
Profiling

ENTERPRISE ARCHITECT

User Guide Series

Author: Sparx Systems

Date: 2022-10-03

Version: 16.0

CREATED WITH

Table of Contents

Profiling 3
System Requirements 10
Getting Started 11
Call Graph 13
Stack Profile 16
Memory Profile 18
Memory Leaks 20
Setting Options 23
Start & Stop the Profiler 25
Function Line Reports 27
Generate, Save and Load Profile Reports 30
Save Report in Model Library 35

Profiling 3 October, 2022

Profiling

During the lifetime of software applications, it is not uncommon to investigate application tasks that are determined to be
performing slower than expected. You might also simply want to know what is going on when you 'press this button'!
You can work this out quite quickly in Enterprise Architect by using its Profiler. Results can usually be produced in a
few seconds and you will quickly be able to see the actions that are consuming the application and the functions
involved. In the Execution Analyzer, the feature employs two separate strategies; Process Sampling and Process
Hooking. In one, samples are taken at regular intervals to identify CPU-intensive patterns, while in the other, the process
is hooked to record demands made on memory. Data is analyzed to produce a weighted Call Graph. Behaviors are
usually identifiable as root nodes (entrypoints) in the graph, or branches near these points. All reports can be reviewed on
demand. They can be saved to file within the model, both as Artifact elements and as Model Library posts.

Access

Ribbon Execute > Tools > Profiler

Other Execution Analyzer toolbar : Analyzer Windows | Profiler

Call Sampling

(c) Sparx Systems 2022 Page 3 of 36 Created with Enterprise Architect

Profiling 3 October, 2022

The Profiler is controlled using its toolbar buttons. Here you can attach the Profiler to an existing process (or JVM), or
launch the application for the active Analyzer Script. The Profiler window displays the details of the target process as it
is profiled. These details provide feedback, letting you see the number of samples taken. You also have options for
pausing and resuming capture, clearing captured data and generating reports. You can gain access to the reporting feature
by pausing the capture - the reporting feature is disabled whilst data capture is in progress.

Weighted Call Graph

(c) Sparx Systems 2022 Page 4 of 36 Created with Enterprise Architect

Profiling 3 October, 2022

This detailed report shows the unique set of Call Stacks/behaviors as a weighted Call Graph. The weight of each branch
is depicted by a hit count, which is the total hits of that branch plus all branches from this point. By following the hit
trail, you can quickly identify the areas of code that occupied the program the most during the capture period.

Stack Profile

(c) Sparx Systems 2022 Page 5 of 36 Created with Enterprise Architect

Profiling 3 October, 2022

Stack Profiles are taken to discover the different ways (stacks) and the count of ways that a particular function is invoked
during the running of the program. Unlike the other profiler modes, this profile is activated through the use of a Profile
Point, which is a special kind of breakpoint marker. The marker is set in the source code like any other breakpoint. When
the breakpoint is encountered by the program, the stack is captured. When you later produce the report, the stacks are
analyzed and a weighted call graph produced. The graph shows the unique stacks that were involved in that function
during the time the profiler was running, The 'Hit Count' column indicates the count of times that same stack occurred.

Memory Profiles

(c) Sparx Systems 2022 Page 6 of 36 Created with Enterprise Architect

Profiling 3 October, 2022

The Memory Profile tracks allocations, ignoring when memory is freed. It uses this information to rate the executing
code's demands for memory, in terms not of the amount of memory but of the frequency of demands. The Allocations
figure is the total number of memory allocations requested. The Stack Holdings is the number of stack traces taken at
those times, and the Heap Holding figure is the total amount of memory obtained by these calls. Note that profiling can
be turned on and off on demand. There is also no need to rebuild your program to get it to work as there is no linkage
involved.

Memory Graph

(c) Sparx Systems 2022 Page 7 of 36 Created with Enterprise Architect

Profiling 3 October, 2022

This example is of a report produced from Profiling a demonstration program in the Xerces project from Apache. The
program iterates over the Document Object Model (DOM) for a provided XML file.

Function Summary Report

This summary report lists the functions and only those functions executed during the sample period. Functions are listed
by total invocations, with a function that presents twice in separate Call Stacks appearing before a function that appears
just the once.

