
Dynamic Charts

ENTERPRISE ARCHITECT

User Guide Series

Author: Sparx Systems

Date: 2022-10-03

Version: 16.0

CREATED WITH

Table of Contents

Dynamic Charts 3
Chart Definition using JSON 4
Chart Definition using Simulation 7
Chart Definition using JavaScript 10
Dynamic Chart Resources 15
The Chart API 16

Chart Class 17
Chart Enumerations 20

ChartAxisCrossType 21
ChartAxisIndex 22
ChartAxisLabelType 23
ChartAxisTickMarkType 24
ChartAxisType 25
ChartBarShape 26
ChartCategory 27
ChartColorMode 29
ChartCurveType 30
ChartDashStyle 31
ChartFrameStyle 32
ChartGradientType 33
ChartMarkerShape 34
ChartStockSeriesType 35
ChartType 36
ChartWallOptions 37

ChartAxisIndex Class 38
ChartDataValue Class 40
ChartDiagram3D Class 41
ChartFormatSeries Class 42
ChartSeries Class 43

Dynamic Charts 3 October, 2022

Dynamic Charts

Enterprise Architect features DynamicChart Artifacts, which are Chart elements that can be styled and rendered
dynamically when the diagram opens. Dynamic Charts rely completely on code to define their series, style and content
and are managed entirely through the Automation Interface by clients - typically Plug-ins and scripts. The Chart
interfaces provide clients with the means to dynamically describe and populate a Chart when the diagram is viewed. The
API is wide ranging and flexible, allowing you to illustrate many different scenarios graphically at runtime. The feature
allows you to define any type of Chart you require using JavaScript either as code or JSON.

A good reference for the Chart interfaces and their use is the Package 'Reporting > Charts > Dynamic Charts' in the
Enterprise Architect Example Model. This Package contains examples of many Charts, each described dynamically by
JavaScript clients. Each Chart example presents the two methods of rendering - a JavaScript coding method and a JSON
datasource method.

Dynamic Charts are particularly useful for representing the results of Simulations, allowing you to:

Save the results of your Simulation as visual Chart elements·
Easily include Charts populated by Simulation results in your reports·
Share user-friendly Simulation results with stakeholders without requiring any additional Simulation tools·

Dynamic Charts are available in the Corporate, Unified and Ultimate editions of Enterprise Architect.

(c) Sparx Systems 2022 Page 3 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

Chart Definition using JSON

Rather than code a Dynamic Chart yourself, you might want to provide a simple description of the Chart instead.
Dynamic Charts can be designed and entirely defined by a single datasource; JSON is currently the preferred datasource
format, but XML and others will be available in the future.

You define the Chart by providing a simple JSON data structure that adheres to the DynamicChart schema. The schema
is available in the Schema Composer. It is also easily viewable in the Dynamic Charts Package of the Enterprise
Architect Example Model.

(To view the DynamicChart Schema, select Develop > Schema Modeling > Schema Composer > Open Schema

Composer, click on the button in the 'Profile' field, and select DynamicChartSchema.)

Datasources - JSON

To render a Chart using a JSON data structure, first select the DynamicChart Artifact element, then open the 'internal
code' editor. For a selection in the Browser, right-click and choose 'Features > Edit Internal Code' or, for a selection on a
diagram, right-click and choose 'Edit Chart Script'. These will open the editor for you to edit the Chart script. Create a
JSON variable that defines the Chart to render, then compose your ConstructChart function.

The ConstructChart function takes as its single argument the identity (a GUID string) of the Chart element being
displayed on the opening diagram. You then call the built-in function ConstructChartFromJSON, passing the GUID as
the first parameter and the JSON structure as the second argument, as illustrated in this example:

Example Datasource in JSON

var barChart2DJSON =

{

 "Category" : "BarSmart",

 "Type" : "Simple",

 "Title" : "Vehicle Expenses",

 "Series" :

 [

 {

"Label" : "Fuel",

"Data":

{

"Type" : "Column",

"Points" :

[

{ "Category": "Jan", "Y": 1.0 },

{ "Category": "Feb", "Y": 3.0 },

{ "Category": "Mar", "Y": 7.0 },

{ "Category": "Apr", "Y": 8.0 },

{ "Category": "May", "Y": 10.0 },

{ "Category": "Jun", "Y": 15.0 }

]

(c) Sparx Systems 2022 Page 4 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

}

},

{

"Label" : "Taxes",

"Data":

{

"Type" : "Normal",

"Points" :

[

{ "Y":10.0 },

{ "Y":12.0 },

{ "Y":16.0 },

{ "Y":17.0 },

{ "Y":10.0 },

{ "Y":12.0 }

]

