SIPARX

SYSTEMS

ENTERPRISE ARCHITECT

Software Engineering

Author: Sparx Systems
Date: 16/10/2024
Version: 17.0

CREATED WITH ENTE[RPlFFISE

Table of Contents

Software Engineering

Getting Started

Example Diagram

11

Integrated Development

12

Feature Overview

14

Generate Source Code

16

Generate a Single Class

18

Generate a Group of Classes

19

Generate a Package

20

Update Package Contents

22

Synchronize Model and Code

24

Namespaces

25

Importing Source Code

26

Import Projects

28

Import Source Code

30

Notes on Source Code Import

31

Import Resource Script

33

Import a Directory Structure

35

Import Binary Module

37

Classes Not Found During Import

38

Editing Source Code

39

Languages Supported

42

Configure File Associations

43

Compare Editors

44

Code Editor Toolbar

45

Code Editor Context Menu

48

Create Use Case for Method

51

Code Editor Functions

53

Function Details

54

Intelli-sense

57

Find and Replace

59

Search in Files

62

Find File

65

Search Intelli-sense

67

Code Editor Key Bindings

69

Application Patterns (Model + Code)

73

MDG Integration and Code Engineering

75

Behavioral Model Code Generation

76

Code Generation - Activity Diagrams

79

Code Generation - Interaction Diagrams

81

Code Generation - StateMachines

82

Legacy StateMachine Templates

86

Java Code Generated From Legacy StateMachine Template
StateMachine Modeling For HDLs

88

94

Win32 User Interface Dialogs

96

Modeling Ul Dialogs

98

Import Single Dialog from RC File

100

Import All Dialogs from RC File

Export Dialog to RC File

Design a New Dialog

Gang of Four (GoF) Patterns

ICONIX

Configuration Settings

Source Code Engineering Options

101
102
103
106
108
110
111

Code Generation Options

113

Import Component Types

Source Code Options

115
116

Options - Code Editors

Editor Language Properties

Options - Object Lifetimes

Options - Attribute/Operations

Modeling Conventions

ActionScript Conventions

Ada 2012 Conventions

C Conventions

118
120
122
123
125
127
129
132

Object Oriented Programming In C

C# Conventions

C++ Conventions

Managed C++ Conventions

134
136
140
143

C++/CLI Conventions

Delphi Conventions

Java Conventions

Aspect) Conventions

144
146
148
150

PHP Conventions

Python Conventions

151
153

SystemC Conventions

VB.NET Conventions

Verilog Conventions

154
156
159

VHDL Conventions

Visual Basic Conventions

Language Options

161
164
166

ActionScript Options - User

ActionScript Options - Model

168
169

Ada 2012 Options - User

Ada 2012 Options - Model

ArcGIS Options - User

ArcGIS Options - Model

C Options - User

C Options - Model

C# Options - User

170
171
172
173
174
175
177

C# Options - Model

C++ Options - User

C++ Options - Model

178
179
180

Delphi Options - User

Delphi Options - Model

182
183

Delphi Properties

184

Java Options - User

Java Options - Model

185
186

MySQL Options - User

188

MySQL Options - Model 189
PHP Options - User 190
PHP Options - Model 191
Python Options - User 192
Python Options - Model 193
SystemC Options - User 194
SystemC Options - Model 195
Teradata Options - User 196
Teradata Options - Model 197
VB.NET Options - User 198
VB.NET Options - Model 199
Verilog Options - User 200
Verilog Options - Model 201
VHDL Options - User 202
VHDL Options - Model 203
Visual Basic Options - User 204
Visual Basic Options - Model 205
MDG Technology Language Options 206
Reset Options 207
Set Collection Classes 208
Example Use of Collection Classes 210
Local Paths 213
Local Paths Dialog 214
Language Macros 216
Developing Programming Languages 218
Code Template Framework 220
Code Template Customization 221
Code and Transform Templates 222
Base Templates 224
Export Code Generation and Transformation Templates 227
Import Code Generation and Transformation Templates 228
Synchronize Code 229
Synchronize Existing Sections 231
Add New Sections 232
Add New Features and Elements 233
The Code Template Editor 234
Create New Custom Template 236
Code Template Syntax 237
Literal Text 238
Variables 239
Macros 242
Template Substitution Macros 244
Field Substitution Macros 246
Substitution Examples 247
Attribute Field Substitution Macros 249

Class Field Substitution Macros 251

Code Generation Option Field Substitution Macros 254
Connector Field Substitution Macros 258
Constraint Field Substitution Macros 262

Effort Field Substitution Macros 263

File Field Substitution Macros

File Import Field Substitution Macros

264
265

Link Field Substitution Macros

Linked File Field Substitution Macros

Metric Field Substitution Macros

Operation Field Substitution Macros

Package Field Substitution Macros

266
268
269
270
272

Parameter Field Substitution Macros

Problem Field Substitution Macros

Requirement Field Substitution Macros

273
274
275

Resource Field Substitution Macros

Risk Field Substitution Macros

Scenario Field Substitution Macros

276
277
278

Tagged Value Substitution Macros

279

Template Parameter Substitution Macros

281

Test Field Substitution Macros

282

Function Macros

Control Macros

List Macro

Branching Macros

Synchronization Macros

283
289
290
292
294

The Processing Instruction (Pl) Macro

295

Code Generation Macros for Executable StateMachines
EASL Code Generation Macros

296

EASL Collections

EASL Properties

Call Templates From Templates

306
309
312
319

The Code Template Editor in MDG Development

320

Create Custom Templates

321

Customize Base Templates

323

Add New Stereotyped Templates

Override Default Templates

324
326

Grammar Framework

Grammar Syntax

Grammar Instructions

Grammar Rules

327
328
329
330

Grammar Terms

Grammar Commands

331
332

AST Nodes

334

Editing Grammars

Parsing AST Results

Profiling Grammar Parsing

342
344
345

Macro Editor

Example Grammars

346
347

Code Analyzer

348

Code Miner Framework

357

Code Miner Libraries

359

Creating a New Code Miner Database

Code Miner Queries

362
367

Code Miner Query Language (mFQL)

368

The mFQL Language

369

Set Extraction

377

Set Traversal

379

Set Joining

381

Sparx Intel Service

383

Sparx Intel Service Configuration

Sparx Intel Service Automatic Update

384
389

Service Configuration

Client Configuration - Configuring Enterprise Architect to Use a Code Miner Service

392
393

Software Engineering

Software Engineering

16 October, 2024

Create and Manage Effective and Productive Structural and Behavioral Models of Software

Software engineering is the discipline of designing, implementing and maintaining software. The process of software
engineering starts with requirements and constraints as inputs, and results in programming code and schemas that are
deployed to a variety of platforms, creating running systems.

@ Start Design [WEVSN Develop Publish Simulate Specialize ® Perspective ™
[5] = = bi Filte Sweeper Show Direction
a Y @l E ODE D i I:l Defaultstyle = B - Sl Es Filtering Off - =
* 1 Pan and Zoom HV Lock Perpendicular Lines
&1 P
Search Portals | Appearance Options Select Save 2 o
= B ore " - Q- B~ = bisgram Layout - Presentation
Explore Diagram Style Alignment Tools Order Processing o x
g » J Sending Signals. Activity Diagram € 2B Order Processing. Class Disgram
% @start Page | & Sending Signals X)
This action sends the This action sends the Simulation
MySignal event. MySignal event.
A MultipleQrders Process Order
Y oo oo
_ | Action1. R | ||
= Action5 e - SR,
= Mysignal E
Order o x
€ 2 Order. Class Diagram
-
- javax.ejb.E1BObject
. Javar ejb EXHome +ElBRemotelnterfaces
Activitylnitial Order
+<EIBEntityHomelnterfaces {abstract]
OrderHome
{abstract} | — - - —-»{+ checkForOutstandingOrders(): void
4 create(Date, String, String): Order 7“”2";;;’:;"tgjwi .
+ findByPrimaryKey(OrderPK): Ordk
indB yPrimarykey(OrderPK): Order + setdeliverylnstructions(String): void
i T + setorderNumber(String): void
h
} o uproperty gets
| } + getdate(): Date
£ ECGISEA 1 | . + getdeliveryinstructions(): String
o % vz] M [orgsparjavaexample EAPFileFiter | | EEprimankey | cHERealizstiome: + getorderNumber(): String
4 (3 javaexample 27 public boolean accept(File theFil i 1‘ ‘.o_‘
4 B EnprileFilter 28 { Py e if th | ! o EJERH‘EE.,WMEE{\
I 29 Accept files if they are a I/ .
[acceptiFile)] \ i o =]
’_ . 30 if (theFile.isDirectory()) ¥ d‘
¥ getDescription() 31 return true; java.io.Serializable Javax.cjb.EntityBean |
32 E= <EJBImplementations -
33 String convertedFileName = the = OrderBean
34 return convertedFileName.endsy [+ orderD:int
gg } & OrderPK(int) ‘ = jb.EntityContext
+ hashCode): int - oroel
1] 37 @verride L I o =
. B I S S 'K 4
Class Did Al — -

Enterprise Architect has a rich set of tools and features that assist Software Engineers to perform their work efficiently
and reduce the number of errors in implemented solutions. The features include design tools to create models of
software, automated code generation, reverse engineering of source code, binaries and schemas, and tools to synchronize
source code with the design models. The programming code can be viewed and edited directly in the integrated Code
Editors within Enterprise Architect, which provide Intelli-sense and other features to aid in coding.

Another compelling aspect of the environment is the ability to trace the implementation Classes back to design elements
and architecture, and then back to the requirements and constraints and other specifications, and ultimately back to
stakeholders and their goals and visions.

Enterprise Architect supports a wide range of programming languages and platforms and provides a lightweight and
seamless integration with the two most prevalent Integrated Development Environments: Visual Studio and Eclipse. In
addition there is a fully featured Execution Analyzer that allows the Software Engineer to design, build debug and test
software modules right inside Enterprise Architect.

Facilities
Facility Description

Discover the tightly Integrated Development Environment with outstanding tools
and functionality.

Development Tools

(c) Sparx Systems 2024 Page 7 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Code, Build and Debug Model, develop, debug, profile and manage an application from within the
modeling environment.

Visual Analysis of Understand your code base by visually analyzing running code. Use Test Points,
Executing Code profiling and automated diagram generation.
Generate Source Code Explore some of the ways to generate source code for a single Class, a selection of

Classes, or a whole Package. Generate from structural or behavioral models.

Importing Source Code Examine existing systems by importing source code into Enterprise Architect. View
and modify dialog definitions. Synchronize the model with the latest updates to
o source code.

Q

(c) Sparx Systems 2024 Page 8 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Getting Started

Enterprise Architect offers a comprehensive suite of tools and features designed to enhance the productivity and
accuracy of Software Engineers. These tools assist in creating software models, generating code automatically, reverse
engineering source code and schemas, and synchronizing code with design models.

Configuration Settings

Selecting the Perspective

Enterprise Architect partitions the tool's extensive features into Perspectives, which ensures that you can focus on a
specific task and work with the tools you need without the distraction of other features. To work with Software Model
features you first need to select one of these Perspectives:

The Software Engineering Set:
E<perspective name> > Software Engineering > Code Engineering
E<perspective name> > Software Engineering > GoF Patterns

E<perspective name> > Software Engineering > ICONIX

The UX Design Set:

E<perspective name> > UX Design > Win 32 Ul Models

Setting the Perspective ensures that the Case Management Model and Notation diagrams, their tool boxes and other
features of the Perspective will be available by default.

Example Diagram

An example diagram provides a visual introduction to the topic and allows you to see some of the important elements
and connectors that you use to specify or describe classes for the visualization of software and the forward and reverse
engineering to and from a wide range of programming languages.

Integrated Development

In this topic you will learn how to use the fully featured integrated development environment. You will learn how to
create structural and behavioral models of software artifacts in a rich code editor, generate and reverse engineer code,
customize the way code is generated, run analyzer scripts to optimize code, use the debugger and set units test and much
more.

Behavioral Models

In this topic you will learn how to generate code for software, system and hardware description languages directly from

(c) Sparx Systems 2024 Page 9 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

behavioral diagrams including: StateMachine, Sequence and Activity Diagrams. This will add new dimensions and
precisions to the way you work with software and engineering systems.

Gang of Four (GoF) Patterns

This topic introduces the renowned twenty-three design patterns collected together as the Gang of Four (GoF) patterns
which refers to their four authors. You will have at hand the solutions to common problems facing software engineers
and be able to inject these patterns into your own models adding to the quality and rigor to your software systems.

Win32 User Interface Dialogs

In this topic you will learn how to work with Enterprise Architect's User Interface modeling capability that allows you to
model user interface screens using Win32® controls. The models can be forward or reverse engineered and can also
provide an interface for StateMachine and Activity diagram simulation, allowing them to receive and process user input.

Code Template Framework

In this topic you will learn how to work with the Code Template Framework which governs how models and converted
to code. There are a standard set of templates but you can extended these to create your own templates and to generate
code to suit your needs. There are also templates that control transformations and the generation of Database Definition
Language (DDL.

Grammar Framework

In this topic you will learn how to create a grammar to convert an unsupported programming language into a UML
model. Enterprise Architect has built in support for a wide range of programming languages but if you need to work with
an unsupported language you can use the Grammar Framework to write your own parser. The grammar is used to reverse
engineer programming code in the form of text and is the direct compliment of the Code Template Framework which you
would you to specify how a UML model for an unsupported language is converted to code.

Code Miner Framework

In this topic you will learn how to work with a database of source code which provides access to the data hidden within
source code in a timely and effective manner. Source code is parsed creating a tree structure which can be used to
analyze program structure, calculate metrics, trace relationships and even perform refactoring.

(c) Sparx Systems 2024 Page 10 of 395 Created with Enterprise Architect

Software Engineering

16 October, 2024

Example Diagram

Software diagrams allow you to model the structure and behavior of software including User Interfaces. Enterprise
Architect has at its core fundamental support for modelling software and the tool supports a wide range of programming
languages and paradigms. In this diagram we see Classes used to model an online shop, including Classes that contain
compartments for Attributes, Operations and Properties. An Enumeration has also been used to model Order Status.

Account

billingAddress: string
closed: bool
deliveryAddress: string
emailAddress: string
name: string

-basket

ShoppingBasket

+ o+ o+ o+ o+ o+

T i

«p

createNewAccount(): void
loadAccountDetails(): void
markAccountClosed(): void
retrieveAccountDetails{): void
submitNewAccountDetails(): void
validateUser(string, string)
roperty»

basket(): ShoppingBasket
billingAddress(): string
closed(): bool
deliveryAddress(}: string
emailAddress(): string
name(): string

Order{): Order

-account

«enumeration»
Orderstatus

new
packed

dispatched
delivered

closed

-status

Order

-account

-history

Transaction

date: Date
deliveryinstructions: string
orderNumber: string

date: Date
orderNumber: string

+ loadAccountHistory(): void
loadOpenOrders(): void

+

«property»
account(): Account
date(): Date
Lineltem(): Lineltem
orderNumber(): string

+ o+ + o+

+

+ + o+ + o+

checkForOutstandingOrders(): void

«property»

date(): Date
deliverylnstructions(): string
Lineltem(): Lineltem
orderNumber(): string
status(): OrderStatus

Lineltem

quantity: int

shoppingBasketNumber: string

+ o+ o+ o+

+

addLineltem(): void

createNewBasket(): void

deleteltem(): void

processOrder(): void
«property»

Lineltem(): Lineltem

Stockltem

Author: string
catalogNumber: string
costPrice: number
listPrice: number
title: string

«property»

«property»
+ item(): Stockltem
+ quantity(): int

Author(): string
cataloghumber(): string
costPrice(): number

-item listPrice(): number

+ 4+ o+ o+ +

title(): string

(c) Sparx Systems 2024

Page 11 of 395

Created with Enterprise Architect

Software Engineering 16 October, 2024

Integrated Development

Enterprise Architect provides an unmatched set of tools and features for the Software Engineer, to assist in the process of
creating robust and error free software systems. The engineer can start by defining the architecture and ensuring that it
traces back to the requirements and specification. Technology neutral models can be transformed to target a
comprehensive range of programming languages. The Model Driven Development Environment fits the bill for various
technologies.

Features

Development Tools e Model driven development with best-in-class UML tools
e Generate and reverse engineer code
e Customize code generation with templates
e Analyzer Scripts to manage your applications
e Code editors to author the code base
e Debuggers to investigate behavior
e Profilers to visualize behavior
e Analyzers to record behavior
e Testpoints for validation of programming contracts
e Integration with jUnit and nUnit

e Eclipse or Visual Studio Integration where required

Traceability At a glance traceability of Generalizations, Realizations, Associations,
Dependencies and more. Customize relationship views. Easily navigate related
elements in the model.

Usage Quickly browse element usage across all diagrams. Perform effective element
searches using sophisticated queries.

Popular Languages e C(C/C+t

e Java

(c) Sparx Systems 2024 Page 12 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

e Microsoft .NET family

e ADA

e Python
e Perl

e PHP

Toolboxes Toolboxes are provided for a vast array of modeling technologies and programming
languages.

Application Patterns Enterprise Architect provides complete starter projects, including model
information, code and build scripts, for several basic application types.

(c) Sparx Systems 2024 Page 13 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Feature Overview

Code Engineering with Enterprise Architect broadly encompasses various processes for the design, generation and
transformation of code from your UML model.

