
Enterprise Architect Object
Model

ENTERPRISE ARCHITECT

User Guide Series

Author: Sparx Systems

Date: 10/11/2023

Version: 16.1

CREATED WITH

Table of Contents

Enterprise Architect Object Model 6
Using the Automation Interface 7

Connect to the Interface 8
Set References In Visual Basic 11

Examples and Tips 12
Call from Enterprise Architect 14
Available Resources 16

Reference 17
Interface Overview 18
App Object 20
Enumerations 21

ConstLayoutStyles 23
CreateBaselineFlag 24
CreateModelType 25
DocumentBreak 26
DocumentPageOrientation 27
DocumentType 28
EAEditionTypes 29
EnumRelationSetType 30
ExportPackageXMIFlag 31
MDGMenus 32
MessageFlag 33
ObjectType 34
PropType 36
ReloadType 37
ScenarioDiagramType 38
ScenarioStepType 39
ScenarioTestType 40
XMIType 41

Repository Package 42
Author Class 43
Client Class 45
Collection Class 47

The AddNew Function 49
Datatype Class 53
EventProperties Class 56
EventProperty Class 57
ModelWatcher Class 58
Package Class 59
ProjectIssues Class 69
ProjectResource Class 71
ProjectRole Class 73
PropertyType Class 75
Reference Class 77
Repository Class 79
SecurityUser Class 102
Stereotype Class 104

Task Class 106
Term Class 108

Properties Tab Package 110
PropertiesTab Class 111

Element Package 113
Constraint Class 115
Effort Class 117
Element Class 119
ElementGrid Class 134
File Class 135
Issue (Maintenance) Class 137
Metric Class 139
Requirement Class 141
Resource Class 143
Risk Class 145
Scenario Class 147
ScenarioExtension Class 149
ScenarioStep Class 150
TaggedValue Class 152
Test Class 154

Element Features Package 156
Attribute Class 157
AttributeConstraint Class 163
AttributeTag Class 165
CustomProperties Collection 167
EmbeddedElements Collection 168
Method Class 169
MethodConstraint Class 174
MethodTag Class 176
Parameter Class 178
ParamTag Class 181
Partitions Collection 183
Properties Class 184
TemplateParameter Class 186
Transitions Collection 188

Connector Package 189
Connector Class 190
ConnectorConstraint Class 198
ConnectorEnd Class 200
ConnectorTag Class 203
RoleTag Class 205
TemplateBinding Class 207

Diagram Package 209
Diagram Class 210
DiagramLink Class 218
DiagramObject Class 221
SwimlaneDef Class 227
Swimlanes Class 229
Swimlane Class 231

Project Interface Package 232
Project Class 233

Chart Package 251
Chart Enumerations 252

ChartAxisCrossType 253
ChartAxisIndex 254
ChartAxisLabelType 255
ChartAxisTickMarkType 256
ChartAxisType 257
ChartBarShape 258
ChartCategory 259
ChartColorMode 261
ChartCurveType 262
ChartDashStyle 263
ChartFrameStyle 264
ChartGradientType 265
ChartMarkerShape 266
ChartStockSeriesType 267
ChartType 268
ChartWallOptions 269

Chart Class 270
ChartAxisIndex Class 273
ChartDataValue Class 275
ChartDiagram3D Class 276
ChartFormatSeries Class 277
ChartSeries Class 278

Document Generator Interface Package 282
DocumentGenerator Class 283

Data Miner Package 289
DataMinerManager Class 290
DataMiner Class 292
DataSet Class 293
DMArray Class 294
DMAction Class 295
DMScript Class 296
DMConnection Class 297

TypeInfoProperties Package 298
TypeInfoProperties Class 299
TypeInfoProperty Class 300

Mail Interface Package 301
MailInterface Class 302

Search Window Package 305
EAContext Class 306
EASelection Class 308
SearchWindow Class 310

Simulation Package 312
Simulation Class 313

Schema Composer Package 315
SchemaProperty Class 316
SchemaProfile Class 318
SchemaComposer Class 319
ModelTypeEnum Class 321
ModelType Class 322

SchemaTypeEnum Class 324
SchemaType Class 325
SchemaPropEnum Class 326
SearchType Enumeration 327
SchemaNamespace Class 328
SchemaNamespaceEnum Class 329

Code Samples 330
Open the Repository 331
Iterate Through a .EAP File 332
Add and Manage Packages 333
Add and Manage Elements 335
Add a Connector 336
Add and Manage Diagrams 338
Add and Delete Features 339
Element Extras 340
Repository Extras 344
Stereotypes 347
Work With Attributes 348
Work With Methods 350

Enterprise Architect Object Model 10 November, 2023

Enterprise Architect Object Model

The Enterprise Architect Object Model gives the scripter or programmer access to the underlying objects that you can
use to query or manipulate the repository. The Object Model is accessible either from internal or external scripting
environments or through Add-Ins. This is a convenient feature that ensures that a programmer is insulated from the
underlying database where the repository is stored, protecting them from changes to the database structure or content.
The objects are grouped into Packages and contain a useful, extensive and well documented set of properties and
methods that are intuitive to use and allow access to elements, features, diagrams and project metadata.

Automation provides a way for other applications to access the information in an Enterprise Architect model using
Windows OLE Automation (ActiveX). Typically this involves scripting clients such as MS WordTM or Visual Basic, or
using scripts created within Enterprise Architect using the Scripting window.

The Automation Interface provides a way of accessing the internals of Enterprise Architect models. Examples of things
you can do using the Automation Interface include:

Perform repetitive tasks, such as update the version number for all elements in a model·
Generate code from a StateMachine diagram·
Produce custom reports·
Perform ad hoc queries·

Features

Feature Description

Connecting to the
Automation Interface

All development environments capable of generating ActiveX COM clients should
be able to connect to the Enterprise Architect Automation Interface. This guide
provides detailed instructions on connecting to the interface using Microsoft Visual
Basic 6.0, Borland Delphi 7.0, Microsoft C# and Java. There are also more detailed
steps on how to set-up Visual Basic; the principles are applicable to other
languages.

Examples and Tips Instruction on how to use the Automation Interface is provided by means of sample
code. See pointers to the samples and other available resources. Also, consult the
extensive Reference Section.

Calling Executables from
Enterprise Architect

Enterprise Architect can be set up to call an external application. You can pass
parameters on the current position selected in the Browser window to the
application being called. For instructions, go to the Call from Enterprise Architect
topic. A more sophisticated method is to create Add-Ins, which are discussed in a
separate section.

(c) Sparx Systems 2023 Page 6 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Using the Automation Interface

This section provides instructions on how to connect to and use the Automation Interface, including:

Connecting to the interface·
Setting references in Visual Basic·
Examples and Tips·

(c) Sparx Systems 2023 Page 7 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Connect to the Interface

All development environments capable of generating ActiveX Com clients can connect to the Enterprise Architect
Automation Interface.

By way of example, these sections describe how to connect using several such tools. The procedure might vary slightly
with different versions of these products.

Microsoft Visual Basic 6.0

This procedure caters for the syntax and frameworks of version 6.0. More recent versions have the same framework as
other .Net languages with only syntax differences, and therefore use a similar process to that described for Microsoft C#,
later in this topic.

Step Action

1 Create a new project.

2 Select the 'Project | References' menu option.

3 Select Enterprise Architect Object Model 2.0 from the list.

If this does not appear, go to the command line and re-register Enterprise Architect using:

 EA.exe /unregister

then

 EA.exe /register

4 See the general library documentation on the use of Classes. This example creates and opens a repository
object:

 Public Sub ShowRepository()

 Dim MyRep As New EA.Repository

 MyRep.OpenFile "c:\eatest.eap"

 End Sub

Borland Delphi 7.0

Note that recent versions of Delphi are developed by Embarcadero.

Step Action

1 Create a new project.

2 Select the 'Project | Import Type Library' menu option.

3 Select Enterprise Architect Object Model 2.0 from the list.

If this does not appear, go to the command line and re-register Enterprise Architect using:

 EA.exe /unregister

then

(c) Sparx Systems 2023 Page 8 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

 EA.exe /register

4 Click on the Create Unit button.

5 Include EA_TLB in Project1's Uses clause.

6 See the general library documentation on the use of Classes. This example creates and opens a repository
object:

 procedure TForm1.Button1Click(Sender: TObject);

 var

 r: TRepository;

 b: boolean;

 begin

 r:= TRepository.Create(nil);

 b:= r.OpenFile('c:\eatest.eap');

 end;

Microsoft C#

Step Action

1 Select the 'Visual Studio Project | Add Reference' menu option.

2 Click on the 'Browse' tab.

3 Navigate to the folder in which you installed Enterprise Architect; usually:

 Program Files/Sparx Systems/EA

Select

 Interop.EA.dll

4 See the general library documentation on the use of Classes. This example creates and opens a repository
object:

 private void button1_Click(object sender, System.EventArgs e)

 {

 EA.Repository r = new EA.Repository();

 r.OpenFile("c:\\eatest.eap");

 }

Java

Step Action

(c) Sparx Systems 2023 Page 9 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

1 Copy the file:

 SSJavaCOM.dll

from the Java API subdirectory of your installed directory, usually:

 Program Files/Sparx Systems/EA

into any location within the Windows PATH

 windows\system32 directory.

Note: The Java API loads the last installed Enterprise Architect and isn't affected when using either the 32
or 64 Version of DLL, as long as the SSJavaCOM dll can be found by the java runtime.

2 Copy the file

 eaapi.jar

from the Java API subdirectory of your installed directory, usually:

 Program Files/Sparx Systems/EA

to a location in the Java CLASSPATH or where the Java class loader can find it at run time.

3 All of the Classes described in the documentation are in the Package org.sparx. See the general library
documentation for their use. This example creates and opens a repository object:

 public void OpenRepository()

 {

 org.sparx.Repository r = new org.sparx.Repository();

 r.OpenFile("c:\\eatest.eap");

 }

(c) Sparx Systems 2023 Page 10 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Set References In Visual Basic

It is possible to use the Enterprise Architect ActiveX interface with Visual Basic (VB). Use is ensured for Visual Basic
version 6, but might vary slightly with versions other than version 6.

It is assumed that you have accessed VB through a Microsoft Application such as VB 6.0, MS WordTM or MS Access. If
the code is not called from within Word, the Word VB reference must also be set.

On creating a new VB project, you set a reference to an Enterprise Architect Type Library and a Word Type Library.

Set References

Step Action

1 Select the 'Tools | References' menu option.

2 Select the 'Enterprise Architect Object Model 2.10' checkbox from the list.

3 Do the same for VB or VB Word: select the checkbox for the 'Microsoft Word 10.0 Object Library'.

4 Click on the OK button.

Notes

If 'Enterprise Architect Object Model 2.10' does not appear in the list, go to the command line and manually re-enter·
Enterprise Architect using:
 - (To unregister Enterprise Architect) ea.exe /unregister
 - (To register Enterprise Architect) ea.exe /register

Visual Basic 5/6 users should also note that the version number of the Enterprise Architect interface is stored in the·
VBP project file in a form similar to this:
 Reference=*\G{64FB2BF4-9EFA-11D2-8307-C45586000000}#2.2#0#..\..\..\..\Program Files\
 Sparx Systems\EA\EA.TLB#Enterprise Architect Object Model 2.02
If you experience problems moving from one version of Enterprise Architect to another, open the VBP file in a text
editor and remove this line, then open the project in Visual Basic and use Project-References to create a new
reference to the Enterprise Architect Object model
Reference to objects in Enterprise Architect and Word should now be available in the Object Browser, which can be
accessed from the main menu by pressing F2
The drop-down list on the top-left of the window should now include Enterprise Architect and Word; if MS-Project
is installed, also set this up

(c) Sparx Systems 2023 Page 11 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Examples and Tips

Points to consider

Subject Points

Examples Instructions for using the interface are provided through sample code. There are
several sets of examples:

VB 6 and C# examples are available in the Code Samples folder under your·
Enterprise Architect installation
(default: C:\Program Files\Sparx Systems\EA\Code Samples)

Enterprise Architect can be set up to call an external application·
Several VB.NET code snippets are provided in the reference section·
A comprehensive example of using Visual Basic to create MS WordTM·
documentation is available from the internet at
sparxsystems.com/resources/developers/autint_vb.html

Additional samples are available from the Sparx Systems website; see the·
Available Resources topic

Tips and Tricks Also note these tips and tricks:

An instance of the Enterprise Architect (EA.exe) process is executed when you·
initialize a new repository object - this process must remain running in order to
perform automation tasks; if the main window is visible, you can safely
minimize it, but it must remain running

The Enterprise Architect ActiveX Interface is a functional interface rather than·
a data interface; when you load data through the interface there is a noticeable
delay as Enterprise Architect user interface elements (such as Windows and
menus) are loaded and the specified database connection is established

Collections use a zero-based index; for example, Repository.Models(0)·
represents the first model in the repository

During the development of your client software your program might terminate·
unexpectedly and leave EA.exe running in such a state that it is unable to
support further interface calls; if your program terminates abnormally, ensure
that Enterprise Architect is not left running in the background (see the
Windows 'Task Manager / Process' tab)

A handle to a currently running instance of Enterprise Architect can be·
obtained through the use of a GetObject() call (see the reference page for the
App object); accessing your Enterprise Architect model via the App object
enables querying the current User Interface status, such as using
GetContextItem() on the Repository object to detect the current selection by
the user, allowing for rapid prototyping and testing

Enterprise Architect Not
Closing

After all processing by an automation controller is complete, it is recommended to
call CloseFile() and Exit() on the Repository object, then set all references to the
repository object to null.

 repository.CloseFile();

 repository.Exit();

 repository = null;

If your automation controller was written using the .NET framework, Enterprise
Architect does not close even after you release all your references to it. To force the

(c) Sparx Systems 2023 Page 12 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

release of the COM pointers, call the memory management functions:

 GC.Collect();

 GC.WaitForPendingFinalizers();

There are additional concerns when controlling a running instance of Enterprise
Architect that loads Add-Ins - see the Tricks and Traps topic for details.

(c) Sparx Systems 2023 Page 13 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Call from Enterprise Architect

Enterprise Architect can be set up to call an external application. You can pass parameters on the current position
selected in the Browser window to the application being called. This helps you to:

Add a command line for an application·
Define parameters to pass to this application·

The parameters required for running the AutInt executable are:

The Enterprise Architect file parameter $f and·
The current PackageID $p·

Hence the arguments should simply contain: $f,$p.

Once this has been set up, the application can be called from the 'Extend' ribbon in Enterprise Architect using the 'Extend
> <YourApplication>' option.

Access

Ribbon Start > Appearance > Preferences > Other Options > Tools

Parameters to pass information to external applications

Parameter Description

$d Diagram ID

Notes: ID for accessing associated diagram.

$D Diagram GUID

Notes: GUID for accessing the associated diagram.

$e Comma separated list of element IDs

Notes: All elements selected in the current diagram.

$E Comma separated list of element GUIDs

Notes: All elements selected in the current diagram.

$f Project Name

Notes: For example: C:\projects\EAexample.eap.

$F Calling Application (Enterprise Architect)

Notes: 'Enterprise Architect'.

$p Current Package ID

Notes: For example: 144.

(c) Sparx Systems 2023 Page 14 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

$P Package GUID

Notes: GUID for accessing this Package.

(c) Sparx Systems 2023 Page 15 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Available Resources

Resources

Available resources include:

Resource Download Link

VB 6 Add-In for
generating MS Word
documentation.

sparxsystems.com/resources/developers/autint_vb.html

VB 6 Add-In to display a
custom ActiveX graph
control within the
Enterprise Architect
window as a new view.

sparxsystems.com/resources/developers/autint_vb_custom_view.html

A basic Add-In framework
written in C#. Useful as a
starting point for authoring
your own custom
Enterprise Architect
Add-In.

sparxsystems.com/bin/CS_AddinFramework.zip

An extension on the
CS_AddinFramework
example showing how to
export Tagged Values to a
.csv file.

sparxsystems.com/bin/CS_AddinTaggedCSV.zip

A basic Add-In skeleton
written in Delphi.

sparxsystems.com/bin/DelphiDemo.zip

A simple example Add-In
written in C#.

sparxsystems.com/bin/CS_Sample.zip

(c) Sparx Systems 2023 Page 16 of 352 Created with Enterprise Architect

https://sparxsystems.com/resources/developers/autint_vb.html
https://sparxsystems.com/resources/developers/autint_vb_custom_view.html
https://sparxsystems.com/bin/CS_AddinFramework.zip
https://sparxsystems.com/bin/CS_AddinTaggedCSV.zip
https://sparxsystems.com/bin/DelphiDemo.zip
https://sparxsystems.com/bin/CS_Sample.zip

Enterprise Architect Object Model 10 November, 2023

Reference

This section provides detailed information on all the objects available in the object model provided by the Automation
Interface, including:

Object Groups

Group

App Object

Enumerations

Repository Package

Element Package

Element Features Package

Connector Package

Diagram Package

Project Interface Package

Document Generator Interface Package

Mail Interface Package

Code Samples

(c) Sparx Systems 2023 Page 17 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Interface Overview

This section provides an overview of the main components of the Automation Interface.

Main Packages of Automation Interface

Package Detail

Repository Package Represents the model as a whole and provides entry to model Packages and
collections.

Element Package Identifies the basic structural units (such as Class, Use Case and Object).

Element Features Package Identifies the attributes and operations defined on an element.

Diagram Package Describes the visible drawings contained in the model.

Connector Package Defines the relationships between elements.

Packages and Contents

This diagram illustrates the main interface Packages and their associated contents. Each UML element in this User Guide
can be created by Automation and can be accessed either through the various collections that exist or, in some cases,
directly.

(c) Sparx Systems 2023 Page 18 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

The Repository Class is the starting point for all use of the Automation Interface. It contains the high level system
objects and entry point into the model itself using the Models collection and the other system-level collections.

(c) Sparx Systems 2023 Page 19 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

App Object

The App object represents a running instance of Enterprise Architect. Its object provides access to the Automation
Interface.

Attributes

Attribute Type

Project Project

Notes: Read only

Provides a handle to the Project Interface.

Repository Repository

Notes: Read only

Provides a handle to the Repository object.

Visible Boolean

Notes: Read/Write

Whether or not the application is visible.

GetObject() Support

The App object is createable and a handle can be obtained by creating one. In addition, clients can use the equivalent of
Visual Basic's GetObject() to obtain a reference to a currently running instance of Enterprise Architect.

Use this method to more quickly test changes to Add-Ins and external clients, as the Enterprise Architect application and
data files do not have to be constantly re-loaded.

For example:

 Dim App as EA.App

 Set App = GetObject(,"EA.App")

 MsgBox App.Repository.Models.Count

Another example, which uses the App object without saving it to a variable:

 Dim Rep as EA.Repository

 Set Rep = GetObject(, "EA.App").Repository

 MsgBox Rep.ConnectionString

(c) Sparx Systems 2023 Page 20 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Enumerations

These enumerations are defined by the Automation Interface:

Automation Interface Enumerations

Enumeration Link

Constant Layout Styles Constant Layout Styles

Create Baseline Flag Create Baseline Flag

Create Model Type Create Model Type

Document Break Document Break

Document Page
Orientation

Document Page Orientation

Document Type Document Type

Enterprise Architect
Edition Types

Enterprise Architect Edition Types

Enumeration Relation Set
Type

Enumeration Relation Set Type

Export Package XMI Flag Export Package XMI Flag

Mail Interface Message
Flag

Mail Interface Message Flag

MDG Menus MDG Menus

Object Type Object Type

PropType PropType

Reload Type Reload Type

Scenario Diagram Type Scenario Diagram Type

Scenario Step Type Scenario Step Type

Scenario Test Type Scenario Test Type

XMI Type XMI Type

(c) Sparx Systems 2023 Page 21 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

(c) Sparx Systems 2023 Page 22 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ConstLayoutStyles

The enum values defined here are used exclusively for the 'Lay Out a Diagram' method. You use these values to define
the layout options as provided by the 'Layout > Tools > Diagram Layout ' ribbon option.

Enum Values

Value Meaning

lsCrossReduceAggressive Perform aggressive Cross-reduction in the layout process (time consuming).

lsCycleRemoveDFS Use the Depth First Cycle Removal algorithm.

lsCycleRemoveGreedy Use the Greedy Cycle Removal algorithm.

lsDiagramDefault Use existing layout options specified for this diagram.

lsInitializeDFSIn Initialize the layout using the Depth First Search Inward algorithm.

lsInitializeNaive Initialize the layout using the Naïve Initialize Indices algorithm.

lsInitializeDFSOut Initialize the layout using the Depth First Search Outward algorithm.

lsLayeringLongestPathSink Layer the diagram using the Longest Path Sink algorithm.

lsLayeringLongestPathSou
rce

Layer the diagram using the Longest Path Source algorithm.

lsLayeringOptimalLinkLen
gth

Layer the diagram using the Optimal Link Length algorithm.

lsLayoutDirectionDown Direct connectors to point down.

lsLayoutDirectionLeft Direct connectors to point left.

lsLayoutDirectionRight Direct connectors to point right.

lsLayoutDirectionUp Direct connectors to point up.

lsProgramDefault Use factory default layout options as specified by Enterprise Architect.

(c) Sparx Systems 2023 Page 23 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

CreateBaselineFlag

The CreateBaselineFlag enumeration is used in Baseline Management, when creating a Baseline.

Enum Values

Value Meaning

cbSaveToStub Baseline this Package with only immediate children (child Packages are included as
stubs only).

(c) Sparx Systems 2023 Page 24 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

CreateModelType

The CreateModelType enumeration is used in the CreateModel method on the Repository Class.

Enum Values

Value Meaning

cmEAPFromBase Create a copy of the EABase model file to the specified file path.

cmEAPFromSQLRepositor
y

Create a .eap file shortcut to an SQL-based repository; requires user interaction to
provide SQL connection details.

(c) Sparx Systems 2023 Page 25 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

DocumentBreak

The DocumentBreak enumeration is used in the InsertBreak method on the DocumentGenerator Class.

Enum Values

Value Meaning

breakPage Insert a page break in the document.

breakSection Insert a section break in the document.

(c) Sparx Systems 2023 Page 26 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

DocumentPageOrientation

The DocumentPageOrientation enumeration is used in the SetPageOrientation method on the DocumentGenerator Class.

Enum Values

Value Meaning

pagePortrait Sets the current page orientation to Portrait.

pageLandscape Sets the current page orientation to Landscape.

(c) Sparx Systems 2023 Page 27 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

DocumentType

The DocumentType enumeration is used in the SaveDocument method on the DocumentGenerator Class.

Enum Values

Value Meaning

dtRTF Save the document file to disk as an RTF document.

dtHTML Save the document file to disk as a HTML document.

dtPDF Save the document file to disk as a PDF document.

dtDOCX Save the document file to disk as a DOCX document.

(c) Sparx Systems 2023 Page 28 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

EAEditionTypes

The EAEditionTypes enumeration identifies the current level of licensed functionality available.

 EAEditionTypes theEdition = theRepository.GetEAEdition();

 if (theEdition == EAEditionTypes.piProfessional)

 ...

 else if (theEdition == EAEditionTypes.piCorporate)

 ...

The enumeration defines these formal values:

piLite·
piProfessional·
piCorporate·
piBusiness·
piSystemEng·
piUltimate·

There is no separate value for the Trial Edition; the Repository.GetEAEdition() function returns the appropriate
EAEditionTypes value for whichever edition the user has selected to trial.

(c) Sparx Systems 2023 Page 29 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

EnumRelationSetType

This enumeration represents values returned from the GetRelationSet method of the Element object.

Enum Values

Value Meaning

rsDependEnd List of elements that depend on the current element.

rsDependStart List of elements that the current element depends on.

rsGeneralizeEnd List of elements that are generalized by the current element.

rsGeneralizeStart List of elements that the current element generalizes.

rsParents List of all parent elements of the current element.

rsRealizeEnd List of elements that are realized by the current element.

rsRealizeStart List of elements that the current element realizes.

(c) Sparx Systems 2023 Page 30 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ExportPackageXMIFlag

The ExportPackageXMIFlag enumeration is used in Package control, when exporting to XMI.

Enum Values

Value Meaning

epExcludeEAExtensions Export this Package without any tool specific information.

epSaveToStub Export this Package with only immediate children (child Packages are included as
stubs only).

(c) Sparx Systems 2023 Page 31 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

MDGMenus

Use this enumeration when providing the 'HiddenMenus' property to MDG_GetProperty.

These options are exclusive of one another and can be read or added to hide more than one menu.

Enum Values

Value Meaning

mgBuildProject 'Hide Build Project' menu option.

mgMerge 'Hide Merge' menu option.

mgRun 'Hide Run' menu option.

(c) Sparx Systems 2023 Page 32 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

MessageFlag

The MessageFlag enumeration is used in both the SendMailMessage and ComposeMailMessage methods of the
MailInterface, to specify a flag to attach to the message.

Enum Values

Value Meaning

mfNone Do not flag the message.

mfComplete Flag the message as 'Complete'.

mfPurple Flag the message with a 'Purple' flag.

mfOrange Flag the message with an 'Orange' flag.

mfGreen Flag the message with a 'Green' flag.

mfYellow Flag the message with a 'Yellow' flag.

mfBlue Flag the message with a 'Blue' flag.

mfRed Flag the message with a 'Red' flag.

(c) Sparx Systems 2023 Page 33 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ObjectType

The ObjectType enumeration identifies Enterprise Architect object types even when referenced through a Dispatch
interface. For example:

 var treeSelectedType = Repository.GetTreeSelectedItemType();

 switch (treeSelectedType)

 {

 case otElement :

 {

 // Code for when an element is selected

 var theElement as EA.Element;

 theElement = Repository.GetTreeSelectedObject();

 break;

 }

 case otPackage :

 {

 // Code for when a Package is selected

 var thePackage as EA.Package;

 thePackage = Repository.GetTreeSelectedObject();

 break;

 }

 }

Valid Enumeration Values

otAttribute

otAttributeConstraint

otAttributeTag

otAuthor

otClient

otCollection

otConnector

otConnectorConstraint

otConnectorEnd

otConnectorTag

otConstraint

otCustomProperty

otDatatype

otDiagram

otDiagramLink

otDiagramObject

otEffort

(c) Sparx Systems 2023 Page 34 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

otElement

otEventProperties

otEventProperty

otFile

otIssue

otMailInterface

otMethod

otMethodConstraint

otMethodTag

otMetric

otModel

otNone

otPackage

otParameter

otParamTag

otPartition

otProject

otProjectIssues

otProjectResource

otProperties

otProperty

otPropertyType

otReference

otRepository

otRequirement

otResource

otRisk

otRoleTag

otScenario

otScenarioExtension

otScenarioStep

otStereotype

otSwimlane

otSwimlaneDef

otSwimlanes

otTaggedValue

otTask

otTerm

otTest

otTransition

(c) Sparx Systems 2023 Page 35 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

PropType

The PropType enumeration gives the automation programmer an indication of what sort of data is going to be stored by
this property.

Enum Values

Value Meaning

ptArray An array containing values of any type.

ptBoolean True or False.

ptEnum A string being an entry in the semi-colon separated list specified in the validation
field of the Property.

ptFloatingPoint 4 or 8 byte floating point value.

ptInteger 16 bit or 32 bit signed integer.

ptString Unicode string.

(c) Sparx Systems 2023 Page 36 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ReloadType

The ReloadType enumeration represents values returned from the GetReloadItem and PeekReloadItem methods of the
ModelWatcher Class. It has four possible values, which define the type of change that was made to a model.

Enum Values

Value Meaning

rtElement The Item parameter represents a particular element that must be reloaded.

rtEntireModel Entire model must be reloaded to ensure that all changes are reloaded.

rtNone No change in the model.

rtPackage The Item parameter represents a particular Package that must be reloaded.

(c) Sparx Systems 2023 Page 37 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ScenarioDiagramType

The ScenarioDiagramType enumeration provides these enumeration values to the
Project.GenerateDiagramFromScenario() method. They specify the type of diagram to generate.

Enum Values

Value Meaning

sdActivity Generate an Activity diagram.

sdActivityWithAction Generate an Activity diagram with an Action.

sdActivityWithActionPin Generate an Activity diagram with an ActionPin.

sdActivityWithActivityPar
ameter

Generate an Activity diagram with an ActivityParameter.

sdRobustness Generate a Robustness diagram.

sdRuleFlow Generate a RuleFlow diagram.

sdSequence Generate a Sequence diagram.

sdState Generate a StateMachine diagram.

(c) Sparx Systems 2023 Page 38 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ScenarioStepType

The ScenarioStepType enumeration is used to identify the steps of a scenario, and the entity performing the step.

Enum Values

Value Meaning

stActor Identify that the step is an action performed by an actor.

stSystem Identify that the step is an action performed by the system.

(c) Sparx Systems 2023 Page 39 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ScenarioTestType

The ScenarioTestType enumeration provides these enumeration values to the Project.GenerateTestFromScenario()
method, to specify the type of test to generate.

Enum Values

Value Meaning

stHorizontalTestSuite Generate a horizontal Test Suite diagram.

stVerticalTestSuite Generate a vertical Test Suite diagram.

stExternal Generate an external Test Case element.

stInternal Generate an internal test.

(c) Sparx Systems 2023 Page 40 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

XMIType

These enumeration values are used in the Project.ExportPackageXMI() and Project.ExportPackageXMIEx() methods, to
specify the XMI export type.

xmiEADefault = 0·
xmiRoseDefault = 1·
xmiEA10 = 2·
xmiEA11 = 3·
xmiEA12 = 4·
xmiRose10 = 5·
xmiRose11 = 6·
xmiRose12 = 7·
xmiMOF13 = 8·
xmiMOF14 = 9·
xmiEA20 = 10·
xmiEA21 = 11·
xmiEA211 = 12·
xmiEA212 = 13·
xmiEA22 = 14·
xmiEA23 = 15·
xmiEA24 = 16·
xmiEA241 = 17·
xmiEA242 = 18·
xmiEcore = 19·
xmiBPMN20 = 20·
xmiXPDL22 = 21·
xmiEA251 = 22·
xmiARCGIS = 23·
xmiNative = 24·
xmiEA2511 = 25·
xmiNativeXEA = 26·

(c) Sparx Systems 2023 Page 41 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Repository Package

The Repository Package contains the high level system objects and the entry point into the model itself, using the Models
collection and the other system level collections.

This diagram shows the collections of the Repository interface. Association Target roles correspond to member variable
names in the Repository interface. The associated Classes represent the object type used in each collection.

(c) Sparx Systems 2023 Page 42 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Author Class

An Author object represents a named model author. Authors can be accessed using the Repository Authors collection.

Associated table in repository

 t_authors

Author Attributes

Attribute Remarks

Name String

Notes: Read/Write

The Author name.

Notes String

Notes: Read/Write

Notes about the author.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Roles String

Notes: Read/Write

Roles the author might play in this project.

Author Methods

Method Remarks

GetLastError () String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update () Boolean

Notes: Updates the current Author object after modification or appending a new
item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 43 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

(c) Sparx Systems 2023 Page 44 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Client Class

A Client represents one or more people or organizations related to the project. Clients can be accessed using the
Repository Clients collection.

Associated table in repository

t_clients

Client Attributes

Attribute Remarks

EMail String

Notes: Read/Write

The client's email address.

Fax String

Notes: Read/Write

The client's fax number.

Mobile String

Notes: Read/Write

The client's mobile phone number, if available.

Name String

Notes: Read/Write

The client's name.

Notes String

Notes: Read/Write

Notes about the client.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through the Dispatch interface.

Organization String

Notes: Read/Write

The client's associated organization.

Phone1 String

Notes: Read/Write

The client's main phone number.

(c) Sparx Systems 2023 Page 45 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Phone2 String

Notes: Read/Write

The client's second phone number.

Roles String

Notes: Read/Write

Roles this client might play in the project.

Client Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Updates the current Client object after modification or appending a new
item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 46 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Collection Class

Collection is the main collection Class used by all elements within the Automation Interface. It contains methods to
iterate through the collection, refresh the collection and delete an item from the collection.

It is important to realize that when the 'AddNew' function is called, the item is not automatically added to the current
collection. The typical steps are:

Call AddNew to add a new item·
Modify the item as required·
Call Update on the item to save it to the database·
Call Refresh on the collection to include it in the current set·

Delete is the same; until Refresh is called, the collection still contains a reference to the deleted item, which should not
be called.

Each method can be used to iterate through the collection for languages that support this type of construct.

Collection Attributes

Attribute Remarks

Count Short

Notes: Read only

The number of objects referenced by this list.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Collection Methods

Method Remarks

AddNew(string Name,
string Type)

Object

Notes: Adds a new item to the current collection.

The interface is the same for all collections; you must provide a Name and Type
argument. What these arguments are used for depends on the actual collection being
accessed. For example, when adding a new element to the Elements collection, the
Type string can be either a basic UML element type or a fully qualified element
type (stereotype) defined by a profile, such as SysML::Requirement, differentiating
it from a standard requirement.

Also note that you must call Update() on the returned object to complete the
AddNew function. If Update() is not called the object is left in an indeterminate
state.

When an error occurs an exception will be thrown, including when the user does
not have Security permission to modify the specify type.

Parameters:

(c) Sparx Systems 2023 Page 47 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Name: String·
Type: String (up to 30 characters long)·

Delete(short index) Void

Notes: Deletes the item at the selected reference.

Parameters:

index: Short·

DeleteAt(short index,
boolean Refresh)

Void

Notes: Deletes the item at the selected index. The second parameter is currently
unused.

Parameters:

index: Short·
Refresh: Boolean·

GetAt(short index) Object

Notes: Retrieves the array object using a numerical index. If the index is out of
bounds, an error occurs.

Parameters:

index: Short·

GetByName(string Name) Object

Notes: Gets an item in the current collection by name. Supported for Model,
Package, Element, Diagram and element TaggedValue collections.

If the collection does not contain any items (or, for the Tagged Value collection, if
the collection contains items but the method cannot locate an object with the
specified name) the method returns a null value. For other collections, if the method
is unable to find an object with the specified name, it raises an exception.

Parameters:

Name: String·

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Refresh() Void

Notes: Refreshes the collection by re-querying the model and reloading the
collection. Should be called after adding a new item or after deleting an item.

Update() Boolean

Notes: Updates the current Collection object after modification or appending a new
item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 48 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

The AddNew Function

The AddNew() function is used widely across the API to add new objects to a Collection. In all cases you must provide a
Name and Type argument, but what these arguments are used for depends on the actual collection being accessed. For
example, when adding a new element to the Elements collection, the 'Type' string can be either a basic UML element
type or a fully qualified element type (stereotype) defined by a profile, such as SysML::Requirement differentiated from
a standard requirement.

AddNew Attribute Arguments

This table provides guidance in specifying the AddNew arguments for each of the object attributes.

Attribute Arguments

AttributeConstraints Name - The name of the constraint.

Type - The constraint type

Attributes Name - The name of the attribute.

Type - The attribute type.

AttributesEx Name - The name of the attribute.

Type - The attribute type.

AttributeTags Name - The fully-qualified name, or plain text.

Type - The value of the Tagged Value.

Authors Name - The author name.

Type - The author role.

Clients Name - The client name.

Type - The client role.

ConnectorConstraints Name - The name of the constraint.

Type - The constraint type.

ConnectorConveyedItems Name - The GUID of an element.

Type - Not used.

Note: This does not return an object.

Connectors Name - The name of the connector.

Type - The connector type (for example 'Realization').

ConnectorTags Name - The fully-qualified name, or plain text.

Type - The value of the Tagged Value.

Constraints Name - The name of the constraint.

Type - The constraint type.

ConstraintsEx Name - The name of the constraint.

(c) Sparx Systems 2023 Page 49 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Type - The constraint type.

CustomProperties You cannot create these.

DataTypes Name - The datatype name.

Type - The datatype type.

DiagramLinks Name - Not used.

Type - The style string (such as 'l=200;r=400;t=200;b=600;')

(You might prefer to leave the Type empty and use the Functions on this interface
for size, colors and so on).

DiagramObjects Name - This can either be an empty string, or it can specify the initial Left, Right,
Top and Bottom values for the new DiagramObject. For example:

 diagram.DiagramObjects.AddNew("l=200;r=400;t=200;b=600;", "")

Note: Top and Bottom values should be specified here as positive numbers, but will
be set in the repository as negative values.

Type - Unused.

Diagrams Name - The name of the diagram.

Type - This can be either a standard UML metaclass type (such as 'Class' or
'UseCase') or a fully-qualified metatype defined by an MDG Technology (such as
'BPMN2.0::BusinessProcess' or 'SysML1.4::Block').

Efforts Name - The name of the effort.

Type - The effort type.

Elements Name - The name of the new element. If the repository has an auto-name counter
defined for the element type being created, pass an empty string to use the
auto-name counter instead.

Type - Can be either a standard UML metaclass type (such as 'Class' or 'UseCase')
or a fully-qualified metatype defined by an MDG Technology (such as
'BPMN2.0::BusinessProcess' or 'SysML1.4::Block').

Files Name - The full pathname of the file.

Type - The file type (such as 'Local File' or 'Web Address').

Issues Name - The name of the issue.

Type - The problem type, (such as 'Issue' or 'Defect')

MethodPostConditions Name - The name of the constraint.

Type - The constraint type

MethodPreconditions Name - The name of the constraint.

Type - The constraint type.

Methods Name - The name of the method.

Type - The return value of the method.

MethodsEx Name - The name of the method.

(c) Sparx Systems 2023 Page 50 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Type - The return value of the method.

MethodTags Name - The fully-qualified name, or plain text.

Type - The value of the Tagged Value.

Metrics Name - The name of the metric.

Type - The metric type.

Models Name - The name of the model.

Type - Unused.

Packages Name - The name of the Package.

Type - Unused.

Parameters Name - The parameter name.

Type - The parameter type.

ParamTags Name - The fully-qualified name or plain text.

Type - The value of the Tagged Value.

Partitions Name - The partition name.

Type - The partition note.

ProjectIssues Name - The name of the issue.

Type - The issue type (such as 'Request', 'Defect', or 'Release')

ProjectResources Name - The resource name.

Type - The resource role.

ProjectRole Name - The role name.

Type - Not used.

PropertyTypes Name - The tag name.

Type - The description (limited to 50 characters).

Requirements Name - The name of the requirement.

Type - The requirement type.

RequirementsEx Name - The name of the requirement.

Type - The requirement type.

Resources Name - The resource name.

Type - The resource role.

Risks Name - The name of the risk.

Type - The risk type.

ScenarioExtension Name - The extension name.

Type - The scenario type

(c) Sparx Systems 2023 Page 51 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ScenarioStep Name - The step name.

Type - The ScenarioStep type value.

Scenarios Name - The name of the scenario.

Type - The scenario type.

Stereotypes Name - The stereotype name.

Type - The element this applies to.

Note: You can only support multiple elements from within a Profile.

Tasks Name - The task name.

Type - The task type.

TemplateBindings Name - The formal name of the binding.

Type - The actual name of the binding or element GUID.

TemplateParameters Name - The parameter name.

Type - The parameter type

Terms Name - The term name.

Type - The term type.

Tests Name - The name of the test.

Type - The test type.

Transitions Name - The transition name.

Type - The transition value.

(c) Sparx Systems 2023 Page 52 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Datatype Class

A Datatype is a named type that can be associated with attribute or method types. It typically is related to either code
engineering or database modeling. Datatypes also indicate which language or database system they relate to. Datatypes
can be accessed using the Repository Datatypes collection.

Associated table in repository

t_datatypes

Datatype Attributes

Attribute Remarks

DatatypeID Long

Notes: Read/Write

The instance ID for this datatype within the current model; this is system
maintained.

DefaultLen Long

Notes: Read/Write

The default length (DDL only).

DefaultPrec Long

Notes: Read/Write

The default precision (DDL only).

DefaultScale Long

Notes: Read/Write

The default scale (DDL only).

GenericType String

Notes: Read/Write

The associated generic type for this data type.

HasLength String

Notes: Read/Write

Indicates whether the datatype has a length component.

MaxLen Long

Notes: Read/Write

The maximum length (DDL only).

MaxPrec Long

Notes: Read/Write

(c) Sparx Systems 2023 Page 53 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

The maximum precision (DDL only).

MaxScale Long

Notes: Read/Write

The maximum scale (DDL only).

Name String

Notes: Read/Write

The datatype name (such as integer). This appears in the related drop-down
datatype lists where appropriate.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Product String

Notes: Read/Write

The datatype product, such as Java, C++ or Oracle.

Size Long

Notes: Read/Write

The datatype size.

Type String

Notes: Read/Write

The type can be DDL for database datatypes or Code for language datatypes.

UserDefined Long

Notes: Read/Write

Indicates if the datatype is a user defined type or system generated.

Datatypes distributed with Enterprise Architect are all system generated. Datatypes
created in the 'Datatype' dialog are marked 1 (True).

Datatype Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Updates the current Datatype object after modification or appending a new
item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 54 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

(c) Sparx Systems 2023 Page 55 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

EventProperties Class

An EventProperties object is passed to BroadcastFunctions to facilitate parameter passing.

EventProperties Attributes

Attribute Remarks

Count Long

Notes: Read only

The number of parameters being passed to this broadcast event.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

EventProperties Methods

Method Remarks

Get(object Index) EventProperty Class

Notes: Read only

Returns an EventProperty in the list, raising an error if Index is out of range.

