
Dynamic Simulations
How to simulate model behavior? In Sparx Systems Enterprise Architect, you
spawn a dynamic process simulating the execution of conceptual behavioral

models, analyzing constructs directly in a dynamic environment in which
changes can be tested quickly.

Enterprise Architect
User Guide Series

Author: Sparx Systems

Date: 13/11/2023

Version: 16.1

CREATED WITH

Table of Contents

Dynamic Simulations 4
How it Looks 10
Simulation Windows 12
Set Up Simulation Script 17
Activate Simulation Script 22
Run Model Simulation 24
Simulation Breakpoints 28
Objects and Instances in Simulation 31
Create Objects in a Simulation 34
Destroy Objects in a Simulation 39

Dynamic Simulation with JavaScript 43
Call Behaviors 49
Interaction Operand Condition and Message
Behavior 52
Guards and Effects 55
Triggers 60

Action Behavior By Type 64
Structured Activity Simulation 67
Activity Return Value Simulation 71
Simulation Events Window 75
Waiting Triggers 82
Re-Signal Triggers 84
Multi-threading - Forks and Joins 86

Trigger Parameters 88

Trigger Sets and Auto-Firing 91
Using Trigger Sets to Simulate an Event Sequence 96
Multi-threading - Concurrent State Regions 98
Using Composite Diagrams 100
Win32 User Interface Simulation 103
Supported Win32 UI Controls 108
Win32 Control Tagged Values 128

BPMN Simulation 131
Create a BPMN Simulation Model 133
Initialize Variables and Conditions 136

Comparison of UML Activities and BPMN Processes 139

Dynamic Simulations 13 November, 2023

Dynamic Simulations
Model Simulation brings your behavioral models to life with
instant, real-time behavioral model execution. Coupled with
tools to manage triggers, events, guards, effects, breakpoints
and Simulation variables, plus the ability to visually track
execution at run-time, the Simulator is a multi-featured
means of 'watching the wheels turn' and verifying the
correctness of your behavioral models. With Simulation you
can explore and test the dynamic behavior of models. In the
Corporate, Unified and Ultimate Editions, you can also use
JavaScript as a run-time execution language for evaluating
guards, effects and other scriptable items of behavior.

Extensive support for triggers, trigger sets, nested states,
concurrency, dynamic effects and other advanced
Simulation capabilities, provides a remarkable environment
in which to build interactive and working models that help
explore, test and visually trace complex business, software
and system behavior. With JavaScript enabled, it is also
possible to create embedded COM objects that will do the
work of evaluating guards and executing effects - allowing
the Simulation to be tied into a much larger set of dependent
processes. For example, a COM object evaluating a guard
condition on a State Transition might query a locally
running process, read and use a set of test data, or even
connect to an SOA web service to obtain some current
information.

As Enterprise Architect uses a dynamic, script driven
Simulation mechanism that analyzes and works with UML

(c) Sparx Systems 2023 Page 4 of 144

Dynamic Simulations 13 November, 2023

constructs directly, there is no need to generate intermediary
code or compile simulation 'executables' before running a
Simulation. This results in a very rapid and dynamic
Simulation environment in which changes can be made and
tested quickly. It is even possible to update Simulation
variables in real time using the Simulation Console window.
This is useful for testing alternative branches and conditions
'on the fly', either at a set Simulation break point or when
the Simulation reaches a point of stability (for example,
when the Simulation is 'blocked').

In the Professional Edition of Enterprise Architect, you can
manually walk through Simulations - although no JavaScript
will execute - so all choices are manual decisions. This is
useful for testing the flow of a behavioral model and
highlighting possible choices and processing paths. In the
Corporate, Unified and Ultimate Editions it is possible to:

Dynamically execute your behavioral models·

Assess guards and effects written in standard JavaScript·

Define and fire triggers into running Simulations·

Define and use sets of triggers to simulate different event·

sequences

Auto-fire trigger sets to simulate complex event histories·

without user intervention

Update Simulation variables 'on the fly' to change how·

Simulations proceed

Create and call COM objects during a Simulation to·

extend the Simulation's reach and input/output
possibilities

(c) Sparx Systems 2023 Page 5 of 144

Dynamic Simulations 13 November, 2023

Inspect Simulation variables at run time·

Set a script 'prologue' for defining variables, constants and·

functions prior to execution

Use multiple Analyzer Scripts with differing 'prologues'·

for running the Simulation under a wide range of
conditions

In the Unified and Ultimate Editions it is also possible to
simulate BPMN models.

Using the Model Simulator, you can simulate the execution
of conceptual model designs containing behavior. When you
start a Simulation, the current model Package is analyzed
and a dynamic Simulation process is triggered to execute the
model.

To get up and running with Simulation, the only steps
required are:

Build a behavioral diagram (State or Activity for manual·

or dynamic execution, Sequence for manual interaction
only)

Optional: load the 'Simulation Workspace' layout - a fast·

way of bringing up all the frequently used Simulation
windows

Click on the Simulator Play button·

If the diagram contains any external elements (those not in
the same Package as the diagram) you will have to create an
Import connector from the diagram's Package to the Package
containing the external elements. To do this, drag both
Packages from the Browser window onto a diagram and
then use the Quick Linker arrow to create the connector

(c) Sparx Systems 2023 Page 6 of 144

Dynamic Simulations 13 November, 2023

between them.

Simulation Overview

Aspect

Overview of the Model Simulator

Use of the Simulation Window and Related Windows,
and Running a Simulation

Set Up a Simulation and Activate a Simulation Script

Set Up and Use Simulation Breakpoints

Simulate the Use of Objects

The Use of Different Types of Action in Simulation

Perform Dynamic Simulation with JavaScript

The Use of Guards and Effects in Simulations

The Use of Triggers in Simulations

Call Behaviors and Variables

Simulating Activity Returns

(c) Sparx Systems 2023 Page 7 of 144

Dynamic Simulations 13 November, 2023

Simulating Structured Activity Behavior

Simulating Multi-Threaded Processes

Simulating Sub-Processes in Separate Diagrams

Performing BPMN Simulations

Simulate Win32 Dialog Behavior

Platforms and Available Editions

Platform/Edit
ion

Details

Models and
Platforms
Supported

The Model Simulator currently supports
the execution of UML Activity,
Interaction and StateMachine models and
BPMN Business Processes on the
Simulation platforms:

UML Basic·

BPMN·

Edition
Support

Model Simulation is available at different
levels across the range of editions of

(c) Sparx Systems 2023 Page 8 of 144

Dynamic Simulations 13 November, 2023

Enterprise Architect:
Professional - Manual Simulation only·

Corporate and above - Adds dynamic·

JavaScript evaluation; currently
JavaScript is enabled for
StateMachines and Activity graphs; it
is not enabled for Interaction diagrams
Unified and Ultimate - Adds BPMN·

Simulation

(c) Sparx Systems 2023 Page 9 of 144

Dynamic Simulations 13 November, 2023

How it Looks
Enterprise Architect has a special way of displaying model
information during Simulation. This helps focus attention on
the executing or active nodes.

During a Simulation, Enterprise Architect will dynamically
track and highlight the active nodes within your model. If a
node in another diagram is activated, that diagram will be
automatically loaded and the current node highlighted. It is
possible to modify the diagram while the Simulation is
running; however, the changes made are not recognized
until the current Simulation is ended and a new one begun.

Highlighting of the Active Node(s) During
Simulation

In this example, the currently active node (VehiclesGreen)
is highlighted in normal Enterprise Architect colors, and all
possible transitions out of the current node are rendered at
full strength.

The elements that are possible targets of the current active
node's outgoing transitions are rendered in a semi-faded
style so that they are readable and clearly different to the
other elements within the diagram. All other elements are
rendered in a fully faded style to show they are not targets of
the next Simulation step. As the Simulation progresses
(especially if automatically run), this highlighting helps
focus the attention on the current item and its visual context.

(c) Sparx Systems 2023 Page 10 of 144

Dynamic Simulations 13 November, 2023

(c) Sparx Systems 2023 Page 11 of 144

Dynamic Simulations 13 November, 2023

Simulation Windows
When executing a Simulation in Enterprise Architect it is
possible to set break-points, fire triggers, examine variables,
record a trace of execution, set Simulation speed, view the
Call Stack and visually trace the active nodes as the
Simulation proceeds.

When a Simulation runs, some aspects such as the output
and console input are found in the Simulation window itself,
while other aspects such as the local variables and Call
Stack use the standard Execution Analyzer windows. The
topic provides an overview of the main windows used
during Simulation.

Access

Ribbon Simulate > Dynamic Simulation >
Simulator > Open Simulation Window

Windows

Window Purpose

Execution
and Console

The Simulation window provides the
main interface for starting, stopping and

(c) Sparx Systems 2023 Page 12 of 144

Dynamic Simulations 13 November, 2023

stepping through your Simulation. During
execution it displays output relating to the
currently executing step and other
important information. See the Run
Model Simulation topic for more
information on the toolbar commands.
Note the text entry box just underneath
the toolbar. This is the Console input area
- here you can type simple JavaScript
commands such as: this.count = 4; to
dynamically change a simulation variable
named 'count' to 4. In this way you can
dynamically influence simulation at
run-time.

Breakpoints
& Events
Window

The Simulation process also makes use of
the 'Simulation Breakpoints' tab of the
Breakpoints & Markers window
('Simulate > Dynamic Simulation >
Breakpoints'). Here you set execution
breakpoints on specific elements and
messages in a Simulation. See the

(c) Sparx Systems 2023 Page 13 of 144

Dynamic Simulations 13 November, 2023

Simulation Breakpoints topic for more
details.

Simulation
Events
Window

The Simulation Events window
('Simulate > Dynamic Simulation >
Events') provides tools to manage and
execute triggers. Triggers are used to
control the execution of StateMachine
transitions.

Call Stack
Window

During the Simulation the Call Stack
window ('Simulate > Dynamic
Simulation > Call Stack') displays
information about the threads and current
execution context of the Simulation.
The Simulator supports multi-threaded
Simulations and will include a thread
entry for every active and paused thread
of execution. For each thread, the Call

(c) Sparx Systems 2023 Page 14 of 144

Dynamic Simulations 13 November, 2023

Stack window will show the start or entry
context (such as a StateMachine element)
plus the current active element within that
thread. If the current active element is the
entry point of a composite Activity or
SubMachine state, the Stack will also
include the current active element within
that sub-context (and all further nested,
active composite, sub-states as well).

Simulation
Local
Variable
Window

The Simulator uses the standard Locals
window ('Simulate > Dynamic
Simulation > Local Variables') to show
all current simulation variables when the
simulation is single stepping or paused at
a break point. Note that it is possible to
dynamically update these variables using
the Simulator Console.

(c) Sparx Systems 2023 Page 15 of 144

Dynamic Simulations 13 November, 2023

Recording During execution of your simulation, a
recording is kept of all activity and
displayed in the Record & Analyze
window ('Execute > Tools > Recorder >
Open Recorder'). This is similar to how
the normal call recording works in the
Visual Execution Analyzer.

(c) Sparx Systems 2023 Page 16 of 144

Dynamic Simulations 13 November, 2023

Set Up Simulation Script
You can use Simulation Scripts to provide fine control over
how a Simulation starts. In general, you do not need to set
up a Simulation Script unless:

You want to run an interpreted Simulation that requires·

variables to be initialized before the Simulation
commences; this is useful for setting up global variables
and defining functions

(In the Corporate Edition and above) You do not want to·

apply the default behavior of interpreting the Guards (that
is, you prefer to use a manual execution), or

You want to have multiple ways of running the same·

diagram

For most diagrams it is possible to initialize a script for a
Simulation simply by setting variables in the first element or
connector after the Start element. For State Charts, this is
the Transit connector exiting the initial element, and for
Activity models this is the first Action element.

As an alternative, you can use Simulation Scripts to
initialize settings before a Simulation starts. This is useful
for setting up different sets of initial values using multiple
Analyzer Scripts, so that you can run your Simulation under
a range of pre-set conditions.

To configure a Simulation Script, first select the Package in
the Browser window, Package Browser, Diagram List or
Model Search. You can then use the Execution Analyzer
window to add a new script for that selected Package. You

(c) Sparx Systems 2023 Page 17 of 144

Dynamic Simulations 13 November, 2023

will use the 'Simulation' page of the 'Execution Analyzer'
dialog to configure the relevant properties.