Features

Model Driven Code e Source code generation and reverse engineering for many popular languages,
Engineering including C++, C#, Java, Delphi, VB.Net, Visual Basic, ActionScript, Python
and PHP

e A built in 'syntax highlighting' source code editor

e Code generation templates, which enable you to customize the generated
source code to your company specifications

Transformations for e Advanced Model Driven Architecture (MDA) transformations using
Rapid Development transformation templates

e Built-in transformations for DDL, C#, Java, EJB and XSD

e One Platform Independent Model can be used to generate and synchronize
multiple Platform Specific Models, providing a significant productivity boost

e XSL Transform diagram, toolbox, editor and debugger.

Visual Execution Analysis e Execute build, test, debug, run and deploy scripts
/ Debugging, Verification .

v RS Integrate UML development and modeling with source development and
and Visualization

compilation

e Generate NUnit and JUnit test Classes from source Classes using MDA
Transformations

e Integrate the test process directly into the Enterprise Architect IDE

e Debug .NET, Mono, Java and Microsoft Native (C, C++ and Visual Basic)
applications

e Design and execute Test suites based on Programming by Contract principles
e XSL Stylesheet debugging

Database Modeling Enterprise Architect enables you to:

e Reverse engineer from many popular DBMSs, including SQL Server, My SQL,
Access, PostgreSQL and Oracle

e Model database tables, columns, keys, foreign keys and complex relationships
using UML and an inbuilt data modeling profile

e Forward generate DDL scripts to create target database structures

XML Technology Enterprise Architect enables you to rapidly model, forward engineer and reverse
Engineering engineer two key W3C XML technologies:

e XML Schema (XSD)
e Web Service Definition Language (WSDL)

XSD and WSDL support is critical for the development of a complete Service
Oriented Architecture (SOA), and the coupling of UML 2.5 and XML provides the
natural mechanism for implementing XML-based SOA artifacts within an
organization.

(c) Sparx Systems 2024 Page 14 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

(c) Sparx Systems 2024 Page 15 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Generate Source Code

UML

Source code generation is the process of creating programming code from a UML model. There are great benefits in

taking this approach as the source code Packages, Classes and Interfaces are automatically created and elaborated with
variables and methods.

Enterprise Architect can also generate code from a number of behavioral models, including StateMachine, Sequence and
Activity diagrams. There is a highly flexible template mechanism that allows the engineer to completely tailor the way
that source code is generated, including the comment headers in methods and the Collection Classes that are used.

From an engineering and quality perspective, the most compelling advantage of this approach is that the UML models
and therefore the architecture and design are synchronized with the programming code. An unbroken traceable path can
be created from the goals, business drivers and the stakeholder’s requirements right through to methods in the
programming code.

Facilities
Facility Description
Languages Enterprise Architect supports code generation in each of these software languages:

e Action Script

e Ada
e ArcGIS
o C

e C# (for NET 1.1, NET 2.0 and .NET 4.0)

e (C++ (standard, plus .NET managed C++ extensions)
e Delphi

e Java (including Java 1.5, Aspects and Generics)

e JavaScript

e mFQL
e MySql
e PHP

e Python

e Teradata SQL

e Visual Basic

e Visual Basic .NET
e WorkFlowScript

You can also generate Hardware Definition Language code in these languages:

e VHDL
e Verilog
e SystemC

(c) Sparx Systems 2024 Page 16 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Elements Code is generated from Class or Interface model elements, so you must create the
required Class and Interface elements to generate from. All other types of element
to contribute to the code (such as StateMachines or Activities) must be child
elements of a Class.

Add attributes (which become variables) and operations (which become methods).
Constraints and Receptions are also supported in the code.

Settings Before you generate code, you should ensure the default settings for code
generation match your requirements; set up the defaults to match your required
language and preferences.

Preferences that you can define include default constructors and destructors,
methods for interfaces and the Unicode options for created languages.

Languages such as Java support 'namespaces' and can be configured to specify a
namespace root.

In addition to the default settings for generating code, Enterprise Architect
facilitates setting specific generation options for each of the supported languages.

Code Template Framework The Code Template Framework (CTF) enables you to customize the way Enterprise
Architect generates source code and also enables generation of languages that are
not specifically supported by Enterprise Architect.

Local Paths Local path names enable you to substitute tags for directory names.
Behavioral Code You can also generate software code from three UML behavioral modeling
paradigms:

e Interaction (Sequence) diagrams
e Activity diagrams

e StateMachine diagrams (using Legacy StateMachine Templates in the code
generation operations under 'Tasks")

e StateMachine diagrams (using an Executable StateMachine Artifact)

Live Code Generation On the 'Develop > Source Code > Options' drop-down menu, you have the option to
update your source code instantly as you make changes to your model.

Tasks When you generate code, you perform one or more of these tasks:
e Generate a Single Class
e Generate a Group of Classes

e Generate a Package

Update Package Contents

Notes

e Most of the tools provided by Enterprise Architect for code engineering and debugging are available in the
Professional and higher editions of Enterprise Architect; Behavioral Code Generation is available in the Unified and
Ultimate Editions

e When security is enabled you require the access permissions 'Generate Source Code and DDL' and 'Reverse
Engineer from DDL and Source Code'

(c) Sparx Systems 2024 Page 17 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Generate a Single Class

Before you generate code for a single Class, you:

Complete the design of the model element (Class or Interface)
Create Inheritance connectors to parents and Associations to other Classes that are used

Create Inheritance connectors to Interfaces that your Class implements; the system provides an option to generate
function stubs for all interface methods that a Class implements

Generate code for a single Class

Step

1

Action

Open the diagram containing the Class or Interface for which to generate code.

Click on the required Class or Interface and select the 'Develop > Source Code > Generate > Generate
Single Element' ribbon option, or press F11.

The 'Generate Code' dialog displays, through which you can control how and where your source code is
generated.

In the 'Path’ field, click on the l_J button and select a path name for your source code to be generated to.

In the 'Target Language' field, click on the drop-down arrow and select the language to generate; this
becomes the permanent option for that Class, so change it back if you are only doing one pass in another
language.

Click on the Advanced button.

The 'Object Options' dialog displays, providing subsets of the 'Source Code Engineering' and code
language options pages on the Preferences’' dialog.

Set any custom options (for this Class alone), then click on the Close button to return to the 'Generate
Code' dialog.

In the 'Import(s) / Header(s)' fields, type any import statements, #includes or other header information.

Note that in the case of Visual Basic this information is ignored; in the case of Java the two import text
boxes are merged; and in the case of C++ the first import text area is placed in the header file and the
second in the body (.cpp) file.

Click on the Generate button to create the source code.

When complete, click on the View button to see what has been generated.

Note that you should set up your default viewer/editor for each language type first; you can also set up the
default editor on the 'Code Editors' page of the Preferences window ('Start > Application > Preferences >
Preferences > Source Code Engineering > Code Editors').

(c) Sparx Systems 2024 Page 18 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Generate a Group of Classes

In addition to being able to generate code for an individual Class, you can also select a group of Classes for batch code
generation. When you do this, you accept all the default code generation options for each Class in the set.

Generate Class Group

Step Detail
1 Select a group of Classes and/or interfaces in a diagram.

2 Click on an element in the group and select the 'Develop > Source Code > Generate > Generate Selected
Element(s)' ribbon option (or press Shift+F11).

If no code exists for the selected elements, the 'Save As' dialog displays on which you specify the file path
and name for each code file; enter this information and click on the Save button.

3 The 'Batch Generation' dialog displays, showing the status of the process as it executes (the process might

be too fast to see this dialog).

If code already exists for the selected Class elements, and changes have been made to the Class name or
structure, the 'Synchronize Element <package name>.<element name>' dialog might also display; this
dialog helps synchronize the model and code.

Notes

e Ifany of the elements selected are not Classes or interfaces the option to generate code is not available

(c) Sparx Systems 2024 Page 19 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Generate a Package

In addition to generating source code from single Classes and groups of Classes, you can generate code from a Package.
This feature provides options to recursively generate code from child Packages and automatically generate directory
structures based on the Package hierarchy. This helps you to generate code for a whole branch of your project model in
one step.

Access
Ribbon Develop > Source Code > Generate > Generate All
Keyboard Shortcuts Ctrl+Alt+K

Generate code from a Package, on the Generate Package Source Code dialog

Step Action

1 In the 'Synchronize' field, click on the drop-down arrow and select the appropriate synchronize option:

e 'Synchronize model and code': Code for Classes with existing files is forward synchronized with that
file; code for Classes with no existing file is generated to the displayed target file

e 'Overwrite code": All selected target files are overwritten (forward generated)

e 'Do not generate': Generate code for only those selected Classes that do not have an existing file; all
other Classes are ignored

2 Highlight the Classes for which to generate code; leave unselected any to not generate code for.
If you want to display more of the information within the layout, you can resize the dialog and its
columns.

3 To make Enterprise Architect automatically generate directories and filenames based on the Package

hierarchy, select the 'Auto Generate Files' checkbox; this enables the 'Root Directory' field, in which you
select a root directory under which the source directories are to be generated.

By default, the 'Auto Generate Files' feature ignores any file paths that are already associated with a Class;
you can change this behavior by also selecting the 'Retain Existing File Paths' checkbox.

4 To include code for all sub-Packages in the output, select the 'Include Child Packages' checkbox.

5 Click on the Generate button to start generating code.
As code generation proceeds, Enterprise Architect displays progress messages. If a Class requires an
output filename the system prompts you to enter one at the appropriate time (assuming Auto Generate

Files is not selected). For example, if the selected Classes include partial Classes, a prompt displays to
enter the filename into which to generate code for the second partial Class.

Further information on the dialog options

(c) Sparx Systems 2024 Page 20 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Option Action
Root Package Check the name of the Package for which code is to be generated.
Synchronize Select options that specify how existing files should be regenerated.
Auto Generate Files Specify whether Enterprise Architect should automatically generate file names and

directories, based on the Package hierarchy.

Root Directory If Auto Generate Files is selected, display the path under which the generated
directory structures are created.

Retain Existing File Paths If Auto Generate Files is selected, specify whether to use existing file paths
associated with Classes.

If Auto Generate Files is unselected, Enterprise Architect generates Class code to
automatically determined paths, regardless of whether source files are already
associated with the Classes.

Include all Child Packages Also generate code for all Classes in all sub-Packages of the target Package in the
list.

This option facilitates recursive generation of code for a given Package and its
sub-Packages.

Select Objects to Generate List all Classes that are available for code generation under the target Packages;
only code for selected (highlighted) Classes is generated.

Classes are listed with their target source file.

Select All Mark all Classes in the list as selected.

Select None Mark all Classes in the list as unselected.

Generate Start the generation of code for all selected Classes.

Cancel Exit the 'Generate Package Source Code' dialog; no Class code is generated.

(c) Sparx Systems 2024 Page 21 of 395 Created with Enterprise Architect

Software Engineering

16 October, 2024

Update Package Contents

In addition to generating and importing code, Enterprise Architect provides the option to synchronize the model and
source code, creating a model that represents the latest changes in the source code and vice versa. You can use either the
model as the source, or the code as the source.

The behavior and actions of synchronization depend on the settings you have selected on the 'Attributes and Operations'
page of the 'Preferences' dialog. Working with these settings, you can either protect or automatically discard information
in the model that is not present in the code, and prompt for a decision on code features that are not in the model. In these
two examples, the appropriate checkboxes have been selected for maximum protection of data:

® You generated some source code, but made subsequent changes to the model; when you generate code again,
Enterprise Architect adds any new attributes or methods to the existing source code, leaving intact what already
exists, which means developers can work on the source code and then generate additional methods as required from
the model, without having their code overwritten or destroyed

e You might have made changes to a source code file, but the model has detailed notes and characteristics you do not
want to lose; by synchronizing from the source code into the model, you import additional attributes and methods
but do not change other model elements

Using the synchronization methods, it is simple to keep source code and model elements up to date and synchronized.

Access

Ribbon

Develop > Source Code > Synchronize > Synchronize Package

Synchronize Package contents against source code

Field/Button
Update Type
Include child packages in

generation

OK

(c) Sparx Systems 2024

Action

Select the radio button to either Forward Engineer or Reverse Engineer the Package
Classes, as appropriate.

Select the checkbox to include child Packages in the synchronization.

Click on the button to start synchronization.

Enterprise Architect uses the directory names specified when the project source was
first imported/generated and updates either the model or the source code depending
on the option chosen. If:

e Performing forward synchronization AND
e There are differences between the model and code AND

e The 'On forward synch, prompt to delete code features not in model' checkbox
is selected in the 'Options - Attributes and Operations' dialog

THEN the 'Synchronize Element <package name>.<element name>' dialog
displays.

Otherwise, no further action is required.

Page 22 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Notes

e Code synchronization does not change method bodies; behavioral code cannot be synchronized, and code generation
only works when generating the entire file

e In the Corporate, Unified and Ultimate Editions of Enterprise Architect, if security is enabled you must have
'Generate Source Code and DDL' permission to synchronize source code with model elements

(c) Sparx Systems 2024 Page 23 of 395 Created with Enterprise Architect

Software Engineering

Synchronize Model and Code

You might either:

16 October, 2024

e Synchronize the code for a Package of Classes against the model in the Browser window, or

e Regenerate code from a batch of Classes in the model

In such processes, there might be items in the code that are not present in the model.

If you want to trap those items and resolve them manually, select the 'On forward synch, prompt to delete code features
not in model' checkbox in the 'Options - Attributes and Operations' dialog, so that the 'Synchronize Element <package

name>.<element name>' dialog displays, providing options to respond to each item.

Synchronize Items

Button Detail
Select All Highlight and select all items in the Feature column.
Clear All Deselect and remove highlighting from all items in the Feature column.
Delete Mark the selected code features to be removed from the code (the value in the

Action column changes to Delete).

Reassign Mark the selected code features to be reassigned to elements in the model.

This is only possible when an appropriate model element is present that is not

already defined in the code.

Ignore

Reset to Default

OK

(c) Sparx Systems 2024

The Select the Corresponding Class Feature dialog displays, from which you select
the Class to reassign the feature to. Click on the OK button to mark the feature for
reassignment.

Mark the selected code elements not present in the model to be ignored completely
(the default; the value in the Action column remains as or changes to <none>).

Reset the selected items to Ignore (the value in the Action column changes to
<none>).

Make the assigned changes to the items, and close the dialog.

Page 24 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Namespaces

Languages such as Java support Package structures or namespaces. In Enterprise Architect you can specify a Package as
a namespace root, which denotes where the namespace structure for your Class model starts; all subordinate Packages
below a namespace root will form the namespace hierarchy for contained Classes and Interfaces.

To define a Package as a namespace root, click on the Package in the Browser window and select the 'Develop > Source
Code > Options > Set as Namespace Root' ribbon option. The Package icon in the Browser window changes to show a
colored corner indicating this Package is a namespace root.

Cla

Generated Java source code, for example, will automatically add a Package declaration at the beginning of the generated
file, indicating the location of the Class in the Package hierarchy below the namespace root.

To clear an existing namespace root, click on the namespace root Package in the Browser window and deselect the
'Develop > Source Code > Options > Set as Namespace Root' ribbon option

To view a list of namespaces, select the 'Settings > Reference Data > Settings > Namespace Roots' ribbon option; the
'Namespaces' dialog displays. If you double-click on a namespace in the list, the Package is highlighted in the Browser
window; alternatively, right-click on the namespace and select the 'Locate Package in Browser' option.

You can also clear the selected namespace root by selecting the 'Clear Namespace Attribute' option.

To omit a subordinate Package from a namespace definition, select the 'Develop > Source Code > Options > Suppress
Namespace' ribbon option; to include the Package in the namespace again, deselect the ribbon option.

Notes

e When performing code generation, any Package name that contains whitespace characters is automatically treated as
a namespace root

(c) Sparx Systems 2024 Page 25 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Importing Source Code

A a ’ |
{_{.'{‘- S -—
Cry yanf Gy, 9 PHP A5 0

The ability to view programming code and the models it is derived from at the same time brings clarity to the design of a
system. One of Enterprise Architect's convenient code engineering features is the ability to Reverse Engineer source code
into a UML model. A wide range of programming languages are supported and there are options that govern how the
models are generated. Once the code is in the model it is possible to keep it synchronized with the model regardless of
whether the changes were made directly in the code or the model itself. The code structures are mapped into their UML
representations; for example, a Java class is mapped into a UML Class element, variables are defined as attributes,
methods modeled as operations, and interactions between the Java classes represented by the appropriate connectors.

The representation of the programming code as model constructs helps you to gain a better understanding of the structure
of the code and how it implements the design, architecture and the requirements, and ultimately how it delivers the
business value.

It is important to note that if a system is not well designed, simply importing the source into Enterprise Architect does
not turn it into an easily understandable UML model. When working with a poorly designed system it is useful to assess
the code in manageable units by examining the individual model Packages or elements generated from the code; for
example, dragging a specific Class of interest onto a diagram and then using the 'Insert Related Elements' option at one
level to determine the immediate relationships between that Class and other Classes. From this point it is possible to
create Use Cases that identify the interaction between the source code Classes, providing an overview of the application's
operation.

Several options guide how the code is reversed engineered, including whether comments are imported to notes and how
they are formatted, how property methods are recognized and whether Dependency relationships are created for
operation return and parameter types.

Copyright Ownership

Situations that typically lend themselves to reverse engineering tend to operate on source code that:
e You have already developed

e s part of a third-party library that you have obtained permission to use

e s part of a framework that your organization uses

e Isbeing developed on a daily basis by your developers

If you are examining code that you or your organization do not own or do not have specific permission to copy and edit,
you must ensure that you understand and comply with the copyright restrictions on that code before beginning the
process of reverse engineering.

