
Information
Engineering

The Sparx Systems Enterprise Architect Database Builder helps visualize,
analyze and design system data at conceptual, logical and physical levels,

generate database objects from a model using customizable Transformations,
and reverse engineer a DBMS.

Enterprise Architect
User Guide Series

Author: Sparx Systems

Date: 16/10/2024

Version: 17.0

CREATED WITH

Table of Contents

Information Engineering 6
Getting Started 8
Example Diagram 12
Working with Data Model Types 14
Conceptual Data Model 17
Entity Relationship Diagrams (ERDs) 19
Logical Data Model 25
Physical Data Models 27

DDL Transformation 30
Creating and Managing Data Models 36
Create a Data Model from a Model Pattern 37
Create a Data Model Diagram 41
Example Data Model Diagram 45

The Database Builder 47
Opening the Database Builder 50
Working in the Database Builder 54
Columns 63
Create Database Table Columns 65
Delete Database Table Columns 70
Reorder Database Table Columns 72
Constraints/Indexes 74
Database Table Constraints/Indexes 76
Primary Keys 82
Database Indexes 88

Unique Constraints 94
Foreign Keys 96
Check Constraints 104
Table Triggers 107

SQL Scratch Pad 110
Database Compare 114
Execute DDL 129

Database Objects 134
Database Tables 136
Create a Database Table 139
Database Table Columns 142
Create Database Table Columns 143
Delete Database Table Columns 148
Reorder Database Table Columns 150

Working with Database Table Properties 152
Set the Database Type 154
Set Database Table Owner/Schema 156
Set MySQL Options 158
Set Oracle Database Table Properties 160

Database Table Constraints/Indexes 162
Primary Keys 168
Non Clustered Primary Keys 174

Database Indexes 176
Unique Constraints 182
Foreign Keys 184
Check Constraints 192
Table Triggers 195

Database Views 198
Database Procedures 202
Database Functions 207
Database Sequences 211
Database SQL Queries 216
Create Operation Containers 219
Oracle Packages 222
Database Connections 224

Manage DBMS Options 230
Data Types 233
Map Data Types Between DBMS Products 234
DBMS Product Conversion for a Package 237
Data Type Conversion For a Table 239
Database Datatypes 241
MySQL Data Types 245
Oracle Data Types 247

Data Modeling Settings 249
Data Modeling Notations 251
DDL Name Templates 257

Import Database Schema 260
Generate Database Definition Language (DDL) 269
Generate DDL For Objects 270
Edit DDL Templates 279
DDL Template Syntax 283
DDL Templates 285
Base Templates for DDL Generation 286
Base Templates for Alter DDL Generation 295

DDL Macros 297
Element Field Macros 298
Column Field Macros 302
Constraint Field Macros 303

DDL Function Macros 307
DDL Property Macros 316
DDL Options in Templates 326

DDL Limitations 331
Import DDL Script 334
Supported Database Management Systems 336
More Information 338

Information Engineering 16 October, 2024

Information Engineering
Design, Create and Manage Conceptual, Logical and
Physical Data Models

The power of model-based system development is the
ability to visualize, analyze and design all aspects of a
system. Being able to view and manage information and
data alongside other models of a system provides great
clarity and reduces the chance of error. Enterprise Architect
has extensive support for the data modeling discipline,
ranging from the representation of information in a
conceptual model right down to the generation of database
objects. Whether you are generating database objects from
the UML model or reverse engineering legacy DBMS into a
model for analysis, the tool features will save time and
valuable project resources.

(c) Sparx Systems 2024 Page 6 of 339

Information Engineering 16 October, 2024

This illustration shows the Database Builder Interface
including DDL Generation and the Foreign Key dialog.

Enterprise Architect supports the modeling of information at
the conceptual, logical and physical layers. Using a number
of standard features, these models can be interconnected,
providing traceability. The logical and physical models can
also be generated automatically using a fully customizable
Transformation engine. Legacy systems can be imported,
analyzed and compared using the handy reverse engineering
facility.

In this topic you will learn how to use the feature rich
toolset including the Database Builder to design, create,
manage, visualize data including reverse and forward
engineering of data models to live database.

The Database Builder tool can be used to create and
maintain physical data models and can connect to a running
DBMS, so you can therefore import, generate, compare and
alter a live database.

(c) Sparx Systems 2024 Page 7 of 339

Information Engineering 16 October, 2024

Getting Started
Information Modelers, Data Modelers and Architects are
responsible for creating models of an organization’s
information that span multiple levels of abstraction, from
conceptual through to logical and physical. The conceptual
models are technology independent and can be used for
discussions with business people and domain experts,
allowing the basic concepts in the domain to be represented,
discussed and agreed upon. The logical model elaborates the
conceptual model, adding more detail and precision but is
still typically technology neutral, allowing Information
Analysts to discuss and agree on logical structures. The
physical model applies technology specific data to the
models and allows engineers to discuss and agree on
technology decisions in preparation for generation to a
target environment, such as a database management system.

Selecting the Perspective

Enterprise Architect partitions the tool's extensive features
into Perspectives, which ensures that you can focus on a
specific task and work with the tools you need without the
distraction of other features. To work with the Data
Modeling features you first need to select one of these
Perspectives:

<perspective name> > Database Engineering > Database
Engineering

<perspective name> > Database Engineering > Entity

(c) Sparx Systems 2024 Page 8 of 339

Information Engineering 16 October, 2024

Relationships

Setting the Perspective ensures that the Database
Engineering diagrams, their tool boxes and other features of
the Perspective will be available by default.

Example Diagram

An example diagram provides a visual introduction to the
topic and allows you to see some of the important elements
and connectors that are created in specifying or describing
the way a data model is defined including: Tables, Views,
Procedures, Sequences, Functions.

Data Model Types

Information can be modeled at a number of level of
abstraction starting with a conceptual model that is typically
created by or for business people, a Logical model which is
used by business and systems analysts and a physical model
which is the concern of the technologists such as database
engineers. In this topic you will learn how to manage all
three levels of information models.

Creating and Managing Data Models

In this topic you will learn how to work in detail using
Enterprise Architect to manage your Physical Database
schema. This includes the use of the Database Builder tool

(c) Sparx Systems 2024 Page 9 of 339

Information Engineering 16 October, 2024

which allows you to interact with any number of live
database through an ODBC connection.

Import Database Schema

This topic will show you how to connect to a live database
including Production, Test and Development systems and
reverse engineer the database into a model creating Tables,
Views, Procedures, Declarative Referential Integrity and
more. A diagram of the database is automatically created
and the elements such as tables can be related to other
elements in the model including Conceptual and Logical
Models, Programming classes tests and more.

Generate Database Definition Language
(DDL)

In this topic you will learn how to harness the power of the
data models by generating Database Definition Language
code directly from the model. Enterprise Architect can
generate code into a wide range of Database Management
systems.

Supported Database Management Systems

Enterprise Architect has rich support for most of the main
stream Database Management Systems (DBMS). This
feature allows models from disparate systems to be

(c) Sparx Systems 2024 Page 10 of 339

Information Engineering 16 October, 2024

compared either for code generation or for analysis by using
the import feature. This topic lists the supported DBMS and

More Information

This section provides useful links to other topics and
resources that you might find useful when working with the
Data Modeling tool features.

(c) Sparx Systems 2024 Page 11 of 339

Information Engineering 16 October, 2024

Example Diagram
Using the Database engineering features of Enterprise
Architect you can create rich models of the objects that
make up a data model at any level of abstraction from
Conceptual through Logical to Physical. These models are
created by adding tables and other database objects from the
toolbox or by reverse engineering and existing database into
a model from a range of RDBMSs. A database diagram can
contain Tables, VIews, Procedures, Sequences and
Functions. Table Columns are annotated as Primary and
Foreign Keys are modeled using specialized association
relationships. In this example the user has created a simple
physical data model of Customers and their Addresses and
Orders.

(c) Sparx Systems 2024 Page 12 of 339

Information Engineering 16 October, 2024

Physical Data model showing Tables with Columns and
Primary and Foreign Keys.

(c) Sparx Systems 2024 Page 13 of 339

Information Engineering 16 October, 2024

Working with Data Model Types
Enterprise Architect provides a number of features to assist
in the process of creating models of information, including
the ability to develop conceptual, logical and physical
models and to be able to trace the underlying concepts
between the models. The physical models can be developed
for a wide range of database systems, and forward and
reverse engineering allows these models to be synchronized
with live databases.

Data Models

Type Description

Conceptual
Data Models

Conceptual data models, also called
Domain models, establish the basic
concepts and semantics of a given
domain and help to communicate these to
a wide audience of stakeholders.
Conceptual models also serve as a
common vocabulary during the analysis
stages of a project; they can be created in
Enterprise Architect using
Entity-Relationship or UML Class
models.

Logical Data Logical data models add further detail to

(c) Sparx Systems 2024 Page 14 of 339

Information Engineering 16 October, 2024

Models conceptual model elements and refine the
structure of the domain; they can be
defined using Entity-Relationship or
UML Class models.
One benefit of a Logical data model is
that it provides a foundation on which to
base the Physical model and subsequent
database implementation.
Entity-relationship modeling is an
abstract and conceptual database
modeling method, used to produce a
schema or semantic data model of, for
example, a relational database and its
requirements, visualized in
Entity-Relationship Diagrams (ERDs).
ERDs assist you in building conceptual
data models through to generating Data
Definition Language (DDL) for the target
DBMS.
A Logical model can be transformed to a
Physical data model using a DDL
Transformation.

Physical Data
Models

Physical data models in Enterprise
Architect help you visualize your
database structure and automatically
derive the corresponding database
schema; you use Enterprise Architect's
UML Profile for Data Modeling

(c) Sparx Systems 2024 Page 15 of 339

Information Engineering 16 October, 2024

specifically for this purpose.
The profile provides useful extensions of
the UML standard that map database
concepts of Tables and relationships onto
the UML concepts of Classes and
Associations; you can also model
database columns, keys, constraints,
indexes, triggers, referential integrity and
other relational database features.
Because Enterprise Architect helps you
visualize each type of data model in the
same repository, you can easily manage
dependencies between each level of
abstraction to maximize traceability and
verify completeness of system
implementation.

(c) Sparx Systems 2024 Page 16 of 339

Information Engineering 16 October, 2024

Conceptual Data Model
A Conceptual data model is the most abstract form of data
model. It is helpful for communicating ideas to a wide range
of stakeholders because of its simplicity. Therefore
platform-specific information, such as data types, indexes
and keys, is omitted from a Conceptual data model. Other
implementation details, such as procedures and interface
definitions, are also excluded.

This is an example of a Conceptual data model, rendered
using two of the notations supported by Enterprise
Architect.

Entity Relationship diagram showing a One-to-Many
relationship

Using Entity-Relationship (ER) notation, we represent the
data concepts 'Customers' and 'Customers Addresses' as
Entities with a one-to-many relationship between them. We
can represent exactly the same semantic information using
UML Classes and Associations.

Unified Modeling Language diagram showing the same
One-to-many Relationship

(c) Sparx Systems 2024 Page 17 of 339

Information Engineering 16 October, 2024

Whether you use UML or ER notation to represent data
concepts in your project depends on the experience and
preferences of the stakeholders involved. The detailed
structure of the data concepts illustrated in a Conceptual
data model is defined by the Logical data model.

(c) Sparx Systems 2024 Page 18 of 339

Information Engineering 16 October, 2024

Entity Relationship Diagrams (ERDs)
According to the online Wikipedia:

An entity-relationship model (ERM) is an abstract and
conceptual representation of data. Entity-relationship
modeling is a database modeling method, used to produce a
type of conceptual schema or semantic data model of a
system, often a relational database, and its requirements in
a top-down fashion. Diagrams created by this process are
called Entity-Relationship Diagrams, ER Diagrams, or
ERDs.

Entity Relationship Diagrams in Enterprise
Architect

Entity Relationship diagrams in Enterprise Architect are
based on Chen's ERD building blocks: entities (tables) are
represented as rectangles, attributes (columns) are
represented as ellipses (joined to their entity) and
relationships between the entities are represented as
diamond-shape connectors.

ERD technology in Enterprise Architect assists you in every
stage from building conceptual data models to generating

(c) Sparx Systems 2024 Page 19 of 339

Information Engineering 16 October, 2024

Data Definition Language (DDL) for the target DBMS.

ERD and ERD Transformations

Enterprise Architect enables you to develop Entity
Relationship diagrams quickly and simply, through use of
an MDG Technology integrated with the Enterprise
Architect installer.

The Entity Relationship diagram facilities are provided in
the form of:

An Entity Relationship diagram type, accessed through·

the 'New Diagram' dialog

An Entity Relationship Diagram page in the Diagram·

Toolbox

Entity Relationship element and relationship entries in the·

'Toolbox Shortcut' menu and Quick Linker

Enterprise Architect also provides transformation templates
to transform Entity Relationship diagrams into Data
Modeling diagrams, and vice versa.

Entity Relationship Diagram Toolbox Page

You can access the 'Entity Relationship Diagram' page of
the Diagram Toolbox by specifying 'Entity Relationship
Diagrams' in the Toolbox 'Find Toolbox Item' dialog

(c) Sparx Systems 2024 Page 20 of 339

Information Engineering 16 October, 2024

Entity is an object or concept that is uniquely identifiable;·

the property of 'Multiplicity' in the SourceRole and
TargetRole definitions for the Relationship connector can
be used to define the cardinality of an Entity that
participates in this relationship

Attribute is a property of an entity or a relationship type·

N-ary Association represents unary (many-to-many·

recursive) or ternary relationships and can also be used to
represent relationships that have attributes among the
entities; the N-ary Association element should always be
at the target end of a connector

Connector is a connector between an Entity and an·

Attribute, and between two Attributes

Relationship is a diamond-shape connector, representing·

the meaningful association among entities

Disjoint and Overlapping represent the relationships·

between the super-class Entity and the sub-class Entity

A typical Entity Relationship diagram

(c) Sparx Systems 2024 Page 21 of 339

Information Engineering 16 October, 2024

Tagged Values

Some of the Entity Relationship diagram components can be
modified by Tagged Values, as indicated:

Component Tagged Value / Notes

Entity isWeakEntity
Notes: If true, this entity is a weak entity.

(c) Sparx Systems 2024 Page 22 of 339

Information Engineering 16 October, 2024

Attribute attributeType
Notes: There are four valid options:
'normal', 'primary key', 'multi-valued' and
'derived'

Attribute commonDataType
Notes: Defines the common data type for
each attribute.

Attribute dbmsDataType
Notes: Defines the customized DBMS
data type for each attribute. This option is
only available when the
commonDataType tag is set to 'na'.
You must define the customized type first
through the 'Settings > Reference Data >
Settings > Database Datatypes' ribbon
option.

N-ary
Association

isRecursive
Notes: If true, the N-ary Association
represents the many-to-many recursive
relationship.
For one-to-many and one-to-one
recursive relationships, we suggest using
the normal Relationship connector.
Sometimes you might want to limit the

(c) Sparx Systems 2024 Page 23 of 339

Information Engineering 16 October, 2024

stretch of the diamond-shape
Relationship connectors; simply pick a
Relationship connector, right-click to
display the context menu, and select the
'Bend Line at Cursor' option.

Relationship isWeak
Notes: If true, the Relationship is a weak
relationship.

Disjoin
Overlapping

Participation
Notes: There are two valid options,
'partial' and 'total'.

Notes

Entity Relationship diagrams are supported in the·

Corporate, Unified and Ultimate Editions of Enterprise
Architect

(c) Sparx Systems 2024 Page 24 of 339

Information Engineering 16 October, 2024

Logical Data Model
Logical data models help to define the detailed structure of
the data elements in a system and the relationships between
data elements. They refine the data elements introduced by a
Conceptual data model and form the basis of the Physical
data model. In Enterprise Architect, a Logical data model is
typically represented using the UML Class notation.

Example

This diagram is a simple example of a Logical data model.
The Logical Model adds detail to the Conceptual Model but
without going to the level of specifying the Database
Management System that will be used.

Conceptual Data Model with tables modeling Customers
and their Addresses.

Note that the data elements 'Customers' and 'Customers
Addresses' contain UML attributes; the names and generic
data types to remain platform-independent.
Platform-specific data types and other metadata that relate to

(c) Sparx Systems 2024 Page 25 of 339

Information Engineering 16 October, 2024

a specific DBMS implementation are defined by the
Physical data model.

(c) Sparx Systems 2024 Page 26 of 339

Information Engineering 16 October, 2024

Physical Data Models
A Physical Data Model visually represents the structure of
data as implemented by a relational database schema. In
addition to providing a visual abstraction of the database
structure, an important benefit of defining a Physical Data
Model is that you can automatically derive the database
schema from the model. This is possible due to the richness
of metadata captured by a Physical Data Model and its close
mapping to aspects of the database schema, such as database
Tables, columns, Primary Keys and Foreign Keys.

Example Data Model

This example shows a Physical Data Model that could be
used to automatically generate a database schema. Each
Table is represented by a UML Class; Table columns,
Primary Keys and Foreign Keys are modeled using UML
attributes and operations. This model demonstrates the use
of the Information Engineering connector style.

(c) Sparx Systems 2024 Page 27 of 339

Information Engineering 16 October, 2024

Notation

The example model is defined using Enterprise Architect's
UML Profile for Data Modeling; the relationship between
the Tables uses the default Information Engineering
notation.

Information Engineering is one of three notations that
Enterprise Architect supports to help Data Modelers identify
cardinality in relationships. You can change the notation by
selecting the 'Design > Diagram > Manage > Properties'
ribbon option, clicking on the 'Connectors' page and
selecting the required option in the 'Connector Notation'
drop-down list. You would most probably change the
notation to IDEFX1, but the UML2.1 notation is also
available.

Default DBMS

Prior to creating a Physical Data Model it is advisable for
you to set the default DBMS for the project. Setting a
default DBMS ensures that all new database elements that
are created on diagrams are automatically assigned the
default DBMS.

If the default DBMS is not set, new Tables are created
without a DBMS assigned, this restricts Enterprise
Architect's ability to model the physical objects correctly.
For example Enterprise Architect is unable to determine the
correct list of datatypes for columns.

You can set the default DBMS type using:

(c) Sparx Systems 2024 Page 28 of 339

Information Engineering 16 October, 2024

'Start > Appearance > Preferences > Preferences > Source·

Code Engineering > Code Editors', or

'Settings > Reference Data > Settings > Database·

Datatypes or

'Develop > Data Modeling > Datatypes or·

The second data entry field in the Code Generation·

Toolbar

Note: When modeling via the Database Builder the default
DBMS is defined at the model level (as a Tagged Value
'DBMS' against the <<Database>> Package) instead of at
the project level, thereby allowing for greater flexibility
when projects involve multiple DBMSs.

(c) Sparx Systems 2024 Page 29 of 339

Information Engineering 16 October, 2024

DDL Transformation
The DDL transformation converts the logical model to a
data model structured to conform to one of the supported
DBMSs. The target database type is determined by which
DBMS is set as the default database in the model (see the
Database Datatypes Help topic, 'Set As Default' option).
The data model can then be used to automatically generate
DDL statements to run in one of the system-supported
database products.

The DDL transformation uses and demonstrates support in
the intermediary language for a number of database-specific
concepts.

Concepts

Concept Effect

Table Mapped one-to-one onto Class elements.
'Many-to-many' relationships are
supported by the transformation, creating
Join tables.

Column Mapped one-to-one onto attributes.

Primary Key Lists all the columns involved so that
they exist in the Class, and creates a
Primary Key Method for them.

(c) Sparx Systems 2024 Page 30 of 339

Information Engineering 16 October, 2024

Foreign Key A special sort of connector, in which the
Source and Target sections list all of the
columns involved so that:

The columns exist·

A matching Primary Key exists in the·

destination Class, and
The transformation creates the·

appropriate Foreign Key

MDG Technology to customize default
mappings

DDL transformations that target a new, user defined DBMS
require an MDG Technology to map the PIM data types to
the new target DBMS.

To do this, create an MDG Technology .xml file named
'UserDBMS Types.xml', replacing UserDBMS with the
name of the added DBMS. Place the file in the
EA\MDGTechnologies folder. The contents of the MDG
Technology file should have this structure:

<MDG.Technology version="1.0">

 <Documentation id="UserdataTypes" name="Userdata
Types" version="1.0" notes="DB Type mapping for
UserDBMS"/>

(c) Sparx Systems 2024 Page 31 of 339

Information Engineering 16 October, 2024

 <CodeModules>

 <CodeModule language="Userdata" notes="">

 <CodeOptions>

 <CodeOption
name="DBTypeMapping-bigint">BIGINT</CodeOption>

 <CodeOption
name="DBTypeMapping-blob">BLOB</CodeOption>

 <CodeOption
name="DBTypeMapping-boolean">TINYINT</CodeOptio
n>

 <CodeOption
name="DBTypeMapping-text">CLOB</CodeOption>

 ...

 </CodeOptions>

 </CodeModule>

 </CodeModules>

</MDG.Technology>

As an example, 'text' is a Common Type (as listed in the
'Database Datatypes' dialog) that maps to a new DBMS's
'CLOB' data type.

Notes

You can define DBMS-specific aspects not depicted in a·

Logical model, such as Stored Procedures, Triggers,

(c) Sparx Systems 2024 Page 32 of 339

Information Engineering 16 October, 2024

Views and Check Constraints, after the transformation;
see the Physical Data Model Help topic

Example

The PIM elements

After transformation, become the PSM elements

(c) Sparx Systems 2024 Page 33 of 339

Information Engineering 16 October, 2024

Generalizations are handled by providing the child element
with a Foreign Key to the parent element, as shown.
Copy-down inheritance is not supported.

(c) Sparx Systems 2024 Page 34 of 339

Information Engineering 16 October, 2024

(c) Sparx Systems 2024 Page 35 of 339

Information Engineering 16 October, 2024

Creating and Managing Data Models
Enterprise Architect is a fully featured database modeling
platform that enables the user to work with their Physical
Data models at all stages, from design right through to the
implementation of the live database, for a wide range of
database management systems such as Microsoft SQL
Server, Oracle, PostgreSQL and MySQL.

This figure shows the starter model wizard patterns for
database design for a range of RDBMS.

(c) Sparx Systems 2024 Page 36 of 339

Information Engineering 16 October, 2024

Create a Data Model from a Model
Pattern
The easiest way to create a Data Modeling workspace is to
use the predefined Database Model Patterns, available
through the Model Builder. Enterprise Architect provides a
Pattern for each DBMS supported by the system.

Access

Display the Model Builder using any of the methods
outlined here.

In the Model Builder dialog, select the 'Database
Engineering' Perspective.

Ribbon Start > Personal > Model Builder
Design > Package > Model Builder

Context
Menu

Right-click on Package | Model Builder
(pattern library)

Keyboard
Shortcuts

Ctrl+Shift+M

Other Browser window caption bar menu |
Model Builder (pattern library)

(c) Sparx Systems 2024 Page 37 of 339

Information Engineering 16 October, 2024

Create a Data Model

Field/Button Action

Add to
Package

Displays the name of the selected root
Package.

Technology Click on 'Database'.

Name If necessary, expand the Database
Engineering group of Patterns.
Click on the checkbox against each
Database Management System you are
supporting in the model.

All Click on this button to select the
checkboxes for all Database Engineering
model types and the Entity Relationship
diagram, to include them all in the model.

None Click on this button to clear all selected
checkboxes so that you can re-select
certain checkboxes individually.

OK Click on this button to add to the Browser
window the Packages and diagram for
each Database Management System you
are modeling.

(c) Sparx Systems 2024 Page 38 of 339

Information Engineering 16 October, 2024

What each Data Modeling Pattern provides

A summary diagram of the model·

A Report Specification Artifact element (on the summary·

diagram) that can be used to quickly document the data
model

A Package for each of the Logical and Physical models·

Within the Physical Model Package, a predefined·

hierarchy of sub-Packages, one for each object type
supported by the DBMS being modeled (such as Tables,
Views, Procedures and Functions); these automatically
organize the database objects as they are added

The DBMS type for the workspace·

A default owner·

A Data Modeling diagram in each Package with the·

connector notation set to IDEF1X

Notes

Once a data modeling workspace has been created, you·

can begin to develop your model in one of two ways:
 - Through the Database Builder, which is a
purpose-built view that supports database modelers
 - Through the Browser window and diagrams, which
is the traditional method that might suit users
 who are experienced UML modelers

(c) Sparx Systems 2024 Page 39 of 339

Information Engineering 16 October, 2024

(c) Sparx Systems 2024 Page 40 of 339

Information Engineering 16 October, 2024

Create a Data Model Diagram
To model the structure of a relational database you use Data
Modeling diagrams, which are extended Class diagrams.
When you open a Data Modeling diagram the matching
Diagram Toolbox is automatically opened, which contains
the diagram elements:

Table·

View·

Procedure·

Sequence·

Function·

Association and·

Database Connection·

Access

Display the 'New Diagram' dialog using any of the methods
outlined here.

Ribbon Design > Diagram > Add Diagram

Context
Menu

Right-click on Package | Add Diagram
Right-click on element | Add | Add
Diagram

Keyboard Ctrl+Insert

(c) Sparx Systems 2024 Page 41 of 339

Information Engineering 16 October, 2024

Shortcuts

Other Browser window caption bar menu | New
Diagram

Create a Data Modeling diagram

Field/Button Action

Package Defaults to the name of the Package
selected in the Browser window or, if the
parent is an element, the name of the
Package containing that element.
If you are adding a diagram directly to a
Package and notice that it is not the
correct Package, click on the button
and browse for the correct Package.

Parent If you are adding a diagram to an
element, this field displays the element
name.

Diagram This field defaults to the name of the
parent Package or element.
If required, overtype the default name
with your preferred name.

(c) Sparx Systems 2024 Page 42 of 339

Information Engineering 16 October, 2024

Select From Click on this header and select the
Perspective Group and Perspective or
Workspace most appropriate to the area
you are working in (in this instance,
'Information Engineering > Database
Models').
From the options listed in the panel, click
on 'Extended'.

Diagram
Types

Click on 'Data Modeling'.

OK Click on this button to create the diagram.
The Diagram View displays the blank
diagram, and the 'Data Modeling' pages
display in the Diagram Toolbox.
Drag elements and connectors from the
Toolbox onto your diagram, to create
your data model.

Notes

The default diagram connector notation for all new·

diagrams is Information Engineering, although many data
modelers prefer the notation IDEF1X; to make this
change select 'Design > Diagram > Manage > Properties >
Connectors' and click on the required option in the

(c) Sparx Systems 2024 Page 43 of 339

Information Engineering 16 October, 2024

'Connector Notation' drop-down list

(c) Sparx Systems 2024 Page 44 of 339

Information Engineering 16 October, 2024

Example Data Model Diagram
This example of a Data Model diagram shows a data model
of a bookstore warehousing system. The tables are modeled
using a stereotyped class with a compartment for Columns
which displays the name and type of the Columns. Primary
and Foreign Keys are indicated by stereotypes on the
columns. You can examine this model in greater detail in
the Example model, installed with Enterprise Architect and
available from this ribbon location.

 Start > Help > Help > Open the Example Model

Data modeling diagram with suppressed operation

(c) Sparx Systems 2024 Page 45 of 339

Information Engineering 16 October, 2024

compartment showing tables connected to indicate foreign
key relationships.

(c) Sparx Systems 2024 Page 46 of 339

Information Engineering 16 October, 2024

The Database Builder

The Database Builder is a tailored interface for the data
modeler; all database-related modeling tasks can be
performed in a single location. The interface and its related
screens include only the information relevant to data
modeling, thereby streamlining and simplifying the
modeling process.

Access

Ribbon Develop > Data Modeling > Database
Builder

Database Builder

(c) Sparx Systems 2024 Page 47 of 339

Information Engineering 16 October, 2024

This figure shows the Database Builder loaded with the
'Orders (postgres)' data model as it appears in the Example
model.

