead of the Message name if the 'Use Alias if
Available' checkbox is selected on the 'Diagram’ tab of the 'Properties' dialog for the

diagram.
Condition Type any conditions that must be true in order for the Message to be sent.
Constraint Type any constraints that might exist on when the Message is sent.
Is Iteration Select the checkbox to indicate that the Message will iterate until the specified

condition takes the value false. The condition statement on the diagram is prefixed
by an asterisk (*).

Clear the checkbox to indicate that the Message will only be sent once within the
process cycle, if the specified condition is true.

Start New Group (For Communication diagram Messages). Select this checkbox to reset the Message
(and all subsequent Messages) to a separate group with a new initial number.

Synch Click on the drop-down arrow and select 'Synchronous' or 'Asynchronous' as

appropriate.

The value 'Synchronous' disables the 'Kind' field; synchronous Messages are always

(c) Sparx Systems 2022 Page 108 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Calls.

Kind This field is enabled when the 'Synch' field is set to Asynchronous.

Click on the drop-down arrow and select either 'Call' or 'Signal', as appropriate.

Lifecycle Select 'New' to create a new element at the end of the Message, or 'Delete' to
terminate the message flow at the end of the Message.

If neither case applies, set the field to '<none>'.
Is Return If the Message you have created is a return message, select this checkbox.
Save Click on this Toolbar button to save the Message definition or any changes to it.
e You can change the timing details of a message on the 'Timing Details' dialog,

and emphasize the sequence of closely-ordered messages using General
Ordering

e To toggle the numbering of messages on a Sequence diagram, select or
deselect the 'Show Sequence Numbering' checkbox on the 'Preferences' dialog

Notes

® You can also use the Message connector as an Information Flow, and realize information flows on the Message

(c) Sparx Systems 2022 Page 109 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Self-Message

Ohjzctt Objzct?

I 10

| Ig Self Message

A Self-Message reflects a new process or method invoked within the calling lifeline's operation. It is a specification of a
Message, typically in a Sequence diagram.

Self-Message Calls indicate a nested invocation; new activation levels are added with each Call.

Self-Message as Return

It is possible to depict a return from a Self Message call.

Objzctt

1.1 Self
Massags

Tl 12 Sek
- Message
Retum

Create a Self Message return

Step Action

1 Create a second Self Message at the end of execution.

2 Double-click on the Message name to open the Properties window for the Message.
3 Select the 'Is Return' checkbox.

4 Raise the Activation level of the return.

Toolbox icon

(c) Sparx Systems 2022 Page 110 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

(c) Sparx Systems 2022 Page 111 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Call

Object1 Object2

1.0
Self-Massage()

1.2

call]) >[lL_|

A Call is a type of Message connector that extends the level of activation from the previous Message. All Self-Messages
create a new activation level, but this focus of control usually ends with the next Message (unless activation levels are
manually adjusted). Self-Message Calls, as depicted in the image of the first Call, indicate a nested invocation; new
activation levels are added with each Call. Unlike a regular Message between elements, a Call between elements
continues the existing activation in the source element, implying that the Call was initiated within the previous Message's
activation scope.

Toolbox icon

= can

(c) Sparx Systems 2022 Page 112 of 420 Created with Enterprise Architect

Unified Modeling Language (UML)

Message Examples

3 October, 2022

These are different types of Message available on Sequence diagrams. Note that Messages on Sequence diagrams can

also be modified with Shape Scripts.

Object1 Object2 Object3
T I T
1.0 Message	
Ll |
1.1 Massags el
=T 1.2 Message Asynchronous
1.6 Callback Message
—1
-

1.7 Callback Message

Object4

Other Sequence Messages

-
|J' 1.8 Retumn Message |

|: 1.10 S=if Message Retum
-

= — — -

T
1.9 Self Massags |
|
|
|

1.3 Massags MNew

R

1.4 Call

Ohbjects

1.5 Message Deleted

Yy

o A

These are examples of Messages that are not part of the sequence described by the diagram.

(c) Sparx Systems 2022

Page 113 of 420

Created with Enterprise Architect

Unified Modeling Language (UML)

3 October, 2022

Exit .

Objecti Object? Objectd Object4
I I T T
D 1.0 Stsrt_		
o [
[
f f		
alt	alt	
Enter 11	. I I	
= 1condition 1] - Condition 1]		
1.2 State 1 !		
[T		
} I
[Condition 2] : [Condition 2] :
13 |
L |

State 2
14
o

|
I

| 1.5

(c) Sparx Systems 2022

Page 114 of 420

1.6 End

Created with Enterprise Architect

Unified Modeling Language (UML)

Change the Timing Details

It is possible to change the timing details of a Message in a Sequence diagram.

Access

Context Menu Right-click on the Message | Timing Details

Change Timing

See the OMG Unified Modeling Language specification, (v2.5.1, p. 511).

3 October, 2022

X O

Customer A Crrder Screen

Shopping Cart

I
I
I
| 1.0 Cpen Order) {0...13}
L

|
|
|
| B
|
|
I
|
—I {d...d*3}
t=now -1 o
- = 1.1 Get Cart() d=duration

In this diagram, on the Open Order Message:

e 'Duration Constraint' has been set to 0...13

On the Get Cart Message:

e 'Duration Constraint Between Messages' has been set to d...d*3
e 'Duration Observation' has been set to d=duration

e 'Timing Constraint' has been set to t...t+3

e 'Timing Observation' has been set to t=now

.. 1+3)

By typing a value in the 'Duration Constraint' field, you enable the Message angle to be adjusted. After clicking on the
OK button on the 'Timing Details' dialog, click on the head of the Message connector and drag the connector up or down
to change the angle. You cannot extent the angle beyond the life line of the connecting sequence object or create an angle

of less than 5 degrees.

You can also create the 'Duration Constraint Between Messages' line by dragging the 'General Ordering' arrow up to the
point at which the previous message joins the source Lifeline for the current message. A dialog displays on which you
enter the value for the constraint. Having created the line, you can move it to any point within half way along the current
message and half way along the previous message, to avoid overlap with other message timing details. You can edit or
delete the value either through the 'Timing Details' dialog or by right-clicking on the line itself and selecting the

(c) Sparx Systems 2022 Page 115 of 420

Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

appropriate context menu option.

Field Action

Duration Constraint Indicate the minimum and maximum limits on how long a message can last.

Duration Constraint Indicate the minimum and maximum interval between sending or receipt of the

Between Messages previous message at the current message's source Lifeline, and sending the current
message.

Duration Observation Capture the duration of a message.

Timing Constraint Indicate the minimum and maximum time at which the message should arrive at the
target.

Timing Observation Capture the point at which the message was sent.

(c) Sparx Systems 2022 Page 116 of 420 Created with Enterprise Architect

Unified Modeling Language (UML)

General Ordering

3 October, 2022

In a Sequence diagram, the workflow is represented by the sequence of Messages down the diagram. Messages near the
top of the diagram are passed before Messages lower down the diagram.

sd pk

Object!

1.0 Message1()

i
i
i

Y
—_——————— - -} —_———

Object3

Objectd

1.1 Message2()

:
:
i

I
|
|
|
|
|
|
|
|
|
I___I
gl
|
|
|

In the diagram, Message 1 is earlier than Message 2. However, in a complex diagram, or when representing finely timed
operations or parallel processing, this might not be apparent. You can reinforce the sequence using a 'General Ordering'

arrow.

Click on the Message arrow. A small arrow displays at the source anchor point.

R

Click on this arrow and drag it to the start of the next Message in sequence (Message 2 in the example). The General

Ordering arrow displays, indicating that the second Message follows the first.

sd pk

Objectt Object2

T

|

|

|

|

1.0 Message1() |

%,

I e

1.1 Message2()

I
|
|
|
|
|
|
|
|
|
o !
"
|
|
|

You can have more than one General Ordering arrow issuing from or targeting a Message, if necessary.