Function Line Report

(c) Sparx Systems 2022 Page 8 of 36 Created with Enterprise Architect

Profiling 3 October, 2022

This detailed report shows the source code for a function line by line displaying beside it the total times each was
executed. We uncovered code using this report, that exposed case statements in code that never appeared to be executed.

Support

The Profiler is supported for programs written in C, C++, Visual Basic, Java and the Microsoft .NET languages. Memory
profiling is currently available for native C and C++ programs.

Notes

The Profiler is available in the Enterprise Architect Professional Edition and above·
The Profiler can also be used under WINE (Linux and Mac) for Profiling standard Windows applications deployed·
in a WINE environment

(c) Sparx Systems 2022 Page 9 of 36 Created with Enterprise Architect

Profiling 3 October, 2022

System Requirements

Using the Profiler, you can analyze applications built for these platforms:

Microsoft TM Native (C++, C, Visual basic)·
Microsoft .NET (supporting a mix of managed and unmanaged code)·
Java·

Microsoft Native applications

For C, C++ or Visual Basic applications, the Profiler requires that the applications are compiled with the Microsoft TM

Native compiler and that for each application or module of interest, a PDB file is available. The Profiler can sample both
debug and release configurations of an application, provided that the PDB file for each executable exists and is up to
date.

Microsoft .NET applications

For Microsoft .NET applications, the Profiler requires that the appropriate Microsoft .NET framework is installed, and
that for each application or module to be analyzed, a PDB file is available.

Java

For Java, the Profiler requires that the appropriate JDK from Oracle is installed.

The classes of interest should also have been compiled with debug information. For example: "java -g *.java"

New instance of application VM is launched from Enterprise Architect - no other action is required·
Existing application VM is attached to from within Enterprise Architect - the target Java Virtual Machine has to·
have been launched with the Enterprise Architect profiling agent

These are examples of command lines to create a Java VM with a specific JVMTI agent:

java.exe -cp "%classpath%;.\" -agentpath:"C:\Program Files (x86)\Sparx Systems\EA\vea\x86\ssamplerlib32"1.
myapp

java.exe -cp "%classpath%;.\" -agentpath:"C:\Program Files (x86)\Sparx Systems\EA\vea\x64\ssamplerlib64"2.
myapp

(Refer to the JDK documentation for details of the -agentpath VM startup option.)

(c) Sparx Systems 2022 Page 10 of 36 Created with Enterprise Architect

Profiling 3 October, 2022

Getting Started

The Profiler can be used to investigate performance issues, providing four separate tools for you to choose from, namely:

Call Graph·
Stack Profile·
Memory Profile·
Memory Leaks·

You select these tools from the Profiler toolbar.

Access

Ribbon Execute > Tools > Profiler

Tools

Tool Description

Call Graph Analyzes performance by taking samples during an activity in a program. Each
sample represents a stack. The samples are taken at intervals controlled using the
toolbar. In this scenario, poor performance is rated by the patterns of behavior that
repeat the most during the sample time period. This figure is used to weight the Call
Graph produced.

Memory Profile Analyzes performance by hooking the memory allocations made by a program. In
this scenario, poor performance is rated by the activities making the most requests
for memory. This figure is used to weight the Call Graph produced.

Stack Profile The Stack Profiler enables you to set a marker in your source code so that whenever
execution hits that marker, a full stack trace is captured. As the application
continues executing and the marked position is accessed from a variety of places
within the running executable, a very detailed and useful picture is built up showing
hot spots and usage scenarios for a particular point in code.

The Stack Profile report, like the Memory Profile report, is displayed in 'reverse
stack' order. This means that the root of the report is always a single node (in this
case the marker) and the tree then fans out to show all the various places the
marked position has been accessed from.

Memory Leaks Analyzes memory leaks by hooking the memory operations performed by a
program. What is produced is a Call Graph presenting the Call Stacks that allocated
memory for which a free operation was not detected.

Toolbar Buttons

(c) Sparx Systems 2022 Page 11 of 36 Created with Enterprise Architect

Profiling 3 October, 2022

Button Action

Displays a menu of options for managing your Profiling session.