Overview

The interface of the Database Builder consists of:

A Tree of data models, listing all defined data models in·

the current repository

A 'Columns' tab through which you directly manage the·

Table columns

A 'Constraints/Indexes' tab for the direct management of·

Table constraints such as Primary Keys, Foreign Keys and
Indexes

An SQL Scratch Pad that you can use to run ad-hoc SQL·

queries against a live database

A 'Database Compare' tab that displays the results of·

comparisons between the data model and a live database

An 'Execute DDL' tab on which you can execute·

(c) Sparx Systems 2024 Page 48 of 339

Information Engineering 16 October, 2024

generated DDL against a live database, instantly

You can use the Database Builder to:

Create, edit and delete database objects (Tables, Views,·

Procedures, Sequences and Functions)

Create, edit and delete Table constraints (Primary Keys,·

Indexes, Unique Constraints, Check Constraints and
Triggers)

Create, edit and delete Table Foreign Keys·

Reverse engineer database schema information·

Generate DDL from a modeled database·

Compare a live database schema with a modeled database·

Execute generated DDL against a live database·

Execute adhoc SQL statements against a live database·

Notes

The Database Builder is available in the Corporate,·

Unified and Ultimate Editions of Enterprise Architect

(c) Sparx Systems 2024 Page 49 of 339

Information Engineering 16 October, 2024

Opening the Database Builder
When you first open the Database Builder, it searches the
entire project for all Packages that have the stereotype
<<Data Model>> and loads the corresponding data models
as root nodes into the tree. A grayed-out icon indicates that
the details of the data model are not loaded.

This figure shows the Database Builder with a single
unloaded data model called 'Orders (postgres)'.

Using the Database Builder

You can start working in the Database Builder in one of
these two ways:

Task Action

Create a new
data model

Once you have opened the Database
Builder view, right-click in the empty
space of the tree and select 'New Data
Model' to invoke the Model Builder.

Load an
existing Data
Model

Once the Database Builder view is
opened, load any of the defined data
models by either:

(c) Sparx Systems 2024 Page 50 of 339

Information Engineering 16 October, 2024

Right-clicking on the name and·

selecting 'Load', or
Double-clicking on the name·

Data Model Properties

In earlier versions of Enterprise Architect (prior to the
introduction of the Database Builder) it was necessary for
the data modeler to manually set properties on database
objects before some tasks were allowed. For example,
Enterprise Architect would not allow the definition of a
Table column without the Table first being assigned a
DBMS. This was because the DBMS controls the list of
available datatypes.

To improve efficiency and the user experience, the Database
Builder defines defaults for a number of properties at the
data model level and then applies these default values
automatically whenever new objects are created.

Properties

Option Description

DBMS Defined against: The data model's
<<Database>> Package
Defined as: Tagged Value

(c) Sparx Systems 2024 Page 51 of 339

Information Engineering 16 October, 2024

Details: Defines the DBMS of the
current data model
Extra Information:

Controls which logical folders are·

shown for the current data model in the
Database Builder's tree
Controls what DBMS rules are applied·

during database comparisons
Is automatically assigned to every new·

database object created in the current
data model

DefaultOwne
r

Defined against: The data model's
<<Database>> Package
Defined as: Tagged Value
Details: Defines the default Owner for
the current data model
Extra Information:

Is automatically assigned to every new·

database object created in the current
data model, if the DBMS supports
owners/schemas

DefaultConn
ection

Defined against: The data model's
<<Database>> Package
Defined as: Tagged Value
Details: (Optional) the name of the
default connection

(c) Sparx Systems 2024 Page 52 of 339

Information Engineering 16 October, 2024

Extra Information:
Whenever a data model is loaded, the·

'DefaultConnection' property is
checked; if present, the Connection by
that name is automatically made active
The database engineering model·

Patterns do not define a value for this
property, it is created or updated
whenever a user sets a Connection as
the default

Notes

If a data model is selected in the Browser window when·

the Database Builder is opened, that model's details will
be automatically loaded

(c) Sparx Systems 2024 Page 53 of 339

Information Engineering 16 October, 2024

Working in the Database Builder
When a data model is loaded, the Database Builder creates a
set of logical folders, one for each object type supported by
the current DBMS. Each logical folder is populated with all
objects of that type found in the data model's hierarchy of
Packages (as shown in the Browser window).

In this image the data model 'Orders (postgres)' shows
logical folders for Tables, Views, Functions, Sequences,
Queries and Connections. It is worth noting there is no
folder for 'Procedures' since PostgreSQL does not support
database procedures.

Available Actions in the Database Builder

(c) Sparx Systems 2024 Page 54 of 339

Information Engineering 16 October, 2024

Tree

The majority of the Database Builder functions are
accessible via context menus. Each object in the Tree has its
own set of unique menu items based on its type and status.
This table describes the available context menu items and
identifies which objects they apply to.

Menu Option Applies to / Description

New data
model

Applies To: Blank Space
Description: Opens the Model Builder.

Refresh All Applies to: Blank Space
Description: Reloads the complete list of
data models.

Load Applies to: Root Node
Description: Loads the full details of the
data model.

Unload Applies to: Root Node
Description: Unloads the full details of
the data model.

Import DB
Schema

Applies to: Loaded Root Node
Description: Opens the 'Import DB
schema' dialog using the current active
connection as the Live database source.

(c) Sparx Systems 2024 Page 55 of 339

Information Engineering 16 October, 2024

Generate
DDL

Applies to: Loaded Root Node, Folder,
Table, View, Procedure, Function,
Sequence, Package
Description: Opens the 'Generate DDL'
dialog with the current object(s) selected.

Show
Differences

Applies to: Loaded Root Node, Folder,
Table, View, Procedure, Function,
Sequence
Description: Compares the selected
objects to the current active connection.

Show
Differences
with Options

Applies to: Loaded Root Node, Folder,
Table, View, Procedure, Function,
Sequence, Package
Description: Compares the selected
objects to the current active connection
and optionally ignore some of the
differences based on the specified
compare options.

Manage
DBMS
Options

Applies to: Loaded Root Node
Description: Opens the 'Manage DBMS
Options' dialog, which can be used to
change the allocated DBMS and Owner
of multiple objects.

View Record Applies to: Table, View

(c) Sparx Systems 2024 Page 56 of 339

Information Engineering 16 October, 2024

Count Description: Builds and runs a SELECT
query (formatted to suit the element's
DBMS) to show the number of records in
the selected Table or View.
If there is no active connection, you are
prompted to select one.

View Top
100 Rows

Applies to: Table, View
Description: Builds and runs a SELECT
query (formatted to suit the element's
DBMS) to show the top 100 rows of the
selected Table or View.
If there is no active connection, you are
prompted to select one.

View Top
1000 Rows

Applies to: Table, View
Description: Builds and runs a SELECT
query (formatted to suit the element's
DBMS) to show the top 1000 rows of the
selected Table or View.
If there is no active connection, you are
prompted to select one.

View All
Rows

Applies to: Table, View
Description: Builds and runs a SELECT
query (formatted to suit the element's
DBMS) to show all rows of the selected
Table or View.

(c) Sparx Systems 2024 Page 57 of 339

Information Engineering 16 October, 2024

If there is no active connection, you are
prompted to select one.

Properties Applies to: Loaded Root Node, Folder,
Table, View, Procedure, Function,
Sequence, Package, Connection
Description: Opens the standard
'Properties' dialog for the selected object.

Find in
Project
Browser

Applies to: Loaded Root Node, Folder,
Table, View, Procedure, Function,
Sequence, Package, SQL Query,
Connection
Description: Finds the selected object in
the Browser window.

Refresh Applies to: Loaded Root Node
Description: Reloads the details of the
current loaded data model. This is
necessary when objects are added,
changed or deleted by other users or
when the changes are performed outside
of the Database Builder.

Add new
<type>

Applies to: Folder, Table, View,
Procedure, Function, Sequence, Package,
SQL Query, Connection
Description: Creates a new object of the

(c) Sparx Systems 2024 Page 58 of 339

Information Engineering 16 October, 2024

specified type.

Clone
<name>

Applies to: Folder, Table, View,
Procedure, Function, Sequence, Package,
SQL Query, Connection
Description: Makes a new copy of the
selected object. When you select this
option, a prompt displays on which you
set the name and owner of the new
object. For Table objects, you can choose
which existing constraints should be
copied (and set a name for each one)
along with which Foreign Keys should be
copied. For SQL-based objects, you can
make any necessary changes to the SQL
for the new element.

Delete
<name>

Applies To: Table, View, Procedure,
Function, Sequence, Package, SQL
Query, Connection
Description: Permanently deletes the
selected object from the repository.

Add new
Foreign Key
on <name>

Applies to: Table
Description: Creates a new relationship
between the selected Table and another
one, then shows the 'Foreign Key
Constraint' screen for the new
relationship.

(c) Sparx Systems 2024 Page 59 of 339

Information Engineering 16 October, 2024

SQL Object
Properties

Applies to: View, Procedure, Function,
Sequence
Description: Opens the 'SQL Object
Editor' screen.

Edit Applies to: SQL Query
Description: Loads the SQL (as defined
in the selected element) into the SQL
Scratch Pad.

Run Applies to: SQL Query
Description: Loads the SQL in the SQL
Scratch Pad and runs it.
If there is no active connection, you are
prompted to select one.

Set as active
DB
Connection

Applies to: Connection
Description: Flags the selected Database
Connection as the active one for the
current session.

Set as
Default DB
Connection

Applies to: Connection
Description: Flags the selected Database
Connection as the active one each time
the data model is loaded.

DB Applies to: Connection

(c) Sparx Systems 2024 Page 60 of 339

Information Engineering 16 October, 2024

Connection
Properties

Description: Opens the 'Database
Connection Properties' screen, to manage
the connection settings.

Create/Edit/Delete Database Objects

The pages listed in this section describe in detail how to use
the Database Builder's interface to create and manipulate
database Tables; however, the process of creating and
manipulating SQL-based database objects is documented in
other areas. See these topics for details:

Database Views·

Database Procedures·

Database Functions·

Database Sequences·

Database Connections·

Database Connections in the Database
Builder

When performing certain tasks such as 'Compare' or
'Execute DDL', the Database Builder requires an active
database connection. Only one database connection can be
made active (indicated by a colored 'Database Connection'
icon, while the others are gray) at a given time. If a database
connection is not currently active and you try to perform a

(c) Sparx Systems 2024 Page 61 of 339

https://sparxsystems.com/enterprise_architect_user_guide/17.0/views.htm
https://sparxsystems.com/enterprise_architect_user_guide/17.0/storedprocedures.htm
https://sparxsystems.com/enterprise_architect_user_guide/17.0/database_functions.htm
https://sparxsystems.com/enterprise_architect_user_guide/17.0/sequences.htm
https://sparxsystems.com/enterprise_architect_user_guide/17.0/dbconnection.htm

Information Engineering 16 October, 2024

task that requires one, the Database Builder performs one of
these actions based on how many connections are defined:

0 Connections – prompts you to create a connection and,·

if successful, continues

1 Connection – sets it as active and continues·

2 (or more) Connections – prompts you to select one and,·

if successful, continues

(c) Sparx Systems 2024 Page 62 of 339

Information Engineering 16 October, 2024

Columns
Tables are the fundamental database object, and Columns
(and their properties) are the most frequently modified Table
feature updated and changed by data modelers, therefore the
'Columns' page is conveniently located as the first page of
the Database Builder's interface.

Once a Table is selected in the Database Builder's tree, the
'Columns' page is populated with the currently defined list
of columns for that Table. The data modeler can then make
changes to main column properties directly in the list or
grid. As the data modeler selects individual columns in the
list, the column's extended properties (and Comments) are
shown immediately under the list, allowing modification to
these extended properties.

This figure show the Database Builder interface showing the
tree of objects and the Columns tab showing the Columns
for the selected table.

(c) Sparx Systems 2024 Page 63 of 339

Information Engineering 16 October, 2024

Notes

The 'Columns' page will only be populated when a Table·

item is selected in the Database Builder's tree

(c) Sparx Systems 2024 Page 64 of 339

Information Engineering 16 October, 2024

Create Database Table Columns
A database Table column is represented in the UML Data
Modeling Profile as an attribute with the <<column>>
stereotype. For a selected Table, you can review the existing
columns and create new columns, on the 'Columns' page of
the Database Builder or on the 'Columns and Constraints'
screen.

You can define column details directly on the list of
columns on the 'Columns' tab. The changes are
automatically saved as you complete each field. Some fields
have certain restrictions on the data you can enter, as
described here. The tab also contains a 'Properties' panel and
a 'Notes' field, which are populated with the existing
information on the selected column. Each new column that
you create is automatically assigned a set of default values
and added to the bottom of the list.

Access

Ribbon Develop > Data Modeling > Database
Builder > Click on Table > Columns >
Right-Click > Add new Column

Context
Menu

In diagram, right-click on required Table |
Features | Columns | Right-Click | Add
new Column

(c) Sparx Systems 2024 Page 65 of 339

Information Engineering 16 October, 2024

Keyboard
Shortcuts

Select a table | F9 | Tab Key (to set input
focus on the 'Columns' tab) | Ctrl+N

Create columns in a Table

Option Action

Name Overtype the default name with the
appropriate column name text.

Type Click on the drop-down arrow and select
the appropriate datatype for the column.
The available datatypes depend on the
DBMS assigned to the parent Table.

Length (Optional) Some datatypes have a length
component - for example, VARCHAR
has a length that defines the number of
characters that can be stored. If the
datatype does not have a length
component, this field is disabled.
If the field is available and if you need to
define a number of characters, type the
value here.

Scale (Optional) Some datatypes have a scale

(c) Sparx Systems 2024 Page 66 of 339

Information Engineering 16 October, 2024

component - for example, DECIMAL has
a scale that defines the number of
decimal places that can be held. If the
datatype does not have a scale
component, this field is disabled.
If the field is available and if you need to
define a scale, type the value here.

PK Select the checkbox if the column is part
of the Primary Key for this Table.

Not Null Select the checkbox if empty values are
forbidden for this column.
The checkbox is disabled if the 'PK'
checkbox is selected.

Alias If required for display and documentation
purposes, type in an alternative name for
the field.

Initial Value If required, type in a value that can be
used as a default value for this column.

Notes Type in any additional information
necessary to document the column.
You can format the text using the Notes
toolbar at the top of the field.

(c) Sparx Systems 2024 Page 67 of 339

Information Engineering 16 October, 2024

Column Properties

The appropriate properties for the Table's Database
Management System automatically display in the 'Property'
panel (expand the 'Column (<name>)' branch if they are not
visible).

Property DBMS

Autonum
(Startnum
Increment)

Oracle
MySQL
SQL Server
DB2
PostgreSQL
Notes: If you require an automatic
numbering sequence, set this property to
True and, if necessary, define the start
number and increment.

Generated DB2
Notes: Set this additional property for
auto numbering in DB2, to 'By Default' or
'Always'.

NotForRep SQLServer
Notes: Set this property to True if you
want to block replication.

(c) Sparx Systems 2024 Page 68 of 339

Information Engineering 16 October, 2024

Zerofill MySQL
Notes: Set this property to True or False
to indicate if fields are zerofilled or not.

Unsigned MySQL
Notes: Set this property to True or False
to indicate whether or not fields accept
unsigned numbers.

LengthType Oracle
Notes: Set this property to define the
character semantics as 'None', 'Byte' or
'Char'.

(c) Sparx Systems 2024 Page 69 of 339

Information Engineering 16 October, 2024

Delete Database Table Columns
For a selected database Table, you can review the existing
columns and delete any individual column, on the 'Columns'
tab of the Columns and Constraints screen.

Access

Use one of the methods outlined here to display a list of
columns for a table, then select a column and delete it.

When you select the 'Delete column '<name>'' option, if all
validation rules are satisfied the column is immediately
deleted.

Ribbon Develop > Data Modeling > Database
Builder > Click on Table > Columns >
Right-click on column name > Delete
column <name>

Context
Menu

In diagram, right-click on required Table |
Features | Columns | Right-click on
column name | Delete column <name>

Keyboard
Shortcuts

F9 | Use 'Up Arrow' or 'Down Arrow' to
select a column | Ctrl+D

Notes

(c) Sparx Systems 2024 Page 70 of 339

Information Engineering 16 October, 2024

If the deleted database Table column is involved in any·

constraints it will automatically be removed from them

(c) Sparx Systems 2024 Page 71 of 339

Information Engineering 16 October, 2024

Reorder Database Table Columns
If you have several columns defined in a database Table,
you can change the order in which they are listed. The order
in the list is the order in which the columns appear in the
generated DDL.

Access

Use one of the methods outlined here to display a list of
columns for a Table, then select a column and reposition it
within the list.

Ribbon Develop > Data Modeling > Database
Builder > Click on Table

Context
Menu

In diagram, right-click on required Table |
Features | Columns

Keyboard
Shortcuts

F9

Change the column order

Ste
p

Action

(c) Sparx Systems 2024 Page 72 of 339

Information Engineering 16 October, 2024

1 In the 'Columns' tab, click on the required column
name in the list.

2 Right-click and select the:
'Move column <name> up' option (or press·

Ctrl+Up Arrow) to move the column up one
position
'Move column <name> down' option (or press·

Ctrl+Down Arrow) to move the column down one
position

These options have an immediate effect both in the
'Columns' tab and on a diagram.

(c) Sparx Systems 2024 Page 73 of 339

Information Engineering 16 October, 2024

Constraints/Indexes
Tables are the fundamental database object, and Constraints
and Indexes (and their properties) are the second most
frequently modified Table feature updated and changed by
data modelers, therefore the 'Constraints/indexes' page is
conveniently located as the second page of the Database
Builder's interface.

Once a Table is selected in the Database Builder's tree, the
'Constraints/Indexes' page is populated with the currently
defined list of constraints and indexes for the selected Table.
The data modeler can then make changes to main properties
directly in the list. As the data modeler selects individual
constraints or indexes in the list, the constraint's extended
properties (and Comments) are shown immediately under
the list, allowing modification of these extended properties.

This figure show the Database Builder interface showing the
tree of objects and the Columns tab showing the Columns

(c) Sparx Systems 2024 Page 74 of 339

Information Engineering 16 October, 2024

for the selected table.

Notes

The 'Constraints/Indexes' page will only be populated·

when a Table item in the Database Builder's tree is
selected

(c) Sparx Systems 2024 Page 75 of 339

Information Engineering 16 October, 2024

Database Table Constraints/Indexes
Within Enterprise Architect, Table Constraints and Indexes
are modeled on the same screen; collectivity they are
referred to as Constraints. Database Constraints define the
conditions imposed on the behavior of a database Table.
They include:

Primary Key - uniquely identifies a record in a Table,·

consisting of one or more columns

Index - improves the performance of retrieval and sort·

operations on Table data

Unique Constraints - a combination of values that·

uniquely identify a row in the Table

Foreign Key - a column (or collection of columns) that·

enforce a relationship between two Tables

Check Constraints - enforces domain integrity by limiting·

the values that are accepted by a column

Table Trigger - SQL or code automatically executed as a·

result of data in a Table being modified

In Enterprise Architect, you can define and maintain Table
Constraints using either the purpose-designed
'Constraints/Indexes' page of the Database Builder or the
Columns and Constraints screen.

Access

(c) Sparx Systems 2024 Page 76 of 339

Information Engineering 16 October, 2024

Ribbon Develop > Data Modeling > Database
Builder > Click on Table name >
Constraints/Indexes | Right-click | Add
New Constraint

Context
Menu

In diagram | Right-click on Table |
Features | Constraints/Indexes |
Right-click | Add New Constraint

Keyboard
Shortcuts

Click on Table: F9 > Constraints/Indexes:
Ctrl+N

Create a Constraint

The process of creating any of these constraint types is the
same and is achieved in one of the ways described here.

Create a Constraint - Using the context menu
or keyboard

Ste
p

Action

1 A new constraint is automatically created and
assigned the default name constraint n (where n is a
counter) and a 'Type' of 'index'.

(c) Sparx Systems 2024 Page 77 of 339

Information Engineering 16 October, 2024

Overtype the default name with your own constraint
name.

2 If necessary, in the 'Type' field click on the
drop-down arrow and select the appropriate
constraint type.

3 If you prefer, type an alias for the constraint, in the
'Alias' field.
The 'Columns' field is read-only; it is populated with
the columns that you assign to the 'Involved
Columns' tab.

Create a Constraint - Overtype the template
text

Ste
p

Action

1 On the 'Constraints/Indexes' tab for the selected
Table, the list of constraints ends with the template
text New Constraint.
Overtype this text with the appropriate constraint
name, and press the Enter key.

2 The new constraint is automatically created and

(c) Sparx Systems 2024 Page 78 of 339

Information Engineering 16 October, 2024

assigned the default Type of index.
If necessary, in the 'Type' field click on the
drop-down arrow and select the appropriate
constraint type.

3 If you prefer, type an alias for the constraint, in the
'Alias' field.
The 'Columns' field is read-only; it is populated with
the columns that you assign to the 'Involved
Columns' tab.

Assign Columns to a Constraint

The constraint types of Primary Key, Foreign Key, Index
and Unique all must have at least one column assigned to
them; this defines the columns that are involved in the
constraint.

Ste
p

Action

1 On the 'Constraints/Indexes' tab for the selected
Table, click on the constraint to which you are
assigning columns.

2 The 'Available Columns' panel lists all columns
defined for the Table.
For each column to assign to the constraint,

(c) Sparx Systems 2024 Page 79 of 339

Information Engineering 16 October, 2024

right-click on the column name and select 'Assign
column <name>'.
The column name is transferred to the 'Assigned
Columns' list.

Unassign Columns from a Constraint

Ste
p

Action

1 On the 'Constraints/Indexes' tab for the selected
Table, click on the constraint from which you are
unassigning columns.

2 In the 'Assigned Columns' list, right-click on the
name of the column to unassign from the constraint
and select 'Unassign column <name>'.
The column name is transferred to the 'Available
Columns' list.

Reorder the Assigned Columns in a
Constraint

If you have a number of columns in the constraint, you can
re-arrange the sequence by moving a selected column name

(c) Sparx Systems 2024 Page 80 of 339

Information Engineering 16 October, 2024

one place up or down the list at a time. To do this:

Right-click on the column name to move and select either:·

 - Move column '<name>' up (Ctrl+Up Arrow) or
 - Move column '<name>' down (Ctrl+Down Arrow)

Delete a constraint

To delete a constraint you no longer require, right-click on
the constraint name in the list on the 'Constraints/Indexes'
tab and select the 'Delete constraint <name>' option. If all
validation rules for the given constraint type are met, the
constraint is immediately removed from the repository along
with all related relationships (if there are any).

(c) Sparx Systems 2024 Page 81 of 339

Information Engineering 16 October, 2024

Primary Keys
A Primary Key is a column (or set of columns) that uniquely
identifies each record in a Table. A Table can have only one
Primary Key. Some DBMSs support additional properties of
Primary Keys, such as Clustered or Fill Factor.

Access

Ribbon Develop > Data Modeling > Database
Builder > Click on Table name

Context
Menu

In diagram | Right-click on Table |
Features | Constraints/Indexes

Create a Primary Key

In Enterprise Architect you can create a Primary Key from
either the 'Columns' tab or the 'Constraints/Indexes' tab. In
either case, when you add a column to a Primary Key
constraint, the column is automatically set to be 'Not Null'.
Additionally any diagram (assuming the 'Show Qualifiers
and Visibility Indicators' option is set) containing the Table
element will show the 'PK' prefix against the column name.
In this image, see the first column 'id: bigserial'.

(c) Sparx Systems 2024 Page 82 of 339

Information Engineering 16 October, 2024

Create a Primary Key - from the Columns tab

Ste
p

Action

1 Either:
In the Database Builder, click on a Table with one·

or more defined columns, and click on the
'Columns' tab, or
On a diagram, click on a Table and press F9 to·

display the 'Columns' tab

2 For each column to include in the Primary Key,

(c) Sparx Systems 2024 Page 83 of 339

Information Engineering 16 October, 2024

select the 'PK' checkbox.
If a Primary Key constraint is not previously defined
for the current Table, the system will create a new
constraint using the Primary Key Name template.

Create a Primary Key - from the Constraints
tab

Ste
p

Action

1 Either:
In the Database Builder, click on a Table with one·

or more defined columns, and click on the
'Constraints/Indexes' tab, or
On a diagram, click on a Table and press F10 to·

display the 'Constraints/Indexes' tab

2 Overtype the New Constraint text with the Primary
Key name, press the Enter key and click on the
'Type' field drop-down arrow, and select 'PK'.

3 Assign the required columns to the PK constraint.

4 Set the Primary Key's extended properties using the
property panel.

(c) Sparx Systems 2024 Page 84 of 339

Information Engineering 16 October, 2024

Fill Factor is a numeric value between 0 and 100·

Is Clustered is a Boolean value that determines the·

physical order of how the data is stored; for most
DBMSs the Is Clustered property defaults to True
for Primary Keys

Remove columns from a Primary Key

You can remove columns from a Primary Key using either
the 'Columns' tab or the 'Constraints/Indexes' tab.

Remove columns from a Primary Key - using
the Columns tab

Ste
p

Action

1 Either:
In the Database Builder, click on the Table with·

the Primary Key, and click on the 'Columns' tab,
or
On a diagram, click on a Table and press F9 to·

display the 'Columns' tab

2 Against each column you want to remove from the
Primary Key, deselect the 'PK' checkbox.

(c) Sparx Systems 2024 Page 85 of 339

Information Engineering 16 October, 2024

If you have removed all columns from the Primary
Key constraint and the Primary Key is no longer
needed, it must be manually deleted.

Remove columns from a Primary Key - using
the Constraints/Indexes tab

Ste
p

Action

1 Either:
In the Database Builder, click on the Table with·

the Primary Key, and click on the
'Constraints/Indexes' tab, or
On a diagram, click on a Table and press F10 to·

display the 'Constraints/Indexes' tab

2 Unassign the columns on the PK constraint, as
necessary.

Notes

Warning: Enterprise Architect assumes that Primary Key·

constraints have at least one column assigned to them;
however, Enterprise Architect does not enforce this rule

(c) Sparx Systems 2024 Page 86 of 339

Information Engineering 16 October, 2024

during modeling
If DDL is generated for a Table whose Primary Key has
no column assigned, that DDL will be invalid

(c) Sparx Systems 2024 Page 87 of 339

Information Engineering 16 October, 2024

Database Indexes
Database indexes are applied to Tables to improve the
performance of data retrieval and sort operations. Multiple
indexes can be defined against a Table; however, each index
imposes overheads (in the form of processing time and
storage) on the database server to maintain them as
information is added to and deleted from the Table

In Enterprise Architect an index is modeled as a stereotyped
operation.

Some DBMSs support special types of index; Enterprise
Architect defines these using additional properties such as
function-based, clustered and fill-factor.

Access

Ribbon Develop > Data Modeling > Database
Builder > Click on Table name >
Constraints/Indexes

Context
Menu

In diagram | Right-click on Table |
Features | Constraints/Indexes

Keyboard
Shortcuts

Click on Table: F9 > Constraints/Indexes

(c) Sparx Systems 2024 Page 88 of 339

Information Engineering 16 October, 2024

Work on an index

Ste
p

Action

1 On the 'Constraints/Indexes' tab for the Table,
right-click and select 'Add new constraint'.
The new constraint is added with the default name
'constraint1' and the Type of 'index'.
Overtype the name with your preferred index name.

2 Assign the appropriate columns to the Index.
The 'Assigned Columns' list has an additional 'Order'
field that specifies the order (Ascending or
Descending) in which each assigned column is
stored in the index. You can toggle the order for

(c) Sparx Systems 2024 Page 89 of 339

Information Engineering 16 October, 2024

each column, as required.
Additionally, for MySQL indexes, a 'Len' field will
be visible in which you can define Partial Indexes;
that is, an index that uses the leading 'n' number of
characters of a text based field. The 'Len' field takes
only whole number numeric values of between 0 and
the column's defined length. A value of 0 (which is
the default) indicates that the entire column is to be
indexed.

3 In the 'Property' panel, review the settings of the
extended properties that are defined for the current
DBMS.

Additional Properties

Property Description

Is Unique (True / False) indicates whether the
current index is a 'Unique Index'. A
Unique Index ensures that the indexed
column (or columns) does not contain
duplicate values, thereby ensuring that
each row has a unique value (or
combination of values when the index
consists of multiple columns).