(c) Sparx Systems 2022

Page 117 of 420

Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Asynchronous Signal Message

You define a Message as an asynchronous signal message by displaying the Properties window for the Message and
setting the 'Synch' field to 'Asynchronous', and the 'Kind' field to 'Signal'. A synchronous message cannot be used to
convey signals, so setting the 'Synch' field to 'Synchronous' disables the 'Kind' field.

'Return Value', 'Assign To' and the Operations button, which are not applicable to asynchronous signals, are disabled.

The Operations button changes to a Signal button, which you click on to associate the asynchronous signal message with
a Signal element in the model. You can type the arguments corresponding to the Signal attributes into the 'Argument(s)'
field.

When you click on the Signal button, the 'Select Signal' dialog displays, through which you locate and select the required
Signal element.

(c) Sparx Systems 2022 Page 118 of 420 Created with Enterprise Architect

Unified Modeling Language (UML)

Co-Region Notation

3 October, 2022

Co-Region notation can be used as a short hand for parallel combined fragments. You can add this notation to a
Sequence diagram using the 'Co-Region' submenu, which you display by right-clicking on a connector in a Sequence

diagram and selecting the 'Co-Region' option. There are four sub-options available:

e Start at head
e End at head
e Start at tail
e End at tail

Object1 Object2

T I
| |
| |
| |

rl-l
. "1

Object2 Ohjects
T T
| |
| |
| |
| |
| |
| |
m |
| L
7 H
| |
| |
| |
| |
= .
i L
| |
| |

(c) Sparx Systems 2022

Page 119 of 420

Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Sequence Diagrams and Version Control

You might create Sequence diagrams that use elements from other Packages as the Lifelines within the diagram. In such
cases, the diagrams could be corrupted when the element Packages are checked in and out under Version Control. This is
because during checkout the elements are first deleted from the model and then re-imported, and although they are
reinstated in the diagrams, any Messages connecting them are not.

So, if the diagram and its elements reside in different Packages, a round-trip of the element Package through Version
Control might damage the Sequence diagram.

The solution is to drag-and-drop each Class onto the Sequence diagram as an object - when you drop the Class onto the
Sequence diagram, in the 'Paste Element' dialog select the 'as Instance of Element (Object)' option. This creates a new
object in the diagram's parent Package, based on the selected Class element. You then create the Messages between the
objects.

Therefore, to ensure that a Sequence diagram is not damaged by round-trips of other Packages through Version Control,
remember that:

e The Lifelines must be objects (even though you can drop elements as Lifelines onto a Sequence diagram, it is not a
strictly UML compliant construct)

e The Lifelines must be in the same Package as the diagram

This illustration shows the Browser window with two Packages: P1, containing the elements, and P2, containing a
Sequence diagram that uses those elements. The diagram itself is also shown.

Browser v @ x | » TF a0
EIEI%E + ¥ & = P @Startpage I.?_'EP.I ?—EPZ <

Project | Context Diagram Element

4 (Z Model
4 [Elgsample E‘X) C10bj: Class1 Object1 C20bj: Class2
g5 P A10bj: Actorl
% Actor] : : I I
[Class1 : : : :
b B class2 ! 1.0C10pr1(): ! ! !
I B cass3] I] | |
4 Bip2 11m1() l |
TF P2 L i
|
!

O c1obj: Classt 1.2 C20pri(}:int

O ca2obj: Class2 -
=

& A10bj: Actor1
= Objectl

1.3 C20pr2(}: float

1.4 m2()

-
. 1.5C10pr2(): int

()

1.6 m3()

ll
-

I

|

|

|

oyt |
| |
| |
Notes I I
| |
| |
T |
| |
| |
| |
| |
! !

This diagram is not damaged when round-tripped through Version Control, because all the Lifelines are objects and these
objects reside in the same Package as the Sequence diagram.

Notes

e These recommendations also apply to Communication diagrams

(c) Sparx Systems 2022 Page 120 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Sequence Element Activations

Sequence elements in a Sequence diagram have Activation rectangles drawn along their lifelines. These rectangles
describe the time the element is active during the overall period of processing. This visual representation can be
suppressed by right-clicking the Sequence diagram, and selecting 'Suppress Activations'.

In general, Enterprise Architect calculates the period of activation for you, but in some cases you might want to fine tune
the rectangle length. There are several context menu options on a Sequence Message that you can use to accomplish this.
To access the context menu, right-click on the message and select 'Activations'.

A more convenient way to change activation levels is directly on the diagram. Whenever appropriate, left arrows and/or
right arrows display on specific connectors. In this diagram, see connector 1.3. Click on the arrow to raise or lower the
activation level.

Ohject1 Ohject? Ohject3
I I I
1.0 >	

|

|

1.1 I
|

|

1.2 I

|

L 1.3 :

1.4

Branch With Previous Message

[This section describes a method of representing concurrent messages as defined in UML prior to UML 2.0, and is
included to support models that might still apply it.

From UML 2.0 onwards, the notation has been replaced by Fragments. It is recommended that you consider upgrading
your models to make use of Fragments and other more recent improvements in notation.]

Having set out the Lifelines and Sequence Messages with the appropriate message grouping and activation levels, you
might want to indicate that two messages in different Message Groups and at different Activation levels issuing from a
Lifeline are branches, or executed concurrently. Consider this example:

(c) Sparx Systems 2022 Page 121 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Objects Objects Object?

1.1

1.2

2.1

{4:!.

Message 1.1 passes from Object 5 to Object 6, and then Message 1.2 passes to Object 7 and Message 2.1 passes back to
Object 5. It appears that the Messages go in the sequence 1.1, 1.2 and then 2.1. However, you want to indicate that
Message 2.1, whilst separate, is concurrent with Message 1.2.

In this case:
e Right-click on the later Message (2.1) and select the option 'Branch with Previous Message'
The source anchor for Message 2.1 then becomes the same as the source for Message 1.2, the immediately previous

message. They are separate but concurrent Messages from the same Lifeline.

Objects Objects Object?

1.1

1.2

I
I
| 21

o

If it later becomes unnecessary to show that the Messages are branches, right-click on the later message (2.1) and
deselect the 'Branch with Previous Message' option.

Context menu options
Option Description

Start New Message Group Starts off a new round of processing in the current diagram.

This enables you to describe more than one processing scenario in a single diagram.

(c) Sparx Systems 2022 Page 122 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Extend Source Activation Forces an element to stay active beyond the normal processing period.

Down This could be used to express an element that continues its own processing

concurrently with other processes.

Extend Source Activation Forces an element's activation upwards.
Up
End Source Activation Truncates the activation of the source element after the current message.

This is useful for expressing an asynchronous message after which the source
element becomes idle.

End Target Activation Ends a Forced Activation started by the 'Extend Source Activation' options.
Raise Activation Level Displays on the context menu only where its use is appropriate.
For example, after a self-message the next message starts by default at a lower

activation level but the 'Raise Activation Level' command displays on the context
menu to enable you to raise its level.

Lower Activation Level Displays on the context menu only where its use is appropriate.

(c) Sparx Systems 2022 Page 123 of 420 Created with Enterprise Architect

Unified Modeling Language (UML)

Lifeline Activatio

3 October, 2022

n Levels

Complicated processing systems can be easily negotiated and reflected in Sequence diagrams, by adding activation

layers on a single lifeline.

Examples

Data Modal

T
|
I 1.0 Sample A
= 1
1.1 Sample A1)

Cata Model

T
|
! 1.0 Sample A[)
i
1.1 Sample A1()

Data Modeal

T
|
I 1.0 Sample A
i
1.1 Sample A1()

(c) Sparx Systems 2022

A Class invokes the method Sample A, which in turn calls Sample Al.

To produce the arrangement in the diagram:

1. In the Diagram Toolbox click on i

and specify 'Interaction'.

to display the 'Find Toolbox Item' dialog

2. Click on the 'Self-message' icon in the 'Interaction Relationships' panel.
Click on the lifeline.

In order to raise the Activation level of Sample Al, click on the raise arrow of the
selected connector.

