
Unified Modeling
Language (UML)

What UML Modeling tool to use? Sparx Systems Enterprise Architect contains a
wealth of tools for creating models under the Unified Modeling Language
(UML), providing full compliance with the UML specification of elements,

relationships and diagrams.

Enterprise Architect
User Guide Series

Author: Sparx Systems

Date: 16/10/2024

Version: 17.0

CREATED WITH

Table of Contents

Unified Modeling Language (UML) 13
UML Diagrams 17
UML Structural Models 19
Class Diagram 21
Composite Structure Diagram 27
Properties 32

Component Diagram 35
Deployment Diagram 39
Object Diagram 45
Package Diagram 49
Profile Diagram 54

UML Behavioral Models 57
Activity Diagram 60
Use Case Diagram 67
Example Use Case Diagram 72

StateMachines 73
Pseudostates 82
Regions 85
Create a Connection Point Reference 88

StateMachine Table 92
StateMachine Table Options 95
StateMachine Table Operations 100
Change StateMachine Table Position 102
Change StateMachine Table Size 103

Insert Trigger 104
Insert/Change Transition 106
Insert New State 109

Reposition State or Trigger Cells 112
Add Legend 113
Find Cell in StateMachine Diagram 115
StateMachine Table Conventions 116
Export State Table To CSV File 118

Example State-Trigger Table 119
Example State-Next State Table 120
StateMachine Table Simulation 121

Timing Diagram 124
Create a Timing Diagram 127
Set a Time Range 128
Edit a Timing Diagram 130
Add and Edit State Lifeline 131
Add States to a State Lifeline 134
Edit States in a State Lifeline 136
Delete States in a State Lifeline 137
Edit Transitions In State Lifeline 138
Add and Move Transitions 140

Add and Edit Value Lifeline 145
Add States In Value Lifeline 147
Edit Transitions In Value Lifeline 148
Configure Timeline - States 152
Numeric Range Generator 155
Configure Timeline - Transitions 157

Time Intervals 160
Create Time Intervals 162
Compress Time Intervals 165
Select Time Intervals 167
Time Interval Operations 169

Messages (Timing Diagram) 176
Create a Timing Message 178

Sequence Diagram 182
Denote Lifecycle of an Element 188
Layout of Sequence Diagrams 190
Sequence Elements 192
Messages (Sequence Diagram) 194
Self-Message 201
Call 203
Message Examples 204
Change the Timing Details 206
General Ordering 209
Asynchronous Signal Message 211

Co-Region Notation 212
Sequence Diagrams and Version Control 213
Sequence Element Activations 215
Lifeline Activation Levels 220
Sequence Message Label Visibility 222
Change the Top Margin 223
Inline Sequence Elements 224

Communication Diagram 226
Communication Diagrams in Color 230

Messages (Communication Diagrams) 232
Create a Communication Message 234
Re-Order Messages 236

Interaction Overview Diagram 239
UML Elements 246
Behavioral Diagram Elements 248
Action 249
Action Types 252
Variable Actions 260

Local Pre/Post Conditions 263
Class Operations in Diagrams 265
Action Pin 268
Assign Action Pins 271

Activity 273
Activity Notation 276
Activity Parameter Nodes 277
Activity Partition 280

Actor 282
Central Buffer Node 285
Choice 287
Combined Fragment 290
Create a Combined Fragment 296
Interaction Operators 298

Constraint 306
Datastore 307
Decision 309
Diagram Frame 313

Gate 317
Endpoint 319
Entry Point 321
Event 322
Exception 324
Expansion Node 326
Expansion Region 327
Exit Point 330
Final 332
Flow Final 335
Fork/Join 338
Fork 342
Join 344

History 346
Initial 349
Interaction 352
Interaction Occurrence 355
Interruptible Activity Region 359
Junction 361
Lifeline 364
Merge 366
Message Endpoint 368
Message Label 369
Note 371
Object Node 373
Partition 374
Receive 378

Region 380
Send 381
State 383
Composite State 385

State/Continuation 388
Continuation 389
State Invariant 392

State Lifeline 394
StateMachine 398
Structured Activity 400
Structured Node 403
Sequential Node 404
Loop Node 405
Conditional Node 411

Synch 415
System Boundary 416
System Boundary Properties 419

Terminate 430
Trigger 431
Use Case 434
Use Case Extension Points 436

Value Lifeline 439
Structural Diagram Elements 443
Artifact 444
Create File Artifacts 458
Using the Checklist and Audited Checklist
Artifacts 461

Using the Reading List Artifact 470
Document Artifact 473
Custom Table Artifact 474

Class 488
Active Classes 491
Parameterized Classes (Templates) 493

Collaboration 496
Collaboration Use 498
Component 500
Data Type 503
Deployment Specification 505
Device 507
Enumeration 509
Execution Environment 510
Expose Interface 512
Information Item 514
Interface 516
Node 519
Object 521
Run-time State 523
Object State 527

Package 529
Packaging Component 531
Part 532
Add Property Value 533

Port 534
Add a Port to an Element 536

Inherited and Redefined Ports 538
Ports as Owners of Parts 539
Properties Window - Property,
Redefined/Subsetted 540

Primitive 541
Signal 542
Reception 544
Properties Window for Receptions 548

UML Connectors 551
Abstraction 552
Aggregation 553
Change Aggregation Connector Form 554

Assembly 555
Association 556
Qualifiers 558
Qualifiers Dialog 561

Association Class 565
Connect New Class to Existing Association 568

Communication Path 569
Composition 570
N-Ary Association 572
Connector 574
Control Flow 575
Delegate 577
Dependency 579
Apply a Stereotype 581

Deployment 583

Extend 584
Generalization 589
Include 591
Information Flow 593
Using Information Flows 596
Convey Information on a Flow 602
Realize an Information Flow 605

Interrupt Flow 609
Manifest 610
Message 612
Nesting 614
Notelink 615
Object Flow 617
Object Flows in Activity Diagrams 619

Occurrence 621
Package Import 622
Package Merge 624
Realization 627
Recursion 629
Role Binding 630
Represents 632
Representation 633
Substitution 634
Template Binding 635
Parameter Substitution 637

Trace 640
Transition 642

Internal Transition 647
Usage 650
Use 652

UML Stereotypes 653
Apply Stereotypes 656
Stereotype Selector 658
Stereotype Visibility 662
Standard Stereotypes 665
Stereotypes with Alternative Images 669
Custom Stereotypes 671

Extending UML 677
Using UML Profiles 679
Add Profile Objects to a Diagram 680
Tagged Values in Profiles 682
Synchronize Tagged Values and Constraints 684

Extension Stereotypes 688
Boundary 690
Create a Boundary 691

Control 693
Create a Control Element 694

Entity 696
Create an Entity 697

Hyperlink 699
Image 703
Process 704
Risk 705
Task 707

Test Element 708
Test Case 709

Design Patterns 710
Publish a Pattern 712
Save a Pattern as an Artifact 716
Import a Model Pattern 721
Use a Pattern 723
Add Pattern Dialog 727

Unified Modeling Language (UML) 16 October, 2024

Unified Modeling Language (UML)

Enterprise Architect provides a wealth of tools a modeler
can use to create models that comply with a wide range of
formal and informal modeling languages. One of these
languages is the Unified Modeling Language (UML), and
Enterprise Architect has comprehensive support for all the
elements, relationships and diagrams specified in the
language. The UML is governed by the Object Management
Group (OMG), of which Sparx Systems is an active member
and contributor to the process of managing and improving
the language.

Facilities

Facility Description

The Unified
Modeling
Language
(UML)

The UML standard defines notations and
rules for specifying business and software
systems; the notation supplies a rich set
of graphic elements for modeling object
oriented systems, and the rules state how
those elements can be connected and
used.
UML is not a tool for creating software

(c) Sparx Systems 2024 Page 13 of 729

Unified Modeling Language (UML) 16 October, 2024

systems; instead, it is a visual language
for communicating, modeling, specifying
and defining systems.
UML is not a prescriptive process for
modeling software systems; it does not
supply a method or process, simply the
language. You can therefore use UML in
a variety of ways to specify and develop
your software engineering project.
This language is designed to be flexible,
extendable and comprehensive, yet
generic enough to serve as a foundation
for all system modeling requirements.
With its specification, there is a wide
range of elements characterized by the
kinds of diagrams they serve, and the
attributes they provide. All can be further
specified by using stereotypes, Tagged
Values and profiles.
Enterprise Architect supports many
different kinds of UML elements (as well
as some custom extensions); together
with the connectors between elements,
these form the basis of the model.

Wide Range
of
Applications

Although initially conceived as a
language for software development,
UML can be used to model a wide range
of real world domains and processes (in

(c) Sparx Systems 2024 Page 14 of 729

Unified Modeling Language (UML) 16 October, 2024

business, science, industry, education and
elsewhere), organizational hierarchies,
deployment maps and much more.
Enterprise Architect also provides
additional Custom diagrams and
elements, to address further modeling
interests.

Extending
UML for
New
Domains

Using UML Profiles, Patterns,
Grammars, Data Types, Constraints,
MDG Technologies and other extensions,
UML and Enterprise Architect can be
tailored to address a particular modeling
domain not explicitly defined in the
original UML specification.
Enterprise Architect makes extending
UML simple and straightforward and,
best of all, the extension mechanism is
still part of the UML Specification.

Recommende
d Reading

In addition to the UML Specification
available from the OMG, two books that
provide excellent introductions to UML
are:

Schaum's Outlines: UML by Bennett,·

Skelton and Lunn (2nd Edn.)
Published by McGraw Hill.
ISBN: 0-07-710741-1
ISBN-13: 978-0-07-710741-3

(c) Sparx Systems 2024 Page 15 of 729

Unified Modeling Language (UML) 16 October, 2024

Developing Software with UML by·

Bernd Oestereich
Published by Addison Wesley.
ISBN-10: 0201398265
ISBN-13: 978-0201398267

(c) Sparx Systems 2024 Page 16 of 729

Unified Modeling Language (UML) 16 October, 2024

UML Diagrams
A UML diagram is a graphical representation of part of a
model, typically showing a number of elements connected
by relationships. Diagrams are one of the most expressive
and appealing views of the repository; the diagram has a
name and type and is typically constructed for a particular
audience to convey an idea or to create a narrative
description of part of the model. Diagrams can also be used
to generate useful system Artifacts such as XML schemas,
database schemas, programming code and more.

The UML specification defines fourteen types of diagram
and lists elements and relationships that can be included on
each diagram. These elements are conveniently provided in
the Enterprise Architect default Toolboxes for each diagram
type. While these Toolboxes act as a guide for the novice
modeler, the experienced modeler can create highly
expressive diagrams by including a wide range of element
types on the same diagram.

Diagrams are created and viewed in the main workspace and
are stored in Packages or other elements in the repository.

Diagram Grouping

Group Detail

Structural
Diagrams

Structural diagrams depict the structural
elements composing a system or function,

(c) Sparx Systems 2024 Page 17 of 729

Unified Modeling Language (UML) 16 October, 2024

reflecting the static relationships of a
structure, or run-time architectures.

Behavioral
Diagrams

Behavioral diagrams show a dynamic
view of the model, depicting the
behavioral features of a system or
business process.

Extended
Diagrams

Enterprise Architect provides a set of
additional diagram types that extend the
core UML diagrams for domain-specific
models.

Custom
Diagrams

Enterprise Architect also supports
diagram types specific to MDG
Technologies, including integrated
technologies.

(c) Sparx Systems 2024 Page 18 of 729

Unified Modeling Language (UML) 16 October, 2024

UML Structural Models
UML Structural diagrams depict the elements of a system
that are independent of time and that convey the concepts of
a system and how they relate to each other. The elements in
these diagrams resemble the nouns in a natural language,
and the relationships that connect them are structural or
semantic relationships. For example, a structural diagram of
a vehicle reservation system might contain elements such as
Car, Reservation, Drivers License and Credit Card, and
connectors linking these elements. Experienced modelers
will also show relationships to behavioral elements on these
diagrams.

The UML defines seven types of UML structural diagram.

Structural Diagram types

Diagram
Type

Detail

Class Class diagrams capture the logical
structure of the system, the Classes and
objects that make up the model,
describing what exists and what attributes
and behavior it has.

Composite
Structure

Composite Structure diagrams reflect the
internal collaboration of Classes,

(c) Sparx Systems 2024 Page 19 of 729

Unified Modeling Language (UML) 16 October, 2024

Interfaces and Components (and their
properties) to describe a functionality.

Component Component diagrams illustrate the pieces
of software, embedded controllers and
such that make up a system, and their
organization and dependencies.

Deployment Deployment diagrams show how and
where the system is to be deployed; that
is, its execution architecture.

Object Object diagrams depict object instances
of Classes and their relationships at a
point in time.

Package Package diagrams depict the organization
of model elements into Packages and the
dependencies amongst them.

Profile Profile diagrams are those created in a
«profile» Package, to extend UML
elements, connectors and components.

(c) Sparx Systems 2024 Page 20 of 729

Unified Modeling Language (UML) 16 October, 2024

Class Diagram
The Class diagram captures the logical structure of the
system - the Classes - and things that make up the model. It
is a static model, describing what exists and what attributes
and behavior it has, rather than how something is done. On a
Class diagram you can illustrate relationships between
Classes and Interfaces using Generalizations, Aggregations
and Associations, which are valuable in reflecting
inheritance, composition or usage, and connections
respectively.

You generate Class diagram elements and connectors from
the 'Class' pages of the Diagram Toolbox.

Example Diagram

In this example Class diagram, there are two forms of the
Aggregation relationship:

The pale form indicates that the Class Account uses·

AddressBook, but does not necessarily contain
AddressBook

The dark Composite Aggregation form indicates·

ownership or containment by the target Classes (at the
diamond end) of the source Classes

(c) Sparx Systems 2024 Page 21 of 729

Unified Modeling Language (UML) 16 October, 2024

Class Diagram Element Toolbox Icons

Icon Description

A Class is a representation of a type of
object that reflects the structure and
behavior of such objects within the
system.

An Interface is a specification of behavior
(or contract) that implementers agree to
meet.

A Data Type is a specific kind of

(c) Sparx Systems 2024 Page 22 of 729

Unified Modeling Language (UML) 16 October, 2024

classifier, similar to a Class except that a
Data Type cannot own sub Data Types,
and instances of a Data Type are
identified only by their value.

An Enumeration is a data type, whose
instances can be any of a number of
user-defined enumeration literals.

A Primitive element identifies a
predefined data type, without any
relevant substructure (that is, it has no
parts in the context of UML).

A Signal is a specification of Send
request instances communicated between
objects, typically in a Class or Package
diagram.

An n-Ary Association element is used to
model complex relationships between
three or more elements, typically in a
Class or Object diagram.

Class Diagram Connector Toolbox Icons

Icon Description

(c) Sparx Systems 2024 Page 23 of 729

Unified Modeling Language (UML) 16 October, 2024

An Association implies that two model
elements have a relationship, usually
implemented as an instance variable in
one or both Classes.

A Generalization is used to indicate
inheritance.

A Composition is used to depict an
element that is made up of smaller
components, typically in a Class or
Package diagram.

An Aggregation connector is a type of
association that shows that an element
contains or is composed of other
elements.

An Association Class is a UML construct
that enables an Association to have
attributes and operations (features).

A source object implements or Realizes
its destination object.

You create a Template Binding connector
between a binding Class and a
parameterized Class.

(c) Sparx Systems 2024 Page 24 of 729

Unified Modeling Language (UML) 16 October, 2024

Class Diagram Composite Parts

Icon Description

Parts are run-time instances of Classes or
Interfaces.

Ports define the interaction between a
classifier and its environment.

The Expose Interface element is a
graphical method of depicting the
required or supplied interfaces of a
Component, Class or Part, in a Class,
Component or Composite Structure
diagram.

An Assembly connector bridges a
component's required interface
(Component1) with the provided
interface of another component
(Component2), typically in a Component
diagram.

Connectors illustrate communication
links between Parts to fulfill the

(c) Sparx Systems 2024 Page 25 of 729

Unified Modeling Language (UML) 16 October, 2024

structure's purpose, typically in a Class or
Composite Structure diagram.

A Delegate connector defines the internal
assembly of a component's external Ports
and Interfaces, on a Class diagram or
Component diagram.

Class Diagram UML Standard Profile

The UML Standard Profile is a collection of stereotyped
Classes, operations and relationships provided as modeling
tools in compliance with the UML 2.5 Specification
(Chapter 22, Standard Profile).

Some of these modeling elements are directly available
through the 'UML Standard Profile' Toolbox page in the
Class or Package Diagram Toolboxes; others can be applied
as stereotypes on the base UML modeling object.

(c) Sparx Systems 2024 Page 26 of 729

Unified Modeling Language (UML) 16 October, 2024

Composite Structure Diagram
A Composite Structure diagram reflects the internal
collaboration of Classes, Interfaces or Components (and
their properties) to describe a functionality. Composite
Structure diagrams are similar to Class diagrams, but whilst
Class diagrams model a static view of Class structures,
including their attributes and behaviors, Composite
Structure diagrams model a specific usage of the structure.
You can use them to express run-time architectures, usage
patterns and the participating elements' relationships, which
might not be reflected by static diagrams.

In a Composite Structure diagram, Classes are accessed as
Parts or run-time instances fulfilling a particular role. These
Parts can have multiplicity, if the role filled by the Class
requires multiple instances. Ports defined by a Part's Class
should be represented in the composite structure, so that all
connecting Parts provide the required interfaces specified by
the Port. There is extensive flexibility, and a consequent
complexity, that come with modeling composite structures.
To optimize your modeling, consider building
Collaborations to represent reusable Patterns responding to
your design issues.

You generate Composite Structure diagram elements and
connectors from the 'Composite' pages of the Diagram
Toolbox.

Example Diagram

(c) Sparx Systems 2024 Page 27 of 729

Unified Modeling Language (UML) 16 October, 2024

This diagram shows a Collaboration used in a Composite
Structure diagram to show a relationship for performing an
installation. Collaborations are often used to model common
patterns.

The next diagram uses this Install Collaboration in a
Collaboration Use, and applies it to the UtilLoad Class via a
«represents» relationship. This indicates that the classifier
UtilLoad uses the Collaboration Pattern within its
implementation.

Composite Structure Diagram Element
Toolbox Icons

Icon Description

(c) Sparx Systems 2024 Page 28 of 729

Unified Modeling Language (UML) 16 October, 2024

A Class is a representation of a type of
object that reflects the structure and
behavior of such objects within the
system.

An Interface is a specification of behavior
(or contract) that implementers agree to
meet.

Parts are run-time instances of Classes or
Interfaces.

Ports define the interaction between a
classifier and its environment.

A Collaboration defines a set of
cooperating roles and their connectors.

Use a Collaboration Use to apply a
Pattern defined by a Collaboration to a
specific situation, in a Composite
Structure diagram.

The Expose Interface element is a
graphical method of depicting the
required or supplied interfaces of a
Component, Class or Part, in a
Component or Composite Structure
diagram.

(c) Sparx Systems 2024 Page 29 of 729

Unified Modeling Language (UML) 16 October, 2024

Composite Structure Diagram Connector
Toolbox Icons

Icon Description

Connectors illustrate communication
links between Parts to fulfill the
structure's purpose, typically in a
Composite Structure diagram.

An Assembly connector bridges a
component's required interface
(Component1) with the provided
interface of another component
(Component2), typically in a Component
diagram.

A Delegate connector defines the internal
assembly of a component's external Ports
and Interfaces, on a Component diagram.

Role Binding is the mapping between a
Collaboration Use's internal roles and the
respective Parts required to implement a
specific situation, typically in a
Composite Structure diagram.

(c) Sparx Systems 2024 Page 30 of 729

Unified Modeling Language (UML) 16 October, 2024

The Represents connector indicates that a
Collaboration is used in a classifier,
typically in a Composite Structure
diagram.

An Occurrence relationship indicates that
a Collaboration represents a classifier, in
a Composite Structure diagram.

(c) Sparx Systems 2024 Page 31 of 729

Unified Modeling Language (UML) 16 October, 2024

Properties
A property is a nested structure within a classifier, usually a
Class or an Interface, on a Composite Structure diagram.
The contained structure reflects instances and relationships
reflected within the containing classifier. Properties can
have multiplicity, and can be displayed as:

Parts (preferred) or·

Association Roles·

Parts

In this diagram there are two Parts, 'libBooks' and 'records',
which are instances corresponding to the Classes 'Books'
and 'Computer' respectively. The relationship between the
two Parts is indicated by the connector, reflecting that
communication between the Parts is via the barcode. This
contained structure and its Parts are properties owned by the
Library Class.

After dragging Parts from the Diagram Toolbox onto the

(c) Sparx Systems 2024 Page 32 of 729

Unified Modeling Language (UML) 16 October, 2024

Class, right-click on a Part and select 'Advanced | Set
Property Type' to connect to a classifier. If Parts disappear
when dragged onto the Class, adjust the Z-order of the Class
to move it behind the Parts (right-click on the Class and
select the 'Z-Order' option).

To indicate a property that is not owned by composition to
the containing classifier, use a box symbol with a dashed
outline, indicating association; to do this:

Right-click on the Part and select the 'Properties' option.1.

Select the 'Advanced' page of the 'Properties' dialog.2.

Set the 'IsReference' option to True.3.

Association Roles

Properties can also be reflected using a normal composite
structure (without containing it in a Class), with the
appropriate connectors, Parts and relationships indicated
through connections to the Class.

The alternative representation is shown here; however, this
representation fails to express the ownership immediately
reflected by containing properties within a classifier.

(c) Sparx Systems 2024 Page 33 of 729

Unified Modeling Language (UML) 16 October, 2024

(c) Sparx Systems 2024 Page 34 of 729

Unified Modeling Language (UML) 16 October, 2024

Component Diagram
A Component diagram illustrates the pieces of software,
embedded controllers and such that make up a system, and
their organization and dependencies.

A Component diagram has a higher level of abstraction than
a Class diagram; usually a component is implemented by
one or more Classes (or Objects) at runtime. They are
building blocks, built up so that eventually a component can
encompass a large portion of a system.

You generate Component diagram elements and connectors
from the 'Component' pages of the Diagram Toolbox.

Example Diagram

This diagram demonstrates a number of components and
their inter-relationships.

Assembly connectors connect the provided interfaces
supplied by Product and Customer to the required interfaces
specified by Order. A Dependency relationship maps a
customer's associated account details to the required
interface Payment, also specified by Order.

(c) Sparx Systems 2024 Page 35 of 729

Unified Modeling Language (UML) 16 October, 2024

Component Diagram Element Toolbox Icons

Icon Description

A Packaging Component is an element
that appears very similar to a Component
in a diagram but behaves as a Package in
the Browser window.

A Component is a modular part of a
system, whose behavior is defined by its
provided and required interfaces.

A Class is a representation of a type of
object that reflects the structure and
behavior of such objects within the
system.

(c) Sparx Systems 2024 Page 36 of 729

Unified Modeling Language (UML) 16 October, 2024

An Interface is a specification of behavior
(or contract) that implementers agree to
meet.

An Object is a particular instance of a
Class at run time.

Ports define the interaction between a
classifier and its environment.

The Expose Interface element is a
graphical method of depicting the
required or supplied interfaces of a
Component, Class or Part, in a
Component or Composite Structure
diagram.

Component Diagram Connector Toolbox
Icons

Icon Description

An Assembly connector bridges a
component's required interface
(Component1) with the provided
interface of another component

(c) Sparx Systems 2024 Page 37 of 729

Unified Modeling Language (UML) 16 October, 2024

(Component2), typically in a Component
diagram.

A Delegate connector defines the internal
assembly of a component's external Ports
and Interfaces, on a Component diagram.

An Association implies that two model
elements have a relationship, usually
implemented as an instance variable in
one or both Classes.

A source object implements or Realizes
its destination object. Realize connectors
are used in a Use Case, Component or
Requirements diagram to express
traceability and completeness in the
model.

A Generalization is used to indicate
inheritance.

(c) Sparx Systems 2024 Page 38 of 729

Unified Modeling Language (UML) 16 October, 2024

Deployment Diagram
A Deployment diagram shows how and where the system is
to be deployed; that is, its execution architecture.

Hardware devices, processors and software execution
environments (system Artifacts) are reflected as Nodes, and
the internal construction can be depicted by embedding or
nesting Nodes. Deployment relationships indicate the
deployment of Artifacts, and Manifest relationships reveal
the physical implementation of Components. As Artifacts
are allocated to Nodes to model the system's deployment,
the allocation is guided by the use of Deployment
Specifications. A Deployment diagram can also indicate that
a Node has a State, or show an instance of a Node with an
actual run-time value for the state, representing a specific
condition or scenario.

You generate Deployment diagram elements and connectors
from the 'Deployment' pages of the Diagram Toolbox.

Example Diagram

This is a simple Deployment diagram, representing the
arrangement of servers at a head office. The elements are
instances of Nodes and show specific run-time states.

The servers are represented by Nodes linked by either
simple or aggregate Association relationships.

(c) Sparx Systems 2024 Page 39 of 729

Unified Modeling Language (UML) 16 October, 2024

Deployment diagrams are ideal for applying alternative
images to depict the objects that the elements represent.
Such images can be substituted for the elements in the
diagram, as shown here:

(c) Sparx Systems 2024 Page 40 of 729

Unified Modeling Language (UML) 16 October, 2024

Deployment Diagram Element Toolbox Icons

Icon Description

A Node is a physical piece of equipment
on which the system is deployed, such as

(c) Sparx Systems 2024 Page 41 of 729

Unified Modeling Language (UML) 16 October, 2024

a workgroup server or workstation.

A Device is a physical electronic resource
with processing capability upon which
Artifacts can be deployed for execution,
as represented in a Deployment diagram.

An Execution Environment is a node that
offers an execution environment for
specific types of component that are
deployed on it in the form of Executable
Artifacts.

A Component is a modular part of a
system, whose behavior is defined by its
provided and required interfaces.

An Interface is a specification of behavior
(or contract) that implementers agree to
meet.

An Artifact is any physical piece of
information used or produced by a
system.

A Deployment Specification (spec)
specifies parameters guiding deployment
of an artifact, as is necessary with most
hardware and software technologies.

(c) Sparx Systems 2024 Page 42 of 729

Unified Modeling Language (UML) 16 October, 2024

Deployment Diagram Connector Toolbox
Icons

Icon Description

An Association implies that two model
elements have a relationship, usually
implemented as an instance variable in
one or both Classes.

A Communication Path defines the path
through which two DeploymentTargets
are able to exchange signals and
messages.

An Association Class is a UML construct
that enables an Association to have
attributes and operations (features).

A Generalization is used to indicate
inheritance.

A source object implements or Realizes
its destination object.

A Deployment is a type of Dependency

(c) Sparx Systems 2024 Page 43 of 729

Unified Modeling Language (UML) 16 October, 2024

relationship that indicates the deployment
of an artifact onto a node or executable
target, typically in a Deployment
diagram.

A Manifest relationship indicates that the
Artifact source embodies the target model
element, typically in Component and
Deployment diagrams.

(c) Sparx Systems 2024 Page 44 of 729

Unified Modeling Language (UML) 16 October, 2024

Object Diagram
An Object diagram is closely related to a Class diagram,
with the distinction that it depicts object instances of Classes
and their relationships at a point in time. Object diagrams do
not reveal architectures varying from their corresponding
Class diagrams, but reflect multiplicity and the roles
instantiated Classes could serve. They are useful in
understanding a complex Class diagram, by creating
different cases in which the relationships and Classes are
applied

This might appear similar to a Composite Structure diagram,
which also models run-time behavior; the difference is that
Object diagrams exemplify the static Class diagrams,
whereas Composite Structure diagrams reflect run-time
architectures different from their static counterparts. An
Object diagram can also be a kind of Communication
diagram (which also models the connections between
objects, but additionally sequences events along each path).

You generate Object diagram elements and connectors from
the 'Object' pages of the Diagram Toolbox.

Example Diagram

This example shows a simple Class diagram, with two Class
elements connected.

(c) Sparx Systems 2024 Page 45 of 729

Unified Modeling Language (UML) 16 October, 2024

These Classes are instantiated as Objects in an Object
diagram. There are two instances of Computer in this model,
demonstrating the usefulness of Object diagrams in
considering the relationships and interactions Classes might
have in practice.

Object Diagram Element Toolbox Icons

Icon Description

An Actor is a user of the system; user can
mean a human user, a machine, or even
another system or subsystem in the
model.

(c) Sparx Systems 2024 Page 46 of 729

Unified Modeling Language (UML) 16 October, 2024

An Object is a particular instance of a
Class at run time.

A Collaboration defines a set of
cooperating roles and their connectors.

Use a Collaboration Use to apply a
Pattern defined by a Collaboration to a
specific situation, in a Composite
Structure diagram.

A Boundary is a stereotyped Object that
models some system boundary, typically
a user interface screen.

A Control is a stereotyped Object that
models a controlling entity or manager.

An Entity is a stereotyped Object that
models a store or persistence mechanism
that captures the information or
knowledge in a system.

An n-Ary Association element is used to
model complex relationships between
three or more elements, typically in a
Class or Object diagram.

(c) Sparx Systems 2024 Page 47 of 729

Unified Modeling Language (UML) 16 October, 2024

Object Diagram Connector Toolbox Icons

Icon Description

An Information Flow represents the flow
of Information Items (either Information
Item elements or classifiers) between two
elements in any diagram.

An Association implies that two model
elements have a relationship, usually
implemented as an instance variable in
one or both Classes.

Dependency relationships are used to
model a wide range of dependent
relationships between model elements in
Use Case, Activity and Structural
diagrams, and even between models
themselves.

(c) Sparx Systems 2024 Page 48 of 729

Unified Modeling Language (UML) 16 October, 2024

Package Diagram
Package diagrams depict the organization of model elements
into Packages and the dependencies amongst them,
including Package imports and Package extensions. They
also provide a visualization of the corresponding
namespaces.

You generate Package diagram elements and connectors
from the 'Package' pages of the Diagram Toolbox.

Example Diagram

This example illustrates a basic Package diagram.

Package Diagram Element Toolbox Icons

Icon Description

Packages are used to organize your

(c) Sparx Systems 2024 Page 49 of 729

Unified Modeling Language (UML) 16 October, 2024

project contents, but when added onto a
diagram they can be used to depict the
structure and relationships of your model.

Generates a Profile Package that has the
stereotype «profile» in the Package
diagram in your technical development
model. A Profile Package is used in
defining new types of structure in a
model.

Generates a Model Package with the
stereotype «model», to represent the
parent node in a model structure.

Package Diagram Relationship Toolbox Icons

Connector Description

c_nesting The Nesting Connector is an alternative
graphical notation for expressing
containment or nesting of elements
within other elements.
The Nesting connector between ConnSeq
and Controller reflects what the Package
contents reveal. The Package contents
can be listed by clicking on the diagram

(c) Sparx Systems 2024 Page 50 of 729

Unified Modeling Language (UML) 16 October, 2024

background to display the diagram's
'Properties' dialog, selecting the
'Elements' tab and selecting the 'Package
Contents' checkbox in the 'Show
Compartments' panel.

c_pkgmerge In a Package diagram, a Package Merge
indicates a relationship between two
Packages whereby the contents of the
target Package have been merged with
those of the source Package.
In the example diagram, the «merge»
connector indicates that the Controller
Package's elements have been imported
into GenApply, including Controller's
nested and imported contents.
If an element already exists within
GenApply, such as Loader and Time,
these elements' definitions are expanded
by those included in the Package
Controller. All elements added or updated
by the merge are noted by a
generalization relationship back to that
Package.

c_pkgimport A Package Import relationship is drawn
from a source Package to a Package
whose contents have been imported.
The «import» connector indicates that the

(c) Sparx Systems 2024 Page 51 of 729

Unified Modeling Language (UML) 16 October, 2024

elements within the target Integer
Package, which in this example is the
single Class Integer, have been imported
into the Package Controller.
The Controller's namespace gains access
to the Integer Class; the Integer
namespace is not affected.

c_profileappl
ication

A Profile Application relationship
indicates that the source Profile has been
applied to the target Package.

UML Standard Profile Toolbox Icons

Icon Description

Generates a Model Package with the
stereotype «framework», to represent the
parent node in framework structure.

Generates a Model Package with the
stereotype «metamodel», to represent the
parent node in metamodel structure.

Generates a Model Package with the
stereotype «modelLibrary», to represent
the parent node in model library structure.

(c) Sparx Systems 2024 Page 52 of 729

Unified Modeling Language (UML) 16 October, 2024

Generates a Model Package with the
stereotype «systemModel», to represent
the parent node in system model
structure.

(c) Sparx Systems 2024 Page 53 of 729

Unified Modeling Language (UML) 16 October, 2024

Profile Diagram
A Profile diagram is any diagram created in a «profile»
Package.

Profiles provide a means of extending the UML. They are
based on additional stereotypes and Tagged Values that are
applied to UML elements, connectors and their components.
A Profile is a collection of such extensions that together
describe some particular modeling problem and facilitate
modeling constructs in that domain.

You generate Profile diagram elements and connectors from
the 'Profile' pages of the Diagram Toolbox.

Example Diagram

A typical unit on a Profile diagram resembles this:

Profile Diagram Element Toolbox Icons

(c) Sparx Systems 2024 Page 54 of 729

Unified Modeling Language (UML) 16 October, 2024

Icon Description

The first stage in creating a UML Profile
is to create a Profile Package that has the
stereotype «profile» in your technical
development model.

Stereotype elements represent the way in
which each object is extended.

Metaclass elements represent the types of
object that you are extending in your
Profile Package.

An Enumeration is a data type, whose
instances can be any of a number of
user-defined enumeration literals.

Profile Diagram Connector Toolbox Icons

Icon Description

Connectors of type Extension represent
an 'extents' relationship between two
elements.

A Generalization is used to indicate

(c) Sparx Systems 2024 Page 55 of 729

Unified Modeling Language (UML) 16 October, 2024

inheritance.

A Tagged Value connector defines a
reference-type (that is, RefGUID) Tagged
Value owned by the source stereotyped
element; the Tagged Value name is the
name of the target role of this connector,
and the Tagged Value is limited to
referencing elements with the stereotype
of the target element.

(c) Sparx Systems 2024 Page 56 of 729

Unified Modeling Language (UML) 16 October, 2024

UML Behavioral Models
UML Behavioral Diagrams depict the elements of a system
that are dependent on time and that convey the dynamic
concepts of the system and how they relate to each other.
The elements in these diagrams resemble the verbs in a
natural language and the relationships that connect them
typically convey the passage of time. For example, a
behavioral diagram of a vehicle reservation system might
contain elements such as Make a Reservation, Rent a Car,
and Provide Credit Card Details. Experienced modelers will
show the relationship to structural elements on these
diagrams.

The UML defines seven types of behavioral diagram.

Diagram Types

Diagram
Type

Detail

Activity
Diagrams

Activity diagrams model the behaviors of
a system, and the way in which these
behaviors are related in an overall flow of
the system.

Use Case
Diagrams

Use Case diagrams capture Use Cases
and relationships among Actors and the
system; they describes the functional

(c) Sparx Systems 2024 Page 57 of 729

Unified Modeling Language (UML) 16 October, 2024

requirements of the system, the manner in
which external operators interact at the
system boundary, and the response of the
system.

StateMachine
Diagrams

StateMachine diagrams illustrate how an
element can move between states,
classifying its behavior according to
transition triggers and constraining
guards.

Timing
Diagrams

Timing diagrams define the behavior of
different objects within a time-scale,
providing a visual representation of
objects changing state and interacting
over time.

Sequence
Diagrams

Sequence diagrams are structured
representations of behavior as a series of
sequential steps over time. They are used
to depict workflow, Message passing and
how elements in general cooperate over
time to achieve a result.

Communicati
on Diagrams

Communication diagrams show the
interactions between elements at
run-time, visualizing inter-object
relationships.

(c) Sparx Systems 2024 Page 58 of 729

Unified Modeling Language (UML) 16 October, 2024

Interaction
Overview
Diagrams

Interaction Overview diagrams visualize
the cooperation between Interaction
diagrams (Timing, Sequence,
Communication and other Interaction
Overview diagrams) to illustrate a control
flow serving an encompassing purpose.

(c) Sparx Systems 2024 Page 59 of 729

Unified Modeling Language (UML) 16 October, 2024

Activity Diagram
Activity diagrams are used to model system behaviors, and
the way in which these behaviors are related in an overall
flow of the system (that is, dynamic element interactions).
The logical paths a process follows, based on various
conditions, concurrent processing, data access, interruptions
and other logical path distinctions, are all used to construct a
process, system or procedure.

You generate Activity diagram elements and connectors
from the 'Activity' pages of the Diagram Toolbox.

Example Diagram

This diagram illustrates some of the features of Activity
diagrams, including Activities, Actions, Start Nodes, End
Nodes and Decision points.

(c) Sparx Systems 2024 Page 60 of 729

Unified Modeling Language (UML) 16 October, 2024

Activity Diagram Element Toolbox Icons

Icon Description

An Activity element organizes and
specifies the participation of subordinate
behaviors, such as sub-Activities or
Actions, to reflect the control and data
flow of a process.

An Action element describes a basic

(c) Sparx Systems 2024 Page 61 of 729

Unified Modeling Language (UML) 16 October, 2024

process or transformation that occurs
within a system, and is the basic
functional unit within an Activity
diagram.

A Partition element is used to logically
organize an Activity's elements.

The Send element depicts the action of
sending a signal, in an Activity diagram.

A Receive element defines the
acceptance or receipt of a request, in an
Activity diagram.

A Structured Activity is an activity node
that can have subordinate nodes as an
independent Activity Group.

Enterprise Architect supports two types
of Region element: Expansion Regions
and Interruptible Activity Regions.
An Expansion Region surrounds a
process to be imposed multiple times on
the incoming data, once for every
element in the input collection.
An Interruptible Activity Region
surrounds a group of Activity elements,
all affected by certain interrupts in such a

(c) Sparx Systems 2024 Page 62 of 729

Unified Modeling Language (UML) 16 October, 2024

way that all tokens passing within the
region are terminated should the
interruption(s) be raised.

The Exception Handler element defines
the group of operations to carry out when
an exception occurs.

An Activity Parameter Node accepts
input to an Activity or provides output
from an Activity.

An Object is a particular instance of a
Class at run time.

A Central Buffer Node is an object node
for managing flows from multiple sources
and destinations, represented in an
Activity diagram.

A Datastore defines permanently stored
data.

An Expansion Node is a shorthand
notation to indicate that the
Action/Activity consists of an Expansion
Region.

An Initial element is used to define the

(c) Sparx Systems 2024 Page 63 of 729

Unified Modeling Language (UML) 16 October, 2024

start of a flow when an Activity is
invoked.

In an Activity diagram or Interaction
Overview diagram, a Decision indicates a
point of conditional progression: if a
condition is True, then processing
continues one way; if not, then another.

A Merge Node brings together a number
of alternative flow paths in Activity,
Analysis and Interaction Overview
diagrams.

A Synch state is useful for indicating that
concurrent paths of a StateMachine are
synchronized. It is used to split and rejoin
periods of parallel processing.

A Fork/Join element can be used to:
1) Split a single flow into a number of
concurrent flows
2) Join a number of concurrent flows or
3) Both join and fork a number of
incoming flows to a number of outgoing
flows

The Flow Final element depicts an exit
from the system, as opposed to the

(c) Sparx Systems 2024 Page 64 of 729

Unified Modeling Language (UML) 16 October, 2024

Activity Final, which represents the
completion of the Activity.

The Activity Final element indicates the
completion of an Activity; upon reaching
the Final, all execution in the Activity
diagram is aborted.

Activity Diagram Connector Toolbox Icons

Icon Description

The Control Flow connects two nodes in
an Activity diagram, modeling an active
transition.

An Object Flow connects two elements,
with specific data passing through it,
modeling an active transition.

The Interrupt Flow defines the two UML
concepts of connectors for Exception
Handler and Interruptible Activity
Region.

(c) Sparx Systems 2024 Page 65 of 729

Unified Modeling Language (UML) 16 October, 2024

Diagram Orientation

On an Activity diagram, you can set the flow orientation to
horizontal or vertical, or none (the default).

To set or clear the orientation, right-click on the diagram
background and click on 'Set Diagram Flow Direction'.
Then click on either:

None (the default, no specific orientation set)·

Horizontal (diagram flows across the page, Pool and Lane·

elements occupy the full width of the diagram), or

Vertical (diagram flows down the page, Pool and Lane·

elements occupy the full height of the diagram)

Notes

You can create Analysis diagrams (Simplified Activity·

diagrams) containing the elements most useful for
business process modeling, using the 'New Diagram'
dialog

You can perform model simulations on Activity models,·

and the model that you simulate can contain elements
from more than one Package; to include the external
elements in the simulation, you must create a Package
diagram containing the 'parent' Package and the 'external'
Packages containing the external elements, then create a
Package Import connector from the parent Package to
each external Package

(c) Sparx Systems 2024 Page 66 of 729

Unified Modeling Language (UML) 16 October, 2024

Use Case Diagram
Use Case diagrams capture Use Cases and the relationships
between Actors and the subject (system). You can use them
to:

Describe the functional requirements of the system·

Describe the manner in which outside things (Actors)·

interact at the system boundary

Describe the response of the system·

You generate Use Case diagram elements and connectors
from the 'Use Case' pages of the Diagram Toolbox.

Example Diagram

This diagram illustrates some features of Use Case
diagrams:

(c) Sparx Systems 2024 Page 67 of 729

Unified Modeling Language (UML) 16 October, 2024

Use Case Diagram Element Toolbox Icons

Icon Description

An Actor is a user of the system; user can
mean a human user, a machine, or even
another system or subsystem in the
model.

A Use Case is a UML modeling element
that describes how a user of the proposed
system interacts with the system to
perform a discrete unit of work.

A Test Case is a stereotyped Use Case
element which enables you to give
greater visibility to tests.

A Collaboration defines a set of
cooperating roles and their connectors.

A Collaboration Use element allows for a
Pattern defined by a Collaboration to
applied to a specific situation.

A System Boundary element is a
non-UML element used to define
conceptual boundaries.

(c) Sparx Systems 2024 Page 68 of 729

Unified Modeling Language (UML) 16 October, 2024

Packages are used to organize your
project contents, but when added onto a
diagram they can be used to depict the
structure and relationships of your model.

Use Case Diagram Connector Toolbox Icons

Icon Description

A Use relationship indicates that one
element requires another to perform some
interaction.

An Association implies that two model
elements have a relationship, usually
implemented as an instance variable in
one or both Classes.

A Generalization is used to indicate
inheritance.

An Include connection indicates that the
source element includes the functionality
of the target element.

An Extend connector is used to indicate

(c) Sparx Systems 2024 Page 69 of 729

Unified Modeling Language (UML) 16 October, 2024

that an element extends the behavior of
another.

A Realizes connector represents that the
source object implements or Realizes its
destination object.

An Invokes connector indicates that
source object, at some point, causes the
destination object to happen.

A Precedes connector indicates that the
source object must be completed before
the destination object can begin.

Notes

Invokes and Precedes are stereotyped Dependency
relationships, defined by the OPEN Modeling Language
(OML - Object-oriented Process, Environment and Notation
Modeling Language - is an international de facto standard
object-oriented development method developed and
maintained by the OPEN Consortium). They have been
incorporated into the Use Case modeling elements).

Invokes indicates that Use Case A, at some point, causes·

Use Case B to happen

Precedes indicates that Use Case C must complete before·

(c) Sparx Systems 2024 Page 70 of 729

Unified Modeling Language (UML) 16 October, 2024

Use Case D can begin

(c) Sparx Systems 2024 Page 71 of 729

Unified Modeling Language (UML) 16 October, 2024

Example Use Case Diagram
This diagram illustrates some features of Use Case
diagrams:

(c) Sparx Systems 2024 Page 72 of 729

Unified Modeling Language (UML) 16 October, 2024

StateMachines
StateMachines illustrate how an element (often a Class) can
move between States, classifying its behavior according to
transition triggers and constraining guards.

You generate StateMachine elements and connectors from
the 'State' pages of the Diagram Toolbox.

Naming

StateMachines were formerly known as State diagrams·

StateMachine representations in UML are based on the·

Harel State Chart Notation and therefore are sometimes
referred to as State Charts

State Tables

You can display a StateMachine as a diagram, or as a table
in one of three relationship formats.

Select the display format

Ste
p

Action

1 Right-click on the diagram background and select
the 'Statechart Editor' option.

(c) Sparx Systems 2024 Page 73 of 729

Unified Modeling Language (UML) 16 October, 2024

2 Select the appropriate display option:
Diagram·

Table (State-Next State)·

Table (State-Trigger)·

Table (Trigger-State)·

Example Diagram

This diagram illustrates some features of StateMachines.

(c) Sparx Systems 2024 Page 74 of 729

Unified Modeling Language (UML) 16 October, 2024

Composite Diagram States

The chain-link symbol in the bottom right corner of the
Saved State indicates that it is a State with a Composite
diagram.

You have two options for displaying the contents of a State's
Composite diagram. Firstly, you can double-click on the
parent element to display its child diagram separately, as
shown here:

By default, the child diagram displays within a labeled
frame that represents the parent object in the context of the
child diagram. You can right-click on the background and
select the 'Hide Diagram Frame' option to hide the frame,
and on the 'Show Diagram Frame' option to show the frame
again.

Alternatively, you can right-click on the composite element
on the main diagram and select the 'Advanced | Show
Composite Diagram' option, which again displays the child
diagram in a labeled frame, but this time within the context

(c) Sparx Systems 2024 Page 75 of 729

Unified Modeling Language (UML) 16 October, 2024

of the parent diagram.

ProtocolStateMachines

The OMG UML specification (UML Superstructure
Specification, v2.5, sect. 14.4) states:

"ProtocolStateMachines are used to express usage protocols.
ProtocolStateMachines express the legal sequences of Event
occurrences to which the Behaviors of an associated
BehavioredClassifier must conform. The StateMachine

(c) Sparx Systems 2024 Page 76 of 729

Unified Modeling Language (UML) 16 October, 2024

notation is a convenient way to define the order of
invocations of the behavioral features of a Classifier.
ProtocolStateMachines can be associated with Classifiers,
Interfaces, and Ports."

To create a ProtocolStateMachine, create a StateMachine
element and open the Properties window for that element.
Select the 'Behavior' tab and, on that, select the 'Protocol
StateMachine' checkbox. The element on the diagram now
has the word <<protocol>> above the element name.

StateMachine Diagram Element Toolbox
Icons

Icon Description

A State represents a situation where some
invariant condition holds; this condition
can be static (waiting for an event) or
dynamic (performing a set of activities).

A StateMachine element is a container
for groups of related State elements.

The Initial element represents a
pseudostate used to denote the default
state of a Composite State; there can be
one Initial vertex in each Region of the

(c) Sparx Systems 2024 Page 77 of 729

Unified Modeling Language (UML) 16 October, 2024

Composite State.

The Activity Final element indicates the
completion of an Activity; upon reaching
the Final, all execution in the Activity
diagram is aborted.

There are two types of History
pseudostate defined in UML: shallow and
deep history.

A Synch state is useful for indicating that
concurrent paths of a StateMachine are
synchronized. They are used to split and
rejoin periods of parallel processing.

An Object is a particular instance of a
Class at run time.

The Choice pseudostate is used to
compose complex transitional paths,
where the outgoing transition path is
decided by dynamic, run-time conditions.

Junction pseudostates are used to design
complex transitional paths in
StateMachine diagrams. A Junction can
be used to combine or merge multiple
paths into a shared transition path.

(c) Sparx Systems 2024 Page 78 of 729

Unified Modeling Language (UML) 16 October, 2024

Entry Point pseudostates are used to
define the beginning of a StateMachine.
An Entry Point exists for each region,
directing the initial concurrent state
configuration.

Exit Points are used in StateMachine
elements and StateMachine diagrams to
denote the point where the machine is
exited and the transition sourcing this exit
point.

The Terminate pseudostate indicates that
upon entry of its pseudostate, the
StateMachine's execution ends.

A Fork/Join element can be used to: 1)
split a single flow into a number of
concurrent flows, 2) join a number of
concurrent flows or 3) both join and fork
a number of incoming flows to a number
of outgoing flows.

A Fork/Join element can be used to:
1) Split a single flow into a number of
concurrent flows
2) Join a number of concurrent flows or
3) Both join and fork a number of

(c) Sparx Systems 2024 Page 79 of 729

Unified Modeling Language (UML) 16 October, 2024

incoming flows to a number of outgoing
flows

StateMachine Diagram Connector Toolbox
Icons

Icon Description

A Transition connector represents the
logical movement from one State to
another in a StateMachine diagram.

An Object Flow connects two elements,
with specific data passing through it,
modeling an active transition.

Notes

State elements can display either with or without a line·

across them; the line - as shown - displays when the
element has features such as operations (which could be
hidden) or when the 'Show State Compartment' checkbox
is selected in the 'Objects' page of the 'Preferences' dialog

It is possible to add Entry Point and Exit Point elements to·

the border of a State or StateMachine element - right-click

(c) Sparx Systems 2024 Page 80 of 729

Unified Modeling Language (UML) 16 October, 2024

on the element in the diagram and select the 'New Child
Element| Entry Point' or 'Exit Point' option; if the element
is a composite element and represented by a frame, you
can also right-click on the selected frame and add the
Entry Point or Exit Point elements

If you have Entry Points and/or Exit Points on a·

StateMachine that is a classifier for another State, you can
create Connection Point References to the classifier from
the other State

It is also possible to add Regions to a State element or·

StateMachine element frame; right-click on the selected
frame and select the 'Define Concurrent Substates' option

You can perform model simulations on StateMachine·

models, and the model that you simulate can contain
elements from more than one Package; to include the
external elements in the simulation, you must create a
Package diagram containing the 'parent' Package and the
'external' Packages containing the external elements, and
then create a Package Import connector from the parent
Package to each external Package

(c) Sparx Systems 2024 Page 81 of 729

Unified Modeling Language (UML) 16 October, 2024

Pseudostates
Pseudostates are a UML abstraction for various types of
transient vertex used in StateMachine diagrams.
Pseudostates are used to express complex transition paths.

You can create a Pseudostate by dragging one of these
element icons onto a diagram in Enterprise Architect.

Diagram Toolbox Icons

Icon Description

The Initial element represents a
pseudostate used to denote the default
state of a Composite State; there can be
one Initial vertex in each Region of the
Composite State.

Entry Point pseudostates are used to
define the beginning of a StateMachine.
An Entry Point exists for each region,
directing the initial concurrent state
configuration.

Exit Points are used in StateMachine
elements and StateMachine diagrams to
denote the point where the machine is
exited and the transition sourcing this exit

(c) Sparx Systems 2024 Page 82 of 729

Unified Modeling Language (UML) 16 October, 2024

point.

The Choice pseudostate is used to
compose complex transitional paths,
where the outgoing transition path is
decided by dynamic, run-time conditions.

Junction pseudostates are used to design
complex transitional paths in
StateMachine diagrams. A Junction can
be used to combine or merge multiple
paths into a shared transition path.

There are two types of History
pseudostate defined in UML: shallow and
deep history.

The Terminate pseudostate indicates that
upon entry of its pseudostate, the
StateMachine's execution ends.

The Activity Final element indicates the
completion of an Activity; upon reaching
the Final, all execution in the Activity
diagram is aborted.

A Fork/Join element can be used to: 1)
split a single flow into a number of
concurrent flows, 2) join a number of

(c) Sparx Systems 2024 Page 83 of 729

Unified Modeling Language (UML) 16 October, 2024

concurrent flows or 3) both join and fork
a number of incoming flows to a number
of outgoing flows.

Notes

All the listed types of pseudostate can be represented in·

code, and can generate code under the StateMachine code
generation templates from Enterprise Architect release 11
onwards

(c) Sparx Systems 2024 Page 84 of 729

Unified Modeling Language (UML) 16 October, 2024

Regions
If you are modeling an active State configuration on a
StateMachine diagram, and you need to represent several
States as being active concurrently, you can achieve this by
firstly creating a StateMachine element or Composite State
element and secondly subdividing that element into
Regions. You set out the State configuration such that there
is only ever one of the concurrently active States per
Region. Multiple transitions can occur from a single event
dispatch, so long as the similarly-triggered transitions are
divided by Regions.

Regions display on an element on a diagram as subdivisions
of a structured compartment, underneath other
compartments such as tags, responsibilities, attributes and
operations.

Access

Context
Menu

Right-click on element | Advanced |
Define Concurrent Substates

Create a Region in a Composite State or
StateMachine element

(c) Sparx Systems 2024 Page 85 of 729

Unified Modeling Language (UML) 16 October, 2024

Ste
p

Action

1 On the 'State Regions' dialog, the 'Name' field
defaults to '<anonymous>'.

2 If you want to create Regions that have no title,
simply click on the Save button once for each
Region to create.
If you want to create named Regions, type the name
and click on the Save button for each Region.

3 When you have created as many Regions as you
need, click on the Close button.
You can now populate the Regions with elements
from the 'State' pages of the Diagram Toolbox.

Notes

Changes to the elements in a Region are committed when·

the diagram is saved; if you want to undo the changes,
reload the diagram without saving

Any States, State Nodes (Pseudo-States) or Synch·

elements added to a Region are owned by that Region
and, ordinarily, cannot be dragged into another Region;
however, if you attempt to drag a State between Regions,
the 'Move embedded element to region' menu option

(c) Sparx Systems 2024 Page 86 of 729

Unified Modeling Language (UML) 16 October, 2024

displays which - if you select it - allows the transfer to
complete

(c) Sparx Systems 2024 Page 87 of 729

Unified Modeling Language (UML) 16 October, 2024

Create a Connection Point Reference
A Connection Point Reference represents the use, by a
Submachine State, of an Entry Point or Exit Point
pseudostate defined in the State element's classifier
StateMachine. You initially create the Connection Point
Reference elements themselves as Entry Points or Exit
Points.

Create Entry Points and/or Exit Points

Ste
p

Action

1 Create or open the classifier StateMachine (as a child
diagram of a Class element).
The StateMachine is represented by a labeled frame.

2 If the Entry Points and/or Exit Points do not already
exist, right-click on the inside edge of the frame and
select the 'New Element | Entry Point' or 'New
Element | Exit Point' option, as necessary.
The corresponding pseudostate element is
immediately created on the edge of the frame. If you
prefer, you can double-click on the element and give
it a specific name.

3 Create as many additional Entry Point and/or Exit

(c) Sparx Systems 2024 Page 88 of 729

Unified Modeling Language (UML) 16 October, 2024

Point elements as you need.

4 If the corresponding State element does not already
exist, drag a State icon from the Diagram Toolbox
into the frame.
Create the appropriate connectors between the State
element and the Entry Point and Exit Point elements.

5 Save the diagram.

Create Connection Point References

Ste
p

Action

1 Create or open the calling StateMachine (as a child
diagram of a Class element).

(c) Sparx Systems 2024 Page 89 of 729

Unified Modeling Language (UML) 16 October, 2024

2 If the elements do not already exist, create the
appropriate State and pseudostate elements and
connectors in the diagram.

3 Click on the calling State element and press Ctrl+L
to display the 'Select Element' dialog.
Browse for and select the classifier StateMachine
from the 'Create Entry Points and/or Exit Points'
stage.

4 Right-click on the State element, and select the 'New
Element | Entry Point' or 'New Element | Exit Point'
option, as you need.
The corresponding pseudostate element is
immediately created on the border of the element.

5 Double-click on the Entry Point element.
The 'Edit ConnectionPointReference' dialog
displays.

6 If you prefer, in the 'Name' field type a new name for
the selected Entry Point.

(c) Sparx Systems 2024 Page 90 of 729

Unified Modeling Language (UML) 16 October, 2024

In the 'Specify submachine's EntryPoints as
reference' panel, select the checkbox against each of
the classifier's Entry Points to create a reference to.
You can select more than one checkbox.

7 Click on the OK button.

8 If necessary, repeat steps 4 to 7 for the State
element's Exit Point.

(c) Sparx Systems 2024 Page 91 of 729

Unified Modeling Language (UML) 16 October, 2024

StateMachine Table
A StateMachine table is one of two variants of a
StateMachine (the other is the StateMachine diagram). It
displays the information of the StateMachine in table form,
and is a method of specifying the discrete behavior of a
finite state-transition system; that is, what state the
StateMachine moves to and the conditions under which the
transition takes place.

Access

Context
Menu

Right-click on the background of a
StateMachine diagram | Statechart Editor
| Table (option)

StateMachine Table Display

You can display the State transition in the table as one of
two different types of relationship:

Type Description

State -
Trigger

The rows indicate the current states and
the columns indicate trigger events.
The cell at the intersection of a row and
column identifies the target state in the

(c) Sparx Systems 2024 Page 92 of 729

Unified Modeling Language (UML) 16 October, 2024

transition if the trigger occurs, and the
condition (or guard) of the transition, or
the other way around if you prefer, in a
Trigger - State format.

State - Next
State

The rows and columns both indicate
states, and the cell at the intersection of a
row and column indicates:

The event that triggers a transition from·

the current (row) state to the next
(column) state
The condition (or guard) of the event,·

and
The effect of the transition·

Select the display format

Ste
p

Action

1 Right-click on the diagram background and select
the 'Statechart Editor' option.

2 Select the appropriate display option:
Diagram·

Table (State-Next State)·

(c) Sparx Systems 2024 Page 93 of 729

Unified Modeling Language (UML) 16 October, 2024

Table (State-Trigger)·

Table (Trigger-State)·

(c) Sparx Systems 2024 Page 94 of 729

Unified Modeling Language (UML) 16 October, 2024

StateMachine Table Options
You can choose the StateMachine table layout and set other
options from the 'StateMachine Diagram: Options' dialog,
which you display by either:

Double-clicking on the StateMachine table background or·

Right-clicking on the background and selecting the 'State·

Table Options' option

Options

Option Action

Table Format Select the required table format.
State - Trigger:

Rows represent States, each State name·

in a left edge cell
Columns represent Triggers, each·

Trigger name in a column header cell
The intersection of a row and column·

identifies the Transition (if there is one)
The Transition cell displays·

information about the next State and
the condition (guard) of the Transition

Trigger - State: as for State - Trigger,
except that rows represent Triggers and
columns represent States.