Supported languages for Reverse Engineering

Language
Action Script

Ada 2012 (Unified and Ultimate Editions)

(c) Sparx Systems 2024 Page 26 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

C

C#

C++

CORBA IDL (MDG Technology)
Delphi

Java

PHP

Python

SystemC (Unified and Ultimate Editions)
Verilog (Unified and Ultimate Editions)
VHDL (Unified and Ultimate Editions)
Visual Basic

Visual Basic .NET

Notes

e Reverse Engineering is supported in the Professional, Corporate, Unified and Ultimate Editions of Enterprise
Architect

e If security is enabled you must have 'Reverse Engineer From DDL And Source Code' permission to reverse engineer
source code and synchronize model elements against code

e Using Enterprise Architect, you can also import certain types of binary file, such as Java .jar files and .NET PE files

e Reverse Engineering of other languages is currently available through the use of MDG Technologies listed on the
MDG Technology pages of the Sparx Systems website

(c) Sparx Systems 2024 Page 27 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Import Projects

Enterprise Architect provides support for importing software projects authored in Visual Studio, Mono, Eclipse and
NetBeans. Importing and working on projects in Enterprise Architect has multiple benefits, not least the immediate
access to Enterprise Architect's renowned modeling tools and management features, but also the access to development
tools such as simulation, debugging and profiling.

Access

Ribbon Develop > Source Code > Solutions > Import a <project type>

Import a Visual Studio Solution

This option allows you to import one or more projects from an existing Visual Studio Solution file or a running instance
of Visual Studio. The wizard will generate a Class model for each of the projects and the appropriate Analyzer Scripts
for each Visual Studio configuration.

Import a Mono Solution

This option allows you to import Mono projects from a solution file. The dialog that is presented is the same as the
"Visual Studio Import' dialog, but you can choose to target either Linux or Windows. The wizard will generate a Class
model for each of the projects and configure them for debugging. The generated Analyzer Scripts reference msbuild to
build the projects.

Import an Eclipse Project

The Eclipse 'Wizard' can reverse engineer a Java project described by its Eclipse .project file and ANT build. The feature
will result in a UML Class model and Analyzer Scripts for each of the ANT targets you select. The process will also
generate a script for each debug protocol you select through the "Wizard'. You will be presented with the choice of JDWP
(Java Debug Wire Protocol), good for servers, and JVMTI (Java Virtual Machine Tools Interface), which is suited to
standalone Java applications. These scripts should be used for debugging the project in Enterprise Architect.

Import a NetBeans Project

The NetBeans 'Wizard' can reverse engineer a Java project described by a NetBeans XML project file and ANT build.
The 'Wizard' will create a UML Class model of the project and Analyzer Scripts for each of the ANT targets you select.
The process will also generate a script for each debug protocol you select through the "Wizard'. These scripts should be
used for debugging the project in Enterprise Architect. You will be presented with the choice of JDWP (Java Debug
Wire Protocol), good for servers, and JVMTI (Java Virtual Machine Tools Interface), which is suited to standalone Java
applications.

Import Options

(c) Sparx Systems 2024 Page 28 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

When you select to import a Visual Studio or Mono Solution, the "Visual Studio Solution Import' dialog displays.
Complete the fields as directed in this table.

When you select to import an Eclipse or Netbeans solution, the appropriate Wizard start screen displays. Work through
the screens as directed by the prompts on each screen.

Option Description

<list of projects> After you have selected the solution file, the projects in the solution are listed in the
panel. Select the projects to be imported by the Wizard.

You can use the All button to select all projects, and the None button to clear the
selection of projects.

Select Solution File Browse for and select the Solution file to import from. The Mono Solution files and
Visual Studio Solution files have a .sln file extension.

Perform a Dry Run Select this option to perform the import as a dry run, to check for any errors in the
process or output before you repeat the import to change the model content. Click
on the View Log button to check the log of the import.

Create Package per File Select this option to perform the import with finer granularity, creating a separate
Package for each file.

Import Click on this button to start the import process.

Prompt for Missing Macro Not applicable to Mono Solution imports.

Definitions

For C++ projects in Visual Studio, the parser might encounter unrecognized
macros. If you select this option, you will be prompted when such an event occurs
and will have the opportunity to define the macro. If you do not select this option,
the resultant Class model could be missing certain items.

Create Diagram for Each When selected, a Class diagram is created depicting the Class model for each
Package Package. The result is a larger but more colorful model. Deselecting this option will
cause diagram creation to be skipped and the import to run faster.

Generate Analyzer Scripts For Visual Studio Solutions, selecting this option will generate Analyzer Scripts for
each project configuration in addition to scripts for each Solution configuration.
The scripts will allow for building and debugging the program(s) described by the
solution immediately after the import completes. Select the 'Windows' checkbox; if
you do not select this option, no Execution Analyzer features will be configured.

For Mono Solutions, this option allows you to target either Linux or Windows. If
you select Linux, it is assumed the machine on which Enterprise Architect is
running is Linux, that the platform (Java or Mono) is installed there, and that the
compiled programs run on Linux.

Startup Project When this option is selected, the script for this Project will become the model
default. The debugging tools, Execute ribbon and Toolbar buttons will
automatically target this program.

(c) Sparx Systems 2024 Page 29 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Import Source Code

You can import source code into your Enterprise Architect model, to reverse-engineer a module. As the import proceeds,
Enterprise Architect provides progress information. When all files are imported, Enterprise Architect makes a second
pass to resolve associations and inheritance relationships between the imported Classes.

Procedure - Import source code

Step Action
1 In the Browser window, select (or add) a diagram into which to import the Classes.

2 Click on the diagram background and either:
e Select the 'Develop > Source Code > Files' ribbon option and click on the appropriate language, or

e [fthe Code Generation toolbar is displayed, click on the Tmport' drop-down arrow and select the
language to import
The list of languages will include any customized languages you have created model structures for.

3 From the file browser that appears, locate and select one or more source code files to import.

4 Click on the Open button to start the import process.

(c) Sparx Systems 2024 Page 30 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Notes on Source Code Import

You can import code into your Enterprise Architect project, in a range of programming languages. Enterprise Architect
supports most constructs and keywords for each coding language. You select the appropriate type of source file for the
language, as the source code to import.

If there is a particular feature you require support for that you feel is missing, please contact Sparx Systems.

Notes

e When reverse engineering attributes with parameter substitutions (templated attributes):
- If a Class with proper template parameter definitions is found, an Association connector is
created and its parameter substitutions are configured
- An Association connector is also created if a matching entry is defined as a Collection Class or
in the 'Additional Collection Classes' option (for C#, C++ and Java); for an example, see Example
Use of Collection Classes

Programming Language notes

Language Notes
ActionScript Appropriate type of source file: .as code file.
C Appropriate type of source file: .h header files and/or .c files.

When you select a header file, Enterprise Architect automatically searches for the
corresponding .c implementation file to import, based on the options for extension
and search path specified in the C options.

Enterprise Architect does not expand macros that have been used, these must be
added into the internal list of Language Macros.

CH++ Appropriate type of source file: .h header file.

Enterprise Architect automatically searches for the .cpp implementation file based
on the extension and search path set in the C++ options; when it finds the
implementation file, it can use it to resolve parameter names and method notes as
necessary.

When importing C++ source code, Enterprise Architect ignores function pointer
declarations.

To import them into your model you could create a typedef to define a function
pointer type, then declare function pointers using that type; function pointers
declared in this way are imported as attributes of the function pointer type.

Enterprise Architect does not expand macros that have been used; these must be
added into the internal list of Language Macros.

C# Appropriate type of source file: .cs.
Delphi Appropriate type of source file: .pas.
Java Appropriate type of source file: .java.

Enterprise Architect supports the Aspect] language extensions.

(c) Sparx Systems 2024 Page 31 of 395 Created with Enterprise Architect

Software Engineering

PHP

Python
Visual Basic

Visual Basic .NET

(c) Sparx Systems 2024

16 October, 2024

wBspeEcis
ThingObserving

w Wector()

- obserers: W

ctor=mn

+ addObsenverThing, Thing) : woid
+ memovelbsernverThing, ThingChsanser) : void
~ updateCbserver(Thing, ThingObsener) : void

wadvices
+ after(Thing) : void

apointcuts
~ changes(Thing) : void

Aspects are modeled using Classes with the stereotype aspect; these aspects can
then contain attributes and methods as for a normal Class.

If an intertype attribute or operation is required, you can add a tag 'className' with
the value being the name of the Class it belongs to.

Pointcuts are defined as operations with the stereotype <<pointcut>>, and can occur
in any Java Class, Interface or aspect; the details of the pointcut are included in the
'behavior' field of the method.

Adpvice is defined as an operation with the stereotype <<advice>>; the pointcut this
advice operates on is in the 'behavior' field and acts as part of the method's unique
signature.

afterAdvice can also have one of the Tagged Values returning or throwing.

Appropriate type of source file: .php, .php4, or .inc.

Nested if condition syntax is enabled.
Appropriate type of source file: .py.
Appropriate type of source file: .cls Class file.

Appropriate type of source file: .vb Class file.

Page 32 of 395

Created with Enterprise Architect

Software Engineering 16 October, 2024

Import Resource Script

Enterprise Architect supports the import and export of Microsoft Windows Resource Scripts (as .rc files), which contain
the Win32® dialog definitions (those with the stereotype «win32Dialogy) for an application's graphical user interface.
Dialog resources are imported and exported for a specific language, defaulting to the locale of the current computer
system.

Access
Ribbon Develop > Source Code > Files > Import Resource Script
Keyboard Shortcuts F7 (synchronize element with code)

Import dialog resources from a .rc file

Option Action

Resource File . .
Click on the D button and locate the .rc file to import the screen elements(s)

from.

Resource ID Either:
e Leave the default value 'All' to import all screen elements from the file, or

e Click on the drop-down arrow and select the screen ID of a specific dialog to
import

Language Click on the drop-down arrow and select the language version (such as English -
United States) of the dialog(s) to import.

Import Click on this button to import the screens from the resource file.

The progress of the import is reported in the field underneath the "Language' field.

Export a dialog to a .rc file

Option Action

Screen ID Defaults from the Win32UI ID Tagged Value of the selected Screen element.

(If the dialog does not have this ID, open the 'Win32UTI' page of the element's
'Properties' dialog and provide a value for the ID tag.)

Resource File . D . .
Click on the button and locate the .rc file into which to export the screen

element(s).

(c) Sparx Systems 2024 Page 33 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

If the element was previously imported, this field defaults to the source file.

Language Click on the drop-down arrow and select the language version (such as English -
United States) of the exported dialog.

Export Click on this button to export the screens from the resource file.

The progress of the export is reported in the field underneath the '"Language' field.

Notes

e New dialogs are exported to an existing .rc file

e In an export to an existing .rc file, no dialogs are ever deleted from the file, even when they are deleted from the
model

e Inan import, no dialogs are deleted from the model even when omitted from the original .rc file

(c) Sparx Systems 2024 Page 34 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Import a Directory Structure

You can import from all source files in a complete directory structure, which enables you to import or synchronize
multiple files in a directory tree in one pass.

Enterprise Architect creates the necessary Packages and diagrams during the import process.

Access
Ribbon Develop > Source Code > Files > Import Source Directory
Keyboard Shortcuts Ctrl+Shift+U

Import a directory structure, using the 'Import Source Directory' dialog

Field

Root directory

Source Type

File

Perform a Dry Run

Recursively Process
Subdirectories

Import components from

Do not import private
members

Prompt for Missing Macro
Definitions

Package Structure

(c) Sparx Systems 2024

Action

Type in or browse for the name of the directory to import.

Type in or select from the drop-down list the coding language of the files to import
in the source directory.

Type in or select from the drop-down list, the file extensions to include in the
import. Use a ;' to separate values.

If you want to perform the import as a dry run when you click on the OK button,
select this check box. When processing is complete, click on the View Log button
to check the predicted outcome of the process.

If you want to include the contents of subdirectories in the import process, select
this check box.

If you want to import additional files (as described in the 'Tmport Component
Types' dialog) select this checkbox. You then complete the prompt to specify where
the components will come from.

If you want to exclude private members from the model when importing libraries,
select this checkbox.

During the import, the parser might encounter unrecognized macros. If you select
this check box, you will be prompted when such an event occurs and will have the
opportunity to define the macro. If you do not select this option, the resultant
Package structure could be missing certain items.

Select the appropriate radio button to create a Package for every directory, every
namespace or every file; this might be restricted depending on the source type
selected.

Page 35 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Create Diagram for each Select this checkbox to create a diagram in each Package created in the import.

Package Click on the Options button to identify which element features to include on the
diagrams.

Synchronization Select the appropriate radio button to synchronize existing classes or overwrite

existing classes.
If a model Class is found that matches the one in code:

e 'Synchronize' updates the model Class to include the details from the one in
code, which preserves information not represented in code, such as the location
of Classes in diagrams

e 'Overwrite' deletes the model Class and generates a new one from code; any
additional information is not preserved.

If the option 'Use timestamps' is selected, then the representation with the latest
time stamp (either model or code) will take precedence.

Remove Classes not found Select the appropriate radio button to specify how to handle existing model classes
in code that are not present in the imported code.

e 'Never delete' retains all existing Classes in the model.
e 'Prompt for action' enables you to review Classes individually

e 'Always' delete' removes from the model any Class that is not present in the
imported code.

OK Click on this button to start the import.

(c) Sparx Systems 2024 Page 36 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Import Binary Module

Enterprise Architect enables you to reverse-engineer certain types of binary module.

Access

Ribbon Develop > Source Code > Files > Import Binary Module

Use

Currently the permitted types are:
e Java Archive (jar)

e NET PE file (.exe, .dll) - Native Windows DLL and EXE files are not supported, only PE files containing .NET
assembly data

e Intermediate Language file (.il)

Enterprise Architect creates the necessary Packages and diagrams during the import process; selecting the 'Do not import
private members' checkbox excludes private members from libraries from being imported into the model.

When importing .NET files, you can import via reflection or via disassembly, or let the system select the best method -
this might result in both types being used.

The reflection-based importer relies on a .NET program, and requires the .NET runtime environment to be installed.

The disassembler-based importer relies on a native Windows program called Ildasm.exe, which is a tool provided with
the MS .NET SDK; the SDK can be downloaded from the Microsoft website.

A choice of import methods is available because some files are not compatible with reflection (such as mscorlib.dll) and
can only be opened using the disassembler; however, the reflection-based importer is generally much faster.

You can also configure:

e Whether to Synchronize or Overwrite existing Classes when found; if a model Class is found matching the one in
the file:
- Synchronize updates the model Class to include the details from the one in the file, which
preserves information not represented in the file, such as the location of Classes in diagrams
- Overwrite deletes the model Class and generates a new one from the file, which deletes and
does not replace the additional information

e Whether to create a diagram for each Package

e What is shown on diagrams created by the import

(c) Sparx Systems 2024 Page 37 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Classes Not Found During Import

When reverse engineering from your code, there might be times when Classes are deliberately removed from your source
code.

The 'Import Source Directory' functionality keeps track of the Classes it expects to synchronize with and, on the 'Tmport
Directory Structure' dialog, provides options for how to handle the Classes that weren't found.

You can select the appropriate option to make Enterprise Architect, at the end of the import, ignore the missing Classes,
automatically delete them or prompt you to manage them.

On the 'Import Directory Structure' dialog, if you select the 'Prompt For Action' radio button to manually review missing
Classes, a dialog displays on which you specify the handling for each Class that was missing in the imported code.

By default, all Classes are marked for deletion; to keep one or more Classes, select them and click on the Ignore button.

(c) Sparx Systems 2024 Page 38 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Editing Source Code

Enterprise Architect contains a feature-rich source code editor that helps you to view, edit and maintain your source code
directly inside the tool. Once source code has been generated for one or more Classes it can be viewed in this flexible
editing environment. Seeing the code in the context of the UML models from which it is derived brings clarity to both
the code and the models, and bridges the gap between design and implementation that has historically introduced errors
into software systems.

The Source Code Editor is fully-featured, with a structure tree for easy navigation of attributes, properties and methods.
Line numbers can be displayed and syntax highlight options can be configured. Many of the features that software
engineers are familiar with in their favorite IDE, such as Intelli-sense and code completion are included in the editor.
There are many additional features, such as macro recording that makes it easy to manage the source code inside
Enterprise Architect. There are also many options for managing the code, available through the code editor context
menu, toolbar and function keys.

REE- -8 B8 @3]
¥Parse Error on line 337 1import java.util.*; -
2

5 * @author Paulene Dean
& * @wersion 1.0
7 * @created 22-Jul-2019 10:37:21 AM

8 "/
9 public class Order implements StateMachineContext {
10
11 private Date date;
12 private String deliveryInstructions;
13 private String orderNumber;
14 private Lineltem m_Lineltem;
15
16 public OrderStatus getStatus(){
17 return status;
18 1
19
20 i
21 *
22 * @param new\val
23 */
24 public void setStatus(OrderStatus newval){
25 status = newVal;
26 1
27
28 public Lineltem getLineltem() {
4
@Stﬂr‘tpage |=| specification Manager | =] Orderjava x 4k

For most programming languages a single file is created from a UML Class, but in the case of C++ both header and
implementation classes are created and the source code editor displays these files in separate tabs.

A number of options change the way the source code editor works; they can be altered using the 'Preferences' dialog
available from the Start ribbon:

'Start > Appearance > Preferences > Preferences > Source Code Engineering > Code Editors'

There are variants of the Source Code Editor, with different access methods. The variants are discussed in the Compare
Editors topic.