The lifeline now visually depicts that method Sample Al is called during the
processing of Sample A.

In this example, a few more self-messages have been added.

The message Sample A2a is called from Sample A2, which in turn is called from
Sample A (not Sample Al).

Sample Al is called from Sample A.

Page 124 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Sequence Message Label Visibility

Hide and show labels used in Sequence messages

Step Action
1 Right-click on the message within the Sequence diagram and select 'Set Label Visibility'.
The 'Label Visibility' dialog displays.
2 Select or clear the checkbox against each message label to display or hide, respectively.
3 Click on the OK button to save the settings.

(c) Sparx Systems 2022 Page 125 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Change the Top Margin

In order to change the top margin of a Sequence diagram from the default 50 units, right-click on the diagram and select
the 'Set Top Margin' option. You can set the top margin to any value between 30 and 250 units. You can then use this
space to, for example, add Note or Text elements to provide documentation on the diagram.

(c) Sparx Systems 2022 Page 126 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Inline Sequence Elements

On a Sequence diagram it is possible to represent existing child Part and Port elements, which render as inline sequence
elements under their parent Class sequence element.

Example Sequence Diagram with Parts and Ports

Class1 Class2

Parti Parti Par3 |‘ Pans |

|

L |

A |

- I
| | |
| |
18 ! [
| i -
I |
I |
- 1.7 I |
. T T
'll:"l T T T T T | |
I | I | | I | | I
| | I | | | | | I
1 I | | | 1 | | 1
Represent Part and Port elements on a Sequence diagram
Step Action
1 Right-click on the Sequence elements containing the child Ports or Parts, and select 'Features | Interaction

Points'.

The Features window displays at the 'Interaction Points' tab.

2 Select the checkbox against each Part or Port to show, and click on the Close button.

(c) Sparx Systems 2022 Page 127 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Communication Diagram

A Communication diagram is a diagram that shows the interactions between elements at run-time in much the same
manner as a Sequence diagram. However, Communication diagrams are used to visualize inter-object relationships,
while Sequence diagrams are more effective at visualizing processing over time.

Communication diagrams employ ordered, labeled associations to illustrate processing. Numbering is important to
indicate the order and nesting of processing. A numbering scheme could be:

1

1.1

1.1.1

1.1.2

1.2, and so on.

A new number segment begins for a new layer of processing, and would be equivalent to a method invocation.

You generate Communication diagram elements and connectors from the 'Communication' pages of the Diagram
Toolbox.

Example Diagram

This example illustrates a Communication diagram among cooperating object instances. Note the use of message levels
to capture related flows, and the different colors of the messages.

LeginScreen 1.2: pemission= chackUsar] —.r UserValidator

? 1.1: loging)

1: login(pwd, id) — Drdersi=m 2.3: cart= addToCart{book) —» Cart

2.1: cart= search() —»

- mwsal i —
2: browseCatalogusa()

Ack 3: pleceCrdan) —
er Search5creen
2.2: book= salectBook) —p book ‘Book
wsb pags OrderSormn 3.2: order cresteOrder) —» Drclos
3.1: assembleOrdericart) —P»
3.3: stocklewel= updsteInvantonyjordar) Inventory

Communication Diagram Element Toolbox Icons

(c) Sparx Systems 2022 Page 128 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Icon Description

2 Acdor - An Actor is a user of the system; user can mean a human user, a machine, or even
another system or subsystem in the model.

B Object - An Object is a particular instance of a Class at run time.

> Boundary - A Boundary is a stereotyped Object that models some system boundary, typically a
user interface screen.

& Control - A Control element represents a controlling entity or manager that organizes and
schedules other activities and elements.

2 Entity - An Entity is a stereotyped Object that models a store or persistence mechanism that
captures the information or knowledge in a system.

1 Package - Packages are used to organize your project contents, but when added onto a
diagram they can be used to depict the structure and relationships of your model.

Communication Diagram Connector Toolbox Icons

Icon Description

/ Associate An Association implies that two model elements have a relationship, usually

implemented as an instance variable in one or both Classes.

A Hesting The Nesting Connector is an alternative graphical notation for expressing
containment or nesting of elements within other elements.
A Realize A Realizes connector represents that the source object implements or Realizes its

destination object.

(c) Sparx Systems 2022 Page 129 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Communication Diagrams in Color

It is possible to highlight particular message flows in a Communication diagram using different colors for each message
set.

Highlight the colors in a Communication diagram

{Customer Session “Cart ltem

T 2.2: *gatCartltams{)

f.1 crastaSassion{} :S5hopping Cart

«boundanys

Order Screen 2.1: cart= getCarDetais) —»

‘Order
3.1: omder createCrdericart) —j»

Actor

4.1 receipt= submitPayment() 3.2: "crzstzzlinas()

Order Line
‘Payment
4 2: chackCC) —»

CreditCardProcessor

Step Action

1 Select 'Start > Application > Preferences > Preferences > Communication Colors'.

The 'Communication Message Coloring' page of the 'Preferences' dialog displays.

2 Select the 'Use Communication Message Coloring' checkbox.

3 Click on the drop-down arrow of each 'Message n' field, and select the required color for each message
group.

4 Click on the Close button.
On your Communication diagram, each sequence group of messages displays in a different color, as
shown.

(c) Sparx Systems 2022 Page 130 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Messages (Communication Diagrams)

A Message in a Communication diagram is equivalent in meaning to a Message in a Sequence diagram. It implies that
one object uses the services of another object, or sends a message to that object. Communication Messages in Enterprise
Architect are always associated with an Association connector between object instances. Always create the Association
first, then add a Message to the connector.

Messages can be dragged into a suitable position by clicking and dragging on the message text.

Communication Messages are ordered to reflect the sequencing of the diagram. The numbering scheme should reflect the
nesting of each event. A sequencing scheme could be:

1
2,2.1,2.2,2.3
3

This would indicate the single sequence of events 2.1, 2.2 and 2.3 occurs within an operation initiated by event 2. This is
the default pattern applied by Enterprise Architect.

Alternatively, the sequence could be:
1

2

2.1,2.1.1,2.1.1.1

22,22.1,2.2.1.1

3

This would indicate that two sequences of events can be initiated by event 2, and 2.1 and 2.2 are separate sequences, not
consecutive events in one sequence. You can set the sequence pattern and order using the Properties window for the
Message and the 'Sequence Communications' dialog.

If the target object is a Class or has its instance classifier set, the drop-down list of possible message names includes the
exposed operations for the base type.

(c) Sparx Systems 2022 Page 131 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Create a Communication Message

Create a Communication Message

Object2
1.1: validateUsar]) —.'
1: lagin) — - Objecti
2: ordertem) —
Actor
Objectd
2.1: createOrder) —»
Step Action
1 Open a diagram (one of: Communication, Analysis, Interaction Overview, Object, Activity or
StateMachine).
2 Add the required objects.
3 Add an Association relationship between each pair of objects that communicate.
4 Right-click on an Association to display the context menu.
5 Select the appropriate option to add a Message from one object to the other.
6 When the Properties window for the Message displays, type in a name and any other required details.
7 Click on the OK button.

The Message is added, connected to the Association and Object instances.

8 Move the Message to the required position.

(c) Sparx Systems 2022 Page 132 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Re-Order Messages

When constructing your Communication diagram, it is frequently necessary to create or delete Message 'groups' and to
re-order the sequence of Messages. There are two displays that help you perform these tasks: the Properties window for
the Message and the 'Sequence Communications' dialog.

Organize Message Groups

If you have several Messages in the form 1.1, 1.2, 1.3, 1.4, for example, but want to start a new numbering group on, say,
the third Message (that is, 1.1, 1.2, 2.1, 2.2, 2.3), you can change that Message in the series to a Start Group message.