(c) Sparx Systems 2024 Page 95 of 729

Unified Modeling Language (UML) 16 October, 2024

State - Next State:
Both rows and columns represent·

States
The intersection of row and column·

defines the transition (if there is one)
from the row State to the column State

Cell Size Complete the next four fields.

Transition
Cell Width

Specify the width of the transition cells
(that is, the column width).

Transition
Cell Height

Specify the height of the transition cells
(that is, the row height).

Left Edge
Cell Width

Specify the width of the left edge (row
title) cells.

Top Edge
Cell Height

Specify the height of the top edge
(column title) cells.

Cell Color Complete the next three fields.

State/Trigger
Cell

Select the color of the row and column
title cells.

State/Trigger
Enumeration

Select the color of the enumeration
(row/column numbering) cells.

(c) Sparx Systems 2024 Page 96 of 729

Unified Modeling Language (UML) 16 October, 2024

You must select at least one of the
'Enable State Enumeration' and 'Enable
Event Enumeration' checkboxes to set
this color.

Transition
Cell

Select the color of the transition cells (in
the main body of the table).

Highlight
Options

Highlight
Zones
Related to
Selected
Transition

Highlight the cells for all elements
involved in a selected transition - the
initial state, the target state, and the
trigger.

Highlight
Color

Select the color of the highlight.

Use Different
Color for
Target State

Highlight the cell for the target element in
a transition in a different color to the cell
for the source element.

Target Zone
Color

Select the color of the highlight.

Display
Options

(c) Sparx Systems 2024 Page 97 of 729

Unified Modeling Language (UML) 16 October, 2024

Always
Display an
Empty State
Zone

Add an empty row (and, on a State - Next
State table, an empty column) to the end
of the table.
The title cell contains a button. You
can click twice (not double-click) on the
button to edit the cell and identify a new
state. In this case, another empty state
zone is automatically added.

Enable State
Enumeration

Add a cell to each state title cell, to
number the state. Numbering starts at 0.

Prefix If required, type a prefix for the state
number or delete the default 'S' to have no
prefix.

Enable Event
Enumeration

Add a cell to each event or trigger title
cell, to number the event. Numbering
starts at 0.

Prefix If required, type a prefix for the event
number or delete the default E to have no
prefix.

Sample State
Table

Display a preview of the table format as
you define it.

Advanced Define diagram options. The

(c) Sparx Systems 2024 Page 98 of 729

Unified Modeling Language (UML) 16 October, 2024

StateMachine diagram 'Properties' dialog
displays.

Restore
Defaults

Reapply the State Table diagram default
values.

Apply Apply the changed options to the State
Table diagram.

(c) Sparx Systems 2024 Page 99 of 729

Unified Modeling Language (UML) 16 October, 2024

StateMachine Table Operations
As a StateMachine table is a variant of a StateMachine
diagram, most of the operations for manipulating the data
are the same as for StateMachine diagrams. The operations
specific to StateMachine tables are described in these topics:

Operations

Operation

Change StateMachine Table Position

Change StateMachine Table Size

Insert New State

Insert Trigger

Insert/ChangeTransition

Reposition State or Trigger Cells

Add Legend

Locate Cell in StateMachine diagram

(c) Sparx Systems 2024 Page 100 of 729

Unified Modeling Language (UML) 16 October, 2024

StateMachine Table Conventions

Export State Table To CSV File

(c) Sparx Systems 2024 Page 101 of 729

Unified Modeling Language (UML) 16 October, 2024

Change StateMachine Table Position
If necessary, you can move the StateMachine table around
in the Diagram View.

Change the position of the StateMachine
table

Ste
p

Action

1 Press Ctrl+A or double-click on the top left cell to
select the whole StateMachine table.

2 Drag and drop the StateMachine table to the required
position.
Alternatively, use Shift+Right Arrow, Left Arrow,
Up Arrow or Down Arrow to move the
StateMachine table.

(c) Sparx Systems 2024 Page 102 of 729

Unified Modeling Language (UML) 16 October, 2024

Change StateMachine Table Size
There are three ways to change the size of the StateMachine
table:

Change the cell size on the 'StateMachine Diagram:·

Options' dialog

Press Ctrl+A or double-click on the top left cell to select·

the whole StateMachine table, then press Ctrl+ 'Left', 'Up',
'Right', or 'Down' to change the size

Select the StateMachine table, then drag the shape handles·

to change the size

(c) Sparx Systems 2024 Page 103 of 729

Unified Modeling Language (UML) 16 October, 2024

Insert Trigger
If the StateMachine table format is either State-Trigger or
Trigger-State, you can use any of these methods to insert a
new Trigger:

Methods

Ste
p

Action

1 In the top left cell in the StateMachine table, move
the cursor to the word 'Event' to display a + at the
end of the word; click on the + to create a new
Trigger.

2 In the top left cell in the StateMachine table,
right-click and select the 'Add Trigger' option to
create a new Trigger.

3 Select an existing Trigger in the StateMachine table,
then press the Insert key to insert a new Trigger
before the existing Trigger.

4 Click on an existing Trigger in the StateMachine
table, right-click and select either the:

'Insert New Trigger Before' option to insert a new·

Trigger before the current Trigger, or

(c) Sparx Systems 2024 Page 104 of 729

Unified Modeling Language (UML) 16 October, 2024

'Insert New Trigger After' option to insert a new·

Trigger after the current Trigger

(c) Sparx Systems 2024 Page 105 of 729

Unified Modeling Language (UML) 16 October, 2024

Insert/Change Transition
This topic explains how you can insert or modify a
transition link between two State elements.

Options

Action Description

Insert a new
Transition

You can insert a new Transition using
one of these methods.
Right-click on the cell in which to create
a Transition:

If the StateMachine table format is·

State-Trigger or Trigger-State, the
context menu lists the States you can
choose as the target of the Transition;
click on the required State name to
create the Transition
If the StateMachine table format is·

State-Next State, click on the 'Insert
Transition' context menu option to
create the Transition

Alternatively, in the 'State Relationships'
page of the Toolbox, select the Transition
element, then click on the cell in the
StateMachine table in which to create the
Transition; double-click on the Transition

(c) Sparx Systems 2024 Page 106 of 729

Unified Modeling Language (UML) 16 October, 2024

to define it in the 'Transition Properties'
dialog.

Change the
Transition

As for the State Chart diagram, to change
the properties of a Transition double-click
on the 'Transition' cell and edit the details
on the 'Transition Properties' dialog.

Change
Transition
States

You can change the source and target of
the Transition by right-clicking the
Transition and selecting the 'Advanced |
Set Source and Target' option.
Alternatively, you can change the
Transition source, target or Trigger by
clicking on the Transition and dragging it
to a different cell.
If the StateMachine table format is either
State-Trigger or Trigger-State, you can
change the target state of a Transition by:

Highlighting the target state name in1.
the Transition cell and clicking on it to
display a list of the states in the table.
Clicking on the preferred target state2.
name.

Highlight
States and
Trigger
Related to

You can select options to highlight the
source State, target State and Trigger
cells associated with a Transition, using
the 'Highlight Options' panel on the

(c) Sparx Systems 2024 Page 107 of 729

Unified Modeling Language (UML) 16 October, 2024

Transition 'StateMachine Diagram: Options' dialog.
When you click on the Transition cell its
associated State and Trigger cells are
highlighted.
Alternatively, click on the Transition cell
and press and hold the L key.

(c) Sparx Systems 2024 Page 108 of 729

Unified Modeling Language (UML) 16 October, 2024

Insert New State

Options

Action Description

Insert a new
State in the
StateMachine
table

You can insert a new State in the
StateMachine table, using one of these
methods:

In the top left cell in the StateMachine1.
table, move the cursor to the word State
to display a + at the end of the word;
click on the + to create a new State
Right-click in the top left cell in the2.
StateMachine table and select 'Add
State'
Right-click on an existing State cell in3.
the StateMachine table and select:
 - 'Insert New State Before' to insert
a new State before the
 current State, or
 - 'Insert New State After' to insert a
new State after the current
 State
Click on an existing State cell in the4.
StateMachine table, and press the Insert
key to create and insert a new State

(c) Sparx Systems 2024 Page 109 of 729

Unified Modeling Language (UML) 16 October, 2024

above the selected State
In the Toolbox, on the 'State Elements'5.
page, click on an element and then
click on:
 - The diagram background to add a
new State to the end of
 the table, or
 - An existing State cell to add the
new State just above it

From the 'State Elements' page of the
Toolbox you can insert State, Initial,
Final, Entry, Exit and Terminate
elements.

Add a
Substate to a
selected State

To add a Substate to a selected State,
right-click on the required State cell in
the StateMachine table, and select 'Add
Substate'; Enterprise Architect adds the
Substate to the State.
If the selected State does not allow a
Substate, the 'Add Substate' option is
grayed out.
You can also drag one existing State over
another; if the second State allows
Substates, the dragged State then
becomes its Substate.
Similarly, you can change the parent
State of a Substate by dragging the
Substate from the original parent State to

(c) Sparx Systems 2024 Page 110 of 729

Unified Modeling Language (UML) 16 October, 2024

a different State.

Remove the
parent
relation of a
Substate and
make it a
separate State

To remove the parent relation of a
Substate and make it a separate State,
right-click on the Substate in the
StateMachine table and select 'Remove
Parent Relation'; the Substate cell
becomes a State cell.
You can also drag and drop the Substate
onto the top left cell of the StateMachine
table; the dragged Substate again
becomes a State cell.

(c) Sparx Systems 2024 Page 111 of 729

Unified Modeling Language (UML) 16 October, 2024

Reposition State or Trigger Cells
You can change the position of a selected State or Trigger
cell in one of these ways:

Right-click on the State or Trigger title cell and select the·

appropriate 'Order | Move xxx' option

Click on the cell and press Shift+Right Arrow, Left·

Arrow, Up Arrow or Down Arrow

(c) Sparx Systems 2024 Page 112 of 729

Unified Modeling Language (UML) 16 October, 2024

Add Legend
You can add a simple legend to any StateMachine Table cell
that has no transition. The two legend symbols are:

I - Ignore·

N - Never Happen·

Assign a legend symbol to a StateMachine
Table cell

Ste
p

Action

1 Click on the cell to which to assign the legend and
press:

The I key to insert the 'Ignore' legend, or·

The N key to insert the 'Never Happen' legend·

The required symbol displays in the center of the
cell.

Alternatively

Ste
p

Action

(c) Sparx Systems 2024 Page 113 of 729

Unified Modeling Language (UML) 16 October, 2024

1 Right-click on the cell to which to assign the legend.

2 Select the appropriate context menu option:
Legend | Ignore·

Legend | Never Happen·

The required symbol displays in the center of the
cell.

Notes

To remove a legend symbol from a cell, either:·

Click on the cell and press Delete, or·

Right-click on the cell and select Legend | Remove·

Legend

(c) Sparx Systems 2024 Page 114 of 729

Unified Modeling Language (UML) 16 October, 2024

Find Cell in StateMachine Diagram

Locate In State Chart

On the StateMachine table, to locate a selected State or
Trigger element in a StateMachine diagram:

Select 'Find | Locate in State Chart'·

Enterprise Architect switches to the StateMachine diagram
and highlights the selected element.

You can locate a Transition relationship in a similar way, by
selecting 'Locate in State Chart'.

A Trigger on a StateMachine table might or might not exist
on the corresponding StateMachine diagram; if the Trigger
does not exist on the StateMachine diagram, the 'Locate in
State Chart' option is disabled.

Locate In State Table

On the StateMachine diagram, to locate a selected State or
Trigger element in the corresponding StateMachine table:

Select 'Find | Locate in State Table'·

Enterprise Architect switches to the StateMachine table and
highlights the selected element.

You can locate a Transition relationship in a similar way, by
selecting 'Locate in State Table'.

(c) Sparx Systems 2024 Page 115 of 729

Unified Modeling Language (UML) 16 October, 2024

StateMachine Table Conventions

Trigger

Deleting a Trigger removes it completely from the model,·

therefore you cannot UNDO a Trigger deletion

There is a <None> column at the end of the Event heading·

row; this is for Transitions that have no Trigger
information

State

From the Toolbox you can insert these State element types
only (although the StateMachine table might pick up and
display other types, such as Submachine State):

State·

Initial·

Final·

Entry·

Exit·

Terminate·

Transition

The Transition cell displays its properties in one of two
ways, depending on the StateMachine table format; if the
StateMachine table format is State - Trigger or Trigger -

(c) Sparx Systems 2024 Page 116 of 729

Unified Modeling Language (UML) 16 October, 2024

State, the Transition cell displays the Guard and Target as
shown:

If the StateMachine table format is State - Next State, then
the Transition cell displays the Trigger, Guard and Effect in
this format:

In the StateMachine table, you can edit the Guard and Effect
in place. If the Guard or Effect is empty for your selected
Transition cell, the cell displays an ellipsis (...) instead; click
twice (not double-click) on the ellipsis to type in the Guard
and Effect names.

(c) Sparx Systems 2024 Page 117 of 729

Unified Modeling Language (UML) 16 October, 2024

Export State Table To CSV File

Export a StateMachine Table to a CSV file

Ste
p

Action

1 Open the required StateMachine Table.

2 Right-click on the diagram background and select
the 'Export Statechart to CSV file' option.
The 'Save As browser' dialog displays.

3 Select the appropriate directory location and type in
the .csv filename.

4 Click on the Save button.

(c) Sparx Systems 2024 Page 118 of 729

Unified Modeling Language (UML) 16 October, 2024

Example State-Trigger Table
The rows indicate the current states and the columns
indicate trigger events (or the other way around if you
prefer, in a Trigger - State format).

The cell at the intersection of a row and column identifies
the target state in the transition if the trigger occurs, and the
condition (or guard) of the transition.

(c) Sparx Systems 2024 Page 119 of 729

Unified Modeling Language (UML) 16 October, 2024

Example State-Next State Table
The rows and columns both indicate states, and the cell at
the intersection of a row and column indicates:

The event that triggers a transition from the current (row)·

state to the next (column) state

The condition (or guard) of the event, and·

The effect of the transition·

(c) Sparx Systems 2024 Page 120 of 729

Unified Modeling Language (UML) 16 October, 2024

StateMachine Table Simulation
A StateMachine Table is a representation of a StateMachine,
and can be simulated in exactly the same way as a
StateMachine diagram.

Access

With a StateMachine displayed in Table form, use any of
the methods outlined in this table to start the simulation.

Ribbon Simulate > Run Simulation > Start, or
Simulate > Dynamic Simulation >
Simulator > Open Simulator Window >

 (Start icon)

Context
Menu

Right-click on view background | Execute
Simulation | <Interpreted or Manual>

Highlight active cells

As the simulation executes, the table cells change color to
indicate the:

Currently active State(s) - the color set in the 'Highlight·

Color' field of the 'StateMachine Options' dialog, and a
dark border

Potential next States(s) - A variant of the color in the·

(c) Sparx Systems 2024 Page 121 of 729

Unified Modeling Language (UML) 16 October, 2024

'Highlight Color' field or, if the 'Use Different Color for
Target State' checkbox is selected on the 'StateMachine
Options' dialog, the color set in the 'Target Zone Color'
field

Active Transition(s) - the color set in the 'Transition Cell'·

field of the 'StateMachine Options' dialog

Trigger(s) - the color set in the 'Highlight Color' field of·

the 'StateMachine Options' dialog

Non-active States - gray·

For example:

Signal Triggers

As when running a simulation as a diagram, the simulation
will automatically traverse transitions with no guards or
validated guards. Transitions with a Trigger will not be
followed unless that Trigger has been fired. They can be
fired automatically from the Simulation Events window or
you can fire a Trigger manually by right-clicking on the

(c) Sparx Systems 2024 Page 122 of 729

Unified Modeling Language (UML) 16 October, 2024

Transition or Trigger cell and selecting 'Signal Trigger in
Simulation'.

(c) Sparx Systems 2024 Page 123 of 729

Unified Modeling Language (UML) 16 October, 2024

Timing Diagram
A Timing diagram defines the behavior of different objects
within a time scale. It provides a visual representation of
objects changing state and interacting over time. You can
use it to:

Define hardware-driven or embedded software·

components; for example, those used in a fuel injection
system or a microwave controller

Specify time-driven business processes·

You generate Timing diagram elements and connectors
from the 'Timing' pages of the Diagram Toolbox.

Example Diagram

(c) Sparx Systems 2024 Page 124 of 729

Unified Modeling Language (UML) 16 October, 2024

Timing Diagram Element Toolbox Icons

Icon Description

A State Lifeline element represents the
state of an object across a measure of
time, using changes in y-axis to represent
discrete transitions between states.

A Value Lifeline element represents the
state of an object across a measure of
time, using parallel lines indicating a
steady state, along the x-axis.

A Message Label is an alternative way of
denoting Messages between Lifelines,
which is useful for 'uncluttering' Timing
diagrams strewn with messages.

A Message Endpoint element indicates
that a Message:

Terminates at an undefined point·

outside the State or Value Lifeline,
having started at an identified point
within the Lifeline, or
Originates from an undefined point·

outside a State or Value Lifeline,
terminating at an identified point

(c) Sparx Systems 2024 Page 125 of 729

Unified Modeling Language (UML) 16 October, 2024

within the Lifeline

A Diagram Gate element indicates that a
Message:

Terminates at a defined point outside·

the State or Value Lifeline, having
started at an identified point within the
Lifeline, or
Originates at a defined point outside a·

State or Value Lifeline, terminating at
an identified point within the Lifeline

The defined point that the Diagram Gate
is anchored to is the border of an
Interaction Fragment, indicating that the
Message issues from or delivers to that
Fragment.

Timing Diagram Connector Toolbox Icon

Icon Description

Messages indicate a flow of information
or transition of control between elements.

(c) Sparx Systems 2024 Page 126 of 729

Unified Modeling Language (UML) 16 October, 2024

Create a Timing Diagram

Create a Timing diagram

Ste
p

Action

1 Right-click on a Package in the Browser window and
select 'Add Diagram'.
The 'New Diagram' dialog displays.

2 In the 'Select From' panel, select 'UML Behavioral'.

3 In the 'Diagram Types' panel, select 'Timing'.

4 Click on the OK button.
The Diagram View displays, on which you create the
Timing elements for the diagram.

(c) Sparx Systems 2024 Page 127 of 729

Unified Modeling Language (UML) 16 October, 2024

Set a Time Range

Set a time range before adding Lifeline
elements to your Timing diagram

Ste
p

Action

1 Right-click on the diagram and select 'Set Timeline
Range'.
The 'Set Timeline Range' dialog displays.

2 In the 'Start Time' and 'End Time' fields, type the
numeric values for the start and end points of the
timeline; for example, set the range 0 to 100.
The start time must be less than the end time.

3 In the 'Time Units' field, type the unit in which the
time is measured; for example, seconds or minutes.

4 If it is not necessary to show the time range on the
diagram, select the 'Suppress In Diagram' checkbox.

5 Click on the OK button.
If you have not suppressed it, the time range displays
underneath the Lifeline elements that you create on
the diagram.

(c) Sparx Systems 2024 Page 128 of 729

Unified Modeling Language (UML) 16 October, 2024

(c) Sparx Systems 2024 Page 129 of 729

Unified Modeling Language (UML) 16 October, 2024

Edit a Timing Diagram
On a Timing diagram, you can add State Lifeline elements
and Value Lifeline elements. You can maintain the states
and transitions on these Lifeline elements either on the
diagram itself or via the 'Configure Timeline' dialog.

(c) Sparx Systems 2024 Page 130 of 729

Unified Modeling Language (UML) 16 October, 2024

Add and Edit State Lifeline
From the 'Timing elements' page of the Toolbox drag a State
Lifeline icon onto your diagram. The element displays on
the diagram.

Edit Properties

Task Action

Define the
name of the
State Lifeline

Right-click on the element and select1.
the 'Properties | Properties' option; the
'Properties window for the element
displays, showing the 'Element' tab.
Overtype the 'Name' field.2.
Click off the Properties window.3.

Sizing and
Scale

In the top left corner of a selected
Lifeline element are the left and right
quick sizing buttons ().
These buttons increase or decrease the
width of the Lifeline element, which in
turn controls the scale width of each time
unit; by increasing the width of the
element you increase the resolution when
adding transitions, which makes them
easier to edit.
In order to edit the State Lifeline element,

(c) Sparx Systems 2024 Page 131 of 729

Unified Modeling Language (UML) 16 October, 2024

you must click on it to select it.

Set Timeline
Start Position

You might require more space at the start
of your timelines; for example, to use
long state names.
To insert more space in all the timelines
on a diagram:
1. Right-click on the diagram background
and select the 'Set Timeline Start Position'
option; the 'Set Timeline Start Position'
dialog displays.
2. The 'Value 80 to 300' field defaults to
80 as the minimum distance in pixels
between the start of the timeline element
and the start of the timeline itself; type a
new value up to 300 pixels and click on
the OK button to increase the space at the
start of the timeline.
These two diagrams have start positions
of 80 pixels and 150 pixels respectively.

(c) Sparx Systems 2024 Page 132 of 729

Unified Modeling Language (UML) 16 October, 2024

You now edit the states and transitions in
the State Lifeline.

(c) Sparx Systems 2024 Page 133 of 729

Unified Modeling Language (UML) 16 October, 2024

Add States to a State Lifeline

Add States to a State Lifeline

Step Description

1 Click on the State Lifeline element.
The New State button () and Edit States
button () display at the bottom left of
the element.

2 Click on the New State button.
The 'New State' dialog displays.

3 In the 'State' field, type the name of the
state.

4 Click on the OK button.
You must add at least two states; for
example, 'On' and 'Off'.

5 As you add states, increase the height of
the element by dragging one of the
icons on the edge of the element.
You can also add states using the 'States'
tab of the 'Configure Timeline' dialog.
Add either:

(c) Sparx Systems 2024 Page 134 of 729

Unified Modeling Language (UML) 16 October, 2024

Discrete states to the Timeline, or·

A continuous range of numeric states·

(c) Sparx Systems 2024 Page 135 of 729

Unified Modeling Language (UML) 16 October, 2024

Edit States in a State Lifeline

Edit States in a State Lifeline

Ste
p

Description

1 Click on the State Lifeline element and click on the
required state.
The 'Edit State' dialog displays.

2 In the 'State' field, change the name as required.

3 Click on the OK button.

4 If necessary, change the order of the states by either:
Clicking on the up or down arrows () beside each·

state name, or
Right-clicking on the state name and selecting the·

'Move Up' or 'Move Down' options
You can also edit the states using the 'States' tab of
the 'Configure Timeline' dialog.

(c) Sparx Systems 2024 Page 136 of 729

Unified Modeling Language (UML) 16 October, 2024

Delete States in a State Lifeline

Delete States in a State Lifeline

Ste
p

Description

1 Right-click on the state name and select the 'Delete'
option.

Alternatively

Ste
p

Description

1 Click on the State Lifeline element.

2 Hold down Ctrl and move the cursor over the state
name.
The cursor changes form ().

3 Click the mouse button.
The state name is deleted.

(c) Sparx Systems 2024 Page 137 of 729

Unified Modeling Language (UML) 16 October, 2024

Edit Transitions In State Lifeline
In a Timing diagram you can show the transitions (changes
of state) that occur within a StateMachine over a fixed time
period and at certain timing points. This is similar in many
respects to an Interaction lifeline with State changes
highlighted. As events and changes occur within the
instance this Timing diagram represents, state changes occur
and are mapped onto this Timeline. In that respect it is a
record of how a particular aspect of the system behaves over
time.

When building a Timeline it is necessary to define the States
first, and then to add the explicit transitions between those
States at particular timing points.

Edit Transitions

Task Action

Add and
Move
Transitions

After you have added states, you can add
transitions between states directly on the
timeline using the mouse.

Change the
Transition
Time

Move the cursor over one or other of the
vertical transition lines and drag the line
left or right to change the time of the
transition.
While on the line, the cursor shape

(c) Sparx Systems 2024 Page 138 of 729

Unified Modeling Language (UML) 16 October, 2024

changes to the horizontal movement
cursor ().

Merge
Transitions

If necessary, you can 'push' a transition to
merge it with the next or previous
transition point on any Lifeline element
on the diagram.
Position the cursor off the appropriate
side of the transition line; the cursor
changes form (or).
Click the mouse button; the system
locates the nearest transition in the
required direction, on any element on the
diagram, and merges the current
transition with that transition.

Delete
Transitions

Transitions are automatically deleted
when you move the transition to the same
state as the previous transition state, and
release the cursor.
Alternatively, right-click on the transition
line and select the 'Delete' option.

(c) Sparx Systems 2024 Page 139 of 729

Unified Modeling Language (UML) 16 October, 2024

Add and Move Transitions
After you have added states, you can configure state
changes (transitions) directly on the Timeline using the
mouse. This is a fast and effective means of building a
detailed model of state changes over time.

In order to modify the Timeline, place the mouse over the
existing Timeline. As you move the cursor over the
Timeline, the cursor changes to one of three shapes,
described here.

Access

Context
Menu

Right-click on the transition line | Edit

Other Click directly on the appropriate
transition line, after the transition begins

Modify Timeline

As you move the cursor over the vertical line of a transition,
the time at which the transition occurs displays next to the
line.

Task Action
The move cursor

(c) Sparx Systems 2024 Page 140 of 729

Unified Modeling Language (UML) 16 October, 2024

Displays when it is directly over the
timeline.
Hold down the mouse button and drag the
line to move the timeline to a state above
or below the current position; you can
move the transition more than one state
up or down, if necessary.

The new transition up
cursor

Displays when it is just below the
timeline, and there is another state above
the line.
Press and hold the Alt key; the cursor
changes ().
Click to create a new transition to the
state above the line.
To push the transition up more than one
state, move the cursor onto the line and
drag it up.
The transition is for one interval unit; you
can make it longer by changing the
transition time.
If you do not hold the Alt key, the cursor
does not change and the whole timeline
from the transition onwards moves up.

The new transition down
cursor

Displays when it is just above the
transition line, and there is another state
below the line.

(c) Sparx Systems 2024 Page 141 of 729

Unified Modeling Language (UML) 16 October, 2024

Press and hold the Alt key; the cursor
changes ().
Click to create a new transition to the
state below the line.
To push the transition down more than
one state, move the cursor onto the line
and drag it down.
The transition is for one interval unit; you
can make it longer by changing the
transition time.
If you do not hold the Alt key, the cursor
does not change and the whole timeline
from the transition onwards moves down.

Edit Transition

Edit the transitions as required, on the 'Edit Transition'
dialog.

Option Action

At Time Type the point on the timescale at which
the transition occurs.

Transition To Type the name of the state to which the
transition occurs.

Event Type the name of the event that the

(c) Sparx Systems 2024 Page 142 of 729

Unified Modeling Language (UML) 16 October, 2024

transition represents.
This displays on the Timeline element
just above the transition line.

Duration
Constraint

Type any constraint on the duration of the
transition.
This displays on the Timeline element,
along the top of the element over the
transition.

Time
Constraint

Type any constraint on the start of the
transition.
This displays on the Timeline element at
the start of the transition.

OK Click on this button to save the changes.

Notes

Once Event, Duration Constraint or Time Constraint are·

displayed on the diagram, you can edit them directly by
clicking on them to display their specific dialog

You can delete them by pressing and holding the Ctrl key·

as you click on them; the cursor changes form when you
press the Ctrl key

You can also edit transitions using the 'Transitions' tab of·

the 'Configure Timeline' dialog

(c) Sparx Systems 2024 Page 143 of 729

Unified Modeling Language (UML) 16 October, 2024

(c) Sparx Systems 2024 Page 144 of 729

Unified Modeling Language (UML) 16 October, 2024

Add and Edit Value Lifeline
From the Toolbox drag a 'Value Lifeline' element onto your
diagram. The element displays on the diagram.

Edit the Value Lifeline name

Ste
p

Action

1 Right-click on the element and select the 'Properties |
Properties' option.
The Properties window displays for the Timeline
element, showing the 'Element' tab.

2 Overtype the 'Name' field.

3 Click off the Properties window.

Sizing and Scale

In the top left corner of a selected Lifeline element are the
left and right quick sizing buttons (). These buttons
increase or decrease the width of the Lifeline element,
which in turn controls the scale width of each time unit. By
increasing the width of the element you increase the
resolution when adding transitions, which makes them

(c) Sparx Systems 2024 Page 145 of 729

Unified Modeling Language (UML) 16 October, 2024

easier to edit.

(c) Sparx Systems 2024 Page 146 of 729

Unified Modeling Language (UML) 16 October, 2024

Add States In Value Lifeline
Adding states to a Value Lifeline is similar to adding states
to a State Lifeline element.

For a Value Lifeline, only the first state displays on the
diagram. The other states are added to a list to access when
creating transitions; they only display on the Lifeline
element as you create transitions to those states.

You can only edit or delete states in a Value Lifeline
element using the 'States' tab of the 'Configure Timeline'
dialog.

(c) Sparx Systems 2024 Page 147 of 729

Unified Modeling Language (UML) 16 October, 2024

Edit Transitions In Value Lifeline

Add Transitions to the states on a Value
Lifeline element, via the diagram

Ste
p

Action

1 Move the cursor above the transition line.
The cursor changes form ().

2 Click the mouse button.
The 'New Transition Event' dialog displays.

3 In the 'Transition To' field, click on the drop-down
arrow and select a state from the list of available
states; this displays on the Lifeline element within
the transition box.
The remaining fields on the dialog are optional.

4 In the 'Event' field, type the name of the event that
the transition represents; this displays on the Lifeline
element just below and at the start of the transition
line.

5 In the 'Duration Constraint' field, type any constraint
on the duration of the transition; this displays on the

(c) Sparx Systems 2024 Page 148 of 729

Unified Modeling Language (UML) 16 October, 2024

Lifeline element, along the top of the element over
the transition.

6 In the 'Time Constraint' field, type any constraint on
the start of the transition.
This displays on the Lifeline element at the start of
the transition, just after the Event name.

7 Click on the OK button to create the new transition.

Edit a Transition

Ste
p

Action

1 Click on the state name in the transition.
Alternatively, right-click on the state name and
select the 'Edit' option.
The 'Edit Transition' dialog displays, which is the
same as the 'New Transition Event' dialog, except
that the 'At Time' field is enabled.

2 If necessary, overtype the 'At Time' field to define a
different start point.
You cannot change the 'At Time' field for the first
state in the timeline; this is always '0'.

(c) Sparx Systems 2024 Page 149 of 729

Unified Modeling Language (UML) 16 October, 2024

3 Edit the remaining fields as necessary.

4 Click on the OK button to save the changes.

Change the transition time

Ste
p

Action

1 To change the start or end time of a transition, click
on the start or end point of the transition and drag it
to the new position.
While on the line, the cursor shape changes to the
horizontal movement cursor ().

Delete Transitions

Ste
p

Action

1 To delete a transition, press and hold Ctrl and click
on the transition state name.
While you hold Ctrl on the transition state name, the

(c) Sparx Systems 2024 Page 150 of 729

Unified Modeling Language (UML) 16 October, 2024

cursor changes form ().
Alternatively, right-click on the state name and
select the 'Delete' option.

(c) Sparx Systems 2024 Page 151 of 729

Unified Modeling Language (UML) 16 October, 2024

Configure Timeline - States
You can manage states using the 'States' tab of the
'Configure Timeline' dialog. To display this dialog, either:

Double-click on the Lifeline element·

Right-click on the Lifeline element and select the·

'Properties' option, or

On a Value Lifeline, click on the button·

The 'Configure Timeline' dialog defaults to the 'States' tab.

All states currently defined for the Lifeline element are
listed in the 'States' panel.

Add a new State

Ste
p

Action

1 In the 'State Name' field, type the name of the first
new state in the Lifeline element; for example,
'WaitState'.

2 Click on the Save button.
The state is added to the 'States' panel and (for a
State Lifeline Element) to the diagram.

3 Click on the New button.

(c) Sparx Systems 2024 Page 152 of 729

Unified Modeling Language (UML) 16 October, 2024

4 In the 'State Name' field, type the name of the next
state in the Lifeline element.

5 Repeat steps 2 to 5 until you have added all required
states (you must add at least three to the Lifeline
element).

6 When you have added all the required states, click
on the OK button to close the 'Configure Timeline'
dialog.

Edit an existing state

Ste
p

Action

1 Click on the state in the 'States:' list.

2 In the 'State Name' field, change the name of the
state.

3 Click on the Save button.

Delete an existing State

(c) Sparx Systems 2024 Page 153 of 729

Unified Modeling Language (UML) 16 October, 2024

Ste
p

Action

1 Click on the state in the 'States:' list.

2 Click on the Delete button.

Change the order of States

Ste
p

Action

1 Click on the state in the 'States:' list.

2 Click on the or buttons to move the state up or
down the sequence.

(c) Sparx Systems 2024 Page 154 of 729

Unified Modeling Language (UML) 16 October, 2024

Numeric Range Generator
You can also use the 'Configure Timeline' dialog to create a
range of states having numeric values to be applied to the
Timeline.

Important: This operation deletes all existing states and
transitions for the Timeline element.

Create a range of states having numeric
values

Ste
p

Action

1 Double-click on the Lifeline element.
The 'Configure Timeline' dialog displays.

2 Click on the Create Continuous Numeric States
button.
The 'Numeric Range Generator' dialog displays.

3 In the 'High Value' and 'Low Value' fields, type the
upper and lower values of the range.

4 In the 'Step Value' field, type the increase interval.
Nonsense values do not parse; 'Low Value' must be
less than 'High Value', and 'Step Value' must be a

(c) Sparx Systems 2024 Page 155 of 729

Unified Modeling Language (UML) 16 October, 2024

positive value smaller than the total range.

5 In the 'Units' field, type the name of the
measurement unit; for example, 'minutes'.

6 Click on the OK button.
Enterprise Architect displays a warning that existing
states and transitions are to be deleted.

7 Click on the Yes button.
The 'Configure Timeline' dialog redisplays, with the
defined range of states listed in the 'States' panel.

8 Click on the OK button.
For a:

Value Lifeline, the first state is shown on the·

Timeline for the full time range of the Timeline
State Lifeline, the range of states is displayed as·

the y-axis of the Timeline

(c) Sparx Systems 2024 Page 156 of 729

Unified Modeling Language (UML) 16 October, 2024

Configure Timeline - Transitions
You can also manage transitions using the 'Transitions' tab
of the 'Configure Timeline' dialog. To display this, either:

Double-click on the Lifeline element·

Right-click on the Lifeline element and select the·

'Properties' option, or

On a Value Lifeline, click on the button·

The 'Configure Timeline' dialog defaults to the 'States' tab.
Click on the 'Transitions' tab.

All transitions defined for the Timeline element are listed in
the 'Transition Points' panel.

Add a new transition

Ste
p

Action

1 Click on the New button.

2 In the 'New Transition' panel, type the details of the
transition.

3 Click on the Save button.

(c) Sparx Systems 2024 Page 157 of 729

Unified Modeling Language (UML) 16 October, 2024

Edit a transition

Ste
p

Action

1 Click on a transition in the list.

2 In the 'Edit Transition' panel, edit the fields for the
transition as required.

3 Click on the Save button.

Delete a transition

Ste
p

Action

1 Click on a transition in the list.

2 Click on the Delete button.
The transition is removed from the dialog and the
Lifeline.

3 Click on the OK button.

(c) Sparx Systems 2024 Page 158 of 729

Unified Modeling Language (UML) 16 October, 2024

(c) Sparx Systems 2024 Page 159 of 729

Unified Modeling Language (UML) 16 October, 2024

Time Intervals
You create and manage Time Intervals using the Interval
Bar (the pale line along the top of each selected Lifeline
element). With Time Intervals you can perform various
operations on transitions, such as copy and paste. You can
also compress sections of the timeline so that they are not
visible.

Each Time Interval displays across all Timeline elements
down to the last element on the diagram.

Manage Time Intervals

Action Description

Create Time
Intervals

You can create a Time Interval using the:
Interval Bar - context menu·

Interval Bar - Shift key, or·

Timeline - context menu·

Compress
Time
Intervals

You can compress Time Intervals to
conserve space on long timelines.

Select Time
Intervals

There are a number of ways to select
Time Intervals for performing other
operations.

(c) Sparx Systems 2024 Page 160 of 729

Unified Modeling Language (UML) 16 October, 2024

Move Time
Intervals

To move a Time Interval, move the
cursor over the Interval bar within the
Time Interval, hold down the mouse
button and drag the interval left or right.
Time Intervals can meet, but cannot
overlap.

Resize Time
Intervals

To resize a Time Interval, move the
cursor over the Interval Bar at the start or
end edge of the Time Interval, hold down
the mouse button and move the edge left
or right.
Time Intervals can meet, but cannot
overlap.

Delete Time
Intervals

To delete Time Intervals, select each
Time Interval to be deleted and press the
Delete key.
Deleting the Time Interval does not
delete transitions within that interval.

(c) Sparx Systems 2024 Page 161 of 729

Unified Modeling Language (UML) 16 October, 2024

Create Time Intervals
You can create time intervals on Timing elements in a
number of ways.

Create a Time Interval using the Interval Bar
context menu

Images Step and Action

1. Right-click on the Interval Bar at
approximately the point at which to start
or finish the Time Interval, and select the
'Create Time Interval' option.

2. The Time Interval displays down all
the timeline elements, as a narrow pale
band with a blue compression box at the
top.

3. Move the cursor to the edge of the
Time Interval in the Interval Bar so that
the cursor changes to the drag form and

(c) Sparx Systems 2024 Page 162 of 729

Unified Modeling Language (UML) 16 October, 2024

drag the edge to the correct start or end
point.

Create a Time Interval using the Interval Bar
and Shift key

Ste
p

Description

1 Move the cursor over the Interval Bar and press
Shift.
The cursor changes shape ().

2 Click to create the Time Interval.

3 Move the cursor to the edge of the Time Interval in
the Interval Bar so that the cursor changes to the
drag form () and drag the edge to the correct start
or end point.

(c) Sparx Systems 2024 Page 163 of 729

Unified Modeling Language (UML) 16 October, 2024

Create a Time Interval using the Timeline
context menu

Ste
p

Description

1 Right-click on the timeline just after a transition.
The context menu displays.

2 Click on the 'Select' option.
Enterprise Architect creates a Time Interval defining
the period from the selected transition up to the next
transition.
If there are other Time Intervals in this period,
Enterprise Architect replaces them with the single
Time Interval for the transition state; you should
consider this when creating the Time Interval, as it
extends across the other Timeline elements in the
diagram.
A value of this method is that it creates a Time
Interval for a period in which no transitions occur,
which could be lengthy; you can then compress this
Time Interval to hide the period of inactivity.

(c) Sparx Systems 2024 Page 164 of 729

Unified Modeling Language (UML) 16 October, 2024

Compress Time Intervals
You can compress Time Intervals to conserve space on long
timelines.

Uncompressed Time Intervals

Compressed Time Intervals

Note:

You can also compress and expand Time Intervals using
context menu options.

(c) Sparx Systems 2024 Page 165 of 729

Unified Modeling Language (UML) 16 October, 2024

Item Description

The compression toggle boxes:
 is expanded, click on this to·

compress the selected time interval
 is compressed, click on this to·

expand the selected time interval again

The compressed sections of the timelines
themselves, in all elements.
If there is space between the paired
symbols, there are transitions within the
compressed section.
If the timeline continues through the
paired symbols there are no transitions in
the compressed section.

The compressed sections in the time
range underneath the elements.

(c) Sparx Systems 2024 Page 166 of 729

Unified Modeling Language (UML) 16 October, 2024

Select Time Intervals

Select Intervals

Task Action

Select a Time
Interval
across all
elements on
the diagram

Click on the Interval Bar within the Time
Interval.

Select a
number of
individual
Time
Intervals

Press and hold the Ctrl key while clicking
on the Interval Bar within each Time
Interval.

Select all
Time
Intervals in a
range

Click on the Interval Bar within the first
Time Interval in the range, then press and
hold the Shift key and click on the
Interval Bar within the last Time Interval
in the range.
All Time Intervals between the two are
selected.

(c) Sparx Systems 2024 Page 167 of 729

Unified Modeling Language (UML) 16 October, 2024

Modify Intervals

After you have selected a Time Interval, you can modify it.

Task Action

Exclude
Lifeline
elements
from the
selection

Press and hold the Ctrl key and click on
any part of the selection within that
element.
Repeat the step to toggle the selection
and re-include the element.

Select only
one Lifeline
element and
exclude all
others

Press and hold the Shift key and click on
any part of the selection within that
element.

(c) Sparx Systems 2024 Page 168 of 729

Unified Modeling Language (UML) 16 October, 2024

Time Interval Operations
You can select and update specific Time Intervals.

Right-click on the Interval Bar within an interval. A context
menu displays providing these options.

Compress Timeline

The 'Compression' toggle boxes and 'Compress Interval'
menu option operate on the Time Interval and compress the
timeline and all transitions within the Interval. You have an
alternative option that operates on the timeline and
compresses a single transition state.

Right-click on the timeline (rather than the Interval Bar)1.
just after a transition, and select the 'Compress' option.

Enterprise Architect creates a new Time Interval spanning2.
the period from the selected transition up to the next
transition, and then compresses that Time Interval.

If there are other Time Intervals in this period, Enterprise
Architect replaces them with the single Time Interval for the
transition state. You should consider this when creating and
compressing the Time Interval, as it extends across the other
Timeline elements in the diagram.

A value of this method is that it creates a Time Interval for a
period in which no transitions occur, which could be
lengthy, and then compresses this Time Interval to hide the
period of inactivity.

(c) Sparx Systems 2024 Page 169 of 729

Unified Modeling Language (UML) 16 October, 2024

Context Menu Options

Option Action

Select
Interval
Deselect
Interval

Select the Time Interval or, if the interval
is already selected, deselect it.
You can select several Time Intervals in
this way, accessing the menu separately
on each interval.

Toggle
Interval
Selection

Switch the selection or deselection of the
Time Interval within the selected
Timeline element.
You select or deselect a Time Interval
across all Timeline elements, but the
'Toggle' option acts only on the element
in which you access the menu.

Compress
Interval

Compress the Time Interval, and hide all
transitions within that Time Interval.
This is also useful for hiding long
sections of inactivity on the time line.

Remove
Interval

Delete the Time Interval.

Copy Copy the transitions for all selected Time
Intervals.

(c) Sparx Systems 2024 Page 170 of 729

Unified Modeling Language (UML) 16 October, 2024

Cut Copy and delete the selected transitions
from the diagram.

Cut and
Remove
Time

Copy and delete the transitions that lie in
the selected Time Intervals from the
diagram.
This option also removes time from the
timeline, the amount being the duration of
the Time Interval.
All transitions and Time Intervals to the
right of the selected time interval are
moved left.

Delete Delete the selected transitions from the
diagram.

Delete and
Remove
Time

Delete the transitions that lie in the
selected Time Intervals from the diagram.
This option also removes time from the
timeline, the amount being the duration of
the Time Interval.
All transitions and Time Intervals to the
right of the current Time Interval are
moved left.

Insert Time Add time to the timeline and move all
transitions and time intervals to the right.
Also expand the duration of the current

(c) Sparx Systems 2024 Page 171 of 729

Unified Modeling Language (UML) 16 October, 2024

Time Interval.

All Time Intervals in the Diagram

To create a new Time Interval or work across all Time
Intervals in the diagram, right-click on the Interval Bar
between Time Intervals. A context menu displays, providing
a number of options (The 'Paste ...' menu options become
active after transitions have been copied).

Menu Option Action

Create Time
Interval

Create a single Time Interval.

Expand all
Time
Intervals

Expand all Time Intervals over the whole
diagram.

Compress all
Time
Intervals

Compress all Time Intervals over the
whole diagram.

Paste
Combine

Paste copied transitions over any existing
transitions within the copied time frame.
The diagram does not allow two
consecutive transitions to the same state,
and removes the second transition

(c) Sparx Systems 2024 Page 172 of 729

Unified Modeling Language (UML) 16 October, 2024

automatically.

Paste
Remove

Delete all the transitions and then pastes
the copied transition within the copied
time frame.

Paste Insert Insert time, moving all transitions and
Time Intervals to the right to make room
to paste in the copied transitions.

Insert Time Add time to the timeline and move all
transitions and Time Intervals to the right.
This option does not change the duration
of any Time Interval.

Copy and paste transitions from one
timeline element to another

Ste
p

Action

1 Press and hold the Shift key and select the Timeline
element within a Time Interval to copy or cut.

2 Right-click on the Interval Bar (it doesn't matter
which element you select).

(c) Sparx Systems 2024 Page 173 of 729

Unified Modeling Language (UML) 16 October, 2024

The context menu displays.

3 Copy or cut the transitions.
You can also cut and remove time.

4 Select the timeline to paste transitions to and
right-click on the Interval Bar.
The context menu displays.

5 Select one of the paste operations.
Note that states are created if they don't already exist
in the timeline.
Any states that don't exist in the Timeline element
you are pasting to are created.
Any new states created might be in the wrong order;
you can change the order via the diagram 'quick'
buttons.

Shift transitions within a selected Time
Interval or multiple selected Time Intervals

Ste
p

Action

1 Select all the Time Intervals containing the

(c) Sparx Systems 2024 Page 174 of 729

Unified Modeling Language (UML) 16 October, 2024

transitions to be shifted.

2 Press and hold Shift and click on the Interval Bar (it
doesn't matter which Timeline element you select),
and move the transition left or right.
You cannot drag transitions over other transitions;
the move stops when the moved transition collides
with a stationary transition.
If you have collision problems, use Shift+select to
shift transitions for a single Timeline element.

(c) Sparx Systems 2024 Page 175 of 729

Unified Modeling Language (UML) 16 October, 2024

Messages (Timing Diagram)
Messages are the communication links between Lifelines in
a Timing diagram. In the case of a Timeline, a Message is a
connection between two Timeline objects.

For example:

The OMG Unified Modeling Language specification,
(v2.5.1, figures 14.30 and 14.31, p.520.)

Toolbox icon

(c) Sparx Systems 2024 Page 176 of 729

Unified Modeling Language (UML) 16 October, 2024

(c) Sparx Systems 2024 Page 177 of 729

Unified Modeling Language (UML) 16 October, 2024

Create a Timing Message
You can create a Timing Message between two Lifeline
objects (State or Value) on a Timing diagram, each with
existing transition points.

Create a Message between Lifelines

Ste
p

Action

1 Click on the 'Message' icon on the 'Timing
Relationships' page of the Diagram Toolbox (click
on to display the 'Find Toolbox Item' dialog and
specify 'Timing').

2 Click on the source Lifeline at the point at which the
Message will start, and drag the cursor to the
transition point on the destination Lifeline where the
Message will end.
A new Timing Message is created between these two
points.

3 Double-click on the new Message to open the
'Timing Message' dialog.
Review or complete the dialog as indicated in the
'Dialog Fields' table.

(c) Sparx Systems 2024 Page 178 of 729

Unified Modeling Language (UML) 16 October, 2024

Dialog Fields

This diagram shows an example of a configured Message:

The OMG Unified Modeling Language specification,
(v2.5.1, figures 14.30 and 14.31, p.520)

Field/Button Action

Start Identifies the Lifeline from which the
Message originates.

End Identifies the Lifeline on which the
Message terminates.

Start Time Shows the time after the timeline begins
at which the Message starts. You can
change this if you need to.

Shows the time after the timeline begins

(c) Sparx Systems 2024 Page 179 of 729

Unified Modeling Language (UML) 16 October, 2024

End Time at which the Message ends. You can
change this if you need to, but the time
must correspond to a transition point on
the target Lifeline.

Name (Optional) Type in a name for the
Message.

Time
Observation

(Optional) Type any text to act as a label
providing information on when the
Message is sent.

Duration
Observation

(Optional) Type any text to act as a label
providing information on the interval of a
Lifeline at a particular state, begun from
receipt of the Message.

Transition To The state in the target Lifeline that the
Message terminates on. If necessary, you
can click on the drop-down arrow and
select a different state to transition to.
The head of the Message moves
accordingly.

Event (Optional) Type in the name of any event
that triggers the transition.

Time
Constraint

(Optional) Type in the maximum time it
can take to transmit the Message.

(c) Sparx Systems 2024 Page 180 of 729

Unified Modeling Language (UML) 16 October, 2024

Duration
Constraint

(Optional) Type in the maximum time the
Lifeline can remain in the changed state
after receipt of the Message.

Notes

You can move the source end of the Message freely along·

the source timeline; however, the target end (arrow head)
must attach to a transition

If you create a new Message and do not give it a target·

transition, it automatically finds and attaches to the
nearest transition; if you move the target end, it drags the
transition with it

(c) Sparx Systems 2024 Page 181 of 729

Unified Modeling Language (UML) 16 October, 2024

Sequence Diagram
A Sequence diagram is a structured representation of
behavior as a series of sequential steps over time. You can
use it to:

Depict workflow, Message passing and how elements in·

general cooperate over time to achieve a result

Capture the flow of information and responsibility·

throughout the system, early in analysis; Messages
between elements eventually become method calls in the
Class model

Make explanatory models for Use Case scenarios; by·

creating a Sequence diagram with an Actor and elements
involved in the Use Case, you can model the sequence of
steps the user and the system undertake to complete the
required tasks

Construction

Sequence elements are arranged in a horizontal sequence,·

with Messages passing back and forward between
elements

Messages on a Sequence diagram can be of several types;·

the Messages can also be configured to reflect the
operations and properties of the source and target
elements (see the Notes in the Message Help topic)

An Actor element can be used to represent the user·

initiating the flow of events

(c) Sparx Systems 2024 Page 182 of 729

Unified Modeling Language (UML) 16 October, 2024

Stereotyped elements, such as Boundary, Control and·

Entity, can be used to illustrate screens, controllers and
database items, respectively

Each element has a dashed stem called a Lifeline, where·

that element exists and potentially takes part in the
interactions

To toggle the numbering of messages on a Sequence
diagram, select or deselect the 'Show Sequence Numbering'
checkbox on the 'Preferences' dialog.

You generate Sequence diagram elements and connectors
from the 'Interaction' pages of the Toolbox.

Example Diagram

This example Sequence diagram demonstrates several
different elements.

(c) Sparx Systems 2024 Page 183 of 729

Unified Modeling Language (UML) 16 October, 2024

Sequence Diagram Element Toolbox Icons

Icon Description

An Actor is a user of the system; user can
mean a human user, a machine, or even
another system or subsystem in the
model.

A Lifeline represents a distinct

(c) Sparx Systems 2024 Page 184 of 729

Unified Modeling Language (UML) 16 October, 2024

connectable element and is an individual
participant in an interaction.

Boundary elements are used in analysis to
capture user interactions, screen flows
and element interactions.

A Control organizes and schedules other
activities and elements.

An Entity is a stereotyped Object that
models a store or persistence mechanism
that captures the information or
knowledge in a system.

A Fragment element can represents
iterations or alternative processes in a
Sequence diagram.

An Endpoint is used in Interaction
diagrams to reflect a lost or found
Message in sequence.

A Diagram Gate is a simple graphical
way to indicate the point at which
messages can be transmitted into and out
of interaction fragments.

The State/Continuation element serves

(c) Sparx Systems 2024 Page 185 of 729

Unified Modeling Language (UML) 16 October, 2024

two different purposes for Sequence
diagrams, as State Invariants and
Continuations.

You can use an Interaction element to
insert an Interaction diagram as a child of
a Class element.

Sequence Diagram Connector Toolbox Icons

Icon Description

A Message indicates a flow of
information or transition of control
between elements.

A Self-Message reflects a new process or
method invoked within the calling
lifeline's operation.

A Recursion is a type of Message used in
Sequence diagrams to indicate a recursive
function.

A Call is a type of Message connector
that extends the level of activation from
the previous Message.

(c) Sparx Systems 2024 Page 186 of 729

Unified Modeling Language (UML) 16 October, 2024

(c) Sparx Systems 2024 Page 187 of 729

Unified Modeling Language (UML) 16 October, 2024

Denote Lifecycle of an Element

Capture element lifetimes using messages
denoted as New or Delete message types

Ste
p

Action

1 Double-click on a message within a Sequence
diagram to display the Properties window for the
Message.

2 In the 'Lifecycle' field, click on the drop-down arrow
and select 'New' or 'Delete'.

3 Click on the OK button to save the changes.

Example Diagram

This example shows two elements that have specific

(c) Sparx Systems 2024 Page 188 of 729

Unified Modeling Language (UML) 16 October, 2024

creation and deletion times.

Notes

To show the termination X on the lifeline in the example·

diagram, you must switch on garbage collection: 'Start >
Appearance > Preferences > Preferences > Diagram >
Sequence: Garbage Collect'

(c) Sparx Systems 2024 Page 189 of 729

Unified Modeling Language (UML) 16 October, 2024

Layout of Sequence Diagrams

Offset the vertical separation of Sequence
messages

Ste
p

Action

1 Select the appropriate message in a Sequence
diagram.

2 Use the mouse to drag the message up or down as
required.
As you drag a message up or down a lifeline, any
messages or fragments below that message are
shifted up or down the same amount.
If the 'Reorder Messages' option is enabled, as you
drag a message up or down past the next or previous
message, the messages swap positions, rather than
simply moving position. Alternatively, press and
hold the Shift key as you move the message, to
achieve the same result. Under Windows (but not
under Linux or a Virtual Machine), you can also use
the Alt key in the same way.
As you move one Message past another, a tool-tip
displays to remind you to 'Enable Reorder Messages
from Layout | Helpers to reorder messages',

(c) Sparx Systems 2024 Page 190 of 729

Unified Modeling Language (UML) 16 October, 2024

regardless of whether or not the option is enabled.
You can hide this tool-tip by deselecting the 'Enable
Tooltips when reordering messages' checkbox on the
'Diagram > Sequence' page of the 'Preferences'
dialog.

Example Diagram

This example shows an economical use of space in a
Sequence diagram.

(c) Sparx Systems 2024 Page 191 of 729

Unified Modeling Language (UML) 16 October, 2024

Sequence Elements
This example shows some possible elements of Sequence
diagrams and their stereotyped display.

Element descriptions

Element Description

Actor An instance of an actor at runtime; this
can be depicted either as the human
figure or in rectangle notation.

Lifeline An Object element with the stereotype
Lifeline.

Boundary Represents a user interface screen or
input/output device.

Entity A persistent element - typically

(c) Sparx Systems 2024 Page 192 of 729

Unified Modeling Language (UML) 16 October, 2024

implemented as a database table or
element.

Control The active component that controls what
work gets done, when and how.

(c) Sparx Systems 2024 Page 193 of 729

Unified Modeling Language (UML) 16 October, 2024

Messages (Sequence Diagram)

Sequence diagrams depict workflow or activity over time
using Messages passed from element to element. In the
software model. These Messages correspond to Class
operations and behavior. When you display a Sequence
diagram, the Diagram Toolbox automatically switches to the
'Interaction' pages of the Diagram Toolbox, containing the
'Message' icon.

Toolbox icon

Access

Diagram Click on the 'Message' icon, click on the

(c) Sparx Systems 2024 Page 194 of 729

Unified Modeling Language (UML) 16 October, 2024

Toolbox source object and drag the cursor to the
target object
(If the Properties window for the
Message does not display, right-click on
the Message and on the 'Properties' menu
option)

Create a Message on a Sequence diagram

Option Action

Message Type the Message name.
If the Message flow is towards a Class
element (dropped in from a Class
diagram) or a Lifeline element having a
classifier, and the destination Class has
defined operations, you can click on the
drop-down arrow and select an
appropriate operation name; the Message
then reflects the destination Class
operations.
You can also include operations that the
element's classifier has inherited, in the
list. To do this, select the 'Show Inherited
Methods' checkbox.

If the available operations on the

(c) Sparx Systems 2024 Page 195 of 729

Unified Modeling Language (UML) 16 October, 2024

Operations destination Class are not appropriate,
click on this button and define a new
operation in the destination element,
using the 'Operations' dialog.
If you create a Message without making
reference to the target Class operations,
no new operation is added to the target
Class.

Parameters Type any parameters that the Message
has, as a comma-separated list.

Argument(s) (Optional) Type the actual value that
corresponds to each parameter, as a
comma-separated list.

Return Value If the Message has a return value or type,
specify it in this field.

Show
Inherited
Methods

Select this checkbox to include
operations that the destination element's
classifier has inherited, in the drop-down
list of operations available in the
'Message' field.
Clear the checkbox to show only
operations from the classifier itself.

Assign to If the Message flow is from a Class
element or Lifeline element with

(c) Sparx Systems 2024 Page 196 of 729

Unified Modeling Language (UML) 16 October, 2024

classifier that has defined attributes, click
on the drop-down arrow and select an
appropriate attribute name.
The Message reflects the attributes from
the source Class; you cannot add further
attributes to the source Class here - if no
appropriate attribute is listed, open the
Class element 'Properties' dialog and add
the required attribute.
Otherwise, optionally type the name of
the object to assign the message flow to.

Stereotype (Optional) Type or select a stereotype for
the connector (this is displayed on the
diagram, if entered).

Alias (Optional) Type an alias for the name of
the Message.
On the diagram, the alias displays instead
of the Message name if the 'Use Alias if
Available' checkbox is selected on the
'Diagram' tab of the 'Properties' dialog for
the diagram.

Condition Type any conditions that must be true in
order for the Message to be sent.

Constraint Type any constraints that might exist on
when the Message is sent.