Launches the configured application to be profiled. By default, this is the
application configured in the active Analyzer Script.

Indicates the state of the sampler. When green, sampling is enabled; when red,
sampling is disabled.

Stops the Profiler process; if any samples have been collected, the Report button
and Discard Data button are active.

Generates a report from the current data collection.

Displays the Profiling tool in use, which determines the fields shown in the Profiler
window. Click on the drop-down arrow and select a different tool, which changes
the window fields.

Discards the collected data. You are prompted to confirm the discard.

Displays the Help topic for this window.

(c) Sparx Systems 2022 Page 12 of 36 Created with Enterprise Architect

Profiling 3 October, 2022

Call Graph

Quickly discover what a program is doing at any point in time·
Easily identify performance issues·
Be surprised how quickly you can realize improvements·
See your improvements at work and have the evidence·
Support for C/C++, .NET and Java platforms·

Usage

The 'Call Graph' option is typically used in situations where an activity is performing slower than expected, but it can
also be used simply to better understand the patterns of behavior at play during an activity.

Operation

The Profiler operates by taking samples - or Call Stacks - at regular intervals over a period of time; the interval is set
using the Profiler toolbar. You use the Profiler to run a particular program, or you can attach to an existing process. The
Profiler capture is controlled, and you can pause and resume capture at any time. You can also elect to have capture
initiated immediately when the Profiler is started. If necessary, you can discard any captured samples and start again
during the same session. If you cannot continue with the same session, restarting the Profiler is quick and easy.

Note that the 'Process Time (estimated)' field shows an estimate of how long the process being profiled has been running,
taking into account the interruptions to the process by the Profiler in collecting samples.

Results

Results can be produced at any time during the session; however, capture must be disabled in order for the Report button
to become active. It is up to you to decide how long you let the Profiler run. You might know when an activity is
finished, or it might be apparent for other reasons. The reason you are here might be that an activity is not completing at
all.

The Report button will be enabled by either pausing capture or stopping the Profiler altogether.

Results are displayed in a Report view. The report opens with three tabs initially visible: the Call Graph, the Summary
Report (Function Summary) and the Hit Analysis tabs. The reports can be saved to file, stored in the model as Artifacts
or posted in the Model Library.

(c) Sparx Systems 2022 Page 13 of 36 Created with Enterprise Architect

Profiling 3 October, 2022

The Call Graph Tab

The Summary Report Tab

The Hit Analysis Tab

The 'Hit Analysis' tab displays a number of columns:

Function: the name of the function (or module if no symbols for module)·
Hits: the number of samples taken, in which the function was executing.·
Depth: the frame number or stack depth at which the hit took place.·
Occurrences: the number of times the function was hit at this particular stack depth·

The number of hits on a particular function are aggregated according to the stack frame depth when sampled.

(c) Sparx Systems 2022 Page 14 of 36 Created with Enterprise Architect

Profiling 3 October, 2022

If the function name is unavailable, for example Windows System DLL's such as User32 or DLL's with no debug
information, the module name is shown instead.

(c) Sparx Systems 2022 Page 15 of 36 Created with Enterprise Architect

Profiling 3 October, 2022

Stack Profile

The Stack Profiler enables you to set a marker in your source code so that whenever execution hits that marker, a full
stack trace is captured. As the application continues executing and the marked position is accessed from a variety of
places within the running executable, a very detailed and useful picture is built up showing hot spots and usage scenarios
for a particular point in code.

The Stack Profile report, like the Memory Profile report, is displayed in 'reverse stack' order. This means that the root of
the report is always a single node (in this case the marker) and the tree then fans out to show all the various places the
marked position has been accessed from.

Usage

Use the Stack Profile mode to produce a report that shows the unique ways in which a function can be invoked during the
running of a program. Determine the parts of the model that rely on this function and their frequency.

(c) Sparx Systems 2022 Page 16 of 36 Created with Enterprise Architect

Profiling 3 October, 2022

Operation

Profiler modes are selected using the Profiler control Toolbar. If a Profiler Point is already created, it is displayed. The
Profiler Point is the point at which stack traces are captured. You can set the Profiler Point using the Set button on the
control itself, once the mode is selected. After deciding on the Profile Point, build the project to be sure everything is up
to date, then start the Profiler. The number of unique stack holdings detected is visible during the run.