Step Action

1 Double-click on a Message name.

The Properties window for the Message displays.
2 To make the selected Message the start of a new group, select the 'Start New Group' checkbox.

3 If required, in the Notes window for the Message, type an explanatory note.

You can format the text using the Notes toolbar at the top of the field.

4 Click on the Save icon to save changes.

Sequence Messages

In larger and more complex diagrams, you might have to use deeper levels of Messages in a group; for example, 1, 1.2,
1.2.1, 1.2.1.1. You might also have to change the sequence of Messages, making Message 1.3, for example, into Message
1.1.

Step Action

1 Select the 'Sequence Communication Messages' option after you:
e Select the 'Design > Diagram > Options' ribbon option, or
e Right-click on the diagram background, or
e Right-click on a Message

The 'Communication Messages' dialog displays.

2 Click on the Message to adjust and, at the bottom of the dialog, click on the:

e Move Up or Move Down (Hand) buttons to move the Message up or down the sequence (for
example, Message 1.2 to Message 1.1 or 1.3)

e Move Left or Move Right (Hand) buttons to move the Message up or down a level (for example,
Message 1.2.1 to Message 1.2 or Message 1.2.1.1)
3 Repeat step 2 until the Message sequence and levels match your requirements.
You might have to adjust other Message numbers (in group, sequence or level) to accommodate the

changes you have made.

4 Click on the OK button to save changes.

(c) Sparx Systems 2022 Page 133 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

(c) Sparx Systems 2022 Page 134 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Interaction Overview Diagram

Interaction Overview diagrams visualize the cooperation between other Interaction diagrams to illustrate a control flow
serving an encompassing purpose. As Interaction Overview diagrams are a variant of Activity diagrams, most of the
diagram notation is the same, as is the process of constructing the diagram.

Decision points, Forks, Joins, Start points and End points are the same. Instead of Activity elements, however,
rectangular elements of two types are used:

e Interaction elements display an inline Interaction diagram, which can be any one of the four types (Sequence,
Timing, Communication or Interaction Overview)

e Interaction Occurrence elements are references to an existing Interaction diagram: they are visually represented by a
frame, with ref in the frame's title space; the diagram name is indicated in the frame contents

To create an Interaction Occurrence, simply drag an Interaction diagram from the Browser window onto your Interaction
Overview diagram. The ref frame displays, encapsulating an instance of the Interaction diagram.

You generate Interaction Overview diagram elements and connectors from the 'Activity' pages of the Diagram Toolbox.

Example Diagram

This diagram depicts a sample sale process, shown in an Interaction Overview diagram, with sub-processes abstracted
within Interaction Occurrences.

The diagram appears very similar to an Activity diagram, and is conceptualized the same way; as the flow moves into an
interaction, the respective interaction's process must be followed before the Interaction Overview's flow can advance.

(c) Sparx Systems 2022 Page 135 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Raguestitem

ref

Itzm not found SearchForltem

Itemn fou ﬁ:%

ref

Checkout

ref

[=]

CancelSale 4 _
Sale Finalized?

M

i’
n

ref

CreateRecord

!

Interaction Overview Diagram Element Toolbox Icons

Icon Description

I Partition A Partition element is used to logically organize elements.

A Decision is an element that indicates a point of conditional progression: if a

(c) Sparx Systems 2022 Page 136 of 420 Created with Enterprise Architect

Unified Modeling Language (UML)

Drecision

Send

Receive

Synch

Initial

Final

Flow Final

1 Expansion Region
{#} Interruptible Region

Exception

Merge

Fark/loin

Faork/loin

3 October, 2022

condition is true, then processing continues one way; if not, then another.

The Send element is used to depict the action of sending a signal.

A Receive element is used to define the acceptance or receipt of a request.

A Synch state is useful for indicating that concurrent paths are synchronized. They
are used to split and rejoin periods of parallel processing.

The Initial element defines the start of a flow when an Activity is invoked.

The Final element, indicates the completion of an Activity; upon reaching the Final,
all execution is aborted.

The Flow Final element depicts an exit from the system, as opposed to the Activity
Final, which represents the completion of the Activity.

Enterprise Architect supports two types of Region element: Expansion Regions and
Interruptible Activity Regions.

An Expansion Region surrounds a process to be imposed multiple times on the
incoming data, once for every element in the input collection.

An Interruptible Activity Region surrounds a group of Activity elements, all
affected by certain interrupts in such a way that all tokens passing within the region
are terminated should the interruption(s) be raised.

The Exception Handler element defines the group of operations to carry out when
an exception occurs.

A Merge Node brings together a number of alternative flow paths in Activity,
Analysis and Interaction Overview diagrams.

A Fork/Join element can be used to: 1) split a single flow into a number of
concurrent flows, 2) join a number of concurrent flows or 3) both join and fork a
number of incoming flows to a number of outgoing flows.

A Fork/Join element can be used to: 1) split a single flow into a number of
concurrent flows, 2) join a number of concurrent flows or 3) both join and fork a
number of incoming flows to a number of outgoing flows.

Interaction Overview Diagram Connector Toolbox Icons

Icon

-

¥

Caontrol Flow

Object Flow

(c) Sparx Systems 2022

Description

The Control Flow is a connector connecting two nodes, modeling an active
transition.

An Object Flow connects two elements, with specific data passing through it,
modeling an active transition.

The Interrupt Flow is a connection used to define the two UML concepts of

Page 137 of 420

Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Interrupt Flow - connectors for Exception Handler and Interruptible Activity Region.

(c) Sparx Systems 2022 Page 138 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

UML Elements

UML elements are the building blocks of a model. They are contained in a repository and are depicted in diagrams
connected by relationships to create narratives that describe the enterprise, business or software system. Each element
has a type that dictates its presentation and the rules that govern how it is connected to other elements. Elements are
displayed in a hierarchy in the Browser window and each element plays a role in defining the system being modeled.
They are grouped into structural or behavioral element types, and each type can be used at any stage of the representation
of a system. For example, Activities can be used to define the way an organization carries out a business function, or to
define the steps in a computer algorithm.

Behavioral Diagram Elements

Behavioral diagrams depict the behavioral features of a system or business process. Elements that can appear on
Behavioral diagrams include Activity, Interaction, Lifeline, StateMachine and Use Case.

Structural Diagram Elements

Structural diagrams depict the structural elements composing a system or function. Elements that can appear on
Structural diagrams include Class, Component, Interface, Node and Package.

(c) Sparx Systems 2022 Page 139 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Behavioral Diagram Elements

This section provides detailed descriptions of the elements commonly used in modeling with Behavioral diagrams in
Enterprise Architect.

(c) Sparx Systems 2022 Page 140 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Action

Description

An Action element describes a basic process or transformation that occurs within a system, and is the basic functional
unit within an Activity diagram. Actions can be thought of as children of Activities; both represent processes, but
Activities can contain multiple steps or decomposable processes, each of which can be embodied by an Action. An
Action cannot be further broken down or decomposed.

For the purposes of simulation, you can define the effect of a basic (Atomic) Action on the 'Action' tab of the Properties
window for the element, using a JavaScript expression in the 'Effect' field to define the duration of the effect and
selecting to display the effect on the diagram. An Action can be further defined with pre-condition and post-condition
notes.

Certain properties can be graphically depicted on the Action. When you first drag the 'Action’ icon from the Toolbox
onto a diagram, the system prompts you to select from a list of the more common types of Action to create. If you select
the 'Other' option on this list, the New Action' dialog displays; the 'Other' drop-down list on this dialog enables you to
select a more specialized type of Action from a complete list of Action types.