Access

Ribbon Execute > Source > Edit > Open Source File (external file) or
Execute > Source > Edit > Edit Element Source (for an existing source file) or
Execute > Source > Edit > Edit New Source File or

Design > Element > Behavior or

(c) Sparx Systems 2024 Page 39 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Develop > Source Code > Behavior

Keyboard Shortcuts F12 or Ctrl+E (for existing code for model elements)
Ctrl+Alt+O (to locate external files)

Facilities
Facility Description
Source Code editor By default the Source Code editor is set to:
e Parse all opened files, and show a tree of the results
e Show line numbers
= CStation 1 #pragma once
i Location 2
@ Name 3 class CStation : public TObject
{ CStation(LPCTSTR, int) 4
iy SetPosition(CPoint, size_t) 5 public:
i ~CStation() [CStation(LPCTSTR name,int ID);
7 ~CStation(veid);
If you are editing an XML file, the structure tree mirrors the exact order and
structure of the document.
= 3 xsischema
@ xmins:xs = http: ffwww w3, orgf200 1 XMLSchema
= £ xs:element "ContactInfo”
W type = ContactInfo
E 3 xs:complexType "ContactInfo”
= £S5 xsiseguence
= £ xs:element "Contactinfo.homePhane”
W type = xs:siring
Structure Tree The file structure tree is available for supported language files, such as C++, C#,
Java and XML. The tree can be helpful to navigate content quickly in much the
same way a table of contents would for other documents.
Simulation Behaviors If you are editing the behaviors of the elements in a StateMachine or Activity

diagram, the Code Editor allows you to list and edit the behaviors of all elements in
the diagram together, using a structure tree.

(c) Sparx Systems 2024 Page 40 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Browser |
B+t g =- p @Start Page FAirTravel Advanced [ElSchedule x

EEF- B-0Y BB BaDE

function Rand()

max) {

2.0
cephes. floor((cephes. drand()-1) * (sax - min+1)) + min: //The maxisus is exc

thata =

Scripting

Scripts Console

code

In this illustration you can see a number of States within a StateMachine, each of
which has operations and Behaviors, and all of which are listed together and can be
selected without leaving or changing the editor window.

Notes

e For most selected elements you can use the keys F12 or Ctrl+E to view the source code.

e When you select an element to view source code, if the element does not have a generation file (that is, code has not
been or cannot be generated, such as for a Use Case), Enterprise Architect checks whether the element has a link to
either an operation or an attribute of another element - if such a link exists, and that other element has source code,
the code for that element displays

® You can also locate the directory containing a source file that has been created in or imported to Enterprise
Architect, and edit it or its related files using an external editor such as Notepad or Visual Studio; click on the
element in the Browser window and press Ctrl+Alt+Y

(c) Sparx Systems 2024 Page 41 of 395 Created with Enterprise Architect

Software Engineering

Languages Supported

16 October, 2024

The Source Code Editors can display code in a wide range of languages, as listed here. For each language, the editor
highlights - in colored text - the standard code syntax.

e Ada (.ada, .ads, .adb)

e ActionScript (.as)

e BPEL Document (.bpel)

e C++ (.h, .hh, .hpp, .c, .cpp, .cxx)

o CH#(.cs)

e DDL Structured Query Language (.sql)

e Delphi/Pascal (.pas)

e Diff/Patch Files (.diff, .patch)

e Document Type Definition (.dtd)

e DOS Batch Files (.bat)

e DOS Command Scripts (.cmd)

e HTML (html)

e Interface Definition Language (.idl, .odl)

e Java(java)

e JavaScript (.javascript)

e JScript (,js)

e Modified Backus-Naur Form Grammar (.mbnf)
e PHP (.php, .php4, .inc)

e Python (.py)

e Standard Generalized Markup Language (.sgml)
e SystemC (.sc)

e Visual Basic 6 (.bas)

e VB.NET (.vb)

e VBScript (.vbs)

e Verilog (.v)

e VHSIC Hardware Description Language (.vhdl)
e Visual Studio Resource Configuration (.rc)

e XML (eXtensible Markup Language) (.xml)

e XSD (XML Schema Definition)

e XSL (XML Stylesheet Language)

(c) Sparx Systems 2024 Page 42 of 395

Created with Enterprise Architect

Software Engineering 16 October, 2024

Configure File Associations

If you are a Windows® user, you can configure Enterprise Architect to be the default document handler for your
language source files.

Access
Ribbon Start > Appearance > Preferences > Preferences > Source Code Engineering >
Code Editors : Configure Enterprise Architect File Associations E]
Actions

For each file type that you would prefer to open in Enterprise Architect, click on the checkbox to the left of the file type
name. After selecting all of the document types you require, click on the Save button.

After this, clicking on any corresponding file in Windows® Explorer will open it in Enterprise Architect.

Notes

e You can change the default programs, or documents handled by them, directly through the 'Default Programs' option
in Windows ® Control panel.

(c) Sparx Systems 2024 Page 43 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Compare Editors

Enterprise Architect provides four principal code editor variants, available through a number of access paths. The most
direct access options are identified in these descriptions.

The first three code editor variants listed have the same display format, option toolbar, context menu options and internal
function keys. They differ in their method of access and display mechanism.

Editor Variants

Variant Details
Source Code View F12
Ctrl+E

Class context menu | "View Source Code'

Description: Displays the code on a tab of the Diagram View; the tab label shows
the file name and extension (such as .java); again, for C++, there are two tabs for
the Header and Implementation files.

You can display the source code for other Classes on additional tabs, by reselecting
the menu option/keys on the next Class.

Source Code window Alt+7

(Dockable) 'Execute > Source > Edit > Open Source File'

Description: Displays the contents of the source file for a selected Class (except if
the language is C++, when the window displays a tab for the Header file and a tab
for the Implementation file).

If you select a different Class, the window changes to show the code for the new
Class (unless the first Class calls the second, in which case the window scrolls
down to the second Class's code instead).

Internal Editor, External Ctrl+Alt+O

Source Code "Execute > Source > Edit > Open Source File' ribbon option

Description: Use this option if you intend to edit external code, XML or DDL files
(that is, code not imported to or generated in Enterprise Architect).

Displays an external browser, then opens the specific selected code file as a tab of
the Diagram View (for C++, not two code files); otherwise this is identical to the
F12 option.

External Editor, Internal or Ctrl+Alt+Y

External Source Code Class context menu | Open Source Directory

Description: Displays an external file browser, open to the directory containing the
selected Class's source files; you can open the files in Notepad, Visual Studio or
other tools you might have on your system.

(c) Sparx Systems 2024 Page 44 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Code Editor Toolbar

When you are reviewing the code for a part of your model in the Source Code editor, you can access a wide range of
display and editing functions from the editor toolbar.

Code Editor Toolbar

SRS e s L) e (S e 5B] S st = | Disposer g

Toolbar Options

Structure Tree Click on this icon to show or hide the element hierarchy panel (the left panel of the
Source Code editor).

Line Numbers Click on this icon to show or hide the line numbers against the lines of code.

Source Code Engineering Click on the drop-down arrow to display a menu of options to select individual
Properties 'Source Code Engineering' pages of the Preferences' dialog, from which you can
configure display and behavior options for source code engineering:

e Language

e Syntax Highlighting Options
e Code Editor Options

e Code Engineering Options

e Code Editor Key Bindings

Editor Functions Click on the drop-down arrow to display a menu providing access to a range of
code editing functions:

e Open Corresponding File (Ctrl+Shift+O) - opens the header or implementation
file associated with the currently-open file

e Go to Matching Brace (Ctrl+E) - for a selected opening or closing brace,
highlights the corresponding closing or opening brace in the pair

e Go to Line (Ctrl+G) - displays a dialog on which you select the number of the
line to highlight; click on the OK button to move the cursor to that line

e Cursor History Previous (Ctrl+-) - the Source Code viewer keeps a history of
the previous 50 cursor positions, creating a record when the cursor is moved
either more than 10 lines away from its previous position, or in a
find-and-replace operation; the menu option moves the cursor to the position in
the immediately-previous cursor history record

e Cursor History Next (Ctrl+Shift+-) - if you have moved to an earlier cursor
position, this option moves the cursor to the position in the
immediately-following cursor history record

e Find (Ctrl+F) - displays a dialog in which you define a text string and search
options to locate that text string in the code

e Replace (Ctrl+R) - displays a dialog in which you define a text string and
search options to locate that text string in the code and replace it with another
text string; the dialog has options to locate and replace each occurrence as you
decide, or to replace all occurrences immediately

(c) Sparx Systems 2024 Page 45 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

e Highlight Matching Words - (Ctrl+3) Enables or disables the highlighting of
matching words during a find operation; by default this option is enabled

e Record Macro - records your next keystrokes to be saved as a macro

e Stop Recording and Save Macro - stops recording the keystrokes and displays
the 'Save Macro' dialog on which you specify a name for the macro

e Play Macro - displays the 'Open Macro' dialog from which you select and
execute a saved macro, to repeat the saved keystrokes

e Toggle Line Comment (Ctrl+Shift+C) - comments out (//) or re-establishes the
code for each full line in which text is highlighted

e Toggle Stream Comment (Ctrl+Shift+X) - inserts a stream comment (/* */) at
the cursor position (comments out only the highlighted characters and lines), or
re-establishes the commented text as code

e Toggle Whitespace Characters (Ctrl+Shift+W) - shows or hides the spacing
characters: --> (tab space) and . (character space)

e Toggle EOL Characters (Ctrl+Shift+L) - shows or hides the end-of-line
characters: CR (carriage return) and LF (line feed)

e Toggle Tree Synchronization - selects the tree item automatically as context
changes within code editor

e Open Containing Folder - opens the file browser at the folder containing the
code file; you can open other files in your default external editor for
comparison and parallel work

Save Source and Click on this icon to save the source code and resynchronize the code and the Class
Resynchronize Class in the model.

Code Templates Click on this icon to access the Code Templates Editor, to edit or create code
templates for code generation.

Find in Project Browser For a selected line of code, click on this icon to highlight the corresponding
structure in the Browser window. If there is more than one possibility the 'Possible
Matches' dialog displays, listing the occurrences of the structure from which you
can select the required one.

Search in Files Click on this icon to search for the selected object name in associated files, and
display the results of the search in the File Search window. You can refine and
refresh the search by specifying criteria on the Find in Files window toolbar.

Search in Model Click on this icon to search for the selected text throughout the model, and display
the results of the search in the Find in Project view.

Go to Declaration Click on this icon to locate the declaration of a symbol in the source code.

Go to Definition Click on this icon to locate the definition of a symbol in the source code (applicable
to languages such as C++ and Delphi, where symbols are declared and defined in
separate files).

Autocomplete List Click on this icon to display the autocompletion list of possible values; double-click
on a value to select it.

Parameter Information When the cursor is between the parentheses of an operation's parameter list, click
on this icon to display the operation's signature, highlighting the current parameter.

Find Current Class in Click on this icon to display the name of the currently-selected Class in the code,
Browser Window and highlight that name in the Browser window; if there is more than one
possibility the 'Possible Matches' dialog displays, listing the occurrences of the

(c) Sparx Systems 2024 Page 46 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Class from which you can select the required one.

Find Member Click on this icon to display the name of the currently-selected attribute or method
in the code, and highlight that name in the Browser window; if there is more than
one possibility the 'Possible Matches' dialog displays, listing the occurrences of the
feature from which you can select the required one.

Notes

e The 'Record Macro' option disables Intelli-sense while the macro is being recorded

e You can assign key strokes to execute the macro, instead of using the toolbar drop-down and 'Open Macro' dialog

(c) Sparx Systems 2024 Page 47 of 395 Created with Enterprise Architect

Software Engineering

16 October, 2024

Code Editor Context Menu

When working on a file with a code editor, you can perform a number of code search and editing operations to review
the contents of the file. These options are available through the editor context menu, and can vary depending on which

code editor you are using.

Access

Context Menu

Options

Go to Declaration

Go to Definition

Open in Grammar Editor

Synchronize Tree to
Editor

Auto Synchronize Tree
and Editor

XML Schema Validation

Search for '<string>'

(c) Sparx Systems 2024

Right-click on the code text string you are working on

Locate and highlight the declaration of a symbol in the source code.

Locate and highlight the definition of a symbol in the source code (applicable to
languages such as C++ and Delphi, where symbols are declared and defined in
separate places).

Opens a view that lets you examine or validate the code using the appropriate
grammar.

Finds and displays the current element (method for example) in the structure tree.

When selected, the structure tree will automatically show the element being worked
on in the editor.

Allows an XML schema to validated.

Display a submenu providing options to locate the selected text string in a range of
locations.

¢ 'Find in Project Browser' - Highlight the object containing the selected text in
the Browser window

e 'Search in Open Files' - Search for the selected text string in associated open
files and display the results of the search in the Find in Files window; you can
refine and refresh the search by specifying criteria on the Find in Files window
toolbar

e 'Search in Files' - Search for the selected text string in all associated files
(closed or open), and display the results of the search in the Find in Files
window; you can refine and refresh the search by specifying criteria on the
Find in Files window toolbar (shortcut key: F12)

e 'Search in Model' - Perform an 'Element Name' search in the Model Search
facility, and display the results on the Model Search tab

e 'Search in Scripts' - (Available while working in the Script Editor) Open the
Find in Files window, set the 'Search Path' field to 'Search in Scripts' and the
'Search Text' field to the selected text, then search all scripts for the text string
and display the results of the search; you can refine and refresh the search by

Page 48 of 395 Created with Enterprise Architect

Software Engineering

Search Intelli-sense

Set Debugger to Line

Display Variable

Show in String Viewer

Create Use Case for
'<string>'

Breakpoint

Testpoints

XML Validation

Open (Close) IME

Copy Position Hyperlink

(c) Sparx Systems 2024

16 October, 2024

specifying criteria on the Find in Files window toolbar

e 'EA User Guide' - Display the description of the code item in the Enterprise
Architect User Guide

e 'Google' - Display the results of a Google search on the text

e 'MSDN' - Display the results of a search on the text in the Microsoft Developer
Network (MSDN)

e 'Sun Java SE' - Display the results of a search on the text in the Sun
Microsystems 'Sun Search' facility

e 'Wikipedia' - Display any entry on the object on the Wikipedia web site

e 'Koders' - Display the results of a search for the text string on Koders.com

Perform a search on the specified string using the Code Miner service or library
specified in the current Analyzer Script. The results are displayed in the 'Code
Miner' tab of the Find in Files window.

Shortcut key: Shift+F12

(If the debugger is executing and has reached a breakpoint.) Move the execution
point to the current line. Check that you do not skip over any code or declarations
that affect the next section of code being debugged.

(If the debugger is executing.) Open the Locals window and highlight the local
variable for the current point in the code.

Display the full contents of a variable string in the String Viewer.

Display the 'Create Use Case For Method' dialog, through which you create a Use
Case for the method containing the text string.

Display a submenu of options for creating a recording marker on the selected line
of code. The recording markers you can add include:

e Breakpoint

e Start Recording Marker

e End Recording Marker

e Stack Auto Capture Marker
e Method Auto Record Marker

e Tracepoint

Display options to add a new Testpoint, show the Testpoints Manager (Testpoints
window) or edit an existing Testpoint if one or more are already defined at the
selected location.

(The sub-options depend on the type of code file you are reviewing.)

Allows an XML document to be checked for compliance with its own schema
references or using a user-specified schema; either a local schema file or a URL.

Open (or close) the Input Method Editor, so that you can enter text in a selected
foreign language script, such as Japanese. You set the keyboard language using the
Windows Control Panel - Regional and Language Options facility.

Copies the cursor position as a hyperlink that can be pasted into Rich Notes editors,
such as a message in the 'Chat' tab of the Chat & Mail window. Simply use the
'Paste’ context menu option in the message, and specify the link text.

Page 49 of 395 Created with Enterprise Architect

Software Engineering

Copy Text Hyperlink

Line Numbers

Undo
Cut
Copy
Paste
Delete
Select All

Notes

16 October, 2024

The reader can click on the link to open the source file and move the cursor to the
selected cursor position in the file.

Copies the selected text string as a hyperlink that can pasted into Rich Notes
editors, such as a message in the 'Chat' tab of the Chat & Mail window. Simply use
the 'Paste' context menu option in the message.

The reader can click on the link to open the source file and move the cursor to the
first occurrence of that text string in the file.

(Script Editor only.) Show or hide the code line numbers on the left hand side of the
editor screen.

These six options provide simple functions for editing the code.

e The options in the lower half of the 'Search for <string>' submenu (after 'Search in Scripts') are configurable; you
can add new search tools or remove existing ones by editing the searchProviders.xml file in the Sparx Systems > EA
> Conlfig folder - this file is in OpenSearch description document format

(c) Sparx Systems 2024

Page 50 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Create Use Case for Method

Using the code editor context menu, you can create a Use Case element for a method that you select from the code. You
can also:

e Link the Use Case directly to the method

e Add the parent Class to a diagram (if it is not already in the selected diagram) and/or add the Use Case element to
the diagram

e Block from display any attributes or methods that are not also the targets of feature links

Create a Use Case for a method, through the code editor

Step Action

1 (If you want to depict the Use Case and its link to the method in a diagram) click on the diagram name in
the Browser window.

2 In the code editor, right-click on either the method name or any part of the method body, and select the
'Create Method for <methodname>' option.

The 'Create Use Case for Method' dialog displays.