}

},

{

"Label" : "Maintenance",

"Data":

{

"Type" : "Normal",

"Points" :

[

{ "Y":5.0 },

{ "Y":2.0 },

{ "Y":6.0 },

{ "Y":7.0 },

{ "Y":1.0 },

{ "Y":2.0 }

]

}

},

{

"Label" : "Other",

"Data":

{

"Type" : "Normal",

"Points" :

[

{ "Y":2.5 },

(c) Sparx Systems 2022 Page 5 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

{ "Y":2.5 },

{ "Y":2.5 },

{ "Y":2.5 },

{ "Y":2.5 },

{ "Y":2.5 }

]

}

}

]

};

function ConstructChart(chartGuid)

{

ConstructChartFromJSON(chartGuid, barChart2DJSON);

}

Further Examples

Further JSON examples are provided in the Example Model (see the Package 'Reporting > Charts > Dynamic Charts').

Each Chart example provides a Dashboard diagram and DynamicChart element. Select an element from any of these
examples and press 'Alt+7' to view the behavior behind the Chart. Looking at the variety of Chart examples is the best
way to get to know how to use JSON to produce the types of Chart you might be interested in.

(c) Sparx Systems 2022 Page 6 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

Chart Definition using Simulation

Simulations are a fantastic tool for observing behavior. At any point in the Simulation it is easy to tell where we are and
the state we are in. As we step through a Simulation this information is typically discarded. In a Simulation that shows
us, say, traffic numbers over a 24 hour period, we might easily observe the number of vehicles traveling through a tunnel
during various hours in the morning and evening. It might be useful to retain this information after the Simulation
completes, and to use it to provide something meaningful. The DynamicChart feature in Simulation allows us to do just
that. Taking the example above, we could record the amount of traffic during each step of the Simulation and use it to
produce a Chart that would clearly show how much traffic went through the tunnel during the 24 hour period of the
Simulation. Charts can in effect display for us either a timeline of a Simulation or the sum effect of one.

Producing Custom Charts in Simulation

You can fashion all sorts of Charts from any Simulation. Each time a Simulation is run, any DynamicChart elements
referenced (by name) by the Simulation are updated. The Simulation will search for any named Chart in the same
Package as the model.

Follow this simple process:

Create a DynamicChart element for the Simulation.1.

(c) Sparx Systems 2022 Page 7 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

In the initial step of the Simulation, use JavaScript to define a variable to hold the vehicle numbers.2.
//
// the traffic variable will hold the traffic numbers as Simulation proceeds and is initially zero
// each element of the array represents a period of the day, morning, afternoon, evening and night.
//
var traffic = [0,0,0,0];

Next write the JavaScript that describes, in JSON format, the Chart to produce.3.
//
// The JSON instance describing the chart to produce. (complies with the EA DynamicChart Schema)
//

var chartData =
{
 "Category" : "Column",
 "Type" : "Simple",
 "Title" : "Traffic",
 "Series" :
 [

{ "Label" : "Vehicles",
"Data" :
{

"Type" : "Column",
"Points" :
[

{ "Category": "Morning", "Y" : 0 }, // The Y values of the axis are initially
zero

{ "Category": "Afternoon", "Y" : 0 }, // they will be filled in at end
of Simulation

{ "Category": "Evening", "Y" : 0 },
{ "Category": "Night", "Y" : 0 }

]
}

}
]
};

At various transitions in the Simulation update the traffic numbers.4.
//
// 2000 vehicles went through the tunnel in the afternoon (element 1)
//
traffic[1] += 2000;

(c) Sparx Systems 2022 Page 8 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

At the end of the Simulation, use the data captured during the run to fill the series.5.
// fill points in series with the number of vehicles for each part of the day
var dataPoints = chartData.Series[0].Data.Points;
for(var dp = 0; dp < traffic.length; dp++)
{
 dataPoints[dp].Y = traffic[dp];
}

Update the model.6.
// Call the EA function to populate the DynamicChart element named 'Vehicles' with this data.
sim.GenerateChart("Vehicles", JSON.stringify(chartData));

Default Chart Produced by Simulation

In addition to Charts you specifically produce, a summary Chart can be produced automatically by a simulation. All that
is required is adding a DynamicChart Artifact to the Package and giving it the same name as the StateMachine. The
default Chart summarizes the State transitions taken during execution of a simulation. If a default Chart is found when
the simulation completes, that Chart's data is updated, and displayed automatically.

To add a default Chart to your StateMachine simulation follow these steps:

Locate the Package containing the StateMachine on which to perform the simulation.7.