Results

A results can be produced by clicking the report button on the Profiler control Toolbar. This button is enabled when
either:

Capture is turned off (using the Pause Button) or·
The Profiler is stopped (using the Stop Button)·

The results produced are displayed as a weighted call graph, where the lines on the graph represent a unique stack, and
weighted to show the higher frequency stacks first. The report can then be saved, either to file or to the model, using the
context menu of the report itself.

(c) Sparx Systems 2022 Page 17 of 36 Created with Enterprise Architect

Profiling 3 October, 2022

Memory Profile

Quickly rate performance of activities that interest you·
Nothing influences a discussion more than evidence·
Reward your efforts by working in those areas that will make a difference·

(c) Sparx Systems 2022 Page 18 of 36 Created with Enterprise Architect

Profiling 3 October, 2022

Surprise yourself by delivering optimizations you might not have known existed·

Usage

The Memory Profile can be used to reveal how activities perform in regard to memory consumption. Using this mode, a
user would be interested in questioning the frequency of demands made for memory during a task. They would be less
interested in the actual amount consumed. A well managed activity might make relatively few calls to allocate resources
but allocate enough memory to do its job efficiently. Other activities might make many thousands of requests, and that
typically makes them less efficient. This mode is useful for detecting those scenarios.

Operation

The Memory Profile works by hooking the process in question, so that program has to be launched using the tool in
Enterprise Architect. Unlike the Call Graph option, you cannot attach to an existing process. When the program is
started, hooking mechanisms track the allocation of memory; this information is collected and collated in Enterprise
Architect. You can easily monitor the number of allocations being made. Also, the process is controlled; that is, the
memory hooks can be turned on and off on demand. If you might have mistimed some action, you can pause capture,
discard the data and resume capture again easily.

Results

Results can be produced at any time during the session; however, capture must be disabled in order for the Report button
to become active. It is your decision how long you let the Profiler run. You enable the Report button by either pausing
capture or stopping the Profiler altogether.

Results are displayed in a Report view. The report initially opens with two tabs visible; a single weighted Call Graph and
a Function Summary. The Call Graph depicts all the Call Stacks that led to memory allocations, which are aggregated
and weighted according to the frequency of the pattern.

Requirements

For best results, the image and its modules should be built with debug information included, and without optimizations.
Any module with the Frame Pointer Omission (FPO) optimization is likely to produce misleading results.

(c) Sparx Systems 2022 Page 19 of 36 Created with Enterprise Architect

Profiling 3 October, 2022

Memory Leaks

The Profiler control, showing the count of memory allocations and the count of operations that are memory free.

(c) Sparx Systems 2022 Page 20 of 36 Created with Enterprise Architect

Profiling 3 October, 2022

A well behaved program.

Memory leak detection is a road well traveled. Although many other good options are available, we believe our approach
has major benefits, such as:

No changes at all to existing project build·
No header files required by the project code·
No runtime dependencies to worry about·
No system configuration to think about·

Usage

A person would use this mode to track memory leaks in an application or in an activity within the application. A memory
leak from the Profiler's point of view is a successful call made to a memory allocation function that returns a memory
address for which no matching call is made to free that address.

Operation

The Memory Leak detection works through hooking. The memory routines of the process are hooked to track when
memory is both allocated and freed. Call Stacks are captured at the point of the allocation and this information is collated
in Enterprise Architect to produce a report in the form of a Call Graph. Capture is controlled; that is, the hooking
mechanisms can be enabled or disabled on demand.

Depending on the type of program and its memory consumption, you could employ an appropriate strategy. For small
programs, you might track the program from start to finish. For larger windowed programs, you would probably do better
by toggling capturing before and after a specific task to avoid tracking too much data.

(c) Sparx Systems 2022 Page 21 of 36 Created with Enterprise Architect

Profiling 3 October, 2022

Results

Results can be produced at any time during the session; however, capture must be disabled in order for the Report button
to become active. It is your decision how long you let the Profiler run. You enable the Report button by either pausing
capture or stopping the Profiler altogether.