Access

Show the Execution Analyzer window using one of the
methods outlined here.

On the Execution Analyzer window, either:

Locate and double-click on the required script and select·

the 'Simulation' page or

Click on in the window Toolbar and select the·

'Simulation' page

Ribbon Develop > Source Code > Execution
Analyzer > Edit Analyzer Scripts
Execute > Tools > Analyzer

Context
Menu

Browser window | Right-click on
Package | Execution Analyzer

Keyboard
Shortcuts

 Shift+F12

Configure a Simulation Script

Option Action

(c) Sparx Systems 2023 Page 18 of 144

Dynamic Simulations 13 November, 2023

Platform For UML Activity, Interaction or
StateMachine simulation, click on the
drop-down arrow and select 'UML Basic'.
For BPMN diagrams, click on the
drop-down arrow and select 'BPMN'.

Entry Point Click on the button and select the:
Entry point for the Simulation, and·

Activity, Interaction or StateMachine·

to simulate

If you do not specify an entry point, the
Simulator attempts to work through the
entire Package.

Evaluate
Guards and
Effects using
JavaScript

(In Corporate and higher editions) Leave
the checkbox unselected to perform a
manual Simulation, where you select the
next State to transition to and the point
where a decision must be made.
Select the checkbox to execute the code
for Effect behavior in the Simulation. The
Simulation executes JavaScript code in
these places:

State entry/exit/do operations·

Transition guard/effect·

BPMN Activity Loop Conditions and·

(c) Sparx Systems 2023 Page 19 of 144

Dynamic Simulations 13 November, 2023

Sequence Flow Condition Expressions
With the exception of the guard, all of
these should be one or more valid
JavaScript statements, including the
semi-colon.
The guard must be a valid Boolean
expression, also terminated with a
semi-colon.
Variables that are members of 'sim' or
'this' are listed in the Locals window
when a Simulation breakpoint is reached.
 sim.count = 0;

Input When JavaScript is enabled, you can type
script commands in this field that will
execute prior to the Simulation being run.

Post
Processing
Script

Using a Post Simulation Script, you can
run JavaScript after the Simulation ends.
Type in the qualified name of a script
from the model script control.
For example, if you have a script named
'MyScript' in the Script Group
'MyGroup', type in the value
'MyGroup.MyScript'.

OK Click on this button to save your changes.

(c) Sparx Systems 2023 Page 20 of 144

Dynamic Simulations 13 November, 2023

Notes

Usually all Simulation elements and relationships reside·

within the Package configured for Simulation; however,
you can simulate diagrams that include elements from
different Packages, by creating Package Import
connectors from the configured Package to each 'external'
Package (alternatively, for a BPSim model, create a
Dependency connector from the configured Package to
each external element)

(c) Sparx Systems 2023 Page 21 of 144

Dynamic Simulations 13 November, 2023

Activate Simulation Script
An Execution Script is configured for a model Package
defining the Simulation parameters. The most common
reason for activating an Execution Script is when multiple
Simulation Scripts are configured against a Package and you
want to run a specific one.

Access

Ribbon Execute > Tools > Analyzer
Develop > Source Code > Execution
Analyzer

Analyzer
Window

Click the Analyzer Script checkbox to
make it active

Keyboard
Shortcuts

Shift+F12

Activate a Simulation Script for Execution

Ste
p

Action

(c) Sparx Systems 2023 Page 22 of 144

Dynamic Simulations 13 November, 2023

1 In the Execution Analyzer window, select the
required Execution Script. This makes it the current
default for your open model, so that clicking on the
Simulation Run button will automatically invoke this
Simulation Script.

2 Click on the checkbox to the left of the script to
activate it.

3 Select the 'Simulate > Simulator > Open Simulation
Window' ribbon option to execute the simulation.

(c) Sparx Systems 2023 Page 23 of 144

Dynamic Simulations 13 November, 2023

Run Model Simulation
A Simulation executes the model step-by-step, enabling you
to validate the logic of your behavioral model. The current
execution step is automatically highlighted in the model's
diagram to make it easy to understand the various processes
and state changes as they occur during the Simulation.

There are several ways to start a model Simulation:

When the active diagram can be simulated, the Run button·

on the main Simulation window will process the current
diagram, either by running an existing script or defining a
new temporary one

When the active diagram can not be simulated, the Run·

button on the main Simulation window will run the
Simulation for the active Execution Analyzer script

By right-clicking on a Simulation script in the Execution·

Analyzer window and selecting the 'Start Simulation'
option

By right-clicking on a suitable diagram and selecting one·

of the 'Execute Simulation' options

There are visual cues during execution. When the
Simulation is running, Enterprise Architect will actively
highlight each active node for each executed step. In
addition, all outgoing transitions and control flows will be
highlighted, showing the possible paths forward. Elements
at the end of possible paths forward will be de-emphasized
to half-strength and any other remaining elements will be
90% 'grayed out'. This provides a very dynamic and easy to

(c) Sparx Systems 2023 Page 24 of 144

Dynamic Simulations 13 November, 2023

follow execution that continually refocuses attention on the
execution context.

Access

Ribbon Simulate > Dynamic Simulation >
Simulator > Open Simulation Window
Simulate > Run Simulation > Start

Edition Specific Details

In the Professional Edition, if a branch is encountered in the
execution, the Simulator prompts you to choose the
appropriate path to take in your execution.

In the Corporate, Unified and Ultimate Editions, in which
JavaScript is enabled, the Simulation will automatically
evaluate all guards and effects and dynamically execute the
Simulation without user intervention. If the Simulation
becomes blocked due to no possible paths forward
evaluating to True (or multiple paths evaluating to True)
you can modify the Simulation variables on the fly using the
console input of the Simulation Execution window.

Run a Simulation Using the Toolbar

(c) Sparx Systems 2023 Page 25 of 144

Dynamic Simulations 13 November, 2023

Icon Action

Start the Simulator for the current
diagram or, if the current diagram cannot
be simulated, run the Simulation using
the activated Simulation script.

Pause the Simulation.

When the Simulation is paused, step over,
step in and step out to control the
Simulator's execution at the required step
in the model Simulation.

Stop the Simulation.

Click on the drop-down arrow and select
the type of Simulation to run:

'Interpreted' - Perform dynamic·

execution of a Simulation (Corporate,
Unified and Ultimate Editions)

(c) Sparx Systems 2023 Page 26 of 144

Dynamic Simulations 13 November, 2023

'Manual' - Step through a Simulation·

manually (the only option available in
the Professional Edition)
'Executable' - Select when running the·

Simulation on an Executable
StateMachine

Click on the drop-down arrow and select
from a menu of options for performing
specific operations on the Simulation
script and output, such as Build, Run,
Generate and View Breakpoints.

Vary the execution rate of the Simulation,
between 0% and 100%; at:

100%, the Simulation executes at the·

fastest possible rate
0% the Simulator breaks execution at·

every statement

Notes

The Simulation tool only becomes active when a valid·

Simulation Execution Script is activated

You can set a Simulation script as the current default by·

setting its checkbox in the Execution Analyzer window

(c) Sparx Systems 2023 Page 27 of 144

Dynamic Simulations 13 November, 2023

Simulation Breakpoints
The 'Simulation Breakpoints' tab of the Breakpoints &
Events window enables you to interrupt and inspect the
Simulation process.

When dynamically executing a Simulation (in the
Corporate, Unified and Ultimate editions) the process will
proceed automatically - if you want to stop execution at
some point to examine variables, inspect Call Stacks or
otherwise interact with the Simulator, you can set a
breakpoint on a model element in much the same way as
you would with a line of source code. When the Simulator
reaches the breakpoint, execution is halted and control
returned to Enterprise Architect.

Access

Ribbon Simulate > Dynamic Simulation >
Breakpoints > Simulation Breakpoints

Breakpoints

The Simulation executes the model step-by-step, enabling
you to validate the logic of your behavior model; the
Simulation halts when it reaches an element defined as a
breakpoint.

(c) Sparx Systems 2023 Page 28 of 144

Dynamic Simulations 13 November, 2023

The UML elements that can be defined as breakpoints
include Actions, Activities, States, and most other
behavioral nodes such as Decision, Initial, or Final.

The UML relationships that can be defined as breakpoints
include Interaction Messages.

The breakpoints are stored as Breakpoint Sets for a given
Enterprise Architect project.

Elements that are included in a Simulation and that have
breakpoints are marked by a green circle near the top left
corner of the element, whilst the Simulation is in progress. If
the Simulation is not running, the green circles are not
displayed.

When JavaScript is enabled all Simulation variables will be
displayed in the Locals window, and it is possible to modify
these Simulation variables using the Simulation window's
console input field (underneath the Toolbar).

Toolbar Buttons

Item Description

Enables all breakpoints defined in the
current Breakpoint Set for the Simulation
session.

Deletes all breakpoints defined in the
current Breakpoint Set for the Simulation

(c) Sparx Systems 2023 Page 29 of 144

Dynamic Simulations 13 November, 2023

session.

Disables all breakpoints defined in the
current Breakpoint Set for the Simulation
session.

Adds a breakpoint for the selected
element or Sequence message to the
current Breakpoint Set.

Changes the selected Breakpoint Set for
use in the Simulation session.

Performs Breakpoint Set commands:
New Set: Create a new Breakpoint Set·

Save As Set: Saves the current·

Breakpoint Set under a new name
Delete Selected Set: Deletes the·

current Breakpoint Set
Delete All Sets: Deletes all Breakpoint·

Sets saved for the diagram

(c) Sparx Systems 2023 Page 30 of 144

Dynamic Simulations 13 November, 2023

Objects and Instances in Simulation
As a given business, system or mechanical process executes,
the Activities and Actions within it might generate objects
of a specific type and perform operations on those objects,
perhaps even consuming or destroying them. You can
simulate the creation, use and consumption of such objects
using a Simulation model that represents the objects and
actions with model elements such as Classes, Instance
Objects, attributes, operations and Ports (ActionPins and
ObjectNodes). The model can also create, act on and destroy
several different objects at different stages as part of the
same process. Representing model data or objects in
Simulation makes the Simulation more accurately reflect the
real process.

Object Concepts

Term Description

SimType The type of Simulation element, such as
Class, Enumeration or Interface. These
can be classifiers of objects in a
Simulation.

SimObject An object that is an instance of (is
classified by) a SimType element.

(c) Sparx Systems 2023 Page 31 of 144

Dynamic Simulations 13 November, 2023

Attribute A property of a SimType element, or of a
specified node such as an ActivityNode.

Operation A behavior of a SimType element, or of a
specified node such as an ActivityNode.

Port A Port of a Class or Object, an ActionPin
of an Action, or an ObjectNode of an
Activity. Ports of classifiers are a type,
whilst a Port of an object is a realization
of the type.

Parameter/
Activity
Parameter

Parameters of Operations; Activity
Parameters are, specifically, parameters
of ActivityNodes.

Slot A realization of an attribute in an object.
A Slot has a run time value that can be
initialized by the run state value of the
Slot. If these values don't exist, the
system uses the initial values of the
attributes.

Runtime
Environment

All objects exist in the JavaScript runtime
environment, so you can use JavaScript
to create or change simulation objects and
simulation variables.

Display All simulation objects, Simulation

(c) Sparx Systems 2023 Page 32 of 144

Dynamic Simulations 13 November, 2023

Variables variables or events are identified on the
Locals window while they are in effect.
In some cases, to show the variables you
might need to add break points to the
model to pause processing while the
variable exists.
As all objects and variables are shown,
global variables that exist outside the
simulation but that are significant to it -
such as the parent Class and Activity
elements within which a process is
defined - are automatically also
represented as default object variables. So
too is the anticipated output of the
Activity, as a return variable.

(c) Sparx Systems 2023 Page 33 of 144

Dynamic Simulations 13 November, 2023

Create Objects in a Simulation
In a Simulation model, you can create Classes and either
create instances of them (Global Objects) to represent
objects that exist in the process, or define Actions to
generate one or more Objects at any point during the
process.

You have three options for creating Objects in a Simulation
model:

Manually create the Object·

Dynamically create an Object through a CreateObject·

Action element

Use the JavaScript function sim.CreateObject ("name") as·

the 'Effect' of an Action element, to again create an Object
dynamically

Having created an Object dynamically you can also
instantiate any inner objects of that Object, such as an
Activity on a Class, and act on the properties of that inner
object.