3 The basic function of this dialog is to create a Use Case for the selected method:

e Ifthis is all that is required, click on the OK button; the Use Case element is created in the Browser
window, in the same Package as the parent Class for the method, and with the same name as the
method

e Ifyou intend to make the relationship tangible, continue with the procedure

4 To create a Trace connector linking the Use Case to the method, select the 'Link Use Case to Method'
checkbox.
5 To add the method's parent Class to the diagram, if it is not already there, select the 'Add Class to

Diagram' checkbox.

6 To add the newly-created Use Case to the diagram, select the 'Add Use Case to Diagram' checkbox; this
would now show the Use Case, Class and Trace connector on the diagram.

7 To only show the features (attributes and methods) of the parent Class that are the targets of 'link to
feature' relationships, select the 'Display only linked features in Class' checkbox.

The Class might contain any number of attributes and methods, but those without a 'link to feature'
relationship are hidden.

8 Click on the OK button to create and depict the Use Case and relationship; if you selected all options, the
diagram now contains linked elements resembling this illustration:

ClassLib

memoryCancel |—————— —— =={memoryCancel{bool*)
ziraces

(c) Sparx Systems 2024 Page 51 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

(c) Sparx Systems 2024 Page 52 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Code Editor Functions

The common Code Editor provides a variety of functions to assist with the code editing process, including:

Syntax Highlighting
Bookmarks

Cursor History

Brace Matching
Automatic Indentation
Commenting Selections
Scope Guides
Zooming

Line Selection
Intelli-sense

Find and Replace
Find in Files

A range of these functions is available through keyboard key combinations and/or context menu options.

You can customize several of the Code Editor features by setting properties in the Code Editor configuration files; for
example, by default the line containing the cursor is always highlighted, but you can turn the highlighting off.

(c) Sparx Systems 2024 Page 53 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Function Details
Code Editor Functions

Function Description

Syntax Highlighting The Code Editor highlights - in colored text - the standard code syntax of all
language file formats supported by Enterprise Architect
1 #pragma once
2 #include "afxwin.h"
3 #include "afxemn.h™

4

5

6 // CToolBox dialog

7

& class CloolBox : public CDialog
9 {

18 DECLARE_DYNAMIC(CToolBox)
11 CRect m_rect;

12 int m_offset;

You can define how the Code Editor implements syntax highlighting for each
language, through the 'Code Editors' page of the 'Preferences’ dialog.

Bookmarks Bookmarks denote a line of interest in the document; you can toggle them on and
off for a particular line by pressing Ctrl+F2.
Additionally, you can press F2 and Shift+F2 to navigate to the next or previous
bookmark in the document.

To clear all bookmarks in the code file, press Ctrl+Shift+F2.

Cursor History The Code Editor Control keeps a history of the previous 50 cursor positions; an
entry in the history list is created when:

e The cursor is moved more than 10 lines from its previous position
e The cursor is moved in a find/replace operation

You can navigate to an earlier point in the cursor history by pressing Ctrl+-, and to
a later point by pressing Ctrl+Shift+-.

Brace Matching When you place the cursor over a brace or bracket, the Code Editor highlights its
corresponding partner; you can then navigate to the matching brace by pressing
Ctrl+E.

function ProtectedFunctionTest: boolean:

2
2 procedore ProtectedPrDced‘JreTestl:a: WideString) :

[T RS]

Automatic Indentation For each supported language, the Code Editor adjusts the indentation of a new line
according to the presence of control statements or scope block tokens in the lines
leading up to the cursor position.

(c) Sparx Systems 2024 Page 54 of 395 Created with Enterprise Architect

Software Engineering

Commenting Selections

Scope Guides

Zooming

Line Selection

(c) Sparx Systems 2024

16 October, 2024

358 {

359 for{size t t = B; t ¢ Stations.size(); t+H)
360 {

361 if(Stations[t]-»Location == loc)

362 return Stations[t];

363 }

354 return NULL;

365 }

The levels of indent are indicated by pale horizontal lines.

You can also manually indent selected lines and blocks of code by pressing the Tab
key; to un-indent the selected code, press Shift+Tab.

For languages that support comments, the Code Editor can comment entire
selections of code.

The Code Editor recognizes two types of commenting:

e Line Commenting - entire lines are commented from the start (for example:
// This is a comment)

e Stream Commenting - sections of a line are commented from a specified start
point to a specified end point (for example:
/* This is a comment */)

You can toggle comments on the current line or selection by pressing:
e Ctrl+Shift+C for line comments, or

e Ctrl+Shift+X for stream comments

If the cursor is placed over an indentation marker, the Code Editor performs a 'look
back' to find the line that started the scope at that indentation level; if the line is
found and is currently on screen, it is highlighted in light blue.

* responsePacket.querylD = receivedPacket.gueryID;

93 f/ If there were any answers, then return a packet, if not then just return nul
94 // to indicate the server has no re

=11 if (answers.size() > 0

g6 B {

a7 DNSPacket responsePacket = Helpers.createResponsePacket | answers, this.theS
98

=k}

3
3

return responsePacket;

=1

Alternatively if the line is off screen, a calltip is displayed advising of the line
number and contents:

93 /f If there were any answers, then return a packet, if not then just return null
94 // to indicate the server has no response

95 if { answers.size() > 0

98 Line 73 private DNSPacket processQuery(DNSPacket receivedPacket) |

T N DNSPacket responsePacket = Helpers.createResponsePacket(answers, this.theSt

responsePacket.queryID = receivedPacket.gueryID;

retorn responsePacket;

You can zoom into and out of the contents of the Code Editor using:
e Ctrl+keypad + and

e Ctrl+keypad -

Zoom can be restored to 100% using Ctrl+keypad /.

If you want to move the cursor to a specific line of code, press Ctrl+G and, in

response to the prompt, type in the line number.
Press the OK button; the editor displays the specified line of code with the cursor at

Page 55 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

the left.

(c) Sparx Systems 2024 Page 56 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Intelli-sense

Intelli-sense is a feature that provides choices of code items and values as you type. Not all code editors use Intelli-sense;
for example, Intelli-sense is disabled while you record a macro in the Source Code Viewer.

Intelli-sense provides you with context-based assistance through autocompletion lists, calltips and mouseover
information.

Facilities
Facility Description

Autocompletion List An autocompletion list provides a list of possible completions for the current text;
the list is automatically invoked when you enter an accessor token (such as a period
or pointer accessor) after an object or type that contains members.

57 public void memoryRecall ()
5B {
59 this.
o B Classlib_____
N . | [=% Dispose
8z publig | o finalize
6= i m_delivery
&4 ‘g memory
es . ‘@ memoryCancel .
66 publig | . pberl, int number2)
_ i memoryMinus
6: { .| [=% memoryPlus N
f in & memoryRecall r1l + number2;
a9 ra r
70
You can also invoke the autocompletion list manually by pressing Ctrl+Space; the
Code Editor then searches for matches for the word leading up to the invocation
point.
Select an item from the list and press the Enter key or Tab key to insert the item
into the code; to dismiss the autocompletion list, press Esc.

Calltips Calltips display the current method's signature when you type the parameter list
token (for example, opening parenthesis); if the method is overloaded, the calltip
displays arrows that you can use to navigate through the different method
signatures

20 ffPostDraw Adornments
21 f/S5tereotyped Static Adornments
22 S fidd S5takeholder's S5TLAEE
23 setpenwidth(;
24 / Rdd a th{SetPenWidth(int penwidth) |
25 startpath();
26 moveto (25, 37) ; E
27 linmeto(25,52);
28 endpath () ;
29 strokepath()
30 Sradd tip
Mouseover Information You can display supporting documentation for code elements (for example,

(c) Sparx Systems 2024 Page 57 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

attributes and methods) by hovering the cursor over the element in question.

11 dockable = "none":

- string

13 | Dock elements together. Tagged W
14 Walid Values: none, standard

15 / /PreDraw Deriwved Attribute

(c) Sparx Systems 2024 Page 58 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Find and Replace

Each of Enterprise Architect's code editors facilitates searching for and replacing terms in the editor, through the 'Find
and Replace' dialog.

Access

Keyboard Shortcuts Highlight the required text string and press:
e Ctrl+F for the find controls only, or
e Ctrl+R for both find and replace controls

In each instance, the 'Find what' field is populated with the text currently selected in
the editor. If no text is selected in the editor, the 'Find what' field is populated with
the word at the current cursor position. If no word exists at the current cursor
position, the last searched-for term is used.

Basic Operations - Commands

Command Action

Find Next Locate and highlight the next instance (relative to the current cursor position) of the
text specified in the 'Find what' field.

Replace Replace the current instance of the text specified in the 'Find what' field with the
text specified in the 'Replace with' field, and then locate and highlight the next
instance (relative to the current cursor position) of the text specified in the 'Find
what' field.

Replace All Automatically replace all instances of the text specified in the 'Find what' field with
the text specified in the 'Replace with' field.

Basic Operations - Options

Option Action

Match Case Specify that the case of each character in the text string in the 'Find what' field is
significant when searching for matches in the code.

Match whole word Specify that the text string in the 'Find what' field is a complete word and should
not be matched with instances of the text that form part of a longer string.
For example, searches for ARE should not match those letters in instances of the

words AREA or ARENA.

Search up Perform the search from the current cursor position up to the start of the file, rather

(c) Sparx Systems 2024 Page 59 of 395 Created with Enterprise Architect

Software Engineering

Use Regular Expressions

Concepts

Concept

Regular Expressions

Metasequences

(c) Sparx Systems 2024

16 October, 2024

than in the default direction of current cursor position to end of file.

Evaluate specific character sequences in the 'Find what' and 'Replace with' fields as
Regular Expressions.

Description

A Regular Expression is a formal definition of a Search Pattern, which can be used
to match specific characters, words or patterns of characters.

For the sake of simplicity, the Code Editor's 'find and replace' mechanism supports
only a subset of the standard Regular Expression grammar.

Text in the 'Find what' and 'Replace with' fields is only interpreted as a Regular
Expression if the 'Use Regular Expressions' checkbox is selected in the 'Find and
Replace' dialog.

If the 'Use Regular Expressions' checkbox is selected, most characters in the 'Find
what' field are treated as literals (that is, they match only themselves).

The exceptions are called metasequences; each metasequence recognized in the
Code Editor 'Find and Replace' dialog is described in this table:

e \<-Indicates that the text is the start of a word; for example: \<cat is matched
to catastrophe and cataclysm, but not concatenate

e \>-Indicates that the text is the end of a word; for example: hat\> is matched
to that and chat, but not hate

e (..) - Indicates alternative single characters that can be matched - the characters
can be specific (chr) or in an alphabetical or numerical range (a-m); for
example: (hc) at is matched to Zat and cat but not bat, and (a-m) Class is
matched to any name in the range aClass-mClass

e (M. - Indicates alternative single characters that should be excluded from a
match - the characters can be specific (“chr) or in an alphabetical or numerical
range (“a-m); for example: (“hc) at is matched to rat and bat, but hat and cat
are excluded, and (“a-m) Class is matched to any name in the range nClass to
zClass, but aClass to mClass are excluded

e /. Matches the start of a line
e $ - Matches the end of a line

e *_Matches the preceding character (or character set) 0 or more times; for
example: ba*t is matched to bt, bat, baat, baaat and so on, and b(ea) *t is
matched to bt, bet, bat, beat, beet, baat and so on

e + - Matches the preceding character (or character set) 1 or more times; for
example: ba+t is matched to bat, baat and baaat but not bz, and b(ea) +t is
matched to bet, bat, beat, beet and baat but not bt

If a single character metasequence is preceded by a backslash (V) it is treated as a
literal character: c\(at\) matches c(at) as the brackets are treated literally.

When the "Use Regular Expressions' checkbox is selected, a metasequence helper
menu is available to the right of both of the 'Find what' and 'Replace with' fields;

selecting a metasequence from this menu inserts the metasequence into the field,

replacing or wrapping the currently selected text as appropriate.

When 'find and replacing' with Regular Expressions, up to nine sections of the

Page 60 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Tagged Regions original term can be substituted into the replacement term.

The metasequences "\(' and ")' denote the start and the end of a tagged region; the
section of the matched text that falls within the tagged region can be included in the
replacement text with the metasequence \n' (where # is the tagged region number
between 1 and 9).

For example:
Find: \((A-Za-z) +\)'s things
Replace with items that belong to \1
Original text: These are all Michael's things.
Replaced text: These are all items that belong to Michael.

(c) Sparx Systems 2024 Page 61 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Search in Files

File Text Searches are provided by the Find in Files window and from within the Code Editors, to search files for data
names and structures. These files can be external code files, code files that you have already opened in Enterprise
Architect, internal model scripts or the Help subsystem.

The 'File Search' tab maintains a history of the file paths you have explored, helping you to quickly return to
frequently-used folders in your file system. You can similarly select a previously-used search string, if you need to repeat
a search several times. When you are searching code files, you can also confine the search to files of specific types, by
selecting the file extensions, and to include just the selected folder or all of its sub-folders as well. Another useful facility
is being able to select to show the results of the search as either a list of every instance of the string, or a list of files
containing the string with the instances grouped under the file in which they are found.

For all searches, you can qualify the search to be case-sensitive and/or to match the search string to complete words.

Access
Ribbon Explore > Search > Files
Execute > Source > Find
Execute > Source > Edit > Search in Files
Context Menu Right-click on selected text | Search for <selected text> | Search in Files
Keyboard Shortcuts F12, Ctrl+Shift+Alt+F

Search Toolbar

You can use the toolbar options in the Find in Files window to control the search operation. The state of each button
persists over time to always reflect your previous search criteria.

~ | | Search in scripts ~ | | *.cpp*.h,* bt ~ B Aaax OO0 E = = @]
Options
Option Action
VAR - The 'Search Text' field. Type the text string to search for.
mare Any text you type in is automatically saved in the drop-down list, up to a maximum
;_legh text of ten strings; text added after that overwrites the oldest text string in the list. You
Script can click on the drop-down arrow and select one of these saved text strings, if you
sQL prefer.
Werify
Unit Test
GUID

F‘rinrii

(c) Sparx Systems 2024 Page 62 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Search in local help.. v | more The 'Search Path' field. Specify the folder to search, or the type of search.
E;g:\é;ei;‘jsr:,?;‘tj:rm You can type the folder path to search directly into the text box, or click on the
drop-down arrow and select 'Browse for folder' to search using the 'Browse for
search in local help... .

c\ Folder' dialog.

CAEAVWEA\Microsoft Mative'CityLoop . . .
Any paths you enter are automatically saved in the drop-down list, up to a

maximum of ten; paths added after that overwrite the oldest path in the list. You
can select one of these saved paths if you prefer.

Apart from 'Browse for folder', there are three other fixed options in the drop-down

list:

e 'Search in scripts', which searches the local and user-defined scripts in the
Scripting window

e 'Search in open files', which confines the search to the files that you have open
in Enterprise Architect

e 'Search in local help', which searches the local Help files that have been
installed from the Sparx Systems web site; the results list the Help topics
containing the search term, and the line number and line in which the text
occurs

These options disable the 'Search File Types' list box.

* s, % bt - The 'Search File Types' field. Click on the drop-down arrow and select the file
.cpp,.h,* tet types (file extensions) to search.
.Cr.h
* java,* b
a Click on this icon to begin the search.

During the course of the search all other buttons in the toolbar are disabled. You
can cancel the search at any time by clicking on the Search button again.

If you switch any of these toggle buttons, you must run the search again to change
the output.

Az Click on this icon to toggle the case sensitivity of the search. The tool-tip message
identifies the current setting.

Click on this icon to toggle between searching for any match and searching for only
those matches that form an entire word. The tool-tip message identifies the current
setting.

Ta Click on this icon to toggle between limiting the search to a single path and
including all subfolders under that path. The tool-tip message identifies the current
setting.

= Click on this icon to select the presentation format of the search results; you have
two options:

e List View - (as shown) each result line consists of the file path and line
number, followed by the line text; multiple lines from one file are listed as
separate entries

e Tree View - (E) each result line consists of the file path that matches the
search criteria, and the number of lines matching the search text within that
file; you can expand the entry to show the line number and text of each line

+ Click on this icon to add a new search tab. You can create up to four new search
tabs. Searches can also run concurrently.

(c) Sparx Systems 2024 Page 63 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Click on this icon to clear the results.

Ll

If necessary, click on this icon to remove all the entries in the Search Path, Search
Text and Search File Types drop-down lists.

(c) Sparx Systems 2024 Page 64 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Find File

The Find in Files window 'Find File' tab provides a tool that can help you find files quicker. The tab acts as a file system
explorer and offers a speedy alternative to the common open file dialog. File searches are quick and simple, allowing you
to look up files of interest without losing your current workflow. The display can be switched between report and list
view.

Access
Ribbon Explore > Search > Files > Find File
Keyboard Shortcuts Ctrl+Shift+Alt+F

Toolbar

The toolbar provides a search filter and folder navigation combo box. The toolbar provides options to remember search
locations and alternate between list and report views.

4 | import e \NIEM\niem4 - E' = i

Options

Click to navigate to the parent folder.

The filter control allows you to exclude files that do not match the criteria you type.
The wildcard symbol * is automatically appended to the text so it is not necessary
to add it yourself. To search for all files that contain the term 'jvm' simply type
jvm'. To find .png images containing the term 'red' you could type *red*.png. Press
the Enter key to update the results.

Enter the path of a directory and press the Enter key to display the files in that
location

Use the drop down list to select from book-marked locations for the current model.
Locations can be managed by using the toolbar menu.