(c) Sparx Systems 2024 Page 90 of 339

Information Engineering 16 October, 2024

Is Clustered (True / False) indicates whether the
current index is a 'Clustered Index'. With
a clustered index, the rows of the table
are physically stored in the same order as
in the index, therefore there can be only
one clustered index per table. By default
a table's Primary Key is clustered.
Not all DBMS's support clustered
indexes, therefore the 'Is Clustered' Index
property will only be visible for DBMSs
that support it.

Is Bitmap (True / False) indicates whether the
current index is a 'Bitmap' index. Bitmap
indexes are meant to be used on columns
that have relatively few unique values
(referred to as 'low cardinality' columns)
and that physically consist of a bit array
(commonly called bitmaps) for each
unique value. Each of the arrays will have
a bit for each row in the table.
Consider this example: a bitmap index is
created on a column called 'Gender',
which has the options 'Male' or 'Female'.
Physically, the index will consist of two
bit arrays, one for 'Male' and one for
'Female'. The female bit array will have a
1 in each bit where the matching row has
the value 'Female'.

(c) Sparx Systems 2024 Page 91 of 339

Information Engineering 16 October, 2024

The 'Is Bitmap' and 'Is Unique' properties
are mutually exclusive, and so the DDL
generation will ignore the 'Is Unique'
property when the 'Is Bitmap' property is
True.
Bitmap Indexes are only supported by
Oracle; therefore, this property is only
visible while modeling Oracle indexes.

Fill Factor A numeric value between 0 and 100, that
defines the percentage of available space
that should be used for data.
Not all DBMSs support fill factor,
therefore the 'Fill Factor' index property
will only be visible for DBMSs that
support it.

Functional-ba
sed

A SQL statement that defines the
function/statement that will be evaluated
and the results indexed; for example:
 LOWER("field")
Not all DBMSs support functional-based
indexes, therefore the 'Functional-based'
Index property will only be visible for
DBMSs that support them, such as
PostgreSQL and Oracle.

Include Identifies a comma-separated list (CSV)
of non-key Columns from the current

(c) Sparx Systems 2024 Page 92 of 339

Information Engineering 16 October, 2024

table.
Not all DBMSs support the 'Include'
property on indexes, therefore this
property will only be visible for DBMSs
that support it.

Notes

Warning: Enterprise Architect assumes that Indexes have·

at least one column assigned to them; however, Enterprise
Architect does not enforce this rule during modeling
If DDL is generated for a Table that has an Index defined
without column(s) assigned, that DDL will be invalid,
unless the index is functional-based

Any columns assigned to a functional-based index are·

ignored

(c) Sparx Systems 2024 Page 93 of 339

Information Engineering 16 October, 2024

Unique Constraints
Unique Constraints enforce the 'uniqueness' of a set of fields
in all rows of a Table, which means that no two rows in a
Table can have the same values in the fields of a Unique
Constraint. Unique Constraints are similar to Primary Keys
(in that they also enforce 'uniqueness') but the main
difference is that a Table can have multiple Unique
Constraints defined but only one Primary Key.

Access

Ribbon Develop > Data Modeling > Database
Builder > Click on Table name >
Constraints/Indexes > Right-click > Add
New Constraint

Context
Menu

In diagram or Browser window |
Right-click on Table element | Features |
Constraints/Indexes

Keyboard
Shortcuts

Click on Table: F9 > Constraints/Indexes:
Ctrl+N

Create a Constraint

(c) Sparx Systems 2024 Page 94 of 339

Information Engineering 16 October, 2024

Ste
p

Action

1 On the 'Constraints/Indexes' tab, a new constraint is
automatically created and assigned the default
constraint name and a 'Type' of index.
Overtype the constraint name with a name that
identifies this as a unique constraint.

2 In the 'Type' field, change the value from 'index' to
'unique'.

Notes

Warning: Enterprise Architect assumes that Unique·

Constraints have at least one column assigned to them;
however, Enterprise Architect does not enforce this rule
during modeling
If DDL is generated for a Table that has a unique
constraint defined without column(s) assigned, that DDL
will be invalid

(c) Sparx Systems 2024 Page 95 of 339

Information Engineering 16 October, 2024

Foreign Keys
A Foreign Key defines a column (or a collection of
columns) that enforces a relationship between two Tables. It
is the responsibility of the database server to enforce this
relationship to ensure data integrity. The model definition of
a Foreign Key consists of a parent (primary) Table
containing a unique set of data that is then referred to in a
child (foreign) Table.

In Enterprise Architect, a Foreign Key is modeled with two
different (but related) UML components:

A Foreign Key constraint (a UML operation with the·

stereotype of <<FK>>) stored on the child Table and

An Association connector (stereotype of <<FK>>)·

defining the relationship between the two Tables

Create a Foreign Key

Although the definition of a Foreign Key can be complex,
the Foreign Key Constraint screen simplifies the modeling
of Foreign Keys. This screen is purpose-designed to help
you select which constraint in the parent Table to use, and
will automatically match the child Table columns to those in
the parent Table that are part of the constraint. Different
aspects of the process of developing a Foreign Key are
described here separately for illustration, but the overall
process should be a smooth transition.

A number of conditions must be met before a Foreign Key
definition can be saved:

(c) Sparx Systems 2024 Page 96 of 339

Information Engineering 16 October, 2024

Both Tables must have matching DBMSs defined·

The parent Table must have at least one column·

The parent Table must have a Primary Key, unique·

constraint or unique index defined

Create a Foreign Key - using the Database
Builder

Ste
p

Action

1 In the Database Builder tree, right-click on the child
Table name and click on 'Add new Foreign Key on
<table name>'.
A dialog displays listing all the possible parent
Tables.

2 Double-click on the required parent Table name in
the list or select it and click on the OK button.
The 'Foreign Key Constraint' screen displays.

Create a Foreign Key - using a relationship on
a diagram

(c) Sparx Systems 2024 Page 97 of 339

Information Engineering 16 October, 2024

Ste
p

Action

1 In the Data Modeling diagram, locate the required
child (Foreign Key) Table and parent (Primary Key)
Table.

2 Select an Association connector in the 'Data
Modeling' page of the Diagram Toolbox.

3 Click on the child Table and draw the connector to
the parent Table.

4 If the Foreign Key Constraint screen has been set to
display automatically when two Tables are joined, it
displays now. Otherwise, either:

Double-click on the connector or·

Right-click on the connector and select the·

'Foreign Keys' option
The Foreign Key Constraint screen displays.

The Foreign Key Constraint Screen

As an example this image shows the Foreign Key Constraint
screen loaded with the details of
'fk_customersaddresses_customers' (as defined in the
Example model).

(c) Sparx Systems 2024 Page 98 of 339

Information Engineering 16 October, 2024

Option Action

Join on
Constraint

This combo box lists all defined
constraints in the parent Table that could
be used as the basis of a Foreign Key.
(These constraints can be Primary Keys,
Unique Constraints or Unique Indexes.)
The first constraint in the list is selected
by default; if this is not the constraint you
want, select the correct constraint from
the combo box.
When you select the constraint, its
columns are automatically listed in the
'Involved Columns' panel, under the
'Parent: <tablename>' column.

Involved
Columns

This list is divided into two: the columns
involved in the selected constraint are

(c) Sparx Systems 2024 Page 99 of 339

Information Engineering 16 October, 2024

listed on the left, and the child columns
that are going to be paired to the parent
columns are listed on the right.
When a constraint is selected (in the 'Join
on constraint' field) the parent side is
refreshed to display all columns assigned
to the selected constraint. On the child
side the system will automatically
attempt to match each parent column to
one of the same name in the child Table.
If the child Table does not have a column
of the same name, a new column of that
name will be added to the list, flagged
with (*) to indicate that a new column
will be created in the Table.
However, if you want to force the pairing
to an existing child Table column or a
new column with a different name, click
on the column name field and either:

Type in the replacement name, or·

Select an existing column (click on the·

drop-down arrow and select the name
from the list)

Name This field defines the name of the Foreign
Key constraint, and defaults to a name
constructed by the Foreign Key Name
Template.
To change the name to something other

(c) Sparx Systems 2024 Page 100 of 339

Information Engineering 16 October, 2024

than the default, simply overtype the
value.

On Delete Select the action that should be taken on
the data in the child Table when data in
the parent is deleted, so as to maintain
referential integrity.

On Update Select the action that should be taken on
the data in the child Table when data in
the parent is updated, so as to maintain
referential integrity.

Parent Click on the drop-down arrow and select
the cardinality of the parent Table in the
Foreign Key.

Child Click on the drop-down arrow and select
the cardinality of the child Table in the
Foreign Key.

Create? If you want to create a Foreign Key Index
at the same time as the Foreign Key, set
this property to True.
The name of the Foreign Key Index is
controlled by the Foreign Key Index
template, and the generated name is
shown in the 'Name' field underneath the
'Create?' field.

(c) Sparx Systems 2024 Page 101 of 339

Information Engineering 16 October, 2024

Automaticall
y show this
screen when
tables are
joined

(For diagrammatic modeling) Select this
checkbox to automatically display this
screen whenever an Association is
created between two Tables.

Delete Click on this button to delete the
currently selected existing (saved)
Foreign Key.
A prompt is displayed to confirm the
deletion (and the deletion of the Foreign
Key Index, if one exists) - click on the
Yes button.
Deleting a Foreign Key leaves an
Association connector in place, which
you can either edit or delete (right-click
and select 'Delete association: to <Table
name>').

OK Click on this button to save the Foreign
Key.

Examples

This example shows simple Foreign Keys in a diagram:

(c) Sparx Systems 2024 Page 102 of 339

Information Engineering 16 October, 2024

The same Foreign Key will be shown in the Database
Builder's tree as a child node under the Table
'customers.addresses'.

(c) Sparx Systems 2024 Page 103 of 339

Information Engineering 16 October, 2024

Check Constraints
A Check Constraint enforces domain integrity by limiting
the values that are accepted by a column.

Access

Ribbon Develop > Data Modeling > Database
Builder > Click on Table name >
Constraints/Indexes > Right-click > Add
New Constraint

Context
Menu

In diagram | Right-click on Table |
Features | Constraints/Indexes |
Right-click | Add New Constraint

Keyboard
Shortcuts

Click on Table: F9 > Constraints/Indexes:
Ctrl+N

Create a Constraint

Ste
p

Action

1 On the 'Constraints/Indexes' tab of the Columns and

(c) Sparx Systems 2024 Page 104 of 339

Information Engineering 16 October, 2024

Constraints screen, a new constraint is automatically
created and assigned the default constraint name and
a 'Type' of index.
Overtype the constraint name with a name that
identifies the constraint as a check constraint, such
as 'CHK_ColumnName' (the CHK_ prefix is
optional).

2 In the 'Type' field, change the value from 'index' to
'check'.

3 In the 'Properties' panel for the Condition property,
type the SQL statement that will be used as the
Check Condition; for example, column1 < 1000.
If the condition is long, click on the button to
display a SQL editor (with syntax highlighting).

Delete a Check Constraint

If you do not want to keep a check constraint, either:

Right-click on it in the list and select 'Delete constraint·

<name>', or

Click on the item and press Ctrl+D·

The constraint is immediately deleted.

Notes

(c) Sparx Systems 2024 Page 105 of 339

Information Engineering 16 October, 2024

Any columns assigned to a check constraint are ignored·

(c) Sparx Systems 2024 Page 106 of 339

Information Engineering 16 October, 2024

Table Triggers
A Table trigger is SQL or code that is automatically
executed as a result of data being modified in a database
Table. Triggers are highly customizable and can be used in
many different ways; for example, they could be used to
stop certain database activities from being performed during
business hours, or to provide validation or perform deletions
in secondary Tables when a record in the primary Table is
deleted.

In Enterprise Architect, a Table trigger is modeled as a
stereotyped operation and managed using the Table's
'Constraints' screen.

Access

Ribbon Develop > Data Modeling > Database
Builder > Click on Table name >
Constraints/Indexes | Right-click | Add
New Constraint

Context
Menu

In diagram | Right-click on Table |
Features | Constraints/Indexes |
Right-click | Add New Constraint

Keyboard
Shortcuts

Click on Table: F9 > Constraints/Indexes:
Ctrl+N

(c) Sparx Systems 2024 Page 107 of 339

Information Engineering 16 October, 2024

Create a Table Trigger

Ste
p

Action

1 On the 'Constraints/Indexes' tab, a new constraint is
automatically created and assigned the default
constraint name and a 'Type' of index.
Overtype the constraint name with a name that
identifies the constraint as a trigger, such as
TRG_OnCustomerUpdate. (The TRG_ prefix is
optional.)

2 In the 'Type' field, change the value from 'index' to
'trigger'.

3 In the 'Properties' panel for the Statement property,
type in the complete SQL statement (including
CREATE TRIGGER) that will define the Trigger.
If the condition is long, click on the button to
display a SQL editor (with syntax highlighting).

4 The properties Trigger Time and Trigger Event are
currently information-only values and are not used in
DDL generation.

(c) Sparx Systems 2024 Page 108 of 339

Information Engineering 16 October, 2024

Delete a Table Trigger

If you do not want to keep a trigger, either:

Right-click on it in the list and select 'Delete constraint·

<name>', or

Click on the item and press Ctrl+D·

The trigger is immediately deleted.

Notes

Any columns assigned to table triggers are ignored·

(c) Sparx Systems 2024 Page 109 of 339

Information Engineering 16 October, 2024

SQL Scratch Pad
The SQL Scratch Pad provides a mechanism to develop and
run ad-hoc SQL Queries against a live database. While you
develop your data model you might want to execute and test
ad-hoc SQL Queries for a DDL script, or run enquiries on
the live database; all of this is possible within the Enterprise
Architect Database Builder interface.

The SQL Scratch Pad requires the Database Builder to have
a valid connection to a live database. This database
connection is shared between the 'SQL Scratch Pad',
'Database Compare' and 'Execute DDL' tabs of the Database
Builder.

The Scratch Pad consists of:

A toolbar providing facilities for importing, saving,·

executing and clearing the SQL Queries

An editor panel in which you create or import the SQL·

Queries - this panel provides SQL-based syntax
highlighting for the current data model

A tabbed panel consisting of two pages, one to show the·

results of executing the Query and one to display any
messages generated during the execution

Access

Open the Database Builder window, then display the 'SQL
Scratch Pad' tab.

(c) Sparx Systems 2024 Page 110 of 339

Information Engineering 16 October, 2024

Ribbon Develop > Data Modeling > Database
Builder > SQL Scratch Pad

The Scratch Pad Toolbar

The functionality of each button on the Scratch Pad Toolbar
is described in this table, working from left to right.

Button Action

Run SQL Executes the SQL Query currently shown
in the Scratch Pad.
Check the 'Results' and 'Messages' tabs
for the output of executing the Query.

New Clears the SQL Query editor fields so
that you can enter a new query.

Open Loads an SQL Query from file.
A source file browser displays, defaulted
to display SQL files. Click on the file
name and on the Open button to display
the file contents in the Scratch Pad.

Save to SQL
Query

Saves this SQL statement to the SQL
Query object it came from.

(c) Sparx Systems 2024 Page 111 of 339

Information Engineering 16 October, 2024

Save to New
SQL Query

Creates a new SQL Query object and
saves this statement to that object.

Save to File Saves the currently-displayed Query to
the file it came from.
If you created the Query from scratch, a
source file browser displays in which you
type the new file name and click on the
Save button to save the Query.

Save to New
File

Saves the currently-displayed Query to a
new .sql file.
A source file browser displays on which
you type in the new file name and click
on the Save button to save the Query.

Clear Clears the contents of the Scratch Pad.
Any Query displayed in the Scratch Pad
remains there until you either replace it
with another Query from file or you close
the model.

Toggle
Comment

Applies the SQL comment characters '--'
to the beginning of each selected line or,
if the selected lines are already
commented, removes the comment
characters. Alternatively, press
Ctrl+Shift+C.

(c) Sparx Systems 2024 Page 112 of 339

Information Engineering 16 October, 2024

Statement
Separator

Type in the character(s) to use to mark
the end of each statement.

Help Displays the Help on the SQL Query
Scratch Pad.

Query
Description

Displays a label providing a description
of the current SQL, whether there are
pending changes (indicated by a leading
*), and the name of the loaded SQL
Query object or Filename.

Notes

The SQL Scratch Pad does not manipulate your SQL in·

any way, so you must use the correct syntax for the
current DBMS

While the SQL Scratch Pad can execute multiple SQL·

statements, and the status and messages of each statement
are shown in the 'Messages' list, only the results of one
SELECT statement can be shown in the 'Results' list at a
time; all subsequent SELECT statements will be ignored

(c) Sparx Systems 2024 Page 113 of 339

Information Engineering 16 October, 2024

Database Compare
The 'Database Compare' tab provides a mechanism for
comparing the current data model with a live database, and
optionally synchronizing any differences in either direction.
Differences 'pushed' into a live database are performed
using 'Alter DDL' statements, while changes imported from
the live database can be directly 'pulled' into the model.

The Database Compare functionality requires the Database
Builder to have a valid connection to a live database. This
database connection is shared by the 'SQL Scratch Pad',
'Database Compare' and 'Execute DDL' tabs of the Database
Builder.

Access

Open the Database Builder window, then display the
'Database Compare' tab.

Ribbon Develop > Data Modeling > Database
Builder > Database Compare

The DDL Compare Tab

(c) Sparx Systems 2024 Page 114 of 339

Information Engineering 16 October, 2024

The 'Database Compare' tab has a number of controls, as
described here.

Number &
Name

Description

1 Case
Sensitive

Click on this checkbox to make all
comparisons of properties recognize
differences in letter-case in the property
text.

2 Use Alias
if Available

Click on this checkbox to indicate that
any defined aliases should be used
instead of object names (at both object

(c) Sparx Systems 2024 Page 115 of 339

Information Engineering 16 October, 2024

and column level).

3 Reset All Click on this button to set the 'Action'
flag for all objects back to the default
value.

4 Set Import
All

Click on this button to set the 'Action'
flag of all detected differences to <====;
that is, update the model with the value(s)
from the live database.

5 Set
Synchronize
All

Click on this button to set the 'Action'
flag of all detected differences to ====>;
that is, update the live database with the
value(s) from the model.

6
Differences

Review the list of objects found to have
mis-matches between the model and the
live database. Selecting an item in this list
will populate the 'Components' list.
(See the Differences List table for a
detailed description of each column.)

7
Components

Review this list of properties of the
selected object that differ between the
model and the live database.
(See the Component List table for a
detailed description of each column.)

(c) Sparx Systems 2024 Page 116 of 339

Information Engineering 16 October, 2024

8 Reset Click on this button to set the 'Action'
flag for all properties of the current object
back to the default value.

9 Import
from Live
DB

Click on this button to import all
properties' values (with the 'Action' of
<===) from the live database into the
model.

10 Generate
DDL

Click on this button to generate the 'Alter
DDL' statements for all objects with an
'Action' of ====>, and send the
statements to the 'Execute DDL' tab.

Differences List

Column Description

EA Displays the name of each object in the
model that has one or more detected
differences. Blank values indicate that the
object is missing in the model but exists
in the live database.

Action Defaults to 'No Action' as the action to
take considering this object's
difference(s). Click on the drop-down

(c) Sparx Systems 2024 Page 117 of 339

Information Engineering 16 October, 2024

arrow and select a specific action. The list
of available actions in the list will depend
on whether or not the given object is
paired in the model and live database.
Paired objects

No Action - do not update the database·

or model with this change
===> - update the object in the·

database from the model
<=== - update the object in the model·

from the database
Customize - set the items to No Action·

prior to setting different actions on
each item in the lower panel
Unpair - separate the paired objects so·

that they are not compared with each
other or updated from each other

Unpaired objects
Create <object name> - create the·

missing database object in the database
or model, as appropriate
Delete <object name> - delete the·

object from the model
Drop <object name> - delete the object·

from the database
Pair with <object name> - pair the·

object in the database with the named

(c) Sparx Systems 2024 Page 118 of 339

Information Engineering 16 October, 2024

(unpaired) object in the model, so that
they are compared for differences
between them

The 'Action' fields in the 'Components
List' (the lower panel) will be updated
based on the selection of this field.
For example, if the live database has a
Table column 'Address1' and the model
doesn't, setting the object 'Action' to
'===>' (update the object in the database
from the model) sets the column 'Item
Action' to 'Drop Address1', which will
remove the column from the live
database.

Live DB Shows the name of each object in the live
database that has one or more detected
differences. Blank values indicate that the
object exists in the model but is missing
in the live database.

Count Shows the total number of detected
differences for the object (and all of its
components) between the model and live
database.

Component List

(c) Sparx Systems 2024 Page 119 of 339

Information Engineering 16 October, 2024

Column Description

Item Shows the component name or
description for each detected difference.
The differences are grouped into three
categories: Properties, Columns and
Constraints, in a tree structure.

EA Shows the value of the given component
as detected in the model. Blank values
indicate that the value is missing in the
model but exists in the live database.

Action Defaults to the action corresponding to
the setting of the object 'Action' field in
the 'Differences' list, to indicate the action
to take regarding the difference detected
for the component. Click on the
drop-down arrow to select an alternative
action; the available options in the list
depend on the component's type and the
detected difference.

No Action - do not update the database·

or model
===> - update the object in the live·

database from the model
<=== - update the object in the model·

(c) Sparx Systems 2024 Page 120 of 339

Information Engineering 16 October, 2024

from the live database
Add <item name> - create the missing·

item in the database or model, as
appropriate
Delete <item name> - delete the item·

from the model
Drop <item name> - delete the item·

from the live database

Live DB Shows the value for the selected
component in the live database. Blank
values indicate that the value exists in the
model but is missing in the live database.

Count Shows the number of differences between
the model and the live database detected
in the selected component.

Working with the Database Comparison

Whenever you perform a comparison, Enterprise Architect
reads the definition from both the live database and the
model, and then attempts to 'pair' each object from one
source with the other, using its name (and schema, if
relevant for the current DBMS).

If a match is found, the object name is shown in both the
'EA' and 'Live DB' columns with a default action of 'No

(c) Sparx Systems 2024 Page 121 of 339

Information Engineering 16 October, 2024

Action'. The 'Count' column indicates the total number of
differences found for the object and its components or
properties.

If a match is not found between the systems, the object
name is shown in the source column (either 'EA' or 'Live
DB') while the other column is blank. In this state it is
possible to pair the object with an object of a different
name; the 'Action' dropdown list will present the available
objects. If a new pairing is made the two objects' definitions
are compared for differences and the results are shown in
the 'Components' list, with the default action of '====>'
selected.

If you select an action at the object level, this will set the
matching action for all of the object's components and
properties. However, if you select the 'Customize' action at
the object level, you can determine a different action for
each component.

As an example, both a column (tax_amount) and constraint
(ck_customersordersitems_discount) were renamed in Table
'public.customers_order_items' (in the Example model) and
a database compare performed; this image shows the
differences found:

(c) Sparx Systems 2024 Page 122 of 339

Information Engineering 16 October, 2024

In the image there is only one Table that had detected
differences - 'public.customers_order_items'; selecting this
populates the 'Components' list. From the detected results it
can be determined that the data model contains a column
(tax_amount2) and a check constraint
(ck_customerordersitems_discount1) that the live database
doesn't and in turn the live database contains a column
(tax_amount) and a check constraint
(ck_customerordersitems_discount) that the data model
doesn't.

Comparing with Options

The 'Compare with Options' functionality works in the same
manner as for a direct comparison, except that you are
prompted to choose which object/property comparisons
should be performed. This enables you to ignore particular
differences that are not of relevance at the current time.

(c) Sparx Systems 2024 Page 123 of 339

Information Engineering 16 October, 2024

These tables describe the different comparisons that can be
enabled or disabled.

All Objects, Owner

Comparison Action

Owner Select to indicate that the 'Owner'
property of all database objects should be
compared, after the objects have been
'paired'.

Table Options

Option Action

Tables Select this parent option to enable all of
the Table comparison options. Deselect to
disable all the other options. You would
then deselect or select specific options in
the list.

Table -
Extended
Properties

Select to indicate that extended properties
of Tables (such as DB Version and
Tablespace) should be compared.

(c) Sparx Systems 2024 Page 124 of 339

Information Engineering 16 October, 2024

Table -
Remarks

Select to indicate that remarks applied to
Tables should be compared.

Columns Select this parent option to enable all of
the 'Column comparison' options.
Deselect to disable all the other 'Column'
options. You would then deselect or
select specific options in the list.

Column -
Type

Select to indicate that the datatype name
for the Table Columns should be
compared.

Column -
Size

Select to indicate that the datatype size
for the Table Columns should be
compared.

Column -
Default
Value

Select to indicate that the default values
of the Table Columns should be
compared.

Column -
Position

Select to indicate that the Table Column
positions should be compared.

Column - Not
Null

Select to indicate that the not null
property of the Table Columns should be
compared.

Column - Select to indicate that the autonumbering

(c) Sparx Systems 2024 Page 125 of 339

Information Engineering 16 October, 2024

Auto
Numbering

properties for the Table Columns should
be compared (such as AutoNum,
StartNum and Increment).

Column -
Unmatched
Columns

Select to indicate that Table Columns that
are unmatched between the model and the
live database should be compared.
Typically these are columns that exist in
one system but do not exist in the other.

Column -
Extended
Properties

Select to indicate that extended properties
of Table Columns (such as Unsigned and
Zerofill) should be compared.

Column -
Remarks

Select to indicate that remarks applied to
Table Columns should be compared.

Constraints Select this parent option to enable all of
the 'Table Constraint comparison'
options. Deselect to disable all the 'Table
Constraint' options. You would then
deselect or select specific options in the
list.

Constraint -
Primary Keys

Select to indicate that properties related
to Primary Keys should be compared.

Constraint -
Foreign Keys

Select to indicate that properties related
to Foreign Keys should be compared.

(c) Sparx Systems 2024 Page 126 of 339

Information Engineering 16 October, 2024

Constraint -
Indexes

Select to indicate that properties related
to Indexes should be compared.

Constraint -
Unique
Constraints

Select to indicate that properties related
to Unique Constraints should be
compared.

Constraint -
Check
Constraints

Select to indicate that properties related
to Check Constraints should be
compared.

Constraint -
Table
Triggers

Select to indicate that properties related
to Table Triggers should be compared.

Constraint -
Unmatched
Constraints

Select to indicate that Table Constraints
that are unmatched between the model
and the live database should be
compared. Typically these are constraints
that exist in one system but do not exist
in the other.

Constraints -
Extended
Properties

Select to indicate that extended properties
of Table Constraints (such as Fill Factor
and Clustered) should be compared.

Constraints -
Remarks

Select to indicate that remarks applied to
Table Constraints should be compared.

(c) Sparx Systems 2024 Page 127 of 339

Information Engineering 16 October, 2024

Notes

The Database Compare functionality currently can·

perform comparisons on Table, View, Procedure,
Function and Sequence object types

(c) Sparx Systems 2024 Page 128 of 339

Information Engineering 16 October, 2024

Execute DDL
The 'Execute DDL' tab provides a mechanism to easily
execute generated DDL statements against a live database,
and provides instant feedback on their success, all within the
Enterprise Architect interface and without the need for other
products.

There are two different types of DDL statement that
Enterprise Architect can generate and send to the 'Execute
DDL' tab:

Create DDL statements, created by the Generate DDL·

screen, and

Alter DDL statements, created by the Database Compare·

window

The Execute DDL functionality requires the Database
Builder to have a valid connection to a live database. This
database connection is shared between the SQL Scratch Pad,
Database Compare and 'Execute DDL' tabs of the Database
Builder.

Access

Open the Database Builder window, then display the
'Execute DDL' tab.

Ribbon Develop > Data Modeling > Database
Builder > Execute DDL

(c) Sparx Systems 2024 Page 129 of 339

Information Engineering 16 October, 2024

Execute the DDL

The 'Execute DDL' tab has these fields and buttons:

Field/Button Action

1 Execution
Queue

Lists the tasks (each with an associated
DDL statement) that are yet to be
executed. The list has three columns that
specify the name of the object involved,
the task and the action being performed.
Selecting an item in the list will display
the associated DDL statement (in the
'Script' field) for the given task.