Manually Create an Object

Simply create an Object element on a diagram in the model,
either by:

Dragging an Object element from the 'Object' pages of the·

Diagram Toolbox and setting its classifier, or

Dragging a classifier element from the Browser window·

and pasting it into the diagram as an instance

(c) Sparx Systems 2023 Page 34 of 144

Dynamic Simulations 13 November, 2023

In the Simulation model you can then set up the Object
properties themselves (such as setting run-states to re-set the
initial value of an attribute) or the behaviors of Actions to
act on the Object (such as passing it along a process flow)
and observe what happens to the Object in a Simulation.

Create an Object through a CreateObject
Action

If your process generates objects in runtime, you can
Simulate this using a CreateObject Action.

Ste
p

Action

1 On your Activity diagram, drag an 'Action' icon from
the Diagram Toolbox, and select the 'Other |
CreateObject' context menu option to define it as a
CreateObject Action element.

2 Set the classifier of the CreateObject Action to the
Class of which the Object will be an instance. This is
set in the Properties window > CreateObjectAction >
Classifier, using the [...] button.

3 Create an Action Pin on the CreateObject Action, of
kind output.

4 Create or select the next Action in the processing

(c) Sparx Systems 2023 Page 35 of 144

Dynamic Simulations 13 November, 2023

sequence, and add an Action Pin of kind input.
Connect the two Actions with a Control Flow
connector, and the two Action Pins with an Object
Flow connector.

5 Perform a Simulation on the diagram. When the
CreateObject Action is executed, it creates an Object
having the properties of the classifier, and stores it in
its Output Pin. The Object itself is passed through
the Object Flow connection to the Input Pin of
Action 2, where its properties can be listed in the
Locals window for the Simulation.

Create Object Using JavaScript

You can also create Simulation objects dynamically using a
JavaScript command in the 'Effect' field of the Action
element. The command is:

 sim.newObject = sim.CreateObject("ClassName");

or

 sim.newObject = new SimObject("ClassName"); (natural
JavaScript)

That is: 'Simulate the creation of an Object based on Class

(c) Sparx Systems 2023 Page 36 of 144

Dynamic Simulations 13 November, 2023

<name>'. The classifying Class would exist in the same
Package as the Action.

As for the CreateObject Action element, the Object is
created during the Simulation and can be passed down to
and processed by 'downstream' elements. In this example,
the created Object is identified as sim.object1 and in Action
2 it is accessed and one of its attributes given a different
value (also by JavaScript as an Effect of the Action).

Instantiate Inner Objects

As described earlier, you can create an Object using either
JavaScript or a CreateObject Action. Similarly, you can
instantiate inner objects using JavaScript or a CallBehavior
Action.

In this example, using JavaScript, the Simulation first
creates a test object based on Class1. Class 1 has an Activity
element and diagram, with an Activity Parameter 1 set to the
integer 5 and an Activity Parameter 2 set to the string 'test'.
The value of Activity Parameter 1 is captured as a buffer
value 'buf'.

(c) Sparx Systems 2023 Page 37 of 144

Dynamic Simulations 13 November, 2023

(c) Sparx Systems 2023 Page 38 of 144

Dynamic Simulations 13 November, 2023

Destroy Objects in a Simulation
Having created or generated Objects in your Simulation
model, you can define Actions to destroy those objects at
any point during the process. All Simulation objects are
destroyed automatically when the Simulation completes.

You have two options for destroying the Objects in your
Simulation model:

Dynamically destroy the Objects through a DestroyObject·

Action element

Dynamically destroy the Objects using JavaScript in an·

Action element

The result of the deletion can be observed in the change of
local variables, on the Local window.

Destroy an Object through a DestroyObject
Action

Ste
p

Action

1 On your Activity diagram, drag an 'Action' icon from
the Diagram Toolbox, and select the 'Other |
DestroyObject' context menu option to define it as a
DestroyObject Action element.

2 Set the classifier of the DestroyObject Action to the

(c) Sparx Systems 2023 Page 39 of 144

Dynamic Simulations 13 November, 2023

Class of which the Object is an instance.
(Advanced | Set Classifier).
Create an Action Pin on the DestroyObject Action,
of kind input.

3 Connect the Input Action Pin to an Object Flow
connector from the last Action that operated on the
Object. In this example, the last Action that operated
on the Object is the Action that created it.

4 Perform a Simulation on the diagram. The process
passes the Object name or value into the Input
Action Pin as a parameter. When the DestroyObject
Action is executed, it deletes the Object having that
name or value from the model.
In the example, the instance of Class1 is specifically
destroyed before Action4 is processed, but the

(c) Sparx Systems 2023 Page 40 of 144

Dynamic Simulations 13 November, 2023

results of Action2 are unaffected.

Destroy an Object using JavaScript

In the 'Properties' dialog of the Action element, in the
'Effect' field on the 'Effect' page, type either:

 sim.DestroyObject ("objectname")

or

 delete sim.objectFullName

For example:

(c) Sparx Systems 2023 Page 41 of 144

Dynamic Simulations 13 November, 2023

Notes

In either case, you can also destroy a global object (one·

that is created outside the process flow) by identifying the
Object to the Action performing the destruction; in the
case of the DestroyObject Action, by passing the Object
name from a Port on the Object to the Input Pin on the
Action through an Object Flow connector

(c) Sparx Systems 2023 Page 42 of 144

Dynamic Simulations 13 November, 2023

Dynamic Simulation with JavaScript
The Corporate, Unified and Ultimate editions of Enterprise
Architect provide the capability of using JavaScript to
evaluate guards, effects and other aspects of behavior within
the Simulation context. This provides for a fully automated,
intelligent execution of your State or Activity model, with
fine control over breakpoints, execution speed and
Simulation variables.

You can write JavaScript that uses any variables. To enable
you to display the values of such variables through the user
interface, two built-in objects are defined - sim and this -
whose members can be displayed in the Local Variables
window (also called the Locals window). Examples of the
variables that can be displayed are:

sim.logger·

sim.Customer.name·

this.count·

this.Account.amount·

The recommended convention is to add any global or
control variables not declared in the owning Class to the sim
object. In contrast, it would be normal to add attributes of
the owning classifier to the this object.

Some examples of where and how you can set Simulation
behavior using JavaScript are provided here. Further
examples are provided in the EAExample.eap model that
comes with Enterprise Architect.

(c) Sparx Systems 2023 Page 43 of 144

Dynamic Simulations 13 November, 2023

Using JavaScript

Setting Action

Analyzer
Script Input

If you enter JavaScript code into the
Execution Analyzer window 'Input' field,
this code will be injected into the
Simulation and executed before the
Simulation starts. This is useful for
establishing COM variables, global
counters, functions and other
initialization.

Transition
and Control
Flow Guards

This is the workhorse of the Simulation
functionality. As Enterprise Architect
evaluates possible paths forward at each
node in a Simulation, it tests the Guards
on outgoing transitions and control flows
and will only move forward if there is a
single true path to follow - otherwise the
Simulation is considered 'blocked' and
manual intervention is required. You

(c) Sparx Systems 2023 Page 44 of 144

Dynamic Simulations 13 November, 2023

must use the '==' operator to test for
equality.

Element
Behavior

Entry and Exit behavior can be defined
for States. Such code will execute at the
appropriate time and is useful for
updating Simulation variables and
making other assignments.

You can also simulate the behavior of
Classes via their Object Instances, and
Activities in your model.

Using COM One very important feature of the
implementation of JavaScript in
Enterprise Architect's Simulator is that it
supports the creation of COM objects.
This provides the ability to connect the
running Simulation with almost any other
local or remote process and either

(c) Sparx Systems 2023 Page 45 of 144

Dynamic Simulations 13 November, 2023

influence the Simulation based on
external data, or potentially change data
or behavior in the external world based
on the current Simulation state (for
example, update a mechanical model or
software Simulation external to
Enterprise Architect). The syntax for
creating COM objects is shown here:
 this.name="Odd Even";
 var logger = new
COMObject("MySim.Logger");
 logger.Show();
 logger.Log("Simulation started");

Using
Solvers

Anywhere in Enterprise Architect that
has JavaScript code, such as in Dynamic
Simulation, you can now use a JavaScript
construct called 'Solver' (the Solver
Class) to integrate with external tools and
have direct use of the functionality within
each tool to simply and intuitively
perform complex math and charting
functions. The calls help you to
interchange variables between the built in
JavaScript engine and each environment
easily. Two Math Libraries that are
supported are MATLAB and Octave.
To use the Solver Class, you need to have
a knowledge of the functions available in

(c) Sparx Systems 2023 Page 46 of 144

Dynamic Simulations 13 November, 2023

your preferred Math Library and the
parameters they use, as described in the
product documentation.
Being part of the JavaScript engine, these
Solver Classes are also immediately
accessible to Add-In writers creating
model based JavaScript Add-Ins.
See the Octave Solver, MATLAB Solver
and Solvers Help topics for further
details.

Signalled
Actions

It is possible to raise a signalled event
(trigger) directly using JavaScript. The
BroadcastSignal() command is used to
raise a named trigger that could influence
the current state of a Simulation. For
example, this fragment raises the signal
(trigger) named "CancelPressed".
 BroadcastSignal("CancelPressed");
Note that a trigger named CancelPressed
must exist within the current Simulation
environment and must uniquely have that
name.
You can also call the signal using its
GUID. For example:

BroadcastSignal("{996EAF52-6843-41f7
-8966-BCAA0ABEC41F}");

(c) Sparx Systems 2023 Page 47 of 144

Dynamic Simulations 13 November, 2023

IS_IN() The IS_IN(state) operator returns True if
the current Simulation has an active state
in any thread matching the passed in
name. For example, to conditionally
control execution it is possible to write
code such as this:
 if (IS_IN("WaitingForInput"))
 BroadcastSignal("CancelPressed")
Note that the name must be unique within
all contexts.

Trace() The Trace(statement) method allows you
to print out Trace statements at any
arbitrary point in your Simulation. This is
an excellent means of supplementing the
Simulation log with additional output
information during execution.
The JavaScript Simulation will truncate
strings that exceed the defined maximum
length of the Trace message.

(c) Sparx Systems 2023 Page 48 of 144

Dynamic Simulations 13 November, 2023

Call Behaviors
In the course of simulating a process, you can enact the
behaviors defined in an operation of either a Class (through
its Simulation Object) or an Activity in the model. In each
case, you use JavaScript to call the behavior.

Invoke the Behavior of a Class

A Class in your model defines a behavior that you want to
simulate. This behavior is defined in the Behavior page of
an Operation of the Class.

For example, the Class is intended to add two integers,
through the Operation add(int, int). The integers in this
case are parameters of the operation, defined by attributes of
the Class, operand1 and operand2.

Ste
p

Action

1 In the Properties window for the operation, select the
'Behavior' tab and edit the 'Behavior' field to apply
the JavaScript Simulation Objects (this or sim) to the
behavior definition.
In the example:
 this.operand1=operand1;

(c) Sparx Systems 2023 Page 49 of 144

Dynamic Simulations 13 November, 2023

 this.operand2=operand2;
 return operand1+operand2

2 Drag the Class onto your Simulation Activity
diagram and paste it as an Instance.
In the example, the Object is called 'calculator'. For
clarity, the element shown here is set to display
inherited attributes and operations, and the behavior
code, on the diagram.

3 On the Simulation diagram, for the appropriate
Action element, open the 'Properties' dialog and on
the 'Effect' page type in the JavaScript to capture and
simulate the Object's behavior.
In the example, the JavaScript defines a value that
will be provided by simulating the behavior of the
operation from the Object, as performed on two
provided integers. That is:
 sim.result=sim.calculator.add(7,9)

4 Run the Simulation, and observe its progress in the

(c) Sparx Systems 2023 Page 50 of 144

Dynamic Simulations 13 November, 2023

Locals window. Ultimately the Class behavior is
reflected in the result of the Simulation.
In the example: result = 16.

Invoke the Behavior of an Activity

An Activity element can have a behavior, defined by an
operation in that element. As a simple example, an Activity
might have an operation called Get Result, with the behavior
return "ON";.

You can simulate this behavior in the Activity's child
diagram (that is, internal to the Activity), with a JavaScript
statement in the appropriate Action element's 'Effect' field.
In the example, this might be:

 sim.result=this.GetResult();

The statement invokes the parent Activity's operation
GetResult and assigns the outcome of that operation's
behavior to sim.result. You can observe the progress of the
Simulation and the result of simulating the behavior in the
Locals window, where (in this example) the value result
"ON" will ultimately display.