Allows you to manage the locations displayed in the directory combo.

e Remember Path - stores the current value of the 'Directory' field so that, when
you return to the Find in Files window at a later point the 'Directory' field
either defaults to that value (if it is the only 'remembered' value) or offers the
value in the drop-down list

e Forget Path - clears the current value from memory so that it is not offered as a
possible value for the 'Directory’ field

e Remember Filter - stores the current value in the 'Filter' field so that when you
return to the Find in Files window at a later point the 'Filter' field defaults to

(c) Sparx Systems 2024 Page 65 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

that value
e Forget Filter - removes the 'Filter' field value from memory so that it is not
placed in the field next time you access the window
In this view the list displays the columns 'Name', 'Modified Date', 'Type' and 'Size'.
Columns can be sorted in either ascending or descending order. Click the column a

third time to remove the sort order.

The list view removes columns and is convenient when a folder contains many
files.

Keyboard Shortcuts

Sets focus to the filter control.
Navigates to the parent folder.
Navigates to the parent folder.

If a folder is selected, opens the folder, otherwise opens the selected files.

(c) Sparx Systems 2024 Page 66 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Search Intelli-sense

The Intelli-sense capabilities of Enterprise Architect are built using Sparx Systems' Code Miner tool. The Code Miner
provides fast and comprehensive access to the information in an existing code base. The system provides complete
access to all aspects of the original source code, either 'on the fly' as one might search in a code editor, or as search
results produced by queries written in the Code Miner mFQL language.

Access

On the Find in Files window, click on the 'Code Miner' tab.
Ribbon Explore > Search > Files

Keyboard Shortcuts Ctrl+Shift+Alt+F

The Code Miner Control

This control presents an interface for performing queries on several code bases at once. The code bases it uses are
databases built using Enterprise Architect's Code Miner tool. These databases form a library, which can also be shared
when deployed as a service. The queries that can be run are listed and selected using the toolbar, which allows easy
access to the source code for the queries, for editing and composition. Queries do not need to be compiled; they are
viewed, edited and saved as one would any source code file. Queries that take a single parameter can utilize any selection
in an open code editor. The interface also supports manual parameter entry for queries that take multiple arguments.

The first control on the toolbar lists the namespaces available. Selecting a namespace limits the queries that are displayed
to those within that namespace.

CPp .
The next control provides a drop-down list of all the queries in the query file for the selected namespace.

globalmethod -

The third control is an edit combo box. By default a single query parameter is taken from the selected text in an open
code editor, but you can also type the parameter(s) directly into this field. Multiple parameters should be separated by
commas. This is followed by the Search button to run the query. Queries can be edited at any time using the Edit button
next to the Search button.

Use Code Editor Selection L S

The Result' panel is a tree control that lists the results of the query grouped by file.

Result
efjavahjdk-1.8.0_9T\srchcomsunherghapache\xerceshinternalutilfd omutil java
eryjava'jdk-1.8.0_91srchjavatutilstreampipelinehelper.java
eyjavajdk-1.8.0_ 91\srchjavatutilvector. java
efyjavaljdk-1.8.0_ 9T\ src\javaxswingdefaultlistmodel java

(c) Sparx Systems 2024 Page 67 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Code Miner Libraries

Code Miner libraries are a collection of databases that can be used by Enterprise Architect Intelli-sense providers to
obtain and query for information across several code bases. Each database is created from the root source code directory
of a code base, using a specialized grammar appropriate for its language (C++, Java or C#).

The libraries are created, updated, removed or added in the 'Analyzer Script Editor'. A typical scenario for using this
feature would be to create a database for a development project and additional databases for frameworks referenced by
the project. Your development database can be updated frequently as code changes accrue, while the static frameworks
would be updated less often. Libraries can be searched in a similar way to the 'File Search' tool, but Code Miner offers
advanced search capabilities due to its mFQL language.

e Multiple domains / frameworks can be searched at once

e A query can be run in a fraction of the time required for a File Search
® Queries can be coded to assist with complex search criteria

e Queries can take multiple parameters

e All files are indexed based on equivalent UML constructs, allowing intelligent searches producing meaningful
results in a modeling setting

Code Miner Query Files

Code Miner queries are maintained in a single source code file which should have the .mFQL extension. A basic set of
queries is provided with each Enterprise Architect installation; these can be located in the config\codeminer sub
directory. This query file should be named by default in any Analyzer Script you edit.

Before editing any queries it is advisable that you copy this file to a working location and name the copy in any Analyzer
Script you use. This way you will always have a reference file to go back to.

Queries are best considered as functions that are written in the mFQL language. As such they have unique names, can be
qualified by a single namespace and can specify parameters. The file provides the queries listed in the Intelli-sense
control's toolbar. Whenever edits to a query file are saved, the queries listed in the search toolbar combo box will be
updated accordingly. This image is an example of a simple query written in mFQL.

188

189 namespace java

190 {

191 //

192 // Find all references

193 //

194 query: : findByName($paraml)

195 {

196 distinct(GetByvalue($paraml +))
197 }

198

199 query: : findMethodByName($name)

200 {

201 move(1, "METHOD", intersect(GetByMode("MAME"), GetByvalue($name)))
202}

203

204 query: : findMethodCall($name)

205 {

206 filter("METHOD_ACCESS", intersect(GetByNode("MAME"), GetByValue($name)))
207}

208

(c) Sparx Systems 2024 Page 68 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Code Editor Key Bindings

Keys
Key Description

Ctrl+G Move cursor to a specified line
! Move cursor down one line
Shift+] Extend selection down one line
Ctrl+] Scroll down one line
Alt+Shift+| Extend rectangular selection down one line
i Move cursor up one line
Shift+1 Extend selection up one line
Ctrl+1 Scroll up one line
Alt+Shift+1 Extend rectangular selection up one line
Ctrl+(Move cursor up one paragraph
Ctrl+Shift+(Extend selection up one paragraph
Ctrl+) Move cursor down one paragraph
Ctrl+Shift+) Extend selection down one paragraph
“— Move cursor left one character
Shift+«— Extend selection left one character
Ctrl+«— Move cursor left one word
Ctrl+Shift+«— Extend selection left one word
Alt+Shift+— Extend rectangular selection left one character
— Move cursor right one character.
Shift+— Extend selection right one character
Ctrl+— Move cursor right one word
Ctrl+Shift+— Extend selection right one word

(c) Sparx Systems 2024

Page 69 of 395

Created with Enterprise Architect

Software Engineering

Alt+Shift+—
Ctrl+/
Ctrl+Shift+/
Ctrl+\
Ctrl+Shift+\
Home
Shift+Home
Ctrl+Home
Ctrl+Shift+Home
Alt+Home
Alt+Shift+Home
End

Shift+End
Ctrl+End
Ctrl+Shift+End
Alt+End
Alt+Shift+End
Page Up
Shift+Page Up
Alt+Shift+Page Up
Page Down
Shift+Page Down
Alt+Shift+Page Down
Delete

Shift+Delete

(c) Sparx Systems 2024

Extend rectangular selection right one character
Move cursor left one word part

Extend selection left one word part

Move cursor right one word part

Extend selection right one word part

Move cursor to the start of the current line
Extend selection to the start of the current line
Move cursor to the start of the document
Extend selection to the start of the document
Move cursor to the absolute start of the line
Extend rectangular selection to the start of the line
Move cursor to the end of the current line
Extend selection to the end of the current line
Move cursor to the end of the document

Extend selection to the end of the document
Move cursor to the absolute end of the line
Extend rectangular selection to the end of the line
Move cursor up a page

Extend selection up a page

Extend rectangular selection up a page

Move cursor down a page

Extend selection down a page

Extend rectangular selection down a page
Delete character to the right of the cursor

Cut selection

Page 70 of 395

16 October, 2024

Created with Enterprise Architect

Software Engineering

16 October, 2024

Ctrl+Delete Delete word to the right of the cursor
Ctrl+Shift+Delete Delete until the end of the line

Insert Toggle overtype

Shift+Insert Paste

Ctrl+Insert Copy selection

Backspace Delete character to the left of the cursor
Shift+Backspace Delete character to the left of the cursor
Ctrl+Backspace Delete word to the left of the cursor
Ctrl+Shift+Backspace Delete from the start of the line to the cursor
Alt+Backspace Undo delete

Tab Indent cursor one tab

Ctrl+Shift+1 Indent cursor one tab

Shift+Tab Unindent cursor one tab
Ctrl+keypad(+) Zoom in

Ctrltkeypad(-) Zoom out

Ctrltkeypad(/) Restore Zoom
Ctri+Z Undo

Ctrl+Y Redo

Ctrl+X Cut selection
Ctrl+C Copy selection
Ctrl+V Paste

Ctrl+L Cut line

Ctrl+T Transpose line
Ctrl+Shift+T Copy line

Ctrl+A Select entire document
Ctrl+D Duplicate selection

(c) Sparx Systems 2024

Page 71 of 395

Created with Enterprise Architect

Software Engineering

16 October, 2024

Ctrl+U Convert selection to lowercase
Ctrl+Shift+U Convert selection to uppercase
Ctrl+E Move cursor to matching brace
Ctrl+Shift+E Extend selection to matching brace
Ctrl+Shift+C Toggle line comment on selection
Ctrl+Shift+X Toggle stream comment on selection.
Ctrl+F2 Toggle bookmark
F2 Go to next bookmark
Shift+F2 Go to previous bookmark
Ctrl+Shift+F2 Clear all bookmarks in current file
Ctrl+Shift+W Toggle whitespace characters
Ctrl+Shift+L Toggle EOL characters
Ctrl+Space Invoke autocomplete.
Ctrl+- Go backwards in cursor history
Ctrl+Shift+- Go forwards in cursor history
F12 Start/Cancel search for keyword in file(s).
Ctrl+F Find text
Ctrl+R Replace text

Notes

In addition to these keys, you can assign (Ctrl+Alt+<n>) key combinations to macros that you define within the

Source Code Editor

(c) Sparx Systems 2024

Page 72 of 395

Created with Enterprise Architect

Software Engineering 16 October, 2024

Application Patterns (Model + Code)

To get you going with a code based project as fast as possible, Enterprise Architect helps you to generate starter projects
including model information, code and build scripts for one of several basic application types. Patterns include:

e MFC Windows applications
e Java programs

o ASP.NET web services

Access

Ribbon Develop > Source Code > Create From Pattern > Application Patterns

Generate Models

x

Application Patterns

VEA Examples Select a template from the list of applications. to add ta wour project.

Technology Marne -
&) lava Aoolet
A e
&5 Microsaft C# °P
HelloWorld

e hicrosoft C++
4 : Repository
Repositorylnterface

4 :Wehb

Tomcat Serelet

Java

Destination folder: [Uze Local Path

Cormpiler cammand: Edit Local Paths

‘ ok H Cancel H Help |

Option Action

Technology Select the appropriate technology.

(c) Sparx Systems 2024 Page 73 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Name Displays the Application Patterns available for the selected technology; select the
required Pattern to import.

<description> Displays a description of the selected Pattern.

Destination folder Browse for and select the directory in which to load the source code for the
application.

Use Local Path Enable the selection of an existing local path to place the source code under;

changes the 'Destination folder' field to a drop-down selection.

Compiler command Displays the default compiler command path for the selected technology; you must
either:

e Confirm that the compiler can be found at this path, or

e Edit the path to the compiler location

Edit Local Paths Many application Patterns specify their compiler using a local path.

The first time you use any Pattern you must click on this button to ensure the local
path points to the correct location.

The 'Local Paths' dialog displays.

Notes

e Ifrequired, you can publish custom application Patterns by adding files to the AppPatterns directory where
Enterprise Architect is installed; top level directories are listed as Technologies and can contain an icon file to
customize the icon displayed for the technology
Directories below this are defined as groups in the Patterns list; the Patterns are identified by the presence of four
files with a matching name: a zip file (.zip), XMI file (.xml), config file (.cfg) and optional icon (.ico)

e The config file supports these fields:
- [provider], [language], [platform], [url], [description], [version] - all displayed in the <description>
field
- [xmirootpaths] - the root path of the source code in the exported XMI; this is replaced with the
selected destination folder when the user applies the Application Pattern

(c) Sparx Systems 2024 Page 74 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

MDG Integration and Code Engineering

MDG Integration for Eclipse and MDG Integration for Visual Studio are products that help you to create and maintain
your UML models directly inside these two popular Integrated Development Environments, using the Enterprise
Architect Browser window. Models can be generated to source code using the rich and flexible template engine that
gives the engineer complete control over how the code is generated. Existing source code can also be reverse engineered
and synchronized with the UML models. With the integration installed the IDE will become a feature-rich modeling
platform, saving time and effort and reducing the risk of error by linking Requirement Management, Architecture and
Design to Source Code Engineering.

Rich and expressive documentation can be generated automatically into a wide range of formats including DOCX, PDF
and HTML. The documentation can include diagrams of requirements, design and architecture as well as source code
descriptions, putting the source code into context.

You can purchase MDG Integration for Eclipse™ and MDG Integration for Visual Studio™ or download Trial Editions,
from the Sparx Systems web site.

(c) Sparx Systems 2024 Page 75 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Behavioral Model Code Generation

Ll

o A
1] -b"L‘U
) Cri yav? Cp P o0t PHP
o =

;vI'L,
o

i
J

Enterprise Architect’s multi-featured system engineering capability can be used to generate code for software, system
and hardware description languages directly from behavioral models, such as StateMachine, Sequence (Interaction) and
Activity diagrams. The supported languages include C(OO), C++, C#, Java, VB.Net, VHDL, Verilog and SystemC.

Software code can be generated from StateMachine, Sequence and Activity diagrams, and hardware description
languages from StateMachine diagrams (using the Legacy StateMachine templates).

Access

Ribbon Develop > Source Code > Generate

Behavioral Model Specifics

Behavioral model code generation is supported for the three key types of behavioral model; however, each behavioral
model-type has its own characteristics based on the element-type involved. These topics provide guidance and references
for the core element-types used.

Type Description
Activity An Overview of the key Action-types and details on using these in code generation.
Interaction Details covering using Messages and Fragments for code generation of Interaction
(Sequence) diagrams.
StateMachines Details covering the options for defining the code to be generated using States,
including behaviors - Entry/Exit/Do, and Transitions in a StateMachine.
Structure

Behavioral model code generation primarily requires that all behavioral constructs are be contained within a Class (as a

child of that Class).

(c) Sparx Systems 2024

Page 76 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

ErrorHandler

o
cee {1}

2 AddlLog -
Fa AddlLog
® ActivityFinal

L ActivityInitial
= Trace

¢ addLog()

¢ GetlastError()

k= [T]]

¥ SetlastError(int)

If any behavioral constructs refer to external elements outside the current Package, you must add an Import connector
from the current Package to the Package containing the external elements. For more detail see the Import connector-type
in the Package Diagram Help topic.

Generate code from behavioral diagrams using the EAExample project

Step Action

1 Open the EAExample.eap file by selecting the 'Start > Help > Help > Open the Example Model' ribbon
option.
2 From the Browser window, select any of these Packages:

Software Language Examples:

e Example Model > Software Engineering > Java Model With Behaviors
Generate the Account and Order classes

e Example Model > Systems Engineering > Implementation Model > Software > C#
Generate the DataProcessor Class

e Example Model > Systems Engineering > SysML Example > Implementation Model > Software >
C++

Generate the IO Class

e Example Model > Systems Engineering > SysML Example > Implementation Model > Software >
Java

Generate the IO Class

e Example Model > Systems Engineering > SysML Example > Implementation Model > Software >
VBNet

Generate the 10 Class
Hardware Language Examples:

e Example Model > Systems Engineering > SysML Example: Portable Audio Player > Implementation
Model > Hardware > SystemC

Generate the PlayBack Class

e Example Model > Systems Engineering > SysML Example: Portable Audio Player > Implementation
Model > Hardware > VHDL

Generate the PlayBack Class

e Example Model > Systems Engineering > SysML Example: Portable Audio Player > Implementation
Model > Hardware > Verilog

Generate the PlayBack Class

(c) Sparx Systems 2024 Page 77 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

3 When completed:
e Select the Class that was used for the generation
e Press Ctrl+E to open the generated source code.

You should see methods generated in the code.

Notes

e Software code generation from behavioral models is available in the Unified and Ultimate Editions of Enterprise
Architect

e Hardware code generation from StateMachine models is available in the Unified and Ultimate Editions of Enterprise
Architect

e For C(0O), on the 'C Specifications' page of the Manage Model Options' dialog, set the 'Object Oriented Support'
option to True.
See the C Options - Model Help topic.

e Code synchronization is not supported for behavioral code.

(c) Sparx Systems 2024 Page 78 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Code Generation - Activity Diagrams

Code generation from Activity diagrams in a Class requires a validation phase, during which Enterprise Architect uses
the system engineering graph optimizer to analyze the diagram and render it into various constructs from which code can
be generated. Enterprise Architect also transforms the constructs into one of the various action types (if appropriate),
similar to the Interaction diagram constructs.

Actions

Action Description

Call Actions (Invocation Used to invoke operations or behaviors in an Activity diagram; the two main
Actions) variants of Call Actions supported in behavioral code generation are:

e (allOperation Action - used to invoke operations, which can be within the
same Class or in other Classes within the same Package; if referencing
operations from other Classes within the same Package, you must have a target
to which the request is passed

e (CallBehavior Action - used to invoke another Activity in an activity flow; the
referenced Activity is expected to be within the same Class

Arguments

Call Actions can specify argument values corresponding to the parameters in the
associated behavior or behavioral feature.

You can add the arguments manually or create them automatically using the
Synchronize button of the 'Arguments' dialog.