Results are displayed in a Report view. The report initially opens with two tabs visible; a single weighted Call Graph and
a Function Summary. The Call Graph depicts all the Call Stacks that led to memory allocations, and are aggregated and
weighted according to the frequency of the pattern.

Reports can contain a variable amount of 'noise'. To focus on an area you have specific concerns for, locate a function
known to you in the summary report and use that to navigate directly into the line in the graph where it is featured.

Requirements

For best results, the image and its modules should be built with debug information included, and without optimizations.
Any module with the Frame Pointer Omission (FPO) optimization is likely to produce misleading results.

(c) Sparx Systems 2022 Page 22 of 36 Created with Enterprise Architect

Profiling 3 October, 2022

Setting Options

The first icon on the Profiler window toolbar displays a list of options that you can set to tailor your Profiling session.

Options

Option Description

Attach to Running Process Select this option to display the 'Attach to Process' dialog, from which you choose
an active process to Profile.

Switch to Debugger Select this option to change operations from Profiling to Debugging. The Debugger
has an equivalent drop-down menu option that you can use to switch from
Debugging to Profiling.

Load Report Select this option to load a previously saved report from the file system.

Analyzer Scripts Select this option to open the Analyzer Script window, which is the model
repository for configuring builds, debugging, and all other Visual Execution
Analyzer options.

Delay Sampling Select this option to set a delay between clicking on a 'Start Profiling' option and
the Profiling actually beginning. The delay can be 3, 5 or 10 seconds. Select 'None'
to cancel any delay set.

CallGraph Aggregates
Method

When this option is selected, instances of the identical stack sequences are
aggregated by method. That is to say, line numbers / instructions within a method
are ignored, so two stacks will be counted as one where they differ only by line
number in their final frame.

CallGraph Samples Include
Wait State

When this option is selected, the Profiler will sample all threads, including those in
Wait states. When unselected, the Profiler only samples threads that have
accumulated CPU time since the last interval expired.

(c) Sparx Systems 2022 Page 23 of 36 Created with Enterprise Architect

Profiling 3 October, 2022

Start Sampling
Immediately

Select this option to trigger Data Collection immediately on launch. You would
typically use this option to profile a process during start up.

Discard Fragments When stacks cannot be reconciled to the entry point of a thread they are referred to
as fragments. The number of fragments encountered during sampling is displayed
in the sampler Summary window. You can set this option to collect or discard
fragments; when the Discard Fragments option is:

Selected, fragments do not appear in the reports, although the number·
encountered is still updated

Deselected, a special collection named 'fragments' is created in the call graph to·
house them, and to ensure they data is not mixed in with the complete samples

Capture Debug Output (Applies to Process Sampling). When selected, output normally visible during
debugging is captured and displayed in the Debug window. Note that only debug
builds will typically emit debug output.

Stop Process on Exit This option determines termination behavior for the Profiler. When the option is
selected, the target process will terminate when the Profiler is stopped.

(c) Sparx Systems 2022 Page 24 of 36 Created with Enterprise Architect

Profiling 3 October, 2022

Start & Stop the Profiler

Profiling is a two stage process of data collection and reporting. In Enterprise Architect the data collection has the
advantage of being a background task - so you are free to do other things while it runs. The information sent back to
Enterprise Architect is stored until you generate a report. To view a report, the capture must be turned off. After the
report is produced you can resume capture with the click of a button. If, for some reason, you decide to scrap your data
and start again, you can do so easily and without having to stop and start the program again.

Access

Ribbon Execute > Tools > Profiler > Open Profiler

Other Execution Analyzer toolbar : Analyzer Windows | Profiler

Actions

Action Detail

Toolbar

Strategy Selection Select the Profiling strategy from the available options on the Toolbar.

Start the Profiler Click the Run button on the Profiler window

Stop the Profiler The process exits if:

You click on the Stop button·
The target application terminates, or·
You close the current model·

If you stop the Profiler and the process is still running, you can quickly attach to it
again.

Pause and Resume Capture You can pause and resume capture at any time during a session.

When capture is turned on, samples are collected from the target. When paused, the
Profiler enters and remains in a wait state until either capture is enabled, the
Profiler is stopped or the application finishes.