(c) Sparx Systems 2023 Page 51 of 144

Dynamic Simulations 13 November, 2023

Interaction Operand Condition and
Message Behavior
When you simulate the behavior of a Sequence diagram,
you can use a Condition for the CombinedFragment
Interaction Operand, to control the flow during the course of
the Simulation.

A Message in Sequence diagram can link to an Operation,
so the behavior of the Operation can also be used during the
course of the Simulation.

Interaction Operand Conditions

Field/Column Description

Operand
Condition

Interaction Operand Conditions are
conditional statements that are evaluated
whenever the Simulator has to determine
which path to take next. Operand
Conditions typically have these
characteristics:

Defined in the 'Combined Fragment'·

dialog
Written in JavaScript·

Can refer to variables defined during·

Simulation

(c) Sparx Systems 2023 Page 52 of 144

Dynamic Simulations 13 November, 2023

Adding
Operand
Conditions

To add an Operand Condition:
Double-click on the1.
CombinedFragment element to open
the 'Combined Fragment' dialog.
Click on the New button.2.
In the 'Condition field', type the3.
JavaScript for the condition.
Click on the Save button.4.

Evaluation
Semantics

During execution the Simulator evaluates
any Operand Condition within the
CombinedFragment; the
CombinedFragment type and the outcome
of the evaluation can determine the path
that the Simulation continues on.

(c) Sparx Systems 2023 Page 53 of 144

Dynamic Simulations 13 November, 2023

(c) Sparx Systems 2023 Page 54 of 144

Dynamic Simulations 13 November, 2023

Guards and Effects
Guards and Effects are used to control the flow of the
Simulation and to execute additional actions or effects
during the course of a Simulation.

Guards and Effects

Concept Detail

Guards Guards are conditional statements that are
evaluated whenever the Simulator has to
determine the path to take next. Guards
typically have these characteristics:

Defined on transitions and control·

flows to govern how a Simulation
proceeds
Written in JavaScript·

Can refer to variables defined during·

Simulation

Adding
Guards

Guards are defined on the Transition or
Control Flow in the 'Properties' dialog for
the selected connector. A Guard is
typically a piece of JavaScript that will
evaluate to either True or False. For
example, here is a conditional statement
that refers to a current variable (Balance)

(c) Sparx Systems 2023 Page 55 of 144

Dynamic Simulations 13 November, 2023

being greater than zero. Note the use of
the prefix 'this' to indicate that the
variable is a member of the current Class
context.

Evaluation
Semantics

During execution the Simulator will
examine all possible paths forward and
evaluate any guard conditions. This
evaluation could establish that:

A single valid path forward evaluates·

to True; the Simulator will follow that
path
Two valid paths exist; the Simulator·

will block, waiting for some manual
input via the console window to resolve
the deadlock
No valid path exists; the same response·

as when two paths are found - the
Simulator waits for the user to change
the execution context using the console
window
No paths evaluate to True but a default·

(unguarded path) exists; the Simulator
will take the unguarded path

Effects Effects are defined behaviors that are

(c) Sparx Systems 2023 Page 56 of 144

Dynamic Simulations 13 November, 2023

executed at special times:
On entry to a state·

On exit from a state·

When transitioning from one state to·

another (transition effect)
Effects can either be a section of
JavaScript code or a call to another
Behavior element in the current
simulation.

JavaScript
Effects

A JavaScript effect might resemble this
example, in which the Balance variable is
decremented:

Call
Behavior
Effects

In this example the Effect is a call
behavior effect. In this case, it calls into a
model the Activity named Decrement
Balance that is defined elsewhere. The
simulation will then enter into that
diagram/behavior and continue to execute
until returning to the point at which the
Effect was invoked.

(c) Sparx Systems 2023 Page 57 of 144

Dynamic Simulations 13 November, 2023

Order of
Execution of
Effects

In complex simulations that might
involve transitioning out of deeply nested
states into other deeply nested states in a
different parent context, it is important to
consider these rules concerning the order
of execution:

All exit actions (Effects) encountered·

leaving a nested context are executed in
order of most deeply nested to least
deeply nested
All actions (Effects) defined on·

transitions are executed next
Finally, all entry Effects are executed·

from the least deeply nested context to
the most deeply nested

So the basic rule is: all exit actions,
followed by all transition actions, and
finally all entry actions.

Note on
JavaScript
Variables

JavaScript variables to be accessed and
referred to during Simulation execution
belong to either:

sim (for example,·

sim.pedestrianwaiting) - typically used
for global Simulation variables, or
this (for example,·

this.CustomerNumber) - typically used
to refer to owning Class attributes

(c) Sparx Systems 2023 Page 58 of 144

Dynamic Simulations 13 November, 2023

This is important to let the JavaScript
engine know you are referring to a
Simulation variable and not a simple
local variable used during, for example,
basic calculations. You can create
Simulation variables of arbitrary scope
and depth - for example,
this.customer.name is a legitimate
qualified name.

(c) Sparx Systems 2023 Page 59 of 144

Dynamic Simulations 13 November, 2023

Triggers
Triggers represent signals and events that can activate
transitions leaving the current state(s). A trigger might
represent a real world signal or event such as:

A button being pressed·

A message being received·

A pedal being depressed·

A switch being thrown·

A state in a concurrent region being entered or exited·

For a trigger to have an Effect

Transitions must be defined that will fire when the·

simulation receives the Signal or Event

The current Simulation State(s) or its parent(s) must have·

an outgoing transition that accepts that trigger

The transition activated must be unguarded or have a·

guard that will evaluate to True

Managing Triggers

Action Detail

Creating
Triggers

Triggers are either created as an instance
of a Signal element or as an anonymous
event. Triggers are connected to

(c) Sparx Systems 2023 Page 60 of 144

Dynamic Simulations 13 November, 2023

Transitions in the 'Transition Properties'
dialog as shown here. In this example a
Trigger named 'Pushdown' has been
defined based on the Signal
'Signal_Pushdown'.

Omitting the Type and Specification·

details results in a simple anonymous
Trigger.
If parameters are needed, these are·

defined on the Signal and must be
supplied at the time the event fires

A trigger will appear in the 'Project' tab of
the Browser window, as illustrated here:

Using
Triggers

Triggers are deployed by connecting
them to transitions, as in the earlier
example, and are used during simulation
by 'firing' them into the running
simulation as required.
When using triggers these points should
be taken into account:

(c) Sparx Systems 2023 Page 61 of 144

Dynamic Simulations 13 November, 2023

A 'triggered' transition can not take·

place until its effective trigger is
signalled or fired
When a trigger is received it will·

activate all current waiting transitions
dependent on that trigger (that is, the
trigger is broadcast)
Triggers are evaluated on all transitions·

for all parents of a current child state;
this allows a parent state to exit all
child states if necessary
Once used in a simulation, a trigger is·

consumed and must be re-fired if
needed again
Sets of triggers can be saved and either·

manually or automatically fired to
facilitate automated model simulation
under different event models

Firing
Triggers

Firing triggers means to signal or activate
a trigger within the current simulation.
This could activate zero, one or many
waiting transitions depending on the state
and concurrency of the current
Simulation.
Firing triggers can be achieved in many
ways. The most efficient is the 'Waiting
Triggers' list.
During the course of model Simulation, if

(c) Sparx Systems 2023 Page 62 of 144

Dynamic Simulations 13 November, 2023

the Simulator reaches an impasse due to
required triggers not being available
(fired), the list of all possible candidate
triggers is shown in the 'Waiting Triggers'
list of the Simulation Events window.

Double-clicking a trigger in this list will
fire it into the Simulation. Other ways to
fire a trigger include:

Double-click an un-signalled trigger in1.
the Events window.

You can also use the context menu on
these events to either signal an
un-signalled event, or to re-signal an
event that has already been fired
previously.
Use the context menu of the Transition2.
required to fire and select the 'Signal
Trigger in Simulation' menu option.

(c) Sparx Systems 2023 Page 63 of 144

Dynamic Simulations 13 November, 2023

Action Behavior By Type
You can vary the behavior initiated by an Action element by
defining (or even redefining) its type. In Simulation, you
can apply and observe a number of different behaviors using
the Actions in the types and groups described in this table.

Action Types

Type Description

Object
Actions

Object Actions operate on an object in a
specific way, such as creating, destroying
or reading the object. They include:

CreateObject·

DestroyObject and·

Read Self·

Variable
Actions

Variable Actions have an association
variable in the form of the Tagged Value
variable with the value of the name of an
object in run-time. They provide the
variable not only as an object but also as
a property (such as an attribute or Port) of
an object. They include:

ReadVariable·

WriteVariable·

(c) Sparx Systems 2023 Page 64 of 144

Dynamic Simulations 13 November, 2023

ClearVariable·

AddVariableValue·

RemoveVariable·

StructuralFea
ture Actions

StructuralFeature Actions operate on a
structural feature, namely an attribute of
an Activity or of the classifier of an
object. They include:

ReadStructuralFeature·

WriteStructuralFeature·

ClearStructuralFeature·

AddStructuralFeatureValue·

RemoveStructuralFeatureValue·

Invocation
and Accept
Event
Actions

Invocation and Accept Event actions
define the Triggers and Signals of an
event. They include:

SendSignal·

BroadcastSignal·

AcceptEvent·

SendObject·

CallBehavior·

CallOperation·

AcceptCall·

Miscellaneou
s Actions

The ValueSpecification Action evaluates
a value; it must have an input value and

(c) Sparx Systems 2023 Page 65 of 144

Dynamic Simulations 13 November, 2023

some evaluating code as its behavior or
effect.

(c) Sparx Systems 2023 Page 66 of 144

Dynamic Simulations 13 November, 2023

Structured Activity Simulation
One of the more complex structures in a behavioral model is
a Structured Activity, which models a series of actions
either in a nested structure or in a process of assessment and
execution. The assessment types of Structured Activity are
the Conditional Node and Loop Node, both of which you
can simulate quite easily.

Conditional Node

A Conditional Node essentially consists of one or more
pairs of Test / Body partitions, each pair being referred to as
a Clause. The Test partition is composed of Activity
diagram elements that test a condition, and if that condition
is met further Activity diagram elements in the Body
partition are executed to produce a result.

If there is one Clause, the Conditional Node either outputs
the result of the Body partition, or no result. If there is more
than one Clause, control flows from one Test to the next
until either a condition is met and a Body partition is
executed to produce a result, or all Tests fail.

Simulation currently supports use of the 'Is Assured'
checkbox setting in the 'Condition' tab of the Properties
window. The other two checkbox settings are ignored. If the
'Is Assured' checkbox is:

Selected, at least one Test must be satisfied, so its Body is·

executed and a result output; if no Test is satisfied and no
result output, the Conditional Node is blocked and

(c) Sparx Systems 2023 Page 67 of 144

Dynamic Simulations 13 November, 2023

processing cannot continue beyond it

Not selected, a Test can be satisfied and a result output,·

but if no Test is satisfied and no result output, processing
can still continue beyond the Condition Node

You can simulate a range of possible paths and outcomes by
typing JavaScript sim. statements that define or lead to
specific Test results and Body results, in the 'Effect' fields of
the Action elements within each partition of each Clause.
These sim. statements must identify the full path of the
Conditional Node, Clause and Output Pin being set. For
example, in a test to see if a person qualifies as a senior
citizen:

 if (sim.Person.age >=65)

 sim.AgeCondition.Clause1.Decider1=true;

 else

 sim.AgeCondition.Clause1.Decider1=false;

The Condition Node is called AgeCondition, the test is in
Clause1 and the OutputPin for that test is Decider1.

Loop Node

A Loop Structured Activity Node commonly represents the
modeling equivalents of While, Repeat and For loop
statements. Each Loop Node has three partitions:

Setup - which initiates variables to be used in the loop's·

exit-condition; it is executed once on entry to the loop

Test - which defines the loop exit-condition·

(c) Sparx Systems 2023 Page 68 of 144

Dynamic Simulations 13 November, 2023

Body - which is executed repeatedly until the Test·

produces a False value

You define the Loop Nodes by dragging Activity diagram
elements from the Toolbox pages into the Setup, Test and
Body partitions. The Body partition can contain quite
complex element structures, defining what the Loop Node
actually produces in the process.