Parameters:

Index: Variant - can either be a number representing a zero-based index into·
the array, or a string representing the name of the EventProperty: for example,
Props.Get(3) or Props.Get("ObjectID")

(c) Sparx Systems 2023 Page 56 of 352 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.1/eventproperty.htm

Enterprise Architect Object Model 10 November, 2023

EventProperty Class

EventProperty objects are always part of an EventProperties collection, and are passed to Add-In methods responding to
broadcast events.

EventProperty Attributes

Attribute Remarks

Description String

Notes: An explanation of what this property represents.

Name String

Notes: A string distinguishing this property from others in the list.

ObjectType ObjectType

Notes: Distinguishes objects referenced through a Dispatch interface.

Value Variant

Notes: A string, number or object reference representing the property value.

(c) Sparx Systems 2023 Page 57 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ModelWatcher Class

The ModelWatcher object enables an automation client to track changes in a particular model.

ModelWatcher Attributes

Attribute Remarks

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

ModelWatcher Methods

Methods Remarks

GetReloadItem (object
Item)

ReloadType

Notes: The object that must be reloaded in order to see all changes is returned
through the Item parameter. If there are no changes or the entire model must be
reloaded, this value is returned as null (C#) or Nothing (VB).

Calling this method clears the records so that the next time it is called the return
values refer only to new changes.

Returns a value from the ReloadType enumeration that specifies which type of
change, if any, has occurred.

Parameters:

Item: Object·

PeekReloadItem ReloadType

Notes: This method behaves identically to 'GetReloadItem()' but does not clear the
change record.

Notes

After your model has been loaded, you only create the ModelWatcher once; if you reload the model, or load another·
model, the created ModelWatcher is still valid

(c) Sparx Systems 2023 Page 58 of 352 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.1/reloadtype_enum.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.1/reloadtype_enum.htm

Enterprise Architect Object Model 10 November, 2023

Package Class

A Package object corresponds to a Package element in the Enterprise Architect Browser window. Packages can be
accessed either through the Repository Models collection (a Model is a special form of Package) or through the Packages
collection.

Note that a Package has an Element object as an attribute; this corresponds to an Enterprise Architect Package element in
the t_object table and is used to associate additional information (such as scenarios and constraints) with the logical
Package.

To set additional information for a Package, reference the Element object directly. Also note that if you add a Package to
a diagram, you should add an instance of the element (not the Package itself) to the DiagramObject Class for a diagram.

Associated table in repository

t_package

Package Attributes

Attribute Remarks

Alias String

Notes: Read only

Alias

BatchLoad Long

Notes: Read/Write

Flag to indicate that the Package is batch loaded during batch import from
controlled Packages.

Not currently used.

BatchSave Long

Notes: Read/Write

Boolean value to indicate whether the Package is included in the batch XMI export
list or not.

CodePath String

Notes: Read/Write

The path where associated source code is found.

Not currently used.

Connectors Collection

Notes: Read only

The collection of connectors.

Created Date

Notes: Read/Write

Date the Package was created.

(c) Sparx Systems 2023 Page 59 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Diagrams Collection

Notes: Read only

A collection of diagrams contained in this Package.

Element Element

Notes: Read only

The associated element object; use to get/set common information such as
Stereotype, Complexity, Alias, Author, Constraints, Tagged Values and Scenarios.

Elements Collection

Notes: Read only

A collection of elements that belong to this Package.

Flags String

Notes: Read/Write

Extended information about the Package.

IsControlled Boolean

Notes: Read/Write

Indicates if the Package has been marked as Controlled.

IsModel Boolean

Notes: Read only

Indicates if the Package is a model or a Package.

IsNamespace Boolean

Notes: Read/Write

True indicates that 'Package is a Namespace root'.

Use 0 and 1 to set False and True.

IsProtected Boolean

Notes: Read/Write

Indicates if the Package has been marked as 'Protected'.

IsVersionControlled Boolean

Notes: Read only

Indicates whether or not this Package is under Version Control.

LastLoadDate Date

Notes: Read/Write

The date XML was last loaded for the Package.

LastSaveDate Date

Notes: Read/Write

The date XML was last saved from the Package.

LogXML Boolean

(c) Sparx Systems 2023 Page 60 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Notes: Read/Write

Indicates if XMI export information is to be logged.

Modified Date

Notes: Read/Write

Date the Package was last modified.

Name String

Notes: Read/Write

The name of the Package.

Notes String

Notes: Read/Write

Notes about this Package.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Owner String

Notes: Read/Write.

The Package owner when using controlled Packages.

PackageGUID Variant

Notes: Read only

The global Package ID; valid across models.

PackageID Long

Notes: Read only

The local Package ID number.

Valid only in this model file.

Packages Collection

Notes: Read only

A collection of contained Packages that can be walked through.

ParentID Long

Notes: Read/Write

The ID of the Package that is the parent of this one.

0 indicates that this Package is a model (that is, it has no parent).

StereotypeEx String

Notes: Read/Write

All the applied stereotypes of the element in a comma-separated list. Reading the
value will provide the stereotype name only; assigning the value accepts either
fully-qualified or simple names.

When setting this attribute, LastError (from the GetLastError method) will be
non-empty on error.

(c) Sparx Systems 2023 Page 61 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

TreePos Long

Notes: Read/Write

The relative position in the tree compared to other Packages (use to sort Packages).

TypeInfoProperties Notes: Read only

Returns an interface pointer of TypeInfoProperties.

UMLVersion String

Notes: Read/Write

The UML version for XMI export purposes.

UseDTD Boolean

Notes: Read/Write

Indicates if a DTD is to be used when exporting XMI.

Version String

Notes: Read/Write

The version of the Package.

XMLPath String

Notes: Read/Write

The path to which the XML is saved when using controlled Packages.

Package Methods

Method Remarks

ApplyGroupLock (string
aGroupName)

Boolean

Notes: Applies a group lock to the Package object, for the specified group, on
behalf of the current user. User Security applies to the use of this function; if the
user does not have permission to apply or release locks on elements, diagrams and
Packages, the operation will fail.

Returns True if the operation is successful; returns False if the operation is
unsuccessful. Use GetLastError() to retrieve error information.

Parameters:

aGroupName: String - The name of the security group for which to apply the·
lock

ApplyGroupLockRecursive
(string aGroupName,
boolean IncludeElements,
boolean IncludeDiagrams,
boolean
IncludeSubPackages)

Boolean

Notes: Applies a group lock to the Package object, object, and all of the Package,
diagrams and elements contained within that Package, for the specified group, on
behalf of the current user. User Security applies to the use of this function; if the
user does not have permission to apply or release locks on elements, diagrams and
Packages, the operation will fail.

Returns True if the operation is successful; returns False if the operation is
unsuccessful. Use 'GetLastError()' to retrieve error information.

(c) Sparx Systems 2023 Page 62 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Parameters

aGroupName: String - The name of the security group for which to apply the·
lock

IncludeElements: Boolean - Recursively apply group lock to child elements·
IncludeDiagrams: Boolean - Recursively apply group lock to child diagrams·
IncludeSubPackages: Boolean - Recursively apply group lock to child·
Packages

ApplyUserLock () Boolean

Notes: Applies a user lock to the Package object for the current user. User Security
applies to the use of this function; if the user does not have permission to apply or
release locks on elements, diagrams and Packages, the operation will fail.

Returns True if the operation is successful; returns False if the operation is
unsuccessful. Use 'GetLastError()' to retrieve error information.

ApplyUserLockRecursive
(boolean IncludeElements,
boolean IncludeDiagrams,
boolean
IncludeSubPackages)

Boolean

Notes: Applies user locks to the Package object, and all of the Packages, diagrams
and elements contained within that Package. User Security applies to the use of this
function; if the user does not have permission to apply or release locks on elements,
diagrams and Packages, the operation will fail.

Returns True if the operation is successful; returns False if the operation is
unsuccessful. Use GetLastError() to retrieve error information.

Parameters

IncludeElements: Boolean - Recursively apply user lock to child elements·
IncludeDiagrams: Boolean - Recursively apply user lock to child diagrams·
IncludeSubPackages: Boolean - Recursively apply user lock to child Packages·

Clone LDISPATCH

Notes: Inserts a copy of the Package into the same parent as the original Package.

Returns the newly-created Package.

FindObject (string
DottedID)

LPDISPATCH

Notes: Returns a Package, element, attribute or operation matching the parameter
DottedID.

If the DottedID is not found, an error is returned: Can't find matching object.

Parameters

DottedID: String - Is in the form 'object.object.object' where object is replaced·
by the name of a Package, element attribute or operation; examples include
MyNamespace.Class1, CStudent.m_Name, MathClass.DoubleIt(int)

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

GetTXAlias (string Code,
long Flag)

String

Notes: Returns the Alias of the element for a given language.

Parameters

Code: String - Two-letter language code (found on the 'Translations' page of·
the 'Manage Model Options' dialog)

Flag: Long·

(c) Sparx Systems 2023 Page 63 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

 - 0 = Get the currently-stored translated Alias
 - 1 = Get the currently-stored translated Alias, and auto translate if the
original Alias has changed
 - 2 = Always fetch the translated Alias from online

GetTXNote (string Code,
long Flag)

String

Returns the Notes of the element for a given language.

Parameters

Code: String - Two-letter language code (found on the 'Translations' page of·
the 'Manage Model Options' dialog)

Flag: Long·
 - 0 = Get the currently-stored translated Notes
 - 1 = Get the currently-stored translated Notes, and auto translate if the
original Notes have changed
 - 2 = Always fetch the translated Notes from online

SetTXAlias (string Code,
string Translation)

String

Notes - Set the translated Alias of the element for a given language.

Code: String - Two-letter language code (found on the 'Translations' page of·
the 'Manage Model Options' dialog)

Translation: String - The translated Alias·

SetTXName (string Code,
string Translation)

String

Notes - Set the translated name of the element for a given language.

Code: String - Two-letter language code (found on the 'Translations' page of·
the 'Manage Model Options' dialog)

Translation: String - The translated name·

SetTXNote (string Code,
string Translation)

String

Notes - Set the translated Notes of the element for a given language.

Code: String - Two-letter language code (found on the 'Translations' page of·
the 'Manage Model Options' dialog)

Translation: String - The translated Notes·

GetTXName (string Code,
long Flag)

String

Notes: Returns the name of the element for a given language.

Parameters

Code: String - Two-letter language code (found on the 'Translations' page of·
the 'Manage Model Options' dialog)

Flag: Long·
 - 0 = Get the currently-stored translated name
 - 1 = Get the currently-stored translated name, and auto translate if the
original name has changed
 - 2 = Always fetch the translated name from online

ReleaseUserLock () Boolean

Notes: Releases user locks and group locks from the Package object, and all of the
Packages, diagrams and elements contained within that Package. User Security
applies to the use of this function; if the user does not have permission to apply or
release locks on elements, diagrams and Packages, the operation will fail.

Returns True if the operation is successful; returns False if the operation is

(c) Sparx Systems 2023 Page 64 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

unsuccessful. Use GetLastError() to retrieve error information.

ReleaseUserLockRecursive
(boolean IncludeElements,

boolean IncludeDiagrams,

boolean
IncludeSubPackages)

Boolean

Notes: Releases user locks from the Package object, and all of the Packages,
diagrams and elements contained within that Package. User Security applies to the
use of this function; if the user does not have permission to apply or release locks
on elements, diagrams and Packages, the operation will fail.

Returns True if the operation is successful; returns False if the operation is
unsuccessful. Use GetLastError() to retrieve error information.

Parameters

IncludeElements: Boolean - Recursively release user locks from child elements

IncludeDiagrams: Boolean - Recursively release user locks from child diagrams

IncludeSubPackages: Boolean - Recursively release user locks from child Packages

SetReadOnly (boolean
ReadOnly, boolean
IncludeSubPkgs)

Void

Notes: Sets a Package Flag to mark a Package as ReadOnly=1.

If Project Security is enabled, the user must have 'Configure Packages' permission
to use this method.

Throws an exception if the operation fails due to the user not having 'Configure
Packages' permission; use 'GetLastError()' to retrieve error information.

Parameters

ReadOnly: Boolean - Sets or clears the Read Only flag on the Package(s); if:·
 False, any Read Only flag is removed from the Package

 True, a Read Only flag is applied to the Package

IncludeSubPkgs: Boolean - Indicates whether to set/reset the Read Only flag·
on just the object Package, or on the object Package and all of the nested
sub-Packages that it contains; if:

 False, only the flag on the object Package is set or cleared

 True, flags are set (or cleared, according to the ReadOnly
parameter) for the object Package plus all of the nested sub-Packages that it
contains

When working with Version Controlled Packages, the Read Only flag can be
applied to Packages whether they are checked-in or checked-out.

User Security applies to setting this flag - if you are prevented from editing the
Package, you are also prevented from setting the flag.

Update () Boolean

Notes: Updates the current Package object after modification or appending a new
item.

If False is returned, check the 'GetLastError()' function for more information.

Note that a Package object also has an element component that must be taken into
account; the Package object contains information about the Package attributes such
as hierarchy or contents.

The element attribute contains information about, for example, Stereotypes,
Constraints or Files - all the attributes of a typical element.

VersionControlAdd (string
ConfigGuid, string
XMLFile, string Comment,
boolean KeepCheckedOut)

Void

Notes: Places the Package under Version Control, using the specified Version
Control Configuration and the specified XMI filename.

Throws an exception if the operation fails; use GetLastError() to retrieve error

(c) Sparx Systems 2023 Page 65 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

information.

It is recommended that the Package be saved using Update() before calling
VersionControlAdd(), so that any outstanding changes are not lost.

Parameters

ConfigGuid: String - Name corresponding to the Unique ID of the Version·
Control configuration to use

XMLFile: String - Name of the XML file to use for this Package; this filename·
is relative to the Working Copy folder specified for the Config

Comment: String - Log message that is added to the Version Controlled file's·
history (where applicable)

KeepCheckedOut: Boolean - Specify True to add to Version Control and keep·
the Package checked-out

VersionControlCheckin
(string Comment)

Void

Notes: Perform checkin of the Version Controlled Package (also see
VersionControlCheckinEx).

Throws an exception if the operation fails; use GetLastError() to retrieve error
information.

Parameters

Comment: String - Log message that is added to the Version Controlled file's·
history (where applicable)

VersionControlCheckinEx
(string Comment, boolean
PreserveCrossPkgRefs)

Void

Notes: Perform check-in of the Version Controlled Package.

Throws an exception if the operation fails; use GetLastError() to retrieve error
information.

Parameters

Comment: String - Log message that is added to the Version Controlled file's·
history (where applicable)

PreserveCrossPkgRefs: Boolean - Flag to indicate whether to preserve or·
discard pre-existing Cross Package References when checking-in; this
parameter overrides the setting in the 'Preferences' dialog, 'XML Specifications'
page
Unsatisfied cross-Package references are preserved or discarded according to
this setting, without prompting the user; see Learn more

VersionControlCheckout
(string Comment)

Void

Notes: Perform checkout of the Version Controlled Package.

Throws an exception if the operation fails; use GetLastError() to retrieve error
information.

Parameters:

Comment: String - Log message that is added to the Version Controlled file's·
history (where applicable)

When working in an environment that uses a Private Model deployment and your
model contains a significant number of cross-Package references, it is
recommended that you invoke the Repository.ScanXMIAndReconcile() method
from time to time, following the re-importation of controlled Packages - for
example, after using Package.VersionControlGetLatest() to update a number of
Packages, or after performing a number of Package check-outs.

VersionControlGetLatest Void

(c) Sparx Systems 2023 Page 66 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

(boolean ForceImport) Notes: Updates the local working copy of the Package file associated with the
object Package, before re-importing the Package data from the Package file.

Parameters:

ForceImport: Boolean - Used if the Package data in the model is found to be·
up-to-date with respect to the Version Controlled Package file; if:
 - False, the Package data that exists in the model is accepted as being
up-to-date and no
 attempt is made to re-import data from the Package file
 - True, the system re-imports the Package from the Package file regardless

See also the menu option 'Version Control | Get Latest'.

When working in an environment that uses a Private Model deployment and your
model contains a significant number of cross-Package references, it is
recommended that you invoke the 'Repository.ScanXMIAndReconcile()' method
from time to time, following the re-importation of controlled Packages - for
example, after using 'Package.VersionControlGetLatest()' to update a number of
Packages, or after performing a number of Package check-outs.

VersionControlGetStatus () Long

Notes: Returns the Version Control status of the Package, as recorded in the current
project database.

Throws an exception if the operation fails; use GetLastError() to retrieve error
information.

Return value maps to this enumerated type:

 enum EnumCheckOutStatus

 {

 csUncontrolled = 0,

 csCheckedIn,

 csCheckedOutToThisUser,

 csReadOnlyVersion,

 csCheckedOutToAnotherUser,

 csOfflineCheckedIn,

 csCheckedOutOfflineByUser,

 csCheckedOutOfflineByOther,

 csDeleted,

 };

csUncontrolled - Either unable to communicate with the Version Control·
provider associated with the Package, or the Package file is unknown to the
provider

csCheckedIn - The Package is not checked-out to anybody in the current·
project database

csCheckedOutToThisUser - The Package is marked as checked-out to the·
current user, in the current project database

csReadOnlyVersion - The Package is marked as read-only; an earlier revision·
of the Packagehas been retrieved from Version Control

csCheckedOutToAnotherUser - The Package is marked as checked-out in the·
current project database, by a user other than the current user

csOfflineCheckedIn - The Package is not checked-out to anybody in the·
current project database; however, the Version Control configuration
associated with the Package was unable to connect to the VC server

csCheckedOutOfflineByUser - The Package was 'checked out' in this database,·

(c) Sparx Systems 2023 Page 67 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

by this user, whilst disconnected from Version Control

csCheckedOutOfflineByOther - The Package was checked out in this project·
database, by another user, whilst disconnected from Version Control

csDeleted - The Package file has been deleted from Version Control·

VersionControlPutLatest
(string CheckInComment)

Void

Notes: Perform a checkin of the Version Controlled Package, whilst keeping the
Package checked-out.

Throws an exception if the operation fails; use GetLastError() to retrieve error
information.

When a Package that was previously marked as Checked Out Offline, is
successfully 'Put' (checkedin) to Version Control, that Package's flags are updated
to clear the Checked Out Offline indicator.

Parameters:

Comment: String - Log message added to the Version Controlled file's history·
(where applicable)

VersionControlRemove () Void

Notes: Removes Version Control from the Package.

Throws an exception if the operation fails; use 'GetLastError()' to retrieve error
information.

VersionControlResynchPk
gStatus (boolean
ClearSettings)

Notes: Synchronizes the Version Control status of the single object Package
recorded in your current model with the Package status reported by your Version
Control provider.

Parameters:

ClearSettings: Boolean - used if the Package file associated with the specified·
Package is reported by the Version Control provider as uncontrolled; if
ClearSettings is:

 True, the Version Control settings are cleared from the Package

 False, the Version Control settings remain unchanged

(c) Sparx Systems 2023 Page 68 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ProjectIssues Class

A ProjectIssue is a system-level Issue that indicates a problem or risk associated with the system as a whole.
ProjectIssues can be accessed using the Repository Issues collection.

Associated table in repository

t_issues

ProjectIssues Attributes

Attribute Remarks

Category String

Notes: Read/Write

The category this issue belongs to.

Date Date

Notes: Read/Write

The date the issue item was created.

DateResolved Date

Notes: Read/Write

The date the issue was resolved.

Name String

Notes: Read/Write

The issue name (that is, the issue itself).

IssueID Long

Notes: Read only

The ID of this issue.

Notes String

Notes: Read/Write

The associated description of the issue.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Owner String

Notes: Read/Write

The owner of the issue.

(c) Sparx Systems 2023 Page 69 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Priority String

Notes: Read/Write

The issue priority - Low, Medium or High.

Resolution String

Notes: Read/Write

A description of the resolution.

Resolver String

Notes: Read/Write

The name of the person resolving the issue.

Severity String

Notes: Read/Write

The issue severity - Low, Medium or High.

Status String

Notes: Read/Write

The current status of the issue.

ProjectIssues Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Updates the current Issue object after modification or appending a new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 70 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ProjectResource Class

A Project Resource is a named person who is available to work on the current project in any capacity. ProjectResources
can be accessed using the Repository Resources collection.

Associated table in repository

t_resources

ProjectResource Attributes

Attribute Remarks

Email String

Notes: The resource's email address.

Fax String

Notes: The resource's fax number.

Mobile Variant

Notes: The resource's mobile number, if available.

Name String

Notes: The name of the resource.

Notes String

Notes: A description of the resource, if appropriate.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Organization Package Class: String

Notes: The organization the resource is associated with.

Phone1 Variant

Notes: The resource's main telephone number.

Phone2 Variant

Notes: The resource's alternative telephone number.

Roles String

Notes: The roles this resource can play in the current project.

(c) Sparx Systems 2023 Page 71 of 352 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.1/package_2.htm

Enterprise Architect Object Model 10 November, 2023

ProjectResource Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Updates the current Resource object after modification or appending a new
item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 72 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ProjectRole Class

A ProjectRole object represents a named project role. ProjectRoles can be accessed using the Repository ProjectRole
collection.

Associated table in repository

t_projectroles

ProjectRole Attributes

Attribute Remarks

Description String

Notes: Read/Write

The project role item description.

Notes String

Notes: Read/Write

Notes about the project role item.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Role String

Notes: Read/Write

The project role item name.

ProjectRole Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Updates the current ProjectRole object after modification or appending a
new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 73 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

(c) Sparx Systems 2023 Page 74 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

PropertyType Class

A PropertyType object represents a defined property that can be applied to UML elements as a Tagged Value.
PropertyTypes can be accessed using the Repository PropertyTypes collection.

Each PropertyType corresponds to one of the predefined Tagged Values for the model.

Associated table in repository

t_propertytypes

PropertyType Attributes

Attribute Remarks

Description String

Notes: Read/Write

A short description of the property.

Detail String

Notes: Read/Write

Configuration information for the property.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Tag String

Notes: Read/Write

The name of the property (Tag Name).

PropertyType Methods:

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Updates the current PropertyType object after modification or appending a
new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 75 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

(c) Sparx Systems 2023 Page 76 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Reference Class

This Interface provides access to the various lookup tables within Enterprise Architect. Use the Repository
GetReferenceList() method to get a handle to a list.

GetReferenceList (string Type)

Notes: Uses the list type to get a pointer to a Reference List object.

Parameters:

 Type: String - specifies the list type to get; valid list types are:

Diagram·
Element·
Constraint·
Requirement·
Connector·
Status·
Cardinality·
Effort·
Metric·
Scenario·
Status·
Test·
List:DifficultyType·
List:PriorityType·
List:TestStatusType·
List:ConstStatusType·

Example:

var statusList as EA.Reference;

statusList = Repository.GetReferenceList("Status");

Session.Output("Status Count: " + statusList.Count);

for (var i=0; i < statusList.Count; i++)

{

Session.Output("#" + (i+1) + ": " + statusList.GetAt(i));

}

Reference Attributes

Attribute Remarks

Count Short

Notes: A count of items in the list.

ObjectType ObjectType

(c) Sparx Systems 2023 Page 77 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Type String

Notes: The list type (for example, DiagramTypes).

Reference Methods

Method Remarks

GetAt(short Index) String

Notes: Get the item at the specified index.

Parameters:

Index: Short - The index of the item to retrieve from the list·

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Refresh() Short

Notes: Refresh the current list and return the count of items.

(c) Sparx Systems 2023 Page 78 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Repository Class

The Repository is the main container of all structures such as models, Packages and elements. You can begin accessing
the model iteratively using the Models collection. The Repository also has some convenient methods to directly access
the structures without having to locate them in the hierarchy first.

Associated table in repository

<none>

Repository Attributes

Attribute Remarks

Authors Collection

Notes: Read only

This is the system Authors collection containing 0 or more Author objects, each of
which can be associated with, for example, elements or diagrams as the item author
or owner.

Use AddNew(), Delete() and GetAt() to manage Authors.

BatchAppend Boolean

Notes: Read/Write

Set this property to True when your automation client has to rapidly insert many
elements, operations, attributes and/or operation parameters.

Set to False when work is complete.

This can result in 10- to 20-fold improvement in adding new elements in bulk.

Clients Collection

Notes: Read only

A list of Clients associated with the project. You can modify, delete and add new
Client objects using this collection.

ConnectionString String

Notes: Read only

The filename/connection string of the current Repository.

For a connection string, the DBMS repository type is identified by "DBType=n;"
where n is a number corresponding to the DBMS type, as shown:

0 - MYSQL

1 - SQLSVR

3 - ORACLE

4 - POSTGRES

8 - ACCESS2007

9 - FIREBIRD

10 - SQLITE

(c) Sparx Systems 2023 Page 79 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

CurrentSelection Notes: Read only

Provides information on what is selected, and in what location without making any
requests to the database.

DataMinerManager Data Miner object

Notes: Returns a pointer to the EA.DataMinerManager interface.

Datatypes Collection

Notes: Read only

The Datatypes collection. This contains a list of Datatype objects, each representing
a data type definition for either data modeling or code generation purposes.

EAEdition EAEditionTypes

Notes: Read only

Returns the current level of core licensed functionality available.

This property returns Corporate when the edition is Unified or Ultimate.

Use 'EAEditionEx' to identify which of these extended editions is available.

EAEditionEx EAEditionTypes

Notes: Read only

Returns the current level of extended licensed functionality available (Unified or
Ultimate).

EnableCache Boolean

Notes: Read/Write

An optimization for pre-loading Package objects when dealing with large sets of
automation objects.

EnableUIUpdates Boolean

Notes: Read/Write

Set this property to False to improve the performance of changes to the model; for
example, bulk addition of elements to a Package. To reveal changes to the user, call
'Repository.RefreshModelView()'.

FlagUpdate Boolean

Notes: Read/Write

Instructs Enterprise Architect to update the Repository with the LastUpdate value.

InstanceGUID String

Notes: Read only

The identifier string identifying the Enterprise Architect runtime session.

IsSecurityEnabled Boolean

Notes: Read only

Indicates whether User Security is enabled for the current repository.

Issues Collection

Notes: Read only

(c) Sparx Systems 2023 Page 80 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

The System Issues list. Contains ProjectIssues objects, each detailing a particular
issue as it relates to the project as a whole.

LastUpdate String

Notes: Read only

The identifier string identifying the Enterprise Architect runtime session and the
timestamp for when it was set.

LibraryVersion Long

Notes: Read only

The build number of the Enterprise Architect runtime.

Models Collection of type Package

Notes: Read only

Models are of type Package and belong to a collection of Packages. This is the top
level entry point to an Enterprise Architect project file. Each model is a root node in
the Browser window and can contain items such as Views and Packages.

A model is a special form of a Package; it has a ParentID of 0. By iterating through
all models, you can access all the elements within the project hierarchy.

You can also use the AddNew() function to create a new model. A model can be
deleted, but remember that everything contained in the model is deleted as well.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through the Dispatch interface.

ProjectGUID String

Notes: Read only

Returns the unique ID for the project.

ProjectRoles Collection

Notes: Read only

The system Roles collection containing 0 or more Role objects, each of which can
be associated with, for example, elements or diagrams as the item author or owner.

Use AddNew(), Delete() and GetAt() to manage Roles.

PropertyTypes Collection

Notes: Read only

Collection of Property Types available to the Repository.

Resources Collection

Notes: Read only

Contains available ProjectResource objects to assign to work items within the
project.

Use the 'Add New()', 'Modify()' and 'Delete()' functions to manage resources.

SearchWindow Notes: Read only

Returns a reference to the Enterprise Architect Search Window.

(c) Sparx Systems 2023 Page 81 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

SecurityUser Notes: Read only

Provides information about the currently logged in security user.

Stereotypes Collection

Notes: Read only

The Stereotype collection. A list of Stereotype objects that contain information on a
stereotype and the elements it can be applied to.

SuppressEADialogs Boolean

Notes: Read/Write

Set this property in the EA_OnPostNewElement broadcast event to control whether
Enterprise Architect should suppress showing the default 'Properties' dialog to the
user when an element is created.

SuppressSecurityDialog Boolean

Notes: Read/Write

Suppress the login prompt dialog that appears by default when username and
password parameters passed to OpenFile2 are invalid. For use by external
automation clients only.

Tasks Collection

Notes: Read only

A list of system tasks (to do list). Each entry is a Task Item; you can modify, delete
and add new tasks.

Terms Collection

Notes: Read only

The Project Glossary Terms. Each Term object is an entry in the Glossary. Add,
modify and delete Terms to maintain the Glossary.

Repository Methods

Method Remarks

ActivateDiagram (long
DiagramID)

Notes: Activates an already open diagram (that is, makes it the active tab) in the
main Enterprise Architect user interface.

Parameters:

DiagramID: Long - the ID of the diagram to make active·

ActivatePerspective (string
long)

Boolean

Notes: Deprecated - no longer in use.

ActivateTab (string Name) Notes: Activates an open Enterprise Architect tabbed view.

Parameters:

Name: String - the name of the view to activate·

ActivateTechnology (string Notes: Activates an enabled MDG Technology.

(c) Sparx Systems 2023 Page 82 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

TechnologyID) Parameters:

TechnologyID: String - the ID of the Technology to activate, as assigned in the·
MDG Technology Wizard

ActivateToolbox (string
Toolbox, long Options)

Boolean

Notes: Activates a Toolbox page in the GUI.

The returned value is reserved for future use.

Parameters:

Toolbox: String - the name of the Toolbox page to activate·
Options: Long - reserved for future use·

AddDefinedSearches
(string sXML)

Notes: Used to enter a set of defined searches that last in Enterprise Architect for
the life of the application; when Enterprise Architect loads again they must be
inserted again by your Add-In.

Parameters:

sXML: String - the XML of the defined searches; you can get this XML by·
performing an export of the searches from the 'Manage Searches' dialog in
Enterprise Architect

AddDocumentationPath
(string Name, string Path,
long Type)

Notes: Provides an Add-In with the ability to insert a book path into the Enterprise
Architect installation directory, to display Learning Center pages on user-authored
subjects (such as use of the Add-In).

Parameters:

Name: String - the top-level (root) name for the Learning Center·
documentation hierarchy for the Add-In (for example, Enterprise Architect)

Path: String - the directory path to the folder to contain the Learning Center·
documentation structure (for example,
C:\Program Files (86)\Sparx Systems\EA\Books

Type: Long - reserved for future use; set to 0·

AddPerspective (string
Perspective, long Options)

Boolean

Notes: Deprecated - no longer in use.

AddPropertiesTab (string
TabName, string
PropXML)

Notes: Create a Properties tab.

Returns a PropertiesTab interface if a tab was created successfully, otherwise
NULL.

Parameters:

TabName: String - Name of the Properties tab·
PropXML: String - An XML string defining the values in the tab·

Example XML string.

<?xml version='1.0'?>

<properties>

 <group name='theGroup1'>

 <property id='1' type='text' default='' readonly='false' >

 <name>TestText</name>

 <description>this has id=1</description>

 </property>

 <property id='2' type='combobox' default='' readonly='false' >

(c) Sparx Systems 2023 Page 83 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

 <name>TestCombo</name>

 <value>Two</value>

 <description>this has id=2</description>

 <valuelist>

 <item>One</item>

 <item>Two</item>

 <item>Three</item>

 </valuelist>

 </property>

 <property id='3' type='date' default='currentdate' showcheckbox='false'
readonly='false' >

 <name>TestDate</name>

 <value></value>

 <description>this has id=3</description>

 </property>

 <property id='4' type='checkbox' default='true' readonly='false' >

 <name>TestCheckbox</name>

 <description>this has id=4</description>

 </property>

 <property id='5' type='spin' default='1' min='0' max='100' readonly='false' >

 <name>TestSpin</name>

 <value>7</value>

 <description>this has id=5</description>

 </property>

 <property id='6' type='int' default='1' readonly='false' >

 <name>TestInt</name>

 <value>100</value>

 <description>this has id=6</description>

 </property>

 <property id='7' type='double' default='1' readonly='false' >

 <name>TestDouble</name>

 <value>3.333</value>

 <description>this has id=7</description>

 </property>

 <property id='8' type='memo' default='' readonly='false' >

 <name>TestMemo</name>

 <value></value>

 <description>this has id=8</description>

 </property>

 </group>

 <group name='theGroup2'>

 <property id='22' type='text' default='' readonly='false' >

 <name>Test1</name>

 <value></value>

 <description>this has id=22</description>

(c) Sparx Systems 2023 Page 84 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

 <valuelist>

 <item></item>

 </valuelist>

 </property>

 </group>

</properties>

AddTab (string TabName,
string ControlID)

activeX custom control

Notes: Adds an ActiveX custom control as a tabbed window. Enterprise Architect
creates a control and, if successful, returns its Unknown pointer, which can be used
by the caller to manipulate the control.

Parameters:

TabName: String - used as the tab caption·
ControlID: String - the ProgID of the control; for example,·
"CS_AddinFramework.UserControl1"

AddWindow (string
WindowName, string
ControlID)

activeX custom control

Notes: Adds an ActiveX custom control as a window to the Add-Ins docked
window. Enterprise Architect creates a control and, if successful, returns its
Unknown pointer, which can be used by the caller to manipulate the control.

Parameters:

WindowName: String - used as the window title·
ControlID: String - the ProgID of the control; for example,·
"CS_AddinFramework.UserControl1"

AdviseConnectorChange
(long ConnectorID)

Notes: Provides an Add-In or automation client with the ability to advise the
Enterprise Architect user interface that a particular connector has changed and, if it
is visible in any open diagram, to reload and refresh that connector for the user.

Parameters:

ConnectorID: Long - the ID of the connector·

AdviseElementChange
(long ObjectID)

Notes: Provides an Add-In or automation client with the ability to advise the
Enterprise Architect user interface that a particular element has changed and, if it is
visible in any open diagram, to reload and refresh that element for the user.

Parameters:

ObjectID: Long - the ID of the element·

CallSBPI (string
sbpiPrefix, string Method,
string packedParameters)

Notes: Returns a JSON string with the result from the external server.

Parameters:

sbpiPrefix: String - Prefix value of the external server·
Method: String - Name of the function to call on the external server·
[Optional] packedParameters: String - For SBPI Integrations this must match·
the expected parameters for the specified method; for Custom Services this can
pass generic data to the SBPI in any format, but it is suggested you use the
packing methods to ensure a correct JSON string structure

ChangeLoginUser (string
Name, string Password)

Boolean

Notes: Sets the currently logged on user to be the one specified by a name and
password; this logs the user into the repository when security is enabled.

If security is not enabled an exception (Security not enabled) is thrown.

(c) Sparx Systems 2023 Page 85 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Parameters:

Name: String - the name of the user·
Password: String - the password of the user·

ClearAuditLogs (Object
StartDateTime, Object
EndDateTime)

Boolean

Notes: Clears all Audit Logs from the model.

If StartDateTime and EndDateTime are not null then only log items that fall into
this period are cleared.

Returns True for success, False for failure.

This method cannot be undone; it is strongly advised that you call·
'SaveAuditLogs' first to backup the logs

This method might fail if the user logged into the model does not have the·
correct access permission

Parameters:

StartDateTime: Variant (DateTime) - the earliest date and time of log entries to·
clear

EndDateTime: Variant (DateTime) - the latest date and time of log entries to·
clear

ClearOutput (string Name) Notes: Removes all the text from a tab in the System Output window.

Parameters:

Name: String - the name of the tab to remove text from·

CloseAddins () Notes: Called by automation controllers to ensure that Add-Ins created in .NET do
not linger after all controller references to Enterprise Architect have been cleared.

CloseDiagram (long
DiagramID)

Notes: Closes a diagram in the current list of diagrams that Enterprise Architect has
open.

Parameters:

DiagramID: Long - the ID of the diagram to close·

CloseFile () Notes: Closes any open file.

CreateDocumentGenerator(
)

Document Generator

Notes: Returns a pointer to the EA.DocumentGenerator interface.

CreateModel
(CreateModelType
CreateType, string
FilePath, long ParentWnd)

Boolean

Notes: Creates a new .eap model file based on the standard Enterprise Architect
Base model, or a shortcut .eap based on a provided SQL connection.

Returns True when the new file is created, otherwise returns False.

Parameters:

CreateType: CreateModelType - Specify whether to make a new copy of the·
EABase.eap model, or create a .eap file shortcut to a DBMS repository; the
latter option requires a dialog to be opened for the user to provide SQL
connection details

FilePath: String - Destination for new .eap file·
ParentWnd: Long - Window handle to act as the parent for the 'SQL·
connection' dialog; only required when using cmEAPFromSQLRepository

CreateOutputTab (string Notes: Creates a tab in the System Output window.

(c) Sparx Systems 2023 Page 86 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Name) Parameters:

Name: String - the name of the tab to create·

DeletePerspective (string
Perspective, long Options)

Boolean

Notes: Deprecated - no longer in use.

DeleteTechnology (string
ID)

Boolean

Notes: Removes a specified MDG Technology resource from the repository.

Returns True if the technology is successfully removed from the model. Returns
False otherwise.

This applies to technologies imported into pre-7.0 versions of Enterprise·
Architect (imported technologies), not to technologies referenced in version 7.0
and later (referenced technologies)

Parameters:

ID: String - the ID of the technology·

EnsureOutputVisible
(string Name)

Notes: Checks that a specified tab in the System Output window is visible to the
user. The System Output window is made visible if it is hidden.

Parameters:

Name: String - the name of the tab to make visible·

ExecutePackageBuildScrip
t (long ScriptOptions,
string PackageGuid)

Notes: Helps you to run the active Package build script based on your current
selection in the Browser window. You can also run a script by passing in the
Package GUID.

Parameters:

ScriptOptions: Long - the script type; can be any one of these numerical·
values:

 1 = Build

 2 = Test

 3 = Run

 4 = Create Workbench Instance

 5 = Debug

PackageGuid: String - the ID of the Package for which to run the script·

Exit Notes: Shuts down Enterprise Architect immediately. Used by .NET programmers
where the garbage collector does not immediately release all referenced COM
objects.

ExtractImagesFromNote
(string Notes, string
WriteImagePath, string
RelativeImagePath)

String

Notes: Writes any Image Manager links to the WriteImagePath directory.

Returns a modified notes text, which contains links to the images using the
RelativeImagePath parameter.

Parameters:

Notes: String - the notes of the selected Package, diagram or element·
WriteImagePath: String - the path where the image file links will be stored; this·
path must exist

RelativeImagePath: String - the path to be inserted into the modified string·
indicating where the images can be found (for example, "..\images\")

ExtractSBPIParameter

(c) Sparx Systems 2023 Page 87 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

(string packedParameters,
string name)

Notes: Returns the value of the parameter name as a string.

Parameters:

packedParameters: String - The JSON string to append the Name/Value to;·
cannot be empty

name: String - The name of the parameter·

GenerateMDGTechnology
(string Filename)

Boolean

Notes: Generates an MDG Technology file using the settings in the given MTS file.

The returned value indicates success or failure.

Parameters:

Filename: String - the name and path of the MTS file to use·

GetActivePerspective () String

Notes: Deprecated - no longer in use.

GetAttributeByGuid (string
Guid)

Attribute

Notes: Returns a pointer to an attribute in the repository, located by its GUID. This
is usually found using the AttributeGUID property of an attribute.

Parameters:

Guid: String - the GUID of the attribute to locate·

GetAttributeByID (long
AttributeID)

Attribute

Notes: Returns a pointer to an attribute in the repository, located by its ID. This is
usually found using the AttributeID property of an attribute.

Parameters:

AttributeID: Long - the ID of the attribute to locate·

GetConnectorByGuid
(string Guid)

Connector

Notes: Returns a pointer to a connector in the repository, located by its GUID. This
is usually found using the ConnectorGUID property of a connector.

Parameters:

Guid: String - the GUID of the connector to locate·

GetConnectorByID (long
ConnectorID)

Connector

Notes: Searches the repository for a connector with a specific ID.

Parameters:

ConnectorID: Long - the ID of the connector to locate·

GetContextItem (object
Item)

ObjectType

Notes: Sets a pointer to an item in context within Enterprise Architect.

Also returns the corresponding ObjectType.

For additional information about ContextItems and the supported ObjectTypes see
the 'GetContextItemType' method.

Parameters:

Item: Object - the item to point to·

GetContextItemType () ObjectType

Notes: Returns the ObjectType of an item in context within Enterprise Architect. A

(c) Sparx Systems 2023 Page 88 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ContextItem is defined as an item selected anywhere within the Enterprise
Architect GUI including:

An item selected in the Browser window·
An item selected in an open diagram·
An item selected in certain dialogs, such as the attribute 'Properties' dialog·

The supported ObjectTypes can be any one of these values:

otElement·
otPackage·
otDiagram·
otAttribute·
otMethod·
otConnector·

GetContextObject () Object

Notes: Returns the current context Object.

GetCounts () String

Notes: Returns a set of counts from a number of tables within the base Enterprise
Architect repository. These can be used to determine whether records have been
added or deleted from the tables for which information is retrieved.

GetCurrentDiagram () Diagram

Notes: Returns a selected diagram.

GetCurrentLoginUser
(boolean GetGuid)

String

Notes: If security is not enabled in the repository, an error is generated.

If 'GetGuid' is True, a GUID generated by Enterprise Architect representing the
user is returned; otherwise the text as entered in System Users/User Details/Login is
returned.