Create a Dashboard diagram as a child of that Package.8.

Add a DynamicChart Artifact to the Dashboard diagram, and give it the same name as the StateMachine.9.

When the simulation ends, simply open the Dashboard diagram to reveal the summary.

(c) Sparx Systems 2022 Page 9 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

Chart Definition using JavaScript

In this topic we discuss coding a DynamicChart Artifact using just JavaScript and the Chart automation interface.

Define a Chart through JavaScript

The first thing you do is create a Dashboard diagram in the appropriate Package. Right-click on the Package and select
the 'Add Diagram' option.

On the 'New Diagram' dialog select the type 'Construction > Diagrams and Charts' and, when the empty diagram
displays, drag the 'Dynamic Chart' icon onto it from the 'Charts' page of the Toolbox.

(c) Sparx Systems 2022 Page 10 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

Now you write the JavaScript to style and render the Chart, starting with the ConstructChart function that will be
invoked automatically whenever the diagram containing the DynamicChart Artifact is opened for viewing. The GUID of
the element is passed to ConstructChart as a parameter. Within this function, it is entirely up to you what type of Chart to
display, the style of the Chart, the number of series it contains, and the data points that make up the series. Using the
Chart Package from the Automation Interface, it is possible to display almost any Chart you require.

In this example you will create a Grouped Column Chart that shows vehicle expenses over a few months. Each group
will represent a month and will be broken down into the different expenses incurred during that month.

To begin, click on the Artifact and press Alt+7, or click on the 'Edit Chart Script' context menu option; each method
displays the Code Editor window. The code to use is provided here, followed by the Chart it will produce when the
diagram is opened.

Importantly, note:

The !INC Local Scripts.ChartAutomation statement; all Chart scripts must include this statement·
The ConstructChart function (7th line in)·

Code

!INC Local Scripts.ChartAutomation

var monthNames = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"];

(c) Sparx Systems 2022 Page 11 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

function Rand(min, max) {

 min = cephes.ceil(min);

 max = cephes.floor(max);

 return cephes.floor(cephes.drand() * (max - min)) + min; }

function ConstructChart(guid)

{

var chart as EA.Chart; // The script first of all

var element = GetElementByGuid(guid); // declares the automation

var series1 as EA.ChartSeries; // objects it will use

var series2 as EA.ChartSeries;

var series3 as EA.ChartSeries;

var series4 as EA.ChartSeries;

chart = element.GetChart();

var chartCategory = ChartCategory.Column();

var chartType = ChartType.SIMPLE();

chart.SetChartType(chartCategory, chartType, false, true);

chart.Title = "Vehicle Expenses";

series1 = chart.CreateSeries("Fuel"); // The script then obtains the Chart object and creates the

series2 = chart.CreateSeries("Taxes"); // series. A chart is composed of a number of series, and

series3 = chart.CreateSeries("Maintenance"); // in this example each series will represent a type of expense.

series4 = chart.CreateSeries("Other");

series1.AddDataPoint3(monthNames[0], 14); // A series is composed of a number of datapoints and, here, the

series1.AddDataPoint3(monthNames[1], 4); // script adds the values for each of the points to each series.

series1.AddDataPoint3(monthNames[2], 3);

series1.AddDataPoint3(monthNames[3], 2);

series1.AddDataPoint3(monthNames[4], 1);

series2.AddDataPoint(10);

series2.AddDataPoint(12);

series2.AddDataPoint(15);

series2.AddDataPoint(17);

series2.AddDataPoint(12);

series3.AddDataPoint(5);

series3.AddDataPoint(7);

(c) Sparx Systems 2022 Page 12 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

series3.AddDataPoint(11);

series3.AddDataPoint(14);

series3.AddDataPoint(19);

series4.AddDataPoint(2);

series4.AddDataPoint(3);

series4.AddDataPoint(5);

series4.AddDataPoint(3);

series4.AddDataPoint(2);

series1.SetGroupID(0);

series1.SetGroupID(0);

series3.SetGroupID(1);

series4.SetGroupID(1);

chart.Redraw();

}

Output

This is the Chart produced by the code.

Debugging a Dynamic Chart

(c) Sparx Systems 2022 Page 13 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

After creating Dynamic Chart JavaScript, you can debug it as for any other code. Right-click on the Dynamic Chart in a
diagram and select the 'Debug Chart Script' option. The script displays in the Debug View.

Further Examples

Further coding examples are provided in the Example Model (see the Package 'Reporting > Charts > Dynamic Charts').
Each Chart example provides a Dashboard diagram and a DynamicChart element. Select any of these elements and press
Alt+7 to view the behavior code behind the Chart. Referring to these examples is the best way to understand how to code
each type of Chart.