The Loop Node has a number of Action Pins:

Loop Variable (Input) - the initial value to be processed·

through the Loop

Loop Variable (Output) - the changing variable on which·

the Test is performed

Decider - an Output Pin within the Test partition, the·

value of which is examined after each execution of the
Test to determine whether to execute the loop Body

Body Output - the output value of the processing in the·

Body partition, which updates the Loop Variable Output
Pin for the next iteration of the loop, and

Result - the value of the final execution of the Test·

partition (which is the value passed back from the last
execution of the Body partition)

You can simulate the effects of different actions and outputs
through the Loop, by typing JavaScript sim. statements that
define or lead to specific Test results and Body results, in
the 'Effect' fields of the Action elements within each
partition. These sim. statements must identify the path of the
Loop Node and Output Pin being set. For example, in an
Action in the Test partition:

(c) Sparx Systems 2023 Page 69 of 144

Dynamic Simulations 13 November, 2023

 sim.LoopNode1.decider =
(sim.LoopNode1.loopVariable>0);

(c) Sparx Systems 2023 Page 70 of 144

Dynamic Simulations 13 November, 2023

Activity Return Value Simulation
An Activity is likely to produce a return value as the output
of the process it represents. You can simulate how that
return value is passed on to the next stage in the process,
under three scenarios:

The Activity simply produces a return value, which is·

passed directly to the next Action

The Activity has one or more Activity Parameters -·

represented on a diagram by Activity Nodes - that accept
input values to or hold output values from the child
Actions of the Activity, and the output Activity Parameter
collects and passes on the return value

The Activity is instantiated by a CallBehavior Action that·

replicates the behavior of the Activity and passes the
return value onwards

Activity Return Value Pass Out

(This method is unique to Enterprise Architect simulation,
mimicking the effect of an Activity Parameter without one
having to exist.)

The Activity has a return value, which is transferred from
the Activity element to an Action Pin on the next Action in
the process via an Object Flow connector.

(c) Sparx Systems 2023 Page 71 of 144

Dynamic Simulations 13 November, 2023

You can simulate this by setting a simple JavaScript
statement to set the return value in the Activity's child
element (such as this.return=12;) and, running the
simulation, see the value transferred to the Action Pin in the
Locals window.

Activity Parameter Pass Out

If the Activity has an Activity Parameter, its value passes to
the corresponding Activity Node and then, via an Object
Flow connector, to the Input ActionPin of the next Action in
the process, as shown:

(c) Sparx Systems 2023 Page 72 of 144

Dynamic Simulations 13 November, 2023

In the Locals window, you can either observe the
Parameter's default value pass through to the ActionPin, or
you can use JavaScript in the Activity's child Actions to
simulate an update of the value within the Activity. For
example:

 this.ActivityParameter1=20;

CallBehavior Action

An Activity might be used a number of times in a process,
in which case you might want to generate a separate
instance of the Activity each time. You can do this using a
CallBehavior Action to create an object of the Activity and
execute its behavior. The input and output Activity
Parameters are bound to corresponding input and output
Action Pins (arguments) on the CallBehavior Action.

When you simulate the part of the process containing the

(c) Sparx Systems 2023 Page 73 of 144

Dynamic Simulations 13 November, 2023

Activity, you provide an input value (as in Action 1) that
passes into the input Action Pin on the CallBehavior Action,
which creates an Object of the Activity. The CallBehavior
executes the behavior of the Activity, using the input Action
Pin to act as the input Activity Parameter, and the Output
Action Pin to receive the return as the output Activity
Parameter. The Activity return value is then passed to an
Action Pin on the next Action, using an Object Flow
connector. You can provide JavaScript statements in the
Actions of the Activity to act on the input value and
generate a return value, such as:

sim.buf=this.inParam; and

this.outParam=sim.buf + 11:

(c) Sparx Systems 2023 Page 74 of 144

Dynamic Simulations 13 November, 2023

Simulation Events Window
The Simulation Events window is where you manage
triggers and sets of events in a simulation. Its main functions
are to:

Add, delete and re-sequence a set of triggers for a·

simulation

Display a list of fired, lost and waiting events for the·

current running simulation

Provide options to fire any arbitrary trigger into the·

current simulation

Provide a convenient 'Waiting Triggers' list of triggers·

that the simulation is waiting on

Save trigger sets for later use in both manual and·

automated simulations

Accept triggers dragged from the Browser window into·

the current list

Enter trigger parameters for a waiting trigger prior to·

firing

As triggers are consumed in the simulation, their status and
position is logged in the main body of the Simulation Events
window.

You can save the log of fired triggers as a trigger set or
event set to reapply in another Simulation run, which you
can execute manually or automatically. See the topic
Trigger Sets and Auto-Firing for more information on
building and using Trigger sets.

(c) Sparx Systems 2023 Page 75 of 144

Dynamic Simulations 13 November, 2023

This image illustrates the Simulation Events window during
execution.

Access

Ribbon Simulate > Dynamic Simulation > Events

Column Details

Field/Column Action

Sequence During and after the simulation, indicates
the position in the sequence in which a
trigger was fired or is expected to be
fired. Note that if a trigger is fired out of
sequence, it will be moved to the bottom
of the signalled events section.

Trigger The name of the trigger - identifies the
Trigger used to initiate the event.

(c) Sparx Systems 2023 Page 76 of 144

Dynamic Simulations 13 November, 2023

Status Indicates the status of the Trigger. Values
can be:

used - the trigger has been fired and·

processing has passed on
lost - the trigger has been fired in the·

list, but it had no effect
signalled - a trigger was fired and·

consumed by one or more transitions
not signalled - the trigger has not yet·

been fired

Type Indicates the type of trigger. Currently
only supports:

Signal·

(no type) an anonymous trigger·

Parameters For a Signal Trigger, initially shows the
parameters required for firing by the
Signal specification. For example a
"Login" signal might include username
and password parameters - and each
triggered invocation can use different
parameters.
Each time the simulation fires the trigger,
the system will prompt you for values.
You can also edit the values directly in
the list when the trigger is set to not

(c) Sparx Systems 2023 Page 77 of 144

Dynamic Simulations 13 November, 2023

signalled.
Parameters are very useful for testing the
conditional logic in your simulation and
to simulate a variety of inputs and data
coming in from outside the simulation.

Event For a:
Signal Trigger, identifies the Signal·

specification
For anonymous Triggers has no value·

Time The simulation time at which the trigger
was signalled. Note that this is an
absolute (real world) time, and not a
relative simulation event time.

Waiting
Triggers

Lists the Triggers available for selection
from the current state(s), including those
where more than one trigger is possible at
a single transition. Double-click on a
trigger to add and signal it as the next
trigger in the current event sequence.
You can show and hide this panel by
clicking on the gray arrow just above the
panel.

Toolbar Items

(c) Sparx Systems 2023 Page 78 of 144

Dynamic Simulations 13 November, 2023

Option Action

Use this drop list to select and work with
previously defined trigger sets.
Before running a simulation, select a
previously-defined trigger set to use for
the next simulation run. You elect to not
use a trigger set by selecting the <no
event set> option.

Click to create and delete trigger sets:
Save Set - Save the current trigger list·

as a new trigger set; the system
prompts you for a name for the new set
Save Set As - Create a copy of the·

current set under a new set name
Delete Selected Set - Delete the current·

trigger set
Delete All Sets for Diagram - Delete all·

saved trigger sets for the current
diagram

Move the selected trigger one line down
in the firing sequence of triggers.
This option is not available if there are no
signaled triggers below the selected line.

(c) Sparx Systems 2023 Page 79 of 144

Dynamic Simulations 13 November, 2023

Move the selected trigger entry one line
up in the firing sequence of triggers.
This option is not available if there are no
signaled triggers above the selected line.

Click to fire the selected trigger. You can
also fire the trigger by double-clicking on
it.

Click to toggle auto-firing on and off.
Auto-firing will fire the un-signalled
triggers in your trigger set sequentially. If
your set matches a valid execution path,
then the simulation will run
automatically. Out of sequence or unused
triggers will be 'lost'.
A breakpoint pauses the auto-firing and
you will need to click on the next trigger
to resume auto-firing the simulation.

Delete the selected trigger(s) from the
list.

Context Menu Options

Option Action

(c) Sparx Systems 2023 Page 80 of 144

Dynamic Simulations 13 November, 2023

Signal
Selected

Signal, or fire, the selected not signalled
trigger.

Remove
Selected

Remove a not signalled trigger from the
sequence.

Re-Signal
Selected

Fire a used or signalled trigger again.

Set All to
Unsignalled

Set all used or signalled triggers to not
signalled.

Clear Trigger
List

Clear all triggers from the window,
regardless of their status.

(c) Sparx Systems 2023 Page 81 of 144

Dynamic Simulations 13 November, 2023

Waiting Triggers
When a simulation reaches a point where any change of
state (for any thread) requires a Trigger to proceed, the
simulation is effectively paused and control returns to the
system. The simulation is now effectively waiting for some
form of event (a real world signal) to proceed. The Waiting
Triggers list is useful in helping to determine which Trigger
should be manually signaled.

Access

Ribbon Simulate > Dynamic Simulation > Events
The right hand side pane lists available
Triggers.

The Waiting Triggers list on the Simulation
Events window is:

Populated on each Simulation cycle with any Triggers that·

would have an immediate effect if signalled

Populated with a discrete set (any duplicates are not·

shown as a Trigger is effectively broadcast to all
transitions at once)

Activated by double-clicking on the Trigger of interest·

(c) Sparx Systems 2023 Page 82 of 144

Dynamic Simulations 13 November, 2023

Includes all possible triggers - including those activating·

transitions on parents of currently nested states

This example shows that the current simulation has hit a
point where two possible Triggers can influence the flow of
execution.

Due to the nature of Triggers and their effects, the list can
refer to each of these example situations equally validly:

A single state has two outgoing transitions that are·

respectively waiting for Hold and Pushdown; firing one of
these will activate the associated transition in the
simulation

A single state has two or more possible triggers for the·

same transition, such as a security camera being switched
on by a motion detector, sound detector or heat detector

Two (or more) threads (concurrent regions) each have a·

state waiting on either Hold or Pushdown; firing one of
these triggers will result in the thread(s) waiting on that
trigger to proceed while the other thread(s) will remain
blocked

A child state is waiting on one of the triggers while a·

parent state is waiting on the other; firing a trigger will
result in the associated transition being fired and either the
child or parent proceeding accordingly

Any combination of these·

(c) Sparx Systems 2023 Page 83 of 144

Dynamic Simulations 13 November, 2023

Re-Signal Triggers
It is possible to re-signal a Trigger as a shortcut for dragging
in additional Trigger instances for signalling.

Access

Display the Simulation Events window, then right-click on a
Trigger within that window and select the 'Re-Signal
Selected' option.

Ribbon Simulate > Dynamic Simulation > Events
> right-click on existing trigger >
Re-Signal Selected

Trigger List

The Simulation Events window contains a list of Triggers
that have already fired. By right-clicking on a Trigger that
you want to signal again, you can use the context menu to
cause the re-signal to happen.

This image demonstrates re-signalling in action. When a
signal is re-signalled, a new copy is made and placed at the
end of the signalled triggers list, where it is automatically
fired again.

(c) Sparx Systems 2023 Page 84 of 144

Dynamic Simulations 13 November, 2023

(c) Sparx Systems 2023 Page 85 of 144

Dynamic Simulations 13 November, 2023

Multi-threading - Forks and Joins
The Model Simulator provides the ability to handle
multi-threaded simulations using Fork and Join nodes.

In the example, the current execution point has forked into·

two threads, each with its own active node

As this example progresses, the lower branch will wait at·

the Join node until the top branch has completed all its
Actions

Once the two threads merge back into one, the Simulation·

will continue as a single thread until completion

When automatically stepping, each thread will be seen to·

execute a single step during one simulation 'cycle' -
although when single stepping or at a breakpoint, the
behavior is to alternate stepping between threads as each
thread receives processing time

Note that the Call Stack window will show two active·

threads and one 'paused' thread in the example; once the
threads merge there will be a return to single threaded
execution

Also note that the Local variables are shared (global)·

between all threads; if you want to Simulate private
variables on a thread you must create new Simulation
variables at the start of each thread - pre-loading such
variables with existing global data

(c) Sparx Systems 2023 Page 86 of 144

Dynamic Simulations 13 November, 2023

(c) Sparx Systems 2023 Page 87 of 144

Dynamic Simulations 13 November, 2023

Trigger Parameters
Trigger parameters are arguments passed into the simulation
along with a trigger when it is fired. They allow for complex
behavior to be specified decision to be made based on
variables and data passed into a simulation at run-time by a
fired trigger (event).