(c) Sparx Systems 2024 Page 197 of 729

Unified Modeling Language (UML) 16 October, 2024

Is Iteration Select the checkbox to indicate that the
Message will iterate until the specified
condition takes the value false. The
condition statement on the diagram is
prefixed by an asterisk (*).
Clear the checkbox to indicate that the
Message will only be sent once within the
process cycle, if the specified condition is
true.

Start New
Group

(For Communication diagram Messages).
Select this checkbox to reset the Message
(and all subsequent Messages) to a
separate group with a new initial number.

Synch Click on the drop-down arrow and select
'Synchronous' or 'Asynchronous' as
appropriate.
The value 'Synchronous' disables the
'Kind' field; synchronous Messages are
always Calls.

Kind This field is enabled when the 'Synch'
field is set to Asynchronous.
Click on the drop-down arrow and select
either 'Call' or 'Signal', as appropriate.

Lifecycle Select 'New' to create a new element at

(c) Sparx Systems 2024 Page 198 of 729

Unified Modeling Language (UML) 16 October, 2024

the end of the Message, or 'Delete' to
terminate the message flow at the end of
the Message.
If neither case applies, set the field to
'<none>'.

Is Return If the Message you have created is a
return message, select this checkbox.

Save Click on this Toolbar button to save the
Message definition or any changes to it.

You can change the timing details of a·

message on the 'Timing Details' dialog,
and emphasize the sequence of
closely-ordered messages using
General Ordering
To toggle the numbering of messages·

on a Sequence diagram, select or
deselect the 'Show Sequence
Numbering' checkbox on the
'Preferences' dialog

Notes

You can also use the Message connector as an·

Information Flow, and realize information flows on the
Message

(c) Sparx Systems 2024 Page 199 of 729

Unified Modeling Language (UML) 16 October, 2024

(c) Sparx Systems 2024 Page 200 of 729

Unified Modeling Language (UML) 16 October, 2024

Self-Message

A Self-Message reflects a new process or method invoked
within the calling lifeline's operation. It is a specification of
a Message, typically in a Sequence diagram.

Self-Message Calls indicate a nested invocation; new
activation levels are added with each Call.

Self-Message as Return

It is possible to depict a return from a Self Message call.

Create a Self Message return

Ste
p

Action

(c) Sparx Systems 2024 Page 201 of 729

Unified Modeling Language (UML) 16 October, 2024

1 Create a second Self Message at the end of
execution.

2 Double-click on the Message name to open the
Properties window for the Message.

3 Select the 'Is Return' checkbox.

4 Raise the Activation level of the return.

Toolbox icon

(c) Sparx Systems 2024 Page 202 of 729

Unified Modeling Language (UML) 16 October, 2024

Call

A Call is a type of Message connector that extends the level
of activation from the previous Message. All Self-Messages
create a new activation level, but this focus of control
usually ends with the next Message (unless activation levels
are manually adjusted). Self-Message Calls, as depicted in
the image of the first Call, indicate a nested invocation; new
activation levels are added with each Call. Unlike a regular
Message between elements, a Call between elements
continues the existing activation in the source element,
implying that the Call was initiated within the previous
Message's activation scope.

Toolbox icon

(c) Sparx Systems 2024 Page 203 of 729

Unified Modeling Language (UML) 16 October, 2024

Message Examples
These are different types of Message available on Sequence
diagrams. Note that Messages on Sequence diagrams can
also be modified with Shape Scripts.

Other Sequence Messages

These are examples of Messages that are not part of the
sequence described by the diagram.

(c) Sparx Systems 2024 Page 204 of 729

Unified Modeling Language (UML) 16 October, 2024

(c) Sparx Systems 2024 Page 205 of 729

Unified Modeling Language (UML) 16 October, 2024

Change the Timing Details
It is possible to change the timing details of a Message in a
Sequence diagram.

Access

Context
Menu

Right-click on the Message | Timing
Details

Change Timing

See the OMG Unified Modeling Language specification,
(v2.5.1, p. 511).

In this diagram, on the Open Order Message:

(c) Sparx Systems 2024 Page 206 of 729

Unified Modeling Language (UML) 16 October, 2024

'Duration Constraint' has been set to 0...13·

On the Get Cart Message:

'Duration Constraint Between Messages' has been set to·

d...d*3

'Duration Observation' has been set to d=duration·

'Timing Constraint' has been set to t...t+3·

'Timing Observation' has been set to t=now·

By typing a value in the 'Duration Constraint' field, you
enable the Message angle to be adjusted. After clicking on
the OK button on the 'Timing Details' dialog, click on the
head of the Message connector and drag the connector up or
down to change the angle. You cannot extent the angle
beyond the life line of the connecting sequence object or
create an angle of less than 5 degrees.

You can also create the 'Duration Constraint Between
Messages' line by dragging the 'General Ordering' arrow up
to the point at which the previous message joins the source
Lifeline for the current message. A dialog displays on which
you enter the value for the constraint. Having created the
line, you can move it to any point within half way along the
current message and half way along the previous message,
to avoid overlap with other message timing details. You can
edit or delete the value either through the 'Timing Details'
dialog or by right-clicking on the line itself and selecting the
appropriate context menu option.

Field Action

Duration Indicate the minimum and maximum

(c) Sparx Systems 2024 Page 207 of 729

Unified Modeling Language (UML) 16 October, 2024

Constraint limits on how long a message can last.

Duration
Constraint
Between
Messages

Indicate the minimum and maximum
interval between sending or receipt of the
previous message at the current message's
source Lifeline, and sending the current
message.

Duration
Observation

Capture the duration of a message.

Timing
Constraint

Indicate the minimum and maximum time
at which the message should arrive at the
target.

Timing
Observation

Capture the point at which the message
was sent.

(c) Sparx Systems 2024 Page 208 of 729

Unified Modeling Language (UML) 16 October, 2024

General Ordering
In a Sequence diagram, the workflow is represented by the
sequence of Messages down the diagram. Messages near the
top of the diagram are passed before Messages lower down
the diagram.

In the diagram, Message 1 is earlier than Message 2.
However, in a complex diagram, or when representing
finely timed operations or parallel processing, this might not
be apparent. You can reinforce the sequence using a
'General Ordering' arrow.

Click on the Message arrow. A small arrow displays at the
source anchor point.

Click on this arrow and drag it to the start of the next
Message in sequence (Message 2 in the example). The
General Ordering arrow displays, indicating that the second
Message follows the first.

(c) Sparx Systems 2024 Page 209 of 729

Unified Modeling Language (UML) 16 October, 2024

You can have more than one General Ordering arrow
issuing from or targeting a Message, if necessary.

(c) Sparx Systems 2024 Page 210 of 729

Unified Modeling Language (UML) 16 October, 2024

Asynchronous Signal Message
You define a Message as an asynchronous signal message
by displaying the Properties window for the Message and
setting the 'Synch' field to 'Asynchronous', and the 'Kind'
field to 'Signal'. A synchronous message cannot be used to
convey signals, so setting the 'Synch' field to 'Synchronous'
disables the 'Kind' field.

'Return Value', 'Assign To' and the Operations button, which
are not applicable to asynchronous signals, are disabled.

The Operations button changes to a Signal button, which
you click on to associate the asynchronous signal message
with a Signal element in the model. You can type the
arguments corresponding to the Signal attributes into the
'Argument(s)' field.

When you click on the Signal button, the 'Select Signal'
dialog displays, through which you locate and select the
required Signal element.

(c) Sparx Systems 2024 Page 211 of 729

Unified Modeling Language (UML) 16 October, 2024

Co-Region Notation
Co-Region notation can be used as a short hand for parallel
combined fragments. You can add this notation to a
Sequence diagram using the 'Co-Region' submenu, which
you display by right-clicking on a connector in a Sequence
diagram and selecting the 'Co-Region' option. There are four
sub-options available:

Start at head·

End at head·

Start at tail·

End at tail·

(c) Sparx Systems 2024 Page 212 of 729

Unified Modeling Language (UML) 16 October, 2024

Sequence Diagrams and Version
Control
You might create Sequence diagrams that use elements from
other Packages as the Lifelines within the diagram. In such
cases, the diagrams could be corrupted when the element
Packages are checked in and out under Version Control.
This is because during checkout the elements are first
deleted from the model and then re-imported, and although
they are reinstated in the diagrams, any Messages
connecting them are not.

So, if the diagram and its elements reside in different
Packages, a round-trip of the element Package through
Version Control might damage the Sequence diagram.

The solution is to drag-and-drop each Class onto the
Sequence diagram as an object - when you drop the Class
onto the Sequence diagram, in the 'Paste Element' dialog
select the 'as Instance of Element (Object)' option. This
creates a new object in the diagram's parent Package, based
on the selected Class element. You then create the Messages
between the objects.

Therefore, to ensure that a Sequence diagram is not
damaged by round-trips of other Packages through Version
Control, remember that:

The Lifelines must be objects (even though you can drop·

elements as Lifelines onto a Sequence diagram, it is not a
strictly UML compliant construct)

The Lifelines must be in the same Package as the diagram·

(c) Sparx Systems 2024 Page 213 of 729

Unified Modeling Language (UML) 16 October, 2024

This illustration shows the Browser window with two
Packages: P1, containing the elements, and P2, containing a
Sequence diagram that uses those elements. The diagram
itself is also shown.

This diagram is not damaged when round-tripped through
Version Control, because all the Lifelines are objects and
these objects reside in the same Package as the Sequence
diagram.

Notes

These recommendations also apply to Communication·

diagrams

(c) Sparx Systems 2024 Page 214 of 729

Unified Modeling Language (UML) 16 October, 2024

Sequence Element Activations
Sequence elements in a Sequence diagram have Activation
rectangles drawn along their lifelines. These rectangles
describe the time the element is active during the overall
period of processing. This visual representation can be
suppressed by right-clicking the Sequence diagram, and
selecting 'Suppress Activations'.

In general, Enterprise Architect calculates the period of
activation for you, but in some cases you might want to fine
tune the rectangle length. There are several context menu
options on a Sequence Message that you can use to
accomplish this. To access the context menu, right-click on
the message and select 'Activations'.

A more convenient way to change activation levels is
directly on the diagram. Whenever appropriate, left arrows
and/or right arrows display on specific connectors. In this
diagram, see connector 1.3. Click on the arrow to raise or
lower the activation level.

(c) Sparx Systems 2024 Page 215 of 729

Unified Modeling Language (UML) 16 October, 2024

Branch With Previous Message

[This section describes a method of representing concurrent
messages as defined in UML prior to UML 2.0, and is
included to support models that might still apply it.

From UML 2.0 onwards, the notation has been replaced by
Fragments. It is recommended that you consider upgrading
your models to make use of Fragments and other more
recent improvements in notation.]

Having set out the Lifelines and Sequence Messages with
the appropriate message grouping and activation levels, you
might want to indicate that two messages in different
Message Groups and at different Activation levels issuing
from a Lifeline are branches, or executed concurrently.
Consider this example:

Message 1.1 passes from Object 5 to Object 6, and then
Message 1.2 passes to Object 7 and Message 2.1 passes
back to Object 5. It appears that the Messages go in the

(c) Sparx Systems 2024 Page 216 of 729

Unified Modeling Language (UML) 16 October, 2024

sequence 1.1, 1.2 and then 2.1. However, you want to
indicate that Message 2.1, whilst separate, is concurrent
with Message 1.2.

In this case:

Right-click on the later Message (2.1) and select the·

option 'Branch with Previous Message'

The source anchor for Message 2.1 then becomes the same
as the source for Message 1.2, the immediately previous
message. They are separate but concurrent Messages from
the same Lifeline.

If it later becomes unnecessary to show that the Messages
are branches, right-click on the later message (2.1) and
deselect the 'Branch with Previous Message' option.

Context menu options

Option Description

Start New Starts off a new round of processing in

(c) Sparx Systems 2024 Page 217 of 729

Unified Modeling Language (UML) 16 October, 2024

Message
Group

the current diagram.
This enables you to describe more than
one processing scenario in a single
diagram.

Extend
Source
Activation
Down

Forces an element to stay active beyond
the normal processing period.
This could be used to express an element
that continues its own processing
concurrently with other processes.

Extend
Source
Activation
Up

Forces an element's activation upwards.

End Source
Activation

Truncates the activation of the source
element after the current message.
This is useful for expressing an
asynchronous message after which the
source element becomes idle.

End Target
Activation

Ends a Forced Activation started by the
'Extend Source Activation' options.

Raise
Activation
Level

Displays on the context menu only where
its use is appropriate.
For example, after a self-message the
next message starts by default at a lower

(c) Sparx Systems 2024 Page 218 of 729

Unified Modeling Language (UML) 16 October, 2024

activation level but the 'Raise Activation
Level' command displays on the context
menu to enable you to raise its level.

Lower
Activation
Level

Displays on the context menu only where
its use is appropriate.

(c) Sparx Systems 2024 Page 219 of 729

Unified Modeling Language (UML) 16 October, 2024

Lifeline Activation Levels
Complicated processing systems can be easily negotiated
and reflected in Sequence diagrams, by adding activation
layers on a single lifeline.

Examples

A Class invokes the method Sample A,
which in turn calls Sample A1.
To produce the arrangement in the
diagram:

In the Diagram Toolbox click on to1.
display the 'Find Toolbox Item' dialog
and specify 'Interaction'.
Click on the 'Self-message' icon in the2.
'Interaction Relationships' panel.
Click on the lifeline.3.

In order to raise the Activation level of
Sample A1, click on the raise arrow of
the selected connector.
The lifeline now visually depicts that
method Sample A1 is called during the
processing of Sample A.

In this example, a few more

(c) Sparx Systems 2024 Page 220 of 729

Unified Modeling Language (UML) 16 October, 2024

self-messages have been added.
The message Sample A2a is called from
Sample A2, which in turn is called from
Sample A (not Sample A1).
Sample A1 is called from Sample A.

(c) Sparx Systems 2024 Page 221 of 729

Unified Modeling Language (UML) 16 October, 2024

Sequence Message Label Visibility

Hide and show labels used in Sequence
messages

Ste
p

Action

1 Right-click on the message within the Sequence
diagram and select 'Set Label Visibility'.
The 'Label Visibility' dialog displays.

2 Select or clear the checkbox against each message
label to display or hide, respectively.

3 Click on the OK button to save the settings.

(c) Sparx Systems 2024 Page 222 of 729

Unified Modeling Language (UML) 16 October, 2024

Change the Top Margin
In order to change the top margin of a Sequence diagram
from the default 50 units, right-click on the diagram and
select the 'Set Top Margin' option. You can set the top
margin to any value between 30 and 250 units. You can then
use this space to, for example, add Note or Text elements to
provide documentation on the diagram.

(c) Sparx Systems 2024 Page 223 of 729

Unified Modeling Language (UML) 16 October, 2024

Inline Sequence Elements
On a Sequence diagram it is possible to represent existing
child Part and Port elements, which render as inline
sequence elements under their parent Class sequence
element.

Example Sequence Diagram with Parts and
Ports

Represent Part and Port elements on a
Sequence diagram

Ste
p

Action

(c) Sparx Systems 2024 Page 224 of 729

Unified Modeling Language (UML) 16 October, 2024

1 Right-click on the Sequence elements containing the
child Ports or Parts, and select 'Features | Interaction
Points'.
The Features window displays at the 'Interaction
Points' tab.

2 Select the checkbox against each Part or Port to
show, and click on the Close button.

(c) Sparx Systems 2024 Page 225 of 729

Unified Modeling Language (UML) 16 October, 2024

Communication Diagram
A Communication diagram is a diagram that shows the
interactions between elements at run-time in much the same
manner as a Sequence diagram. However, Communication
diagrams are used to visualize inter-object relationships,
while Sequence diagrams are more effective at visualizing
processing over time.

Communication diagrams employ ordered, labeled
associations to illustrate processing. Numbering is important
to indicate the order and nesting of processing. A numbering
scheme could be:

1

1.1

1.1.1

1.1.2

1.2, and so on.

A new number segment begins for a new layer of
processing, and would be equivalent to a method invocation.

You generate Communication diagram elements and
connectors from the 'Communication' pages of the Diagram
Toolbox.

Example Diagram

This example illustrates a Communication diagram among
cooperating object instances. Note the use of message levels
to capture related flows, and the different colors of the

(c) Sparx Systems 2024 Page 226 of 729

Unified Modeling Language (UML) 16 October, 2024

messages.

Communication Diagram Element Toolbox
Icons

Icon Description

An Actor is a user of the system; user can
mean a human user, a machine, or even
another system or subsystem in the
model.

An Object is a particular instance of a
Class at run time.

(c) Sparx Systems 2024 Page 227 of 729

Unified Modeling Language (UML) 16 October, 2024

A Boundary is a stereotyped Object that
models some system boundary, typically
a user interface screen.

A Control element represents a
controlling entity or manager that
organizes and schedules other activities
and elements.

An Entity is a stereotyped Object that
models a store or persistence mechanism
that captures the information or
knowledge in a system.

Packages are used to organize your
project contents, but when added onto a
diagram they can be used to depict the
structure and relationships of your model.

Communication Diagram Connector Toolbox
Icons

Icon Description

An Association implies that two model
elements have a relationship, usually

(c) Sparx Systems 2024 Page 228 of 729

Unified Modeling Language (UML) 16 October, 2024

implemented as an instance variable in
one or both Classes.

The Nesting Connector is an alternative
graphical notation for expressing
containment or nesting of elements
within other elements.

A Realizes connector represents that the
source object implements or Realizes its
destination object.

(c) Sparx Systems 2024 Page 229 of 729

Unified Modeling Language (UML) 16 October, 2024

Communication Diagrams in Color
It is possible to highlight particular message flows in a
Communication diagram using different colors for each
message set.

Highlight the colors in a Communication
diagram

Ste
p

Action

1 Select 'Start > Application > Preferences >
Preferences > Communication Colors'.
The 'Communication Message Coloring' page of the

(c) Sparx Systems 2024 Page 230 of 729

Unified Modeling Language (UML) 16 October, 2024

'Preferences' dialog displays.

2 Select the 'Use Communication Message Coloring'
checkbox.

3 Click on the drop-down arrow of each 'Message n'
field, and select the required color for each message
group.

4 Click on the Close button.
On your Communication diagram, each sequence
group of messages displays in a different color, as
shown.

(c) Sparx Systems 2024 Page 231 of 729

Unified Modeling Language (UML) 16 October, 2024

Messages (Communication Diagrams)
A Message in a Communication diagram is equivalent in
meaning to a Message in a Sequence diagram. It implies that
one object uses the services of another object, or sends a
message to that object. Communication Messages in
Enterprise Architect are always associated with an
Association connector between object instances. Always
create the Association first, then add a Message to the
connector.

Messages can be dragged into a suitable position by clicking
and dragging on the message text.

Communication Messages are ordered to reflect the
sequencing of the diagram. The numbering scheme should
reflect the nesting of each event. A sequencing scheme
could be:

1

2, 2.1, 2.2, 2.3

3

This would indicate the single sequence of events 2.1, 2.2
and 2.3 occurs within an operation initiated by event 2. This
is the default pattern applied by Enterprise Architect.

Alternatively, the sequence could be:

1

2

2.1, 2.1.1, 2.1.1.1

2.2, 2.2.1, 2.2.1.1

(c) Sparx Systems 2024 Page 232 of 729

Unified Modeling Language (UML) 16 October, 2024

3

This would indicate that two sequences of events can be
initiated by event 2, and 2.1 and 2.2 are separate sequences,
not consecutive events in one sequence. You can set the
sequence pattern and order using the Properties window for
the Message and the 'Sequence Communications' dialog.

If the target object is a Class or has its instance classifier set,
the drop-down list of possible message names includes the
exposed operations for the base type.

(c) Sparx Systems 2024 Page 233 of 729

Unified Modeling Language (UML) 16 October, 2024

Create a Communication Message

Create a Communication Message

Ste
p

Action

1 Open a diagram (one of: Communication, Analysis,
Interaction Overview, Object, Activity or
StateMachine).

2 Add the required objects.

3 Add an Association relationship between each pair
of objects that communicate.

4 Right-click on an Association to display the context
menu.

5 Select the appropriate option to add a Message from
one object to the other.

(c) Sparx Systems 2024 Page 234 of 729

Unified Modeling Language (UML) 16 October, 2024

6 When the Properties window for the Message
displays, type in a name and any other required
details.

7 Click on the OK button.
The Message is added, connected to the Association
and Object instances.

8 Move the Message to the required position.

(c) Sparx Systems 2024 Page 235 of 729

Unified Modeling Language (UML) 16 October, 2024

Re-Order Messages
When constructing your Communication diagram, it is
frequently necessary to create or delete Message 'groups'
and to re-order the sequence of Messages. There are two
displays that help you perform these tasks: the Properties
window for the Message and the 'Sequence
Communications' dialog.

Organize Message Groups

If you have several Messages in the form 1.1, 1.2, 1.3, 1.4,
for example, but want to start a new numbering group on,
say, the third Message (that is, 1.1, 1.2, 2.1, 2.2, 2.3), you
can change that Message in the series to a Start Group
message.

Ste
p

Action

1 Double-click on a Message name.
The Properties window for the Message displays.

2 To make the selected Message the start of a new
group, select the 'Start New Group' checkbox.

3 If required, in the Notes window for the Message,
type an explanatory note.
You can format the text using the Notes toolbar at

(c) Sparx Systems 2024 Page 236 of 729

Unified Modeling Language (UML) 16 October, 2024

the top of the field.

4 Click on the Save icon to save changes.

Sequence Messages

In larger and more complex diagrams, you might have to
use deeper levels of Messages in a group; for example, 1,
1.2, 1.2.1, 1.2.1.1. You might also have to change the
sequence of Messages, making Message 1.3, for example,
into Message 1.1.

Ste
p

Action

1 Select the 'Sequence Communication Messages'
option after you:

Select the 'Design > Diagram > Options' ribbon·

option, or
Right-click on the diagram background, or·

Right-click on a Message·

The 'Communication Messages' dialog displays.

2 Click on the Message to adjust and, at the bottom of
the dialog, click on the:

Move Up or Move Down (Hand) buttons to move·

the Message up or down the sequence (for

(c) Sparx Systems 2024 Page 237 of 729

Unified Modeling Language (UML) 16 October, 2024

example, Message 1.2 to Message 1.1 or 1.3)
Move Left or Move Right (Hand) buttons to move·

the Message up or down a level (for example,
Message 1.2.1 to Message 1.2 or Message 1.2.1.1)

3 Repeat step 2 until the Message sequence and levels
match your requirements.
You might have to adjust other Message numbers (in
group, sequence or level) to accommodate the
changes you have made.

4 Click on the OK button to save changes.

(c) Sparx Systems 2024 Page 238 of 729

Unified Modeling Language (UML) 16 October, 2024

Interaction Overview Diagram
Interaction Overview diagrams visualize the cooperation
between other Interaction diagrams to illustrate a control
flow serving an encompassing purpose. As Interaction
Overview diagrams are a variant of Activity diagrams, most
of the diagram notation is the same, as is the process of
constructing the diagram.

Decision points, Forks, Joins, Start points and End points
are the same. Instead of Activity elements, however,
rectangular elements of two types are used:

Interaction elements display an inline Interaction diagram,·

which can be any one of the four types (Sequence,
Timing, Communication or Interaction Overview)

Interaction Occurrence elements are references to an·

existing Interaction diagram: they are visually represented
by a frame, with ref in the frame's title space; the diagram
name is indicated in the frame contents

To create an Interaction Occurrence, simply drag an
Interaction diagram from the Browser window onto your
Interaction Overview diagram. The ref frame displays,
encapsulating an instance of the Interaction diagram.

You generate Interaction Overview diagram elements and
connectors from the 'Activity' pages of the Diagram
Toolbox.

Example Diagram

(c) Sparx Systems 2024 Page 239 of 729

Unified Modeling Language (UML) 16 October, 2024

This diagram depicts a sample sale process, shown in an
Interaction Overview diagram, with sub-processes
abstracted within Interaction Occurrences.

The diagram appears very similar to an Activity diagram,
and is conceptualized the same way; as the flow moves into
an interaction, the respective interaction's process must be
followed before the Interaction Overview's flow can
advance.

(c) Sparx Systems 2024 Page 240 of 729

Unified Modeling Language (UML) 16 October, 2024

Interaction Overview Diagram Element
Toolbox Icons

(c) Sparx Systems 2024 Page 241 of 729

Unified Modeling Language (UML) 16 October, 2024

Icon Description

A Partition element is used to logically
organize elements.

A Decision is an element that indicates a
point of conditional progression: if a
condition is true, then processing
continues one way; if not, then another.

The Send element is used to depict the
action of sending a signal.

A Receive element is used to define the
acceptance or receipt of a request.

A Synch state is useful for indicating that
concurrent paths are synchronized. They
are used to split and rejoin periods of
parallel processing.

The Initial element defines the start of a
flow when an Activity is invoked.

The Final element, indicates the
completion of an Activity; upon reaching
the Final, all execution is aborted.

The Flow Final element depicts an exit

(c) Sparx Systems 2024 Page 242 of 729

Unified Modeling Language (UML) 16 October, 2024

from the system, as opposed to the
Activity Final, which represents the
completion of the Activity.

Enterprise Architect supports two types
of Region element: Expansion Regions
and Interruptible Activity Regions.
An Expansion Region surrounds a
process to be imposed multiple times on
the incoming data, once for every
element in the input collection.
An Interruptible Activity Region
surrounds a group of Activity elements,
all affected by certain interrupts in such a
way that all tokens passing within the
region are terminated should the
interruption(s) be raised.

The Exception Handler element defines
the group of operations to carry out when
an exception occurs.

A Merge Node brings together a number
of alternative flow paths in Activity,
Analysis and Interaction Overview
diagrams.

A Fork/Join element can be used to: 1)
split a single flow into a number of

(c) Sparx Systems 2024 Page 243 of 729

Unified Modeling Language (UML) 16 October, 2024

concurrent flows, 2) join a number of
concurrent flows or 3) both join and fork
a number of incoming flows to a number
of outgoing flows.

A Fork/Join element can be used to: 1)
split a single flow into a number of
concurrent flows, 2) join a number of
concurrent flows or 3) both join and fork
a number of incoming flows to a number
of outgoing flows.

Interaction Overview Diagram Connector
Toolbox Icons

Icon Description

The Control Flow is a connector
connecting two nodes, modeling an active
transition.

An Object Flow connects two elements,
with specific data passing through it,
modeling an active transition.

The Interrupt Flow is a connection used
to define the two UML concepts of

(c) Sparx Systems 2024 Page 244 of 729

Unified Modeling Language (UML) 16 October, 2024

connectors for Exception Handler and
Interruptible Activity Region.

(c) Sparx Systems 2024 Page 245 of 729

Unified Modeling Language (UML) 16 October, 2024

UML Elements
UML elements are the building blocks of a model. They are
contained in a repository and are depicted in diagrams
connected by relationships to create narratives that describe
the enterprise, business or software system. Each element
has a type that dictates its presentation and the rules that
govern how it is connected to other elements. Elements are
displayed in a hierarchy in the Browser window and each
element plays a role in defining the system being modeled.
They are grouped into structural or behavioral element
types, and each type can be used at any stage of the
representation of a system. For example, Activities can be
used to define the way an organization carries out a business
function, or to define the steps in a computer algorithm.

Behavioral Diagram Elements

Behavioral diagrams depict the behavioral features of a
system or business process. Elements that can appear on
Behavioral diagrams include Activity, Interaction, Lifeline,
StateMachine and Use Case.

Structural Diagram Elements

Structural diagrams depict the structural elements
composing a system or function. Elements that can appear
on Structural diagrams include Class, Component, Interface,
Node and Package.

(c) Sparx Systems 2024 Page 246 of 729

Unified Modeling Language (UML) 16 October, 2024

(c) Sparx Systems 2024 Page 247 of 729

Unified Modeling Language (UML) 16 October, 2024

Behavioral Diagram Elements
This section provides detailed descriptions of the elements
commonly used in modeling with Behavioral diagrams in
Enterprise Architect.

(c) Sparx Systems 2024 Page 248 of 729

Unified Modeling Language (UML) 16 October, 2024

Action

Description

An Action element describes a basic process or
transformation that occurs within a system, and is the basic
functional unit within an Activity diagram. Actions can be
thought of as children of Activities; both represent
processes, but Activities can contain multiple steps or
decomposable processes, each of which can be embodied by
an Action. An Action cannot be further broken down or
decomposed.

For the purposes of simulation, you can define the effect of
a basic (Atomic) Action on the 'Action' tab of the Properties
window for the element, using a JavaScript expression in the
'Effect' field to define the duration of the effect and selecting
to display the effect on the diagram. An Action can be
further defined with pre-condition and post-condition notes.

Certain properties can be graphically depicted on the
Action. When you first drag the 'Action' icon from the
Toolbox onto a diagram, the system prompts you to select
from a list of the more common types of Action to create. If
you select the 'Other' option on this list, the 'New Action'

(c) Sparx Systems 2024 Page 249 of 729

Unified Modeling Language (UML) 16 October, 2024

dialog displays; the 'Other' drop-down list on this dialog
enables you to select a more specialized type of Action from
a complete list of Action types.

If you later decide that the Action type is not appropriate,
you can change it on the 'Action' tab of the Properties
window - select the required new type from the 'Kind'
drop-down list. For a Value Specification Action, you can
also set the value on this tab.

The data values passed out of and into an Action can be
represented by Action Pins. For an Action type other than a
basic Action, you can also assign Action Pins to represent
specific properties.

An Action can also be depicted as an Expansion Node to
indicate that the Action consists of an Expansion Region.

(c) Sparx Systems 2024 Page 250 of 729

Unified Modeling Language (UML) 16 October, 2024

If you have defined a Decision Table for the Action
element, you can select options on the element's context
menu to render the element on a diagram as the Decision
Table, showing the rules as either rows or columns. You can
also return the element to its normal element shape.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p. 443) states:

An Action is a fundamental unit of executable functionality
contained, directly or indirectly, within a Behavior. The
execution of an Action represents some transformation or
processing in the modeled system, be it a computer system
or otherwise.

The OMG Unified Modeling Language specification,
(v2.5.1, p. 443) also states:

An Action may accept inputs and produce outputs, as
specified by InputPins and OutputPins of the Action,
respectively. Each Pin on an Action specifies the type and
multiplicity for a specific input or output of that Action.

(c) Sparx Systems 2024 Page 251 of 729

Unified Modeling Language (UML) 16 October, 2024

Action Types
Action elements are extremely versatile. Enterprise
Architect supports a wide range of specific Action types that
you can use to represent or enact a discrete object, operation
or behavior. Actions of most types are depicted as a
round-cornered rectangle containing the Action type and
Action name, as shown.

Action Element Notation

Certain types of Action element have their own specific
notation; for example:

Action Kind Notation

AcceptEvent

AcceptEvent
Timer

CallBehavior

CallOperatio
n

(c) Sparx Systems 2024 Page 252 of 729

Unified Modeling Language (UML) 16 October, 2024

SendSignal

AcceptEvent Actions

An AcceptEvent Action element has a selectable output
result Action Pin assigned to it, and one or more Triggers to
denote the type of events accepted by the Action. You
define the Triggers on the 'Triggers' tab of the Properties
window. In a simulation, an AcceptEvent Action without a
Trigger will block the simulation at the Action element.

Field Action

Name Type the name of the trigger.

Type Click on the drop-down arrow and select
the type of trigger: Call, Change, Signal
or Time:

Call - specifies that the event is a·

CallEvent, which sends a message to
the associated object by invoking an
operation
Change - specifies that the event is a·

ChangeEvent, which indicates that the
transition is the result of a change in
value of an attribute

(c) Sparx Systems 2024 Page 253 of 729

Unified Modeling Language (UML) 16 October, 2024

Signal - specifies that the event is a·

SignalEvent, which corresponds to the
receipt of an asynchronous signal
instance
Time - corresponds to a TimeEvent;·

which specifies a moment in time
Code generation for StateMachines
currently supports Change and Time
trigger events only, and expects a
specification value.
In simulation, each Trigger should have a
Signal. The result will be the Accept
signal.

Specification Specify the event instigating the
Transition.
For an AcceptEventTimer Action, you
can type a JavaScript expression in this
field evaluating to the number of ticks to
wait for.

SendSignal Action & BroadcastSignal Action

A SendSignal Action has an assigned target ActionPin and a
Signal. The Signal can have input ActionPins that bind its
attribute parameters as arguments. For example:

 ::Sender: sig.binding_To_s1: Integer

(c) Sparx Systems 2024 Page 254 of 729

Unified Modeling Language (UML) 16 October, 2024

In a model simulation, a SendSignal Action will transfer the
values of the arguments into the attributes of the created
Signal instance. The target ActionPin can have an empty
object, to send the Signal into the root of the simulation
space. If there is no target ActionPin, simulation will stop at
the Action. If the target has an Object, the Signal will be
sent to the Object. You must specify the Pin type of the
target ActionPin in the classifier of the Object.

A BroadcastSignal Action is similar to a SendSignal Action,
except that it does not have a target ActionPin. In a
simulation, it always sends its Signal to the root of the
simulation data.

You can model the Signal to be sent and the associated
arguments to be conveyed, using the 'Signal' tab of the
Properties window for the element.

Field/Button Action

Signal Click on and select the required signal
from the 'Select Signal' dialog.

Attribute Click on the drop-down arrow and select
the attribute (as previously created in the
Signal element) with which the
arguments are to be associated.

Value Type the appropriate value for the
attribute.

Click on this button and select the

(c) Sparx Systems 2024 Page 255 of 729

Unified Modeling Language (UML) 16 October, 2024

Add appropriate ActionPins from the 'Select
Pin' dialog, to identify the arguments for
the Signal.
To assign more than one ActionPin, press
the Ctrl key while you select each one.

Save Click on this button to save your changes.

CallBehavior

A CallBehavior Action has a behavior such as an Activity,
and a selectable ActionPin result that will put the return
value. The CallBehavior Action can also transfer the values
of its argument ActionPins into its behavior, if they are
bound together. In a simulation, if the Action has no
behavior, the simulation is blocked.

SendObject Action

A SendObject Action sends a copy of an Object from the
requesting ActionPin to the target ActionPin. In a
simulation, the SendObject Action must have both
ActionPins, otherwise the simulation is blocked at the
Action.

Structural Feature Actions

(c) Sparx Systems 2024 Page 256 of 729

Unified Modeling Language (UML) 16 October, 2024

A StructuralFeature Action acts upon a modeling structural
feature, such as a Port, Part or attribute of an Activity or of
the classifier of an Object, which you identify within the
Action element. Enterprise Architect supports these types of
Structural Feature Action:

Action Description

AddStructura
lFeatureValu
e

Requires an object input ActionPin where
the target object will be entered, and a
result output ActionPin to hold the read
result. If the object Port has no value at
run time, the process will pause at the
Action.
In your model design, the Port should be
connected to the Port of an Object or to
an Object Node of an Activity. The
properties of the Port or Object Node
must be correctly set, and the value Port
must be set up to capture the input value
when the Action takes effect.
The result ActionPin can be connected to
an input consume Port or ActionPin. For
example, it can be used at the next
WriteStructuralFeature Action as the
input value.

ClearStructur
alFeature

Clears the single value of a structural
attribute or a structural Port of an Object
or an Activity, and sets the value of the

(c) Sparx Systems 2024 Page 257 of 729

Unified Modeling Language (UML) 16 October, 2024

structural feature to null.

ReadStructur
alFeature

Resembles AddStructuralFeatureValue,
except that the value Port is not
necessary.
In a simulation, if the Object's Port has no
value at run time, the simulation will
pause at the Action.

RemoveStruc
turalFeatureV
alue

Similar to ClearStructuralFeature except
that it invokes a value ActionPin to input
a value and, if that value matches the
value of the specified structural feature, it
sets the value to null.
If the values do not match, the Action
does not clear the structural feature value.

WriteStructur
alFeature

Identical to AddStructuralFeatureValue.
In a simulation, the value Port must be set
up to capture the input value when the
simulation runs the Action.

Set a StructuralFeature

Ste
p

Action

(c) Sparx Systems 2024 Page 258 of 729

Unified Modeling Language (UML) 16 October, 2024

1 Right-click on the Action element and select
'Advanced | Set Structural Feature: Add'.

2 On the 'Select Property' dialog (a variant of the
'Select <Item>' dialog), browse or search for the
appropriate structural feature, and double-click on it.
The feature name and location displays in the
'structuralFeature' field of the 'Set Structural Feature'
dialog.

3 Click on the OK button to save the setting.

ReadSelf

A ReadSelf Action reads its own host object name into its
result Port. You must set an output ActionPin for the result.

The Action must be within a Class, which is instanced
during run time. When a simulation passes the Action, it
puts the name of the instance of the Class into the result
Port.

ReadSelf is one of a group of Object Actions, with
CreateObject and DestroyObject.

(c) Sparx Systems 2024 Page 259 of 729

Unified Modeling Language (UML) 16 October, 2024

Variable Actions
Variable Actions are closely concerned with the simulation
of the behavior of and actions on Objects in a process. They
have an association variable in the form of the Tagged
Value variable with, as its value, the name of an Object in
run-time. That is:

 sim.ObjectName

Variable Actions provide the variable not only as an Object
but also as a property (such as an attribute or Port) of an
Object. For example:

 sim.a.a1

The parameter a.a1 can have an integer value.

Variable Actions include:

ReadVariable·

WriteVariable·

ClearVariable·

AddVariableValue·

RemoveVariable·

ReadVariable

A ReadVariable Action has a Result Action Pin as an output
Port. The value of the Port will be the result to be read, this
being a copy of the variable read. Therefore, it is not
affected by changes to the value of the variable. For
example, if the variable is sim.Object.a that has the value 3,

(c) Sparx Systems 2024 Page 260 of 729

Unified Modeling Language (UML) 16 October, 2024

and its value has been changed into 5 after it is read, the
value read is still 3.

Before reading:

 sim.Object.a = 3;

 sim.Action1.result = null;

After reading:

 sim.Object.a = 3;

 sim.Action1.result = 3;

After a change in the value of the variable:

 sim.Object.a = 5;

 sim.Action2.value = 3;

In that example, the value is a Port of Action2 that is
connected to the result Port of Action1 by an Object Flow
connector.

WriteVariable

This Action has a Value Action Pin as an input Port. The
value of the Port will be written into its variable. The result
value is a copy of the variable from the Value Port.

ClearVariable

This Action clears all values of a variable, the variable being
either an Object or a value.

(c) Sparx Systems 2024 Page 261 of 729

Unified Modeling Language (UML) 16 October, 2024

AddVariableValue

This Action is effectively the same as a WriteVariable
Action, because the current variables of the simulation do
not support multiple values.

RemoveVariableValue

This Action is effectively the same as a ClearVariable
Action because the current variables of the simulation do
not support multiple values.

(c) Sparx Systems 2024 Page 262 of 729

Unified Modeling Language (UML) 16 October, 2024

Local Pre/Post Conditions
Actions can be further defined with pre-condition and
post-condition notes, which constrain an Action's entry and
exit.

Attach a constraint to an Action

Ste
p

Action

1 Right-click on the Action and select the 'New Child
Element| Attach Constraint' option.
A Note is created on the diagram, connected to the
Action.

2 Right-click on the Note and select the 'View
Properties' option.
The 'Constraint' dialog displays.

(c) Sparx Systems 2024 Page 263 of 729

Unified Modeling Language (UML) 16 October, 2024

3 In the 'Constraint Type' field, click on the drop-down
arrow and select the required constraint type.

4 In the 'Constraint' field, type the text for the
constraint.

5 Click on the OK button to save the constraint.

(c) Sparx Systems 2024 Page 264 of 729

Unified Modeling Language (UML) 16 October, 2024

Class Operations in Diagrams
Operations from Classes can be represented by
CallOperation Action elements on any diagram (such as an
Activity, Custom or Analysis diagram). When an operation
is shown as an Action, the notation of the element displays
the name of the operation prefixed by the name of the Class
from which it comes.

Add an Operation to a Diagram

Ste
p

Action

1 Open the target diagram.

2 From the Browser window open a Class and locate
the operation to be added to the diagram.

3 Drag the operation on to the diagram.

4 When the operation has been added to the diagram,
the CallOperation Action resembles this:

(c) Sparx Systems 2024 Page 265 of 729

Unified Modeling Language (UML) 16 October, 2024

Change the Operation That an Action Refers
to

Ste
p

Action

1 Right-click on the Action and select the 'Advanced |
Set Operation' option.
The 'Set Operation' dialog displays.

2 If necessary, in the 'Go To Namespace' field, select
the model that contains the operation.
Browse for the operation.

3 When you have located the operation, double-click
on it.
The Action updates to show the new classifier and
operation names.

(c) Sparx Systems 2024 Page 266 of 729

Unified Modeling Language (UML) 16 October, 2024

Notes

If you want to locate, in the Browser window, the·

operation that an Action was created from, right-click on
the Action in the diagram and select the 'Find | Locate
Operation in Project Browser' option

If you want to display the previously-generated code for·

the Class containing the operation, click on the Action in
the diagram and press either Ctrl+E or F12; the 'Code
Editor' view displays, with the code generated for the
Class (if no code has been generated for the Class, the
'Code Editor' does not display)

In a simulation, the CallOperation Action must have a·

calling operation and a target object ActionPin, the
operation belonging to the object that comes from the
target ActionPin; if you don't set these properties,
simulation will be blocked at the Action

If the 'Name' property of the CallOperation is empty, then·

the name of the Class operation name will be displayed in
its place. If the operation's name is modified, the
displayed name will be updated to reflect that change.

(c) Sparx Systems 2024 Page 267 of 729

Unified Modeling Language (UML) 16 October, 2024

Action Pin

Description

An Action Pin is used to define the data values passed out of
and into an Action. An Input Pin provides values to the
Action, whereas an Output Pin contains the results from that
Action.

Action Pins are used here to connect two Actions:

Action Pins can be further characterized as defining
exception parameters, streams, or states. Associating a state
with a Pin defines the state of input or output values. For
instance, the Pin could be called 'Orders', but the state could
be 'Validated' or 'Canceled'.

To add an Action Pin to an Action, right-click on the Action
to display the context menu and select the 'New Child
Element | Action Pin' option. (You can also assign Action
Pins, to define specific properties of the Action.)

The Properties window for an Action Pin has a 'Pin' tab on
which you define the specific actions of the Pin.

A Pin serves as an argument for Call Behavior Actions and
Call Operation Actions - the Pin name and parameters are

(c) Sparx Systems 2024 Page 268 of 729

Unified Modeling Language (UML) 16 October, 2024

shown on the 'Arguments' tab of the Properties window for
the Action element. When an Action is associated with a
valid behavior in the model, the associated behavior's
parameters are listed in the 'Parameter' field drop-down list
to facilitate one-to-one mapping between the argument and
the parameter. The fields in the 'Argument' panel of the 'Pin'
tab are enabled only for Pins belonging to Call Actions, and
only when the Action is associated with a valid behavior
with valid parameters. To observe this:

Create an Activity element and give it an Activity1.
Parameter (right-click on it and select 'New Child
Element | Activity Parameter').

Create an Action and set the 'Kind' property to2.
'CallBehavior' (on the 'Action' tab of the Properties
window for the Action element).

Make the Activity element the classifier for the Action3.
(on the Properties window for the Action, click on the
'Element' tab and, in the 'Advanced' section click on the
'Classifier' browse button and locate and select the
Activity on the 'Select <Item>' dialog).

The Features window immediately displays at the4.
'Interaction Points' tab. Select the 'Show Owned/Inherited'
checkbox; when this is selected, the Activity Parameter is
listed in the 'Defined Elements' panel. Select the checkbox
against the Activity Parameter.

The Action element now has an Action Pin representing5.
an argument, with the Activity Parameter as the parameter
of the argument.

You can also change the objectState property of an Action

(c) Sparx Systems 2024 Page 269 of 729

Unified Modeling Language (UML) 16 October, 2024

Pin on the 'Pin' tab of the element's Properties window.

(c) Sparx Systems 2024 Page 270 of 729

Unified Modeling Language (UML) 16 October, 2024

Assign Action Pins
Apart from adding Action Pins to any Action, you can
assign specialized input or output Action Pins to Actions
that have a specific type (that is, those that are not Basic or
Atomic Actions). These input/output Pins signify various
properties of the Action - they are not visible as structures
on the diagram unless they have previously been added, but
are listed in the Browser window as properties of the
Action.

You can only assign Pins that have already been added or
assigned to the Action, or that are being created specifically
to be assigned to the Action.

Assign Action Pins to an Action

Ste
p

Action

1 Click on the Action in the diagram and, in the
docked Properties window, click on the 'Action' tab.
Click on the drop-down arrow in the 'Kind' field and
ensure that you have the correct Action type, then
click on the Save icon.

2 Click on the 'Element' tab, and select the stereotype
properties group. The group contains different fields
depending on the Action type. The fields are

(c) Sparx Systems 2024 Page 271 of 729

Unified Modeling Language (UML) 16 October, 2024

populated by typing in or browsing for the
appropriate object name or selecting a checkbox.
If you use a Browser screen, you can either browse
for and assign existing objects - in this case,
ActionPins - or click on the Add New button and
create and assign a new Action Pin.

3 Note that the Action Pins do not display on the
diagram, but are shown in the Browser window
under the Action element.
Click on the OK button to return to the Properties
window.

Notes

To check the exact location of an assigned Action Pin,·

you can right-click on the Pin name in the Properties
window and select the 'Find in Project Browser' option

(c) Sparx Systems 2024 Page 272 of 729

Unified Modeling Language (UML) 16 October, 2024

Activity

Description

An Activity organizes and specifies the participation of
subordinate behaviors, such as sub-Activities or Actions, to
reflect the control and data flow of a process. Activities are
used in Activity diagrams for various modeling purposes,
from procedural-type application development for system
design, to business process modeling of organizational
structures or workflow.

This simple diagram of an Activity contains Action
elements and includes input parameters and output
parameters.

You can define an Activity as a composite element, either
during creation or during later edits. When creating a
composite Activity element, it is simpler to apply the
mechanism for creating Structured Activity elements, which

(c) Sparx Systems 2024 Page 273 of 729

Unified Modeling Language (UML) 16 October, 2024

reduces the number of steps to work through. If converting
an existing Activity element, right-click on the element and
select the 'New Child Diagram | Composite Structure
Diagram' option.

Certain properties can be graphically depicted on an
Activity. The Actions in an Activity can be further
organized by Activity Partitions.

An Activity can also be depicted as an Expansion Node to
indicate that the Activity consists of an Expansion Region.

If you have defined a Decision Table for the Activity
element, you can select options on the element's context
menu to render the element on a diagram as the Decision
Table, showing the rules as either rows or columns. You can
also return the element to its normal element shape.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, pp.373-374) states:

An Activity is a Behavior specified as sequencing of
subordinate units, using a control and data flow model.
Subordinate behaviors coordinated by these models may be
initiated because other behaviors in the model finish
executing, because objects and data become available or

(c) Sparx Systems 2024 Page 274 of 729

Unified Modeling Language (UML) 16 October, 2024

because events occur externally to the flow. The flow of
execution is modeled as ActivityNodes connected by
ActivityEdges. An ExecutableNode can be the execution of
a subordinate behavior, such as an arithmetic computation, a
call to an operation, or manipulation of object contents (...).
ActivityNodes also include flow-of-control constructs, such
as synchronization, decision, and concurrency control.

Tokens are not explicitly modeled in an Activity, but are
used for describing the execution of an Activity. An object
token is a container for a value that flows over ObjectFlow
edges (some object tokens can flow over ControlFlow
edges, as specified by the modeler, see isControlType for
ObjectNodes in sub clause 15.4). An object token with no
value in it is called a null token. A control token affects
execution of ActivityNodes, but does not carry any data, and
flows only over ControlFlow edges. Each token is distinct
from any other, even if it contains the same value as
another.

(c) Sparx Systems 2024 Page 275 of 729

Unified Modeling Language (UML) 16 October, 2024

Activity Notation
Certain properties can be graphically depicted on an
Activity element, as shown:

To define these properties, right-click on the Activity and
select the 'Properties' option, then select the 'Advanced' tab
of the 'Properties' dialog.

You can also define the duration (the number of ticks to
wait for) of the Activity, using a JavaScript expression.
Open the Properties window, click on the 'Behavior' tab and
type the JavaScript expression in the 'Specification' field.

(c) Sparx Systems 2024 Page 276 of 729

Unified Modeling Language (UML) 16 October, 2024

Activity Parameter Nodes

Description

An Activity Parameter Node accepts input to an Activity or
provides output from an Activity.

This example depicts two entry parameters and one output
parameter defined for the Activity.

Define an Activity Parameter Node for an
Activity

Ste
p

Action

(c) Sparx Systems 2024 Page 277 of 729

Unified Modeling Language (UML) 16 October, 2024

1 Right-click on the element and select the 'New
Element | Activity Parameter' option.

2 The 'Properties' dialog displays, which prompts for
the name and other properties of the embedded
element.

3 To further define the new Activity Parameter, select
the 'Parameter' tab of the 'Properties' dialog and
define:

Type·

Default Value·

Direction·

Whether this is a fixed value·

Multiplicity upper and lower bounds·

Whether to allow duplicates and·

Whether multiplicity is ordered·

Activity Parameter Nodes also have the 'Exception'
and 'Stream' options:

Exception indicates that a parameter can emit a·

value at the exclusion of other outputs, usually
because of some error
Stream indicates whether or not a parameter can·

accept or post values during the execution of the
Activity

(c) Sparx Systems 2024 Page 278 of 729

Unified Modeling Language (UML) 16 October, 2024

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.398) states:

As a kind of Behavior, an Activity may have Parameters (..).
When the Activity is invoked, values may be passed into the
Activity execution on input Parameters (i.e., those with
direction in or inout) and values may be passed out of the
Activity execution on output Parameters (i.e., those with
direction inout, out or return).

Within an Activity, inputs to and outputs from an Activity
are handled using ActivityParameterNodes. Each
ActivityParameterNode is associated with one Parameter of
the Activity that owns the node. The type of an
ActivityParameterNode shall be the same as the type of its
associated Parameter.

(c) Sparx Systems 2024 Page 279 of 729

Unified Modeling Language (UML) 16 October, 2024

Activity Partition
Enterprise Architect supports two types of Activity
Partition:

The Activity Partition feature, described in this topic,·

which is used to logically organize an Activity element

The Activity Partition element, which is used to logically·

organize an Activity diagram

In effect, these are the same. They partition the Actions of
the Activity without affecting the token flow, helping to
structure the view or parts of the Activity.

An example of a feature-partitioned Activity is shown here:

Define Partitions

Step

In a diagram, right-click on the Activity element and
select the 'Advanced | Partition Activity' option.
The 'Activity Partitions' dialog displays.

(c) Sparx Systems 2024 Page 280 of 729

Unified Modeling Language (UML) 16 October, 2024

In the 'Name' field, type the name of a partition.
Click on the Save button.

Repeat step 2 for each partition to be created.

Click on the Close button.
If the partitions do not show on the element, click on the

 icon to the right of the element, to toggle display of the
partitions.

Click on the partition borders and drag them into position
to enclose the appropriate elements.

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.408) states:

An ActivityPartition is notated with two, usually parallel
lines, either horizontal or vertical, and a name labeling the
partition in a box at one end. Any ActivityNodes and
ActivityEdges placed between these lines are considered to
be contained within the partition. This notation for an
ActivityPartition is colloquially known as a swimlane, (...).

(c) Sparx Systems 2024 Page 281 of 729

Unified Modeling Language (UML) 16 October, 2024

Actor

Note that on a Construction diagram, an Actor element
defaults to Rectangular Notation and looks like a Class
element.

Description

An Actor is a user of the system; user can mean a human
user, a machine, or even another system or subsystem in the
model. Anything that interacts with the system from the
outside or system boundary is termed an Actor. Actors are
typically associated with Use Cases.

Actors can use the system through a graphical user interface,
through a batch interface or through some other media. An
Actor's interaction with a Use Case is documented in a Use
Case scenario, which details the functions a system must
provide to satisfy the user requirements.

Actors also represent the role of a user in Sequence
diagrams, where you can display them using rectangle
notation. Enterprise Architect supports a stereotyped Actor
element for business modeling. The business modeling
elements also represent Actors as stereotyped Objects.

Toolbox icon

(c) Sparx Systems 2024 Page 282 of 729

Unified Modeling Language (UML) 16 October, 2024

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, pp.640/647) states:

An Actor specifies a role played by a user or any other
system that interacts with the subject

An Actor models a type of role played by an entity that
interacts with the subjects of its associated UseCases (e.g.,
by exchanging signals and data). Actors may represent roles
played by human users, external hardware, or other systems.

NOTE. An Actor does not necessarily represent a specific
physical entity but instead a particular role of some entity
that is relevant to the specification of its associated
UseCases. Thus, a single physical instance may play the role
of several different Actors and, conversely, a given Actor
may be played by multiple different instances.

NOTE. The term “role” is used informally here and does not
imply any technical definition of that term found elsewhere
in this specification.

When an Actor has an association to a UseCase with a
multiplicity that is greater than one at the UseCase end, it
means that a given Actor can be involved in multiple
UseCases of that type. The specific nature of this multiple
involvement depends on the case on hand and is not defined
in this specification. Thus, an Actor may initiate multiple
UseCases in parallel (concurrently) or at different points in

(c) Sparx Systems 2024 Page 283 of 729

Unified Modeling Language (UML) 16 October, 2024

time.

(c) Sparx Systems 2024 Page 284 of 729

Unified Modeling Language (UML) 16 October, 2024

Central Buffer Node

Description

A Central Buffer Node is an object node for managing flows
from multiple sources and destinations, represented in an
Activity diagram. It acts as a buffer for multiple in-flows
and out-flows from other object nodes, but does not connect
directly to Actions.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.398) states:

A CentralBufferNode acts as a buffer between incoming
ObjectFlows and outgoing ObjectFlows. It accepts all object
tokens offered to it on all incoming flows, which are then
held by the node. Held object tokens are offered to outgoing
flows according to the general ordering rules for
ObjectNodes. When an offer for a token is accepted by a
downstream object node, that token is removed from the

(c) Sparx Systems 2024 Page 285 of 729

Unified Modeling Language (UML) 16 October, 2024

CentralBufferNode and moved to the accepting object node,
as for any object node.

(c) Sparx Systems 2024 Page 286 of 729

Unified Modeling Language (UML) 16 October, 2024

Choice

Description

The Choice pseudostate is used to compose complex
transitional paths in, for example, a StateMachine diagram,
where the outgoing transition path is decided by dynamic,
run-time conditions. The run-time conditions are determined
by the actions performed by the StateMachine on the path
leading to the choice.

This example depicts the Choice element. Upon reaching
the Filter pseudostate, a transition fires to the appropriate
State based on the run-time value passed to the Filter. Very
similar in form to a Junction pseudostate, the Choice
pseudostate's distinction is in deciding transition paths at
run-time.

(c) Sparx Systems 2024 Page 287 of 729

Unified Modeling Language (UML) 16 October, 2024

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.313) states:

This type of Pseudostate is similar to a junction Pseudostate
(...) and serves similar purposes, with the difference that the
guard Constraints on all outgoing Transitions are evaluated
dynamically, when the compound transition traversal
reaches this Pseudostate. Consequently, choice is used to
realize a dynamic conditional branch. It allows splitting of
compound transitions into multiple alternative paths such
that the decision on which path to take may depend on the

(c) Sparx Systems 2024 Page 288 of 729

Unified Modeling Language (UML) 16 October, 2024

results of Behavior executions performed in the same
compound transition prior to reaching the choice point. If
more than one guard evaluates to true, one of the
corresponding Transitions is selected. The algorithm for
making this selection is not defined. If none of the guards
evaluates to true, then the model is considered ill formed. To
avoid this, it is recommended to define one outgoing
Transition with the predefined “else” guard for every choice
Pseudostate.

(c) Sparx Systems 2024 Page 289 of 729

Unified Modeling Language (UML) 16 October, 2024

Combined Fragment

A Combined Fragment reflects one or more aspects of
interaction (called interaction operands) controlled by an
interaction operator, with corresponding Boolean conditions
known as interaction constraints. The Fragment displays as
a transparent window, divided by horizontal lines for each
operand.

This Sequence diagram illustrates the use of Combined
Fragments in modeling a simplified purchasing process. A
loop fragment represents iteration through an unknown
number of items for purchase, after which the cashier
requests payment. An alternative fragment represents the
payment options, the fragment being divided to show the
two operands cash and credit card. After the fragment
completes its trace, the cashier gives a receipt to the
customer, under the fulfilled condition that payment
requirements were met.

(c) Sparx Systems 2024 Page 290 of 729

Unified Modeling Language (UML) 16 October, 2024

The order of interaction fragment conditions can be changed
directly on the diagram:

Select an interaction fragment with more than one1.
condition defined; up and down arrows appear on the
right hand side of each condition.

Click on the appropriate arrow to change the order.2.

(c) Sparx Systems 2024 Page 291 of 729

Unified Modeling Language (UML) 16 October, 2024

Selecting and Moving a Combined Fragment

In order to select a Combined Fragment, you must click near
the inside edge or drag a selection rectangle around the
Fragment; this is designed to prevent accidental selection
when moving Messages inside the Fragment.

Once contained within a Fragment or a Fragment Operand,
Messages continue to be contained by it as they are moved
up and down the diagram. To move a Message out of a
Fragment, or to a different position in the sequence within
the Fragment, press and hold the Alt key as you drag the
Message into position. A Fragment on a Sequence diagram
will resize when a Message within it is moved up or down,
to continue to contain that Message.

When you select an Interaction Fragment on a diagram, it
shows one of two element icons (off the top right corner)
that control how freely you can move the fragment and any
Messages within and below the fragment.