JavaScript is the primary language for coding Dynamic Charts using automation. However, it is certainly feasible for a
third-party automation client to be involved in that process, the JavaScript host delegating tasks to the automation clients
in languages such as C# and C++, which might be able to obtain data from outside the model in ways not available to
scripts.

(c) Sparx Systems 2022 Page 14 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

Dynamic Chart Resources

A number of resources are available to you to aid in constructing Charts dynamically in Enterprise Architect, as
described in the Resources table.

Resources

Resource Description

JavaScript Library A library of JavaScript functions, with examples of coding Charts using the
Automation Interface or using JSON as a data source for Charts. This library can be
found in the 'Local Scripts' group of the Scripting control in Enterprise Architect.

Example Model The Enterprise Architect Example Model contains a number of Chart examples,
demonstrating the various types of Chart that can be created and styled dynamically
when they are displayed. These are in the Package 'Reporting > Charts > Dynamic
Charts'.

Examples include 3D Surface and Wireframe Charts, Stock Charts with series
showing price and volume fluctuations, Box Plot Charts showing visitor numbers,
Manhattan Stack Charts, and many others.

Each example is provided in two versions. The first version uses JavaScript code to
style and fill the Chart. The second uses a JSON data source to describe and fill the
Chart.

Chart Schemas The Example Model contains a reference model for Dynamic Charts, including
Class diagrams, a Schema Composer profile, and the JSON and XML schemas
generated using the profile, as Artifacts that you can quickly view by
double-clicking on them.

(c) Sparx Systems 2022 Page 15 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

The Chart API

The Chart interface is the API object that provides methods for dynamically creating Charts. It can be used to construct
any of the supported Chart types.

A Chart interface is obtained using the GetChart method on a DynamicChart element. A DynamicChart element can be
created from the 'Charts' page of the Diagram Toolbox, and is typically used on a Dashboard diagram.

(c) Sparx Systems 2022 Page 16 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

Chart Class

The Chart Class is the primary interface for Chart elements; it is used to create a series, add datapoints to a series and
configure the chart appearance.

Chart Attributes

Attribute Description

Title String

Notes: Read/Write

The title of the chart.

Category ChartCategory

Notes: Read only

The chart category; provided in the SetChartType method.

Type ChartType

Notes: Read only

The chart type; provided in the SetChartType method.

Chart Methods

Method Description

AddChartDataYXZ(double
Y, double X, double Z,
long seriesIndex)

long

Adds a datapoint to an existing series.

Parameters:

Y: double, the primary Y axis value·
X: double, the primary X axis value·
Z: double, the primary Z axis value·
seriesIndex: long, the index of the series (returned by the CreateSeries·
methods)

AddChartDataYY1(string
category, double Y, double
Y1, long seriesIndex)

long

Adds a datapoint to an existing series.

Parameters:

category: string - the x axis group, column or label·
Y: double, the primary Y axis value·
Y1: double, the secondary Y axis value·
seriesIndex: long, the index of the series (returned by the CreateSeries and·
CreateSeriesEx methods)

(c) Sparx Systems 2022 Page 17 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

CreateSeries(string name) LDISPATCH

Adds a new series to the chart. Returns an interface that can be used to add data to
the series and configure its appearance.

Parameters:

name: string, the displayed name of the series·

CreateSeriesEx(string
name, long color,
ChartType type,
ChartCategory category)

LDISPATCH

Creates a series of a particular chart category and type and returns an IChartSeries
interface. This allows charts to form multiple series in various ways. The
CombinedCharts in the EAExample Model are an example of this, displaying three
series for the Area, Column and Line categories respectively.

Parameters:

name: string, the name of the series·
color: long, RGB color value,-1 for default·
type: ChartType, one of the ChartType enumerations·
category: ChartCategory, one of the ChartCategory enumerations·

EnableResizeAxes(boolean
bEnable)

void

Grants or denies the ability to resize axes.

Parameters:

bEnable: boolean·

GetChartAxis(ChartAxisTy
pe type)

LDISPATCH

Returns an IChartAxis interface for the specified axis.

Parameters:

type: ChartAxisType, one of the ChartAxisType enumerations·

GetDiagram3D() LDISPATCH

Returns an IChartDiagram interface that can be used to specify the rendering
engine; Software or OpenGL.

GetSeries(long index) LDISPATCH

Returns an IChartSeries interface for the given index. Indices for series begin at
zero.

Parameters:

index: long·

GetSeriesCount() long

Returns the number of series represented by the chart.