Parameters

Parameter Detail

Introduction To use trigger parameters you:
First create a Signal element with the·

appropriate attributes that will become
your parameters at run time
On a suitable transition in your·

diagram, create a trigger that is based
on the signal created earlier
At run-time, will be prompted to enter·

suitable parameters - they are then
passed in along with the trigger

Signals A Signal element is a template or
specification from which actual triggers
can be built. This example has two
arguments, a Name and a Password.
These will be filled in at execution time

(c) Sparx Systems 2023 Page 88 of 144

Dynamic Simulations 13 November, 2023

either manually or as part of a pre-defined
trigger set.

Trigger
Parameters

The Trigger parameters 'prompt' that asks
for suitable values for each parameter.
Note that you need to enclose strings in
double quotes, otherwise the interpreter
will think you are referring to other
variables.

Example
Diagram

This is an example diagram that makes
use of trigger parameters. At the Evaluate
Login state, the simulation examines the
variables passed in as trigger parameters
and makes a decision to either accept the
credentials or deny them.

(c) Sparx Systems 2023 Page 89 of 144

Dynamic Simulations 13 November, 2023

(c) Sparx Systems 2023 Page 90 of 144

Dynamic Simulations 13 November, 2023

Trigger Sets and Auto-Firing
Trigger Sets are an effective means of automating and
streamlining the execution, testing and validation of
simulation models. By re-using sets of triggers (with or
without parameters) it is possible to quickly and efficiently
walk through many simulation scenarios, either manually or
automatically using the 'auto-firing' tool.

Access

Ribbon Simulate > Dynamic Simulation > Events

About Trigger Sets

Aspect Details

Trigger Sets Stored with an associated diagram·

Made up of a list of Triggers in a set·

sequence
Can include Trigger parameters where·

necessary
Can be used manually by·

double-clicking Triggers to fire as
required

(c) Sparx Systems 2023 Page 91 of 144

Dynamic Simulations 13 November, 2023

Can be used as part of the 'auto-fire'·

behavior to automate execution
Managed from the Simulation Events·

Window

Managing
Sets

Trigger sets can be created by manually
dragging triggers into the active triggers
list and then using the 'Manage Trigger
Sets' drop menu to save a new set.
It is also possible to save a set of triggers
built up during a single simulation setting
as a new set. This is convenient for
creating multiple test paths through a
simulation, based on saving the manually
fired triggers for each test case.

You can also delete a set and delete all
sets for the current diagram.
It is also possible to load a set, modify
parameters and/or order of firing and save
the set with a new name. This is a
convenient method for rapidly creating a
suite of simulation test scripts.

Using Sets To use a trigger set you first select it by
name from the trigger set drop list as in

(c) Sparx Systems 2023 Page 92 of 144

Dynamic Simulations 13 November, 2023

this example image. Once selected it
loads the Trigger List window with the
defined trigger set.
Note that the special item <no event set>
means no set is currently selected. At the
start of each simulation, if a set is
selected, it will be loaded afresh for the
next run. If <no event set> is selected,
the trigger list will be cleared.

Once you have selected a trigger set and
the list of triggers loaded you have two
options:

Fire the triggers as required manually·

Use the auto-fire feature to fully·

automate the simulation

Auto-Firing Auto-firing is a convenient way of
streamlining your simulations. Once you
have loaded a trigger set, if you select the

(c) Sparx Systems 2023 Page 93 of 144

Dynamic Simulations 13 November, 2023

Auto-fire button then Enterprise
Architect will automatically pick up
waiting triggers when it reaches an
impasse in the simulation. In practice,
this means that trigger sets matching
exactly a path through the simulation will
automatically run without your
intervention.
As you can save any number of trigger
sets with different pathways and trigger
parameters, you can effectively and
quickly test and work with many different
scenarios.

Auto-Firing
Rules

When a simulation runs with auto-firing
enabled, Enterprise Architect will wait
until a point is reached where the
simulation is 'blocked' or stable, waiting
on one or more triggers to advance the
simulation. At that time, the first unfired
trigger in the list will be picked up and
fired into the simulation. The outcome
depends on the relevance and perhaps on
the parameters of the trigger.

If the trigger matches a 'waiting' trigger·

it is immediately consumed and the
simulation advances
If the trigger matches no 'waiting'·

trigger or possible parent transition,

(c) Sparx Systems 2023 Page 94 of 144

Dynamic Simulations 13 November, 2023

then the trigger is 'lost' and the
simulation remains in the current state;
this corresponds to a scenario such as a
user pressing an 'on' button several
times in succession - there is no effect
other than that occasioned by the first
press

(c) Sparx Systems 2023 Page 95 of 144

Dynamic Simulations 13 November, 2023

Using Trigger Sets to Simulate an Event
Sequence
As a simple example of how useful trigger sets are, consider
this example trigger set and associated diagram.

In this example, using a user name and password, we
simulate a simple 'three strikes and you are out' login
process. The success path is waiting for the name "Joe" and
the password "secret". (Note - it is very important that
parameters referencing strings are enclosed in quotes,
otherwise the interpreter thinks the name refers to another
variable within the simulation.)

Pass 1 tries Joe and guess1 - which fails·

Pass 2 tries Joe and secret, but as they are referring to·

variables, not strings - this fails as well

Pass 3 shows the correct way of referencing trigger·

parameters, and the simulation will succeed

Here is a simple diagram simulating a login process
requiring a username and password pair.

(c) Sparx Systems 2023 Page 96 of 144

Dynamic Simulations 13 November, 2023

(c) Sparx Systems 2023 Page 97 of 144

Dynamic Simulations 13 November, 2023

Multi-threading - Concurrent State
Regions
Concurrent regions within a State represent state changes
and processing that occurs in parallel inside one overall
parent State. This is especially useful when one region raises
events or modifies simulation variables that another region
is dependent on. For example, one region could contain a
simulated timer which raised events on set intervals that
invoked state changes in the States within other regions.

Concurrent regions are essentially the same as Forks and
Joins with similar logic and processing rules.

In the example:

When the transition to SalesProcess is taken, each region·

is concurrently activated

Credit is checked, the order totaled and the goods required·

packed up

However, in the event that the Credit Check fails, this·

triggers the transition to the Sale Cancelled state; note that
when this occurs, the entire parent state and all owned
regions are immediately exited, regardless of their
processing state

If the Credit Check succeeds, the region moves to the·

final state and once the other regions have all reached
their own final state, the parent state can then be exited

(c) Sparx Systems 2023 Page 98 of 144

Dynamic Simulations 13 November, 2023

(c) Sparx Systems 2023 Page 99 of 144

Dynamic Simulations 13 November, 2023

Using Composite Diagrams
If you want to simulate processing that includes a branch
represented on a different diagram (for example, to reduce
complexity on the main diagram, or to hide areas of
processing that are only actioned under an exception), you
can use a Composite element to represent and access the
branch on its child Composite diagram. When you run the
simulation and it reaches the Composite element, it opens
the child diagram and processes it before returning (if
appropriate) to the main processing path. This is an
excellent method of following the processing path in a
complex process, representing sections of the process with
Composite Activity elements that expand the actual
processing in their respective child diagrams. You can have
several Composite elements representing different stages or
branches of the process.

One aspect to watch for (and that would be revealed by a
failure in the simulation) is to have multiple threads that
process simultaneously on separate diagrams. The
simulation cannot pass to a new diagram if it is also
following another thread on the current diagram.

This diagram provides an overview of an ATM cash
withdrawal process:

(c) Sparx Systems 2023 Page 100 of 144

Dynamic Simulations 13 November, 2023

The ATM Withdrawal Activity is a Composite element. If
you double-click on it, you open and display the child
diagram, which is a more detailed breakdown of the
withdrawal process. Similarly, a simulation will open and
process the child diagram.

(c) Sparx Systems 2023 Page 101 of 144

Dynamic Simulations 13 November, 2023

(c) Sparx Systems 2023 Page 102 of 144

Dynamic Simulations 13 November, 2023

Win32 User Interface Simulation
Enterprise Architect supports the simulation of dialogs and
screens created with the Win32® User Interface profile, to
integrate user interface design with defined system behavior.
Dialogs can be programmatically referenced and invoked
using JavaScript commands within a behavioral model such
as a StateMachine, providing a fully customizable and fully
interactive execution of your behavioral model.

Button controls can be used to broadcast signals, firing a
trigger when the button is clicked. Signal arguments can be
filled from the dialog input fields; for example, to capture
and send a username and password for evaluation.

Dialogs designed using the Win32 User Interface profile
(and existing within the same Package branch as the
behavioral model being executed) will be created as new
windows in the background at the beginning of simulation.
Various properties that can affect the appearance and
behavior of each dialog and control can be customized at
design time via Tagged Values provided by the Win32 User
Interface profile.

To interact with a dialog via JavaScript during simulation,
the 'dialog' simulation-level keyword is used, followed by a
period and the name of the dialog. Properties and methods
can then be accessed; for example, to show the dialog, or to
set the text value of an 'Edit Control':

 dialog.Login.Show=true;

 dialog.Login.Username.Text="admin";

(c) Sparx Systems 2023 Page 103 of 144

Dynamic Simulations 13 November, 2023

Examples

To view an example of the Win32 User Interface
Simulation, open the EAExample model and locate the
diagram:

Example Model > Model Simulation > StateMachine
Models > Customer Login > Customer > Customer Login

Common Properties

These common properties and methods are available on
most supported Win32 UI Control types.

Property/Met
hod

Description

Enable Boolean
Enables or disables user interaction.

Move To
(x,y,width,he
ight)

Move the window to the specified
coordinates and set the window height
and width.

Show Boolean
Show or hide the dialog. When this
property is set to False, the dialog is
moved off-screen.

(c) Sparx Systems 2023 Page 104 of 144

Dynamic Simulations 13 November, 2023

Text String
Set the title of the dialog or window.

JavaScript Functions

Function Description

BroadcastSig
nal (string
Signal)

Sends a signal to the simulation event
queue.
Parameters:

Signal: String – the name of the Signal·

to be broadcast

UIBroadcast
Signal (string
Signal, array
Parameters)

Sends a signal with additional parameters
to the simulation event queue.
Parameters:

Signal: String – the name of the Signal·

to be broadcast
Parameters: Array – additional·

parameters to be supplied for this
Signal

Example:
 UIBroadcastSignal("Login",{Name:
dialog.Login.Username.Text, Password:
dialog.Login.Password.Text});

(c) Sparx Systems 2023 Page 105 of 144

Dynamic Simulations 13 November, 2023

ShowInterfac
e (string
InterfaceNam
e, boolean
Show)

Deprecated. See the Show property on
the 'Dialog' control. For example:
 dialog.HelloWorld.Show = true;

InterfaceOper
ation (string
InterfaceNam
e, string
ControlName
, string
OperationNa
me,[string
arg1],[string
arg2])

Deprecated. Operations can be referenced
directly from the control. For example:

dialog.HelloWorld.ListControl.InsertItem
("Test", 2);

GetInterface
Value (string
InterfaceNam
e, string
ControlName
, string
OperationNa
me,[string
arg1],[string
arg2])

Deprecated. Properties can be referenced
directly from the control. For example:
 dialog.HelloWorld.EditControl.Text;

(c) Sparx Systems 2023 Page 106 of 144

Dynamic Simulations 13 November, 2023

Notes

Controls must be within a dialog; any controls outside a·

dialog will not be interpreted

Dialogs and controls must be on a Win32 User Interface·

diagram

Simple UI controls and Basic UI controls can also be used·

in a simulation, but are limited in functionality compared
to Win32 UI controls

Dialog names and Control names must be unique; if·

multiple controls of the same name exist, the simulation
will not be able to differentiate between them

Spaces in dialog names and Control names are treated as·

underscores

Dialog names and Control names are case sensitive·

(c) Sparx Systems 2023 Page 107 of 144

Dynamic Simulations 13 November, 2023

Supported Win32 UI Controls
This table identifies all of the Win32 UI Controls available
in Enterprise Architect for user interface design and
simulation.