(c) Sparx Systems 2024 Page 130 of 339

Information Engineering 16 October, 2024

2 Script A text box with SQL syntax highlighting,
showing the DDL statement for the
selected task.

3 Save Click on this button to save all the
individual DDL statements from both the
'Execution Queue' and the 'Results List'
into a single file.

4 Reset
Failed
Actions

Click on this button to re-queue any
failed or skipped tasks from the 'Results
List' to the bottom of the 'Execution
Queue'.

5 Skip Click on this button to skip over the next
task in the 'Execution Queue' and not
execute it. The task will be moved into
the 'Results List' and not given a result.
When you click on the Reset Failed
Actions button, skipped tasks are returned
to the Execution Queue along with any
failed tasks.

6 Execute Click on this button to execute the next
task in the 'Execution Queue'. The task is
removed from the top of the 'Execution
Queue' and added to the end of the
'Results List' with the execution result.

(c) Sparx Systems 2024 Page 131 of 339

Information Engineering 16 October, 2024

7 Execute
All

Click on this button to execute all tasks in
the 'Execution Queue'. When execution is
complete, the 'Results List' will display
the results of each individual task.

8 Results
List

Lists the executed tasks with the results
of execution for each task. Selecting an
item in this list will display the DDL
statement that was executed, in the
'Script' field.

Example

In the example used in the earlier section on Database
Comparison (when a column and constraint were renamed),
if the defaults are used to 'push' the data model changes into
the live database the Execute DDL screen is populated with
the details shown here.

(c) Sparx Systems 2024 Page 132 of 339

Information Engineering 16 October, 2024

In summary, DDL is generated to drop both the old column
and the old constraint (tasks 'Drop Column' and 'Drop
Constraint'), then the column and constraint are created with
the new names (tasks 'Add Column' and 'Add Constraint')
and finally each has their comments/remarks applied (tasks
'Add Constraint - Constraint Comment' and 'Add Column -
Column Comment').

(c) Sparx Systems 2024 Page 133 of 339

Information Engineering 16 October, 2024

Database Objects
Whilst Tables are the fundamental components of a
relational database and allow the definition of Columns,
Data Types, Keys and Indexes, there are a number of other
Objects that are important in RDBM systems including:

Views - a View represents the result-set of a pre-defined·

query; they are dynamically derived from the data stored
in one or more Tables (or other Views)

Procedures - a feature that some DBMS products·

implement to provide subroutines that can contain one or
more SQL statements to perform a specific task such as
data validation, access control, or to reduce network
traffic between clients and the DBMS servers

Functions - a feature that some DBMS products·

implement to provide a mechanism to extend the
functionality of the database server; each is a routine that
can accept parameters, perform an action (such as a
complex calculation) and return the result of that action as
a value

Sequences - a feature that some DBMS products·

implement to provide a mechanism to generate unique
values - the Sequence ensures that each call to it returns a
unique value

The UML itself does not specify how data modeling is
performed, but Enterprise Architect has a fully integrated
UML profile for data modeling and a range of features built
in to the core product that will make data modeling easy.

(c) Sparx Systems 2024 Page 134 of 339

Information Engineering 16 October, 2024

The profile uses stereotypes and Tagged Values to extend
standard UML elements into data modeling constructs. This
is achieved by adding the database object stereotype to a
UML Class; so that you would model:

Data Modeling diagrams as extended UML Class·

diagrams

Tables as UML Class objects with a stereotype of·

<<table>>

Views as UML Class objects with a stereotype of·

<<view>>

Procedures as UML Class objects with a stereotype of·

<<procedure>>

Functions as UML Class objects with a stereotype of·

<<function>>

Sequences as UML Class objects with a stereotype of·

<<dbsequence>>

You can quickly create and configure all of these objects in
your database model with Enterprise Architect.

(c) Sparx Systems 2024 Page 135 of 339

Information Engineering 16 October, 2024

Database Tables
Tables are the fundamental components of a relational
database, representing multiple rows of structured data
elements (referred to as Columns). Every individual item of
data entered into a relational database is represented by a
value in a column.

Enterprise Architect's UML Profile for Data Modeling
represents:

Database Tables as UML Class objects with a stereotype·

of <<table>>

Table columns as UML attributes of a Table, with a·

stereotype of <<column>>

Primary Keys as UML operations/methods of a Table,·

with a stereotype of <<PK>>

Foreign Keys as UML operations/methods of a Table,·

with a stereotype of <<FK>>

Indexes as UML operations/methods of a Table, with a·

stereotype of <<index>>

Unique Constraints as UML operations/methods of a·

Table, with a stereotype of <<unique>>

Check Constraints as UML operations/methods of a·

Table, with a stereotype of <<check>>

Table Triggers as UML operations/methods of a Table,·

with a stereotype of <<trigger>>

Enterprise Architect refers to all of the UML operations of a
Table collectively as Constraints, hence the screen you use

(c) Sparx Systems 2024 Page 136 of 339

Information Engineering 16 October, 2024

to maintain a Table's UML attributes and operations is
called the Columns and Constraints screen.

Example

This simple example of a Physical Data Model diagram in
Enterprise Architect consists of two Database Tables
represented by UML Classes, named customers and
customer_addresses.

Each Table defines database columns, using UML attributes
typed appropriately for the target DBMS (in this case,
PostgreSQL).

Notes

The Table stereotype is denoted by the icon in the·

top-right corner of each Class (see the Data Modeling
Notation topic)

The Enterprise Architect maintenance screen for·

managing Table Columns doesn't allow you to change the
attributes stereotype, since <<column>> is the only valid

(c) Sparx Systems 2024 Page 137 of 339

Information Engineering 16 October, 2024

option

It is possible to hide the <<column>> stereotype label·

shown in the example Tables (see the Data Modeling
Notation topic)

(c) Sparx Systems 2024 Page 138 of 339

Information Engineering 16 October, 2024

Create a Database Table
Fundamental to data modeling is the creation of Database
Tables within the model. There are three ways to create a
Table:

Within the Database Builder·

On an open Data Model diagram·

Using the Browser New Element option·

Add a Database Table with the Database
Builder

Ste
p

Action

1 Open the Database Builder ('Develop > Data
Modeling > Database Builder').

2 Load or create a Data model.

3 Right-click on the Tables Package and select 'Add
New Table'.

(c) Sparx Systems 2024 Page 139 of 339

Information Engineering 16 October, 2024

4 Overtype the default name with the appropriate
name for the Table, and press the Enter key.

5 Double-click on the Table element to define the
Table properties.

Add a Database Table to a diagram

Ste
p

Action

1 Create and/or open a Data Modeling diagram.

2 Drag and drop the 'Table' toolbox icon onto the
diagram.

This generates a new Table element:

(c) Sparx Systems 2024 Page 140 of 339

Information Engineering 16 October, 2024

3 Double-click on the Table element to define the
Table properties.

(c) Sparx Systems 2024 Page 141 of 339

Information Engineering 16 October, 2024

Database Table Columns
In a relational database, a Table column (sometimes referred
to as a field) stores a single data value of a particular type in
each row of the Table. Table columns can have various
individual properties such as a default value or whether the
field accepts Null values.

A Database Table Column is represented in the UML Data
Modeling Profile as a stereotyped attribute; that is, an
attribute with the <<column>> stereotype. In Enterprise
Architect you define and maintain Table Columns using the
purpose-designed 'Columns' page of the Database Builder,
or the 'Columns and Constraints' dialog.

(c) Sparx Systems 2024 Page 142 of 339

Information Engineering 16 October, 2024

Create Database Table Columns
A database Table column is represented in the UML Data
Modeling Profile as an attribute with the <<column>>
stereotype. For a selected Table, you can review the existing
columns and create new columns, on the 'Columns' page of
the Database Builder or on the 'Columns and Constraints'
screen.

You can define column details directly on the list of
columns on the 'Columns' tab. The changes are
automatically saved as you complete each field. Some fields
have certain restrictions on the data you can enter, as
described here. The tab also contains a 'Properties' panel and
a 'Notes' field, which are populated with the existing
information on the selected column. Each new column that
you create is automatically assigned a set of default values
and added to the bottom of the list.

Access

Ribbon Develop > Data Modeling > Database
Builder > Click on Table > Columns >
Right-Click > Add new Column

Context
Menu

In diagram, right-click on required Table |
Features | Columns | Right-Click | Add
new Column

(c) Sparx Systems 2024 Page 143 of 339

Information Engineering 16 October, 2024

Keyboard
Shortcuts

Select a table | F9 | Tab Key (to set input
focus on the 'Columns' tab) | Ctrl+N

Create columns in a Table

Option Action

Name Overtype the default name with the
appropriate column name text.

Type Click on the drop-down arrow and select
the appropriate datatype for the column.
The available datatypes depend on the
DBMS assigned to the parent Table.

Length (Optional) Some datatypes have a length
component - for example, VARCHAR
has a length that defines the number of
characters that can be stored. If the
datatype does not have a length
component, this field is disabled.
If the field is available and if you need to
define a number of characters, type the
value here.

Scale (Optional) Some datatypes have a scale

(c) Sparx Systems 2024 Page 144 of 339

Information Engineering 16 October, 2024

component - for example, DECIMAL has
a scale that defines the number of
decimal places that can be held. If the
datatype does not have a scale
component, this field is disabled.
If the field is available and if you need to
define a scale, type the value here.

PK Select the checkbox if the column is part
of the Primary Key for this Table.

Not Null Select the checkbox if empty values are
forbidden for this column.
The checkbox is disabled if the 'PK'
checkbox is selected.

Alias If required for display and documentation
purposes, type in an alternative name for
the field.

Initial Value If required, type in a value that can be
used as a default value for this column.

Notes Type in any additional information
necessary to document the column.
You can format the text using the Notes
toolbar at the top of the field.

(c) Sparx Systems 2024 Page 145 of 339

Information Engineering 16 October, 2024

Column Properties

The appropriate properties for the Table's Database
Management System automatically display in the 'Property'
panel (expand the 'Column (<name>)' branch if they are not
visible).

Property DBMS

Autonum
(Startnum
Increment)

Oracle
MySQL
SQL Server
DB2
PostgreSQL
Notes: If you require an automatic
numbering sequence, set this property to
True and, if necessary, define the start
number and increment.

Generated DB2
Notes: Set this additional property for
auto numbering in DB2, to 'By Default' or
'Always'.

NotForRep SQLServer
Notes: Set this property to True if you
want to block replication.

(c) Sparx Systems 2024 Page 146 of 339

Information Engineering 16 October, 2024

Zerofill MySQL
Notes: Set this property to True or False
to indicate if fields are zerofilled or not.

Unsigned MySQL
Notes: Set this property to True or False
to indicate whether or not fields accept
unsigned numbers.

LengthType Oracle
Notes: Set this property to define the
character semantics as 'None', 'Byte' or
'Char'.

(c) Sparx Systems 2024 Page 147 of 339

Information Engineering 16 October, 2024

Delete Database Table Columns
For a selected database Table, you can review the existing
columns and delete any individual column, on the 'Columns'
tab of the Columns and Constraints screen.

Access

Use one of the methods outlined here to display a list of
columns for a table, then select a column and delete it.

When you select the 'Delete column '<name>'' option, if all
validation rules are satisfied the column is immediately
deleted.

Ribbon Develop > Data Modeling > Database
Builder > Click on Table > Columns >
Right-click on column name > Delete
column <name>

Context
Menu

In diagram, right-click on required Table |
Features | Columns | Right-click on
column name | Delete column <name>

Keyboard
Shortcuts

F9 | Use 'Up Arrow' or 'Down Arrow' to
select a column | Ctrl+D

Notes

(c) Sparx Systems 2024 Page 148 of 339

Information Engineering 16 October, 2024

If the deleted database Table column is involved in any·

constraints it will automatically be removed from them

(c) Sparx Systems 2024 Page 149 of 339

Information Engineering 16 October, 2024

Reorder Database Table Columns
If you have several columns defined in a database Table,
you can change the order in which they are listed. The order
in the list is the order in which the columns appear in the
generated DDL.

Access

Use one of the methods outlined here to display a list of
columns for a Table, then select a column and reposition it
within the list.

Ribbon Develop > Data Modeling > Database
Builder > Click on Table

Context
Menu

In diagram, right-click on required Table |
Features | Columns

Keyboard
Shortcuts

F9

Change the column order

Ste
p

Action

(c) Sparx Systems 2024 Page 150 of 339

Information Engineering 16 October, 2024

1 In the 'Columns' tab, click on the required column
name in the list.

2 Right-click and select the:
'Move column <name> up' option (or press·

Ctrl+Up Arrow) to move the column up one
position
'Move column <name> down' option (or press·

Ctrl+Down Arrow) to move the column down one
position

These options have an immediate effect both in the
'Columns' tab and on a diagram.

(c) Sparx Systems 2024 Page 151 of 339

Information Engineering 16 October, 2024

Working with Database Table
Properties
Once you have created a Database Table, you can review its
properties and check that the DBMS and Owner values are
correct. To display the 'Properties' dialog for a Table, either
double-click on the Table name in the 'Database Builder
Tables' Package or on the Table element on a diagram.

Important

A DBMS must be assigned to a Table before you can add
columns in it. If you are using the Database Builder then the
DBMS of the data model will be automatically applied to all
new Tables; however, if you have added a Table by other
means (such as working on a diagram) then this is a manual
step.

Tasks

Once the Database Table properties are defined, you are
ready to add columns.

Task

Set the database type for a Table - other than the Table
name, the most important property to set for a Database
Table is the database type.

(c) Sparx Systems 2024 Page 152 of 339

Information Engineering 16 October, 2024

Set the database Table Owner - For some DBMSs all
Tables must be assigned an Owner/Schema; in Enterprise
Architect this property is defined as a Tagged Value with
the name Owner.

Set extended options - some DBMSs have extended
options that are only relevant to that DBMS. These
extended properties are stored as Tagged Values.

Default DBMS

Prior to creating a Physical Data Model it is advisable for
you to set the default DBMS, which will be automatically
applied to new database objects that you create outside of
the Database Builder. You can set the default DBMS type in
one of these ways:

Select 'Start > Appearance > Preferences > Preferences >·

Source Code Engineering > Code Editors', then set the
field 'Default Database'

Select 'Settings > Reference Data > Settings > Database·

Datatypes', then select a Product Name and select the 'Set
as Default' checkbox

Set the DBMS in the second field of the Code Generation·

Toolbar

(c) Sparx Systems 2024 Page 153 of 339

Information Engineering 16 October, 2024

Set the Database Type
The most important property to set for a Database Table
(after its name) is the database type or DBMS. The DBMS
value selected will control how Enterprise Architect will
determine:

How the Table name will be shown (with or without an·

Owner)

What set of validation rules will be applied while database·

modeling

The data types that are available when creating columns,·

What set of DDL templates will be used in DDL·

Generation

Access

Select a Table in the Browser window or on a diagram then,
using any of the methods outlined here, open the Table's
'Properties' dialog, display the 'General' tab, then display the
'Main' child tab.

Ribbon Design > Element > Editors > Properties
Dialog > General > Main

Context
Menu

Right-click on the Table element |
Properties | Special Action | General |
Main

(c) Sparx Systems 2024 Page 154 of 339

Information Engineering 16 October, 2024

Keyboard
Shortcuts

Shift+Enter | General | Main

Other Double-click on the Table element
|General | Main

Options

Field/Button Action

Database Click on the drop-down button and select
the required database type from the list.

Apply Click on the Apply button to save any
pending changes.

OK Click on the OK button to save any
pending changes and close the screen.

(c) Sparx Systems 2024 Page 155 of 339

Information Engineering 16 October, 2024

Set Database Table Owner/Schema
For some DBMSs all Tables must be assigned an
Owner/Schema. In Enterprise Architect this property is
physically defined as a Tagged Value with the name Owner.
However, a special properties page is provided to help you
easily manage the Owner property.

Access

Select a Table in the Browser window or on a diagram then,
using any of the methods outlined here, open the Table's
'Properties' dialog, display the 'General' tab and display the
'Table Detail' child tab.

Ribbon Design > Element > Editors > Properties
> << table >>

Context
Menu

Right-click on the Table element |
Properties |Special Action > General >
Table Detail

Keyboard
Shortcuts

Shift+Enter | General | Table Detail

Other Double-click on the Table element
|'General' | 'Table Detail'

(c) Sparx Systems 2024 Page 156 of 339

Information Engineering 16 October, 2024

Set the Database Table owner

Ste
p

Action

1 In the 'Owner' field, type the name of the owner or
schema of the Table.

(c) Sparx Systems 2024 Page 157 of 339

Information Engineering 16 October, 2024

Set MySQL Options
To make use of Foreign Keys in MySQL, you must declare
the Database Table type as InnoDB.

Declare the Table type as InnoDB

Ste
p

Action

1 Add a Tagged Value named Type to the Table.

2 Set the 'Value' field to 'InnoDB'.

Generate DDL

When you generate DDL for this Table, the Table type is
included in the SQL script.

To allow for later versions of MySQL, additional Table
options that can be added in the same way include:

Tag Value (Example)

ENGINE InnoDB

CHARACTE
R SET

latin1

(c) Sparx Systems 2024 Page 158 of 339

Information Engineering 16 October, 2024

CHARSET latin1

COLLATE latin1_german2_ci

(c) Sparx Systems 2024 Page 159 of 339

Information Engineering 16 October, 2024

Set Oracle Database Table Properties
To set additional Oracle Database Table properties, you use
the Table's Tagged Values.

Set Properties

The same properties can be added to indexes and
constraints, by highlighting the index or constraint
Operation and adding the appropriate Tagged Values.

Ste
p

Action

1 Add one or more Tagged Values to the Table, using
the names provided in the 'Property/Tag' column of
the 'Properties' Table.

2 Specify the appropriate value for each tag.
Examples are provided in the 'Value' column of this
Properties Table.

CACHE - NOCACHE·

DBVERSION - 9.0.111·

FREELISTS - 1·

GRANT OWNER1 - SELECT·

GRANT OWNER2 - DELETE, INSERT,·

SELECT, UPDATE
INITIAL - 65536·

(c) Sparx Systems 2024 Page 160 of 339

Information Engineering 16 October, 2024

INITRANS - 1·

LOGGING - LOGGING·

MAXEXTENTS - 2147483645·

MAXTRANS - 255·

MINEXTENTS - 1·

MONITORING - MONITORING·

OWNER - OWNER1·

PARALLEL - NOPARALLEL·

PCTFREE - 10·

PCTINCREASE - 0·

PCTUSED - 0·

SYNONYMS -·

PUBLIC:TABLE_PUB;OWNER2:TABLE_OWN
ER2
TABLESPACE - MY_TABLESPACE·

TEMPORARY - YES·

(c) Sparx Systems 2024 Page 161 of 339

Information Engineering 16 October, 2024

Database Table Constraints/Indexes
Within Enterprise Architect, Table Constraints and Indexes
are modeled on the same screen; collectivity they are
referred to as Constraints. Database Constraints define the
conditions imposed on the behavior of a database Table.
They include:

Primary Key - uniquely identifies a record in a Table,·

consisting of one or more columns

Index - improves the performance of retrieval and sort·

operations on Table data

Unique Constraints - a combination of values that·

uniquely identify a row in the Table

Foreign Key - a column (or collection of columns) that·

enforce a relationship between two Tables

Check Constraints - enforces domain integrity by limiting·

the values that are accepted by a column

Table Trigger - SQL or code automatically executed as a·

result of data in a Table being modified

In Enterprise Architect, you can define and maintain Table
Constraints using either the purpose-designed
'Constraints/Indexes' page of the Database Builder or the
Columns and Constraints screen.

Access

(c) Sparx Systems 2024 Page 162 of 339

Information Engineering 16 October, 2024

Ribbon Develop > Data Modeling > Database
Builder > Click on Table name >
Constraints/Indexes | Right-click | Add
New Constraint

Context
Menu

In diagram | Right-click on Table |
Features | Constraints/Indexes |
Right-click | Add New Constraint

Keyboard
Shortcuts

Click on Table: F9 > Constraints/Indexes:
Ctrl+N

Create a Constraint

The process of creating any of these constraint types is the
same and is achieved in one of the ways described here.

Create a Constraint - Using the context menu
or keyboard

Ste
p

Action

1 A new constraint is automatically created and
assigned the default name constraint n (where n is a
counter) and a 'Type' of 'index'.

(c) Sparx Systems 2024 Page 163 of 339

Information Engineering 16 October, 2024

Overtype the default name with your own constraint
name.

2 If necessary, in the 'Type' field click on the
drop-down arrow and select the appropriate
constraint type.

3 If you prefer, type an alias for the constraint, in the
'Alias' field.
The 'Columns' field is read-only; it is populated with
the columns that you assign to the 'Involved
Columns' tab.

Create a Constraint - Overtype the template
text

Ste
p

Action

1 On the 'Constraints/Indexes' tab for the selected
Table, the list of constraints ends with the template
text New Constraint.
Overtype this text with the appropriate constraint
name, and press the Enter key.

2 The new constraint is automatically created and

(c) Sparx Systems 2024 Page 164 of 339

Information Engineering 16 October, 2024

assigned the default Type of index.
If necessary, in the 'Type' field click on the
drop-down arrow and select the appropriate
constraint type.

3 If you prefer, type an alias for the constraint, in the
'Alias' field.
The 'Columns' field is read-only; it is populated with
the columns that you assign to the 'Involved
Columns' tab.

Assign Columns to a Constraint

The constraint types of Primary Key, Foreign Key, Index
and Unique all must have at least one column assigned to
them; this defines the columns that are involved in the
constraint.

Ste
p

Action

1 On the 'Constraints/Indexes' tab for the selected
Table, click on the constraint to which you are
assigning columns.

2 The 'Available Columns' panel lists all columns
defined for the Table.
For each column to assign to the constraint,

(c) Sparx Systems 2024 Page 165 of 339

Information Engineering 16 October, 2024

right-click on the column name and select 'Assign
column <name>'.
The column name is transferred to the 'Assigned
Columns' list.

Unassign Columns from a Constraint

Ste
p

Action

1 On the 'Constraints/Indexes' tab for the selected
Table, click on the constraint from which you are
unassigning columns.

2 In the 'Assigned Columns' list, right-click on the
name of the column to unassign from the constraint
and select 'Unassign column <name>'.
The column name is transferred to the 'Available
Columns' list.

Reorder the Assigned Columns in a
Constraint

If you have a number of columns in the constraint, you can
re-arrange the sequence by moving a selected column name

(c) Sparx Systems 2024 Page 166 of 339

Information Engineering 16 October, 2024

one place up or down the list at a time. To do this:

Right-click on the column name to move and select either:·

 - Move column '<name>' up (Ctrl+Up Arrow) or
 - Move column '<name>' down (Ctrl+Down Arrow)

Delete a constraint

To delete a constraint you no longer require, right-click on
the constraint name in the list on the 'Constraints/Indexes'
tab and select the 'Delete constraint <name>' option. If all
validation rules for the given constraint type are met, the
constraint is immediately removed from the repository along
with all related relationships (if there are any).

(c) Sparx Systems 2024 Page 167 of 339

Information Engineering 16 October, 2024

Primary Keys
A Primary Key is a column (or set of columns) that uniquely
identifies each record in a Table. A Table can have only one
Primary Key. Some DBMSs support additional properties of
Primary Keys, such as Clustered or Fill Factor.

Access

Ribbon Develop > Data Modeling > Database
Builder > Click on Table name

Context
Menu

In diagram | Right-click on Table |
Features | Constraints/Indexes

Create a Primary Key

In Enterprise Architect you can create a Primary Key from
either the 'Columns' tab or the 'Constraints/Indexes' tab. In
either case, when you add a column to a Primary Key
constraint, the column is automatically set to be 'Not Null'.
Additionally any diagram (assuming the 'Show Qualifiers
and Visibility Indicators' option is set) containing the Table
element will show the 'PK' prefix against the column name.
In this image, see the first column 'id: bigserial'.

(c) Sparx Systems 2024 Page 168 of 339

Information Engineering 16 October, 2024

Create a Primary Key - from the Columns tab

Ste
p

Action

1 Either:
In the Database Builder, click on a Table with one·

or more defined columns, and click on the
'Columns' tab, or
On a diagram, click on a Table and press F9 to·

display the 'Columns' tab

2 For each column to include in the Primary Key,

(c) Sparx Systems 2024 Page 169 of 339

Information Engineering 16 October, 2024

select the 'PK' checkbox.
If a Primary Key constraint is not previously defined
for the current Table, the system will create a new
constraint using the Primary Key Name template.

Create a Primary Key - from the Constraints
tab

Ste
p

Action

1 Either:
In the Database Builder, click on a Table with one·

or more defined columns, and click on the
'Constraints/Indexes' tab, or
On a diagram, click on a Table and press F10 to·

display the 'Constraints/Indexes' tab

2 Overtype the New Constraint text with the Primary
Key name, press the Enter key and click on the
'Type' field drop-down arrow, and select 'PK'.

3 Assign the required columns to the PK constraint.

4 Set the Primary Key's extended properties using the
property panel.

(c) Sparx Systems 2024 Page 170 of 339

Information Engineering 16 October, 2024

Fill Factor is a numeric value between 0 and 100·

Is Clustered is a Boolean value that determines the·

physical order of how the data is stored; for most
DBMSs the Is Clustered property defaults to True
for Primary Keys

Remove columns from a Primary Key

You can remove columns from a Primary Key using either
the 'Columns' tab or the 'Constraints/Indexes' tab.

Remove columns from a Primary Key - using
the Columns tab

Ste
p

Action

1 Either:
In the Database Builder, click on the Table with·

the Primary Key, and click on the 'Columns' tab,
or
On a diagram, click on a Table and press F9 to·

display the 'Columns' tab

2 Against each column you want to remove from the
Primary Key, deselect the 'PK' checkbox.

(c) Sparx Systems 2024 Page 171 of 339

Information Engineering 16 October, 2024

If you have removed all columns from the Primary
Key constraint and the Primary Key is no longer
needed, it must be manually deleted.

Remove columns from a Primary Key - using
the Constraints/Indexes tab

Ste
p

Action

1 Either:
In the Database Builder, click on the Table with·

the Primary Key, and click on the
'Constraints/Indexes' tab, or
On a diagram, click on a Table and press F10 to·

display the 'Constraints/Indexes' tab

2 Unassign the columns on the PK constraint, as
necessary.

Notes

Warning: Enterprise Architect assumes that Primary Key·

constraints have at least one column assigned to them;
however, Enterprise Architect does not enforce this rule

(c) Sparx Systems 2024 Page 172 of 339

Information Engineering 16 October, 2024

during modeling
If DDL is generated for a Table whose Primary Key has
no column assigned, that DDL will be invalid

(c) Sparx Systems 2024 Page 173 of 339

Information Engineering 16 October, 2024

Non Clustered Primary Keys
When you create a Primary Key in some DBMSs (such as
SQL Server or ASA), it is automatically created with the 'Is
Clustered' property set to True. Therefore when you model a
Primary Key in an Enterprise Architect data model, the
same behavior occurs.

Clustered indexes provide improved performance for
accessing the column(s) involved, by physically organizing
the data by those columns. There can be only one clustered
index per Table.

In some situations, you might be more interested in the
performance of columns other than the ones assigned to the
Primary Key, and therefore you would need to change the
default assignment so that the Primary Key is not clustered.

Access

Ribbon Develop > Data Modeling > Database
Builder > Click on Table name >
Constraints/Indexes

Context
Menu

In diagram or Browser window |
Right-click on Table | Features |
Constraints/Indexes

Keyboard Click on Table: F9 > Constraints/Indexes

(c) Sparx Systems 2024 Page 174 of 339

Information Engineering 16 October, 2024

Shortcuts

Define Primary Key as non-clustered

Subsequently, you can model an index for the same Table as
clustered.