To move a Combined Fragment independently of its

(c) Sparx Systems 2024 Page 292 of 729

Unified Modeling Language (UML) 16 October, 2024

contents, make sure the 'move freely' element icon is
visible; if it is not shown, click on the 'move contents' icon

 and drag the element border.

Interaction Fragments inside a Combined Fragment operand
cannot be moved outside the operand unless the fragment is
in 'move freely' mode. Moving an operand line moves any
objects and Messages below that line down or up by the
amount the operand line is moved.

Fragments containing other fragments resize when the
contained fragment is resized (unless the fragment is in
'move freely' mode).

Fill Opacity

Whilst an Interaction Fragment usually encloses a number
of other elements, there might be reasons for hiding those
elements as well as times to fully show them, or perhaps just
indicate that they are there, depending on the immediate
purpose of the diagram. You can apply these nuances in the
display of elements behind and covered or overlapped by an
Interaction Fragment, by changing the opacity of the
element.

Before setting the opacity, check that the element has a fill
color.

You set the opacity using an icon from either of these two
pop-up element toolbars:

Click on the Interaction Fragment element and on the ·

icon:

(c) Sparx Systems 2024 Page 293 of 729

Unified Modeling Language (UML) 16 October, 2024

Right-click on the Interaction Fragment element and look·

above the context menu:

Click on the icon and select:

100% for total opacity, where the elements behind and·

overlapping or covered by the Interaction Fragment are
hidden (you could right-click on individual elements and
select the 'Z-Order | Bring to Top' option to expose those
elements only)

0% for no opacity, where the fill color is not applied and·

anything behind the Interaction Fragment is fully visible

75%, 50% or 25% to set the appropriate degree of opacity·

and make the covered elements visible but over-shaded

Toolbox icon

OMG UML Specification

The OMG Unified Modeling Language specification,
(v2.5.1, p.607) states:

A CombinedFragment defines an expression of
InteractionFragments. A CombinedFragment is defined by
an interaction operator and corresponding

(c) Sparx Systems 2024 Page 294 of 729

Unified Modeling Language (UML) 16 October, 2024

InteractionOperands. Through the use of
CombinedFragments the user will be able to describe a
number of traces in a compact and concise manner.

(c) Sparx Systems 2024 Page 295 of 729

Unified Modeling Language (UML) 16 October, 2024

Create a Combined Fragment

Create a Combined Fragment

Ste
p

Action

1 Drag the 'Fragment' icon onto the diagram from the
'Interaction Elements' page of the Diagram Toolbox.

2 In the 'Type' field, click on the drop-down arrow and
select one of the various types of interaction
operator.

3 In the 'Condition' field, specify a condition or
interaction constraint for each operand.

4 A rectangular frame displays, partitioned by lines
into segments for each operand.

5 Adjust the frame to encompass the required event
occurrences for each operand.

Notes

A message will always be contained within a fragment or·

(c) Sparx Systems 2024 Page 296 of 729

Unified Modeling Language (UML) 16 October, 2024

a fragment operand when it is moved within it

Fragments on Sequence diagrams will resize when a·

message is moved down to ensure that messages, once
within a fragment, always remain within the fragment

(c) Sparx Systems 2024 Page 297 of 729

Unified Modeling Language (UML) 16 October, 2024

Interaction Operators
When creating Combined Fragments, you must apply an
appropriate interaction operator to characterize the
fragment. This table provides guidance on the various
operators, and their corresponding descriptions.

Interaction Operator

Operator Action

alt Divide up interaction fragments based on
Boolean conditions.

opt Enclose an optional fragment of
interaction.

par Indicate that operands operate in parallel.

loop Indicate that the operand repeats a
number of times, as specified by
interaction constraints.

critical Indicate a sequence that cannot be
interrupted by other processing.

neg Assert that a fragment is invalid, and
implies that all other interaction is valid.

(c) Sparx Systems 2024 Page 298 of 729

Unified Modeling Language (UML) 16 October, 2024

assert Specify the only valid fragment to occur.
This operator is often enclosed within a
consider or ignore operand.

strict Indicate that the behaviors of the
operands must be processed in strict
sequence.

seq Indicate that the Combined Fragment is
weakly sequenced. This means that the
ordering within operands is maintained,
but the ordering between operands is
undefined, so long as an event occurrence
of the first operand precedes that of the
second operand, if the event occurrences
are on the same lifeline.

ignore Indicate which messages should be
ignored during execution, or can appear
anywhere in the execution trace.

consider Specify which messages should be
considered in the trace. This is often used
to specify the resulting event occurrences
with the use of an assert operator.

ref Provide a reference to another diagram.
The ref fragment is not created using the

(c) Sparx Systems 2024 Page 299 of 729

Unified Modeling Language (UML) 16 October, 2024

method described in the Create a
Combined Fragment topic. To create a
ref fragment, simply drag an existing
diagram from the Browser window onto
the current diagram.

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, pp.583-585) states:

The value of the interactionOperator is significant for the
semantics of CombinedFragment, as specified below for
each interactionOperator enumeration value.

Alternatives

The interactionOperator alt designates that the
CombinedFragment represents a choice of behavior. At
most one of the operands will be chosen. The chosen
operand must have an explicit or implicit guard expression
that evaluates to true at this point in the interaction. An
implicit true guard is implied if the operand has no guard.
The set of traces that defines a choice is the union of the
(guarded) traces of the operands. An operand guarded by
else designates a guard that is the negation of the disjunction
of all other guards in the enclosing CombinedFragment. If
none of the operands has a guard that evaluates to true, none
of the operands are executed and the remainder of the
enclosing InteractionFragment is executed. If an inner
CombinedFragment Gate is used in any InteractionOperand

(c) Sparx Systems 2024 Page 300 of 729

Unified Modeling Language (UML) 16 October, 2024

of an alt CombinedFragment, a Gate with that same name
must be used by every InteractionOperand of that alt
CombinedFragment.

Option

The interactionOperator opt designates that the
CombinedFragment represents a choice of behavior where
either the (sole) operand happens or nothing happens. An
option is semantically equivalent to an alternative
CombinedFragment where there is one operand with
non-empty content and the second operand is empty.

Break

The interactionOperator break designates that the
CombinedFragment represents a breaking scenario in the
sense that the operand is a scenario that is performed instead
of the remainder of the enclosing InteractionFragment. A
break operator with a guard is chosen when the guard is true
and the rest of the enclosing Interaction Fragment is
ignored. When the guard of the break operand is false, the
break operand is ignored and the rest of the enclosing
InteractionFragment is chosen. The choice between a break
operand without a guard and the rest of the enclosing
InteractionFragment is done non-deterministically. A
CombinedFragment with interactionOperator break should
cover all Lifelines of the enclosing InteractionFragment.

Parallel

The interactionOperator par designates that the
CombinedFragment represents a parallel merge between the
behaviors of the operands. The OccurrenceSpecifications of
the different operands can be interleaved in any way as long

(c) Sparx Systems 2024 Page 301 of 729

Unified Modeling Language (UML) 16 October, 2024

as the ordering imposed by each operand as such is
preserved. A parallel merge defines a set of traces that
describes all the ways that OccurrenceSpecifications of the
operands may be interleaved without obstructing the order
of the OccurrenceSpecifications within the operand.

Weak Sequencing

The interactionOperator seq designates that the
CombinedFragment represents a weak sequencing between
the behaviors of the operands. Weak sequencing is defined
by the set of traces with these properties:

1 The ordering of OccurrenceSpecifications within each of
the operands are maintained in the result.

2 OccurrenceSpecifications on different lifelines from
different operands may come in any order.

3 OccurrenceSpecifications on the same lifeline from
different operands are ordered such that an
OccurrenceSpecification of the first operand comes before
that of the second operand.

Thus weak sequencing reduces to a parallel merge when the
operands are on disjunct sets of participants. Weak
sequencing reduces to strict sequencing when the operands
work on only one participant.

Strict Sequencing

The interactionOperator strict designates that the
CombinedFragment represents a strict sequencing between
the behaviors of the operands. The semantics of strict

(c) Sparx Systems 2024 Page 302 of 729

Unified Modeling Language (UML) 16 October, 2024

sequencing defines a strict ordering of the operands on the
first level within the CombinedFragment with
interactionOperator strict. Therefore
OccurrenceSpecifications within contained
CombinedFragment will not directly be compared with
other OccurrenceSpecifications of the enclosing
CombinedFragment.

Negative

The interactionOperator neg designates that the
CombinedFragment represents traces that are defined to be
invalid. The set of traces that defined a CombinedFragment
with interactionOperator negative is equal to the set of
traces given by its (sole) operand, only that this set is a set
of invalid rather than valid traces. All InteractionFragments
that are different from Negative are considered positive
meaning that they describe traces that are valid and should
be possible.

Critical Region

The interactionOperator critical designates that the
CombinedFragment represents a critical region. A critical
region means that the traces of the region cannot be
interleaved by other OccurrenceSpecifications (on those
Lifelines covered by the region). This means that the region
is treated atomically by the enclosing fragment when
determining the set of valid traces. Even though enclosing
CombinedFragments may imply that some
OccurrenceSpecifications may interleave into the region,
such as with par-operator, this is prevented by defining a
region. Thus the set of traces of enclosing constructs are

(c) Sparx Systems 2024 Page 303 of 729

Unified Modeling Language (UML) 16 October, 2024

restricted by critical regions.

Ignore / Consider

The interactionOperator ignore designates that there are
some message types that are not shown within this
combined fragment. These message types can be considered
insignificant and are implicitly ignored if they appear in a
corresponding execution. Alternatively, one can understand
ignore to mean that the message types that are ignored can
appear anywhere in the traces. Conversely, the
interactionOperator consider designates which messages
should be considered within this combined fragment. This is
equivalent to defining every other message to be ignored.

Assertion

The interactionOperator assert designates that the
CombinedFragment represents an assertion. The sequences
of the operand of the assertion are the only valid
continuations. All other continuations result in an invalid
trace. Assertions are often combined with Ignore or
Consider as shown in Figure 17.17.

Loop

The interactionOperator loop designates that the
CombinedFragment represents a loop. The loop operand
will be repeated a number of times.

The Guard may include a lower and an upper number of
iterations of the loop as well as a Boolean expression. The
semantics is such that a loop will iterate minimum the
‘minint’ number of times (given by the iteration expression
in the guard) and at most the ‘maxint’ number of times.

(c) Sparx Systems 2024 Page 304 of 729

Unified Modeling Language (UML) 16 October, 2024

After the minimum number of iterations have executed and
the Boolean expression is false the loop will terminate. The
loop construct represents a recursive application of the seq
operator where the loop operand is sequenced after the
result of earlier iterations.

If the loop contains a separate InteractionConstraint with a
specification, the loop will only continue if that
specification evaluates to true during execution regardless of
the minimum number of iterations specified in the loop.

(c) Sparx Systems 2024 Page 305 of 729

Unified Modeling Language (UML) 16 October, 2024

Constraint

Description

A Constraint element identifies a constraint on other
elements; it can be connected to other elements of any type.
The Constraint element icon is available in any Enterprise
Architect diagram, through the 'Common' pages of the
Toolbox.

This element is a means of documenting the fact that there
are constraints on related elements; it has no impact on the
other elements. However, a Constraint is a named element,
listed in the Browser window, and able to be copied and
re-used where appropriate. You define the types of
constraint in the project reference data, apply them to the
element in the element 'Properties' dialog, and manage them
through the Responsibility window.

Toolbox icon

(c) Sparx Systems 2024 Page 306 of 729

Unified Modeling Language (UML) 16 October, 2024

Datastore

Description

A Datastore is an element used to define permanently stored
data. A token of data that enters into a Datastore is stored
permanently, updating tokens for data that already exists. A
token of data that comes out of a Datastore is a copy of the
original data.

Use Object Flow connectors to connect elements (such as
Activities) to Datastores, as values and information are
being passed between nodes. Selection and transformation
behavior, together composing a sort of query, can be
specified as to the nature of data access. For instance,
selection behavior determines which objects are affected by
the connection to the Datastore. Transformation behavior
might then further specify the value of an attribute
pertaining to a selected object.

To define the behavior of access to a Datastore, attach a note
to the Object Flow connector. To do this, right-click on the
Object Flow and select the 'Attach Note or Constraint'
option. A dialog indicates other flows in the Activity
diagram, to which you can attach the note (if the behavior
applies to multiple flows). To comply with UML 2.x,
preface the behavior with the notation «selection» or
«transformation».

(c) Sparx Systems 2024 Page 307 of 729

Unified Modeling Language (UML) 16 October, 2024

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.399) states:

A DataStoreNode is a CentralBufferNode that holds its
object tokens persistently while its activity is executing.
When an offer for an object token held by a DataStoreNode
is accepted by a downstream object node, the offered token
is removed from the DataStoreNode, per the usual
CentralBufferNode semantics. However, a copy is made of
the removed object token, with the same value, and this is
immediately placed back onto the DataStoreNode. Thus, the
values held by a DataStoreNode appear to persist for the
duration of each execution of its containing activity, even as
tokens move downstream from the node. When a
DataStoreNode accepts an object token, if that token
contains an object with the same identity as an object
contained in a token already held by the node, then the
duplicate object token shall not be placed on the
DataStoreNode. Unlike a regular CentralBufferNode, a
DataStoreNode contains objects uniquely.

(c) Sparx Systems 2024 Page 308 of 729

Unified Modeling Language (UML) 16 October, 2024

Decision

Description

A Decision is an element of an Activity diagram or
Interaction Overview diagram that indicates a point of
conditional progression: if a condition is True, then
processing continues one way; if not, then another.

The element can also be used as a Merge node in that
multiple alternative flows can be merged (but not
synchronized) to form one flow. These examples show both
of these methods of using the Decision element.

Used as a decision:

See the OMG Unified Modeling Language specification,
(v2.5.1, figure 12.77, p. 363.)

Used as a merge:

(c) Sparx Systems 2024 Page 309 of 729

Unified Modeling Language (UML) 16 October, 2024

See the OMG Unified Modeling Language specification,
(v2.5.1, figure 12.106, p. 388.)

You can choose a Behavior element as the Decision Input
property of the Decision (UML: decisionInput) in the
Properties window. To show the chosen Decision Input
property on a diagram, attach a Note to the Decision, then
right-click on the Note Link and choose the 'Link this Note
to an Element feature' option. Then select 'Decision Input' as
the linked feature.

You can also choose an Object Flow as the Decision Input
Flow of the Decision (UML: decisionInputFlow). Select the
incoming Object Flow and select the 'Decision Input Flow'
option in the Properties window.

Notes

Moving a diagram generally does not affect the location·

of elements in Packages; if you move a diagram out of
one Package into another, all the elements in the diagram
remain in the original Package

However, Decision elements are used only within one
diagram, have no meaning outside that diagram, and are
never re-used in any other diagram; therefore, if you move

(c) Sparx Systems 2024 Page 310 of 729

Unified Modeling Language (UML) 16 October, 2024

a diagram containing these elements, they are moved to
the new parent Package with the diagram

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.390 (Decision Node)) states:

A DecisionNode is a ControlNode that chooses between
outgoing flows. A DecisionNode shall have at least one and
at most two incoming ActivityEdges, and at least one
outgoing ActivityEdge. If it has two incoming edges, then
one shall be identified as the decisionInputFlow, the other
being called the primary incoming edge. If the
DecisionNode has only one incoming edge, then it is the
primary incoming edge. If the primary incoming edge of a
DecisionNode is a ControlFlow, then all outgoing edges
shall be ControlFlows and, if the primary incoming edge is
an ObjectFlow, then all outgoing edges shall be
ObjectFlows.

A DecisionNode accepts tokens on its primary incoming
edge and offers them to all its outgoing edges. However,
each token offered on the primary incoming edge shall
traverse at most one outgoing edge. Tokens are not
duplicated.

If any of the outgoing edges of a DecisionNode have guards,

(c) Sparx Systems 2024 Page 311 of 729

Unified Modeling Language (UML) 16 October, 2024

then these are evaluated for each incoming token. The order
in which guards are evaluated is not defined and may be
evaluated concurrently. If the primary incoming edge of a
DecisionNode is an ObjectFlow, and the DecisionNode does
not have a decisionInput or decisionInputFlow, then the
value contained in an incoming object token may be used in
the evaluation of the guards on outgoing ObjectFlows.

(c) Sparx Systems 2024 Page 312 of 729

Unified Modeling Language (UML) 16 October, 2024

Diagram Frame

A Diagram Frame element is a rendition of a diagram
dropped from the Browser window into another diagram. It
is a type of Combined Fragment with an 'Interaction
Operator' ref. However, it can be created on any type of
diagram, and is not created in the same way as other
Combined Fragments.

When you drop the diagram from the Browser window onto
the open diagram, a dialog shows providing (amongst
others) these options:

'Diagram Frame' - a Diagram Frame is inserted into the·

diagram, containing an image of the dropped diagram

'Diagram Reference' - an empty frame is inserted with the·

name of the dropped diagram in the frame label

(c) Sparx Systems 2024 Page 313 of 729

Unified Modeling Language (UML) 16 October, 2024

In both cases, the object acts as a hyperlink to the real
referenced diagram. You can also define properties for the
objects, as for other elements, by right-clicking on the object
and selecting the element 'Properties' option.

All options on the 'Select Type' dialog are discussed in the
Add Diagram Links to Diagrams Help topic.

Diagram Frame Appearance

You can change the appearance of a Diagram Frame, as for
other elements, but the available options are tailored for this
element type. If you right-click on the frame and select the
'Appearance | Diagram Frame Appearance' option, a
sub-menu displays with these options:

'Normal' - the default appearance of a visible rectangular·

frame with a visible frame label; you can use this option
to reset the appearance after using one of the other options

'Boundary' - hides the frame label of the Diagram Frame·

'Boundary With Name' - hides the border of the frame·

label

'Name Only' - hides the border of the Diagram Frame and·

frame label, leaving the text only

'Hidden' - hides the border and text of the Diagram Frame·

In a SysML, State or StateMachine diagram:

If the frame is set to non-selectable it will auto-resize to·

fit the bounds of the diagram, expanding from its default
size but not shrinking smaller

Diagrams showing Diagram Frames applied using·

(c) Sparx Systems 2024 Page 314 of 729

Unified Modeling Language (UML) 16 October, 2024

Enterprise Architect release 14.0 or later will, if opened
using a release of Enterprise Architect earlier than release
14.0, draw the parent object on the diagram

Moving Elements via Diagram Frames

A useful feature of Diagram Frames as a diagram reference
is that they provide the facility of moving elements currently
displayed on the Host diagram through the frame to the
referenced diagram, the parent Package of the referenced
diagram, or both. You can also add the element to the
referenced diagram as a link to its current location.

To move or link the element, simply drag it on the current
diagram over the Diagram Frame. A dialog displays, listing
options to:

Move the element to the referenced diagram·

Create a link to the element on the referenced diagram·

Move the element to the parent Package·

Move the element to both the referenced diagram and its·

parent Package

If you select one of the options to move the element to the
referenced diagram, it and any connectors it has are
removed from the current diagram and placed in a clear area
of the referred diagram. If the element already has
relationships with other elements on the diagram, those
relationships are included.

(c) Sparx Systems 2024 Page 315 of 729

Unified Modeling Language (UML) 16 October, 2024

Notes

You can change the size of both objects, but you cannot·

reduce a Diagram Frame to less than the size of the
enclosed diagram

You cannot change the diagram within a Diagram Frame;·

to edit the diagram, double-click within the frame and edit
the original diagram

The Diagram Frame element is not the same as the·

diagram frame border that you can set (using the 'Diagram
Frames' panel on the 'Diagram' page of the 'Preferences'
dialog) on images of diagrams that you print out, copy to
file or paste into other tools; it is possible, but not usual,
to paste the diagram image from the clipboard into
another Enterprise Architect diagram, in which case the
image initially looks the same as the Diagram Frame
element, but element options do not function on this
image

(c) Sparx Systems 2024 Page 316 of 729

Unified Modeling Language (UML) 16 October, 2024

Gate

Description

A Diagram Gate is a simple graphical way to indicate the
point at which messages can be transmitted into and out of
Interaction Fragments. A fragment might be required to
receive or deliver a message; internally; an ordered message
reflects this requirement, with a Gate indicated on the
boundary of the fragment's frame. Any external messages
'synching' with this internal message must correspond
appropriately. Gates can appear on Interaction diagrams
(Sequence, Timing, Communication or Interaction
Overview), Interaction Occurrences and Combined
Fragments (to specify the expression).

Toolbox icon

(c) Sparx Systems 2024 Page 317 of 729

Unified Modeling Language (UML) 16 October, 2024

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, pp.575-576) states:

A Gate is a MessageEnd that is used on the boundary of an
Interaction, or an InteractionUse, or a CombinedFragment to
establish the concrete sender and receiver for every
Message.

Gate instances, since they occur in a paired manner linking
two Message instances, are also not themselves explicitly
ordered. Gates are MessageEnds that provide a connection
point between, either:

a Message instance outside of an InteractionUse and a·

Message instance inside the used Interaction, or

a Message instance outside a CombinedFragment and a·

Message instance inside an InteractionOperand within the
CombinedFragment.

(c) Sparx Systems 2024 Page 318 of 729

Unified Modeling Language (UML) 16 October, 2024

Endpoint

Description

An Endpoint is used in Interaction diagrams (Sequence,
Timing, Communication or Interaction Overview) to reflect
a lost or found Message in sequence. To model this, drag an
Endpoint element onto the workspace.

With Sequence diagrams, drag a Message from the
appropriate Lifeline to the Endpoint. With Timing diagrams,
the Message connecting the Lifeline to the Endpoint
requires some timing specifications to draw the connection.

This example depicts a lost Message in a Sequence diagram.

Toolbox icon

(c) Sparx Systems 2024 Page 319 of 729

Unified Modeling Language (UML) 16 October, 2024

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.574) states:

A lost Message is a Message where the sending event
occurrence is known, but there is no receiving event
occurrence. We interpret this to be because the destination
of the [lost]Message is outside the scope of the description.

A found Message is a Message where the receiving event
occurrence is known, but there is no (known) sending event
occurrence. We interpret this to be because the origin of the
Message is outside the scope of the description. This may
for example be noise or other activity that we do not want to
describe in detail.

(c) Sparx Systems 2024 Page 320 of 729

Unified Modeling Language (UML) 16 October, 2024

Entry Point

Description

Entry Point pseudostates are used to define the beginning of
a StateMachine. An Entry Point exists for each region,
directing the initial concurrent state configuration.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.313) states:

An entryPoint Pseudostate represents an entry point for a
StateMachine or a composite State that provides
encapsulation of the insides of the State or StateMachine. In
each Region of the StateMachine or composite State owning
the entryPoint, there is at most a single Transition from the
entry point to a Vertex within that Region.

(c) Sparx Systems 2024 Page 321 of 729

Unified Modeling Language (UML) 16 October, 2024

Event

Description

Two elements are used to model Events; the:

Send Event which models the generation of a stimulus in·

the system and the passing of that stimulus to other
elements, either within the system or external to the
system

Receive Event, depicted as a rectangle with a recessed 'V'·

on the left side, which indicates that an event occurs in the
system due to some external or internal stimulus; typically
this invokes further activities and processing

Send and Receive Events can be added from the Analysis,
State and Activity Element pages of the Toolbox.

If you should select the wrong type of event, or otherwise
want to change the type, right-click on the Event and select
the 'Advanced | Make Sender' or 'Advanced | Make
Receiver' option, as appropriate.

Toolbox icon

(c) Sparx Systems 2024 Page 322 of 729

Unified Modeling Language (UML) 16 October, 2024

(c) Sparx Systems 2024 Page 323 of 729

Unified Modeling Language (UML) 16 October, 2024

Exception

Description

The Exception Handler element defines the group of
operations to carry out when an exception occurs. In an
Activity diagram, the protected element can contain a set of
operations and is connected to the exception handler via an
Interrupt Flow connector. Any defined error contained
within an element's parts can trigger the flow to move to an
exception.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.404) states:

An exception is a value used to identify a non-normal
completion mode of an execution. If an exception is raised
(e.g., using a RaiseExceptionAction; ...) within the
execution of an ExecutableNode and not handled within that

(c) Sparx Systems 2024 Page 324 of 729

Unified Modeling Language (UML) 16 October, 2024

execution, then the execution is terminated and the
exception is propagated out of the ExecutableNode.

An ExecutableNode may have one or more
ExceptionHandlers that are used to deal with exceptions that
may be propagated out of the ExecutableNode, which is the
protectedNode of those handlers. If an exception is
propagated out of the protectedNode, then the set of
handlers is examined for a handler that matches the
exception. A handler matches if the type of the exception is
the same as, or a (direct or indirect) subtype of, one of the
exceptionTypes of the handler. If there is a match, the
handler catches

(c) Sparx Systems 2024 Page 325 of 729

Unified Modeling Language (UML) 16 October, 2024

Expansion Node

Description

Representing an Action or an Activity as an Expansion
Node is a shorthand notation to indicate that the
Action/Activity consists of an Expansion Region.

To specify an Action or Activity as an Expansion Node,
right-click on the Action and select the 'New Child Element
| Expansion Node' option.

(c) Sparx Systems 2024 Page 326 of 729

Unified Modeling Language (UML) 16 October, 2024

Expansion Region

Description

On an Activity diagram, an Expansion Region encloses a
group of ActivityNodes and ActivityEdges that are to be
executed several times on the incoming data, once for every
element in the input collection. If there are multiple inputs,
the collection sizes should match; if they do not, the
smallest collection determines the number of executions.
The collections must also be of the same type (such as set,
or bag). Any outputs must be in the form of a collection of
at least the same size as the input collection; the output
collection can be larger if each execution can produce more
than one output.

You create an Expansion Region as one variant of a Region
(the other is an Interruptible Activity Region) using the
Activity pages of the Diagram Toolbox. You are prompted
to specify the concurrency of the Expansion Region's
multiple executions (parallel, iterative or stream). Parallel
reflects that the elements in the incoming collections can be
processed at the same time or overlapping, whereas an
iterative concurrency mode specifies that execution must
occur sequentially. A stream mode Expansion Region
indicates that the input and output come in and exit as
streams, and that the Expansion Region's process must have

(c) Sparx Systems 2024 Page 327 of 729

Unified Modeling Language (UML) 16 October, 2024

some method to support streams.

To modify the mode of an Expansion Region, right-click on
it and select the 'Properties | Special Action' option, then
select the 'Advanced' tab and click on the drop-down arrow
in the 'mode' field..

Toolbox icon

(c) Sparx Systems 2024 Page 328 of 729

Unified Modeling Language (UML) 16 October, 2024

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, pp.480-481) states:

An ExpansionRegion is a StructuredActivityNode that
executes its contained elements multiple times
corresponding to elements of an input collection.

An ExpansionRegion is a StructuredActivityNode that takes
as input one or more collections of values and executes its
contained ActivityNodes and ActivityEdges on each value
in those collections. If the computation produces results,
these may be collected into output collections. The number
of output collections can differ from the number of input
collections.

(c) Sparx Systems 2024 Page 329 of 729

Unified Modeling Language (UML) 16 October, 2024

Exit Point

Description

Exit Points are used in StateMachine elements and
StateMachine diagrams to denote the point where the
machine is exited and the transition sourcing this exit point,
for StateMachine elements, is triggered. Exit points are a
type of pseudostate used in the StateMachine diagram.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.313) states:

An exitPoint Pseudostate is an exit point of a StateMachine
or composite State that provides encapsulation of the insides
of the State or StateMachine. Transitions terminating on an
exit point within any Region of the composite State or a
StateMachine referenced by a submachine State implies
exiting of this composite State or submachine State (with
execution of its associated exit Behavior). If multiple
Transitions from orthogonal Regions within the State

(c) Sparx Systems 2024 Page 330 of 729

Unified Modeling Language (UML) 16 October, 2024

terminate on this Pseudostate, then it acts like a join
Pseudostate.

(c) Sparx Systems 2024 Page 331 of 729

Unified Modeling Language (UML) 16 October, 2024

Final

Description

Two nodes can be used to define a Final state in an Activity,
both defined in UML 2.1 as of type Final Node. The
Activity Final element indicates the completion of an
Activity; upon reaching the Final, all execution in the
Activity diagram is aborted. The other type of final node,
Flow Final, depicts an exit from the system that has no
effect on other executing flows in the Activity.

The next example illustrates the development of an
application. The process comes to a Flow Final node when
there are no more components to be built; note that the Fork
element indicates a concurrent process with the building of
new components and installation of completed components.
The Flow Final terminates only the sub-process building
components. Similarly, only those tokens entering the
decision branch for the installation of further components
terminate with the connecting Flow Final (that is, stop
installing this component, but keep on installing other
components). It is only after the Deliver Application activity
is completed, after the control flow reaches the Final node,
that all flows stop.

The node that initiates a flow is the Initial node.

(c) Sparx Systems 2024 Page 332 of 729

Unified Modeling Language (UML) 16 October, 2024

See the OMG Unified Modeling Language specification,
(v2.5.1, figure 12.91, p.374.)

Notes

Moving a diagram generally does not affect the location·

of elements in Packages; if you move a diagram out of
one Package into another, all the elements in the diagram
remain in the original Package

However, Final elements are used only within one
diagram, have no meaning outside that diagram, and are
never re-used in any other diagram; therefore, if you move
a diagram containing these elements, they are moved to
the new parent Package with the diagram

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,

(c) Sparx Systems 2024 Page 333 of 729

Unified Modeling Language (UML) 16 October, 2024

(v2.5.1, p.388) states:

A FinalNode is a ControlNode at which a flow in an
Activity stops. A FinalNode shall not have outgoing
ActivityEdges. A FinalNode accepts all tokens offered to it
on its incoming ActivityEdges.

There are two kinds of FinalNode:

1 A FlowFinalNode is a FinalNode that terminates a flow.
All tokens accepted by a FlowFinalNode are destroyed. This
has no effect on other flows in the Activity.

2 An ActivityFinalNode is a FinalNode that stops all flows
in an Activity (...). A token reaching an ActivityFinalNode
owned by an Activity terminates the execution of that
Activity. If an Activity owns more than one
ActivityFinalNode, then the first one to accept a token (if
any) terminates the execution of the Activity, including the
execution of any other ActivityFinalNodes.

(c) Sparx Systems 2024 Page 334 of 729

Unified Modeling Language (UML) 16 October, 2024

Flow Final

Description

There are two nodes used to define a final state in an
Activity, both defined in UML 2.1 as of type Final Node.
The Flow Final element depicts an exit from the system, as
opposed to the Activity Final, which represents the
completion of the Activity. Only the flow entering the Flow
Final node exits the Activity; other flows continue
undisturbed.

This example Activity diagram illustrates the development
of an application. The process comes to a Flow Final node
when there are no more components to be built; note that the
Fork element indicates a concurrent process with the
building of new components and installation of completed
components. The Flow Final terminates only the
sub-process building components. Similarly, only those
tokens entering the decision branch for the installation of
further components terminate with the connecting Flow
Final (that is, stop installing this component, but keep on
installing other components). It is only after the Deliver
Application activity is completed, after the control flow
reaches the Final node, that all flows stop.

(c) Sparx Systems 2024 Page 335 of 729

Unified Modeling Language (UML) 16 October, 2024

See the OMG Unified Modeling Language specification,
(v2.5.1, figure 12.91, p.374.)

Notes

Moving a diagram generally does not affect the location·

of elements in Packages: if you move a diagram out of
one Package into another, all the elements in the diagram
remain in the original Package

However, Flow Final elements are used only within one
diagram, have no meaning outside that diagram, and are
never re-used in any other diagram; therefore, if you move
a diagram containing these elements, they are moved to
the new parent Package with the diagram

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,

(c) Sparx Systems 2024 Page 336 of 729

Unified Modeling Language (UML) 16 October, 2024

(v2.5.1, p.388) states:

A FlowFinalNode is a FinalNode that terminates a flow. All
tokens accepted by a FlowFinalNode are destroyed. This has
no effect on other flows in the Activity.

(c) Sparx Systems 2024 Page 337 of 729

Unified Modeling Language (UML) 16 October, 2024

Fork/Join

The Fork/Join elements can be used to:

Fork or split the flow into a number of concurrent flows·

Join the flow of a number of concurrent flows·

Both join and split a number of incoming flows to a·

number of outgoing flows

These elements are used in both Activity and StateMachine
diagrams, in either vertical or horizontal orientation. With
respect to StateMachine diagrams, Forks and Joins are used
as pseudostates. Other pseudostates include History states,
Entry Points and Exit Points. Forks are used to split an
incoming transition into concurrent multiple transitions
leading to different target states. Joins are used to merge
concurrent multiple transitions into a single transition
leading to a single target. They are semantic inverses. To
learn more about these individual elements see their specific
topics.

Example Diagrams

Description Diagram

Fork or split
the flow into

(c) Sparx Systems 2024 Page 338 of 729

Unified Modeling Language (UML) 16 October, 2024

a number of
concurrent
flows

Join the flow
of a number
of concurrent
flows

Join and Fork
a number of
incoming
flows to a
number of
outgoing
flows

Toolbox icon

or

OMG UML Specification:

Forks in Activity Diagrams

(c) Sparx Systems 2024 Page 339 of 729

Unified Modeling Language (UML) 16 October, 2024

The OMG Unified Modeling Language specification,
(v2.5.1, p.388) states:

Fork vertices serve to split an incoming transition into two
or more transitions terminating on orthogonal target vertices
(i.e. vertices in different regions of a composite state). The
segments outgoing from a fork vertex must not have guards
or triggers.

Forks in State Machine Diagrams

The OMG Unified Modeling Language specification,
(v2.5.1, p.313) states:

(A) fork Pseudostates serve to split an incoming Transition
into two or more Transitions terminating on Vertices in
orthogonal Regions of a composite State. The Transitions
outgoing from a fork Pseudostate cannot have a guard or a
trigger.

Joins in Activity Diagrams

The OMG Unified Modeling Language specification,
(v2.5.1, p.389) states:

A JoinNode is a ControlNode that synchronizes multiple
flows. A JoinNode shall have exactly one outgoing
ActivityEdge but may have multiple incoming
ActivityEdges. If any of the incoming edges of a JoinNode
are ObjectFlows, the outgoing edge shall be an ObjectFlow.
Otherwise the outgoing edge shall be a ControlFlow.

(c) Sparx Systems 2024 Page 340 of 729

Unified Modeling Language (UML) 16 October, 2024

Joins in State Machine Diagrams

The OMG Unified Modeling Language specification,
(v2.5.1, p.313) states:

(A Join) Pseudostate serves as a common target Vertex for
two or more Transitions originating from Vertices in
different orthogonal Regions. Transitions terminating on a
join Pseudostate cannot have a guard or a trigger. Similar to
junction points in Petri nets, join Pseudostates perform a
synchronization function, whereby all incoming Transitions
have to complete before execution can continue through an
outgoing Transition.

(c) Sparx Systems 2024 Page 341 of 729

Unified Modeling Language (UML) 16 October, 2024

Fork

Description

The Fork element is used in both Activity and StateMachine
diagrams. With respect to StateMachine diagrams, a Fork
pseudostate signifies that its incoming transition comes from
a single state, and it has multiple outgoing transitions. These
transitions must occur concurrently, requiring the use of
concurrent regions, as depicted here in the Composite State.
Unlike Choice or Junction pseudostates, Forks must not
have triggers or guards. This diagram demonstrates a Fork
pseudostate dividing into two concurrent regions, which
then return to the End State via the Join pseudostate.

OMG UML Specification:

(c) Sparx Systems 2024 Page 342 of 729

Unified Modeling Language (UML) 16 October, 2024

Forks in Activity Diagrams

The OMG Unified Modeling Language specification,
(v2.5.1, p.388) states:

Fork vertices serve to split an incoming transition into two
or more transitions terminating on orthogonal target vertices
(i.e. vertices in different regions of a composite state). The
segments outgoing from a fork vertex must not have guards
or triggers.

Forks in State Machine Diagrams

The OMG Unified Modeling Language specification,
(v2.5.1, p.313) states:

(A) fork Pseudostates serve to split an incoming Transition
into two or more Transitions terminating on Vertices in
orthogonal Regions of a composite State. The Transitions
outgoing from a fork Pseudostate cannot have a guard or a
trigger.

(c) Sparx Systems 2024 Page 343 of 729

Unified Modeling Language (UML) 16 October, 2024

Join

Description

The Join element is used by Activity and StateMachine
diagrams. The example illustrates a Join transition between
Activities. With respect to StateMachine diagrams, a Join
pseudosate indicates multiple States concurrently
transitioning into the Join and onto a single State. Unlike
Choice or Junction pseudostates, Joins must not have
triggers or guards. This diagram demonstrates a Fork
pseudostate dividing into two concurrent Regions, which
then return to the End State via the Join.

OMG UML Specification:

(c) Sparx Systems 2024 Page 344 of 729

Unified Modeling Language (UML) 16 October, 2024

Joins in Activity Diagrams

The OMG Unified Modeling Language specification,
(v2.5.1, p.389) states:

A JoinNode is a ControlNode that synchronizes multiple
flows. A JoinNode shall have exactly one outgoing
ActivityEdge but may have multiple incoming
ActivityEdges. If any of the incoming edges of a JoinNode
are ObjectFlows, the outgoing edge shall be an ObjectFlow.
Otherwise the outgoing edge shall be a ControlFlow.

Joins in State Machine Diagrams

The OMG Unified Modeling Language specification,
(v2.5.1, p.313) states:

(A Join) Pseudostate serves as a common target Vertex for
two or more Transitions originating from Vertices in
different orthogonal Regions. Transitions terminating on a
join Pseudostate cannot have a guard or a trigger. Similar to
junction points in Petri nets, join Pseudostates perform a
synchronization function, whereby all incoming Transitions
have to complete before execution can continue through an
outgoing Transition.

(c) Sparx Systems 2024 Page 345 of 729

Unified Modeling Language (UML) 16 October, 2024

History

Description

There are two types of History pseudostate defined in UML:
shallow and deep history. A shallow History sub-state is
used to represent the most recently active sub-state of a
Composite State; this pseudostate does not recurse into this
sub-state's active configuration, should one exist. A single
connector can be used to depict the default shallow History
state, in case the Composite State has never been entered.

A deep History sub-state, in contrast, reflects the most
recent active configuration of the Composite State. This
includes active sub-states of all regions, and recurses into
those sub-states' active sub-states, should they exist. Only
one deep history and one shallow history can exist within a
composite state. You can reassign a shallow History
sub-state as a deep History sub-state using the 'Advanced'
element context menu.

(c) Sparx Systems 2024 Page 346 of 729

Unified Modeling Language (UML) 16 October, 2024

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.309) states:

The concept of State history was introduced by David Harel
in the original statechart formalism. It is a convenience
concept associated with Regions of composite States

(c) Sparx Systems 2024 Page 347 of 729

Unified Modeling Language (UML) 16 October, 2024

whereby a Region keeps track of the state configuration it
was in when it was last exited. This allows easy return to
that same state configuration, if desired, the next time the
Region becomes active (e.g., after returning from handling
an interrupt), or if there is a local Transition that returns to
its history.

Two types of history Pseudostates are provided.

Deep history (deepHistory) represents the full state
configuration of the most recent visit to the containing
Region. The effect is the same as if the Transition
terminating on the deepHistory Pseudostate had, instead,
terminated on the innermost State of the preserved state
configuration, including execution of all entry Behaviors
encountered along the way.

Shallow history (shallowHistory) represents a return to only
the topmost substate of the most recent state configuration,
which is entered using the default entry rule.

(c) Sparx Systems 2024 Page 348 of 729

Unified Modeling Language (UML) 16 October, 2024

Initial

Description

The Initial element is used by Activity and StateMachine
diagrams. In Activity diagrams, it defines the start of a flow
when an Activity is invoked. With StateMachines, the Initial
element is a pseudostate used to denote the default state of a
Composite State; there can be one Initial vertex in each
Region of the Composite State.

This simple example shows the start of a flow to receive an
order.

See the OMG Unified Modeling Language specification,
(v2.5.1, Figure 12.97, p.378.)

The activity flow is completed by a Final or Flow Final
node.

Notes

Moving a diagram generally does not affect the location·

of elements in Packages; if you move a diagram out of
one Package into another, all the elements in the diagram
remain in the original Package

(c) Sparx Systems 2024 Page 349 of 729

Unified Modeling Language (UML) 16 October, 2024

However, Initial elements are used only within one
diagram, have no meaning outside that diagram, and are
never re-used in any other diagram; therefore, if you move
a diagram containing these elements, they are moved to
the new parent Package with the diagram

Toolbox icon

OMG UML Specification:

Initial in Activity Diagrams

The OMG Unified Modeling Language specification,
(v2.5.1, p.387) also states:

An InitialNode is a ControlNode that acts as a starting point
for executing an Activity. An Activity may have more than
one InitialNode. If an Activity has more than one
InitialNode, then invoking the Activity starts multiple
concurrent control flows, one for each InitialNode.

An InitialNode shall not have any incoming ActivityEdges,
which means the InitialNodes owned by an Activity will
always be enabled when the Activity begins execution and a
single control token is placed on each such InitialNode
when Activity execution starts. The outgoing ActivityEdges
of an InitialNode must all be ControlFlows. The control
token placed on an InitialNode is offered concurrently on all
outgoing ControlFlows.

(c) Sparx Systems 2024 Page 350 of 729

Unified Modeling Language (UML) 16 October, 2024

Initial in State Machine Diagrams

The OMG Unified Modeling Language specification,
(v2.5.1, p.312) states:

An initial Pseudostate represents a starting point for a
Region; that is, it is the point from which execution of its
contained behavior commences when the Region is entered
via default activation. It is the source for at most one
Transition, which may have an associated effect Behavior,
but not an associated trigger or guard. There can be at most
one initial Vertex in a Region.

(c) Sparx Systems 2024 Page 351 of 729

Unified Modeling Language (UML) 16 October, 2024

Interaction

Description

You can use an Interaction element to insert an Interaction
diagram as a child of a Class element. The Interaction
element can contain a diagram of any of these types:

Sequence·

Communication·

Timing·

An Interaction element in Enterprise Architect is treated as a
behavior of the classifier it is encapsulated within. It can
have parameters and return types, which are modeled using
the 'Behavior' tab of the Interaction element's 'Properties'

(c) Sparx Systems 2024 Page 352 of 729

Unified Modeling Language (UML) 16 October, 2024

dialog. The element is interpreted as a method of the
containing Class in the generated code (see the Generate
Code From Behavioral Model topic).

An Interaction element can also be set as the classifier for an
Interaction Occurrence in a Sequence diagram, or for a Call
Behavior Action in an Activity diagram. Establishing such
an association (between a behavior and a behavior call)
facilitates adding arguments that can be individually
mapped to the associated behavior's parameters.

Notes

The behavioral code generation engine expects the·

Sequence diagram and all its associated Messages and
Combined Fragments to be encapsulated within an
Interaction element (such as setupUSB in this example)

(The IO Class is available in the EAExample model,
under 'Systems Engineering Model | Implementation
Model | Software')

The 'Interaction' icon is listed on the 'Additional' page of·

the 'Interaction' Toolbox, but should only be added to
elements through the element context menu on the

(c) Sparx Systems 2024 Page 353 of 729

Unified Modeling Language (UML) 16 October, 2024

diagram or in the Browser window

Toolbox icon

(c) Sparx Systems 2024 Page 354 of 729

Unified Modeling Language (UML) 16 October, 2024

Interaction Occurrence

An Interaction Occurrence (or InteractionUse) is a reference
to an existing Interaction (Sequence) diagram. Interaction
Occurrences are visually represented by a frame, with 'ref' in
the frame's title space. The diagram name is indicated in the
frame contents.

To create an Interaction Occurrence, simply open a
Sequence diagram (preferably contained within an
Interaction element) and drag another Sequence diagram
(also preferably contained within an Interaction element)
into its workspace. A dialog displays, providing
configuration options. The resulting Interaction Occurrence
acts as an invocation of the original Interaction. You use the
'Call' tab of the Properties window for the element to set up
the actual arguments of the Interaction and also to change to
a different associated Interaction element.

This figure illustrates the use of an Interaction Occurrence
in another Interaction (Sequence) diagram. You can display
the sequence represented by the Interaction Occurrence by
double-clicking on the element.

(c) Sparx Systems 2024 Page 355 of 729

Unified Modeling Language (UML) 16 October, 2024

Fill Opacity

Whilst an Interaction Occurrence usually encloses a number
of other elements, there might be reasons for hiding those
elements as well as times to fully show them, or perhaps just
indicate that they are there, depending on the immediate
purpose of the diagram. You can apply these nuances in the
display of elements behind and covered or overlapped by an
Interaction Occurrence, by changing the opacity of the
element.

Before setting the opacity, check that the element has a fill
color.

You set the opacity using an icon from either of these two
pop-up element toolbars:

Click on the Interaction Occurrence element and on the ·

icon:

(c) Sparx Systems 2024 Page 356 of 729

Unified Modeling Language (UML) 16 October, 2024

Right-click on the Interaction Occurrence element and·

look above the context menu:

Click on the icon and select:

100% for total opacity, where the elements behind and·

overlapping or covered by the Interaction Occurrence are
hidden (you could right-click on individual elements and
select the 'Z-Order | Bring to Top' option to expose those
elements only)

0% for no opacity, where the fill color is not applied and·

anything behind the Interaction Occurrence is fully visible

75%, 50% or 25% to set the appropriate degree of opacity·

and make the covered elements visible but over-shaded

Notes

The behavioral code generation engine expects the·

Sequence diagram and all its associated messages and
interaction fragments to be encapsulated within an
Interaction element (such as doReadUSB in this example)

(c) Sparx Systems 2024 Page 357 of 729

Unified Modeling Language (UML) 16 October, 2024

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.620) refers to an Interaction Occurrence as an
InteractionUse, and states:

An InteractionUse refers to an Interaction. The
InteractionUse is a shorthand for copying the contents of the
referenced Interaction where the InteractionUse is. To be
accurate the copying must take into account substituting
parameters with arguments and connect the formal Gates
with the actual ones.

(c) Sparx Systems 2024 Page 358 of 729

Unified Modeling Language (UML) 16 October, 2024

Interruptible Activity Region

Description

In an Activity diagram, an Interruptible Region surrounds a
group of Activity elements, all affected by certain interrupts
in such a way that all tokens passing within the region are
terminated should the interruption(s) be raised. Any
processing occurring within the bounds of an Interruptible
Activity Region is terminated when a flow is instigated
across an interrupt flow to an external element.

You create an Interruptible Activity Region as one variant
of a Region (the other is an Expansion Region), using the
Activity pages of the Diagram Toolbox.

This example illustrates that an order cancellation kills any
processing of the order at the receipt, filling or shipping
stage.

(c) Sparx Systems 2024 Page 359 of 729

Unified Modeling Language (UML) 16 October, 2024

See the OMG Unified Modeling Language specification,
(v2.5.1, figure 12.100, p.381.)

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.407) states:

An InterruptibleActivityRegion is an ActivityGroup that
supports termination of a portion of an Activity. An
InterruptibleActivityRegion contains only ActivityNodes. It
also identifies as interruptingEdges certain ActivityEdges
that have their source within the region and their target
outside the region. When a token offered along an
interruptingEdge is accepted and traverses that edge, then
the execution of all containedNodes of the region is
terminated and all tokens are removed from them.

(c) Sparx Systems 2024 Page 360 of 729

Unified Modeling Language (UML) 16 October, 2024

Junction

Description

Junction pseudostates are used to design complex
transitional paths in StateMachine diagrams. A Junction can
be used to combine or merge multiple paths into a shared
transition path. Alternatively, a Junction can split an
incoming path into multiple paths, similar to a Fork
pseudostate. Unlike Forks or Joins, Junctions can apply
guards to each incoming or outgoing transition, such that if
the guard expression is False, the transition is disabled.

This example illustrates how guards can be applied to
transitions coming into or out of a Junction pseudostate.

(c) Sparx Systems 2024 Page 361 of 729

Unified Modeling Language (UML) 16 October, 2024

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.313) states:

This type of Pseudostate is used to connect multiple
Transitions into compound paths between States. For
example, a junction Pseudostate can be used to merge
multiple incoming Transitions into a single outgoing
Transition representing a shared continuation path. Or, it can
be used to split an incoming Transition into multiple

(c) Sparx Systems 2024 Page 362 of 729

Unified Modeling Language (UML) 16 October, 2024

outgoing Transition segments with different guard
Constraints.

NOTE. Such guard Constraints are evaluated before any
compound transition containing this Pseudostate is
executed, which is why this is referred to as a static
conditional branch.

It may happen that, for a particular compound transition, the
configuration of Transition paths and guard values is such
that the compound transition is prevented from reaching a
valid state configuration. In those cases, the entire
compound transition is disabled even though its Triggers are
enabled. (As a way of avoiding this situation in some cases,
it is possible to associate a predefined guard denoted as
“else” with at most one outgoing Transition. This Transition
is enabled if all the guards attached to the other Transitions
evaluate to false). If more than one guard evaluates to true,
one of these is chosen. The algorithm for making this
selection is not defined.

(c) Sparx Systems 2024 Page 363 of 729

Unified Modeling Language (UML) 16 October, 2024

Lifeline

Description

A Lifeline is an individual participant in an interaction (that
is, Lifelines cannot have multiplicity). A Lifeline represents
a distinct connectable element. To specify that
representation within Enterprise Architect, right-click on the
Lifeline and select the 'Advanced | Instance Classifier'
option. The 'Select <Item>' dialog displays, which you use
to locate the required project classifiers.

Lifelines are available in Sequence diagrams. There are
different Lifeline elements for Timing diagrams (State
Lifeline and Value Lifeline); however, although the
representation differs between the two diagram types, the
meaning of the Lifeline is the same.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,

(c) Sparx Systems 2024 Page 364 of 729

Unified Modeling Language (UML) 16 October, 2024

(v2.5.1, p.572) states:

In an interaction diagram a Lifeline describes the time-line
for a process, where time increases down the page. The
distance between two events on a time-line does not
represent any literal measurement of time, only that
non-zero time has passed.

Events on the same time-line are ordered linearly down the
page, except where they occur within a parallel combined
fragment, or along a lifeline within a “coregion”. (...) Within
a parallel combined fragment or a coregion, events are not
locally ordered unless that is directly imposed by a general
ordering construct. (...).

The order of OccurrenceSpecifications along a Lifeline is
significant denoting the order in which these
OccurrenceSpecifications will occur. The absolute distances
between the OccurrenceSpecifications on the Lifeline are,
however, irrelevant for the semantics.

(c) Sparx Systems 2024 Page 365 of 729

Unified Modeling Language (UML) 16 October, 2024

Merge

Description

A Merge Node brings together a number of alternative flow
paths in Activity, Analysis and Interaction Overview
diagrams. For example, if a Decision is used after a Fork,
the two flows coming out of the Decision must be merged
into one before going to a Join; otherwise, the Join waits for
both flows, only one of which arrives.

A Merge Node has multiple incoming edges and a single
outgoing edge. The edges coming into and out of a Merge
Node must be either all object flows or all control flows.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.427) states:

A merge node is a control node that brings together multiple
alternate flows. It is not used to synchronize concurrent
flows but to accept one among several alternate flows.

(c) Sparx Systems 2024 Page 366 of 729

Unified Modeling Language (UML) 16 October, 2024

(c) Sparx Systems 2024 Page 367 of 729

Unified Modeling Language (UML) 16 October, 2024

Message Endpoint

Description

A Message Endpoint element defines the termination of a
State or Value Lifeline in a Timing diagram. It indicates that
the Message:

Terminates at an undefined point outside the State or·

Value Lifeline, having started at an identified point within
the Lifeline, or

Originates from an undefined point outside a State or·

Value Lifeline, terminating at an identified point within
the Lifeline

Toolbox icon

(c) Sparx Systems 2024 Page 368 of 729

Unified Modeling Language (UML) 16 October, 2024

Message Label

Description

A Message Label is an alternative way of denoting
Messages between Lifelines, which is useful for
'uncluttering' Timing diagrams strewn with messages. To
indicate a Message between Lifelines, draw a connector
from the source Lifeline into a Message Label. Next, draw a
connector from another Message Label to the target
Lifeline. Note that the label names must match to reflect that
the message occurs between the two Message Labels.

This diagram illustrates how Message Labels are used to
construct a message between Lifelines.

Toolbox icon

(c) Sparx Systems 2024 Page 369 of 729

Unified Modeling Language (UML) 16 October, 2024

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.577) states:

The message-name appearing in a request-message-label is
the name property of the Message. If the Message has a
signature, this will be the name of the Operation or Signal
referenced by the signature. Otherwise the name is
unconstrained. If a request-message-label includes an
input-argument-list, then either all input-arguments must
have an in-parametername given or none may have one.

(c) Sparx Systems 2024 Page 370 of 729

Unified Modeling Language (UML) 16 October, 2024

Note

Description

A Note element is a textual annotation that can be attached
to a set of elements of any other type. The attachment is
created separately, using a Notelink connector. Both Note
and Notelink are available in any Enterprise Architect
diagram, through the 'Common' pages of the Toolbox.

A Note is also called a Comment.

Note elements do not have a Properties dialog. You can give
them a name in the Properties window, but this does not
display on the diagram.

You can configure Enterprise Architect to display the text in
all Notes elements in italics. Select the 'Start > Appearance
> Preferences > Preferences' ribbon option and on the
'Diagram > Appearance' page select the 'Italic Note Element
text' checkbox. This has an immediate effect, as does
clearing the checkbox to show the text in normal font.

Toolbox icon

(c) Sparx Systems 2024 Page 371 of 729

Unified Modeling Language (UML) 16 October, 2024

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.40) states:

A Comment is a textual annotation that can be attached to a
set of Elements.

(c) Sparx Systems 2024 Page 372 of 729

Unified Modeling Language (UML) 16 October, 2024

Object Node

Description

An Object Node holds data that is input to or output from an
Activity element. To set the type of an Object Node, click
on it and press Ctrl+L (to select an Instance Classifier).
Object Nodes can be connected by Object Flow connectors;
if the Object Nodes on each end of an Object Flow are
typed, their types should be compatible.

An Action Pin is a specialized form of Object Node.

(c) Sparx Systems 2024 Page 373 of 729

Unified Modeling Language (UML) 16 October, 2024

Partition

Description

Enterprise Architect supports two types of Activity
Partition:

The Activity Partition feature, which is used to logically·

organize an Activity element

The Activity Partition element, described in this topic,·

which is used to logically organize an Activity diagram

These have similar effects - they partition the Actions of the
Activity without affecting the token flow, helping to
structure the view or parts of the Activity.

This example depicts the partitioning between the Classes
Process Payment and Order Processor.

(c) Sparx Systems 2024 Page 374 of 729

Unified Modeling Language (UML) 16 October, 2024

The Partition orientation defaults to horizontal. To turn it
into a vertical Partition, right-click on it and select the
'Advanced | Vertical Partition' option.

You can neatly align and join the Activity Partitions on a
diagram using the element context menu 'Dockable' option.
For Partitions, the option defaults to selected.

Setting Opaque Fill

Whilst an Activity Partition usually contains a number of
other elements, there might be reasons for hiding those
elements as well as times to fully show them, or perhaps just
indicate that they are there, depending on the immediate
purpose of the diagram. You can apply these nuances in the
display of the Partition contents by changing the opacity of
the element's fill color.

Before setting the opacity, give the element a fill color.

You set the opacity using an icon from either of these two
pop-up element toolbars:

(c) Sparx Systems 2024 Page 375 of 729

Unified Modeling Language (UML) 16 October, 2024

Click on the Activity Partition element and on the icon:·

Right-click on the Activity Partition element and look·

above the context menu:

Click on the icon and select:

100% for total opacity, where the contents of the Activity·

Partition are hidden (you can first right-click on individual
elements and select the 'Z-Order | Bring to Top' option to
expose those elements only)

0% for no opacity, where the fill color is not applied and·

the Activity Partition contents are fully visible

75%, 50% or 25% to set the appropriate degree of opacity·

and make the content elements visible but over-shaded

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.406) states:

An ActivityPartition is a kind of ActivityGroup for
identifying ActivityNodes that have some characteristics in
common. ActivityPartitions can share contents. They often

(c) Sparx Systems 2024 Page 376 of 729

Unified Modeling Language (UML) 16 October, 2024

correspond to organizational units in a business model. They
may be used to allocate characteristics or resources among
the nodes of an Activity..

(c) Sparx Systems 2024 Page 377 of 729

Unified Modeling Language (UML) 16 October, 2024

Receive

Description

A Receive element is used to define the acceptance or
receipt of a request, in an Activity diagram. Movement from
a Receive element occurs only once receipt is fulfilled
according to its specification. The Receive element comes in
two forms:

Accept Event Action element (pennant shape)·

Accept Time Event Action element (hourglass shape)·

This example reflects a payment process on an order. Upon
receiving the payment (from Request Payments, a Send
element), the payment is confirmed and the flow continues
to ship the order.

See the OMG Unified Modeling Language specification,
(v2.5.1, figure 12.26, p.312.)

To depict an Accept Time Event, use the standard Receive
element from the Toolbox. Right-click on this element, and
select the 'Advanced | Accept Time Event' option. This
example shows the hourglass-shaped Accept Time Event
Action:

(c) Sparx Systems 2024 Page 378 of 729

Unified Modeling Language (UML) 16 October, 2024

See The OMG Unified Modeling Language specification,
(v2.5.1, figure 12.27, p.312.)

Toolbox icon

OMG UML Specification

The OMG Unified Modeling Language specification,
(v2.5.1, p.489) states:

An AcceptEventAction is an Action that waits for the
occurrence of one or more specific Events.

(c) Sparx Systems 2024 Page 379 of 729

Unified Modeling Language (UML) 16 October, 2024

Region

Description

Enterprise Architect supports two types of Region element:

Expansion Region·

Interruptible Activity Region·

Toolbox icon

(c) Sparx Systems 2024 Page 380 of 729

Unified Modeling Language (UML) 16 October, 2024

Send

Description

The Send element is used to depict the action of sending a
signal, in an Activity diagram. It is the opposite of a Receive
element. You can also create Send events using the 'Event'
icon on the 'State' page of the Diagram Toolbox.