CreateObjectAction Used to denote an object creation in the activity flow; you can set the result Pin of
the CreateObjectAction as the object to be created, using the Properties window for
the Action element.

The Classifier of the CreateObjectAction signifies the Classifier for which an
instance is to be created.

DestroyObjectAction Used to denote an object deletion in the activity flow; you can set the target Pin of
the DestroyObjectAction as the object to be destroyed, using the Properties window
for the Action element.

Loops Enterprise Architect's system engineering graph optimizer is also capable of
analyzing and identifying loops; an identified loop is internally rendered as an
Action Loop, which is translated by the EASL code generation macros to generate
the required code.

You can have a single loop, nested loops, and multiple levels of nested loops.
Conditional Statements To model a conditional statement, you use Decision/Merge nodes.
Alternatively, you can imply Decisions/Merges internally; the graph optimizer

expects an associated Merge node for each Decision node, to facilitate efficient
tracking of various branches and analysis of the code constructs within them.

Notes

(c) Sparx Systems 2024 Page 79 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

e To be able to generate code from behavioral models, all behavioral constructs should be contained within a Class

(c) Sparx Systems 2024 Page 80 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Code Generation - Interaction Diagrams

During code generation from Interaction (Sequence) diagrams in a Class, Enterprise Architect applies its system
engineering graph optimizer to transform the Class constructs into programmatic paradigms. Messages and Fragments
are identified as two of the several action types based on their functionality, and Enterprise Architect uses the code
generation templates to render their behavior accordingly.

Actions
Action Description
Action Call A Message that invokes an operation.
Action Create A Message with Lifecycle = New.
Action Destroy A Message with Lifecycle = Delete.
Action Loop A Combined Fragment with Type = Alt.
Action If A Combined Fragment with Type = loop.
Assign To A Call Message with a valid target attribute set using the 'Assign To' field is
rendered in the code as the target attribute of a Call Action.
Notes

e To be able to generate code from behavioral models, all behavioral constructs should be contained within a Class

e For an Interaction (Sequence) diagram, the behavioral code generation engine expects the Sequence diagram and all
its associated messages and interaction fragments to be encapsulated within an Interaction element

(c) Sparx Systems 2024 Page 81 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Code Generation - StateMachines

A StateMachine illustrates how an object (represented by a Class) can change state, each change of state being a
transition initiated by a trigger arising from an event, often under conditions or constraints defined as guards. As you
model how the object changes state, you can generate and build (compile) code from it in the appropriate software
language and execute the code, visualizing the execution via the Model Simulator.

It is also possible, in Enterprise Architect, to combine the StateMachines of separate but related objects to see how they
interact (via Broadcast Events), and to quickly create and generate code from variants of the model. For example, you
might model the behavior of:

e The rear off-side wheel of a vehicle in rear-wheel drive and front-wheel drive modes (one StateMachine)
e The steering wheel and all four drive wheels of a vehicle in 4-wheel drive mode (five StateMachines)
e The wheels of an off-road vehicle and of a sports car (two Artifacts, instances of a combination of StateMachines)

Of critical importance in generating and testing code for all of these options is the Executable StateMachine Artifact
element. This acts as the container and code generation unit for your StateMachine models.

You do not use this method to generate code for Hardware Definition Languages, but you can also generate both HDL
code and software code from StateMachines using the generic Code Generation facilities in Enterprise Architect (see the
Generate Source Code procedures).

Prerequisites

e Select 'Settings > Model > Options > Source Code Engineering' and, for the appropriate software coding language
(Java, C, C# or ANSI C++), set the 'Use the new Statemachine Template' option to 'True'

e If working in C++, select 'Settings > Model > Options > Source Code Engineering > C++' and set the 'C++ Version'
option to 'ANSTI'

This code generation method does not apply to the Legacy StateMachine code generation templates developed prior to
Enterprise Architect Release 11.0, nor to generating Hardware Definition Language code.

Access

Drag an Executable StateMachine Artifact from the 'Simulation' page of the Diagram Toolbox, onto your diagram. The
'Simulation' page of the Diagram Toolbox can be accessed using any of the methods outlined in this table.

Ribbon Design > Diagram > Toolbox > Simulation
Keyboard Shortcuts Ctrl+Shift+3 > Simulation
Other You can display or hide the Diagram Toolbox by clicking on the E or ﬂ icons at

the left-hand end of the Caption Bar at the top of the Diagram View.

Prepare your StateMachine diagram(s)

Step Action

1 For each StateMachine you want to model, create a Class diagram.

(c) Sparx Systems 2024 Page 82 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

From the 'Class' page of the Diagram Toolbox, drag the 'Class' icon onto your diagram and give the
element an appropriate name.

Right-click on the Class element and select the 'New Child Diagram | StateMachine' context menu option.

Give the StateMachine diagram an appropriate name.

Create the StateMachine model to reflect the appropriate transitions between States.

Set up the Executable StateMachine Artifact

Step

1

Action

Create a new Class diagram to contain the modeled StateMachine(s) from which you intend to generate
code.

From the 'Simulation' page of the Diagram Toolbox, drag the 'Executable StateMachine' icon onto the
diagram to create the Artifact element. Name the element and drag its borders out to enlarge it.

From the Browser window, drag the (first) Class element containing a StateMachine diagram onto the
Artifact element on the diagram.

The 'Paste <element name>' dialog displays. In the 'Drop as' field, click on the drop-down arrow and
select the value 'Property’.

(If the dialog does not display, press Ctrl as you drag the Class element from the Browser window.)
Click on the OK button. The Class element is pasted inside the Artifact as a Part.

Repeat steps 3 and 4 for any other Classes with StateMachines that you want to combine and generate
code for. These might be:

e Repeat 'drops' of the same Class and StateMachine, modeling parallel objects

e Different Classes and StateMachines, modeling separate interacting objects

Right-click on the Artifact element and select the 'Properties > Properties' option, expand the 'Advanced'
category and, in the 'Language' field, click on the drop-down arrow and set the code language to the same
language as is defined for the Class elements.

You can now drag this Executable StateMachine Artifact element from the Browser window onto the
diagram any number of times, and modify the Parts to model variations of the system or process, or the
same system or process with different programming languages.

Generate Code From Artifact

Step

1

Action

Click on the Executable StateMachine Artifact element and select the 'Simulate > Executable States >
Statemachine > Generate' ribbon option.

(c) Sparx Systems 2024 Page 83 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

The 'Executable Statemachine Code Generation' dialog displays.

2 In the 'Project output directory' field, type or browse for the directory path under which to create the
output files.

During code generation, all existing files in this directory are deleted.

3 Select the Target System. If you are running on Windows select the "Local' option. If you are working on
Linux choose the 'Remote' option. The choice affects the scripts generated to support the Simulation.

4 In the 'Location of <compiler> installation directory' field, type or browse for the path of the compiler
installation directory, to be automatically mapped to the local path (displayed to the left of the field). For
each programming language, the paths might resemble these examples:

e Java

JAVA HOME C:\Program Files (x86)\Java\jdk1.7.0 17
e C/C++

VC_HOME C:\Program Files (x86)\Microsoft Visual Studio 9.0
o C#

CS_HOME C:\Windows\Microsoft. NET\Framework\V3.5

5 Click on the Generate button. The code files are created appropriate to the programming language.

The System Output window displays with an 'Executable StateMachine Output' tab, showing the progress
and status of the generation.

During code generation, an automatic validation function is executed to check for diagram or model errors
against the UML constraints. Any errors are identified by error messages on the 'Executable StateMachine
Output' tab.

Double-click on an error message to display the modeling structure in which the error occurs, and correct
the mistake before re-generating the code.

6 When the code generates without error, click on the Artifact element and select the 'Simulate > Executable
States > Statemachine > Build' ribbon option to compile the code.

The System Output window displays with a 'Build' tab, showing the progress and status of the
compilation. Notice that the compilation includes configuration of the simulation operation.

Code Generation Macros

You can also use two macros in the code generation for StateMachines.

Macro Name Description

SEND EVENT Send an event to a receiver (the Part). For example:
%SEND_EVENT("eventl1", "Part1")%

BROADCAST EVENT Broadcast an event to all receivers. For example:
%BROADCAST EVENT("event2")%

Execute/Simulate Code From Artifact

(c) Sparx Systems 2024 Page 84 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Step Action

1 Select the ribbon option 'Simulate > Dynamic Simulation > Simulator > Apply Workspace' to display the
Simulation window and the Simulation Events window together

Dock the two windows in a convenient area of the screen.

2 On the diagram or Browser window, click on the Artifact element and select the 'Simulate > Executable
States > Statemachine > Run' ribbon option.

The first StateMachine diagram in the series displays with the simulation of the process already started. In
the Simulation window, the processing steps are indicated in this format:

[03516677] Partl[Class1].Initial 367 TO_State4 142 Effect
[03516683] Partl[Class1].StateMachine State4 ENTRY
[03516684] Partl[Classl].StateMachine_ State4 DO
[03518375] Blocked

3 Click on the appropriate Simulation window toolbar buttons to step through the simulation as you prefer.

When the simulation finishes at the Exit or Terminate element, click on the Stop button in the Simulation
window toolbar.

4 Where the trace shows Blocked, the simulation has reached a point where a Trigger event has to occur
before processing can continue. On the Simulation Events window, in the 'Waiting Triggers' column,
double-click on the appropriate Trigger.

When the Trigger is fired, the simulation continues to the next pause point, Trigger or exit.

Notes

e If you are making small changes to an existing StateMachine model, you can combine the code generation, build and
run operations by selecting the 'Simulate > Executable States > Statemachine > Generate, build and run' ribbon
option

e You can also generate code in JavaScript

(c) Sparx Systems 2024 Page 85 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Legacy StateMachine Templates

Code generation operates using a set of generation templates. From Release 11.0 of Enterprise Architect, a different set
of templates are available as the default for software code generation from a StateMachine diagram into Java, C, ANSI
C++ or C# code. You can still use the original templates, as described here, for models developed in earlier releases of
Enterprise Architect, if you do not want to upgrade them for the new template facilities.

Switch Between Legacy and Release 11 templates

Access

Display the Manage Model Options' dialog, then show the 'Language Specifications' page for your chosen language,
using one of the methods outlined in this table. If necessary, expand the 'StateMachine Engineering (for current model)'
grouping and set the 'Use the new StateMachine Template' option to True (to use the later templates) or False (to use the
Legacy templates).

Ribbon Settings > Model > Options > Source Code Engineering > [language name]

Legacy Template Transformations

A StateMachine in a Class internally generates a number of constructs in software languages to provide effective
execution of the States' behaviors (do, entry and exit) and also to code the appropriate transition's effect when necessary.

Model Objects Code Objects

Enumerations e StateType - consists of an enumeration for each of the States contained within
the StateMachine

e TransitionType — consists of an enumeration for each transition that has a valid
effect associated with it; for example,
ProcessOrder Delivered to ProcessOrder Closed

e CommandType — consists of an enumeration for each of the behavior types that
a State can contain (Do, Entry, Exit)

Attributes e currState:StateType - a variable to hold the current State's information

e nextState:StateType - a variable to hold the next State's information, set by
each State's transitions accordingly

e currTransition: TransitionType - a variable to hold the current transition
information; this is set if the transition has a valid effect associated with it

e transcend:Boolean - a flag used to advise if a transition is involved in
transcending between different StateMachines (or Submachine states)

e xx_history:StateType - a history variable for each StateMachine/Submachine
State, to hold information about the last State from which the transition took
place

Operations e StatesProc - a States procedure, containing a map between a State's
enumeration and its operation; it de-references the current State's information

(c) Sparx Systems 2024 Page 86 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

to invoke the respective State's function

e TransitionsProc - a Transitions procedure, containing a map between the
Transition's enumeration and its effect; it invokes the Transition's effect

e <<State>> - an operation for each of the States contained within the
StateMachine; this renders a State's behaviors based on the input
CommandType, and also executes its transitions

e initializeStateMachine - a function that initializes all the framework-related
attributes

e runStateMachine - a function that iterates through each State, and executes
their behaviors and transitions accordingly

Notes

e To be able to generate code from behavioral models, all behavioral constructs should be contained within a Class

(c) Sparx Systems 2024 Page 87 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Java Code Generated From Legacy StateMachine Template

i New Packed

e
+ do/updaeteStatus + do/updateStatus
setStatus(OrderStatus. =_'/ '\‘_ setStatus _,':e'::_=:d5.c3:-.=__':/»J

Dispaiched i,

k do [updateStatus J
setStatus(OrderStatus dispatched

[status==OrderStatus.delivered]
I=etStatus{OrderStatus.closed)

Closed 7 Delivered

+ do fupdateStatus

setStatus(OrderStatus.de .';.';.j/

private enum StateType: int

{
ProcessOrder Delivered,
ProcessOrder Packed,
ProcessOrder Closed,
ProcessOrder_Dispatched,
ProcessOrder New,
ST NOSTATE

H

private enum TransitionType: int

{
ProcessOrder Delivered to ProcessOrder Closed,
TT NOTRANSITION

H

private enum CommandType
{
Do,
Entry,
Exit
}
private StateType currState;
private StateType nextState;
private TransitionType currTransition;
private boolean transcend;
private StateType ProcessOrder history;

private void processOrder Delivered(CommandType command)

(c) Sparx Systems 2024 Page 88 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

switch(command)

{

case Do:
{
// Do Behaviors..
setStatus(Delivered);
// State's Transitions
if((status==Delivered))
{
nextState = StateType.ProcessOrder Closed;
currTransition = TransitionType.ProcessOrder Delivered to ProcessOrder Closed;

}
break;

}
default:

{
break;

}

private void processOrder Packed(CommandType command)

{

switch(command)

{

case Do:
{
// Do Behaviors..
setStatus(Packed);
// State's Transitions
nextState = StateType.ProcessOrder Dispatched,;
break;
H

default:

{
break;

}

private void processOrder Closed(CommandType command)

{

switch(command)

(c) Sparx Systems 2024 Page 89 of 395 Created with Enterprise Architect

Software Engineering

case Do:

{
// Do Behaviors..
// State's Transitions
break;

}
default:

{
break;

H

private void processOrder Dispatched(CommandType command)

{

switch(command)

{

case Do:
{
// Do Behaviors..
setStatus(Dispatched);
// State's Transitions
nextState = StateType.ProcessOrder Delivered,;
break;
H

default:

{
break;

}

private void processOrder New(CommandType command)

{

switch(command)

{

case Do:
{
// Do Behaviors..
setStatus(new);
/I State's Transitions
nextState = StateType.ProcessOrder Packed;
break;

(c) Sparx Systems 2024 Page 90 of 395

16 October, 2024

Created with Enterprise Architect

Software Engineering

}

default:

{
break;

}

private void StatesProc(StateType currState, CommandType command)

{

switch(currState)

{

case ProcessOrder Delivered:

{
processOrder Delivered(command);
break;

}

case ProcessOrder Packed:

{
processOrder Packed(command);
break;

}

case ProcessOrder Closed:

{
processOrder Closed(command);
break;

}

case ProcessOrder Dispatched:

{
processOrder Dispatched(command);
break;

H

case ProcessOrder New:

{

processOrder New(command);
break;

}
default:

break;
}

private void TransitionsProc(TransitionType transition)

{

(c) Sparx Systems 2024 Page 91 of 395

16 October, 2024

Created with Enterprise Architect

Software Engineering 16 October, 2024

switch(transition)

{

case ProcessOrder Delivered to ProcessOrder Closed:
{
setStatus(closed);
break;
}
default:
break;

}

private void initalizeStateMachine()
{
currState = StateType.ProcessOrder New;
nextState = StateType.ST NOSTATE;
currTransition = TransitionType. TT NOTRANSITION;

H
private void runStateMachine()
{
while (true)
{
if (currState == StateType.ST NOSTATE)
{
break;
H

currTransition = TransitionType.TT NOTRANSITION;
StatesProc(currState, CommandType.Do);

// then check if there is any valid transition assigned after the do behavior
if (nextState == StateType.ST NOSTATE)

{
break;

}
if (currTransition != TransitionType. TT NOTRANSITION)

{

TransitionsProc(currTransition);

}

if (currState != nextState)

{

StatesProc(currState, CommandType.Exit);
StatesProc(nextState, CommandType.Entry);

currState = nextState;

(c) Sparx Systems 2024 Page 92 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

-

(c) Sparx Systems 2024 Page 93 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

StateMachine Modeling For HDLs

To efficiently generate Hardware Description Language (HDL) code from StateMachine models, apply the design
practices described in this topic. Hardware Description Languages include VHDL, Verilog and SystemC.

In an HDL StateMachine model, you might expect to:
e Designate Driving Triggers

e Establish Port-Trigger Mapping

e Add to Active State Logic

Operations

Operation Description

Designate Driving Triggers e A 'Change' Trigger is deemed to be an asynchronousTrigger if:
- There is a transition from the actual SubMachine State (which
encapsulates the actual logic) that it triggers, and
- The target State of that transition has a self transition triggered
by the same Trigger

e Asynchronous Triggers should be modeled according to this pattern:
- The Trigger should be of type Change (specification: True / False)
- The active State (SubMachine State) should have a transition
triggered by it
- The target State of the triggered transition should have a self
transition with the same Trigger

e A Trigger of type 'Time', which triggers the transitions to the active state
(SubMachine State), is deemed to be the Clock; the specification of this trigger
should conform to the target language:

- VHDL - rising_edge / falling_edge
- Verilog - posedge / negedge
- SystemC - positive / negative

Establish Port-Trigger After successfully modeling the different operating modes of the component, and
Mapping the Triggers associated with them, you must associate the Triggers with the
component's Ports.