GetDiagramByGuid (string
Guid)

Diagram

Notes: Returns a pointer to a diagram using the global reference ID (global ID).
This is usually found using the diagram GUID property of an element, and stored
for later use to open a diagram without using the collection GetAt() function.

Parameters:

Guid: String - the GUID of the diagram to locate·

GetDiagramByID (long
DiagramID)

Diagram

Notes: Gets a pointer to a diagram using an absolute reference number (local ID).
This is usually found using the DiagramID property of an element, and stored for
later use to open a diagram without using the collection GetAt() function.

Parameters:

DiagramID: Long - the ID of the diagram to locate·

GetElementByGuid (string
Guid)

Element

Notes: Returns a pointer to an element in the repository, using the element's GUID
reference number (global ID). This is usually found using the ElementGUID
property of an element, and stored for later use to open an element without using
the collection 'GetAt ()' function.

(c) Sparx Systems 2023 Page 89 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Parameters:

Guid: String - the GUID of the element to locate·

GetElementByID (long
ElementID)

Element

Notes: Gets a pointer to an element using an absolute reference number (local ID).
This is usually found using the ElementID property of an element, and stored for
later use to open an element without using the collection GetAt () function.

Parameters:

ElementID: Long - the ID of the element to locate·

GetElementsByQuery
(string QueryName, string
SearchTerm)

Collection (of type Element)

Notes: Helps you to run a search in Enterprise Architect, returning the result as a
collection.

For example: GetElementsByQuery('Simple','Class1'), where the results list
elements with 'Class1' in the 'Name' and 'Notes' fields.

Parameters:

QueryName: String - the name of the search to run, for example 'Simple'·
SearchTerm: String - the term to search for·

GetElementSet (string
IDList, long Options)

Collection (of type Element)

Notes: Returns a set of elements as a collection based on a comma-separated list of
ElementID values. By default, if no values are provided in the IDList parameter, all
objects for the entire project are returned.

Parameters

IDList: String - a comma-separated list of ElementID values·
Options: Long - modifies default behavior of this method·
Returns empty collection when empty IDList parameter is given.1.

Use IDList string as an SQL query to populate this collection.2.

GetFieldFromFormat
(string Format, string Text)

String

Notes: Converts a field from your preferred format to Enterprise Architect's internal
format; returns the field in that format.

Parameters:

Format: String - The format to convert the field from; valid formats are:·
 - HTML - Full HTML
 - RTF - Rich Text Format
 - TXT - Plain text

Text: String - The field to be converted·

GetFormatFromField
(string Format, string Text)

String

Notes: After accessing a field that contains formatting, use this method to convert it
to your preferred format; returns the field in the format specified.

Parameters:

Format: String - The format to convert the field to; valid formats are:·
 - HTML - Full HTML
 - RTF - Rich Text Format
 - TXT - Plain text

Text: String - The field to be converted·

GetFormattedName (string String

(c) Sparx Systems 2023 Page 90 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Guid, long FlagInclude,
string Separator, long
FlagFormat)

Notes: Provides special formatting for the name of the specified object; for
example, the fully qualified name of a specific element or feature.

Parameters:

Guid: String - The GUID of the object to be formatted·
FlagInclude: Long - Items to be included in the formatted name:·
 - fiFeature = &H01
 - fiClass = &H02
 - fiParents = &H04
 - fiPackage = &H08
 - fiRootNS = &H10
 - fiHiddenNS = &H20
 - fiDiagram = &H40
 - fiElemAlias = &H80

Separator: String - The string to use for separating each included item (such as·
Packages or elements)

FlagFormat: Long - Additional formatting options:·
 - ffReplaceSpaces = &H01
 - ffLowercase = &H02
 - ffURLEncode = &H04

Example:

FormattedName = Repository.GetFormattedName (Element.ElementGUID,
fiFeature Or fiClass Or fiParents Or fiPackage Or fiDiagram, "::", 0)

GetGapAnalysisMatrix () String

Notes: Read Only

Returns all Gap Analyses as an XML document.

GetLastError () String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

GetLocalPath (string Type,
string Path)

String

Notes: Returns the expanded local file path for code generated from an element,
with reference to the Type and Path defined in the 'Local Paths' dialog.

Parameters:

Type: String - the coding language for the element, such as Java, C or C++·
Path: String - the local path to be expanded; for example:·
%Desk%\Javacode\Motor.java

For example:

 Repository.GetLocalPath (Java, %Desk%\Javacode\Motor.java)

This could return:

 C:\Users\fbloggs\Desktop\Javacode\Motor.java.

GetMailInterface () MailInterface

Notes: Returns an instance of the EA.MailInterface; use this interface to automate
the process of creating and sending Model Mail messages.

GetMethodByGuid (string
Guid)

Method

Notes: Returns a pointer to a method in the repository; this is usually found using
the MethodGUID property of a method.

Parameters:

(c) Sparx Systems 2023 Page 91 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Guid: String - the GUID of the method to look for·

GetMethodByID (long
MethodID)

Method

Notes: Returns a pointer to a method in the repository; this is usually found using
the MethodID property of a method.

Parameters:

MethodID: Long - the ID of the method to look for·

GetPackageByGuid (string
Guid)

Package

Notes: Returns a pointer to a Package in the repository using the Package's GUID
reference number (global ID). This is usually found using the PackageGUID
property of the Package.

Each Package in the model also has an associated element with the same GUID, so
if you have an element with Type="Package" then you can load the Package by
calling:

 GetPackageByGuid(Element.ElementGUID)

Parameters:

Guid: String - the GUID of the Package to look for·

GetPackageByID (long
PackageID)

Package

Notes: Get a pointer to a Package using an absolute reference number (local ID).
This is usually found using the PackageID property of a Package, and stored for
later use to open a Package without using the collection GetAt () function.

Parameters:

PackageID: Long - the ID of the Package to locate·

GetProjectInterface () Project

Notes: Returns a pointer to the EA.Project interface (the XML-based automation
server for Enterprise Architect). Use this interface to work with Enterprise
Architect using XML, and also to access utility functions for loading diagrams,
running reports and so on.

GetPropertiesTab (string
TabName)

Notes: Finds an existing Properties tab.

Returns a PropertiesTab interface if the tab exists, otherwise NULL.

Parameters:

TabName: String - The name of the 'Properties' tab.·

GetReferenceList (string
Type)

Reference

Notes: Uses the list type to get a pointer to a Reference List object.

Parameters:

Type: String - specifies the list type to get; valid list types are:·
 - Diagram
 - Element
 - Constraint
 - Requirement
 - Connector
 - Status
 - Cardinality
 - Effort
 - Metric
 - Scenario
 - Status

(c) Sparx Systems 2023 Page 92 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

 - Test
 - List:DifficultyType
 - List:PriorityType
 - List:TestStatusType
 - List:ConstStatusType

GetRelationshipMatrix () String

Notes: Returns an XML document (as a string), containing definitions of all
Relationship Matrix profiles saved in the current model.

GetTechnologyVersion
(string ID)

String

Notes: Returns the version of a specified MDG Technology resource.

Parameters:

ID: String - the specified technology ID·

GetTreeSelectedElements
()

Collection

Notes: Returns the set of elements currently selected in the Browser window as a
collection.

GetTreeSelectedItem
(object SelectedItem)

ObjectType

Notes: Gets an object variable and type corresponding to the currently selected item
in the tree view.

To use this function, create a generic object variable and pass this as the parameter.
Depending on the return type, cast it to a more specific type.

The object passed back through the parameter can be a Package, element, diagram,
attribute or operation object.

Parameters:

SelectedItem: Object - the object to get the variable and type for·

GetTreeSelectedItemType
()

ObjectType

Notes: Returns the type of the object currently selected in the tree. One of:

otDiagram·
otElement·
otPackage·
otAttribute·
otMethod·

GetTreeSelectedObject () Object

Notes: The related method GetTreeSelectedItem () has an output parameter that is
inaccessible by some scripting languages. As an alternative, this method provides
the selected item through the return value.

GetTreeSelectedPackage () Package

Notes: Returns the Package in which the currently selected tree view object is
contained.

HasPerspective (string
Perspective)

String

Notes: Deprecated - no longer in use.

HideAddinWindow () Notes: Hides the docked Add-In window.

(c) Sparx Systems 2023 Page 93 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ImportPackageBuildScripts
(string PackageGuid, string
BuildScriptXML)

Notes: Imports build scripts into a Package in Enterprise Architect.

Parameters:

PackageGuid: String - the GUID of the Package into which to import the build·
scripts

BuildScriptXML: String - the build script XML data, which you can export·
from within Enterprise Architect

ImportRASAsset (string
PackageGUID, string
Protocol, string
ServerName, string Model,
string Storage, string
RASGUID, string
Password, string Version)

Notes: Imports the specified RAS asset.

Returns True on success; check GetLastError on failure.

Parameters:

PackageGUID: String - the GUID of the Package to import the asset to·
Protocol: String - the protocol the server is using·
ServerName: String - the name of the RAS server·
Model: String - the name of the RAS model to use·
Storage: String - the storage name of the RAS asset·
RASGUID: String - the GUID of the RAS asset·
Password: String - the password to access the RAS asset·
Version: String - the version of the RAS asset to import·

ImportTechnology (string
Technology)

Boolean

Notes: Installs a given MDG Technology resource into the repository.

Returns True if the technology is successfully loaded into the model. Otherwise
returns False.

This applies to technologies imported into pre-7.0 versions of Enterprise Architect
(imported technologies), not to technologies referenced in version 7.0 and later
(referenced technologies).

Parameters:

Technology: String - the contents of the technology resource file·

InsertSBPIParameter
(string packedParameters,
string name, string value)

Notes: Returns a JSON string.

Parameters:

packedParameters: String - The JSON string to append the Name/Value to;·
cannot be empty

name: String - The name of the parameter·
value: String - The value of the parameter·

InvokeConstructPicker
(string ElementFilter)

String

Notes: Invokes the 'Select <Item>' dialog with filters on the object type and,
optionally, stereotype. Returns the ElementID of the selected object, or 0 if no
object was selected when the dialog was closed.

For example:

elementid=Repository.InvokeConstructPicker
("IncludedTypes=Class,Component;StereoType=foo,bar")

In this example, the 'Select <item>' dialog will allow the user to select any Class or
Component element in the model that has a stereotype of 'foo' or 'bar'. The
'IncludedTypes' and 'StereoType' filters are separated by a semi-colon.

Parameters:

ElementFilter: String - specifies which elements or Packages are to be made·

(c) Sparx Systems 2023 Page 94 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

available for selection, based on element types and stereotypes identified by
the IncludedTypes and StereoType filters
 - IncludedTypes - (mandatory) comma separated list of
 element types that can be selected in the dialog; for
 example:
 Package,Class,Component
 - MultiSelect - (optional) when set to True
 ("MultiSelect=True;") allows the Construct picker to select
 multiple elements
 - Selection (optional) - list of comma-separated element
 GUIDs that will be selected by default
 - GetNext (optional) - returns the next ID in the list of
 selected elements, or 0 when no more are available; this
 option will not display a dialog and assumes the first call
 was made with MultiSelect=True;
 - StereoType - (optional) comma separated list of
 stereotypes that can be selected in this dialog

Do not use leading or trailing spaces between element type or stereotype values.
Parameter values must be written with the correct case; element type names are also
case sensitive.

Example:

 val = Repository.InvokeConstructPicker ("IncludedTypes=Class;
MultiSelect=True;");

 while(val != 0)

 {

 val = Repository.InvokeConstructPicker("GetNext=True;");

 }

InvokeFileDialog (string
FilterString, long
Filterindex, long Flags)

String

Notes: Opens a standard 'Open File' dialog and returns a string containing the full
path to the selected file on success. Returns an empty string if the dialog was
canceled.

Parameters:

FilterString: String - list of file type filters.·
Filterindex: Long - one-based index of the filter to be used by default·
Flags: Long - additional bit flags used to initialize the file dialog; see·
OPENFILENAME structure in MSDN documentation for accepted values

IsTabOpen (string
TabName)

String

Notes: Checks whether a named Enterprise Architect tabbed view is open and
active. This includes open diagram windows or custom controls added using
'Repository.AddTab ()'.

Returns:

2 to indicate that a tab is open and active (top-most)·
1 to indicate that it is open but not top-most, or·
0 to indicate that it is not visible at all·

Parameters:

TabName: String - the name of the tab to check for; TabName is case sensitive·

IsTechnologyEnabled
(string ID)

Boolean

Notes: Checks whether the specified string matches the ID of an enabled MDG
Technology in Enterprise Architect.

(c) Sparx Systems 2023 Page 95 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Returns True if the string matches the ID of an enabled Technology. Otherwise
returns False.

Parameters:

ID: String - the technology ID to check for; built-in technology IDs include:

ArcGIS ArcGIS·
BABOK BABOK·
BIZBOK BIZBOK Guide·
BPSim BPSim·
BRM Business Rule Model·
CMMN Case Management Model & Notation·
CODEENG Code Engineering·
Database Modeling Database Modeling·
DMN1.1 DMN1.1·
EAExtended Core Extensions·
ERD Entity Relationship Diagram·
GML GML·
MYSQLTECH MySqlTech·
EAReview Review·
SIMF SIMF Technology·
SOAML SOAML·
SysML1.1 SysML1.1·
SysML1.2 SysML1.2·
SysML1.3 SysML1.3·
SysML1.4 SysML1.5·
UML2 Basic UML2 Technology·
SYSENG System Engineering·
262139 MDG Technology Builder·
TOGAF TOGAF·
UAF UAF·
UPDM2 UPDM 2.0·
Win32UI Win 32 User Interface Modeling·
ZF Zachman Framework·

Technically, any combination of technologies integrated with or added to
Enterprise Architect - including user-developed technologies - could appear in this
list. In practice you would only check for one or two technologies at a time.

IsTechnologyLoaded
(string ID)

Boolean

Notes: Checks whether a specified technology is loaded into the repository.

Returns True if the MDG Technology resource is loaded into the repository.
Otherwise returns False.

Parameters:

ID: String - the technology ID to check for·

LoadAddins () Notes: Loads all Add-Ins from a repository when Enterprise Architect is opened
from automation.

MarkupNotes (string String

(c) Sparx Systems 2023 Page 96 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Notes, string
GlossaryType, string
replacement)

Notes:

Returns a string containing the translation of the term.

Parameters

Notes: String - a value to perform a translation markup on·
GlossaryType: String - a comma-separated list of glossary types; for example,·
'tx-french,tx-global'

replacement: String - the value to replace the TERM when found; "<span·
class=\"notranslate\">#TERM#,/span>"

OpenDiagram (long
DiagramID)

Notes: Provides a method for an automation client or Add-In to open a diagram.
The diagram is added to the tabbed list of open diagrams in the main Enterprise
Architect view.

Parameters:

DiagramID: Long - the ID of the diagram to open·

OpenFile (string Filename) Boolean

Notes: This is the main point for opening an Enterprise Architect project file from
an automation client, and working with the contained objects.

If the required project is a DBMS or Cloud based repository, you will require a
valid Enterprise Architect connection string. This can be obtained in one of two
ways; both methods require you to first make and open a connection to the model in
question with Enterprise Architect:

1) Using the 'Save as Shortcut' menu item, create a shortcut .eap file containing the
database connection string; you can call this shortcut file to access the repository.

2) Alternatively, you can right-click on the model's connection entry in the 'Open
Project' screen and select 'Edit connection string', this connection string can then be
used direct by OpenFile.

Parameters:

Filename: String - the filename (or connection string) of the Enterprise·
Architect project to open

OpenFile2 (string FilePath,
string Username, string
Password)

Boolean

Notes: As for 'OpenFile ()' except this provides for the specification of a password.

Parameters:

Filepath: String - the file path of the Enterprise Architect project to open·
Username: String - the user login ID·
Password: String - the user password·

OpenFileInEditor(string
FilePath)

Boolean

Notes: Displays a document or source code file in the EA editor

Parameters:

FilePath: String - the file path of the document or file to display in the editor·

OpenFileInEditorAtLine(st
ring FilePath, integer
LineNumber)

Boolean

Notes: Displays a document or source code file in the EA editor

Parameters:

FilePath: String - the file path of the document or file to display in the editor·
LineNumber: Integer - the line number to highlight.·

(c) Sparx Systems 2023 Page 97 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

RefreshModelView (long
PackageID)

Notes: Reloads a Package or the entire model, updating the user interface.

Parameters:

PackageID: Long - the ID of the Package to reload: if 0, the entire model is·
reloaded; if a valid Package ID, only that Package is reloaded

RefreshOpenDiagrams
(boolean FullReload)

Notes: Reloads the diagram contents for all open diagrams from the repository.

Parameters:

FullReload: Boolean - if False only the contents of element compartments are·
reloaded; if True the full content of each diagram is reloaded

ReloadDiagram (long
DiagramID)

Notes: Reloads a specified diagram. This would commonly be used to refresh a
visible diagram after code import/export or other batch process where the diagram
requires complete refreshing.

Calling this method within a call to EA_OnNotifyContextItemModified is not
supported

Parameters:

DiagramID: Long - the ID of the diagram to be reloaded·

ReloadPackage (long
PackageID)

Notes: Reloads a Package and its open child diagrams.

Parameters:

PackageID: Long - The ID of the Package to reload; if a valid Package ID, only that
Package is reloaded.

RemoveOutputTab (string
Name)

Notes: Removes a specified tab from the System Output window.

Parameters:

Name: String - the name of the tab to be removed·

RemoveWindow (string
WindowName)

Boolean

Notes: Removes an Add-In window that matches the specified WindowName.

Parameters:

WindowName: String - the name of the window to remove·

RepositoryType () String

Notes: Returns the currently open database/repository type.

Can return one of these values:

JET (.EAP file, MS Access 97 to 2013 format)·
FIREBIRD·
ACCESS2007 (.accdb file, MS Access 2007+ format)·
ASA (Sybase SQL Anywhere)·
SQLSVR (Microsoft SQL Server)·
MYSQL (MySQL)·
ORACLE (Oracle)·
POSTGRES (PostgreSQL)·

RunModelSearch (string
sQueryName, string
sSearchTerm, string
sSearchOptions, string
sSearchData)

Notes: Runs a search, displaying the results in Enterprise Architect's Model Search
window.

Parameters:

sQueryName: String - the name of the search to run, for example Simple·

(c) Sparx Systems 2023 Page 98 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

sSearchTerm: String - the term to search for·
sSearchOptions: String - currently not being used·
sSearchData: String - a list of results in the form of XML, which is appended·
onto the result list in Enterprise Architect - see the XML Format topic; this
parameter is not mandatory so pass in an empty string to run the search as per
normal

SaveAllDiagrams () Notes: Saves all open diagrams.

SaveAuditLogs (string
FilePath, object
StartDateTime, object
EndDateTime)

Boolean

Notes: Saves the Audit Logs contained within a model to a specified file.

If 'StartDateTime' and 'EndDateTime' are not null then only log items that fall into
this period are saved.

Returns True for success, False for failure.

This might fail if the user logged into the model does not have the correct·
access permission

Parameters:

FilePath: String - the file to save the Audit Logs to·
StartDateTime: Variant (DateTime) - the earliest date and time of log entries to·
save

EndDateTime; Variant (DateTime) - the latest date and time of log entries to·
save

SaveDiagram (long
DiagramID)

Notes: Saves an open diagram; assumes the diagram is open in the main user
interface Tab list.

Parameters:

DiagramID: Long - the ID of the diagram to save·

SaveDiagramAsUMLProfil
e (string DiagramGUID,
string Filename)

Boolean

Notes: Saves a given diagram as a UML Profile, using the settings from the
previous time that the specific diagram was saved manually.

The returned value indicates success or failure.

Parameters:

DiagramGUID: String - the GUID of the Profile diagram to save·
Filename: String - the name and path of the file to create; if left blank, the·
method will use the filename from the previous time the specified diagram was
saved

SavePackageAsUMLProfil
e (string PackageGUID,
string Filename)

Boolean

Notes: Saves a given Package as a UML Profile, using the settings from the
previous time that the specific Package was saved manually.

The returned value indicates success or failure.

Parameters:

PackageGUID: String - the GUID of the Profile Package to save·
Filename: String - the name and path of the file to create; if left blank, the·
method will use the filename from the previous time the specified Package was
saved

ScanXMIAndReconcile () Notes: Scans the Package XMI files associated with each of the project's controlled
Packages and restores any diagram objects or cross-references that are detected as

(c) Sparx Systems 2023 Page 99 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

missing from the project.

This function is useful in team environments where each user maintains their own
private copy of the model database (that is, multiple private EAP files) and model
updates are propagated through the use of controlled Packages; it provides no
benefit when the model is hosted in a single shared database that is accessed by all
team members.

Each controlled Package is compared with its associated XMI file and, if the
cross-reference information in the model does not match the XMI, Enterprise
Architect updates the model with the information from the XMI and records the
update in the System Output window.

You can roll back such updates by right-clicking on the entry in the System Output
window and selecting the 'Rollback Update' option (or 'Rollback Selected Updates'
if multiple entries are selected).

Closing the model clears the entries in the System Output window; an entry in this
window is also cleared as and when you roll-back the update for it.

This functionality is invoked automatically as part of the 'Get All Latest' operation.

When working in an environment that uses a Private Model deployment and your
model contains a significant number of cross-Package references, it is
recommended that you invoke this function from time to time, following the
re-importation of controlled Packages - for example, after using 'Get Latest' to
update a number of Packages, or after performing a number of Package check-outs.

As a general rule, avoid running this function while you have uncommitted changes
in your model. Generally, you:

Check-out a number of Packages·
Invoke 'ScanXMIAndReconcile'·
Make your modifications·
Commit any outstanding changes before you check-out more Packages and run·
'ScanXMIAndReconcile' again

ShowAddinWindow (string
TabName)

Boolean

Notes: Shows the docked Add-In window on the specified page. Returns True if a
tab of the specified name is now displayed.

Parameters

TabName: String - specifies the tab·

ShowDynamicHelp (string
Topic)

Notes: Shows a Help topic as a view.

Parameters:

Topic: String - specifies the Help topic·

ShowInProjectView (object
Item)

Notes: Selects a specified object in the Browser window.

Accepted object types are Package, Element, Diagram, Attribute, and Method; an
exception is thrown if the object is of an invalid type.

Parameters:

Item: Object - the object to highlight·

ShowWindow (long Show) Notes: Shows or hides the Enterprise Architect User Interface.

Parameters:

Show: Long·

ShutdownEA (long Flags) Notes: Closes all open Views and exits Enterprise Architect.

(c) Sparx Systems 2023 Page 100 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Parameters:

Flags: long - if set to 1 then all pending changes will be saved before closing. If·
set to 0 then all changes will be lost.

SQLQuery (string SQL) String

Notes: Enables execution of a SQL select statement against the current repository.

Returns an XML formatted string value of the resulting record set.

Parameters:

SQL: String - contains the SQL Select statement·

SynchProfile (string
Profile, string Stereotype)

Boolean

Notes: Synchronizes Tagged Values and constraints of a UML Profile item using
the 'Synch Profiled Elements' dialog.

Parameters:

Profile: String - the name of the profile that contains the stereotype·
Stereotype: String - the name of the profile stereotype for which the default·
tags and constraints are to be synchronized

VCRPS Type VersionControlResynchPkgStatuses (boolean ClearSettings)

Notes: Synchronizes the Version Control status of each Version Controlled Package
within the current model with the status reported by your Version Control provider.

Parameters:

ClearSettings: Boolean·
 - if True, clear the Version Control settings from Packages
 that are reported by the Version Control provider as
 uncontrolled
 - if False, leave the Version Control settings unchanged for
 Packages reported as uncontrolled

WriteOutput (string Name,
string Output, long ID)

Notes: Writes text to a specified tab in the System Output window, and associates
the text with an ID.

Parameters:

Name: String - specifies the tab on which to display the text·
Output: String - specifies the text to display·
ID: Long - specifies a numeric ID value to associate with this output item for·
further handling by Add-Ins; can be set to 0 if no handling is required

(c) Sparx Systems 2023 Page 101 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

SecurityUser Class

A SecurityUser object represents a named security user.

Associated table in repository

None.

SecurityUser Attributes

Attribute Remarks

Department String

Notes: Read only

Returns the current user's department.

FirstName String

Notes: Read only

Returns the current user's first name.

FullName String

Notes: Read only

Returns the current user's full name.

Login String

Notes: Read only

Returns the current user's login name.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Surname String

Notes: Read only

Returns the current user's surname.

SecurityUser Methods

Method Remarks

IsMemberOf (string
GroupId)

Boolean

Returns True if the user is part of the specified security group.

(c) Sparx Systems 2023 Page 102 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Parameter:

GroupId: String - Name of the security group to check.·

(c) Sparx Systems 2023 Page 103 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Stereotype Class

The Stereotype element corresponds to a UML stereotype, which is an extension mechanism for varying the behavior
and type of a model element. Use the Repository Stereotypes collection to add new elements and delete existing ones.

Associated table in repository

 t_stereotypes

Stereotype Attributes

Attribute Description

AppliesTo String

Notes: Read/Write

A reference to the stereotype Base Class; that is, which element it applies to.

MetafileLoadPath String

Notes: Read/Write

The path to an associated metafile. The Automation Interface does not yet support
loading metafiles. To do this you must use the 'Stereotype' tab of the 'UML Types'
dialog in Enterprise Architect.

Notes String

Notes: Read/Write.

Notes about the stereotype.

Name String

Notes: Read/Write

The stereotype name, which appears in the Stereotype drop list for elements that
match the AppliesTo attribute.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

StereotypeGUID String

Notes: Read/Write

A unique identifier for stereotype, generally set and maintained by Enterprise
Architect.

Style String

Notes: Read/Write

An additional style specifier for the stereotype.

VisualType String

(c) Sparx Systems 2023 Page 104 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Notes: Read/Write

Indicates an inbuilt visual style associated with a stereotype.

Not currently implemented.

Stereotype Methods

Method Description

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Updates the current stereotype object after modification or appending a new
item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 105 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Task Class

A Task is an entry in the System Task list. Tasks can be accessed using the Repository Tasks collection.

Associated table in repository

 t_tasks

Task Attributes

Attribute Remarks

ActualTime Long

Notes: Read/Write

The time already expended on the task, in hours, days or other units.

AssignedTo String

Notes: Read/Write

The person this task is assigned to; that is, the responsible resource.

EndDate Date

Notes: Read/Write

The date the task is scheduled to finish.

History String

Notes: Read/Write

A memo field to hold, for example, task history or notes.

Name Variant

Notes: Read/Write

The task name.

Notes Variant

Notes: Read/Write

A description of the task.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Owner String

Notes: Read/Write

The task owner.

Percent Long

(c) Sparx Systems 2023 Page 106 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Notes: Read/Write

The percentage completion of the task.

Phase String

Notes: Read/Write

The phase of the project the task relates to.

Priority String

Notes: Read/Write

The priority of this task.

StartDate Date

Notes: Read/Write

The date the task is to start.

Status Variant

Notes: Read/Write

The current status of the task.

TaskID Long

Notes: Read only

The local ID of the task.

TotalTime Long

Notes: Read/Write

The total expected time the task might run, in hours, days or some other unit.

Type String

Notes: Read/Write

Sets or returns a string representing the type.

Task Methods

Method Type

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Updates the current Task object after modification or appending a new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 107 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Term Class

A Term object represents one entry in the system glossary. Terms can be accessed using the Repository Terms collection.

Associated table in repository

t_glossary

Term Attributes

Attribute Remarks

Meaning String

Notes: Read/Write

The description of the term; its meaning.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Term String

Notes: Read/Write

The glossary item name.

TermID Long

Notes: Read only

A local ID number to identify the term in the model.

Type String

Notes: Read/Write

The type this term applies to (for example, business or technical).

Term Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Refresh Void

Notes: Forces Enterprise Architect to reload the Glossary terms from the database.

(c) Sparx Systems 2023 Page 108 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

If an element is selected, it will have to be re-selected before the 'Note' fields and
windows reflect the updated Glossary terms.

Update() Boolean

Notes: Updates the current Term object after modification or appending a new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 109 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Properties Tab Package

The Properties Tab Package contains:

A function to retrieve a pointer to the interface·
Functions to create or find a Properties tab·
Utility functions for modifying Properties values·

You can get a pointer to this interface using the methods Repository.AddPropertiesTab and
Repository.GetPropertiesTab.

(c) Sparx Systems 2023 Page 110 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

PropertiesTab Class

PropertiesTab Attributes

Attribute Remarks

PropertiesTab Methods

Method Remarks

AddPropertiesTab (string
TabName, string
PropXML)

Adds a Properties tab.

Returns TRUE if the tab was added.

Parameters:

TabName: String - The name of the Properties tab·
PropXML: String - An XML string defining the values in the tab·

GetLastError () String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

GetPropertiesTab (string
TabName)

Notes: Locates a Properties tab.

Returns TRUE if the tab is found.

Parameters:

TabName: String - The name of the Properties tab·

GetPropertiesXML () Notes: Returns the XML string of the properties.

GetProperty (long PropID) Notes: Returns a string of the Property value.

Parameters:

PropID: long - The ID value of the property·

RemovePropertiesTab () Notes: Removes a Properties tab.

Returns TRUE if the tab is removed.

SetPropertiesXML (string
PropXML)

Notes: Sets the Properties values in the tab.

Returns TRUE if the properties were set successfully.

Parameters:

PropXML: String - An XML string defining the values in the tab·

SetProperty (long PropID,
string Value)

Notes: Returns TRUE if the value was set successfully.

Parameters:

PropID: long - The ID value of the property to set·
Value: String - The value to set the property to·

(c) Sparx Systems 2023 Page 111 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

(c) Sparx Systems 2023 Page 112 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Element Package

The Element Package contains information about an element and its associated extended properties such as testing and
project management information. An element is the basic item in an Enterprise Architect model. Classes, Use Cases and
Components are all different types of UML element.

This diagram illustrates the relationships between an element and its associated extended information. The related
information is accessed through the collections owned by the element (for example, Scenarios and Tests). It also includes
a full description of the element object (the basic model structural unit).

Example

(c) Sparx Systems 2023 Page 113 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

(c) Sparx Systems 2023 Page 114 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Constraint Class

A Constraint is a condition imposed on an element. Constraints are accessed through the Element Constraints collection.

Associated table in repository

t_objectconstraints

Constraint Attributes

Attribute Remarks

Name String

Notes: Read/Write

The name of the constraint (that is, the constraint).

Notes String

Notes: Read/Write

Notes about the constraint.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

ParentID Long

Notes: Read only

The ElementID of the element to which this constraint applies.

Status String

Notes: Read/Write

The current status of the constraint.

Type String

Notes: Read/Write

The constraint type.

Weight Long

Notes: Read/Write

A weighting factor.

Constraint Methods

(c) Sparx Systems 2023 Page 115 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Update the current Constraint object after modification or appending a new
item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 116 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Effort Class

An Effort is a named item with a weighting that can be associated with an element for purposes of building metrics about
the model. Efforts are accessed through the Element Efforts collection.

Associated table in repository

t_objecteffort

Effort Attributes

Attribute Remarks

Name String

Notes: Read/Write

The name of the effort.

Notes String

Notes: Read/Write

Notes about the effort.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Type String

Notes: Read/Write

The effort type.

Weight Long

Notes: Read/Write

A weighting factor.

Weight2 Float

Notes: Read/Write

A weighting factor.

Effort Methods

Method Remarks

GetLastError() String

(c) Sparx Systems 2023 Page 117 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Update the current Effort object after modification or appending a new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 118 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Element Class

An Element is the main modeling unit, corresponding to (for example) a Class, Use Case, Node or Component. You
create new elements by adding to the Package Elements collection. Once you have created an element, you can add it to
the DiagramObject Class of a diagram to include it in the diagram.

Elements have a collection of connectors. Each entry in this collection indicates a relationship to another element.

There are also some extended collections for managing addition information about the element, including properties such
as Tagged Values, Issues, Constraints and Requirements.

Associated table in repository

t_object

Element Attributes

Attribute Remarks

Abstract String

Notes: Read/Write

Indicates if the element is Abstract (1) or Concrete (0).

ActionFlags String

Notes: Read/Write

A structure to hold flags concerned with Action semantics.

Alias String

Notes: Read/Write

An optional alias for this element.

AssociationClassConnector
ID

Long

Notes: Read only

If the element is an AssociationClass, AssociationClassConnectorID contains the
Connector ID of the respective Association connector.

Attributes Collection

Notes: Read only

A collection of attribute objects for the current element; use the AddNew and
Delete functions to manage attributes.

AttributesEx Collection

Notes: Read only

A collection of attribute objects belonging to the current element and its parent
elements.

Author String

Notes: Read/Write

(c) Sparx Systems 2023 Page 119 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

The element author.

BaseClasses Collection

Notes: Read only

A list of Base Classes for this element, presented as a collection for convenience.

ClassfierID Long

Notes: Deprecated

See ClassifierID

ClassifierID Long

Notes: Read/Write

The ElementID of a Classifier associated with this element; that is, the base type.

Only valid for instance type elements (such as Object or Sequence).

ClassifierName String

Notes: Read/Write

Name of associated Classifier (if any).

ClassifierType String

Notes: Read only

Type of associated Classifier.

Complexity String

Notes: Read/Write

A complexity value indicating how complex the element is; used for metric
reporting and estimation.

Valid values are: 1 for Easy, 2 for Medium, 3 for Difficult.

CompositeDiagram Diagram

Notes: Read only

If the element is Composite, returns its associated diagram; otherwise returns null.

Connectors Collection

Notes: Read only

Returns a collection containing the connectors to other elements.

Constraints Collection

Notes: Read only

A collection of Constraint objects.

ConstraintsEx Collection

Notes: Read only

Collection of Constraint objects belonging to the current element and its parent
elements.

Created Date

Notes: Read/Write

(c) Sparx Systems 2023 Page 120 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

The date the element was created.

CustomProperties Collection

Notes: Read only

List of advanced properties for an element.

The collection of advanced properties differs depending on element type; for
example, an Action and an Activity have different advanced properties.

Currently only editable from the user interface.

Diagrams Collection

Notes: Read only

Returns a collection of sub-diagrams (child diagrams) attached to this element as
seen in the tree view.

Difficulty String

Notes: Read/Write

A difficulty level associated with this element for estimation/metrics; only useable
for Requirement, Change and Issue element types, otherwise ignored.

Valid values are: Low, Medium, High.

Efforts Collection

Notes: Read only

A collection of Effort objects.

ElementGUID String

Notes: Read only

A globally unique ID for this element; that is, unique across all model files.

ElementID Long

Notes: Read only

The local ID of the element; valid for this file only.

Elements Collection

Notes: Read only

Returns a collection of child elements (sub-elements) attached to this element as
seen in the tree view.

EmbeddedElements Collection

Notes: Read only

A list of elements that are embedded into this element, such as Ports, Parts, Pins
and Parameter Sets.

EventFlags String

Notes: Read/Write

A structure to hold a variety of flags to do with signals or events.

ExtensionPoints String

Notes: Read/Write

(c) Sparx Systems 2023 Page 121 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Optional extension points for a Use Case as a comma-separated list.

Files Collection

Notes: Read only

A collection of File objects.

FQName String

Notes: Read only

The fully-qualified name of the element, consisting of a dot-separated list of names
including all parent elements and Packages up to the first namespace root that is
encountered.

FQStereotype String

Notes: Read only

The fully-qualified stereotype name in the format "Profile::Stereotype". One or
more fully-qualified stereotype names can be assigned to StereotypeEx.

GenFile String

Notes: Read/Write

The file associated with this element for code generation and synchronization
purposes; can include macro expansion tags for local conversion to full path.

Genlinks String

Notes: Read/Write

Links to other Classes discovered at code reversing time; Parents and Implements
connectors only.

GenType String

Notes: Read/Write

The code generation type; for example, Java, C++, C#, VBNet, Visual Basic,
Delphi.

Header1 Variant

Notes: Read/Write

A user defined string for inclusion as header in the source files generated.

Header2 Variant

Notes: Read/Write

Same as for Header1, but used in the CPP source file.

IsActive Boolean

Notes: Read/Write

Boolean value indicating whether the element is active or not.

1 = True, 0 = False.

IsComposite Boolean

Notes: Read/Write

Indicates whether the element is composite or not.

1 = True, 0 = False.

(c) Sparx Systems 2023 Page 122 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

IsLeaf Boolean

Notes: Read/Write

Indicates whether or not the element is a leaf node (and therefore cannot be a parent
for any other elements).

1 = True, 0 = False.

IsNew Boolean

Notes: Read/Write

Boolean value indicating whether the element is new or not.

1 = True, 0 = False.

IsRoot Boolean

Notes: Read/Write

Indicates whether or not the element is a root node (and therefore cannot be
descended from another element).

1 = True, 0 = False.

IsSpec Boolean

Notes: Read/Write; Note that this attribute is no longer used in UML 2.0 and later
releases, and is provided only to support models maintained in releases of UML
prior to 2.0.

Boolean value indicating whether the element is a specification or not.

1 = True, 0 = False.

Issues Collection

Notes: Read only

Collection of Issue objects.

Locked Boolean

Notes: Read/Write

Indicates if the element has been locked against further change.

MetaType String

Notes: Read only

The element's domain-specific meta type, as defined by an applied stereotype from
an MDG Technology.

Methods Collection

Notes: Read only

Collection of Method objects for current element.

MethodsEx Collection

Notes: Read only

Collection of Method objects belonging to the current element and its parent
elements.

Metrics Collection

Notes: Read only

(c) Sparx Systems 2023 Page 123 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Collection of Metric elements for current element.

MiscData String

Notes: Read only

This low-level property provides information about the contents of the PData x
fields.

These database fields are not documented, and developers must gain understanding
of these fields through their own endeavors to use this property.

MiscData is zero based, therefore:

MiscData(0) corresponds to PData1·
MiscData(1) to PData2, and so on·

Modified Date

Notes: Read/Write

The date the element was last modified.

Multiplicity String

Notes: Read/Write

Multiplicity value for this element.

Name String

Notes: Read/Write

The element name; should be unique within the current Package.

Notes String

Notes: Read/Write

Further descriptive text about the element.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

PackageID Long

Notes: Read/Write

A local ID for the Package containing this element.

ParentID Long

Notes: Read/Write

If this element is a child of another, used to set or retrieve the ElementID of the
other element; if not, returns 0.

Partitions Collection

Notes: Read only

List of logical partitions into which an element can be divided.

Only valid for elements that support partitions, such as Activities and States.

Persistence String

Notes: Read/Write

(c) Sparx Systems 2023 Page 124 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

The persistence associated with this element; can be Persistent or Transient.

Phase String

Notes: Read/Write

The phase this element is scheduled to be constructed in; any string value.

Priority String

Notes: Read/Write

The priority of this element as compared to other project elements; only applies to
Requirement, Change and Issue types, otherwise ignored.

Valid values are: Low, Medium and High.

Properties Properties

Notes: Returns a list of specialized properties that apply to the element that might
not be available using the automation model.

The properties are purposely undocumented because of their obscure nature and
because they are subject to change as progressive enhancements are made to them.

PropertyType Long

Notes: Read/Write

The ElementID of a Type associated with this element; only valid for Port and Part
elements.

PropertyTypeName String

Notes: Read

The name of a Type associated with this element; only valid for Port and Part
elements.

Realizes Collection

Notes: Read only

List of Interfaces realized by this element for convenience.

Requirements Collection

Notes: Read only

Collection of Requirement objects.

RequirementsEx Collection

Notes: Read only

Collection of Requirement objects belonging to the current element and its parent
elements.

Resources Collection

Notes: Read only

Collection of Resource objects for current element.

Risks Collection

Notes: Read only

Collection of Risk objects.

(c) Sparx Systems 2023 Page 125 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

RunState String

Notes: Read/Write

The object's runstate list as a string.

The string consists of a set of statements in the form:

string = '@VAR;Variable=<string>;Value=<string>;Op=<string>;@ENDVAR;'

Where:

Op = ['=','>','<','>=','<=', '!=','<>']

For example:

A set of run states can be created by looping through a set of attributes and forming
a concatenated string:

eRunState = eRunState + "@VAR;Variable="+ attrib.name + ";Value=" +
attrib.value +";Op==;@ENDVAR;";

Scenarios Collection

Notes: Read only

Collection of Scenario objects for current element.

StateTransitions Collection

Notes: Read only

List of State Transitions that an element can support; applies in particular to Timing
elements.

Status String

Notes: Read/Write

Sets or gets the status, such as Proposed or Approved.

Stereotype String

Notes: Read/Write

The primary element stereotype; the first of the list of stereotypes you can access
using the 'StereotypeEx' attribute.

When setting this attribute, LastError (for the GetLastError method) will be
non-empty if an error occurs.

StereotypeEx String

Notes: Read/Write

All the applied stereotypes of the element in a comma-separated list. Reading the
value will provide the stereotype name only; assigning the value accepts either
fully-qualified or simple names.

When setting this attribute, LastError (for the GetLastError method) will be
non-empty if an error occurs.

StyleEx String

Notes: Read/Write

Advanced style settings; reserved for the use of Sparx Systems.

Subtype Long

(c) Sparx Systems 2023 Page 126 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Notes: Read/Write

A numeric subtype that qualifies the Type of the main element

For Event: 0 = Receiver, 1 = Sender·
For Class: 1 = Parameterised, 2 = Instantiated, 3 = Both, 0 = Neither,·
17 = Association Class

If 17, because an Association Class has been created through the user interface,
MiscData(3) contains the ID of the related Association; as MiscData is read-only,
you cannot create an Association Class through the Automation Interface.