AcceptCall

AcceptEvent

AcceptEvent Timer
AddStructuralFeatureValue
AddVarableValue
Broadcast Signal
Clearfssociation
ClearStnuctural Feature
ClearVariable

CreateLink
CreateLinkObject
CreateObject

DestroyLink

DestroyObject

Hyperdink

RaiseException
ReadExdent

] ReadlsClassifiedObject
Atomic ReadLink

ReadLinkObject End
ReadLinkObject EndCGualifier
Call Operation ReadSelf

ReadStructural Feature
Accept Event Read\/arable
ReclassifyObject
RemowveStructural FeatureValue
send Signal RemoveVarableValue

Rephy
Write Variable SendObject

SendSignal

Call Behavior

Accept Time Event

Value Specification
Create Object
Destroy Object
Other

(c) Sparx Systems 2022

| StatOwnedBehaviar

Test ldentity
ValueSpecification
WriteLink

Write Structural Feature
Writeariable

Page 141 of 420

Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

If you later decide that the Action type is not appropriate, you can change it on the 'Action' tab of the Properties window
- select the required new type from the 'Kind' drop-down list. For a Value Specification Action, you can also set the value
on this tab.

The data values passed out of and into an Action can be represented by Action Pins. For an Action type other than a
basic Action, you can also assign Action Pins to represent specific properties.

An Action can also be depicted as an Expansion Node to indicate that the Action consists of an Expansion Region.

If you have defined a Decision Table for the Action element, you can select options on the element's context menu to
render the element on a diagram as the Decision Table, showing the rules as either rows or columns. You can also return
the element to its normal element shape.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification, (v2.5.1, p. 443) states:

An Action is a fundamental unit of executable functionality contained, directly or indirectly, within a Behavior. The
execution of an Action represents some transformation or processing in the modeled system, be it a computer system or
otherwise.

The OMG Unified Modeling Language specification, (v2.5.1, p. 443) also states:

An Action may accept inputs and produce outputs, as specified by InputPins and OutputPins of the Action, respectively.
Each Pin on an Action specifies the type and multiplicity for a specific input or output of that Action.

(c) Sparx Systems 2022 Page 142 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Action Types

Action elements are extremely versatile. Enterprise Architect supports a wide range of specific Action types that you can
use to represent or enact a discrete object, operation or behavior. Actions of most types are depicted as a round-cornered
rectangle containing the Action type and Action name, as shown.

Clear StructuralFeature
Action15

Action Element Notation

Certain types of Action element have their own specific notation; for example:

Action Kind Notation

> myAccept
AcceptEventTimer X

AcceptEvent

my Timer
CallBehavior
myCallBeh
CallOperation)
mySam pleOperation
(Class1:)
\

SendSignal
mySendSig b3

AcceptEvent Actions

An AcceptEvent Action element has a selectable output result Action Pin assigned to it, and one or more Triggers to
denote the type of events accepted by the Action. You define the Triggers on the 'Triggers' tab of the Properties window.
In a simulation, an AcceptEvent Action without a Trigger will block the simulation at the Action element.

Field Action

Name Type the name of the trigger.

(c) Sparx Systems 2022 Page 143 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Type Click on the drop-down arrow and select the type of trigger: Call, Change, Signal or
Time:

e (Call - specifies that the event is a CallEvent, which sends a message to the
associated object by invoking an operation

e Change - specifies that the event is a ChangeEvent, which indicates that the
transition is the result of a change in value of an attribute

e Signal - specifies that the event is a SignalEvent, which corresponds to the
receipt of an asynchronous signal instance

e Time - corresponds to a TimeEvent; which specifies a moment in time

Code generation for StateMachines currently supports Change and Time trigger
events only, and expects a specification value.

In simulation, each Trigger should have a Signal. The result will be the Accept
signal.

Specification Specify the event instigating the Transition.

For an AcceptEventTimer Action, you can type a JavaScript expression in this field
evaluating to the number of ticks to wait for.

SendSignal Action & BroadcastSignal Action

A SendSignal Action has an assigned target ActionPin and a Signal. The Signal can have input ActionPins that bind its
attribute parameters as arguments. For example:

::Sender: sig.binding_To_s1: Integer

In a model simulation, a SendSignal Action will transfer the values of the arguments into the attributes of the created
Signal instance. The target ActionPin can have an empty object, to send the Signal into the root of the simulation space.
If there is no target ActionPin, simulation will stop at the Action. If the target has an Object, the Signal will be sent to the
Object. You must specify the Pin type of the target ActionPin in the classifier of the Object.

A BroadcastSignal Action is similar to a SendSignal Action, except that it does not have a target ActionPin. In a
simulation, it always sends its Signal to the root of the simulation data.

You can model the Signal to be sent and the associated arguments to be conveyed, using the 'Signal' tab of the Properties
window for the element.

Field/Button Action

Signal
18na Click on l_l and select the required signal from the 'Select Signal' dialog.

Attribute Click on the drop-down arrow and select the attribute (as previously created in the
Signal element) with which the arguments are to be associated.

Value Type the appropriate value for the attribute.
Add Click on this button and select the appropriate ActionPins from the 'Select Pin'
dialog, to identify the arguments for the Signal.

To assign more than one ActionPin, press the Ctrl key while you select each one.

Save Click on this button to save your changes.

(c) Sparx Systems 2022 Page 144 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

CallBehavior

A CallBehavior Action has a behavior such as an Activity, and a selectable ActionPin result that will put the return
value. The CallBehavior Action can also transfer the values of its argument ActionPins into its behavior, if they are
bound together. In a simulation, if the Action has no behavior, the simulation is blocked.

SendObject Action

A SendObject Action sends a copy of an Object from the requesting ActionPin to the target ActionPin. In a simulation,
the SendObject Action must have both ActionPins, otherwise the simulation is blocked at the Action.

Structural Feature Actions

A StructuralFeature Action acts upon a modeling structural feature, such as a Port, Part or attribute of an Activity or of
the classifier of an Object, which you identify within the Action element. Enterprise Architect supports these types of
Structural Feature Action:

Action Description

AddStructuralFeatureValue Requires an object input ActionPin where the target object will be entered, and a
result output ActionPin to hold the read result. If the object Port has no value at run
time, the process will pause at the Action.

In your model design, the Port should be connected to the Port of an Object or to an
Object Node of an Activity. The properties of the Port or Object Node must be
correctly set, and the value Port must be set up to capture the input value when the
Action takes effect.

The result ActionPin can be connected to an input consume Port or ActionPin. For
example, it can be used at the next WriteStructuralFeature Action as the input
value.

ClearStructuralFeature Clears the single value of a structural attribute or a structural Port of an Object or
an Activity, and sets the value of the structural feature to null.

ReadStructuralFeature Resembles AddStructuralFeatureValue, except that the value Port is not necessary.

In a simulation, if the Object's Port has no value at run time, the simulation will
pause at the Action.

RemoveStructuralFeatureV Similar to ClearStructuralFeature except that it invokes a value ActionPin to input a
alue value and, if that value matches the value of the specified structural feature, it sets
the value to null.

If the values do not match, the Action does not clear the structural feature value.

WriteStructuralFeature Identical to AddStructuralFeatureValue. In a simulation, the value Port must be set
up to capture the input value when the simulation runs the Action.

Set a StructuralFeature

(c) Sparx Systems 2022 Page 145 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Step Action
1 Right-click on the Action element and select 'Advanced | Set Structural Feature: Add'.
2 On the 'Select Property' dialog (a variant of the 'Select <Item>' dialog), browse or search for the
appropriate structural feature, and double-click on it.

The feature name and location displays in the 'structuralFeature' field of the 'Set Structural Feature' dialog.

3 Click on the OK button to save the setting.

ReadSelf

A ReadSelf Action reads its own host object name into its result Port. You must set an output ActionPin for the result.

ReadSelf

Actiond

L]

RESIILT : Class2

The Action must be within a Class, which is instanced during run time. When a simulation passes the Action, it puts the
name of the instance of the Class into the result Port.

ReadSelf is one of a group of Object Actions, with CreateObject and DestroyObject.