Ste
p

Action

1 Highlight the existing Primary Key constraint.
The Primary Key properties display in the 'Property'
panel.

2 For the Is Clustered property, in the 'Value' field
click on the drop-down arrow and change the value
to False.

(c) Sparx Systems 2024 Page 175 of 339

Information Engineering 16 October, 2024

Database Indexes
Database indexes are applied to Tables to improve the
performance of data retrieval and sort operations. Multiple
indexes can be defined against a Table; however, each index
imposes overheads (in the form of processing time and
storage) on the database server to maintain them as
information is added to and deleted from the Table

In Enterprise Architect an index is modeled as a stereotyped
operation.

Some DBMSs support special types of index; Enterprise
Architect defines these using additional properties such as
function-based, clustered and fill-factor.

Access

Ribbon Develop > Data Modeling > Database
Builder > Click on Table name >
Constraints/Indexes

Context
Menu

In diagram | Right-click on Table |
Features | Constraints/Indexes

Keyboard
Shortcuts

Click on Table: F9 > Constraints/Indexes

(c) Sparx Systems 2024 Page 176 of 339

Information Engineering 16 October, 2024

Work on an index

Ste
p

Action

1 On the 'Constraints/Indexes' tab for the Table,
right-click and select 'Add new constraint'.
The new constraint is added with the default name
'constraint1' and the Type of 'index'.
Overtype the name with your preferred index name.

2 Assign the appropriate columns to the Index.
The 'Assigned Columns' list has an additional 'Order'
field that specifies the order (Ascending or
Descending) in which each assigned column is
stored in the index. You can toggle the order for

(c) Sparx Systems 2024 Page 177 of 339

Information Engineering 16 October, 2024

each column, as required.
Additionally, for MySQL indexes, a 'Len' field will
be visible in which you can define Partial Indexes;
that is, an index that uses the leading 'n' number of
characters of a text based field. The 'Len' field takes
only whole number numeric values of between 0 and
the column's defined length. A value of 0 (which is
the default) indicates that the entire column is to be
indexed.

3 In the 'Property' panel, review the settings of the
extended properties that are defined for the current
DBMS.

Additional Properties

Property Description

Is Unique (True / False) indicates whether the
current index is a 'Unique Index'. A
Unique Index ensures that the indexed
column (or columns) does not contain
duplicate values, thereby ensuring that
each row has a unique value (or
combination of values when the index
consists of multiple columns).

(c) Sparx Systems 2024 Page 178 of 339

Information Engineering 16 October, 2024

Is Clustered (True / False) indicates whether the
current index is a 'Clustered Index'. With
a clustered index, the rows of the table
are physically stored in the same order as
in the index, therefore there can be only
one clustered index per table. By default
a table's Primary Key is clustered.
Not all DBMS's support clustered
indexes, therefore the 'Is Clustered' Index
property will only be visible for DBMSs
that support it.

Is Bitmap (True / False) indicates whether the
current index is a 'Bitmap' index. Bitmap
indexes are meant to be used on columns
that have relatively few unique values
(referred to as 'low cardinality' columns)
and that physically consist of a bit array
(commonly called bitmaps) for each
unique value. Each of the arrays will have
a bit for each row in the table.
Consider this example: a bitmap index is
created on a column called 'Gender',
which has the options 'Male' or 'Female'.
Physically, the index will consist of two
bit arrays, one for 'Male' and one for
'Female'. The female bit array will have a
1 in each bit where the matching row has
the value 'Female'.

(c) Sparx Systems 2024 Page 179 of 339

Information Engineering 16 October, 2024

The 'Is Bitmap' and 'Is Unique' properties
are mutually exclusive, and so the DDL
generation will ignore the 'Is Unique'
property when the 'Is Bitmap' property is
True.
Bitmap Indexes are only supported by
Oracle; therefore, this property is only
visible while modeling Oracle indexes.

Fill Factor A numeric value between 0 and 100, that
defines the percentage of available space
that should be used for data.
Not all DBMSs support fill factor,
therefore the 'Fill Factor' index property
will only be visible for DBMSs that
support it.

Functional-ba
sed

A SQL statement that defines the
function/statement that will be evaluated
and the results indexed; for example:
 LOWER("field")
Not all DBMSs support functional-based
indexes, therefore the 'Functional-based'
Index property will only be visible for
DBMSs that support them, such as
PostgreSQL and Oracle.

Include Identifies a comma-separated list (CSV)
of non-key Columns from the current

(c) Sparx Systems 2024 Page 180 of 339

Information Engineering 16 October, 2024

table.
Not all DBMSs support the 'Include'
property on indexes, therefore this
property will only be visible for DBMSs
that support it.

Notes

Warning: Enterprise Architect assumes that Indexes have·

at least one column assigned to them; however, Enterprise
Architect does not enforce this rule during modeling
If DDL is generated for a Table that has an Index defined
without column(s) assigned, that DDL will be invalid,
unless the index is functional-based

Any columns assigned to a functional-based index are·

ignored

(c) Sparx Systems 2024 Page 181 of 339

Information Engineering 16 October, 2024

Unique Constraints
Unique Constraints enforce the 'uniqueness' of a set of fields
in all rows of a Table, which means that no two rows in a
Table can have the same values in the fields of a Unique
Constraint. Unique Constraints are similar to Primary Keys
(in that they also enforce 'uniqueness') but the main
difference is that a Table can have multiple Unique
Constraints defined but only one Primary Key.

Access

Ribbon Develop > Data Modeling > Database
Builder > Click on Table name >
Constraints/Indexes > Right-click > Add
New Constraint

Context
Menu

In diagram or Browser window |
Right-click on Table element | Features |
Constraints/Indexes

Keyboard
Shortcuts

Click on Table: F9 > Constraints/Indexes:
Ctrl+N

Create a Constraint

(c) Sparx Systems 2024 Page 182 of 339

Information Engineering 16 October, 2024

Ste
p

Action

1 On the 'Constraints/Indexes' tab, a new constraint is
automatically created and assigned the default
constraint name and a 'Type' of index.
Overtype the constraint name with a name that
identifies this as a unique constraint.

2 In the 'Type' field, change the value from 'index' to
'unique'.

Notes

Warning: Enterprise Architect assumes that Unique·

Constraints have at least one column assigned to them;
however, Enterprise Architect does not enforce this rule
during modeling
If DDL is generated for a Table that has a unique
constraint defined without column(s) assigned, that DDL
will be invalid

(c) Sparx Systems 2024 Page 183 of 339

Information Engineering 16 October, 2024

Foreign Keys
A Foreign Key defines a column (or a collection of
columns) that enforces a relationship between two Tables. It
is the responsibility of the database server to enforce this
relationship to ensure data integrity. The model definition of
a Foreign Key consists of a parent (primary) Table
containing a unique set of data that is then referred to in a
child (foreign) Table.

In Enterprise Architect, a Foreign Key is modeled with two
different (but related) UML components:

A Foreign Key constraint (a UML operation with the·

stereotype of <<FK>>) stored on the child Table and

An Association connector (stereotype of <<FK>>)·

defining the relationship between the two Tables

Create a Foreign Key

Although the definition of a Foreign Key can be complex,
the Foreign Key Constraint screen simplifies the modeling
of Foreign Keys. This screen is purpose-designed to help
you select which constraint in the parent Table to use, and
will automatically match the child Table columns to those in
the parent Table that are part of the constraint. Different
aspects of the process of developing a Foreign Key are
described here separately for illustration, but the overall
process should be a smooth transition.

A number of conditions must be met before a Foreign Key
definition can be saved:

(c) Sparx Systems 2024 Page 184 of 339

Information Engineering 16 October, 2024

Both Tables must have matching DBMSs defined·

The parent Table must have at least one column·

The parent Table must have a Primary Key, unique·

constraint or unique index defined

Create a Foreign Key - using the Database
Builder

Ste
p

Action

1 In the Database Builder tree, right-click on the child
Table name and click on 'Add new Foreign Key on
<table name>'.
A dialog displays listing all the possible parent
Tables.

2 Double-click on the required parent Table name in
the list or select it and click on the OK button.
The 'Foreign Key Constraint' screen displays.

Create a Foreign Key - using a relationship on
a diagram

(c) Sparx Systems 2024 Page 185 of 339

Information Engineering 16 October, 2024

Ste
p

Action

1 In the Data Modeling diagram, locate the required
child (Foreign Key) Table and parent (Primary Key)
Table.

2 Select an Association connector in the 'Data
Modeling' page of the Diagram Toolbox.

3 Click on the child Table and draw the connector to
the parent Table.

4 If the Foreign Key Constraint screen has been set to
display automatically when two Tables are joined, it
displays now. Otherwise, either:

Double-click on the connector or·

Right-click on the connector and select the·

'Foreign Keys' option
The Foreign Key Constraint screen displays.

The Foreign Key Constraint Screen

As an example this image shows the Foreign Key Constraint
screen loaded with the details of
'fk_customersaddresses_customers' (as defined in the
Example model).

(c) Sparx Systems 2024 Page 186 of 339

Information Engineering 16 October, 2024

Option Action

Join on
Constraint

This combo box lists all defined
constraints in the parent Table that could
be used as the basis of a Foreign Key.
(These constraints can be Primary Keys,
Unique Constraints or Unique Indexes.)
The first constraint in the list is selected
by default; if this is not the constraint you
want, select the correct constraint from
the combo box.
When you select the constraint, its
columns are automatically listed in the
'Involved Columns' panel, under the
'Parent: <tablename>' column.

Involved
Columns

This list is divided into two: the columns
involved in the selected constraint are

(c) Sparx Systems 2024 Page 187 of 339

Information Engineering 16 October, 2024

listed on the left, and the child columns
that are going to be paired to the parent
columns are listed on the right.
When a constraint is selected (in the 'Join
on constraint' field) the parent side is
refreshed to display all columns assigned
to the selected constraint. On the child
side the system will automatically
attempt to match each parent column to
one of the same name in the child Table.
If the child Table does not have a column
of the same name, a new column of that
name will be added to the list, flagged
with (*) to indicate that a new column
will be created in the Table.
However, if you want to force the pairing
to an existing child Table column or a
new column with a different name, click
on the column name field and either:

Type in the replacement name, or·

Select an existing column (click on the·

drop-down arrow and select the name
from the list)

Name This field defines the name of the Foreign
Key constraint, and defaults to a name
constructed by the Foreign Key Name
Template.
To change the name to something other

(c) Sparx Systems 2024 Page 188 of 339

Information Engineering 16 October, 2024

than the default, simply overtype the
value.

On Delete Select the action that should be taken on
the data in the child Table when data in
the parent is deleted, so as to maintain
referential integrity.

On Update Select the action that should be taken on
the data in the child Table when data in
the parent is updated, so as to maintain
referential integrity.

Parent Click on the drop-down arrow and select
the cardinality of the parent Table in the
Foreign Key.

Child Click on the drop-down arrow and select
the cardinality of the child Table in the
Foreign Key.

Create? If you want to create a Foreign Key Index
at the same time as the Foreign Key, set
this property to True.
The name of the Foreign Key Index is
controlled by the Foreign Key Index
template, and the generated name is
shown in the 'Name' field underneath the
'Create?' field.

(c) Sparx Systems 2024 Page 189 of 339

Information Engineering 16 October, 2024

Automaticall
y show this
screen when
tables are
joined

(For diagrammatic modeling) Select this
checkbox to automatically display this
screen whenever an Association is
created between two Tables.

Delete Click on this button to delete the
currently selected existing (saved)
Foreign Key.
A prompt is displayed to confirm the
deletion (and the deletion of the Foreign
Key Index, if one exists) - click on the
Yes button.
Deleting a Foreign Key leaves an
Association connector in place, which
you can either edit or delete (right-click
and select 'Delete association: to <Table
name>').

OK Click on this button to save the Foreign
Key.

Examples

This example shows simple Foreign Keys in a diagram:

(c) Sparx Systems 2024 Page 190 of 339

Information Engineering 16 October, 2024

The same Foreign Key will be shown in the Database
Builder's tree as a child node under the Table
'customers.addresses'.

(c) Sparx Systems 2024 Page 191 of 339

Information Engineering 16 October, 2024

Check Constraints
A Check Constraint enforces domain integrity by limiting
the values that are accepted by a column.

Access

Ribbon Develop > Data Modeling > Database
Builder > Click on Table name >
Constraints/Indexes > Right-click > Add
New Constraint

Context
Menu

In diagram | Right-click on Table |
Features | Constraints/Indexes |
Right-click | Add New Constraint

Keyboard
Shortcuts

Click on Table: F9 > Constraints/Indexes:
Ctrl+N

Create a Constraint

Ste
p

Action

1 On the 'Constraints/Indexes' tab of the Columns and

(c) Sparx Systems 2024 Page 192 of 339

Information Engineering 16 October, 2024

Constraints screen, a new constraint is automatically
created and assigned the default constraint name and
a 'Type' of index.
Overtype the constraint name with a name that
identifies the constraint as a check constraint, such
as 'CHK_ColumnName' (the CHK_ prefix is
optional).

2 In the 'Type' field, change the value from 'index' to
'check'.

3 In the 'Properties' panel for the Condition property,
type the SQL statement that will be used as the
Check Condition; for example, column1 < 1000.
If the condition is long, click on the button to
display a SQL editor (with syntax highlighting).

Delete a Check Constraint

If you do not want to keep a check constraint, either:

Right-click on it in the list and select 'Delete constraint·

<name>', or

Click on the item and press Ctrl+D·

The constraint is immediately deleted.

Notes

(c) Sparx Systems 2024 Page 193 of 339

Information Engineering 16 October, 2024

Any columns assigned to a check constraint are ignored·

(c) Sparx Systems 2024 Page 194 of 339

Information Engineering 16 October, 2024

Table Triggers
A Table trigger is SQL or code that is automatically
executed as a result of data being modified in a database
Table. Triggers are highly customizable and can be used in
many different ways; for example, they could be used to
stop certain database activities from being performed during
business hours, or to provide validation or perform deletions
in secondary Tables when a record in the primary Table is
deleted.

In Enterprise Architect, a Table trigger is modeled as a
stereotyped operation and managed using the Table's
'Constraints' screen.

Access

Ribbon Develop > Data Modeling > Database
Builder > Click on Table name >
Constraints/Indexes | Right-click | Add
New Constraint

Context
Menu

In diagram | Right-click on Table |
Features | Constraints/Indexes |
Right-click | Add New Constraint

Keyboard
Shortcuts

Click on Table: F9 > Constraints/Indexes:
Ctrl+N

(c) Sparx Systems 2024 Page 195 of 339

Information Engineering 16 October, 2024

Create a Table Trigger

Ste
p

Action

1 On the 'Constraints/Indexes' tab, a new constraint is
automatically created and assigned the default
constraint name and a 'Type' of index.
Overtype the constraint name with a name that
identifies the constraint as a trigger, such as
TRG_OnCustomerUpdate. (The TRG_ prefix is
optional.)

2 In the 'Type' field, change the value from 'index' to
'trigger'.

3 In the 'Properties' panel for the Statement property,
type in the complete SQL statement (including
CREATE TRIGGER) that will define the Trigger.
If the condition is long, click on the button to
display a SQL editor (with syntax highlighting).

4 The properties Trigger Time and Trigger Event are
currently information-only values and are not used in
DDL generation.

(c) Sparx Systems 2024 Page 196 of 339

Information Engineering 16 October, 2024

Delete a Table Trigger

If you do not want to keep a trigger, either:

Right-click on it in the list and select 'Delete constraint·

<name>', or

Click on the item and press Ctrl+D·

The trigger is immediately deleted.

Notes

Any columns assigned to table triggers are ignored·

(c) Sparx Systems 2024 Page 197 of 339

Information Engineering 16 October, 2024

Database Views
A Database View represents the results of a pre-defined
query. Unlike a Table, a View is dynamically derived from
data in one or more Tables (or other Views). Enterprise
Architect supports the definition of Views both with and
without this statement:

 "Create View {viewName} As" statement

The system will automatically add it dynamically (if
missing) whenever DDL generation is performed. The
advantage of not defining this statement is that when a view
object is renamed the 'View Definition' property does not
have to be manually updated.

You can create a Database View either:

Within the Database Builder or·

By dragging the 'View' icon from the Data Modeling·

Toolbox onto a diagram

Add a Database View with the Database
Builder

Ste
p

Action

1 Open the Database Builder.

2 Load or create a Data model.

(c) Sparx Systems 2024 Page 198 of 339

Information Engineering 16 October, 2024

3 Right-click on the 'Views' Package and select 'Add
New View'.

4 Overtype the default name with the appropriate
name for the View, and press the Enter key.

5 Double-click on the new View, or right-click on it
and select 'SQL Object Properties'.
The 'SQL Object Editor' dialog displays.

Add a Database View to a diagram

Ste
p

Action

1 Open your Data Modeling diagram and, if necessary,
display the 'Data Modeling' page of the Diagram
Toolbox (click on to display the 'Find Toolbox
Item' dialog and specify 'Data Modeling').

2 Drag the 'View' icon onto the diagram.

This generates the View element:

(c) Sparx Systems 2024 Page 199 of 339

Information Engineering 16 October, 2024

3 Right-click on the new View element and select
'SQL Object Properties'.
The 'SQL Object Editor' dialog displays.

SQL Object Editor

The 'SQL Object Editor' dialog is shared by a number of
SQL-based database objects (Views, Procedures, Functions
and Sequences); it helps the data modeler manage the
various properties of the SQL-based object.

Option Action

Database If it has already been set, the default
database type displays.
If the default has not been set, or you
want to change the database type for this
View, click on the drop-down arrow and
select the target DBMS to model.

Dependencie
s

A list of objects that the current object
depends on. The 'Dependencies' list
shows:

Each Depends connector between this·

View and another Table or View
Any object names (specified as a CSV·

list) in the 'parents' Tagged Values

(c) Sparx Systems 2024 Page 200 of 339

Information Engineering 16 October, 2024

Notes If necessary, type in a comment on the
current View.

Definition Type the full SQL View definition. For
releases of Enterprise Architect up to
12.1 (Build 1227), this must include the
CREATE_VIEW syntax as appropriate
for the target DBMS (for later versions
this is not needed). For example:
 CREATE VIEW 'MyViewName' AS
 [view definition]

The code editor provides Intelli-sense for
basic SQL keywords, functions and
names of all objects in the current data
model.

(c) Sparx Systems 2024 Page 201 of 339

Information Engineering 16 October, 2024

Database Procedures
Database Procedures (sometimes referred to as Stored
Procedures or Procs) are subroutines that can contain one or
more SQL statements that perform a specific task. They can
be used for data validation, access control, or to reduce
network traffic between clients and the DBMS servers.
Extensive and complex business logic can be embedded into
the subroutine, thereby offering better performance.

Database Procedures are similar to Database Functions. The
major difference is the way in which they are invoked -
Database Functions can be used in the same way as for any
other expression within SQL statements, whereas Database
Procedures must be invoked using the CALL or EXEC
statement, depending on the DBMS.

In Enterprise Architect, Database Procedures can be
modeled in one of two ways:

As individual objects (the default method) or·

As operations in a container·

Functionally the two methods result in the same DDL being
produced. The main difference is visual - by having several
Operations in one container, you have fewer elements and
less clutter on the diagram.

Individual objects

Database Procedures modeled as individual objects are
UML Classes with the stereotype «procedure»; you create

(c) Sparx Systems 2024 Page 202 of 339

Information Engineering 16 October, 2024

these either:

Within the Database Builder or·

By dragging the 'Procedure' icon from the Data Modeling·

Toolbox onto a diagram

Add a Database Procedure using the
Database Builder

Ste
p

Action

1 Open the Database Builder.

2 Load or create a Data model.

3 Right-click on the Procedures Package and select
'Add New Procedure'.

4 Overtype the default name with the appropriate
name for the Procedure, and press the Enter key.

5 Double-click on the new Procedure, or right-click on
it and select 'SQL Object Properties'.
The SQL Object Editor screen displays.

(c) Sparx Systems 2024 Page 203 of 339

Information Engineering 16 October, 2024

Add a Database Procedure to a diagram

Ste
p

Action

1 Open your Data Modeling diagram and, if necessary,
display the 'Data Modeling' page of the Diagram
Toolbox (click on to display the 'Find Toolbox
Item' dialog and specify 'Data Modeling').

2 Drag the 'Procedure' icon onto the diagram.

This generates the Procedure element:

3 Right-click on the new Procedure element and select
'SQL Object Properties'.
The SQL Object Editor screen displays.

SQL Object Editor

The 'SQL Object Editor' dialog is shared by a number of
SQL-based database objects (Views, Procedures and
Functions); it helps you to manage the various properties of
the SQL-based object.

(c) Sparx Systems 2024 Page 204 of 339

Information Engineering 16 October, 2024

Option Action

Database If it has already been set, the default
database type displays.
If the default has not been set, or you
want to change the database type for this
Procedure, click on the drop-down arrow
and select the target DBMS to model.

Notes If necessary, type in a comment on the
current Procedure.

Definition Type the full SQL Procedure definition,
including the CREATE PROCEDURE
syntax.
The code editor provides Intelli-sense for
basic SQL keywords, functions and
names of all objects in the current data
model.

Operations in a Container

Database Procedures modeled as operations have a
container object, this being a UML Class with the stereotype
«procedures» (with an 's' on the end). Each Database
Procedure is an operation with the stereotype «proc». The
system provides a dedicated Maintenance window through

(c) Sparx Systems 2024 Page 205 of 339

Information Engineering 16 October, 2024

which you can easily manage the Database Procedures
defined as operations.

(c) Sparx Systems 2024 Page 206 of 339

Information Engineering 16 October, 2024

Database Functions
Database Functions provide you with a mechanism to
extend the functionality of the database server. A Database
Function is a routine that accepts parameters, performs an
action (such as a complex calculation) and returns the result
of that action as a value. Depending on the Function, the
return value can be either a single value or a result set.

Once created, a Database Function can be used as an
expression in an SQL statement.

In Enterprise Architect, Database Functions can be modeled
in one of two ways:

As individual objects (the default method) or·

As Operations in a container·

Functionally the two methods result in the same DDL being
produced. The main difference is visual - by having several
Operations in one container, you have fewer elements and
less clutter on the diagram.

Individual objects

Database Functions modeled as individual objects are UML
Classes with the stereotype «function»; you create these
either:

Within the Database Builder or·

By dragging the Function icon from the Data Modeling·

Toolbox onto a diagram

(c) Sparx Systems 2024 Page 207 of 339

Information Engineering 16 October, 2024

Add a Database Function using the Database
Builder

Ste
p

Action

1 Open the Database Builder.

2 Load or create a Data model.

3 Right-click on the Functions Package and select
'Add New Function'.

4 Overtype the default name with the appropriate
name for the Function, and press the Enter key.

5 Double-click on the new Function, or right-click on
it and select 'SQL Object Properties'.
The SQL Object Editor screen displays.

Add a Database Function to a diagram

Ste
p

Action

(c) Sparx Systems 2024 Page 208 of 339

Information Engineering 16 October, 2024

1 Open your Data Modeling diagram and, if necessary,
display the 'Data Modeling' page of the Diagram
Toolbox (click on to display the 'Find Toolbox
Item' dialog and specify 'Data Modeling').

2 Drag the 'Function' icon onto the diagram.

This generates the Function element:

3 Right-click on the new Function element and select
'SQL Object Properties'.
The SQL Object Editor screen displays.

SQL Object Editor

The 'SQL Object Editor' dialog is shared by a number of
SQL-based database objects (Views, Procedures and
Functions); it helps you to manage the various properties of
the SQL-based object.

Option Action

Database If it has already been set, the default
database type displays.
If the default has not been set, or you
want to change the database type for this

(c) Sparx Systems 2024 Page 209 of 339

Information Engineering 16 October, 2024

Function, click on the drop-down arrow
and select the target DBMS to model.

Notes If necessary, type in a comment on the
current Function.

Definition Type the full SQL Function definition
including the CREATE FUNCTION
syntax.
The code editor provides Intelli-sense for
basic SQL keywords, functions and
names of all objects in the current data
model.

Operations in a Container

Database Functions modeled as operations have a container
object, this being a UML Class with the stereotype
«functions» (with an 's' on the end). Each Function is an
operation with the stereotype «func». The system provides a
dedicated Maintenance window through which you can
easily manage the Database Functions stored as operations.

(c) Sparx Systems 2024 Page 210 of 339

Information Engineering 16 October, 2024

Database Sequences
Sequences are a feature that some DBMS products
implement to provide users with a mechanism to generate
unique values - the Sequence ensures that each call to it
returns a unique value. This is particularly important when
the Sequence's result is used as a Primary Key. These can be
generated with a schema for loading onto the DBMS server.

Sequences are provided so that database users are not forced
to implement their own unique value generator. Not all
DBMS products support Sequences; those that do not
instead provide functionality for columns to be initialized
with an incrementing value.

In Enterprise Architect, Sequences can be modeled in one of
two ways:

As individual objects (the default method) or·

As Operations in a container·

Functionally the two methods result in the same DDL being
produced. The main difference is visual - by having several
Operations in one container, you have fewer elements and
less clutter on the diagram.

Individual objects

Sequences modeled as individual objects are UML Classes
with the stereotype «dbsequence»; you create these either:

Within the Database Builder or·

By dragging the 'Sequence' icon from the 'Data Modeling'·

(c) Sparx Systems 2024 Page 211 of 339

Information Engineering 16 October, 2024

Toolbox pages onto a diagram

Add a Database Sequence using the
Database Builder

Ste
p

Action

1 Open the Database Builder.

2 Load or create a Data model.

3 Right-click on the Sequences Package and select
'Add New Sequence'.

4 Overtype the default name with the appropriate
name for the Sequence, and press the Enter key.

5 Double-click on the new Sequence, or right-click on
it and select 'SQL Object Properties'.
The 'SQL Object Editor' dialog displays.

Add a Database Sequence to a diagram

Ste Action

(c) Sparx Systems 2024 Page 212 of 339

Information Engineering 16 October, 2024

p

1 Open your Data Modeling diagram and, if necessary,
display the 'Data Modeling' page of the Diagram
Toolbox (click on to display the 'Find Toolbox
Item' dialog and specify 'Data Modeling').

2 Drag the 'Sequence' icon onto the diagram.

This generates the Sequence element:

3 Right-click on the new Sequence element and select
'SQL Object Properties'.
The 'SQL Object Editor' dialog displays.

SQL Object Editor

The 'SQL Object Editor' dialog is shared by a number of
SQL-based database objects (Views, Procedures and
Functions); it helps you to manage the various properties of
the SQL-based object.

Option Action

Database If it has already been set, the default
database type displays.

(c) Sparx Systems 2024 Page 213 of 339

Information Engineering 16 October, 2024

If the default has not been set, or you
want to change the database type for this
Sequence, click on the drop-down arrow
and select the target DBMS to model.

Notes If necessary, type in a comment on the
current Sequence.

Definition Type the full SQL Sequence definition
including the CREATE SEQUENCE
syntax.
The code editor provides Intelli-sense for
basic SQL keywords, functions and
names of all objects in the current data
model.

Operations in a Container

Database Sequences modeled as operations have a container
object, this being a UML Class with the stereotype
«sequences» (with an 's' on the end). Each Sequence is an
operation with the stereotype «sequ». The system provides a
dedicated Maintenance window through which the modeler
can easily manage the Sequences defined as operations.

(c) Sparx Systems 2024 Page 214 of 339

Information Engineering 16 October, 2024

(c) Sparx Systems 2024 Page 215 of 339

Information Engineering 16 October, 2024

Database SQL Queries
An SQL Query object provides a convenient mechanism for
storing an SQL Statement in the repository, for repeated
execution on live database(s).

An SQL Query element is represented in the UML Data
Modeling Profile as an Artifact element with the stereotype
<<sqlquery>>. You can create these elements either:

Within the Database Builder or·

By dragging the 'SQL Query' icon from the 'Data·

Modeling' Toolbox pages onto a diagram

Add a Database SQL Query using the
Database Builder

Ste
p

Action

1 Open the Database Builder.

2 Load or create a Data model.

3 Right-click on the Queries Package and select 'Add
New SQL Query'.

4 Overtype the default name with the appropriate
name for the Query, and press the Enter key.

(c) Sparx Systems 2024 Page 216 of 339

Information Engineering 16 October, 2024

5 Right-click on the new element and select 'Edit'.
The 'SQL Scratch Pad' tab displays, on which you
can create the SQL Query statement.