Access

Ribbon Design > Diagram > Toolbox : >
Specify 'User Interface - Win32' in the
'Find Toolbox Item' dialog

Keyboard
Shortcuts

Ctrl+Shift+3 : > Specify 'User
Interface - Win32' in the 'Find Toolbox
Item' dialog

Win32 UI Controls

Control Description

Button Button controls are a common way to
allow user interaction during runtime; for
example, an OK button in a login screen.
A Button can respond to a click event,
defined by adding an 'OnClick' Tagged

(c) Sparx Systems 2023 Page 108 of 144

Dynamic Simulations 13 November, 2023

Value.
In response to a click event, a button can
be used to, for example, send a signal,
causing a trigger to fire during runtime.
Customizable design properties:

Client Edge·

Default Button·

Disabled·

Flat·

Horizontal Alignment·

Modal Frame·

Multiline·

Right Align Text·

Right To Left Reading Order·

Static Edge·

Tabstop·

Transparent·

Vertical Alignment·

Visible·

Tagged Values:
OnClick – specifies a JavaScript·

command to be executed in response to
a click event on this Button

Properties:
Enable·

Show·

(c) Sparx Systems 2023 Page 109 of 144

Dynamic Simulations 13 November, 2023

Text·

Operations:
MoveTo·

Check Box Customizable design properties:
Auto·

Client Edge·

Disabled·

Flat·

Horizontal Alignment·

Left Text·

Modal Frame·

Multiline·

Right Align Text·

Right To Left Reading Order·

Static Edge·

Tabstop·

Vertical Alignment·

Visible·

Tagged Values:
OnCheck – specifies a JavaScript·

command to be executed in response to
a change in the value of this checkbox

Properties:
Checker – integer value [0|1]·

Enable·

(c) Sparx Systems 2023 Page 110 of 144

Dynamic Simulations 13 November, 2023

Show·

Text·

Combo Box Customizable design properties:
Auto·

Client Edge·

Data – semi-colon delimited string of·

values to populate the combo box at
runtime; for example, "yes;no;maybe"
Disabled·

Has Strings·

Lowercase·

Modal Frame·

Right Align Text·

Right To Left Reading Order·

Sort·

Static Edge·

Tabstop·

Type·

Uppercase·

Vertical Scroll·

Visible·

Operations
AddString (string)·

DeleteAll ()·

DeleteItem (number) – delete item at·

(c) Sparx Systems 2023 Page 111 of 144

Dynamic Simulations 13 November, 2023

specified index
DeleteString (string) – deletes all items·

matching string
GetCount ()·

GetString (number)·

InsertItem (number, string)·

InsertString (number, string)·

SetString (number, string)·

Properties:
Enable·

Selection – index of the currently·

selected item
Show·

Dialog Customizable design properties:
Absolute Align·

Application Window·

Border - Resizing or Dialog Frame·

only
Center·

Client Edge·

Center Mouse·

Clip Siblings·

Disabled·

Horizontal Scrollbar·

Left Scrollbar·

(c) Sparx Systems 2023 Page 112 of 144

Dynamic Simulations 13 November, 2023

Local Edit·

Maximize Box·

Minimise Box·

No Activate·

Overlapped Window·

Palette Window·

Right Align Text·

Right To Left Reading Order·

Set Foreground·

System Menu·

System Modal·

Title Bar·

Tool Window·

Topmost·

Transparent·

Vertical Scrollbar·

Visible·

Window Edge·

Properties:
Enable·

Show·

Text·

Operations:
MoveTo·

Edit Control / Customizable design properties

(c) Sparx Systems 2023 Page 113 of 144

Dynamic Simulations 13 November, 2023

Rich Edit
Control

Align Text·

Auto HScroll·

Auto VScroll·

Border·

Client Edge·

Disabled·

Lowercase (Edit Control only)·

Modal Frame·

Multiline·

Number·

Password·

Read Only·

Right Align Text·

Right To Left Reading Order·

Static Edge·

Tabstop·

Transparent·

Uppercase (Edit Control only)·

Visible·

Want Return·

Properties:
Enable·

Show·

Text·

Group Box Customizable design properties:

(c) Sparx Systems 2023 Page 114 of 144

Dynamic Simulations 13 November, 2023

Client Edge·

Disabled·

Flat·

Horizontal Alignment·

Modal Frame·

Right Align Text·

Static Edge·

Tabstop·

Visible·

Properties:
Enable·

Show·

Text·

List Box Customizable design properties:
Border·

Client Edge·

Disable No Scroll·

Disabled·

Left Scrollbar·

Modal Frame·

Right Align Text·

Selection·

Sort·

Static Edge·

Tabstop·

(c) Sparx Systems 2023 Page 115 of 144

Dynamic Simulations 13 November, 2023

Vertical Scroll·

Visible·

Operations:
AddString (string)·

DeleteAll ()·

DeleteItem (number) – delete item at·

specified index
DeleteString (string) – deletes all items·

matching string
GetCount ()·

GetString (number)·

InsertItem (number, string)·

InsertString (number, string)·

SetString (number, string)·

Properties:
Enable·

Selection – index of the currently·

selected item
Show·

List Control Customizable design properties:
Alignment·

Always Show Selection·

Border·

Client Edge·

Disabled·

(c) Sparx Systems 2023 Page 116 of 144

Dynamic Simulations 13 November, 2023

Edit Labels·

Left Scrollbar·

Modal Frame·

No Column Header·

No Scroll·

Single Selection·

Sort·

Static Edge·

Tabstop·

View·

Visible·

Tagged Values:
Columns – string to initialize column·

names and sizes for this List Control,
separated by semi-colons: for example,
"Column1;100;Column2;150;"

Operations:
AddString (string)·

DeleteAll ()·

DeleteItem (number) – delete item at·

specified index
DeleteString (string) – deletes all items·

matching the string
GetCount ()·

GetString (number, number)·

InsertItem (number, string)·

(c) Sparx Systems 2023 Page 117 of 144

Dynamic Simulations 13 November, 2023

InsertString (number, string)·

SetString (number, number, string)·

Properties:
Enable·

Selection – index of the currently·

selected item
Show·

Picture
Control

The initial Picture Control image can be
set using the Tagged Value 'Image'. Set
the value to a filename accessible by the
simulation. The image can be modified at
runtime using the ChangeImageFile
method in JavaScript. This takes a single
string parameter of the filename to be
loaded.
Set the 'Image Type' property to the
correct type for the file (either Bitmap,
Enhanced Metafile or Icon). This setting
cannot be modified at runtime.
Customizable design properties:

Border·

Center Image·

Client Edge·

Color (frame color)·

Disabled·

Image Type·

(c) Sparx Systems 2023 Page 118 of 144

Dynamic Simulations 13 November, 2023

Modal Frame·

Real Size Image·

Static Edge·

Tabstop·

View·

Visible·

Operations:
ChangeImageFile (string) - filename·

Properties:
Show·

Progress
Control

Customizable design properties:
Border·

Client Edge·

Disabled·

Marquee·

Modal Frame·

Smooth·

Static Edge·

Tabstop·

Vertical·

Visible·

Tagged Values:
Range – string specifying minimum·

and maximum values for this control,
separated by a semi-colon: for

(c) Sparx Systems 2023 Page 119 of 144

Dynamic Simulations 13 November, 2023

example, "1;100"
Properties:

Enable·

Pos·

Range·

Show·

Step·

Radio Button Customizable design properties:
Auto·

Client Edge·

Disabled·

Flat·

Group·

Horizontal Alignment·

Left Text·

Modal Frame·

Multiline·

Static Edge·

Tabstop·

Vertical Alignment·

Visible·

Tagged Values:
OnChangeSelection – specifies a·

JavaScript command to be executed in
response to a change in selection of this

(c) Sparx Systems 2023 Page 120 of 144

Dynamic Simulations 13 November, 2023

radio button
Properties:

Checker – integer value [0|1]·

Enable·

Selection – integer value·

Show·

Slider
Control

Customizable design properties:
Auto Tick·

Border·

Client Edge·

Disabled·

Enable Selection Range·

Modal Frame·

Orientation·

Point·

Static Edge·

Tabstop·

Tick Marks·

Transparent·

Transparent Background·

Tooltips·

Visible·

Tagged Values:
Range – string specifying minimum·

and maximum values for this control,

(c) Sparx Systems 2023 Page 121 of 144

Dynamic Simulations 13 November, 2023

separated by a semi-colon: for
example, "1;100"

Properties:
Enable·

PageSize·

Pos·

Range·

Show·

Spin Control Customizable design properties:
Alignment·

Arrow Keys·

Auto Buddy·

Client Edge·

Disabled·

Modal Frame·

No Thousands·

Orientation·

Set Buddy Integer·

Static Edge·

Tabstop·

Visible·

Wrap·

Tagged Values:
Range – string specifying minimum·

and maximum values for this control,

(c) Sparx Systems 2023 Page 122 of 144

Dynamic Simulations 13 November, 2023

separated by a semi-colon: for
example, "1;100"

Properties:
Enable·

Pos·

Range·

Show·

Static Text /
Label

Customizable design properties:
Align Text·

Border·

Client Edge·

Disabled·

End Ellipsis·

Modal Frame·

Path Ellipsis·

No Wrap·

Notify·

Path Ellipsis·

Right Align Text·

Simple·

Static Edge·

Sunken·

Tabstop·

Visible·

Word Ellipsis·

(c) Sparx Systems 2023 Page 123 of 144

Dynamic Simulations 13 November, 2023

Properties:
Enable·

Show·

Text·

Tab Control Customizable design properties:
Border·

Bottom·

Buttons·

Client Edge·

Disabled·

Flat Buttons·

Focus·

Hot Track·

Model Frame·

Multiline·

Right Align Text·

Static Edge·

Style·

Tabstop·

Tooltips·

Visible·

Tagged Values:
Tabs – string specifying names of each·

tab for this control, separated by a
semi-colon: for example, "Tab 1;Tab

(c) Sparx Systems 2023 Page 124 of 144

Dynamic Simulations 13 November, 2023

2;Tab 3;"
Properties:

Enable·

Show·

Tree Control Customizable design properties:
Always Show Selection·

Border·

Check Boxes·

Client Edge·

Disable Drag Drop·

Disabled·

Edit Labels·

Full Row Select·

Has Buttons·

Has Lines·

Horizontal Scroll·

Left Scrollbar·

Lines At Root·

Modal Frame·

Right Align Text·

Right To Left Reading Order·

Scroll·

Single Expand·

Static Edge·

Tabstop·

(c) Sparx Systems 2023 Page 125 of 144

Dynamic Simulations 13 November, 2023

Tooltips·

Track Select·

Visible·

Operations:
Delete () - delete the specified·

TreeItem
InsertItem (string) - dotted path of the·

new tree item to be inserted; any parent
items in this dotted path that do not yet
exist will be created automatically
InsertString (string) - See InsertItem·

TreeItem (string) - dotted path of the·

tree item to be accessed; use the Text
property to set text for this tree item, or
use the Delete operation to delete this
item from the tree

Properties:
Enable·

Selection – string containing dotted·

path of the selected tree item
Show·

Text – get or set text for a specified·

TreeItem
Examples:

dialog.MyDialog.MyTreeControl.InsertIt
em("Root.Parent.Child");

(c) Sparx Systems 2023 Page 126 of 144

Dynamic Simulations 13 November, 2023

dialog.MyDialog.MyTreeControl.TreeIte
m("Root.Parent.Child").Text =
"Modified";

dialog.MyDialog.MyTreeControl.Selecti
on = "Root.Parent";

dialog.MyDialog.MyTreeControl.TreeIte
m("Root.Parent.Modified").Delete();

(c) Sparx Systems 2023 Page 127 of 144

Dynamic Simulations 13 November, 2023

Win32 Control Tagged Values
Various properties that can affect the appearance and
behavior of each Win32 dialog and control can be
customized at design time via Tagged Values provided by
the Win32 User Interface profile.

Tagged Values

Some control types support the addition of special Tagged
Values that modify their behavior.

Controls such as Buttons, Check Boxes and Radio Buttons
can react to GUI events and execute a JavaScript command.
To allow a control to respond to an event, create a new
Tagged Value with an appropriate name; for example,
'OnClick', then type the JavaScript command into the value.

Tab Controls can use a 'Tabs' Tagged Value to define the
tabs that will appear within this control when it is simulated.