(c) Sparx Systems 2022 Page 146 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Variable Actions

Variable Actions are closely concerned with the simulation of the behavior of and actions on Objects in a process. They
have an association variable in the form of the Tagged Value variable with, as its value, the name of an Object in
run-time. That is:

sim.ObjectName

Variable Actions provide the variable not only as an Object but also as a property (such as an attribute or Port) of an
Object. For example:

sim.a.al
The parameter a.al can have an integer value.
Variable Actions include:
e ReadVariable
e WriteVariable
e (learVariable
e AddVariableValue

e RemoveVariable

ReadVariable

A ReadVariable Action has a Result Action Pin as an output Port. The value of the Port will be the result to be read, this
being a copy of the variable read. Therefore, it is not affected by changes to the value of the variable. For example, if the
variable is sim.Object.a that has the value 3, and its value has been changed into 5 after it is read, the value read is still 3.

Before reading:
sim.Object.a = 3;
sim.Action].result = null;
After reading:
sim.Object.a = 3;
sim.Actionl.result = 3;
After a change in the value of the variable:
sim.Object.a =5;
sim.Action2.value = 3;

In that example, the value is a Port of Action2 that is connected to the result Port of Actionl by an Object Flow
connector.

WriteVariable

This Action has a Value Action Pin as an input Port. The value of the Port will be written into its variable. The result
value is a copy of the variable from the Value Port.

ClearVariable

This Action clears all values of a variable, the variable being either an Object or a value.

(c) Sparx Systems 2022 Page 147 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

AddVariableValue

This Action is effectively the same as a WriteVariable Action, because the current variables of the simulation do not
support multiple values.

RemoveVariableValue

This Action is effectively the same as a ClearVariable Action because the current variables of the simulation do not
support multiple values.

(c) Sparx Systems 2022 Page 148 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Local Pre/Post Conditions

Actions can be further defined with pre-condition and post-condition notes, which constrain an Action's entry and exit.

«Post-condition»
{A drink is selected that the
vending machine contains.}

- Dispense Drink o
ActivityFinal

«Post-condition»

{The vending machine
dispensed the drink that is
selected.}

Attach a constraint to an Action

Step Action

1 Right-click on the Action and select the 'New Child Element| Attach Constraint' option.

A Note is created on the diagram, connected to the Action.

2 Right-click on the Note and select the 'View Properties' option.
The 'Constraint' dialog displays.

3 In the 'Constraint Type' field, click on the drop-down arrow and select the required constraint type.
4 In the 'Constraint' field, type the text for the constraint.
5 Click on the OK button to save the constraint.

(c) Sparx Systems 2022 Page 149 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Class Operations in Diagrams

Operations from Classes can be represented by CallOperation Action elements on any diagram (such as an Activity,
Custom or Analysis diagram). When an operation is shown as an Action, the notation of the element displays the name of
the operation prefixed by the name of the Class from which it comes.

Add an Operation to a Diagram

Step Action

1 Open the target diagram.
2 From the Browser window open a Class and locate the operation to be added to the diagram.
3 Drag the operation on to the diagram.

4 When the operation has been added to the diagram, the CallOperation Action resembles this:

-
mySampleQperation

(Class1:)

Change the Operation That an Action Refers to

Step Action

1 Right-click on the Action and select the 'Advanced | Set Operation' option.
The 'Set Operation' dialog displays.

2 If necessary, in the 'Go To Namespace' field, select the model that contains the operation.

Browse for the operation.

3 When you have located the operation, double-click on it.
The Action updates to show the new classifier and operation names.

-
mySampleCperation

[Accountitem::GetMame)

A

(c) Sparx Systems 2022 Page 150 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Notes

e Ifyou want to locate, in the Browser window, the operation that an Action was created from, right-click on the
Action in the diagram and select the 'Find | Locate Operation in Project Browser' option

e If you want to display the previously-generated code for the Class containing the operation, click on the Action in
the diagram and press either Ctrl+E or F12; the 'Code Editor' view displays, with the code generated for the Class (if
no code has been generated for the Class, the 'Code Editor' does not display)

e In asimulation, the CallOperation Action must have a calling operation and a target object ActionPin, the operation
belonging to the object that comes from the target ActionPin; if you don't set these properties, simulation will be
blocked at the Action

(c) Sparx Systems 2022 Page 151 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Action Pin

Description

An Action Pin is used to define the data values passed out of and into an Action. An Input Pin provides values to the
Action, whereas an Output Pin contains the results from that Action.

Action Pins are used here to connect two Actions:

Action Pins can be further characterized as defining exception parameters, streams, or states. Associating a state with a
Pin defines the state of input or output values. For instance, the Pin could be called 'Orders', but the state could be
"Validated' or 'Canceled'.

To add an Action Pin to an Action, right-click on the Action to display the context menu and select the 'New Child
Element | Action Pin' option. (You can also assign Action Pins, to define specific properties of the Action.)

The Properties window for an Action Pin has a 'Pin' tab on which you define the specific actions of the Pin.

A Pin serves as an argument for Call Behavior Actions and Call Operation Actions - the Pin name and parameters are
shown on the 'Arguments' tab of the Properties window for the Action element. When an Action is associated with a
valid behavior in the model, the associated behavior's parameters are listed in the "Parameter' field drop-down list to
facilitate one-to-one mapping between the argument and the parameter. The fields in the 'Argument' panel of the 'Pin' tab
are enabled only for Pins belonging to Call Actions, and only when the Action is associated with a valid behavior with
valid parameters. To observe this:

1. Create an Activity element and give it an Activity Parameter (right-click on it and select New Child Element |
Activity Parameter").

2. Create an Action and set the 'Kind' property to 'CallBehavior' (on the 'Action' tab of the Properties window for the
Action element).

3. Make the Activity element the classifier for the Action (on the Properties window for the Action, click on the
'Element' tab and, in the 'Advanced' section click on the 'Classifier' browse button and locate and select the Activity
on the 'Select <Item>' dialog).

4. The Features window immediately displays at the 'Interaction Points' tab. Select the 'Show Owned/Inherited'
checkbox; when this is selected, the Activity Parameter is listed in the 'Defined Elements' panel. Select the checkbox
against the Activity Parameter.

5. The Action element now has an Action Pin representing an argument, with the Activity Parameter as the parameter
of the argument.

You can also change the objectState property of an Action Pin on the 'Pin’ tab of the element's Properties window.

(c) Sparx Systems 2022 Page 152 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Assign Action Pins

Apart from adding Action Pins to any Action, you can assign specialized input or output Action Pins to Actions that have
a specific type (that is, those that are not Basic or Atomic Actions). These input/output Pins signify various properties of
the Action - they are not visible as structures on the diagram unless they have previously been added, but are listed in the
Browser window as properties of the Action.

You can only assign Pins that have already been added or assigned to the Action, or that are being created specifically to
be assigned to the Action.

Assign Action Pins to an Action

Step Action

1 Click on the Action in the diagram and, in the docked Properties window, click on the 'Action' tab. Click
on the drop-down arrow in the 'Kind' field and ensure that you have the correct Action type, then click on
the Save icon.

2 Click on the 'Element' tab, and select the stereotype properties group. The group contains different fields
depending on the Action type. The fields are populated by typing in or browsing for the appropriate object
name or selecting a checkbox.

If you use a Browser screen, you can either browse for and assign existing objects - in this case,
ActionPins - or click on the Add New button and create and assign a new Action Pin.

3 Note that the Action Pins do not display on the diagram, but are shown in the Browser window under the
Action element.
Click on the OK button to return to the Properties window.

Notes

e To check the exact location of an assigned Action Pin, you can right-click on the Pin name in the Properties window
and select the 'Find in Project Browser' option

(c) Sparx Systems 2022 Page 153 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Activity

Activity

Description

An Activity organizes and specifies the participation of subordinate behaviors, such as sub-Activities or Actions, to
reflect the control and data flow of a process. Activities are used in Activity diagrams for various modeling purposes,
from procedural-type application development for system design, to business process modeling of organizational
structures or workflow.

This simple diagram of an Activity contains Action elements and includes input parameters and output parameters.