6 When you have finished the SQL statement, click on
the Save to SQL Query button in the toolbar to save
the changes to the query element.

Add a Database Function to a diagram

Ste
p

Action

1 Open your Data Modeling diagram and, if necessary,
display the 'Data Modeling' page of the Diagram
Toolbox (click on to display the 'Find Toolbox
Item' dialog and specify 'Data Modeling').

2 Drag the 'SQL Query' icon onto the diagram.

This generates the SQL Query Artifact element:

3 Double-click on the new element and update the
element name and other properties as necessary.

(c) Sparx Systems 2024 Page 217 of 339

Information Engineering 16 October, 2024

To edit the element's SQL statement, access the
Database Builder, click on the element in the
Queries Package and edit the Query on the 'SQL
Scratch Pad' tab.

(c) Sparx Systems 2024 Page 218 of 339

Information Engineering 16 October, 2024

Create Operation Containers
Whilst the default method of modeling Database Functions,
Procedures and Sequences is to create them as individual
elements, you can also represent a number of each type of
structure as operations of a container Class. You add a
stereotype to the Class, which specifies:

The type of data structure the Class will contain·

The stereotype that will be automatically assigned to each·

operation created in the Class (for a given data structure,
the operations can only be of one stereotype)

Access

Toolbox Drag the 'Class' icon onto the diagram

Create the Container Class

Ste
p

Action

1 Right-click on the Class element on the diagram and
select the 'Design > Element > Editors > Properties
Dialog' option.
The element 'Properties' dialog displays, showing the

(c) Sparx Systems 2024 Page 219 of 339

Information Engineering 16 October, 2024

'General' tab.

2 In the 'Name' field, type an appropriate name for the
container.

3 In the 'Stereotype' field (in the table at the right edge
of the dialog) type:

'functions' for a Database Function container·

'procedures' for a Stored Procedure container·

'sequences' for a Sequence container·

The 's' at the end of the stereotype name is important.

4 Click on the OK button to save the setting and close
the dialog.

Create database structures as operations of
the Class

Ste
p

Action

1 Click on the Class element on the diagram and press
F10.
The 'Database <Structure> container: <Classname>'

(c) Sparx Systems 2024 Page 220 of 339

Information Engineering 16 October, 2024

dialog displays.

2 Right-click in the 'Functions' ('Procedures' or
'Sequences') list and select 'Add New <structure>'.

3 In the 'Name' field, type an appropriate name for the
operation, such as:

fn_WorkDays·

sp_AddOrder or·

seq_AddressID·

4 In the 'Notes' field type any supporting comments or
explanation of the operation.
In the 'Function definition' field (or 'Procedure
definition', or 'Sequence definition') type the
appropriate text.

5 Repeat steps 2 to 4 until you have defined all the
operations you require.

6 Click on the list and then on the Close button to
close the dialog and show the operations within the
Class on the diagram and in the Browser window.

(c) Sparx Systems 2024 Page 221 of 339

Information Engineering 16 October, 2024

Oracle Packages
Oracle Packages are database objects that are unique to the
Oracle DBMS. They are containers that group
logically-related objects into a single definition. Packages
have two parts - a specification and a body. The:

Specification section declares the various components·

Body section provides the full definitions of the·

components

The Package components can consist of Types, Variables,
Constants, Exceptions, Cursors and subprograms.

In Enterprise Architect, an Oracle Package is modeled as a
UML Class with a stereotype of <<package>>. It has two
operations:

Specification·

Body·

For each of these operations the complete SQL syntax is
contained in the 'Initial Code' field.

Create an Oracle Package

Ste
p

Action

1 Add a Class element to your data model.

2 Open the Properties window for the element and, in

(c) Sparx Systems 2024 Page 222 of 339

Information Engineering 16 October, 2024

the 'Stereotype' field, type the value 'Package'.

3 Click on the element and press F10, to display the
Features window at the 'Operations' page.
For the Package specification, press Ctrl+N and
create an operation with the name 'Specification' and
with no return type.

4 The Properties window displays the properties of the
operation; click on the 'Code' tab and type the entire
Package specification into the text panel.

5 Return to the Features window at the 'Operations'
page and, for the Package body, press Ctrl+N and
create an operation with the name 'Body' and no
return type.

6 On the Properties window, click on the 'Code' tab
and type the entire Package body code into the text
panel.

(c) Sparx Systems 2024 Page 223 of 339

Information Engineering 16 October, 2024

Database Connections
A Database Connection object provides a convenient way of
storing the connection details of a live database. Enterprise
Architect supports the definition of a number of different
connection types:

MS Access·

Firebird·

SQLite (introduced in Enterprise Architect v16)·

Native Connection (introduced in Enterprise Architect·

v16), and

ODBC·

For file based connections (MS Access, Firebird and
SQLite) you only have to specify the full path to the
database files. For Native connections you will be prompted
for the connection details of a database server. For
connections of type ODBC you are prompted to select from
the list of pre-defined ODBC DSNs on your machine.

Create a Database Connection Element

A Database Connection element is represented in the UML
Data Modeling Profile as an Artifact element with the
stereotype <<database connection>>. You create these
either:

Within the Database Builder or·

By dragging the 'Database Connection' icon from the·

'Data Modeling' Toolbox pages onto a diagram

(c) Sparx Systems 2024 Page 224 of 339

Information Engineering 16 October, 2024

Add a Database Connection Using the
Database Builder

Ste
p

Action

1 Open the Database Builder.

2 Load or create a Data model.

3 Right-click on the Connections Package and select
'Add New DB Connection'.

4 Overtype the default name with the appropriate
name for the Connection, and press the Enter key.

5 Double-click on the new Connection, or right-click
on it and select 'DB Connection Properties'.
The 'Database Connection Properties' dialog
displays.

Add a Database Connection to a Diagram

Ste Action

(c) Sparx Systems 2024 Page 225 of 339

Information Engineering 16 October, 2024

p

1 Open your Data Modeling diagram and, if necessary,
display the 'Data Modeling' page of the Diagram
Toolbox (click on to display the 'Find Toolbox
Item' dialog and specify 'Data Modeling').

2 Drag the 'Database Connection' icon onto the
diagram.

This generates the Database Connection element.

3 Double-click on the new element.
The 'Database Connection Properties' dialog
displays.

Database Connection Properties

Option Action

DBMS Type Click on the radio button for the
appropriate type:

MS Access file based database·

Firebird file based database·

(c) Sparx Systems 2024 Page 226 of 339

Information Engineering 16 October, 2024

SQLite file based database·

Direct Native connection, or·

ODBC based database·

The 'Save Password?' checkbox is only
enabled for ODBC connection types, and
indicates if Enterprise Architect should
store the password for the selected ODBC
DSN. The checkbox defaults to selected;
that is, passwords are saved. While all
connection passwords are encrypted
before being saved, there can be
occasions when data modelers want to
restrict access to only users that have the
required permissions.

Filename/DS
N

If you have selected a 'DBMS Type' of
MS Access or Firebird, type in or browse
for the location and name of a physical
file. If the file does not already exist it
will be created.
If you have selected a 'DBMS Type' of
ODBC, type in or select a defined ODBC
DSN. Depending on the DBMS, you
might be prompted for other details such
as server, connection user ID and
password.

Other
Schemas

This field acts as a schema filter to limit
the number of objects returned by

(c) Sparx Systems 2024 Page 227 of 339

Information Engineering 16 October, 2024

enquiries made against the ODBC
connection. Entering a value in this field
is particularly important for Oracle
databases to reduce the time it takes for
making connections to the database, due
to the large number of system objects.
If you need to enter multiple schemas to
be filtered on, separate them with
commas.

OK Click on this button to save the changes
you have made.

Delete Connection

If a connection is no longer required, you can delete it as for
any other element from the Database Builder, the Browser
window or a diagram. Right-click on the element and select
the corresponding 'Delete <element name>' option.

Notes

It is advisable that when working in a team environment·

(that is, multiple users sharing a single Enterprise
Architect repository) all ODBC based Database
Connection objects are defined as 'DSN-less' so that the
Database Connection object contains all necessary details

(c) Sparx Systems 2024 Page 228 of 339

Information Engineering 16 October, 2024

and can therefore be shared between all users, although a
Native Connection does this and is easier to setup

The DBMS type of a Database Connection object cannot·

be changed once the initial selection has been saved

(c) Sparx Systems 2024 Page 229 of 339

Information Engineering 16 October, 2024

Manage DBMS Options
Using the 'Manage DBMS Options' dialog, you can quickly
change the DBMS Type and/or Owner of an individual
database object or several objects within an individual
Package or Package hierarchy. You can also create bulk
Foreign Key Indexes on all Foreign Keys that do not already
have an index.

Access

Ribbon Design > Package > Manage > DBMS
Options
Develop > Data Modeling > Database
Builder > Right-click on the required
database | Load | right-click on the root
node | Manage DBMS Options

Options

Option Action

Package Displays the name of the Package in the
Browser window that you are currently
working on. If necessary, click on the

(c) Sparx Systems 2024 Page 230 of 339

Information Engineering 16 October, 2024

button and select a different Package
using the Navigator window (a version of
the 'Find Package' dialog).

Include
Objects in
Child
Packages

Select this checkbox to include all the
database objects in all sub-Packages.
Selecting or deselecting this control will
immediately refresh the list of objects.

List of
Objects

This list control will display the names of
all objects in the current Package (or
Package hierarchy) along with its
allocated DBMS and owner. By default
every object has its checkbox selected
whenever the list is loaded or refreshed.

All Click on this button to select all
deselected checkboxes in the 'List of
Objects'.

None Click on this button to deselect all
selected checkboxes in the 'List of
Objects'.

Change
DBMS

Select this checkbox if you want to
change the assigned DBMS of objects in
the Package. Provide values for the
'Current DBMS' and 'New DBMS' fields
in order to continue. The 'Current DBMS'

(c) Sparx Systems 2024 Page 231 of 339

Information Engineering 16 October, 2024

drop-down list includes the option
'<All>', which changes several different
DBMS values all to the new value.
Note: When performing this function, the
data types of all Table columns are
automatically converted to the closest
match for the selected DBMS; therefore,
you should perform a manual review of
the data types after running the process.

Change
Owner

Select this checkbox if you want to
change the Owner of the selected objects
in the 'List of Objects'. Specify the
current Owner in the 'Current Owner'
field in order to continue. Leaving the
'New Owner' field blank will remove the
Owner property of all selected objects.

Create
Indexes on
Foreign Keys

Select this checkbox to create an index on
all Foreign Keys in the Package, where
one does not already exist.

OK Click on this button to start the update
process. The button is disabled unless at
least one object in the list and one of the
update options are selected.

(c) Sparx Systems 2024 Page 232 of 339

Information Engineering 16 October, 2024

Data Types
Every Table column that you define in your data model has
a data type assigned that specifies the type of information
that can be stored by the column. The available datatypes
for a column are dependent on the selected DBMS for the
Table, because each DBMS supports its own list of
datatypes. Whilst each DBMS supports the same basic
types, such as string, whole or decimal numbers, each
DBMS calls them by different names and have different
properties.

Each Enterprise Architect repository contains the definitions
of the core datatypes for a number of standard DBMS
products. However, since data types vary from one DBMS
product to another, and from one version of a product to
another, Enterprise Architect provides you with tools to:

Define new data types for a new version of your DBMS·

product

Define data types for a new, non-standard database·

product

Automatically convert data types from one defined·

DBMS product to another

Import and export datatypes between repositories·

(c) Sparx Systems 2024 Page 233 of 339

Information Engineering 16 October, 2024

Map Data Types Between DBMS
Products
Whilst modeling physical data models provides a great deal
of detail about all Tables and their columns, this level of
detail does make it harder to change the target technology or
platform. For example, after reverse engineering your
database into a physical data model, you must remap the
data types before generating the schema for the new DBMS
product.

Enterprise Architect provides a set of default mappings for
standard, supported DBMS products, to help you automate
the conversion process.

However, you might want to customize the default
mappings to suit your specific project requirements, or
where the mapping of one data type to another is not
currently defined. For example, in your migration from one
DBMS platform to another, one of the platforms might be
non-standard or otherwise not supported by Enterprise
Architect.

Access

Ribbon Settings > Reference Data > Settings >
Database Datatypes : Datatype Map

(c) Sparx Systems 2024 Page 234 of 339

Information Engineering 16 October, 2024

Database Data Types Mapping

Repeat this process for each of the data types to map.

Once you are satisfied with the data type mappings, you can
convert either individual Tables or an entire Package of
Tables to the new target DBMS product.

Field/Button Action

From Product
Name

Click on the drop-down arrow and select
the DBMS product to map data types
from.

Defined
Datatypes for
Databases

Displays all the defined data types for the
product and, where appropriate, their
sizes and values.
Click on the data type to map - this must
have a defined size unit and value.
The 'Datatype' and 'Common Type' fields
under the 'From Product Name' field
display this data type.

To Product
Name

Click on the drop-down arrow and select
the DBMS product to map data types to.
The 'Datatype' and 'Common Type' fields
under this field display the values
corresponding to those in the fields for
the 'From' product.

(c) Sparx Systems 2024 Page 235 of 339

Information Engineering 16 October, 2024

Size Click on the radio button for the
appropriate size unit and type the default
values in the corresponding data fields.

Save Click on this button to save the mapping.

(c) Sparx Systems 2024 Page 236 of 339

Information Engineering 16 October, 2024

DBMS Product Conversion for a
Package
Using the DBMS Package mapper, you can automatically
convert a Package of database Tables from one supported
DBMS type to another supported DBMS type. You can also
change the DBMS type for individual Tables.

If one of the DBMS types is non-standard or otherwise not
supported by Enterprise Architect, you should check that the
mapping of datatypes from one DBMS type to the other has
been defined.

Access

Ribbon Design > Package > Manage > DBMS
Options
Develop > Data Modeling > Database
Builder > Right-click on the required
database | Load | right-click on the root
node | Manage DBMS Options

Map the DBMS data types of a Package to
the data types of another DBMS

(c) Sparx Systems 2024 Page 237 of 339

Information Engineering 16 October, 2024

Field/Button Action

Include
Objects in
Child
Packages

If there are objects in child Packages that
also require changing, select the
checkbox.

Change
DBMS

Select the checkbox.

Current
DBMS

Click on the drop-down arrow and select
the current DBMS.

New DBMS Click on the drop-down arrow and select
the target DBMS.

OK Click on this button to map all Tables in
the selected Packages to the new DBMS.

(c) Sparx Systems 2024 Page 238 of 339

Information Engineering 16 October, 2024

Data Type Conversion For a Table
Once a database schema has been set up on an Enterprise
Architect diagram (either by importing through ODBC or
manually setting up the Tables), the DBMS can be changed
to another type and the column datatypes are mapped
accordingly for each Table.

You might use this procedure if you have copied a small
number of Tables into the project from elsewhere, but if you
have many Tables you can also convert all of them at once
within their parent Package.

If one of the DBMS types is non-standard or otherwise not
supported by Enterprise Architect, you should check that the
mapping of datatypes from one DBMS type to the other has
been defined.

Map the DBMS type of a Table to another
DBMS type

Ste
p

Action

1 Double-click on the Table element in a diagram.
The Table 'Properties' dialog displays, with the
'Database' field showing the current DBMS for this
Table.

(c) Sparx Systems 2024 Page 239 of 339

Information Engineering 16 October, 2024

2 To map the datatypes to another DBMS, click on the
'Database' drop-down arrow and select the target
DBMS.

3 Click on the Apply button.
The datatypes are converted to match those of the
new DBMS, and these are reflected in any DDL
generated from this Table.

(c) Sparx Systems 2024 Page 240 of 339

Information Engineering 16 October, 2024

Database Datatypes
Using Enterprise Architect's 'Database Datatypes' dialog,
you can add to the set of data types that are available for a
particular DBMS. You can:

Identify the DBMS in use and, if required, set this as the·

model default

Include any new data types that are supported by later·

versions of the DBMS and not yet included with
Enterprise Architect

Remove any previously-added data types that are no·

longer relevant

Add a new DBMS product and its built-in data types if,·

for example, you want to create a physical data model for
a DBMS product that is not yet supported natively by
Enterprise Architect

Access

Ribbon Settings > Reference Data > Settings >
Database Datatypes or
Develop > Data Modeling > Datatypes

Manage Datatypes

(c) Sparx Systems 2024 Page 241 of 339

Information Engineering 16 October, 2024

You can transport these database data types between
Enterprise Architect models using the 'Export Reference
Data' and 'Import Reference Data' options.

Field/Button Action

Product
Name

Click on the drop-down arrow and select
an existing DBMS.
Once a product is selected, all defined
data types will be shown in the 'Defined
Datatypes for Databases' list.

Add Product If your DBMS is not listed, click on this
button to add it.
An 'Input' prompt displays, in which you
type the DBMS name; click on the OK
button to add the name to the drop-down
list.

Set as
Default

Select the checkbox to set the selected
DBMS as the default for your database
engineering and modeling.
Once you set the default database, when
you create any new Table elements the
database type is automatically pre-set to
this default.
You can also set the default database type
in the second data entry field of the Code
Generation toolbar.

(c) Sparx Systems 2024 Page 242 of 339

Information Engineering 16 October, 2024

New Click on this button to clear the data type
fields on the dialog so that you can define
another data type.

Datatype Type a name for the data type.

Size Select the appropriate radio button for the
required size and, if appropriate, specify
the default and maximum values:

None – for data types without a size·

component, such as INT
Length – for data types that require a·

single size that defines the Length,
such as VARCHAR(10)
Precision & Scale – for data types that·

require two numeric values, such as
DECIMAL(18,2)

Common
Type

Click on the drop-down arrow and select
the generic name of each data type. This
is used when a Table's DBMS is changed.

Save Click on the button to immediately save
your data type to the repository (and add
it to the 'Defined Datatypes for
Databases' list).

Defined This panel lists the data types currently

(c) Sparx Systems 2024 Page 243 of 339

Information Engineering 16 October, 2024

Datatypes for
Databases

defined for the selected DBMS, either
system-supplied or user-defined.

Delete Select a data type in the 'Defined
Datatypes for Databases' list and click on
this button to remove the data type.

Datatype
Map

If you have changed the DBMS or
technology for which you have defined
the data types from or to an unsupported
DBMS type, click on this button to define
how to automatically remap the data
types to your new DBMS or technology.

(c) Sparx Systems 2024 Page 244 of 339

Information Engineering 16 October, 2024

MySQL Data Types
MySQL supports the ENUM and SET data types, which
must be added to your Enterprise Architect model before
you can use them as the types for columns.

Access

Ribbon Settings > Reference Data > Settings >
Database Datatypes

Add the ENUM and SET data types for
MySQL

When using these data types later in a column's 'Initial' field,
type the values as a comma-separated list, in the format:

 ('one','two','three')

If one value is the default, use the format:

 ('one','two','three') default 'three'

Ste
p

Action

1 The 'Database Datatypes' dialog displays.

(c) Sparx Systems 2024 Page 245 of 339

Information Engineering 16 October, 2024

2 In the 'Product Name' field select 'MySQL'.

3 Add the data types ENUM and SET.

(c) Sparx Systems 2024 Page 246 of 339

Information Engineering 16 October, 2024

Oracle Data Types
The Oracle data types NUMBER and VARCHAR have
additional properties that you can model.

Access

Ribbon Settings > Reference Data > Settings >
Database Datatypes

Data Types

Data Type Detail

NUMBER The NUMBER data type requires
precision and scale properties.
The 'Precision' and 'Scale' fields are
displayed on the 'Attributes' page of the
Features window when the data type is
set to NUMBER; if you enter information
into these fields, it is displayed on your
diagrams.
For example:
 create NUMBER by setting 'Precision'
= 0 and 'Scale' = 0

(c) Sparx Systems 2024 Page 247 of 339

Information Engineering 16 October, 2024

 create NUMBER(8) by setting
'Precision' = 8 and 'Scale' = 0
 create NUMBER(8,2) by setting
'Precision' = 8 and 'Scale' = 2

VARCHAR Oracle VARCHAR2(15 CHAR) and
VARCHAR2(50 BYTE) data types can
be created by adding the Tagged Value
LengthType with the value CHAR or
BYTE.

(c) Sparx Systems 2024 Page 248 of 339

Information Engineering 16 October, 2024

Data Modeling Settings
Enterprise Architect provides data modeling settings that
can be used to configure the way database systems are
modeled in Enterprise Architect. These include the ability to
define the data modeling language, which determines the
way that connectors are displayed, and settings to configure
the naming of Primary Keys, Foreign Keys and Indexes.
The settings are global and will affect any Enterprise
Architect repository.

Access

Ribbon Start > Appearance > Preferences >
Preferences > Source Code Engineering >
Code Editors > DDL

DDL Editor

In this field you browse for the full execution file path and
name of an external program that Enterprise Architect
should use to open files that are created by its Generate
DDL functionality. If you leave this field empty, Enterprise
Architect uses the default code editor.

Default Database

(c) Sparx Systems 2024 Page 249 of 339

Information Engineering 16 October, 2024

In this field you select the DBMS that will be automatically
assigned to database objects that are created outside a Data
Model workspace (see the Create a Data Model from Model
Pattern Help topic).

MySQL Storage

In this field you select the default storage engine to be
assigned to MySQL Tables; from MySQL v 5.5 onwards the
default value is InnoDB.

(c) Sparx Systems 2024 Page 250 of 339

Information Engineering 16 October, 2024

Data Modeling Notations
Enterprise Architect supports numerous settings related to
data modeling that can influence how database objects are
represented on diagrams. These settings, and how they can
affect the representation of database objects, are described
here.

Settings

Setting Detail

Stereotype
Icons

Access: 'Design > Diagram > Manage >
Properties > Elements : Use Stereotype
Icons'
Default Value: True
Enterprise Architect provides a
diagram-level setting for the display of
stereotyped objects. When the checkbox
is selected, database objects on the
diagram are displayed with an icon
representing their stereotype instead of
the stereotype name.

Show Data Access: 'Design > Diagram > Manage >

(c) Sparx Systems 2024 Page 251 of 339

Information Engineering 16 October, 2024

Model
Owner

Properties > Elements : Show Data
Model Owner'
Default Value: True
The system provides a diagram-level
setting for the display of Owners. When
the checkbox is selected, database objects
on the current diagram will be displayed
with their full name
'{Owner.}ObjectName'.

Show
Column
Details

Access: 'Design > Diagram > Manage >
Properties > Features : Show Attribute
Detail'
Default Value: Name Only
The system provides a diagram-level
setting for the display of Table column
names and datatypes. The available
options are: 'Name Only' or 'Name and
Type'.

(c) Sparx Systems 2024 Page 252 of 339

Information Engineering 16 October, 2024

Show
Involved
Column
Details

Access: 'Design > Diagram > Manage >
Properties > Features | Show Parameter
Detail'
Default Value: Type Only
The system provides a diagram-level
setting for the display of columns
involved in a Table constraint. The
available options are: 'None', 'Type Only',
'Name Only' and 'Full Details'.
In these examples, the Primary Key (PK)
constraint 'PK_account' involves the
column 'accountID'.

(c) Sparx Systems 2024 Page 253 of 339

Information Engineering 16 October, 2024

Show
Column

Access: Start > Application > Preferences
> Preferences > Objects: Show

(c) Sparx Systems 2024 Page 254 of 339

Information Engineering 16 October, 2024

Stereotype <<column>> stereotype
Default Value: True
Enterprise Architect provides a
global-level setting that controls whether
or not the <<column>> stereotype is
displayed above each Table's columns.
You can therefore hide the stereotype if
you prefer, considering that attributes
with a stereotype of <<column>> are the
only valid option for Tables.

Connector
Notation

Access: 'Design > Diagram > Manage >
Properties > Connectors : Connector
Notation'
Default Value: UML 2.1
Enterprise Architect supports three
diagram notations for data modeling:

UML 2.1 - the standard UML 2.1·

notation for connectors

(c) Sparx Systems 2024 Page 255 of 339

Information Engineering 16 October, 2024

Information Engineering - the·

Information Engineering (IE)
connection style

IDEF1X - the Integrated Definition·

Methods IDEF1X connection style

(These are the same three connectors
using the different notations.) The default
notation for the Data Modeling diagram
is 'Information Engineering', whilst the
default notation for models created from
Database Engineering Patterns is
'IDEF1X'.

(c) Sparx Systems 2024 Page 256 of 339

Information Engineering 16 October, 2024

DDL Name Templates
At various times during the process of data modeling,
Enterprise Architect is required to automatically generate
Table constraints. The naming standard for these generated
constraints is defined in and applied by the DDL Name
Templates, which you are free to change at any time. These
Name templates are defined at repository level, so whenever
they are changed all users of the repository will use the new
templates.

Access

Ribbon Settings > Model > Options > Source
Code Engineering : DDL Name
Templates

DDL Name Templates

Option Action

Primary Key Define the name template used when
Primary Key constraints are created.

Unique Define the name template used when

(c) Sparx Systems 2024 Page 257 of 339

Information Engineering 16 October, 2024

Constraint Unique Constraints are created.

Foreign Key Define the name template used when
Foreign Key constraints are created.

Foreign Key
Index

Define the name template used when
Foreign Key indexes are created.

Save Click on this button to save the name
template(s) you have defined.

Template Macros

These recognized macros will be replaced by name text
during the creation of a constraint name.

Macro Applies to

%tablename
%

Primary Key
Unique Constraint
Description: The string that is replaced by
the Table's name.

%columnnam
e%

The string that is replaced by the
constraint's column name(s).

%primarytabl
ename%

Foreign Key
Description: The string that is replaced by

(c) Sparx Systems 2024 Page 258 of 339

Information Engineering 16 October, 2024

the primary (parent) Table's name.

%foreigntabl
ename%

The string that is replaced by the foreign
(child) Table's name.

%foreignkey
name%

Foreign Key Index
Description: The string that is replaced by
the Foreign Key name.

(c) Sparx Systems 2024 Page 259 of 339

Information Engineering 16 October, 2024

Import Database Schema
The power of model-based engineering is the ability to
visualize, analyze and design all aspects of a system. Being
able to view the database schemas alongside other models of
a system provides great clarity and reduces the chance of
error. Enterprise Architect can reverse engineer a DBMS
schema and its objects into a model under a number of
different standards, including UML, Information
Engineering and IDEF 1X. A wide range of database objects
are supported including Tables, Views, Procedures,
Functions and Sequences. Enterprise Architect achieves this
by interrogating the DBMS's information schema and
importing the definition into a UML objects. As
modifications are made to the Live database the changes can
be synchronized into the model.

Once the schema is in Enterprise Architect, the database
objects can be traced to other elements, ensuring the
integrity of design and architecture. When systems target
multiple DBMSs, these can all be reverse engineered into a
model and elements and datatypes can be compared between
these models. The sophisticated reporting engine can
produce high quality documentation, including data
dictionaries, diagrams and relationships back to other
models such as architecture and information requirements,
and ultimately to business goals and drivers.

Database schema information can be imported via the
Database Builder (recommended) or from the 'Develop'
ribbon.

(c) Sparx Systems 2024 Page 260 of 339

Information Engineering 16 October, 2024

Import Database Schema

Ste
p

Action

1 Open the Database Builder (Develop > Data
Modeling > Database Builder)

2 Load or create a Data Model.

3 Right-click on the loaded Data Model in the·

Database Builder and select 'Import DB schema'
or
From the ribbon select 'Develop > Data Modeling·

> Import'
The 'Import DB Schema' dialog displays, showing
the details of the current active database connection.

The Import DB Schema dialog

Option Description

Database This field shows a description of the
current Live connection, in the format:
 dbms.database_server.database_name

(c) Sparx Systems 2024 Page 261 of 339

Information Engineering 16 October, 2024

If necessary, click on the button and,
select an alternative connection.

Import to This field shows the target Package that
the new objects will be saved to.
If you want to specify a different
Package, click on the button and select
an alternative Package.