Redraw() void

Redraws the chart.

SetChartType(ChartType
type, ChartCategory
category, boolean
bRedraw, boolean
bResizeAxis)

void

This is typically the first call made on the Chart interface. It defines the style and
appearance of the Chart when it is rendered.

Parameters:

type: ChartType·

(c) Sparx Systems 2022 Page 18 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

category: ChartCategory·
bRedraw: Boolean·
bResizeAxis: Boolean·

SetCurveType(ChartCurve
Type type)

void

Sets the interpolation method of drawing the curve.

Parameters:

type: ChartCurveType, one of the ChartCurveType enumerations, such as Line,·
Spline or SplineHermite.

SetSeriesShadow(boolean
bShow)

void

Displays or hides shadows on series.

Parameters:

bShow: Boolean·

SetThemeOpacity(long
percentage)

void

Sets the opacity of the chart.

Parameters:

percentage: long, chart transparency as a percentage·

ShowAxis(long index) void

Shows the axis for the given index.

Parameters:

index: long, one of the ChartAxisType enumerations·

ShowDataLabels(boolean
show, boolean border,
boolean
dropLineTomarker)

void

Shows or hides data labels on the chart.

Parameters:

show: Boolean, show or hide labels·
border: Boolean, show or hide border on labels·
dropLineTomarker: Boolean, changes position of label with respect to line·

ShowDataMarkers(boolean
show, long size,
ChartmarkerShape shape)

void

Shows or hides data markers on the chart. Also allows setting the appearance of
markers.

Parameters:

show: Boolean, show or hide markers·
size: long, size of markers in pixels·
shape: ChartmarkerShape, one of the ChartmarkerShape enumerations·

(c) Sparx Systems 2022 Page 19 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

Chart Enumerations

These enumerations, used specifically by methods in the Chart interface, are described in the topics of this section. Click
on the enumeration name in the list to the left of this text.

(c) Sparx Systems 2022 Page 20 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

ChartAxisCrossType

Enum Values

Enum Value

Auto value: 0

MaximumAxisValue value: 1

MinimumAxisValue value: 2

AxisValue value : 3

Ignore value: 4

FixedDefaultPos value: 5

(c) Sparx Systems 2022 Page 21 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

ChartAxisIndex

Enum Values

Enum Value

Unknown value: -1

X value: 0

Y value: 1

Z value: 2

(c) Sparx Systems 2022 Page 22 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

ChartAxisLabelType

Enum Values

Enum Value

NoLabels value: 0

NextToAxis value: 1

High value: 2

Low value: 3

(c) Sparx Systems 2022 Page 23 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

ChartAxisTickMarkType

Enum Values

Enum Value

NoTicks value: 0

Inside value: 1

Outside value: 2

Cross value: 3

(c) Sparx Systems 2022 Page 24 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

ChartAxisType

A set of constants that refer to the various axes used in charts.

Enum Values

Enum Value

CHART_Y_PRIMARY_A
XIS

value: 0

CHART_Y_SECONDAR
Y_AXIS

value: 1

CHART_X_PRIMARY_A
XIS

value: 2

CHART_X_SECONDAR
Y_AXIS

value: 3

CHART_Z_PRIMARY_A
XIS

value: 4

CHART_Z_SECONDARY
_AXIS

value: 5

CHART_Y_POLAR_AXI
S

value: 6

CHART_X_POLAR_AXI
S

value: 7

CHART_A_TERNARY_A
XIS

value: 8

CHART_B_TERNARY_A
XIS

value: 9

CHART_C_TERNARY_A
XIS

value: 10

(c) Sparx Systems 2022 Page 25 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

ChartBarShape

Enum Values

Enum Value

Box value: 0

Pyramid value: 1

PyramidPartial value: 2

(c) Sparx Systems 2022 Page 26 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

ChartCategory

Enum Values

Enum Value

chartDefault value: 0

chartLine value: 1

chartPie value: 2

chartPie3D value: 3

chartPyramid value: 4

chartPyramid3D value: 5

chartFunnel value: 6

chartFunnel3D value: 7

chartColumn value: 8

chartBar value: 9

chartHistogram value: 10

chartArea value: 11

chartStock value: 12

chartBubble value: 13

chartLongData value: 14

chartHistoricalLine value: 15

chartPolar value: 16

chartDoughnut value: 17

chartDoughnut3D value: 18

chartTorus3D value: 19

chartTernary value: 20

chartColumn3D value: 21

(c) Sparx Systems 2022 Page 27 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

chartBar3D value: 22

chartLine3D value: 23

chartArea3D value: 24

chartSurface3D value: 25

chartDoughnutNested value: 26

chartBoxPlot value: 27

chartBarSmart value: 28

chartBar3DSmart value: 29

(c) Sparx Systems 2022 Page 28 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