The Report button is disabled during capture but is available when capture is turned

(c) Sparx Systems 2022 Page 25 of 36 Created with Enterprise Architect

Profiling 3 October, 2022

Generate Reports off.

Mode drop-down Click on the drop-down and select the mode of Profiling - Call Graph, Stack
Profile, Memory Profile or Memory Leaks.

Clear Data Collection You can clear any data samples collected and resume at any time. First suspend
capture by clicking on the Pause button. The Discard button, as for the Report
button, is enabled whenever capture is turned off. In clicking on the Discard button
you will be asked to confirm the operation. This action cannot be undone.

(c) Sparx Systems 2022 Page 26 of 36 Created with Enterprise Architect

Profiling 3 October, 2022

Function Line Reports

After you have run the Profiler on an executing application and generated a Sampler report, you can further analyze the
activity of a specific function listed in the report by generating a Function Line report from that item. A Function Line
report shows the number of times each line of the function was executed. You produce one Function Line report at a
time, on any method in the Sampler report that has a valid source file. The Function Line report is particularly useful for
functions that perform loops containing conditional branching; the coverage can provide a picture of the most frequently
and least frequently executed portions of code within a single method.

The line report you generate is saved when you save the Sampler report. The body of the function is also saved with the
Function Line report to preserve the function state at that time.

This facility is not applicable to Memory Profile reports.

Platforms supported

Java, Microsoft .NET and Microsoft native code

Create a Line Report

In the Sampler report, right-click on the name of the function to analyze, and select the 'Create Line Report for Function'
option.

Once the Profiler binds the method, the Function Line report is opened on the Sampler Report window. The report shows
the body of the function, including line numbers and text. As each line is executed a hit value will accumulate against
that line. A timer will update the report approximately once every second.

(c) Sparx Systems 2022 Page 27 of 36 Created with Enterprise Architect

Profiling 3 October, 2022

End Line Report Capture

Once enough information is captured, or the function has ended, click on the Profiler toolbar Stop button to stop
recording the capture.

Save Reports

Use the Save button on the Call Stack toolbar to save the Sampler report and any Function Line reports to a file.

Delete Line Reports

Closing the 'Line Report' tab will close that report but the report data will only be deleted when the report is saved.

(c) Sparx Systems 2022 Page 28 of 36 Created with Enterprise Architect

Profiling 3 October, 2022

(c) Sparx Systems 2022 Page 29 of 36 Created with Enterprise Architect

Profiling 3 October, 2022

Generate, Save and Load Profile Reports

Reports can be produced at any time during a session, or naturally when a program ends. To enable the Report button
while the program is running, however, you need to suspend Profiling by toggling the Pause/Resume button, or by
terminating the Profiler with the Stop button. You have some options for reviewing and sharing the results:

View the report·
Save the report to File·
Distribute the report as a Model Library resource·
Attach the report as a document to an Artifact element·
Synchronize the model by reverse engineering the source code that participated in the profile·

Access

Ribbon Execute > Tools > Profiler > Create Report from Current Data

Profiler
From the Profiler window, click on the icon in the toolbar.

Load Report from File

The option is available from the drop down menu of the Profiler window

Generate Report

From the Profiler window, click on the icon in the toolbar.

CallFrequency Report

(c) Sparx Systems 2022 Page 30 of 36 Created with Enterprise Architect

Profiling 3 October, 2022

Function Summary

Unfiltered Summary Report listing all participating functions in order of inclusive hits.

(c) Sparx Systems 2022 Page 31 of 36 Created with Enterprise Architect

Profiling 3 October, 2022

You can filter and reorganize the information in the report, in the same way as you do for the results of a Model Search.

Report Options

Right-click on the report to display the context menu.

Note that the options listed depend on the type of report displayed; the report illustrated here is a Memory Profile report.

Action Detail

Show Source for Function For the selected frame, select this option to display the corresponding line of code
in a code editor. Frames that have source available are identifiable by their icon.

Find in Summary Window Select this option to locate the function in the Summary window.

Collapse Graph Select this option to collapse the entire graph including child nodes, visible or not.

Collapse to Node Select this option to collapse the entire graph, then expand and set the focus to the
selected node.