Slider Controls, Spin Controls and Progress Controls can
use a 'Range' Tagged Value to define the default minimum
and maximum values accepted by the control during
simulation.

Tag Description

Columns Applies to: List Control
Use: Initializes column names and widths
for a List Control. Each column name and
width is separated by a semi-colon; for

(c) Sparx Systems 2023 Page 128 of 144

Dynamic Simulations 13 November, 2023

example, "Column1;100;Column2;150;".

OnClick Applies to: Button
Use: Identifies the JavaScript command
to be executed in response to a click
event on a Button control.

OnCheck Applies to: Check Box
Use: Identifies the JavaScript command
to be executed in response to a change in
the value of a Check Box control.

OnChangeSel
ection

Applies to: Radio Button
Use: Identifies the JavaScript command
to be executed in response to a change in
the value of a Radio Button control.

Range Applies to: Slider Control, Spin Control,
Progress Control
Use: Specifies the default minimum and
maximum values for the control,
separated by a semi-colon: for example,
"1;100".

Tabs Applies to: Tab Control
Use: Specifies the name of each tab to be
created for the Tab Control, separated by
a semi-colon: for example, "Tab 1;Tab

(c) Sparx Systems 2023 Page 129 of 144

Dynamic Simulations 13 November, 2023

2;Tab 3;".

(c) Sparx Systems 2023 Page 130 of 144

Dynamic Simulations 13 November, 2023

BPMN Simulation
BPMN simulation is a method for visualizing and validating
the behavior of your BPMN Business Process diagrams.
With visual indications of all currently executing activities
and the possible activities that can be executed next, you
will easily be able to identify and resolve potential issues
with the process you have modeled.

Simulating BPMN models is similar to simulating standard
UML Behavioral models, except that BPMN:

Uses some different element types (such as Gateway·

instead of Decision) and

Operates on scripting placed, generally, in the appropriate·

'Tagged Value' field associated with the connectors and
elements, instead of in the 'Properties' fields (and, if you
prefer, rather than in the 'Execution Analyzer Build
Scripts' dialog); the scripting is written in JavaScript

Working with BPMN Simulation

Activity Detail

Create a
BPMN
Simulation
Model

When you create a BPMN model suitable
for simulation, you take into
consideration how you represent the start
point, the flow and the conditions to be
tested.

(c) Sparx Systems 2023 Page 131 of 144

Dynamic Simulations 13 November, 2023

Compare
UML
Activities to
BPMN
Processes

The simulation of BPMN Business
Process models has a number of
differences to the simulation of UML
Activity diagrams.

Notes

BPMN simulation is available in the Unified and Ultimate·

Editions of Enterprise Architect

(c) Sparx Systems 2023 Page 132 of 144

Dynamic Simulations 13 November, 2023

Create a BPMN Simulation Model
As part of the process of developing a simulation model,
consider which of the three options for performing the
simulation you prefer to apply:

Execute a simulation script to initialize the variables for·

the diagram - select 'BPMN' as the Platform, execute the
simulation as 'As Script' and select the script; you would
then define the conditions and decisions as JavaScript
declarations within the Tagged Values of the elements and
connectors on the diagram, either before you start the
simulation or during the simulation

Do not use a script, but initialize the variables within the·

first Activity and, again, modify the conditions and
decisions within the Tagged Values of the elements and
connectors, then execute the simulation as 'Interpreted';
you can then re-initialize the variables during simulation,
as well as the conditions

Execute the simulation as 'Manual' and manage the flow·

and conditions manually at each step

Create a BPMN diagram suitable for
simulation

Ste
p

Action

Create a Business Process or BPEL diagram from

(c) Sparx Systems 2023 Page 133 of 144

Dynamic Simulations 13 November, 2023

1 the BPMN 2.0 technology. If you create a BPEL
diagram Enterprise Architect displays specialized
dialogs to streamline the creation of compliant
models.

2 We recommend that you create a Start Event to
clearly show where your simulation starts. You have
several choices for the Event Type; the choice does
not influence the simulation of your model. If no
Start Events are defined, the simulation will start
from an Activity that has no incoming Sequence
Flows.

3 Add all of the Activities that are involved in the
Process being modeled. You have several choices for
the Task Type; the choice does not influence the
simulation of your model. The behavior of Activities
can be further decomposed by specifying an Activity
Type of Sub-Process and selecting Embedded or
CallActivity. Standard Loops are also supported.

4 Add Sequence Flows between your activities. In the
'BPEL properties' dialog you can enter the condition
that must be satisfied (True) before the Sequence
Flow will be followed. You can also set the
conditionType to 'Default' to ensure that this flow
will be taken if all other branches fail the condition
specified.
If you are not working with a BPEL diagram, you

(c) Sparx Systems 2023 Page 134 of 144

Dynamic Simulations 13 November, 2023

use the conditionExpression and conditionType
Tagged Values.

5 Add End Events for any conditions that will cause
the process or active execution path to end. You
have several choices for the Event Type; of these
only the Terminate type will influence the execution.
In simulations with multiple active nodes, it causes
the entire process to terminate instead of just the
thread that reaches that node.

Notes

To include Activities that are in Packages external to the·

Package being simulated, either draw a:
 - Package Import connector from the Package
containing the diagram
 being simulated to each external Package, or
 - Dependency connector from the Package containing
the diagram
 being simulated to each Activity in the external
Packages

(c) Sparx Systems 2023 Page 135 of 144

Dynamic Simulations 13 November, 2023

Initialize Variables and Conditions
For a BPMN simulation model, you can initialize your
variables in an Execution Analyzer script. You can also
initialize these variables in the Tagged Values of the first
Activity element of the process, which gives you greater
flexibility in adding and changing variables as the
simulation proceeds. Similarly, you can define the
conditions and values to apply at the various decision points
(Gateways) in the process, in the Tagged Values of the
Sequence Flow connectors.

If you want to incorporate a user-interface into your
simulation process, using Win32, you again use Tagged
Values to identify the dialog or prompt to display, in the
Activity element just prior to the point at which the value or
decision is processed.

For the simulation of UML diagrams, variables inside the
'sim' object and 'this' object are displayed in the Local
Variables window.

Access

Display the 'Tags' tab of the Properties window, using one
of the methods outlined here.

Ribbon Explore > Portals > Windows >
Properties > Properties > Tags

Keyboard Ctrl+2 > 'Tags' tab of the Properties

(c) Sparx Systems 2023 Page 136 of 144

Dynamic Simulations 13 November, 2023

Shortcuts window

Initialize Variables

On the diagram, click on the first Activity element in the1.
process.

In the 'Tags' tab of the Properties window, click on the2.
drop-down arrow of the taskType 'value' field, and select
'Script'.

In the script 'value' field, type in the appropriate3.
JavaScript code, such as:

sim.loan=true; sim.status="undefined';

Define Conditions

On the diagram, click on a Sequence Flow connector that1.
issues from a Gateway element.

In the 'Tags' tab of the Properties window, click on the2.
drop-down arrow of the conditionType 'Value' field, and
select 'Expression'.

In the conditionExpression 'Value' field (<memo>*) click3.
on the button to display the Tagged Value Note
window. Type in the appropriate JavaScript code, such as:
 sim.status=="Hold"

Click on the OK button. The statement text displays as a4.
label of the connector.

(c) Sparx Systems 2023 Page 137 of 144

Dynamic Simulations 13 November, 2023

Incorporate Win32 User Interface

On the diagram, click on the Activity element that1.
represents where the decision is made.

In the 'Tags' tab of the Properties window, click on the2.
drop-down arrow of the 'taskType value' field, and select
'Script'.

In the 'script value' field, type in the appropriate3.
JavaScript code, such as:
 dialog.Screen1.Show=True;
(This statement displays the dialog Screen1. You can
temporarily hide the dialog by changing 'Show' to False.)

(c) Sparx Systems 2023 Page 138 of 144

Dynamic Simulations 13 November, 2023

Comparison of UML Activities and
BPMN Processes
The execution and simulation of BPMN models have a
number of differences from the execution and simulation of
UML Activity diagrams. The mapping of similar concepts,
and the differences between the two methods of expressing
the behavior of a system, are presented here.

Comparison of UML Activities and BPMN
Processes

UML Activity BPMN Business Process

The starting
point is
defined by an
Initial Node.
No method of
specifying
why the
Activity was
started is
available.

The starting point is defined by a Start
Event. This implies a specific cause for
the Activity to start, although it could be
unspecified.

The basic
behavior unit
in an Activity

The basic behavior unit in an Activity is
the Activity element. A number of
different Task Types are available. These

(c) Sparx Systems 2023 Page 139 of 144

Dynamic Simulations 13 November, 2023

is the Action
element.
UML
provides
many
different
forms of
Actions,
although the
simulation
makes use of
a small
subset of
these.

typically describe different methods of
execution (for example Manual) as
opposed to what happens.

A Control
Flow is used
to connect
the elements
on an
Activity
diagram. A
distinguishin
g feature is
that only a
single
Control Flow
can be
followed
from any

A Sequence Flow is used to connect the
elements on a Business Process diagram.
These differ from UML Activity
diagrams in that all valid sequence flows
are taken by default. To restrict flow on a
Sequence Flow set the conditionType
Tagged Value to 'Expression' and create
the script in the conditionExpression
Tagged Value.

(c) Sparx Systems 2023 Page 140 of 144

Dynamic Simulations 13 November, 2023

node, except
for an
explicit Fork
Node. To
restrict flow
on a Control
Flow, add a
Guard.

A Decision
node is used
to explicitly
model a
decision
being made.
A Merge
node, which
uses the same
syntax is
used when
the potential
flows are
combined
back into
one.

A Gateway node set to 'Exclusive' is used
when a single path must be selected. It is
also used to combine the potential flows
again. A direction can be specified as
'Converging' or 'Diverging' to explicitly
select between the two modes.

A Fork node
is used to
concurrently
execute

A Gateway node set to 'Parallel' is used to
explicitly model concurrent execution of
multiple nodes. It is also used to wait for
all incoming flows to become available

(c) Sparx Systems 2023 Page 141 of 144

Dynamic Simulations 13 November, 2023

multiple
nodes, while
a Join node,
using the
same syntax
is used to
wait for all
incoming
flows to
become
available and
leave with a
single flow.

and leave with a single flow. A direction
can be specified as 'Converging' or
'Diverging' to explicitly select between
the two modes.

There is no
allowance for
concurrently
executing
only some
outputs from
a node for
UML
Activities. If
you needed
this you add
later Control
Flows with
the
appropriate
Guards.

A Gateway node set to Inclusive is used
to explicitly model the situation where all
outgoing flows with a true condition are
executed concurrently.

(c) Sparx Systems 2023 Page 142 of 144

Dynamic Simulations 13 November, 2023

A Call
Behavior
Action is
used when
behavior
needs to be
further
decomposed
by referring
to an external
activity.

Activity elements are set as a
CallActivity Sub-Process when behavior
needs to be further decomposed by
referring to an external activity.

Activity
Action Call
Behavior
Action.

Activity elements are set as an Embedded
Sub-Process when behavior needs to be
further decomposed without referring to
an external activity.

(c) Sparx Systems 2023 Page 143 of 144

Dynamic Simulations 13 November, 2023

(c) Sparx Systems 2023 Page 144 of 144

	Dynamic Simulations
	How it Looks
	Simulation Windows
	Set Up Simulation Script
	Activate Simulation Script
	Run Model Simulation
	Simulation Breakpoints
	Objects and Instances in Simulation
	Create Objects in a Simulation
	Destroy Objects in a Simulation

	Dynamic Simulation with JavaScript
	Call Behaviors
	Interaction Operand Condition and Message Behavior
	Guards and Effects
	Triggers

	Action Behavior By Type
	Structured Activity Simulation
	Activity Return Value Simulation
	Simulation Events Window
	Waiting Triggers
	Re-Signal Triggers
	Multi-threading - Forks and Joins

	Trigger Parameters
	Trigger Sets and Auto-Firing
	Using Trigger Sets to Simulate an Event Sequence
	Multi-threading - Concurrent State Regions
	Using Composite Diagrams
	Win32 User Interface Simulation
	Supported Win32 UI Controls
	Win32 Control Tagged Values

	BPMN Simulation
	Create a BPMN Simulation Model
	Initialize Variables and Conditions

	Comparison of UML Activities and BPMN Processes