ChartColorMode

Enum Values

Enum Values

Single value: 0

Multiple value: 1

Palette value: 2

Custom value: 3

Series value: 4

(c) Sparx Systems 2022 Page 29 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

ChartCurveType

Enum Values

Enum Value

NoLine value: 0

Line value: 1

Spline value: 2

SplineHermite value: 3

Step value: 4

ReversedStep value: 5

(c) Sparx Systems 2022 Page 30 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

ChartDashStyle

Enum Values

Enum Value

Solid value: 0

Dash value: 1

Dot value: 2

DashDot value: 3

DashDotDot value: 4

Custom value: 5

(c) Sparx Systems 2022 Page 31 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

ChartFrameStyle

Enum Values

Enum Value

None value: 0

Mesh value: 1

Contour value: 2

ContourMesh value: 3

(c) Sparx Systems 2022 Page 32 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

ChartGradientType

Enum Values

Enum Value

None value: 0

Horizontal value: 1

Vertical value: 2

DiagonalLeft value: 3

DiagonalRight value: 4

CenterHorizontal value: 5

CenterVertical value: 6

RadialTop value: 7

RadialCenter value: 8

RadialBottom value: 9

RadialLeft value: 10

RadialRight value: 11

RadialTopLeft value: 12

RadialTopRight value: 13

RadialBottomLeft value: 14

RadialBottomRight value: 15

Bevel value: 16

PipeVertical value: 17

PipeHorizontal value : 18

(c) Sparx Systems 2022 Page 33 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

ChartMarkerShape

Enum Values

Enum Value

Circle value: 0

Triangle value: 1

Rectangle value: 2

Rhombus value: 3

(c) Sparx Systems 2022 Page 34 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

ChartStockSeriesType

Enum Values

Enum Value

Bar value: 0

Candle value: 1

LineOpen value: 2

LineHigh value: 3

LineLow value: 4

LineClose value: 5

LineCustom value: 6

(c) Sparx Systems 2022 Page 35 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

ChartType

Enum Values

Enum Value

chartTypeDEFAULT value: 0

chartTypeSIMPLE value: 1

chartTypeSTACKED value: 2

chartType100STACKED value: 3

chartTypeRANGE value: 4

(c) Sparx Systems 2022 Page 36 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

ChartWallOptions

Enum Values

Enum Value

None value: 0, 0x0000

FillLeftWall value: 1, 0x0001

OutlineLeftWall value: 2, 0x0002

FillRightWall value: 4, 0x0004

OutlineRightWall value: 8, 0x0008

FillFloor value: 16, 0x0010

OutlineFloor value: 32, 0x0020

DrawAll value: 65535, 0xFFFF

DrawLeftWall FillLeftWall | OutlineLeftWall

DrawRightWall FillRightWall | OutlineRightWall

DrawFloor FillFloor | OutlineFloor

DrawAllWalls DrawLeftWall | DrawRightWall

OutlineAllWalls OutlineLeftWall | OutlineRightWall

OutlineAll OutlineAllWalls | OutlineFloor

FillAllWalls FillLeftWall | FillRightWall

FillAll FillAllWalls | FillFloor

Default OutlineAll

(c) Sparx Systems 2022 Page 37 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

ChartAxisIndex Class

ChartAxisIndex Attributes

Attribute Description

Visible Boolean

Shows or hides the axis.

ChartAxisIndex Methods

Method Description

EnableMajorUnitIntervalIn
terlacing(boolean
binterlace)

void

Turns interlacing on or off.

GetGuid() string

Returns the guid of the axis. Uniquely identifies an axis.

GetLabel() string

Returns the value of the label of the axis.

SetAxisName(string label,
boolean showonaxis)

void

Sets the label for the axis and whether it should be displayed on the chart.

Parameters:

label: string, the text for the label·
showonaxis: Boolean, a true value indicates that the label is displayed·

SetCrossType(long type) void

Provides a directive or hint for use when calculating the position of labels on an
axis.

Parameters:

type: long, one of the ChartAxisCrossType enumerations·

SetDataFormat(string
format, boolean
formatAsDate)

void

Sets the format string for the conversion of values to strings (e.g. "%.4f"). If the
datapoints represent datetime values, the formatAsDate argument should be true,
and the format string set appropriately (e.g. "%H:%M")

Parameters:

format: string, the format to use when converting datapoint values to string·
formatAsDate: Boolean, a true value indicates the datapoint represent a·
datetime

SetDisplayUnits(double

(c) Sparx Systems 2022 Page 38 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

units) void

Sets the display units on the axis. Basically, the datapoint values are divided by this
figure to give a major unit value. For example, if the datapoint contains meter
values, a value of 1000 would result in kilometers being used as the major unit on
the axis.