~

Parameater 1 Example Activity

Cutput Pemmetar

i |

Pammeter 2
()

L A

You can define an Activity as a composite element, either during creation or during later edits. When creating a
composite Activity element, it is simpler to apply the mechanism for creating Structured Activity elements, which
reduces the number of steps to work through. If converting an existing Activity element, right-click on the element and
select the '"New Child Diagram | Composite Structure Diagram' option.

Certain properties can be graphically depicted on an Activity. The Actions in an Activity can be further organized by
Activity Partitions.

An Activity can also be depicted as an Expansion Node to indicate that the Activity consists of an Expansion Region.

If you have defined a Decision Table for the Activity element, you can select options on the element's context menu to
render the element on a diagram as the Decision Table, showing the rules as either rows or columns. You can also return
the element to its normal element shape.

Toolbox icon

O Activity

OMG UML Specification:

The OMG Unified Modeling Language specification, (v2.5.1, pp.373-374) states:

An Activity is a Behavior specified as sequencing of subordinate units, using a control and data flow model. Subordinate
behaviors coordinated by these models may be initiated because other behaviors in the model finish executing, because

(c) Sparx Systems 2022 Page 154 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

objects and data become available or because events occur externally to the flow. The flow of execution is modeled as
ActivityNodes connected by ActivityEdges. An ExecutableNode can be the execution of a subordinate behavior, such as
an arithmetic computation, a call to an operation, or manipulation of object contents (...). ActivityNodes also include
flow-of-control constructs, such as synchronization, decision, and concurrency control.

Tokens are not explicitly modeled in an Activity, but are used for describing the execution of an Activity. An object
token is a container for a value that flows over ObjectFlow edges (some object tokens can flow over ControlFlow edges,
as specified by the modeler, see isControlType for ObjectNodes in sub clause 15.4). An object token with no value in it
is called a null token. A control token affects execution of ActivityNodes, but does not carry any data, and flows only
over ControlFlow edges. Each token is distinct from any other, even if it contains the same value as another.

(c) Sparx Systems 2022 Page 155 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Activity Notation

Certain properties can be graphically depicted on an Activity element, as shown:

Crrder wprecondifiony Order Complete
parameter name: wpostconditions Order Closed
Crder Type

To define these properties, right-click on the Activity and select the Properties' option, then select the 'Advanced' tab of
the 'Properties' dialog.

You can also define the duration (the number of ticks to wait for) of the Activity, using a JavaScript expression. Open the
Properties window, click on the 'Behavior' tab and type the JavaScript expression in the 'Specification' field.

(c) Sparx Systems 2022 Page 156 of 420 Created with Enterprise Architect

Unified Modeling Language (UML)

Activity Parameter Nodes

Description

3 October, 2022

An Activity Parameter Node accepts input to an Activity or provides output from an Activity.

This example depicts two entry parameters and one output parameter defined for the Activity.

Parametar 1

Parmmeter 2

L

+—{(__J

L

Example Activity

~

Cutput Pammeatar

|

Define an Activity Parameter Node for an Activity

Input Stream

-

Example Activity

Paramster

Cutput Stream Parameter

Output Exception Parameter

~
T (e
/
Parameter
—{__]J A=)=t
h. A
Step Action
1 Right-click on the element and select the 'New Element | Activity Parameter' option.
2 The 'Properties' dialog displays, which prompts for the name and other properties of the embedded
element.
3 To further define the new Activity Parameter, select the 'Parameter’ tab of the Properties' dialog and
define:
e Type
e Default Value
e Direction
e Whether this is a fixed value
e Multiplicity upper and lower bounds
e Whether to allow duplicates and
(c) Sparx Systems 2022 Page 157 of 420

Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

e Whether multiplicity is ordered
Activity Parameter Nodes also have the 'Exception’ and 'Stream' options:

e Exception indicates that a parameter can emit a value at the exclusion of other outputs, usually
because of some error

e Stream indicates whether or not a parameter can accept or post values during the execution of the
Activity

OMG UML Specification:

The OMG Unified Modeling Language specification, (v2.5.1, p.398) states:

As a kind of Behavior, an Activity may have Parameters (..). When the Activity is invoked, values may be passed into
the Activity execution on input Parameters (i.e., those with direction in or inout) and values may be passed out of the
Activity execution on output Parameters (i.e., those with direction inout, out or return).

Within an Activity, inputs to and outputs from an Activity are handled using ActivityParameterNodes. Each
ActivityParameterNode is associated with one Parameter of the Activity that owns the node. The type of an
ActivityParameterNode shall be the same as the type of its associated Parameter.

(c) Sparx Systems 2022 Page 158 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Activity Partition

Enterprise Architect supports two types of Activity Partition:
e The Activity Partition feature, described in this topic, which is used to logically organize an Activity element
e The Activity Partition element, which is used to logically organize an Activity diagram

In effect, these are the same. They partition the Actions of the Activity without affecting the token flow, helping to
structure the view or parts of the Activity.

An example of a feature-partitioned Activity is shown here:

é Contact Sales Staff N
[Client]
Fhone Store R:,?:J{::t Accept Price 0
[Sales Sta "|,
Inferm Price
S A

Define Partitions

Step

In a diagram, right-click on the Activity element and select the 'Advanced | Partition Activity' option.

The 'Activity Partitions' dialog displays.

In the 'Name' field, type the name of a partition.
Click on the Save button.

Repeat step 2 for each partition to be created.

Click on the Close button.

If the partitions do not show on the element, click on the ﬁ icon to the right of the element, to toggle display of the
partitions.

Click on the partition borders and drag them into position to enclose the appropriate elements.

OMG UML Specification:

The OMG Unified Modeling Language specification, (v2.5.1, p.408) states:

An ActivityPartition is notated with two, usually parallel lines, either horizontal or vertical, and a name labeling the
partition in a box at one end. Any ActivityNodes and ActivityEdges placed between these lines are considered to be
contained within the partition. This notation for an ActivityPartition is colloquially known as a swimlane, (_..).

(c) Sparx Systems 2022 Page 159 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

(c) Sparx Systems 2022 Page 160 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Actor

Actor

Note that on a Construction diagram, an Actor element defaults to Rectangular Notation and looks like a Class element.

Description

An Actor is a user of the system; user can mean a human user, a machine, or even another system or subsystem in the
model. Anything that interacts with the system from the outside or system boundary is termed an Actor. Actors are
typically associated with Use Cases.

Actors can use the system through a graphical user interface, through a batch interface or through some other media. An
Actor's interaction with a Use Case is documented in a Use Case scenario, which details the functions a system must
provide to satisfy the user requirements.

Actors also represent the role of a user in Sequence diagrams, where you can display them using rectangle notation.
Enterprise Architect supports a stereotyped Actor element for business modeling. The business modeling elements also
represent Actors as stereotyped Objects.

Toolbox icon

% Actor

OMG UML Specification:

The OMG Unified Modeling Language specification, (v2.5.1, pp.640/647) states:
An Actor specifies a role played by a user or any other system that interacts with the subject

An Actor models a type of role played by an entity that interacts with the subjects of its associated UseCases (e.g., by
exchanging signals and data). Actors may represent roles played by human users, external hardware, or other systems.

NOTE. An Actor does not necessarily represent a specific physical entity but instead a particular role of some entity that
is relevant to the specification of its associated UseCases. Thus, a single physical instance may play the role of several
different Actors and, conversely, a given Actor may be played by multiple different instances.

NOTE. The term “role” is used informally here and does not imply any technical definition of that term found elsewhere
in this specification.

When an Actor has an association to a UseCase with a multiplicity that is greater than one at the UseCase end, it means
that a given Actor can be involved in multiple UseCases of that type. The specific nature of this multiple involvement
depends on the case on hand and is not defined in this specification. Thus, an Actor may initiate multiple UseCases in
parallel (concurrently) or at different points in time.