Only include
objects from
Schema(s)

If the database type supports multiple
schemas (such as SQL Server, Oracle,
PostgreSQL and DB2 Express) you can
filter objects to be retrieved from the
database by schema.
The available schemas are automatically
listed in this panel. Select the checkbox
against each schema to include in the
import.
(You can click on the All button to select
all the schemas, or the None button to
clear all selected checkboxes.)
If you suspect that the schema list might
have changed since you loaded them, you
can refresh the list by clicking on the
Reload Schemas button.

Name Filter The 'Name Filter:' field allows filtering of
objects using SQL wildcards appropriate
to the DBMS of the schema being

(c) Sparx Systems 2024 Page 262 of 339

Information Engineering 16 October, 2024

imported.
For example, for Oracle:

LIKE 'A%' - list objects with a name·

starting with the letter 'A'
NOT LIKE '%_%' ESCAPE '\' - list·

objects with a name that does not
include an underscore (_)
IN ('TABLE1','TABLE2') - list objects·

with names that are included in the
parentheses
NOT IN ('TABLE1','TABLE2') - list·

objects with names that are not
included in the parentheses

Note that only one filter can be entered.
You cannot add a second filter using the
AND clause.
Filtering is not available for MS Access

Filter
Options

The 'Filter Options' panel controls what
object types and properties are read in
from the database schema. Values
changed on this screen are saved to the
registry so that they are re-applied in the
next work session. The available options
are briefly described here; select the
checkbox against an option to activate it.
Tables

Tables - Select to import Tables·

(c) Sparx Systems 2024 Page 263 of 339

Information Engineering 16 October, 2024

Table Primary Keys - Select to import·

Primary Key definitions on Tables
Table Foreign Keys - Select to import·

Foreign Key definitions on Tables
Table Indexes - Select to import Table·

Indexes
Unique Constraints - Select to import·

Unique Constraint definitions on
Tables
Check Constraints - Select to import·

Check Constraint definitions on Tables
Table Triggers - Select to import·

Trigger definitions on Tables
Table Properties - Select to import·

extended Table properties
Constraint Properties - Select to import·

Constraint Properties for Tables
Length Semantics - Select to import·

length semantic definitions on Oracle
string columns

Objects
Views - Select to import Views·

Procedures - Select to import·

Procedures
 - As Operations - Select to import
Procedures as operations (methods) of
a single Class; you can
 view and edit them through the

(c) Sparx Systems 2024 Page 264 of 339

Information Engineering 16 October, 2024

Database object container 'Properties'
dialog (the option defaults
 to unselected, where the selected
items are imported as separate Classes)
Functions - Select to import Functions·

 - As Operations - Select to import
Functions as operations (defaults to
unselected)
Sequences - Select to import Sequences·

 - As Operations - Select to import
Sequences as operations (defaults to
unselected)
Package - Select to import Oracle·

Packages
Advanced

System Objects - Select to import·

system Tables, Views and other system
objects

Warning: With the 'As Operations'
option for Procedures, Functions and
Sequences, if objects have been imported
under one setting (selected or unselected)
and then you change the setting and
import further objects, the objects
imported under the first setting are
removed.

Synchronizati Select the appropriate radio button to
indicate whether the existing Classes are

(c) Sparx Systems 2024 Page 265 of 339

Information Engineering 16 October, 2024

on to be updated, or the database objects
imported as new objects.
If you select the 'Synchronize existing
classes' option, also select the appropriate
checkboxes to determine whether model
comments, column default values and/or
Table constraints are to be retained or
overwritten with the comments, values
and constraints of the imported objects.

Import To Select the appropriate radio button to
indicate whether to update the Package
and currently-open data model diagrams,
or just the Package.
If no diagrams are open, the 'Package
Only' radio button defaults to selected
and the options are disabled; if the open
diagrams are in the selected Package, you
can select either option.

Import Click on this button to start the import.
The 'Select Database Objects to Import'
dialog displays, listing all the database
objects found that match the selection
criteria.
Select the checkbox against each schema
(or object type) to automatically select all
objects in that group or to import each
object individually.

(c) Sparx Systems 2024 Page 266 of 339

Information Engineering 16 October, 2024

Click on the All button to select all types
and objects, or on the None button to
clear all selected checkboxes.
When you have selected all the objects to
import, click on the OK button to
continue the import.

Notes

Within Windows, ODBC DSN can be defined for either·

32 or 64 bit applications, therefore care must be taken to
ensure that all ODBC DSNs for Enterprise Architect's use
are defined sharing the same architecture. This is
particular important from Enterprise Architect version 16
onwards because it is now available in both 32 and 64 bit
versions. An alternative solution (and what Sparx Systems
recommend) is to make use of Native connections, since
they work for both architectures.

The ODBC connection should use the ODBC driver·

available from the DBMS vendor, such as MySQL's
ODBC driver for MySQL, and Oracle's ODBC driver for
Oracle; drivers provided by third-party vendors are not
supported, including the Microsoft ODBC driver for
Oracle

You can import a suitable ODBC driver for SQLite from·

http://www.ch-werner.de/sqliteodbc/

Due to the limitations of SQLite, round tripping of SQLite·

(c) Sparx Systems 2024 Page 267 of 339

http://www.ch-werner.de/sqliteodbc/

Information Engineering 16 October, 2024

Table and column comments is not possible; to retain
comments entered in an SQLite data model when
importing from ODBC, deselect the 'Overwrite Object
Comments' checkbox in the 'Synchronization' section of
the 'Import DB Schema from ODBC Source' dialog

If setting up an ODBC connection for reverse·

engineering, the default settings are sufficient

The list of Data Modeling Data types is defined as static·

data (in each repository), so depending on the age of your
repository, there could be additional data types available
from the 'Data Modeling Data Types' section of the
'Resources' page on the Sparx Systems website

(c) Sparx Systems 2024 Page 268 of 339

Information Engineering 16 October, 2024

Generate Database Definition
Language (DDL)
Once a physical model has been defined and the objects
modeled, Enterprise Architect can generate Database
Definition Language (DDL) for a variety of objects
including database Tables, Views, Functions, Sequences and
Procedures. This is a time saving mechanism and reduces
the errors that can be introduced by doing this by hand in
other tools. Forward engineering is governed by a set of
templates that define how UML constructs are converted to
the objects in the targeted DBMS. Standard templates are
provided for all supported DBMSs, and these can be edited
to customize the way the DDL is generated. In the case that
a DBMS is not supported out-of-the-box, a new set of
templates can be created using the existing ones as a starting
point and reference.

When forward engineering DDL, the output can be directed
to a file (or a series of files, one for each object) or to the
DDL execution engine. The execution engine allows you to
execute the DDL immediately, targeting a live database
through the active connection. If you direct the output to a
file you can execute the DDL against a live database later, at
your convenience. The generated files can be opened using
the code editor, by selecting F12, Ctrl+E or Alt+7, allowing
you to view the DDL inside Enterprise Architect.

(c) Sparx Systems 2024 Page 269 of 339

Information Engineering 16 October, 2024

Generate DDL For Objects
As you create your database model, you can generate the
DDL for an individual object, a Package of objects or the
complete data model. The only difference is how you invoke
the generate DDL process.

Access

Open the Database Builder window, then use the context
menu and select 'Generate DDL'.

Ribbon Develop > Data Modeling > Database
Builder > Click on an object, Package or
Data Model node : Generate DDL

Generate Tab

Field/Button Action

Package Click on the button and browse for the
Package for which you want to generate
DDL, using the Navigator window (a
version of the 'Find Package' dialog).
(Note: This field might not be displayed
in all situations.)

(c) Sparx Systems 2024 Page 270 of 339

Information Engineering 16 October, 2024

Include All
Child
Packages

Select this checkbox to include the
objects in sub-Packages in the 'Select
Objects to Generate' list.

Delete Target
Files

When objects are generated to single
files, the full filename is stored with the
object, and displayed in the 'Target File'
column of the 'Select Objects to Generate'
list.
Click on this button to remove all the
existing filenames and prompt for new
ones.

Select
Objects to
Generate

This field displays the list of objects that
DDL will be generated for, in the
displayed order. If you need to change
this order to resolve object dependencies,
click on an object to move and click on
the buttons to move that object one
position up or down in the sequence.
Select each object for which to generate
DDL. Click on:

The All button to select every item·

The None button to clear all selections·

Each of several objects while you press·

Ctrl, to select a number of individual
objects
The first and last objects in a block·

while you press Shift, to select every

(c) Sparx Systems 2024 Page 271 of 339

Information Engineering 16 October, 2024

object in the block

Save
Generated
Order

If you have changed the order in which
the objects are listed, select the checkbox
to save the new sequence when you click
on the Generate button.

Refresh Reload the list of objects, restoring each
object to their previous positions (if
object positions have been changed).

Single File Select this radio button if you want to
save the generated DDL to a single file.
Click on the button to browse for the
file path and file name.

Individual
file for each
table

Select this radio button if you want to
save the DDL generated for each object
to a separate file.
When you click on the Generate button,
the system prompts you for the target file
name for each object in turn (if it is not
specified already).

Generate to
DDL
Execution
Engine

Select this radio button if you want to
save the DDL to the execution engine
(the 'Execute DDL' tab of the Database
Builder).
The DDL Execution Engine provides the

(c) Sparx Systems 2024 Page 272 of 339

Information Engineering 16 October, 2024

facilities for executing the generated SQL
script and responding to errors in
execution immediately, without having to
create an external file and load it into
another tool.
'Generate to DDL Execution Engine' is
the default option if the Database Builder
is open.

Generate Click on this button to run the Generate
DDL process with the options you have
selected.

View If you have generated the DDL to a single
external file, click on this button to view
the output.
By default Enterprise Architect uses the
default code editor. However, you can
define an alternative default DDL editor
on the 'Preferences' dialog ('Start >
Application > Preferences > Preferences
> Source Code Engineering > Code
Editors > DDL').

Close Click on this button to close the dialog. If
you did not generate the DDL, this button
also abandons DDL generation for the
object.

(c) Sparx Systems 2024 Page 273 of 339

Information Engineering 16 October, 2024

Options Tab

Set any of these flags to False if you do not want to take the
action they initiate.

Group Options

Table
Generation
Options

Tables - indicates that DDL for Table
elements should be generated (*)
Primary Keys - indicates that DDL for
Primary Keys should be generated ($)
Foreign Keys - indicates that DDL for
Foreign Keys should be generated ($)
Indexes - indicates that DDL for Indexes
should be generated ($)
Unique Constraints - indicates that DDL
for Unique Constraints should be
generated ($)
Check Constraints - indicates that DDL
for Check Constraints should be
generated ($)
Table Triggers - indicates that DDL for
Table Triggers should be generated ($)
Table properties - indicates that DDL
for extended table properties should be
generated ($)
Length Semantics - indicates that DDL
for Oracle Length Semantic should be

(c) Sparx Systems 2024 Page 274 of 339

Information Engineering 16 October, 2024

generated ($)

Object
Generation
Options

Views - indicates that DDL for View
elements should be generated (*)
Procedures - indicates that DDL for
Procedure elements should be generated
(*)
Functions - indicates that DDL for
Function elements should be generated
(*)
Sequences - indicates that DDL for
Sequence elements should be generated
(*)
Packages - indicates that DDL for Oracle
Packages elements should be generated
(*)

Formatting Include pre/post queries - indicates that
the generated DDL should include the
SQL statements defined in the
'_PreStatements' and '_PostStatements'
SQL Queries
Include Owners - indicates that the
generated DDL should include the
schema/owner of all elements
Include Comments - indicates that the
generated DDL should include any
comments

(c) Sparx Systems 2024 Page 275 of 339

Information Engineering 16 October, 2024

Include Header Comments - indicates
that the generated DDL should include
any header comments (#)
Include Object Comments - indicates
that the generated DDL should include
any object (such as Table or View)
comments (#)
Include Column Comments - indicates
that the generated DDL should include
any columns comments (#)
Generate DROP statements - indicates
that the generated DDL should include
the DROP statement for objects
Use Database - indicates that the
generated DDL should include a USE
Database statement
Use Alias - indicates that the generated
DDL makes use of any object or column
aliases
Separate Constraint from Table -
indicates that the generated DDL should
define the creation of constraints as
separate statements from the Table
definition
Include NULL in column definitions -
indicates that the generated DDL should
apply the NULL keyword to each column
definition that is defined as nullable; that
is, columns with their 'NOT NULL' flag

(c) Sparx Systems 2024 Page 276 of 339

Information Engineering 16 October, 2024

unchecked (this option only applies to the
DBMSs that support the 'NULL' syntax)

Notes

(*) - options with this mark will be automatically set to·

True if you have specified to generate DDL for an
individual element of that type; that is, if you select a
Table and your 'Generate Table' option is False,
Enterprise Architect will change the option to True

($) - options with this mark will be disabled if the 'Tables'·

option is set to False

(#) - options with this mark will be disabled if the 'Include·

Comments' option is set to False

In the Corporate, Unified and Ultimate Editions of·

Enterprise Architect, if security is enabled you must have
'Generate Source Code and DDL' permission to generate
DDL

For a PostgreSQL database, you must set the 'Sequences'·

option to True to enable auto increment columns to be
created

If generating Oracle sequences, you must always set the·

'Table Triggers' and 'Sequences' options to True, so that a
pre-insert trigger is generated to select the next sequence
value to populate the column; also, in the column
properties, set the 'AutoNum' property to True

(c) Sparx Systems 2024 Page 277 of 339

Information Engineering 16 October, 2024

You can edit the DDL templates that the system uses to·

generate the DDL; these are stored at the repository level
so that all other users of the same repository will
automatically use the updated templates

(c) Sparx Systems 2024 Page 278 of 339

Information Engineering 16 October, 2024

Edit DDL Templates
The DDL Template Editor provides the ability to change the
templates that the system uses while generating DDL from a
data model. It applies the facilities of the Common Code
Editor, including Intelli-sense for the various macros. For
more information on Intelli-sense and the Common Code
Editor, see the Editing Source Code Help topic.

Access

Ribbon Develop > Data Modeling > Templates

Select and Edit Templates

Option Action

Language Click on the drop-down arrow and select
the database type (Database Management
System).

New
Database

Click on this button to create a new set of
templates for a non-standard DBMS.
The 'Input' dialog displays, on which you
type the name of the new DBMS for

(c) Sparx Systems 2024 Page 279 of 339

Information Engineering 16 October, 2024

which you are creating templates.
This updates the 'Language' field.

Template Displays the contents of the selected
template, and provides the editor for
modifying these contents.

Templates Lists the base DDL templates, Click on a
template name to display and edit the
template contents; the name of the
selected template is highlighted.
The 'Modified' field indicates whether
you have modified the default template
originally supplied with the system.

Stereotype
Overrides

Lists any stereotyped templates that exist
for the currently-selected base template.
The 'Modified' field indicates whether
you have modified a default stereotyped
template.

Add New
Custom
Template

Click on this button to display the 'Create
New Custom Template' dialog, on which
you select the template type from a
drop-down list, and type in a name for the
template.
The template type becomes a prefix for
the name; for example:

(c) Sparx Systems 2024 Page 280 of 339

Information Engineering 16 October, 2024

 Namespace_MyDDLTemplate

Add New
Stereotyped
Override

Select a base template and click on this
button to display the 'New Template
Override' dialog for adding a stereotyped
template for the selected template. From
the drop-down lists, select the Class
and/or Feature stereotype for which to
apply the override template.

Get Default
Template

Click on this button to refresh the editor
display with the default version of the
selected template. (This does not delete
the changed version of the template.)

Save Click on this button to overwrite the
selected template with the updated
contents of the Template panel.

Delete If you have overridden the selected
template, click on this button to delete the
overridden template and replace it with
the corresponding default DDL template.

Notes

User-modified and user-defined DDL Templates can be·

imported and exported as Reference Data (see the Sharing

(c) Sparx Systems 2024 Page 281 of 339

Information Engineering 16 October, 2024

Reference Data topic)

Any user-defined templates for a database type are listed·

in the 'Export Reference Data' dialog in the 'Code, DDL,
Transformation & CSV Templates' table, identified by the
DBMS name with the suffix _DDL_Template - if no
user-defined templates exist for a DBMS, there is no entry
for the DBMS in the dialog

You must also define any appropriate data types for the·

DBMS and, if exporting the templates as Reference Data,
you must export the 'Model Data Types - Code and DDL'
table as well

(c) Sparx Systems 2024 Page 282 of 339

Information Engineering 16 October, 2024

DDL Template Syntax
DDL Templates are written using Enterprise Architect's
Code Template Framework, but they have been extended to
support DDL generation.

DDL Template Development

These aspects of DDL Template development are discussed
in this section.

Aspect See also

DDL
Templates

DDL Templates

DDL Macros DDL Macros

DDL
Function
Macros

DDL Function Macros

DDL
Property
Macros

DDL Property Macros

DDL Options
in Templates

DDL Options in Templates

(c) Sparx Systems 2024 Page 283 of 339

Information Engineering 16 October, 2024

(c) Sparx Systems 2024 Page 284 of 339

Information Engineering 16 October, 2024

DDL Templates
The DDL Template Editor operates in the same way as the
Code Template Editor, except that the DDL Template Editor
displays templates for DDL Generation and templates for
Alter DDL Generation at the same time. The Alter DDL
Generation templates are shown at the bottom of the list,
prefixed by 'DDL Diff'.

(c) Sparx Systems 2024 Page 285 of 339

Information Engineering 16 October, 2024

Base Templates for DDL Generation
The DDL Template Framework consists of a number of
base templates for DDL Generation. Each base template
generates a DDL statement (or a partial statement) for a
particular aspect of the UML data model.

Templates

This table lists and briefly describes the base templates used
for DDL generation.

Template Description

DDL Check
Constraint

Invoked by the DDL Table Constraint
template to generate the Check Constraint
statements for a Table object.

DDL Column
Comment

Normally invoked by the DDL Create
Table Extras template to generate
COMMENT ON statements (or
equivalent) for each Table column.

DDL Column
Definition

Invoked by numerous templates to build
the statement to create a single Table
column, as it appears in the CREATE
TABLE statement.

DDL Column
Extras

Normally invoked by the DDL Create
Table Extras template to generate any

(c) Sparx Systems 2024 Page 286 of 339

Information Engineering 16 October, 2024

extended column properties for each
Table column.

DDL
Constraint
Column
Name

Invoked by each of the constraint
templates to retrieve the correctly
formatted column names involved in the
current constraint.

DDL
Constraint
Comment

Normally invoked by the DDL Create
Table Extras template to generate
COMMENT ON statements (or
equivalent) for each Table constraint.

DDL Create
Foreign Keys

Invoked by the DDL Create Table
Constraints template to generate Foreign
Key constraints for a Table object.

DDL Create
Function

Invoked by the DDL Script File template
to generate the CREATE FUNCTION
statement for a Function object.

DDL Create
Package

Invoked by the DDL Script File template
to generate the CREATE PACKAGE
statements for a Package object (Oracle
only).

DDL Create
Procedure

Invoked by the DDL Script File template
to generate the CREATE PROCEDURE
statement for a Procedure object.

(c) Sparx Systems 2024 Page 287 of 339

Information Engineering 16 October, 2024

DDL Create
Schema

Currently not used.

DDL Create
Sequence

Invoked by the DDL Script File template
to generate the CREATE SEQUENCE
statement for a Sequence object.

DDL Create
Table

Invoked by the DDL Script File template
to generate the CREATE TABLE
statement for a Table object.

DDL Create
Table
Constraints

Invoked by the DDL Script File template
to generate Table constraints and Indexes
for a Table object.

DDL Create
Table Extras

Invoked by the DDL Script File template
to generate extended Table properties for
a Table object.

DDL Create
View

Invoked by the DDL Script File template
to generate the CREATE VIEW
statement for a View object.

DDL Data
Type

Invoked by the DDL Column Definition
template to generate the correctly
formatted data type statement for a Table
column.

(c) Sparx Systems 2024 Page 288 of 339

Information Engineering 16 October, 2024

DDL Drop
Column
Extras

Invoked by the DDL Drop Table Extras
template to generate any specialized drop
statements for column extended
properties.

DDL Drop
Foreign Keys

Invoked by the DDL Script File template
to generate the statements to DROP all
Foreign Keys for a Table object.

DDL Drop
Function

Invoked by the DDL Script File template
to generate the DROP FUNCTION
statement for a Function object.

DDL Drop
Procedure

Invoked by the DDL Script File template
to generate the DROP PROCEDURE
statement for a Procedure object.

DDL Drop
Sequence

Invoked by the DDL Script File template
to generate the DROP SEQUENCE
statement for a Sequence object.

DDL Drop
Table

Invoked by the DDL Script File template
to generate the DROP TABLE statement
for a Table object.

DDL Drop
Table Extras

Invoked by the DDL Script File template
to generate the statements to DROP all
extended properties for a Table object.

(c) Sparx Systems 2024 Page 289 of 339

Information Engineering 16 October, 2024

DDL Drop
View

Invoked by the DDL Script File template
to generate the DROP VIEW statement
for a View object.

DDL Foreign
Constraint

Invoked by the DDL Table Constraint
template to generate the ADD FOREIGN
KEY CONSTRAINT statements for a
Table object.

DDL Grant Invoked by the DDL Create Table Extras
template to generate the GRANT
statement for the current object (Oracle
only).

DDL Index Invoked by the DDL Table Constraint
template to generate the CREATE
INDEX statements for a Table object.

DDL Left
Surround

Used to define the character (or
characters) used as the left-hand delimiter
on the name of an object (or object
component).

DDL Name Used by most templates to provide a
common way of formatting the name of
an object (or object feature). This
template accepts four parameters:

Object Location (values: EA or LIVE)·

Object Type (values: OWNER,·

(c) Sparx Systems 2024 Page 290 of 339

Information Engineering 16 October, 2024

TABLE, VIEW, PROCEDURE,
FUNCTION, SEQUENCE,
PACKAGE, COLUMN,
CONSTRAINT,
CONSTRAINT_COLUMN,
REFERENCE_TABLE,
REFERENCE_COLUMN)
Include Owner flag; controls if the·

name should be prefixed by the Owner
name (values: INCLUDE_OWNER or
{blank})
Include Surround flag; controls if the·

name should be delimited by the left
and right surround characters (values:
INCLUDE_SURROUND or {blank})

DDL Primary
Constraint

Invoked by the DDL Table Constraint
template to generate the ADD PRIMARY
KEY CONSTRAINT statement for a
Table object.

DDL
Reference
Column
Name

Normally invoked by the DDL Name
templates to retrieve the correctly
formatted reference column names
involved in a Foreign Key.

DDL
Reference
Definition

Invoked by the DDL Foreign Constraint
template to generate the ON
DELETE/ON UPDATE statements for a

(c) Sparx Systems 2024 Page 291 of 339

Information Engineering 16 October, 2024

Foreign Key constraint.

DDL Right
Surround

Used to define the character (or
characters) used as the right-hand
delimiter on the name of an object (or
object component).

DDL Script
File

A top-level template to generate DDL; all
other templates are invoked from this
one.

DDL Script
Header

Invoked by the DDL Script File template
to add a header comment at the start of
each DDL file.

DDL Script
Separator

Used by all templates that must include a
statement separator in the generated
DDL.

DDL
Statement
Term

Used to define the character (or
characters) used as the statement
terminator. For example, semi-colon (';')
for most DBMSs.

DDL
Statement
Term Alt

Used to define the character (or
characters) used as the alternative
statement terminator. For example, some
DBMSs must have the statement
terminator changed in order to not cause

(c) Sparx Systems 2024 Page 292 of 339

Information Engineering 16 October, 2024

problems with DDL statements generated
for SQL-based objects, such as Views
and Procedures.

DDL
Synonym

Invoked by the DDL Create Table Extras
template to generate the CREATE
SYNONYMS statement (Oracle only).

DDL Table
Constraint

Invoked by the DDL Create Table
Constraints template to generate the
Table constraints and Indexes for each
Table object, taking into account the
generation options.

DDL Table
Level
Comment

Invoked by the DDL Create Table Extras
template to generate COMMENT ON
statements (or the equivalent) for an
object.

DDL Trigger Invoked by the DDL Table Constraint
template to generate the CREATE
TRIGGER statements for a Table object.

DDL Unique
Constraint

Invoked by the DDL Table Constraint
template to generate the ADD UNIQUE
CONSTRAINT statements for a Table
object.

DDL Use Invoked by the DDL Script File template

(c) Sparx Systems 2024 Page 293 of 339

Information Engineering 16 October, 2024

Database to include a USE DATABASE statement
at the start of each DDL file.

(c) Sparx Systems 2024 Page 294 of 339

Information Engineering 16 October, 2024

Base Templates for Alter DDL
Generation
The DDL Template Framework consists of a number of
base templates for Alter DDL generation. Each base
template generates DDL statement(s) based on the detected
Action that must be undertaken to synchronize the data
model and live database.

Templates

This table lists and briefly describes the base templates used
for Alter DDL generation.

Template Description

DDL Diff
Column

Invoked directly by Enterprise Architect
for each Table Column difference that
was detected.

DDL Diff
Constraint

Invoked directly by Enterprise Architect
for each Table Constraint difference that
was detected.

DDL Diff
Table

Invoked directly by Enterprise Architect
for each Table difference that was
detected.

DDL Diff Invoked directly by Enterprise Architect

(c) Sparx Systems 2024 Page 295 of 339

Information Engineering 16 October, 2024

View for each View difference that was
detected.

DDL Diff
Procedure

Invoked directly by Enterprise Architect
for each Stored Procedure difference that
was detected.

DDL Diff
Function

Invoked directly by Enterprise Architect
for each Function difference that was
detected.

DDL Diff
Sequence

Invoked directly by Enterprise Architect
for each Sequence difference that was
detected.

(c) Sparx Systems 2024 Page 296 of 339

Information Engineering 16 October, 2024

DDL Macros
Field substitution macros provide access to data from your
model. In particular, they are used to access data fields
from:

Database objects (such as Tables and Views)·

Columns·

Constraints·

Constraint Columns·

Field substitution macros are named according to Camel
casing. By convention, all DDL macros are prefixed with
'ddl'.

Macros that represent checkboxes or Boolean values return
a string value of 'T' if the checkbox/boolean is true.
Otherwise an empty string is returned.

Internal Field Macro - ddlAction

The ddlAction macro is an internal macro available in the
'Alter DDL' templates, providing direct access to Enterprise
Architect's internal fields; it has no direct mapping to any
stored data.

ddlAction represents the action that must be undertaken to
synchronize the live database with the current repository.
For example, 'Create Table', 'Drop Table' or 'Change
Owner'.

(c) Sparx Systems 2024 Page 297 of 339

Information Engineering 16 October, 2024

Element Field Macros
This list identifies the macros that are available in DDL
templates to access element-level fields, where (in
Enterprise Architect) the fields are editable, such as 'Table
Name' and 'Table Alias'.

ddlFunctionAlias

Function 'Properties' dialog: 'Main' tab: 'Alias' text field.

ddlFunctionName

Function 'Properties' dialog: 'Name' text field.

ddlOwner

{Table element} 'Properties' dialog: {element} 'Table Detail'
tab: 'Owner' text field.

ddlPackageAlias

Package 'Properties' dialog: 'Main' tab: 'Alias' text field.

ddlPackageName

Package 'Properties' dialog: 'Name' text field.

(c) Sparx Systems 2024 Page 298 of 339

Information Engineering 16 October, 2024

ddlProcedureAlias

Procedure 'Properties' dialog: 'Main' tab: 'Alias' text field.

ddlProcedureName

Procedure 'Properties' dialog: 'Name' text field.

ddlSchemaFunctionName

The name of the Function element's definition read in from
the live database.

ddlSchemaOwner

The 'Owner' property of the element's definition read in
from the live database.

ddlSchemaProcedureName

The name of the Procedure element's definition read in from
the live database.

ddlSchemaSequenceName

The name of the Sequence element's definition read in from
the live database.