Parameters:

units: double, the value of a single unit on the axis·

SetFixedDisplayRange(dou
ble fmin, double fmax)

void

Sets a fixed range for the axis.

Parameters:

fmin: double, the minimum value·
fmax: double, the maximum value·

SetLabelType(long
labelpos)

void

Sets the position of labels on the axis.

Parameters:

labelpos: long, one of the ChartAxisLabelType enumerations·

SetTickMark(long
tickmarkpos)

void

Sets the position of tick marks on the axis.

Parameters:

tickmarkpos: long, one of the ChartAxisTickMarkType enumerations·

ShowMajorGridLines(bool
ean show)

void

Shows or hides grid lines.

(c) Sparx Systems 2022 Page 39 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

ChartDataValue Class

The ChartDataValue class provides an interface that allows values to be obtained from points in a series.

ChartDataValue Methods

Method Description

GetValue() double

Returns the value associated with the datapoint.

IsEmpty() Boolean

True if no value exists for the datapoint.

SetEmpty(boolean empty) void

Sets a datapoint on a series to be empty.

Parameters:

empty: Boolean, true if the datapoint is to be considered as empty, having no·
value

SetValue(double value) void

Sets the value of a datapoint.

Parameters:

value: double, the value of the datapoint; setting a value makes a datapoint·
non-empty

(c) Sparx Systems 2022 Page 40 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

ChartDiagram3D Class

ChartDiagram3D Methods

Method Description

SetDrawWallOptions(long
options, boolean redraw)

void

Sets the option for how walls and floors - if any - are displayed on the 3D chart.
The options parameter is a bitmask of one or more values from the
ChartWallOptions enum.

Parameters:

options: Long, bitmask of wall and floor display options·
redraw: Boolean, redraws the chart after the function completes·

SetRenderingType(long
engine)

void

Parameters:

engine: long, 0 for software,1 for openGL·

(c) Sparx Systems 2022 Page 41 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

ChartFormatSeries Class

A helper class for the ChartSeries class that allows setting appearance options.

ChartFormatSeries Methods

Method Description

SetCurveType(ChartCurve
Type type)

void

Sets the graphic option for rendering lines.

Parameters:

type: long, one of the ChartCurveType enumerations·

SetSeriesLineWidth(long
width)

void

Sets the line width in pixels.

Parameters:

width: long, a pixel value·

SetSeriesOutlineDashStyle
(ChartDashStyle dashstyle)

void

Sets the dash style of the line on the chart/graph.

Parameters:

dashstyle: ChartDashStyle, one of the ChartDashStyle enumerations·

(c) Sparx Systems 2022 Page 42 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

ChartSeries Class

ChartSeries Methods

Method Description

AddBoxPlotData(double
ave, double min, double q1,
double q2, double q3,
double max, double
notched)

long

For a chart having the BoxPlot category, adds a single datapoint to the series.

Parameters:

ave: double, the mean value at this point·
min: double, the minimum value at this point·
q1: double, the first quartile value·
q2: double, the second quartile value·
q3: double, the third quartile value·
max: double the maximum value at this point·
notched: double, for a series with notched style, the notched value to express at·
this point

AddDataPoint(double Y) long

Adds a datapoint to the series. Returns the index of the point, which is the number
of points -1.

Parameters:

Y: double, the Y axis value·

AddDataPoint2(double Y,
double X)

long

Adds a datapoint to the series. Returns the index of the point, which is the number
of points -1.

Parameters:

Y: double, the Y axis value·
X: double, the X axis value·

AddDataPoint3(string
category, double Y)

long

Adds a Y axis value for a given category on the X axis.

Parameters:

category: string, the category or column name·
Y: double, the value·

AddStockData(double
open, double high, double
low, double closing,
VARIANT timestamp)

void

Adds data to a series for a chart of the Stock category.

Parameters:

open: double, opening value·
high: double, high value·
low: double, low value·
closing: double, closing value·
timestamp: {datetime, double utcsecs} either VARIANT date value or double,·
in which case the value is interpreted as the number of seconds since midnight

(c) Sparx Systems 2022 Page 43 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

on January 1st, 1970, UTC time

AddSurfaceColors(VARIA
NT colors)

void

Adds one or more colors to the series.