For Note: 1 = Note linked to connector, 2 = Constraint linked to connector·
For StateNode: 100 = ActivityIntitial, 101 = ActivityFinal·
For Activity: 0 = Activity, 8 = composite Activity (also set to 8 for other·
composite elements such as Use Cases)

For Synchronization: 0 = Horizontal, 1 = Vertical·
Note that there are many more Types than indicated in these examples.

Tablespace String

Notes: Read/Write

Associated tablespace for a Table element.

Tag String

Notes: Read/Write

Corresponds to the 'Keywords' field in the Enterprise Architect user interface.

TaggedValues Collection

Notes: Read only

Returns a collection of TaggedValue objects.

TaggedValuesEx Collection

Notes: Read only

Returns a collection of TaggedValue objects belonging to the current element and
the elements specialized or realized by the current element.

TemplateParameters Collection

Notes: Read Only

A collection of TemplateParameter objects.

Tests Collection

Notes: Read only

A collection of Test objects for the current element.

TreePos Long

Notes: Read/Write

Sets or gets the tree position.

Type String

Notes: Read/Write

The element type (such as Class, Component).

Note that Type is case sensitive inside Enterprise Architect and should be provided

(c) Sparx Systems 2023 Page 127 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

with an initial capital (proper case); valid types are:

Action·
Activity·
ActivityPartition·
ActivityRegion·
Actor·
Artifact·
Association·
Boundary·
Change·
Class·
Collaboration·
Component·
Constraint·
Decision·
DeploymentSpecification·
DiagramFrame·
EmbeddedElement·
Entity·
EntryPoint·
Event·
ExceptionHandler·
ExitPoint·
ExpansionNode·
ExpansionRegion·
Feature·
GUIElement·
InteractionFragment·
InteractionOccurrence·
InteractionState·
Interface·
InterruptibleActivityRegion·
Issue·
Node·
Note·
Object·
Package·
Parameter·
Part·
Port·
ProvidedInterface·
Report·
RequiredInterface·
Requirement·

(c) Sparx Systems 2023 Page 128 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Screen·
Sequence·
State·
StateNode·
Synchronization·
Text·
TimeLine·
UMLDiagram·
UseCase·

TypeInfoProperties Notes: Read only

Returns an interface pointer of TypeInfoProperties.

Version String

Notes: Read/Write

The version of the element.

Visibility String

Notes: Read/Write

The Scope of this element within the current Package.

Valid values are: Public, Private, Protected or Package.

Element Methods

Method Remarks

ApplyGroupLock(string
aGroupName)

Boolean

Notes: Applies a group lock to the element object, for the specified group, on behalf
of the current user.

Returns True if the operation is successful; returns False if the operation is
unsuccessful. Use 'GetLastError()' to retrieve error information.

Parameters:

aGroupName: String - the name of the user group for which to set the group·
lock

ApplyUserLock() Boolean

Notes: Applies a user lock to the element object for the current user.

Returns True if the operation is successful; returns False if the operation is
unsuccessful. Use 'GetLastError()' to retrieve error information.

Clone () LDISPATCH

Notes: Inserts a copy of the selected element under the same parent as the selected
element.

Returns the newly-created element.

CreateAssociationClass(lon

(c) Sparx Systems 2023 Page 129 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

g ConnectorID) Boolean

Notes: Makes this element an AssociationClass of the Association with the
provided Connector ID; the return value indicates whether the function succeeded
in converting the element to an AssociationClass.

AssociationClasses are created only where:

The current element is valid·
The current element is a Class·
The current element is not already an AssociationClass·
The specified connector exists·
The specified connector is an Association·
The specified connector is not already in an AssociationClass pair·
The current element is not at either end of the specified connector·

Parameters:

ConnectorID: Long - the Connector ID of an Association connector·

DeleteLinkedDocument() Boolean

Notes: Removes the Linked Document for the element. This method does not
display a confirmatory prompt.

Returns True if a document was deleted.

GetBusinessRules() String

Notes: Read Only.

Returns all the Business Rules for the element.

GetChart LDISPATCH

Notes: For chart elements returns an interface to the chart

GetDecisionTable() String

Notes: Provides read-only access to a Decision Table XML string.

Returns the XML data for the Decision Table as a string.

GetElementGrid() String

Notes: Returns an object of type ElementGrid (a Custom Table Artifact element).

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

GetLinkedDocument() String

Notes: Returns a string value containing the element's Linked Document contents,
in Rich Text Format.

If the element contains no Linked Document, an empty string is returned.

GetRelationSet(EnumRelat
ionSetType Type)

String

Notes: Returns a string containing a comma-separated list of ElementIDs of
directly- and indirectly-related elements based on the given type.

Recurses using the same relation type on all elements it finds, retrieving all
dependencies and sub-dependencies of the current element; for example, Object1
depends on Object2, which depends on Object3, therefore this method returns

(c) Sparx Systems 2023 Page 130 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Object2 and Object3.

To obtain only the direct relationships of the element, use the Connector collection
instead.

GetStereotypeList() String

Notes: Returns a comma-separated list of stereotypes allied to this element.

GetTXAlias (string Code,
long Flag)

String

Notes: Returns the Alias of the element for a given language.

Parameters

Code: String - Two-letter language code (found on the 'Translations' page of·
the 'Manage Model Options' dialog)

Flag: Long·
 - 0 = Get the currently-stored translated Alias
 - 1 = Get the currently-stored translated Alias, and auto translate if the
original Alias has changed
 - 2 = Always fetch the translated Alias from online

GetTXName (string Code,
long Flag)

String

Notes: Returns the name of the element for a given language.

Parameters

Code: String - Two-letter language code (found on the 'Translations' page of·
the 'Manage Model Options' dialog)

Flag: Long·
 - 0 = Get the currently-stored translated name
 - 1 = Get the currently-stored translated name, and auto translate if the
original name has changed
 - 2 = Always fetch the translated name from online

GetTXNote (string Code,
long Flag)

String

Returns the Notes of the element for a given language.

Parameters

Code: String - Two-letter language code (found on the 'Translations' page of·
the 'Manage Model Options' dialog)

Flag: Long·
 - 0 = Get the currently-stored translated Notes
 - 1 = Get the currently-stored translated Notes, and auto translate if the
original Notes have changed
 - 2 = Always fetch the translated Notes from online

HasStereotype(string
Stereotype)

Boolean

Notes: Returns true if the current element has the specified stereotype applied to it.
Accepts either qualified or unqualified stereotype names; for example, 'block' or
'SysML1.3::block'.

Parameters:

Stereotype: String - the name of the stereotype to search for·

IsAssociationClass Boolean

Notes: Returns whether or not the current element is an AssociationClass.

LoadLinkedDocument(stri Boolean

(c) Sparx Systems 2023 Page 131 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ng Filename) Notes: Loads the document from the specified file into the element's Linked
Document.

Parameters:

FileName: String - the name of the file from which to load the document; both·
RTF and DOCX input formats are supported

Refresh() Void

Notes: Refreshes the element features in the Browser window.

Usually called after adding or deleting attributes or methods, when the user
interface is required to be updated as well.

ReleaseUserLock() Boolean

Notes: Releases a user lock or group lock on the element object.

Returns True if the operation is successful; returns False if the operation is
unsuccessful. Use GetLastError() to retrieve error information.

SaveLinkedDocument(strin
g Filename)

Boolean

Notes: Saves the Linked Document for this element to the specified file. Returns
False if the element does not have a Linked document or fails to save the file.

Parameters:

FileName: String - the name of the file to save to disk·
The output format will be determined by the file's extension - currently rtf,
docx and pdf are supported; if an invalid extension is used, it will write the file
in RTF format regardless of the extension

SetAppearance(long Scope,
long Item, long Value)

Void

Notes: Sets the visual appearance of the element.

Parameters:

Scope: Long - Scope of appearance set to modify·
1 - Base (Default appearance across entire model)
To set appearance for the element (diagram object) in a selected diagram only,
see Setting The Style in the DiagramObject Class topic

Item: Long - Appearance feature to modify·
0 - Background color
1 - Font Color
2 - Border Color
3 - Border Width

Value: Long - Value to set appearance to·

SetCompositeDiagram() Boolean

Notes: Sets the composite diagram of the element.

Parameters:

GUID: String - the GUID of the composite diagram; a blank GUID will·
remove the link to the composite diagram

SetCreated(Date NewVal) Void

Notes: Deprecated

This method is no longer supported.

SetModified(Date NewVal) Void

(c) Sparx Systems 2023 Page 132 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Notes: Deprecated

This method is no longer supported.

SetTXAlias (string Code,
string Translation)

String

Notes - Set the translated Alias of the element for a given language.

Code: String - Two-letter language code (found on the 'Translations' page of·
the 'Manage Model Options' dialog)

Translation: String - The translated Alias·

SetTXName (string Code,
string Translation)

String

Notes - Set the translated name of the element for a given language.

Code: String - Two-letter language code (found on the 'Translations' page of·
the 'Manage Model Options' dialog)

Translation: String - The translated name·

SetTXNote (string Code,
string Translation)

String

Notes - Set the translated Notes of the element for a given language.

Code: String - Two-letter language code (found on the 'Translations' page of·
the 'Manage Model Options' dialog)

Translation: String - The translated Notes·

SynchConstraints(string
Profile, string Stereotype)

Boolean

Notes: Synchronizes the constraints of a UML Profile item for this element, only if
the specified stereotype has been applied.

Parameters:

Profile: String - Name of the profile that contains the stereotype·
Stereotype: String - Name of the profile stereotype for which the default·
constraints are to be synchronized

SynchTaggedValues(string
Profile, string Stereotype)

Boolean

Notes: Synchronizes the Tagged Values of a UML Profile item for this element,
only if the specified stereotype has been applied.

Parameters:

Profile: String - Name of the profile that contains the stereotype·
Stereotype: String - Name of the profile stereotype for which the default tags·
are to be synchronized

UnlinkFromAssociation Boolean

Notes: Performs the opposite of CreateAssociationClass().

Update() Boolean

Notes: Updates the current element object after modification or appending a new
item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 133 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ElementGrid Class

The ElementGrid object represents a Custom Table, which is used to display custom data in tabular format on a diagram,
the data being provided by the user rather than generated by the system.

The ElementGrid object is accessible from an Element object, using the GetElementGrid() method.

Associated table in repository

t_object

ElementGrid Methods

Method Remarks

GetCell (int nrow, int
ncell)

Variant

Notes: The cell value is return as a variant value.

Parameters:

nRow: Integer - the number of the row containing the cell·
nCell: Integer - the number of the cell in the row (the column number)·

GetColumnCount () Integer

Notes: Returns the number of columns in the grid.

GetRowCount () Integer

Notes: Returns the number of rows in the grid.

SetCell (int nRow, int
nCell, variant sValue)

Boolean

Notes: Sets a value in the specified cell.

Parameters:

nRow: Integer - specifies the row into which to insert the value·
nCell: Integer - specifies the cell (column number) into which to insert the·
value

sValue: Variant - specifies the value to set in the cell·

SetGridSize (int nRows, int
nColumns)

Boolean

Notes: Sets the size of the grid in rows and columns. The size can be set and reset;
any data outside the bounds of the new grid size will be lost on resize.

Parameters:

nRows: Integer - the number of rows in the table grid·
nColumns: Integer - the number of columns in the table grid·

(c) Sparx Systems 2023 Page 134 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

File Class

A File represents an associated file for an element. Files are accessed through the Element Files collection.

Associated table in repository

t_objectfiles

File Attributes

Attribute Remarks

FileDate String

Notes: Read/Write

The file date when the entry was created.

Name String

Notes: Read/Write

The file name can be a logical file or a reference to a web address (using http://).

Notes String

Notes: Read/Write

Notes about the file.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Size String

Notes: Read/Write

The file size.

Type String

Notes: Read/Write

The file type.

File Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in

(c) Sparx Systems 2023 Page 135 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

relation to this object.

Update() Boolean

Notes: Updates the current File object after modification or appending a new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 136 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Issue (Maintenance) Class

An Issue is either a Change or a Defect, is associated with the containing element, and is accessed through the Issues
collection of an element.

Associated table in repository

t_objectproblems

Issue Attributes

Attribute Remarks

DateReported Date

Notes: Read/Write

The date the issue was reported.

DateResolved Date

Notes: Read/Write

The date the issue was resolved.

ElementID Long

Notes: Read/Write

The ID of the element associated with this issue.

Name String

Notes: Read/Write

The Issue name; that is, the Issue itself.

Notes String

Notes: Read/Write

The Issue description.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Priority String

Notes: Read/Write

The priority of the Issue - Low, Medium or High.

Reporter String

Notes: Read/Write

The user ID of the person reporting the issue.

(c) Sparx Systems 2023 Page 137 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Resolver String

Notes: Read/Write

The user ID of the person resolving the issue.

ResolverNotes String

Notes: Read/Write

Notes entered by the resolver about resolution of the Issue.

Severity String

Notes: Read/Write

The Issue severity - Low, Medium or High.

Status String

Notes: Read/Write

The current status of the issue.

Type Variant

Notes: Read/Write

The Issue type - Defect, Change, Issue or Task.

Version String

Notes: Read/Write

The version associated with the issue. Note that this method is only available
through a Dispatch interface.

Object ob = Issue;

Print ob.Version;

Issue Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Updates the current Issue object after modification or appending a new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 138 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Metric Class

A Metric is a named item with a weighting that can be associated with an element for purposes of building metrics about
the model. Metrics are accessed through the Element Metrics collection.

Associated table in repository

t_objectmetrics

Metric Attributes

Attribute Remarks

Name String

Notes: Read/Write

The name of the metric.

Notes String

Notes: Read/Write

Notes about this metric.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Type String

Notes: Read/Write

The metric type.

Weight Long

Notes: Read/Write

A user-defined weighting for estimation or metric purposes.

Metric Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Updates the current Metric object after modification or appending a new

(c) Sparx Systems 2023 Page 139 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 140 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Requirement Class

An Element Requirement object holds information about the requirements of an element in the context of the model.
Requirements can be accessed using the Element Requirements collection.

Associated table in repository

t_objectrequires

Requirement Attributes

Attribute Remarks

Difficulty String

Notes: Read/Write

The estimated difficulty of implementing the requirement.

LastUpdate Date

Notes: Read/Write

The date the requirement was last updated.

Name String

Notes: Read/Write

The requirement itself.

Notes String

Notes: Read/Write

Further notes on the requirement.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

ParentID Long

Notes: Read only

The ElementID of the element to which this requirement applies.

Priority String

Notes: Read/Write

The assigned priority of the requirement.

RequirementID Long

Notes: Read only

A local ID for this requirement.

(c) Sparx Systems 2023 Page 141 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Stability String

Notes: Read/Write

The estimated stability of the requirement.

This is an indication of the probability of the requirement - or understanding of the
requirement - changing. High stability indicates a low probability of the
requirement changing.

Status String

Notes: Read/Write

The current status of the requirement.

Type String

Notes: Read/Write

The requirement type.

Requirement Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Updates the current Requirement object after modification or appending a
new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 142 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Resource Class

An element Resource is a named person/task pair with timing constraints and percent complete indicators. Use this to
manage the work associated with delivering an element.

Associated table in repository

t_objectresources

Resource Attributes

Attribute Description

ActualHours Long

Notes: Read/Write

The time already expended on the task, in hours, days or other units.

DateEnd Date

Notes: Read/Write

The expected end date.

DateStart Date

Notes: Read/Write

The date to start work.

ExpectedHours Long

Notes: Read/Write

The total expected time the task might run, in hours, days or other units.

History String

Notes: Read/Write

Gets or sets history text.

Name String

Notes: Read/Write

The name of the resource (for example, a person's name).

Notes String

Notes: Read/Write

Descriptive notes.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

(c) Sparx Systems 2023 Page 143 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

PercentComplete Long

Notes: Read/Write

The current percent complete figure.

Role String

Notes: Read/Write

The role the resource plays in implementing the element.

Time Long

Notes: Read/Write

The time expected to complete the task; a numeric indicating the number of days.

Resource Methods

Method Description

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error occurs.

Update() Boolean

Notes: Update the current Resource object after modification or appending a new
item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 144 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Risk Class

A Risk object represents a named risk associated with an element. It is used for project management purposes. Risks can
be accessed through the Element Risks collection.

Associated table in repository

t_objectrisks

Risk Attributes

Attribute Description

Name String

Notes: Read/Write

The name of the risk.

Notes String

Notes: Read/Write

Further notes describing the risk.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Type String

Notes: Read/Write

The risk type associated with this element.

Weight Long

Notes: Read/Write

A weighting for estimation or metric purposes.

Risk Methods

Method Description

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

(c) Sparx Systems 2023 Page 145 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Notes: Update the current Risk object after modification or appending a new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 146 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Scenario Class

A Scenario corresponds to a Collaboration or Use Case instance. Each Scenario is a path of execution through the logic
of a Use Case. Scenarios can be added to using the Element Scenarios collection.

Associated table in repository

t_objectscenarios

Scenario Attributes

Attribute Description

Name String

Notes: Read/Write

The Scenario name.

Notes String

Notes: Read/Write

A description of the Scenario, usually containing the steps to execute the scenario.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

ScenarioGUID String

Notes: Read/Write

A unique ID for the Scenario, used to identify the Scenario unambiguously within a
model.

Steps Collection of ScenarioStep Class

Notes: Read only

A collection of step objects for this Scenario.

Use the 'AddNew' and 'Delete' functions to manage steps. 'AddNew' passes the step
name and '1' as the type for an actor step.

Type String

Notes: Read/Write

The scenario type (for example, Basic Path).

Weight Long

Notes: Read/Write

Currently used to position scenarios in the scenario list (that is, List Position).

XMLContent String

(c) Sparx Systems 2023 Page 147 of 352 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.1/scenariostep.htm

Enterprise Architect Object Model 10 November, 2023

Notes: Read/Write

A structured field that can contain scenario details in XML format. It is
recommended that you use the 'Steps' collection to read or modify this field.

Scenario Methods

Method Description

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Update the current Scenario object after modification or appending a new
item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 148 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ScenarioExtension Class

ScenarioExtension Attributes

Attribute Description

ExtensionGUID String

Notes: Read/Write

A unique GUID for this Extension.

Join String

Notes: Read/Write

The GUID of the step where this Extension rejoins the Scenario.

JoiningStep ScenarioStep

Notes: Read only

The actual step where this Extension rejoins the Scenario, if any.

Level String

Notes: Read only

The number of this Extension as shown in the scenario editor. This is derived from
the value of Pos for this object and the owning step.

Name String

Notes: Read/Write

The Extension name. This should match the name of the linked scenario.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Pos Long

Notes: Read/Write

The position of the Extension in the Extensions list.

Scenario Scenario

Notes: Read only

The scenario that is executed as an alternative path for this Extension.

(c) Sparx Systems 2023 Page 149 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ScenarioStep Class

ScenarioStep Attributes

Attribute Description

Extensions Collection of ScenarioExtension

Notes: Read only

A collection of ScenarioExtension objects that specify how the scenario is extended
from this step. The arguments to 'AddNew' should match the name and GUID of the
alternative scenario being linked to.

Level String

Notes: Read only

The number of this Step as shown in the scenario editor. This is derived from the
value of Pos.

Link String

Notes: Read/Write

The GUID of a Use Case that is relevant to this step.

LinkedElement Element

Notes: Read only

The actual element specified by Link, if any.

Name String

Notes: Read/Write

The step name.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Pos Long

Notes: Read/Write

The position of the 'Step' in the 'Scenario Step' list.

Results String

Notes: Read/Write

Any results that are given from this step.

State String

Notes: Read/Write

A description of the state the system enters when this Step is executed.

StepGUID String

(c) Sparx Systems 2023 Page 150 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Notes: Read/Write

A unique GUID for this Step.

StepType ScenarioStepType

Notes: Read/Write

Identifies whether this step is being performed by a user or the system.

Uses String

Notes: Read/Write

The input and requirements that are relevant to this step.

UsesElementList Collection of Element

Notes: Read only

Indicates that the Scenarios view 'Uses' field is a linked element list.

ScenarioStep Methods

Method Description

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Updates the current ScenarioStep object after modification or appending a
new item.

If False is returned, check the 'GetLastError()' function for more information.

ScenarioExtension Methods

Method Description

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Updates the current ScenarioExtension object after modification or
appending a new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 151 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

TaggedValue Class

A TaggedValue is a named property and value associated with an element. Tagged Values can be accessed through the
TaggedValues collection.

Associated table in repository

t_objectproperties

TaggedValue Attributes

Attribute Description

ElementID Long

Notes: Read/Write

The local ID of the associated element.

FQName String

Notes: Read only

The fully-qualified name of the tag.

Name String

Notes: Read/Write

The name of the tag.

Notes String

Notes: Read/Write

Further descriptive notes about this tag.

If 'Value' is set to '<memo>', then 'Notes' should contain the actual Tagged Value
content.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

PropertyGUID String

Notes: Read/Write

The global ID of the tag.

PropertyID Long

Notes: Read only

The local ID of the tag.

Value String

Notes: Read/Write

(c) Sparx Systems 2023 Page 152 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

The value assigned to this tag.

This field has a 255 character limit. If the value is greater than 255 characters long,
set the value to "<memo>" and insert the body of text in the 'Notes' attribute.

When reading existing Tagged Values, if 'Value'' = "<memo>" then the developer
should read the actual body of text from the 'Notes' attribute.

TaggedValue Methods

Method Description

GetAttribute(string
propName)

String

Notes: Returns the text of a single named property within a structured Tagged
Value.

Parameters:

propName: String - the name of the property for which the text is being·
returned

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

HasAttributes() Boolean

Notes: Returns True if the Tagged Value is a structured Tagged Value with one or
more properties.

SetAttribute(string
propName, string
propValue)

Boolean

Notes: Sets the text of a single named property within a structured Tagged Value.

Parameters:

propName: String - the name of the property for which the text is being set·
propValue: the value of the property·

Update() Boolean

Notes: Updates the current TaggedValue object after modification or appending a
new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 153 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Test Class

A Test is a single Test Case applied to an element. Tests are added and accessed through the Element Tests collection.

Associated table in repository

t_objecttests

Test Attributes

Attribute Description

AcceptanceCriteria String

Notes: Read/Write

The acceptance criteria for successful execution.

CheckedBy String

Notes: Read/Write

User ID of the person confirming the results.

Class Long

Notes: Read/Write

The test Class:

1 = Unit Test

2 = Integration Test

3 = System Test

4 = Acceptance Test

5 = Scenario Test

6 = Inspection Test

DateRun Date

Notes: Read/Write

The date the test was last run.

Input String

Notes: Read/Write

Input data for the test.

Name String

Notes: Read/Write

The test name.

Notes String

Notes: Read/Write

(c) Sparx Systems 2023 Page 154 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Detailed notes about test to be carried out.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

RunBy String

Notes: Read/Write

The user ID of the person conducting the test.

Status String

Notes: Read/Write

The current status of the test.

TestResults Variant

Notes: Read/Write

Results of test.

Type String

Notes: Read/Write

The test type, such as Load or Regression.

Test Methods

Method Description

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Update the current Test object after modification or appending a new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 155 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Element Features Package

The ElementFeatures Package contains descriptions of the model interfaces that enable access to operations and
attributes, and their associated Tagged Values and constraints.

This diagram illustrates the components associated with element features. These include attributes and methods, and their
associated constraints and Tagged Values. It also includes the Parameter object that defines the arguments associated
with an operation (Method).

(c) Sparx Systems 2023 Page 156 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Attribute Class

An attribute corresponds to a UML Attribute. It contains further collections for constraints and Tagged Values.
Attributes are accessed from the element Attributes collection.

Associated table in repository

 t_attribute

Attribute Attributes

Attribute Remarks

Alias String

Notes: Read/Write

Contains the (optional) 'Alias' property for this attribute. This can be used
interchangeably with the Style attribute.

AllowDuplicates Boolean

Notes: Read/Write

Indicates if duplicates are allowed in the collection.

If the attribute represents a database column this, when set, represents the 'Not Null'
option.

AttributeGUID String

Notes: Read only

A globally unique ID for the current attribute. This attribute is system generated.

AttributeID Long

Notes: Read only

The local ID number of the attribute.

ClassifierID Long

Notes: Read/Write

The classifier ID, if appropriate, indicating the base type associated with the
attribute, if not a primitive type.

Constraints Collection

Notes: Read only

A collection of AttributeConstraint objects, used to access and manage constraints
associated with this attribute.

Container String

Notes: Read/Write

The container type.

(c) Sparx Systems 2023 Page 157 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Containment String

Notes: Read/Write

The type of containment - Not Specified, By Reference or By Value.

Default String

Notes: Read/Write

The initial value assigned to this attribute.

FQStereotype String

Notes: Read Only

The fully-qualified stereotype name in the format "Profile::Stereotype". One or
more fully-qualified stereotype names can be assigned to StereotypeEx.

IsCollection Boolean

Notes: Read/Write

Indicates if the current feature is a collection or not. If the attribute represents a
database column this, when set, represents a Foreign Key.

IsConst Boolean

Notes: Read/Write

A flag indicating if the attribute is Const or not.

IsDerived Boolean

Notes: Read/Write

Indicates if the attribute is derived (that is, a calculated value).

IsID Boolean

Notes: Read/Write

Indicates if the attribute uniquely identifies an instance of the containing Class, or
not.

IsOrdered Boolean

Notes: Read/Write

Indicates if a collection is ordered or not. If the attribute represents a database
column this, when set, represents a Primary Key.

IsStatic Boolean

Notes: Read/Write

Indicates if the current attribute is a static feature or not. If the attribute represents a
database column this, when set, represents the 'Unique' option.

Length String

Notes: Read/Write

The attribute length, where applicable.

LowerBound String

Notes: Read/Write

A value for the collection lower boundary.

(c) Sparx Systems 2023 Page 158 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Name String

Notes: Read/Write

The attribute name.

Notes String

Notes: Read/Write

Further notes on this attribute.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

ParentID Long

Notes: Read only

Returns the ElementID of the element that this attribute is a part of.

Pos Long

Notes: Read/Write

The position of the attribute in the Class attribute list.

Precision String

Notes: Read/Write

The precision value.

RedefinedProperty String

Notes: Read/Write

Corresponds to the 'Redefined Property' field on the 'Detail' page of the attribute
'Properties' dialog, or the UML redefinedProperty attribute.

Contains a comma separated list of GUIDs.

Scale String

Notes: Read/Write

The scale value.

Stereotype String

Notes: Read/Write

Sets or gets the stereotype for this attribute.

When setting this attribute, LastError (for the GetLastError method) will be
non-empty if an error occurs.

StereotypeEx String

Notes: Read/Write

Provides all the applied stereotypes of the attribute, in a comma-separated list.
Reading the value will provide the stereotype name only; assigning the value
accepts either fully-qualified or simple names.

When setting this attribute, LastError (for the GetLastError method) will be
non-empty if an error occurs.

(c) Sparx Systems 2023 Page 159 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Style String

Notes: Read/Write

Contains the (optional) Alias property for this attribute. This can be used
interchangeably with the Alias attribute.

StyleEx String

Notes: Read/Write

Advanced style settings, reserved for the use of Sparx Systems.

SubsettedProperty String

Notes: Read/Write

Corresponds to the 'Subsetted Property' field on the 'Detail' page of the attribute
'Properties' dialog, or the UML subsettedProperty attribute.

Contains a comma separated list of GUIDs.

TaggedValues Collection of type AttributeTag

Notes: Read only

A collection of AttributeTag objects, used to access and manage Tagged Values
associated with this attribute.

TaggedValuesEx Collection of type TaggedValue

Notes: Read only

A collection of TaggedValue objects belonging to the current attribute and the
TaggedValuesEx property of its classifier.

Type String

Notes: Read/Write

The attribute type (by name; also see ClassifierID).

TypeInfoProperties Notes: Read only

Returns an interface pointer of TypeInfoProperties.

UpperBound String

Notes: Read/Write

A value for the collection upper boundary.

Visibility String

Notes: Read/Write

Identifies the scope of the attribute - Private, Protected, Public or Package.

Attribute Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in

(c) Sparx Systems 2023 Page 160 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

relation to this object.

GetTXAlias (string Code,
long Flag)

String

Notes: Returns the Alias of the element for a given language.

Parameters

Code: String - Two-letter language code (found on the 'Translations' page of·
the 'Manage Model Options' dialog)

Flag: Long·
 - 0 = Get the currently-stored translated Alias
 - 1 = Get the currently-stored translated Alias, and auto translate if the
original Alias has changed
 - 2 = Always fetch the translated Alias from online

GetTXName (string Code,
long Flag)

String

Notes: Returns the name of the element for a given language.

Parameters

Code: String - Two-letter language code (found on the 'Translations' page of·
the 'Manage Model Options' dialog)

Flag: Long·
 - 0 = Get the currently-stored translated name
 - 1 = Get the currently-stored translated name, and auto translate if the
original name has changed
 - 2 = Always fetch the translated name from online

GetTXNote (string Code,
long Flag)

String

Returns the Notes of the element for a given language.

Parameters

Code: String - Two-letter language code (found on the 'Translations' page of·
the 'Manage Model Options' dialog)

Flag: Long·
 - 0 = Get the currently-stored translated Notes
 - 1 = Get the currently-stored translated Notes, and auto translate if the
original Notes have changed
 - 2 = Always fetch the translated Notes from online

SetTXAlias (string Code,
string Translation)

String

Notes - Set the translated Alias of the element for a given language.

Code: String - Two-letter language code (found on the 'Translations' page of·
the 'Manage Model Options' dialog)

Translation: String - The translated Alias·

SetTXName (string Code,
string Translation)

String

Notes - Set the translated name of the element for a given language.

Code: String - Two-letter language code (found on the 'Translations' page of·
the 'Manage Model Options' dialog)

Translation: String - The translated name·

SetTXNote (string Code,
string Translation)

String

Notes - Set the translated Notes of the element for a given language.

Code: String - Two-letter language code (found on the 'Translations' page of·
the 'Manage Model Options' dialog)

(c) Sparx Systems 2023 Page 161 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Translation: String - The translated Notes·

Update() Boolean

Notes: Updates the current attribute object after modifying or appending a new
item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 162 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

AttributeConstraint Class

An AttributeConstraint is a constraint associated with the current Attribute.

Associated table in repository

t_attributeconstraints

AttributeConstraint Attributes

Attribute Remarks

AttributeID Long

Notes: Read/Write

The ID of the attribute this constraint applies to.

Name String

Notes: Read/Write

The name of the constraint.

Notes String

Notes: Read/Write

Descriptive notes about the constraint.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Type String

Notes: Read/Write

The type of constraint.

AttributeConstraint Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Update the current AttributeConstraint object after modification or

(c) Sparx Systems 2023 Page 163 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

appending a new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 164 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

AttributeTag Class

An AttributeTag represents a Tagged Value associated with an attribute.

Associated table in repository

t_attributetag

AttributeTag Attributes:

Attribute Remarks

AttributeID Long

Notes: Read/Write

The local ID of the attribute associated with this Tagged Value.

FQName String

Notes: Read only

The fully-qualified name of the tag.

Name String

Notes: Read/Write

The name of the tag.

Notes String

Notes: Read/Write

Further descriptive notes about this tag.

If 'Value' is set to '<memo>', then 'Notes' should contain the actual Tagged Value
content.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

TagGUID String

Notes: Read/Write

A globally unique ID for this Tagged Value.

TagID Long

Notes: Read only

The local ID to identify the Tagged Value.

Value String

Notes: Read/Write

The value assigned to this tag.

(c) Sparx Systems 2023 Page 165 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

This field has a 255 character limit. If the value is greater than 255 characters long,
set the value to "<memo>" and insert the body of text in the 'Notes' attribute.

When reading existing Tagged Values, if 'Value' = "<memo>" then the developer
should read the actual body of text from the 'Notes' attribute.

AttributeTag Methods:

Method Remarks

GetAttribute(string
propName)

String

Notes: Returns the text of a single named property within a structured Tagged
Value.

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error occurs.

HasAttributes() Boolean

Notes: Returns True if the Tagged Value is a structured Tagged Value with one or
more properties.

SetAttribute(string
propName, string
propValue)

Boolean

Notes: Sets the text of a single named property within a structured Tagged Value.

Update() Boolean

Notes: Updates the current AttributeTag object after modification or appending a
new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 166 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

CustomProperties Collection

The CustomProperties collection contains 0 or more CustomProperties associated with the current element. These
properties provide advanced UML configuration options, and must not be added to or deleted. The value of each property
can be set.

CustomProperty

Attribute Remarks

Name String

Notes: Read only

The CustomProperty name.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Value String

Notes: Read/Write

The value associated with this CustomProperty. This can be:

A string·
The Boolean values True or False, or·
An enumeration value from a defined list·

The UML 2.5 specification in general provides information on the kinds of
enumeration relevant here.

Notes

The number and type of properties vary depending on the actual element·

(c) Sparx Systems 2023 Page 167 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

EmbeddedElements Collection

In UML 2.5 an element can have one or more embedded elements such as Ports, Pins, Parameters or ObjectNodes. These
are attached to the boundary of the host element and cannot be moved off the element. They are owned by their host
element. This collection gives easy access to the set of elements embedded on the surface of an element. Note that some
embedded elements can have their own embedded element collection (for example, Ports can have Interfaces embedded
on them).

The EmbeddedElements collection contains Element objects.

Example

(c) Sparx Systems 2023 Page 168 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Method Class

A method represents a UML operation. It is accessed from the Element Methods collection and includes collections for
parameters, constraints and Tagged Values.

Associated table in repository

t_operation

Method Attributes

Attribute Remarks

Abstract Boolean

Notes: Read/Write

A flag indicating if the method is abstract (1) or not (0).

Behavior String

Notes: Read/Write

Some further explanatory behavior notes (for example, pseudocode).

In earlier releases of Enterprise Architect this attribute had the UK/Australian
spelling 'Behaviour'; this is still present for backwards compatibility, but please
now use the 'Behavior' attribute for consistency.

ClassifierID String

Notes: Read/Write

The Classifier ID that applies to the ReturnType.

Code String

Notes: Read/Write

An optional field to hold the method code (used for the 'Initial Code' field).

Concurrency Variant

Notes: Read/Write

Indicates the concurrency type of the method.

FQStereotype String

Notes: Read Only

The fully-qualified stereotype name in the format "Profile::Stereotype". One or
more fully-qualified stereotype names can be assigned to StereotypeEx.

IsConst Boolean

Notes: Read/Write

A flag indicating that the method is Const.

(c) Sparx Systems 2023 Page 169 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

IsLeaf Boolean

Notes: Read/Write

A flag to indicate if the method is a Leaf (cannot be overridden).

IsPure Boolean

Notes: Read/Write

A flag indicating that the method is defined as 'Pure' in C++.

IsQuery Boolean

Notes: Read/Write

A flag to indicate if the method is a query (that is, does not alter Class variables).

IsRoot Boolean

Notes: Read/Write

A flag to indicate if the method is Root.

IsStatic Boolean

Notes: Read/Write

A flag to indicate a static method.

IsSynchronized Boolean

Notes: Read/Write

A flag indicating a Synchronized method call.

MethodGUID String

Notes: Read/Write

A globally unique ID for the current method. This is system generated.

MethodID Long

Notes: Read only

A local ID for the current method, only valid within this .eap file.

Name String

Notes: Read/Write

The method name.

Notes String

Notes: Read/Write

Descriptive notes on the method.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Parameters Collection Class

Notes: Read only

The Parameters collection for the current method, used to add and access parameter
objects for the current method.

(c) Sparx Systems 2023 Page 170 of 352 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.1/collection.htm

Enterprise Architect Object Model 10 November, 2023

ParentID Long

Notes: Read only

Returns the ElementID of the element that this method belongs to.

Pos Long

Notes: Read/Write

Specifies the position of the method within the set of operations defined for a Class.

PostConditions Collection Class

Notes: Read only

The PostConditions (constraints) as they apply to this method. This returns a
MethodConstraint object of type 'post'.

PreConditions Collection Class

Notes: Read only

The PreConditions (constraints) as they apply to this method. This returns a
MethodConstraint object of type 'pre'.

ReturnIsArray Boolean

Notes: Read/Write

A flag to indicate that the return value is an array.

ReturnType String

Notes: Read/Write

The return type for the method; this can be a primitive data type or a Class or
Interface type.

StateFlags String

Notes: Read/Write

Some flags as applied to methods in State elements.

Stereotype String

Notes: Read/Write

The method stereotype (optional).

When setting this attribute, LastError (for the GetLastError method) will be
non-empty if an error occurs.

StereotypeEx String

Notes: Read/Write

All the applied stereotypes of the method in a comma-separated list. Reading the
value will provide the stereotype name only; assigning the value accepts either
fully-qualified or simple names.

When setting this attribute, LastError (for the GetLastError method) will be
non-empty if an error occurs.

Style String

Notes: Read/Write

Contains the Alias property for this method.

(c) Sparx Systems 2023 Page 171 of 352 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.1/collection.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.1/collection.htm

Enterprise Architect Object Model 10 November, 2023

StyleEx String

Notes: Read/Write

Advanced style settings, reserved for the use of Sparx Systems.

TaggedValues Collection Class of type MethodTag Class

Notes: Read only

The TaggedValues collection for the current method. This accesses a list of
MethodTag objects.

Throws String

Notes: Read/Write

Exception information. Valid input for setting the Throws is:

GUID String - the GUID of an element in the model or a comma-separated list·
of element GUIDS

<none> - removes the existing Throws set·

TypeInfoProperties Notes: Read only

Returns an interface pointer of TypeInfoProperties.

Visibility String

Notes: Read/Write

The method scope - Public, Protected, Private or Package.

Method Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

GetTXAlias (string Code,
long Flag)

String

Notes: Returns the Alias of the element for a given language.

Parameters

Code: String - Two-letter language code (found on the 'Translations' page of·
the 'Manage Model Options' dialog)

Flag: Long·
 - 0 = Get the currently-stored translated Alias
 - 1 = Get the currently-stored translated Alias, and auto translate if the
original Alias has changed
 - 2 = Always fetch the translated Alias from online

GetTXName (string Code,
long Flag)

String

Notes: Returns the name of the element for a given language.

Parameters

Code: String - Two-letter language code (found on the 'Translations' page of·

(c) Sparx Systems 2023 Page 172 of 352 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.1/collection.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.1/methodtag.htm

Enterprise Architect Object Model 10 November, 2023

the 'Manage Model Options' dialog)

Flag: Long·
 - 0 = Get the currently-stored translated name
 - 1 = Get the currently-stored translated name, and auto translate if the
original name has changed
 - 2 = Always fetch the translated name from online

GetTXNote (string Code,
long Flag)

String

Returns the Notes of the element for a given language.

Parameters

Code: String - Two-letter language code (found on the 'Translations' page of·
the 'Manage Model Options' dialog)

Flag: Long·
 - 0 = Get the currently-stored translated Notes
 - 1 = Get the currently-stored translated Notes, and auto translate if the
original Notes have changed
 - 2 = Always fetch the translated Notes from online

SetTXName (string Code,
string Translation)

String

Notes - Set the translated name of the element for a given language.

Code: String - Two-letter language code (found on the 'Translations' page of·
the 'Manage Model Options' dialog)

Translation: String - The translated name·

SetTXAlias (string Code,
string Translation)

String

Notes - Set the translated Alias of the element for a given language.

Code: String - Two-letter language code (found on the 'Translations' page of·
the 'Manage Model Options' dialog)

Translation: String - The translated Alias·

SetTXNote (string Code,
string Translation)

String

Notes - Set the translated Notes of the element for a given language.

Code: String - Two-letter language code (found on the 'Translations' page of·
the 'Manage Model Options' dialog)

Translation: String - The translated Notes·

Update() Boolean

Notes: Update the current method object after modification or appending a new
item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 173 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

MethodConstraint Class

A MethodConstraint is a condition imposed on a method. It is accessed through either the Method PreConditions or
Method PostConditions collection.

Associated table in repository

 t_operationpres and t_operationposts

MethodConstraint Attributes

Attribute Remarks

MethodID Long

Notes: Read/Write

The local ID of the associated method.

Name String

Notes: Read/Write

The name of the constraint.

Notes String

Notes: Read/Write

Descriptive notes about this constraint.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Type String

Notes: Read/Write

The constraint type.

MethodConstraint Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error occurs.

(c) Sparx Systems 2023 Page 174 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Update() Boolean

Notes: Update the current MethodConstraint object after modification or appending
a new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 175 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

MethodTag Class

A MethodTag is a Tagged Value associated with a method.

Associated table in repository

t_operationtag

MethodTag Attributes:

Attribute Remarks

FQName String

Notes: Read only

The fully-qualified name of the tag.

MethodID Long

Notes: Read/Write

The ID of the associated method.

Name String

Notes: Read/Write

The tag or name of the property.

Notes String

Notes: Read/Write

Further descriptive notes about this tag.

If 'Value' is set to '<memo>', then 'Notes' should contain the actual Tagged Value
content.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

TagGUID String

Notes: Read/Write

A unique GUID for this Tagged Value.

TagID Long

Notes: Read only

A unique ID for this Tagged Value.

Value String

Notes: Read/Write

The value assigned to this tag.