This example shows an order being processed, where a
signal is sent to fill the processed order and, upon creation
of the resulting invoice, a notification is sent to the
customer.

See the OMG Unified Modeling Language specification,
(v2.5.1, figure 12.132, p.408.)

Toolbox icon

OMG UML Specification:

(c) Sparx Systems 2024 Page 381 of 729

Unified Modeling Language (UML) 16 October, 2024

The OMG Unified Modeling Language specification,
(v2.5.1, p.452) states:

A SendObjectAction is an Invocation action that transmits
any kind of object to the object given on its target InputPin.
The object to be transmitted is given on the single request
InputPin of the SendObjectAction. If the object is a Signal
instance, then it may be handled by the target object in the
same way as an instance sent from a SendSignalAction or
BroadcastSignalAction. Otherwise, the reception of the
object can only be handled using an AnyReceiveEvent (...).

(c) Sparx Systems 2024 Page 382 of 729

Unified Modeling Language (UML) 16 October, 2024

State

Description

A State represents a situation where some invariant
condition holds; this condition can be static (waiting for an
event) or dynamic (performing a set of activities). State
modeling is usually related to Classes, and describes the
enable-able states a Class or element can be in and the
transitions that enable the element to move there. There are
two types of State: Simple States and Composite States,
both created from the 'State' icon from the Toolbox.

Furthermore, there are pseudostates, resembling some aspect
of a State but with a pre-defined implication. Pseudostates
model complex transitional paths, and classify common
StateMachine behavior.

You can define entry, internal and exit actions for a State
using operations. State elements can have three operations
(entry, do and exit) that are created and defined through the
'Behavior' tab of the Features window (Start > All Windows
> Properties > Element Features > Features). The tab
displays only when the selected element is a State. It
automatically lists the three operations, and you can either
type a text value in the 'Name/Comment' field, or assign a
behavior element of code using the 'Behavior' page of the

(c) Sparx Systems 2024 Page 383 of 729

Unified Modeling Language (UML) 16 October, 2024

Properties window (see the Operation Behavior Help topic).

If a State element has features such as operations, internal
triggers or inherited operations and attributes, the depiction
of the element in a diagram has a line under the element
name. This line persists if the features are hidden. The line
also displays if the 'Show State Compartment' checkbox is
selected on the 'Objects' page of the 'Preferences' dialog
(select the 'Start > Appearance > Preferences > Preferences'
ribbon option and the 'Objects' page).

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.308) states:

A State models a situation in the execution of a
StateMachine Behavior during which some invariant
condition holds. In most cases this condition is not explicitly
defined, but is implied, usually through the name associated
with the State.

(c) Sparx Systems 2024 Page 384 of 729

Unified Modeling Language (UML) 16 October, 2024

Composite State

Description

Composite States are composed within the StateMachine
diagram by expanding a State element, adding Regions if
applicable, and dragging further State elements, related
elements and connectors within its boundaries. The internal
State elements are then referred to as Substates.

(You can also define a State element, as with many other
types of element, as a composite element; this then has a
hyperlink to a child diagram that can be another
StateMachine diagram or other type of diagram elsewhere in
the model.)

Composite States can be orthogonal, if Regions are created.
If a Composite State is orthogonal, its entry denotes that a
single Substate is concurrently active in each Region. The
hierarchical nesting of Composite States, coupled with
Region use, generates a situation of multiple States
concurrently active; this situation is referred to as the active
State configuration.

(c) Sparx Systems 2024 Page 385 of 729

Unified Modeling Language (UML) 16 October, 2024

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.308) states:

A composite State contains at least one Region, whereas a
submachine State refers to an entire StateMachine, which is,
conceptually, deemed to be “nested” within the State. A
composite State can be either a simple composite State with
exactly one Region or an orthogonal State with multiple
Regions (isOrthogonal = true). (...) Any State enclosed
within a Region of a composite State is called a substate of

(c) Sparx Systems 2024 Page 386 of 729

Unified Modeling Language (UML) 16 October, 2024

that composite State. It is called a direct substate when it is
not contained in any other State; otherwise, it is referred to
as an indirect substate.

(c) Sparx Systems 2024 Page 387 of 729

Unified Modeling Language (UML) 16 October, 2024

State/Continuation

Description

The State/Continuation element serves two different
purposes for Interaction (Sequence) diagrams, as State
Invariants and Continuations. The system prompts you to
identify the purpose when you create the element.

Toolbox icon

(c) Sparx Systems 2024 Page 388 of 729

Unified Modeling Language (UML) 16 October, 2024

Continuation

Description

A Continuation is used in seq and alt Combined Fragments,
to indicate the branches of continuation that an operand
follows. To indicate a continuation, end an operand with a
Continuation, and indicate the continuation branch with a
matching Continuation (same name) preceding the
Interaction Fragment.

You create a Continuation by dragging the
State/Continuation element onto the diagram from the
'Interaction Elements' page of the Toolbox.

For this Continuation example, an alt Combined Fragment
has Continuations pathSucc and pathFail. These
Continuations are located within the Interaction Occurrence
ConnHandler, which has subsequent events based on the
continuation.

(c) Sparx Systems 2024 Page 389 of 729

Unified Modeling Language (UML) 16 October, 2024

This diagram shows the interaction referenced by the
Interaction Occurrence.

(c) Sparx Systems 2024 Page 390 of 729

Unified Modeling Language (UML) 16 October, 2024

OMG UML Specification

The OMG Unified Modeling Language specification,
(v2.5.1, p. 609) states:

A Continuation is a syntactic way to define continuations of
different branches of an alternative CombinedFragment.
Continuations are intuitively similar to labels representing
intermediate points in a flow of control.

The OMG Unified Modeling Language specification,
(v2.5.1, pp. 582-583) also states:

Continuations have semantics only in connection with
Alternative CombinedFragments and (weak) sequencing. If
an InteractionOperand of an Alternative CombinedFragment
ends in a Continuation with name (say) X, only
InteractionFragments starting with the Continuation X (or
no continuation at all) can be appended.

(c) Sparx Systems 2024 Page 391 of 729

Unified Modeling Language (UML) 16 October, 2024

State Invariant
A State Invariant is a condition applied to a Lifeline, which
must be fulfilled for the Lifeline to exist. You create a State
Invariant by dragging the State/Continuation element onto
the diagram from the Interaction Elements page of the
Toolbox.

This diagram illustrates a State Invariant.

When a State Invariant is moved near to a Lifeline, it snaps
to the center. If the sequence object is dragged left or right,
the State Invariant moves with it.

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p. 630) states:

A StateInvariant is a runtime constraint on the participants
of the Interaction. It may be used to specify a variety of
different kinds of Constraints, such as values of Attributes
or Variables, internal or external States, and so on. A

(c) Sparx Systems 2024 Page 392 of 729

Unified Modeling Language (UML) 16 October, 2024

StateInvariant is an InteractionFragment and it is placed on
a Lifeline.

(c) Sparx Systems 2024 Page 393 of 729

Unified Modeling Language (UML) 16 October, 2024

State Lifeline

Description

A Lifeline is the path an object takes across a measure of
time, as indicated by the x-axis. There are two sorts: State
Lifelines (defined here) and Value Lifelines, both used in
Timing diagrams.

A State Lifeline follows discrete transitions between States,
which are defined along the y-axis of the timeline. Any
transition has optional attributes of timing constraints,
duration constraints and observations. An example of a State
Lifeline is shown here:

Transition point properties

A State Lifeline consists of a set of transition points. Each

(c) Sparx Systems 2024 Page 394 of 729

Unified Modeling Language (UML) 16 October, 2024

transition point can be defined with these properties:

Property Description

At time Specifies the starting time for a change of
state.

Transition to Indicates the state to which the lifeline
changes.

Event Describes the occurring event.

Timing
constraints

Refers to the time taken for a state to
change within a lifeline, or the time taken
to transmit a message (for example,
t..t+3).

Timing
observations

Provides information on the time of a
state change or sent message.

Duration
constraints

Pertains to a lifeline's period at a
particular state. The constraint could be
instigated by a change of state within a
lifeline, or that lifeline's receipt of a
message.

Duration
observations

Indicates the interval of a lifeline at a
particular state, begun from a change in
state or message receipt.

(c) Sparx Systems 2024 Page 395 of 729

Unified Modeling Language (UML) 16 October, 2024

Example properties

In the example diagram, the OK transition point has these
properties:

Property Value

At Time 68 ms

Transition to Idle

Event OK

Timing
constraints

t..t+3

Timing
observations

–

Duration
constraints

–

Duration
observations

–

Toolbox icon

(c) Sparx Systems 2024 Page 396 of 729

Unified Modeling Language (UML) 16 October, 2024

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.604) states:

This is the state of the classifier or attribute, or some testable
condition, such as a discrete enumerable value.

It is also permissible to let the state-dimension be
continuous as well as discrete. This is illustrative for
scenarios where certain entities undergo continuous state
changes, such as temperature or density

(c) Sparx Systems 2024 Page 397 of 729

Unified Modeling Language (UML) 16 October, 2024

StateMachine

Description

A StateMachine element is a container for groups of related
State elements. You can create sections of a StateMachine
diagram, showing the organization of the inter-related State
elements, and enclose each section in a StateMachine
element. You can also create Regions on a StateMachine
element.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.306) states:

A behavior StateMachine comprises one or more Regions,
each Region containing a graph (possibly hierarchical)
comprising a set of Vertices interconnected by arcs

(c) Sparx Systems 2024 Page 398 of 729

Unified Modeling Language (UML) 16 October, 2024

representing Transitions. State machine execution is
triggered by appropriate Event occurrences. A particular
execution of a StateMachine is represented by a set of valid
path traversals through one or more Region graphs,
triggered by the dispatching of an Event occurrence that
match active Triggers in these graphs. ... In the course of
such a traversal, a StateMachine instance may execute a
potentially complex sequence of Behaviors associated with
the particular elements of the graphs that are being traversed
(transition effects, state entry and state exit Behaviors, etc.)

(c) Sparx Systems 2024 Page 399 of 729

Unified Modeling Language (UML) 16 October, 2024

Structured Activity
Structured Activity elements are used in Activity diagrams.
A Structured Activity is an activity node that can have
subordinate nodes as an independent Activity Group. You
can set an option to ensure that no other Activities or their
side effects interfere with this Activity's processing (the
'Must Isolate' checkbox in the Structured Activity element
'Properties' dialog).

Enterprise Architect provides a number of forms of
Structured Activity, both basic and specialized.

Access

Ribbon Design > Diagram > Toolbox : Specify
'Activity' in the 'Find Toolbox Item'
dialog

Keyboard
Shortcuts

Ctrl+Shift+3 : > Specify 'Activity' in
the 'Find Toolbox Item' dialog

Other You can display or hide the Diagram
Toolbox by clicking on the or icons
at the left-hand end of the Caption Bar at
the top of the Diagram View.

(c) Sparx Systems 2024 Page 400 of 729

Unified Modeling Language (UML) 16 October, 2024

Create Structured Activities

When you drag a Structured Activity icon from the Toolbox
onto a diagram, a short menu displays from which you
select one of these options:

Loop Node·

Conditional Node·

Other·

The first two options specifically create a Loop Node or
Conditional Node.

The 'Other' option displays the 'New Structured Activity'
dialog, on which you can select to create one of five types of
Structured Activity element.

Structured Activity Types

Type Description

Simple
Composite
Activity

Generates a Composite Activity element
with a child Activity diagram.

Loop Node Represents a sequence of Actions and
Activities that are to be repeated within
the object.

Conditional Represents an arrangement of Actions

(c) Sparx Systems 2024 Page 401 of 729

Unified Modeling Language (UML) 16 October, 2024

Node and Activities where choice determines
which Activities are performed.

Structured
Activity
Node

Represents an ordered arrangement of
executable Activity nodes (Actions,
Decisions, Merges and so on) that can
include branched and nested nodes; this is
the base element from which the other
types of Structured Activity are derived.

Sequential
Node

Represents a sequential arrangement of
executable Activity nodes.

Notes

To protect the processing of a Loop or Conditional Node·

Structured Activity from interference from other
Activities or their side effects, open the Properties
window and select the 'Must Isolate' checkbox on the
'Loop' or 'Condition' tab

Toolbox icon

(c) Sparx Systems 2024 Page 402 of 729

Unified Modeling Language (UML) 16 October, 2024

Structured Node
On a diagram, Structured Activity Nodes have broken
borders, as shown.

You can nest other elements underneath the Structured
Node, including other Structured Activity elements such as
Conditional, Loop and other Structured Node elements.

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.476) states:

A StructuredActivityNode is an Action that is also an
ActivityGroup (...) and whose behavior is specified by the
ActivityNodes and ActivityEdges it so contains. Unlike
other kinds of ActivityGroup, a StructuredActivityNode
owns the ActivityNodes and ActivityEdges it contains, and
so a node or edge can only be directly contained in one
StructuredActivityNode. StructuredActivityNodes may be
nested (as a StructuredActivityNode, as an Action, is also an
ActivityNode), however, so an edge or node may be
indirectly contained in a number of nested
StructuredActivityNodes.

(c) Sparx Systems 2024 Page 403 of 729

Unified Modeling Language (UML) 16 October, 2024

Sequential Node
On a diagram, Sequential Activity Nodes have broken
borders, and can contain nested elements that define a
sequence of actions.

Sequential Nodes are flagged as composite elements in the
context menu ('New Child Diagram | Composite'); however,
when you add the child diagram the element converts to a
simple composite Activity.

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.480) states:

A SequenceNode defines a complete, sequential ordering of
all the ActivityNodes it contains, which must all be
ExecutableNodes. When the SequenceNode executes, each
of the nodes within it are executed in sequential order. The
SequenceNode may also contain ActivityEdges between its
nodes, and ActivityEdges may cross into and out of the
SequenceNode. The semantics are equivalent to a general
StructuredActivityNode containing the same nodes and
edges, but with ControlFlows added to sequentially order
the nodes as specified for the SequenceNode.

(c) Sparx Systems 2024 Page 404 of 729

Unified Modeling Language (UML) 16 October, 2024

Loop Node
A Loop Structured Activity Node is used for defining a
loop, and is commonly associated with ‘While’, ‘Repeat’ or
‘For’ loop statements.

Each Loop Node has three partitions:

Setup commonly initiates variables to be used in the·

loop's exit-condition; it is executed once on entry to the
loop

Test defines the loop exit-condition·

Body can contain Actions to be executed repeatedly until·

the Test produces a false value

The results of the final execution of the Test or Body are
available after execution of the Loop is complete.

Create a Loop Node

A Loop Node is depicted on an Activity diagram in this
way:

You define the Loop nodes by dragging Action elements
from the Diagram Toolbox page into the 'Setup', 'Test' and
'Body' partitions. The 'Body' partition can contain several

(c) Sparx Systems 2024 Page 405 of 729

Unified Modeling Language (UML) 16 October, 2024

Actions, which can be linked and organized into the
required structure. The elements are aligned on the top left
of the partition, so that resizing the node maintains the
organization of the structure within and between the
partitions. If you try to shrink the node below the structure
size, the node automatically defaults to the 'best fit' size.

Ste Action

(c) Sparx Systems 2024 Page 406 of 729

Unified Modeling Language (UML) 16 October, 2024

p

1 From the Activity page of the Diagram Toolbox,
drag a Structured Activity icon onto the Activity
diagram.
A short menu displays.

2 Select the 'Loop Node' option.
The Loop Node displays on the diagram, with the
element 'Properties' dialog (if the dialog does not
display, double-click on the element).

3 Complete as many of the common element
Properties fields as required, then close the
'Properties' dialog.

4 Display the Properties window ('Start > Application
> Design > Properties') for the Loop Node, and click
on the 'Loop' tab. Set these checkboxes as required:

'Must Isolate' - defines concurrency: if selected, no·

object within the node can be used outside it; the
objects are isolated from parallel use
'Tested First' - defines the loop type; select for a·

For / While loop, deselect for a Repeat Until loop

5 For each of these fields, click on the or Add
button as appropriate, to display the 'Select Pins'
dialog and select an Action Pin:

(c) Sparx Systems 2024 Page 407 of 729

Unified Modeling Language (UML) 16 October, 2024

Decider (an Output Pin within the 'Test' partition,·

the value of which is examined after execution of
the Test to determine whether to execute the loop
Body)
Loop Variable Input·

Loop Variable·

Body Output and·

Result·

The 'Select Pins' dialog lists only Input Pins for the
'Loop Variable Input' field and only Output Pins for
the other fields.
If the required Action Pin does not already exist, you
can click on the Add New button on the dialog to
automatically create the Input pin or an Output pin
for the node.

6 In the 'Nodes' panel, click on one of the 'Setup', 'Test'
or 'Body' radio buttons to list the Actions and
Activities contained in the corresponding partition of
the Loop Node.
An element must be completely below the top edge
of a partition to be listed for that partition - if it
overlaps with the partition above in any way, it is
treated as being part of that partition.

7 Click on the OK button to save the properties of the
Loop Node.

(c) Sparx Systems 2024 Page 408 of 729

Unified Modeling Language (UML) 16 October, 2024

8 Right-click on the Node in the diagram and select
the 'Features | Interaction Points' option.
The Features window displays, showing the
'Interaction Points' tab.
Select the checkbox against each Interaction Point.
The Action pins should now be visible in the
diagram, attached to the Node.

Notes

You can check on the exact location of an existing Action·

Pin by right-clicking on the pin name in the Loop Node's
Properties window and selecting the 'Find in Project
Browser' option; the location of the Action Pin in the
Browser window is expanded and highlighted

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.479) states:

A LoopNode is a StructuredActivityNode that represents an
iterative loop. A LoopNode consists of a setupPart, a test
and a bodyPart, which identify subsets of the
ExecutableNodes contained in the LoopNode. Any
ExecutableNode in the LoopNode must be included in the
setupPart, test or bodyPart for the LoopNode. When a
LoopNode begins execution, any InitialNodes within it are

(c) Sparx Systems 2024 Page 409 of 729

Unified Modeling Language (UML) 16 October, 2024

immediately enabled. An ExecutableNode contained in the
LoopNode, however, can only become enabled when the
setupPart, test or bodyPart section that contains it is
executed.

When a section is executed, any ExecutableNode in the
section that has no mandatory input data and no incoming
ControlFlow with a source in the same section is enabled
and receives a single control token. Execution then proceeds
according to the usual semantics of Activities, except that
any offers made to an ExecutableNode in a section that is
not executing are not immediately delivered but remain
pending. The target ExecutableNode may accept any
pending offers if it eventually executes as part of a later
execution of the section that contains it.

(c) Sparx Systems 2024 Page 410 of 729

Unified Modeling Language (UML) 16 October, 2024

Conditional Node
A Conditional Structured Activity Node is the modeling
equivalent of an 'If-Then-Else' programming construct. At
its simplest, it consists of a Clause containing:

A Test partition that evaluates a condition, and·

A Body partition that performs one or more actions if the·

Test condition is satisfied

You can have more than one Clause, so that if the Test
condition is not satisfied its Body is ignored and processing
moves to the next Clause and evaluates another Test
condition.

Each Clause has a 'Decider' ActionPin to hold the result of
the Test, and a 'Body Output' ActionPin to hold the result of
the Body's actions (if executed). The Conditional Node itself
has a result ActionPin that makes available the overall result
of the Node (the output of the first Body to be executed).

The representation of a Conditional Node on an Activity
diagram resembles this:

You define Conditional Nodes by dragging other Activity
diagram elements from the Toolbox page into the
appropriate partition of the element, and linking and
organizing the structure as required. The elements are

(c) Sparx Systems 2024 Page 411 of 729

Unified Modeling Language (UML) 16 October, 2024

aligned on the top left of the partition, so that resizing the
node maintains the organization of the structure within and
between the partitions. If you try to shrink the node below
the structure size, the node automatically defaults to the 'best
fit' size.

When you create a Conditional Node, the 'Properties' dialog
displays. Much of this you can complete as for any other
element. However, for the Conditional Node you also
display the Properties window, which has an additional
'Condition' tab.

On this tab, in the 'Result' panel, add an Action Pin to hold
the result for the node, clicking on the Add button to display
the 'Select Pins' dialog.

A Conditional Node automatically contains one Clause
containing a Test partition and a Body partition, and a
Decider Pin and Body Output Pin. You can add further
Clauses as required. For each Clause you add an Action Pin
for the Decider and for the Body Output. Click on the Save
button to save the Clause definition.

The 'Select Pin' dialog reveals only Output pins as
appropriate to the context. If the required Action Pin does
not already exist, you can click on the Add New button on
the dialog to automatically create an Output pin under the
appropriate parent node.

For the 'Result' and 'Body Output' entries, you can check on
the exact location of each Action Pin by right-clicking on
the entry and selecting the 'Find in Project Browser' option.

The 'Nodes' panel, by default, lists the Actions and
Activities contained in the Test partition. Click on the 'Body'

(c) Sparx Systems 2024 Page 412 of 729

Unified Modeling Language (UML) 16 October, 2024

radio button to list the elements contained in the Body
partition. An element must be completely contained in the
Body partition to be listed there - if it overlaps with the Test
partition in any way, it is treated as being part of the Test
partition.

Add or Remove Clauses

To add another Clause, click on the Add button underneath
the 'Clause(s)' list. This inserts a new Clause in the list, and
identifies which is the preceding (Predecessor) Clause and
(if appropriate) which is the following (Successor) Clause.
The remaining fields in the 'Clause(s)' panel are cleared so
that you can add Decider and Body Output Action Pins.
New 'Test' and 'Body' partitions are immediately added to
the element on the diagram, and you can populate these
partitions with Activity elements, which are then identified
in the 'Nodes' panel.

To remove a Clause, highlight it in the list and click on the
Delete button. This immediately removes the Clause's
corresponding partitions from the diagram, along with all
their contained Activity elements. Removing a Clause from
between two other Clauses adjusts the numerical order; for
example, if Clause 2 is removed from between Clause 1 and
Clause 3, Clause 3 is renamed as Clause 2, and any further
Clauses are also moved up one place.

OMG UML Specification:

(c) Sparx Systems 2024 Page 413 of 729

Unified Modeling Language (UML) 16 October, 2024

The OMG Unified Modeling Language specification,
(v2.5.1, p.478) states:

A ConditionalNode is a StructuredActivityNode that
chooses one among some number of alternative collections
of ExecutableNodes to execute. A ConditionalNode consists
of one or more Clauses, each of which represents a single
branch of the conditional. A Clause consists of a test section
and a body section, which identify disjoint subsets of the
ExecutableNodes contained in the ConditionalNode. Any
ExecutableNode in the ConditionalNode must be included
in the test section or body section of exactly one Clause.

(c) Sparx Systems 2024 Page 414 of 729

Unified Modeling Language (UML) 16 October, 2024

Synch

Description

A Synch state is useful for indicating that concurrent paths
of a StateMachine are synchronized. They are used to split
and rejoin periods of parallel processing. After bringing the
paths to a synch state, the emerging transition indicates
unison.

Toolbox icon

(c) Sparx Systems 2024 Page 415 of 729

Unified Modeling Language (UML) 16 October, 2024

System Boundary

Description

A System Boundary element is a non-UML element used to
define conceptual boundaries. You can use System
Boundaries to help group logically related elements (from a
visual perspective, not as part of the UML model).

In the OMG Unified Modeling Language specification,
(v2.5.1), System Boundaries are described in the sections on
Use Cases, because the System Boundary is often used to
indicate the application of a Use Case to another entity. In
this context, the System Boundary:

Encloses the Use Case, and·

Is associated with a classifier such as a Class, Component·

or Subsystem (Actor) through the 'Select <Item>' dialog

By associating the System Boundary - and not the Use Case
- with the classifier, the classifier is linked to the Use Case
as a user, but not as an owner.

(c) Sparx Systems 2024 Page 416 of 729

Unified Modeling Language (UML) 16 October, 2024

You can also define a Use Case as the classifier of a System
Boundary element, to link the elements enclosed in the
System Boundary (such as parts of an Activity diagram) to
their representation in a logical Use Case.

The element properties for a System Boundary element
comprise the name, the border style, and the number of
horizontal or vertical swim lanes. You can also change the
overall shape of the System Boundary, which includes an
option to add dividing lines to the element other than by
using the swimlanes, and you can make the element fully
opaque, fully transparent or various degrees of opacity in
between.

A System Boundary element can be marked as 'Selectable',
using the element's context menu. When the element is not
selectable, you can click on the other elements within the
System Boundary space without activating or selecting the
System Boundary itself.

Toolbox icon

Notes

A System Boundary is the basis for the Image element,·

which enables you to add icons or backgrounds to a
diagram, automatically displaying the Image Manager
window from which to select the appropriate image

A System Boundary is not the same as the Boundary·

(c) Sparx Systems 2024 Page 417 of 729

Unified Modeling Language (UML) 16 October, 2024

element used to capture user interactions in, for example,
Analysis diagrams

OMG UML Specification

The OMG Unified Modeling Language specification,
(v2.5.1, p.641) states:

A subject for a set of UseCases (sometimes called a system
boundary) may be shown as a rectangle with its name in the
top-left corner, with the UseCase ellipses visually located
inside this rectangle. The same modeled UseCase may be
visually depicted as separate ellipses within multiple subject
rectangles.

(c) Sparx Systems 2024 Page 418 of 729

Unified Modeling Language (UML) 16 October, 2024

System Boundary Properties
The System Boundary element has a small set of properties
that are mainly concerned with the appearance of the
element. You can also apply other element control options
such as default appearance, locking the element and
applying an image to the element.

The element must be set to 'Selectable' in order for you to be
able to change its properties.

Access

Context
Menu

Right-click on Boundary element |
Properties | Properties

Keyboard
Shortcuts

Alt+Enter

Other In the Properties window (Ctrl+2), click
on the 'Boundary' tab

Set System Boundary Properties

Option Action

(c) Sparx Systems 2024 Page 419 of 729

Unified Modeling Language (UML) 16 October, 2024

Name (Optional) Type a name for the element.
(This field does not appear on the
'Boundary' tab of the Properties window).

Shape Click on the drop-down arrow and select
from these options:

'Rectangle' - if you have previously·

switched from the default rectangular
border with sharp corners, return to that
default
'Rounded Rectangle' - set the shape to a·

rectangle with rounded corners
'Ellipse' - set the shape to a circle or·

oval to accommodate the enclosed
elements
'User Defined - Orthogonal' - enable·

setting drag-points on the border to
create a custom orthogonal (block)
shape (see the Customize System
Boundary - Orthagonal/Freeform
section)
'User Defined - Freeform' - enable·

setting drag-points on the border to
create a custom freeform shape (see the
Customize System Boundary -
Orthagonal/Freeform section)
'User Defined - Custom Grid' - enable·

adding vertical and horizontal lines to
the Boundary or to a cell of the

(c) Sparx Systems 2024 Page 420 of 729

Unified Modeling Language (UML) 16 October, 2024

Boundary (see the Customize System
Boundary - Custom Grid section); this
style disables the use of Swimlanes in
the Boundary element

Style Click on the drop-down arrow and select
from these options:

Solid - a solid line border with the·

system default element fill color
Dotted - a dotted line border with no·

element fill color
Dashed - a broken line border with no·

element fill color
Solid - No Fill - a solid line border with·

no element fill color (this setting is
blocks the fill opacity of the element;
see the Fill Opacity section)

Horizontal
Swim Lanes

Type in the number of horizontal
segments you want to divide the element
into, to group the elements in the System
Boundary in horizontal contexts (for
example, Client, Application and
Database tiers could be represented in
swim lanes).
The field defaults to 1. Leave it on this
setting if you intend to use the custom
grid.
The swim lanes are equal divisions of the

(c) Sparx Systems 2024 Page 421 of 729

Unified Modeling Language (UML) 16 October, 2024

System Boundary - you cannot change
their relative heights.

Vertical
Swim Lanes

Type in the number of vertical segments
you want to divide the element into, to
group the elements in the System
Boundary in vertical contexts (for
example, Start, Progress and Terminate
segments).
The field defaults to '1'. Leave it on this
setting if you intend to use the custom
grid.
The swim lanes are equal divisions of the
System Boundary - you cannot change
their relative widths.

Instance
Classifier

(On the Properties window.) Shows the
classifier for the Boundary. If one has not
been specified, or you want to change it,
click on the icon and locate and select
the required Classifier using the 'Select
Element' dialog. The Features window
also displays.

Multiplicity (On the Properties window.) Shows the
number of instances of the element that
can exist in a set; if there is no figure set
or you want to change it, click on the
drop-down arrow and select an

(c) Sparx Systems 2024 Page 422 of 729

Unified Modeling Language (UML) 16 October, 2024

appropriate value.

Customize System Boundary -
Orthagonal/Freeform

When you have selected one of the 'User Defined' options in
the 'Shape' field, you can add way-points to the sides of the
System Boundary, to drag in a direction to create a new
shape. This helps you to create irregular shapes that enclose
dispersed elements that cannot be captured in a simple
rectangle or ellipse.

The 'Orthogonal' variant helps you to create shapes with
vertical and horizontal lines, whilst the 'Freeform' variant
helps you to create diagonal lines.

To set a way-point on an edge:

Press Shift+click, Ctrl+click or Ctrl+Q on the appropriate·

point on the edge

To clear a way-point:

Press Shift+click, Ctrl+click or Ctrl+Q on it·

To move a way-point:

Click on the boundary to display all way-points, position·

the cursor on the required way-point so that it changes to
green, and then click and drag the way-point; when you
move the cursor onto the border, the way-points on either
side of the cursor turn green and you can click and drag
that segment of the border

(c) Sparx Systems 2024 Page 423 of 729

Unified Modeling Language (UML) 16 October, 2024

If you create a 'Freeform' shape and then change the 'Shape'
setting to 'User Defined - Orthogonal', the system converts
all diagonal lines to vertical or horizontal lines. You might
then have to adjust the shape so that it has fewer lines. If
you try to drag an orthogonal way-point in a diagonal
direction, the horizontal and vertical lines adjust to maintain
a right-angle at the cursor position.

Customize System Boundary - Custom Grid

When you select this option, you are able to draw horizontal
and vertical lines within the Boundary, using the same style
as you have set for the Boundary borders. Note that this
option is an alternative to using swimlanes - you don't use
both options together, and the swimlane options are
disabled.

The custom lines link existing lines, so if you have a
Boundary with no divisions you can draw a line between the

(c) Sparx Systems 2024 Page 424 of 729

Unified Modeling Language (UML) 16 October, 2024

borders of the element (as for the vertical line in the
illustration), but if you have already added cells you can
draw a line between the vertical or horizontal borders of a
cell (as for the two horizontal lines in the illustration). This
helps you to add further non-regular groupings of elements
within the Boundary, to create an effect such as appears in a
Business Model Canvas. Just as you can drag elements
between swimlanes, you can also drag elements between
custom cells.

To add custom cells to the Boundary element:

Select the 'User Defined - Custom Grid' option.1.

Return to the diagram.2.

Press the Shift key and hold the left mouse button down3.
as you drag the cursor across or up the Boundary element.
A dotted guideline displays to show where the line will be
created.

When the line is roughly where you want it, release the4.
mouse button. The line becomes solid.

You can move the line by hovering the cursor over it so that
a small double-headed arrow displays, then holding the left
mouse button down and moving the mouse as required.
Abutting lines will extend or retract to maintain the join.

To delete a line, right-click on it and select the 'Delete
Region' context menu option. This is very similar to
merging cells in a table. The system highlights the region
bounded by the line and prompts you to confirm the
deletion. Click on the Yes button. Any abutting lines will
extend to the next perpendicular line.

(c) Sparx Systems 2024 Page 425 of 729

Unified Modeling Language (UML) 16 October, 2024

If you resize the Boundary element, all the cells are resized
proportionately. However, if you simply want to create more
room for adding more cells and do not necessarily want to
change the size of existing cells internal to the Boundary,
press and hold the Shift key while you resize the element.
Only those lines that attach to the border are extended; the
internal cells maintain their size.

Fill Opacity

Whilst a Boundary usually encloses a number of other
elements, there might be reasons for hiding those elements
as well as times to fully show them, or perhaps just indicate
that they are there, depending on the immediate purpose of
the diagram. You can apply these nuances in the display of
elements behind and covered or overlapped by a Boundary
by changing the opacity of the element.

Before setting the opacity, check that the element has a fill
color and that the 'Style' option in the Boundary 'Properties'
dialog or Properties window 'Boundary' tab is set to a value
other than 'Solid - No Fill'.

You set the opacity using an icon from either of these two
pop-up element toolbars:

Click on the Boundary element and on the icon:·

Right-click on the Boundary element and look above the·

context menu:

(c) Sparx Systems 2024 Page 426 of 729

Unified Modeling Language (UML) 16 October, 2024

Click on the icon and select:

100% for total opacity, where the elements behind and·

overlapping or covered by the Boundary are hidden (you
could right-click on individual elements and select the
'Z-Order | Bring to Top' option to expose those elements
only)

0% for no opacity, where the fill color is not applied and·

anything behind the Boundary is fully visible

75%, 50% or 25% to set the appropriate degree of opacity·

and make the covered elements visible but over-shaded

Example Shapes

(c) Sparx Systems 2024 Page 427 of 729

Unified Modeling Language (UML) 16 October, 2024

Notes

Diagram-specific options for Boundaries (shape, border·

style, swimlane count) are locked if the diagram is locked
or if the user does not have access permissions to update
diagrams; the 'Name' field can be updated

The Boundary element 'Name' field is locked if the·

element is locked or the user does not have access

(c) Sparx Systems 2024 Page 428 of 729

Unified Modeling Language (UML) 16 October, 2024

permissions to update elements; the other fields can be
changed

(c) Sparx Systems 2024 Page 429 of 729

Unified Modeling Language (UML) 16 October, 2024

Terminate

Description

The Terminate pseudostate indicates that upon entry of its
pseudostate, the StateMachine's execution ends.

Toolbox icon

(c) Sparx Systems 2024 Page 430 of 729

Unified Modeling Language (UML) 16 October, 2024

Trigger

Description

A Trigger indicates an event that initiates an action (and
might arise from completion of a previous action). You
initially define a Trigger in one of four ways:

As a property of a Transition relationship·

As a property of an Accept Event Action (on the 'Triggers'·

tab of the element 'Properties' dialog)

As an event in a StateMachine Table·

Directly, as a Trigger element, through the 'New Element'·

dialog or Diagram Toolbox ('State Additional' page)

When you save the Trigger, it is added to the list of
elements for the parent Package in the Browser window.
You can then click on it and press Ctrl+2 to display the
Properties window for the element, to view and, if required,
edit its properties as an element rather than as a property
itself. Triggers created as events remain as Event elements,
whilst Triggers created in other ways are Trigger elements,
with a 'Trigger' tab in the Properties window.

Field Action

Type If necessary, edit the type of trigger:
Call - specifies that the event is a·

(c) Sparx Systems 2024 Page 431 of 729

Unified Modeling Language (UML) 16 October, 2024

CallEvent, which sends a message to
the associated object by invoking an
operation
Change - specifies that the event is a·

ChangeEvent, which indicates that the
transition is the result of a change in
value of an attribute
Signal - specifies that the event is a·

SignalEvent, which corresponds to the
receipt of an asynchronous signal
instance
Time - corresponds to a TimeEvent;·

which specifies a moment in time

Specification Either type in the event instigating the
Trigger, or click on the button and
select the event (depending on the Type
value).

Ports Click on the Add button and select the
appropriate Port from the 'Select Port'
dialog.

To create new Ports using the 'Select·

Port' dialog, the Trigger should be
created as child of a Class or
Component element
To add several Ports at once, press Ctrl·

as you select each Port
To check the exact location of a Port,·

(c) Sparx Systems 2024 Page 432 of 729

Unified Modeling Language (UML) 16 October, 2024

right-click on the Port name and select
the 'Find in Project Browser' option

Notes

You can also drag an existing Trigger element onto·

another diagram, although there are limited uses for the
element in that context

This element is not the same as a Trigger Operation,·

which is an operation automatically executed as a result of
the modification of data in a database

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.300) states:

Events may cause execution of behavior (e.g. the execution
of the effect activity of a transition in a state machine). A
trigger specifies the event that may trigger a behavior
execution as well as any constraints on the event to filter out
events not of interest.

(c) Sparx Systems 2024 Page 433 of 729

Unified Modeling Language (UML) 16 October, 2024

Use Case

Description

A Use Case is a UML modeling element that describes how
a user of the proposed system interacts with the system to
perform a discrete unit of work. It describes and signifies a
single interaction over time that has meaning for the end
user (person, machine or other system), and is required to
leave the system in a complete state: the interaction either
completed or rolled back to the initial state. A Use Case:

Typically has requirements and constraints that describe·

the essential features and rules under which it operates

Can have an associated Sequence diagram illustrating·

behavior over time; who does what to whom, and when

Typically has scenarios associated with it that describe the·

workflow over time that produces the end result;
alternative workflows (for example, to capture
exceptions) are also enabled

Example Use Case diagram

(c) Sparx Systems 2024 Page 434 of 729

Unified Modeling Language (UML) 16 October, 2024

If extending a Use Case, you can specify the points of
extension with Use Case Extension Points. To display the
attributes, operations or constraints of a Use Case on a
diagram, use Rectangle Notation.

Enterprise Architect also provides two stereotyped Use
Cases: the Test Case and the Business Use Case.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.649) states:

A UseCase specifies a set of actions performed by its
subjects, which yields an observable result that is of value
for one or more Actors or other stakeholders of each subject.

(c) Sparx Systems 2024 Page 435 of 729

Unified Modeling Language (UML) 16 October, 2024

Use Case Extension Points
The behavior defined for a Use Case can add to the behavior
of another Use Case; that is, the first Use case extends the
second one. This is represented on the model by an Extend
connector from the first Use Case to the second. If the
extended behavior takes effect at a specific point, you can
define that point as an extension point on the extended Use
Case. The name (description) text of the extension point can
be as informal or precise as is appropriate to define the point
in behavior at which the extension applies. A Use Case can
have more than one extension point, to allow for different
source Use Cases to extend this target Use Case, or for
changes in where the extending behavior applies depending
on the constraints defined for the Extend connector. The
connector also identifies which extension point is in effect.

Access

Context
Menu

On diagram | Right-click on extended
Use Case element | Advanced | Edit
Extension Points

Add extension points to a Use Case

(c) Sparx Systems 2024 Page 436 of 729

Unified Modeling Language (UML) 16 October, 2024

Field/Button Action

Defined
Extension
Points

Lists the extension points currently
defined for the selected Use Case.

Add Click on this button to display a prompt
for the name of a new extension point.
Type the name and click on the OK
button. The name is added to the Defined
Extension Points list.

Edit Click on an existing extension point and
click on this button to display a prompt
for changes to the name of the selected
extension point.
Overtype the name and click on the OK
button. The name is updated in the
Defined Extension Points list.

Remove Click on an existing extension point and
click on this button to immediately
remove the name from the Defined
Extension Points list.

OK Click on this button to save all changes to
the extension points, and to close the
dialog.
The extension points you have defined

(c) Sparx Systems 2024 Page 437 of 729

Unified Modeling Language (UML) 16 October, 2024

are represented on the Use Case element
in the diagram as shown.

(c) Sparx Systems 2024 Page 438 of 729

Unified Modeling Language (UML) 16 October, 2024

Value Lifeline

Description

A Lifeline is the path an object takes across a measure of
time, indicated by the x-axis. There are two sorts: Value
Lifelines (defined here) and State Lifelines, both used in
Timing diagrams.

A Value Lifeline shows the Lifeline's state across the
diagram, with parallel lines indicating a steady state. A cross
between the lines indicates a transition or change in state.

This is an example of a Value Lifeline:

See the OMG Unified Modeling Language specification,
(v2.5.1, Figure 14.30, p.520.)

Transition point properties

A Value Lifeline consists of a set of transition points. Each
transition point can be defined with these properties:

(c) Sparx Systems 2024 Page 439 of 729

Unified Modeling Language (UML) 16 October, 2024

Property Description

At time Specifies the starting time for a change of
state.

Transition to Indicates the state to which the Lifeline is
to change.

Event Describes the occurring event.

Timing
constraints

Refers to the time taken for a state to
change within a Lifeline, or the time
taken to transmit a message.

Timing
observations

Provides information on the time of a
state change or sent message.

Duration
constraints

Pertains to a Lifeline's period at a
particular state. The constraint could be
instigated by a change of state within a
Lifeline, or that Lifeline's receipt of a
message.

Duration
observations

Indicates the interval of a Lifeline at a
particular state, begun from a change in
state or message receipt.

(c) Sparx Systems 2024 Page 440 of 729

Unified Modeling Language (UML) 16 October, 2024

Example properties

In the example diagram, the 10ms transition point has these
properties:

Property Text

At Time 10ms

Transition to Waitcard

Event Switch

Timing
constraints

–

Timing
observations

–

Duration
constraints

d..3*d

Duration
observations

–

Toolbox icon

(c) Sparx Systems 2024 Page 441 of 729

Unified Modeling Language (UML) 16 October, 2024

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.604) states:

Shows the value of the connectable element as a function of
time. Value is explicitly denoted as text. Crossing reflects
the event where the value changed.

(c) Sparx Systems 2024 Page 442 of 729

Unified Modeling Language (UML) 16 October, 2024

Structural Diagram Elements
This section provides detailed descriptions of the elements
commonly used when modeling with UML Structural
Diagrams in Enterprise Architect.

(c) Sparx Systems 2024 Page 443 of 729

Unified Modeling Language (UML) 16 October, 2024

Artifact
An Artifact is any physical piece of information used or
produced by a system. In Enterprise Architect an Artifact is
represented by an Artifact element, which can have one of a
number of stereotypes to tailor it to a specific purpose,
including internal operations and structures within the
model, as indicated in the examples. Artifacts can have
associated properties or operations, and can be instantiated
or associated with other Artifacts according to the object
they represent.

You can create an Artifact element by dragging one of the
'Artifact' icons from one of several Diagram Toolbox pages
according to type. The 'Common Elements' page of the
Toolbox has a generic 'Artifact' icon that - when you drag it
onto a diagram - offers a choice of types of Artifact to
create.

Types of Artifact

(c) Sparx Systems 2024 Page 444 of 729

Unified Modeling Language (UML) 16 October, 2024

Type Description

(Base)
Artifact

A Base Artifact defines the external
artifacts used in a process and the internal
artifacts generated in the process, such as
model files, source files, database tables,
development deliverables or support
documents. The files represented by the
Artifact are listed on the 'Files' tab of the
Properties window for the element.
To open the files represented by the
Artifact, click on the element on the
diagram and press Ctrl+E. Each file is
opened either on a separate tab in the
Diagram View workspace (if the file can
be opened within Enterprise Architect) or
in the default Windows viewer/editor for
the file type (if the file cannot be opened
within Enterprise Architect).
Files can also be launched individually

(c) Sparx Systems 2024 Page 445 of 729

Unified Modeling Language (UML) 16 October, 2024

from the 'Files' tab (opening in the
Windows default editor), as for elements
of any other type that have associated
files.

Document
Artifact

A Document Artifact is an Artifact having
a stereotype of «document». You create
the Document Artifact using the Artifacts,
Component, Documentation or
Deployment pages of the Diagram
Toolbox, and associate it with an RTF
document or CSV file.
Double-click on the element to display
the Linked Document Editor. When you
have created the Linked Document, the
Document Artifact element on the
diagram shows an 'A' symbol in the
bottom right corner.

Checklist
Artifact

A Checklist Artifact provides the facility
for generating a list of items, each with a
checkbox, to be used as a checklist. You
can set each checkbox to default to being
selected or unselected, and set all selected
options to be grayed out or struck
through, so that the unselected options
are more prominent. The end users can

(c) Sparx Systems 2024 Page 446 of 729

Unified Modeling Language (UML) 16 October, 2024

then work with the element to tick off
items that have been obtained or activities
that have been completed.
A version of this Artifact - the
Requirements Checklist - is available in
the 'Extended Requirements' Toolbox
page. This automatically contains ten
characteristics of a good Requirement, for
a Requirement author to tick off as they
check that their Requirement has been set
up to show those characteristics.

Audited
Checklist
Artifact

This Artifact is identical to the Checklist
Artifact, except that it has an associated
'Audit Log' page that identifies any
changes made to the checklist, when
those changes were made, who made
them and what the changes were. This is
a very useful Project Management tool,
adding tracking and accountability to the
use of checklists.

Encrypted
Document

An Encrypted Document Artifact is used
to create and hold a Linked Document

(c) Sparx Systems 2024 Page 447 of 729

Unified Modeling Language (UML) 16 October, 2024

Artifact that is automatically encrypted, and that
cannot be opened and automatically
decrypted within Enterprise Architect
without entering a password. You can
therefore use the generated Artifact
element to record sensitive information,
which you protect from general access by
assigning a password.
When you drag the 'Encrypted Document'
icon onto the diagram from the
'Documents' page of the Toolbox, a
prompt displays to type in a password.
When you enter this password, you can
create the Linked Document. Thereafter,
when any user attempts to open the
document, the same password prompt
displays. If the user does not provide the
password that you originally specified,
the document will not open, whilst if the
correct password is provided the
document is decrypted and opened, and
the text can be viewed and edited.
You cannot change the password, nor can
you delete the Linked Document from the
Artifact (although you can delete the
Artifact itself).
Other facilities that display 'normal'
Linked Documents - such as the
Document window or report generator -

(c) Sparx Systems 2024 Page 448 of 729

Unified Modeling Language (UML) 16 October, 2024

will ignore an encrypted document.
The Encrypted Document is indicated in
the Toolbox page, diagram and Browser
window by a red 'document' icon - .

User Story A User Story Artifact provides a means
of documenting a business Use Case in
the context of Agile methodologies such
as Extreme Programming (XP). In the
Linked Document, you define the
functions a business system must
provide; it captures the 'who', 'what' and
'why' of a requirement in a simple,
concise format. The User Story Artifact
behaves as a Document Artifact,
prompting you to select a Linked
Document template to base the document
on.

Working Set
Artifact

A Working Set Artifact defines a
Working Set that opens various windows,
diagrams and views, recreating a work
environment that you frequently use.

To create or modify the Working Set,·

right-click on the element and select
the 'Edit Working Set' option
To execute the Working Set to open the·

defined windows and views and
execute any commands, double-click

(c) Sparx Systems 2024 Page 449 of 729

Unified Modeling Language (UML) 16 October, 2024

on the element

Custom
Table
Artifact

A Custom Table Artifact generates a
diagram object that displays custom data
in a grid format similar to a spreadsheet,
providing extra 'non-modeled'
information on elements, diagrams or
project management exactly where it is
applicable.

Standard
Chart

A Standard Chart Artifact provides the
facilities for generating a Pie Chart or Bar
Chart on an aspect of the data in your
model. It adds three 'Chart Details' tabs to
the standard tabs of the element
'Properties' dialog.
After you have added the element to your
diagram, double-click on it. The element
'Properties' dialog automatically opens at
the 'Chart Details - Source' tab. Define
the chart type and data source, then go on
to define any filters you want to apply,
and how the chart should display.
Once you have defined the chart, it
automatically displays with the latest
information whenever you open the
parent diagram.

Time Series A Time Series Chart Artifact provides the

(c) Sparx Systems 2024 Page 450 of 729

Unified Modeling Language (UML) 16 October, 2024

Chart facilities for generating a linear graph of a
model property over time.
After you have added the element to your
diagram, double-click on it. The element
'Properties' dialog automatically opens at
the 'Chart Details - Source' tab. Define
the Package from which the data is to be
extracted, and the time interval over
which the data is to be sampled. Then go
on to define the appearance of the chart.
Once you have defined the chart, it
automatically displays with the latest
information whenever you open the
parent diagram.

Model View A Model View Artifact provides the
facilities for generating a tabular Model
View Chart on a segment of the data in
your model, extracted using a custom
SQL search.
After you have added the element to your
diagram, double-click on it. The element
'Properties' dialog automatically opens at
the 'Chart Details - Source' tab. Define
the SQL Search to extract and tabulate
the information.
Once you have defined the chart, it
automatically displays with the latest
information whenever you open the

(c) Sparx Systems 2024 Page 451 of 729

Unified Modeling Language (UML) 16 October, 2024

parent diagram.

Report
Specification

A Report Specification Artifact
encapsulates a report definition. When
you have created the element on the
diagram, you double-click on it to display
the 'Generate Documentation' dialog, on
which you enter the report parameters
and generate the report.
After you create the Report Specification,
each time you double-click on the
Artifact element the 'Generate
Documentation' dialog again displays
with the same report parameters. You can
continue to generate the same report, or
alter the parameters if necessary. If you
change the parameters, they are
re-presented until such time as you
change them again,

Matrix
Specification

A Matrix Specification Artifact
encapsulates a Relationship Matrix
Profile definition. When you have created
the element on the diagram, you
double-click on it to display the 'Matrix
Specification' dialog, in which you create
the Profile definition. The Profile takes
the name of the element. The profile
defined in the Artifact is independent of

(c) Sparx Systems 2024 Page 452 of 729

Unified Modeling Language (UML) 16 October, 2024

the Package that contains the Artifact
element, and therefore could specify
source and target Packages other than
parent Package.
After you create the Profile definition,
each time you double-click on the
Artifact element the Relationship Matrix
displays with the Profile applied.
To edit the Profile, right-click on the
Artifact and select the 'Documentation |
Edit Matrix Profile' option.

Executable
StateMachine

An Executable StateMachine Artifact is
the vehicle through which you can
generate, build (compile) and execute -
via simulation - code for a StateMachine
or complex of StateMachines.
Each StateMachine is the child of a Class
element; when you drag the Class from
the Browser window onto the Artifact
element, it is pasted inside the Artifact as
a Part. You can paste several Classes -
and, therefore, Parts - into a single
Artifact.
Having set up the Executable
StateMachine Artifact, you use simple
context menu options on the Artifact to
perform the code generation, build and
execution operations on all

(c) Sparx Systems 2024 Page 453 of 729

Unified Modeling Language (UML) 16 October, 2024

StateMachines bound within the Artifact.

Business
Process
Simulation

The Business Process Simulation Artifact
appears in the 'Simulation' page of the
Toolbox when the BPSim Simulation
Engine has been installed and registered
on your system. You use the Artifact as a
container for - and an access point to - a
Business Process Simulation
Configuration, which defines what
business process model to simulate and
what parameters to apply during the
simulation.
Right-click on the element and select the
'Configure BPSim' context menu option.
The Configure BPSim window displays.

BPSim
Result Chart

The BPSim Result Chart and BPSim
Custom Result Chart Artifacts appear in
the 'Charts' page of the Toolbox when the
BPSim Simulation Engine has been
installed and registered on your system.
These Artifacts generate Charts that
reflect selected results from BPSim
Simulations:

BPSim Result Chart - generates a Chart·

that reflects selected results from a
series of standard BPSim Simulations
BPSim Custom Result Chart -·

(c) Sparx Systems 2024 Page 454 of 729

Unified Modeling Language (UML) 16 October, 2024

generates a Chart that reflects results
from a series of customized BPSim
Simulations

As for other Chart Artifacts, both BPSim
Chart types can be quickly configured to
display the Simulation results in
variations of a Line Chart,
two-dimensional Bar Chart or
3-dimensional Bar Chart. The results that
both Artifacts operate on are captured in
Results Artifacts that are automatically
generated during a Business Process
Simulation.

SysMLSim
Configuratio
n

This Artifact provides access to the
Configure SysML Simulation Window,
and contains a specific SysML simulation
configuration. To access the Configure
SysML Simulation Window, double-click
on the Artifact or right-click and select
the 'Show SysML Configuration' option.

Image Asset Image Assets are model elements that are
used to store images in the model. You
can create them by dragging the 'Image
Asset' icon onto a diagram and choosing
an image file, or by dragging an image
file from your file system straight onto a
diagram. Enterprise Architect creates an

(c) Sparx Systems 2024 Page 455 of 729

Unified Modeling Language (UML) 16 October, 2024

Image Asset Artifact, then stores the
image from the file in the Artifact as the
'owned image'. The element can display
on the diagram either as the image or as a
rectangular element; to toggle between
them, right-click on the object and click
on the 'Show Owned Image' option.
When the Artifact is displaying as an
image, you can double-click on it to
display the element 'Properties' dialog. If
the Artifact is displaying in element
format, double-clicking on it will open
the image in the default external viewer
for images.
An Image Asset image can be used in
model documentation in the same way as
for an image from the Image Manager, by
inserting a hyperlink to the Image Asset
element. As you create the hyperlink, you
are prompted to select the type of object
to link to; click on 'Element Image' and
select the appropriate Image Asset
element from the list. If you Ctrl+click on
the hyperlink, the image is displayed in
the default external viewer for images.
When a report is generated, the
hyperlinked Image Asset element is
rendered using its 'owned image'.

(c) Sparx Systems 2024 Page 456 of 729

Unified Modeling Language (UML) 16 October, 2024

Reading List The Reading List Artifact provides a list
of elements that contain information of
particular significance to a task or
process. The intention is for the
information from each element to be
displayed in the Document window, in
the sequence in which the elements are
organized in the Reading List. The
Document window provides 'Next' and
'Previous' options to move through the
elements.

(c) Sparx Systems 2024 Page 457 of 729

Unified Modeling Language (UML) 16 October, 2024

Create File Artifacts
A File Artifact is an Artifact element that represents and is
linked to an external file. You can create the Artifact
element on a diagram, from the file itself.

Create the Artifact

Ste
p

Action

1 Locate the file in a file list (such as Windows
Explorer) or on your Desktop. Drag the file onto
your diagram.
A context menu displays.

2 Click on the menu option you need:
'Hyperlink' - to create a Hyperlink element on the·

diagram; you can select a sub-option to define
whether users, when they double-click on the
Hyperlink, will either just display the file content
or open it within the appropriate file editor
'Artifact External' - to create an Artifact element·

on the diagram; the element 'Properties' dialog
displays, in which you enter any element
properties you need
Save the data you have entered and close the
'Properties' dialog (note that the file name becomes

(c) Sparx Systems 2024 Page 458 of 729

Unified Modeling Language (UML) 16 October, 2024

the element name)
If you double-click on the Artifact the 'Properties'
dialog redisplays; click on the 'Files' tab to see the
file pathname listed in the 'Files' panel, from
which you can launch it in its registered
application
'Artifact Internal' - to immediately create an·

Artifact element on the diagram with the file name
as the element name
The file is stored in your model, but is managed by
the registered external application for the file type;
if you double-click on the Artifact, the file is
opened within its external application
If the file is changed, you are prompted to update
the element within the model - click on the Save
button to update the element, or on the Discard
button to ignore the changes
'Insert' - (graphics files) to insert the file into the·

diagram as a filled Boundary element;
double-click on the image to display the Boundary
'Properties' dialog

Notes

This feature is available in all editions of Enterprise·

Architect

Hyperlinks to images stored as Artifacts can be created·

using a hyperlink of type 'Element Image'

(c) Sparx Systems 2024 Page 459 of 729

Unified Modeling Language (UML) 16 October, 2024

For operating systems other than Windows; as the file·

source for dragging a file onto a diagram, use:
Ribbon > Settings > User Tools > Windows Explorer.

(c) Sparx Systems 2024 Page 460 of 729

Unified Modeling Language (UML) 16 October, 2024

Using the Checklist and Audited
Checklist Artifacts
Using the Checklist Artifact, you can create any number of
Checklist elements that you and other users can work
through to ensure that the required aspects of a task or
object have been addressed in completing the task or
developing the object. You can select a checkbox against
each item to indicate that the point has been addressed, and
you can configure the checklist to show selected items in
gray or struck out so that unselected items are more obvious.

You can also display items in a flat list or a numbered or
bulleted list, which helps if you do not necessarily want to
check-off the items as you work through the list. If it does
become necessary to select such items, you can do so
through the 'Checklist Items' dialog.

You can re-use the checkboxes as well - the context menus
for individual elements in a diagram, multiple elements in a
diagram, and the diagram itself all have options for clearing
the checkboxes so that the Checklists are ready to use again
to restart a process.

When all the items on a Checklist have been selected, a
green arrow displays in the bottom right corner of the

(c) Sparx Systems 2024 Page 461 of 729

Unified Modeling Language (UML) 16 October, 2024

element to indicate that the Checklist has been completed.

The Audited Checklist is an extension of the Checklist
Artifact, having an associated 'Audit Records' page. It is a
useful tool for Project Management, providing the facility to
monitor accountability and track completion of tasks.

You can have a sequence of Checklists that must be
completed in order - the first Checklist in the sequence must
be complete before any checkboxes on the next Checklist
are enabled for selection. This order of completion is
established by creating Dependency connectors between the
Checklist elements.

The target Checklist element of the Dependency becomes·

a prerequisite, and the source Checklist becomes a
dependent

All items on the prerequisite Checklist must be selected·

before any items on the dependent Checklist can be
selected

A prerequisite Checklist cannot have items deselected·

whilst the dependent Checklist has items selected

Clearing a prerequisite Checklist will also clear any·

dependent Checklists (as they cannot have selected items

(c) Sparx Systems 2024 Page 462 of 729

Unified Modeling Language (UML) 16 October, 2024

whilst the prerequisite Checklist is clear)

New items can be added to a prerequisite Checklist, but·

only if they are set to selected before saving (for the first
new item a warning message displays; thereafter the new
items are automatically set to selected)

Clearing a Checklist and its dependents will affect all·

Checklists in the hierarchy even if they are external to the
current Package or diagram

Create a Checklist element

You create an empty Checklist element by dragging the
'Checklist' icon onto a diagram from the 'Governance' page
of the Diagram Toolbox. The 'Governance' page is always
present, at the bottom of every Toolbox.