(c) Sparx Systems 2022 Page 32 of 36 Created with Enterprise Architect

Profiling 3 October, 2022

Follow Max Allocations Select this option to expand an entire line in the graph.

Create Line Report for
Function

Select this option to launch the Profiler (if it is not already running), immediately
bind the selected function and ready it for recording. Once bound, an extra tab is
opened in the current Report View. This report will update instantaneously,
showing the number of times each line executed. Of course, the report will continue
to record activity in the function even if is not visible.

Notes:

In windowed programs, it is usually necessary to take some action in the·
application to cause the function to be invoked

This option is not applicable to Memory Profile reports·

Create Function Graph Select this option to create an additional tab, which shows the selected function in
isolation. For a Call Frequency Profile, this produces a graph showing all the lines
that led to this function being called (that is, the callers). For a Memory Profile, this
produces a graph showing all lines that emanate from this function (that is, the
callees).

Mark Initial Frame for Call
Stack Diagram

Use prior to creating a Call Stack Sequence diagram to limit the stack length. When
this option is selected, the frame is marked and its text is highlighted. Frames above
this one will then be excluded from any Sequence diagram produced.

This option is not applicable to Memory Profile reports.

Remove Mark Removes the mark from a frame that was previously marked as 'Initial'.

This option is not applicable to Memory Profile reports.

Create Call Stack Diagram Generates a Sequence diagram for a single stack in the graph. The selected frame is
depicted as the terminal frame in the stack. The initial frame of the stack defaults to
the root node if no 'Initial' frame has been marked.

This option is not applicable to Memory Profile reports.

Create Weighted Call
Graph Diagram

Generates a Sequence diagram that presents a sequence for each visible stack
branching from the selected frame. By expanding and collapsing the nodes of
interest, you can tailor the Sequence diagram content to your liking.

This option is not applicable to Memory Profile reports.

Display the Heaviest
Weighted Use

Select this option to display the line in the graph with the highest weight in which
this function appears.

Display the Next Weighted
Use

Select this option to navigate to the next line in the graph where the function
appears.

You can use the shortcut key combination Ctrl+Down Arrow.

Display the Previous
Weighted Use

Select this option to navigate to the previous line in the graph where this function
appears.

You can also use the shortcut key combination Ctrl+Up Arrow.

Import Source Code Select this option to import selected source code into the report.

This option is not applicable to Memory Profile reports.

Autofit When enabled, automatically fits the columns to the available display area.

Select this option to display the 'Save As' dialog, allowing you to choose where to

(c) Sparx Systems 2022 Page 33 of 36 Created with Enterprise Architect

Profiling 3 October, 2022

Save Report to File store the report.

Save Report to Artifact Note: Before selecting this option, go to the Browser window and select the
Package or element under which to create the Artifact element.

You are prompted to provide a name for the report (and element); type this in and
click on the OK button.

The Artifact element is created in the Browser window, underneath the selected
Package or element.

If you add the Artifact to a diagram as a simple link, when you double-click on the
element the report is re-opened.

Notes

If you add the Profiler report to an Artifact element and also attach a Linked Document, the Profiler report takes·
precedence and is displayed when you double-click on the element; you can display the Linked Document using the
'Edit Linked Document' context menu option

(c) Sparx Systems 2022 Page 34 of 36 Created with Enterprise Architect

Profiling 3 October, 2022

Save Report in Model Library

You can save any current report as a resource for a Category, Topic or Document in the Model Library. The report can
then be shared and reviewed at any time as it is saved with the model. This helps you to:

Preserve a Profiler report to compare against future runs·
Allow other people to investigate the profile·

Access

Context Menu Right-click in Library window | Share Resource | Active Profiler Report

(c) Sparx Systems 2022 Page 35 of 36 Created with Enterprise Architect

Profiling 3 October, 2022

(c) Sparx Systems 2022 Page 36 of 36 Created with Enterprise Architect

	Profiling
	System Requirements
	Getting Started
	Call Graph
	Stack Profile
	Memory Profile
	Memory Leaks
	Setting Options
	Start & Stop the Profiler
	Function Line Reports
	Generate, Save and Load Profile Reports
	Save Report in Model Library