(c) Sparx Systems 2023 Page 176 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

This field has a 255 character limit. If the value is greater than 255 characters long,
set the value to "<memo>" and insert the body of text in the 'Notes' attribute.

When reading existing Tagged Values, if 'Value' = "<memo>" then the developer
should read the actual body of text from the 'Notes' attribute.

MethodTag Methods:

Method Remarks

GetAttribute(string
propName)

String

Notes: Returns the text of a single named property within a structured Tagged
Value.

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error occurs.

HasAttributes() Boolean

Notes: Returns True if the Tagged Value is a structured Tagged Value with one or
more properties.

SetAttribute(string
propName, string
propValue)

Boolean

Notes: Sets the text of a single named property within a structured Tagged Value.

Update() Boolean

Notes: Updates the current MethodTag object after modification or appending a
new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 177 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Parameter Class

A Parameter object represents a method argument and is accessed through the Method Parameters collection.

Associated table in repository

t_operationparams

Parameter Attributes

Attribute Remarks

Alias String

Notes: Read/Write

An optional alias for this parameter.

ClassifierID String

Notes: Read/Write

A ClassifierID for the parameter, if known.

Default String

Notes: Read/Write

A default value for this parameter.

IsConst Boolean

Notes: Read/Write

A flag indicating that the parameter is Const (cannot be altered).

Kind String

Notes: Read/Write

The parameter kind - in, inout, out, or return.

Name String

Notes: Read/Write

The parameter name; this must be unique for a single method.

Notes String

Notes: Read/Write

Descriptive notes.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

OperationID Long

(c) Sparx Systems 2023 Page 178 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Notes: Read only

The ID of the method associated with this parameter.

ParameterGUID String

Notes: Read/Write

A system generated, globally unique ID for the current Parameter.

Position Long

Notes: Read/Write

The position of the parameter in the argument list.

Stereotype String

Notes: Read/Write

The first stereotype of the parameter.

When setting this attribute, LastError (for the GetLastError method) will be
non-empty if an error occurs.

StereotypeEx String

Notes: Read/Write

All the applied stereotypes of the parameter in a comma-separated list. Reading the
value will provide the stereotype name only; assigning the value accepts either
fully-qualified or simple names.

When setting this attribute, LastError (for the GetLastError method) will be
non-empty if an error occurs.

Style String

Notes: Read/Write

Some style information.

StyleEx String

Notes: Read/Write

Advanced style settings, reserved for the use of Sparx Systems.

TaggedValues Collection Class of type ParamTag Class

Notes: Read/Write

The GUID of the parameter with which this ParamTag is associated.

Type Variant

Notes: Read/Write

The parameter type; can be a primitive type or a defined classifier.

TypeInfoProperties Notes: Read only

Returns an interface pointer of TypeInfoProperties.

Parameter Methods

(c) Sparx Systems 2023 Page 179 of 352 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.1/collection.htm
https://sparxsystems.com/enterprise_architect_user_guide/16.1/paramtag.htm

Enterprise Architect Object Model 10 November, 2023

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Update the current Parameter object after modifying or appending a new
item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 180 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ParamTag Class

A ParamTag is a Tagged Value associated with a method parameter.

Associated table in repository

t_taggedvalue

ParamTag Attributes

Attribute Remarks

ElementGUID String

Notes: Read/Write

The GUID of the parameter with which this ParamTag is associated.

FQName String

Notes: Read only

The fully qualified name of the tag.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

PropertyGUID String

Notes: Read/Write

A system generated GUID to identify the Tagged Value.

Tag String

Notes: Read/Write

The actual tag name.

Value String

Notes: Read/Write

The value associated with this tag.

ParamTag Methods

Method Remarks

GetAttribute(string
propName)

String

Notes: Returns the text of a single named property within a structured Tagged

(c) Sparx Systems 2023 Page 181 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Value.

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

HasAttributes() Boolean

Notes: Returns True if the Tagged Value is a structured Tagged Value with one or
more properties.

SetAttribute(string
propName, string
propValue)

Boolean

Notes: Sets the text of a single named property within a structured Tagged Value.

Update() Boolean

Notes: Updates the current ParamTag object after modifying or appending a new
item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 182 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Partitions Collection

A collection of internal element partitions (regions). This is commonly seen in Activity, State, Boundary, Diagram Frame
and similar elements. Not all elements support partitions.

This collection contains a set of Partition elements. The set is read/write: information is not saved until the host element
is saved, so ensure that you call the Element.Save method after making changes to a Partition.

Partition Attributes

Attribute Remarks

Name String

Notes: Read/Write

The partition name; this can represent a condition or constraint in some cases.

Note String

Notes: Read/Write

A free text note associated with this partition.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Operator String

Notes: Read/Write

An optional operator value that specifies the partition type.

Size String

Notes: Read/Write

The vertical or horizontal width of the partition in pixels.

(c) Sparx Systems 2023 Page 183 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Properties Class

Properties

Properties Attributes

Attribute Remarks

Count Long

Notes: The number of properties that are available for this object.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Properties Methods

Property

Method Remarks

Item(object Index) Property

Notes: Returns a property either by name or by a zero-based integer offset into the
list of properties.

Parameter:

Index: Variant - either a string representing the property name or an integer·
representing the zero-based offset into the property list

Property Attributes

Attribute Remarks

Name String

Notes: Read only

The name of the property.

The object to which the properties list applies can have an automation property with
the same name, in which case the data accessed through Value is identical to that
obtained through the automation property.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

(c) Sparx Systems 2023 Page 184 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Type PropType

Notes: Read only

Provides an indication of what sort of data is going to be stored by this property.
This restriction can be further defined by the Validation attribute.

Validation String

Notes: Read only

An optional string that is used to validate any data that is passed to the Value
attribute. This string is used by the programmer at run time to provide an indication
of what is expected, and by Enterprise Architect to ensure that the submitted data is
appropriate.

Value Variant

Notes: Read/write

The value of the property as defined in the other fields.

(c) Sparx Systems 2023 Page 185 of 352 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.1/proptype_enum.htm

Enterprise Architect Object Model 10 November, 2023

TemplateParameter Class

A TemplateParameter for a template signature specifies a formal parameter that will be substituted by an actual
parameter (or the default) in a TemplateBinding relationship on a Class element.

Associated table in repository

 t_xref

TemplateParameter Attributes

Attribute Remarks

Constraint String

Notes: Read/Write

The name of the Classifier that acts as the constraint value.

Default String

Notes: Read/Write

The name of the Classifier that acts as the default value.

Name String

Notes: Read/Write

The name of the Template Parameter.

ObjectType ObjectType

Notes: Read Only

Distinguishes objects referenced through a Dispatch interface.

TemplateParameterID String

Notes: Read Only

The Enterprise Architect Globally Unique ID (GUID) of the current Template
Parameter, in the XrefID column of t_xref.

Type String

Notes: Read/Write

The Template Parameter type.

TemplateParameter Methods

Method Remarks

(c) Sparx Systems 2023 Page 186 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Updates the current TemplateParameter object after modifying or appending
a new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 187 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Transitions Collection

The Transitions collection applies only to Timeline elements.

A Timeline element displays 0 or more state transitions at set times on its extent. This collection enables you to access
the transition set. You can also access additional information by referring to the connectors associated with the Timeline,
and by referencing messages passed between timelines. Note that any changes made to elements in this collection are
only saved when the main element is saved.

Transition Attributes

Attribute Remarks

DurationConstraint String

Notes: Read/Write

A constraint on the time duration of the transition.

Event String

Notes: Read/Write

The event (optional) that initiated the transition.

Note String

Notes: Read/Write

A free text note.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

TimeConstraint String

Notes: Read/Write

A constraint on when the transition has to be completed.

TxState String

Notes: Read/Write

The state to transition to, as defined in the 'Timeline Properties' dialog.

TxTime String

Notes: Read/Write.

The time that the transition occurs. The value depends on a range set in the
diagram.

(c) Sparx Systems 2023 Page 188 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Connector Package

The Connector Package details how connectors between elements are accessed and managed.

This diagram shows the Connector Class, its collections, and its relationships to the Element Class. Association Target
roles correspond to member variable names in the source interface. The associated Classes represent the object type used
in each collection.

(c) Sparx Systems 2023 Page 189 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Connector Class

To represent the various kinds of connectors between UML elements, you use a Connector object. You can access this
from either the Client or Supplier element, using the Connectors collection of that element. When creating a new
connector you assign to it a valid type from this list:

Aggregation·
Assembly·
Association·
Collaboration·
CommunicationPath·
Connector·
ControlFlow·
Delegate·
Dependency·
Deployment·
ERLink·
Generalization·
InformationFlow·
Instantiation·
InterruptFlow·
Manifest·
Nesting·
NoteLink·
ObjectFlow·
Package·
Realization·
Sequence·
StateFlow·
TemplateBinding·
UseCase·

Associated table in repository

t_connector

Connector Attributes

Attribute Remarks

Alias String

Notes: Read/Write

(c) Sparx Systems 2023 Page 190 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

An optional alias for this connector.

AssociationClass Element

Notes: Read Only

Returns the Association Class element if the connector has one; otherwise NULL/.

ClientEnd ConnectorEnd

Notes: Read Only

A pointer to the ConnectorEnd object representing the source end of the
relationship.

ClientID Long

Notes: Read/Write

The ElementID of the element at the source end of this connector.

Color Long

Notes: Read/Write

Sets the color of the connector.

ConnectorGUID String

Notes: Read Only

A system generated, globally unique ID for the current connector.

ConnectorID Long

Notes: Read Only

A system generated local identifier for the current connector.

Constraints Collection

Notes: Read Only

A collection of constraint objects.

ConveyedItems Collection of type Element

Notes: Read Only

Returns a collection of elements that have been conveyed.

To add another element to the conveyed Collection, use 'AddNew
(ElementGUID,NULL)', where 'ElementGUID' is the GUID of the element to be
added.

CustomProperties Collection

Notes: Read Only

Returns a collection of advanced properties associated with an element in the form
of CustomProperty objects.

DiagramID Long

Notes: Read/Write

The DiagramID of the connector.

Direction String

(c) Sparx Systems 2023 Page 191 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Notes: Read/Write

The connector direction, which can be set to one of:

Unspecified·
Bi-Directional·
Source -> Destination or·
Destination -> Source·

If the connector is non-navigable, set the 'sourceNavigability' and/or
'targetNavigability' attributes.

EndPointX Long

Notes: Read/Write

The x-coordinate of the connector's end point.

Connector end points are specified in Cartesian coordinates with the origin to the
top left of the screen.

EndPointY Long

Notes: Read/Write

The y-coordinate of the connector's end point.

Connector end points are specified in Cartesian coordinates with the origin to the
top left of the screen.

EventFlags String

Notes: Read/Write

A structure to hold a variety of flags concerned with event signaling on messages.

FQStereotype String

Notes: Read Only

The fully-qualified stereotype name in the format "Profile::Stereotype". One or
more fully-qualified stereotype names can be assigned to StereotypeEx.

ForeignKeyInformation String

Notes: Read Only

Returns the Foreign Key information.

IsLeaf Boolean

Notes: Read/Write

A flag indicating that the connector is a leaf.

IsRoot Boolean

Notes: Read/Write

A flag indicating that the connector is a root.

IsSpec Boolean

Notes: Read/Write

A flag indicating that the connector is a specification.

MessageArguments String

Notes: Read Only

(c) Sparx Systems 2023 Page 192 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

The connector Message arguments.

MetaType String

Notes: Read Only

The connector's domain-specific meta type, as defined by an applied stereotype
from an MDG Technology.

MiscData String

Notes: Read Only

This low-level property returns an array providing information about the contents
of the PData x fields.

These database fields are not documented and developers must gain understanding
of these fields through their own endeavors to use this property.

MiscData is zero based, therefore:

MiscData(0) corresponds to PData1·
MiscData(1) corresponds to PData2, and so on·

Name String

Notes: Read/Write

The connector name.

Notes String

Notes: Read/Write

Descriptive notes about the connector.

ObjectType ObjectType

Notes: Read Only

Distinguishes objects referenced through a Dispatch interface.

Properties Properties

Notes: Returns a list of specialized properties applicable to the connector that might
not be available using the automation model.

The properties are purposely undocumented because of their obscure nature and
because they are subject to change as progressive enhancements are made to them.

ReturnValueAlias String

Notes: Shows the 'Return Value Alias' field of the operation.

RouteStyle Long

Notes: Read/Write

The route style.

SequenceNo Long

Notes: Read/Write

The SequenceNo of the connector.

StartPointX Long

Notes: Read/Write

(c) Sparx Systems 2023 Page 193 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

The x-coordinate of the connector's start point.

Connector end points are specified in Cartesian coordinates with the origin to the
top left of the screen.

StartPointY Long

Notes: Read/Write

The y-coordinate of the connector's start point.

Connector end points are specified in Cartesian coordinates with the origin to the
top left of the screen.

StateFlags String

Notes: Read/Write

A structure to hold a variety of flags concerned with State signaling on messages;
the list is delimited by semi-colons.

Stereotype String

Notes: Read/Write

Sets or gets the stereotype for this connector end.

StereotypeEx String

Notes: Read/Write

All the applied stereotypes of the connector in a comma-separated list. Reading the
value will provide the stereotype name only; assigning the value accepts either
fully-qualified or simple names.

StyleEx String

Notes: Read/Write

Advanced style settings; reserved for the use of Sparx Systems.

Subtype String

Notes: Read/Write

A possible subtype to refine the meaning of the connector.

SupplierEnd ConnectorEnd

Notes: Read Only

A pointer to the ConnectorEnd object representing the target end of the
relationship.

SupplierID Long

Notes: Read/Write

The ElementID of the element at the target end of this connector.

TaggedValues Collection of type ConnectorTag

Notes: Read Only

The collection of ConnectorTag objects.

TemplateBindings Collection of type TemplateBinding

Notes: Read Only

A collection of TemplateBinding objects.

(c) Sparx Systems 2023 Page 194 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

TransitionAction String

Notes: Read/Write

See the Transition topic for appropriate values.

TransitionEvent String

Notes: Read/Write

See the Transition topic for appropriate values.

TransitionGuard String

Notes: Read/Write

See the Transition topic for appropriate values.

Type String

Notes: Read/Write

The connector type; valid types are held in the t_connectortypes table in the .eap
file.

TypeInfoProperties Notes: Read only

Returns an interface pointer of TypeInfoProperties.

VirtualInheritance String

Notes: Read/Write

For Generalization, indicates if the inheritance is virtual.

Width Long

Notes: Read/Write

Specifies the width of the connector.

Connector Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

GetTXAlias (string Code,
long Flag)

String

Notes: Returns the Alias of the element for a given language.

Parameters

Code: String - Two-letter language code (found on the 'Translations' page of·
the 'Manage Model Options' dialog)

Flag: Long·
 - 0 = Get the currently-stored translated Alias
 - 1 = Get the currently-stored translated Alias, and auto translate if the
original Alias has changed

(c) Sparx Systems 2023 Page 195 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

 - 2 = Always fetch the translated Alias from online

GetTXName (string Code,
long Flag)

String

Notes: Returns the name of the element for a given language.

Parameters

Code: String - Two-letter language code (found on the 'Translations' page of·
the 'Manage Model Options' dialog)

Flag: Long·
 - 0 = Get the currently-stored translated name
 - 1 = Get the currently-stored translated name, and auto translate if the
original name has changed
 - 2 = Always fetch the translated name from online

GetTXNote (string Code,
long Flag)

String

Returns the Notes of the element for a given language.

Parameters

Code: String - Two-letter language code (found on the 'Translations' page of·
the 'Manage Model Options' dialog)

Flag: Long·
 - 0 = Get the currently-stored translated Notes
 - 1 = Get the currently-stored translated Notes, and auto translate if the
original Notes have changed
 - 2 = Always fetch the translated Notes from online

IsConnectorValid() Boolean

Notes: Queries Enterprise Architect's internal relationship validation schema on the
current connector.

If False is returned, check the 'GetLastError()' function for more information.

SetTXAlias (string Code,
string Translation)

String

Notes - Set the translated Alias of the element for a given language.

Code: String - Two-letter language code (found on the 'Translations' page of·
the 'Manage Model Options' dialog)

Translation: String - The translated Alias·

SetTXName (string Code,
string Translation)

String

Notes - Set the translated name of the element for a given language.

Code: String - Two-letter language code (found on the 'Translations' page of·
the 'Manage Model Options' dialog)

Translation: String - The translated name·

SetTXNote (string Code,
string Translation)

String

Notes - Set the translated Notes of the element for a given language.

Code: String - Two-letter language code (found on the 'Translations' page of·
the 'Manage Model Options' dialog)

Translation: String - The translated Notes·

Update() Boolean

Notes: Updates the current ConnectorObject after modification or appending a new
item.

(c) Sparx Systems 2023 Page 196 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 197 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ConnectorConstraint Class

A ConnectorConstraint holds information about special conditions that apply to a connector. It is accessed through the
Connector Constraints collection.

Associated table in repository

 t_connectorconstraints

ConnectorConstraint Attributes

Attribute Remarks

ConnectorID Long

Notes: Read/Write

A local ID value (long) - system generated.

Name String

Notes: Read/Write

The constraint name.

Notes String

Notes: Read/Write

Notes about this constraint.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Type String

Notes: Read/Write

The constraint type.

ConnectorConstraint Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Update the current ConnectorConstraint object after modification or

(c) Sparx Systems 2023 Page 198 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

appending a new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 199 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ConnectorEnd Class

A ConnectorEnd contains information about a single end of a connector. A ConnectorEnd is accessed from the connector
as either the ClientEnd or SupplierEnd.

Associated table in repository

derived from t_connector

ConnectorEnd Attributes

Attribute Remarks

Aggregation Long

Notes: Read/Write

The type of Aggregation as it applies to this end; valid values are:

 0 = None

 1 = Shared

 2 = Composite

Alias String

Notes: Read/Write

An optional alias for this connector end.

AllowDuplicates Boolean

Notes: Read/Write

For multiplicities greater than 1, indicates that duplicate entries are possible.

Cardinality String

Notes: Read/Write

The cardinality associated with this end.

Constraint String

Notes: Read/Write

A constraint that can be applied to this connector end.

Containment String

Notes: Read/Write

The containment type applied to this connector end.

Derived Boolean

Notes: Read/Write

Indicates that the value of this end is derived.

DerivedUnion Boolean

(c) Sparx Systems 2023 Page 200 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Notes: Read/Write

Indicates the value of this role derived from the union of all roles that subset this.

End String

Notes: Read only

The end this ConnectorEnd object applies to - Client or Supplier.

IsChangeable String

Notes: Read/Write

Flag indicating whether this end is changeable or not - 'frozen', 'addOnly' or none.

IsNavigable Note: This property is not used

Boolean

Notes: Read/Write

A flag indicating this end is navigable from the other end.

Navigable String

Notes: Read/Write

Indicates whether this role of an association is navigable from the opposite
classifier - Navigable, Non-Navigable or Unspecified.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Ordering Long

Notes: Read/Write

Ordering for this connector end.

OwnedByClassifier Boolean

Notes: Read/Write

Indicates that this Association end corresponds to an attribute on the opposite end
of the Association.

Qualifier String

Notes: Read/Write

A qualifier that can apply to the connector end.

Role String

Notes: Read/Write

The connector end role.

RoleNote String

Notes: Read/Write

Notes associated with the role of this connector end.

RoleType String

Notes: Read/Write

(c) Sparx Systems 2023 Page 201 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

The role type applied to this end of the connector.

Stereotype String

Notes: Read/Write

Sets or gets the stereotype for this connector end.

StereotypeEx String

Notes: Read/Write

All the applied stereotypes of the connector end in a comma-separated list. Reading
the value will provide the stereotype name only; assigning the value accepts either
fully qualified or simple names.

TaggedValues Collection of type RoleTag

Notes: Read only

A collection of RoleTag objects.

Visibility String

Notes: Read/Write

The Scope associated with this connector end - Public, Private, Protected or
Package.

ConnectorEnd Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Update the current ConnectorEnd object after modification or appending a
new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 202 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ConnectorTag Class

A ConnectorTag is a Tagged Value for a connector and is accessed through the Connector TaggedValues collection.

Associated table in repository

t_connectortag

ConnectorTag Attributes

Attribute Remarks

ConnectorID Long

Notes: Read/Write

The local ID of the associated connector.

FQName String

Notes: Read only

The fully qualified name of the tag.

Name String

Notes: Read/Write

The tag or name.

Notes String

Notes: Read/Write

Further descriptive notes on this tag.

If 'Value' is set to '<memo>', then 'Notes' should contain the actual Tagged Value
content.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

TagGUID String

Notes: Read/Write

A globally unique ID for this Tagged Value.

TagID Long

Notes: Read only

A local ID to identify the Tagged Value.

Value String

Notes: Read/Write

The value assigned to this tag.

(c) Sparx Systems 2023 Page 203 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

This field has a 255 character limit. If the value is greater than 255 characters long,
set the value to "<memo>" and insert the body of text in the 'Notes' attribute.

When reading existing Tagged Values, if 'Value' = "<memo>" then the developer
should read the actual body of text from the 'Notes' attribute.

ConnectorTag Methods

Method Remarks

GetAttribute(string
propName)

String

Notes: Returns the text of a single named property within a Structured Tagged
Value.

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

HasAttributes() Boolean

Notes: Returns True if the Tagged Value is a Structured Tagged Value with one or
more properties.

SetAttribute(string
propName, string
propValue)

Boolean

Notes: Sets the text of a single named property within a Structured Tagged Value.

Update() Boolean

Notes: Update the current ConnectorTag object after modification or appending a
new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 204 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

RoleTag Class

The RoleTag interface provides access to an Association's Role Tagged Values. Each connector end has a RoleTag
collection that can be accessed to add, delete and access the RoleTags.

You might use this in creating code that resembles this fragment for accessing a RoleTag in VB.NET (where con is a
Connector Object):

client = con.ClientEnd

client.Role = "m_client"

client.Update()

tag = client.TaggedValues.AddNew("tag", "value")

tag.Update()

tag = client.TaggedValues.AddNew("tag2", "value2")

tag.Update()

client.TaggedValues.Refresh()

For idx = 0 To client.TaggedValues.Count - 1

tag = client.TaggedValues.GetAt(idx)

Console.WriteLine(tag.Tag)

client.TaggedValues.DeleteAt(idx, False)

Next

tag = Nothing

Associated table in repository

t_taggedvalue

RoleTag Attributes

Attribute Description

BaseClass String

Notes: Read/Write

Indicates the role end; set to ASSOCIATION_SOURCE or
ASSOCIATION_TARGET.

ElementGUID String

Notes: Read/Write

The GUID of the connector with which this role tag is associated.

FQName String

Notes: Read only

The fully qualified name of the tag.

ObjectType ObjectType

(c) Sparx Systems 2023 Page 205 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

PropertyGUID String

Notes: Read/Write

A system generated GUID to identify the Tagged Value.

Tag String

Notes: Read/Write

The actual tag name.

Value String

Notes: Read/Write

The value associated with this tag.

RoleTag Methods

Method Description

GetAttribute(string
propName)

String

Notes: Returns the text of a single named property within a Structured Tagged
Value.

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

HasAttributes() Boolean

Notes: Returns True if the Tagged Value is a Structured Tagged Value with one or
more properties.

SetAttribute(string
propName, string
propValue)

Boolean

Notes: Sets the text of a single named property within a Structured Tagged Value.

Update() Boolean

Notes: Update the RoleTag after changes or on initial creation.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 206 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

TemplateBinding Class

A TemplateBinding defines the connector between a binding Class and a parameterized Class, and the binding
expression on that connector.

TemplateBinding Attributes

Attribute Remarks

ActualGUID String

Notes: Read/Write

The GUID of the element classifier set as the Actual Template Binding parameter.

If the Actual Template Binding parameter is set as a string expression only, this
will be an empty string.

Assigning a GUID value will automatically change the ActualName attribute after
Update() has been called.

ActualName String

Notes: Read/Write

The name of the Actual Template Binding parameter.

Assigning a new value will clear any current ActualGUID value.

BindingExpression String

Notes: Read only

The Binding Expression as shown in Enterprise Architect.

ConnectorGUID String

Notes: Read only

The Globally Unique ID of the associated connector.

ConnectorType String

Notes: Read only

The type of the associated connector.

FormalName String

Notes: Read/Write

The name of the Formal Template Binding parameter.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch Interface.

Pos String

Notes: Read only

The position of the Template Binding in the list (as on the 'Bindings' page of the
connector 'Properties' dialog).

(c) Sparx Systems 2023 Page 207 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

TemplateBindingID String

Notes: Read only

The Globally Unique ID of the current Template Binding.

TemplateBinding Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

Update() Boolean

Notes: Update the current TemplateBinding object after modification or appending
a new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 208 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Diagram Package

The Diagram Package has information on a diagram and on DiagramObject and DiagramLink, which are the instances of
elements within a diagram.

(c) Sparx Systems 2023 Page 209 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Diagram Class

A Diagram corresponds to a single UML diagram. It is accessed through the Package Diagrams collection and in turn
contains a collection of diagram objects and diagram connectors. Adding to the DiagramObject Class adds an existing
element to the diagram. When adding a new diagram, you must set the diagram type to one of the valid types:

Activity·
Analysis·
Component·
Custom·
Deployment·
Logical·
Sequence·
Statechart·
Use Case·

For a Collaboration (Communication) diagram, use the Analysis type.

Associated table in repository

t_diagram

Diagram Attributes

Attribute Remarks

Author String

Notes: Read/Write

The name of the author.

CreatedDate Date

Notes: Read/Write

The date the diagram was created.

cx Long

Notes: Read/Write

The X dimension of the diagram (the default is 800).

cy Long

Notes: Read/Write

The Y dimension of the diagram (the default is 1100).

DiagramGUID Variant

Notes: Read/Write

A globally unique ID for this diagram.

(c) Sparx Systems 2023 Page 210 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

DiagramID Long

Notes: Read only

A local ID for the diagram.

DiagramLinks Collection

Notes: Read only

A list of DiagramLink objects, each containing information about the display
characteristics of a connector in a diagram.

DiagramObjects Collection

Notes: Read only

A collection of references to DiagramObjects. A DiagramObject is an instance of
an element in a diagram, and includes size and display characteristics.

ExtendedStyle String

Notes: Read/Write

An extended style attribute.

FilterElements String

Notes: Read/Write

Applies a comma-separated list of object ids (from SelectedObjects) to the
currently-applied diagram filter, overriding the filter. The effect persists until
another filter is applied, or the diagram is closed.

HighlightImports Boolean

Notes: Read/Write

A flag to indicate that elements from other Packages should be highlighted.
Corresponds with the 'Show Namespace' option in the diagram 'Properties' dialog.

IsLocked Boolean

Notes: Read/Write

A flag indicating whether this diagram is locked or not.

MetaType String

Notes: Read/Write

The diagram's domain-specific meta type, as defined by an MDG Technology.
When writing, the meta type must be fully qualified and from an existing profile.

ModifiedDate Variant

Notes: Read/Write

The date the diagram was last modified.

Name String

Notes: Read/Write

The diagram name.

Notes String

Notes: Read/Write

Set or retrieve notes for this diagram.

(c) Sparx Systems 2023 Page 211 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Orientation String

Notes: Read/Write

The page orientation: P for Portrait or L for Landscape.

PackageID Long

Notes: Read/Write

The ID of the Package that this diagram belongs to.

PageHeight Long

Notes: Read

The number of pages high the diagram is.

PageWidth Long

Notes: Read

The number of pages wide the diagram is.

ParentID Long

Notes: Read/Write

The optional ID of an element that 'owns' this diagram; for example, a Sequence
diagram owned by a Use Case.

Scale Long

Notes: Read/Write

The zoom scale (the default is 100).

SelectedConnector Connector

Notes: Read/Write

The currently selected connector on this diagram. Null if there is no currently
selected diagram.

SelectedObjects Collection

Notes: Read only

Gets a collection representing the currently selected elements on the diagram.

You can remove objects from this collection to deselect them, and add elements to
the collection by passing the Object ID as a name to select them.

ShowDetails Long

Notes: Read/Write

A flag to indicate that the Diagram Details text should be shown: 1 = Show, 0 =
Hide.

ShowPackageContents Boolean

Notes: Read/Write

A flag to indicate that the Package contents should be shown in the current

(c) Sparx Systems 2023 Page 212 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

diagram.

ShowPrivate Boolean

Notes: Read/Write

A flag to show or hide Private features.

ShowProtected Boolean

Notes: Read/Write

A flag to show or hide Protected features.

ShowPublic Boolean

Notes: Read/Write

A flag to show or hide Public features.

Stereotype String

Notes: Read/Write

Sets or gets the stereotype for this diagram.

StyleEx String

Notes: Read/Write

Advanced style settings, reserved for the use of Sparx Systems.

Swimlanes String

Notes: Read/Write

Information on swimlanes contained in the diagram.

Please note that this property is superseded by SwimlaneDef.

SwimlaneDef SwimlaneDef

Notes: Read/Write

Information on swimlanes contained in the diagram.

Type String

Notes: Read only

The diagram type; see the t_diagramtypes table in the .eap file for more
information.

Version String

Notes: Read/Write

The version of the diagram.

Diagram Methods

Method Details

ApplyGroupLock (string Boolean

(c) Sparx Systems 2023 Page 213 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

aGroupName) Notes: Applies a group lock to this diagram object, for the specified group, on
behalf of the current user.

Returns True if the operation is successful; returns False if the operation is
unsuccessful. Use GetLastError() to retrieve error information.

Parameter:

aGroupName: String - the name of the user group for which to set the group·
lock

ApplyUserLock () Boolean

Notes: Applies a user lock to this diagram object, for the current user.

Returns True if the operation is successful; returns False if the operation is
unsuccessful. Use GetLastError() to retrieve error information.

FindElementInDiagram
(long ElementID)

Boolean

Notes: This function activates the Diagram View and displays the diagram with the
diagram object selected. If the diagram is too large to display all of it on the screen,
the portion of the diagram containing the object is displayed with the object shown
in the center of the screen. Diagram objects flagged as non-selected are shown but
are not selected

Returns True if the diagram object was found, the diagram displayed and the object
selected (or at least displayed) in the view. Returns False if the diagram object was
not found in the diagram and the diagram not displayed.

Parameter

ElementID: Long - the element ID of the diagram object to locate·

GetDiagramObjectByID
(long ID, string DUID)

DiagramObject

Notes: Returns the DiagramObject object, if it exists on the diagram.

Parameters:

ID: Long - the ElementID of the diagram object·
DUID: String - the optional Diagram Unique ID of the diagram object·

GetElementByGrid (string
GridX, string GridY)

Element

Notes: Uses the Excel type of format to specify the column and row of a grid at
which an element should be found: A 5, CB 1.

Returns null if no element is at the specified position.

Parameters:

GridX: string - Column A to Z·
GridY: string - Number of row·

GetElementByName
(string Name)

Element

Notes: Locates an element with the specified name.

Returns null if no element is found with that name.

Parameters:

name: string - Name of the element to find·

GetObjectByGrid (string
GridX, string GridY)

DiagramObject

Notes: Uses the Excel type of format to specify the column and row of a grid at
which an object should be found: A 5, CB 1.

Returns null if no element is at the specified position.

(c) Sparx Systems 2023 Page 214 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Parameters:

GridX: string - Column A to Z·
GridY: string - Number of row·

GetLastError () String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

ReadStyle (string
StyleName)

String

Notes: Returns the current value of the named diagram style.

Use GetLastError() to retrieve error information.

Parameters:

StyleName: String - the name of the diagram style whose value is to be·
retrieved; valid StyleNames are:
 - Show Element Property String
 - Show Connector Property String
 - Show Feature Property String

ReleaseUserLock () Boolean

Notes: Releases a group lock or user lock on this diagram object.

Returns True if the operation is successful; returns False if the operation is
unsuccessful. Use GetLastError() to retrieve error information.

ReorderMessages () Void

Notes: Resets the display order of Sequence and Collaboration messages.

This is typically used after inserting or deleting messages in the diagram.

SaveAsPDF (string
FileName)

Boolean

Notes: Exports the diagram to a PDF document. Returns True on success.

Parameters:

FileName: String - full path to file location·

SaveImagePage(long x,
long y, long sizeX, long
sizeY, string filename, long
flags)

Boolean

Notes: Saves a page of the diagram to disk.

Returns True if the operation is successful; returns False if the operation is
unsuccessful.

Use GetLastError() to retrieve error information.

Parameters:

x: Long - the horizontal page·
y: Long - the vertical page·
sizeX: Long - currently unused; pass a value of 0 to ensure behavior does not·
change in a future build

sizeY: Long - currently unused; pass a value of 0 to ensure behavior does not·
change in a future build

filename: String - the filename and path to save the image·
flags: Long - additional options, currently unused; pass a value of 0 to ensure·
behavior does not change in a future build

The image type is determined by the extension of the filename. Currently only .emf,
.bmp and .png formats are supported.

(c) Sparx Systems 2023 Page 215 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ShowAsElementList (bool
ShowAsList, bool Persist)

Boolean

Notes: Toggles the diagram display between diagram format and Diagram List
depending on the value of ShowAsList.

If Persist is set, the display format is written to the database so the diagram always
opens in that format (diagram or list). Otherwise, the display format falls back to
the default (diagram) once the display is closed.

Parameters:

ShowAsList: Boolean - indicates diagram or Diagram List·
Persist: Boolean - indicates set (maintain ShowAsList value) or not (revert to·
default)

Update () Boolean

Notes: Updates this diagram object after modification or appending a new item.

If False is returned, use GetLastError() to retrieve error information.

VirtualizeConnector (int
ConnectorID, int Action,
int X, int Y)

Boolean

Notes: Creates a virtual copy of the source or target element on a connector, and
sets its location on the diagram as a waypoint on the connector. If the source
element is being virtualized, the waypoint is created as the first on the connector,
and if the target element is being virtualized, the waypoint is created as the last on
the connector.

If called again on the same connector, removes the virtual element. However, the
waypoint remains in place.

As waypoints and therefore virtual elements can only be created on connectors with
the Custom line-style, if the connector does not have this line style the method sets
it. So, after this method executes, an Update function should be called for the
connector as well as for the diagram. All parameters are required for the function to
complete successfully.

Returns True if the operation is successful; returns False if the operation is
unsuccessful.

Parameters:

ConnectorID - Integer: the ID of the connector on which to create the virtual·
element

Action - Integer: the element to be virtualized; 1 for the source element, 2 for·
the target element

X - Integer: the position on the X axis that the element's center point will be·
aligned with

Y - Integer: the position on the Y axis that the element's center point will be·
aligned with

For example, to virtualize the source element of the selected connector:

function main()

{

 var diagram as EA.Diagram;

 var conn as EA.Connector;

 diagram = Repository.GetCurrentDiagram();

 if(diagram != null)

 {

 var connector as EA.Connector.

 connector = diagram.SelectedConnector;

(c) Sparx Systems 2023 Page 216 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

 diagram.VirtualizeConnector(connector.ConnectorID, 1, 100, 150);

 connector.Update();

 diagram.Update();

 Repository.ReloadDiagram(diagram.DiagramID);

 }

 else

 {

 Session.Output("Script requires a diagram to be visible");

 }

}

main();

WriteStyle (string
StyleName, string
StyleValue)

Void

Notes: Sets the value of the named diagram style.

Use GetLastError() to retrieve error information.

Parameters:

StyleName: String - the name of the diagram style whose value is to be·
retrieved; valid StyleNames are:
 - Show Element Property String
 - Show Connector Property String
 - Show Feature Property String

StyleValue: String - the value to be set in the named diagram style; valid·
values for the StyleNames listed are 0 and 1

(c) Sparx Systems 2023 Page 217 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

DiagramLink Class

A DiagramLink is an object that holds display information on a connector between two elements in a specific diagram. It
includes, for example, the custom points and display appearance. It can be accessed from the Diagram DiagramLinks
collection.

Associated table in repository

t_diagramlinks

DiagramLink Attributes

Attribute Remarks

ConnectorID Long

Notes: Read/Write

The ID of the associated connector.

DiagramID Long

Notes: Read/Write

The local ID for the associated diagram.

Geometry String

Notes: Read/Write

The geometry associated with the current connector in this diagram.

HiddenLabels Boolean

Notes: Indicates if this connector's labels are hidden on the diagram.

InstanceID Long

Notes: Read only

The connector identifier for the current model.

IsHidden Boolean

Notes: Read/Write

Indicates if this item is hidden or not.

LineColor Long

Notes: Sets the line color of the connector.

Set to -1 to reset to the default color in the model.

LineStyle Long

Notes: Sets the line style of the connector.

1 = Direct

2 = Auto Routing

(c) Sparx Systems 2023 Page 218 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

3 = Custom Line

4 = Tree Vertical

5 = Tree Horizontal

6 = Lateral Vertical

7 = Lateral Horizontal

8 = Orthogonal Square

9 = Orthogonal Rounded

LineWidth Long

Notes: Sets the line width of the connector.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Path String

Notes: Read/Write

The path of the connector in this diagram.

SourceInstanceUID String

Notes: Read only

Returns the Unique Identifier of the source object.

SuppressSegment Long

Notes: Read/Write

Returns the index of the line segment that has been suppressed. Returns 0 when no
segments are suppressed.

Style String

Notes: Read/Write

Additional style information; for example, color or thickness.

TargetInstanceUID String

Notes: Read only

Returns the Unique Identifier of the target object.

DiagramLink Methods

Method Remarks

GetLastError() String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error occurs.

(c) Sparx Systems 2023 Page 219 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Update() Boolean

Notes: Update the current DiagramLink object after modification or appending a
new item.

If False is returned, check the 'GetLastError()' function for more information.

(c) Sparx Systems 2023 Page 220 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

DiagramObject Class

The DiagramObject Class stores presentation information that indicates what is displayed in a diagram and how it is
shown.

Associated Table in Repository

t_diagramobjects

DiagramObject Attributes

Attribute Remarks

BackgroundColor Long

Notes: The background color of the object on the diagram.

Set to -1 to re-set to the default color in the model.

BorderColor Long

Notes: The border line color of the object on the diagram.

Set to -1 to re-set to the default color in the model.

BorderLineWidth Long

Notes: The border line width of the object on the diagram.

Valid values are 1 (narrowest) to 5 (thickest); a default of 1 is applied if an invalid
value is passed in.

Bottom Long

Notes: Read/Write

The bottom edge position of the object on the diagram. Enterprise Architect uses a
cartesian coordinate system, with {0,0} being the top-left corner of the diagram.
For this reason, Y-axis values (Top and Bottom) should always be negative.

DiagramID Long

Notes: Read/Write

The ID of the associated diagram.

ElementDisplayMode Long

Notes: Indicates how to adjust the element features if the element is resized.

 1 = Resize to longest feature

 2 = Wrap features

 3 = Truncate features

Defaults to 1 if an invalid value is supplied.

ElementID Long

Notes: Read/Write

(c) Sparx Systems 2023 Page 221 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

The ElementID of the object instance in this diagram.

FeatureStereotypesTo

Hide

String

Notes: Lists the stereotypes to hide on the object on the diagram.

FontBold Boolean

Notes: Get or Set the status of the object text font as Bold.

FontColor Long

Notes: The color of the font of the object text on the diagram.

FontItalic Boolean

Notes: Get or Set the status of the object text font as Italic.

FontName String

Notes: The name of the font used for the object text.

FontSize String

Notes: The size of the font used for the object text.

FontUnderline Boolean

Notes: Get or Set the status of the object text font as Underlined.

InstanceGUID String

Notes: The instance GUID for the object on the diagram (the DUID).

InstanceID Long

Notes: Read

Holds the connector identifier for the current model.

IsSelectable Boolean

Notes: Indicates whether this object on the diagram can be selected.

Left Long

Notes: Read/Write

The left edge position of the object on the diagram.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Right Long

Notes: Read/Write

The right edge position of the object on the diagram.

Sequence Long

Notes: Read/Write

The sequence position when loading the object into the diagram (this affects its Z

(c) Sparx Systems 2023 Page 222 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

order).

The Z-order is one-based and the lowest value is in the foreground.

ShowComposedDiagram Boolean

Notes: Indicates whether the object's composite diagram should be displayed by
default when the object is selected.

ShowConstraints Boolean

Notes: Show constraints for this object on the diagram.

ShowFormattedNotes Boolean

Notes: Show any formatting applied to the notes, for this object on the diagram.
ShowNotes must be True for the formatted notes to be displayed.

ShowFullyQualifiedTags Boolean

Notes: Show fully qualified Tagged Values for this object on the diagram.

ShowInheritedAttributes Boolean

Notes: Show inherited attributes for this object on the diagram.

ShowInheritedConstraints Boolean

Notes: Show inherited constraints for this object on the diagram.

ShowInheritedOperations Boolean

Notes: Show inherited operations for this object on the diagram.

ShowInheritedResponsibili
ties

Boolean

Notes: Show the inherited requirements within the Requirements compartment for
this object on the diagram.

ShowInheritedTags Boolean

Notes: Show inherited Tagged Values for this object on the diagram.

ShowNotes Boolean

Note: Show the notes for this object on the diagram.

ShowPackageAttributes Boolean

Notes: Show Package attributes for this object on the diagram.

ShowPackageOperations Boolean

Notes: Show Package operations for this object on the diagram.

ShowPortType Boolean

Notes: Show the Port type.