You can also create a ready-to-use Requirements Checklist
with appropriate items already in place, by selecting the
'Requirements Checklist' icon from the 'Extended
Requirements' page of the Diagram Toolbox (select one of
the search facilities in the Toolbox header and specify
'Requirements').

(c) Sparx Systems 2024 Page 463 of 729

Unified Modeling Language (UML) 16 October, 2024

Set up a Checklist

To populate a Checklist element with items, double-click on
the Checklist element in the diagram. The 'Checklist items'
dialog displays, with the cursor in the field at the top of the
dialog ready to receive the first item name.

Simply type in the item name, then press the Enter key to
display and move to the next item entry field.

To the left of each item is a checkbox. If you want the item
to default to selected when the element is used, click on the
checkbox here.

At the bottom of the dialog are three fields:

Display - either accept the default of '<None>' for a·

simple list, or click on the drop down arrow and select for
the checklist items to follow on from checkboxes, bullets
or numbers

Check Style - click on the drop-down arrow and select·

whether to apply no style to items with a selected
checkbox ('<None>') or to display the 'checked off' items
with a line through them ('Strikeout') or in pale gray
('Grayed')

(c) Sparx Systems 2024 Page 464 of 729

Unified Modeling Language (UML) 16 October, 2024

Spacing - either accept the default of single spacing·

between items, or click on the drop-down arrow and select
a larger spacing between the items; the line spacing within
an item remains at single spacing
You can also change the spacing using the 'Checklist
Spacing' option on the element context list

When you have finished setting up the Checklist, click on
the Close button.

Edit a Checklist

To change the text, selection status or sequence of items in a
Checklist element, double-click on the element to display
the 'Checklist Items' dialog and click on the item to change.
To:

Change the text of the item, simply click again and type·

over the current text (or right-click and select the 'Edit
item' option)

Delete the item, right-click on it and select the 'Delete·

item' option

Toggle the status of the checkbox, click on the checkbox·

(or right-click and select the 'Toggle item check' option)

Move the item to a different position in the sequence of·

items, right-click and select either the 'Move item up' or
'Move item down' option

Change the display format to simple list, checkboxes,·

bullets or numbers, click on the drop-down arrow in the
'Display' field and select the appropriate option

(c) Sparx Systems 2024 Page 465 of 729

Unified Modeling Language (UML) 16 October, 2024

Change the selected item style for all items in the·

checklist, click on the 'Check Style' drop-down arrow and
select the appropriate option

Change the item spacing, click on the drop-down arrow in·

the 'Spacing' field and select the appropriate line spacing

Click on the Close button to save your changes and close the
dialog.

Make a Checklist available to users

To make a Checklist available to other users, create it on a
diagram that the users can access directly. Alternatively,
save the diagram as a Pattern that the users can draw on as
the basis for creating their own Checklist diagrams.

Work with a Checklist

To record, on a Checklist element with a checkbox, the
completion of an action or the presence of an object, simply
click on the appropriate checkbox to select it.

If you need to clear a checkbox, or several checkboxes, you
can either:

Click on each checkbox again, or·

Right-click on the Checklist element and select the 'Clear·

Checklist' option (all checkboxes in that element), or

Select a number of Checklist elements, right-click on one·

of them and select the 'Clear Checklist' option (all
checkboxes in all selected elements), or

(c) Sparx Systems 2024 Page 466 of 729

Unified Modeling Language (UML) 16 October, 2024

Right-click on the diagram background and select the·

'Clear all Checklists' option (all checkboxes in all
checklists on the diagram)

You can re-use the cleared Checklist for another step, stage
or process.

If you have selected to display a simple, bulleted or
numbered list, and you want to temporarily strike off items
in the list, you can do so in the 'Checklist Items' dialog by
selecting the checkbox against each item.

You can also use the element context menu to change the
separation of items on the Checklist you are viewing;
right-click on the element and select the line spacing you
prefer.

The Audited Checklist

You can set up an Audited Checklist and other workers can
make use of it, both in exactly the same way as for a
Checklist. However, there is an additional context menu
option - 'View audit log' - that displays an 'Audit records'
page for the Audited Checklist. This 'Audit records' page is
generated only for Audit Checklists, created using the
'Artifacts' toolbox page.

(c) Sparx Systems 2024 Page 467 of 729

Unified Modeling Language (UML) 16 October, 2024

This page shows each change made to the checklist, the date
and time of the change, who made the change, the type of
change and what the change is. As shown, the changes
include those made in creating or updating the checklist and
the changes made by users selecting or clearing the
checkboxes, including:

Adding Checklist items (which also records the state they·

were set in)

Deleting items·

Re-setting the state of each item·

Completing a Checklist·

De-selecting an item on a completed Checklist·

Making a Checklist a pre-requisite or dependent of·

another Checklist

Renaming a pre-requisite or dependent Checklist·

Making a Checklist no longer the pre-requisite or·

dependent of another Checklist

(c) Sparx Systems 2024 Page 468 of 729

Unified Modeling Language (UML) 16 October, 2024

Changes committed at the same time (such as when you
click on an OK button) have one time stamp, as illustrated
by the 'Add' changes in the audit log image.

If necessary, you can export the total contents of the 'Audit
Records' page to a .csv file. To do this:

Click on the Export button; the 'Export List' dialog1.
displays.

Browse for and select the appropriate directory in which2.
to store the file.

Enter a filename for the file, and click on the Save button.3.

The file is saved and can then be opened in any external
spreadsheet application, such as Excel.

Notes

Unlike many other Artifact elements, Checklists can have·

a Priority of High, Medium or Low, set in the element
'Properties' dialog; this is useful for making sure a
Checklist in a process is flagged as being of importance,
such as in a Kanban diagram

(c) Sparx Systems 2024 Page 469 of 729

Unified Modeling Language (UML) 16 October, 2024

Using the Reading List Artifact
The Reading List Artifact provides a list of elements that
contain information of particular significance to a task or
process. The intention is for the information from each
element to be displayed in the 'Dynamic Document' view, in
the sequence in which the elements are organized in the
Reading List. The 'Dynamic Document' view provides 'Next'
and 'Previous' options to move through the elements.

Set up a Reading List

Task Action

Create the
Artifact

Drag the 'Reading List' icon onto the
diagram from the 'Documents' page of the
Diagram Toolbox. Double-click on the
element to display the 'Properties' dialog
and give the element a name; perhaps
identifying the subject of the reading list.

Create the
Reading List

In the Browser window, identify the
elements containing the required
information and drag each one onto the

(c) Sparx Systems 2024 Page 470 of 729

Unified Modeling Language (UML) 16 October, 2024

Reading List Artifact element. The
element names are displayed on the
Artifact, in the sequence in which they
are added to the Artifact.
The element names are attributes of the
Artifact. If you want to change the
sequence in which they are listed:

Click on the Artifact and press Ctrl+5.1.
The Features window displays,
showing the 'Attributes' page.
Right-click on the attribute to move,2.
and select either the 'Move Up' option
or the 'Move Down' option. The
attribute moves one space up or down
the list for each click.

Read a Reading List

To read the information identified by a Reading List icon,
you can either:

Right-click on the Artifact and select the 'Show Reading·

List' option to display the 'Dynamic Document' view, or

Display the 'Dynamic Document' view (Publish > Model·

Reports > Preview Mode) and click on the element name
in the Browser window

The information from the first element in the Reading List is
shown in the 'Dynamic Documents' view. When you have

(c) Sparx Systems 2024 Page 471 of 729

Unified Modeling Language (UML) 16 October, 2024

finished reading this information, click on the [Reading]
header and select the 'Next' option to display the information
from the next element in the Reading List. As you work
down the list, you can also select the 'Previous' option to
return to information from an element further up the list.

The 'Dynamic Document' view provides other options to, for
example, use another style template to display the
information, or change the display size. These options are
available as you review the Reading List.

(c) Sparx Systems 2024 Page 472 of 729

Unified Modeling Language (UML) 16 October, 2024

Document Artifact

Description

A Document Artifact is an artifact having a stereotype of
«document». You create the Document Artifact using the
Common, Documents, Component, Documentation or
Deployment pages of the Diagram Toolbox, and associate it
with a document or CSV file. Double-click on the element
to display the Linked Document Editor. When you have
created the Linked Document, the Document Artifact
element on the diagram shows an 'A' symbol in the bottom
right corner.

Toolbox icon

(c) Sparx Systems 2024 Page 473 of 729

Unified Modeling Language (UML) 16 October, 2024

Custom Table Artifact
The Custom Table artifact is a diagram object that displays
custom data in a grid format similar to a spreadsheet. For
example:

The benefits of using this element include:

Providing extra 'non-modeled' information on elements,·

diagrams or project management exactly where it is
applicable, such as a SWAT Analysis or Capability
Matrix

Providing such information in a convenient·

human-readable and - if appropriate - human-editable
format

The ability to read and update data using scripts and·

Add-Ins

This feature is available in the Corporate, Unified and
Ultimate Editions of Enterprise Architect, from Release
15.0.

Create a Custom Table

From the 'Dynamic Viewpoints' page of the Diagram

(c) Sparx Systems 2024 Page 474 of 729

Unified Modeling Language (UML) 16 October, 2024

Toolbox, drag the Custom Table icon onto a diagram.

The Table element is created on the diagram and in the
Browser window. On the diagram, click on the element to
select it, then drag the borders of the element to expand it to
a more comfortable size for editing.

Working with Custom Tables

To modify a Custom Table, it must first be placed into edit
mode. To begin editing, right-click the Custom Table
element on the diagram and select 'Edit Custom Table'.
Alternatively, click on the element and press the Enter key
or the F2 key.

While in edit mode you can modify and format the table
contents.

To exit edit mode, right-click on the element and choose the
option 'Exit Edit'. Alternatively, deselecting the table
element (by clicking outside of the element, or by pressing
the 'Esc' key) will also exit the edit mode.

Exiting edit mode will automatically save your changes.

The Custom Table data content will automatically be1.
saved in XML format into the element's 'data' property.

(c) Sparx Systems 2024 Page 475 of 729

Unified Modeling Language (UML) 16 October, 2024

The Custom Table row/cell formatting data will2.
automatically be saved in XML format into the
'dataformat' property.

If you update a Custom Table element's properties by
directly editing the XML, you can refresh the element in the
diagram by right-clicking the element and selecting the
option 'Refresh Custom Table'.

Operation Description

Define Grid
Size

The new Custom Table element does not
yet have a defined grid size.

Right-click in the blank space in the1.
body of the element and select the 'Set
Grid Size...' option.
In the 'Set Grid Size' dialog, type in the2.
required numbers of rows and columns.
Click on the OK button.3.

Columns are autosized to occupy the
visual area of the Table element. Rows,
however, default to a single line height.

Add More
Columns

You have two options for adding further
columns to the table:

Add a new column to the right hand·

end of the table - right click on the
table and select the 'Add Column'
option
Insert a column at a specific point in·

(c) Sparx Systems 2024 Page 476 of 729

Unified Modeling Language (UML) 16 October, 2024

the table - right-click on a column and
select the 'Insert Column' option and
either 'Before Selected Column' or
'After Selected Column' as required

Add More
Rows

You also have two options for adding
rows to the table:

Add a new row to the bottom of the·

table - right-click on the table and
select the 'Add Row' option; the row
might not be visible without scrolling
to it, but note that the 'Showing x - n of
y items' counter in the bottom right of
the element will be incremented
Insert a row at a specific point in the·

table - right-click on a row and select
the 'Insert Row' option and either
'Above Selected Row' or 'Below
Selected Row' as required; the inserted
row has the default height of one line

Delete
Columns or
Rows

Right-click on a cell in the column or row
and select 'Delete Selected Row' or
'Delete Selected Column'.
You cannot delete more than one row or
column at a time, nor can you delete a
row or column containing merged cells
(even if they do not contain cells outside
the row or column).

(c) Sparx Systems 2024 Page 477 of 729

Unified Modeling Language (UML) 16 October, 2024

Copy
Content

When you have data in the table, you can
select to copy the content of either
selected cells or the entire table to the
clipboard, to paste into an external
spreadsheet tool or text file.
Select the 'Copy to Clipboard' option and
then either 'Selected' or 'All'.

Change
Column
Width

Click on a column cell and either drag the
border of the column header cell to the
required width, or right-click on the Table
element and select the 'Set Column(s)
Width' option. (To select multiple
columns, press the Ctrl key as you select
each column.)
If you select the 'Set Column(s) Width'
option, the 'Set Column Width' dialog
displays. Either type in the required width
in pixels, or click on the arrows to
increase or decrease the value by one
pixel per click. Click on the OK button
when you have entered the width.
Note that:

Column widths are confined by the·

width of the element; you cannot
increase the width of a column
indefinitely, as the width increase will
be blocked prior to the point at which

(c) Sparx Systems 2024 Page 478 of 729

Unified Modeling Language (UML) 16 October, 2024

one of the columns will lose its visible
presence on the Table
Manually setting a column width by·

dragging the header border adjusts the
width of any unset columns by equal
amounts; for example, in a
three-column Table, increasing one
column width by eight pixels will
decrease the width of the other two
columns by 4 pixels each
Setting a column width through the 'Set·

Column Width' dialog changes the
width of any unset and manually set
columns by equal amounts
Adjusting the size of the Table element·

will adjust the column widths within
the Table in proportion to each other
Text strings will wrap in the width of·

the column

Change Row
Height

If you want to increase or decrease the
height of one or more rows by one line
height, right-click on a cell in that row
and select the 'Increase row lines' or
'Decrease row lines' option, as
appropriate. (To select multiple rows,
press the Ctrl key as you select each
row.)
If you want to increase or decrease the

(c) Sparx Systems 2024 Page 479 of 729

Unified Modeling Language (UML) 16 October, 2024

height of one or more rows by several
line heights, right-click on a cell in the
selected row(s) and select the 'Set row(s)
lines option'. The 'Set Row Lines' dialog
displays.
Either type in the required height in lines,
or click on the arrows to increase or
decrease the value by one line per click.
Click on the OK button to save the
settings.
Note that:

Changing the height of one or more·

rows has no effect on the height of
unselected rows in the Table
Increasing the height of a row can·

scroll other rows out of sight, beyond
the borders of the Table element
If the text of a cell is more than can be·

displayed in the cell, the text scrolls out
of sight beyond the top and bottom of
the cell; in these situations, mouse-over
the cell to display the full text in a
pop-up field, or add more height to the
row to accommodate the text

Format the
Grid

You can perform operations to format the
appearance of cells in the table, and of
the table as a whole. Right-click on the
table and select:

(c) Sparx Systems 2024 Page 480 of 729

Unified Modeling Language (UML) 16 October, 2024

Show Grid Lines - to hide or display all·

lines separating cells; this does not hide
those lines specifically displayed using
the 'Set Cell(s) Border' option
Set Cell(s) Border - if 'Show Grid·

Lines' is toggled off and you have
highlighted one or more cells, select
the option for the required cell edge to
display that edge on the cell(s):

 - Top
 - Right
 - Bottom
 - Left
 - Reset Default (to hide the visible
borders of the currently-selected cells)
 Note that the border width is fixed at
1px.

Set Grid Color - the 'Select item color'·

dialog displays; click on the 'Set Color'
drop-down arrow and on the
appropriate color in the palette, then
click on the OK button to apply the
color to either all cell borders in the
table ('Show Grid Lines' on) or those
specifically selected for display ('Set
Cell(s) Border')
Merge Selected - (available if you have·

selected two or more cells by sweeping

(c) Sparx Systems 2024 Page 481 of 729

Unified Modeling Language (UML) 16 October, 2024

the cursor across them) the separate
cells become one cell, with the
formatting of the uppermost and/or
leftmost cell; the selected cells must
form a regular block - you cannot
merge two cells on one line with one
cell on the next line unless the cells
form a rectangle
UnMerge Selected - the·

previously-merged cells reappear with
their original dimensions, color, text
and formatting

Add Text to a
Cell

Double-click on the cell and start typing.
Alternatively, if you have copied text into
the buffer, click twice on the cell,
right-click and select the 'Paste' option.
Note that formatting (even from another
table cell) is not transferred in the copy.

Format Text You can perform a number of operations
to format the complete text of a cell. The
options cannot operate on partial text
strings in a cell. Note that these options
take effect when you click off the cell.
Right-click on the cell and select the
required option:

Horizontal Align Text - select the·

appropriate sub-option to align the text

(c) Sparx Systems 2024 Page 482 of 729

Unified Modeling Language (UML) 16 October, 2024

with the left, center or right of the cell
(new cells default to left-aligned text)
Vertical Align Text - select the·

appropriate sub-option to align the text
with the top, center or bottom of the
cell (new cells default to center-aligned
text)
Set Text Color - the 'Select item color'·

dialog displays; click on the 'Set Color'
drop-down arrow and on the
appropriate color in the palette, then
click on the OK button
Set Background Color - (to set the·

background for the cell, whether or not
it contains text) the 'Select item color'
dialog displays; click on the 'Set Color'
drop-down arrow and on the
appropriate color in the palette, then
click on the OK button
Toggle Bold Text - the text is changed·

to bold or back to normal

Using the Tagged Values

The simplest method for initially defining and populating
the Custom Table is to use the context menu options.
However, if you want to set up a number of tables of similar

(c) Sparx Systems 2024 Page 483 of 729

Unified Modeling Language (UML) 16 October, 2024

structure it becomes more efficient to copy the XML from
the Tagged Values of one table to the Tagged Values of
another, or to add a script to read and/or populate the tables.
Each Tagged Value is a <memo> type that can contain a
lengthy collection of XML definitions.

Tagged Value Content

data As you build up the grid, the basic
structure is defined in this Tagged Value
in XML, and as you add data values they
are inserted into the appropriate lines of
the structure definition. For example:
<?xml version="1.0"?>
<adhoctable>
<table>
<row>
<column>Heading 1</column>
<column>Heading 2</column>
<column>Heading 3</column>
<column>Heading 4</column>
<column>Heading 5</column>
</row>
<row>
<column>Rowname</column>
<column></column>
<column></column>
<column></column>

(c) Sparx Systems 2024 Page 484 of 729

Unified Modeling Language (UML) 16 October, 2024

<column></column>
</row>
If you want to enter data directly into the
XML in this Tagged Value, the 'Edit
Custom Table' context menu must be off
(you have selected the 'Exit Editing'
option) and you should select the 'Refresh
Custom Table' context menu option
frequently to update the table image.

dataFormat As you define the format and appearance
of the grid, the definition is stored in
XML in this Tagged Value. For example:
<?xml version="1.0"?>
<dataformat>
<style>
<grid rows="8" columns="5">
<gridcolor>16646398</gridcolor>
</grid>
<cells>
<cell row="0" col="0">
<bold>true</bold>
<txtcolor>255</txtcolor>
<borders>
<left>0</left>
<top>0</top>
<right>1</right>

(c) Sparx Systems 2024 Page 485 of 729

Unified Modeling Language (UML) 16 October, 2024

<bottom>1</bottom>
</borders>
</cell>
<cell row="0" col="1">
<txtcolor>13434880</txtcolor>
<borders>
<left>0</left>
<top>0</top>
<right>1</right>
<bottom>1</bottom>
</borders>
</cell>
If you want to modify the definition
directly in the XML in the Tagged Value,
the 'Edit Custom Table' context menu
must be off (you have selected the 'Exit
Editing' option) and you should select the
'Refresh Custom Table' context menu
option frequently to update the table
image.

Custom Table Scripts

You can also associate a JavaScript script with your Custom
Table element. Typically, a script might be used to either
read data from the table or update the data in the table.

(c) Sparx Systems 2024 Page 486 of 729

Unified Modeling Language (UML) 16 October, 2024

Scripts are saved in the operation named 'script'.

Action Description

Define a
Script

To define or edit the script:
Click on the table element to select it·

Choose the ribbon option 'Develop >·

Source Code > Behavior' (Alt+7)
Select the operation named 'script' in·

the left hand panel of the editor
Enter the script code in the right-panel·

of the editor
For detail on the methods available see
the ElementGrid Class Help topic.

Run a Script If an associated script has been defined
for the table, it can be run by
right-clicking the table while it is not in
edit mode then choosing the option 'Run
Custom Table Script'.

(c) Sparx Systems 2024 Page 487 of 729

Unified Modeling Language (UML) 16 October, 2024

Class

Description

A Class is a representation of a type of object that reflects
the structure and behavior of such objects within the system.
It is a template from which actual running instances are
created, although a Class can be defined either to control its
own execution or as a template or parameterized Class that
specifies parameters that must be defined by any binding
Class.

A Class can have attributes (data) and methods (operations
or behavior). Classes can inherit characteristics from parent
Classes and delegate behavior to other Classes. Class
models usually describe the logical structure of the system
and are the building blocks from which components are
built.

The top section of a Class shows the attributes (or data
elements) associated with the Class. These hold the 'state' of
an object at run-time. If the information is saved to a data
store and can be reloaded, it is termed 'persistent'. The lower
section contains the Class operations (or methods at
run-time). Operations describe the behavior a Class offers to
other Classes, and the internal behavior it has (private
methods).

(c) Sparx Systems 2024 Page 488 of 729

Unified Modeling Language (UML) 16 October, 2024

Class elements are generally used in Class diagrams and
Composite Structure diagrams.

Enterprise Architect also supports a number of stereotyped
Class elements to represent various entities in web-page
modeling. A Class can also be integrated with an Associate
connector to form an Association Class, to allow the
Associate connector to have operations and attributes that
define certain types of UML relationship.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, pp.194-195) states:

The purpose of a Class is to specify a classification of
objects and to specify the Features that characterize the
structure and behavior of those objects.

Class is a kind of EncapsulatedClassifier whose Features are
Properties, Operations, Receptions, Ports and Connectors.
Attributes of a Class are Properties that are owned by the
Class. Some of these attributes may represent the ends of
binary Associations. Objects of a Class must contain values

(c) Sparx Systems 2024 Page 489 of 729

Unified Modeling Language (UML) 16 October, 2024

for each attribute that is a member of that Class, in
accordance with the characteristics of the attribute, for
example its type and multiplicity.

When an object is instantiated in a Class, for every attribute
of the Class that has a specified default, if an initial value of
the attribute is not specified explicitly for the instantiation,
then the default ValueSpecification is evaluated to set the
initial value of the attribute for the object.

Operations of a Class can be invoked on an object, given a
particular set of values for the parameters of the Operation,
(...).

A Class cannot access private Features of another Class, or
protected Features on another Class that is not its ancestor.

A Class acts as the namespace for various kinds of
Classifiers defined within its scope, including Classes.
Nested Classifiers are members of the namespace of the
containing Class. Classifier nesting is used for reasons of
information hiding.

(c) Sparx Systems 2024 Page 490 of 729

Unified Modeling Language (UML) 16 October, 2024

Active Classes

Description

An Active Class indicates that, when instantiated, the Class
controls its own execution. Rather than being invoked or
activated by other objects, it can operate standalone and
define its own thread of behavior.

Define an Active Class in Enterprise Architect

Ste
p

Action

1 Highlight a Class, and display its 'Properties' dialog
(right-click on the Class and select the 'Properties |
Properties option).

2 Select the 'Details' tab on the lower right of the
dialog.

3 Select the 'Is Active' checkbox.

4 Click on the OK button to save the changes.

(c) Sparx Systems 2024 Page 491 of 729

Unified Modeling Language (UML) 16 October, 2024

OMG UML Specification

The OMG Unified Modeling Language specification,
(v2.5.1, p.438) states:

An active object is an object that, as a direct consequence of
its creation, commences to execute its classifier behavior,
and does not cease until either the complete behavior is
executed or the object is terminated by some external object.
(This is sometimes referred to as "the object having its own
thread of control.") The points at which an active object
responds to communications from other objects is
determined solely by the behavior of the active object and
not by the invoking object. If the classifier behavior of an
active object completes, the object is terminated.

(c) Sparx Systems 2024 Page 492 of 729

Unified Modeling Language (UML) 16 October, 2024

Parameterized Classes (Templates)
Enterprise Architect supports parameterized (Template)
Classes, which specify parameters that must be defined by
any binding Class.

Parameterized Classes are commonly implemented in C++;
Enterprise Architect imports and generates templated
Classes for C++.

The functionality of a template Class can be reused by any
bound Class. If a default value is specified for a parameter,
and a binding Class doesn't provide a value for that
parameter, the default is used.

Create a parameterized Class

Ste
p

Action

1 Click on the required Class.

2 Select the 'Design > Element > Manage > Template
Parameters' ribbon option.
The 'Templates' dialog displays.

3 In the 'Template Parameter(s)' panel, click on the
Add button.
The 'Template Parameter' dialog displays.

(c) Sparx Systems 2024 Page 493 of 729

Unified Modeling Language (UML) 16 October, 2024

4 Type in the name and type of the parameter and, if
required, click on the button after the 'Constraints'
and 'Default' fields to select the required constraining
and default Classes from the 'Select <Item>' dialog.
The default Class can be either the constraining
classifier or any Class that derives from the
constraining classifier.

Notation Example

On a diagram, template Classes are shown with the
parameters in a dashed outline box in the upper right corner
of the Class.

OMG UML Specification

The OMG Unified Modeling Language specification,
(v2.5.1, p. 622) states:

A template is a parameterized element that can be used to
generate other model elements using TemplateBinding

(c) Sparx Systems 2024 Page 494 of 729

Unified Modeling Language (UML) 16 October, 2024

relationships. The template parameters for the template
signature specify the formal parameters that will be
substituted by actual parameters (or the default) in a
binding.

(c) Sparx Systems 2024 Page 495 of 729

Unified Modeling Language (UML) 16 October, 2024

Collaboration

Description

A Collaboration defines a set of cooperating roles and their
connectors. These are used to collectively illustrate a
specific functionality, in a Composite Structure diagram. A
Collaboration should specify only the roles and attributes
required to accomplish a specific task or function. Although
in practice a behavior and its roles could involve many
tangential attributes and properties, isolating the primary
roles and their requisites simplifies and clarifies the
behavior, as well as providing for reuse. A Collaboration
often implements a Pattern to apply to various situations.

This example illustrates an Install Collaboration, with three
roles (Objects) connected as shown. The process for this
Collaboration can be demonstrated by attaching an
Interaction diagram (Sequence, Timing, Communication or
Interaction Overview).

(c) Sparx Systems 2024 Page 496 of 729

Unified Modeling Language (UML) 16 October, 2024

To understand referencing a Collaboration in a specific
situation, see the Collaboration Use Help topic.

Enterprise Architect supports a stereotyped Collaboration to
represent a Business Use Case Realization in business
modeling.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
v2.5.1, p.222) states:

A Collaboration describes a structure of collaborating
elements (roles), each performing a specialized function,
which collectively accomplish some desired functionality.

(c) Sparx Systems 2024 Page 497 of 729

Unified Modeling Language (UML) 16 October, 2024

Collaboration Use

Description

Use a Collaboration Use to apply a Pattern defined by a
Collaboration to a specific situation, in a Composite
Structure diagram.

This example shows a Use, 'NWServer', of the
Collaboration 'Install', to define the installation process of a
network scanner. This process can be defined by an
interaction attached to the Collaboration. (See the
Collaboration Help topic for a representation of the Install
Collaboration.)

(c) Sparx Systems 2024 Page 498 of 729

Unified Modeling Language (UML) 16 October, 2024

To create a Collaboration Use, drag the icon from the
'Composite' page of the Diagram Toolbox onto the diagram.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.216) states:

A CollaborationUse represents a particular use of a
Collaboration to explain the relationships between a set of
elements. A CollaborationUse shows how the pattern
described by a Collaboration is applied in a given context
Classifier, by binding specific ConnectableElements from
that context to the collaborationRoles of the Collaboration.
There may be multiple CollaborationUses related to a given
Collaboration within a Classifier, each bound differently. A
given collaborationRole or Connector may be involved in
multiple uses of the same or different Collaborations.

(c) Sparx Systems 2024 Page 499 of 729

Unified Modeling Language (UML) 16 October, 2024

Component

Description

A Component is a modular part of a system, whose behavior
is defined by its provided and required interfaces; the
internal workings of the Component should be invisible and
its usage environment-independent. Source code files,
DLLs, Java beans and other artifacts defining the system can
be manifested in Components.

A Component can be composed of multiple Classes, or
Components pieced together. As smaller Components come
together to create bigger Components, the eventual system
can be modeled, building-block style, in Component
diagrams. By building the system in discrete Components,
localization of data and behavior enables decreased
dependency between Classes and Objects, providing a more
robust and maintainable design.

Toolbox icon

OMG UML Specification:

(c) Sparx Systems 2024 Page 500 of 729

Unified Modeling Language (UML) 16 October, 2024

The OMG Unified Modeling Language specification,
v2.5.1, pp.208-209) states:

This sub clause specifies a set of constructs that can be used
to define software systems of arbitrary size and complexity.
In particular, it specifies a Component as a modular unit
with well-defined Interfaces that is replaceable within its
environment. The Component concept addresses the area of
component-based development and component-based
system structuring, where a Component is modeled
throughout the development life cycle and successively
refined into deployment and run-time.

An important aspect of component-based development is the
reuse of previously constructed Components. A Component
can always be considered an autonomous unit within a
system or subsystem. It has one or more provided and/or
required Interfaces (potentially exposed via Ports), and its
internals are hidden and inaccessible other than as provided
by its Interfaces. Although it may be dependent on other
elements in terms of Interfaces that are required, a
Component is encapsulated and its Dependencies are
designed such that it can be treated as independently as
possible. As a result, Components and subsystems can be
flexibly reused and replaced by connecting (“wiring”) them
together.

The aspects of autonomy and reuse also extend to
Components at deployment time. The artifacts that
implement Component are intended to be capable of being
deployed and re-deployed independently, for instance to
update an existing system.

(c) Sparx Systems 2024 Page 501 of 729

Unified Modeling Language (UML) 16 October, 2024

The OMG Unified Modeling Language specification,
v2.5.1, p.224) states:

A Component represents a modular part of a system that
encapsulates its contents and whose manifestation is
replaceable within its environment.

A component defines its behavior in terms of provided and
required interfaces. As such, a component serves as a type
whose conformance is defined by these provided and
required interfaces (encompassing both their static as well as
dynamic semantics).

(c) Sparx Systems 2024 Page 502 of 729

Unified Modeling Language (UML) 16 October, 2024

Data Type

Description

A Data Type is a specific kind of classifier, similar to a
Class except that a Data Type cannot own sub Data Types,
and instances of a Data Type are identified only by their
value. For example, an instance of a Person Class is a Helen
object, but an instance of an Integer Data Type is 12.

All copies of an instance of a Data Type, and any instances
of that Data Type with the same value, are considered to be
the same instance. That is, instances of Helen are not
necessarily the same Helen, but all 12s are the same 12. For
example, the 12 on a watch face is exactly the same integer
as the number of months in a year.

Instances of a Data Type that have attributes (that is, are
instances of a structured Data Type) are considered to be the
same if the structure is the same and the values of the
corresponding attributes are the same. If a Data Type has
attributes, instances of that Data Type contain attribute
values matching the attributes.

A typical use of Data Types would be to represent
programming language primitive types or CORBA basic
types. For example, integer and string types are often treated
as Data Types.

(c) Sparx Systems 2024 Page 503 of 729

Unified Modeling Language (UML) 16 October, 2024

A Data Type is denoted by a rectangle with the keyword
«dataType» or, when it is referenced by (for example) an
attribute, by a string containing the name of the Data Type,
as shown:

Toolbox icon

(c) Sparx Systems 2024 Page 504 of 729

Unified Modeling Language (UML) 16 October, 2024

Deployment Specification

Description

A Deployment Specification specifies parameters guiding
deployment of an artifact, as is necessary with most
hardware and software technologies. A specification lists
those properties that must be defined for deployment to
occur, as represented in a Deployment diagram. An instance
of this specification specifies the values for the parameters;
a single specification can be instantiated for multiple
artifacts.

These specifications can be extended by certain component
profiles. Examples of standard Tagged Values that a profile
might add to a Deployment Specification are
«concurrencyMode» with Tagged Values {thread, process,
none} or «transactionMode» with Tagged Values
{transaction, nestedTransaction, none}.

This example depicts the artifact RepositoryApp deployed
on the server node, as per the specifications of
RepositoryApp, instantiated from the Deployment
Specification SystemSpec.

(c) Sparx Systems 2024 Page 505 of 729

Unified Modeling Language (UML) 16 October, 2024

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.662) states:

A deployment specification specifies a set of properties that
determine execution parameters of a component artifact that
is deployed on a node. A deployment specification can be
aimed at a specific type of container. An artifact that reifies
or implements deployment specification properties is a
deployment descriptor.

(c) Sparx Systems 2024 Page 506 of 729

Unified Modeling Language (UML) 16 October, 2024

Device

Description

A Device is a physical electronic resource with processing
capability upon which Artifacts can be deployed for
execution, as represented in a Deployment diagram.
Complex Devices can consist of other devices; that is, a
Device can be a nested element, where a physical machine
is decomposed into its elements either through namespace
ownership or through attributes that are typed by Devices.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
v2.5.1, p.663) states:

A device is a physical computational resource with
processing capability upon which artifacts may be deployed
for execution. Devices may be complex (i.e., they may
consist of other devices).

(c) Sparx Systems 2024 Page 507 of 729

Unified Modeling Language (UML) 16 October, 2024

(c) Sparx Systems 2024 Page 508 of 729

Unified Modeling Language (UML) 16 October, 2024

Enumeration

Description

An Enumeration is a data type, whose instances can be any
of a number of user-defined enumeration literals. It is
possible to extend the set of applicable enumeration literals
in other Packages or profiles. You create Enumerations in
Class or Package diagrams, and in diagrams developed
using the Metamodel and Profile pages of the Diagram
Toolbox.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.175) states:

An Enumeration is a DataType whose values are
enumerated in the model as EnumerationLiterals.

(c) Sparx Systems 2024 Page 509 of 729

Unified Modeling Language (UML) 16 October, 2024

Execution Environment

Description

An Execution Environment is a node that offers an
execution environment for specific types of component that
are deployed on it in the form of Executable Artifacts. This
is depicted in a Deployment diagram.

Execution Environments can be nested; for example, a
database Execution Environment can be nested in an
operating system Execution Environment. Components of
the appropriate type are then deployed to specific Execution
Environment nodes.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.664) states:

An execution environment is a node that offers an execution
environment for specific types of components that are

(c) Sparx Systems 2024 Page 510 of 729

Unified Modeling Language (UML) 16 October, 2024

deployed on it in the form of executable artifacts.

The OMG Unified Modeling Language specification,
(v2.5.1, p.658) also states:

Typically, ExecutionEnvironments are assigned to some,
often higher level, Device or general system Node via the
composition relationship defined on Node.
ExecutionEnvironments can be nested (for example, a
database ExecutionEnvironment might be nested in an
operating system ExecutionEnvironment).
ExecutionEnvironment may have explicit interfaces for
system level services that can be called by the deployed
elements. In such cases, software ExecutionEnvironment
services should be explicitly modeled. Application
Components of the appropriate type are then deployed, with
a Deployment relationship, to specific
ExecutionEnvironment nodes or the Manifestations
relationships of DeployedArtifacts. For each component
Deployment, aspects of these services may be determined
by properties in a DeploymentSpecification for a particular
kind of ExecutionEnvironment.

(c) Sparx Systems 2024 Page 511 of 729

Unified Modeling Language (UML) 16 October, 2024

Expose Interface

Description

The Expose Interface element is a graphical method of
depicting the required or supplied interfaces of a
Component, Class or Part, in a Component or Composite
Structure diagram. It just identifies the fact that the element
provides or requires an interface; to depict the fact that the
provided interface is used, or the required interface
provided, by another element, use the Assembly connector.

The Expose Interface element must be attached to the Class
or Component element, and it becomes a child element of
that Class or Component; it cannot exist independently. You
can attach more than one Expose Element to another
element.

When you create the Expose Interface element, a dialog
displays in which you enter a name for the element and
specify whether it represents a required interface or a
provided interface.

(c) Sparx Systems 2024 Page 512 of 729

Unified Modeling Language (UML) 16 October, 2024

Toolbox icon

(c) Sparx Systems 2024 Page 513 of 729

Unified Modeling Language (UML) 16 October, 2024

Information Item

Description

An Information Item element represents an abstraction of
data, which data can be conveyed between two objects. The
term 'Information Item' is also more loosely applied to any
classifier that represents a more specific identification of the
type of data that can be conveyed between two objects

The conveyance and realization of Information Items (of
either kind) between the two objects is represented by an
Information Flow connector.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.673) states:

InformationItems represent many kinds of information that
can flow from sources to targets in very abstract ways. They
represent the kinds of information that may move within a
system, but do not elaborate details of the transferred

(c) Sparx Systems 2024 Page 514 of 729

Unified Modeling Language (UML) 16 October, 2024

information. Details of transferred information are the
province of other Classifiers that may ultimately define
InformationItems. Consequently, InformationItems cannot
be instantiated and do not themselves have features,
generalizations, or associations.

An important use of InformationItems is to represent
information during early design stages, possibly before the
detailed modeling decisions that will ultimately define them
have been made. Another purpose of InformationItems is to
abstract portions of complex models in less precise, but
perhaps more general and communicable, ways.

(c) Sparx Systems 2024 Page 515 of 729

Unified Modeling Language (UML) 16 October, 2024

Interface

Description

An Interface is a specification of behavior (or contract) that
implementers agree to meet. By implementing an Interface,
Classes are guaranteed to support a required behavior,
which enables the system to treat non-related elements in
the same way; that is, through the common interface. You
also use Interfaces in a Composite Structure diagram.

Interfaces are drawn in a similar way to a Class, with
operations specified, as shown here. They can also be drawn
as a circle with no explicit operations detailed - right-click
on the element and select the 'Use Circle Notation' option to
switch between styles. Realize connectors to an Interface
drawn as a circle are drawn as a solid line without target
arrows.

An Interface cannot be instantiated (that is, you cannot
create an object from an Interface). You must create a Class
that 'implements' the Interface specification, and in the Class
body place operations for each of the Interface operations.
You can then instantiate the Class.

Toolbox icon

(c) Sparx Systems 2024 Page 516 of 729

Unified Modeling Language (UML) 16 October, 2024

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.171) states:

An Interface is a kind of Classifier that represents a
declaration of a set of public Features and obligations that
together constitute a coherent service. An Interface specifies
a contract; any instance of a Classifier that realizes the
Interface shall fulfill that contract. The obligations
associated with an Interface are in the form of constraints
(such as pre- and postconditions) or protocol specifications,
which may impose ordering restrictions on interactions
through the Interface. Interfaces may not be instantiated.
Instead, an Interface specification is implemented or
realized by a BehavioredClassifier, which means that the
BehavioredClassifier presents a public facade that conforms
to the Interface specification.

NOTE. A given BehavioredClassifier may implement more
than one Interface and that an Interface may be implemented
by a number of different BehavioredClassifiers. Interfaces
provide a way to partition and characterize groups of public
Features and obligations that realizing
BehavioredClassifiers shall possess.

An Interface does not specify how it is to be implemented,
but merely what needs to be supported by realizing
BehavioredClassifiers. That is, such BehavioredClassifiers

(c) Sparx Systems 2024 Page 517 of 729

Unified Modeling Language (UML) 16 October, 2024

shall provide a public façade consisting of attributes,
Operations, and externally observable Behavior that
conforms to the Interface.

(c) Sparx Systems 2024 Page 518 of 729

Unified Modeling Language (UML) 16 October, 2024

Node

Description

A Node is a physical piece of equipment on which the
system is deployed, such as a workgroup server or
workstation. A Node usually hosts components and other
executable pieces of code, which again can be connected to
particular processes or execution spaces. Typical Nodes are
client workstations, application servers, mainframes, routers
and terminal servers.

Nodes are used in Deployment diagrams to model the
deployment of a system, and to illustrate the physical
allocation of implemented artifacts. They are also used in
web modeling, from dedicated web modeling pages in the
Toolbox.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,

(c) Sparx Systems 2024 Page 519 of 729

Unified Modeling Language (UML) 16 October, 2024

(v2.5.1, p.658) states:

A Node is computational resource upon which Artifacts may
be deployed, via Deployment relationships, for execution.
For advanced modeling applications, Nodes may have
complex internal structure defined by nesting and may be
interconnected to represent specific situations. The internal
structure of Nodes can only consist of other Nodes. Besides
participating in Deployments, Nodes acquire a set of
associated elements derived from the Manifestation
relationships of the Artifacts deployed on them.

Nodes may be further sub-typed as Devices and
ExecutionEnvironments. Devices represent physical
machine components. ExecutionEnvironments represent
standard software systems that application components may
require at execution time. Specific profiles might, for
example, define stereotypes for ExecutionEnvironments
such as «OS», «workflow engine», «database system», and
«J2EE container».

(c) Sparx Systems 2024 Page 520 of 729

Unified Modeling Language (UML) 16 October, 2024

Object

Description

An Object is a particular instance of a Class at run time. For
example a car with the license plate AAA-001 is an instance
of the general Class of cars with a license plate number
attribute. Objects are often used in analysis to represent the
numerous artifacts and items that exist in any business, such
as pieces of paper, faxes and information. To model the
varying behavior of Objects at run-time, use run-time states.

Early in analysis, Objects can be used to quickly capture all
the things that are of relevance within the system domain, in
an Object, Composite Structure or Communication diagram.
As the model progresses these analysis Objects are refined
into generic Classes from which instances can be derived to
represent common business items. Once Classes are defined,
Objects can be typed; that is they can have a classifier set
that indicates their base type - see the Classifiers and
Instances topic.

Enterprise Architect also supports a number of stereotyped
Object elements to represent various entities in business
modeling.

(c) Sparx Systems 2024 Page 521 of 729

Unified Modeling Language (UML) 16 October, 2024

Toolbox icon

(c) Sparx Systems 2024 Page 522 of 729

Unified Modeling Language (UML) 16 October, 2024

Run-time State
At run-time, an Object instance can have specific values for
its attributes, or exist in a particular state. To model the
varying behavior of Objects at run-time, use instance values
selected from the 'Select <Item>' dialog and run-time states
or run-states.

Typically there is interest in the run-time behavior of
Objects that already have a classifier set. You can select
from the classifier's attribute list and apply specific values
for your Object instance. If the classifier has a child
StateMachine, its States propagate to a list where the
run-time state for the Object can be defined.

Example

This example defines run-time values for the listed
variables, which are attributes of the AccountItem classifier
for the instance.

Access

Ribbon Start > Application > Design >
Properties, click on an Object in the

(c) Sparx Systems 2024 Page 523 of 729

Unified Modeling Language (UML) 16 October, 2024

diagram or Browser window > Run States
Design > Element > Editors > Properties,
click on an Object in the diagram or
Browser window > Run States

Context
Menu

In a diagram or the Browser window,
right-click on the 'Object | Features | Set
Run State' option

Keyboard
Shortcuts

Ctrl+Shift+R
Ctrl+2 > click on an Object in the
diagram or Browser window > Run States

Add run-time state instance variables to an
Object

On the Properties window, or the '<object name> : Features'
dialog the 'Run States' page lists any variables inherited
from the classifier of the Object element. These inherited
variables initially have no values and are inactive. You can
activate and define a run state for them, or you can
right-click on the '<object name> : Features' dialog and
select the 'Hide Inherited Variables' option to hide them
from view.

Ste
p

Action

(c) Sparx Systems 2024 Page 524 of 729

Unified Modeling Language (UML) 16 October, 2024

1 In the 'Variable' field, either:
Overtype the New Variable text with the name of·

the new variable, or
Click on the name of an inherited variable to·

activate

2 In the 'Operator' field, click on the drop-down arrow
and select the operator that will qualify the run state
value. The operators include:

blank (no operator)·

!=·

<·

<=·

<>·

=·

=>·

>·

3 In the 'Value' field, type the value for the run state of
the variable.

4 If necessary, type in some explanatory notes.

5 Click on or add the next variable, or click on the
Close button to save the changes.

(c) Sparx Systems 2024 Page 525 of 729

Unified Modeling Language (UML) 16 October, 2024

Delete a run-time state variable for an
Object

Ste
p

Action

1 In the 'Variable' field, right-click on the variable to
delete and select the 'Delete' option.
(Alternatively, click on the variable and press
Ctrl+Del.)

2 Click on the Close button.

(c) Sparx Systems 2024 Page 526 of 729

Unified Modeling Language (UML) 16 October, 2024

Object State

Set the Object state for a Class instance

Ste
p

Action

1 Right-click on the required Object in a diagram and
select the 'Advanced | Set Object State' option.
The 'Set Instance State' dialog displays.

2 In the 'State' field, either type the required State
(such as 'Awaiting Approval') or select a State from
the drop-down list.
The drop-down list for the 'State' field is populated
with:

Any States owned by the object's classifier·

Any States owned by any superclasses of the·

object's classifier
Any States owned by StateMachines owned by the·

object's classifier
Any States owned by StateMachines owned by·

any superclasses of the object's classifier

3 Below the 'State' field is the 'Merge State with
Instance Name' checkbox, which defaults to
unselected. Either:

(c) Sparx Systems 2024 Page 527 of 729

Unified Modeling Language (UML) 16 October, 2024

Ignore the checkbox to display the object state on·

the element beneath the object name

Or select the checkbox to display the object state·

on the element as a suffix to the object name

4 Click on the OK button to apply the State.
The object now shows the run-time state in the
format you have selected.

(c) Sparx Systems 2024 Page 528 of 729

Unified Modeling Language (UML) 16 October, 2024

Package

Description

A Package is a namespace as well as an element that can be
contained in other Package's namespaces. A Package can
own or merge with other Packages, and its elements can be
imported into a Package's namespace. In addition to using
Packages in the Browser window to organize your project
contents, you can drag the Packages onto a diagram
workspace (most diagram types, both standard and
extended) for structural or relational depictions, including
Package imports or merges.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, pp.241-242) states:

A Package is a namespace for its members, which comprise
those elements associated via packagedElement (which are

(c) Sparx Systems 2024 Page 529 of 729

Unified Modeling Language (UML) 16 October, 2024

said to be owned or contained), and those imported. A
Package definition can extend the contents of other
Packages through the merging of the contained elements.

A Package may be defined as a template and bound to other
templates: see sub clause 7.3, Templates, for further
information. The URI can be specified to provide a unique
identifier for a Package. Within UML there is no
predetermined usage for this, with the exception of profiles
(...). It may, for example, be used by model management
facilities for model identification.

(c) Sparx Systems 2024 Page 530 of 729

Unified Modeling Language (UML) 16 October, 2024

Packaging Component

Description

A Packaging Component is an element that appears very
similar to a Component in a diagram but behaves as a
Package in the Browser window (that is, it can be Version
Controlled and can contain other Packages and elements). It
is typically used in Component diagrams.

In the Browser window, the three elements display as
shown:

The Component element cannot contain child Packages or
Packaging Components.

Toolbox icon

(c) Sparx Systems 2024 Page 531 of 729

Unified Modeling Language (UML) 16 October, 2024

Part

Description

Parts are run-time instances of Classes or Interfaces.
Multiplicity can be specified for a Part, using the notation:

(x{...y})

where x specifies the initial or set number of instances when
the composite structure is created, and y indicates the
maximum number of instances at any time.

Parts are used to express composite structures, or modeling
Patterns that can be invoked by various objects to
accomplish a specific purpose. When illustrating the
composition of structures, Parts can be embedded as
properties of other Parts. When embedded as properties,
Parts can be bordered by a solid outline, indicating the
surrounding Part owns the Part by composition.
Alternatively, a dashed outline indicates that the property is
referenced and used by the surrounding Part, but is not
composed within it.

Toolbox icon

(c) Sparx Systems 2024 Page 532 of 729

Unified Modeling Language (UML) 16 October, 2024

Add Property Value

Add property value variables to a Part

A Part with a property value resembles this illustration:

Ste
p

Action

1 Right-click on the Part and select the 'Features | Set
Property Values' option (or press Ctrl+Shift+R).
The 'Set Property Values' dialog displays.

2 In the 'Variable' field, click on the drop-down arrow
and select the variable, or type in the new variable
name.

3 Set the Operator and the Value, and optionally type
in a Note.

4 Click on the OK button to save the variable.

(c) Sparx Systems 2024 Page 533 of 729

Unified Modeling Language (UML) 16 October, 2024

Port

Description

Ports define the interaction between a classifier and its
environment. Interfaces controlling this interaction can be
depicted using the Interface element. Any connector to a
Port must provide the required interface, if defined. Ports
can appear on a contained Part, a Class, or the boundary of a
Composite element.

A Port is a typed structural feature or property of its
containing classifier. Ports are typically created in Class
diagrams, Object diagrams and Composite Structure
diagrams.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p. 230) states:

A Port is a property of an EncapsulatedClassifier that

(c) Sparx Systems 2024 Page 534 of 729

Unified Modeling Language (UML) 16 October, 2024

specifies a distinct interaction point between that
EncapsulatedClassifier and its environment or between the
(behavior of the) EncapsulatedClassifier and its internal
parts. Ports are connected to Properties of the
EncapsulatedClassifier by Connectors through which
requests can be made to invoke BehavioralFeatures. A Port
may specify the services an EncapsulatedClassifier provides
(offers) to its environment as well as the services that an
EncapsulatedClassifier expects (requires) of its
environment. A Port may have an associated
ProtocolStateMachine.

(c) Sparx Systems 2024 Page 535 of 729

Unified Modeling Language (UML) 16 October, 2024

Add a Port to an Element

Add a new Port to an element

Use one of these steps:

Ste
p

Action

1 Click on the Port symbol in the 'Composite' page of
the Toolbox, and drag the symbol to (or click on) the
target host element.
This creates an untyped, simple Port on the
boundary, near the cursor position.

2 On the context menu of a suitable Class, Part or
Composite element in the Browser window, select
the 'Add | Port' option.

3 Drag a suitable classifier from the Browser window
onto a Class or Part on a diagram.
A prompt displays to add a typed Port or Part at the
cursor position.
The new Port is typed by the original dragged
classifier.

4 Use the 'Ports' sub-menu (on a diagram, right-click
on element | New Child Element) to add a new Port
to the currently selected element.

(c) Sparx Systems 2024 Page 536 of 729

Unified Modeling Language (UML) 16 October, 2024

(c) Sparx Systems 2024 Page 537 of 729

Unified Modeling Language (UML) 16 October, 2024

Inherited and Redefined Ports
A Port is a redefinable and re-useable property of a
composite classifier such as a Component. A Component
can inherit Ports from its parent; if a Component's parent
owns Ports, when you open the Features window at the
'Interaction Points' tab for the Component and select the
'Show Owned/Inherited' checkbox, the inherited Ports and
their named owners are listed.

If you want to show an inherited Port on a Component, the
Features window provides two options:

Expose an inherited Port - tick the 'Show·

Owned/Inherited'checkbox to create a read-only copy of
the Port; this is convenient for modeling Port interactions
in child elements where the Ports are defined in the parent
elements

Redefine an inherited Port - right-click on the Port and·

select the 'Redefine' option, to create an editable copy of
the Port; this is useful where a child element places
additional restrictions or behavior on the Port

This also applies to Components that inherit Ports from
realized Interfaces, and to Component instances that inherit
Ports from their classifying Component.

(c) Sparx Systems 2024 Page 538 of 729

Unified Modeling Language (UML) 16 October, 2024

Ports as Owners of Parts
If a Port is typed to a Class that has Parts, the Port can be
shown on the diagram as the owner of these Parts. To do
this either:

Right-click on the Port | Advanced | Port Size·

Customizable, then enlarge the Port or

Right-click on the Port | Features > Parts / Properties :·

Select the Parts you want to show : Select 'Show
Owned/Inherited'

This feature is helpful when you want a connector to
connect to the internal structure of the Port.

(c) Sparx Systems 2024 Page 539 of 729

Unified Modeling Language (UML) 16 October, 2024

Properties Window - Property,
Redefined/Subsetted
The Properties window for Ports and Parts has a 'Property'
tab - which defines the type, initial value and multiplicity of
the element - and a 'Redefined/Subsetted' tab that identifies
the redefined and subsetted properties and Qualifiers of the
element.

You set the Qualifiers by clicking on the Qualifiers button,
to display the 'Qualifiers' dialog. You add Redefined and
Subsetted Properties by clicking on the appropriate Add
button, to display the 'Select Property' dialog.

(c) Sparx Systems 2024 Page 540 of 729

Unified Modeling Language (UML) 16 October, 2024

Primitive

Description

A Primitive element identifies a predefined data type,
without any relevant substructure (that is, it has no parts in
the context of UML). It could be regarded as a conceptual
Data Type. The Primitive element can be used to support the
Meta-Object Facility (MOF) specification.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.168) states:

A PrimitiveType defines a predefined DataType, without
any substructure. A PrimitiveType may have algebra and
operations defined outside of UML, for example,
mathematically. The run-time instances of a PrimitiveType
are values that correspond to mathematical elements defined
outside of UML (for example, the Integers).

(c) Sparx Systems 2024 Page 541 of 729

Unified Modeling Language (UML) 16 October, 2024

Signal

Description

A Signal is a specification of Send request instances
communicated between objects, typically in a Class or
Package diagram. The receiving object handles the Received
request instances as specified by its Receptions. The data
carried by a Send request is represented as attributes of the
Signal. A Signal is defined independently of the classifiers
handling the signal occurrence.

A Reception is defined as a feature of the receiving object,
derived from the Signal element. The Reception takes the
name of the Signal, and the Signal's attributes as its
parameters.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.178) states:

(c) Sparx Systems 2024 Page 542 of 729

Unified Modeling Language (UML) 16 October, 2024

A Signal is a specification of a kind of communication
between objects in which a reaction is asynchronously
triggered in the receiver without a reply.

The OMG Unified Modeling Language specification,
(v2.5.1, p.178) also states:

A Reception is a declaration stating that a Classifier is
prepared to react to the receipt of a Signal.

(c) Sparx Systems 2024 Page 543 of 729

Unified Modeling Language (UML) 16 October, 2024

Reception
A Reception is a feature of a Classifier, and is derived from
a Signal element; it models receipt of the Signal. Receptions
are treated in the same way as Operations and, where
element compartments are displayed, are shown within their
own compartment.

A Reception cannot be created without a Signal element,
which either already exists or is created as a step in creating
the Reception. The name of the Reception is drawn from the
name of the Signal element, and the attributes of the Signal
define the parameters of the Reception. Any changes to the
Signal are reflected in the Reception, and vice versa.

Create a Reception

Step Action
1

Create a Signal element either in the
Browser window or on a diagram.

2

Create or drag a Class or Interface
element on a diagram.

3

(c) Sparx Systems 2024 Page 544 of 729

Unified Modeling Language (UML) 16 October, 2024

Either:
Drag the Signal element from the·

Browser window onto the Class or
Interface element and go to step 8, or
Right-click on the Class element and·

select the 'Features | Receptions' option
The Features window displays, at the
'Receptions' page.

4

Click on the button to the right of the
New Reception text in the 'Name' column.
The 'Select Signal' dialog displays (a
variation of the 'Select <item>' dialog).

5

Browse for and click on the Signal
element. (If you didn't create a Signal
element at the start, you could use the
Add New button to create a new Signal
element now.)

6

Click on the OK button. The Signal
element's name and attributes are used to
generate the Reception's name and

(c) Sparx Systems 2024 Page 545 of 729

Unified Modeling Language (UML) 16 October, 2024

parameters.
7

Click on the Close button.
8

Note the appearance of the Class and
Signal elements in the diagram and
Browser window.

OMG UML Specification

The OMG Unified Modeling Language specification,
(v2.5.1, pp.447 - 448):

A reception is a declaration stating that a classifier is
prepared to react to the receipt of a signal. A reception
designates a signal and specifies the expected behavioral
response. The details of handling a signal are specified by
the behavior associated with the reception or the classifier
itself. ... Receptions are shown using the same notation as
for operations with the keyword <signal>.

(c) Sparx Systems 2024 Page 546 of 729

Unified Modeling Language (UML) 16 October, 2024

(c) Sparx Systems 2024 Page 547 of 729

Unified Modeling Language (UML) 16 October, 2024

Properties Window for Receptions
The docked Properties window provides a convenient and
immediate way to view and edit common properties of
modeling objects, including features such as Receptions.
When you click on a Reception in the Browser window or a
diagram, the Properties window immediately shows the
Reception's properties, and you can swiftly display the
properties of other types of object - elements, attributes,
connectors and diagrams - on the same window without
having to open and close separate dialogs.

The Properties window for Receptions has three tabs:

Reception, on which you define general settings·

Behavior, on which you define the behavior to be taken·

on receipt of the signal

Redefines, on which you set up any redefinition of target·

operations that takes place, and check for exceptions

For information on the 'Behavior' and 'Redefines' tabs, see
the Operation Behavior and Redefine Operation and Check
for Exceptions Help topics.

Access

Ribbon Start > Application > Design >
Properties; click on a Reception in a
diagram or in the Browser window
Design > Element > Editors > Properties,

(c) Sparx Systems 2024 Page 548 of 729

Unified Modeling Language (UML) 16 October, 2024

click on a Reception in a diagram or in
the Browser window

Keyboard
Shortcuts

Ctrl+2 or Ctrl+Enter, then click on a
Reception in a diagram or in the Browser
window

Reception - General Settings

Field Description

Name Displays the name of the Reception,
which is the name of the Signal element it
is derived from. You cannot change the
name in this field. If the name of the
Signal is changed, the Reception name is
automatically updated to match.

Parameters Displays the names and types of the
attributes of the Signal element, from
which the Reception parameters are
derived. You can only change the
parameters by updating the Signal
attributes.

Scope Displays the scope of the Reception,
derived from the Signal element. If

(c) Sparx Systems 2024 Page 549 of 729

Unified Modeling Language (UML) 16 October, 2024

necessary, you can change this scope -
click on the drop-down arrow at the end
of the field and select the new value from
the list.