(c) Sparx Systems 2022 Page 161 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Central Buffer Node

wcentralBuffers
CentralBufferNode 1

Description

A Central Buffer Node is an object node for managing flows from multiple sources and destinations, represented in an
Activity diagram. It acts as a buffer for multiple in-flows and out-flows from other object nodes, but does not connect
directly to Actions.

Toolbox icon

= Central Buffer Mode

OMG UML Specification:

The OMG Unified Modeling Language specification, (v2.5.1, p.398) states:

A CentralBufferNode acts as a buffer between incoming ObjectFlows and outgoing ObjectFlows. It accepts all object
tokens offered to it on all incoming flows, which are then held by the node. Held object tokens are offered to outgoing
flows according to the general ordering rules for ObjectNodes. When an offer for a token is accepted by a downstream
object node, that token is removed from the CentralBufferNode and moved to the accepting object node, as for any
object node.

(c) Sparx Systems 2022 Page 162 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Choice

O

Choice

Description

The Choice pseudostate is used to compose complex transitional paths in, for example, a StateMachine diagram, where
the outgoing transition path is decided by dynamic, run-time conditions. The run-time conditions are determined by the
actions performed by the StateMachine on the path leading to the choice.

This example depicts the Choice element. Upon reaching the Filter pseudostate, a transition fires to the appropriate State
based on the run-time value passed to the Filter. Very similar in form to a Junction pseudostate, the Choice pseudostate's
distinction is in deciding transition paths at run-time.

Randomizer
A
Filter
[IN RAMGE] [= hMAaX]
handler Small handlerLarge

Toolbox icon

Q Choice

OMG UML Specification:

The OMG Unified Modeling Language specification, (v2.5.1, p.313) states:

This type of Pseudostate is similar to a junction Pseudostate (...) and serves similar purposes, with the difference that the

(c) Sparx Systems 2022 Page 163 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

guard Constraints on all outgoing Transitions are evaluated dynamically, when the compound transition traversal reaches
this Pseudostate. Consequently, choice is used to realize a dynamic conditional branch. It allows splitting of compound
transitions into multiple alternative paths such that the decision on which path to take may depend on the results of
Behavior executions performed in the same compound transition prior to reaching the choice point. If more than one
guard evaluates to true, one of the corresponding Transitions is selected. The algorithm for making this selection is not
defined. If none of the guards evaluates to true, then the model is considered ill formed. To avoid this, it is recommended
to define one outgoing Transition with the predefined “else” guard for every choice Pseudostate.

(c) Sparx Systems 2022 Page 164 of 420 Created with Enterprise Architect

Unified Modeling Language (UML)

Combined Fragment

alt Fragment

3 October, 2022

A Combined Fragment reflects one or more aspects of interaction (called interaction operands) controlled by an
interaction operator, with corresponding Boolean conditions known as interaction constraints. The Fragment displays as
a transparent window, divided by horizontal lines for each operand.

This Sequence diagram illustrates the use of Combined Fragments in modeling a simplified purchasing process. A loop
fragment represents iteration through an unknown number of items for purchase, after which the cashier requests
payment. An alternative fragment represents the payment options, the fragment being divided to show the two operands
cash and credit card. After the fragment completes its trace, the cashier gives a receipt to the customer, under the fulfilled
condition that payment requirements were met.

The order of interaction fragment conditions can be changed directly on the diagram:

| |
Payment was approved/adequate

Customer Cashier Card Processor Cash Register

I T T T
1 | | |
loop | | | |
—) | | | |
D == U 17, unloadltem{itemCost) l l |
| (| | |
= | |
| |
1.1 tallyltem{cost) | |
| |
| |
! | |
| |
1.2 requestPaymeant | |
= — — — — —— — — —] | |
Ll | |
} } }
alt 1.2 payCash —_ | |
= | |
[zash] | |
1.4 depositPayment |

| Ll
1.5 retrievaChange J

- T
L] |

1.6 retumChange | |
il | |
- | |
[cradit card] : : :
1.7 payCradit o | | |
L= | |
| |
1.8 | |
processCard :
1.8 |
é___pmoessstatua _____ :
| |
1.10 giveRecsipt I I
S — | |
| |
T T | |
| |

1. Select an interaction fragment with more than one condition defined; up and down arrows appear on the right hand
side of each condition.

2. Click on the appropriate arrow to change the order.

(c) Sparx Systems 2022

Page 165 of 420

Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

I
,/alt /’2
v 7
[Condition 1] ?
___ %
ﬁf.:}nditi::—nz & ‘
=
[Condition 3] g
® 7
P

:

"///////////////////////////////////xl?’//////////////////////////////////

.
\\@

’Valt
— s 7
| Cendition 3] ... 7
ﬁ [Coendition 1 Y é
=
_______________________________________ @7
b
[Condition 2] i
r 7
L

Selecting and Moving a Combined Fragment

In order to select a Combined Fragment, you must click near the inside edge or drag a selection rectangle around the
Fragment; this is designed to prevent accidental selection when moving Messages inside the Fragment.

Once contained within a Fragment or a Fragment Operand, Messages continue to be contained by it as they are moved up
and down the diagram. To move a Message out of a Fragment, or to a different position in the sequence within the
Fragment, press and hold the Alt key as you drag the Message into position. A Fragment on a Sequence diagram will
resize when a Message within it is moved up or down, to continue to contain that Message.

When you select an Interaction Fragment on a diagram, it shows one of two element icons (off the top right corner) that
control how freely you can move the fragment and any Messages within and below the fragment.

(| T

alt Alt Fragment/

éi

RO G-~

e L EEREERNERN El

[

If s W

To move a Combined Fragment independently of its contents, make sure the 'move freely' element icon is visible; if
it is not shown, click on the 'move contents' icon + and drag the element border.

Interaction Fragments inside a Combined Fragment operand cannot be moved outside the operand unless the fragment is
in 'move freely' mode. Moving an operand line moves any objects and Messages below that line down or up by the
amount the operand line is moved.

Fragments containing other fragments resize when the contained fragment is resized (unless the fragment is in 'move
freely' mode).

Fill Opacity

Whilst an Interaction Fragment usually encloses a number of other elements, there might be reasons for hiding those
elements as well as times to fully show them, or perhaps just indicate that they are there, depending on the immediate
purpose of the diagram. You can apply these nuances in the display of elements behind and covered or overlapped by an
Interaction Fragment, by changing the opacity of the element.

(c) Sparx Systems 2022 Page 166 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Before setting the opacity, check that the element has a fill color.

You set the opacity using an icon from either of these two pop-up element toolbars:

e Click on the Interaction Fragment element and on the %I icon:
AR-B-G-

1+ | F 2B
-

e Right-click on the Interaction Fragment element and look above the context menu:

AM-®-a-n
F L E-&- @

=H w

Click onthe = icon and select:

e 100% for total opacity, where the elements behind and overlapping or covered by the Interaction Fragment are
hidden (you could right-click on individual elements and select the 'Z-Order | Bring to Top' option to expose those
elements only)

e 0% for no opacity, where the fill color is not applied and anything behind the Interaction Fragment is fully visible

o 75%,50% or 25% to set the appropriate degree of opacity and make the covered elements visible but over-shaded

Toolbox icon

_ | Fragment

OMG UML Specification

The OMG Unified Modeling Language specification, (v2.5.1, p.607) states:

A CombinedFragment defines an expression of InteractionFragments. A CombinedFragment is defined by an interaction
operator and corresponding InteractionOperands. Through the use of CombinedFragments the user will be able to
describe a number of traces in a compact and concise manner.

(c) Sparx Systems 2022 Page 167 of 420 Created with Enterprise Architect

Unified Modeling Language (UML) 3 October, 2022

Create a Combined Fragment
Create a Combined Fragment

Step Action

1 Drag the 'Fragment' icon onto the diagram from the 'Interaction Elements' page of the Diagram Toolbox.
2 In the 'Type' field, click on the drop-down arrow and select one of the various types of interaction
operator.
3 In the 'Condition' field, specify a condition or