(c) Sparx Systems 2024 Page 299 of 339

Information Engineering 16 October, 2024

ddlSchemaTableName

The 'Table Name' property read in from the live database.

ddlSchemaViewName

The name of the View element's definition read in from the
live database.

ddlSequenceAlias

Sequence 'Properties' dialog: 'Main' tab: 'Alias' text field.

ddlSequenceName

Sequence 'Properties' dialog: 'Name' text field.

ddlTableAlias

Table 'Properties' dialog: 'Main' tab: 'Alias' text field.

ddlTableDBMS

Table 'Properties' dialog: 'Main' tab: 'Database' drop down
list field.

(c) Sparx Systems 2024 Page 300 of 339

Information Engineering 16 October, 2024

ddlTableLevelComment

Table 'Properties' dialog: 'Notes' text field.

ddlTableName

Table 'Properties' dialog: 'Name' text field.

ddlViewAlias

View 'Properties' dialog: 'Main' tab: 'Alias' text field.

ddlViewName

View 'Properties' dialog: 'Name' text field.

(c) Sparx Systems 2024 Page 301 of 339

Information Engineering 16 October, 2024

Column Field Macros
This list identifies the macros that are available in DDL
templates to access column-related fields, where (in
Enterprise Architect) the fields are editable, such as 'Column
Name' and 'Column Alias'.

ddlColumnName

'Columns and Constraints' dialog: 'Column' tab: 'Name' cell.

ddlColumnAlias

'Columns and Constraints' dialog: 'Column' tab: 'Alias' cell.

ddlColumnComment

'Columns and Constraints' dialog: 'Column' tab: 'Notes' text
field.

ddlSchemaColumnName

The Column Name property read in from the live database.

Note: This field is not editable directly in Enterprise
Architect.

(c) Sparx Systems 2024 Page 302 of 339

Information Engineering 16 October, 2024

Constraint Field Macros
This table lists the macros that are available in DDL
templates to access constraint-related fields, where (in
Enterprise Architect) the fields are editable, such as
'Constraint Name' and 'Constraint Type'.

ddlConstraintAlias

'Columns and Constraints' dialog: 'Constraints' tab: 'Alias'
cell.

ddlConstraintColumnAlias

'Columns and Constraints' dialog: 'Constraints' tab:
'Involved Columns: Assigned' list.

ddlConstraintColumnName

'Columns and Constraints' dialog: 'Constraints' tab:
'Involved Columns: Assigned' list.

ddlConstraintComment

'Columns and Constraints' dialog: 'Constraints' tab: 'Notes'
text field.

(c) Sparx Systems 2024 Page 303 of 339

Information Engineering 16 October, 2024

ddlConstraintName

'Columns and Constraints' dialog: 'Constraints' tab: 'Name'
cell.

ddlPKColumnCount

Only relevant if the current constraint has a type of Primary
Key, this macro will return a count of assigned columns to
the Primary Key.

'Columns and Constraints' dialog: 'Constraints' tab:
'Involved Columns: Assigned' list.

ddlReferenceColumnAlias

Only relevant if the current constraint has a type of Foreign
Key, this macro will return the column alias from the
reference table.

'Columns and Constraints' dialog: 'Constraints' tab: 'Alias'
cell.

ddlReferenceColumnName

Only relevant if the current constraint has a type of Foreign
Key, this macro will return the column name from the
reference table.

Foreign Key 'Constraint' dialog: 'Involved Columns' list:
'Parent' column.

(c) Sparx Systems 2024 Page 304 of 339

Information Engineering 16 October, 2024

ddlReferenceTableAlias

Only relevant if the current constraint has a type of Foreign
Key, this macro will return the reference table's alias.

Table 'Properties' dialog: 'Main' tab: 'Alias' text field.

ddlReferenceTableName

Only relevant if the current constraint has a type of Foreign
Key, this macro will return the reference table's name.

Foreign Key 'Constraint' dialog: 'Involved Columns' list:
'Parent' column header.

ddlReferenceTableOwner

Only relevant if the current constraint has a type of Foreign
Key, this macro will return the reference table's owner.

Foreign Key 'Constraint' dialog: 'Involved Columns' list:
'Parent' column header.

ddlSchemaConstraintColumnName

The column names involved in the current constraint read in
from the live database.

Note: this field is not editable directly in Enterprise
Architect.

(c) Sparx Systems 2024 Page 305 of 339

Information Engineering 16 October, 2024

ddlSchemaConstraintName

The Constraint Name property read in from the live
database.

Note: this field is not editable directly in Enterprise
Architect.

ddlSchemaConstraintType

The Constraint Type property read in from the live
database.

Note: this field is not editable directly in Enterprise
Architect.

(c) Sparx Systems 2024 Page 306 of 339

Information Engineering 16 October, 2024

DDL Function Macros
The DDL Function macros provide a convenient way of
manipulating, retrieving or formatting element data relevant
to DDL generation. These macros, along with the code
function macros, are available to the DDL templates. Each
Function macro returns a result string and is used in the
same manner as a Code Template Function macro.

The available function macros are described here. All
parameters have a type of String and are denoted by square
brackets; that is: FUNCTION_NAME([param]).

DDL_DATATYPE_SIZE ([productName],
[datatype])

Returns the fully formatted datatype of the current column
in DDL syntax.

Parameters

productName - the current Table's assigned DBMS, such·

as SQL Server 2012, Oracle or PostgreSQL

datatype - the current column's datatype name, such as·

VARCHAR or INT

Remarks

Within an Enterprise Architect Table column, datatypes are
defined with a Length Type (0, 1 or 2) property that
influences the DDL syntax; this function macro takes the
Length Type (and other factors) into consideration when
building the return value.

(c) Sparx Systems 2024 Page 307 of 339

Information Engineering 16 October, 2024

DDL_GET_DEFINITION_PARAS ([definition])

Returns a string representation of the parameters from the
supplied function/procedure definition.

Parameters

definition - the complete SQL definition of the·

procedure/function

Remarks

Some DBMSs (such as PostgreSQL) support multiple
definitions of the same procedure/function name. The
definitions differ only in their parameter list, therefore to
manipulate such objects the DDL must specify the name and
parameters. This function macro gives the DDL templates
the ability to extract the parameters so that they can then be
used to identify individual objects.

DDL_INCLUDE_SQLQUERY([objectName])

Returns the SQL statement defined in the SQLQuery object.

Parameters

objectName - the name of the SQL Query object defined·

in the current data model

Remarks

None.

DDL_INDEX_SORT([product],[columns])

(c) Sparx Systems 2024 Page 308 of 339

Information Engineering 16 October, 2024

Returns the sort order of a given index.

Parameters

product - the DBMS (currently, Firebird)·

columns - a CSV of column names involved in the index·

Remarks

This macro currently only applies to Firebird indexes.

DDL_RESOLVE_NAME ([productName],
[name], [leftSurround], [rightSurround])

Returns the supplied name delimited (with the supplied left
and right characters) if the name is a reserved word for the
current DBMS.

Parameters

productName - the current Table's assigned DBMS, such·

as SQL Server 2012, Oracle or PostgreSQL

name - the object/column name·

leftSurround - the left character of the pair used to·

surround the name; for example, single quote {'}

rightSurround - the right character of the pair used to·

surround the name; for example, single quote {'}

Remarks

The DDL syntax of some DBMSs requires names that are
reserved words to be delimited in a different manner; this
function macro can be used to safely format all names for
DB2 and Firebird.

(c) Sparx Systems 2024 Page 309 of 339

Information Engineering 16 October, 2024

DDL_TABLE_TAGVALUE ([tagName])

Returns the value for the supplied tag name in the
repository's version of the current Table.

Parameters

tagName - the tag item's name that is to be retrieved·

Remarks

None.

EXECUTE_CURRENT ([objectName],
[actionName], [priority])

Adds the return string from the current template to the
Execution Engine's execution queue.

Parameters

objectName - the value that will be shown in the 'Object'·

column of the execution queue, which indicates the name
of the object being updated

actionName - the value that will be shown in the 'Action'·

column of the execution queue, which indicates the action
that resulted in the generation of this statement

priority - a numeric value that represents the priority of·

the statement; the higher the number, the lower in the
queue the statement is placed

Remarks

This function macro can be called at any point throughout

(c) Sparx Systems 2024 Page 310 of 339

Information Engineering 16 October, 2024

the template, but will not execute until the end. Once the
template is complete, the DDL it has generated is sent to the
execution queue.

This function macro has no effect if the user has elected to
generate DDL to a file.

EXECUTE_STRING ([objectName],
[actionName], [priority], [ddlStatement])

Adds the supplied DDL statement to the Execution Engine's
execution queue.

Parameters

objectName - the value that will be shown in the 'Object'·

column of the execution queue, which indicates the name
of the object being updated

actionName - the value that will be shown in the 'Action'·

column of the execution queue, which indicates the action
that resulted in the generation of this statement

priority - a numeric value that represents the priority of·

the statement; the higher the number, the lower in the
queue the statement is placed

ddlStatement - a single DDL statement that performs the·

required action

Remarks

This function macro has no effect if the user has elected to
generate DDL to a file.

(c) Sparx Systems 2024 Page 311 of 339

Information Engineering 16 October, 2024

EXIST_STRING ([ddlStatement])

Searches the Execution Engine's execution queue for the
supplied DDL Statement and returns 'T' if the statement is
found.

Parameters

ddlStatement - a single DDL statement·

Remarks

None.

GET_FIRST_SQL_KEYWORD([statement])

Returns the first keyword of the provided SQL statement.

Parameters

statement - the SQL statement·

Remarks

None.

ODBC_TABLE_TAGVALUE ([tagName])

Returns the value for the supplied tag name in the live
database's version of the current table.

Parameters

tagName - the tag item's name that is to be retrieved·

Remarks

None.

(c) Sparx Systems 2024 Page 312 of 339

Information Engineering 16 October, 2024

PROCESS_DDL_SCRIPT ([type], [parameter2],
[parameter3], [parameter4])

A generic function macro that returns a formatted string for
a specific purpose.

Parameters

type - specifies the special action to be undertaken·

parameter2 - generic parameter 2, will have a different·

purpose for each type

parameter3 - generic parameter 3, will have a different·

purpose for each type

parameter4 - generic parameter 4, will have a different·

purpose for each type

Remarks

For Oracle Synonyms use these parameters:

type = "SYNONYMS"·

parameter2 = the table name; for example,·

TBL_EMPLOYEES

parameter3 = a delimited string of values, separated by·

semi-colons, specifying the synonym owner and name
with full colon between; for example,
OE:EMPLOYEES;PUBLIC:PUB_EMPLOYEES;

parameter4 = the statement terminator·

Return Result

Of the format:

(c) Sparx Systems 2024 Page 313 of 339

Information Engineering 16 October, 2024

 CREATE SYNONYM OE.EMPLOYEES FOR
TBL_EMPLOYEES;

 CREATE PUBLIC SYNONYM PUB_EMPLOYEES
FOR TBL_EMPLOYEES;

REMOVE_LAST_SEPARATOR
([ddlStatement], [separator])

Returns the supplied DDL statement with the last separator
removed (if it exists).

Parameters

ddlStatement - a partial DDL statement·

separator - the separator character that should be removed·

Remarks

When building a string that represents a DDL statement, it is
common practice to append the separator character after
each item; however, the separator is not required after the
last item, so this function macro is provided to remove the
trailing separator.

REMOVE_STRING ([ddlStatement])

Removes the supplied DDL statement from the Execution
Engine's execution queue.

Parameters

ddlStatement - a single DDL statement·

Remarks

(c) Sparx Systems 2024 Page 314 of 339

Information Engineering 16 October, 2024

None.

SUPPRESS_EXECUTE_CURRENT ([boolean])

A function macro to enable/disable subsequent calls to
EXECUTE_CURRENT.

Parameters

boolean - True or False·

Remarks

The default state for this flag is False; that is, calls to
EXECUTE_CURRENT are not ignored.

(c) Sparx Systems 2024 Page 315 of 339

Information Engineering 16 October, 2024

DDL Property Macros
The DDL Property macros provide a convenient way of
retrieving element property values (that is, Tagged Values).
In the scope of data modeling there are two groups of
properties:

Internal properties (those that Enterprise Architect·

recognizes and uses in its compares) and

User-defined properties·

These property macros provide access to properties defined
against the various elements. All property macros have the
same syntax, return a string and require the name of the
property to be specified.

Syntax: propertyMacroName:"propertyName"

INTERNAL PROPERTIES

tableBoolProperty:"propertyName"

Returns a Boolean representation ("T" or "") of the value for
the internal property in the repository's version of the
current Table.

Parameters

propertyName - the property name that is to be retrieved·

Remarks

None.

(c) Sparx Systems 2024 Page 316 of 339

Information Engineering 16 October, 2024

tableProperty:"propertyName"

Returns the value for the internal property in the repository's
version of the current Table.

Parameters

propertyName - the property name that is to be retrieved·

Remarks

None.

columnProperty:"propertyName"

Returns the value for the internal property in the repository's
version of the current Column.

Parameters

propertyName - the property name that is to be retrieved·

Remarks

None.

columnBoolProperty:"propertyName"

Returns a Boolean representation ("T" or "") of the value for
the internal property in the repository's version of the
current Column.

Parameters

propertyName - the property name that is to be retrieved·

(c) Sparx Systems 2024 Page 317 of 339

Information Engineering 16 October, 2024

Remarks

None.

constraintProperty:"propertyName"

Returns the value for the internal property in the repository's
version of the current Constraint.

Parameters

propertyName - the property name that is to be retrieved·

Remarks

None.

constraintBoolProperty:"propertyName"

Returns a Boolean representation ("T" or "") of the value for
the internal property in the repository's version of the
current Constraint.

Parameters

propertyName - the property name that is to be retrieved·

Remarks

None.

constraintColumnProperty:"propertyName"

Returns the value for the internal property in the repository's
version of the current Constraint Column.

(c) Sparx Systems 2024 Page 318 of 339

Information Engineering 16 October, 2024

Parameters

propertyName - the property name that is to be retrieved·

Remarks

None.

constraintColumnBoolProperty:"propertyNa
me"

Returns a Boolean representation ("T" or "") of the value for
the internal property in the repository's version of the
current Constraint Column.

Parameters

propertyName - the property name that is to be retrieved·

Remarks

None.

viewProperty:"propertyName"

Returns the value for the internal property in the repository's
version of the current View.

Parameters

propertyName - the property name that is to be retrieved·

Remarks

None.

(c) Sparx Systems 2024 Page 319 of 339

Information Engineering 16 October, 2024

procedureProperty:"propertyName"

Returns the value for the internal property in the repository's
version of the current Procedure.

Parameters

propertyName - the property name that is to be retrieved·

Remarks

None.

functionProperty:"propertyName"

Returns the value for the internal property in the repository's
version of the current Function.

Parameters

propertyName - the property name that is to be retrieved·

Remarks

None.

sequenceProperty:"propertyName"

Returns the value for the internal property in the repository's
version of the current Sequence.

Parameters

propertyName - the property name that is to be retrieved·

Remarks

None.

(c) Sparx Systems 2024 Page 320 of 339

Information Engineering 16 October, 2024

packageProperty:"propertyName"

Returns the value for the internal property in the repository's
version of the current database Package.

Parameters

propertyName - the property name that is to be retrieved·

Remarks

None.

odbcTableProperty:"propertyName"

Returns the value for the internal property in the ODBC's
version of the current Table.

Parameters

propertyName - the property name that is to be retrieved·

Remarks

None.

odbcConstraintProperty:"propertyName"

Returns the value for the internal property in the ODBC's
version of the current Constraint.

Parameters

propertyName - the property name that is to be retrieved·

Remarks

(c) Sparx Systems 2024 Page 321 of 339

Information Engineering 16 October, 2024

None.

USER DEFINED PROPERTIES

tableUserProperty:"propertyName"

Returns the value for the user-defined property in the
repository's version of the current Table.

Parameters

propertyName - the property name that is to be retrieved·

Remarks

None.

columnUserProperty:"propertyName"

Returns the value for the user-defined property in the
repository's version of the current Column.

Parameters

propertyName - the property name that is to be retrieved·

Remarks

None.

constraintUserProperty:"propertyName"

Returns the value for the user-defined property in the

(c) Sparx Systems 2024 Page 322 of 339

Information Engineering 16 October, 2024

repository's version of the current Constraint.

Parameters

propertyName - the property name that is to be retrieved·

Remarks

None.

constraintColumnUserProperty:"propertyNa
me"

Returns the value for the user-defined property in the
repository's version of the current Constraint Column.

Parameters

propertyName - the property name that is to be retrieved·

Remarks

None.

viewUserProperty:"propertyName"

Returns the value for the user-defined property in the
repository's version of the current View.

Parameters

propertyName - the property name that is to be retrieved·

Remarks

None.

(c) Sparx Systems 2024 Page 323 of 339

Information Engineering 16 October, 2024

procedureUserProperty:"propertyName"

Returns the value for the user-defined property in the
repository's version of the current Procedure.

Parameters

propertyName - the property name that is to be retrieved·

Remarks

None.

functionUserProperty:"propertyName"

Returns the value for the user-defined property in the
repository's version of the current Function.

Parameters

propertyName - the property name that is to be retrieved·

Remarks

None.

sequenceUserProperty:"propertyName"

Returns the value for the user-defined property in the
repository's version of the current Sequence.

Parameters

propertyName - the property name that is to be retrieved·

Remarks

None.

(c) Sparx Systems 2024 Page 324 of 339

Information Engineering 16 October, 2024

(c) Sparx Systems 2024 Page 325 of 339

Information Engineering 16 October, 2024

DDL Options in Templates
The DDL Generation Options macros provide a convenient
way for the DDL templates to access the generation options.

This list identifies and briefly describes each of the available
option macros. Each option has a value of either 'T' for true
or an empty string for false.

ddlGenerateToExecuteEngine

Directs the generated DDL to the Execution Engine.

ddlOptionColumnComments

Include column comments in the generated DDL.

ddlOptionGenerateCheck

Include Check constraints in the generated DDL.

ddlOptionGenerateDrop

Include DROP statements in the generated DDL.

ddlOptionGenerateForeign

Include Foreign Keys in the generated DDL.

(c) Sparx Systems 2024 Page 326 of 339

Information Engineering 16 October, 2024

ddlOptionGenerateFunction

Include Functions in the generated DDL.

ddlOptionGenerateIndex

Include Indexes in the generated DDL.

ddlOptionGenerateLengthSemantic

(Oracle only) Include length semantics syntax on text
columns in the generated DDL.

ddlOptionGenerateNullable

Include the keyword NULL against each column if it hasn't
been flagged as a NOT NULL column in the generated
DDL.

ddlOptionGeneratePackage

(Oracle only) Include Packages in the generated DDL.

ddlOptionGeneratePrimary

Include Primary Key constraints in the generated DDL.

(c) Sparx Systems 2024 Page 327 of 339

Information Engineering 16 October, 2024

ddlOptionGenerateProcedure

Include Procedures in the generated DDL.

ddlOptionGenerateSeparateConstraint

Generate Table constraints separately to the CREATE
TABLE statement; that is, using an ALTER TABLE
statement.

Note: Some DBMSs do not support separate constraints in
all conditions.

ddlOptionGenerateSequence

Include Sequences in the generated DDL.

ddlOptionGenerateTable

Include Tables in the generated DDL.

ddlOptionGenerateTableProperty

Include extended properties on Tables in the generated
DDL.

ddlOptionGenerateTrigger

(c) Sparx Systems 2024 Page 328 of 339

Information Engineering 16 October, 2024

Include Table Triggers in the generated DDL.

ddlOptionGenerateUnique

Include Unique Constraints in the generated DDL.

ddlOptionGenerateView

Include Views in the generated DDL.

ddlOptionHeaderComments

Include header comments in the generated DDL.

ddlOptionTableComments

Include Table comments in the generated DDL.

ddlOptionUseAlias

Use Aliases instead of Names for all objects (object
components) as specified on the Generate DDL screen.

ddlOptionUseDatabaseName

Include the USE DATABASE statement at the beginning of
each generated file.

(c) Sparx Systems 2024 Page 329 of 339

Information Engineering 16 October, 2024

ddlUseAlias

Use Aliases instead of Names for all objects (object
components) as specified on the Database Builder 'Database
Compare' tab.

(c) Sparx Systems 2024 Page 330 of 339

Information Engineering 16 October, 2024

DDL Limitations
A fundamental feature of a Database Management System
(DBMS) is to allow the definition of database objects via a
structured language; this language is called DDL (for data
definition language, or data description language). The DDL
syntax of each DBMS is unique. While there are common
DDL statements and keywords across all DBMSs, there are
differences that require each DBMS to have its own set of
DDL templates within Enterprise Architect.

This page summarizes the main limitations for each of the
supported Database Management Systems.

MS Access

Comments cannot be applied to (or changed in) Tables,·

Table Columns, Table Constraints or Views, therefore
Enterprise Architect ignores these differences

The CREATE TABLE statement does not support the·

definition of column defaults, therefore Enterprise
Architect excludes the Default definition from all
generated DDL; however, it does highlight a Default
difference in the comparison logic

Generally object names in DDL can be enclosed in square·

brackets ([]) so that they can include spaces and other
non standard characters, however the CREATE VIEW
DDL statement does not support the square bracket
notation; the 'Create View' DDL template replaces all
spaces with underscore ('_') characters

(c) Sparx Systems 2024 Page 331 of 339

Information Engineering 16 October, 2024

MySQL

Comments can only be applied to Indexes and Unique·

Constraints, when the MySQL version is greater than
5.5.3

Comments can only be applied to Indexes and Unique·

Constraints when they are created, therefore changing an
Index or Unique Constraint's comment causes the
constraint to be dropped and recreated

Check Constraints are not supported; whilst the MySQL·

DDL engine can parse such statements, it simply ignores
them

Comments cannot be applied to (or changed in) Views,·

Procedures or Functions, therefore Enterprise Architect
ignores these differences

Oracle

Comments cannot be applied to (or changed in)·

Procedures, Sequences or Functions, therefore Enterprise
Architect ignores these differences

PostgreSQL

Currently Enterprise Architect does not support function·

parameters, therefore any statements (COMMENT ON or
DROP) that refer to a function by name will fail because

(c) Sparx Systems 2024 Page 332 of 339

Information Engineering 16 October, 2024

they must use a combination of function name and
parameters

SQL Lite

Constraints cannot be added to an existing Table; the·

Table must be dropped and created (including the new
Constraint in the Create statement)

Comments are not supported on any object type, therefore·

Enterprise Architect ignores all remark differences

(c) Sparx Systems 2024 Page 333 of 339

Information Engineering 16 October, 2024

Import DDL Script
This feature allows you to import DDL scripts from a
specified directory in your file system, to create Database
Model objects in your Enterprise Architect model. All of
the scripts in the directory, whose filename extensions
match with those specified will be imported.

The script files will be imported into the currently selected
Enterprise Architect package, creating Tables, Views,
Columns, Constraints, Procedures, Functions, Sequences
and so forth, as defined by the DDL scripts.

Access

Ribbon Develop > Data Modeling > Import DDL

Import DDL Scripts dialog

Directory Type in or browse for the name of the
directory to import.

Process
Subdirectorie
s

Select this check box to include the
contents of the subdirectories as well.

(c) Sparx Systems 2024 Page 334 of 339

Information Engineering 16 October, 2024

DBMS Select from the drop-down list the DBMS
type for which the DDL scripts are
applicable.

File
Extensions

Type in or select from the drop-down list,
the filename extensions to be included in
the import. Use a ";" to separate values.

Import Click the 'Import' button to begin the
import.

(c) Sparx Systems 2024 Page 335 of 339

Information Engineering 16 October, 2024

Supported Database Management
Systems
Enterprise Architect has built in support for a
comprehensive range of database management systems, but
it also provides the flexibility to extend the product to
support other DBMSs. The DDL template editor can be used
to define how to generate DDL for an unsupported DBMS,
the transformation templates can be used to define a new
transformation to a physical model for an unsupported
DBMS, and new datatypes can be defined for an existing or
new DBMS.

Enterprise Architect provides the modeling constructs and
the ability to forward and reverse engineer a database
schema for these Database Management Systems:

DB2 (*)·

Firebird·

MS Access 97, 2000, 2003, 2007, 2013·

MS SQL Server from 2005, all editions including Express·

and Azure SQL Database

MariaDB·

MySQL v4, v5·

Oracle from 9i (all editions)·

PostgreSQL (including version 12)·

SQLite·

Informix (#)·

(c) Sparx Systems 2024 Page 336 of 339

Information Engineering 16 October, 2024

Ingres (#)·

InterBase (#)·

Sybase Adaptive Server Anywhere (Sybase ASA) (#)·

Sybase Adaptive Server Enterprise (Sybase ASE) (#)·

(*) - Only compatible for DB2 when hosted in Windows and
Linux environments.

(#) - No further development will be undertaken on these
DBMSs, as these products are not commonly used by the
Enterprise Architect user base. This will allow Sparx
Systems to concentrate its efforts on the other areas of
Database modeling which are used extensively.

Notes

To perform data modeling for a particular DBMS, you·

must have the appropriate data types for that DBMS in
your repository; you can download the most up-to-date
data definitions from the 'Resources' page of the Sparx
Systems web site

(c) Sparx Systems 2024 Page 337 of 339

Information Engineering 16 October, 2024

More Information
Sparx Systems Enterprise Architect provides information
modelers, data modelers, and architects practical tools for
creating models that span abstraction levels within an
organization: conceptual, logical, and physical.

Conceptual Models: These are technology-independent and
aid in discussions with business and domain experts to
represent and agree on basic domain concepts.

Logical Models: These add detail and precision to
conceptual models while remaining technology-neutral,
facilitating discussions among information analysts on
logical structures.

Physical Models: These apply technology-specific data to
models, aiding engineers in making technology decisions for
deployment in target environments like database
management systems.

Edition Information

The Database Builder is available in the Corporate, Unified
and Ultimate Editions of Enterprise Architect.

(c) Sparx Systems 2024 Page 338 of 339

Information Engineering 16 October, 2024

(c) Sparx Systems 2024 Page 339 of 339

	Information Engineering
	Getting Started
	Example Diagram
	Working with Data Model Types
	Conceptual Data Model
	Entity Relationship Diagrams (ERDs)
	Logical Data Model
	Physical Data Models

	DDL Transformation
	Creating and Managing Data Models
	Create a Data Model from a Model Pattern
	Create a Data Model Diagram
	Example Data Model Diagram

	The Database Builder
	Opening the Database Builder
	Working in the Database Builder
	Columns
	Create Database Table Columns
	Delete Database Table Columns
	Reorder Database Table Columns
	Constraints/Indexes
	Database Table Constraints/Indexes
	Primary Keys
	Database Indexes
	Unique Constraints
	Foreign Keys
	Check Constraints
	Table Triggers

	SQL Scratch Pad
	Database Compare
	Execute DDL

	Database Objects
	Database Tables
	Create a Database Table
	Database Table Columns
	Create Database Table Columns
	Delete Database Table Columns
	Reorder Database Table Columns

	Working with Database Table Properties
	Set the Database Type
	Set Database Table Owner/Schema
	Set MySQL Options
	Set Oracle Database Table Properties

	Database Table Constraints/Indexes
	Primary Keys
	Non Clustered Primary Keys

	Database Indexes
	Unique Constraints
	Foreign Keys
	Check Constraints
	Table Triggers

	Database Views
	Database Procedures
	Database Functions
	Database Sequences
	Database SQL Queries
	Create Operation Containers
	Oracle Packages
	Database Connections

	Manage DBMS Options
	Data Types
	Map Data Types Between DBMS Products
	DBMS Product Conversion for a Package
	Data Type Conversion For a Table
	Database Datatypes
	MySQL Data Types
	Oracle Data Types

	Data Modeling Settings
	Data Modeling Notations
	DDL Name Templates

	Import Database Schema
	Generate Database Definition Language (DDL)
	Generate DDL For Objects
	Edit DDL Templates
	DDL Template Syntax
	DDL Templates
	Base Templates for DDL Generation
	Base Templates for Alter DDL Generation

	DDL Macros
	Element Field Macros
	Column Field Macros
	Constraint Field Macros

	DDL Function Macros
	DDL Property Macros
	DDL Options in Templates

	DDL Limitations

	Import DDL Script
	Supported Database Management Systems
	More Information