Stereotype (Optional) If you need to group or
specialize the Reception, you can type the
name of an appropriate stereotype in this
field.

Alias (Optional) if necessary, you can type in
an alternative name or reference for the
Reception.

Concurrency Defaults to Sequential. If you want to
change this to 'Guarded' or 'Synchronous',
click on the drop-down arrow and select
the appropriate value.

Abstract Identifies whether or not the Reception is
abstract.

Static The flag indicating if the Reception is a
static member; to change this flag, type
'False' or 'True' in the field, as
appropriate.

(c) Sparx Systems 2024 Page 550 of 729

Unified Modeling Language (UML) 16 October, 2024

UML Connectors
Connectors link elements together and are typically
represented as lines on diagrams showing how the elements
relate to each other. Making a comparison to natural
languages, if the elements are nouns the connectors are
verbs that describe how the nouns relate to each other.

The UML has a wide variety of connector types that are
used to express the nature of the relationship between the
model elements involved. Some connectors such as the
Association define structural relationships whereas others
such as the Control Flow define the passage of time. Each
connector type has a notation that helps modelers recognize
the connector and understand its purpose.

Connectors can be viewed in a wide range of windows such
as the Relationships Windows, the Hierarchy Window, the
Relationship Matrix, the 'Details' tab of the Inspector
window and an element's 'Properties' dialog.

(c) Sparx Systems 2024 Page 551 of 729

Unified Modeling Language (UML) 16 October, 2024

Abstraction

Description

An 'Abstraction' is a relationship between two elements that
represent the same concept, either at different levels of
abstraction or from different viewpoints. This diagram
shows that two different customer Classes from different
models (the Domain model and the Code model) represent
the same concept.

The 'Abstraction' relationship is a subtype of a 'Dependency'
relationship.

Toolbox icon

(c) Sparx Systems 2024 Page 552 of 729

Unified Modeling Language (UML) 16 October, 2024

Aggregation

Description

An Aggregation connector is a type of association that
shows that an element contains or is composed of other
elements. It is used in Class models, Package models and
Object models to show how more complex elements
(aggregates) are built from a collection of simpler elements
(component parts; for example, a car from wheels, tires,
motor and so on).

A stronger form of aggregation, known as Composite
Aggregation, is used to indicate ownership of the whole
over its parts. The part can belong to only one Composite
Aggregation at a time. If the composite is deleted, all of its
parts are deleted with it.

Toolbox icon

(c) Sparx Systems 2024 Page 553 of 729

Unified Modeling Language (UML) 16 October, 2024

Change Aggregation Connector Form
In your modeling, when you create an Aggregation
relationship it defaults to the weak (shared) form of the
relationship, represented by a hollow diamond head. You
can change this to the strong form (Composition),
represented by a solid black diamond head.

Change the form of an Aggregation
connector from weak to strong

Ste
p

Action

1 Right-click on an Aggregation connector to display
the context menu.

2 Select Set Aggregation to Composite.
The diamond is shown as filled.

Notes

If the connector is already a Strong (Composition)·

connector, the context menu option changes to 'Set
Aggregation to Shared'

(c) Sparx Systems 2024 Page 554 of 729

Unified Modeling Language (UML) 16 October, 2024

Assembly

Description

An Assembly connector bridges a component's required
interface (Component1) with the provided interface of
another component (Component2), typically in a
Component diagram.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.210) states:

The execution time semantics for an assembly Connector in
a Component are that requests (signals and operation
invocations) travel along an instance of a Connector.

(c) Sparx Systems 2024 Page 555 of 729

Unified Modeling Language (UML) 16 October, 2024

Association

Description

An Association implies that two model elements have a
relationship, usually implemented as an instance variable in
one or both Classes. The connector can include named roles
at each end, multiplicity, direction and constraints. You can
also indicate the reading direction by adding a Name
Direction Indicator arrow to the name-label on the connector
(see the Manage Object Labels Help topic), and define
template binding parameters for an Association connector
between a binding Class and a parameterized Class.

Associations act as the keys in providing possible classifiers
for a structure of instance elements, and for automatically
generating Property (Part) elements on the source SysML
Block element in the Association.

When code is generated for Class diagrams, Associations
become member variables in the target Class. The
relationship is also used in Package, Object,
Communication, Data Modeling and Deployment diagrams.

(c) Sparx Systems 2024 Page 556 of 729

Unified Modeling Language (UML) 16 October, 2024

'Association' is the general relationship type between two
elements; to connect more than two elements in an
Association, you can use the N-Ary Association element.
An Association connector can also be integrated with a
Class element to form an Association Class, to allow the
connector to have operations and attributes that define
certain types of UML relationship.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.199) states:

An Association specifies a semantic relationship that can
occur between typed instances. It has at least two
memberEnds represented by Properties, each of which has
the type of the end. More than one end of the Association
may have the same type.

An Association declares that there can be links between
instances whose types conform to or implement the
associated types. A link is a tuple with one value for each
memberEnd of the Association, where each value is an
instance whose type conforms to or implements the type at
the end.

(c) Sparx Systems 2024 Page 557 of 729

Unified Modeling Language (UML) 16 October, 2024

Qualifiers
Qualifiers are ordered sets of properties of an Association
end point, a Part, a Port, or an attribute that limit the nature
of the relationship between two classifiers or objects. You
define a qualifier on the 'Qualifiers' dialog, which you
display by clicking on the button at the end of the
'Qualifiers' field on the Association, Part, Port or attribute
'Properties' dialog.

Examples

Notes

When typing multiple Qualifiers into the 'Qualifier(s)'·

field on a 'Properties' dialog, separate them with a
semi-colon; each Qualifier then displays on a separate
line; for example, in the diagram the Qualifier
'rank:Rank;file:File' has been rendered in two lines, with a

(c) Sparx Systems 2024 Page 558 of 729

Unified Modeling Language (UML) 16 October, 2024

line break at the ; character

You can enable or disable Qualifier rectangles in the·

'Diagram' page of the 'Preferences' dialog (select the 'Start
> Appearance > Preferences > Preferences > Diagram'
ribbon option) - if disabled, the old style text Qualifiers
are used; it is not recommended that you disable
Qualifiers as they are an integral part of the UML

You can enable or disable a mild shading on the Qualifier·

rectangles in the 'Links' page of the 'Preferences' dialog

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.129) states:

A qualifier declares a partition of the set of associated
instances with respect to an instance at the qualified end (the
qualified instance is at the end to which the qualifier is
attached). A qualifier instance comprises one value for each
qualifier attribute. Given a qualified object and a qualifier
instance, the number of objects at the other end of the
association is constrained by the declared multiplicity. In the
common case in which the multiplicity is 0..1, the qualifier
value is unique with respect to the qualified object, and
designates at most one associated object. In the general case
of multiplicity 0..*, the set of associated instances is
partitioned into subsets, each selected by a given qualifier
instance. In the case of multiplicity 1 or 0..1, the qualifier
has both semantic and implementation consequences. In the
case of multiplicity 0..*, it has no real semantic

(c) Sparx Systems 2024 Page 559 of 729

Unified Modeling Language (UML) 16 October, 2024

consequences but suggests an implementation that facilitates
easy access of sets of associated instances linked by a given
qualifier value.

(c) Sparx Systems 2024 Page 560 of 729

Unified Modeling Language (UML) 16 October, 2024

Qualifiers Dialog
The 'Qualifiers' dialog is used to define the Qualifiers of an
Association connector end, Port, Part or Attribute.

General Tab

Review, edit or complete the fields as indicated in the table.

To change the position of a Qualifier in the list in the
'Qualifiers' panel, click on the Scroll Up button or Scroll
Down button (the 'hand' buttons).

Field Action

Name Display the name of the Qualifier.
For a new Qualifier, type the name (with
no spaces).

Alias Display an optional alias for the
Qualifier.
If necessary, type in a new alias.

Type Display the Qualifier type.
The type can be defined by the code
language (data type) or by a classifier
element. When you click on the
drop-down arrow, the set of values in the
list provides the appropriate data types.
To select or define possible classifiers,

(c) Sparx Systems 2024 Page 561 of 729

Unified Modeling Language (UML) 16 October, 2024

either click on the 'Select Type' option in
the list, or click on the button to
display the 'Select <Item>' dialog.
To add new code language data types that
can be displayed in this list, see the Data
Types topic.

Scope Define the Qualifier as Public, Protected,
Private or Package.
If necessary, click on the drop-down
arrow and select a different scope.

Stereotype Define the optional stereotype of the
Qualifier.
If necessary, either type a different
stereotype name or click on the
drop-down arrow and select a stereotype.

Derived Indicate that the Qualifier is a calculated
value.
If you select this checkbox, the Qualifier
name on the element has the derived
symbol (/) as a prefix.

Static Indicate that the Qualifier is a static
member.

Const Indicate that the Qualifier is a constant.

(c) Sparx Systems 2024 Page 562 of 729

Unified Modeling Language (UML) 16 October, 2024

Initial Display an optional initial value.
If necessary, type in a new initial value.

Notes Enter any free text notes associated with
the Qualifier.
You can format the notes text using the
Notes toolbar at the top of the field.

Detail Tab

Use the 'Detail' tab to model additional properties of a
selected Qualifier, such as its multiplicity, redefined
properties and subsetted properties.

Select a Qualifier on the 'General' tab, then review, edit or
complete the 'Detail' tab fields as indicated in this table.

Field Action

Lower bound Define a lower limit to the number of
elements allowed in the collection.

Upper bound Define an upper limit to the number of
elements allowed in the collection.

Allow
Duplicates

Indicate that duplicates are allowed.
Maps to the UML property isUnique,
value FALSE.

(c) Sparx Systems 2024 Page 563 of 729

Unified Modeling Language (UML) 16 October, 2024

Multiplicity
is Ordered

Indicate that the collection is ordered.

Redefined
Property

Review the redefined properties for the
Qualifier.
Add redefined properties by clicking on
the Add button to display the 'Select
Property' dialog.

Subsetted
Property

Review the subsetted properties for the
qualifier.
Add subsetted properties by clicking on
the Add button to display the 'Select
Property' dialog.

(c) Sparx Systems 2024 Page 564 of 729

Unified Modeling Language (UML) 16 October, 2024

Association Class

Description

An Association Class is a UML construct that enables an
Association to have attributes and operations (features). This
results in a hybrid relation with the characteristics of an
Association and a Class.

When you add an Association Class connection, Enterprise
Architect also creates a Class that is automatically
connected to the Association. When you hide or delete the
Association, the Class is also hidden or deleted.

To add an Association Class to a Class or Deployment
diagram, click on the 'Association Class' icon in the
Toolbox. Click and hold on the source object in the diagram
while you drag the line to the target element, then release
the mouse button. Enterprise Architect draws the connector
and adds the Class, then prompts you to add the Class name.
Note that the names of the Class and the connector are the
same. You can also connect a new Class to an existing
Association.

You can highlight the Class part of an Association Class in

(c) Sparx Systems 2024 Page 565 of 729

Unified Modeling Language (UML) 16 October, 2024

the Browser window, by selecting the 'Find Association
Class' context menu option on the Association connector.

Example

This diagram illustrates an Association Class between
model elements. Note the dotted line from the Class to the
Association. You cannot move or delete this line.

Notes

If you are applying a stereotype with a Shape Script to an·

Association Class, be aware that the Shape Script is
applied to both the Class part and the Association part;
therefore, you might have to include logic in the shape
main that tests the type of the element so that you can give
separate drawing instructions for Class and for
Association

Such logic is not necessary in the:·

 - Shape source or shape target, which are ignored by

(c) Sparx Systems 2024 Page 566 of 729

Unified Modeling Language (UML) 16 October, 2024

Classes, or the
 - Decoration shapes, which are ignored by Association
connectors

If you dissociate the Class from the Association·

connector, both parts keep their Shape Scripts until the
stereotypes are removed

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.200) states:

An AssociationClass is a declaration of an Association that
has a set of Features of its own. An AssociationClass is both
an Association and a Class, and preserves the static and
dynamic semantics of both. An AssociationClass describes a
set of objects that each share the same specifications of
Features, Constraints, and semantics entailed by the
AssociationClass as a kind of Class, and correspond to a
unique link instantiating the AssociationClass as a kind of
Association.

(c) Sparx Systems 2024 Page 567 of 729

Unified Modeling Language (UML) 16 October, 2024

Connect New Class to Existing
Association

Connect Class to Association

Ste
p

Action

1 Create a Class in the diagram containing the
Association to connect.

2 Right-click on the new Class and select the
'Advanced | Association Class' menu option.
The 'Create Association Class' dialog displays.

3 Select the connector to connect to.

4 Click on the OK button.

(c) Sparx Systems 2024 Page 568 of 729

Unified Modeling Language (UML) 16 October, 2024

Communication Path

Description

A Communication Path defines the path through which two
DeploymentTargets are able to exchange signals and
messages. Communication Path is a specialization of
Association. A DeploymentTarget is the target for a
deployed Artifact and can be a Node, Property or
InstanceSpecification in a Deployment diagram.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.661) states:

A communication path is an association between two
deployment targets, through which they are able to
exchange signals and messages.

(c) Sparx Systems 2024 Page 569 of 729

Unified Modeling Language (UML) 16 October, 2024

Composition

Direction:

A Composition is used to depict an element that is made up
of smaller components, typically in a Class or Package
diagram. A component - or part instance - can be included in
a maximum of one composition at a time. If a composition
is deleted, usually all of its parts are deleted with it;
however, a part can be individually removed from a
composition without having to delete the entire composition.
Compositions are transitive, asymmetric relationships and
can be recursive.

Example

Toolbox icon

(c) Sparx Systems 2024 Page 570 of 729

Unified Modeling Language (UML) 16 October, 2024

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.112) states:

Composite aggregation is a strong form of aggregation that
requires a part object be included in at most one composite
object at a time. If a composite object is deleted, all of its
part instances that are objects are deleted with it.

Compositions may be linked in a directed acyclic graph with
transitive deletion characteristics; that is, deleting an object
in one part of the graph will also result in the deletion of all
objects of the subgraph below that object. The precise
lifecycle semantics of composite aggregation is intentionally
not specified. The order and way in which composed objects
are created is intentionally not defined. The semantics of
composite aggregation when the container or part is typed
by a DataType are intentionally not specified.

(c) Sparx Systems 2024 Page 571 of 729

Unified Modeling Language (UML) 16 October, 2024

N-Ary Association

Description

An n-Ary Association element is used to model complex
relationships between three or more elements, typically in a
Class diagram. It is not a commonly-employed device, but
can be used to good effect where there is a dependant
relationship between several elements. It is generally used
with the Association connector, but the relationships can
include other types of connector.

In this example there is a relationship between a Company,
an Employee and a Salary.

Toolbox icon

(c) Sparx Systems 2024 Page 572 of 729

Unified Modeling Language (UML) 16 October, 2024

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.201) states:

Any Association may be drawn as a diamond (larger than a
terminator on a line) with a solid line for each Association
memberEnd connecting the diamond to the Classifier that is
the end’s type. An Association with more than two ends can
only be drawn this way.

(c) Sparx Systems 2024 Page 573 of 729

Unified Modeling Language (UML) 16 October, 2024

Connector

Description

Connectors illustrate communication links between Parts to
fulfill the structure's purpose, typically in a Composite
Structure diagram. Each Connector end is distinct,
controlling the communication pertaining to its connecting
element. These elements can define constraints specifying
this behavior. Connectors can have multiplicity.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.227) states:

A Connector specifies links that enables communication
between two or more instances. In contrast to Associations,
which specify links between any instance of the associated
Classifiers, Connectors specify links between instances
playing the connected parts only.

(c) Sparx Systems 2024 Page 574 of 729

Unified Modeling Language (UML) 16 October, 2024

Control Flow

Description

The Control Flow is a connector connecting two nodes in an
Activity diagram, modeling an active transition. Control
Flow connectors bridge the flow between Activity nodes, by
directing the flow to the target node once the source node's
activity is completed.

Control Flows and Object Flows can define a Guard and a
Weight condition.

A Guard defines a condition that must be True before
control passes along that activity edge. A practical example
of this is where two or more activity edges (Control Flows)
exit from a Decision element. Each flow should have a
Guard condition that is exclusive of the other and defines
which edge is taken under what conditions. The Control
Flow 'Properties' dialog enables you to set up Guard
conditions on Control Flows and on Object Flows.

A Weight defines the number of tokens that can flow along
a Control or Object Flow connection when that edge is
traversed. Weight can also be defined on the Control Flow
and Object Flow 'Properties' dialogs.

Toolbox icon

(c) Sparx Systems 2024 Page 575 of 729

Unified Modeling Language (UML) 16 October, 2024

OMG UML specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.376) states:

A ControlFlow is an ActivityEdge that only passes control
tokens (and some object tokens as specified by modelers,
...). ControlFlows are used to explicitly sequence execution
of ActivityNodes, as the target ActivityNode cannot receive
a control token and start execution until the source
ActivityNode completes execution and produces the token.

(c) Sparx Systems 2024 Page 576 of 729

Unified Modeling Language (UML) 16 October, 2024

Delegate

Description

A Delegate connector defines the internal assembly of a
component's external Ports and Interfaces, on a Component
diagram. Using a Delegate connector wires the internal
workings of the system to the outside world, by a delegation
of the external interfaces' connections.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.191) states:

A delegation Connector is a Connector that links a Port to a
role within the owning EncapsulatedClassifier. It represents
the forwarding of requests (Operation invocations and

(c) Sparx Systems 2024 Page 577 of 729

Unified Modeling Language (UML) 16 October, 2024

Signals). A request that arrives at a Port that has a
delegation Connector to one or more Properties or Ports on
Properties will be passed on to those targets for handling.

Delegation Connectors can be used to model the hierarchical
decomposition of behavior, where services provided by an
EncapsulatedClassifier may ultimately be realized by one
that is nested multiple levels deep within it.

(c) Sparx Systems 2024 Page 578 of 729

Unified Modeling Language (UML) 16 October, 2024

Dependency

Description

Dependency relationships are used to model a wide range of
dependent relationships between model elements in Use
Case, Activity and Structural diagrams, and even between
models themselves. You can create the Dependency from
the Common page of the Toolbox. The Dependencies
Package as defined in UML 2.1 has many derivatives, such
as Realize, Deployment and Use. Once you create a
Dependency you can further refine its meaning by applying
a specialized stereotype.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.42) states:

A Dependency is a Relationship that signifies that a single
model Element or a set of model Elements requires other
model Elements for their specification or implementation.

(c) Sparx Systems 2024 Page 579 of 729

Unified Modeling Language (UML) 16 October, 2024

This means that the complete semantics of the client
Element(s) are either semantically or structurally dependent
on the definition of the supplier Element(s).

(c) Sparx Systems 2024 Page 580 of 729

Unified Modeling Language (UML) 16 October, 2024

Apply a Stereotype
This topic defines how to apply a stereotype to a
Dependency relationship.

Apply Stereotype

Ste
p

Action

1 Select the Dependency relationship to change.

2 Right-click on the connector and select the
'Dependency Properties' option.
The 'Dependency Properties' dialog displays.

3 In the 'Stereotype' field, either type in the required
stereotype name or click on the drop-down arrow
and select the stereotype from the list.

4 Click on the OK button.

Alternatively

Right-click on the Dependency relationship and select the
'Advanced | Dependency Stereotypes' option, then select

(c) Sparx Systems 2024 Page 581 of 729

Unified Modeling Language (UML) 16 October, 2024

from a shorter list of standard stereotypes.

(c) Sparx Systems 2024 Page 582 of 729

Unified Modeling Language (UML) 16 October, 2024

Deployment

Description

A Deployment is a type of Dependency relationship that
indicates the deployment of an artifact onto a node or
executable target, typically in a Deployment diagram. A
Deployment can be made at type and instance levels. At the
type level, a Deployment would be made for every instance
of the node. Deployment can also be specified for an
instance of a node, so that a node's instances can have varied
deployed artifacts. With composite structures modeled with
nodes defined as Parts, Parts can also serve as targets of a
Deployment relationship.

Toolbox icon

(c) Sparx Systems 2024 Page 583 of 729

Unified Modeling Language (UML) 16 October, 2024

Extend

Description

An Extend connector is used to indicate that an element
extends the behavior of another, mainly in Use Case models
where one Use Case (optionally) extends the behavior of
another Use Case. An extending Use Case often expresses
alternative flows that are integrated with the behavior of the
extended Use Case, at a specific point in the behavior flow
identified within the element by an extension point. The
extension point is represented by a text string such as 'on
startup' or 'before connection is established'.

A Use Case can have more than one extension point, and
can extend or be extended by more than one other Use Case.
The precise relationship between the extending Use case,
extended Use Case and the point at which the extension
applies can be identified on the Extend relationship, as
shown.

Identify Extension Point

Ste
p

Action

(c) Sparx Systems 2024 Page 584 of 729

Unified Modeling Language (UML) 16 October, 2024

1 Right-click on the Extend connector and select the
'Advanced | Extension Point | Set Extension Point'
option.
The 'Element Usage' dialog displays, listing the
Extension Points currently defined in the target Use
Case element.

2 Click on the Extension Point on which the source
Use Case acts, and click on the Open button.
The dialog closes and the Extend connector shows a
small circle at the mid-point, with a Notelink to a
Note element that identifies the selected Extension
Point.

(The Note might not initially display close to the
Extend connector - check the upper left corner of the
diagram and drag the Note to the position you want
it to occupy.)

(c) Sparx Systems 2024 Page 585 of 729

Unified Modeling Language (UML) 16 October, 2024

Use these same steps to change the extension point
identified in the Note.

Show/Hide Extension Point Note

Ste
p

Action

1 Right-click on the Extend connector and select the
'Advanced | Extension Point | Show Extension Point'
option.
If there are any Extension Points identified on the
selected Extend connector, they are displayed as
shown.

2 Right-click on the Extend connector and deselect the
'Advanced | Extension Point | Show Extension Point'
option.
Any Extension Points identified on the selected
Extend connector are hidden, as shown:

(c) Sparx Systems 2024 Page 586 of 729

Unified Modeling Language (UML) 16 October, 2024

Toolbox icon

Notes

The Extend connector is not the same as the Extension·

connector, which is used in Profile diagrams to indicate
that a Stereotype element extends a Metaclass or another
Stereotype element; the two types of connector have
different appearances

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, pp.640-641) states:

An Extend is a relationship from an extending UseCase (the
extension) to an extended UseCase (the extendedCase) that

(c) Sparx Systems 2024 Page 587 of 729

Unified Modeling Language (UML) 16 October, 2024

specifies how and when the behavior defined in the
extending UseCase can be inserted into the behavior defined
in the extended UseCase. The extension takes place at one
or more specific extension points defined in the extended
UseCase. Extend is intended to be used when there is some
additional behavior that should be added, possibly
conditionally, to the behavior defined in one or more
UseCases. The extended UseCase is defined independently
of the extending UseCase and is meaningful independently
of the extending UseCase. On the other hand, the extending
UseCase typically defines behavior that may not necessarily
be meaningful by itself. Instead, the extending UseCase
defines a set of modular behavior increments that augment
an execution of the extended UseCase under specific
conditions.

NOTE. The same extending UseCase can extend more than
one UseCase. Furthermore, an extending UseCase may itself
be extended.

(c) Sparx Systems 2024 Page 588 of 729

Unified Modeling Language (UML) 16 October, 2024

Generalization

Description

A Generalization is used to indicate inheritance. Drawn
from the specific classifier to a general classifier, the
generalization's implication is that the source inherits the
target's characteristics. It is used typically in Class,
Component, Object, Package, Use Case and Requirements
diagrams.

You can also define template binding parameters for a
Generalize connector between a binding Class and a
parameterized Class.

Toolbox icon

OMG UML Specification:

(c) Sparx Systems 2024 Page 589 of 729

Unified Modeling Language (UML) 16 October, 2024

The OMG Unified Modeling Language specification,
(v2.5.1, p.138) states:

A Generalization is a taxonomic relationship between a
more general Classifier and a more specific Classifier. Each
instance of the specific Classifier is also an instance of the
general Classifier. The specific Classifier inherits the
features of the more general Classifier. A Generalization is
owned by the specific Classifier.

(c) Sparx Systems 2024 Page 590 of 729

Unified Modeling Language (UML) 16 October, 2024

Include

Description

An Include connection indicates that the source element
includes the functionality of the target element. Include
connections are used in Use Case models to reflect that one
Use Case includes the behavior of another. Use an Include
relationship to avoid having the same subset of behavior in
many Use Cases; this is similar to delegation used in Class
models.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.641) states:

Include is a DirectedRelationship between two UseCases,
indicating that the behavior of the included UseCase (the
addition) is inserted into the behavior of the including
UseCase (the includingCase). It is also a kind of
NamedElement so that it can have a name in the context of

(c) Sparx Systems 2024 Page 591 of 729

Unified Modeling Language (UML) 16 October, 2024

its owning UseCase (the includingCase). The including
UseCase may depend on the changes produced by executing
the included UseCase. The included UseCase must be
available for the behavior of the including UseCase to be
completely described.

The Include relationship is intended to be used when there
are common parts of the behavior of two or more UseCases.
This common part is then extracted to a separate UseCase,
to be included by all the base UseCases having this part in
common. As the primary use of the Include relationship is
for reuse of common parts, what is left in a base UseCase is
usually not complete in itself but dependent on the included
parts to be meaningful. This is reflected in the direction of
the relationship, indicating that the base UseCase depends
on the addition but not vice versa.

All of the behavior of the included UseCase is executed at a
single location in the included UseCase before execution of
the including UseCase is resumed.

(c) Sparx Systems 2024 Page 592 of 729

Unified Modeling Language (UML) 16 October, 2024

Information Flow

Description

An Information Flow represents the flow of Information
Items (either Information Item elements or classifiers)
between two elements in any diagram. The connector is
available from:

The 'Common' page of the Toolbox·

Every Quick Link menu, and·

Automatically whilst directly defining Information Item·

realization

When you create the Information Flow connector,
Enterprise Architect automatically prompts you to identify
which information items are conveyed.

You can have more than one Information Flow connector
between the same two elements, identifying which items
flow between the elements under differing conditions. The
connector can flow in one direction:

They can also be defined to flow in opposite directions:

(c) Sparx Systems 2024 Page 593 of 729

Unified Modeling Language (UML) 16 October, 2024

For more details see the Using Information Flows Help
topic.

You can locate the items conveyed in any Information Flow,
by right-clicking on the connector and selecting the 'Find
Items Conveyed' option.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.669) states:

InformationFlows describe circulation of information

(c) Sparx Systems 2024 Page 594 of 729

Unified Modeling Language (UML) 16 October, 2024

through a system in a general manner. They do not specify
the nature of the information, mechanisms by which it is
conveyed, sequences of exchange, or any control conditions.
During more detailed modeling, representation and
realization links may be added to specify which model
elements implement an InformationFlow and to show how
information is conveyed.

The OMG Unified Modeling Language specification,
(v2.5.1, p.670) also states:

InformationItems represent many kinds of information that
can flow from sources to targets in very abstract ways. They
represent the kinds of information that may move within a
system, but do not elaborate details of the transferred
information. Details of transferred information are the
province of other Classifiers that may ultimately define
InformationItems.

(c) Sparx Systems 2024 Page 595 of 729

Unified Modeling Language (UML) 16 October, 2024

Using Information Flows
When you drag an Information Flow connector between two
elements on a diagram, Enterprise Architect automatically
prompts you to identify the Information items conveyed.

You can also create an Information Flow automatically
whilst directly defining Information Flow realization, as you
might do on a Message on a Sequence diagram.

If you tend to create, populate and realize Information Flows
immediately in one work session, between Classifiers and
between Ports and/or Parts, you will appreciate the fact that
you can now set up the Information Flow quickly and
completely just on the 'Information Items Conveyed' dialog,
using the 'Add Realizing Relationship' checkbox.

Create and realize Information Flows

Ste
p

Action

1 Open a diagram and add two elements (for example,
Nodes on a Deployment diagram).

2 Click on the Information Flow connector in the
'Common' page of the Toolbox and drag the cursor
between the two elements.
The 'Information Items Conveyed' dialog displays.

(c) Sparx Systems 2024 Page 596 of 729

Unified Modeling Language (UML) 16 October, 2024

3 Add the classifier or Information Item element(s) to
the Information Flow. If you cannot complete this
now, you can return to the Information Flow and add
the remaining Information items later.

4 If you are creating an Information Flow between two
Classifier elements (such as Class, Component or
Use Case), or between Ports and/or Parts, the 'Add
Realizing Relationship' checkbox is enabled
(although not for other combinations of elements).
If you have finished assigning information items to
the flow, select this checkbox and click on the OK
button:

For a relationship between two Classifiers, a new·

Association connector is automatically created
between the two elements, realizing the
Information Flow
For a relationship between Ports and/or Parts, a·

new Connector-type connector is automatically
created between the two elements, realizing the
Information Flow

In these two cases, refer to the illustration in step 7.
Otherwise, click on the OK button to close the
dialog. The diagram now resembles this example:

(c) Sparx Systems 2024 Page 597 of 729

Unified Modeling Language (UML) 16 October, 2024

5 If you have finished assigning Information Items to
the flow, add another connector between the same
two elements (for example, a Communication Path
connector).
If you have not finished assigning information items
you can return to the realization at a later time, either
using the 'Information Flows Realized' dialog or - for
flows between classifiers and between Ports and/or
Parts - returning to the 'Information Items Conveyed'
dialog and selecting the 'Add Realizing Relationship'
checkbox.

6 Right-click on the connector and select the
'Advanced | Information Flows Realized' option.
The 'Information Flows Realized' dialog displays.

7 Tick the checkbox against each required information
item in the realized flow and click on the OK button.
The connector now resembles this example, where
the black triangle indicates the presence and
direction of the Information Flow connector:

Create bi-directional Information Flows

(c) Sparx Systems 2024 Page 598 of 729

Unified Modeling Language (UML) 16 October, 2024

Ste
p

Action

1 Open a diagram and add four elements (for example
four Classes).

2 Using the Quicklinker, drag an Information Flow
from Class1 to Class2.
The Information Items Conveyed dialog appears.

Click the Add button and select Class3.·

Ensure the option 'Add Realizing Relationship' is
NOT ticked.
Click OK.·

Move the connector away from the center to ensure
the visibility of the next connector.

3 Using the Quicklinker, drag an Information Flow
from Class2 to Class1.
The Information Items Conveyed dialog appears.

Click the Add button and select Class4.·

Ensure the option 'Add Realizing Relationship' is
NOT ticked.

(c) Sparx Systems 2024 Page 599 of 729

Unified Modeling Language (UML) 16 October, 2024

Click OK.·

Move the connector away from the center to ensure
the visibility of the next connector.

4 Using the Quicklinker, drag an Association between
Class1 and Class2.

Right-click on the Association and select:·

Advanced | Information Flows Realized
In the Information Flows Realized dialog, select·

Class3 and Class4 and click on the OK button.

Notes

Once the Information Flow is realized, you cannot access·

the 'Information Items Conveyed' dialog directly; to add
or delete information items on the connector, you
'unrealize' the connector on the 'Information Items
Realized' dialog

If you have more than one Information Flow connector·

(c) Sparx Systems 2024 Page 600 of 729

Unified Modeling Language (UML) 16 October, 2024

between the elements, they form part of the same
combined connector; you can again work on them
separately through the 'Information Items Realized' dialog

If you have information flows in a diagram that you use as·

the source for a Pattern, the 'Information Items Conveyed'
and 'Information Flows Realized' data is not copied into
the Pattern

You can locate, in the Browser window, the classifier or·

information item element(s) conveyed on the Information
Flow connector, using the 'Find Items Conveyed' context
menu option on the connector

(c) Sparx Systems 2024 Page 601 of 729

Unified Modeling Language (UML) 16 October, 2024

Convey Information on a Flow
When you create an Information Flow connector between
two elements, Enterprise Architect automatically prompts
you to specify which Information Items or classifiers are
conveyed on this flow. If you do not realize the Information
Flow with its existing information items immediately, you
can change and/or add to the information items conveyed at
a later time. The menu path helps you to return to an
incomplete Information Flow, but the process steps apply to
both new and unfinished flows.

Access

Context
Menu

Right-click on Information Flow
connector | Advanced | Information Items
Conveyed

Diagram Drag a Classifier from the Browser, the
Diagram Toolbox or from the diagram
itself and drop it onto an Information
Flow connector, to add that Classifier as a
conveyed item

Specify the Information Items conveyed on
an Information Flow
(c) Sparx Systems 2024 Page 602 of 729

Unified Modeling Language (UML) 16 October, 2024

Ste
p

Action

1 On the 'Information Items Conveyed' dialog, click on
the Add button.
The 'Select Classifier' dialog displays.

2 Browse or search for the required Information Item
or classifier element or elements, and select them as
required.
If you do not want to retain a selected item on the
'Select Classifier' dialog, press Ctrl and click on the
item.

3 Click on the OK button to return to the 'Information
Items Conveyed' dialog.
Each information item you have selected is listed on
a separate line in the dialog.

4 If you do not want to retain a selected item on this
dialog, click on it and click on the Remove button.
For a link between Classifiers or between Ports
and/or Parts, and if the Information Flow is
complete, you can create the realizing connector by
selecting the 'Add Realizing Relationship' option.
For Information Flows between other types of
element, you can perform the realization separately.

(c) Sparx Systems 2024 Page 603 of 729

Unified Modeling Language (UML) 16 October, 2024

Click on the OK button to close the dialog and to
show the selected information item element names
on the Information Flow connector label.

(c) Sparx Systems 2024 Page 604 of 729

Unified Modeling Language (UML) 16 October, 2024

Realize an Information Flow
After you create a UML information Flow connector you
might want to:

Realize one or more existing flows on the Information·

Flow connector

Edit an existing flow on the Information Flow connector·

You might also want to create and realize information flows
on a non Information Flow connector, such as a Message on
a Sequence diagram. You can perform these actions using
the 'Information Flows Realized' dialog, which displays all
existing flows that can be realized on the selected connector.

For a relationship between Classifiers or between Ports
and/or Paths, having finished assigning flow items to the
Information Flow you can also automatically realize it by
selecting the 'Add Realizing Relationship' option on the
'Information Items Conveyed' dialog.

Access

Context
Menu

Right-click on connector | Advanced |
Information Flows Realized

Review Item Flows on an Information Flow
Connector

(c) Sparx Systems 2024 Page 605 of 729

Unified Modeling Language (UML) 16 October, 2024

Operation Action

Realize
Information
Flows on the
selected
connector

Select the checkbox for each required
flow and click on the OK button.

Cancel
realization of
a flow

Deselect the checkbox against the
appropriate flow, and click on the OK
button.

Change the
classifier or
Information
Item
elements
conveyed on
an
Information
Flow

Click on the appropriate Information Item
row, and on the button at the
right-hand end of it.
The 'Select Classifier' dialog displays:

Click on a single item to select it·

Ctrl+click on each of several items to·

select them all, or
Ctrl+click on a selected item to·

deselect it
Click on the OK button to return to the
'Information Flows Realized' dialog and,
if required, realize the changed flow.

Create a
realized

Right-click on the connector and select1.
the 'Information Flows Realized'

(c) Sparx Systems 2024 Page 606 of 729

Unified Modeling Language (UML) 16 October, 2024

information
flow directly
on a new
connector

option.
Click on the Click to create new2.
information flow... text. The 'Select
Classifier' dialog displays.
Select the required classifier or3.
Information Item elements, and click
on the OK button to return to the
'Information Flows Realized' dialog;
the selected elements are listed first on
the dialog, with the activation
checkbox ticked.
Click on the OK button to return to the4.
diagram; the connector now displays as
a realized Information Flow, with the
selected classifier or Information Item
elements named in the connector label.

Notes

If there are several Information flows and you do not·

realize all of them, those that are not realized are
represented by a separate Information Items Conveyed
iteration of the Information Flow connector; you can only
realize those flows on the original connector, at which
point the flow is represented on that original connector

If you realize all of the flows, they are combined on the·

one connector line

(c) Sparx Systems 2024 Page 607 of 729

Unified Modeling Language (UML) 16 October, 2024

If you realize an information flow on a connector, you can·

use the 'Find Items Conveyed' context menu option to
locate the corresponding Information Flow item in the
Browser window

You realize Information Flows on UML connectors only;·

you cannot realize Information Flows on, say, ArchiMate
connectors, so the menu option is not provided for them

(c) Sparx Systems 2024 Page 608 of 729

Unified Modeling Language (UML) 16 October, 2024

Interrupt Flow

Description

The Interrupt Flow is a connection used to define the two
UML concepts of connectors for Exception Handler and
Interruptible Activity Region. An Interrupt Flow is a type of
activity edge. It is typically used in an Activity diagram,
modeling an active transition.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.375) states:

An ActivityEdge is a directed connection between two
ActivityNodes along which tokens may flow, from the
source ActivityNode to the target ActivityNode..

(c) Sparx Systems 2024 Page 609 of 729

Unified Modeling Language (UML) 16 October, 2024

Manifest

Description

A Manifest relationship indicates that the Artifact source
embodies the target model element, typically in Component
and Deployment diagrams. Stereotypes can be added to
Enterprise Architect to classify the type of manifestation of
the model element.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.657) states:

An Artifact may embody, or manifest, a number of model
elements. The Artifact owns the Manifestations, each
representing the utilization of some PackageableElement.
Profiles may extend the Manifestation relationship to
indicate particular forms of embodiment. For example, «tool
generated» and «custom code» might be two Manifestations
for different Classes embodied in an Artifact.

(c) Sparx Systems 2024 Page 610 of 729

Unified Modeling Language (UML) 16 October, 2024

(c) Sparx Systems 2024 Page 611 of 729

Unified Modeling Language (UML) 16 October, 2024

Message
Messages indicate a flow of information or transition of
control between elements. Messages can be used in Timing
diagrams, Sequence diagrams and Communication diagrams
(but not Interaction Overview diagrams) to reflect system
behavior. If between Classes or classifier instances, the
associated list of operations is available to specify the event.

Moving a Message can disrupt the organization of other
features on the diagram. To avoid this, and move only the
Message, press Alt while you move the Message.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.623) states:

A Message defines a particular communication between
Lifelines of an Interaction.

The OMG Unified Modeling Language specification,
(v2.5.1, p.574) also states:

The signature of a Message refers to either an Operation or a
Signal. The name of the Message must be the same as the
name of the referenced Operation or Signal.

(c) Sparx Systems 2024 Page 612 of 729

Unified Modeling Language (UML) 16 October, 2024

(c) Sparx Systems 2024 Page 613 of 729

Unified Modeling Language (UML) 16 October, 2024

Nesting

Description

The Nesting Connector is an alternative graphical notation
for expressing containment or nesting of elements within
other elements. It is most appropriately used for displaying
Package nesting in a Package diagram.

Toolbox icon

(c) Sparx Systems 2024 Page 614 of 729

Unified Modeling Language (UML) 16 October, 2024

Notelink

Description

A Notelink connector connects a Note to one or more other
elements of any other type.

Both Note and Notelink are available in any category of the
Toolbox, in the Common page. You can also select them
from the UML Elements toolbar.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.22) states:

A Comment is shown as a rectangle with the upper right
corner bent (this is also known as a “note symbol”). The
rectangle contains the body of the Comment. The
connection to each annotatedElement is shown by a separate
dashed line. The dashed line connecting the note symbol to

(c) Sparx Systems 2024 Page 615 of 729

Unified Modeling Language (UML) 16 October, 2024

the annotatedElement(s) may be suppressed if it is clear
from the context, or not important in this diagram.

(c) Sparx Systems 2024 Page 616 of 729

Unified Modeling Language (UML) 16 October, 2024

Object Flow

Description

Object Flows are used in Activity diagrams and
StateMachine diagrams. When used in an Activity diagram,
an Object Flow connects two elements, with specific data
passing through it, modeling an active transition. To view
sample Activity diagrams using Object Flows, see the
Object Flows in Activity Diagrams topic.

In StateMachine diagrams, an Object Flow is a specification
of a state flow or transition. It implies the passing of an
Object instance between elements at run-time.

You can insert an Object Flow from the 'State' or 'Activity'
pages of the Toolbox, or from the drop-down list of all
relationships located in the header toolbar. You can also
modify a transition connection to an Object Flow by
selecting the 'ObjectFlow' checkbox on the connection
'Properties' dialog.

See the Control Flow topic for information on setting up
Guards and Weights on Object Flows.

Toolbox icon

(c) Sparx Systems 2024 Page 617 of 729

Unified Modeling Language (UML) 16 October, 2024

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.376) states:

An ObjectFlow is an ActivityEdge that can have object
tokens passing along it. ObjectFlows model the flow of
values between ObjectNodes. Tokens are offered to the
target ActivityNode in the same order as they are offered
from the source. If multiple tokens are offered at the same
time, then the tokens are offered in the same order as if they
had been offered one at a time from the source. If the source
is an ObjectNode with an ordering specified, then tokens
from the source are offered to the ObjectFlow in that order
and, consequently, are offered from the ObjectFlow to the
target in the same order

(c) Sparx Systems 2024 Page 618 of 729

Unified Modeling Language (UML) 16 October, 2024

Object Flows in Activity Diagrams
In Activity diagrams, there are several ways to define the
flow of data between objects.

This diagram depicts a simple Object Flow between two
actions, Fill Order and Ship Order, both accessing order
information.

See the OMG Unified Modeling Language specification,
(v2.5.1, figure 12.110, p.391.)

This explicit portrayal of the data object Order, connected to
the Activities by two Object Flows, can be refined by using
this format. Here, Action Pins are used to reflect the order.

See the OMG Unified Modeling Language specification,
(v2.5.1, figure 12.110, p.391.)

This diagram is an example of multiple Object Flows
exchanging data between two actions.

See the OMG Unified Modeling Language specification,
(v2.5.1, figure 12.111, p.391.)

(c) Sparx Systems 2024 Page 619 of 729

Unified Modeling Language (UML) 16 October, 2024

Selection and transformation behavior, together composing
a sort of query, can specify the nature of the Object Flow's
data access. Selection behavior determines which objects are
affected by the connection. Transformation behavior might
then further specify the value of an attribute pertaining to a
selected object.

Selection and transformation behaviors can be defined by
attaching a note to the Object Flow. To do this, right-click
on the Object Flow and select the 'Attach Note or
Constraint' option. A dialog lists other flows in the diagram
to which you can select to attach the note, if the behavior
applies to multiple flows. To comply with UML 2, preface
the behavior with the notation «selection» or
«transformation».

See the OMG Unified Modeling Language specification,
(v2.5.1, figure 12.112, p.392.)

(c) Sparx Systems 2024 Page 620 of 729

Unified Modeling Language (UML) 16 October, 2024

Occurrence

Description

An Occurrence relationship indicates that a Collaboration
represents a classifier, in a Composite Structure diagram. An
Occurrence connector is drawn from the Collaboration to
the classifier.

Toolbox icon

(c) Sparx Systems 2024 Page 621 of 729

Unified Modeling Language (UML) 16 October, 2024

Package Import

Description

A Package Import relationship is drawn from a source
Package to a Package whose contents are to be imported.
Private members of a target Package cannot be imported.
The relationship is typically used in a Package diagram.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, pp.28-29) states:

A PackageImport is a DirectedRelationship between an
importing Namespace and a Package, indicating that the
importing Namespace adds the names of the members of the
Package to its own Namespace. Conceptually, a Package
import is equivalent to having an ElementImport to each
individual member of the imported Namespace, unless there
is a separately-defined ElementImport. If there is an

(c) Sparx Systems 2024 Page 622 of 729

Unified Modeling Language (UML) 16 October, 2024

ElementImport for an Element, then this takes precedence
over a potential import of the same Element via a
PackageImport.

(c) Sparx Systems 2024 Page 623 of 729

Unified Modeling Language (UML) 16 October, 2024

Package Merge

Description

In a Package diagram, a Package Merge indicates a
relationship between two Packages whereby the contents of
the target Package are merged with those of the source
Package. Private contents of a target Package are not
merged. The applicability of a Package Merge addresses any
situation where multiple Packages contain
identically-named elements, representing the same thing. A
Package Merge merges all matching elements across its
merged Packages, along with their relationships and
behaviors. Note that a Package Merge essentially performs
generalizations and redefinitions of all matching elements,
but the merged Packages and their independent element
representations still exist and are not affected.

The Package Merge serves a graphical purpose in Enterprise
Architect, but creates an ordered Package relationship
applied to related Packages (which can be seen under the
'Link' tab in the Package's 'Properties' dialog). Such
relationships can be reflected in XMI exports or Enterprise
Architect Automation Interface scripts for code generation
or other Model Driven Architecture (MDA) interests.

(c) Sparx Systems 2024 Page 624 of 729

Unified Modeling Language (UML) 16 October, 2024

Package Merge relationships are useful to reflect situations
where existing architectures contain functionalities
involving similar elements, which are merged in a
developing architecture. Merging doesn't affect the merged
objects, and supports the common situation of product
progression.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.242) states:

A PackageMerge is a directed relationship between two
Packages that indicates that the contents of the target
mergedPackage are combined into the source
receivingPackage according to a set of rules defined below.
It is very similar to Generalization in the sense that the
source element conceptually adds the characteristics of the
target element to its own characteristics resulting in an
element that combines the characteristics of both. Just as a
subclass is not normally depicted with its inherited features,
a receiving Package is not normally depicted with the
merged elements from its mergedPackages.

Also, as with Generalization, a Package may not merge
itself (directly or indirectly).

This capability is designed to be used when elements

(c) Sparx Systems 2024 Page 625 of 729

Unified Modeling Language (UML) 16 October, 2024

defined in different Packages have the same name and are
intended to represent the same concept. A given base
concept may be merged for different purposes, with each
purpose defined in a separate receiving Package. By
selecting different receiving packages, it is possible to
obtain a custom definition of a concept for a specific end.

(c) Sparx Systems 2024 Page 626 of 729

Unified Modeling Language (UML) 16 October, 2024

Realization

Description

A source object implements or Realizes its destination
object. Realize connectors are used in a Use Case,
Component or Requirements diagram to express traceability
and completeness in the model. A business process or
Requirement is realized by one or more Use Cases, which in
turn are realized by some Classes, which in turn are realized
by a Component, and so on. Mapping Requirements,
Classes and such across the design of your system, up
through the levels of modeling abstraction, ensures the big
picture of your system remembers and reflects all the little
pictures and details that constrain and define it.

You can also define template binding parameters for a
Realize connector between a binding Class and a
parameterized Class.

Toolbox icon

OMG UML Specification:

(c) Sparx Systems 2024 Page 627 of 729

Unified Modeling Language (UML) 16 October, 2024

The OMG Unified Modeling Language specification,
(v2.5.1, pp.38-39) states:

Realization is a specialized Abstraction dependency
between two sets of NamedElements, one representing a
specification (the supplier) and the other representing an
implementation of that specification (the client). Realization
can be used to model stepwise refinement, optimizations,
transformations, templates, model synthesis, framework
composition, etc. A Realization signifies that the set of
clients is an implementation of the set of suppliers, which
serves as the specification. The meaning of
“implementation” is not strictly defined, but rather implies a
more refined or elaborate form in respect to a certain
modeling context. It is possible to sp

(c) Sparx Systems 2024 Page 628 of 729

Unified Modeling Language (UML) 16 October, 2024

Recursion

Description

A Recursion is a type of Message used in Sequence
diagrams to indicate a recursive function.

Toolbox icon

(c) Sparx Systems 2024 Page 629 of 729

Unified Modeling Language (UML) 16 October, 2024

Role Binding

Description

Role Binding is the mapping between a Collaboration Use's
internal roles and the respective Parts required to implement
a specific situation, typically in a Composite Structure
diagram. The associated Parts can have properties defined to
enable the binding to occur, and the Collaboration to take
place.

A Role Binding connector is drawn between a Collaboration
and the classifier's fulfilling roles, with the Collaboration's
internal binding roles labeled on the classifier end of the
connector.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.216) states:

The roleBindings are implemented using Dependencies

(c) Sparx Systems 2024 Page 630 of 729

Unified Modeling Language (UML) 16 October, 2024

owned by the CollaborationUse. Each collaborationRole in
the Collaboration is bound by a distinct Dependency and is
its supplier. The client of the Dependency is a
ConnectableElement that relates in some way to the context
Classifier: it may be a direct collaborationRole of the
context Classifier, or an element reachable by some set of
references from the context Classifier. These roleBindings
indicate which ConnectableElement from the context
Classifier plays which collaborationRole in the
Collaboration

(c) Sparx Systems 2024 Page 631 of 729

Unified Modeling Language (UML) 16 October, 2024

Represents

Description

The Represents connector indicates that a Collaboration is
used in a classifier, typically in a Composite Structure
diagram. The connector is drawn from the Collaboration to
its owning classifier.

Toolbox icon

(c) Sparx Systems 2024 Page 632 of 729

Unified Modeling Language (UML) 16 October, 2024

Representation

Description

The Representation relationship is a specialization of a
Dependency, connecting Information Item elements that
represent the same idea across models, typically in an
Analysis diagram. For example, 'Bonus' and 'Salary' are both
a representation of the Information Item 'Wage'.

Toolbox icon

(c) Sparx Systems 2024 Page 633 of 729

Unified Modeling Language (UML) 16 October, 2024

Substitution

Description

A Substitution is a relationship between two Classifiers,
signifying that the substituting Classifier complies with the
contract specified by the contract Classifier. This implies
that instances of the substituting Classifier are
runtime-substitutable, where instances of the contract
Classifier are expected. In the example, the Class named
ResizableWindow has a Substitution connector to the Class
named Window, meaning that wherever you are asked for a
window you can use a resizable window.

The Substitution relationship is a subtype of a Dependency
relationship.

Toolbox icon

(c) Sparx Systems 2024 Page 634 of 729

Unified Modeling Language (UML) 16 October, 2024

Template Binding

Description

You create a Template Binding connector between a binding
Class and a parameterized Class. You then define a binding
expression on that connector. However, if the binding Class
requires a Generalization, Realization or Association
relationship with the parameterized Class, you can define
the binding expression on that relationship instead.

You can create a Template Binding connector using:

The 'Template Binding' icon on the 'Class Relationships'·

page of the Diagram Toolbox

The Quick Linker arrow next to the source Class element·

The 'Templates' dialog for the binding Class element;·

here, you create the Template Binding relationship by
clicking the Add button under the 'Binding(s)' panel,
specifying the connector type, and selecting the target
parameterized Class from the 'Select <Item>' dialog

Each of these methods creates the connector itself. For the
first two methods you then click on the connector to make it
the focus of the Properties window, on which you select the
'Binding' tab to define parameter substitutions as the binding
expression. The third method takes you to the same tab on

(c) Sparx Systems 2024 Page 635 of 729

Unified Modeling Language (UML) 16 October, 2024

the 'Properties' dialog automatically.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.24) states:

A template is a parameterized element ... used to generate
other model elements using TemplateBinding relationships.
The template parameters for the template signature specify
the formal parameters that will be substituted by actual
parameters (or the default) in a binding.

(c) Sparx Systems 2024 Page 636 of 729

Unified Modeling Language (UML) 16 October, 2024

Parameter Substitution
Once a Template Binding (or other binding) relationship
exists, you can add parameter substitutions to identify the
formal parameters that are replaced, and the actual
parameters that replace them, in the binding expression.

Access

Display the 'Binding' page of the connector's 'Properties'
dialog or Properties window, using any of the methods
outlined in this table.

Ribbon Start > Application > Design > Properties
> click on connector > Binding
(Properties window)
Design > Element > Editors > Properties
> click on connector > Binding
(Properties window)

Context
Menu

On diagram | Right-click connector |
Properties > Binding ('Properties'
dialog)

Keyboard
Shortcuts

Ctrl+2 > click on connector > Binding
(Properties window)

Other On diagram | Double-click on connector
> Binding ('Properties' dialog)

(c) Sparx Systems 2024 Page 637 of 729

Unified Modeling Language (UML) 16 October, 2024

Define a parameter substitution

The 'Target' field identifies the target parameterized Class.

Ste
p

Action

1 Click on the Add button below the 'Parameter
Substitution(s)' panel.
The next available row in the panel is enabled for
editing, and the word '<none>' is displayed in the
'Formal' column.

2 Click on the field and on the drop-down arrow that is
now displayed.
A list of the template parameters from the target
Class displays; click on the required parameter.

3 Click on the button in the corresponding 'Actual'
field for the parameter.
If the template parameter:

Does not have a constraint, a short context menu·

displays offering the choice of typing a free-text
value into the 'Actual' field, or selecting a
classifier from the 'Select Classifier' dialog
Has a constraint defined, the 'Select Classifier'·

dialog displays automatically, showing the

(c) Sparx Systems 2024 Page 638 of 729

Unified Modeling Language (UML) 16 October, 2024

available classifiers

4 Locate and select the required classifier to replace
the parameter in the binding expression.
If you do not define an Actual classifier and the
template parameter has a default value defined, that
default is used in the expression.

5 To edit existing parameter substitutions, click on
them and make the required changes as indicated in
steps 3 and 4.

6 Click on the Apply button and/or the OK button.
The parameter substitutions display as a label
underneath the connector.

(c) Sparx Systems 2024 Page 639 of 729

Unified Modeling Language (UML) 16 October, 2024

Trace

Description

The Trace relationship is a specialization of an Abstraction,
connecting model elements or sets of elements that represent
the same concept across models. Traces are often used to
track requirements and model changes, typically in a
Traceability diagram, or in a Class, Use Case, Object or
Composite Structure diagram.

As changes can occur in both directions, the order of this
Trace is usually ignored. The relationship's properties can
specify the trace mapping, but the trace is usually
bi-directional, informal and rarely computable.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.682) states:

Specifies a trace relationship between model elements or
sets of model elements that represent the same concept in

(c) Sparx Systems 2024 Page 640 of 729

Unified Modeling Language (UML) 16 October, 2024

different models. Traces are mainly used for tracking
requirements and changes across models. As model changes
can occur in both directions, the directionality of the
dependency can often be ignored. The mapping specifies the
relationship between the two, but it is rarely computable and
is usually informal.

(c) Sparx Systems 2024 Page 641 of 729

Unified Modeling Language (UML) 16 October, 2024

Transition

Description

If you need to define the logical movement from one State
to another in a StateMachine diagram, you can drag a
Transition connector from the Toolbox onto the diagram.
You control the Transition through the connector 'Properties'
dialog.

Field Action

Guard Type in the expression to be evaluated
after an Event is dispatched but before
the corresponding Transition is triggered.
If the guard is true at that time, the
Transition is enabled; otherwise, it is
disabled.

Effect is a
Behavior

Convert the 'Effect' field from a free-text
field to the definition of a specific
Activity or behavior.
The 'Select <Item>' dialog displays,
prompting you to select the Activity or
behavior element from the model.

(c) Sparx Systems 2024 Page 642 of 729

Unified Modeling Language (UML) 16 October, 2024

Effect Either:
Type a description of the Effect of the·

Transition, or
If you have selected the 'Effect is a·

Behavior' checkbox, select an Activity
or behavior to be performed during the
Transition (to change this
subsequently, click on the button to
redisplay the 'Select <Item>' dialog)

Trigger
Name

Specify the name of the trigger; either:
Type the name, or·

Select an existing trigger in the model·

from the Select <Item> dialog, which
you display by clicking on the
button

Trigger Type Specify the type of trigger:
Call - specifies that the event is a·

CallEvent, which sends a message to
the associated object by invoking an
operation
Change - specifies that the event is a·

ChangeEvent, which indicates that the
transition is the result of a change in
value of an attribute
Signal - specifies that the event is a·

SignalEvent, which corresponds to the

(c) Sparx Systems 2024 Page 643 of 729

Unified Modeling Language (UML) 16 October, 2024

receipt of an asynchronous signal
instance
Time - corresponds to a TimeEvent;·

which specifies a moment in time
Code generation for StateMachines
expects a specification value for any of
the four types.

Specification Specify the event instigating the
Transition; either:

Type the event (time or change), or·

Select an existing specification in the·

model using the 'Select <Item>' dialog,
which you display by clicking on the
button

New Clear the fields ready to begin defining a
new trigger.

Save Save the newly created or edited trigger.

Delete Remove the selected trigger from the list.

<trigger list> List the existing triggers, which might or
might not have names and types, and
which can include triggers created in
older models.

(c) Sparx Systems 2024 Page 644 of 729

Unified Modeling Language (UML) 16 October, 2024

Notes

Fork and Join segments can have neither triggers nor·

guards

You can identify hidden triggers and locate triggers in the·

Browser window, using the 'Find Triggers Associated'
option on the Transition connector context menu; if one
trigger exists for the Transition it is immediately
highlighted in the Browser window, if more than one
trigger exists the 'Element Usage' dialog displays - select
the required trigger and click on the Open button to
highlight the trigger in the Browser window

You can define a self-Transition as an Internal Transition,·

and represent the connector and its properties in a
compartment of the State element

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.359) states:

A Transition represents an arc between exactly one source
Vertex and exactly one Target vertex (the source and targets
may be the same Vertex). It may form part of a compound
transition, which takes the StateMachine from one steady

(c) Sparx Systems 2024 Page 645 of 729

Unified Modeling Language (UML) 16 October, 2024

State configuration to another, representing the full response
of the StateMachine to an occurrence of an Event that
triggered it.

(c) Sparx Systems 2024 Page 646 of 729

Unified Modeling Language (UML) 16 October, 2024

Internal Transition
If you need to define an internal Transition in a State, you
can do so by creating an external self-Transition connector
(where the Source and Target are the same State) and then
changing the connector 'kind' property. The self-Transition
connector is then removed from the diagram and the internal
Transition displays in a compartment inside the State
element.

Define an Internal Transition

Ste
p

Action

1 In the Browser window, double-click on the
StateMachine diagram containing the State element
to open it.

2 On the State element, create a Transition connector
issuing from and terminating in the element (a 'self
Transition').
In the Diagram Toolbox, select the Transition
connector, then click and release on the State
element.