ShowPrivateAttributes Boolean

Notes: Show private attributes for this object on the diagram.

ShowPrivateOperations Boolean

(c) Sparx Systems 2023 Page 223 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Notes: Show private operations for this object on the diagram.

ShowProtectedAttributes Boolean

Notes: Show protected attributes for this object on the diagram.

ShowProtectedOperations Boolean

Notes: Show protected operations for this object on the diagram.

ShowPublicAttributes Boolean

Notes: Show public attributes for this object on the diagram.

ShowPublicOperations Boolean

Notes: Show public operations for this object on the diagram.

ShowResponsibilities Boolean

Notes: Show the requirements compartment for this object on the diagram.

ShowRunstates Boolean

Notes: Show Runstates for this object on the diagram.

ShowStructuredCompartm
ents

Boolean

Note: Indicates whether to display the Structure Compartments for this object on
the diagram.

ShowTags Boolean

Notes: Show Tagged Values for this object on the diagram.

Style Variant

Notes: Read/Write

The style information for this object. Returns a semi-colon delimited string that
defines the current style settings. Changing a value will completely overwrite the
previously existing value, so caution is advised to avoid losing existing style
information that you want to keep.

See Setting the Style.

TextAlign Long

Notes: Indicates the alignment of text on a Text element on the diagram.

 1 = Left aligned

 2 = Center aligned

 3 = Right aligned

Defaults to 1 if an invalid value is supplied.

Top Long

Notes: Read/Write

The top edge position of the object on the diagram. Enterprise Architect uses a
cartesian coordinate system, with {0,0} being the top-left corner of the diagram.
For this reason, Y-axis values (Top and Bottom) should always be negative.

(c) Sparx Systems 2023 Page 224 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

DiagramObject Methods

Method Remarks

GetLastError () String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

MoveElementToGridPositi
on (GridX, GridY)

Notes: Currently not implemented.

ResetFont Notes: Resets the font of the object text on the diagram back to the model default.

SetFontStyle (FontName,
FontSize, Bold, Italic,
Underline)

Boolean

Notes: Sets the font of the object text on the diagram to the specified values.

SetStyleEx (string
Parameter, string Value)

Void

Notes: Sets an individual parameter of the Style string.

Parameters:

Parameter: String - the name of the style parameter to modify; for example:·
 "BCol" = background color
 "BFol" = font color
 "LCol" = line color
 "LWth" = line width

Value: String - the new value for the style parameter·

Update () Boolean

Notes: Updates the current DiagramObject after modification or appending a new
item

If False is returned, check the GetLastError function for more information.

Setting the Style

The Style attribute contains various settings that affect the appearance of a DiagramObject. However, it is not
recommended to directly edit this attribute string. Instead, use either the SetStyleEx method or one of the individual
DiagramObject attributes such as BackgroundColor, FontColor or BorderColor.

For example, the Style string might contain a series of values in a format such as:

 BCol=n;BFol=n;LCol=n;LWth=n;

where:

BCol = Background Color·
BFol = Font Color·
LCol = Line Color·
LWth = Line Width·

The value assigned to each of the Style color properties is a decimal representation of the hex RGB value, where
Red=FF, Green=FF00 and Blue=FF0000.

(c) Sparx Systems 2023 Page 225 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

This code snippet shows how you might change the style settings for all of the objects in the current diagram, changing
the background color to red (FF=255) and the font and line colors to yellow (FFFF=65535):

 For Each aDiagObj In aDiag.DiagramObjects

 aDiagObj.BackgroundColor=255

 aDiagObj.FontColor=65535

 aDiagObj.BorderColor=65535

 aDiagObj.BorderLineWidth=1

 aDiagObj.Update

 aRepos.ReloadDiagram aDiagObj.DiagramID

 Next

(c) Sparx Systems 2023 Page 226 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

SwimlaneDef Class

A SwimlaneDef object makes available attributes relating to a single row or column in a list of swimlanes.

SwimlaneDef Attributes

Attribute Description

Bold Boolean

Notes: Read/Write

Show the title text in bold.

FontColor Long

Notes: Read/Write

The RGB color used to draw the titles.

HideClassifier Boolean

Notes: Read/Write

Removes any classifier from the title display.

HideNames Boolean

Notes: Read/Write

Set to True to hide the swimlane titles.

LineColor Long

Notes: Read/Write

The RGB color used to draw swimlane borders.

LineWidth Long

Notes: Read/Write

The width, in pixels, of the line used to draw swimlanes. Valid values are 1, 2 or 3.

Locked Boolean

Notes: Read/Write

If set to True, disables user modification of the swimlanes via the diagram.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Orientation String

Notes: Read/Write

Indicates whether the swimlanes are vertical or horizontal.

ShowInTitleBar Boolean

Notes: Read/Write

(c) Sparx Systems 2023 Page 227 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Enables vertical swimlane titles to be shown in the title bar.

Swimlanes Swimlanes

Notes: Read/Write

A list of individual swimlanes.

(c) Sparx Systems 2023 Page 228 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Swimlanes Class

A Swimlanes object is attached to a diagram's SwimlaneDef object and provides a mechanism to access individual
swimlanes.

Swimlanes Attributes

Attribute Description

Count Long

Notes: Read/Write

Gives the number of swimlanes.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Swimlanes Methods

Method Description

Add(string Title, long
Width)

Swimlane

Notes: Adds a new swimlane to the end of the list, and returns a swimlane object
representing the newly added entry.

Parameters:

Title: String - The title text that appears at the top of the swimlane; this can be·
the same as an existing swimlane title

Width: Long - The width of the swimlane in pixels·

Delete(object Index) Void

Notes: Deletes a selected swimlane.

If the string matches more than one entry, only the first entry is deleted.

Parameter:

Index: Object - Either a string representing the title text or an integer·
representing the zero-based index of the swimlane to delete

DeleteAll() Void

Notes: Removes all swimlanes.

Insert(long Index, string
Title, long Width)

Swimlane

Notes: Inserts a swimlane at a specific position, and returns a swimlane object
representing the newly added entry.

Parameters:

Index: Long - The zero-based index of the existing Swimlane before which this·

(c) Sparx Systems 2023 Page 229 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

new entry is inserted

Title: String - The title text that appears at the top of the swimlane; this can be·
the same as an existing swimlane title

Width: Long - The width of the swimlane in pixels·

Items(object Index) Swimlane collection

Notes: Accesses an individual swimlane.

If the string matches more than one swimlane title, the first matching swimlane is
returned.

Parameter:

Index: Object - Either a string representing the title text or an integer·
representing the zero-based index of the swimlane to get

(c) Sparx Systems 2023 Page 230 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Swimlane Class

A Swimlane object makes available attributes relating to a single row or column in a list of swimlanes.

Swimlane Attributes

Attribute Description

BackColor Long

Notes: Read/Write

The RGB color that the swimlane is filled with.

ClassifiedGuid String

Notes: Read/Write

The GUID of the classifier Class. This can be obtained from the corresponding
element object via the ElementGUID property.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Title String

Notes: Read/Write

The text at the head of the swimlane.

Width Long

Notes: Read/Write

The width of the swimlane, in pixels.

(c) Sparx Systems 2023 Page 231 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Project Interface Package

The Enterprise Architect.Project interface. This is the interface to Enterprise Architect elements; it also includes some
utility functions. You can get a pointer to this interface using the Repository.GetProjectInterface method.

Example

(c) Sparx Systems 2023 Page 232 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Project Class

The Project interface can be accessed from the Repository using GetProjectInterface(). The returned interface provides
access to the XML-based Enterprise Architect Automation Interface. Use this interface to get XML for the various
internal elements and to run some utility functions to perform tasks such as load diagrams or run reports.

Project Attributes

Attribute Remarks

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Notes

The Project methods listed here all require input GUIDs in XML format; use GUIDtoXML to change the Enterprise·
Architect GUID to an XML GUID

Project Methods

Method Remarks

BuildExecutableStatemachi
ne (string ElementGUID,
string ExtraOptions)

Boolean

Notes: Builds Executable StateMachine code for an <<executable statemachine>>
Artifact element.

Parameters:

ElementGUID: String - the GUID (in XML format) of the element to generate·
ExtraOptions: String - enables extra options to be given to the command·
(currently unused)

CancelValidation () Void

Notes: Cancels a validation process.

CanValidate () Boolean

Notes: Returns a value to indicate that the Model Validation component is loaded.

CreateBaseline (string
PackageGUID, string
Version, string Notes)

Boolean

Notes: Creates a Baseline of a specified Package.

Parameters:

PackageGUID: String - the GUID (in XML format) of the Package to Baseline·
Version: String - the version of the Baseline·
Notes: String - any notes concerning the Baseline·

(c) Sparx Systems 2023 Page 233 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

CreateBaselineEx (string
PackageGUID, string
Version, string Notes,
EA.CreateBaselineFlag
Flags)

Boolean

Notes: Creates a Baseline of a specified Package, with a flag to exclude Package
contents below the first level.

Parameters:

PackageGUID: String - the GUID (in XML format) of the Package to be·
Baselined

Version: String - the version of the Baseline·
Notes: String - any notes concerning the Baseline·
Flags: EA.CreateBaselineFlag - whether or not to exclude the Package contents·
below the first level

DefineRule (string
CategoryID,
EA.EnumMVErrorType
ErrorType, string
ErrorMessage)

String

Notes: Defines the individual rules that can be performed during model validation.
It must be called once for each rule from the EA_OnInitializeUserRules broadcast
handler.

The return value is a RuleId, which can be used for reference purposes when an
individual rule is executed by Enterprise Architect during model validation.

See the Model Validation Example for a detailed example of the use of this method.

Parameters:

CategoryId: String - should be passed the return value from the·
DefineRuleCategory method

ErrorType: EA.EnumMVErrorType - depending on the severity of the error·
being validated, can be:
 - mvErrorCritical
 - mvError
 - mvWarning, or
 - mvInformation

ErrorMessage: String - can contain a default error string, although this is·
probably overridden by the PublishResult call

DefineRuleCategory (string
CategoryName)

String

Notes: Defines a category of rules that can be performed during model validation
(there is typically one category per Add-In). It must be called once from the
EA_OnInitializeUserRules broadcast handler.

The return value is a CategoryId that must to be passed to the DefineRule method.

See the Model Validation Example for a detailed example of the use of this method.

Parameters:

CategoryName: String - a text string that is visible in the 'Model Validation·
Configuration' dialog

DeleteBaseline (string
BaselineGUID)

Boolean

Notes: Deletes a Baseline, identified by the BaselineGUID, from the repository.

If the repository is configured to store Baselines in a Reusable Asset Service
Registry, then it is not possible to delete the Baseline and a False value is returned.

Parameters:

BaselineGUID: String - the GUID (in XML format) of the Baseline to delete·

DoBaselineCompare
(string PackageGUID,
string Baseline, string

String

Notes: Performs a Baseline comparison using the supplied Package GUID and
Baseline GUID (obtained in the result list from GetBaselines).

(c) Sparx Systems 2023 Page 234 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ConnectString) Optionally you can include the connection string required to find the Baseline if it
exists in a different model file.

This method returns a log file of the status of all elements found and compared in
the difference procedure. You can use this log information as input to
DoBaselineMerge - automatically merging information from the Baseline.

Parameters:

PackageGUID: String - the GUID (in XML format) of the Package to run the·
comparison on

Baseline: String - the GUID (in XML format) of the Baseline to run the·
comparison on

ConnectString: String - not currently used·

DoBaselineMerge (string
PackageGUID, string
Baseline, string
MergeInstructions, string
ConnectString)

String

Notes: Performs a batch merge based on instructions contained in an XML file
(MergeInstructions). You can supply an optional connection string if the Baseline is
located in another model.

In the MergeInstructions file, each MergeItem node supplies the GUID of a
differenced item from the XML difference log. As the merge is uni-directional and
actioned in only one possible way, no additional arguments are required. Enterprise
Architect chooses the correct procedure based on the 'Difference' results.

 <Merge>

 <MergeItem guid="{XXXXXX}" />

 <MergeItem guid="{XXXXXX}" />

 </Merge>

Alternatively, you can supply a single Mergeitem with a GUID of RestoreAll. In
this case, Enterprise Architect batch-processes ALL differences.

 <Merge>

 <MergeItem guid="RestoreAll" changed="true" baselineOnly="true"
modelOnly="true" moved="true" fullRestore="false" />

 </Merge>

Parameters:

PackageGUID: String - the GUID (in XML format) of the Package to merge·
the Baseline into

Baseline: String - the GUID of the Baseline (in XML format) to merge into the·
Package

MergeInstructions: String - the file containing the GUID of each differenced·
item from the XML difference log returned by DoBaselineCompare()

ConnectString: String - not currently used·

EnumDiagramElements
(string DiagramGUID)

protected abstract: String

Notes: Gets an XML list of all elements in a diagram.

Parameters:

DiagramGUID: String - the GUID (in XML format) of the diagram to get·
elements for

EnumDiagrams (string
PackageGUID)

protected abstract: String

Notes: Gets an XML list of all diagrams in a specified Package.

Parameters:

PackageGUID: String - the GUID (in XML format) of the Package to list·
diagrams for

(c) Sparx Systems 2023 Page 235 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

EnumElements (string
PackageGUID)

protected abstract: String

Notes: Gets an XML list of elements in a specified Package.

Parameters:

PackageGUID: String - the GUID (in XML format) of the Package to get a list·
of elements for

EnumLinks (string
ElementGUID)

protected abstract: String

Notes: Gets an XML list of connectors for a specified element.

Parameters:

ElementGUID: String - the GUID (in XML format) of the element to get all·
associated connectors for

EnumPackages (string
PackageGUID)

protected abstract: String

Notes: Gets an XML list of child Packages inside a parent Package.

Parameters:

PackageGUID: String - the GUID (in XML format) of the parent Package·

EnumProjects () protected abstract: String

Notes: Gets a list of projects in the current file; corresponds to Models in
Repository.

EnumViewEx (string
ProjectGUID)

protected abstract: String

Notes: Gets a list of Views in the current project.

Parameters:

ProjectGUID: String - the GUID (in XML format) of the project to get views·
for

EnumViews () protected abstract: String

Notes: Enumerates the Views for a project. Returned as an XML document.

Exit () protected abstract: String

Notes: Exits the current instance of Enterprise Architect; this function is maintained
for backward compatibility and should never be called.

Enterprise Architect automatically exits when you are no longer using any of the
provided objects.

ExportPackageXMI (string
PackageGUID,
enumXMIType XMIType,
long DiagramXML, long
DiagramImage, long
FormatXML, long
UseDTD, string FileName)

protected abstract: String

Notes: Exports XMI for a specified Package.

Parameters:

PackageGUID: String - the GUID (in XML format) of the Package to be·
exported

XMIType: EnumXMIType - specifies the XMI type and version information;·
see XMIType Enum for accepted values

DiagramXML: Long - True if XML for diagrams is required; accepted values:·
 0 = Do not export diagrams
 1 = Export diagrams
 2 = Export diagrams along with alternative images

DiagramImage: Long - the format for diagram images to be created at the same·
time; accepted values:

(c) Sparx Systems 2023 Page 236 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

 -1 = NONE
 0 = EMF
 1 = BMP
 2 = GIF
 3 = PNG
 4 = JPG

FormatXML: Long - True if XML output should be formatted prior to saving·
UseDTD: Long - True if a DTD should be used·
FileName: String - the filename to output to·

ExportPackageXMIEx
(string PackageGUID,
enumXMIType XMIType,
long DiagramXML, long
DiagramImage,

long FormatXML, long
UseDTD, string FileName,
ea.ExportPackageXMIFlag
Flags)

protected abstract: String

Notes: Exports XMI for a specified Package, with a flag to determine whether the
export includes Package content below the first level.

Parameters:

PackageGUID: String - the GUID (in XML format) of the Package to be·
exported

XMIType: EnumXMIType - specifies the XMI type and version information;·
see XMIType Enum for accepted values

DiagramXML: Long - true if XML for diagrams is required; accepted values:·
 0 = Do not export diagrams
 1 = Export diagrams
 2 = Export diagrams along with alternative images

DiagramImage: Long - the format for diagram images to be created at the same·
time; accepted values:
 -1 =NONE
 0 =EMF
 1 =BMP
 2 =GIF
 3 =PNG
 4 =JPG

FormatXML: Long - True if XML output should be formatted prior to saving·
UseDTD: Long - True if a DTD should be used.·
FileName: String - the filename to output to·
Flags: ea.ExportPackageXMIFlag - specify whether or not to include Package·
content below the first level (currently supported for xmiEADefault), whether
or not to exclude tool-specific information from export

ExportProjectXML (string
DirectoryPath)

Boolean

Notes: Exports the entire current project to Native XML files in the specified
directory. The contents of the directory will be deleted prior to exporting the project
data

Parameters:

DirectoryPath: String - directory path to save the exported Native XML files·

ExportReferenceData
(string FileName, string
Tables)

Boolean

Notes: Exports Reference Data.

Parameters:

FileName: String - the name of the file to output the reference data to·
Tables: String - the list of reference data tables to be output; the data table·
delimeter is ";"
If the string is empty, Enterprise Architect will prompt with a dialog to select
the tables to output

(c) Sparx Systems 2023 Page 237 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

GenerateBuildRunExecuta
bleStateMachine (string
ElementGUID, string
ExtraOptions)

Boolean

Notes: Generates, builds and runs Executable StateMachine code for an
<<executable statemachine>> Artifact element, which will start simulation of the
StateMachine.

Parameters:

ElementGUID: String - the GUID (in XML format) of the element to generate·
ExtraOptions: String - enables extra options to be given to the command·
(currently unused)

GenerateClass (string
ElementGUID, string
ExtraOptions)

Boolean

Notes: Generates the code for a single Class.

Parameters:

ElementGUID: String - the GUID (in XML format) of the element to generate·
ExtraOptions: String - enables extra options to be given to the command;·
currently unused

GenerateDiagramFromSce
nario (string
ElementGUID,
EnumScenarioDiagramTyp
e DiagramType, long
OverwriteExistingDiagram
)

Boolean

Notes: Generates various diagrams from the scenario specification of an element.

Parameters:

ElementGUID: String - the GUID (in XML format) of the element containing·
the scenario specification

DiagramType: EnumScenarioDiagramType - the type of diagram to generate;·
see ScenarioDiagramType Enum for accepted values

OverwriteExistingDiagram: Long - determines whether to overwrite the·
existing diagram or synchronize the existing elements with the scenario steps
 0 = Delete the existing diagram and elements, and create a new diagram and
elements
 1 = Synchronize existing elements with the scenario steps and preserve the
diagram layout
 2 = Synchronize existing elements with the scenario steps and re-cast the
diagram layout
 3 = Do not generate a diagram if one already exists

GenerateElementDDL
(string ElementGUID,
string FileName, string
ExtraOptions)

Boolean

Notes: Generates DDL for an element using the options that are currently set on the
Generate DDL screen.

GenerateExecutableStatem
achine (string
ElementGUID, string
ExtraOptions)

Boolean

Notes: Generates Executable StateMachine code for an <<executable
statemachine>> Artifact element.

Parameters:

ElementGUID: String - the GUID (in XML format) of the element to generate·
ExtraOptions: String - enables extra options to be given to the command·
(currently unused, pass an empty string to ensure current behavior in future
versions)

GeneratePackage (string
PackageGUID,

string ExtraOptions)

Boolean

Notes: Generates the code for all Classes within a Package.

For example:

(c) Sparx Systems 2023 Page 238 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

 recurse=1;overwrite=1;dir=C:\

Parameters:

PackageGUID: String - the GUID (in XML format) of the Package to generate·
code for

ExtraOptions: String - enables extra options to be given to the command;·
currently enables:
 - Generation of all sub-Packages (recurse)
 - Force overwrite of all files (overwrite) and
 - Specification to auto generate all paths (dir)

GeneratePackageDDL
(string PackageGUID,
string FileName, string
ExtraOptions)

Boolean

Notes: Generates DDL for all elements in a Package using the options that are
currently set on the Generate DDL screen.

GenerateTestFromScenario
(string ElementGUID,
EnumScenarioTestType
TestType)

Boolean

Notes: Generates a Vertical Test Suite, a Horizontal Test Suite, an Internal test or
an External test from the scenario specification of an element.

Parameters:

ElementGUID: String - the GUID (in XML format) of the element containing·
the scenario specification

TestType: EnumScenarioTestType - the type of test to generate; see·
ScenarioTestType Enum for accepted values

GenerateWSDL(string
WSDLComponentGUID,
string Filename, string
Encoding, string
ExtraOptions)

Boolean

Notes: Generates WSDL for the specified WSDL stereotyped Component.

Parameters:

WSDLComponentGUID: String - the GUID (in XML format) of the WSDL·
stereotyped Component

Filename: String - the target file path·
Encoding: String - the XML encoding for the code page instruction·
ExtraOptions: String - enables extra options to be given to the command;·
currently unused

GenerateXSD (string
PackageGUID,

string FileName,

string Encoding,

string Options)

Boolean

Notes: Creates an XML schema for a Package, specified by its GUID. Returns True
on success.

Parameters:

PackageGUID: String - the GUID (in XML format) of the Package·
FileName: String - the target filepath·
Encoding: String - the XML encoding for the code page instruction·
Options: String - enables extra options to be given to the command, in a·
comma-separated string; currently enables:
 - GenGlobalElement - turn the generation of global elements for
 all global ComplexTypes On or Off; for example:
 GenGlobalElement=1
 - UseRelativePath - turns on or off the option to use a relative
 path in the XSD import or XSD include statement when
 referencing external Package, provided the schemaLocation tag
 is empty on the referenced Packages; for example:
 UseRelativePath=1

(c) Sparx Systems 2023 Page 239 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

GetAllDiagramImagesAnd
Map (string Directory)

Boolean

Notes : Saves the image and image-map for every diagram in the model, in the
specified directory location.

The image files will be saved in PNG format and each will have the diagram GUID
as the image name. The image-map files will be saved as .txt files and each will
have the diagram GUID as the image map name.

The 'Auto Create Diagram Image and Image Map' option must be selected in the
model options for this function to save the images and image-maps.

Parameters:

Directory – the location of the directory into which the images and image-maps·
are to be saved

GetBaselines (string
PackageGUID, string
ConnectString)

String

Notes: Returns a list (in XML format) of Baselines associated with the supplied
Package GUID.

Parameters:

PackageGUID: String - the GUID (in XML format) of the Package to get·
Baselines for

ConnectString: String - not currently used·

GetDiagram (string
DiagramGUID)

protected abstract: String

Notes: Gets the diagram details, in XML format.

Parameters:

DiagramGUID: String - the GUID (in XML format) of the diagram to get·
details for

GetDiagramImageAndMap
(string DiagramGUID,
string Directory)

Boolean

Notes: Saves the image and image-map for the diagram with the specified GUID, in
the specified directory location.

The image will be saved in PNG format and will have the DiagramGUID as the
image name. The image-map will be saved as a .txt file and will have the
DiagramGUID as the image-map name.

The 'Auto Create Diagram Image and Image Map' option must be selected in the
model-specific options for this function to save the image and image-map.

Parameters:

DiagramGUID – the GUID of the diagram for which the image and image-map·
are to be saved

Directory – the directory into which the image and image-map are to be saved·

GetElement (string
ElementGUID)

protected abstract: String

Notes: Gets XML for the specified element.

Parameters:

ElementGUID: String - the GUID (in XML format) of the element to retrieve·
XML for

GetElementConstraints
(string ElementGUID)

protected abstract: String

Notes: Gets constraints for an element, in XML format.

Parameters:

ElementGUID: String - the GUID (in XML format) of the element·

(c) Sparx Systems 2023 Page 240 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

GetElementEffort (string
ElementGUID)

protected abstract: String

Notes: Gets efforts for an element, in XML format.

Parameters:

ElementGUID: String - the GUID (in XML format) of the element·

GetElementFiles (string
ElementGUID)

protected abstract: String

Notes: Gets metrics for an element, in XML format.

Parameters:

ElementGUID: String - the GUID (in XML format) of the element·

GetElementMetrics (string
ElementGUID)

protected abstract: String

Notes: Gets files for an element, in XML format.

Parameters:

ElementGUID: String - the GUID (in XML format) of the element·

GetElementProblems
(string ElementGUID)

protected abstract: String

Notes: Gets a list of issues (problems) associated with an element, in XML format.

Parameters:

ElementGUID: String - the GUID (in XML format) of the element·

GetElementProperties
(string ElementGUID)

protected abstract: String

Notes: Gets Tagged Values for an element, in XML format.

Parameters:

ElementGUID: String - the GUID (in XML format) of the element·

GetElementRequirements
(string ElementGUID)

protected abstract: String

Notes: Gets a list of requirements for an element, in XML format.

Parameters:

ElementGUID: String -the GUID (in XML format) of the element·

GetElementResources
(string ElementGUID)

protected abstract: String

Notes: Gets a list of resources for an element, in XML format.

Parameters:

ElementGUID: String - the GUID (in XML format) of the element·

GetElementRisks (string
ElementGUID)

protected abstract: String

Notes: Gets a list of risks associated with an element, in XML format.

Parameters:

ElementGUID: String - the GUID (in XML format) of the element·

GetElementScenarios
(string ElementGUID)

protected abstract: String

Notes: Gets a list of scenarios for an element, in XML format.

Parameters:

ElementGUID: String - the GUID (in XML format) of the element·

GetElementTests (string
ElementGUID)

protected abstract: String

Notes: Gets a list of tests for an element, in XML format.

(c) Sparx Systems 2023 Page 241 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Parameters:

ElementGUID: String - the GUID (in XML format) of the element·

GetFileNameDialog (string
Filename, string
FilterString, long
FilterIndex, long Flags,
string InitialDirectory,

long OpenOrSave)

String

Notes: Opens a standard 'File Open' or 'Save As' dialog and returns a string
containing the full path to the selected file on success. Returns an empty string if
the dialog was canceled.

For example:

 Filename = ""

 FilterString = "CSV Files (*.csv)|*.csv|All Files (*.*)|*.*||"

 Filterindex = 1

 Flags = &H2 'OFN_OVERWRITEPROMPT

 InitialDirectory = ""

 OpenOrSave = 1

 filepath = Project.GetFileNameDialog (Filename, FilterString, Filterindex,
Flags, InitialDirectory, OpenOrSave)

In this example, the 'Save As' dialog will prompt for a CSV file.

Parameters:

Filename: String - default filename specified in the dialog·
FilterString: String - delimited list of available file type filters·
Filterindex: Long - one-based index of the filter to be used by default·
Flags: Long - additional bit flags used to initialize the file dialog; see the·
OPENFILENAME structure in MSDN documentation for accepted values

InitialDirectory: String - directory path to open this dialog·
OpenOrSave: Long - show dialog as an 'Open' or 'Save As' style dialog;·
accepted values: 0 = Open, 1 = Save As

GetLastError () protected abstract: String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

GetLink (string
LinkGUID)

protected abstract: String

Notes: Gets connector details, in XML format.

Parameters:

LinkGUID: String - the GUID (in XML format) of the connector to get details·
of

GUIDtoXML (string
GUID)

String

Notes: Changes an internal GUID to the form used in XML.

Parameters:

GUID: String - the Enterprise Architect style GUID to convert to XML format·

ImportDirectory (string
PackageGUID, string
Language, string
DirectoryPath, string
ExtraOptions)

Boolean

Notes: Imports a source code directory into the model.

Parameters:

PackageGUID: String - the GUID (in XML format) of the Package to reverse·
engineer code into

Language: String - specifies the language of the code to be imported·

(c) Sparx Systems 2023 Page 242 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

DirectoryPath: String - specifies the path where the code is found on the·
computer

ExtraOptions: String - enables extra options to be given to the command;·
currently enables import of source from all child directories (recurse) - for
example: recurse=1

ImportFile (string
PackageGUID, string
Language, string
FileName, string
ExtraOptions)

Boolean

Notes: Imports an individual file or binary module into the model, in a Package per
namespace style import.

Parameters:

PackageGUID: String - the GUID (in XML format) of the Package to reverse·
engineer code into; this is expected to be a namespace root Package

Language: String - specifies the language of the code to be imported·
Use the value 'DNPE' to import a binary module; this imports a .NET assembly
or Java .class file, but not a .jar file

Filename: String - specifies the path where the code or module is found on the·
computer

ExtraOptions: String - enables extra options to be given to the command;·
currently unused

ImportPackageXMI (string
PackageGUID, string
Filename, long
ImportDiagrams, long
StripGUID)

String

Notes: Imports an XMI file at a point in the tree. Returns an empty string if
successful, or returns an error message on failure.

Parameters:

PackageGUID: String - the GUID (in XML format) of the target Package to·
import the XMI file into (or overwrite with the XMI file)

Filename or XMLText: String - the name of the XMI file; if the String is of·
type filename it is interpreted as a source file, otherwise the String is imported
as XML text

ImportDiagrams: Long - 1 for importing diagrams and 0 to skip importing·
diagrams

StripGUID: Long·
 - 1 to replace the element UniqueIDs on import; if stripped, then
 a copy of the Package could be imported into the same Enterprise
 Architect model as two different versions
 - 0 to retain the element UniqueIDs on import; a duplicate copy of
 the Package cannot be created in the same model of Enterprise
 Architect

ImportReferenceData
(string FileName, string
DataSets)

Boolean

Notes: Imports Reference Data.

Parameters:

FileName: String - the name of the reference data file to import from·
DataSets: String - the list of reference data sets to import from; the data set·
delimeter is ";"
If the string is empty, Enterprise Architect displays a dialog prompt to select
the data sets to import

ImportVisualStudioSolutio
n (string PackageGUID,
string SolutionPath)

Boolean

Notes: Imports a Visual Studio Solution into the model.

Parameters:

PackageGUID: string - the GUID (in XML format) of the Package to reverse·

(c) Sparx Systems 2023 Page 243 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

engineer the solution into

SolutionPath: string - specifies the path of the Visual Studio Solution file on·
the computer

LayoutDiagram (string
DiagramGUID, long
LayoutStyle)

Boolean

Notes: Deprecated. Use LayoutDiagramEx.

Calls the function to automatically layout a diagram in hierarchical fashion. It is
only recommended for Class and Object diagrams.

Parameters:

DiagramGUID: String - the GUID (in XML format) of the diagram to lay out·
LayoutStyle: Long - always ignored·

LayoutDiagramEx (string
DiagramGUID, long
LayoutStyle, long
Iterations, long
LayerSpacing, long
ColumnSpacing, boolean
SaveToDiagram)

Boolean

Notes: Calls the function to automatically layout a diagram in hierarchical fashion.
It is only recommended for Class and Object diagrams.

LayoutStyle accepts these options

Default Options:·
 - lsDiagramDefault

 - lsProgramDefault

Cycle Removal Options:·
 - lsCycleRemoveGreedy

 - lsCycleRemoveDFS

Layering Options:·
 - lsLayeringLongestPathSink

 - lsLayeringLongestPathSource

 - lsLayeringOptimalLinkLength

Initialize Options:·
 - IsInitializeNaive

 - IsInitializeDFSOut

 - IsInitializeDFSIn

Crossing Reduction Option:·
 - lsCrossReduceAggressive

Layout Options - Direction·
 - lsLayoutDirectionUp

 - lsLayoutDirectionDown

 - lsLayoutDirectionLeft

 - lsLayoutDirectionRight

Parameters:

DiagramGUID: String - the GUID (in XML format) of the diagram to lay out·
LayoutStyle: Long - the layout style·
Iterations: Long - the number of layout iterations the Layout process should·
take to perform cross reduction (Default value = 4)

LayerSpacing: Long - the per-element layer spacing the Layout process should·
use (Default value = 20)

ColumnSpacing: Long - the per-element column spacing the Layout process·
should use (Default value = 20)

SaveToDiagram: Boolean - specifies whether or not Enterprise Architect·

(c) Sparx Systems 2023 Page 244 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

should save the supplied layout options as default to the diagram in question

LoadControlledPackage
(string PackageGUID)

String

Notes: Loads a Package that has been marked and configured as controlled. The
filename details are stored in the Package control data.

Parameters:

PackageGUID: String - the GUID (in XML format) of the Package to load·

LoadDiagram (string
DiagramGUID)

protected abstract: Boolean

Notes: Loads a diagram by its GUID.

Parameter:

DiagramGUID: String - the GUID (in XML format) of the diagram to load; if·
you retrieve the GUID using the Diagram interface, use the GUIDtoXML
function to convert it to XML format

LoadProject (string
FileName)

protected abstract: Boolean

Notes: Loads an Enterprise Architect project file.

Do not use this method if you have accessed the Project interface from the
Repository, which has already loaded a file.

Parameters:

FileName: String - the name of the project file to load·

Migrate (string GUID,
string SourceType, string
DestinationType)

Void

Notes: Migrates a model (or part of a model) from one BPMN, ArchiMate, UPDM
or SysML format to an upgraded format.

Parameters:

GUID: String - the GUID of the Package or element for which the contents are·
to be migrated

SourceType: String - the type of model to be upgraded; accepted values:·
 - BPMN
 - BPMN1.1
 - UPDM
 - SysML1.1
 - SysML1.2
 - SysML1.3
 - ArchiMate
 - ArchiMate2
 - UPDM2

DestinationType: String - the type of model to upgrade to; accepted values:·
 - BPMN1.1
 - BPMN1.1::BPEL
 - BPMN2.0
 - UPDM2
 - SysML1.2
 - SysML1.3
 - SysML1.4
 - ArchiMate2
 - ArchiMate3
 - UAF

MigrateToBPMN11 (string
GUID,

string Type)

Void

Notes: Migrates every BPMN 1.0 construct in a Package or an element (including
elements, attributes, diagrams and connectors) to BPMN 1.1.

(c) Sparx Systems 2023 Page 245 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Parameters

GUID: String - the GUID of the Package or element for which the contents are·
to be migrated to BPMN 1.1

Type: String - the type of upgrade, either just to BPMN 1.1 or to BPMN 1.1·
and BPEL. Accepted values are:
- BPMN = migrate to BPMN 1.1
- BPEL = migrate to BPMN 1.1 and update:
 - any diagram with stereotype BPMN to BPEL
 - any element with stereotype BusinessProcess to BPELProcess

Migrating to BPEL is possible in the Ultimate and Unified Editions of Enterprise
Architect.

ProjectTransfer (string
SourceFilePath,

string TargetFilePath,

string LogFilePath)

Boolean

Notes: Transfers the project from a source .eap file or DBMS to a target .eap file,
.eapx file, .feap file, .qea file or .qeax file.

Parameters:

SourceFilePath: String - the path of the source file to transfer·
TargetFilePath: String - the path of the target file, including the file type·
extension; Enterprise Architect creates a new Base project in this location
(using the TargetFilePath as its name) and then transfers the content of the
source project into that file

LogFilePath: String - the path of the log file where the status of the transfer·
process is updated

In automation, the target file must not previously exist. Enterprise Architect creates
a new, empty Base.* file using the specified target name and extension, and
transfers the source project into it.

PublishResult (string
CategoryID,

EA.EnumMVErrorType
ErrorType,

string ErrorMessage)

String

Notes: Returns the results of each rule that can be performed during model
validation. It must be called once for each rule from the EA_OnInitializeUserRules
broadcast handler.

The return value is a RuleId, which can be used for reference purposes when an
individual rule is executed by Enterprise Architect during model validation.

See the Model Validation Example for a detailed example of the use of this method.

Parameters:

CategoryId: String - should be passed the return value from the·
DefineRuleCategory method

ErrorType: EA.EnumMVErrorType - depending on the severity of the error·
being validated, can be:
 - mvErrorCritical
 - mvError
 - mvWarning, or
 - mvInformation

ErrorMessage: String - contains an error string·

PutDiagramImageOnClipb
oard (string DiagramGUID,

long Type)

protected abstract: Boolean

Notes: Copies an image of the specified diagram to the clipboard.

Parameters:

DiagramGUID: String - the GUID (in XML format) of the diagram to copy·
Type: Long - the file type·
 - If Type = 0 then it is a metafile
 - If Type = 1 then it is a Device Independent Bitmap

(c) Sparx Systems 2023 Page 246 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

PutDiagramImageToFile
(string Diagram GUID,

string FileName,

long Type)

protected abstract: Boolean

Notes: Saves an image of the specified diagram to file.

Parameters:

DiagramGUID: String - the GUID (in XML format) of the diagram to save·
FileName: String - the name of the file to save the diagram into·
Type: Long - the file type·
 - If type = 0 then it is a metafile
 - If type = 1 then it uses the file type from the name extension
 (that is, .bmp, .jpg, .gif, .png, .tga)

ReloadProject () protected abstract: Boolean

Notes: Reloads the current project.

This is a convenient method to refresh the current loaded project (in case of outside
changes to the .eap file).

RunExecutableStatemachin
e (string ElementGUID,
string ExtraOptions)

Boolean

Notes: Runs Executable StateMachine code for an <<executable statemachine>>
Artifact element, which will start simulation of the StateMachine

Parameters:

ElementGUID: String - the GUID (in XML format) of the element to generate·
ExtraOptions: String - enables extra options to be given to the command·
(currently unused)

RunModelSearch (string
Search, string SearchTerm,
bool ShowInEA)

Void

Notes: Invokes the Model Search component.

Parameters:

Search: String - the name of an Enterprise Architect defined search·
SearchTerm: String - the term to search for in the project·
ShowInEA: Boolean - execute the search and output in the Model Search·
window

RunReport (string
PackageGUID,

string TemplateName,

string Filename)

protected abstract: Void

Notes: Runs a named document report.

Parameters:

PackageGUID: String - the GUID of the Package or master document to run·
the report on

TemplateName: String - the document report template to use; if the·
PackageGUID has a stereotype of MasterDocument, the template is not
required

FileName: String - the file name and path to store the generated report; the file·
extension specified will determine the format of the generated document - for
example, RTF, PDF

RunHTMLReport (string
PackageGUID,

string ExportPath,

string ImageFormat,

string Style,

String

Notes: Runs an HTML report (as for 'Documentation | Publish as HTML' when you

click on a Package in the Browser window and on the icon).

Parameters:

PackageGUID: String - the GUID (in XML format) of the Package or master·

(c) Sparx Systems 2023 Page 247 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

string Extension) document to run the report on

ExportPath: String - the directory path to store the generated report files·
ImageFormat: String - file format in which to store images - .png or .gif·
Style: String - name of the web style template to apply; use <default> for the·
standard, system-provided template

Extension: String - file extension for generated HTML files (example: .htm)·

SaveControlledPackage
(string PackageGUID)

String

Notes: Saves a Package that has been configured as a controlled Package, to
Native/XMI format. Only the Package GUID is required, Enterprise Architect picks
the rest up from the Package control information.

Parameter:

PackageGUID: String - the GUID (in XML format) of the Package to save·

SaveDiagramImageToFile
(string Filename)

protected abstract: String

Notes: Saves a diagram image of the current diagram to file.

Parameters:

FileName: String - the filename of the image to save·

ShowWindow (long Show) protected abstract: Void

Notes: Shows or hides the Enterprise Architect User Interface.

Parameters:

Show: Long·

SynchronizeClass (string
ElementGUID,

string ExtraOptions)

Boolean

Notes: Synchronizes a Class with the latest source code.

Parameters:

ElementGUID: String - the GUID (in XML format) of the element to update·
from code

ExtraOptions: String - enables extra options to be given to the command;·
currently unused

SynchronizePackage
(string PackageGUID,

string ExtraOptions)

Boolean

Notes: Synchronizes each Class in a Package with the latest source code.

Parameters:

PackageGUID: String - the GUID (in XML format) of the Package containing·
the elements to update from code

ExtraOptions: String - enables extra options to be given to the command;·
currently enables synchronization of all child Packages (children) - for
example: children=1

TransformElement (string
TransformName,

string ElementGUID,

string TargetPackage,

string ExtraOptions)

Boolean

Notes: Transforms an element into a Package.

Parameters:

TransformName: String - specifies the transformation that should be executed·
ElementGUID: String - the GUID (in XML format) of the element to transform·
TargetPackageGUID: String - the GUID (in XML format) of the Package to·
transform into

ExtraOptions: String - enables extra options to be given to the command:·

(c) Sparx Systems 2023 Page 248 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

 - GenCode=True / False - articulate code generation from the
 transformed elements; this option supercedes the current
 model setting

TransformPackage (string
TransformName,

string SourcePackage,

string TargetPackage,

string ExtraOptions)

Boolean

Notes: Runs a transformation on the contents of a Package.

Parameters:

TransformName: String - specifies the transformation that should be executed·
SourcePackageGUID: String - the GUID (in XML format) of the Package to·
transform

TargetPackageGUID: String - the GUID (in XML format) of the Package to·
transform into

ExtraOptions: String - enables extra options to be given to the command:·
 - GenCode=True/False - articulate code generation from the transformed
elements;
 this option supercedes the current model setting
 - SubPackages=True/False - specify if the child Packages are to be included
whilst
 transforming a Package

ValidateDiagram (string
DiagramGUID)

Boolean

Notes: Invokes the Enterprise Architect Model Validation component, then
validates the diagram (for correctness) and the elements and connectors within the
diagram.

Output can be viewed through 'Start > Application > Design > System Output >
Model Validation'.

Returns a Boolean value to indicate the success or failure of the process, regardless
of the results of the validation.