A Dependency relationship from the Port to the associated Trigger is used to
signify that association.

class HDL 7

ActiveClass

———————————————————————— reset){————————[]
. resat
A dependency relationship is
used to represent association [T 77777777 clesr ET - ———— - E:l
bebween ports and theirtriggers, clear

Active State Logic Designating the driving Trigger and establishing the Port-Trigger mapping put in
place the preliminaries required for efficiently interpreting the hardware

(c) Sparx Systems 2024 Page 94 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

components.

We now model the actual StateMachine logic within the Active (SubMachine)
State.

Notes

e To be able to generate code from behavioral models, all behavioral constructs should be contained within a Class

e The current code generation engine supports only one clock Trigger for a component

(c) Sparx Systems 2024 Page 95 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Win32 User Interface Dialogs

.......

Fl

FIRTRFTCR i FTiA IR Ti T IR TTIRT S RITIaRaT FIfivd

s s

Using the MDG Win32 UI Technology, you can design user interface screens that render as Win32® controls. The user
interface produced can be used in any resource definition script. Resource definition scripts, or RC files, are a Microsoft
technology that - as for other code - can be compiled and the assets used by native desktop applications. User interface
screens or dialogs can be created from scratch or reverse engineered. User interface models can also be forward
engineered using the synchronize code function (F7). Interface modeling takes place on diagrams in the exact same
fashion as you would work with any technology in Enterprise Architect. An interesting aspect of User Interface design in
Enterprise Architect is that components can take an active role in the simulation of StateMachines and Activities,
enabling a simulation to interact with users, much like a real program!

Access
Ribbon Design > Diagram > Add Diagram > Type > User Interface Win32
Context Menu Right-click on Package | Add Diagram > Type | User Interface Win32
Other Browser window caption bar menu | New Diagram | User Interface Win32
Support

The MDG Win32® User Interface Technology is available in the Enterprise Architect Professional, Corporate, Unified
and Ultimate editions

Enabling Win32 User Interface Technology

(c) Sparx Systems 2024 Page 96 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Win32 & User Interface Modelling

Version 1

ToGH0R s Tomsoiog

Description
I:hlgl.n_ wamerdy and wrpd For modeiling

Windaws user inberfaces. Depends on
EaScnpiLibg

WInZ2 n & regivtered trademare of Mool
Corperabian In the Unged Stakes and'or o5her

Web Site
e e e

Erusbed
r
I
r
I
[~
I
I
r
"
[
=
I
r
I
[
=
r
r
F
=
I
I
r
IF_

Support

P o

The Win32® UI Technology in Enterprise Architect is enabled or disabled using the MDG Technologies' dialog (select
the 'Specialize > Technologies > Manage Technology' ribbon option).

Default technology

You can set the MDG Win32® UI Technology as the active default technology to access the Toolbox pages directly.

(c) Sparx Systems 2024 Page 97 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Modeling Ul Dialogs

The Win32 User Interface MDG Technology provides the tools to help you design a user interface that closely emulates
the visual style and available options for Windows dialogs.

] Property Restrctions
Property: @
IDC_MNAME XML
~ Cardinality

Mirirmum: E Mandrmum: E D Unbounded
~Options
() None
(") Redefined by | IDC_COMBO1 v
O As choice of hems
ttem 1
2 tem 2
=2 lem 2
% ftem 4
O By Reference
D Inline Defintion [= ” p—
nc

Win32 Dialog

These user interface components are supported, each matching the equivalent-named RC resource.

Component Details
win32Dialog The equivalent of the RC format DIALOG and DIALOGEX resources.
win32StaticText The equivalent of the RC format LTEXT, RTEXT, CTEXT resources.
win32Edit The equivalent of the RC format EDITTEXT resource.
win32Button The equivalent of the RC format BUTTON, DEFPUSHBUTTON and other

resources.

win32CheckBox The equivalent of the RC format CHECKBOX resource.
win32ScrollBarH The equivalent of the RC format SCROLLBAR resource with SBS HORZ style
win32ScrollBarV The equivalent of the RC format SCROLLBAR resource with SBS VERT style.
win32GroupBox The equivalent of the RC format GROUPBOX resource.

(c) Sparx Systems 2024 Page 98 of 395 Created with Enterprise Architect

Software Engineering

win32ComboBox

win32ListBox

win32RadioButton

win32TabPane

win32Picture

win32CustomControl

(c) Sparx Systems 2024

16 October, 2024

The equivalent of the RC format COMBOBOX resource.

Note: When you initially drag the 'Combo Box' icon - of type 'Drop Down' or 'Drop
Down List' - onto a diagram, the middle 'tracking handle' on each side of the
element is white, indicating that you can only adjust the width of the element. To
adjust the height of the element as well as the width, click on the drop-down arrow
part of the image; the middle 'tracking handle' on the bottom edge is now white,
indicating that you can drag the base down to set the virtual height (the height of
the element when it is expanded to show all possible values in the drop-down list).

The equivalent of the RC format LISTBOX resource.

The equivalent of the RC format RADIOBUTTON resource.

The equivalent of the RC format TABPANE resource.

The equivalent of the RC format STATIC resource with SS BITMAP style.

The control can render an image when applied from your model. An image can be
applied by selecting it first and pressing Ctrl+Shift+W to display the Image

Manager. Afterwards, you might need to change the value of the resource ID in the
appropriate Tagged Value.

The equivalent of the RC format CONTROL resource.

Page 99 of 395 Created with Enterprise Architect

Software Engineering

16 October, 2024

Import Single Dialog from RC File

You can quickly import a single dialog by name.

Win32 Resource Import: User Interface

Resource File: &\Microsoft Mativel CikyLoophCikyLoop.rc

Reszource (D: | IDD_TOOLECE -

Languange: Enaglish [Australia -

Starts 4/11/2020 3:19:00 PM
win3z0ialog, 10D _TOOLBOY
Completed: 4112020 3:19:00 P

Import | | Cloze | | Help

Access

In the Browser window, click on the target Package.

Ribbon Develop > Source Code > Files > Import Resource Script

(c) Sparx Systems 2024 Page 100 of 395

Created with Enterprise Architect

Software Engineering 16 October, 2024

Import All Dialogs from RC File

All dialogs in a single RC file can be imported into your model. This image was captured one minute into the import, at
which time over 200 large dialog definitions had been imported.

Resource File: | C:\Code Samplesiywin32ui.rc

Resource 1D: | Al

Language: | English { United States)

win32Dialog, IDD_NEWVIEW DLG
win32Dialog, IDD_PKG_CONTROL
win32Dialog, IDD_USAGE_DLG
win32Dialog, IDD_OPT_PAGES
win32Dialog, IDD_NAMESPACE_DLG
win32Dialog, IDD_RUNSTATE
win32Dialog, IDD_APPEARANCE

—

Access

Ribbon Develop > Source Code > Files > Import Resource Script

(c) Sparx Systems 2024 Page 101 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Export Dialog to RC File

Once a screen design is modified or a new one created, you might want to get it back to the RC file you use to build your
application, so that you can see how it looks with real data. Begin by selecting the Win32Dialog element in the Browser
window, then use the ribbon to perform the synchronization.

Save Screen x
Screen |D: IDD_RAS STORAGE

Resource File: | ©:\projects'projectliprojecti.re

Language: English { United States) -

Export Close Help

Access

Click on the win32Dialog element.

Ribbon Develop > Source Code > Generate > Generate Single Element

Keyboard Shortcuts F11

(c) Sparx Systems 2024 Page 102 of 395 Created with Enterprise Architect

Software Engineering

16 October, 2024

Design a New Dialog

Creating a new Win32 dialog is easy and mostly visual. You will probably need a workspace that shows:

e The new diagram (select the 'Design > Diagram > Add Diagram > User Interface - Win32 > User Interface - Win32'

ribbon path)

e The Win32 User Interface Toolbox (select the 'Design > Diagram > Tooolbox' ribbon option) and

e The Tagged Values tab of the Properties window

X

~Add Markers Ta...
O Existing marker set

C}New marker ...

Name ’ IDC_SET_NAME

[Expanded Mode
- Expanded Mode
i:— E Leaf
- E Leaf

- Collapsed Mode

E Leaf

Marker Type:

[IDC_COMBOT

-r] E] Include disabled operations

Frame Depth Limit:

] &

| ok][Cancel

The Ul Toolbox

All of the common RC elements can be found on the Ul toolbox

(c) Sparx Systems 2024

Page 103 of 395

Created with Enterprise Architect

Software Engineering

16 October, 2024

The Tags Tab

This tab is provided on the Properties window and 'Properties' dialog for an object, and is where all the properties of a
control can be viewed and edited.

Tagged Values

q

B win32Ul::win32Date Time (Ul Control)

Accept Filas Falze
Allove Edit False
Client Edge False
Disabled False
Format Short Date [
Group F_
Help ID LDng Date
Time
0]
Left Scrollbar Falze
Modal Frame False
Right Align True
(c) Sparx Systems 2024 Page 104 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Using the Picture Control

Images from your model (see /mage Manager) can be applied by selecting the control on the dialog and pressing
Ctrl+Shift+W. You might have to enter the value of the resource ID in the appropriate Tagged Value.

Note

® You can copy and paste dialog Packages

(c) Sparx Systems 2024 Page 105 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Gang of Four (GoF) Patterns

A Design Pattern is a template for solving commonly recurring design problems; it consists of a series of elements and
connectors that can be reused in a new context. The advantage of using Patterns is that they have been tested and refined
in a number of contexts and so are typically robust solutions to common problems. Enterprise Architect provides the
Gang of Four Patterns as an MDG Technology that can be loaded into the current repository.

The Gang of Four (Gof) Patterns are a group of twenty three Design Patterns originally published in a seminal book
entitled Design Patterns: Elements of Reusable Object-Oriented Sofiware; the term 'Gang of Four' refers to the four
authors. Enterprise Architect displays these Patterns in its Pattern engine, helping you to visualize the elements of the
Pattern and adjust the Pattern to the context of your software design problem.

GoF Patterns in Enterprise Architect

Features Description

GoF Pattern Facilities The GoF Patterns are provided in the form of:

e GoF Behavioral Patterns, GoF Creational Patterns and GoF Structural Patterns
pages in the Toolbox

e Gang of Four Pattern entries in the Toolbox Shortcut Menu
GoF Pattern Toolbox Pages

You can access the 'GoF Pattern' pages of the Toolbox by clicking on £ to
display the 'Find Toolbox Item' dialog and specifying 'GoF Patterns'; these icons are

available:

(c) Sparx Systems 2024 Page 106 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

L RS RS B B RS RS RS S B RS RS

RS S B RS RS

B ES B B B B B

When you drag one of the Pattern elements onto a new diagram, the 'Add Pattern
GoF <pattern group><pattern type>' dialog displays; if necessary, modify the action
and/or default for the component elements, then click on the OK button to create a
diagram based on the Pattern.

(c) Sparx Systems 2024 Page 107 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

ICONIX

The ICONIX process is a proprietary software development methodology based on UML. The process is Use Case
driven and uses UML-based diagrams to define four milestones. The main feature of the process is a concept called
robustness modeling, based on the early work of Ivar Jacobson, which helps bridge the gap between analysis and design.

This text is derived from the ICONIX entry in the online Wikipedia:

'"The ICONIX Process is a minimalist, streamlined approach to Use Case driven UML modeling that uses a core subset of
UML diagrams and techniques to provide thorough coverage of object-oriented analysis and design. Its main activity is
robustness analysis, a method for bridging the gap between analysis and design. Robustness analysis reduces the
ambiguity in use case descriptions, by ensuring that they are written in the context of an accompanying domain model.
This process makes the use cases much easier to design, test and estimate.'

The ICONIX Process was developed by Doug Rosenberg; for more information on ICONIX, refer to ICONIX Software
Engineering Inc.

Aspects
Aspect Detail

ICONIX in Enterprise Enterprise Architect enables you to develop models under ICONIX quickly and

Architect simply, through use of an MDG Technology integrated with the Enterprise
Architect installer.
The ICONIX facilities are provided in the form of:
e A set of ICONIX pages in the Toolbox
e [CONIX element and relationship entries in the "Toolbox Shortcut' menu and

Quick Linker

To further help you develop and manage a project under ICONIX, Enterprise
Architect also provides a white paper on the ICONIX Roadmap.

ICONIX Toolbox Pages Within the Toolbox, Enterprise Architect provides ICONIX versions of the pages

for UML Analysis, Use Case, Class, Interaction (Sequence), Activity and Custom
diagrams (which often form the basis for Robustness diagrams).

Compared to the standard Toolbox pages, these have slightly different element and
relationship sets; you can access them by either:

e Specifying ICONIX' in the 'Find Toolbox Item' dialog and selecting a specific
Toolbox page

e Selecting the TCONIX' option in the drop-down field of the Default Tools
toolbar, which adds all six pages to the Toolbox; all pages are closed up

(c) Sparx Systems 2024 Page 108 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Toolbox v 1 x
Search L L =
[+ Activity

[+ Activity Relationships

[* Analysis

= Use Case

= Class

[Interaction

[Custom

[+ Common

[+ Common Relationships

= Artifacts

(c) Sparx Systems 2024 Page 109 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Configuration Settings

You can set the default code options such as the editors for each of the programming languages available for Enterprise
Architect and special options for how source code is generated or reverse engineered. These options are defined
according to whether they apply to:

e All users of the current model, set on the 'Manage Model Options' dialog, or

e All models that you access (other users can define their own settings that apply to the same models), set on the
'"Preferences' dialog

You can also:

e For each programming language used in the model, for all users working on the model, define Collection Classes for
generating code from Association connectors where the target role has a multiplicity setting greater than 1

e Define a local path for yourself, using the 'Local Path' dialog; these settings apply to all Enterprise Architect models
that you access

e Define language macros within the model, which are useful in reverse engineering and can be exported from and
imported to the model

(c) Sparx Systems 2024 Page 110 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Source Code Engineering Options

The 'Source Code Engineering' options apply to the languages in which you generate code from Enterprise Architect.
They are divided into Model-specific options and User-specific options, as explained here.

Model-Specific Options

These options are defined on the 'Manage Model Options' dialog.

Access
Ribbon Settings > Model > Options > Source Code Engineering
Types of Option
Option Type Detail
Source Code Generation You can define a number of settings for generating code in the model, such as the
Options default language to generate code in and the Unicode character set for code
generation.
Options - Object Lifetimes You can configure various options concerning Object Lifetimes.
Code Language Options For each of the code languages that Enterprise Architect supports, you can define

the model-specific options and set any Collection Classes required.

User-Specific Options

These options are defined on the 'Preferences' dialog.

Access

On the 'Preferences' dialog, click on 'Source Code Engineering' in the left-hand list.

Ribbon Start > Appearance > Preferences > Preferences

Keyboard Shortcuts Ctrl+F9

(c) Sparx Systems 2024 Page 111 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Types of Option
Option Type Detail

Source Code Generation You can define a number of settings for generating code in any model that you

Options access under the same user ID.

Code Editors These are options for accessing and configuring the source code editor.

Attributes/Operations Use these options for configuring attributes and operations.

Code Language Options For each of the code languages that Enterprise Architect supports, you can define
the user-specific options that apply to any model that you access under your user
ID.

(c) Sparx Systems 2024 Page 112 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Code Generation Options

When you generate code for your model, you can set certain options. These include:
e The default language
e Whether to generate methods for implemented interfaces

e The Unicode options for code generation

Access

Ribbon Settings > Model > Options > Source Code Engineering

Configure code generation options

Option Action
Always synchronize with Select the radio button to synchronize imported code with an existing file.
existing file
(recommended)
Replace (overwrite) Select the radio button to overwrite the existing source file with imported code.

existing source file

Component Types Click on this button to open the 'Tmport component types' dialog, to set up the
importation of component types.

Default Language for Code Click on the drop-down arrow and select the default language for code generation.
Generation
DDL Name Templates

Click on the E] button to define the template names for Primary Key, Unique
Constraint, Foreign Key and Foreign Key Index Name templates.

Default name for Type in a default name to be generated from imported attributes.
associated attrib

Generate methods for Select the checkbox to indicate that methods are generated for implemented
implemented interfaces interfaces.
Code page for source Click on the drop-down arrow and select the appropriate Unicode character
editing embedding format to apply.

Notes

(c) Sparx Systems 2024 Page 113 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

e It is worthwhile to configure these settings, as they serve as the defaults for all Classes in the model; you can
override most of these on a per-Class basis using the custom settings (from the 'Code Generation' dialog)

(c) Sparx Systems 2024 Page 114 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Import Component Types

Using the 'Import Component Types' dialog you can configure what elements you want to be created for files of any
extension found while importing a source code directory.

Access

Ribbon Settings > Model > Options > Source Code Engineering: Component Types

Define Import Component Types

Option Action
Extension Type in the extension name for a component type.
Type Click on the drop-down arrow and select the component type.
Stereotype Type in any stereotype name that further identifies a component of this type.
Component List Lists the currently-defined component types.
Save Click on this button to saves the component definition and add it to the component
list.
New Click on this button to clear the dialog fields so that you can define a new

component type.

Delete Click on this button to delete the selected component type from the component list.

Notes

e You can transport these import component types between models, using the 'Settings > Model > Transfer > Export
Reference Data' and 'Tmport Reference Data' ribbon options

(c) Sparx Systems 2024 Page 115 of 395 Created with Enterprise Architect

Software Engineering 16 October, 2024

Source Code Options

You can set a wide range of options for generating code in the models you work with. These include:
e How to format the generated code
e How to