3 Right-click on the connector and select the
'Properties' option to display the 'Properties' dialog.

(c) Sparx Systems 2024 Page 647 of 729

Unified Modeling Language (UML) 16 October, 2024

4 Select the 'Constraints' tab and define any guard,
effect and trigger for the Transition.

5 Select the 'General' tab, then select the child tab
'Advanced'. Click on the drop-down arrow in the
value field for the kind property and select 'internal'.

6 Click on the OK button. The Transitions display in
the same compartment as internal activities (exit/,
do/, entry/).

Notes

To view or edit the properties of the internal Transition,·

double-click on the entry in the compartment within the
State

If you need multiple internal transitions, including those·

with the same Trigger but different guards, you create
them separately with each Transition having its own guard

You can create further transitions and internal triggers by·

clicking on the State element, displaying the Features
window at the 'Internal Triggers' tab, right-clicking on the

(c) Sparx Systems 2024 Page 648 of 729

Unified Modeling Language (UML) 16 October, 2024

tab and selecting the 'New Internal Triggers' option

OMG UML Specification:

The OMG UML specification (UML Superstructure
Specification, v2.4.1, p.362) states:

[A TransitionKind of internal] Implies that the Transition, if
triggered, occurs without exiting or entering the source State
(i.e., it does not cause a state change). This means that the
entry or exit condition of the source State will not be
invoked. An internal Transition can be taken even if the
SateMachine is in one or more Regions nested within the
associated State

(c) Sparx Systems 2024 Page 649 of 729

Unified Modeling Language (UML) 16 October, 2024

Usage

Description

A 'Usage' is a Class diagram relationship in which one
element requires another element for its full implementation
or operation. The example diagram shows that the Class
Order requires the Class LineItem for its full
implementation.

The 'Usage' relationship is a subtype of a 'Dependency'
relationship.

Toolbox icon

OMG UML Specification:

The OMG Unified Modeling Language specification,
(v2.5.1, p.38) states:

A Usage is a Dependency in which one NamedElement
requires another NamedElement (or set of NamedElements)
for its full implementation or operation. The Usage does not
specify how the client uses the supplier other than the fact

(c) Sparx Systems 2024 Page 650 of 729

Unified Modeling Language (UML) 16 October, 2024

that the supplier is used by the definition or implementation
of the client.

(c) Sparx Systems 2024 Page 651 of 729

Unified Modeling Language (UML) 16 October, 2024

Use

Description

A Use relationship indicates that one element requires
another to perform some interaction. The Use relationship
does not specify how the target supplier is used, other than
that the source client uses it in definition or implementation.

You typically use the Use relationship in Use Case diagrams
to model how Actors use system functionality (Use Cases).

Notes

It is more usual (and correct UML) to have an Association·

between an Actor and a Use Case

The Usage relationship, used in Class diagrams, is a·

different relationship

Toolbox icon

(c) Sparx Systems 2024 Page 652 of 729

Unified Modeling Language (UML) 16 October, 2024

UML Stereotypes
The UML supports stereotypes, which are an inbuilt
mechanism for logically extending or altering the meaning,
display, characteristics or syntax of basic UML model
elements. You can apply stereotypes to a range of model
element types, including:

Elements (such as Classes and Objects)·

Relationships (such as Dependencies and Associations)·

Association Ends·

Attributes and Operations·

Operation Parameters·

Different model elements have different stereotypes
associated with them. You can create and use your own
stereotypes in three different ways:

To create a new object type based on a basic UML model·

element type, to be imported as part of a Profile into any
model and made available for use through the Diagram
Toolbox; examples of extended element types already
provided in Enterprise Architect include a Table element
(which is a stereotyped Class element) and Boundary,
Control and Entity elements (which are stereotyped
Object elements)

To customize the appearance or property of an instance of·

a model element of a specific type; these stereotypes are
applied only through the 'Properties' dialog of the object,
within the model in which they are created, although you
can transport custom stereotype definitions between

(c) Sparx Systems 2024 Page 653 of 729

Unified Modeling Language (UML) 16 October, 2024

models as Reference Data

As a simple label on an element, to identify the role or·

nature of the object that the element represents

For further definitions of stereotypes, see the OMG UML
specification (UML Superstructure Specification, v2.1.1,
section 18.3.8, pp. 667-672).

Where a stereotype does not affect appearance, it is
generally indicated by name on the base UML object shape.
In this example, «myStereotype2» is the stereotype name.
Some of the built-in stereotypes are also represented by
icons; see Stereotype Visibility.

Where the stereotype causes the element to be drawn
differently or is used to define a new type of object, the
element shape can be quite different, as illustrated by the
three Robustness diagram stereotypes:

You apply a new appearance or shape by associating the
stereotype with either a metafile (image file) and fill, border
and text colors, or a Shape Script that defines the shape,
dimensions and text of the object.

(c) Sparx Systems 2024 Page 654 of 729

Unified Modeling Language (UML) 16 October, 2024

(c) Sparx Systems 2024 Page 655 of 729

Unified Modeling Language (UML) 16 October, 2024

Apply Stereotypes
During the course of your modeling, you might decide that
an existing object requires a stereotype. Enterprise Architect
allows new stereotypes to be applied to objects by
themselves or in combination with other stereotypes. You
do this through the 'Stereotype' field on:

The object's 'Properties' dialog or·

Properties window·

Access

Open the Properties window or the 'Properties' dialog using
one of the methods outlined here, then click on the button
at the right of the 'Stereotype' field, and use the 'Stereotypes
for <object name>' dialog (the Stereotype Selector).

Ribbon Explore > Portals > Window > Properties
> Properties
Start > All Windows > Properties >
General > Properties
Design > Package > Manage > Properties
> General

Context
Menu

Right-click on Package or element |
Properties > General

Keyboard Alt+Enter ('Properties' dialog)

(c) Sparx Systems 2024 Page 656 of 729

Unified Modeling Language (UML) 16 October, 2024

Shortcuts Shift+Enter ('Properties' dialog)
Ctrl+2 (Properties window)

(c) Sparx Systems 2024 Page 657 of 729

Unified Modeling Language (UML) 16 October, 2024

Stereotype Selector
If you want to apply more than one stereotype to a UML
object, from multiple sources such as Profiles or the
Customized Stereotypes List, you can select the stereotypes
from the 'Stereotypes for <object name>' dialog. This dialog
also helps you to identify existing, valid individual
stereotypes, and to create new stereotypes. The new
stereotypes, at this point, are simple labels; if you want them
to impose an Effect on the object, locate them on the
'Stereotypes' tab of the 'UML Types' dialog and define the
Effect.

Access

Other Display the 'Stereotype for <object
name>' dialog by clicking on beside
the 'Stereotype' field in the object's
'Properties' dialog or Properties window.

Select Stereotypes to Apply or Remove

Field/Button Action

Perspective Click on the drop-down arrow and select

(c) Sparx Systems 2024 Page 658 of 729

Unified Modeling Language (UML) 16 October, 2024

a Perspective name, to limit the
stereotypes offered for selection to those
available under that Perspective.
If you want to examine stereotypes across
the model from any Perspective, click on
the button and select 'All'.
The 'Stereotypes' column lists the
available stereotypes; click on the
checkbox against each stereotype to
select.
When you initially open the 'Stereotype
for <object name>' dialog, the
Perspective name in the field is the
Perspective shown in the <perspective
name> icon at the top right of the
application screen. Changing the
Perspective in the 'Stereotype for <object
name>' dialog does not change the
'global' Perspective on the icon. If you
want to re-set the 'Stereotype for <object
name>' dialog Perspective to the global
Perspective, simply click on the
drop-down arrow and select 'Active'.

Profile Click on the drop-down arrow and choose
the required stereotype source - an
integrated MDG Technology or the base
EAUML, for example, or select the blank
line for your Customized Stereotypes list.

(c) Sparx Systems 2024 Page 659 of 729

Unified Modeling Language (UML) 16 October, 2024

The field defaults to the last-selected
Profile (if it is in the currently-set
Perspective) or, if the element already has
a stereotype, the Profile for that
stereotype.

Stereotypes Select the checkbox against each required
stereotype.
If you no longer want to use a stereotype,
deselect the checkbox.

Apply to Displays the types of object that the
selected stereotype is assigned to.

New Click on this button to create a new (but
undefined) stereotype. A prompt displays
for the stereotype name.

OK Click on this button to apply the
selection.

Cancel Click on this button to cancel any
selections and close the dialog.

Notes

If you have selected more than one stereotype, the·

(c) Sparx Systems 2024 Page 660 of 729

Unified Modeling Language (UML) 16 October, 2024

'Properties' dialog lists them on separate lines of the
'Stereotype' field

The appearance of a stereotype on an object in a diagram·

is influenced by the stereotype visibility settings on the
'Properties' dialog for the diagram

(c) Sparx Systems 2024 Page 661 of 729

Unified Modeling Language (UML) 16 October, 2024

Stereotype Visibility
When you apply one or more stereotypes to an object, the
display of that object in a diagram defaults to showing the
stereotype names in a string within guillemets (« »);
multiple names are separated by commas. Some stereotypes
are associated with small icons that display in the top right
corner of the element; these icons are built into the system,
and cannot be deleted or added to. In both cases, you can
modify the visibility of the text or icon stereotype indicators
in a diagram, using the 'Properties' dialog for the diagram.

Access

Display the 'Properties' dialog for the diagram, then show
the 'Elements' tab or the 'Features' tab, to select the visibility
of stereotypes on elements or features respectively.

Ribbon Design > Diagram > Manage > Properties
> select 'Elements' or 'Features' tab

Context
Menu

Right-click on diagram background |
Properties > select 'Elements' or 'Features'
tab

Other Double-click diagram background >
select 'Elements' or 'Features' tab

(c) Sparx Systems 2024 Page 662 of 729

Unified Modeling Language (UML) 16 October, 2024

Set Stereotype Visibility Options

Field/Button Action

Show
Element
Stereotypes

Select this checkbox on the 'Elements' tab
to show all element stereotypes and
keywords in the current diagram; for
example (with 'Use Stereotype' icons not
selected):

Deselect this checkbox to hide all
element stereotype names, icons and
keywords.

Use
Stereotype
Icons

Select this checkbox on the 'Elements' tab
to display icons instead of text, for those
element stereotypes that have icons
defined.
Stereotypes that do not have associated
icons are still represented by the
stereotype names; for example.

(c) Sparx Systems 2024 Page 663 of 729

Unified Modeling Language (UML) 16 October, 2024

The icons represent the stereotypes
«server page» and «target».

Show
Stereotypes

Select this checkbox on the 'Features' tab
to show all attribute and operation
stereotypes in the current diagram. This
option does not affect the display of
element stereotypes.

Notes

In the Browser window, the object name is preceded by·

the stereotype name(s) within guillemets, and multiple
names are indicated by the first stereotype name followed
by an ellipsis (...); you can hide the stereotype name by
deselecting the Browser window 'Show Stereotypes'
checkbox ('Start > Appearance > Preferences >
Preferences > General')

(c) Sparx Systems 2024 Page 664 of 729

Unified Modeling Language (UML) 16 October, 2024

Standard Stereotypes
This table identifies the standard stereotypes provided in the
EABase base model, each enclosed by guillemets (« »).

Stereotypes

Stereotype Base Class

«access» Dependency

«become» Flow

«call» Usage

«copy» Flow

«create» Message

«derive» Abstraction

«destroy» Message

«document» Abstraction

«executable» Abstraction

(c) Sparx Systems 2024 Page 665 of 729

Unified Modeling Language (UML) 16 October, 2024

«facade» Package

«file» Abstraction

«framework» Package

«friend» Dependency

«global» AssociationEnd

«implementat
ion»

Class

«implementat
ion»

Generalization

«import» Dependency

«instantiate» Usage

«invariant» Constraint

«library» Abstraction

«local» AssociationEnd

«metaclass» Class

(c) Sparx Systems 2024 Page 666 of 729

Unified Modeling Language (UML) 16 October, 2024

«parameter» AssociationEnd

«postconditio
n»

Constraint

«powertype» Class

«precondition
»

Constraint

«process» Classifier

«refine» Abstraction

«requirement
»

Comment

«responsibilit
y»

Comment

«self» AssociationEnd

«send» Usage

«stub» Package

«table» Abstraction

(c) Sparx Systems 2024 Page 667 of 729

Unified Modeling Language (UML) 16 October, 2024

«thread» Classifier

«trace» Abstraction

«type» Class

«utility» Classifier

(c) Sparx Systems 2024 Page 668 of 729

Unified Modeling Language (UML) 16 October, 2024

Stereotypes with Alternative Images
If you want to represent an element using an image (for
example, depict a hardware component using a 3-D box, or
even using an image of the unit itself), you can do so using a
stereotype that has been associated with a metafile. When
the stereotype is applied to a Class or other element that
supports alternative graphical format, the element is drawn
using the image instead of the standard UML shape. For
example, in this Deployment diagram, the Component
elements all have alternative images.

(c) Sparx Systems 2024 Page 669 of 729

Unified Modeling Language (UML) 16 October, 2024

Notes

You cannot change the representation of elements that·

include Lifelines, such as those in Sequence diagrams; the
standard representation is important in the use and
function of those elements

(c) Sparx Systems 2024 Page 670 of 729

Unified Modeling Language (UML) 16 October, 2024

Custom Stereotypes
A custom Stereotype applies a different appearance or
characteristic to a basic UML model component or feature.
You can apply a custom stereotype in two different ways:

To change the appearance or property of an instance of a·

model component of a specific type; these stereotypes are
defined on the 'Stereotypes' tab of the 'UML Types' dialog
and applied through the 'Properties' dialog of the object,
within the model in which they are created, although you
can transport custom stereotype definitions between
models as Reference Data

As a simple label on an element, to identify the role or·

nature of the object that an element represents; these
stereotypes are simply names typed into the 'Stereotype'
field of the object 'Properties' dialog, and do not affect the
element display unless they are subsequently edited to
have an effect

The more obvious changes you can make are to the shape,
dimensions and appearance of the object, which you can
apply by associating a metafile (image file) and customized
colors with the stereotype, or by attaching a Shape Script to
the stereotype. When you have defined and saved the
stereotype, you can then apply it to any new or existing
object of the base Class with which it is associated.

Access

(c) Sparx Systems 2024 Page 671 of 729

Unified Modeling Language (UML) 16 October, 2024

Ribbon Settings > Reference Data > UML Types
> Stereotypes

Maintain custom stereotypes

Option Action

Stereotype Type or select the name of the stereotype.

Group name (Optional) Type a plural name under
which to group the stereotype features for
attributes and operations; the name will
be shown on diagrams in the attributes
and operations compartments.

Base Class Click on the drop-down arrow and select
the name of a pre-existing object type so
that the stereotyped element will inherit
the base characteristics of that type.

Notes (Optional, but recommended) Type any
notes concerning the stereotype (not the
elements to which the stereotype is to be
applied).

New Click on this button to clear the fields to

(c) Sparx Systems 2024 Page 672 of 729

Unified Modeling Language (UML) 16 October, 2024

create a new stereotype definition.

Save Click on this button to save a new or
edited stereotype definition.

Delete Click on this button to delete a stereotype
definition from the model.

Override
Appearance

None Select to retain the default element
appearance for this stereotype.

Metafile Select to associate the stereotype with an
image metafile (.emf or .wmf) to apply
that image when the stereotype is used.

Shape Script Select to associate the stereotype with a
custom shape, created using the Shape
Scripting language.

Assign Click on this button to either:
Display the browser to locate the .emf·

or .wmf metafile to associate with the
stereotype, or
Open the Shape Editor create the Shape·

Script to be associated with the

(c) Sparx Systems 2024 Page 673 of 729

Unified Modeling Language (UML) 16 October, 2024

stereotype

Edit If a Shape Script is already associated
with the stereotype, click on this button to
open the Shape Editor to update the
Shape Script.

Remove Remove the associated metafile or Shape
Script from the stereotype.

Default
Colors

Fill Click on the drop-down arrow and select
or define the default background color of
the elements to be refined by the
stereotype.
This color will be applied to all
occurrences of any element to which the
stereotype has been applied; if the color
is subsequently changed, the change is
immediately applied to all occurrences of
any element to which the stereotype was
applied (as for changes to any other
property of the stereotype).
However, on elements created with the
stereotype, the default color might be
overridden by other color definitions of a
higher priority that have been applied to

(c) Sparx Systems 2024 Page 674 of 729

Unified Modeling Language (UML) 16 October, 2024

the element.

Border Click on the drop-down arrow and select
or define the default color of the borders
of the elements to be refined by the
stereotype.

Font Click on the drop-down arrow and select
or define the default color of the text of
the elements to be refined by the
stereotype.

Reset Reset the default colors to those of the
base element with which the stereotype is
associated.

Notes

You can transport custom stereotype definitions between·

models, using the 'Settings > Model > Transfer > Export
Reference Data' and 'Import Reference Data' ribbon
options

You can also create Stereotype elements that extend basic·

UML model element types to create new model element
types; you can re-use these extended model elements in
other projects, by incorporating them into a Profile
(usually within an MDG Technology) and importing this
into the various target projects

(c) Sparx Systems 2024 Page 675 of 729

Unified Modeling Language (UML) 16 October, 2024

(c) Sparx Systems 2024 Page 676 of 729

Unified Modeling Language (UML) 16 October, 2024

Extending UML
Sometimes a modeling problem cannot be adequately
expressed using the base UML model elements or, similarly,
an area of work falls into a specialized domain that requires
a tailored modeling approach or program language support.
To meet such requirements, you can extend the capabilities
of UML to develop new modeling constructs, using MDG
Technologies to combine and deploy a wide range or
extension mechanisms such as:

UML Profiles·

Stereotypes·

Shape Scripts·

Tagged Values·

Constraints·

Patterns·

Customized Code and Transformation Templates, and·

Grammars·

Using the MDG Technology Creation Wizard, you can
quickly and easily integrate the extensions into a technology
and rapidly tailor UML and Enterprise Architect to address
a particular modeling domain not explicitly defined in the
original UML specification, but using extension
mechanisms that are still part of the Specification.

Facilities

(c) Sparx Systems 2024 Page 677 of 729

Unified Modeling Language (UML) 16 October, 2024

Facility Description

Extending
UML

Quickly and easily extend UML into a
profile and technology using the MDG
Technology Wizard.

Using MDG
Technologies

Wrap your UML Profiles, code modules,
scripts, Patterns, images, Tagged Value
Types, report templates, Linked
Document templates and Toolbox pages.

The MDG
Technology

SDK

Everything you require to build your own
technology, such as Shape Scripts,
Tagged Value Types, Code Template
Frameworks, Grammar Frameworks and
more.

(c) Sparx Systems 2024 Page 678 of 729

Unified Modeling Language (UML) 16 October, 2024

Using UML Profiles
A UML profile is a light-weight extension mechanism that
is part of the UML Standard. Using profiles, you can create
a set of model constructs suitable for modeling a particular
domain, platform or method. Enterprise Architect provides a
flexible and intuitive mechanism for creating and deploying
profiles. Standard UML constructs are augmented with
stereotypes and Tagged Values to create new tailored
elements suitable for the modeling purpose. A profile is
simply a collection of these constructs with their stereotypes
and associated Tagged Values. The stereotypes can be
applied to elements, features, connectors and connector
ends. A Profile is distributed and implemented using a
Model Driven Generation (MDG) Technology.

The deployed technology automatically generates a page of
elements and relationships in the Diagram Toolbox, for each
of the UML profiles within the technology. When you drag
the elements and connectors from the toolbox onto the
current diagram, the stereotype, Tagged Values and default
values, notes and metafile (if one is specified) are
automatically applied to the new element. You can also drag
and drop profile attributes and operations onto existing
Classes, so that they are immediately added with the
specified stereotype and Tagged Values.

(c) Sparx Systems 2024 Page 679 of 729

Unified Modeling Language (UML) 16 October, 2024

Add Profile Objects to a Diagram
After a technology has been imported into your project, the
profiled objects (elements and connectors) and features
(attributes and operations) are available from the technology
pages of the Diagram Toolbox. The way in which you add
the Profile objects to a diagram is no different from the way
in which you use the standard UML objects on the system.

Access

Ribbon Design > Diagram > Toolbox : to
display the 'Find Toolbox Item' dialog
and specify <technology name>

Keyboard
Shortcuts

Ctrl+Shift+3 : to display the 'Find
Toolbox Item' dialog and specify
<technology name>

Use the Profile Objects

Action Description

Add a
Profile-based

Click on the element in the Toolbox page
and drag it onto the diagram.

(c) Sparx Systems 2024 Page 680 of 729

Unified Modeling Language (UML) 16 October, 2024

element to a
diagram

Add a
Profile-based
connector to
a diagram

Click on the connector in the Toolbox
page, then click on the source element in
the diagram and drag it to the target.

Add a
Profile-based
attribute or
operation to a
diagram

Click on the attribute or operation in the
Toolbox page, and drag it onto the host
element on the diagram.
The system prompts you to enter a name
for the feature.

(c) Sparx Systems 2024 Page 681 of 729

Unified Modeling Language (UML) 16 October, 2024

Tagged Values in Profiles
Stereotypes within a profiled element or connector can
define one or more associated Tagged Values. When you
drag a profiled element or connector from the Diagram
Toolbox onto a diagram, any associated Tagged Values are
automatically added to the new element or connector.
Tagged Values in profiled objects are an excellent way to
further extend the versatility of your UML modeling.

As an example, the UML Profile for XSD (XML Schema)
provides the XSDComplexType stereotype to extend a
Class; this stereotype has the Tagged Values:

memberNames·

mixed and·

modelGroup·

When you create a Complex Type element, the Tagged
Values are added and are visible in the tags compartment of
the element (including those that have no value set).

When you select the element, the Properties window
displays all the associated tags.

The values of tags imported in a Profile override the·

values of equivalent tags in the 'UML Types' dialog; if the
initial value of the tag from the Profile is not set, the value

(c) Sparx Systems 2024 Page 682 of 729

Unified Modeling Language (UML) 16 October, 2024

of the tag shown in the element will be blank, even if
there are default values for the tag in the 'UML Types'
dialog

Tags that have default profile values are automatically set·

Where Tagged Values in the profiled element have a·

values section (for example, values="element | attribute |
both" default="both") you can select the non-default
values from a drop-down list

Where no value exists, you can add a value as free text;·

you would do this for a profile tag that has no initial
value, to use a default value from the 'UML Types' dialog

(c) Sparx Systems 2024 Page 683 of 729

Unified Modeling Language (UML) 16 October, 2024

Synchronize Tagged Values and
Constraints
When you create an element, attribute, operation or
connector from a profiled object, the Tagged Values and
constraints are added from the Profile stereotype.
Subsequently, you might update the constraints or Tagged
Values of a particular stereotype in the Profile, in which
case the items already created in the model would not have
those additional constraints or Tagged Value tags and notes.

Similarly, you might have manually added the stereotype to
a set of objects, which automatically adds the Tagged
Values but not the constraints associated with that
stereotype, and now want the objects to receive the
constraints.

You can apply the updated or missing Tagged Values and
constraints using the Synchronize Stereotype function. This
operates on any profiled element in your model, from any
technology that is integrated with or imported into
Enterprise Architect.

Access

Ribbon Design > Diagram > Toolbox : to
display the 'Find Toolbox Item' dialog
and specify <technology name>|
Right-click icon for profiled

(c) Sparx Systems 2024 Page 684 of 729

Unified Modeling Language (UML) 16 October, 2024

element/connector/feature | Synchronize
Stereotype

Keyboard
Shortcuts

Ctrl+Shift+3 : Specify <technology
name> in the 'Find Toolbar Item' dialog |
Right-click icon for profiled
element/connector/feature | Synchronize
Stereotype

Synchronize objects using the Technology
Toolbox pages

Ste
p

Action

1 On the 'Synch Profiled Elements' dialog, click on the
OK button.
All elements, features or connectors created with the
selected profiled object icon are updated, across the
model.
The items that have been modified, and the changes
that were made, are listed in the 'Actions' field.

2 When the update is complete, click on the Cancel
button.

(c) Sparx Systems 2024 Page 685 of 729

Unified Modeling Language (UML) 16 October, 2024

Alternative - Single Object Update

You can quickly synchronize the tags and constraints of a
single element in a diagram. To do this:

Ste
p

Action

1 Drag the updated profiled element from the Diagram
Toolbox page onto the element in the diagram.
A short context menu displays.

2 Select the 'Apply «stereotype name»' menu option.
The diagram element is updated with any tags and
constraints from the profiled element that it does not
already have.

Notes

The 'Synchronize Stereotype' context menu option·

displays when a Diagram Toolbox icon represents a
profiled element or a connector; it does not display for
basic UML object icons

You can review any changes by displaying the element·

'Properties' dialog, opening the 'Tags' tab and clicking on
an appropriate profiled element

Removing a stereotype from an object automatically·

(c) Sparx Systems 2024 Page 686 of 729

Unified Modeling Language (UML) 16 October, 2024

removes any Tagged Values assigned by that stereotype

(c) Sparx Systems 2024 Page 687 of 729

Unified Modeling Language (UML) 16 October, 2024

Extension Stereotypes
Enterprise Architect supports a formidable range of
modeling languages and platforms that have defined sets of
elements and connectors. However, Enterprise Architect
provides the ability for the modeler to create an extensive
set of other elements, typically by adding a stereotype to an
existing element. You, as a modeller, are free to create your
own new elements by using such facilities as stereotypes
and Shape Scripts. It is common for communities of users to
create and share a common set of stereotypes for a particular
domain.

Analysis Stereotypes·

Boundary·

Composite Elements·

Control·

Entity·

Event·

Feature·

Hyperlink·

Image·

N-Ary Association·

Packaging Component·

Process·

Requirements·

Risk·

(c) Sparx Systems 2024 Page 688 of 729

https://sparxsystems.com/enterprise_architect_user_guide/17.0/analysisstereotypes.htm
https://sparxsystems.com/enterprise_architect_user_guide/17.0/boundary.htm
https://sparxsystems.com/enterprise_architect_user_guide/17.0/compositeelements.htm
https://sparxsystems.com/enterprise_architect_user_guide/17.0/control.htm
https://sparxsystems.com/enterprise_architect_user_guide/17.0/entity.htm
https://sparxsystems.com/enterprise_architect_user_guide/17.0/event.htm
https://sparxsystems.com/enterprise_architect_user_guide/17.0/feature.htm
https://sparxsystems.com/enterprise_architect_user_guide/17.0/hyperlinks.htm
https://sparxsystems.com/enterprise_architect_user_guide/17.0/image_element.htm
https://sparxsystems.com/enterprise_architect_user_guide/17.0/n-aryassociation.htm
https://sparxsystems.com/enterprise_architect_user_guide/17.0/packagingcomponent.htm
https://sparxsystems.com/enterprise_architect_user_guide/17.0/process.htm
https://sparxsystems.com/enterprise_architect_user_guide/17.0/requirements.htm
https://sparxsystems.com/enterprise_architect_user_guide/17.0/risk_element.htm

Unified Modeling Language (UML) 16 October, 2024

Screen·

Task·

Test Case·

Database Tables·

UI Control Elements·

Web Stereotypes·

(c) Sparx Systems 2024 Page 689 of 729

https://sparxsystems.com/enterprise_architect_user_guide/17.0/screen.htm
https://sparxsystems.com/enterprise_architect_user_guide/17.0/task_element.htm
https://sparxsystems.com/enterprise_architect_user_guide/17.0/test_case.htm
https://sparxsystems.com/enterprise_architect_user_guide/17.0/tables_and_columns.htm
https://sparxsystems.com/enterprise_architect_user_guide/17.0/uielement.htm
https://sparxsystems.com/enterprise_architect_user_guide/17.0/webstereotypes.htm

Unified Modeling Language (UML) 16 October, 2024

Boundary

A Boundary is a stereotyped Object that models some
system boundary, typically a user interface screen. You can
also create a Boundary as a stereotyped Class. Boundary
elements are used in analysis to capture user interactions,
screen flows and element interactions (or 'collaborations').

A Boundary is used in the conceptual phase to capture users
interacting with the system at a screen level (or some other
boundary interface type). It is often used in Sequence and
Robustness (Analysis) diagrams. It is the View in the
Model-View-Controller Pattern.

Toolbox icon

(c) Sparx Systems 2024 Page 690 of 729

Unified Modeling Language (UML) 16 October, 2024

Create a Boundary
There are two ways in which you can create a Boundary on
a diagram.

Create a Boundary element as a stereotyped
Class

Ste
p

Action

1 Insert a new Class.

2 Right-click on the element and select the 'Properties'
option; the 'Properties' dialog displays.

3 In the 'Stereotype' field, type the value 'boundary'.

4 Click on the Apply button and the OK button.

5 Press Ctrl+S to save the diagram.

Create a Boundary element as an Object

Ste Action

(c) Sparx Systems 2024 Page 691 of 729

Unified Modeling Language (UML) 16 October, 2024

p

1 In the Diagram Toolbox, click on to display the
'Find Toolbox Item' dialog and specify 'Analysis'.

2 From the 'Analysis Elements' page, drag the
'Boundary' icon onto the diagram.

(c) Sparx Systems 2024 Page 692 of 729

Unified Modeling Language (UML) 16 October, 2024

Control

A Control is a stereotyped Object that models a controlling
entity or manager. A Control organizes and schedules other
activities and elements, typically in Analysis (including
Robustness), Sequence and Communication diagrams. It is
the controller of the Model-View-Controller Pattern.

You can also create a Control as a stereotyped Class.

Toolbox icon

(c) Sparx Systems 2024 Page 693 of 729

Unified Modeling Language (UML) 16 October, 2024

Create a Control Element

Create a Control element on a diagram as an
Object

Ste
p

Action

1 In the Diagram Toolbox, click on to display the
'Find Toolbox Item' dialog and specify 'Analysis'.

2 From the Analysis Elements page, drag the Control
icon onto the diagram.

Create a Control element as a stereotyped
Class

Ste
p

Action

1 Insert a new Class.

2 Right-click on the element and select the 'Properties'
option; the 'Properties' dialog displays.

(c) Sparx Systems 2024 Page 694 of 729

Unified Modeling Language (UML) 16 October, 2024

3 In the 'Stereotype' field, type the value 'control'.

4 Click on the Apply and OK buttons.

5 Press Ctrl+S to save the diagram.

(c) Sparx Systems 2024 Page 695 of 729

Unified Modeling Language (UML) 16 October, 2024

Entity

An Entity is a stereotyped Object that models a store or
persistence mechanism that captures the information or
knowledge in a system. It is the Model in the
Model-View-Controller Pattern.

You can also create an Entity as a stereotyped Class. See the
Create an Entity topic.

Toolbox icon

(c) Sparx Systems 2024 Page 696 of 729

Unified Modeling Language (UML) 16 October, 2024

Create an Entity

Create an Entity element on a diagram as an
Object

Ste
p

Action

1 In the Diagram Toolbox, click on to display the
'Find Toolbox Item' dialog and specify 'Analysis'.

2 From the Analysis Elements page, drag the Entity
icon onto the diagram.

Create an Entity element as a stereotyped
Class

Ste
p

Action

1 Insert a new Class.

2 Right-click on the element and select the 'Properties'
option; the 'Properties' dialog displays.

(c) Sparx Systems 2024 Page 697 of 729

Unified Modeling Language (UML) 16 October, 2024

3 In the 'Stereotype' field, type the value 'entity'.

4 Click on the Apply and OK buttons.

5 Press Ctrl+S to save the diagram.

(c) Sparx Systems 2024 Page 698 of 729

Unified Modeling Language (UML) 16 October, 2024

Hyperlink
You can place a Hyperlink element onto a diagram. This
element is a type of text element, but one that can contain a
pointer to a range of objects such as associated document
files, web pages, Help, model features and even other
Enterprise Architect model files. When you double-click on
the element, Enterprise Architect executes the link.

To add a Hyperlink element, either:

Drag the 'Hyperlink' icon from the 'Common' page of the·

Diagram Toolbox onto the diagram, or

Click on the 'Hyperlink' icon in the UML Elements·

toolbar and then click on the diagram

Configure the Hyperlink

When you add the Hyperlink to the diagram, you
immediately type in some link text, click off the element
and then double-click on the element. The 'Hyperlink
Details' dialog displays. If you want to display the
information in a more readable layout, you can resize the
dialog.

Field/Button Action

Type Click on the drop-down arrow and select
the type of object to link to.

(c) Sparx Systems 2024 Page 699 of 729

Unified Modeling Language (UML) 16 October, 2024

In many cases, when you select the type a
browser dialog displays for that type of
object, from which you select the actual
object to link to.

Action This field is enabled when the dialog first
displays with 'Type' defaulted to 'File', or
if you select 'File' from the 'Type'
drop-down list.
The field defaults to the value 'Open', to
display the file contents in read-only
mode. If you want the user to be able to
change the file contents, click on the
drop-down arrow and select the value
'Edit'.
The system automatically selects the
appropriate editor. For example, if you
hyperlink to a .rtf file, you can view the
file in whichever internal viewer is
appropriate; however, you cannot edit .rtf
files in Enterprise Architect, so the file
always opens in the Windows default .rtf
editor.

Alias This field displays the text you typed in
as the link text when you created the
element on the diagram. If you want to
change this text, overtype it with the new
text.

(c) Sparx Systems 2024 Page 700 of 729

Unified Modeling Language (UML) 16 October, 2024

If you do not provide an Alias, either the
text defaults to the link itself, or (for
certain link targets such as a Matrix
Profile) the system generates a simple
text instruction.

Hide Icon If you prefer to display only the link text,
without the icon, select this checkbox.

Notes Type in any notes you might require to
explain the hyperlink. These notes are not
displayed in the element on the diagram.
You can format the notes using the Notes
toolbar.

Address If a browser displayed on input to the
'Type' field, when you select the object to
link to the object name or location
displays in this field. (If the object is not
accessed through a path or 'address', the
field is generally not labeled.)
If no browser displayed or if you want to
change the linked object to another of the
same type, either type in the object
location or click on the button to
display the appropriate browser, and
select the target object.

(c) Sparx Systems 2024 Page 701 of 729

Unified Modeling Language (UML) 16 October, 2024

Notes

If required, you can create a number of empty hyperlinks·

to complete later; if you then double-click on an empty
hyperlink, the 'Hyperlink Details' dialog displays and you
can enter the details

When hovering the cursor over the hyperlink, the standard·

hyperlink element buttons will also be displayed in a
pop-up toolbar, allowing you to display the 'Properties'
dialog, find the element in diagrams, find the element in
the Browser window, or open the Linked Document
attached to the element

(c) Sparx Systems 2024 Page 702 of 729

Unified Modeling Language (UML) 16 October, 2024

Image

An Image is a System Boundary element that automatically
displays first the Boundary 'Properties' dialog and then the
'Select Alternate Image' dialog to change its representation
to an imported image. You can use it as an icon for an
element or group of elements, or as a diagram background.

Image elements are available from the 'Common' page of the
Toolbox.

Toolbox icon

(c) Sparx Systems 2024 Page 703 of 729

Unified Modeling Language (UML) 16 October, 2024

Process

A Process is an Activity element with the stereotype
process, which expresses the concept of a business process.
Typically this involves inputs, outputs, workflow, goals and
connections with other Processes. The Process element is
typically used in Analysis diagrams.

Business processes typically range across many parts of the
organization and span one or more systems.

Toolbox icon

(c) Sparx Systems 2024 Page 704 of 729

Unified Modeling Language (UML) 16 October, 2024

Risk

Risk elements are not the same as the risks that you assign
to an element through the Risks window. Such risks are
internal to the selected element, whilst a Risk element can
be associated with a number of elements, either in a logical
group or totally separate.

Risk elements are available from the 'Requirements' page of
the Toolbox.

Using the Risk element

A Risk is defined as the effect of uncertainty on objectives.
In Project Management, it is necessary to try to identify
risks and assess:

The likelihood that they have a negative effect on a·

project and

How large that effect is likely to be·

Those risks with a high probability of occurrence and/or a
large impact on the project can be mitigated.

A Risk Management process might consist of these five
steps:

Identify risks and represent each with a Risk element.1.

Identify which elements (such as Components, Use Cases2.
or Features) are vulnerable to each risk; you might decide
to create «trace» dependencies from these elements to the

(c) Sparx Systems 2024 Page 705 of 729

Unified Modeling Language (UML) 16 October, 2024

Risk elements.

Assess the likelihood and magnitude of the risks.3.

Identify ways to mitigate the risks.4.

Prioritize the risk reduction measures based on their5.
likelihood, magnitude and ease of mitigation.

Notes

Risk elements can be displayed with or without an·

identifying 'R' in the top right corner of the element; to
toggle the display of this letter, select or deselect the
'Show stereotype icon for requirements' checkbox on the
'Preferences' dialog, 'Objects' page

Toolbox icon

(c) Sparx Systems 2024 Page 706 of 729

Unified Modeling Language (UML) 16 October, 2024

Task

A Task element represents a task that must be performed in
relation to an element. Through the Task element you can
assign resources to the task itself, rather than just to the
parent element.

You can create a hierarchy or tree structure of Task
elements to break a large task into separate parts and assign
different resources to each part.

Toolbox icon

(c) Sparx Systems 2024 Page 707 of 729

Unified Modeling Language (UML) 16 October, 2024

Test Element

A Test element represents a step in the Basic, Alternate and
Exception Paths of a Scenario created in a Use Case or other
element. The Test element is generated within a Test Case
element.

Each Test element has a status band at the left end, which is
color coded to visually represent the value of the 'Status'
field in the element properties. The element has an
identifying 'T' in the top right corner, which you can hide if
you prefer not to show it.

Toolbox icon

Notes

To toggle display of the letter 'T' in the top right corner of·

the element, select or deselect the 'Show stereotype icon
for requirements' checkbox on the 'Preferences' dialog,
'Objects' page

(c) Sparx Systems 2024 Page 708 of 729

Unified Modeling Language (UML) 16 October, 2024

Test Case

A Test Case is a stereotyped Use Case element. You might
use it to extend the facilities of the Test Cases window, by
applying element properties and capabilities to the tests of a
feature represented by another element or - more
appropriately - set of elements. That is, you can define in
one go, in the Test Cases window for the Test Case element,
the details of the tests that apply to each of several elements,
instead of recording the details separately in each element.

Within the Test Case element properties you can define test
requirements and constraints, and associate the test with test
files. You can also link the element to Document Artifacts
or (in the Corporate, Unified and Ultimate Editions) directly
to a Linked Document, such as a Test Plan.

The Test Case element enables you to give greater visibility
to tests, in the Browser window, Diagram List, Package
Browser, Model Search, Relationship Matrix, Traceability
window and reports.

The Test Case element is available through the 'Use Case'
and 'Maintenance' pages of the Diagram Toolbox.

Toolbox icon

(c) Sparx Systems 2024 Page 709 of 729

Unified Modeling Language (UML) 16 October, 2024

Design Patterns
A Design Pattern is a template for solving commonly
recurring design problems. A Design Pattern consists of a
series of elements and connectors that can be reused in a
new context. The advantage of using these Patterns is they
have been tested and refined in a number contexts and so are
typically robust solutions to common problems.

Enterprise Architect provides extensive support for both
creating and using Design Patterns. Patterns are typically
created by experienced modelers who can see how to distil
an abstract problem and solution from a concrete model.
The Pattern user must be able to identify the correct Pattern
to use and must select appropriate names for the elements of
the Pattern in the context.

Patterns can be saved from any diagram, creating an XML
file that describes the Pattern; these files can be imported
into a repository as a resource that can then be used in any
context.

Sparx-Created GoF Patterns

To help you start using Design Patterns in Enterprise
Architect, Sparx Systems provides you with the Patterns
originally published in the book Design Patterns - Elements
of Reusable Object-Oriented Software by Gamma et al.,
referred to as the 'Gang of Four' or GoF Patterns. When the
GoF Technology is enabled, you can access these Patterns
through a set of Toolbox pages.

(c) Sparx Systems 2024 Page 710 of 729

Unified Modeling Language (UML) 16 October, 2024

Notes

You can transport all Patterns listed in the 'Resources' tab·

of the Browser window between projects, using the
'Settings > Model > Transfer > Export Reference Data'
and 'Import Reference Data' ribbon options

(c) Sparx Systems 2024 Page 711 of 729

Unified Modeling Language (UML) 16 October, 2024

Publish a Pattern
To publish a Design Pattern you first must model the Pattern
as a diagram within Enterprise Architect. This example
diagram was created from an example in the GoF book
Design Patterns - Elements of Reusable Object-Oriented
Software by Gamma et al.

Access

Ribbon With diagram open:
Specialize > Technologies > Publish
Technology > Publish Diagram as Pattern

(c) Sparx Systems 2024 Page 712 of 729

Unified Modeling Language (UML) 16 October, 2024

Define the Pattern File

Field/Button Action

Pattern Name Type the Pattern name.

Filename Type a directory path and .XML filename
to contain the published Pattern.

Category Type the Category under which the
Pattern should be listed in 'Patterns'
(required).

Version Type the Pattern version number.

Notes Type any notes on the Pattern.

Actions Select the appropriate checkboxes to
select the actions for the elements that are
contained in the Pattern; these actions are
performed when the Pattern is used.
The available actions are:

Create: Creates the Pattern element·

directly without modification
Merge: Merges the Pattern element·

(c) Sparx Systems 2024 Page 713 of 729

Unified Modeling Language (UML) 16 October, 2024

with an existing element, enabling the
existing element to take on the role of
the selected Pattern element
Instance: Creates the Pattern element as·

an instance of an existing element
Type: Creates the Pattern element types·

as an existing element
If your Pattern includes an Object
element, you would use 'Instance' to set
the classifier of the Object to one of the
Classes in the diagram onto which you
are dropping the Pattern.
If your Pattern includes a Property (Port
or Part) you would use 'Type' to set the
type of the Property to one of the Classes
in the diagram onto which you are
dropping the Pattern.

OK Click on this button twice to publish the
Pattern.
Once published, you can load the Pattern
into Enterprise Architect, into the
'Resources' tab of the Browser window.

Notes

In the Corporate, Unified and Ultimate Editions of·

(c) Sparx Systems 2024 Page 714 of 729

Unified Modeling Language (UML) 16 October, 2024

Enterprise Architect, if security is enabled you must have
'Manage Diagrams' permission to publish a diagram as a
Pattern

If your source diagram contains information flows, the·

'Information Items Conveyed' and 'Information Flows
Realized' data is not copied into the Pattern

To change the name of one of the elements, double-click·

on the element to display the 'Edit' dialog; from this
dialog you can also add comments detailing the element's
purpose

Patterns can not be published for Sequence diagrams·

(c) Sparx Systems 2024 Page 715 of 729

Unified Modeling Language (UML) 16 October, 2024

Save a Pattern as an Artifact
Enterprise Architect enables you to create a Pattern from
selected elements in a diagram, and store the Pattern as an
Artifact element in the model. You can then drop the
Artifact into any diagram in the model to recreate the stored
Pattern. This is similar to publishing a diagram as a Pattern,
except that :

Only the selected elements in the diagram are saved as a·

Pattern

The Pattern is saved in an Artifact in the model and not as·

an XML file in the file system

Save Diagram Elements as a Pattern in a
New Artifact

Follow the steps in this table.

Step Action

1 Open the appropriate diagram, hold down
the Ctrl key and click on each element
that you want to include in the Pattern.
You could also 'drag' across a set of
elements in the diagram to save as a
Pattern.

2 Right-click on one of the selected
elements and click on the 'Save Selected

(c) Sparx Systems 2024 Page 716 of 729

Unified Modeling Language (UML) 16 October, 2024

Elements as Pattern' option.
The 'Save Diagram Pattern in Artifact'
dialog displays.

3 If the 'Save Using' field does not show
the value 'New Artifact', click on the
drop-down arrow and select this value. If
this is the first Pattern Artifact in the
model, the field defaults to this value as
the only value it can have.

4 The 'Name' field defaults to the name of
parent diagram plus '_Pattern'. Either
leave this name or overtype it with your
preferred Pattern name.

5 The 'Save to' field defaults to the name of
the diagram's parent Package. Either
leave this Package name or click on the

 icon and browse for a different
Package under which to create the
Artifact.

(c) Sparx Systems 2024 Page 717 of 729

Unified Modeling Language (UML) 16 October, 2024

6 Click on the OK button to generate the
DiagramPattern stereotyped Artifact
under the selected Package. The selected
elements are saved as a Pattern within the
Artifact.

Apply Pattern from Artifact to a Diagram

Follow the steps in this table.

Step Action

1 Open the diagram into which you will
paste the Pattern from the Artifact.
The diagram must be in Graphical View,
and not in Internal Specification View,
Gantt View or List View.

2 Locate the required DiagramPattern
stereotyped Artifact in the Browser
window and drag it onto the open
diagram. New elements and connectors
are generated in the diagram from the
Pattern.

Update a Pattern in an Artifact

(c) Sparx Systems 2024 Page 718 of 729

Unified Modeling Language (UML) 16 October, 2024

There are two similar methods of updating a Pattern held in
an Artifact.

Method Description

1 Follow steps 1 and 2 in the Save Diagram
Elements as a Pattern in a New Artifact
table, then set the 'Save Using' field to
'Existing Artifact'.
Click on the 'Name' field and on the name
of the Pattern to update. The 'Save To'
field grays out, as it uses the Package
address of the existing Artifact.
Click on the OK button; the Artifact is
updated with the new Pattern of elements.

2 Open the diagram containing the
elements to make up the Pattern.
In the Browser window, click on the
DiagramPattern Artifact to update with a
new Pattern.
In the diagram, select the required
elements, then right-click and select the
'Save Selected Elements as Pattern'
option.
The 'Save Diagram Pattern in Artifact'
dialog displays with the 'Save Using' field
defaulted to 'Selected Artifact' and the
other two fields grayed out. The 'Name'

(c) Sparx Systems 2024 Page 719 of 729

Unified Modeling Language (UML) 16 October, 2024

field shows the name of the selected
Artifact.
Click on the OK button; the selected
Artifact is updated with the new Pattern
of elements.

Notes

In the Corporate, Unified and Ultimate Editions of·

Enterprise Architect, if security is enabled you must have
'Update Diagrams' permission to generate the Pattern from
the DiagramPattern stereotyped Artifact into a diagram

(c) Sparx Systems 2024 Page 720 of 729

Unified Modeling Language (UML) 16 October, 2024

Import a Model Pattern
Before being able to use a customized Pattern in your
model, you must first import the Pattern XML file into the
ModelPatterns directory in the Enterprise Architect install
path; it is then available from the 'Resources' tab of the
Browser window and optionally from the Toolbox.

Access

Use one of the methods outlined here to display the
'Resources' tab of the Browser window.

Within the 'Resources' tab of the Browser window,
right-click on 'Model Patterns | Import Model Pattern'.

Ribbon Start > All Windows > Design > General
. Browse > Resources
Explore > Portals > Windows > Explore
> Resources

Keyboard
Shortcuts

Alt+6

Import the Model Pattern

Ste Action

(c) Sparx Systems 2024 Page 721 of 729

Unified Modeling Language (UML) 16 October, 2024

p

1 On the 'Import Model Pattern' dialog, type in or
browse for the name of the XML file to import.

2 Select to import the file into either the model or the
user APPDATA location.

3 Click on the OK button to import the Pattern.
The imported Pattern is placed in the appropriate
category as defined in the XML file; if the category
does not already exist under 'Model Patterns', a new
one is created.

Patterns in MDG Technologies

A number of technologies provide their own Patterns, and
some technologies are designed principally as a vehicle for
making specific Patterns available to the model, such as the
technology for Gang of Four Patterns. Such Patterns are
provided through the 'Resources' tab of the Browser window
and the Diagram Toolbox pages for the technology. If you
want to use such Patterns, check that the appropriate
technology has been loaded and enabled in the model.

(c) Sparx Systems 2024 Page 722 of 729

Unified Modeling Language (UML) 16 October, 2024

Use a Pattern
Using a Design Pattern, you can rapidly create template
solutions for code structures that perform the same type of
task in other situations, and use items defined in the Pattern
with the model.

Access

Use one of the methods outlined here to display the
'Resources' tab of the Browser window.

Ribbon Start > All Windows > Design > General
> Browse > Resources
Explore > Portals > Windows > Explore
> Resources

Keyboard
Shortcuts

Alt+6

Use a Pattern previously imported into the
model

Ste
p

Action

(c) Sparx Systems 2024 Page 723 of 729

Unified Modeling Language (UML) 16 October, 2024

1 Open the diagram into which to add the Pattern.

2 Select the 'Resources' tab of the Browser window.

3 Expand the folder 'Patterns' and expand sub-folders
as necessary, until the Pattern you require is located.
You can view the Pattern details in read-only mode
by right-clicking on the name and selecting the
'View Pattern Details' option.

4 Either:
Select the 'Add Pattern to Diagram' context menu·

option or
Drag and drop the Pattern from the 'Resources' tab·

of the Browser window onto the diagram
The 'Add Pattern <pattern group> <pattern name> to
Diagram' dialog displays.

5 Work through the dialog, making selections as
required.
Once the appropriate selections have been made,
click on the OK button to import the Pattern into the
model, recreating the original diagram with new
GUIDs.

Change the default of the Pattern element

(c) Sparx Systems 2024 Page 724 of 729

Unified Modeling Language (UML) 16 October, 2024

Ste
p

Action

1 In the 'Add Pattern <pattern group> <pattern name>
to Diagram' dialog, ensure the option 'Import as
Package Fragment' is unchecked.

2 Select the individual element in the 'Pattern
Elements' panel.

3 Click on the button at the end of the item row to
display the 'Edit' dialog.
The specific method for changing the element name
is dependant upon the entry in the 'Action' column of
the 'Pattern Elements' panel.

4 If the 'Action' entry for the element is 'Create', then
in the 'Default' field in the 'Edit' dialog delete the
existing value and type your own, user-defined
value.
Click on the OK button.
The element default is updated on the 'Add Pattern...'
dialog.

5 If the 'Action' entry for the element is 'Merge', in the
'Edit' dialog click on the button to browse to an
existing element classifier.

(c) Sparx Systems 2024 Page 725 of 729

Unified Modeling Language (UML) 16 October, 2024

The 'Select <Item>' dialog displays.

6 Locate and select an existing element classifier.
You can restrict the number of choices by selecting
the elements from a specific namespace; to do this,
click on the 'In Namespace' drop-down arrow and
select a namespace.

(c) Sparx Systems 2024 Page 726 of 729

Unified Modeling Language (UML) 16 October, 2024

Add Pattern Dialog
The 'Add Pattern <pattern group> <pattern name> to
Diagram' dialog displays when you are using or editing a
Design Pattern element.

Reference

Option Action

Pattern
Elements

Access the individual elements contained
in the Pattern.
From here you can:

Select the action for the individual·

element (Create, Merge, Instance or
Type, as applicable for each element)
by clicking on the drop-down arrow, or
Modify the default of the Pattern·

element or - for a merged element -
choose the namespace, by clicking on
the button on the right of the Default
entry

Preview Displays a preview of the Pattern.

Use Auto
Names

Select this checkbox if you want to apply
the element auto-naming convention
defined for the project.

(c) Sparx Systems 2024 Page 727 of 729

Unified Modeling Language (UML) 16 October, 2024

Element
Notes

Display the comments that describe the
element in the Pattern.
Highlight an element in the 'Pattern
Elements' panel to view the notes.

Import as
Package
Fragment

Select this option to import the Pattern on
a new diagram instead of the current
diagram.
Click on the OK button. Enterprise
Architect will :

Create a new Package, with the same·

name as that of the Pattern, under the
currently selected Package in the
Browser window
Create a new diagram, with the same·

name as that of the Pattern, under this
Package
Import the Pattern into the new·

diagram

Notes

When the option 'Import as Package Fragment' is selected,·

the 'Pattern Elements' section and 'Use Auto Names'
option will become disabled

(c) Sparx Systems 2024 Page 728 of 729

Unified Modeling Language (UML) 16 October, 2024

(c) Sparx Systems 2024 Page 729 of 729

	Unified Modeling Language (UML)
	UML Diagrams
	UML Structural Models
	Class Diagram
	Composite Structure Diagram
	Properties

	Component Diagram
	Deployment Diagram
	Object Diagram
	Package Diagram
	Profile Diagram

	UML Behavioral Models
	Activity Diagram
	Use Case Diagram
	Example Use Case Diagram

	StateMachines
	Pseudostates
	Regions
	Create a Connection Point Reference

	StateMachine Table
	StateMachine Table Options
	StateMachine Table Operations
	Change StateMachine Table Position
	Change StateMachine Table Size
	Insert Trigger
	Insert/Change Transition
	Insert New State

	Reposition State or Trigger Cells
	Add Legend
	Find Cell in StateMachine Diagram
	StateMachine Table Conventions
	Export State Table To CSV File

	Example State-Trigger Table
	Example State-Next State Table
	StateMachine Table Simulation

	Timing Diagram
	Create a Timing Diagram
	Set a Time Range
	Edit a Timing Diagram
	Add and Edit State Lifeline
	Add States to a State Lifeline
	Edit States in a State Lifeline
	Delete States in a State Lifeline
	Edit Transitions In State Lifeline
	Add and Move Transitions

	Add and Edit Value Lifeline
	Add States In Value Lifeline
	Edit Transitions In Value Lifeline
	Configure Timeline - States
	Numeric Range Generator
	Configure Timeline - Transitions

	Time Intervals
	Create Time Intervals
	Compress Time Intervals
	Select Time Intervals
	Time Interval Operations

	Messages (Timing Diagram)
	Create a Timing Message

	Sequence Diagram
	Denote Lifecycle of an Element
	Layout of Sequence Diagrams
	Sequence Elements
	Messages (Sequence Diagram)
	Self-Message
	Call
	Message Examples
	Change the Timing Details
	General Ordering
	Asynchronous Signal Message

	Co-Region Notation

	Sequence Diagrams and Version Control
	Sequence Element Activations
	Lifeline Activation Levels
	Sequence Message Label Visibility
	Change the Top Margin
	Inline Sequence Elements

	Communication Diagram
	Communication Diagrams in Color
	Messages (Communication Diagrams)
	Create a Communication Message
	Re-Order Messages

	Interaction Overview Diagram

	UML Elements
	Behavioral Diagram Elements
	Action
	Action Types
	Variable Actions

	Local Pre/Post Conditions
	Class Operations in Diagrams
	Action Pin
	Assign Action Pins

	Activity
	Activity Notation
	Activity Parameter Nodes
	Activity Partition

	Actor
	Central Buffer Node
	Choice
	Combined Fragment
	Create a Combined Fragment
	Interaction Operators

	Constraint
	Datastore
	Decision
	Diagram Frame
	Gate
	Endpoint
	Entry Point
	Event
	Exception
	Expansion Node
	Expansion Region
	Exit Point
	Final
	Flow Final
	Fork/Join
	Fork
	Join

	History
	Initial
	Interaction
	Interaction Occurrence
	Interruptible Activity Region
	Junction
	Lifeline
	Merge
	Message Endpoint
	Message Label
	Note
	Object Node
	Partition
	Receive
	Region
	Send
	State
	Composite State

	State/Continuation
	Continuation
	State Invariant

	State Lifeline
	StateMachine
	Structured Activity
	Structured Node
	Sequential Node
	Loop Node
	Conditional Node

	Synch
	System Boundary
	System Boundary Properties

	Terminate
	Trigger
	Use Case
	Use Case Extension Points

	Value Lifeline

	Structural Diagram Elements
	Artifact
	Create File Artifacts
	Using the Checklist and Audited Checklist Artifacts
	Using the Reading List Artifact
	Document Artifact
	Custom Table Artifact

	Class
	Active Classes
	Parameterized Classes (Templates)

	Collaboration
	Collaboration Use
	Component
	Data Type
	Deployment Specification
	Device
	Enumeration
	Execution Environment
	Expose Interface
	Information Item
	Interface
	Node
	Object
	Run-time State
	Object State

	Package
	Packaging Component
	Part
	Add Property Value

	Port
	Add a Port to an Element
	Inherited and Redefined Ports
	Ports as Owners of Parts
	Properties Window - Property, Redefined/Subsetted

	Primitive
	Signal
	Reception
	Properties Window for Receptions

	UML Connectors
	Abstraction
	Aggregation
	Change Aggregation Connector Form

	Assembly
	Association
	Qualifiers
	Qualifiers Dialog

	Association Class
	Connect New Class to Existing Association

	Communication Path
	Composition
	N-Ary Association
	Connector
	Control Flow
	Delegate
	Dependency
	Apply a Stereotype

	Deployment
	Extend
	Generalization
	Include
	Information Flow
	Using Information Flows
	Convey Information on a Flow
	Realize an Information Flow

	Interrupt Flow
	Manifest
	Message
	Nesting
	Notelink
	Object Flow
	Object Flows in Activity Diagrams

	Occurrence
	Package Import
	Package Merge
	Realization
	Recursion
	Role Binding
	Represents
	Representation
	Substitution
	Template Binding
	Parameter Substitution

	Trace
	Transition
	Internal Transition

	Usage
	Use

	UML Stereotypes
	Apply Stereotypes
	Stereotype Selector
	Stereotype Visibility
	Standard Stereotypes
	Stereotypes with Alternative Images
	Custom Stereotypes

	Extending UML
	Using UML Profiles
	Add Profile Objects to a Diagram
	Tagged Values in Profiles
	Synchronize Tagged Values and Constraints

	Extension Stereotypes
	Boundary
	Create a Boundary

	Control
	Create a Control Element

	Entity
	Create an Entity

	Hyperlink
	Image
	Process
	Risk
	Task
	Test Element
	Test Case

	Design Patterns
	Publish a Pattern
	Save a Pattern as an Artifact
	Import a Model Pattern
	Use a Pattern
	Add Pattern Dialog