Parameters:

DiagramGUID: String - the GUID of the Diagram Class object·

ValidateElement (string
ElementGUID)

Boolean

Notes: Invokes the Enterprise Architect Model Validation component, then
validates the element and all child elements, diagrams, connectors, attributes and
operations.

Output can be viewed through 'Start > Application > Design > System Output >
Model Validation'.

Returns a Boolean value to indicate the success or failure of the process, regardless
of the results of the validation.

Parameters:

ElementGUID: String - the GUID of the Element Class object·

ValidatePackage (string
PackageGUID)

Boolean

Notes: Invokes the Enterprise Architect Model Validation component, then
validates the Package and all sub-Packages, elements, connectors and diagrams
within it.

Output can be viewed through 'Start > Application > Design > System Output >
Model Validation'.

Returns a Boolean value to indicate the success or failure of the process, regardless
of the results of the validation.

Parameters:

(c) Sparx Systems 2023 Page 249 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

PackageGUID: String - the GUID of the Package Class object·

XMLtoGUID (string
GUID)

String

Notes: Changes a GUID in XML format to the form used inside Enterprise
Architect.

Parameters:

GUID: String - the XML style GUID to convert to Enterprise Architect internal·
format

(c) Sparx Systems 2023 Page 250 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Chart Package

The Chart interface can be used to dynamically construct any of the supported Chart types, using the functions provided
in the Chart Package. The interface is obtained using the GetChart method on a Dynamic Chart element. A Dynamic
Chart element can be created from the 'Charts' page of the Diagram Toolbox, and is typically used on a Dashboard
diagram.

(c) Sparx Systems 2023 Page 251 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Chart Enumerations

These enumerations, used specifically by methods in the Chart interface, are described in the topics of this section. Click
on the enumeration name in the list to the left of this text.

(c) Sparx Systems 2023 Page 252 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ChartAxisCrossType

Enum Values

Enum Value

Auto value: 0

MaximumAxisValue value: 1

MinimumAxisValue value: 2

AxisValue value : 3

Ignore value: 4

FixedDefaultPos value: 5

(c) Sparx Systems 2023 Page 253 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ChartAxisIndex

Enum Values

Enum Value

Unknown value: -1

X value: 0

Y value: 1

Z value: 2

(c) Sparx Systems 2023 Page 254 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ChartAxisLabelType

Enum Values

Enum Value

NoLabels value: 0

NextToAxis value: 1

High value: 2

Low value: 3

(c) Sparx Systems 2023 Page 255 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ChartAxisTickMarkType

Enum Values

Enum Value

NoTicks value: 0

Inside value: 1

Outside value: 2

Cross value: 3

(c) Sparx Systems 2023 Page 256 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ChartAxisType

A set of constants that refer to the various axes used in charts.

Enum Values

Enum Value

CHART_Y_PRIMARY_A
XIS

value: 0

CHART_Y_SECONDAR
Y_AXIS

value: 1

CHART_X_PRIMARY_A
XIS

value: 2

CHART_X_SECONDAR
Y_AXIS

value: 3

CHART_Z_PRIMARY_A
XIS

value: 4

CHART_Z_SECONDARY
_AXIS

value: 5

CHART_Y_POLAR_AXI
S

value: 6

CHART_X_POLAR_AXI
S

value: 7

CHART_A_TERNARY_A
XIS

value: 8

CHART_B_TERNARY_A
XIS

value: 9

CHART_C_TERNARY_A
XIS

value: 10

(c) Sparx Systems 2023 Page 257 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ChartBarShape

Enum Values

Enum Value

Box value: 0

Pyramid value: 1

PyramidPartial value: 2

(c) Sparx Systems 2023 Page 258 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ChartCategory

Enum Values

Enum Value

chartDefault value: 0

chartLine value: 1

chartPie value: 2

chartPie3D value: 3

chartPyramid value: 4

chartPyramid3D value: 5

chartFunnel value: 6

chartFunnel3D value: 7

chartColumn value: 8

chartBar value: 9

chartHistogram value: 10

chartArea value: 11

chartStock value: 12

chartBubble value: 13

chartLongData value: 14

chartHistoricalLine value: 15

chartPolar value: 16

chartDoughnut value: 17

chartDoughnut3D value: 18

chartTorus3D value: 19

chartTernary value: 20

chartColumn3D value: 21

(c) Sparx Systems 2023 Page 259 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

chartBar3D value: 22

chartLine3D value: 23

chartArea3D value: 24

chartSurface3D value: 25

chartDoughnutNested value: 26

chartBoxPlot value: 27

chartBarSmart value: 28

chartBar3DSmart value: 29

(c) Sparx Systems 2023 Page 260 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ChartColorMode

Enum Values

Enum Values

Single value: 0

Multiple value: 1

Palette value: 2

Custom value: 3

Series value: 4

(c) Sparx Systems 2023 Page 261 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ChartCurveType

Enum Values

Enum Value

NoLine value: 0

Line value: 1

Spline value: 2

SplineHermite value: 3

Step value: 4

ReversedStep value: 5

(c) Sparx Systems 2023 Page 262 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ChartDashStyle

Enum Values

Enum Value

Solid value: 0

Dash value: 1

Dot value: 2

DashDot value: 3

DashDotDot value: 4

Custom value: 5

(c) Sparx Systems 2023 Page 263 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ChartFrameStyle

Enum Values

Enum Value

None value: 0

Mesh value: 1

Contour value: 2

ContourMesh value: 3

(c) Sparx Systems 2023 Page 264 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ChartGradientType

Enum Values

Enum Value

None value: 0

Horizontal value: 1

Vertical value: 2

DiagonalLeft value: 3

DiagonalRight value: 4

CenterHorizontal value: 5

CenterVertical value: 6

RadialTop value: 7

RadialCenter value: 8

RadialBottom value: 9

RadialLeft value: 10

RadialRight value: 11

RadialTopLeft value: 12

RadialTopRight value: 13

RadialBottomLeft value: 14

RadialBottomRight value: 15

Bevel value: 16

PipeVertical value: 17

PipeHorizontal value : 18

(c) Sparx Systems 2023 Page 265 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ChartMarkerShape

Enum Values

Enum Value

Circle value: 0

Triangle value: 1

Rectangle value: 2

Rhombus value: 3

(c) Sparx Systems 2023 Page 266 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ChartStockSeriesType

Enum Values

Enum Value

Bar value: 0

Candle value: 1

LineOpen value: 2

LineHigh value: 3

LineLow value: 4

LineClose value: 5

LineCustom value: 6

(c) Sparx Systems 2023 Page 267 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ChartType

Enum Values

Enum Value

chartTypeDEFAULT value: 0

chartTypeSIMPLE value: 1

chartTypeSTACKED value: 2

chartType100STACKED value: 3

chartTypeRANGE value: 4

(c) Sparx Systems 2023 Page 268 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ChartWallOptions

Enum Values

Enum Value

None value: 0, 0x0000

FillLeftWall value: 1, 0x0001

OutlineLeftWall value: 2, 0x0002

FillRightWall value: 4, 0x0004

OutlineRightWall value: 8, 0x0008

FillFloor value: 16, 0x0010

OutlineFloor value: 32, 0x0020

DrawAll value: 65535, 0xFFFF

DrawLeftWall FillLeftWall | OutlineLeftWall

DrawRightWall FillRightWall | OutlineRightWall

DrawFloor FillFloor | OutlineFloor

DrawAllWalls DrawLeftWall | DrawRightWall

OutlineAllWalls OutlineLeftWall | OutlineRightWall

OutlineAll OutlineAllWalls | OutlineFloor

FillAllWalls FillLeftWall | FillRightWall

FillAll FillAllWalls | FillFloor

Default OutlineAll

(c) Sparx Systems 2023 Page 269 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Chart Class

The Chart Class is the primary interface for Chart elements; it is used to create a series, add datapoints to a series and
configure the chart appearance.

Chart Attributes

Attribute Description

Title String

Notes: Read/Write

The title of the chart.

Category ChartCategory

Notes: Read only

The chart category; provided in the SetChartType method.

Type ChartType

Notes: Read only

The chart type; provided in the SetChartType method.

Chart Methods

Method Description

AddChartDataYXZ(double
Y, double X, double Z,
long seriesIndex)

long

Adds a datapoint to an existing series.

Parameters:

Y: double, the primary Y axis value·
X: double, the primary X axis value·
Z: double, the primary Z axis value·
seriesIndex: long, the index of the series (returned by the CreateSeries·
methods)

AddChartDataYY1(string
category, double Y, double
Y1, long seriesIndex)

long

Adds a datapoint to an existing series.

Parameters:

category: string - the x axis group, column or label·
Y: double, the primary Y axis value·
Y1: double, the secondary Y axis value·
seriesIndex: long, the index of the series (returned by the CreateSeries and·
CreateSeriesEx methods)

(c) Sparx Systems 2023 Page 270 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

CreateSeries(string name) LDISPATCH

Adds a new series to the chart. Returns an interface that can be used to add data to
the series and configure its appearance.

Parameters:

name: string, the displayed name of the series·

CreateSeriesEx(string
name, long color,
ChartType type,
ChartCategory category)

LDISPATCH

Creates a series of a particular chart category and type and returns an IChartSeries
interface. This allows charts to form multiple series in various ways. The
CombinedCharts in the EAExample Model are an example of this, displaying three
series for the Area, Column and Line categories respectively.

Parameters:

name: string, the name of the series·
color: long, RGB color value,-1 for default·
type: ChartType, one of the ChartType enumerations·
category: ChartCategory, one of the ChartCategory enumerations·

EnableResizeAxes(boolean
bEnable)

void

Grants or denies the ability to resize axes.

Parameters:

bEnable: boolean·

GetChartAxis(ChartAxisTy
pe type)

LDISPATCH

Returns an IChartAxis interface for the specified axis.

Parameters:

type: ChartAxisType, one of the ChartAxisType enumerations·

GetDiagram3D() LDISPATCH

Returns an IChartDiagram interface that can be used to specify the rendering
engine; Software or OpenGL.

GetSeries(long index) LDISPATCH

Returns an IChartSeries interface for the given index. Indices for series begin at
zero.

Parameters:

index: long·

GetSeriesCount() long

Returns the number of series represented by the chart.

Redraw() void

Redraws the chart.

SetChartType(ChartType
type, ChartCategory
category, boolean
bRedraw, boolean
bResizeAxis)

void

This is typically the first call made on the Chart interface. It defines the style and
appearance of the Chart when it is rendered.

Parameters:

type: ChartType·

(c) Sparx Systems 2023 Page 271 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

category: ChartCategory·
bRedraw: Boolean·
bResizeAxis: Boolean·

SetCurveType(ChartCurve
Type type)

void

Sets the interpolation method of drawing the curve.

Parameters:

type: ChartCurveType, one of the ChartCurveType enumerations, such as Line,·
Spline or SplineHermite.

SetSeriesShadow(boolean
bShow)

void

Displays or hides shadows on series.

Parameters:

bShow: Boolean·

SetThemeOpacity(long
percentage)

void

Sets the opacity of the chart.

Parameters:

percentage: long, chart transparency as a percentage·

ShowAxis(long index) void

Shows the axis for the given index.

Parameters:

index: long, one of the ChartAxisType enumerations·

ShowDataLabels(boolean
show, boolean border,
boolean
dropLineTomarker)

void

Shows or hides data labels on the chart.

Parameters:

show: Boolean, show or hide labels·
border: Boolean, show or hide border on labels·
dropLineTomarker: Boolean, changes position of label with respect to line·

ShowDataMarkers(boolean
show, long size,
ChartmarkerShape shape)

void

Shows or hides data markers on the chart. Also allows setting the appearance of
markers.

Parameters:

show: Boolean, show or hide markers·
size: long, size of markers in pixels·
shape: ChartmarkerShape, one of the ChartmarkerShape enumerations·

(c) Sparx Systems 2023 Page 272 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ChartAxisIndex Class

ChartAxisIndex Attributes

Attribute Description

Visible Boolean

Shows or hides the axis.

ChartAxisIndex Methods

Method Description

EnableMajorUnitIntervalIn
terlacing(boolean
binterlace)

void

Turns interlacing on or off.

GetGuid() string

Returns the guid of the axis. Uniquely identifies an axis.

GetLabel() string

Returns the value of the label of the axis.

SetAxisName(string label,
boolean showonaxis)

void

Sets the label for the axis and whether it should be displayed on the chart.

Parameters:

label: string, the text for the label·
showonaxis: Boolean, a true value indicates that the label is displayed·

SetCrossType(long type) void

Provides a directive or hint for use when calculating the position of labels on an
axis.

Parameters:

type: long, one of the ChartAxisCrossType enumerations·

SetDataFormat(string
format, boolean
formatAsDate)

void

Sets the format string for the conversion of values to strings (e.g. "%.4f"). If the
datapoints represent datetime values, the formatAsDate argument should be true,
and the format string set appropriately (e.g. "%H:%M")

Parameters:

format: string, the format to use when converting datapoint values to string·
formatAsDate: Boolean, a true value indicates the datapoint represent a·
datetime

SetDisplayUnits(double

(c) Sparx Systems 2023 Page 273 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

units) void

Sets the display units on the axis. Basically, the datapoint values are divided by this
figure to give a major unit value. For example, if the datapoint contains meter
values, a value of 1000 would result in kilometers being used as the major unit on
the axis.

Parameters:

units: double, the value of a single unit on the axis·

SetFixedDisplayRange(dou
ble fmin, double fmax)

void

Sets a fixed range for the axis.

Parameters:

fmin: double, the minimum value·
fmax: double, the maximum value·

SetLabelType(long
labelpos)

void

Sets the position of labels on the axis.

Parameters:

labelpos: long, one of the ChartAxisLabelType enumerations·

SetTickMark(long
tickmarkpos)

void

Sets the position of tick marks on the axis.

Parameters:

tickmarkpos: long, one of the ChartAxisTickMarkType enumerations·

ShowMajorGridLines(bool
ean show)

void

Shows or hides grid lines.

(c) Sparx Systems 2023 Page 274 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ChartDataValue Class

The ChartDataValue class provides an interface that allows values to be obtained from points in a series.

ChartDataValue Methods

Method Description

GetValue() double

Returns the value associated with the datapoint.

IsEmpty() Boolean

True if no value exists for the datapoint.

SetEmpty(boolean empty) void

Sets a datapoint on a series to be empty.

Parameters:

empty: Boolean, true if the datapoint is to be considered as empty, having no·
value

SetValue(double value) void

Sets the value of a datapoint.

Parameters:

value: double, the value of the datapoint; setting a value makes a datapoint·
non-empty

(c) Sparx Systems 2023 Page 275 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ChartDiagram3D Class

ChartDiagram3D Methods

Method Description

SetDrawWallOptions(long
options, boolean redraw)

void

Sets the option for how walls and floors - if any - are displayed on the 3D chart.
The options parameter is a bitmask of one or more values from the
ChartWallOptions enum.

Parameters:

options: Long, bitmask of wall and floor display options·
redraw: Boolean, redraws the chart after the function completes·

SetRenderingType(long
engine)

void

Parameters:

engine: long, 0 for software,1 for openGL·

(c) Sparx Systems 2023 Page 276 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ChartFormatSeries Class

A helper class for the ChartSeries class that allows setting appearance options.

ChartFormatSeries Methods

Method Description

SetCurveType(ChartCurve
Type type)

void

Sets the graphic option for rendering lines.

Parameters:

type: long, one of the ChartCurveType enumerations·

SetSeriesLineWidth(long
width)

void

Sets the line width in pixels.

Parameters:

width: long, a pixel value·

SetSeriesOutlineDashStyle
(ChartDashStyle dashstyle)

void

Sets the dash style of the line on the chart/graph.

Parameters:

dashstyle: ChartDashStyle, one of the ChartDashStyle enumerations·

(c) Sparx Systems 2023 Page 277 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ChartSeries Class

ChartSeries Methods

Method Description

AddBoxPlotData(double
ave, double min, double q1,
double q2, double q3,
double max, double
notched)

long

For a chart having the BoxPlot category, adds a single datapoint to the series.

Parameters:

ave: double, the mean value at this point·
min: double, the minimum value at this point·
q1: double, the first quartile value·
q2: double, the second quartile value·
q3: double, the third quartile value·
max: double the maximum value at this point·
notched: double, for a series with notched style, the notched value to express at·
this point

AddDataPoint(double Y) long

Adds a datapoint to the series. Returns the index of the point, which is the number
of points -1.

Parameters:

Y: double, the Y axis value·

AddDataPoint2(double Y,
double X)

long

Adds a datapoint to the series. Returns the index of the point, which is the number
of points -1.

Parameters:

Y: double, the Y axis value·
X: double, the X axis value·

AddDataPoint3(string
category, double Y)

long

Adds a Y axis value for a given category on the X axis.

Parameters:

category: string, the category or column name·
Y: double, the value·

AddStockData(double
open, double high, double
low, double closing,
VARIANT timestamp)

void

Adds data to a series for a chart of the Stock category.

Parameters:

open: double, opening value·
high: double, high value·
low: double, low value·
closing: double, closing value·
timestamp: {datetime, double utcsecs} either VARIANT date value or double,·
in which case the value is interpreted as the number of seconds since midnight

(c) Sparx Systems 2023 Page 278 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

on January 1st, 1970, UTC time

AddSurfaceColors(VARIA
NT colors)

void

Adds one or more colors to the series.

Parameters:

colors: long, or long[], a single RGB color or an array of RGB color values·

CloseShape(boolean close,
boolean fill)

void

Connects the first and last datapoints and fills the shape if 'fill' is true.

Parameters

close: Boolean, if true closes the series·
fill: Boolean, fills the shape·

GetDataPointCount() long

Returns the number of datapoints in the series.

GetDataPointValue(long
index)

LDISPATCH

Returns a ChartDataValue interface for the datapoint with the given index.

Parameters:

index: long, the index of the datapoint (typically returned by AddDataPoint·
functions; a value in the range 0 to n-1, where n is the number of points
returned by the GetDataPointCount function)

GetSeriesFormat() LDISPATCH

Returns a ChartFormatSeries interface that allows the chart appearance to be
changed.

SetBarShape(long
barshape)

void

Sets the shape for Bar charts, 0 for Box, 1 for Pyramid, 2 for PyramidPartial.

Parameters:

barshape: ChartBarShape, one of the ChartBarShape enumerations·

SetColorMapCount(long
count)

void

Sets the number of colors used when rendering the series. Typical values are 4, 8,
16 and 32

Parameters:

count: long, the number of colors to use·

SetColorMode(ChartColor
Mode mode)

void

For 3D charts, sets the interpolation method for filling shapes. Single, for example,
would result in the 3D object being filled by varying the color slightly. The level of
variation will depend on the number of colors used by the chart (see
SetColorMapCount).

Parameters:

mode: ChartColorMode·

SetDrawFlat(boolean flat) void

Draws the shape flattened when set to true.

Parameters:

(c) Sparx Systems 2023 Page 279 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

flat: Boolean, draw flat·

SetFrameColor(long color) void

Sets the color of the frame for 3D objects.

Parameters:

color: long, the RGB color value for coloring the frame·

SetFrameStyle(ChartFrame
Style style)

void

Sets the frame style for the chart - none, mesh, contour or both.

Parameters:

style: ChartFrameStyle, one of the ChartFrameStyle enumerations·

SetGradientType(long
type)

void

Sets the gradient type to use.

Parameters:

type: long, one of the ChartGradientType enumerations·

SetGroupID(long id) void

Groups series on a stacked chart having the same id. Must be a non-negative
number.

Parameters:

id: long, a non-negative number used to group the series on a chart·

SetLevelRangeMode(long
mode)

void

Sets the mode for ranges in series.

0 - Minimum and maximum for Series·
1 - Minimum and maximum for Y axis·
2 - Custom·

Parameters:

mode: long, either 0 or 1 supported·

SetRelatedAxis(string axis,
long index)

void

Sets the related axis for a series. The related axis is created using the Split function
of the ChartAxis interface. The axis is first created using Split, then a new series is
created, and this function called on it to one of its axes. The axis is specified by the
index parameter; the value is one of the ChartAxisIndex enumerations (0 for X, 1
for Y or 2 for Z)

Parameters:

axis: string, the guid of the axis returned by a ChartAxis.Split method call;·
returned by the ChartAxis.GetGuid method

index: long, one of the ChartAxisIndex enumerations·

SetStockSeriesType(Chart
StockSeriesType type)

void

For Stock charts, sets the graphic used to render the series.

Parameters:

type: ChartStockSeriesType, one of the ChartStockSeriesType enumerations·

SetWireFrame(boolean void

(c) Sparx Systems 2023 Page 280 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

wired) Sets the wireframe option on or off. When set to true, the chart is no longer
rendered as a solid object but is instead rendered as a frame composed of wires.

Parameters:

wired: Boolean, displays as a wireframe object if true·

(c) Sparx Systems 2023 Page 281 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Document Generator Interface Package

The DocumentGenerator Class provides an interface to the document and web reporting facilities, which you can use to
generate reports on specific Packages, diagrams and elements in your model.

Access

Repository Class You can create a pointer to this interface using the method
Repository.CreateDocumentGenerator.

Example

This diagram illustrates how you might use the Document Generator interface in generating a report through the
Automation Interface.

Also look at the:

Document Generation scripting example in the Scripting window ('Specialize > Tools > Script Library', then expand·
the 'Local Scripts' folder and double-click on 'JScript - Documentation Example')

RunReport method in the Project Interface·

(c) Sparx Systems 2023 Page 282 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

DocumentGenerator Class

The DocumentGenerator Class provides an interface to the document and web reporting facilities, which you can use to
generate reports on specific Packages, diagrams and elements in your model. This Class is accessed from the Repository
Class using the CreateDocumentGenerator() method.

DocumentGenerator Attributes

Attribute Remarks

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

DocumentGenerator Methods

Method Remarks

DocumentConnector (long
connectorID, long nDepth,
string templateName)

Boolean

Notes: Documents a connector.

Parameters:

connectorId: Long - the ID of the connector·
nDepth: Long - the depth by which to adjust the heading level·
templateName: String - the name of a template to use when documenting·
connectors; this can be blank

DocumentCustomData
(string XML, long nDepth,
string templateName)

Boolean

Notes: Documents information based on the data supplied.

Parameters:

XML: String - the XML of the data to be documented·
nDepth: Long - the depth by which to adjust the heading level·
templateName: String - the name of a template to use when documenting·
custom data; this can be blank

DocumentDiagram (long
diagramID, long nDepth,
string templateName)

Boolean

Notes: Documents a diagram.

Parameters:

diagramId: Long - the ID of the diagram·
nDepth: Long - the depth by which to adjust the heading level·
templateName: String - the name of a template to use when documenting·
diagrams; this can be blank

DocumentElement (long
elementID, long nDepth,

Boolean

(c) Sparx Systems 2023 Page 283 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

string templateName) Notes: Documents an element.

Parameters:

elementId: Long - the ID of the element·
nDepth: Long - the depth by which to adjust the heading level·
templateName: String - the name of a template to use when documenting·
elements; this can be blank

DocumentModelAuthor
(string name, long nDepth,
string templateName)

Boolean

Notes: Documents a model author.

Parameters:

name: String - the name of the author·
nDepth: Long - the depth by which to adjust the heading level·
templateName: String - a template to use when documenting model authors;·
this can be blank

DocumentModelClient
(string name, long nDepth,
string templateName)

Boolean

Notes: Documents a single model client.

Parameters:

name: String - the name of the client·
nDepth: Long - the depth by which to adjust the heading level·
templateName: String - a template to use when documenting model clients; this·
can be blank

DocumentModelGlossary
(long id, long nDepth,
string templateName)

Boolean

Notes: Documents a single model glossary term.

Parameters:

id: Long - the ID of the term·
nDepth: Long - the depth by which to adjust the heading level·
templateName: String - a template to use when documenting model glossary·
terms; this can be blank

DocumentModelIssue
(long id, long nDepth,
string templateName)

Boolean

Notes: Documents a single model issue.

Parameters:

id: Long - the ID of the issue·
nDepth: Long - the depth by which to adjust the heading level·
templateName: String - a template to use when documenting model issues; this·
can be blank

DocumentModelResource
(string name, long nDepth,
string templateName)

Boolean

Notes: Documents a single model resource.

Parameters:

name: String - the name of the resource·
nDepth: Long - the depth by which to adjust the heading level·
templateName: String - a template to use when documenting model resources;·
this can be blank

DocumentModelRole Boolean

(c) Sparx Systems 2023 Page 284 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

(string name, long nDepth,
string templateName)

Notes: Documents a single model role.

Parameters:

name: String - the name of the role·
nDepth: Long - the depth by which to adjust the heading level·
templateName: String - a template to use when documenting model roles; this·
can be blank

DocumentModelTask (long
id, long nDepth, string
templateName)

Boolean

Notes: Documents a single model task.

Parameters:

id: Long - the ID of the task·
nDepth: Long - the depth by which to adjust the heading level·
templateName: String - a template to use when documenting model tasks; this·
can be blank

DocumentPackage (long
packageID,

long nDepth,

string templateName)

Boolean

Notes: Documents a Package.

Parameters:

packageId: Long - the ID of the Package·
nDepth: Long - the depth by which to adjust the heading level·
templateName: String - a template to use when documenting Packages; this can·
be blank

GetDocumentAsRTF() Read Only.

Returns a string value of the document in raw Rich Text Format.

GetProjectConstant (string
nameVal)

String

Notes: Returns the value of a Project Constant.

Parameters:

nameVal: String - the name of the Project Constant for which to extract the·
value.

GetLastError () String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

InsertBreak (long
breakType)

Boolean

Notes: Inserts a break into the report at the current location.

Parameters:

breakType: Long - 0 = page break, 1 = section break·

InsertCoverPageDocument
(string Name)

Boolean

Notes: Inserts the Coverpage into the document at the current location.

The style sheet is applied to the document before it is insert into the generated
document.

Parameters:

Name: String - the name of the Cover page document found in the Resource·
tree

(c) Sparx Systems 2023 Page 285 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

InsertHyperlink (string
Name, string URL)

Boolean

Notes: Inserts a hyperlink at the current location. If you use a URL with the
#BOOKMARKNAME syntax, the hyperlink will link to another part of the
document.

Parameters:

Name: String - the link text to insert into the report·
URL: String - The URL of the website to link to·

InsertLinkedDocument
(string guid)

Boolean

Notes: Inserts a Linked Document into the report at the current location.

A Linked Document can used to set the header and footer of the report. These are
taken from the first Linked Document added to the report.

Parameters:

guid: String - the GUID of the element that has a Linked Document·

InsertTableOfContents Boolean

Notes: Inserts a Table of Contents at the current position.

InsertTeamReviewPost
(string path)

Boolean

Notes: Inserts a Model Library posting into the report at the current location.

Parameters:

path: String - the path of the Model Library post·

InsertTemplate (string
templateName)

Notes: Inserts the contents of the template directly into the report.

Parameters:

templateName: String - the name of the template to use·

InsertText (string text,

string style)

Boolean

Notes: Inserts static text into the report at the current location.

A carriage return is not included; if you need to use one, you can add it manually.

Parameters:

text: String - the static text to be inserted·
style: String - the name of the style in the template; defaults to Normal style·

InsertTOCDocument
(string name)

Boolean

Notes: Inserts the Table of Contents into the document at the current location.

Note: The stylesheet is applied to the document before it is insert into the generated
document.

Parameters:

name: String - the name of the Table of Contents document found in the·
Resource tree

LoadDocument(string
FileName)

Boolean

Notes: Inserts an external document into the currently generated file.

Parameters:

FileName: String - the filename of an external document file to insert into the·
document.

(c) Sparx Systems 2023 Page 286 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

NewDocument (string
templateName)

Boolean

Notes: Starts a new document; you call this before attempting to document anything
else.

Parameters:

templateName: String - the name of a template to use when documenting·
elements; this can be blank

ReplaceField (string
fieldname,

string fieldvalue)

Boolean

Notes: Replaces the 'Section' field identified by the fieldname parameter with the
value provided in fieldvalue. For example:

 ReplaceField ("Element.Alias", "MyAlias")

If you call this function more than once with the same fieldname, the field only has
the most recent value set.

Parameters:

fieldname: String - the field name to find (this does not include the {} braces)·
fieldvalue: String - the value to insert into the field; this can be a constant or a·
derived value

SaveDocument (string
filename,

long nDocType)

Boolean

Notes: Saves the document to disk.

Parameters:

filename: String - the filename to save the file to·
nDocType: Long - 0 = RTF, 1 = HTML, 2 = PDF,·
3 = DOCX

SetPageOrientation (long
pageOrientation)

Boolean

Notes: Sets the current page orientation.

Parameters:

pageOrientation: Long - 0 = Portrait, 1 = Landscape·

SetProjectConstant (string
newNameVal, string
newValue)

Boolean

Notes: Sets a Project Constant for the documentation generator; this is saved in the
current model.

Parameters:

newNameVal: String - the name of the Project Constant·
newValue: String - the value of the Project Constant·

SetStyleSheetDocument
(string name)

Boolean

Notes: Sets the Stylesheet to be used for TOC, Coverpage and templates used. This
can be called before NewDocument.

Parameters:

name: String - the name of the stylesheet found in the Resource tree·

SetSuppressProfile (name) Boolean

Notes: Sets the Suppress Profile to be used during report generation.

Parameters:

Name: String - The name of the Suppress Profile, as created on the 'Suppress·
Sections' tab of the 'Document Generation' dialog.

(c) Sparx Systems 2023 Page 287 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

(c) Sparx Systems 2023 Page 288 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Data Miner Package

The Data Miner Package provides the Automation Interface to the Data Miner elements. It contains these Classes:

For an overview of using the Data Miner see the Data Miner Help topic under the Model Exchange group of topics.

Notes

The Data Miner is available in the Unified and Ultimate Editions·

(c) Sparx Systems 2023 Page 289 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

DataMinerManager Class

DataMinerManager Attributes

Attribute Remarks

Actions Collection

Notes: Returns a pointer to the EA.DMAction objects.

Connections Collection

Notes: Returns a Collection of EA.DMConnection objects.

DataMiners Collection

Notes: Returns a Collection of EA.DataMiner objects

Scripts Collection

Notes: Returns a Collection of EA.DMScript objects.

DataMinerManager Methods

Method Remarks

FindActiveDataMiner
(string guid)

DataMiner Object

Loads the DataMiner object from the model specified by its GUID.

Returns an EA.DataMiner object or NULL if the current selected object isn't a
DataMiner object.

Parameters:

GUID: string - GUID of the Data Miner object to look up·

FindDataMinerScript
(string guid)

DMScript object

Returns an EA.DMScript object in the model.

Parameters:

GUID: string - GUID of DMScript object.·

GetActiveAction () DMAction Object

When you run an Action (operation), from a diagram, this returns the Action's
EA.DMAction object.

Note: This is generally used for an Action to work out what DataMiner and
DMConnections it is linked to.

GetActiveDataMiner () DataMiner Object

Returns a pointer to an EA.DataMiner object, or NULL if the currently selected
object is not a DataMiner object.

(c) Sparx Systems 2023 Page 290 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

GetActiveVisualizerData
(string name)

DataSet Object

Get the EA.DataSet of the currently open Visualizer.

Parameters:

Name: string - Name of Open Visualizer·
Note: Passing in a blank name will return the first Visualizer tab.

GetCurrentDBBuilderData
()

DMArray Object

Get the current data from the Database Builder's latest SQL query. Returns the
current output of the SQL scratch window. Accessible via:

 Ribbon: Develop > Data Modeling > Database Builder > SQL Scratch Pad.

Return Type: DMArray

Returns a pointer to an EA.DMArray object, or NULL if there is not a current
Database Builder window with returned data.

See The Database Builder Help topic for more information on how to get data into
this window.

(c) Sparx Systems 2023 Page 291 of 352 Created with Enterprise Architect

https://sparxsystems.com/enterprise_architect_user_guide/16.1/dbexplorer.htm

Enterprise Architect Object Model 10 November, 2023

DataMiner Class

DataMiner Attributes

Attribute Remarks

Connections Collection

A collection of EA.DMConnection's,

Notes: Read Only

Name String

Name of the Script object.

Notes: Read Only

Query String

Query of the Data miner object

Notes: Read Only

Scripts Collection

A collection of EA.DMScript's,

Notes: Read Only

Type String

Type of the Data miner object

Notes: Read Only

DataMiner Methods

Method Remarks

GetData (DMCconnection
Connection)

DataSet

Returns an EA.DataSet object that represents the query on the connection.

Parameters:

connection: DMConnection - A DMConnection object·

(c) Sparx Systems 2023 Page 292 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

DataSet Class

DataSet Attributes

Attribute Remarks

Type long

Type of data contained in this data set.

1. Safe Array

2. Abstract Data type

3. JSon

4. Text

Notes: Read Only

DataSet Methods

Method Remarks

GetAST () Currently not supported

GetDMArray () DMArray

Returns an EA.DMArray object

Note: Only supported when Type = 1

GetString () String

Returns a string of the data.

NOTE: Only supported when Type = 3 or 4.

(c) Sparx Systems 2023 Page 293 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

DMArray Class

DMArray Attributes

Attribute Remarks

ColumnCount long

Notes: Read Only

Number of Columns returned in this dataset

RowCount long

Notes: Read Only

Number of rows returned in this dataset

DMArray Methods

GetData (long row, long
column)

Variant

Notes: When the database returns a NULL value, this will return an empty string.

Return: Variant.

Parameters:

row: Row number of data·
column: Column number of data·

(c) Sparx Systems 2023 Page 294 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

DMAction Class

DMAction Attributes

Attribute Remarks

Code String

The code on the Action

Notes: Read Only

DataMiners Collection

A Collection of DMDataminer objects

Notes: Read Only

Name String

Name of the Action.

Notes: Read Only

DMAction Methods

Run () Boolean

Returns TRUE if the script was run successfully.

(c) Sparx Systems 2023 Page 295 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

DMScript Class

DMScript Attributes

Attribute Remarks

Actions Collection

Returns a Collection of EA.DMAction's

GUID String

Guid of the Script object.

Notes: Read Only

Name String

Name of the Script object.

Notes: Read Only

(c) Sparx Systems 2023 Page 296 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

DMConnection Class

DMConnection Attributes

String

Sets the type that the connect object is.

Notes: Read Only

Attribute Remarks

Name Type: String

Notes: Read Only

Name of the Connection object.

Path Type: String

Path to the data we are connecting to.

Notes: Read Only

Type Type: String

Notes: Read Only

Type of Connection. Options:

ODBC·
EA Repository·
File·
URL·

(c) Sparx Systems 2023 Page 297 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

TypeInfoProperties Package

The TypeInfoProperties Package provides an interface to the properties of an object from the perspective of the
technology rather than the Enterprise Architect database, allowing read and write access to those properties. It effectively
shows the properties contained in the technology-specific and custom categories of the Properties window for the object
(and omits the Enterprise Architect specific properties such as the General and Project properties). The interface hides
the origin of the properties - whether they are from the base object directly, a Tagged Value, or are MOF properties.

You can see this interface in action in the EA.Example model ('Start > Help > Help > Open the Example Model'). When
you open this model:

Select the 'Specialize > Manage Addin' ribbon option.1.

Select the checkbox against 'Type Info' and click on the OK button. An icon for 'Type Info' displays on the right of2.
the Add-Ins panel.

Click on the drop-down arrow and select the 'Show Type Info' option. The Add-Ins window displays, showing the3.
type information (properties) for the currently-selected object.

If you also want to display custom properties in the Add-Ins window, click on the 'Type-Info' icon again and select4.
the 'Include Custom Properties option'. The window resembles this illustration, which is for a UML Component
element.

Browse the EA.Example model, clicking on different types of object. You will see a different list of properties for,5.
say, an Action than for a Class. Then you can both read and write to those properties. Also compare the list with the
Properties window for the same objects.

(c) Sparx Systems 2023 Page 298 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

TypeInfoProperties Class

TypeInfoProperties Attributes

Attribute Remarks

Count long

Returns the number of TypeInfo Properties.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

TypeInfoProperties Methods

Method Remarks

GetLastError () String

Notes: Returns a string value describing the most recent error that occurred in
relation to this object.

GetProperty (String
PropName)

Returns the property value as a string.

Parameters:

PropName : String - Name of the property·

HasProperty (String
PropName)

Returns True if the object has the property.

Parameters:

PropName : String - Name of the property·

Items (object Index) TypeInfoProperty collection

Notes: Accesses an individual TypeInfoProperty.

Parameters:

Index: Object - Either a string representing the title text or an integer·
representing the zero-based index of the TypeInfoProperty to get

SetProperty (String
PropName, String Value)

Returns True if the property was set.

Parameters:

PropName : String - Name of property·
Value : String - Value of property·

(c) Sparx Systems 2023 Page 299 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

TypeInfoProperty Class

TypeInfoProperty Attributes

Attribute Remarks

Name String

Notes: Readonly.

Name of the property.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Value String

Get/Sets the Property value.

TypeInfoProperty Methods

<None.>

Method Remarks

(c) Sparx Systems 2023 Page 300 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Mail Interface Package

The MailInterface Package contains:

A function to retrieve a pointer to the interface·
Functions to create and send a mail message within the current mode·
Utility functions for creating hyperlinks to selected model elements·

You can get a pointer to this interface using the method Repository.GetMailInterface.

(c) Sparx Systems 2023 Page 301 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

MailInterface Class

The MailInterface interface can be accessed from the Repository using GetMailInterface(). The returned interface
provides access to the Enterprise Architect Model Mail Interface. Use this interface to automate the process of creating
and sending messages using Enterprise Architect's Model Mail system.

MailInterface Attributes

Attribute Remarks

MessagingEnabled Boolean

Notes: Read Only

Advises whether messaging is enabled on the current model.

ObjectType ObjectType

Notes: Read Only

Distinguishes objects referenced through a dispatch interface.

MailInterface Methods

Method Remarks

ComposeMailMessage(stri
ng InitialRecipientGUID,
string InitialSubject,
messageflag InitialFlag,
string InitialMessageText)

Boolean

Notes: Creates a new mail message using the values specified in the input
parameters; the message is displayed in the composition window, ready for sending.

This method does NOT send the message.

Parameters:

InitialRecipientGUID: String - Initial value for the GUID of the addressee user·
(an Enterprise Architect user defined in the current model)

InitialSubject: String - Initial value for the Subject text to display for this·
message

InitialFlag: MessageFlag - Initial value for the flag type/color to attach to this·
message

InitialMessageText: String - Initial value for the text that is the body of the·
message

GetAttributeHyperlink(stri
ng AttributeGUID, string
LinkText)

String

Notes: Returns a string containing a hyperlink to the attribute specified by the input
parameter AttributeGUID.

Parameters:

AttributeGUID: String - The GUID of the attribute for which a hyperlink is·
required

LinkText: String - The text to display for the hyperlink (such as the attribute·
name)

(c) Sparx Systems 2023 Page 302 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

GetDiagramHyperlink
(string DiagramGUID,
string LinkText)

String

Notes: Returns a string containing a hyperlink to the diagram specified by the input
parameter DiagramGUID.

Parameters:

DiagramGUID: String - The GUID of the diagram for which a hyperlink is·
required

LinkText: String - The text to display for the hyperlink (such as the diagram·
name)

GetElementHyperlink
(string ElementGUID,
string LinkText)

String

Notes: Returns a string containing a hyperlink to the element specified by the input
parameter ElementGUID.

Parameters:

ElementGUID: String - The GUID of the element for which a hyperlink is·
required

LinkText: String - The text to display for the hyperlink (such as the element·
name)

GetFileHyperlink (string
FilePath, string LinkText)

String

Notes: Returns a string containing a hyperlink to the file specified by the input
parameter FilePath.

Parameters:

FilePath: String - The path name of the file for which a hyperlink is required·
LinkText: String - The text to display for the hyperlink (such as the file name)·

GetLastError () String

Notes: Returns the last error message set for the MailInterface.

GetMethodHyperlink
(string MethodGUID,
string LinkText)

String

Notes: Returns a string containing a hyperlink to the method specified by the input
parameter MethodGUID.

Parameters:

MethodGUID: String - The GUID of the method for which a hyperlink is·
required

LinkText: String - The text to display for the hyperlink (such as the method·
name)

GetPackageHyperlink
(string PackageGUID,
string LinkText)

String

Notes: Returns a string containing a hyperlink to the Package specified by the input
parameter PackageGUID.

Parameters:

PackageGUID: String - The GUID of the Package for which a hyperlink is·
required

LinkText: String - The text to display for the hyperlink (such as the Package·
name)

GetRecipientGUID (string
UserName)

String

Notes: Returns the GUID of the specified Enterprise Architect user.

Parameters:

(c) Sparx Systems 2023 Page 303 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

UserName: String - The name of a user defined in the current model·

GetWebHyperlink (string
URL, string LinkText)

String

Notes: Returns a string containing a hyperlink to the URL specified by the input
parameter URL.

Parameters:

URL: String - The URL of the item for which a hyperlink is required·
LinkText: String - The text to display for the hyperlink·

SendMailMessage (string
RecipientGUID, string
Subject, messageflag Flag,
string MessageText)

Boolean

Notes: Creates and sends a new mail message using the values specified in the input
parameters.