Parameters:

colors: long, or long[], a single RGB color or an array of RGB color values·

CloseShape(boolean close,
boolean fill)

void

Connects the first and last datapoints and fills the shape if 'fill' is true.

Parameters

close: Boolean, if true closes the series·
fill: Boolean, fills the shape·

GetDataPointCount() long

Returns the number of datapoints in the series.

GetDataPointValue(long
index)

LDISPATCH

Returns a ChartDataValue interface for the datapoint with the given index.

Parameters:

index: long, the index of the datapoint (typically returned by AddDataPoint·
functions; a value in the range 0 to n-1, where n is the number of points
returned by the GetDataPointCount function)

GetSeriesFormat() LDISPATCH

Returns a ChartFormatSeries interface that allows the chart appearance to be
changed.

SetBarShape(long
barshape)

void

Sets the shape for Bar charts, 0 for Box, 1 for Pyramid, 2 for PyramidPartial.

Parameters:

barshape: ChartBarShape, one of the ChartBarShape enumerations·

SetColorMapCount(long
count)

void

Sets the number of colors used when rendering the series. Typical values are 4, 8,
16 and 32

Parameters:

count: long, the number of colors to use·

SetColorMode(ChartColor
Mode mode)

void

For 3D charts, sets the interpolation method for filling shapes. Single, for example,
would result in the 3D object being filled by varying the color slightly. The level of
variation will depend on the number of colors used by the chart (see
SetColorMapCount).

Parameters:

mode: ChartColorMode·

SetDrawFlat(boolean flat) void

Draws the shape flattened when set to true.

Parameters:

(c) Sparx Systems 2022 Page 44 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

flat: Boolean, draw flat·

SetFrameColor(long color) void

Sets the color of the frame for 3D objects.

Parameters:

color: long, the RGB color value for coloring the frame·

SetFrameStyle(ChartFrame
Style style)

void

Sets the frame style for the chart - none, mesh, contour or both.

Parameters:

style: ChartFrameStyle, one of the ChartFrameStyle enumerations·

SetGradientType(long
type)

void

Sets the gradient type to use.

Parameters:

type: long, one of the ChartGradientType enumerations·

SetGroupID(long id) void

Groups series on a stacked chart having the same id. Must be a non-negative
number.

Parameters:

id: long, a non-negative number used to group the series on a chart·

SetLevelRangeMode(long
mode)

void

Sets the mode for ranges in series.

0 - Minimum and maximum for Series·
1 - Minimum and maximum for Y axis·
2 - Custom·

Parameters:

mode: long, either 0 or 1 supported·

SetRelatedAxis(string axis,
long index)

void

Sets the related axis for a series. The related axis is created using the Split function
of the ChartAxis interface. The axis is first created using Split, then a new series is
created, and this function called on it to one of its axes. The axis is specified by the
index parameter; the value is one of the ChartAxisIndex enumerations (0 for X, 1
for Y or 2 for Z)

Parameters:

axis: string, the guid of the axis returned by a ChartAxis.Split method call;·
returned by the ChartAxis.GetGuid method

index: long, one of the ChartAxisIndex enumerations·

SetStockSeriesType(Chart
StockSeriesType type)

void

For Stock charts, sets the graphic used to render the series.

Parameters:

type: ChartStockSeriesType, one of the ChartStockSeriesType enumerations·

SetWireFrame(boolean void

(c) Sparx Systems 2022 Page 45 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

wired) Sets the wireframe option on or off. When set to true, the chart is no longer
rendered as a solid object but is instead rendered as a frame composed of wires.

Parameters:

wired: Boolean, displays as a wireframe object if true·

(c) Sparx Systems 2022 Page 46 of 47 Created with Enterprise Architect

Dynamic Charts 3 October, 2022

(c) Sparx Systems 2022 Page 47 of 47 Created with Enterprise Architect

	Dynamic Charts
	Chart Definition using JSON
	Chart Definition using Simulation
	Chart Definition using JavaScript
	Dynamic Chart Resources
	The Chart API
	Chart Class
	Chart Enumerations
	ChartAxisCrossType
	ChartAxisIndex
	ChartAxisLabelType
	ChartAxisTickMarkType
	ChartAxisType
	ChartBarShape
	ChartCategory
	ChartColorMode
	ChartCurveType
	ChartDashStyle
	ChartFrameStyle
	ChartGradientType
	ChartMarkerShape
	ChartStockSeriesType
	ChartType
	ChartWallOptions

	ChartAxisIndex Class
	ChartDataValue Class
	ChartDiagram3D Class
	ChartFormatSeries Class
	ChartSeries Class