Parameters:

RecipientGUID: String - The GUID of the addressee user (an Enterprise·
Architect user defined in the current model)

Subject: String - The Subject text to display for this message·
Flag: MessageFlag - The flag type/color to attach to this message·
MessageText: String - The text that is the body of the message·

(c) Sparx Systems 2023 Page 304 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Search Window Package

The Search Window Package contains:

The EAContext Class, which provides a description of a single selected item·
The EASelection Class, which provides optimized functions to access information about the current selection·
The SearchWindow Class, which provides a method for displaying the results of your operation using the Search·
Window

(c) Sparx Systems 2023 Page 305 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

EAContext Class

The EAContext Class provides a description of a single selected item. The fields with values depend on the location of
the selected item.

EAContext Attributes

Atttribute Remarks

Alias String

Notes: Read only

The Alias of the context item.

BaseType String

Notes: Read only

Returns the base UML type of the context item.

ContextType ContextType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

ElementGUID String

Notes: Read only

The GUID of the current context object; empty if an object isn't selected. That is:

ElementGUID if an element has context·
AttributeGUID if an attribute has context·
MethodGUID if an operation has context.·
DiagramGUID if a diagram has context·
PackageGUID if a Package has context·

ElementID Long

Notes: Read only

The ID of the current context object; 0 if an object isn't selected. That is:

ElementID if an element has context·
AttributeID if an attribute has context·
MethodID if an operation has context.·
DiagramID if a diagram has context·
PackageID if a Package has context·

Locked Boolean

Notes: Read only

Indicates if the context item is locked.

MetaType String

Notes: Read only

(c) Sparx Systems 2023 Page 306 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Returns the metatype of the context item.

Name String

Notes: Read only

The name of the context item.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

EAContext Methods

Method Remarks

HasStereotype (String
stereo)

Boolean

Returns: True if the stereotype is applied to an object.

Parameters

stereo: String - the stereotype to check against the context object, to see if has·
been applied

(c) Sparx Systems 2023 Page 307 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

EASelection Class

The EASelection Class provides optimized functions to access information on the current selection. It should be used
when building Add-In menus and setting the menu state, as almost all properties can be used without any database
queries being made.

EASelection Attributes

Attribute Remarks

Context EAContext

Notes:

Describes the currently focused element without requiring any database calls.

ElementSet Collection

Notes:

When the selection consists of one or more objects of type otElement, this provides
a collection giving optimized access to all of those elements.

List Collection

Notes:

For any window where multiple selection is supported, this provides a list
describing the type of every selected element without requiring any database calls.

Location String

Notes:

Provides the type of window that contains the current selection.

Possible values are:

Calendar·
Diagram·
Dialog·
Element List·
Gantt·
Model View·
Browser window·
Project View·
Relationship Matrix·
Reviews·
Search·
Specification Manager·

Further values could be added to this list in the future.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

(c) Sparx Systems 2023 Page 308 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

EASelection Methods

None.

(c) Sparx Systems 2023 Page 309 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

SearchWindow Class

The SearchWindow Class provides a method for displaying the results of your operation using the Search Window.

SearchWindow Attributes

Attribute Remarks

FieldChooserVisible Boolean

Shows or hides the search Field Chooser.

FiltersVisible Boolean

Shows or hides the search filters.

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

SearchWindow Methods

Method Remarks

AddColumn (string Name,
long Width)

Adds the column into the current Search window.

Returns the column number, or -1 on error.

Parameters:

Name: String - Name of the column·
Width: Long - Width of the column·

AddRow (ObjectType ot,
String ElementGUID, Long
ElementID, String
ClassType, VARIANT
Values)

Returns the row inserted into the search.

Parameters:

ot: ObjectType - the Object Type·
ElementGUID: String - GUID of the element·
ElementID: long - Object ID of the element·
ClassType: String - the type of object·
Values: an array of values·

ClearGrouping () Clear all groupings in the search.

Returns FALSE on error.

ClearSorting () Clear all column sorting in the search.

Returns FALSE on error.

EnsureVisible () Make the Search window visible.

(c) Sparx Systems 2023 Page 310 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Returns FALSE, if the Search window isn't open.

GetCell (long Row, long
Column)

Returns the value of the cell.

Parameters:

Row: long - Row number·
Column: long - Column number·

GroupByColumn (long
Column)

Sets the group order by column.

Returns FALSE if it cannot group by the specified column.

Parameters:

Column: Long - Column number·

LoadLayout (string
LayoutGUID)

Set the layout of the Search window.

Returns FALSE if the layout cannot be set.

Parameters:

LayoutGUID: String - Layout GUID·

NewLayout (string
LayoutGUID)

Saves the layout of the Search window.

Parameters:

LayoutGUID: String - Layout GUID·

SetCellString (long Row,
long Column, String Data)

Sets a value in a cell.

Parameters:

Row: long - Row number·
Column: long - Column number·
Data: String - Value to set the cell to·

SetCellVariant (long Row,
long Column, VARIANT
Data)

Sets an alternative value in a cell.

Parameters:

Row : long - Row number·
Column : long - Column number·
Data: Value to set the cell to·

SortByColumn (long
Column)

Sets the column to sort by.

Returns FALSE if it cannot sort by the specified column.

Parameters:

Column: Long - Column number·

(c) Sparx Systems 2023 Page 311 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Simulation Package

The Simulation Package contains:

An attribute to set, increase and decrease the speed of the simulation·
A function to check if a simulation is currently running·
Functions to Start, Stop, Step Into, Step Out of, Step Over and Pause a simulation·
A function to send a broadcast signal to the simulation that is currently running·

(c) Sparx Systems 2023 Page 312 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Simulation Class

The Simulation Class provides an interface to the Enterprise Architect Model Simulation facilities.

Simulation Attributes

Attribute Description

ObjectType ObjectType

Notes: Read only

Distinguishes objects referenced through a Dispatch interface.

Speed Long

Notes: Read/Write

Retrieve or set the current simulation running speed.

Simulation Methods

Method Description

BroadcastSignal(string
sSignalName,

string sParameters)

Boolean

Notes: Send a signal into the running simulation. If the simulation is stopped, do
nothing.

Parameters:

sSignalName: String - the name of the signal OR the GUID of the Signal·
element

sParameters: String - a string of one or more signal parameters, in this format:·
{parameter1: 5, parameter2: "test", parameter3: 3.2}

IsSimulatorRunning() Boolean

Notes: Check the state of the simulation.

Returns True if the simulation is running; returns False if the simulation is stopped.

Pause() Boolean

Notes: Pause the simulation if it is running.

Start() Boolean

Notes: Start the simulation based on the current selection. If the current simulation
is in a paused state, then the simulation is resumed.

StepIn() Boolean

Notes: Step In to the routine in the current simulation.

StepOut() Boolean

(c) Sparx Systems 2023 Page 313 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Notes: Step Out of the routine in the current simulation.

StepOver() Boolean

Notes: Step Over the routine in the current simulation.

Stop() Boolean

Notes: Stop the simulation.

(c) Sparx Systems 2023 Page 314 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Schema Composer Package

The Schema Composer can be accessed from the Enterprise Architect automation interface. A client (script or Add-In)
can obtain access to the interface using the SchemaComposer property of the Repository object. This interface is
available when a Schema Composer has a profile loaded.

(c) Sparx Systems 2023 Page 315 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

SchemaProperty Class

SchemaProperty Attributes

Attribute Description

TypeID long

Notes: Read only

The classifier ID of the property.

PropID long

Notes: Read only

The property ID.

Guid string

Notes: Read only

The unique model GUID of the property.

Name string

Notes: Read only

The name of the property.

Cardinality string

Notes: Read only

The cardinality of the element.

UMLType string

Notes: Read only

The UML type, such as attribute, association or aggregation.

Parent long

Notes: Read only

The classifier of the owner Class.

PrimitiveType string

Notes: Read only

The property's primitive type if property represents a simple type.

Annotation string

Notes: Read only

The model notes for the property.

Stereotype string

Notes: Read only

The stereotype of the property.

(c) Sparx Systems 2023 Page 316 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Choices SchemaTypeEnum

Returns an iterator allowing navigation of choice elements in model, defined for
this property in the Schema Composer. Combine with SchemaChoices attribute to
obtain all available choices.

SchemaChoices SchemaTypeEnum

Returns an iterator allowing navigation of choice elements in schema, defined for
this property in the Schema Composer. Combine with Choices attribute to obtain all
available choices.

TypeName string

Returns a string naming the type of the property

Type SchemaType

Returns an interface to the property's type for complex types.

SchemaProperty Methods

Method Description

IsInline Boolean

If true, the property is marked as 'Inline'. XML schema generators would emit an
inline definition when detecting this attribute.

IsPrimitive Boolean

Returns true for a property whose type is maps to a built in type such as xs:integer,
xs:string, xs:date or other XML Schema built-in type.

IsByReference Boolean

Returns true for a property marked as 'By Reference' in the profile.

(c) Sparx Systems 2023 Page 317 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

SchemaProfile Class

The interface representing the technology governing the naming and design rules on which the schema is built.

SchemaProfile Methods

Method Description

AddExportFormat(string
description)

void

Notes: Use this function to add entries that are offered by the Schema Composer
when the user clicks on the Generate button.

Parameters:

description: describes the export format provided by the Add-In·

SetCapability(string
name,boolean enabled)

void

Notes: Use this function to enable/disable capabilities.

Parameters:

name: name of the capability·
enabled: True or False·

Capabilities:

'allowCardinality' - allows/denies restrictions to cardinality

'allowRootElement' - allows/denies setting root element

'allowPropByRef' - allows/denies By Reference restriction

'allowRedefine' - allows/denies ability to redefine an element

SetProperty(string name,

string value)

void

Notes: Sets properties displayed in the Schema Composer.

Parameters:

name: property name·
value: property value·

Properties:

'Namespace' - Target namespace for XML schema

'Namespace Prefix' - Namespace prefix for XML schema

'Qualifier' - string qualifier that prepends schema type names

(c) Sparx Systems 2023 Page 318 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

SchemaComposer Class

The SchemaComposer Class provides the interface to the Enterprise Architect Schema Composer facility.

SchemaComposer Attributes

Attribute Description

ModelReference String

Notes: The model ref listed in the Schema Composer for the current profile.

Namespace String

Notes: The namespace listed in the Schema Composer for the current profile.

NamespacePrefix String

Notes: The namespace prefix listed in the Schema Composer for the current profile.

TargetDirectory String

Notes: The target directory selected by the user after clicking on the Generate
button.

SchemaName String

Notes: Returns the name of the schema profile currently being generated.

SchemaSet String

Notes: Returns the schema set used when the schema was created.

SchemaType String

Notes: The schema type listed in the Schema Composer for the current profile,
either 'schema' or 'transform'.

SchemaTypes SchemaTypeEnum

Notes: Read only

Enumerator for the type collection represented in the currently open schema.

Namespaces SchemaNamespaceEnum

Notes: Read only

Enumerator for the namespaces referenced by schema

SchemaComposer Methods

Method Description

FindInSchema(long SchemaType

(c) Sparx Systems 2023 Page 319 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

typeID) Notes: Obtains an interface to a Class as represented in the schema for a given
model Class ID.

Parameters:

typeID: the model Class ID·

FindInModel(long typeID) ModelType

Notes: Obtains an interface to a Class as represented in the UML model for a given
model Class ID

Parameters:

typeID: the model Class ID·

FindSchemaTypeByName(
string typename)

SchemaType

Notes: Returns an interface to the schema type that matches the type specified or
null if no type exists.

Parameters:

name : the name of the type·

GetNamespacePrefixForTy
pe(long typeID)

String

Notes: Returns the schema namespace prefix for a given type

Parameters:

typeID: the model Class ID·

GetNamespaceForPrefix(st
ring prefix)

String

Notes: Returns the URI for a given schema namespace prefix

Parameters:

name: the namespace prefix·

(c) Sparx Systems 2023 Page 320 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ModelTypeEnum Class

An enumerator interface for schema types as represented in the UML model.

ModelTypeEnum Methods

Method Description

GetCount() long

Returns the number of types present in the collection.

GetFirst() ModelType

Returns the first type interface in a collection of types.

GetNext() ModelType

Returns the next type in the collection of types or null if end is reached.

(c) Sparx Systems 2023 Page 321 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ModelType Class

Provides an interface to the Class of a schema type as represented in the model.

ModelType Attributes

Attribute Description

PropertyCount long

Notes: Read only

The total number of properties for this Class available in the Properties collection.

Properties SchemaPropEnum

Notes: Enumerator

Collection of properties for the Class as defined in the model.

TypeID long

Notes: Read only

The Class ID of the type.

Guid string

Notes: Read only

A GUID that uniquely identifies a type in the model.

Typename string

Notes: Read only

The name of the type as represented in the model.

ClassifierPath string

Notes: Read only

The qualified path of the type in the model.

ClassifierPathID string

Notes: Read only

A GUID that uniquely identifies a ClassifierPath in the model.

Stereotype string

Notes: Read only

The stereotype of the Class as defined in the model.

Annotation string

Notes: Read only

Any notes present in the model describing the Class.

(c) Sparx Systems 2023 Page 322 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

ModelType Methods

Method Description

GetSuperClassEnum(Searc
hType searchtype)

ModelTypeEnum

Notes: Enumerator

Returns an enumerator that can be used to traverse the Class ancestry.

Parameters:

searchtype: the type of traversal to use, breadth first or depth first·

GetSubClassEnum(Search
Type searchType)

ModelTypeEnum

Notes: Enumerator

Returns an enumerator that can be used to iterate over any descendents of the Class.

Parameters:

searchtype: the type of traversal to use, breadth first or depth first·

IsEnumeration True where type represents an enumeration element

(c) Sparx Systems 2023 Page 323 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

SchemaTypeEnum Class

An enumerator interface for schema types as represented in XML schema.

Methods

Method Description

GetCount() Returns the number of properties for an element.

GetFirst() Returns the first property for the element in alphabetical order.

GetNext() Returns the first property for the element in alphabetical order or null if no more are
present.

(c) Sparx Systems 2023 Page 324 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

SchemaType Class

Represents a type as it is defined in the schema.

Methods

Method Description

GetFacet(BSTR name) Returns the value of the named facet. 'Root', for example' returns a value indicating
whether a type is a root element.

GetRestriction(BSTR guid) Returns the restriction as a string for the property having the supplied guid.

IsRoot() True if Class is marked as 'root' in the Composer.

IsEnumeration() True if the type represents an enumeration element

Properties

Property Description

PropertyCount [type: long] Returns the number of properties held by 'type'.

Properties [type:
IEASchemaPropEnum]

Returns an enumerator for 'type's' properties.

TypeID The model Class ID.

Guid The unique model GUID of the type.

Typename The type's name.

Parent The parent type - if any - that this Class extends. Could be null depending on
composition method.

(c) Sparx Systems 2023 Page 325 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

SchemaPropEnum Class

An enumerator for properties of a UML model type or XML schema type.

Methods

Method Description

GetCount() Returns the number of properties for an element.

GetFirst() Returns the first property for the element in alphabetical order.

GetNext() Returns the first property for the element in alphabetical order or null if no more are
present.

(c) Sparx Systems 2023 Page 326 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

SearchType Enumeration

SearchType Attributes

Attribute Description

searchDepthFirst Navigate children before siblings.

searchBreadthFirst Navigate siblings before children.

(c) Sparx Systems 2023 Page 327 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

SchemaNamespace Class

An interface presenting namespace information

SchemaNamespace Attributes

Name string

Notes: Read only

The namespace prefix.

URI string

Notes: Read only

The URI of the namespace.

(c) Sparx Systems 2023 Page 328 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

SchemaNamespaceEnum Class

An enumerator interface for namespaces referenced by schema.

SchemaNamespaceEnum Methods

GetFirst() SchemaNamespace

Returns the first namespace interface in a collection of namespaces.

GetNext() SchemaNamespace

Returns the next namespace interface in a collection of namespaces

(c) Sparx Systems 2023 Page 329 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Code Samples

As you write or edit code for using the Automation Interface, you might want to review these public Object examples,
written in VB.Net.

Examples

Name

Open the Repository

Iterate Through a .eap File

Add and Manage Packages

Add and Manage Elements

Add a Connector

Add and Manage Diagrams

Add and Delete Features

Element Extras

Repository Extras

Stereotypes

Work with Attributes

Work with Methods

(c) Sparx Systems 2023 Page 330 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Open the Repository

This is an example of the VB.Net code to open an Enterprise Architect repository.

Public Class AutomationExample

 ''Class level variable for Repository

 Public m_Repository As Object

 Public Sub Run()

 try

 ''create the repository object

 m_Repository = CreateObject("EA.Repository")

 ''open an EAP file

 m_Repository.OpenFile("F:\Test\EAAuto.EAP")

 ''use the Repository in any way required

 ''DumpModel

 ''close the repository and tidy up

 m_Repository.Exit()

 m_Repository = Nothing

 catch e as exception

 Console.WriteLine(e)

 End try

 End Sub

end Class

(c) Sparx Systems 2023 Page 331 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Iterate Through a .EAP File

This is an example of the VB.Net code to iterate through a .eap file starting at the Model level, after the repository has
been opened.

Sub DumpModel()

 Dim idx as Integer

 For idx=0 to m_Repository.Models.Count-1

 DumpPackage("",m_Repository.Models.GetAt(idx))

 Next

End Sub

''output Package name, then element contents, then process child Packages

Sub DumpPackage(Indent as String, Package as Object)

 Dim idx as Integer

 Console.WriteLine(Indent + Package.Name)

 DumpElements(Indent + "", Package)

 For idx = 0 to Package.Packages.Count-1

 DumpPackage(Indent + "", Package.Packages.GetAt(idx))

 Next

End Sub

''dump element name

Sub DumpElements(Indent as String, Package as Object)

 Dim idx as Integer

 For idx = 0 to Package.Elements.Count-1

 Console.WriteLine(Indent + "::" + Package.Elements.GetAt(idx).Name)

 Next

End Sub

(c) Sparx Systems 2023 Page 332 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Add and Manage Packages

This example illustrates how to add a model or a Package to the project.

Sub TestPackageLifecycle

 Dim idx as integer

 Dim idx2 as integer

 Dim package as object

 Dim model as object

 Dim o as object

 ''first add a new Model

 model = m_Repository.Models.AddNew("AdvancedModel","")

 If not model.Update() Then

 Console.WriteLine(model.GetLastError())

 End If

 ''refresh the models collection

 m_Repository.Models.Refresh

 ''now work through models collection and add a Package

 For idx = 0 to m_Repository.Models.Count -1

 o = m_Repository.Models.GetAt(idx)

 Console.WriteLine(o.Name)

 If o.Name = "AdvancedModel" Then

 package = o.Packages.Addnew("Subpackage","Nothing")

 If not package.Update() Then

 Console.WriteLine(package.GetLastError())

 End If

 package.Element.Stereotype = "system"

 package.Update

 ''for testing purposes just delete the

 ''newly created Model and its contents

 "m_Repository.Models.Delete(idx)

 End If

 Next

(c) Sparx Systems 2023 Page 333 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

End Sub

(c) Sparx Systems 2023 Page 334 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Add and Manage Elements

This is an example of the code for adding and deleting elements in a Package.

 Sub ElementLifeCycle

 Dim package as Object

 Dim element as Object

 package = m_Repository.GetPackageByID(2)

 element = package.elements.AddNew("Login to Website","UseCase")

 element.Stereotype = "testcase"

 element.Update

 package.elements.Refresh()

 Dim idx as integer

 ''Note the repeated calls to "package.elements.GetAt."

 ''In general you should make this call once and assign to a local

 ''variable - in this example, Enterprise Architect loads the

 ''element required every time a call is made - rather than loading once

 ''and keeping a local reference.

 For idx = 0 to package.elements.count-1

 Console.WriteLine(package.elements.GetAt(idx).Name)

 If (package.elements.GetAt(idx).Name = "Login to Website" and _

 package.elements.GetAt(idx).Type = "UseCase") Then

 package.elements.deleteat(idx, false)

 End If

 Next

 End Sub

(c) Sparx Systems 2023 Page 335 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Add a Connector

This is an example of code to add a connector and set its values.

Sub ConnectorTest

 Dim source as object

 Dim target as object

 Dim con as object

 Dim o as object

 Dim client as object

 Dim supplier as object

 ''Use ElementIDs to quickly load an element in this example

 ''... you must find suitable IDs in your model

 source = m_Repository.GetElementByID(129)

 target = m_Repository.GetElementByID(169)

 con = source.Connectors.AddNew ("test link 2", "Association")

 ''again, replace ID with a suitable one from your model

 con.SupplierID = 169

 If not con.Update Then

 Console.WriteLine(con.GetLastError)

 End If

 source.Connectors.Refresh

 Console.WriteLine("Connector Created")

 o = con.Constraints.AddNew ("constraint2","type")

 If not o.Update Then

 Console.WriteLine(o.GetLastError)

 End If

 o = con.TaggedValues.AddNew ("Tag","Value")

 If not o.Update Then

 Console.WriteLine(o.GetLastError)

 End If

(c) Sparx Systems 2023 Page 336 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

 ''Use the client and supplier ends to set

 ''additional information

 client = con.ClientEnd

 client.Visibility = "Private"

 client.Role = "m_client"

 client.Update

 supplier = con.SupplierEnd

 supplier.Visibility = "Protected"

 supplier.Role = "m_supplier"

 supplier.Update

 Console.WriteLine("Client and Supplier set")

 Console.WriteLine(client.Role)

 Console.WriteLine(supplier.Role)

End Sub

(c) Sparx Systems 2023 Page 337 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Add and Manage Diagrams

This is an example of the code for creating a diagram and adding an element to it. Note the optional use of the element
rectangle setting, using left, right, top and bottom dimensions in the AddNew call.

 Sub DiagramLifeCycle

 Dim diagram as object

 Dim v as object

 Dim o as object

 Dim package as object

 Dim idx as Integer

 Dim idx2 as integer

 package = m_Repository.GetPackageByID(5)

 diagram = package.Diagrams.AddNew("Logical Diagram","Logical")

 If not diagram.Update Then

 Console.WriteLine(diagram.GetLastError)

 End if

 diagram.Notes = "Hello there this is a test"

 diagram.update()

 o = package.Elements.AddNew("ReferenceType","Class")

 o.Update

 '' add element to diagram - supply optional rectangle co-ordinates

 v = diagram.DiagramObjects.AddNew("l=200;r=400;t=200;b=600;","")

 v.ElementID = o.ElementID

 v.Update

 Console.WriteLine(diagram.DiagramID)

 End Sub

(c) Sparx Systems 2023 Page 338 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Add and Delete Features

An example of code to add and delete Features of an object.

 Dim element as object

 Dim idx as integer

 Dim attribute as object

 Dim method as object

 'just load an element by ID - you must

 'substitute a valid ID from your model

 element = m_Repository.GetElementByID(246)

 ''create a new method

 method = element.Methods.AddNew("newMethod", "int")

 method.Update

 element.Methods.Refresh

 'now loop through methods for Element - and delete our addition

 For idx = 0 to element.Methods.Count-1

 method =element.Methods.GetAt(idx)

 Console.Writeline(method.Name)

 If(method.Name = "newMethod") Then

 element.Methods.Delete(idx)

 End if

 Next

 'create an attribute

 attribute = element.attributes.AddNew("NewAttribute", "int")

 attribute.Update

 element.attributes.Refresh

 'loop through and delete our new attribute

 For idx = 0 to element.attributes.Count-1

 attribute =element.attributes.GetAt(idx)

 Console.Writeline(attribute.Name)

 If(attribute.Name = "NewAttribute") Then

 element.attributes.Delete(idx)

 End If

 Next

(c) Sparx Systems 2023 Page 339 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Element Extras

These are examples of code to access and use element extras, such as scenarios, constraints and requirements.

Sub ElementExtras

 Dim element as object

 Dim o as object

 Dim idx as Integer

 Dim bDel as boolean

 bDel = true

 try

 element = m_Repository.GetElementByID(129)

 'manage constraints for an element

 'demonstrate addnew and delete

 o = element.Constraints.AddNew("Appended","Type")

 If not o.Update Then

 Console.WriteLine("Constraint error:" + o.GetLastError())

 End if

 element.Constraints.Refresh

 For idx = 0 to element.Constraints.Count -1

 o = element.Constraints.GetAt(idx)

 Console.WriteLine(o.Name)

 If(o.Name="Appended") Then

 If bDel Then element.Constraints.Delete (idx)

 End if

 Next

 'efforts

 o = element.Efforts.AddNew("Appended","Type")

 If not o.Update Then

 Console.WriteLine("Efforts error:" + o.GetLastError())

 End if

 element.Efforts.Refresh

 For idx = 0 to element.Efforts.Count -1

 o = element.Efforts.GetAt(idx)

 Console.WriteLine(o.Name)

 If(o.Name="Appended") Then

 If bDel Then element.Efforts.Delete (idx)

 End if

(c) Sparx Systems 2023 Page 340 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

 Next

 'Risks

 o = element.Risks.AddNew("Appended","Type")

 If not o.Update Then

 Console.WriteLine("Risks error:" + o.GetLastError())

 End if

 element.Risks.Refresh

 For idx = 0 to element.Risks.Count -1

 o = element.Risks.GetAt(idx)

 Console.WriteLine(o.Name)

 If(o.Name="Appended") Then

 If bDel Then element.Risks.Delete (idx)

 End if

 Next

 'Metrics

 o = element.Metrics.AddNew("Appended","Change")

 If not o.Update Then

 Console.WriteLine("Metrics error:" + o.GetLastError())

 End if

 element.Metrics.Refresh

 For idx = 0 to element.Metrics.Count -1

 o = element.Metrics.GetAt(idx)

 Console.WriteLine(o.Name)

 If(o.Name="Appended") Then

 If bDel Then element.Metrics.Delete (idx)

 End if

 Next

 'TaggedValues

 o = element.TaggedValues.AddNew("Appended","Change")

 If not o.Update Then

 Console.WriteLine("TaggedValues error:" + o.GetLastError())

 End if

 element.TaggedValues.Refresh

 For idx = 0 to element.TaggedValues.Count -1

 o = element.TaggedValues.GetAt(idx)

 Console.WriteLine(o.Name)

 If(o.Name="Appended") Then

 If bDel Then element.TaggedValues.Delete (idx)

 End if

(c) Sparx Systems 2023 Page 341 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

 Next

 'Scenarios

 o = element.Scenarios.AddNew("Appended","Change")

 If not o.Update Then

 Console.WriteLine("Scenarios error:" + o.GetLastError())

 End if

 element.Scenarios.Refresh

 For idx = 0 to element.Scenarios.Count -1

 o = element.Scenarios.GetAt(idx)

 Console.WriteLine(o.Name)

 If(o.Name="Appended") Then

 If bDel Then element.Scenarios.Delete (idx)

 End if

 Next

 'Files

 o = element.Files.AddNew("MyFile","doc")

 If not o.Update Then

 Console.WriteLine("Files error:" + o.GetLastError())

 End if

 element.Files.Refresh

 For idx = 0 to element.Files.Count -1

 o = element.Files.GetAt(idx)

 Console.WriteLine(o.Name)

 If(o.Name="MyFile") Then

 If bDel Then element.Files.Delete (idx)

 End if

 Next

 'Tests

 o = element.Tests.AddNew("TestPlan","Load")

 If not o.Update Then

 Console.WriteLine("Tests error:" + o.GetLastError())

 End if

 element.Tests.Refresh

 For idx = 0 to element.Tests.Count -1

 o = element.Tests.GetAt(idx)

 Console.WriteLine(o.Name)

 If(o.Name="TestPlan") Then

 If bDel Then element.Tests.Delete (idx)

 End if

(c) Sparx Systems 2023 Page 342 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

 Next

 'Defect

 o = element.Issues.AddNew("Broken","Defect")

 If not o.Update Then

 Console.WriteLine("Issues error:" + o.GetLastError())

 End if

 element.Issues.Refresh

 For idx = 0 to element.Issues.Count -1

 o = element.Issues.GetAt(idx)

 Console.WriteLine(o.Name)

 If(o.Name="Broken") Then

 If bDel Then element.Issues.Delete (idx)

 End if

 Next

 'Change

 o = element.Issues.AddNew("Change","Change")

 If not o.Update Then

 Console.WriteLine("Issues error:" + o.GetLastError())

 End if

 element.Issues.Refresh

 For idx = 0 to element.Issues.Count -1

 o = element.Issues.GetAt(idx)

 Console.WriteLine(o.Name)

 If(o.Name="Change") Then

 If bDel Then element.Issues.Delete (idx)

 End if

 Next

 catch e as exception

 Console.WriteLine(element.Methods.GetLastError())

 Console.WriteLine(e)

 End try

End Sub

(c) Sparx Systems 2023 Page 343 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Repository Extras

These are examples of code for accessing repository collections for system-level information.

Sub RepositoryExtras

 Dim o as object

 Dim idx as integer

 'issues

 o = m_Repository.Issues.AddNew("Problem","Type")

 If(o.Update=false) Then

 Console.WriteLine (o.GetLastError())

 End if

 o = nothing

 m_Repository.Issues.Refresh

 For idx = 0 to m_Repository.Issues.Count-1

 Console.Writeline(m_Repository.Issues.GetAt(idx).Name)

 If(m_Repository.Issues.GetAt(idx).Name = "Problem") then

 m_Repository.Issues.DeleteAt(idx,false)

 Console.WriteLine("Delete Issues")

 End if

 Next

 ''tasks

 o = m_Repository.Tasks.AddNew("Task 1","Task type")

 If(o.Update=false) Then

 Console.WriteLine ("error - " + o.GetLastError())

 End if

 o = nothing

 m_Repository.Tasks.Refresh

 For idx = 0 to m_Repository.Tasks.Count-1

 Console.Writeline(m_Repository.Tasks.GetAt(idx).Name)

 If(m_Repository.Tasks.GetAt(idx).Name = "Task 1") then

 m_Repository.Tasks.DeleteAt(idx,false)

 Console.WriteLine("Delete Tasks")

 End if

 Next

 ''glossary

 o = m_Repository.Terms.AddNew("Term 1","business")

(c) Sparx Systems 2023 Page 344 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

 If(o.Update=false) Then

 Console.WriteLine ("error - " + o.GetLastError())

 End if

 o = nothing

 m_Repository.Terms.Refresh

 For idx = 0 to m_Repository.Terms.Count-1

 Console.Writeline(m_Repository.Terms.GetAt(idx).Term)

 If(m_Repository.Terms.GetAt(idx).Term = "Term 1") then

 m_Repository.Terms.DeleteAt(idx,false)

 Console.WriteLine("Delete Terms")

 End if

 Next

 'authors

 o = m_Repository.Authors.AddNew("Joe B","Writer")

 If(o.Update=false) Then

 Console.WriteLine (o.GetLastError())

 End if

 o = nothing

 m_Repository.Authors.Refresh

 For idx = 0 to m_Repository.authors.Count-1

 Console.Writeline(m_Repository.Authors.GetAt(idx).Name)

 If(m_Repository.authors.GetAt(idx).Name = "Joe B") then

 m_Repository.authors.DeleteAt(idx,false)

 Console.WriteLine("Delete Authors")

 End if

 Next

 o = m_Repository.Clients.AddNew("Joe Sphere","Client")

 If(o.Update=false) Then

 Console.WriteLine (o.GetLastError())

 End if

 o = nothing

 m_Repository.Clients.Refresh

 For idx = 0 to m_Repository.Clients.Count-1

 Console.Writeline(m_Repository.Clients.GetAt(idx).Name)

 If(m_Repository.Clients.GetAt(idx).Name = "Joe Sphere") then

 m_Repository.Clients.DeleteAt(idx,false)

 Console.WriteLine("Delete Clients")

 End if

 Next

(c) Sparx Systems 2023 Page 345 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

 o = m_Repository.Resources.AddNew("Joe Worker","Resource")

 If(o.Update=false) Then

 Console.WriteLine (o.GetLastError())

 End if

 o = nothing

 m_Repository.Resources.Refresh

 For idx = 0 to m_Repository.Resources.Count-1

 Console.Writeline(m_Repository.Resources.GetAt(idx).Name)

 If(m_Repository.Resources.GetAt(idx).Name = "Joe Worker") then

 m_Repository.Resources.DeleteAt(idx,false)

 Console.WriteLine("Delete Resources")

 End if

 Next

End Sub

(c) Sparx Systems 2023 Page 346 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Stereotypes

This is some example code for adding and deleting stereotypes.

 Sub TestStereotypes

 Dim o as object

 Dim idx as integer

 ''add a new stereotype to the Stereotypes collection

 o = m_Repository.Stereotypes.AddNew("funky","class")

 If(o.Update=false) Then

 Console.WriteLine (o.GetLastError())

 End if

 o = nothing

 ''make sure you refresh

 m_Repository.Stereotypes.Refresh

 ''then iterate through - deleting our new entry in the process

 For idx = 0 to m_Repository.Stereotypes.Count-1

 Console.Writeline(m_Repository.Stereotypes.GetAt(idx).Name)

 If(m_Repository.Stereotypes.GetAt(idx).Name = "funky") then

 m_Repository.Stereotypes.DeleteAt(idx,false)

 Console.WriteLine("Delete element")

 End if

 Next

 End Sub

(c) Sparx Systems 2023 Page 347 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Work With Attributes

This is an example of code for working with attributes.

 Sub AttributeLifecycle

 Dim element as object

 Dim o as object

 Dim t as object

 Dim idx as Integer

 Dim idx2 as integer

 try

 element = m_Repository.GetElementByID(129)

 For idx = 0 to element.Attributes.Count -1

 Console.WriteLine("attribute=" + element.Attributes.GetAt(idx).Name)

 o = element.Attributes.GetAt(idx)

 t = o.Constraints.AddNew("> 123","Precision")

 t.Update()

 o.Constraints.Refresh

 For idx2 = 0 to o.Constraints.Count-1

 t = o.Constraints.GetAt(idx2)

 Console.WriteLine("Constraint: " + t.Name)

 If(t.Name="> 123") Then

 o.Constraints.DeleteAt(idx2, false)

 End if

 Next

 For idx2 = 0 to o.TaggedValues.Count-1

 t = o.TaggedValues.GetAt(idx2)

 If(t.Name = "Type2") Then

 'Console.WriteLine("deleteing")

 o.TaggedValues.DeleteAt(idx2, true)

 End if

 Next

 t = o.TaggedValues.AddNew("Type2","Number")

 t.Update

 o.TaggedValues.Refresh

(c) Sparx Systems 2023 Page 348 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

 For idx2 = 0 to o.TaggedValues.Count-1

 t = o.TaggedValues.GetAt(idx2)

 Console.WriteLine("Tagged Value: " + t.Name)

 Next

 If(element.Attributes.GetAt(idx).Name = "m_Tootle") Then

 Console.WriteLine("delete attribute")

 element.Attributes.DeleteAt(idx, false)

 End If

 Next

 catch e as exception

 Console.WriteLine(element.Attributes.GetLastError())

 Console.WriteLine(e)

 End try

 End Sub

(c) Sparx Systems 2023 Page 349 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

Work With Methods

This is an example of code for working with the Methods collection of an element and with Method collections.

 Sub MethodLifeCycle

 Dim element as object

 Dim method as object

 Dim t as object

 Dim idx as Integer

 Dim idx2 as integer

 try

 element = m_Repository.GetElementByID(129)

 For idx = 0 to element.Methods.Count -1

 method = element.Methods.GetAt(idx)

 Console.WriteLine(method.Name)

 t = method.PreConditions.AddNew("TestConstraint","something")

 If t.Update = false Then

 Console.WriteLine("PreConditions: " + t.GetLastError)

 End if

 method.PreConditions.Refresh

 For idx2 = 0 to method.PreConditions.Count-1

 t = method.PreConditions.GetAt(idx2)

 Console.WriteLine("PreConditions: " + t.Name)

 If t.Name = "TestConstraint" Then

 method.PreConditions.DeleteAt(idx2,false)

 End If

 Next

 t = method.PostConditions.AddNew("TestConstraint","something")

 If t.Update = false Then

 Console.WriteLine("PostConditions: " + t.GetLastError)

 End if

 method.PostConditions.Refresh

 For idx2 = 0 to method.PostConditions.Count-1

 t = method.PostConditions.GetAt(idx2)

(c) Sparx Systems 2023 Page 350 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

 Console.WriteLine("PostConditions: " + t.Name)

 If t.Name = "TestConstraint" Then

 method.PostConditions.DeleteAt(idx2, false)

 End If

 Next

 t = method.TaggedValues.AddNew("TestTaggedValue","something")

 If t.Update = false Then

 Console.WriteLine("Tagged Values: " + t.GetLastError)

 End if

 For idx2 = 0 to method.TaggedValues.Count-1

 t = method.TaggedValues.GetAt(idx2)

 Console.WriteLine("Tagged Value: " + t.Name)

 If(t.Name= "TestTaggedValue") Then

 method.TaggedValues.DeleteAt(idx2,false)

 End If

 Next

 t = method.Parameters.AddNew("TestParam","string")

 If t.Update = false Then

 Console.WriteLine("Parameters: " + t.GetLastError)

 End if

 method.Parameters.Refresh

 For idx2 = 0 to method.Parameters.Count-1

 t = method.Parameters.GetAt(idx2)

 Console.WriteLine("Parameter: " + t.Name)

 If(t.Name="TestParam") Then

 method.Parameters.DeleteAt(idx2, false)

 End If

 Next

 method = nothing

 Next

 catch e as exception

 Console.WriteLine(element.Methods.GetLastError())

 Console.WriteLine(e)

 End try

 End Sub

(c) Sparx Systems 2023 Page 351 of 352 Created with Enterprise Architect

Enterprise Architect Object Model 10 November, 2023

(c) Sparx Systems 2023 Page 352 of 352 Created with Enterprise Architect

	Enterprise Architect Object Model
	Using the Automation Interface
	Connect to the Interface
	Set References In Visual Basic

	Examples and Tips
	Call from Enterprise Architect
	Available Resources

	Reference
	Interface Overview
	App Object
	Enumerations
	ConstLayoutStyles
	CreateBaselineFlag
	CreateModelType
	DocumentBreak
	DocumentPageOrientation
	DocumentType
	EAEditionTypes
	EnumRelationSetType
	ExportPackageXMIFlag
	MDGMenus
	MessageFlag
	ObjectType
	PropType
	ReloadType
	ScenarioDiagramType
	ScenarioStepType
	ScenarioTestType
	XMIType

	Repository Package
	Author Class
	Client Class
	Collection Class
	The AddNew Function

	Datatype Class
	EventProperties Class
	EventProperty Class
	ModelWatcher Class
	Package Class
	ProjectIssues Class
	ProjectResource Class
	ProjectRole Class
	PropertyType Class
	Reference Class
	Repository Class
	SecurityUser Class
	Stereotype Class
	Task Class
	Term Class

	Properties Tab Package
	PropertiesTab Class

	Element Package
	Constraint Class
	Effort Class
	Element Class
	ElementGrid Class
	File Class
	Issue (Maintenance) Class
	Metric Class
	Requirement Class
	Resource Class
	Risk Class
	Scenario Class
	ScenarioExtension Class
	ScenarioStep Class
	TaggedValue Class
	Test Class

	Element Features Package
	Attribute Class
	AttributeConstraint Class
	AttributeTag Class
	CustomProperties Collection
	EmbeddedElements Collection
	Method Class
	MethodConstraint Class
	MethodTag Class
	Parameter Class
	ParamTag Class
	Partitions Collection
	Properties Class
	TemplateParameter Class
	Transitions Collection

	Connector Package
	Connector Class
	ConnectorConstraint Class
	ConnectorEnd Class
	ConnectorTag Class
	RoleTag Class
	TemplateBinding Class

	Diagram Package
	Diagram Class
	DiagramLink Class
	DiagramObject Class
	SwimlaneDef Class
	Swimlanes Class
	Swimlane Class

	Project Interface Package
	Project Class

	Chart Package
	Chart Enumerations
	ChartAxisCrossType
	ChartAxisIndex
	ChartAxisLabelType
	ChartAxisTickMarkType
	ChartAxisType
	ChartBarShape
	ChartCategory
	ChartColorMode
	ChartCurveType
	ChartDashStyle
	ChartFrameStyle
	ChartGradientType
	ChartMarkerShape
	ChartStockSeriesType
	ChartType
	ChartWallOptions

	Chart Class
	ChartAxisIndex Class
	ChartDataValue Class
	ChartDiagram3D Class
	ChartFormatSeries Class
	ChartSeries Class

	Document Generator Interface Package
	DocumentGenerator Class

	Data Miner Package
	DataMinerManager Class
	DataMiner Class
	DataSet Class
	DMArray Class
	DMAction Class
	DMScript Class
	DMConnection Class

	TypeInfoProperties Package
	TypeInfoProperties Class
	TypeInfoProperty Class

	Mail Interface Package
	MailInterface Class

	Search Window Package
	EAContext Class
	EASelection Class
	SearchWindow Class

	Simulation Package
	Simulation Class

	Schema Composer Package
	SchemaProperty Class
	SchemaProfile Class
	SchemaComposer Class
	ModelTypeEnum Class
	ModelType Class
	SchemaTypeEnum Class
	SchemaType Class
	SchemaPropEnum Class
	SearchType Enumeration
	SchemaNamespace Class
	SchemaNamespaceEnum Class

	Code Samples
	Open the Repository
	Iterate Through a .EAP File
	Add and Manage Packages
	Add and Manage Elements
	Add a Connector
	Add and Manage Diagrams
	Add and Delete Features
	Element Extras
	Repository Extras
	Stereotypes
	Work With Attributes
	Work With Methods

